
SCALABLE CODING OF H.264 VIDEO

by

KEMAL UGUR

B.Sc, Middle East Technical University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

ELECTRICAL AND COMPUTER ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 2004

© Kemal Ugur, 2004

Library Author izat ion

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the

head of my department or by his or her representatives. It is understood that

copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

Name of Author (please print) Date (dd/mm/yyyy)

Title of Thesis: S^aJflk^ Coc\~iA^ of \JrJeo

Degree: j M a c T e r of / f y f l r g i ^cIcAce Y e a r : ZQoq,

Department of t l^oinco) o-flj CorYlfuisr E^/leer.V)^
The University of British Columbia
Vancouver, BC Canada

file:///JrJeo

Abstract

Real-time transmission of digital video over media, such as the Internet and wireless

networks has recently been receiving much attention. A big challenge of video

transmission over such networks is the variation of available bandwidth over time.

Traditional video coding standards whose main objective is to optimize the quality of

transmitted video at a given bitrate, do not offer effective solutions to the bandwidth

variation problem. To deal with this problem, different scalable video coding techniques

have been developed.

The latest video coding standard, H.264, provides superior compression efficiency over

all previous standards. This standard, however, does not include tools for coding the

video in a scalable fashion. In this thesis, we introduce methods that allow encoding and

transmitting of H.264 video in a scalable fashion. The method we propose is an

adaptation of the existing MPEG-4 Fine Granular Scalability structure (FGS) to the

H.264 standard. Our proposed algorithm minimizes the added number of the bits needed

in adapting the advanced features of H.264 to the FGS system. Our proposed system has

the advantages of being highly error resilient and having low computational complexity.

Due to its structure, the FGS standard has low coding efficiency when compared to single

layer coding. To overcome this problem, we also introduce a hybrid method that

combines our proposed H.264 based FGS approach with the stream-switching approach

employed in the H.264 standard. By combining different techniques, our proposed system

offers a complete solution for all kinds of applications. The proposed system outperforms

existing systems by offering optimum bandwidth utilization and improved video quality

for the end user.

ii

Contents

Abstract ii

Contents iii

Table of Figures vi

Acknowledgements viii

CHAPTER 1 1

1 Introduction 1

1.1 Thesis Objective 1

1.2 Thesis Outline 2

1.3 Introduction to Video Coding 3

1.3.1 Fundamentals of Video Coding 4

1.3.2 Overview of Scalable Video Coding 12

1.4 Overview of MPEG-4 FGS Video Coding Standard 21

1.4.1 MPEG-4 FGS Encoder Structure 23

1.4.2 MPEG-4 FGS Decoder Structure 28

1.5 Overview of H.264 Video Coding Standard 29

1.5.1 Advances in Motion Compensated Prediction 30

1.5.2 Advances in Transform Coding 30

1.5.3 Advances in Entropy Coding 31

CHAPTER 2 32

2 H.264 Based Fine Granular Scalability (FGS) 32

2.1 Introduction 32

2.2 Trivial Extension of FGS into H.264 34

2.2.1 Drawbacks of Trivial Extension of FGS to H.264 37

2.3 Proposed H.264 based FGS System 38

2.3.1 Proposed Transform Coding Structure 38

2.3.2 Proposed Entropy Coding Structure 54

2.4 Experimental Results 61

2.4.1 Experimental Results for the Proposed CBP Coding Scheme 62

iii

2.4.2 Experimental Results for the Proposed Entropy Coding Scheme 64

2.5 Conclusion 70

CHAPTER 3 71

3 Hybrid Structure using Stream-Switching and FGS for Scalable H.264 Video

Transmission 71

3.1 Stream Switching and SP-Frames 73

3.1.1 Overview of Stream Switching 73

3.1.2 Overview of the SP Frame Switching Concept used in H.264 74

3.1.3 Comparison of Stream Switching and Scalable Video Coding 76

3.2 Combining Stream-Switching and FGS 80

3.2.1 Adaptive Bitrate Selection for Stream Switching 82

3.2.2 Generalized Adaptive Rate Selection 83

3.3 Experimental Results 84

3.4 Conclusion 89

CHAPTER 4 90

4 Conclusions and Future Work 90

4.1 Conclusions 90

4.2 Future Work 92

APPENDIX 93

A. Exp-Golomb Codes for Entropy Coding 93

B. VLC Codes for CBPCODE 95

B . l . CBP Codes for the First Bitplane 95

B.2. CBP Codes for the Second Bitplane 101

C. VLC Codes for S U B C B P C O D E 104

D. RUN - EOP Statistics 106

D. l . BUS Sequence, Base Layer at 500 Kbps 106

D.2. BUS Sequence, Base Layer at 1.5 Mbps 107

D.3. MOBILE Sequence, Base Layer at 500Kbps 108

D.4. MOBILE Sequence, Base Layer at 1.5 Mbps 109

D.5. TEMPETE Sequence, Base Layer at 500 Kbps 110

D.6. TEMPETE Sequence, Base Layer at 1.5 Mbps 111

iv

E. Proposed VLC Tables 112

E . l . (RUN,EOP) Symbols for the First Bitplane 112

E.3. (RUN,EOP) Symbols for the Second Bitplane 113

E.4. (RUN,EOP) Symbols for the Other Bitplanes 114

Bibliography 115

v

Table of Figures

Figure 1 Hybrid video coder block diagram 5

Figure 2 Illustration of Block Matching Motion Estimation 7

Figure 3 Coding and display order of Frames in a typical video bitstream 8

Figure 4 Zigzag Scan Order for DCT Coefficients 12

Figure 5 Architecture of a Streaming Video System 13

Figure 6 Block Diagram of MPEG-2 SNR Scalable Decoder 14

Figure 7 Block Diagrams of two types of SNR Scalable Encoders (a) Enhancement Layer

Residue is used at the motion prediction loop at the base layer (b) Enhancement Layer

Residue is not used 17

Figure 8 Frame Structure used in Temporal Scalable Systems 19

Figure 9 Frame Structure used in Spatial Scalability Systems 20

Figure 10 Block diagram of Spatial Scalable Encoder 21

Figure 11. The illustration of the FGS video delivery system. The system comprises of

Encoder, Streaming Server and Decoder 23

Figure 12. Block diagram of MPEG-4 FGS Encoder 24

Figure 13 Maximum Number of Bitplanes Needed for Bitplane Coding

maximum_level_y=6, maximum_level_y=4, maximum_level_v=4 26

Figure 14. The Bitplane Generation Process 26

Figure 15 Block Diagram of the MPEG-4 FGS Decoder 29

Figure 16.Block Diagram of the direct implementation of FGS Encoder on H.264

Encoder 35

Figure 17.Block diagram of corresponding decoders for two cases of direct

implementation of FGS on H.264 (a) Residual Signal is calculated after the deblocking

filter at the base layer (b) Residual signal is calculated before the deblocking filter at the

base layer 36

Figure 18. FGS Macroblock Structures for two different transform sizes a. The 8x8 DCT

Transform used by MPEG-4 b. 4x4 Integer Transform used by H.264 39

Figure 19. Grouping Scheme for the Simple CBP Coding 40

Figure 20. Grouping Scheme for Hierarchical CBP Coding 41

vi

Figure 21 Illustration of Hierarchical CBP Coding 42

Figure 22 Block Diagram of the Main Hierarchical CBP Coding Algorithm 43

Figure 23 Block Diagram of groupcbp Procedure 45

Figure 24 Block Diagram of blockcbp Procedure 46

Figure 25 Example on Hierarchical CBP Coding, Group Structure of the First Bitplane 49

Figure 26 Example on Hierarchical CBP Coding, Group Structure of the Second Bitplane

51

Figure 27 Data recovery using reversible codewords 57

Figure 28 (RUN,EOP) Statistics for the BUS Sequence at 500 Kbps 59

Figure 29 Switching between streams using SP-Frames 75

Figure 30 Structure of the proposed hybrid system 81

Figure 31 Performance of the Proposed Approach Compared with two other approaches i .

Scalable Video Coding using FGS ii. Stream Switching using SP Frames 87

Figure 32 R-D Performance Comparison of the Proposed and Stream Switching

Approach 88

Figure 33 R-D Performance Comparison of the Proposed FGS Approach 88

Figure 34 R-D Performance of the Adaptive Rate Selection Algorithm 89

Figure 35 (RUN,EOP) Statistics for the BUS Sequence at 500 Kbps 106

vn

Acknowledgements

I would like to thank my research supervisors Dr. Panos Nasiopoulos and Dr. Rabab

Ward for the valuable guidance and support they provided throughout my research. I am

grateful to them for the fruitful discussions we had about research and life in general that

will guide me through the rest of my life. I would also like to thank to my dear friends.

Without them, I would not have enjoyed my days in Canada. I especially want to thank

my friends Emre, Doruk, Caglar, Ari, Juan and my friends at Koerner's for being the

reasons of my relaxed, happy and stress-free times in Vancouver. I want to thank

Sebnem, for her dear support during the last stages of this thesis. I want to thank my

colleagues at Image Processing Lab. Al l of you have brilliant skills, and I hope the future

will be bright for you. I want to thank Dr. Mehran Azimi, for his support and kindness as

the administrator of our lab during my studies. Finally, I would like to thank my beloved

family, my mother Ayfer, my father Avni, and my sister Burcu for their continuous

support of my graduate studies. I spent the last couple of years, the years my sister

needed me the most, away from home pursuing graduate degree. I wish I was able to see

her growing up, but I hope these times spent abroad will be worth it in the future. I

dedicate this thesis to my beloved sister, Burcu.

vm

CHAPTER I

1 Introduction

1.1 Thesis Objective
In networks used for video transmission environment, such as wireless networks and

Internet, the available bandwidth for video transmission is not constant but varies over

time. This variation in the available bandwidth possesses a problem for a video

transmission system. Traditional video coding standards, whose objective is to optimize

the quality of the video at a given bitrate, cannot cope with this bandwidth variation

problem effectively. Scalable Video Coding techniques have been developed to more

efficiently address this bandwidth variation problem.

Scalable Video Coding (SVC) is a video coding framework that enables a system to adapt

the quality of the video sequence to the underlying channel's available bandwidth. Unlike

traditional video coding standards, the objective of scalable video coding is to optimize

the video quality over a bitrate range instead of at a given bitrate as the bandwidth

available for each user can change over time according to the characteristics of each

channel.

Al l popular video coding standards, such as MPEG-2 and MPEG-4, include some

scalability tools. The latest video coding standard, H.264, provides superior compression

efficiency over all previous standards, but it does not include tools for coding the video in

a scalable fashion.

In this work, we introduce scalability to H.264 so that it can be more efficiently used in

network environments with time varying bandwidth. We use the latest scalable video

coding standard, Fine Granular Scalability (FGS) that is originally developed for MPEG-

1

4 and adapt it to H.264. We chose FGS to introduce scalability for H.264, as FGS has low

implementation complexity and it is highly flexible. The research is based on already

established industry standards that are proven to be superior to other methods. We modify

the techniques present in FGS and include novel techniques, so that the proposed scalable

H. 264 solution has low complexity, high coding efficiency and high error-resiliency.

We also introduce a hybrid method that combines the FGS approach with the stream-

switching approach employed in the H.264 standard. By combining different techniques

our proposed system offers a complete solution for all kinds of applications. The

proposed system outperforms existing systems by offering optimum bandwidth

utilization and improved video quality for the end user.

I. 2 Thesis Outline
In the remaining part of this chapter we first present the necessary background

information on fundamentals of video coding, scalable video coding and different types

of scalable video coding techniques (Section 1.3). Following that we present an overview

of MPEG-4 FGS scalable video coding standard in Section 1.4. An overview on the

H.264 video coding standard is presented in Section 1.5.

In Chapter 2, we present the proposed scalable H.264 based FGS structure. Following

that, our proposed novel H.264 based FGS structure is presented. In Chapter 3, we

present our proposed approach that further incorporates the highly efficient features

present in H.264 with flexible structure of FGS. This approach combines the stream-

switching structure of H.264 with our H.264 based FGS structure to provide an overall

highly efficient and flexible system.

2

Chapter 4 presents the conclusions of the research together with suggestions for future

work.

1.3 Introduction to Video Coding

Digital video applications have been growing tremendously in the past few years. Such

applications include DVD-video (digital versatile disk), digital cable and direct broadcast

systems (DBS), videophone and videoconferencing. In addition to these applications,

recent advances have made Multimedia Messaging Service (MMS) over wireless

networks, and high quality video streaming [1] over the Internet possible. The main

driving reason behind all these applications is the advances in efficient representation of

the digital video data using advanced video coding methods. Video coding is being used

wherever digital video communications, processing, acquisition and reproduction occur.

The need for video coding is clear when one considers the amount of storage space or

transmission bandwidth required for raw (uncompressed) video data. Consider a video

program having a resolution of 720x480 pixels (a common resolution used in DVD),

which is to be played at 25 frames-per-second (standard in PAL/SECAM). The bitrate of

this video with three color components at 8 bits per pixel will be over 200 Mbits/s! To

store this video in current DVD discs, compression by a factor of at least 200 is required.

A similar requirement also holds when a digital video transmission scenario is

considered. In summary, it is clear that efficient video coding is needed for feasible video

transmission and storage. This need was realized by international standards organizations

resulting in several standards for digital video coding, such as ISO/IEC MPEG-2[2] and

ITU-T H.263[4]. In the next subsection, common techniques used in video coding

standards are presented.

3

1.3.1 Fundamentals of Video Coding

Video coding can be viewed as coding of a sequence of images; in other words, image

coding with a temporal component. Therefore, similar techniques used for image coding

can be applied for video coding as well. Image coding techniques essentially exploit the

statistical redundancy in the spatial domain to achieve high compression ratios. Spatial

redundancy exists in images because of the high correlation between the brightness and

color of a given pixel, and the brightness and color of the nearby pixels within the same

picture. Techniques used to exploit the spatial redundancies are often referred to as intra-

coding methods.

The most popular image coding standards are transform-based [6]. In transform coding,

the raw image is divided into blocks and a transform is applied to each image block to

compact the signal energy into a smaller number of coefficients. The coefficients of the

transformed blocks are quantized and the quantized values are entropy coded to form the

image bitstream.

In addition to spatial redundancy in each picture for a typical video sequence, there also

exists a temporal redundancy between consecutive pictures. This is due to the fact that

pictures are sampled in very short time intervals (such as 40 ms. for a 25 frame-per-

second sequence) and the picture content usually changes slightly in this small amount of

time. Exploiting temporal redundancy is referred to as inter-frame-coding in video coding

terminology.

To remove the temporal redundancies in a video sequence, all popular video coding

standards [2, 4] use Motion Compensated Prediction (MCP). MCP-based coders allow

information about motion between frames to be transmitted as side information in the

output video bitstream. Generally, MCP consists of two stages. The first stage estimates

4

the motion between the current encoded frame and a reference frame where reference is

one of the previously reconstructed frames. This first stage is generally referred to as

motion estimation (ME). The second stage creates a prediction for the current frame using

the estimated motion parameters and the previous reconstructed frames. This stage is

referred as motion compensation (MC).

Video coders that use both intra and inter-frame coding to achieve high compression

ratios are called hybrid video coders and form the basis of all popular video coding

standards. Block diagram of a basic hybrid-video coder is illustrated in Figure 1. This

hybrid video encoder uses MCP to remove the temporal redundancies and transform

coding to remove the spatial redundancies. After the redundancies are removed, the

resulting signal is quantized, and then entropy coded to obtain the output video bitstream.

The details of the coding process are explained below.

Intra-Coding Blocks
i 1 r

Input Video
Transform Quantization Transform Quantization Entropy

Coding
Output Bitstream

Inverse
Quantization

Inverse
Transform

Motion
Estimation

Motion Frame-Store
Compensation Memory

Inter-Coding Blocks

Figure 1 Hybrid video coder block diagram

5

1.3.1.1 Overview of Motion Compensated Prediction (MCP)

MCP is the essential technique used in video coders to remove the temporal redundancy

present between frames of a video sequence. In the output video bitstream, motion

information between frames are transmitted as side information. MCP can be analyzed in

two stages, the motion estimation stage, and the motion compensation stage. The motion

estimation's role is to find the best prediction for the current frame from a reference

frame, using a specified motion model. For the motion estimation process, several motion

models have been presented in literature such as pixel-recursive [9] and variable size

block matching [11], but the translational block-matching motion estimation is the most

widely adopted technique due to its simplicity and good performance. In this model, the

current frame to be coded is divided into blocks, and for each block a best block match is

searched in the reference frame. The spatial position of the best matching block is used to

calculate the motion vector for the current block. This motion estimation process is

illustrated in Figure 2.

The motion compensation stage forms the prediction for the current frame using the

reference frame and the obtained motion vector information. The difference between the

obtained prediction and the current frame is called the prediction error. This error is due

to two assumptions implied in the motion compensation model. Firstly, it is assumed that

all the pixels within the block undergo the same motion. Secondly the block's motion is

assumed to be translational. This prediction error is then coded using transform based

spatial coding methods. The coded prediction error and the motion information together

form the output video bitstream.

6

Reference Frame Current Frame

Figure 2 Illustration of Block Matching Motion Estimation

There are three types of frames classified according to which reference frames they use in

the motion estimation stage. These are the intra coded (I) frames, the predictive coded

(P) frames and the bidirectionally predictive coded (B) frames. For the I frames, MCP is

not performed and the whole frame is intra-coded. The first frame of the video sequence

has to be coded as an I frame, as there is no reference frames available at the start of

coding hence MCP can not be performed. If the I frames are placed periodically in the

bitstream, the decoder has the capability of random access to the video sequence. Thus,

fast forward of the video sequence can be achieved by only decoding and displaying I

frames. Also random access is very important in digital TV broadcast as viewers may

change from one video program they are watching, to another one at anytime [7].

