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ABSTRACT 

A portable fast algorithm for solving power electric and electronic networks, 

and its implementation in the real-time simulator OVNI, are introduced. The 

implementation of OVNI, object virtual network integrator, on an off-the-shelf 

hardware platform, a 400 MHz Pentium-II workstation is presented. Simpli

fied fast-models, based on those used by the EMTP 1 , are included for the net

work elements: lumped resistors, capacitors, inductors —both linear and non

linear— and a constant parameters transmission lines model. Real-time mod

els for HVDC rectifying and inverting bridges, and for the corresponding PI-

controllers, using node hiding, were created specially for OVNI and reported in 

this thesis. Core saturation and zero sequence flux in three phase core transform

ers are modelled. Fast non-linear models are included for current and potential 

transformers. A fast modelling scheme to account for switching operations is 

presented, and its successful implementation on an industrial product, reported. 

Multilayer segmentation of the network, topological segmentation followed by 

M A T E 2 segmentation, the node hiding technique, and a history sources lim

ited encapsulation scheme are introduced. Two fast asynchronous commutation 

modelling techniques —DSDI3 and BIFE 4 — to eliminate spikes and numerical 

oscillations are introduced. Industrial real-time test cases are included for power 

system protective relays, and for high-voltage DC bridges and their correspond

ing controllers. 

1 Acronym for Electromagnetic Transients Program. 
2 Mul t i -Area Thevenin Equivalent. 
3 Double Step, Double Interpolation. 
4 Backward Interpolation, Forward Extrapolation. 
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PREFACE 

This research began as a quest for an algorithm to solve power system networks 

that was fast enough as to perform real-time equipment testing. 

Testing of the algorithm focused on two cases provided by industry: a pro

tective relay test case, and an HVDC controller test case. 

The work took the EMTP's algorithm as a starting point. The EMTP turned 

out to be more than sixty times too slow for the second case mentioned above, 

and fourteen times too slow for the first case. 

In the first of the test cases, that algorithm spent more than two-thirds 

of the time solving the nodal equation system, [G][v] = [h]1. To accelerate 

the solution process, precalculation of all possible [G] matrices (and of their 

triangular decompositions) was considered. It is easier to visualize the obstacles 

ahead of this approach through an example (which will be detailed later in this 

thesis): a 1000-node network with 1000 switches would require several trillions 

of Earth-sized planets covered with RAM chips (continents and oceans as well) 

to provide for storage to such set of matrices. However, conveniently segmenting 

the same network, would bring down the memory requirements to less than 180 

kilobytes. 

Segmentation was introduced in three different forms: the one suggested by 

the time delay provided by transmission lines (topological segmentation), the 

new Multi-Area Thevenin Equivalent (expanded and presented in this thesis in 

its full potential for the first time), and the also new node-hiding procedure. 

The combination of those segmentation strategies was labelled multi-layer seg-

1 Where [G] is the network bus conductance matrix; [v] is the vector of nodal voltages, to 
be computed; and [h] is the vector of total nodal currents. 
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Preface 

mentation. This segmentation yielded the performance looked for. 

To eliminate the voltage spikes produced by switch or valve openings that 

occur between simulation points, a new mechanism was introduced, the new 

double-step and double-interpolation procedure, a technique that backtracks to 

the occurrence of the switching event, and then advances by a double step to 

fall back in synchronism with the real-time train of samples. 

Buttressing the algorithm's robustness and stability, a careful integration-

rule study shed new light into the effect (in the time-domain) of the phase shift 

that the backward Euler integration rule introduces (in the phase-domain). 

The result of this work is a very fast and stable algorithm with no loss of 

generality. During testing, as reported in this thesis, the algorithm delivered 

real-time performance for the demanding test cases outlined above, and it did 

so on an off-the-shelf PC-Pentium 400 MHz workstation. 

This thesis is divided in several parts, as follows: 

1. Motivation. A brief account of the events that triggered this research; 

2. The problem. A description of the challenge to overcome at the outset of 

the work; 

3. The Solution. This is the main part of the thesis, it contains its contri

butions, which are scattered among several chapters: Chapter 3 presents 

a new look at the backward Euler integration rule; Chapter 5 introduces, 

in its general format, precalculation riding on top of a multi-layer form 

of network segmentation (topological segmentation, the new Multi-Area 

Thevenin Equivalent concept, and the also new node-hiding segmenta

tion strategy); Chapter 6 describes the precalculation subtleties of peri

odic sources used in OVNI, and extends and generalizes the multi-area 

Thevenin equivalent concept to produce the very efficient tool that bring 

the performance needed to meet the real-time deadline targeted (less than 

fifty microseconds for the test case described above); Chapter 7 presents, 

among other things, the new double step with double interpolation back-
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tracking algorithm used to eliminate the voltage spikes introduced by 

opening of switches between the instants where the simulation solves the 

network, it does that with a mimimum overhead that keeps the whole 

simulation within the real-time deadline; 

4. New Models. Chapters 8, 9, 10, and 11 include measuring transformer 

models, some non-linear element models with fast topology-change, and 

a minimal functionality controller, the last two as examples of the imple

mentation of the node hiding strategy on an element model, and on the 

creation of two element models that interact with one another; 

5. Implementation. Chapters 12 and 13 describe the implementation of the 

simulator core and of its preprocessor with some minimal detail; 

6. Validation Tests. Chapter 14 shows several test cases where the simulator 

delivered results whose accuracy is compared with those of the EMTP, 

those results were obtained within the real-time bandwidth targeted; 

7. Conclusions. Finally, Chapter 15 closes the thesis with a summary of 

conclusions. 
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MOTIVATION 
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1. INTRODUCTION 

This thesis describes an effort to develop a general purpose digital simulator 

for electric and electronic power networks, suitable for real-time closed-loop 

equipment tests under flexible constraints of bandwidth and network complexity. 

Simulation of an electric network can be viewed as the process to determine 

its state at a certain number of points along the time axis. If the network is 

described by its circuit theory representation, its state can be obtained as the 

solution to a set of non-linear coupled partial differential equations [11]. Using 

nodal analysis, for instance, this mathematical representation includes one of 

such equations for each node in the network. Even for a small network, with 

only a few tens of nodes, the solution task is rather demanding. When the 

solution needs to be obtained within the constraints of a real-time simulation1, 

the problem becomes even more challenging. 

The Engineering community has been able to reduce the complexity of the 

problem of determining the state of the network, at the price of reducing the 

scope of the solution as well, by classifying the network's behaviour into oper

ational areas of interest, and applying suitable simplifying assumptions to each 

of those areas separately. The most important of those areas are: steady-state 

power flow [12, 13, 14], slow transients [15], fast transients [4], short-circuits 

[16, 14], and real-time equipment testing. 

This thesis presents an attempt to a unified solution, and explores its va

lidity on two counts, fast transients simulations, and real-time simulations for 

equipment testing; away from analog simulations and into the realm of digital 

1 i.e., a few microseconds. 
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simulations. 

For each of the areas of interest mentioned, industry counts on specialized 

software based on the corresponding assumptions and restrictions. In particular, 

for insulation coordination analysis, the standard tool, the E M T P 2 [4], is built 

around the widest of the assumption sets, and uses a powerful discretization 

process for the problem that provides the seed for the work presented in this 

report. It is then convenient to establish the place of the E M T P in current 

power engineering practice. 

During the last decades, the electromagnetic transients program — E M T P — 

has been gaining ground that used to be the sole domain of the expensive and 

bulky analog network simulator T N A 3 [17], transients computations in power 

systems. Today, the E M T P is the standard tool for this kind of simulations. 

Even if already existing T N A s remain in service, most new needs are covered by 

E M T P installations. 

Cost and room use are two main areas where the E M T P has clear advantage 

when compared with the T N A . Another advantage is enhanced flexibility: very 

accurate models for system components can be developed and incorporated into 

the E M T P . Such is the case of the power transmission line, whose distributed 

parameters nature is not representable with the scaled-down analog models avail

able in a T N A 4 . In spite of those advantages, in cases when testing some device 

requires real-time interaction between the device and the power system it is 

connected to, the analog simulator T N A is very often still the answer. 

However, if a computer program is to attain real-time performance while 

simulating a power network, the program has to be capable of solving the system 

equations fast enough to encompass the bandwidth required for the equipment 

under test. In both, protective relay tests, and in H V D C controller tests, a 

bandwidth between 2,000 Hz and 4,000 Hz is considered adequate [18, 19, 9]. 

2 Electromagnetic Transients Program 
3 Transients Network Analyser. 
4 Hybrid simulators include the best of both worlds, digital and analog, but at very high 

costs. 
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F i g . 1; A n H V D C test case. 

Using the trapezoidal integration rule as a reference, and keeping the maximum 

distortion error introduced by the rule under 10%, an integration time-step 

between 50/xs and 100/is is then necessary [10]. 

To perceive the performance improvement needed, two important test cases 

were simulated wi th Microtran's E M T P 5 : the H V D C test case in F i g . 1, and 

the protective relays test case whose one line diagram is shown in F i g . 2. Both 

cases were run on a 200 M H z Pentium Pro workstation. For the first case, the 

E M T P used an average 6 of 3120/xs7, that is, an improvement in speed of thirty 

to sixty times is necessary for real-time performance. For the second case, an 

improvement factor between seven and fourteen was found needed. 

In spite of the strict speed requirements, the new breed of microchips and 

computer architectures has been attracting researchers [18, 20, 21, 22, 23, 19, 

24, 25, 26, 9, 27] into t rying to produce a digital real-time simulator. Most of 

those researchers have chosen a hardware approach. Some mimic the topology of 

the power network wi th a convenient arrangement of D S P ' s [18, 27] (some tried 

5 U B C ' s P C version of the E M T P . 
6 The critical step is —most likely— much larger than this, but internal probing into the 

E M T P ' s simulation cycle was not available. 
7 Actually, more than that, since capacitive snubbers and harmonic filters were not included 

in this simulation. 
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Fig. 2: A protective relay test case. 

this approach with transputers in the past [20, 21]), others rely on expensive 

and sophisticated super-computer architectures [24] to meet real-time deadlines 

for reduced size test cases8. Some other researchers [22] have attempted a tran

sient stability analysis of a power network by splitting the simulation loop into 

spawned parallel child processes, where each of these processes is assigned a 

node in a hypercube architecture system, according to a sophisticated mapping 

pattern. The results reported in [22] show a speedup of 45% when moving from 

one to two processors, but an additional gain in speed, for the linear part of 

the problem, with four processors of only 15%. If more than four processors 

were used, the additional overhead actually increased the total execution time. 

In hardware based solutions like those in [18, 20, 21], the close match between 

the particular network to be solved and the physical connection of boards (or 

transputers, in the past) may render the solution inflexible9. Besides, depending 

on customized hardware platforms, the upgrading cycle to new and faster hard

ware may be much slower than in the case of commercially available off-the-shelf 

computer systems. 

In the work that occupies us, an algorithmic-software-based method is intro

duced. By going back to the original set of non-linear coupled partial differen

tial equations,.a global view is obtained. The increased level of complexity of 

8 Even though they originally employed supercomputers, the Mitsubishi group, with which 
we performed common work in 1995, has recently switched to a P C solution for the hardware 
[26]. 

9 As of this writing, [27] implemented an elegant solution around this problem. 
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Fig. 3: Multilayer segmentation: Topological segmentation, followed by MATE-
Diakoptics Segmentation. 

the representation is dealt with by fragmenting the network into smaller quasi-

decoupled fragments. Two fragmenting techniques are combined into a two step 

process, topological segmentation [9], and MATE segmentation [28, 29], Fig. 3. 

Further simplification and efficiency are achieved by hiding, or shading away, 

certain nodes, and so reducing the effective size of the network fragments even 

more. Also, as the smaller network fragments contain a reduced number of swi

tches, ergo a reduced number of switching states, and contain fewer nodes, after 

node hiding, they become suitable for some judicious precalculation without loss 

of generality in the solution [29]. 

Apart from the speed-related issues of the solution algorithm, growth-security 

was also considered. The fast changing evolutionary process of real-time model 

development for network elements imposes the need to incorporate simplicity 

and flexibility in the interface between those element models and the integrator 

proper. That is, we need to plug-in and out new models as old ones become 

obsolete, as painlessly and reliably as possible. Some of those models may rep

resent a centre of fast-changing topology to the integrator, as in the case of the 

HVDC model [30], or complex internal representations that must not perturb 
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the core of the simulator with their details, as in the case of the time domain 

frequency dependent transmission line model [31, 32]. Even models that include 

non electrical issues, such as the synchronous generator model [33], must be 

incorporated seamlessly and used within a common model-integrator-interface. 

This goal was achieved by object-oriented design techniques [34]. All models, 

present and future, are to be connected to the core through a common and 

unique interface, Fig. 4. This means that they all look and behave the same, 

as far as the core is concerned. In OOP 1 0 parlance, that common interface is 

provided by a "defined" generic element, (an abstract class named elm_t), that 

comprises all the behaviour groups11 of interest to the integrator core. The re

sult is that all models turn out to be a particular case of that abstract class, 

with the additions and refinements that are unique to the model in question: 

the models are classes that inherit the behaviour defined for the elm_t class. 

The solution presented here relies on a fast solution algorithm, and has the 

advantages of enhanced flexibility and upgradability: it is not hardwired to the 

configuration of the network to be simulated, and its core (NI) is written in C++. 

The algorithm is easily portable to faster hardware platforms, as they become 

available, with the only concern in real-time applications of the adaptation of 

port-cards, amplifiers, and the corresponding synchronization signals. During 

the research cycle of this project, the core was developed on Intel platforms, run 

on Sun workstations (for portability tests), moved to IBM RISC System/6000 

Model 560 machines, where it delivered real-time performance for the first time, 

with the first version of the integrator. More recently, the integrator was ported 

back to Intel machines of later vintage, workstations of the Pentium series, 

Pentium Pro 200 MHz, and lately to a Pentium II 400 MHz. That the simulator 

delivered real-time performance12 on these inexpensive platforms is a sign of the 

efficiency of the underlying algorithm. The integrator is portable. 

1 0 Object Oriented Programming [34]. 
1 1 In O O P parlance, behaviour of an object describes one of the routines that can be applied 

to the object. 
1 2 Wi th in the target bandwidth and network size and configurations. 
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Fig. 4: All element models look and behave the same from the point of view of the 
simulator's core. 

The design allowed the exploration of avenues for improved efficiency: latency 

[2], dependent on the relatively different time constants of different sections of 

the network; and backtracking, to cope with switching not produced at one of 

the time points of the simulation [35]. 

The integrator solution must respond as well to events generated at both 

interface ends, see Fig. 5. On the side of the user, OVNI interacts with OUI, 

OVNI's user interface [36, 37] (due either to configuration changes in the net

work, or to the connection or removal of probes, voltmeters, ammeters, oscillo

scopes, etc.). On the hardware end, OVNI interacts with OV-XI [36, 38], the 

back-end hardware interface with the real world (opening or closing signals, or 

gate signals for controlled rectifier groups). 
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Fig. 5: Front end and back end interfaces to O V N I ' s core. 

1.1 Research Claim and Contributions. 

Our summarized claim is that "Real-time simulation of realistic power networks 

is possible using stock computer hardware." To demonstrate that claim, this 

thesis introduces as contributions: a) the use of backward Euler integration rule 

as a preferred method, and demonstrates its validity; b) a multi-layer segmenta

tion scheme with: topological segmentation (introduced by lines time delay), an 

extended multi-area Thevenin equivalent concept segmentation, a node-hiding 

technique; c)a double-step double-interpolation technique to syncronize the sim

ulation both with switching operations and with the real-time output stream 

with very low overhead. 

Other central contribution was the implementation of the simulator around 

the OOP paradigm in C++, which is both efficient enough for real-time per

formance, and extensible to allow new models to be added without modifying 

the core. Also, a set of models was developed that prove the speed advantages 

of the proposed solution algorithm. The resulting simulator was tested on two 

real problems for real-time power networks simulation: a protective relay testing 

case, and an HVDC controller testing case. 



Part II 

T H E P R O B L E M 

10. 



2. THE P R O B L E M 

2.1 Real-Time Simulations 

Real-time simulations stem from a situation like the one depicted in Fig. 6. 

An observer interacts with a system. The observer perceives the behaviour of 

the system, sends controlling signals to it, and watches the system's response to 

those signals; all this in a continuous cycle. 

Fig. 6: An observer watching over and controlling a system. 

The system could be an aeroplane, then the observer would be a pilot; or 

the system could be a power electric network, and the observer would be a 

protective relay, or an HVDC controller perhaps. In either case, if the purpose 

of the interaction is to evaluate the capability of the observer to perform under 

different circumstances, providing the observer with the real system (i.e., the 

aeroplane or the actual power system) is out of the question. The evaluating 

11. 
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agency presents the observer instead with a substitute system, a simulated one, 

where mistakes or malfunction will not result in an unthinkable catastrophe. 

To produce a meaningful evaluation of the performance of the observer, the 

simulated system needs to make the observer believe that it is interacting with 

the real system. The simulator, the agent in charge of creating such an illusion, 

must receive the observer signals, process them, calculate and release the correct 

behaviour of the system; and do it all "fast enough" to create that illusion. Such 

is the task of a real-time simulator. 

2.2 D i g i t a l R e a l - T i m e Simulat ions [1] 

When the simulator is a digital one, by its own nature it cannot produce a 

continuous behavioural signal. Instead, the digital simulator issues a sequence 

of samples spaced "close enough" in time as not to miss any significant ripple 

in the behaviour of the system being simulated. It produces a discrete time 

simulation. Between the digital simulator and the observer stands a digital to 

analog converter and amplifying block, Fig. 7. This block fills in the gaps 

between the discrete samples produced by the digital simulator, and delivers a 

continuous time signal to the observer. 

Fig. 7: From discrete to continuous, through D/A converters and amplifiers. 
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2.3 Frequency B a n d w i d t h , Integration Ru le , and A c c u r a c y L i m i t a 

tions 

The samples issued by the simulator must be close enough to one another as to 

include up to the highest frequency component of interest in the behaviour of the 

system. According to Nyquist sampling theorem [39], the relationship between 

the frequency of the fastest frequency component, the Nyquist frequency, fNy, 

and the time distance of the samples is such that at least two samples of each 

cycle of that component are present in the discrete signal. The time between 

two consecutive samples, the simulation step or integration step, At, relates to 

fpfy according to Eq. (1). 

The smaller the integration step At, the wider the bandwidth of the solution 

produced by the simulator, but the higher the performance requirements on the 

simulator. For a given integration step, At, the theoretical bandwidth of the 

simulation is given by the Nyquist frequency, f^y 

fNy - (2) 

For an integration step At = 50/is, the theoretical bandwidth would be 

^ = 2 x 5 0 x l O - ° = 1 M ° ° h e I t Z ( 3 ) 

This bandwidth holds only if the samples are taken out through observation 

of the correct continuous signal. In the case of a digital simulator, the samples 

are produced by a painstaking numerical integration process of the equations 

that describe the system. The accuracy of the integration process depends on 

the integration rule utilized, and on the size of the integration step. The theo

retical bandwidth suggested by Eq. (2) is drastically reduced by the distortion 

introduced by the integration rule. As will be seen in the next chapter, the 
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EMTP's trapezoidal rule introduces a magnitude distortion according to Fig. 8. 

Magnitude Error for Trapezoidal Rule 

0 0.1 0.2 0.3 0.4 
frequency 0/1, f/fNy 

Fig. 8: Magnitude distortion introduced by Trapezoidal rule at frequencies up to 40% 
the Nyquist's. 

In protective relay tests, also in HVDC controller tests, the range of frequen

cies of interest goes up to 2,000 Hz. Depending on the tolerated distortion, see 

Fig. 8 and Eq. (2), the integration step in those test cases should be no larger1 

than 

At — 50/xs for error < 3% 

At = 100/us for error < 10% 

These two results coincide with the recommendations in [17]. 

1 If trapezoidal rule of integration is used. 
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2.4 H a r d R e a l T i m e versus Soft R e a l T i m e Simulat ions 

From what has been said so far, it is evident that the simulator is in a race 

to do all of its duties by the time deadline imposed by the frequency response 

desired and the integration rule applied. That is the real-time deadline. When 

the simulator fails to meet that deadline, the value of the simulation suffers. 

In some cases, the value of the simulation decreases with the extent by which 

the simulator failed to meet the real time deadline. In other cases, the value 

of the simulation is null if not produced within the deadline boundaries. The 

first kind is. labelled soft real-time simulations; the second kind, hard real-time 

simulations [40] , see Fig. 9. 

value of simulation 

100 
HARD 
REAL-TIME 

real-time 
deadline 

100'. 

value of simulation 

SOFT 
REAL-TIME 

it-
real-time 
deadline 

Fig. 9: Usefulness of the simulation results for: a) a hard real time simulation; b) a 
soft real time simulation. 

For instance, when a real-time controller for a bread toaster misses its real

time deadline, it produces browner toasts, not quite the perfect one, but edible 

enough. The value of the simulation has been reduced, but some benefit can 

still be obtained from it; a sample of soft real-time simulation, Fig. 9b. On the 

other hand, when an auto-pilot landing real-time controller for aircrafts fails to 

meet its real-time deadlines, even if by a minor margin, the catastrophic results 

render the simulation completely invalid; this is a hard-time simulation indeed, 

Fig. 9a. 

During the first years of the project, OVNI was considered a hard-real time 
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Fig. 10: Typical configuration of power networks used in protective relay testing. 

simulator, however, recently, under the light shed by experience some consider

ation was given to whether it could be a soft-real-time simulator under certain 

conditions. In particular, when a critical event occurs between two output bursts 

(the ones at the ends of their corresponding integration steps), the distinction 

between outputting the correct value at the critical moment, or the extrapolated 

one at the proper time, was proven irrelevant in all of the test cases [35]. 

2.5 Ne twork Size. C r i t i c a l C o m p l e x i t y Network , C C N 

The size of the power network to be simulated is given by the number of nodes 

and branches —one branch per lumped element or switch, 2n branches per 

n-phase transmission line in the discretized equivalent network [3, 4]. The com

putational effort necessary at each simulation step grows with the size of the 

network [41, 4]. 

In any real-time simulator, associated with a particular arrangement of hard-

sys-1 250 km 150 km 

coupled 

BUS1 FAUL2 

coupled 

VC2 
BUS3 BUS4 

sys-2 

Fig. 11: Critical Complexity Network targeted for relay testing. It includes two mul
ticircuit transmission links, and MOV protection. 
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ware and software, there is always a limit in the complexity of the network that 

can be simulated in real-time. That is defined as the critical complexity network, 

C C N . Even very crude solution algorithms are capable of real-time performance 

for three or four-node networks. OVNI's algorithm segmentation lends itself 

naturally to a multi-machine solution; i.e., a segment of the network is solved 

in a module, a workstation working in parallel with others in charge of different 

segments of the network. Thus, networks of arbitrary size can be simulated by 

adding additional workstations. The efficiency of the algorithm is normalized, in 

what follows, by the critical complexity network associated with a single module 

configuration, a single workstation. 

nth f.c. RLC filter 

\ 13th f.c. RLC fitter. 

3-phase Thevenln equivalent 

100km transmission link 

11th I.e. RLC fi 
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Fig. 12: Target Network for HVDC controllers testing. The controllers triggering the 
gate signals, used in tuning the simulator, are not shown, but were included 
in the simulation. 

In its minimal hardware configuration, single module, two real-time test tasks 

have been targeted and explored for the present report; namely: protective relay 

testing, and HVDC controllers testing. For the first case, the critical complexity 

network must include sufficient detail to cover the relay's protection zone and 

the simulated fault or operating switches. The network outside that zone may 

be represented by compact multiphase coupled-impedance Thevenin's equivalent 

circuits [4, 33]. 
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The compromise between performance and accuracy sketched in § 2.3 reduces 

the configuration of the network to be simulated to one like that in Fig. 10, 

which is similar to the reported test case in [18]. A more demanding test net

work, including multicircuit transmission links (capability included in OVNI's 

prototype) was used instead, the network shown in Fig. 11. 

For HVDC controllers testing, the CCN includes two multiphase Thevenin 

equivalents for the surrounding AC-networks (one on the rectifier side, and an

other on the inverter side), a two-pole DC-transmission link, a 12-valve rectifying 

substation including the two corresponding three phase transformers, and a 12-

valve inverter substation with its two three-phase transformers, Fig. 12. 
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3 . INTEGRATION RULES IN OVNI 

3.1 In t roduct ion 

Digital simulation pivots around the integration rule chosen to solve the dif

ferential equations that describe the system being simulated. Ironically, this 

integration rule is also the weakest link in the entire simulation process [41]. 

Ever since the introduction of the EMTP 1 in the late sixties by Dommel [3], 

the trapezoidal integration rule became de facto the standard rule when it comes 

to digital solution of electric power networks [4]. That choice has been later 

substantiated and made more robust by the introduction of the Critical Damping 

Adjustment (CDA) by Marti and Lin [19] in the late eighties. Currently, the 

trapezoidal integration rule is tacitly accepted as the underlying platform under 

every attempt to achieve digital real-time simulation [18, 9, 17, 23, 42, 24, 25, 

26, 27]. Even the ubiquitous fifty microseconds targeted deadline is but the 

consequence of: 

• The needed 2 kHz bandwidth, associated with the tests described in the 

previous chapters. 

• A tolerated magnitude distortion of 3%. 

• The use of the trapezoidal integration rule. 

In this chapter, several promising integration rules are examined, and OVNI's 

deviant choice is justified. 