Because I frames do not exploit temporal redundancy their coding efficiency is low.

7

MCP is used to code the P and B frames. P frames are coded using prediction from the

last I or P frame, whichever happens to be closer. This kind of prediction is called

forward prediction, as the reference frame occurs temporally before the current frame.

The coding efficiency of P frames is significantly higher than that of I frames, due to the

MCP process involved. Besides forward prediction, B frames also use backward

prediction where the reference frame occurs temporally after the current frame. Higher

coding efficiency is achieved by using both the past and future frames as reference. Note

that a B frame is not used for predicting any other frame. This makes it more tolerant to

errors, as any error in its encoding will not propagate to other frames by the prediction

process. Furthermore, B frames can be coded using a lower quality than that of the

reference pictures, resulting in further bit savings [8]. Because a B frame uses a reference

that may be temporally subsequent, that reference frame should be coded and made

available prior to coding the B frame. Therefore, the display order and the coding order

of frames are different. Figure 3 illustrates this difference in a typical coded video

bitstream.

A A A A A

2

3

3

4

4

2

5 6

6 7

7

5

8

9

9 10

10 8

Display Order

Coding Order

Figure 3 Coding and display order of Frames in a typical video bitstream

8

1.3.1.2 Transform Coding

After the motion compensated prediction (MCP) process is completed and a prediction is

formed for the current frame, this prediction is subtracted from the current original frame

to form the residual signal. The temporal redundancy is reduced at the MCP stage, but

there is still spatial redundancy present in the residual signal. The most widely used

method to exploit the spatial redundancy is the transform coding, in which a transform is

applied to the residual signal to decorrelate the signal and compact its energy into smaller

number of coefficients. After the signal is decorrelated, the resulting coefficients are

entropy coded.

The best transform that gives the best energy compaction results is the Karhunel-Loeve

transform (KLT) [10]. The rows of the KLT consist of the eigenvectors of the

autocorrelation matrix of the input signal. The autocorrelation matrix for a random

process X is a matrix whose (i,j)th element [R]y is given by

[R]ij=E[X„X„+\i-j\]

It can be shown that this transform minimizes the geometric mean of the variance of the

transform coefficients [7]. However, this transform is data dependent and it must be

recomputed for every input signal, if the input signal is non-stationary. This makes KLT

unpractical for video coding. The Discrete Cosine Transform (DCT) is the most widely

adopted transform in image and video coding standards. DCT is a suitable approximation

to KLT and is data independent.

DCT gets its name from the fact that rows of the NxN transform matrix C are obtained as

a function of cosines. In video coding, DCT is applied to an 8x8 block data and the

transform is given as:

9

[ch =

1 (2j + \)i7T . A . . -r .

— cos— — i = 0, / = 0,..., N - 1
7Y 2N
2_ (2y + \)in = N-l,j = 0,l,...N -1

IN 2N

For Markov sources with high correlation coefficient, the compaction ability of DCT is

very close to that of KLT [7]. As video and image can be modeled as a highly correlated

Markov sources, DCT is chosen to be part of the many video and image coding

standards.

Because DCT is defined in terms of floating-point values, its implementation on digital

processors is not efficient. Also, the floating-point nature of DCT introduces a mismatch

between the decoded data in the encoder and the decoder. This error causes degradation

in the quality of the decoded video. Because of these drawbacks, H.264 standard replaced

the popular DCT with a low complexity 4x4 transform specified with integer arithmetic.

The transform matrix H is designed as:

H

1 1 1
1 -1 - 2

-1 -1 1
-2 2 -1

It should be noted that, the rows of this transform is orthogonal, but do not have the same

norm. This difference in norm is compensated in the quantization stage.

The implementation of this transform on digital processors is very efficient as computing

its direct and inverse transform could be carried with only additions and shifts, no

multiplications [13]. Also, it is observed that the smaller block size used decreases some

artifacts known as ringing and that occur at low bitrates [15].

10

1.3.1.3 Quantization and Entropy Coding

The quantization stage of the video coder creates a lossy representation of the input. The

quantization process divides the transform coefficients by a quantization parameter and

then rounds them to the nearest integer. The quantization parameter determines the

quality loss and the amount of bit savings. High values for the quantization parameter

result in more loss of information and a decrease of video quality but achieves a higher

compression ratio. Smaller values result in decrease of information loss, which in turn

increase the output video quality but at the expense of smaller compression ratios.

The resultant quantized transform coefficients are zigzag ordered and then assembled into

a one dimensional array using a zigzag pattern, as illustrated in Figure 4. The first

coefficient placed in the one dimensional array, is the DC coefficient of the block. The

DC coefficient is followed by AC coefficients ordered roughly from low frequency to

high frequency. The assembled one dimensional array is coded using "run-level" coding.

The number of consecutive zeros before a nonzero DCT coefficient is called a "run" and

the absolute value of the nonzero DCT coefficient is called a "level".

Entropy coding is the last stage of the video coding process. In this stage the "run-level"

symbols are coded in a lossless fashion along with the motion vectors and side

information: During entropy coding, the input symbols are mapped to binary variable

length codewords. The symbols that occur more frequently are represented with less

number of bits whereas more bits are used for symbols that occur not very often.

There are different types of entropy coding methods with different methods to generate

the codewords. The most common techniques used in video compression are Huffman

coding and arithmetic coding.

11

r T 7 7
/ / /

V / /
/ / / /,

¥
-
/ / /

/ / / /
V / / / /

>•

F i g u r e 4 Z i g z a g S c a n O r d e r f o r D C T C o e f f i c i e n t s

1.3.2 Overview of Scalable Video Coding

With the emergence of broadband wireless networks, wireless video transmission has

been receiving great attention. At the same time, streaming of audiovisual content over

the Internet is emerging as an important application. The primary challenge of

transmitting video over wireless media and the Internet is the random fluctuations in the

bandwidth available for each user [1]. In order to deliver the best visual quality to each

user, video coding technologies need to deal with the problems created by bandwidth

variations.

Scalable Video Coding (SVC) is a video coding framework that aims to cope with the

bandwidth variation problem. It enables the streaming system to adapt the quality of the

video sequence to the underlying channel's available bandwidth.

12

End-User 1

End-User 2

VIDEO

ENCODER

STREAMING

SERVER

End-User 2

VIDEO

ENCODER

STREAMING

SERVER

VIDEO

ENCODER

STREAMING

SERVER
End-User 3

~>[End-User n j

Figure 5 Architecture of a Streaming Video System

A typical system configuration for the next generation networked video applications is

illustrated in Figure 5. In this configuration, video encoding takes place before the data

are transmitted to the streaming server. For this reason, at encoding time, the bandwidth

available for the video sequence to be streamed is not known. Also, the bandwidth

available for each user can change dynamically according to the characteristics of each

channel. As a result, the video encoder can not know the bitrate the video quality should

be optimized at. Because of this uncertainty in the streaming bitrate, the objective of

video coding for networked video is to optimize the video quality over a bitrate range

instead of at a given bitrate [2].

Previous video coding standards (such as MPEG-2) include several layered scalable

techniques. In layered scalable coding techniques, a video sequence is coded into a base

layer and an enhancement layer. If the decoder receives only the base layer, the video

sequence is reconstructed with a minimal quality. If the enhancement layer is also

received by the decoder, the reconstructed video quality is increased. For layered scalable

coding techniques, the enhancement layer stream must be completely received by the

decoder, otherwise the video quality is not enhanced. The three different techniques for

13

layered scalable video coding are: signal-to-noise ratio (SNR) scalability, temporal

scalability and spatial scalability. In the next three subsections, a brief overview of each

of these different techniques is presented.

Enhancement
Uitstream

Variable-Length
Decoding

Inverse
Quantization

Base Layer
BitstreanT

Variable-Length
Decoding

Inverse
Quantization

Inverse
DCT

+f -^Decoded Video^

+f

Decoded
Motion Vectors

Motion
Compensation

Frame - Store
Memory

Figure 6 Block Diagram of M P E G - 2 SNR Scalable Decoder

1.3.2.1 Layered SNR Scalability

SNR Scalability refers to the technique that codes the video sequence into two layers at

the same frame rate and the same spatial resolution but with different quantization levels.

Figure 6 shows the two-layer SNR scalable decoder, in the MPEG-2 video standard. The

Variable Length Decoding block decodes the base layer bitstream. The decoded

information includes the motion vectors and the quantized Discrete Cosine Transform

(DCT) coefficients. The quantized DCT coefficients are reconstructed by inverse

quantization. Similarly, the enhancement bitstream is decoded in the Variable Length

14

Decoding block and the residual DCT coefficients are then reconstructed by inverse

quantization. The reconstructed residual DCT coefficients are added to the base layer

reconstructed DCT coefficients to obtain the higher accuracy DCT coefficients. The

inverse DCT is then applied on the higher accuracy DCT coefficients to obtain the image-

domain difference frame. The motion compensated frame is added to the image-domain

difference frames to form the decoded sequence.

The SNR scalable decoder is standardized in MPEG-2 and uses the enhancement layer

residue information in the motion compensation loop. However, MPEG-2 does not

standardize how the scalable encoder generates the base and enhancement layer streams.

Depending on whether or not the encoder uses the enhancement layer information in the

motion prediction, the coding efficiency of the base and enhancement layer may change.

Two standard compliant encoders are illustrated in Figure 7a Figure 7b. In these

encoders, motion compensated prediction is formed using the reconstructed picture held

in the frame store memory. This prediction is then subtracted from the original video and

the prediction difference is formed. The latter is DCT transformed and then quantized

using a high quantization parameter (coarse quantization - low quality). The base layer

bitstream is formed by variable length coding of the quantized DCT coefficients. In the

feedback path of the encoder, the quantized coefficients are reconstructed using inverse

quantization with the same high quantization parameter. The enhancement layer residue

is formed by taking the difference between the original prediction error DCT coefficients

and the base layer reconstructed DCT coefficients. The enhancement layer residue is

quantized using a smaller quantization parameter (fine quantization - high quality) and

variable length coded to produce the enhancement layer bitstream.

15

Quantization
(fine)

• Inverse ?.
Quantization

(fine)

Vanablc-Lcngth
En coding

1

Input Video ̂ -ty

i n
Quantization

(coarse)

Inverse
Quantization

(coarse)

Enhancement

Bitstream

Variable-Length]
Encoding

Motion
Estimation

Motion
Compensated

Prediction

Frame-Store
Memory

Motion
Compensated

Prediction

Frame-Store
Memory

1

(a)

Inverse
ixrr

5ose Layer

Bitstream

Zl&bt I Enhancement Layer
->•{ X) R e s i d u e is used a t t he

4̂ ^T^_ y | f m o t i o n pred ic t ion loop

I
Quantization

, (fine) V

Video ^
DCT

Quantization
(coarse)

Inverse
Quantization

(coarse)

Vanablc-Lcngth
Encoding

Variable-Length |
Encoding

Enhancement

Bitstream

Base Layer
Bitstream

Enhancement Layer
Residue is NOT used a t the

Motion
Estimation

Motion
Compensated

Prediction

Hlf̂ /"" m o t i o n predic t ion loop

I Inverse
DCT

Frame-Store
Memory

(b)

16

Figure 7 Block Diagrams of two types of SNR Scalable Encoders (a) Enhancement Layer Residue is

used at the motion prediction loop at the base layer (b) Enhancement Layer Residue is not used

The inverse quantized values produced in the encoding of the enhancement layer are then

added to inverse quantized values at the base layer in the feedback loop. The

reconstructed frames are formed by applying the inverse DCT and are stored in the frame

store memory. The reconstructed frames stored at the memory of the encoder are

identical to the frames stored in the SNR Scalable decoder's memory. However, for the

case where a decoder does not receive the enhancement layer bitstream, the reconstructed

frames at the decoder side and the encoder side will not be the same. This is because the

decoder will only use the base layer information to form the reconstruction, whereas the

encoder had used both the base and the enhancement layers information. The mismatch in

the reconstructed encoder and decoder frames causes errors to accumulate in the decoded

base-layer video sequence. This error is called drift. The drift problem decreases the

coding efficiency of the base layer video. On the other hand, the high quality reference

frames used at the motion compensated prediction increases the coding efficiency when

the decoder receives and decodes the enhancement layer as well. Hence, the SNR

scalable encoder results in low coding efficiency for the base layer, but high coding

efficiency for the enhancement layer.

The encoder illustrated in Figure 7b only uses the base layer information to form the

prediction. In this case, the drift problem at the base layer is removed. However, if the

decoder receives and decodes the enhancement layer, a drift will also occur due to a

similar mismatch between the reconstructed encoded and decoded frames. Therefore, for

17

this SNR scalable encoder, the base layer coding efficiency is high, but the enhancement

layer coding efficiency is low due to the drift problem.

To summarize, for the layered Scalable SNR Decoder standardized in MPEG-2, there are

two possibilities, namely, either the base layer has a poor performance to ensure a good

performance for the enhancement layer, or the enhancement layer has a poor performance

to ensure a good performance for the base layer.

1.3.2.2 Temporal Scalability

In the layered temporal scalability, video is coded into two layers at the same spatial

resolution but at different frame rates. If the decoder receives and decodes only the base

layer, the video sequence is displayed at a low frame rate. The enhancement layer fills the

missing frames and upon decoding, the video can be displayed at a higher frame rate.

Several techniques are used for temporal scalable coding [3]. Figure 8 shows a possible

frame structure for temporal scalability. In this structure, the prediction at the base layer

is only from the base layer. This ensures that the decoder will be able to correctly decode

the sequence even if only the base layer is received. The enhancement layer provides the

additional frames needed to decode the sequence at a higher frame rate. The prediction at

the enhancement layer can be formed using either the base or the enhancement layer

itself.

18

Denotes prediction

Figure 8 Frame Structure used in Temporal Scalable Systems

1.3.2.3 Spatial Scalability

Spatial Scalability refers to the technique where the video is coded into two layers at the

same frame rate but with different spatial resolutions. The base layer is coded at a low

resolution, whereas the enhancement layer is coded at a higher resolution. At the time of

encoding, the up-sampled base layer picture can be used as prediction for the

enhancement layer. The MPEG-4 spatial scalable decoder allows a "bi-directional"

prediction at the enhancement layer. Both the up-sampled picture from the base layer and

the previously reconstructed frame from the enhancement layer can be used as prediction

for the frames at the enhancement layer. Figure 9 shows the picture structure for this kind

of scalability. The frames are either coded as P or B type at the enhancement layer. The

frame at the enhancement layer which is temporally coincident with an I-frame at the

base layer is encoded as a P-frame. The frame at the enhancement layer which is

temporally coincident with a P-frame at the base layer is encoded as a B-frame. For the

P-frames at the enhancement layer, the prediction is the up-sampled reconstructed frame

from the temporally coincident I-frame at the base layer. The B-frames at the

enhancement layer allows "bi-directional" prediction using the up-sampled reconstructed

19

frame from the base layer as the backward reference and the previously reconstructed

frame in the enhancement layer as the "forward reference". For the cases where the

prediction from the base layer is selected, the motion vectors are not encoded to reduce

the amount of side information transmitted.

Figure 9 F r a m e Structure used in Spat ia l Sca labi l i ty Systems

Figure 10 illustrates the diagram for the discussed spatial scalable encoder. The original

video signal is downsampled and the low resolution video signal is generated. The low

resolution video signal is encoded separately and the resulting bitstream represents the

base-layer information. The reconstructed low resolution frames are upsampled and are

made available as an additional prediction for the enhancement layer frames. The

resulting prediction error of this combined prediction is encoded and forms the

enhancement layer bitstream.

20

Input Video ^ - t /

c
•o
8
c

I lm
I O
I >

'>c-

j l ,
r

DCT w Quantization DCT Quantization
Variable-Length |
. Encoding

Enhancement Layer{

Bitstream

Inverse
Quantization

. Inverse .
.DCT

Inverse
Quantization

. Inverse .
.DCT

Downsamplc

Motion
Estimation 1

i; Motion
Compensated
. Prediction

Frame-Store
Memory

i; Motion
Compensated
. Prediction

Frame-Store
Memory

i *

i; Motion
Compensated
. Prediction

Frame-Store
Memory

, Additional Prediction Signal, .
for the Entiancxment Layer' " _

' Upsample

Aow Resolution
Video

DCT Quantization

Inverse
Quantization

Inverse
DCT

ft

Motion
Estimation

Variable- Length |
Encoding

Base Layer
Bitstream

Low Resolution
Reconstruction

Motion
Compensated

Prediction

Frame-Store
Motion

Compensated
Prediction Memory

Figure 10 Block diagram of Spatial Scalable Encoder

1.4 Overview ofMPEG-4 FGS Video Coding Standard

The system for delivering MPEG-4 FGS video is illustrated in Figure 11. This system

consists of three components, FGS encoder, Streaming Server and FGS decoder. FGS

encoder encodes the original video into two layers, base and enhancement layer. Because

of the variation in the transmission bandwidth over time, the FGS encoder does not know

what bitrate the video is going to be transmitted. For this reason, the base layer is

encoded at the minimum bitrate that is guaranteed by the transmitting channel, Rmm. The

enhancement layer is encoded at the maximum bitrate that the transmission channel can

21

deliver, R m a x . During transmission, the streaming server truncates the enhancement layer

bitstream according the available bandwidth. The number of bits sent to the decoder

depends on the available bandwidth at the time of transmission. Thus, an FGS decoder

receives the base layer and the truncated enhancement layer bitstreams. The quality of the

decoded video is proportionally related to the number of bits received by the decoder for

the corresponding frame. To summarize, FGS uses three components to deliver the video

to the end user:

1. Scalable Video Encoder: encodes in a scalable manner at the highest possible

quality.