1 The Electromagnetics Transients Program. 

2.0. 
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3.2 A c c u r a c y and Stab i l i ty 

The validity and convenience of an integration rule in a real-time simulator 

is given by its accuracy, its stability, and its simplicity. In loose terms, the 

accuracy states how close the numerical solution, produced by the integration 

rule, is to the actual exact solution along all of its simulation or solution time 

span. The stability of a rule signals that the numerical solution will stay within 

a certain "distance" of the exact solution; that is, that it will not drift away 

eventually toward infinity. The simplicity of the rule has an impact on the 

overall performance of the simulation. 

To evaluate the first aspect of an integration rule performance, even if both 

using different methods, [41] and [19] both recur to a differential equation whose 

exact solution is known: a first order one. In this thesis a different approach 

will be used to probe more deeply into the nature of the rules, but for the 

same reasons as those of the previous two authors, a first order system, the 

voltage/current relationship in an inductor is used. To normalize the results, a 

unit inductance was used (i.e., L = 1 henry), Eq. (4). 

= d £ ) = di^ 
y ' dt dt y 1 

To perceive and quantify the distortion introduced by an integration rule on 

a solution wave, the effect of the rule on frequency components ranging between 

DC and Nyquist's frequency is readily studied in the following sections. However, 

in order to gain a fresh insight into the behaviour of the rules under scrutiny, 

instead of finding the Z-domain transfer function corresponding to each rule, and 

mapping the z variable to the frequency domain, as in [19], a different approach 

is used in this chapter. 

3.3 Frequency Response [2] 

When the integration step, At, is kept fixed, as in our case, the bandwidth of 

the solution spans up to the Nyquist frequency, f ^ y = To explore how 
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an integration rule responds to each frequency within this bandwidth a simple 

experiment was set up. A variable frequency sinusoidal voltage source is set 

to feed a one-henry inductor, L — IH. At each frequency, the current wave, 

magnitude and phase shift, was obtained through the integration rule under 

scrutiny and compared with the actual exact phasor solution to the equation 

Eq. (4). 

Actually, at each frequency, the effective admittance of the inductor, as ren

dered by the integration rule, is calculated; i.e., the quotient of the phasor 

representing the current wave obtained by the rule, and the phasor representing 

the voltage wave applied by the source. That admittance, Ye(u), can then be 

compared with the exact admittance of the inductor, Yx(ui). 

n M = (5) 

UJ Li 

Then, the quotient a complex number, is plotted, in magnitude and 

angle along the spectrum up to the Nyquist's frequency. The closer that quo

tient stays to the real unit, magnitude one, phase zero, the more accurate the 

integration rule is. 

The procedure is simple enough. However, as the frequencies get closer to 

Nyquist's, the reduced number of samples per cycle of the solution imposes 

an additional complication. A filter is used to extract and smooth out the 

sinusoidal wave corresponding to the particular frequency. The filter, described 

by Eq. (6), produces the value of the current at any point in time, t, even 

between the samples delivered by the integration rule, which are represented by 

the sequence2 id(k • At) for k = 0,1,2,...; where At is the sampling span or 

integration step. 
2 In our case, the sum spans up to the last sample produced by the simulation —a finite 

sum, but the infinite span was kept in Eq . (6) above as an indication of the distortion incurred 
when handling a finite number of samples—, and the cycle calculated by filtering was chosen 
as close as possible to the centre of the sequence. 
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The distorted admittance (with respect to the exact one), in magnitude and 

phase, as produced by each of the five studied integration rules (trapezoidal, 

Simpson's, Gear's second order, backward Euler's, Calviho's second order [38]) 

is shown in Figs. 13 and 14. 
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Fig. 13: Frequency response, magnitude, for the rules: trapezoidal, backward Euler's, 
Simpson's, Gear's second order, Calvifio's second order. 

3.4 Choosing OVNI's rule 

From the response depicted in Figs. 13 and 14, Simpson's rule, with zero phase 

shift and the closest to unity magnitude response, seems to be the best choice. Its 

magnitude response, Fig. 13, drifts toward infinity, however, at frequencies close 

to Nyquist's. In other words, Simpson's rule although apparently accurate, is 

unstable. This last statement needs to be bounded. Simpson's needs very small3 

integration steps to remain stable (This, evidently, brings the significant high 

3 As compared with the steps used by the other rules. 
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Fig. 14: Frequency response, phase shift, for the rules: trapezoidal, backward Euler's, 
Simpson's, Gear's second order, Calvifio's second order. 

frequency components of the signal into the "finite" response region of the rule). 

In the single phase power system used to compare performance of the rules in 

§3.6, Simpson's rule needed up to ten times smaller integration steps than the 

other rules in order not to go ballistic. Simpson's is thus disqualified. 

Gear's second order rule, while maintaining a more even magnitude response 

along the spectrum, introduces a relatively large magnitude distortion at the 

most important low-frequency range, fig. 13. Even worse, Gear's rule shifts 

the different frequency components by a different amount along the time axis, 

see Fig. 14, distorting thus the shape of the wave, and smoothing out abrupt 

changes, or even creating false spikes on its own; see §3.6. Gear's rule is also 

eliminated. 

Three rules remain to be reviewed: Calvifio's second order, trapezoidal, and 

Backward Euler's. 
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3.4.1 Calvi f io ' s second order rule 

This rule merits a separate section. It combines a closer to ideal response for 

the most important low frequency components, both in magnitude, and in phase 

shift. Overall, however, it reaches the 3% error at about the same frequency as 

Trapezoidal, and so it imposes the same integration step on the simulator for this 

accuracy limit. At the same time, the rule raises the computational burden of 

the simulator by up to three times, increasing effectively the computation time 

per step. In a case like the one in Fig. 11, where the rule's computational costs 

accounts for 15% of the total integration time per cycle using trapezoidal rule, 

the percentage used by Calvifio's rule —assuming that the rest of the simulation 

process remains unaffected— could reach 35% of the cycle. And the whole cycle 

would then consume 30% more time. 

The non zero phase shift of this rule endows it with power loss characteris

tics and improved stability, same as Gear's, or B.E. However, its non straight 

line phase characteristic penalizes it with the same distortion as Gear's when 

the integration step is not kept reasonably small: uneven frequency component 

shifting along the time axis. 

3.4.2 Trapezoida l versus backward Euler ' s 

Trapezoidal and backward Euler's rules show a different strength each: trape

zoidal has an ideal zero phase shift, but the magnitude response of backward 

Euler's is significatively better, as witnessed by the relative magnitude error plot 

in Fig. 15. 

Now we turn our attention to the weaknesses of those two rules. For the 

trapezoidal rule, take the voltage/current equation for an inductor, Eq. (4), and 

integrate it along the interval (t — At,t), Eq. (7) 

The right hand side is an exact definite integral, after approximating the left 

(7) 
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Relative Error 

0.2 0.3 
frequency 0/1, t/fNy 

Fig. 15: Error in magnitude introduced by trapezoidal and Backward Euler's rule, up 
to 40% of the Nyquist's frequency. 

hand side with a trapezoidal rule area [3]. 

v(t) + v{t - At) 
At = Li(t) - L i ( t - At) (8) 

Assuming that the Z-transform of voltage v(t) and current i(t) in the inductor 

are V(z) and I(z) respectively, Eq. (8) can be written in the Z-transform domain 

[39]. 

o r 

V(z)[l + z-l] = £l{z)[l-z-i] 

The impedance transfer function in the Z-domain is 

(9) 

Z{z) 
V{z) 2Lz-\ (10) 
I(z) At z + 1 

with a pole at p = —1. But that pole, once inserted into the natural or transient 

discrete time response of Eq. (11), shows an oscillatory never decaying response. 

This phenomenon was identified by [43, 19] and labelled critical unstability. 
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n(k) = C.pk fork = 0,1,2,... (11) 

Marti and Lin [19] identified the problem and buttressed the trapezoidal 

rule with an intelligent switching to the more stable Backward Euler's, albeit 

only when those critical undampened oscillations were detected, and only for 

two integration steps. That procedure, Critical Damping Adjustment (CDA), 

is the standard arrangement in EMTP solutions today. The price for the added 

stability, however, is too high for real-time simulations, the integration step 

where CDA is found necessary incurs in twice as many computations as a regular 

step. So, it seems CDA is out of the question in our quest. 

Finally, we consider the Backward Euler's rule apparent liability, its non zero 

phase shift response, Fig. 14. Traditionally, that phase response has been asso

ciated with the same sort of distortion produced by Gear's rule; i.e., wave shape 

distortion produced by uneven "lateral" displacement of the wave's frequency 

components along the time axis. In what follows, we will see that that assertion 

is not quite correct. 

Figure 14 shows that B.E. shifts each frequency component by a different 

angle, but let us look more carefully into it. 

The component at frequency / , according to Fig. 14, is shifted by an angle 

9 given by Eq. (12), but this 9 phase shift is displacing the component a certain 

amount of time to the right on the time axis; i.e., the component is being 

"delayed" by 5 seconds. To translate 9 into <5, it is necessary to keep in mind that 

the time span equivalent to one degree in a fundamental frequency component 

corresponds to three degrees in a triple frequency component, and so on with 

higher frequency components, as in Eq. (13). 

0=J-9O° (12) 
JNy 

i = x . 9 0 » . J L = i = as) 
/„„ 360° 4 / w „ 2 
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In other words, every frequency component is shifted the same amount of 

time, S — At/2. Conclusion: The wave shape should not suffer on the account 

of the phase shift alone. The effect is only to delay the wave by one half the 

integration step. To validate experimentally this conclusion, and using the same 

circuit arrangement as for the frequency response, each frequency component 

actual time delay was determined and plotted in Fig. 16 for an integration 

step At = 50 ps. The deviations from the predicted 25 ps stems from the 2,880 

samples per cycle used to represent every frequency component. 

The difference between backward Euler and Gear's rule is that the latter's 

phase characteristic is not straight line crossing zero at DC. Every rule with a 

"curved" phase response will suffer the same distortion penalty as Gear's. That 

is not the case with Backward Euler's Rule. 

Backward Euler introduced delay at Dt=50us 
25.21 1 1 1 1 , 1 1 r- 1 1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Irequency 0/1,1/fNy 

Fig. 16: Time delay introduced by backward Euler's rule at each frequency up to 
Nyquist's. 

There are still, however, a positive and a negative side to the non zero phase 

response of B.E. 
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3.4.3 Backward Euler's, a "lossy" rule 

An important implication of backward Euler's phase response, Fig. 14 is that the 

equivalent admittance of the inductor, as represented by the rule, has not only 

an imaginary part, but a real part as well. The rule represents the inductor by 

an inductor in parallel to a resistor. In other words, the rule's representation of 

the inductor (and of the capacitor too) incurrs in active power losses not present 

in the actual circuit. It may be said [39] that that power drainage is responsible 

for the absolute stability of this rule: it dampens out an otherwise never dying 

oscillation. But those power losses also subdue somehow the different frequency 

components of the wave. 

It can be shown [39] that the trapezoidal rule represents an inductor L, by 

an equivalent approximate inductor Le whose value depends on the frequency 

L ^ ) = L - uAt/2 ( 1 4 ) 

Along the same lines, backward Euler's rule represents the same inductor L 

by a parallel arrangement of an equivalent inductor Le with the same value as 

the approximate inductor introduced by the trapezoidal rule above, in Eq. (14), 

but with the addition of a parallel resistor Re with the value 

fl, = ft (15) 

Observe that the parallel resistor value in Eq. (15) does not depend on the 

frequency of the signal, the way the equivalent inductance Le in Eq. (14) does. 

It follows that the rule drains from each frequency component a power that 

is proportional to the square of the amplitude of the voltage component; i.e., 

"smaller" components get less damped that "larger" ones. 

It is this lossy characteristic that is responsible for reducing the "spikiness" 

of the response, not the phase shifting. The end result is absolute stability 

and reduced numerical spikes. The physical spikes in the response do not get 

masked, or shifted, the way Gear's rule does, they are slightly damped by the 
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lossy characteristic of the rule. See the simulations in § 3.6. 

3.5 Improved performance of OVNI and backward Euler's 

Summarizing, backward Euler's rule is more stable and its magnitude response 

is more accurate than the contender's. If the ^ time delay is tolerable, which 

was the case in the simulations run to validate OVNI, backward Euler's rule 

improves the overall performance of the simulator like this: 

• The number of floating point operations necessary to update some sources4 

becomes null, considering that such updating accounted for 15% of the 

simulation time during each integration step for the case in Fig. 2, the 

benchmark case I, the performance improvement in this updating stage is 

(16) 
nc + nL 

where nc is the number of capacitors, and ni the number of inductors in 

the circuit. 

• More importantly, as the 3% magnitude distortion barrier is reached by 

backward Euler's at a frequency 50% higher than the one at which trape

zoidal reaches 3% error, Fig. 15, the integration step can be 50% larger 

for the same amplitude distortion, stretching thus the real-time deadline 

and the performance requirements of the final algorithm. This produces 

the equivalent effect of a fifty percent performance improvement on the 

original algorithm. 

3.6 A single-phase power system test case 

To observe each of the rules at work, the simple single-phase reduced power 

network in Fig. 17 was solved separately with each of the rules. The simula

tion proceeded at5 At = 50 /xs, up to 40 ms. At t = 17 ms the receiving end 

4 Associated with capacitive elements. See chapter on models, 4. 
5 For all the rules, except Simpson's. 
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of the transmission line is shorted by the switch illustrated. As a reference, 

the simulations produced by the EMTP with critical damping adjustment, for 

50 us and for At = 70 /xs are included in Figs. 18 and 19. Those two figures 

show the voltage at nodes flag and glen.6 It is interesting to observe how the 

EMTP+CDA solution deteriorates when changing the integration step from 50 

to 70 /is, Figs. 18 and 19, which does not happen so drastically, as expected, for 

the plain backward Euler solution, Figs. 22 and 24. 

Fig. 17: Single phase power system with a short circuit on the receiving end, to test 
the different integration rules. 

Simpson's rule proved unstable when At = 50 /J,S was used. It was necessary 

to reduce the integration step to five microseconds to obtain stable results, at 

least up to 40 ms. 

The results obtained with each of the four rules are presented in the or

der from higher "spikiness" to lower: Simpson's, trapezoidal, backward Euler's, 

Gear's. The curves in Figs. 20 up to 24 illustrate the material exposed in the 

first part of this chapter. From Simpson's extreme unstability and spikiness, to 

Gear's phase distortion smoothing of the actual physical spikes (and introduc

tion of false ones). 

Finally, in Fig. 24, to illustrate the increased magnitude accuracy of B.E., 

the system is solved at At = 70 ps. Compare those results with the ones in 

Fig. 22. 

6 Voltages for the same nodes (with no additional labelling) are presented for the other rules 
in Figs. 20 to 24. 
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Fig. 18: Solution obtained by the EMTP with the CDA option activated with an 
integration step At = 50 fj,s. 

Fig. 19: Solution obtained by the EMTP with the CDA option activated with an 
integration step At — 70 us. 
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Simpson's Rule al Dl = 5us 
800 

15 20 
millisec 

Fig. 20: Simpson's rule solution with At = 5us. Voltages at all the nodes in the 
network in Fig. 17 

800 
Trapezoidal 

15 20 
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35 40 

Fig. 21: Trapezoidal rule solution with At = SOps. Voltages at all the nodes in the 
network in Fig. 17 
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Backward Euler 
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Fig. 22: Backward Euler's rule solution with At = 50/xs. Voltages at all the nodes in 
the network in Fig. 17 
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Fig. 23: Gear's second order rule solution with At = 50/xs. Voltages at all the nodes 
in the network in Fig. 17. 
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Fig. 24: Backward Euler's rule solution at an expanded integration step. At = 70 u-s. 



4. DIGITAL SOLUTION, ELEMENT MODELS 

4.1 Solution versus Simulation 

In the context of this thesis, solution of a network is a one-time-point issue,1 and 

simulation of the same network is an effort related to a sequence of time-points. 

To solve an electric2 network is to establish by whatever means, empirical or 

computational, the voltages in the nodes of the network, and the currents in the 

branches between those nodes. In a work of the nature that occupies us here, 

the method will be, of course, computational. 

To simulate an electric network is to solve the network along a segment of 

the time axis. This process, by force of the tools selected, is discrete3 in nature. 

To simulate the network is then reduced to solving it at a certain convenient 

number of points along the time interval of interest. 

4.2 General purpose ODE-solvers 

Once digital simulation is agreed upon (versus TNAs analog one), the process 

becomes one of solving the differential equation set that represents the behaviour 

of the network along the corresponding time interval. It is at this point where 

a question arises naturally, whether a regular all-purpose differential-equation-

solver could do the job. After considering the tedious and error prone task 

of putting together the tens, hundreds, or perhaps thousands, of equations, 

1 The author is familiar with the standard use of 'solution' as applied to the closed form 
time expression of voltages and currents in the network, when such a closed form analytical 
expression is obtainable. In this work, however, solution stands for time-point solution, which 
lends itself to the discrete-time nature of the process to be implemented. 

2 In this report, no difference is made between electric and electronic circuits. 
3 As opposed to continuous simulation, like the ones obtained with T N A s , analog simulators. 

36. 
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and feed those equations to a differential-equation-solver, the answer begins to 

outline itself. Furthermore, a minor modification in the network could imply 

a major change in the set of equations. When, even after surmounting the 

equation building difficulty, a generic DE-solution algorithm was put to the test, 

simulation times obtained (even for moderate-size systems) fell well behind those 

delivered by the EMTP, and abysmally far behind from the deadlines imposed 

by real-time simulation under the bandwidth targeted. This result should come 

as surprise to nobody, considering the task at hand. 

sys-1 
vWjirm_ 

FAUL1 
250 km 150 km 

BUS1 

coupled 

FAVL2 

coupled M Q V 

S I •f* 
BUS3 BUS4 

500 k V sys-2 

BUSS 

Fig. 25: A test case for relay testing. 

As a sample of the performance aimed at, one of the benchmark test cases for 

OVNI, the target network for protective relay tests, Fig. 25, represents solving a 

set of forty differential equations coupled in forty unknown voltages, and doing 

so in less that thirty microseconds4, a very demanding task indeed. 

4.3 D i sc re t i z ing the Network , not the Equat ions 

Granted the need for a completely new tool, one faces the sometimes formidable 

job of putting together the set of coupled differential equations that describe 

the electric network (same as for a generic DE-solver), and then discretizing 

the equations through some convenient integration rule, according to what was 

said in the last chapter. The inversion of those two steps, starting point of 

OVNIs algorithm, was introduced by Prof. Dommel [3]. First, discretize each 

4 To allow for the necessary hardware communication overhead. 
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element, or rather its voltage-current characteristic equation. Then, represent 

the discretized v-i equation by a convenient array of resistors and sources. And 

finally, assemble the network using those discrete-time models for each of the 

original elements, see Fig. 26. 

integration "discrete" 
network 

N E T W O R K E L E M E N T S 
volt-curr. 

characteristic 
for the element. 

discrete-time 
(sources and R's). 

Fig. 26: Discret izat ion process. 

The resulting discretized network contains only resistances and sources, re

gardless of the original nature of the elements. Putting together the discretized 

network, and building the corresponding network equations becomes an issue of 

elegant simplicity. 

The manner in which an element model is developed is outlined in the fol

lowing section for one element, as an example. 

4.4 Discrete-time model for an Element [3] 

The discussion [3] in this section (§ 4.4) belongs in an appendix, but, given 

the flow of ideas in this discussion, it was included in-line with the rest of the 

text for the convenience of the reader. To illustrate what was just said in the 

previous section, let us consider an element, a linear inductor, Fig. 27a, and put 

it through the process outlined above, Fig. 26. 

The v-i equation for that inductor, relates the voltage across the inductor, 

v(t), with the current through it, i(t), as in Eq. (17). Integrating both sides 

of this last equation along the time interval between t — At and t, we obtain 
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V(t) 

m—t—TYYs—z n 

i(t) 

Fig. 27: a) Lumped inductor, and b) its discrete time domain model corresponding to 
the trapezoidal integration rule. 

Eq. (18). 

v(t) = Ld-M (17) 

t 

I 
t 

v(t)dt = L.i(t) -L-i(t- At) (18) 
t-At 

If a numeric integration rule, let us say backward Euler's, is used to approxi

mate the left hand side, and reorganizing the terms, the current in the inductor 

at the end of the interval, i(t), appears as a function of the voltage across the 

inductor at the same point in time, v(t), and the values corresponding to the 

initial point of the time interval (t — At), that is, to the history of the inductor, 

Eqs. (19) and (20).. 

i(t) = ̂ -v{t)+i{t- At) (19) 
E 

i(t) = g • v(t) - h(t) (20) 

But this last equation describes the current in the inductor as the sum of a 

current proportional to the voltage in the inductor with a historic current, or 

in circuit form, that the inductor behaves like a resistor with a conductance of 

At/L in parallel to a current source, h(t), that depends on historic values: a 

history source, Fig. 27. Granted the relative compactness of the discretization 

and modelling process for the linear inductor, doing the same for some network 

components have proved to be tasks challenging enough as to be the central 
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topic of doctoral theses in their own right [44]. OVNI is expected to grow that 

way, along the years, but to furbish its two probing tasks of equipment testing 

(protective relays and controllers for high-voltage-direct-current converters) a 

basic set of streamlined discrete-time models was included, as reported in the 

next sections, and in chapters 9, 10, and 11. Two groups of elements, lumped 

and transmission lines, have been borrowed, adapted, streamlined and optimized 

to take advantage of OVNI's architecture, from the ubiquitous EMTP, all other 

elements have been developed specifically for OVNI. 

4.5 Basic models in the prototype 

Once the main tasks of the simulator are introduced in the next chapter, it 

becomes evident, in the case illustrated in Fig. 25, that element models are re

sponsible for 14.7% of the total time of simulation. OVNIs core stands on its 

Own, separate from the element models. However, to test the core for its benefits 

and liabilities, it was necessary to furnish that core with a few basic element mod

els, namely: resistors, inductors, capacitors (both linear and non-linear ones), 

single-phase and multi-phase transmission lines (both models differ significantly, 

the first one is not a particular case ofthe latter), metal-oxide-varistors (MOV), 

single-phase transformer units (including the modelling of their core saturation), 

three-phase transformer units (with modelling of saturation produced by zero 

sequence set of magnetomotive forces), HVDC rectifying modules and their cor

responding firing angle controllers, and switching operations5. 

Given its final use, those basic models are streamlined and optimized in its 

execution to deliver maximum performance. Implementation of those models 

within the frame of high-pluggability6, for OVNI, is an issue in itself described 

in detail in a later chapter. 

5 Switching operations are an intrinsic function of the core. 
6 The convenient removal of an obsolete model, and substitution with a better —more 

accurate or faster— one. 
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4.5.1 O n N o t a t i o n 

In what follows the element under study is connected between nodes k —initial 

node— and m —final node—. Time advances in discrete steps of fixed and pre

determined size At. At the end ofthe current step, v(t) is the voltage across the 

element and i(t) the current through it. The values v(t—At) and i(t — At) corre

spond to the end of the previous step (which are known, of course). The models 

listed in the following sections correspond to the backward Euler's integration 

rule. Expressions corresponding to the trapezoidal rule are obtained readily 

applying its approximation to the integral on the left-hand side of Eq. (18). 

4.5.2 L u m p e d Elements [3, 4] 

The resistor is simply represented by a resistance between k and m. The lin

ear inductor and the linear capacitor are modelled by the equivalent circuit in 

Fig. 27b. The parameters g (equivalent discrete conductance), and h(t) (history 

current source) in that figure are given, for backward Euler rule, by Eqs. (21) 

for the inductor. 

At 
9 L = T 

hL(t) = -i(t-At) (21) 

But from Fig. 27b, the history term h(t) can be written in terms of the 

inductor voltage at the previous time step, as h(t) = h(t - At) - g -v(t - At). 

For the capacitor, the same model in Fig. 27b is obtained, but with the 

parameters given by Eqs. (22). 

C 
9 C = At 

hc(t) = ^-v(t-At) (22) 

From Fig. 27b and equations (21) and (22) it is seen that the behaviour of 

the model depends on the element state at the previous step: its history, h(t). 
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The equivalent conductances corresponding to the trapezoidal rule are given 

in Eq. (23). 
At 

9 L = 2L 

9c = ft (23) 

The history values corresponding to the trapezoidal rule of integration (rule 

which is used in the DSDI procedure, to be introduced in chapter 7) were sim

plified by Martiin [45] as 

hL(t) = hL(t - At) - 2gL • v{t - At) (24) 

hcit) = 2gc-v(t- At) - hc{t - At) (25) 

To update the history source value hs(t), with this simplified model, it is 

only necessary to keep track of the previous value of the source hs(t — At), since 

the voltage across the element is to be calculated at each time step anyway. 

4.5.3 Transmiss ion Lines [3, 5] 

Transmission lines and their models are at the centre of OVNI strategies to 

exploit the network sparsity, as will be seen in chapter 5. Given the distributed 

parameter characteristic of the power transmission line, modelling it is not as 

straightforward as for lumped L and C elements. In what follows, it is assumed 

that the line parameters are independent of frequency, a necessary compromise 

between performance and accuracy adequate for a large number of applications 

[46]. 

It will also be assumed that both inductance and capacitance are uniformly 

distributed along the line [47]. The per metre values for those parameters are: 

L, in H/m; C, in F/m. Shunt conductance is assumed negligible and series 

resistance is treated as lumped into two loss-equivalent resistances at each end 

of the line. Each of those resistances is equal to one half the total series resistance 

of the line. If R, Vt/m, is the series resistance per metre of the line, and I the 
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Fig. 28: Lumped losses in the transmission line model. 

total length in metres, the total series resistance is RT = R • l- The previous 

simplification leaves a lossless transmission line surrounded by two RT/2 resistors 

as in Fig. 28. 