2. Streaming Server: delivers scalable video to a given client. Maximum bandwidth

utilization is achieved by truncating the video bitstream according to the available

bandwidth

3. Decoder: decodes a truncated video bitstream. The reconstructed video quality

decreases according to the amount of truncation performed at the streaming

server.

The FGS Encoder and Decoder are further described in the next subsections.

22

- Encoder -
E n c o d e s t h e v i d e o in a

sca lab le m a n n e r

- Streaming Server -

T r u n c a t e s a n d de l i ve rs t h e v i d e o

u t i l i z i n g t h e ava i l ab le b a n d w i d t h

I B

End-User 1

End-User 2

End-User 3

End-User n

8

B

- Decoder -

Receives a t r u n c a t e d b i t s t r e a m a n d

r e c o n s t r u c t s t h e v i d e o . Q u a l i t y is p r o p o t i o n a l

t o a m o u n t o f i n f o r m a t i o n r e c e i v e d

Figure 11. Structure of the end-to-end F G S video delivery system. The system comprises of Encoder,

Streaming Server and Decoder

1.4.1 MPEG-4 FGS Encoder Structure

We illustrate the MPEG-4 FGS Encoder standard in Figure 12. The FGS results in an

MPEG-4 non-scalable base layer encoded at an Rb a s e bit-rate and an enhancement layer

encoded using bitplane coding with a maximum bit-rate of R m a x . To encode the

enhancement layer, first the residual frame is formed by taking the difference of the

original (high quality) and reconstructed base layer (low quality) frames. The residual

23

frame is then DCT transformed to remove the spatial redundancy. The obtained DCT

coefficients are bitplane and entropy coded to form the enhancement layer bitstream.

The main steps of FGS enhancement layer coding can be summarized as:

1. Constructing the Residual Frame

2. DCT Transforming the residual frame to decrease the spatial correlation

3. Bitplane encoding of DCT coefficients

4. Entropy encoding of bitplane encoded symbols

Input Video

XT
o

C O i

S>
ai
u
e

• T O .

Optional i

DCT Quantization DCT Quantization

Motion
Estimation

Motion Frame-Store
Compensation Memory

Bitplane Find Bitplane I
Scanning Maximum VLC' '.

Selective s
Enhancement

. f- . -

< A
. f- . -

DCT DCT

Enhancement
Layer Bitstream

Entropy
Codina

Base-Layer
Bitstream

*-

Inverse
Quantization

Inverse
DCT

Figure 12. Block diagram of M P E G - 4 F G S Encoder

24

1.4.1.1 Bitplane Coding of DCT Coefficients

The residual frames that are found by subtracting the base layer frames from the

enhancement layer frames are coded by bitplane coding instead of conventional DCT

coding. In the conventional DCT coding, the quantized DCT coefficients are zigzag

scanned, then a symbol for every non-zero coefficient within the block (containing its

value and information regarding the number of consecutive zeros before it) is found. The

resulting symbols are mapped to binary codewords using a VLC table.

In bitplane coding, every DCT coefficient is treated as a binary number of several bits

instead of a decimal integer of a certain value [21, 22]. For each block in the residual

frame, the absolute values of its coefficients are scanned in the zigzag order as shown in

Figure 4 and then assembled in a one dimensional array as shown on the left hand side of

Figure 14. In Figure 14, we assume the absolute value of any coefficient is between 0 and

31 meaning 5 bitplanes are needed to represent all the coefficients correctly. The

maximum number of bitplanes needed for each frame is found before bitplane coding, at

the "Find Maximum" stage. It should be noted that, the number of bitplanes needed to

code the luminance and chrominance components of the frame may be different as

illustrated in Figure 13. Therefore, there are three syntax values maximum_Ievel_y,

maximum_level_u, maximum_level_v and they are coded in the frame header to

indicate the maximum numbers of bit-planes for the Y-U-V components of the frame

respectively (For the case illustrated in Figure 13, maximum_level_y is 6,

in a x i in u m l e v e 1_ u is 4 and m a x i m u m l e velv is 4).

25

Figure 13 Maximum Number of Bitplanes Needed for Bitplane Coding maximum_level_y=6,
maximum_level_y=4, maximum_level_v=4

When each entry in this array is written in binary form, a binary matrix results (see right

hand side of Figure 14). A bit-plane of a block is defined as the one dimensional array of

bits corresponding to a column of this binary matrix. The first bit-plane corresponds to

the binary bits formed by the Most Significant Bit's (MSB)'s of the coefficients, whereas

the MSB-1 form the second bit-plane and so on.

Transform Coefficients
(Decimal)

Tranform Coefficients
(Binary)

16 1 | 0 j 0 | 0 | 0

15 o | i i I | l | I

14 0 j 1 | 1 j 1 0

19 1 | 0 | 0 j 1 | 1

• • I I
0 0 | 0 j 0 j 0 | 0

— r^j c-> -^r
CO CO CO 0 2 CQ
c/^ c/*> c/i cy>
S S -> 5!

Figure 14. The Bitplane Generation Process

After all the bitplanes are formed for each 8x8 transform block of the frame, symbols are

generated for each bitplane. For each 1 in the bitplane, a symbol is formed. Each symbol

26

has two components, RUN and EOP. RUN specifies the number of consecutive zeros

before the 1 and EOP specifies whether there are any more 1 left on this bitplane. If a

bitplane contains all zeros, a special symbol A L L Z E R O is formed to represent it. For

example, consider a bitplane that consists of following elements:

1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 . . . 0

There are four l ' s in the array, hence four symbols are generated. The first symbol refers

to the first 1 in the array, which happens to be the first element of the array. There are no

O's preceding the first 1, so the RUN is 0 for the first symbol. Because there are more l's

after the first 1, EOP is 0. So the first symbol is generated as (0,0). There are five O's

between the first and the next 1, so the RUN for the second symbol is 5. EOP is still zero

as there are more l ' s in the bitplane. So the second symbol is generated as (5,0).

Similarly, the next symbol is found to be (0,0). The last symbol refers to the last 1 in the

bitplane array. There are eight O's preceding the last 1, so the RUN is found as 8 for this

symbol. As this is the last 1 in the bitplane array, EOP is 1. So the last symbol is found as

(8,1). To summarize (0,0), (5,0), (0,0) and (8,1) are the symbols generated for this

bitplane.

For the first and second bitplanes, it is very probable that most of the (8x8) blocks in a

(16x16) macroblock will have A L L Z E R O symbols. That is every entry in the bitplane is

zero. Instead of A L L Z E R O bitplanes separately, it is more efficient to group the

A L L Z E R O bitplanes in the macroblock and code them together. This is only done for

the first and second bitplanes. FGS standard uses Coded Block Pattern (CBP) for this

purpose. CBP is a variable length coded binary string, placed at the macroblock header of

27

the bitstream, and specifies which blocks are A L L Z E R O within the macroblock. For

details of CBP coding specified in FGS, please refer to [1].

1.4.1.2 Entropy Coding

At the final stage, the (RUN, EOP) symbols of the enhancement layer are variable length

coded (VLC). In VLC coding, the generated symbols are mapped into binary codewords

according to the symbols' statistics. These binary codewords are stored at the encoder

and they constitute the VLC table for the enhancement layer. The exact VLC table is also

stored at the decoder allowing identical reconstruction of the coded symbols.

1.4.2 MP EG-4 FGS Decoder Structure

Figure 15 illustrates the MPEG-4 FGS Decoder standard. The structure of FGS Decoder

is similar to that of FGS Encoder. The FGS Decoder consists of two layers, base and

enhancement layer. The FGS Decoder base layer is a standard MPEG-4 decoder that

outputs the base layer video with the minimum quality. The FGS enhancement layer

decoder is built on top of the base layer decoder to generate the enhancement video. The

enhancement layer decoder operates on a truncated version of the enhancement layer

bitstream. After the enhancement layer decoding process is done, the output is added to

the output of the base layer decoding process to produce the high quality, enhancement

video. Decoding steps of the enhancement layer for FGS decoding are presented below.

The enhancement layer bitstream is first decoded with an entropy decoder. The output of

the entropy decoder are (RUN,EOP) symbols and some syntax elements that will be used

in bitplane decoding. The next step is the bitplane decoding step where the DCT

coefficients are reconstructed. Note that, unless all the enhancement layer information is

transmitted to the decoder, the reconstructed DCT coefficients at the decoder side are not

28

identical to the DCT coefficients encoded at the FGS encoder, before transmission. The

more information the decoder receives, the more accurate the reconstructed DCT

coefficients are. The reconstructed coefficients are then inverse transformed and the

result is added to the base layer video to obtain the enhancement video.

Enhancement! i ^ FGS Bitplane
liilslream Entropy Decoding ... r Deshifting

(\

7 T* \ V

. Inverse
DCT

+ /^^Enhancement Layer Video
" © 1 % -

Input Bitstream Entropv Inverse Inverse
Decoding Quantization — ^ DCT

Motion Frame-Store
Compensation Memory

J

Base Layer Video

Figure 15 Block Diagram of the M P E G - 4 F G S Decoder

1.5 Overview of H.264 Video Coding Standard
H.264 is the newest video coding standard and it was developed by ITU-T Video Coding

Experts Group and ISO/IEC Moving Picture Experts Group. H.264 includes a number of

advances in video coding technology, making it highly efficient in terms of coding and

network friendliness. The design of the standard is based on a conventional block based

motion compensation video coding concept described in the previous sections. However,

the design also includes several new features that result in a 50% bit rate savings when

compared with previous standards [18]. In this section, the main advancements offered by

the H.264 video coding standard is presented, for further details please refer to [15].

29

1.5.1 Advances in Motion Compensated Prediction

H.264 is much more flexible in terms of motion compensation block sizes and it can

support a luminance motion compensation block size as small as 4x4. The use of a

smaller block size in the motion compensation stage allows the encoder to describe

complex motions more accurately, thus decreasing the prediction error. In addition,

H.264 supports quarter-pel motion compensation that further improves the coding

efficiency of the video coding system. H.264 supports multiple reference pictures for

motion compensation by the addition of new inter-prediction types. These features enable

motion to be represented a lot more accurately than previous standards. They also

increase the coding efficiency of the system considerably.

H.264 standard also includes an in-loop deblocking filter to decrease the blocking

artifacts and increase the coding efficiency of the video. The blocking artifacts originate

from both the motion compensated prediction and the residual coding stages of the

process and are especially visible at low bitrates. Although, the application of a

deblocking filter, i.e., after the video is decoded, has been used in previous video coding

standards, H.264 places such a filter in the motion compensation loop. This improves the

coder's ability to do inter-prediction that in turn, results in a better compression ratio.

1.5.2 Advances in Transform Coding

One of the most important features of H.264 is its use of a different transform. Unlike the

major video coding standards such as MPEG-2, MPEG-4 that use 8x8 DCT, H.264 uses a

4x4 Integer Transform. It was observed that the smaller block size decreases some of the

30

artifacts associated with transform coding. Apart from the size, the low complexity nature

of the 4x4 Integer Transform makes it very efficient to implement on hardware platforms

such as ASIC's or digital signal processors. Unlike DCT, the Integer Transform was

designed to allow exact-matching inverse transform. This eliminates the "drift" problem

due to a slight mismatch between the encoder and decoder representation of video.

1.5.3 Advances in Entropy Coding

H.264 includes two methods for entropy coding, the first one is Context Adaptive

Variable Length Coding (CAVLC) and the second one is Context Adaptive Binary

Arithmetic Coding (CABAC). Both coding methods use context based adaptivity to

improve the performance of the encoder for all types of sequences. CAVLC has relatively

less computational complexity and also includes Reversible Exp-Golomb codes to code

some syntax elements. Reversible Exp-Golomb codes can be used to improve the error

resilience of the system and they are further described in Section 2.3.2.1.

CABAC is a more powerful than CAVLC and significantly improves the coding

performance of the system but with an additional complexity to encode/decode.

31

CHAPTER 2

2 H.264 Based Fine Granular Scalability (FGS)

2.1 Introduction

The latest video coding standard, H.264, provides superior compression efficiency to all

previous standards, but it does not include tools for coding the video in scalable fashion.

We introduce scalability for the H.264 standard, so that it can be used more efficiently in

network environments where bandwidth varies over time. This chapter presents the

details of our developed scalable H.264 structure. This structure is based on the latest

scalable video coding standard, Fine Granular Scalability (FGS) that is originally

developed for MPEG-4. The proposed structure is not a straightforward extension of

FGS, where the FGS structure is implemented on H.264 without any modifications. The

techniques present in FGS are modified and novel techniques are developed in order to

achieve the best adaptation of FGS to H.264. By modifying the FGS structure, we

achieve low complexity, high coding efficiency and high error-resiliency for the overall

system.

FGS is the latest scalable video coding standard that was developed within the MPEG

committee and is included in MPEG-4 Streaming Video Profile. FGS encodes the video

with two different layers, the base layer and the enhancement layer. The enhancement

layer is encoded using bitplane coding and its fine granular scalable nature makes the

FGS standard a very flexible coding tool for adapting to the dynamic bandwidth change

of the underlying network. The base layer of the FGS standard is encoded using

32

traditional video coding technologies. The current MPEG-4 FGS standard uses MPEG-4

to encode the base layer.

H.264, the latest video coding standard, developed by the Joint Video Team (JVT) of

ITU-T and ISO provides superior compression efficiency to MPEG-4. Because at a given

bitrate H.264 is able to provide better video quality than previous video coding standards,

it is predicted to be widely adopted. One possible application area for H.264 is video

communications over best-effort networks, where the available bandwidth for video

transmission varies with time.

Although H.264 offers better efficiency than MPEG-4 in terms of compression ratio, it

lacks tools that make it scalable for use at different bitrates. One possible way of

introducing scalability to H.264 is to directly apply the FGS process as is done in MPEG-

4. Thus the FGS base layer is encoded using H.264 instead of MPEG-4, while the same

process as in MPEG-4 FGS enhancement layer is applied as is [12]. Such a

straightforward extension of FGS is possible due to FGS' design that allows the use of

any video coding standard for encoding the base layer video. This, however, presents

serious drawbacks because of the fundamentally different video coding tools used in

H.264 & MPEG-4. Firstly, encoding the enhancement layer using FGS (as in MPEG-4

coding) introduces Discrete Cosine Transform (DCT) computations to the H.264 system

that uses Integer Transform. This significantly increases the complexity of both the

encoder and decoder (particularly the latter). Secondly, the resulting system would fail to

encode the enhancement layer using the advanced techniques introduced by H.264, which

has proved to significantly improve the picture quality, increase the error resilience and

decrease the complexity of the overall system.

33

In this thesis, we overcome the aforementioned drawbacks, by modifying the FGS video

coding standard and by introducing new techniques. The developed tools increase the

error resilience and decrease the encoding and decoding complexity of the scalable video

coding system.

In Section 2.2, we first present the trivial extension of FGS to H.264 and discuss its

drawbacks. Following that discussion, our proposed H.264 based FGS structure is

presented in Section 2.3. In Section 2.4, we present the experimental results. We

summarize and conclude the chapter in Section 2.5.

2.2 Trivial Extension of FGS into H.264

Figure 16 illustrates the encoder that is a straightforward implementation of FGS into

H.264. The base layer is encoded using H.264 instead of MPEG-4.

There are two different approaches to calculate the residual signal, resulting in two

different ways of encoding and decoding. This separation is due to the in-loop deblocking

filter present in the H.264 standard. The residue signal for the enhancement layer can be

formed by taking the difference between the original signal and the reconstructed base

layer signal right after the deblocking filter is applied to the base layer signal. In an

alternative way, the residue signal can be formed using the base layer signal prior to

filtering operation. In this case, an additional deblocking operation would be needed at

the decoder side for the enhancement layer to reduce the blockiness of the decoded video

which in turn increases the complexity of the decoder. Figure 17 shows the decoders for

both cases.

As mentioned before, this direct implementation is not the most efficient solution for an

H.264 based FGS encoder. The reason for this is explained in the following subsection.

34

Input Video

01

o />'
<_> .

1 M/t'il
Frequency^
Weighting!

. — , , 1 . . . : Enhancement

. W" ' p—f—1 " ' A

Integer
Transform

Quantization
Entropy
Coding

Integer
Transform

Quantization

>

Entropy
Coding

Motion
Estimation

;. .
Base-Layer
Bitstream

>-

Motion
~<—

Frame-Store Deblocking
Compensation Memory Filter

Figure 16.Block Diagram of the direct implementation of F G S Encoder on H.264 Encoder

35

Enhancement
Bitstream i*

FGS Bitplane Inverse'*
• Transform EntropyDecodmg

t". •
Deshiftmg > *"

Inverse'*
• Transform

£ ^nhancement Layer Video

(a)

Bitstream w Kntropv Inverse Inverse

—̂ Decoding Quantization —^ Transform

Motion Frame-Store Deblocking

Compensation Memory Filter

Base Layer Video
: *-

Enhancement m * , FGS 1 Bitplane i
Bitstream ^ Entropy Decoding. Deshiftmg

Inverse-'*-
Transform

(b)

+

Input Bits/ream w Entropy Inverse Inverse
Decoding Quantization — ^ Transform

Motion Frame-Store ^ Deblocking

Compensation Memory Filter

Deblocking
' Filter

'Enhancement
Layer l^deo

Base Layer Video :
 >-

Figure 17.Block diagram of corresponding decoders for two cases of direct implementation of F G S
on H.264

(a) Residual Signal is calculated after the deblocking filter at the base layer
(b) Residual signal is calculated before the deblocking fdter at the base layer

36

2.2.1 Drawbacks of Trivial Extension of FGS to H.264

MPEG-4 FGS employs DCT for transform coding both at the base and the enhancement

layers. On the other hand, the H.264 video coding standard replaces DCT with a low

complexity 4x4 Integer Transform. The encoder used for trivial extension of FGS,

depicted in Figure 16, uses 4x4 Integer Transform at the base layer and DCT at the

enhancement layer. Using two different transforms introduces additional complexity to

the entire system (both to the encoder and decoder). Also, by using DCT at the

enhancement layer, the system cannot make use of the superior features of the 4x4

Integer Transform, such as its low implementation complexity and increased subjective

quality [13].