4.5.3.1 Lossless Single Phase Transmission L ine M o d e l 

Dommel demonstrated [3] that the single phase lossless transmission line in 

Fig. 29 can be represented by the equivalent circuit in Fig. 30, where Zc = y/L/C 

is the surge or characteristic impedance of the line, in f2. History sources hm(t) 

and hk(t) depend on the voltage and current at the other end of the line r 

seconds before [3] —r = / • VLC is the travelling time of the line, in seconds— 

according to Eqs. (26). vm{t - T) . . 
hk{t) = + im(t - T) 

hm(t) = Vj^f^-+ ik(t - T) (26) 

That is, the behaviour of this model depends on the state of the line r seconds 

before: its history. This model remains applicable to lines whose length is such 

that r > At. The model is exact, it does not depend on the selection of numeric 

integration rule since none is used. A decision that affects the accuracy of this 

model is that of the interpolation scheme for cases where r is not a multiple 

of A i . 
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'k ^ lossless line 'm m 

K m 

Fig. 29: Single phase lossless transmission line. 

Fig. 30: Single phase lossless transmission line model. 

4.5.3.2 Lossy Single Phase Transmission L ine M o d e l 

Combining the model in the previous section with the lumped resistances pro

posed in Fig. 28, one arrives at the model sketched in Fig. 31. If the history 

current sources in Fig. 31 are transformed into equivalent voltage sources, the 

circuit becomes the one shown in Fig. 32. The history voltage source is, for 

node k 

ek{t) = vm{t -r) + Zc- im(t - T) (27) 

me k-
k—MA m- Rt/2 

A M — m <-

Fig. 31: Lossy single phase transmission line. 
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Fig. 32: History voltage source equivalent circuit. 

It depends upon the voltage of the fictitious node m'. To reduce the workload 

of the simulator it is convenient to hide this node (as well as node k', on the 

right side) inside the model. Voltage at ml can be written 

/ R 
v m ( * ~ r ) = vm(t ~T)~ — • lm(t - T) 

Substituting Eq. (28) into Eq. (27) we finally obtain 

R 
e*(t) = vm(t - T) + Ze- im(t - T) 

(28) 

(29) 

with an analogous expression for em(t). Converting the voltage sources back into 

current sources, the complete lossy line equivalent circuit of Fig. 33 is obtained, 

where the history current sources are given in terms of historic values of current 

and voltage at the real nodes of the line according to Eq. (30) and Eq. (31). 

'k 'm k 1 1 I 1 :—m «-— 

Fig. 33: Lossy fine equivalent circuit. 

hk(t) 

hm(t) 

~ tm[t r)+ ^ 

zc + % 
1 

Z + Ei-z/ c -r 2 

vm{t - r) 

vk{t - r) 

(30) 

(31) 
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4.5.3.3 Multi-phase transmission line 

If the two ends of an n-phase transmission line are named k —the sending7 

end— and m 8 —the receiving end—, the state of the line is given by two vectors 

of voltages [vk(t)] and [um(*)] and two vectors of currents and [im(t)]. The 

parameter characterization of this line includes two full matrices of size nxn, one 

with the inductances per metre, in H/m, [L]; and another with the capacitances 

per metre, in F/m, [C], [47]. 

If the phase quantities given by the four vectors in the previous paragraph 

are transformed according to Wedepohl's [48] modal component transformation 

(Eqs. (32)), two vectors of modal voltages [Vk(t)] and [V (̂t)] —one for each end 

of the line— and two vectors of modal currents [Ik{t)\ and [im(t)] —same as 

with the voltages— are obtained 

where transformation matrices [S] and [Q]9 depend on the physical configuration 

of the conductors in the line [48]. The modal transformation diagonalizes the 

matrices [L] and [C], [49], into matrices [Ld] and [Cd]. 

Voltages and currents for each mode are related in the same way that voltages 

and currents in the single-phase line are related [3, 48]. An equivalent circuit 

can be established for each mode like the one in Fig. 34, where 

Vki = voltage of mode i at sending end k. 

Vmi = voltage of mode i at receiving end m. 

7 The names sending end and receiving end have historical roots in times when power 
networks used to be mostly radial. 

8 Actually both k and m are vectors whose entries identify the individual nodes on each 
end of the line. 

9 In O V N I these matrices are determined in a preprocessing step (i.e., outside the real-time 
loop) by M T - L I N E , part of the Microtran suite. 

[Vm(t)} 

lh(t)} 

[Ut)\ 

[S\-lMt)] 
[S\-l[Vm{t)) 

[QWikit)] 

[Q)-l[im(t)] 

(32) 
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Fig. 34: Equivalent circuit for mode "i". 

Iki = current of mode i at sending end k. 

Imi = current of mode i at receiving end m. 

ZCi = characteristic impedance for mode i. 

Hki = history current source on sending end k for mode i. 

Hmi — history current source on receiving end m for mode i. 

In terms of and C ^ 1 0 , the characteristic impedance for mode i is 

z« = Vl <33> 
The speed of propagation for waves of mode i along the transmission line is 

y/LdiCdi ^ ^ 

from which it follows that if / is the total length of the line, the travelling time 

for mode i is 

n = — = I • yjLdiCdi (35) 

History current sources Hki and Hmi depend on modal current and modal 

voltage at the other end of the line T* seconds before according to Eqs. (36) and 

(37). 

Hki(t) = V m i { t ~ T l ) + Imi(t - n) (36) 

Hmi(t) = V k i { t ~ T i ) + Ut - n) (37) 

1 0 The i-th element in transformed inductance and capacitance diagonal matrices [Ld] and 
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Equations (36) and (37) define the entries of two modal-history-source vec

tors, one for the sending end [Hk(t)] and another for the receiving end [Hm(t)]. 

These two vectors are transformed back to the time domain through the corre

sponding inverse transformation, two history current source vectors are obtained 

for each phase —one for each end of the line—. 

[M*)l = [Q][Hk(t)\ (38) 

[hm(t)} = [Q][Hm(t)] (39) 

Applying the same inverse transformation to the decoupled modal-characteristic-

conductance matrix 

[Q? (40) 

the full [g] matrix is obtained. Matrix [g] is the transmission line contribution11 

to the network bus conductance matrix [G] in Eq. (45). 

In the phase domain, the multiphase transmission line can be visualized by 

the vector/matrix-parameter equivalent circuit in Fig. 35. 

[g] = [Q] 

l/Zcl 0 ••• 0 

0 i / z c 2 . . . 0 

0 0 

Fig. 35: Multiphase transmission line model in phase-domain, [g] is a matrix, all the 
other parameters are vectors. 

At both ends of the line. 
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4.5.4 Single-phase non-linear core Transformer 

A new simplified model for a single phase transformer with a non-linear mag
netic core whose characteristic has been piecewise linearized was prepared for 
this project. This model does not consider the frequency dependency of the 
transformer's characteristics like the one developed by Suthep and Marti [50], 
whose incorporation into OVNI is part of an ongoing effort. 

The complete description of this model is included in chapter 9, along with 
that of the HVDC module created within the frame of this project as well. 

4.5.5 Three-phase non-linear core Transformer 

A combination of three single phase transformers modelled according to §4.5.4 
provides the flexibility necessary to describe any connection group. In particular, 
inside the HVDC module to be described in chapter 9, two groups are detailed, 
namely YyO and Ydll . The three phase model is more than a conglomerate of 
single phase models. It incorporates the effect of zero sequence flux linkages in 
the magnetic circuit of three phase units. 

The complete description of the saturation modelling, for positive, negative, 
and zero sequence flux linkages, is postponed until chapter 11. 

4.5.6 Switches 

Along the simulation, some time steps bring more computational burden to the 
simulator than others; namely, those steps when a topological change in the 
network occurs. That is, when a switch or set of switches operates. Since all 
steps need to be of the same length, it is the computationally longest step (CLS) 
the one that defines the real-time bandwidth of the simulation. OVNI goes to 
great lengths to reduce the size of that longest step, CLS. 

For the solution method chosen, as described in chapter 5, the topology of 
the network is described by certain matrices and either their inverses or their LU 
decompositions. When a switching operation occurs, it is necessary to rebuild 
and invert (or triangularize) those matrices, an expensive process. 
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Switches i n O V N I are represented in one of three different forms, depending 

on the necessities of the simulation: as an ideal switch, wi th infinite impedance 

when open and zero impedance when closed; as a low-high resistance branch; or 

as a l ink between two M A T E sub-blocks (See chapter 5). 

4.5.7 H V D C Modules 

To allow for the fast-switching network modelling targeted in chapter 2, high 

voltage direct current converters modules are included in O V N I . 

gate firing signals 
gate firing signals 

6 

. M 

(b) 

Fig. 36: OVNIs HVDC module: a) detailed view; b) block view. 

To optimize the interaction between the rectifier or inverter group and the 

integrator, the model targetted a six-valve module, F i g . 36. The module includes 

the AC-s ide filters (11th and 13th harmonics [51]) , a three phase transformer 

(including saturation modelling), six valves (thyristor groups) wi th their cor

responding R C snubbers (used to model physical snubbers, not to compensate 

numerical issues), and a smoothing reactor. The description in detail of this 

model developed for O V N I , is postponed unti l chapter 9. 

4.5.8 HVDC-current-loop Controller 

Even though the H V D C module model prepared for O V N I targets the testing of 

H V D C controllers, during the design and test of the H V D C module itself (par

ticularly its commutation failure modelling features) the need for some minimal-

functionality controller became evident. A constant current loop, proportional 
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integrative controller was prepared and optimized, and its details are described 

in chapter 10. 

4.5.9 Metal Oxide Varistors (MOV) 

In the series compensation modules included in the test case for protective relays 

shown in Fig. 25, metal oxide varistors (MOV) are connected in parallel with 

the series capacitors as a protection against overvoltages. 

To represent the freezing effect of the voltage across the protected condenser 

when that voltage reaches the knee value is accomplished by a computationally 

very efficient tactic12: let us consider the capacitor's voltage current relationship, 

which can be integrated on both sides along the time axis between the points 

(t — At) and t, approximating the integral with backward Eulers Rule: 

i(t) -At = C • v(t) -C -v{t- At) (42) 

i(t) = ^t-v(t)-^-v(t-At) = g-v(t)-h(t) (43) 

As was seen in a previous section, this last expression can be represented as 

a circuit by the parallel of a resistor with conductance g, and a current source 

h(t), whose value depends on the previous voltage of the capacitor, v(t — At), 

Fig. 27b. Also, from Eq. (42), the voltage can be written as 

v(t) = + v(t - At) = ^ + v(t - At) = f • i{t) + £ • h(t) (44) 

This last expression implies the expected result that under a constant current 

i(t) = K, the voltage grows linearly. It also implies that, still under constant 

current, if one refrains from updating the history source, h(t), the voltage does 

not change. 

1 2 Backward Euler's rule is used in this section. 
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Fig. 37: Modelling the voltage clipping effect of the MOV. 

The voltage clipping effect of MOVs is then simulated simply by checking the 

voltage across the protected condenser, and, if the voltage has reached the knee-

value for the varistor, skip the updating of the corresponding history source. 

If anything, the activation of the varistor will reduce the execution time of the 

corresponding integration step, albeit by a minimal amount. 

4.5.10 Measuring Transformers, ITs 

It is not what happens in the network, but what the instrument transformers 

make of it that determines the reaction either of the protective relay, of the 

HVDC controller, or of any other monitoring device. Hence, it is essential to 

model accurately the non-linear characteristics of those transformers. 

Apart from the special case of ferroresonance, measuring transformers have 

no impact on the solution of the power network [52]. It follows that the network 

can (and is) solved apart from the current and voltage instrument transformers. 

After that, the currents and voltages in the network are put through the men

tioned transformers-non-linear characteristics to obtain the output which will 

be amplified for the monitoring or controlling devices to see. 

At first, this decoupling between the network solution, and its instrument 

transformers' suggested the possibility of modelling the IT's on separate pro

cessing units, perhaps DSP boards. However, given the impressive improvement 
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in processing speed provided by the hardware industry, and for the sake of sim

plicity and maintainability, it became evident the convenience of running the 

IT's models not as special processes, but as integral parts of the main solution 

mechanism. 

Two non-linear models were created for this project, as reported in [53]. The 

details of those models, one for current transformers, and another for potential 

transformers and CCVTs, are detailed in chapter 8, in the part on new element 

models developed during this project according to OVNI's guidelines for models 

construction. 



5. SEGMENTATION AND OVNI 

5.1 In t roduc t ion 

The solution adopted in this project is presented in stages. First, without con

sidering either node hiding, Topological Segmentation, or MATE's Segmentation. 