The FGS video coding standard uses four different VLC tables at the entropy coding

stage. In contrast, H.264 employs Reversible Exp-Golomb codewords where a VLC table

needs not to be stored. Also, Reversible Exp-Golomb codewords increase the error

resilience of the system and also can be very efficiently implemented on digital

processors [23]. In the trivial extension of FGS over H.264, the enhancement layer cannot

take advantage of these features of Exp-Golomb coding. Also additional complexity is

introduced to the system by its storage need of four more VLC tables.

In summary, the trivial extension of FGS introduces new computation blocks to the

system complexity of both the encoder and decoder (particularly the latter). Secondly, the

system fails to encode the enhancement layer using the advanced techniques introduced

by H.264.

37

2.3 Proposed H.264 based FGS System

In this section, the proposed H.264 based FGS system is presented. Our proposed system

mainly modifies Transform Coding and Entropy Coding structures of the FGS standard.

The technical details of these modifications are presented in the following subsections.

2.3.1 Proposed Transform Coding Structure

In our proposed encoder, the DCT transform at the enhancement layer is replaced by the

H.264 4x4 low complexity Integer Transform. Consequently, the original FGS

macroblock structure has to be changed since the size of the transform has changed.

Figure 18 compares the macroblock structures for the 8x8 DCT and 4x4 Integer

Transforms.

For the case of the 8x8 transform, one macroblock contains 4 blocks of luminance and 2

blocks of chrominance that is a total of 6 transform blocks. On the other hand, the smaller

4x4 transform results in 16 blocks of luminance and 8 blocks of chrominance, for a total

of 24 transform blocks for each macroblock. This increased number of transform blocks

increases the number of bits needed to code the Coded Block Pattern (CBP) for each

macroblock at the macroblock header, and as a result decreases the coding efficiency.

CBP is a variable length coded binary string, placed at the macroblock header of the

bitstream. For details of CBP coding specified in FGS, please refer to [1].

38

Y Y U U

u u

V

V V

16x16 Macroblock

Figure 18. F G S Macroblock Structures for two different transform sizes
Left: The 8x8 D C T Transform used by M P E G - 4

Right: 4x4 Integer Transform used by H.264

2.3.1.1 Proposed CBP Coding Scheme

The reason behind the increased overhead in CBP is that for the 4x4 Integer Transform,

one macroblock contains 24 blocks instead of 6, and thus, each CBP code needs to

provide information for more blocks. The increased overhead can be analyzed by

considering Figure 19. In Figure 19, the 24 (4x4) blocks within a macroblock are grouped

into 4. Each (8x8) group contains four blocks of luminance and two blocks of

chrominance. The structure of the resulting 8x8 groups is the same as that of the MPEG-4

FGS macroblock structure, as shown in Figure 19. Hence, the same coding algorithm as

MPEG-4 FGS CBP coding can be used to code the CBP for each of the new groups. This

approach results in using 4 CBP codewords for each macroblock. So the amount of bits

spent for CBP is approximately quadrupled.

In order to reduce this overhead, we propose a hierarchical scheme to code the CBP. The

main idea behind this scheme is grouping the transform blocks into larger size groups and

coding the CBP code in steps. The proposed Hierarchical CBP Coding Scheme is

presented in the next subsection. The experimental results of the proposed scheme are

presented in Section 2.4.

39

Y j
Y I

Y

Y

U

V

I Y
y i U

! Y | | Y | V j

Group 0 Group 1

Y I

Y i

Y

Y

U

V

i y I i Y I U

I Y | I y I j V |

Group 2 Group 3

Figure 19. Grouping Scheme for the Simple C B P Coding

2.3.1.1.1 Hierarchical CBP Coding Scheme

In the proposed CBP coding scheme, the 4x4 blocks are grouped into groups of four as

illustrated in Figure 20. This scheme groups the blocks into 6, each group containing four

transform blocks of either luminance or chrominance.

The proposed CBP coding scheme refers to blocks in a hierarchical fashion, (see Figure

21). There are two steps in the proposed CBP coding scheme for the first bitplane. At the

first step, each group within the macroblock is checked whether all the 4x4 blocks

belonging to the group are A L L Z E R O or not. If all the blocks within the group are

A L L Z E R O , then the group is classified as an A L L Z E R O group, otherwise that group

is classified as non-zero.

40

! Y

2 i ! Y 3
I u I

; 17.

! Y 5 l Y » l ! Y 7 \ U \
; i g ;

i u
' 19

Group 0 Group 1 Group 4

i Y 9 ! Y \
: 10=

I Y
11

I V !
•• 20;

i V
; 21

|Y 1 2 | | Y 1 3
\ Y \

14i
! Y !

15
! V !
I 22 ;

! V
; 23

Group 2 Group 3 Group 5

Figure 20. Grouping Scheme for Hierarchical C B P Coding

At the second step of the proposed CBP coding scheme, non-zero groups are considered

only. The reason for this is, A L L Z E R O and non-zero blocks can co-exist in a non-zero

group, whereas only A L L Z E R O groups exist in an A L L Z E R O group. Thus, if a group

is classified as A L L Z E R O at Step-1, no further information is required for the blocks

within that group. For example, in Figure 21, the groups numbered 0,2,3 and 4 are found

to be A L L Z E R O (shown shaded in Step-1). The blocks belonging to those groups are

not coded at Step-2 of CBP coding. At Step-2, only blocks belonging to non-zero groups

are coded (groups 1 and 5).

41

'mmmm mm,
YJmmm E^E^/

? m m m m mtZj
' M m m m m m ,

Original Block Structure
for the Macroblock

STEP 1 of CBP Coding
Shaded Groups are Coded at Step-1
Unshaded are Coded at Step-2

/ m m /
/ m m /

/ m / m / / STEP2ofCBPCoding

/ m m /

Figure 21 Illustration of Hierarchical C B P Coding

So, the two steps of our proposed CBP coding algorithm can be summarized as follows:

1. First step of CBP. At this step, the CBP specifies information about each group

within the macroblock. (Step 1 at Figure 21). From now on, the procedure for

specifying this information will be referred to as group_cbp. This procedure

indicates if each g r o u p is A L L Z E R O or not.

42

2. Second step of CBP. At this step, the CBP specifies information about each block

within a nonzero group. (Step 2 at Figure 21). This procedure is referred to as

blockcbp. This procedure indicates if each block is A L L Z E R O or not.

Figure 22 illustrates the proposed main algorithm used to create the CBP code for a

macroblock.

First Bitplane

group_cbp
for Step-1

Third Bitplane and above

Second Bitplane

block_cbp
for all the 8x8 groups within the

macroblock

group_cbp
for the Step-1

block_cbp
for all the 8x8 groups within the

macroblock

Figure 22 Block Diagram of the Main Hierarchical C B P Coding Algorithm

As mentioned before and can also be seen from Figure 22, groupcbp and blockcbp are

the two procedures that are used to code the CBP. Based on the characteristics of the

macroblock, either groupcbp or blockcbp procedure is used. Also, CBP coding for the

first bitplane, second bitplane and bitplanes above second one change slightly. The details

of these procedures for different cases are explained in detail in the following sections.

Step-1 of CBP Coding - group_cbp Procedure

The aim of this procedure is to specify, which groups within the macroblock are

ALL_ZERO. Figure 23 illustrates the algorithm for the group_cbp procedure. It should

43

be noted that this procedure is not invoked for all the bitplanes of the macroblock. As can

be seen from the main algorithm depicted in Figure 22, the cases where this procedure is

invoked can be summarized as:

• For all the macroblock's first bitplanes

• For all the macroblock's second bitplanes, if the macroblock has an A L L Z E R O

first bitplane.

This procedure generates a binary string called CBP CODE for the entire macroblock.

CBPCODE specifies which groups within the macroblock are A L L Z E R O . In the

CBP CODE, a binary 1 means that the corresponding group is ALL_ZERO, while a 0

represents a non-zero group. It should be noted that, if any block within the group is not

A L L Z E R O then the corresponding group is not an A L L Z E R O group. After the

CBP CODE is generated, it is variable length coded using the VLC tables presented in

Appendix B. The VLC tables for CBP CODE are based on Exp-Golomb codewords that

is different from the codewords present in FGS standard. The details of Exp-Golomb

coding are explained in detail in Section 2.3.2.1. The VLC tables are constructed based

on the statistics of the CBP CODE.

If a group is A L L Z E R O , this means that all the blocks within the group are A L L Z E R O

and no further information is needed in the CBP for those blocks. However, an ambiguity

exists for non-zero groups, since the CBP CODE does not specify which of the blocks

belonging to a non-zero group are A L L Z E R O . In order to address these blocks, the

blockcbp procedure is invoked.

44

group_cbp Procedure

Generate
CBP_Code for the

Macroblock

Put the VLC Code
for the CBPCode

T

For each 8x8 group
In the MB

T

block_cbp for this 8x8
group.

Figure 23 Block Diagram of groupcbp Procedure

Step-2 of C B P Coding, b lockcbp Procedure

The aim of this procedure is to determine which blocks within a group are ALL_ZERO.

The algorithm for this procedure is illustrated in Figure 24. It should be noted that, not all

the groups within a macroblock are coded at this step. As can be seen from the main

algorithm and the group_cbp procedure depicted in Figure 22 and Figure 23 respectively,

this procedure is invoked for the following cases:

• For each non-zero group at the first and second bitplane.

• For all the groups of a macroblock at the second bitplane, if the entire macroblock

has non-zero first bitplane.

• For all the groups at the third bitplane and above

This procedure first checks if all the blocks within the group are A L L Z E R O at the lower

bitplanes (i.e., if we are coding a group at the third bitplane, we first check if this group

has ALL_ZERO first and second bitplanes). If all the blocks within the group are

45

A L L Z E R O at previous bitplanes, then the variable length binary string called

SUBjCBPjCODE is generated. SUBCBPCODE specifies which blocks within those

groups are A L L Z E R O . In the SUBCBPCODE, a binary 1 means that the

corresponding block is A L L Z E R O , while a 0 represents a non-zero block. For example,

if only the first block in the group is A L L Z E R O , then the SUBCBPCODE would be

1 0 0 0 . After the SUB CBP CODE is generated, it is variable length coded using the

VLC tables presented Table 22 in Appendix C. The VLC tables are constructed based on

the statistics of the SUB CBP CODE.

block_cbp Procedure

NO 4x4 blocks are A L L _ Z E R O \ Y E S
j \ . at previous bitplanes I

Find # of blocks that
are ALL_ZERO at

previous bitplanes (cnf)

Place cnt bits
specifying whether
those blocks are

ALL ZERO

Put the VLC Code for
sub_cbp_code

Figure 24 Block Diagram of block_cbp Procedure

If not all the blocks within the group are A L L Z E R O at lower bitplanes (i.e., the group

contains a block that was non-zero at a lower bitplane), a different approach is taken.

Blocks that are non-zero at previous bitplanes has very low probability of being

ALL_ZERO at the current bitplane, thus, they are excluded in the process. For other

blocks (have ALL_ZERO previous bitplanes), one bit is used to specify if they are

A L L Z E R O at the current bitplane. Let's say, in a given group, only two blocks were

46

non-zero at lower bitplanes, and the first block of those two is A L L Z E R O at the current

bitplane. Then, the code that will be placed to the bitstream is 10.

2.3.1.1.2 Example of Hierarchical C B P Coding

The following example illustrates how the CBP is coded using the proposed Hierarchical

CBP Coding method. This example considers CBP coding of a single macroblock for the

first and second bitplanes. For simplicity, we only consider the coding of luminance

component (i.e., the macroblock under consideration does not contain any color

components).

The structure of the macroblock under consideration for the first bitplane is shown in

Figure 25. For this macroblock, the first bitplanes of blocks 2, 7 and 10 contain non-zero

coefficients, whereas all the rest have A L L Z E R O first bitplanes.

For the first bitplane, the groupcbp procedure is invoked for all the groups of the

macroblock. Groups 0 and 2 are classified as A L L Z E R O groups because all the blocks'

bitplanes within the group (i.e., blocks 0,1,4 and 5 for Group-0 and blocks 8,9,12 and 13

for Group-2) are A L L Z E R O . Groups 1 and 3 are classified as non-zero due to non-zero

bitplanes these groups contain (the bitplanes of blocks 2 and 7 are non-zero for Group-1

and the bitplane of block 10 is non-zero for Group-3). So the CBP CODE for the

macroblock is found to be 1010. First and third bits of CBP CODE are 1, which

indicates Group-0 and Group-2 as ALL_ZERO. Second and fourth bits of CBP CODE

are 0, which indicates Group-1 and Group-3 as non-zero. After this, the VLC code

corresponding to the CBP CODE is found using the tables in Appendix B and placed in

the bitstream. For this case, the VLC code is found as 0001101.

47

T fas pa$e 15

48

ALL
ZERO

ALL
ZERO

NOT
A L L

ZERO

ALL
ZERO

Block 0 Block 1 Block 2 Block 3

ALL
ZERO

ALL
ZERO

A L L
ZERO

NOT
ALL

ZERO
Block 4

Group 0
Block 5 Block 6

Group 1
Block 7

ALL
ZERO

A L L
ZERO

NOT
ALL

ZERO

ALL
ZERO

Block 8 Block 9 Block 10 Block 11

ALL
ZERO

ALL
ZERO

ALL
ZERO

ALL
ZERO

Block 12
Group 2

Block 13 Block 14
Group 3

Block 15

Figure 25 Example on Hierarchical C B P Coding, Group Structure of the First Bitplane

At the next step, blockcbp procedure is invoked for non-zero groups. So, Group-1 and

Group-3 (having non-zero first bitplanes) are further coded using blockcbp procedure.

The blockcbp procedure first checks if all the blocks within the group are A L L Z E R O

at the lower bitplanes. As the current bitplane being coded is the first one, all the blocks

within Group-1 and Group-3 are defined as A L L Z E R O at lower bitplanes. For these

groups, a binary string that is called SUBCBPCODE is generated and placed in the

bitstream. SUBCBPCODE is similar to CBP CODE, but it specifies which blocks are

A L L Z E R O instead of specifying which groups are A L L Z E R O . In Group-1, Block-2

49

and Block-7 have A L L Z E R O bitplanes, this means SUB CBP CODE for Group-1 is

0110 (second and third blocks within Group-1 has A L L Z E R O bitplanes). In Group-3,

Block-11, Block-14 and Block-15 have A L L Z E R O bitplanes, this means

SUB CBP CODE for Group-3 is 0111 (second, third and fourth blocks within Group-3

has A L L Z E R O bitplanes). After the SUBCBPJCODE is constructed for all the non

zero groups, their VLC Codes are found using tables presented in Appendix C.

S U B _ C B P _ C O D E V L C Code

Group 1 0110 00110
Group 3 00111

This step concludes the CBP coding for the first bitplane of the macroblock. The code

placed for CBP for this macroblock at the first bitplane is: 001100 00110 00111

that results in a total number of bits of 16. It should be noted that, in general number of

bits needed to code the CBP of the macroblock is lower than this specific example. For

detailed analysis, please refer to experimental results at the end of this section.

Figure 26 illustrates the structure of the macroblock under consideration for the second

bitplane.

50

NOT
A L L

ZERO

ALL
ZERO

NOT
ALL

ZERO

NOT
A L L

ZERO
Block 0 Block 1 Block 2 Block 3

A L L
ZERO

ALL
ZERO

A L L
ZERO

NOT
A L L

ZERO
Block 4

Group 0
Block 5 Block 6

Group 1
Block 7

A L L
ZERO

ALL
ZERO

NOT
A L L

ZERO

NOT
A L L

ZERO
Block 8 Block 9 Block 10 Block 11

A L L
ZERO

ALL
ZERO

NOT
A L L

ZERO

NOT
A L L

ZERO
Block 12

Group 2
Block 13 Block 14

Group 3
Block 15

Figure 26 Example on Hierarchical C B P Coding, Group Structure of the Second Bitplane

It is first checked if all the groups within the macroblock are A L L Z E R O or not at the

first bitplane. For this example, Group-1 and Group-3 are non-zero at the first bitplane.

Thus, blockcbp procedure is invoked for each group within the macroblock.