Then Topological Segmentation, followed by MATE Segmentation, and finally 

Node Hiding. 

5.2 The Tasks of the Simulator 

Once the original network has been conveniently discretized into a DC-resistive 

network, as was seen in the previous chapter, the simulation proper begins. A 

modified nodal analysis method [54] was selected as the framework on top of 

which the solution algorithm proceeds. At each integration step five stages or 

tasks can be identified, see Fig. 38. 

1. Updating History and External Sources. Even if all sources in the dis

cretized network are DC during each integration step, most sources change 

value from step to step. Some change according to an external rule, ex

ternal sources. Others obtain a new value that depends on the previous 

history of voltages and currents in the elements whose models those sources 

are part of, history sources, as was seen in the last chapter. It follows that 

at each time step all sources need to be updated: external sources, accord

ing to their external rule, and history sources, by the elements themselves, 

according to their own internal rules. 

2. Accumulating Nodal Currents. As a first approximation, to simplify the 

first description of the solution method, for the time being let us waive the 

5"t 
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Fig. 38: Tasks in OVNI's simulation cycle. 

two-layer segmentation scheme as well as the node hiding technique1. Also, 

in this first discussion, let us assume that all voltage sources have been 

transformed into equivalent current sources through multi-phase Thevenin's 

to Norton's equivalents conversions. The next step toward the solution of 

the network at this time step is to add up all the current sources into nodal 

currents, in vector [ha] in Eq. (45), where a is the total of nodes in the 

network. In what follows, subscripts indicate the dimensions of arrays. 

[Goa] M = [ha] (45) 

3. Handling Topology-Changing Events. The simulator acknowledges events 

that produce changes in the topology of the network during the current 

1 Both to be described later in this chapter. 
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integration step and rebuilds the discretized network conductance matrix 

[GQQ], according to switch positions and to the status of any other topology 

changing device —diodes, thyristors, piecewise nonlinear elements. 

4. Solving for Nodal Voltages. Finally, solve Eq. (45) for the nodal voltages 

[va]. This step involves either the LU-decomposition or the inversion of 

the [Gaa] matrix, and correspondingly, backward substitution or matrix 

multiplication applied to the nodal current vector [ha\. The first part 2 can 

be skipped in those integration steps where there is no topological change 

detected in task (3) above. 

5. Outputting Results. Make the requested voltages and currents available 

for output at the corresponding data ports. 

Submitting a first non-segmented implementation of the tasks listed above 

to a profiler, and using test case RT-092, see Fig. 11, it was found that the 

simulation step execution time was partitioned as follows: 

• Updating history sources, 14.7 %. 

• Accumulating Nodal Currents, 19.6 %. 

• Updating Topology and Solving for nodal voltages, 65.8 %. 

This partition of the execution time shows that tasks (3) and (4), updating 

topology and solving for nodal voltages, are the ones taking the lion's share 

(almost two thirds) out of the simulation loop time. In this work, a significant 

effort has been expended to improve the performance of these two tasks, not 

only from an algorithmic point of view but also at the implementation level. In 

this context, and to alleviate the computational burden of those tasks of the 

simulation3, let us now consider the precalculation of network matrices. 

2 LU-decomposition, or matrix inversion. 
3 A t the reduced price of moving much of that burden out to a preprocessing stage. 
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5.3 P reca lcu la t ion of Network Matr ices 

To free the simulator of the enormous burden of matrix rebuilding and trian-

gularization —or inversion— at every time step at which a topology change is 

detected —tasks (3) and (4) in section 5.2 on page 54—, precalculation and 

storing of matrices for every possible topology can be considered. 

The promise of this option, however, hits the wall of feasibility in a way better 

described by an example. Let us consider a 1000 node network that includes 

1000 switches. The admittance matrix of this network, using double precision, 

occupies 
1000 x 1000 x 8 = 8,000, OOObytes, 

that is, almost eight megabytes4 for a single topology matrix. Now, with 1000 

switches, the network has as many as 2 1 0 0 0 possible topologies. If a matrix is 

to be precalculated and stored for each one of those topologies, it will need 

an amount of memory better described as follows: using high density DIMM 

128 megabytes chips, at an average of 20 cm2 per 128 megabytes, the space it 

occupies in an average Pentium II motherboard5, and also assuming that all 

the surface of the Earth could be covered —oceans as well— with a single layer 

of such chips, the total memory on the Earth surface6 would then be in the 

order of 3.26 x 1019 megabytes. It would still be necessary to have 8.17 x 10301 

megabytes, that is, 2.51 x 10282 Earth-sized planets so covered, to prestore every 

possible topology matrix for the network in question. While the sparsity of those 

matrices, as seen in section 5.5, reduces the necessary storage to about 0.4% of 

the original value, we are still left in need of 1.00 x 10280 Earth-sized planets so 

covered. 

Even under the sobering indications shed by the previous discussion, and 

to allow us to examine the prestorage possibility under a different light, it is 

4 7.629 megabytes, since one megabyte is defined not as one million bytes, but as 2 2 0 = 
1048576 bytes. 

5 PCPartner VIB878DS Series. 
6 Assuming that the Earth is a perfect sphere with radius equal to its equatorial and polar 

average: 6367 km (according to the Random House Webster's Unabridged Dictionary, 1996.) 
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convenient to introduce a metric, the complexity metric. 

5.4 The C o m p l e x i t y Index, a metr ic 

The computational effort of solving a network grows with the square of the 

number of its nodes, a. The memory requirements incurred to reduce that 

effort through precalculation of key network matrices grow with the power of 

two raised to the number of switches in the network, o. 

In this work, the complexity index of a network is introduced, and defined 

for coupled networks7 as follows 

( = 2 f f x a 2 (46) 

For a network segmented into several decoupled subnetworks, the complexity 

index is defined as the sum of the complexity indices of each of its n subnetworks, 

each calculated as per Eq. (46). 
71 

( = 2 " x a | + 2 f J x ^ + - + 2"n x ^ = ^ 2 f f ' x aj (47) 

In Eq. (47), i = 1, 2, 3, • - • , n identifies the corresponding decoupled sub

network. 

5.5 Sparsi ty and the Solu t ion 

In general, most nodes in a power electric network are terminal to no more than 

three branches. This translates, for the discretized network, into a nodal analysis 

admittance matrix with an average of four non-zero elements per row8. As one 

considers larger networks (i.e, with a greater number of nodes) the sparsity of 

the matrix, defined as the percentage of null elements in the admittance matrix, 

grows. Using the first two sentences in this section as a guide, a network with 

one thousand nodes would have a matrix with an occupancy (the complement 

to 100 of sparsity) in the vicinity of 

7 As opposed to networks consisting of several decoupled subnetworks. 
8 Even for three phase coupled branches, the occupancy per row is still only in the vicinity 

of five. 
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number of nonnull elm 
occupancy — x 100 = 

total number of elm 
1 0 0 0 X 4 =0.4% (48) 

1000 x 1000 

A very sparsely populated matrix indeed, with a sparsity of 99.6 %. 

This enormous sparsity can be exploited to reduce the computational bur

den of the simulation, as well as the storage required, as described by Tinney 

[55]. The EMTP applies this technique in solving power electric networks [4]. 

However, the convenience of this very efficient storing algorithm is curtailed, at 

execution time, by an intense address-computation overhead. So, even with the 

time savings provided by skipping operations involving null elements in the ma

trices, timings fall short of the real time deadlines associated with the targeted 

bandwidth (as stated in a previous chapter). A different approach to exploiting 

sparsity is used in this project as described in this chapter and the next one. 

5.6 Divide et Impera. Segmentation 

Roman general Julius Caesar, c. 100-44 B.C., advised divide et impera9. OVNI 

follows this advice to the letter. From the complexity index c, defined in section 

5.4, it follows that a smaller (one with fewer nodes) and simpler (one with fewer 

switches) network can be solved more rapidly, and with a reduced allocation 

of computational resources. Not a surprising result. To meet the desired real

time deadline, using a two-layer segmentation process, OVNI breaks the original 

network into a set of smaller decoupled subnetworks, each one with fewer nodes 

and switches than the original one. The exponential dependency of c on the 

number of nodes a, and on the number of switches a, Eqs. (46) and (47), suggests 

the advantage of such segmentation process. 

A numerical example is in order. Consider the same 1000 node network with 

9 Lat in for divide and rule, sometimes rendered instead as divide and conquer. 
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1000 switches introduced in section 5.3. According to Eq. (46), the complexity 

index of that network is 

10002 x 2 1 0 0 0 = 1.07 x 10307 

If such network could be broken into 3-node pieces with 3 switches each (332 

of them plus a 4 nodes/4 switches one), the complexity index of the segmented 

network would be, as per Eq. (47) 

332 x 32 x 23 + 42 x 24 = 24160 

The complexity index has come down by more than 300 orders of magnitude. 

Prestoring the corresponding matrices in double precision (8 bytes per datum) 

would require 

24160 x 8 = 193280 bytes 

That is, less than 190 kilobytes! Admittedly, this segmentation example 

into 3-node subnetworks seems a bit forced, and optimistic, but it serves as 

an indication of the benefits to be gained through segmentation, and to bring 

precalculation back into the realm of feasibility. Besides, in the cases run to 

validate the different aspects of this project, it became evident that in three 

phase power networks many of the subnetworks obtained during the segmenta

tion process, to be described later, do have 3 nodes (a fact that is exploited in 

the implementation). 

Summarizing, segmentation reduces the size and the number of the matrices 

to be considered in the solution. But the question remains, how to segment the 

original power network? 

5.7 T o p o l o g i c a l Segmenta t ion 

Figure 39 shows a typical power electric system, with power generation plants, 

load centres, and substations, all linked together by transmission lines. Electric 

signals travel along a transmission line at a speed close to that of light, but even 

at that speed, given the considerable length of these most visible parts of power 
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Fig. 39: A typical power electric system. 

networks (very often in the hundreds of kilometres), electric phenomena at one 

end of a line does not reach the other end instantaneously. 

As an approximate numerical example, let us consider a 300 km transmission 

line; approximating the propagation velocity of signals on that line to the speed 

of light (and using c = 3x 108 m/s)10, also neglecting the differences in velocity of 

the different transmission modes as described by Eq. (35), one obtains the time 

delay with which the line passes a signal from one end to the other, r = 1 ms, the 

travelling time. But in our current bandwidth of interest, with integration steps 

of fifty microseconds, one millisecond equates to some twenty steps. That is, 

whatever happens in one of the areas in Fig. 39 linked by a 300 km transmission 

line will not have any effect on the neighbouring areas until twenty computational 

cycles later. Hence, the transmission line decouples the areas it links. 

An alternative way of visualizing this decoupling introduced by transmission 

1 0 Given the approximate nature of this example, no more accurate value was used for the 
speed of light, c. 
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Fig. 40: a) Simple single-phase power system; b) Discrete-time equivalent circuit for 
system in (a). 

lines in power electric networks, and the one that triggered the possibility in 

the mind of the author, is to take a simple power network with one single phase 

transmission line linking two areas as in Fig. 40a, and apply the discretization 

process outlined in the previous chapter to it, Fig. 40b. The decoupling intro

duced by the line is evident in the discretized network, where the line's model 

is effectively breaking the system into two blocks. In this work, block is defined 

as each of the parts into which the transmission link topology breaks the power 

network, see Fig. 41a. 

This topological segmentation breaks the original problem implicit in tasks 

(3) and (4) in section 5.2, into several smaller problems of the same shape 

as that represented by Eq. (45). The sparsity of the network is exploited by 

this segmentation scheme by the reorganization of the nodes according to the 

topology boundaries defined by the transmission lines as illustrated in Fig. 41b. 

It was observed that the size of those blocks ranges, for a typical power 

network, between 3 —the majority of the blocks— and 12, in multiples of 3 
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Fig. 41: a) Power network topology; b) Corresponding conductance matrix [G]. 
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Fig. 42: Relay testing case with blocks identified. 

nodes11. This simplifies the allocation of memory to the corresponding matrices 

in a way where memory address calculations are minimized, as discussed in the 

chapters dedicated to implementation details. For instance, the relay testing 

case in Fig. 42 exhibits two 3-node blocks, one 6-node block, and one 9-node 

block12. 

5.8 T h e Need for Topological Independent Segmentation, forwarding 

M A T E [6] 

When one of the blocks introduced by topological segmentation in the previous 

section grows past a critical size (defined by its number of nodes, branches, and 

1 1 Considering only those nodes which are not terminal to any voltage source. 
1 2 W i t h line protection interruptors closed. This issue is dealt with through M A T E segmen

tation, as discussed later in this thesis. 
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Fig. 43: A partial view of an HVDC-controller test case with two topological blocks. 

sources), as in the case of the HVDC-controller testing case depicted (partially) 

in Fig. 43, the need for a segmentation scheme independent on the presence of 

transmission lines becomes evident. The MATE concept (Multiarea Thevenin 

Equivalents) introduced in [6] provides a framework for arbitrary system subdivi

sion along any convenient connecting branches. The concept has been extended 

in this thesis to achieve maximum solution generality and maximum computa

tional efficiency. 

Instead of presenting MATE, the multi-area Thevenin equivalent segmenta

tion concept in its extended form, an introductory simple numerical example 

is described. In the next section MATE, in its basic form, is described more 

rigorously. Finally, MATE's relationship to Classic Diakoptics is established. 

In EMTP's original algorithm, ungrounded voltage sources were not in

cluded. To include an ungrounded voltage source (i.e., one not connected to 

the reference or ground node) we can attach to it an unknown current, Ix, and 

use the relationship between the voltages at the nodes of the source, as im

posed by the source itself, as an additional equation13 [54]. All of this, however, 

expands the dimension of the problem. 

1 3 Additional to the nodal equations themselves. 
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block a ) S i e m e n s ' r e f block b 

Fig. 44: Circuit with an ungrounded voltage source. 

Let us begin with the simple circuit in Fig. 44, with one ungrounded voltage 

source. Including the current ix through the voltage source among the unknown 

nodal voltages, va and Vb with respect to the reference node, the two nodal 

equations plus the v-source equation are presented in matrix form in Eq. (49). 

2 0 

0 5 

1 -1 0 

Va 
" 3 " 

Vb 7 

_ 4 _ 

(49) 

If the voltage source were not present, the system would consist of two com

pletely decoupled blocks described by the upper-left partition of Eq. (49), as in 

Eq. (50), where the first equation describes the left-hand decoupled block and 

the second equation the right-hand one, blocks a and b in Fig. 44 respectively. 

(50) 

After multiplying the first row by the inverse of 2, and the second row by 

the inverse of 5, the unitary matrix appearing on the left hand side delivers the 

nodal voltages if the voltage source is not present. Let us call those voltages 

Ea and Eb respectively, which are but the Thevenin voltages corresponding to 

those nodes for each of the decoupled blocks. 

2 0 Va 
3 

0 5 Vb 7 
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Ea 3/2 

_7/5_ 

If the same process of scaling each row is applied to the top two in the original 

Eq. (49), and then the two first rows are used to nullify the coefficients of the 

third row corresponding to nodal voltages, one obtains Eq. (51). 

1 0 1/2 

0 1 -1/5 

0 0 -7/5 

' 3/2 

Vb = 7/5 

. 3 9 / 5 . 

(51) 

From the equation represented by the last row, obtaining the current ix 

through the voltage source linking the two otherwise decoupled blocks of the 

network is simple enough. Once so obtained, ix can be used to complement 

the Thevenin voltages of the nodes and produce the actual nodal voltages as in 

Eq. (52): 

[*«] (52) 

But any arbitrarily chosen conductor can be considered as a null voltage 

source. That source can be used both as a link that joins and as a boundary 

that separates any two parts of the network. Such connecting branches are called 

links in this work, and include, in general, a resistor Rx in series with a voltage 

source Vx (either or both can be null), as in Fig. 45. 

Va Ea 1/2" 
U 1 = 

3/2 1/2" 

Vb Eb . _ 1 / 5 . 
I ' x J — 

_7/5_ . - 1 / 5 . 

"from" node-

V 

"to" node 

Fig. 45: An OVNI's link. 
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5.9 O n N o t a t i o n 

Before continuing, let us agree on a few notational issues. In what follows, the 

number of nodes in a network (or subnetwork) is a; also, nodes are identified in 

the global network by the first few letters of the alphabet, ab c— The number 

of links14 in the network is ip, and link branches are identified by the letters, j k 

I.... 

Uppercase letters stand for known quantities, lowercase letters for unknown 

ones. Magnitudes introduced by the segmentation process exhibit a curly hat. 

Physical quantities present in the original network are written without a hat. 

As for matrices and vectors, all vectors described are assumed to be column 

vectors; i.e. a row vector is indicated as a transposed column vector. Vectors 

display their dimension as a subscript. Matrices, also, carry their dimensions as 

subscripts in the order row first, column last. When a matrix is transposed, its 

subscripts change order. 

As an example, [Yaa} is a known admittance matrix of dimensions corre

sponding to the total number of nodes in the network, a; as it has no hat, 

is a known it corresponds to the original network. On the other hand, jz v 

impedance matrix introduced by the segmentation process with dimensions cor

responding to the number of links in the network, ip. As a third example, [Cav] 

is a connection matrix to be defined later, with a row for each node in the net

work, and a column for each link. The transposed of this last matrix is written 

[C* a ] . Observe that the subscripts are not part of the name of the matrix, but 

merely an indication of its dimensions. 

5.10 M u l t i - A r e a Thevenin Equivalent , M A T E 

Once the segments into which the network is to be broken have been delineated, 

Fig. 46a, the branches connecting those segments are labelled links by Marti 

[6]. The result of the segmentation process can be seen in Fig. 46b, a cluster 

1 4 Branches connecting the segments produced by M A T E , the Mult i -Area Thevenin 
Equivalent. 
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of subblocks15 connected by links. In that figure, the line between any two 

subblocks, let us say A and B, represents possibly several links connecting some 

nodes in subblock A to some nodes in subblock B. 

Fig. 46: a) Network with M A T E ' S subblocks delineated; b) Subblocks connected by 

links, after M A T E . 

To solve any of the subblocks, let us say A, independently from the rest of 

the network, we include all link current contributions, to the subblock's 

own current sources [l£]. But the link current contributions, j^J, is related 

to the link currents vector through a connection matrix [C£v] according to 

Eq. (53) . 

= K J [«J (53) 

The connection matrix [C£v] has a row per each node in subblock A, and 

a column for every link in the whole network. That is, each element of that 

connection matrix relates a node in the subblock to a link in the network. That 

element is zero if the link does not touch the corresponding node; it is +1 if 

the link arrives in the node; it is -1 if the link leaves the node (To impose some 

regularity of formation on matrices related to this segmentation process, the 

author found it convenient to assign a direction to each link; a direction that 

coincides with the link's assumed current direction). 

1 5 In O N V I , M A T E segmentation is applied after topological segmentation, hence it is applied 

to some (possibly all) of the blocks generated by topological segmentation. This is the reason 

why M A T E segments are called subblocks. 
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Now we can write modified nodal equations corresponding to subblock A 1 6 , 

as shown in Eq. (54) below. 

[GL] M = [tf ] + (54) 

Putting together all the matrix equations of the form of Eq. (54), one for 

each subblock, into a single matrix equation for the segmented network (hence 

the hat on the corresponding conductance matrix, indicating that it is the 

block-diagonal matrix corresponding to the segmented cluster produced by the 

method, Fig. 46), one obtains Eq. (55) —written first in explicit form to illus

trate its block-diagonal nature, then in a more compact form, Eq. (56)—. 

G otot 

0 
0 

0 
G?. 

0 
0 aa 

0 GZ aa 

yA 
ua IA iA 

V'a = IB + ~iB 

IC ic 

(55) 

(56) [Va] = [Ia] + [Ta] 

However, as the links contribution vector, [ia], is an unknown, it belongs in 

the left hand side of the equation. Also, substituting Eq. (53), into Eq. (56) 

after the vector [ia] has been moved to the left side, one obtains Eq. (57). 

[va] - [Catp] [iv] = [Ia] (57) 

The system in Eq. (57), however, has more unknowns (a 4- ip) than equations 

(a). The <p additional necessary equations are provided by the ip links' voltages 

relationships. For one of such links, represented in Fig. 47 including its voltage 

source and resistance, the corresponding K V L 1 7 expression can be written as in 

Eq. (58). 

Vlink + Rx-ix = Vx 

(58) 

(59) 

A. 

1 6 In Eq . ( 5 4 ) , which applies only to subblock A, a is the total number of nodes in subblock 

1 7 Kirchoff's voltage law. 
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IX 

"from". 
Rx V x 

•Wr-0-
Vlink 

"to' 

Fig. 47: A link's voltage source and resistance, and the directions assumed positive 
for current and voltages. 

The set of all the links equations, of the form of Eq. (59), can be rewritten 

in matrix form as: 

KJ + [KP] K] = [Vv] (60) 

The vector of link voltages K ] can be related to the nodal voltages [va] by 

the connection matrix [B^] according to Eq. (61), below. 

V<P. — [B(pa. Va, (61) 

Each element of that matrix relates a node (indicated by the column index) 

of the network to a link (identified by the row index) as follows: 

• the element is zero if the corresponding link is not connected to the node; 

• the element is +1 if the link arrives in the node; 

• the element is -1 if the link leaves the node. 

In short, this matrix is nothing but the transposed [Cav>]: 

(62) 

Applying Eq. (62) to Eq. (60) we arrive at the <p additional equations in 

Eq. (63), where 

tances. 

R, is a diagonal matrix with the corresponding links resis-

R J KJ + [ £ J K] = [vv] (63) 
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Equations (57) and (63) comprise the complete set of necessary equations to 

solve for the unknowns: 

R<ptp 
(64) 

aa 0 0 

0 CB 

aa 
0 

0 0 nc 
aa 

r~>At 
^<pa 

nBt 
^tpa 

fCt 
^ipa 

IA 

IB 
xa 

IC 
(65) 

As l ^ a a j is block diagonal, its inverse is also block diagonal with Homer 

Brown's bus impedance matrices [15] occupying the space formerly used by the 

subblock; i.e., 

[ZL] = [GL]'1 (66) 
Premultiplying each subblock's nodal equations by its bus impedance matrix, 

given by Eq. (66), we obtain 

zL o 0 0 ' aa 0 0 

o z*. 0 0 
< 

0 CB 0 -CB 

0 0 7C 

aa 0 0 0 Cc 

0 0 0 1 
1 

r*At r*Bt 
^<pa 

r<ct 

VA ' IA' 
> 

IB 

\ / 

1{p 
4 

UA 

^ aa 
0 o 

0 UB 

^aa 
0 

0 0 uc 

riBt 
u

V a 
ret 
^Va 

_ y A r*A 
^aa^atp 

_7fl f<B 
aar^aip 

_yC f<C 
^aa^ay) 

R, VP 

yA rA 

7B TB 

aa a 

z£„lS! 

(67) 

(68) 

In Eq. (68), [UA

a] is the unitary matrix with dimensions equal to the number 

of nodes in subblock A. Each of the first three rows in Eq. (68) can be written 

as in Eq. (69) below, which shows that if there were actually no links with other 
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Fig. 48: MATE'S Thevenin equivalent rendering for each of the subblocks. Nodes a b 
c d represent docking ones. 

subblocks18, the voltages of the nodes in subblock A would be given simply by 

the product [ZA

a.IA]. Thus we conclude that this product is nothing other than 

the Thevenin voltages of the subblock's nodes, Eq. (70). This last discussion also 

implies that the elements in the product [ZA

aCA

v] are the subblock's Thevenin 

impedances as seen by the network's links, as in Eq. (71). In summary, we have 

K] = KVal + [**] (69) 

[E^] = [ZA

aIA] (70) 

= [ZLCtp] (71) 

The network nodal voltages can then be written as 

[va] = [E*] + [ZS,] [i*] (72) 

On the other hand, the last row in Eq. (68), after a manipulation that will 

be used explicitly in the section on node hiding, can be simplified to: 

M = [vv - CJXI (73) 

[Vi = [Vv ~ C^E*] (74) 

That is, if iv = 0. 
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The solution of this last smaller system of equations yields the <p link currents, 

[ip], that, once substituted into Eq. (72), produce the corrected nodal voltages, 

[va]. The matrix Zvv will be the object of further study later in this thesis. 

In the next two sections, the relationship between MATE and Kron's Diakop-

tics is discussed, along with a comment on the compensation method. Let us now 

meet the imagery behind the equations, as generated by MATE: Equation (72) 

depicts each subblock as a multisource Thevenin equivalent with as many self 

resistances as there are docking-nodes19 in the subblock, and a Thevenin mutual 

coupling stage, as in Fig. 48. 

5.11 M A T E and Diakopt ics [7, 8] 

It was at a point well into the process of developing OVNI that the connec

tion between MATE and Kron's Diakoptics became clear, after a comment by 

Dr. Dommel triggered several weeks of bibliographical research through the work 

of Kron; using both Kron's [7] own original tensor analysis on the subject, and 

Brumeller's [8] exploitations on Kron's work. The result of those weeks of work 

is summarized in this section. 

Kron takes the original network and separates it into an equivalent network 

and a removed network. Then he reasons that if current sources are applied 

to the equivalent network, sources that inject into it the very same currents 

that were fed before by what is now the removed network, and —at the same 

time— the removed network is excited by voltage sources that apply to it the 

same voltages that appeared in it when it was part of the whole original network; 

then all voltages and currents in the two new networks (equivalent and removed) 

will be the same they were in the original one. 