In the block_cbp procedure, it is first checked if all the blocks within the group are

A L L Z E R O at the first bitplane. For our example, all the blocks belonging to Group-0

and Group-2 are A L L Z E R O at the first bitplane. For these groups, SUB CBP CODE

binary siring is generated. In Group-0, only Block-0 has non-zero bitplane, rest of the

blocks has A L L Z E R O bitplanes. Thus SUB CBP CODE is found as 0111 (only the

51

first block within the group is non-zero). In Group-2, all the blocks have A L L Z E R O

bitplanes, thus SUB CBP CODE is found as 1111. After SUB_CBP_CODE is

constructed for all the non-zero groups, their VLC Codes are found using tables presented

in Appendix C.

S U B C B P C O D E V L C Code
Group 0 0111 00111
Group 2 1111 1

Not all the blocks within Group-1 and Group-3 are A L L Z E R O . That's why,

SUB CBP CODE is not used for Group-1 and Group-3, but a different approach is

taken. First, each block within those groups are checked whether they have A L L Z E R O

first bitplanes. For the blocks having A L L Z E R O bitplanes, one bit is used to specify

whether they have A L L Z E R O second bitplanes. Thus, in this approach, the number of

bits placed in the bitstream is equal to the number of blocks being A L L Z E R O at

previous bitplanes. In Group-1, Block-3 and Block-6 have A L L Z E R O first bitplanes

and Block-3 has non-zero and Block-6 has A L L Z E R O second bitplane. So for this

group, binary string 01 is generated and placed in the bitstream (first bit specifies Block-

3 is non-zero at the second bitplane and second bit specifies Block-6 is A L L Z E R O at

the second bitplane). In Group-3, only Block-10 has non-zero first bitplane and Block-11,

Block-14 and Block-15 have A L L Z E R O first bitplane(three bits are used for Group-3).

As seen from Figure 26, all these blocks are A L L Z E R O at the second bitplane. So for

this group, binary string 000 is generated and placed in the bitstream The total code

placed for CBP for this macroblock at the second bitplane is: 00111 1 01 000 that

results in a total number of 11 bits.

52

2.3.1.2 Summary of Proposed Transform Coding Structure

In this section, we presented our novel structure that replaces the 8x8 DCT at the

enhancement layer by the 4x4 Integer Transform. By replacing DCT by the H.264 4x4

Integer Transform, the complexity of the entire system (both to the encoder and decoder)

is decreased. Also, by using Integer Transform at the enhancement layer, the system can

make use of the superior features of the 4x4 Integer Transform, such as its low

implementation complexity and increased subjective quality.

The consequence of using Integer Transform, instead of DCT is the change of the

original FGS macroblock structure. This is due to the fact that the size of the Integer

Transform is different than that of DCT. For the case of the 8x8 transform, one

macroblock contains 4 blocks of luminance and 2 blocks of chrominance that is a total of

6 transform blocks. On the other hand, the smaller 4x4 transform results in 16 blocks of

luminance and 8 blocks of chrominance, for a total of 24 transform blocks for each

macroblock. This increased number of transform blocks increases the number of bits

needed to code the binary string called Coded Block Pattern (CBP) for each macroblock

at the macroblock header, and as a result decreases the coding efficiency.

In order to reduce this overhead, we presented our novel scheme that codes CBP more

efficiently. The main idea behind the proposed scheme is grouping the transform blocks

into larger size groups and coding the CBP in steps.

53

2.3.2 Proposed Entropy Coding Structure

As mentioned earlier, the entropy coding technique used in FGS is different than that of

H.264. FGS uses four different VLC tables to code its symbols resulting from bitplane

coding. H.264 uses Reversible Exp-Golomb Codewords to code some of its syntax

elements (Context Adaptive VLC and Context Adaptive Binary Coding are other

techniques supported by H.264, but are not considered in this thesis). Using different

entropy coding techniques in enhancement and base layers of the H.264 FGS system

increases the complexity of the system, thus, it is desirable to have the same structure

used in base and enhancement layers. Also Reversible Exp-Golomb coding has the

following advantages over FGS entropy coding technique:

1. Exp-Golomb codewords standardized in H.264 can be implemented very

efficiently on digital processors [23].

2. Exp-Golomb codewords increase the error resilience of the system due to their

reversible nature [14].

These advantages are particularly important in wireless video communication

environments that are usually characterized as highly error-prone. Also, the size and cost

limitations of low-end processors embedded in mobile units severely limit the

complexity of the algorithms that can be used. Thus, for these applications low

complexity features of the Exp-Golomb codes offer an additional advantage.

Based on all these reasons, we replace the VLC technique present in FGS, with its H.264

counterpart (based on Reversible Exp-Golomb Codewords). In this section, we first

present the details of Exp-Golomb Coding process adapted in H.264. Following that

54

overview, we present the details of the proposed entropy coding scheme for our H.264

based FGS system.

2.3.2.1 Overview of Reversible Exp-Golomb Coding
The Exp-Golomb codeword table used in H.264 entropy coding is written as:

1

0 1 x 0

0 0 1 xx x 0

0 0 0 1 x 2 X i x 0

0 0 0 0 1 x 3 x 2 X i x 0

where x n take the values of 1 and 0. Each codeword is referred to by its length in

bits,L = 2n + 1, and INFO = x n . i , ... xi, x0. The codewords are numbered from 0 and

upwards. When the number of bits, L, and INFO are known, the regular structure of the

table makes it possible to create a codeword. This eliminates the need for storing a VLC

table for the codewords. The first 10 codewords and their corresponding code numbers

are presented in Table 1. Example of Exp-Golomb Codes for a larger sample is given in

Appendix A, Table 13.

55

Code Number Codeword

0 1

1 0 1 0

2 O i l

3 0 0 1 0 0

4 0 0 1 0 1

5 0 0 1 1 0

6 0 0 1 1 1

7 0 0 0 1 0 0 0

8 0 0 0 1 0 0 1

9 0 0 0 1 0 1 0

Table 1 First ten Exp-Golomb Codewords

A decoder decodes the codeword by reading the n+1 bit prefix followed by n bits for the

INFO. The n+1 bit prefix is a string of zeros followed by a 1. (i.e. 0 0 0 0 1 for n=4). The

following n bits after the prefix give the INFO.

These codewords are characterized as reversible, which means decoding of these

codewords from the reverse direction is possible. For non-reversible codewords, recovery

of data occurring after the erroneous bits in the bitstream is not possible. Thus data till the

56

next resynchronization marker is lost, although there may not be any errors in it.

However, reversible codewords make the decoding of the data having no errors occurring

after the erroneous bits possible (see Figure 27). This way, the error resiliency of the

system is increased. This feature becomes very important in erroneous transmission

environments, such as wireless networks and the Internet. Generally speaking, using

reversible codewords is less efficient in terms of compression ration, but shows better

performance in the presence of losses.

D e c o d e d d a t a b e f o r e R e c o v e r e d D a t a u s i n g

e r r o r o c c u r s r e v e r s i b l e c o d e w o r d s

• M

Resynchronization Error in Bitstream Resynchronization
Marker Marker

Figure 27 Data recovery using reversible codewords

2.3.2.2 Proposed Entropy Coding Structure

FGS standard uses four different VLC tables to code the (RUN,EOP) symbols resulting

from bitplane coding (refer to Section 1.4.1.1 for details of bitplane coding). This

entropy coding structured is replaced by the H.264 counterpart that uses Reversible Exp-

Golomb codewords.

In order to construct a VLC table to entropy code an information source, one need to

know the statistics of the symbols that the source generates. In our case, we want to code

(RUN,EOP) symbols, resulting from the bitplane coding process. The FGS standard

gives the statistics of these symbols based on DCT coding. As the DCT coding is

replaced by Integer Transform in our proposed system, the statistics of the (RUN,EOP)

57

symbols have changed. Therefore, we have to collect the statistics of these symbols

resulting after bitplane coding based on Integer Transform.

For this purpose, different sequences at different bitrates are encoded and the statistics

for the (RUN,EOP) symbols resulting after bitplane coding of 4x4 Integer Transform

coefficients are collected. The different sequences and the corresponding are presented

Table 2.

Sequence Characteristic Base Layer

Bitrates1

Size Number of

Frames

Tempete Camera zooming out a

flower, no motion, medium

texture detail

500 Kbps,

1.5 Mbps

CIF

(352x288)
300

Bus Camera panning from left to

right following a bus,

medium-high motion and

medium texture detail

500 Kbps,

1.5 Mbps

CIF

(352x288)

300

Mobile Camera following a toy

train, low motion, very high

texture detail

500 Kbps,

1.5 Mbps

CIF

(352x288)

300

Table 2 Sequences used to gather statistics for (RUN,EOP) symbol

We present the statistics obtained from BUS sequence coded at 500 Kbps in Figure 28.

The statistics for other cases can be found in Appendix D.

1 At the time of this work, the H.264 codec did not have a mechanism for bitrate control. The target bitrate
is achieved by changing the quantization parameter for the sequence, hence it does not represent the exact
bitrate rather an approximate one.

58

Each figure is comprised of 4 graphs, denoting the statistics of the symbols at different

bitplane levels. In the graphs, first half is for EOP=0 and the second half is for EOP=l.

By definition, the first bitplane does not contain an A L L Z E R O symbol. For the other

bitplanes, A L L Z E R O symbol is shown after at the middle, just following symbols

belonging to EOP=0.

Stat ist ics for the Fi rst B i tp lane

35000

30000

25000

20000

15000

10000

5000

0

5 t I

r

~i -

k II i i i, : —
< i ' V V ' b % ^ ^ , s v ' 5 l ' V » ' ' o ' t i ^ l ^ . N V

Stat ist ics for the S e c o n d Bi tp lane

80000

70000

60000

50000

40000

30000

20000

10000

0
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 28 (RUN,EOP) Statistics for the BUS Sequence at 500 Kbps

MPEG-4 FGS uses four different VLC tables to code the (RUN,EOP) symbols. One

table is used for the first bitplane, one for the second, one for the third and one for the

59

rest of the bitplanes (fourth and above). The reason for this is that the statistics of the

symbols vary significantly among different bitplanes, and constructing new VLC table

increases the coding efficiency of the system. For the proposed structure, it was observed

that three VLC tables (one for the first bitplane, one for the second bitplane and one for

the rest of the bitplanes) are enough to characterize the distribution of the symbols.

There are two reasons for decreasing the number of VLC tables. The first reason is that

the decrease in the number of possible symbols (RUN can be at most 15 in our case

instead of 63, due to the smaller transform size), limits the amount of variation that

symbols can possess. The second reason is, a slight variation in the statistics can not be

captured by the Exp-Golomb codewords.

It is important to note that these tables, unlike in the case of MPEG-4 FGS, do not

contain an ESCAPE code. MPEG-4 FGS uses ESCAPE to signal a symbol with large

RUN value because the probabilities of a large RUN value are very small. Following the

ESCAPE code, 6 bits are used to code the RUN and 1 bit for the EOP. In the proposed

structure, the maximum value for RUN is 15 and the number of symbols is significantly

lower when compared to MPEG-4 FGS. For this reason, we omit the use of ESCAPE in

VLC coding.

After the statistics are obtained, the VLC tables are constructed. The codewords in the

VLC tables are based on Reversible Exp-Golomb codewords and are the same as the

H.264 uses. The following table presents the proposed VLC table for the first bitplane.

The tables for the other bitplanes can be found in Appendix E.

60

Index (RUN,EOP) Code
0 (0,0) 1
1 (0,1) 010
2 (1,0) Oil
3 (1,1) 00100
4 (2,1) 00101
5 (2,0) 00110
6 (3,1) 00111
7 (3 ,0) 0001000
8 (4,1) 0001001
9 (5,1) 0001010
10 (4,0) 0001011
11 (6,1) 0001100
12 (5,0) 0001101
13 (7,1) 0001110
14 (8,1) 0001111
15 (6,0) 000010000
16 (9,1) 000010001
17 (7,0) 000010010
18 (10,1) 000010011
19 (8,0) 000010100
20 (11,1) 000010101
21 (9,0) 000010110
22 (12,1) 000010111
23 (14,1) 000011000
24 (10,0) 000011001
25 (13,1) 000011010
26 (11,0) 000011011
27 (15,1) 000011100
28 (13,0) 000011101
29 (12,0) 000011110
30 (14,0) 000011111

Table 3 Proposed V L C Table for the First Bitplane

2.4 Experimental Results

In this chapter, we presented our proposed H.264 based FGS system. Our proposed

system modifies the original FGS structure to achieve the best adaptation of FGS on

H.264. We first replaced the DCT at the enhancement layer, with 4x4 Integer Transform

to decrease the complexity of the system. This modification brings an overhead in CBP

61

coding at the macroblock header, due to the smaller transform size used. To code the

CBP more efficiently, we developed novel Hierarchical CBP Coding Scheme that is

presented in Section 2.3.1.1.1. Secondly, the entropy coding scheme of FGS is modified

to achieve higher compression ratios, lower complexity and increased error resilience of

the overall system.

In this section, we present experimental results of our proposed system. In order to

provide a better comparison for each developed technologies, we present the

experimental results in two subsections. Section 2.4.1 presents the performance of our

proposed Hierarchical CBP Coding Scheme. In Section 2.4.2, we present the

experimental results for the proposed entropy coding structure.

2.4.1 Experimental Results for the Proposed CBP Coding Scheme

The aim of the proposed Hierarchical CBP Coding scheme is to code the CBP more

efficiently for our H.264 based FGS system, than the present scheme of the FGS

standard. This section presents the detailed analysis about the amount of bit savings on

CBP coding that can be achieved using our proposed scheme. For this analysis, we

compare the number of bits used to code the CBP in our H.264 based FGS system using

two different methods. First method is our proposed Hierarchical CBP Coding scheme

that is presented in Section 2.3.1.1. Second method is the same CBP coding structure as

in MPEG-4 FGS. However, for the second method the blocks within the macroblock are

grouped as in Figure 19, so that each group's structure is identical to FGS macroblock

structure. As also shown in Figure 19, the 24 (4x4) blocks within a macroblock are

grouped into 4. Structure of each (8x8) group is the same as theMPEG-4 FGS

macroblock structure. Thus, the same coding algorithm as MPEG-4 FGS CBP coding is

62

used to code the CBP for each of the groups. This approach results in using 4 CBP

codewords for each macroblock. So the amount of bits spent for CBP is approximately-

quadrupled.

For this experiment, we use the test sequences presented in Table 2. Because the

techniques for coding the CBP for the first and second bitplane are not the same, separate

results are presented for each of the bitplanes.

The following tables present the average number of bits used for coding the CBP using

both methods. It is seen that, more bits are allocated for coding the CBP at the second

bitplane, no matter which method is used. This is due to the fact that, at the second

bitplane, there are less A L L Z E R O but more non-zero blocks. This means, there are less

blocks that can be grouped and coded as A L L Z E R O , decreasing the efficiency of the

CBP coding. For the first bitplane, almost all the blocks are A L L Z E R O , and CBP can

efficiently group and code them together, using less bits overall.

It is clearly seen that, the proposed Hierarchical CBP Coding Scheme outperforms the

FGS CBP coding scheme significantly for the H.264 based FGS system on all the

sequences. On average the proposed scheme uses 70% less bits than FGS scheme for

coding the CBP at the first and second bitplanes. For some cases the proposed scheme

uses up to 75% less bits than the FGS scheme.

As mentioned before, CBP coding scheme in the FGS standard is not suitable for our

H.264 based FGS system. This is due to the increased number of transform blocks within

the macroblock. The proposed Hierarchical CBP coding scheme, decreases this overhead

significantly. This way, the 4x4 Integer Transform can be used more efficiently in the

enhancement layer.

63

Proposed CBP Coding Scheme FGS CBP Coding Scheme

First Bitplane Second Bitplane First Bitplane Second Bitplane

Bits Used for

CBP Coding

450 2051 1653 6257

Table 4Average Number of Bits Used for C B P Coding for Bus Sequence

Proposed CBP Coding Scheme FGS CBP Coding Scheme

First Bitplane Second Bitplane First Bitplane Second Bitplane

Bits Used for

CBP Coding

513 2147 1953 7244

Table 5 Average Number of Bits Used for C B P Coding for Tempete Sequence

Proposed CBP Coding Scheme FGS CBP Coding Scheme

First Bitplane Second Bitplane First Bitplane Second Bitplane

Bits Used for

CBP Coding

339 1937 2004 7453

Table 6 Average Number of Bits Used for C B P Coding for Mobile Sequence

2.4.2 Experimental Results for the Proposed Entropy Coding Scheme

In this section, we compare the coding efficiency of the proposed entropy coding scheme

that was presented in Section 2.3.2, with the one standardized in FGS. For this

comparison we encode different sequences at different base layer bitrates. Two different

methods are used for entropy coding: i) Proposed Entropy Coding Method and ii)

Original FGS Entropy Coding Method. The sequences used for this experiment are

presented in Table 2.

64

After encoding the different sequences with both methods, the number of bits used to

code the (RUN,EOP) symbols at different bitplane levels are found for each method.

Table 4 presents the results for all the different sequences, for different bitplane levels.

Each row of Table 4 presents results for a sequence encoded at a specific base layer

bitrate. The columns of the table are grouped into four, and each group presents the

results for one bitplane level (first, second, third and the fourth bitplanes). The number of

bits used to code symbols using two different methods of entropy coding methods, is

presented side by side for each case. We also illustrate the results for each sequence

separately at Table 8,Table 9 and Table 10. In these tables, there are two figures for each

sequence, representing the different bitrates that the base layers are encoded at.

When compared with FGS entropy coding method, the proposed method uses 7% less

number of bits on average to code the (RUN,EOP) symbols. For all the sequences, the

proposed entropy coding method outperforms FGS entropy coding at all bitplane levels,

except for the first one. At bitplane levels higher than the first one, the performance of the

proposed table goes up to 22% better than the standard FGS. Also, as mentioned

previously in this section, the proposed method has high resilience to errors and less

computational complexity.

In conclusion, our proposed entropy coding scheme that is based on 4x4 Integer

Transform, achieves 7% coding efficiency gain on average with increased error resiliency

and less computational complexity over the FGS entropy coding method, in our H.264

based FGS system.

65

2 ft"

o o a
a'

era
W
5
o

o
JO re < re

2 ft"
M x
I O o
o"
3 o-
n o a.
re
o

as as

Mobile,
1.5
Mbps

Mobile,
500
Kbps

Bus,
1.5
Mbp

Bus,
500
Kbps

Tempete,
1.5 MBps

Tempete,
500 Kbps

637521

577955

644091

487332

584541

511615

Bit Usage
Proposed

B
itp

lan
e 1

576352

527785

597791

460814

537204

481014

Bit Usage F G S

I

o
o x

-9.5%

-7.7%

-5.7%

-8.8%

-6.4%

Percent
Improvement

929701

737767

885134

734221

876300

735792

Bit Usage
Proposed

B
itp

lan
e 2

929701

745780

899774

757194

882159

751718

Bit Usage F G S

o
^?

1.0%

1.6%

3.0%

0.7%

1.8%

Percent
Improvement

974428

840804

964557

909247

958044

808554

Bit Usage
Proposed

B
itp

lan
e 3

1004211

867021

1001262

946014

987387

834000

Bit Usage F G S

o

3.0%

3.7%

3.9%

3.0%

3.0%

Percent
Improvement

709261

714023

791827

799157

658771

804711

Bit Usage
Proposed

B
itp

lan
e 4

871830

809052

1016858

914871

792700

899462

Bit Usage F G S

18.6%

11.7%

22.1%

22.1%

16.9%

10.8%

Percent
Improvement

Performance of the P r o p o s e d R V L C Table

1000000

900000

800000

700000

bo 600000 -

2 500000 -
n
E 400000 -
3

Z 300000 -

200000 -

100000 -

0 -,

1 2 3 4 5

B i t p l a n e

(a)

Performance of the P r o p o s e d R V L C Table

El Proposed RVLC Table

a FGS VLC Table

1 2 3 4 5

B i t p l a n e

(b)

Table 8 Coding Efficiency Test Results for the Proposed R V L C Table. Sequence is Mobile coded at
(a) 500 Kbps (b) 1.5 Mbps

o Proposed RVLC Table

a FGS VLC Table

67

Performance of the P r o p o s e d R V L C Table

1000000

900000

800000

700000

bo 600000

£ 500000

E 400000
3

Z 300000 4-

200000 #

100000

0

• P roposed R V L C Table

B F G S V L C Table

1 2 3 4 5

Bitplane

(a)

Performance of the P r o p o s e d R V L C Table

1200000

1000000

«! 800000
ho

• P roposed R V L C Table

a F G S V L C Table

(b)

Table 9 Coding Efficiency Test Results for the Proposed R V L C Table. Sequence is Bus coded at (a)
500 Kbps (b) 1.5 Mbps

68

P e r f o r m a n c e of the P r o p o s e d R V L C T a b l e

(a)

P e r f o r m a n c e of the P r o p o s e d R V L C T a b l e

(b)

Table 10 Coding Efficiency Test Results for the Proposed R V L C Table. Sequence is Tempete coded
at (a) 500 Kbps (b) 1.5 Mbps

69

2.5 Conclusion

In this chapter, we presented our proposed H.264 based FGS structure. Instead of simply

extending the FGS to use H.264 at the base layer, the proposed structure modifies the

FGS coding blocks to take full advantage of H.264's superior features present in the base

layer. The proposed modifications can be grouped under two groups:

1. DCT is replaced by 4x4 Integer Transform at the enhancement layer

2. Entropy Coding structure is modified to use the Reversible Exp-Golomb coding

technique

We replaced the DCT at enhancement layer by 4x4 Integer Transform, introduced the

novel Hierarchical CBP Coding structure, that significantly decreases the overhead

caused by using 4x4 Integer Transform. The VLC tables at the enhancement layer are

changed and the new tables are built with Reversible Exp-Golomb codewords using the

symbol statistics resulting from 4x4 Integer Transform.

By modifying the standard FGS structure, the complexity of the encoder-decoder pair is

decreased and the error resilience of the overall system is increased. Performance

evaluations have shown that our method also improves the coding efficiency of the

system by 7% on average.

70

CHAPTER 3

3 Hybrid Structure using Stream-Switching and FGS for
Scalable H.264 Video Transmission

As mentioned before, the H.264 video coding standard lacks scalability, i.e., video

adaptation to different bitrates. Instead, H.264 uses a different approach, called stream-

switching, to cope with the fluctuations of the available bandwidth of the underlying

network upon which media information is transmitted. In the stream-switching approach,

the video is independently coded into several non-scalable bitstreams of different bit-

rates. The system dynamically switches between these different bitrate coded video

versions depending on the bandwidth availability. The advantage of this method is its

high coding efficiency, which results from the independent coding of non-scalable

bitstreams. However, this method provides a coarse capability in adapting to changing

bandwidth conditions due to the limited number of bitstreams. There are two main

reasons for having a limited number of bitstreams. The first is due to fact that the encoder

needs to encode the original bitstream at different rates. This increases the complexity of

the system and therefore there is a trade off between the number of bitstreams that can be

offered and the cost of the system. Second, since all the generated bitstreams need to be

stored at a streaming server, storage requirements may be a limiting factor. For the stream

switching approach, the H.264 video coding standard has specified special key-frames,

called Synchronization-Predictive (SP) frames that allow efficient switching between

video bitstreams [17].

71

In this chapter, we present a unique method of combining the FGS scalable video coding

with the stream-switching techniques to maximize the video quality for the end user.

Unlike other proposed scalable switching systems proposed, our proposed system is

based on established standards. This means that streams created by this proposed method

can still be processed by an existing H.264 decoder that supports switching of streams

and does not have FGS capability. We also have developed a novel algorithm to select

the rates of the base layer streams adaptively. The proposed algorithm involves encoding

the video at different rates with different enhancement layer streams and R-D

performance analysis of these streams. Results of this analysis are used to determine the

optimal rates at which the base layers should be encoded and where the switching

between streams takes place.

In Section 3.1, we first give a brief overview of the stream-switching technique and the

SP-frame concept used in H.264. Also, a brief comparison of stream-switching and

scalable video coding is presented, along with the advantages and disadvantages of both

methods. Section 3.2, presents our proposed hybrid approach and the novel adaptive rate

selection algorithm. Section 3.3 presents the performance evaluation of the proposed

approach and compares it with:

1. FGS enabled H.264 video compression system without switching capability as

proposed in Chapter 2, and with

2. H.264 video compression system with stream-switching capabilities only as

proposed by the H.264 standard (i.e., without FGS support).

72

3.1 Stream-Switching and SP-Frames

3.1.1 Overview of Stream-Switching

Stream-switching is a technique used in video communication systems to cope with

bandwidth variations. In this technique, video is independently coded to several streams

at different bitrates and quality levels. After encoding, the streaming server dynamically

switches between the streams, according to the available bandwidth in order to

accommodate the bandwidth variations.

One important restriction of stream-switching is that the streaming server can not switch

the stream at arbitrary frames, but only at key frames. The reason for this is the temporal

predictive coding techniques of present video coding standards require that the frame

being coded to depend on previous frames. Let's consider an example where there are

two bitstreams generated independently at different quality levels. Let {..., Pi,n-i, Pi,n,

Pi,n+i,...} and {..., P2,n-i, Pi.n, P2,n+h— } denote the sequence of the decoded frames from

two bitstreams, bitstream 1 and bitstream 2 respectively. Let's also assume all these

frames are P-frames and that switching takes place at time instant n, i.e., the server sends

{Pi,„-i, P2,n ,P2,n+i}- In this case, the decoder can not decode P2,n correctly, since the

reference frame to encode the frame P2,„, which is P2,n-i is not received. This mismatch

leads to erroneous decoding which further propagates due to motion compensation.

For this reason, in existing video coding standards, switching of bitstreams is only made

possible at frames that do not use information prior to their location, i.e., I frames.

However, placing I frames periodically in the bitstream reduces the coding efficiency, as

these frames do not exploit any temporal redundancy. The H.264 standard introduces a

new frame type, called SP-frame. SP-frames make use of motion compensated predictive

73

coding so to exploit the temporal redundancy in the sequence, in a similar manner to that

of P-frames. However, identical SP-frames can be reconstructed even when different

reference frames are used for their prediction [17]. In the next subsection, we describe the

SP-frame concept introduced in the H.264 video coding standard.

3.1.2 Overview of the SP Frame Switching Concept used in H.264

The stream-switching operation is realized by placing keyframes that do not use

information prior to their corresponding temporal locations. This approach, however,

decreases the coding efficiency of the system, as these keyframes do not exploit the

temporal redundancies of the video sequence.

H.264 introduced a new frame type, called SP-frame, for this purpose. Similar to P-

frames, SP-frames make use of motion compensated predictive coding to exploit

temporal redundancy in the video sequence. However, unlike P-frames, SP-frames allow

identical frames to be reconstructed even when they are predicted using different

reference frames. This property of SP-frames allows them to be used instead of I-frames

in stream-switching applications. In this section, the technical details of SP-frames are

overviewed. It should be noted that, SP-frames can be used for other applications such as

random access, error recovery and error resiliency, but only the stream-switching

application is considered here.

In order to explain how SP-frames are used during stream-switching, consider an

example illustrated in Figure 29. Let's assume that a bitstream is encoded twice at two

different bitrates. Their corresponding frames are denoted by {Pu, Pij, SPu, Pi,4, Pi,5}

and {P2.1, P2.2.SP2.3, P2.4. Pi,5} for the first and second bitstreams, respectively (see Figure

74

29). In each bitstream, SP-frames are placed at the same temporal location that switching

is desired to take place (in this case it is SPJJ and SP2j).

Bitstream 2

' 1,1

Bitstream 1
1,2 SP

1,3 1,4 1,5

Figure 29 Switching between streams using SP-Frames

SP-frames placed within a bitstream are called primary SP-frames. For each primary SP-

frame, another SP-frame, called secondary SP-frame, which allows switching from that

bitstream to another bitstream, is generated. The secondary SP-frames are used only

during switching. At the streaming server, two bitstreams (bitstream 1 and bitstream 2)

75

and all the secondary SP-frames needed for switching are stored. At the time of

switching, the streaming server sends the secondary SP-frame corresponding to the

stream that the server switches to. For example, if we switch from Pi,2 to P2,4, then the

secondary SP frame SP12,3 is used in between (see Figure 29). Similarly if we switch is

from P2,2 to Pi,4 then a different SP frame SP21J will be used. Secondary SP-frames result

in the same future frames as a primary SP-frame even though they use a different

reference frame. At the time of switching, the decoder receives the secondary SP-frame

(SP/2,3), with its reconstruction identical to its respective primary frame (SP2j). The next

frame the decoder receives just after switching is P2,4 and it uses SP2J as reference. The

decoding process continues normally without any error, as the reconstruction for frames

SP2J and SPi2j is identical although they use different reference frames.

3.1.3 Comparison of Stream-Switching and Scalable Video Coding

In this section we compare the two approaches i) Stream-Switching and ii) Scalable

Video Coding. In particular, the SP-frame approach introduced in H.264 and the FGS

approach are considered.

The common objective of these two approaches is to cope with the bandwidth variations

and offer optimum video quality to the end user. However, the way that FGS tries to

achieve this objective is quite different from that of the stream-switching approach. The

latter was proposed and described in Chapter 2.

The FGS encoder generates one bitstream that contains the enhancement and the base

layers. The base layer is encoded at a bitrate, RbaSe and the enhancement layer is encoded

using bitplane coding at a maximum bitrate, Rmax- The bitstream is scaled at the FGS

streaming server by truncating the enhancement layer portion of the video according to

76

the available bandwidth. The video quality at the end user is directly proportional to the

amount of the enhancement layer information being sent. Main advantages of this method

are its low complexity and its high flexibility. Low complexity is due to the fact that the

same encoded bitstream is used for all the different bitrates, and thus encoding is

performed only once. In addition, there is minimal overhead for the streaming server, as

it should only do simple truncation to achieve scalability. FGS is highly flexible since the

streaming server can truncate the enhancement layer to any desired bitrate, maximizing

the bandwidth utilization using all the available bandwidth to send video information. As

its name implies, FGS allows scalability in a fine-granular manner. Unlike other layered

scalable technologies implemented in previous video coding standards, FGS video

quality can be adjusted to any bitrate between Rbase and R m a x .

The main disadvantage of FGS video coding is its low coding efficiency when compared

to single layer coding. In particular, for bitrates that are considerably higher than the base

layer bitrate Rbase, the penalty in coding efficiency becomes significant. This is because

low quality base layer frames are used as references for motion estimation, and as a

result, the temporal redundancies in the enhancement layer are not fully exploited.

The other approach, named stream-switching, simply encodes the same video with

different quality levels and bitrates. The streaming server switches dynamically between

the streams to accommodate the variations of the available bandwidth. For bandwidths

that are considerably high, high-quality video is sent to the end user. If the available

bandwidth drops, the server switches to the low quality version of the video. Based on the

reasons discussed in the previous section, switching can take place only at key frames.

77

Thus, the system's response time to a bandwidth variation is low when compared to that

of the scalable video coding approach.

When compared to scalable video coding, stream-switching approach can not use a single

bitstream, but rather two or more bitstreams with different bitrates. That's why stream-

switching involves more computational complexity than scalable video coding, as the

encoding process should be repeated two or more times, depending on the number of

bitstreams used. One other disadvantage of stream-switching is the insufficient

bandwidth utilization achieved by the system. It should be noted that, the bandwidth

utilization of a stream-switching system increases with the number of bitstreams used,

but the larger the number of streams the more impractical the system becomes.

When compared with FGS, the stream-switching approach can not adapt to bandwidth

variation in a fine-granular way, as it is not based on scalable coding of the video.

Despite all the disadvantages, the stream-switching technique has very high coding

efficiency (due to independent coding of non-scalable video), which makes it very

attractive.

The following table summarizes the advantages and disadvantages of both approaches,

providing a quick overview.

78

Stream - Switching Scalable Video Coding (FGS)

Coding

Efficiency

High, due to independent

coding of non-scalable

bitstreams.

Low at increased enhanced layer

bitrates, due to low quality

reference frames used in motion

estimation.

Bandwidth

Utilization

Low - due to limit in number

of streams.

High, close to 100%.

Response time to

change in

bandwidth

Low - Can only adapt to

bandwidth change at key

frames.

High - Depending on streaming

server, it can adapt instantly.

Scalability Step Coarse capability in adapting

to changing bandwidth.

Fine Granular.

Computational

Complexity

Encoding should be

performed several times

depending on the number of

bitstreams.

Encoding is performed once, for

base and enhancement layer.

Table 11 Comparison of Stream-Switching Approach with Scalable Video Coding Approach

In the next section, we propose a hybrid method that is a combination of the FGS method

with Stream-Switching. The proposed hybrid method takes advantage of both methods to

improve bandwidth utilization and video quality.

79

3.2 Combining Stream-Switching and FGS

The main disadvantage of FGS is its low coding efficiency at high enhancement layer

bitrates, which is due to the low quality reference frames used in motion estimation. The

main disadvantage of stream-switching is its coarse capability in adapting to bandwidth

changes and its low bandwidth utilization. We aim to eliminate those two disadvantages

with our combined FGS - stream-switching architecture. Thus, the combined system is

not only scalable and can adapt to bandwidth changes in a fine granular way, but it also

has high coding efficiency.

Figure 30 illustrates the architecture behind our proposed hybrid method for the case of

two bitstreams. Our system encodes the video into two independent scalable bitstreams.

Each bitstream is an H.264 based FGS stream consisting of a base layer and an

enhancement layer.

Based on the available bandwidth, the streaming server sends one of the base layers along

with its corresponding enhancement layer portion. If there is a low bandwidth variation

that can be accommodated by the enhancement layer, the streaming server continues to

send the same base layer along with its enhancement layer. However, the streaming

server switches between scalable bitstreams if high bandwidth variations occur.

80

I p p
i 2 r 2 r - 2

Low Bandwidth Variations
are accommodated by

FGS enhancement layer

w CO O CD _l
CO — I p p

•1 r 1 r 1

1 i i i i i i i 1. X J u Z

SP 2 P 2 P 2 P 2

High Bandwidth Variation
causes switching between

streams

I
SP, P, P, P,

Figure 30 Structure of the proposed hybrid system

Therefore, the streaming-server performs both switching and scaling operations. As can

be observed from Figure 30, the low bandwidth variation is accommodated by FGS, but

if the variation exceeds a certain threshold, it causes the system to switch streams. This

structure increases the overall efficiency since:

1) bandwidth utilization is always at 100%, and

2) the picture quality increases with FGS enhancement layer portion operating at its

higher efficiency regions.

Assume that the network bandwidth changes dynamically in the range of [Rmin - Rma^] .

The base layer bitrates are Rbasej and Rbasej for the base layers of low and high quality

81

scalable streams respectively, where R m i n < R b a s e < R b a s e 2 ^ R m m - If at a given time

instant, the available bandwidth Ravaiiabie is greater than the low quality base layer bitrate

but lower than the high quality base layer bitrate, that isi?m i n < R b m e < R a v a i l a b l e < R b a s e 2 ,

then the streaming server sends the low quality video and truncates its corresponding

scalable stream to utilize the rest of the available bitrate. So the amount of enhancement

layer transmitted is R e n h a n c e m e n t , = R
available

One of the challenges in the proposed system and in stream-switching systems in general,

is how to choose the bitrates for the independent streams. In the next subsection, we

present a novel adaptive rate selection method for stream-switching. For the sake of

simplicity, only two independent not scalable bitstreams are considered. Later, the

algorithm is generalized to include more than two bitstreams that also have their scalable

enhancement layer information.

3.2.1 Adaptive Bitrate Selection for Stream-Switching
The bitrates of the streams that are used for switching are an important parameter that

affects the performance of the system in a dynamic environment. Assume the available

bandwidth fluctuates in the range [Rmin - i?m a x], and two streams, one having low quality

and the other with higher quality, will be used to cover this bandwidth range, with

bitrates Rl and R2 respectively. One condition for the bitrates is R m i n < R] < R2 < R m a x .

Also, the bitrate of the lowest quality stream should not be higher than the minimum

available bandwidth to be able to send a stream at any given available bandwidth (i.e., R{

= R m i n) . Thus, for two streams, only the bitrate of the higher quality stream is variable.

The bandwidth range can simply be divided into equal portions and can be half the

82

fluctuating bandwidth range R2 = 0.5(i?max + RMIN). This technique can be used for n

streams with straightforward extension. However, this bitrate selection does not use any

distortion measure and may not guarantee the best R-D performance. We developed an

adaptive rate selection by analyzing the encoded video quality at different rates. In the

case of two streams, we are seeking the rate for the higher quality stream, R2 which

minimizes the total distortion at the fluctuating bandwidth range given by:

Raval=R2 Raval=Rma\

YD. + YD7, R. <R7</?
/ . 1 / . 25 min I max i \

*avarRmin RavarR2 ^ ' '

where £>, and D2 are calculated distortions of the low and high quality decoded streams

respectively. The distortion measure D is the mean square error and is given by the

following equation:

1 M N

D = ̂ T Z Z (/ (^) - ^ ») 2 (3-2)

where / and K are the two pictures and M and N are their height and width respectively.

3.2.2 Generalized Adaptive Rate Selection

Generalization of the above problem for n streams requires finding the rates

(RL,R2...R„) where/?, =RAAN, RT < R2...< RH_T < RN and RN+I = RMAX to minimize the

total distortion given by Equation (3.3):
n RavarRi+\

K l A) (3.3)
Raval=Ri

83

In order to accommodate the R-D characteristics of the FGS enhancement layer for

adaptive rate selection, the problem is similar and entails finding the bitrates

(R„R2...Rn) where R{ = Rmin, R, < R2... < /?„_, < Rn and Rn+X = R^, except that now

the total distortion measure is a modified version of Equation (3.3):

n RavarRi+\
Yi YDbp-j) tf\7=«.' (3-4)

aval i

where D\p-} is the distortion of the i'h base stream and bp J is the number of bitplanes at

the enhancement layer. The number of bitplanes sent is the maximum number that can be

sent for the given base layer stream given an available bandwidth, Ravai-

3.3 Experimental Results

We compare the proposed hybrid FGS, Stream-Switching approach with the FGS and the

Stream-Switching approaches separately. In order to evaluate the performance of the

proposed algorithm, we consider a transmission channel where the available bandwidth

changes dynamically. For this specific experiment, the available bandwidth is simulated

to increase from 30 Kbps up to 250 Kbps and then decrease back to 30 Kbps in the course

of 90 frames, which corresponds to 3 seconds at a rate of 30 frames/second. These test

conditions are specified by MPEG Scalable Video Coding group at the recent Call for

Proposals on Scalable Video Coding Technology [25], as one of the experiment test

conditions.

For our experiment, we first encode the Foreman sequence at different bitrates and we

encode their corresponding enhancement layers with the proposed H.264 based FGS

encoder presented in Chapter 2. Then, our adaptive rate selection algorithm is used to

determine the best bitrate at which switching between bitstreams is performed.

84

Afterwards, depending on the available bandwidth at a given time instant, the network

simulator chooses the base and enhancement layer streams to send to the decoder. Below,

we evaluate the performance of the following three methods:

1. Proposed Combination of FGS with Stream-Switching approach using Adaptive

Rate Selection

2. Scalable Video Coding using FGS

3. Stream-Switching using SP Frames

The parameters for the base layer encoding are presented at Table 12.

SP Picture Periodicity: At every 15 frames (i.e. at every half a

second for 30 fps. video)

Quantization Parameter for S/ frames: Same as Quantization Parameter for P

(QPSP) Frames (QP)

Quantization Parameter of Sn frames: QPSP-6

(QPSP2)

Frame Structure: I P P P . . . P P P S P P P P ...

Table 12 Encoding Parameters for H.264 Base Layers

We first compare the performance of the three approaches in a channel, where the

available bandwidth changes over time. The available bandwidth first increases from 30

Kbps to 250 Kbps through frames 1 to 45 and starts to decrease back to 30 Kbps at frame

45. The base layer bitrate for FGS and the low quality bitrate for the proposed and

stream-switching approaches are the same and equal to the lowest bandwidth that the

channel can deliver (30 Kbps). For the stream-switching approach, the bitrate for the

high quality bitstream is found to be 100 Kbps using Equation (3.3), which describes the

85

adaptive rate selection for non-scalable bitstreams. For our proposed approach, equation

(3.4) is used to find the high quality base layer bitrate which was found to be same as

that of the stream-switching (i.e., 100 Kbps).

The performance of the three tested methods is shown in Figure 31. When compared

with FGS, the enhancement layer performance of the proposed approach is relatively

high due to switching at a key bit-rate. This results in a higher overall efficiency. The

average PSNR gain is 2.9 dB, while for some frames the gain goes up to 3.5 dB. In

addition, when our hybrid method is compared with the stream-switching approach, it is

clearly seen that the video quality keeps increasing as the available bandwidth increases.

This is because our method fully utilizes the available bandwidth. In this case, the

average PSNR gain is 1.5 dB and can go up to 3 dB for some frames.

The R-D performance of the proposed approach is further analyzed and compared with

the Stream-Switching and FGS approaches in Figure 32 and Figure 33, respectively. It is

clear from Figure 32, that the advantages of the proposed approach over Stream

Switching are mainly the increased bandwidth utilization and granular adaptation of the

system to the varying bandwidth. When compared with FGS, the proposed approach

does not suffer from the low coding efficiency at high enhancement layer bitrates as it is

seen from Figure 33.

In our final experiment, we analyze the performance of the proposed adaptive rate

selection algorithm. We use the proposed hybrid method and use two algorithms to find

the bitrate of the high quality video (adaptive and non-adaptive rate selection

algorithms). For the non-adaptive case, the bitrate of the high-quality base layer is found

by dividing the bandwidth range into two (i.e., (30+250)/2 Kbps). Figure 34 illustrates

86

the results for this experiment. On average, the adaptive rate selection algorithm results

in, 1 dB performance increase.

Figure 31 Performance of the Proposed Approach Compared with two other approaches i. Scalable
Video Coding using F G S ii. Stream-Switching using SP Frames

87

R-D Per fo rmance for F o r e m a n Q C I F

,*<*\t—y y - V V V

Proposed Approach
-X— Stream Switching Approach

) c

X X X
0 50 100 ISO 200 250 303

Bitrate (kbps)

F igu re 32 R - D Performance C o m p a r i s o n of the Proposed and S t ream-Swi tch ing A p p r o a c h

R-D P e r f o r m a n c e fo r F o r e m a n Q C I F

Propc sed Approach
Approach -X - FGS

sed Approach
Approach

11 1 I I I I
0 50 100 150 200 250

Bitrate (kbps)

F igu re 33 R-D Performance C o m p a r i s o n of the Proposed F G S A p p r o a c h

88

Performance of Adaptive Bitrate Selection

a. ^ — Adaptive Rate Selection
-X - Non-Adaptive Rate Selection

Bitrate (kbps)

Figure 34 R - D Performance of the Adaptive Rate Selection Algorithm

3.4 Conclusion

In this chapter, we introduce a novel hybrid approach that combines FGS scalability with

stream-switching based on the H.264's SP frame concept. We also introduce a novel R-D

optimized adaptive rate selection algorithm for choosing the rates of the base layer

streams. Combining FGS with SP frames is made possible by using our H.264 based FGS

technology, presented in Chapter 2. For high bandwidth variations, our proposed system

switches from a low-quality stream to a higher-quality stream, whereas low bandwidth

variations are accommodated by using only the corresponding FGS enhancement layer.

This way, the FGS enhancement layer mostly operates in the high efficiency regions of

its R-D curve. In a network environment where bandwidth changes dynamically, our

proposed hybrid method outperforms FGS by 2.9 dB and the stream-switching approach

by 1.5 dB on average.

89

CHAPTER 4

4 Conclusions and Future Work

4.1 Conclusions

For networks used for video transmission environment, such as wireless networks and

Internet, the available bandwidth for video transmission is not constant but varies over

time. This variation in the available bandwidth possesses a problem for a video

transmission system. Traditional video coding standards, whose objective is to optimize

the quality of the video at a given bitrate, cannot cope with this bandwidth variation

problem effectively. Scalable Video Coding techniques have been developed to more

efficiently address this bandwidth variation problem.

Scalable Video Coding (SVC) is a video coding framework that enables a system to adapt

the quality of the video sequence to the underlying channel's available bandwidth.

Al l popular video coding standards, such as MPEG-2 and MPEG-4 include some

scalability tools. The latest video coding standard, H.264, provides superior compression

efficiency over all previous standards, but it does not include tools for coding the video in

a scalable fashion.

In this work, we developed a scalable video coding scheme based on the most advanced

video coding standard, H.264. Up to now, H.264 standard offered limited scalability, but

there were no solution that achieves highly flexible fine-granular-scalability using the

H.264 standard. In order to achieve scalability with H.264, Fine Granular Scalability

(FGS) that is originally developed for MPEG-4 is adapted to H.264. We modified the

techniques present in FGS and developed novel techniques, so that the proposed scalable

90

coding system has low computational complexity, high error resiliency and has high

coding efficiency.

At our proposed H.264 based FGS structure, the DCT is replaced by 4x4 Integer

Transform at the enhancement layer. This brings an overhead for the Coded Block

Pattern (CBP) coding at each macroblock header. The number of bits used to code the

CBP is approximately quadrupled due to the change in macroblock structure. We

proposed a Hierarchical CBP Coding scheme to decrease this overhead. On average the

proposed scheme uses 70% less bits than FGS scheme for coding the CBP at the first and

second bitplanes. For some cases the proposed scheme uses up to 75% less bits than the

FGS scheme.

We adapt the entropy coding method of H.264 standard to the FGS structure. The method

is based on Reversible Exp-Golomb coding and it is proved to be highly error resilient

with low computational complexity. By replacing the entropy coding method, we achieve

7% gain in coding efficiency.

To overcome this problem, we also introduce a hybrid method that combines our

proposed H.264 based FGS approach with the stream-switching approach employed in

the H.264 standard. By combining different techniques, our proposed system offers a

complete solution for all kinds of applications. The proposed system outperforms existing

systems by offering optimum bandwidth utilization and improved video quality for the

end user. We also introduce a novel R-D optimized adaptive rate selection algorithm for

choosing the bitrates of the base layer streams. In a network environment where

bandwidth changes dynamically, our proposed hybrid method outperforms FGS by 2.9

dB and the stream-switching approach by 1.5 dB on average. Combining FGS with SP

91

frames is made possible by using our H.264 based FGS technology, presented in Chapter

2.

4.2 Future Work
The proposed H.264 based FGS is designed to introduce minimal computation

complexity to the overall system. However, in the scope of this work, no formal testing

and analysis was performed to analyze the exact amount of complexity gain achieved.

Also, by introducing Reversible Exp-Golomb codewords to the FGS enhancement layer,

the error resiliency of the system is increased. This feature should be further tested and

analyzed for real-world application scenarios, such as 3G wireless environments or the

Internet.

H.264 video coding standard offers several methods for entropy coding. In this thesis, we

used Reversible Exp-Golomb coding method due to its low computational complexity

and high error resiliency. However, other entropy coding methods such as Context

Adaptive Variable Length Coding (CAVLC), and Context Adaptive Binary Arithmetic

Coding (CABAC) can also be incorporated in our system.

The combined approach introduced in Chapter 3, gives very good results and it can be

further optimized for certain bitrates. The developed approach is good for pre-recorded

video, where the entire video stream is available at the time of streaming. This approach

can be further developed for real-time streaming applications.

The latest trends in scalable video coding are mostly based on wavelet coding tools and

motion compensated temporal filtering (MCTF) based video codecs. Future work could

include incorporation of these tools to existing video coding standards.

92

APPENDIX

A. Exp-Golomb Codes for Entropy Coding
The following table presents the Exp-Golomb codewords and their corresponding

numbers used for entropy coding. For the rest of the tables in the appendixx, only the

Exp-Golomb code number is indicated where a codeword is specified.

Exp-Golomb
Code Number

Codeword Number of bits

0 1 1
1 010 3
2 011 3
3 00100 5
4 00101 5
5 00110 5
6 00111 5
7 0001000 7
8 0001001 7
9 0001010 7
10 0001011 7
11 0001100 7
12 0001101 7
13 0001110 7
14 0001111 7
15 000010000 9
16 000010001 9
17 000010010 9
18 000010011 9
19 000010100 9
20 000010101 9
21 000010110 9
22 000010111 9
23 000011000 9
24 000011001 9
25 000011010 9
26 000011011 9
27 000011100 9
28 000011101 9
29 000011110 9
30 000011111 9
31 00000100000 11

93

P6

8uipo3 Xdojjua JOJ sapo3 quio|0£)-dx3 £\ ajq^x

II IIIIII00000 Z9
II 0IIIII00000 19
II IOI11IOOOOO 09
II 00111100000 6S
11 IIOIIIOOOOO 8S
11 01011IOOOOO LS
11 10011IOOOOO 9S
11 00011IOOOOO ss
11 11IOIIOOOOO PS
11 OIIOIIOOOOO es
11 IOIOIIOOOOO zs
II 00IOIIOOOOO IS
11 11001IOOOOO OS
II 0100IIOOOOO 617
11 I000IIOOOOO 817
11 00001IOOOOO LP
11 IIIIOIOOOOO 9P
II OIIIOIOOOOO SP
II I01I0100000 pp
II OOIIOIOOOOO £P
11 11010100000 IP
11 01010100000 \p
II 10010100000 OP
11 00010100000 6£
II 11100100000 8£
II o n oo i ooooo L£
11 I0100I00000 9£
11 00I00Iooooo se
11 110001ooooo Pi
11 01000Iooooo ee
II I0000Iooooo zz

B. VLC Codes for CBP CODE

B.1. CBP Codes for the First Bitplane

Category 0

All the four luminance and two color components are present in the bitplane.

Y Y
0 1

Y Y
1 2 3

U U
16 17

Y 4 Y ,
4 5

Y Y
1 6 7

u u
18 19

Group 0 Group 1 Group 4

Y Y
8 9

Y Y
10 11

V V
20 21

Y Y
12 13

Y Y
14 15

V V
22 23

Group 2 Group 3 Group 5

CBP
(uv,yyyy)

Exp-Golomb
Code Number

Number
of Bits

11,1111 0 1

11,0000 1 3

11,0001 2 3

11,0010 3 5

11,0011 4 5

11,0100 5 5

11,0101 6 5

11,0110 7 7

11,0111 8 7

11,1000 9 7

11,1001 10 7

11,1010 11 7

11,1011 12 7

11,1100 13 7

11,1101 14 7

11,1110 15 9

00,0000 16 9

00,0001 17 9

00,0010 18 9

00,0011 19 9

95

96

I I 617 O I U ' I O

I I SP I O I I ' I O

11 O O l l ' l O

I I 9fr IIOI'IO

n Sfr OIOI'IO

i i PP I O O I ' I O

i t iP OOOI'IO

n ZP IIIO'IO

n IP OIIO'IO

n OP IIOO'IO

n 6i OIOO'IO

i i 8 £ IIII 'OO

n Li 011 TOO

n 9i IOI Too
I I S£ 001 Too
n Pi n o r o o
n ii OIOl'OO

I I Zi lOOl'OO

n l £ OOOl'OO

6 0 £ OIOO'OI

6 6Z IOOO'OI

6 83 OOOO'OI

6 LZ I O I O ' I O

6 9Z OOIO'IO

6 sz 1 0 0 0 ' 1 0

6 PZ 0 0 0 0 ' 1 0

6 iZ m o ' o o

6 zz OIIO'OO

6 \z lOIO'OO

10,0011 51 1 1

10,0100 52 1 1

10,0101 53 1 1

10,0110 54 1 1

10,0111 55 1 1

10,1000 56 1 1

10,1001 57 1 1

10,1010 58 1 1

10,1011 59 1 1

10,1100 60 1 1

10,1101 61 1 1

10,1110 62 1 1

10,1111 63 13

Table 14 C B P Codes for the First Bitplane, Category 0

97

C a t e g o r y 1-2

All the four luminance components and only one color component (U or V) are present in

the bitplane

Y Y
2 3

Y < Y s Y Y
1 6 1 7

Group 0 Group 1

Y Y
8 9

Y Y
10 11

Y Y
12 13

Y Y
14 15

Group 2 Group 3

UA/
16

u/y7

UA/9

Group 4

C B P
(u/v,yyyy)

E x p - G o l o m b
C o d e N u m b e r

N u m b e r
o f B i t s

1,1111 0 1

1,0111 1 3

1,0011 2 3

1,1011 3 5

1,1101 4 5

1,1110 5 5

1,0001 6 5

1,0010 7 7

1,0100 8 7

1,0101 9 7

1,0110 10 7

1,1001 11 7

1,1010 12 7

1,1100 13 7

0,0001 14 7

0,0000 15 9

0,0010 16 9

0,0011 17 9

0,0100 18 9

0,0101 19 9

0,0110 20 9

0,0111 21 9

0,1001 22 9

98

0,1010 23 9

0,1011 24 9

0,1100 25 9

0,1101 26 9

0,1110 27 9

0,1111 28 9

1,0000 29 9

1,1000 30 9

0,1000 31 11

Table 15 C B P Codes for the First Bitplane, Category 1-2

Category 3

All the four luminance components are present without any color component in the

bitplane

Y Y.
0 1

Y Y
1 2 3

Y
4
 Y ,
4 5

Y Y
1 6 1 7

Group 0 Group 1

Y Y
8 9

Y Y
10 11

Y Y
12 13

Y Y
14 15

Group 2 Group 3

C B P Exp-Golomb Number
(yyyy) Code Number of Bits

u n 0 1

0111 1 3

0011 2 3

1011 3 5

1101 4 5

1110 5 5

0001 6 5

0010 7 7

0100 8 7

0101 9 7

0110 10 7

1001 11 7

99

1010 12 7

1100 13 7

0000 14 7

1000 15 9

Table 16 C B P Codes for the First Bitplane, Category 3

Category 4

Only two color components are present in the bitplane without any luminance

components.

U 1 8 U , 9

Group 0

V V
20 21

V V
22 23

Group 1

Category 5-6

C B P (uv) Fixed Length Code
00 00
01 01
10 10
11 11

Table 17 C B P Codes for the First Bitplane, Category 4

Only one of the color components (either U or V) is present in the bitplane without any

luminance components

U/V
16

u/y 7

18 u/y 9

C B P («/v) Fixed Length Code
0 0
1 1

Group 0

Table 18 C B P Codes for the First Bitplane, Category 5-6

100

B.2. CBP Codes for the Second Bitplane

Category 0

CBP_CODE is used at the second bitplane and second bitplane contains all the luminance

and the chrominance components.

First Bitplane

Group 0

Y Y
8 9

Y Y
12 13

1 o 1 1
1 1

1 2 3
1 1
16 17

\ 1 5
1 1

1 6 1 7
1 1
18 19

Group 0 Group 1 Group 4

1 1
8 9

1 1
10 . 11

1 1
20 21

1 1
12 13

1 1
14 15

1 1
22 23

Group 2 Group 3 Group 5

Y Y
2 3

u u
16 17

Y Y
1 6 1 7

u u
18 19

Group 1 Group 4

Y Y
10 11

V V
20 21

Y Y
14 15

V V
22 23

Group 3 Group 5

Second Bitplane

Same table as Table 14

Table 19 C B P Codes for the Second Bitplane, Category 0

Category 1-2

C B P C O D E is used at the second bitplane and second bitplane contains all the four

luminance components and only one color component (U or V).

101

1 o 1 1

\ 1 5

1 1
1 2 3

1 1
1 6 ' 7

G r o u p 0 G r o u p 1

1 1
8 9

1 1
12 13

1 1
10 11

1 1
14 15

1 1
16 17

1 1
18 19

G r o u p 4

G r o u p 2 G r o u p 3

F i r s t B i t p l a n e

Y o Y 1

Y 4 Y 5

Y Y
' 2 ' 3

Y Y
1 6 ' 7

G r o u p 0 G r o u p 1

Y Y
8 9

Y Y
12 13

Y Y
10 11

Y Y
14 15

u/v
16

u/y7

G r o u p 4

G r o u p 2 G r o u p 3

S e c o n d B i t p l a n e •

C B P
(u/v,yyyy)

Exp-Golomb
Code
Number

Number
of Bits

0,1111 0 1

0,0111 1 3

0,0011 2 3

0,1011 3 5

0,1101 4 5

0,1110 5 5

0,0001 6 5

0,0100 7 7

0,0101 8 7

0,0110 9 7

0,1001 10 7

0,1010 11 7

0,1100 12 7

1,0001 13 7

0,0010 14 7

1,0011 15 9

1,0100 16 9

1,0101 17 9

1,0110 18 9

1,0111 19 9

1,0010 20 9

1,1111 21 9

1,1001 22 9

1,1010 23 9

1,1011 24 9

1,1100 25 9

1,1101 26 9

1,1110 27 9

102

1,0000 28 9

0,0000 29 9

0,1000 30 9

1,1000 31 11

Table 20 C B P Codes for the Second Bitplane, Category 1-2

Category 3

C B P C O D E is used at the second bitplane and second bitplane contains all the four

luminance components but no color component.

103

1 o 1 i 1 1
' 2 3

1 1
' 6 1 7

Group 0 Group 1

1 1
8 9

1 1
12 13

1 1
10 11

1 1
14 15

Group 2 Group 3

First B i tp lane

0 1

Y 4
4 5

Y Y
2 3

Y Y
6 7

Group 0 Group 1

Y Y
8 9

Y Y
12 13

Y Y
10 11

Y Y
14 15

Group 2 Group 3

S e c o n d B i tp lane

Same as Table 17

Table 21 C B P Codes for the Second Bitplane, Category 3

C. VLC Codes for SUB CBP CODE

Following table illustrates the S U B C B P C O D E VLC codes used in blockcbp

procedure of CBP coding.

(BlockJ), Block_l, Block_2, Block_3) SUB_CBP_CODE

1111 1
0000 00000
0001 00001
0010 00010
0011 00011
0100 00100

104

0101 00101
0110 00110
0111 00111
1000 01000
1001 01001
1010 01010
1011 01011
1100 01100
1101 01101
1110 O H I O

Table 22 V L C Codes for SUB C B P C O D E

D. RUN - EOP Statistics

D.1. BUS Sequence, Base Layer at 500 Kbps

Statistics forthe First Bitplane

35000

30000

25000

20000

15000

10000

5000

0

' „ . • , „ « - M , . . I

1 1
< ' *. • .

5, ' * 1
1 0

" i f " , II
m . l ' 1

1 • II liW. II

Statistics for the Second Bitplane

80000

70000

60000

50000

40000

30000

20000

10000

0

*
 3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

20000

Statistics forthe Third Bitplane

1 '•",r,, . , '

1 ihafa-T-̂ i
1 3 5 7 13 15 17 19 21 23 25 27 29 31

Statistics for the Fourth Bitplane

140000

120000

100000

80000

60000

40000

20000

0

it
i-IKV'*

1 . i . >,'i V '
|ir»H-wr"

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 35 (RUN,EOP) Statistics for the BUS Sequence at 500 Kbps

106

D.2. BUS Sequence, Base Layer at 1.5 Mbps

Statistics for the First Bitplane

35000

30000

25000

20000

15000

10000 H

5000

0 J fet^ •,

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Second Bitplane

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

rsi ' i*

f iW-̂ _ rrlilllEfefcL,
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Third Bitplane

100000

80000

60000

40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Fourth Bitplane

120000

100000

60000

40000

20000

i ~

II"

l t b = [f e w - .
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

107

D.3. MOBILE Sequence, Base Layer at 500Kbps

35000

30000

25000

20000

15000

10000

5000

0

Statistics for the First Bitplane

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Second Bitplane

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Third Bitplane

120000

100000

80000

60000 A

40000

20000

" t K , i 1 I

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

120000

100000

80000

60000

40000

20000

Statistics for the Fourth Bitplane

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

108

D.4. MOBILE Sequence, Base Layer at 1.5 Mbps

40000

35000

30000

25000

20000

15000

10000

5000

0

Statistics for the First Bitplane

1 *. t,"

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Stat is t ics for the Second Bitplane

100000

90000

80000

70000 ^

60000

50000 -

40000

30000

20000

10000

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

140000

120000

100000

80000

60000

40000

20000

0

Statistics for the Third Bitplane

|
' t . 1 ' " ' - l i , ' r '

: feT-H^ "
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Fourth Bitplane

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

109

D.5. TEMPETE Sequence, Base Layer at 500 Kbps

35000

30000

25000

20000 -|

15000

10000

5000

0

Statistics forthe First Bitplane

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Second Bitplane

80000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Third Bitplane

120000

80000

40000

1, <t, , M<

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

120000

100000

80000

60000

40000

20000

Statistics for the Fourth Bitplane

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

110

D.6. TEMPETE Sequence, Base Layer at 1.5 Mbps
Statistics forthe First Bitplane

35000 T -

30000 •

25000

20000 •

15000

10000 •

5000

0

M t l i f ; -
1 3 5 7 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Second Bitplane

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

' • ' -iK-V ," I
1"

V

•

U JllfiligSSWh;^^
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

140000 •

120000 •

100000

80000 •

60000

40000

20000 •

Statist ics for the Third Bitplane

;1 •^Kr-M''

)ISI:<-l«>wMrV, ,

'-''""fTia?.,-

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Statistics for the Fourth Bitplane

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

to w ' / A ""VIS* if •** * '-jfe * »

1 3 5 7 11 13 15 17 19 21 23 25 27 29 31

111

E. Proposed VLC Tables

E.1. (RUN,EOP) Symbols for the First Bitplane
Index (RUN,EOP) Code
0 (0,0) 1
1 (0,1) 010
2 (1,0) Oil
3 (1,1) 00100
4 (2,1) 00101
5 (2,0) 00110
6 (3,1) 00111
7 (3 ,0) 0001000
8 (4,1) 0001001
9 (5,1) 0001010
10 (4,0) 0001011
11 (6,1) 0001100
12 (5,0) 0001101
13 (7,1) 0001110
14 (8,1) 0001111
15 (6,0) 000010000
16 (9,1) 000010001
17 (7,0) 000010010
18 (10,1) 000010011
19 (8,0) 000010100
20 (11,1) 000010101
21 (9,0) 000010110
22 (12,1) 000010111
23 (14,1) 000011000
24 (10,0) 000011001
25 (13,1) 000011010
26 (11,0) 000011011
27 (15,1) 000011100
28 (13,0) 000011101
29 (12,0) 000011110
30 (14,0) 000011111

112

E.3. (RUN, EOP) Symbols for the Second Bitplane
Index (RUN,EOP) Code
0 (0,0) 1
1 (1,0) 010
2 (2,0) Oil
3 (0,1) 00100
4 (3,0) 00101
5 (1,1) 00110
6 ALL-ZERO 00111
7 (2,1) 0001000
8 (4,0) 0001001
9 (3,1) 0001010
10 (4,1) 0001011
11 (5,1) 0001100
12 (5,0) 0001101
13 (6,1) 0001110
14 (6,0) 0001111
15 (7,1) 000010000
16 (7,0) 000010001
17 (8,1) 000010010
18 (9,1) 000010011
19 (8,0) 000010100
20 (10,1) 000010101
21 (11,1) 000010110
22 (10,0) 000010111
23 (9,0) 000011000
24 (12,1) 000011001
25 (11,0) 000011010
26 (14,1) 000011011
27 (13,1) 000011100
28 (15,1) 000011101
29 (12,0) 000011110
30 (13,0) 000011111
31 (14,0) 00000100000

113

E.4. (RUN,EOP) Symbols for the Other Bitplanes
Index (RUN,EOP) Code
0 (0,0) 1
1 (1,0) 010
2 (2,0) Oil
3 (0,1) 00100
4 (3,0) 00101
5 (1,1) 00110
6 (4,0) 00111
7 (2,1) 0001000
8 (5,0) 0001001
9 (3,1) 0001010
10 (4,1) 0001011
11 (6,0) 0001100
12 (5,1) 0001101
13 (7,0) 0001110
14 (6,1) 0001111
15 (8,0) 000010000
16 (7,1) 000010001
17 (8,1) 000010010
18 ALL-ZERO 000010011
19 (9,0) 000010100
20 (9,1) 000010101
21 (10,0) 000010110
22 (10,1) 000010111
23 (11,1) 000011000
24 (11,0) 000011001
25 (12,1) 000011010
26 (12,0) 000011011
27 (13,1) 000011100
28 (14,1) 000011101
29 (13,0) 000011110
30 (14,0) 000011111
31 (15,1) 00000100000

114

Bibliography

1. H. Radha, M . van der Schaar, and Y. Chen, "The MPEG-4 Fine-Grained Scalable

Video Coding Method for Multimedia Streaming Over IP," IEEE Transactions on

Multimedia, vol. 3, no. 1, pp. 53- 68, Mar. 2001.

2. Information Technology: Generic Coding of Moving Video and Associated Audio

Information, ISO/IEC CD 13818 MPEG 2 International Standard, pt. 1-3, 1992.

3. ISO/IEC JTC1, "Generic Coding of Audiovisual Obj ects - Part 2: Visual (MPEG-

4 Visual)", ISO/IEC 14496-2, Version 1: Jan. 1999, Version 2: Jan. 2000; Version

3:Jan. 2001.

4. ITU-T Recommendation H.263, "Video Coding for Low Bit-Rate

Communication", Version 1: Nov. 1995, Version 2: Jan. 1998, Version 3: Nov.

2000.

5. ISO/IEC 15444-1: Information technology—JPEG 2000 image coding system-

Part 1: Core coding System, 2000.

6. ISO/IEC IS 10918-1 | ITU-T Recommendation T.81 - JPEG Image Coding

Standard-Part 1

7. K. Sayood, Introduction to Data Compression. Morgan Kaufmann Publishers,

Inc., 1996.

8. B. Girod, "Why B-pictures work: a theory of multi-hypothesis motion-

compensated prediction," Proc. IEEE International Conference on Image

Processing (ICIP), vol. II, pp. 213-217, Chicago, October 1998.

115

9. H.G. Mussman, P. Pirsch and H.J. Grallert "Advances in picture coding", Proc.

IEEE, vol. 73, no.4, pp. 523-548, April 1985

10. K.R. Rao, J.J. Hwang, Techniques & Standards for Image & Audio Coding,

Upper Saddle River, NJ: Prentice-Hall, 1996.

11. Sullivan, G.J., Baker, R.L., "Rate-distortion optimization for tree-structured

source coding with multi-way node decisions" Acoustics, Speech, and Signal

Processing, 1992. ICASSP-92., vol. 3, pp. 393 - 396, March 1992

12. Y. He, F. Wu, S. L i , Y. Zhong, and S. Yang, "H.26L-based Fine Granularity

Scalable Video Coding," in Proc. of IEEE International Symposium on Circuits

and Systems (ISCAS), Scottsdale, Arizona, USA, vol. 4, pp. 548-551, May 2002

13. Malvar, H.S., Hallapuro, A., Karczewicz, M. , Kerofsky, L., "Low-complexity

transform and quantization in H.264/AVC", IEEE Transactions on Circuits and

Systems for Video Technology, vol. 13, no. 7, pp.598 - 603, July 2003.

14. R. Talluri, "Error-Resilient Video Coding in the MPEG-4 Standard," IEEE

Commun. Mag., vol. 36, no. 6, pp. 112-119, June 1998.

15. Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A., "Overview of the

H.264/AVC video coding standard", IEEE Transactions on Circuits and Systems

for Video Technology, vol. 13, no. 7, pp. 560- 576, July 2003.

16. List, P., Joch A., Lainema, J., Bjntegaard, G., Karczewicz, M. , "Adaptive

deblocking filter", IEEE Transactions on Circuits and Systems for Video

Technology, vol. 13, no. 7, pp. 614- 619, July 2003.

116

17. Karczewicz, M. , Kurceren, R., "The SP- and Sl-frames design for H.264/AVC",

IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7,

pp. 637- 644, July 2003.

18. Wiegand, T., Schwarz, H., Joch, A., Kossentini, F., Sullivan, G.J., "Rate-

constrained coder control and comparison of video coding standards", IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp.

688- 703, July 2003.

19. Xiaoyan Sun, Feng Wu, Shipeng L i , Wen Gao, Ya-Qin Zhang, "Seamless

switching of scalable video bitstreams for efficient streaming", IEEE International

Symposium on Circuits and Systems, vol. 3, pp. 385-388, May 2002

20. Yuwen He, Feng Wu, Shipeng Li , Yuzhuo Zhong, Shiqiang Yang, " H.26L-based

fine granularity scalable video coding", IEEE International Symposium on

Circuits and Systems, vol. 4, pp. 548-551, May 2002

21. W. Li , F. Ling, and H. Sun, "Bitplane coding of DCT coefficients,", ISO/IEC

JTC1/SC29/WG11, MPEG97/M2691, Oct. 22, 1997.

22. Ling, W. Li , and H. Sun, "Bitplane coding of DCT coefficients for image and

video compression," in Proc. SPIE Visual Communications and Image Processing

(VCIP), San Jose, CA, Jan. 25-27, 1999.

23. L. Kerofsky, M . Zhou, "Reduced Complexity V L C " in Joint Video Team of

ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVTB029, Geneva,

Switzerland, Feb. 2002.

24. "Draft ITU-T Recommendation H.264 and Draft ISO/IEC 14 496-10 AVC," in

Joint Video Team of ISO/IEC JTC1/SC29/WG11 & ITU-T SG16/Q.6 Doc. JVT-

G050, T. Wieg, Ed., Pattaya, Thailand, Mar. 2003.

117

25. ISO/IEC JTC1/SC29/WG11, "Call for Proposals on Scalable Video Coding

Technology", MPEG2003/N6193, Waikoloa, December 2003.

118