Using tensor analysis, Kron arrived indeed at equations equivalent to Eqs. (57) 

and (63) 2 0 obtained in the previous section, which are known as the Diakoptics 

1 9 Nodes to which links axe connected 
2 0 W i t h Vv = 0, since Kron does not consider voltage sources in the removed network but 

for the ones applied to it to compensate for its removal from the rest of the network. 
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fundamental equations21, minus the Thevenin equivalent interpretation, and mi

nus the extensions to be described in chapter 6, both of which smooth out the 

implementation of the segmentation process. 

5.12 M A T E and the Compensation Method 

When MATE is applied to isolate a nonlinear element from the linear part of 

the network, and using connecting links with no resistance or voltage source, we 

obtain the EMTP compensation method [4]. 

5.13 Node Hiding and Element Models 

During tasks (3) and (4) described in Sec. 5.2, OVNI solves a form of Eq. (45) for 

the nodal voltages of the network. If some of those nodes could be hidden away 

from the integrator, OVNI, the latter's task would be a simpler and faster one. 

At some point a solution for those hidden nodes will be necessary. However, if 

the solution for the hidden nodes could be assigned to code written specifically 

for the topology and characteristics of the region comprising these nodes, two 

gains would be obtained: the hiding is in itself a form of segmentation with 

the advantages seen in Sec. 5.6; and the customized code would bring increased 

efficiency. 

But customized code sounds like anathema in a work set to achieve a gen

eral purpose simulator. This does not need to be so. The models for system 

elements22 include more often than not many nodes, a few of which are connec

tion nodes to other elements in the network, physical or externa] nodes23, the 

rest having been introduced by the modelling process, model or internal nodes2i, 

see Fig. 49. The element model is a region of the network with known topology 

and characteristics for which customized code can be written, and the internal 

nodes are good candidates to be hidden away from the main network solver, 

2 1 Actually, a complimentary form of the Diakoptics fundamental equations, since the origi
nal ones relate to loop currents method, and not to nodal analysis, as noted by Brumeller. 

2 2 See section 4.5.3.3 on page 46 for the multi-phase transmission line model, as an example. 
2 3 Also called nodes type a, or simply a-nodes, in this work. 
2 4 Also, b nodes. 
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Fig-. 49: Node Hiding: Internal nodes and external nodes. 

OVNI. But the hidden nodes have to have some impact on the network, that 

impact is studied in what follows. 

For a particular hidden-node region, let us identify the external node quan

tities by the subscript a, and the internal node quantities by the subscript b. 

The voltages25 of the external nodes of the region are in the vector [va] and the 

corresponding nodal currents26 in [ha]. For the internal nodes, voltages are 

and currents [/i0]. Nodal equations can be written for all those nodes: 

Gaa Gab 

Gba Gbb 

Now, for a moment, let us assume that the voltages of the external nodes are 

known (they are calculated by the integrator core, OVNI, and passed as data 

down to the hiding region code). From the second matrix equation in Eq. (75), 

h ] = [Gbb]-1
 ([h] - [Gba}[Va}) (76) 

This means that if the total current contributions to internal nodes, [fib], are 

known, the hidden-node region can use Eq. (76) to determine, from the given 

and known value of [va] the voltages of the internal nodes, [t/0]. Equation (76) 

2 5 W i t h respect to the reference node. 
2 6 Before hiding some of the nodes. 

Va ha 

Vb hb 
(75) 
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can be custom coded for the region (the element model). 

Let us now write the equation for the external nodes implicit in Eq. (75), 

[Gaa] [Va] + [Gab] [vb] = [ha] (77) 

Substituting the expression for internal nodes voltages in Eq. (76) into Eq. (77), 

[Gaa] [va] + [Gab] [Gbb]~l [hb] - [Gab] [Gbb]-X [Gba] [va] = [ha] (78) 

([Gaa] - [Gab] [G^]-1 [Gba]) [va] = [ha] - [Gab] [Gw]"1 [hb] (79) 

This means that the hidden-node region contribution to the external network 

conductance matrix is the modified matrix in Eq. (80) with dimension equal to 

the number of external nodes, a. 

[Gh

aa

dden] = {{Gaa} - [Gab] [Gbb]-1 [Gba]) (80) 

From Eq. (79), the hiding of the nodes modifies the current contribution 

from the hiding zone into the external nodes according to 

[hh

a

idden] = [ha] - [Gab] [G,*}-1 [hb] (81) 

Summarizing, the contribution of the region to the general network is: 

[Gh

aa

dden] [va] = Kidden] (82) 

As the general network solver, the integrator knows nothing about hidden 

nodes. Managing the matrices defined by Eqs. (80) and (81) is the sole task 

of the subregion's code, customized and optimized. At each time step, OVNI 

solves for all external nodes in the network, through topological and MATE 

segmentation schemes, according to the combined implementation described in 

the next chapter. Then, those external nodes voltages are passed down to the 

hidden-node regions (element models), which use Eq. (76) to obtain the internal 

nodes voltages, necessary to update the region's history sources. Next, the re

gion updates all its sources, independent and history ones, and accumulates the 

corresponding contributions to internal and to external nodes into [hb] and [ha] 
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respectively. Before releasing the contribution of the region to OVNI, the region 

corrects [ha] as in Eq. (81). Finally, the subregion checks for any internal topo

logical changes (switching) and produces and passes to OVNI the corresponding 

[G^ r f d e n] matrix. Given the reduced size of a hidden-node region, it is likely 

to include a small number of switches, which implies a few possible topologies, 

with a few possible reduced matrices [G^ 6 "] • This means that all those matri

ces can be precalculated and prestored before the actual simulation begins with 

enormous gains in speed, and only a minor penalty in memory usage. 

As an example of how element models can take advantage of node hiding to 

improve the overall performance of the simulator, part of the work described in 

this thesis included the implementation of an HVDC module model according to 

the guidelines described above. The resulting model and its implementation in 

OVNI are described in Chapter 6. To test the mentioned model it was necessary 

to create a basic firing-angle controller, which is described in Chapter 7. 

The manipulation described in Eqs. (75) to (79), but only for equation sys

tems where the equations to be eliminated have a zero right hand side, was 

introduced by G. Kron [7]. In this sense the reduction described in this section 

is a generalization of Kron's Reduction and such is the name used for it hence

forth, Generalized Kron's Reduction. The concept of node hiding is also used 

in other modelling approaches where the internal structure of the element is 

reduced down to its external nodes. For example, Marti's frequency dependent 

transmission line model [44], or the Ward Equivalent technique used in stability 

analysis [56]. The Node Hiding concept as presented here, however, does not 

have the limitations of the Ward Equivalent described in [56]. 

5.14 N o d e H i d i n g . A numerical example 

At this point, in order to clarify and settle ideas, a numerical example of the 

node hiding technique seems convenient. Consider the 4-node circuit in Fig. 50 

(where all values are either amperes or Siemens, as appropriate). To validate 

the solution obtained through node hiding, let us first solve the network with 
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reference 
hidingregion < 

Fig. 50: Complete network with the node hiding region delineated. External nodes: 
(1) and (2). Internal nodes: (3) and (4). 

standard nodal analysis. The equations for the complete system are: 

6 -1 -1 -2 ' Vl 3 " 

-1 5 -2 0 V2 10 

-1 -2 4 -1 2 

-2 0 -1 4 0 

(83) 

And the solution of this system defines the nodal voltages 

2.479 

V2 3.948 

V3 3.630 

2.147 

(84) 

Let us now use node hiding instead. In Fig. 51, the subnetwork chosen to be 

the hidden-node region (presumably an element's model) has its external and 

internal nodes clearly identified. 

In Fig. 52, the hidden-node region is represented as a black-box to emphasize 

the opacity of the zone as seen by the simulator, who is in charge of the external 

(and reduced) network, as seen in this figure. The contribution to the external 

nodes relayed from currents fed into internal nodes of the hiding region is, as 
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reference' . reference 
'„ hiding region 

Fig. 51: Hiding zone: an element's model. See external nodes (1) and (2), and internal 
nodes (3) and (4). 

hiding region 

Fig. 52: "External" network, as seen by OVNI, with hidding region represented as a 
"black-box". 

per Eq. (81), 

^relayed -1 -2 4 -1 
- l 

2 0.8 
Relayed -2 0 -1 4 0 1.066... 

amps (85) 

The external network, minus the hidden-node region (HR), has two nodes: 

(1) and (2), and the conductance matrix (also minus HR): 

3 -1 

-1 3 
[Gex] — (86) 
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The hidden-node region contributes the matrix [GHR] t o t n e external sys

tem. This matrix is computed at a preprocessing stage from the hiding region's 

"whole" matrix (the one that describes HR with all its nodes, and not connected 

to the outside world): 

3 0 ! -1 -1 

[GHR] — 

From Eq. (80), 

[GHR] — 
3 0 

0 2 

-1 -2 

-2 0 

0 2 -2 0 

-1 -2 4 -1 

-2 0 -1 4 

4 -1 
- l 

-1 -2 .1.4 
-1 4 -2 0 -0.8 

(87) 

0.93 
(88) 

The total external network is represented by the sum of [GEX] and [GHR]'-

[G] = 
4.4 -1.8 

-1.8 3.9333 
(89) 

Current contribution from HR is given by Eq. (81): 

0 0.8 0.8 
+ = 

5 1.06666 6.06666 
[h-HR] = 

The external solver receives Eq. (90) results and solves 

(90) 

4.4 -1.8 Vl 3 0.8 Vl 

= + -1.8 3.933 V2 5 6.0666 
(91) 

The external solver "sees" only Eq. (91), and computes: 

«i = 2.479 V 

v2 = 3.948 V 
(92) 
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Which are the same results obtained in Eq. (84) from the standard solution. 

At this point HR takes those values in Eq. (92) provided by the simulator and 

uses Eq. (76) to find its internal node voltages: 

3̂ 4 -1 "7 2 -1 -2 2.479 ) . 2.630 

U 4 -1 4 [ 0 -2 0 3.948 ) ' 2.147 
(93) 

All tasks in Eqs. (88, 90, and 93) are under the charge of HR, leaving the 

simulator's core the much lighter burden of solving Eq. (91). When HR is an 

element model, its topology is of predictable and limited change nature, ergo its 

matrices and operations in Eqs. (88, 90, and 93) can be greatly optimized. This 

will be examined further in chapter 9. 



6. SOURCES, LINKS AND EXPANDED M A T E 

6.1 In t roduct ion 

Two main issues of the solution are described in this chapter: the representation 

of current and voltage sources in OVNI; and an extension of MATE to handle 

more efficiently ungrounded voltage sources that are not part of a link. In this 

sense, this chapter deals with the first task of the simulator, as seen in Sec. 5.2 

6.2 Preca lcu la t ion of Source Values 

Sources in OVNI fall into one of these categories: 

• DC sources, 

• Time-periodic sources1. 

For the second category, periodic sources, determination of their values at 

each time step requires some computational effort (from a minimum of time-

boundary testing, in the case of a square wave, up to the expensive and sophis

ticated numerical involvement of a sine wave2) 

To reduce the impact of source updating, source values are calculated and 

stored in tables before the simulation begins. Those tables are made available 

to the integrator during the simulation. 

The first attempt to do this was to use one cycle of the source's signal. To 

represent one cycle of a periodic source with a period of T seconds, see Fig. 53, 

1 Sinusoidal, sawtooth, square wave, triangular sources, etc. 
2 On a Pentium II, a sine computation takes the numerical coprocessing subblock of the 

C P U up to 30 times that of a sum's [57]. 

82. 
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value 
(AA/) 

time axis 

^ \ n-th 
sample 

Fig. 53: The n prestored samples of a sinusoidal source. 

in a simulation with an integration step At, n samples are necessary, as given 

by Eq. (94), where "int" is the integer part function. 

This simplification, however, brings the problem of sample mismatch at the 

end of the cycle in cases where the integration step is not a divisor of the source's 

period. Observe sample n in Fig. 54, the last one of the source's prestored 

samples (if only one-cycle of the source is so treated). At the next integration 

step, identified in that figure as n+l, the integrator expects the correct value 

for the source, Kij/u- Instead, the table index wraps around and produces the 

value labelled Vwr(mg in the figure. 

The sampling mismatch is effectively reducing the frequency of the source's 

wave, and introducing higher frequency components. In short, this method 

distorts the signal of the represented source. 

The reduction in the source's effective frequency, in percentage, is given by 

Eq. (95), where n is the number of prestored samples as calculated by Eq. (94). 

(94) 

(95) 
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value 
(AA/) 

right 

/ wrong 

time axis 

Fig. 54: Wraparound of prestored source's samples. 

In a simulation with At — 50/iS, a 60 Hz source is represented by its n = 334 

samples. Its frequency decreases 0.2% in the process, down to 59.88 Hz. At 

this rate, in only ten cycles of simulation, the source's phase lags 7.2°. The 

additional distortion implied by the introduction of high frequency components 

is of relatively little consequence, being very small to begin with, and further 

damped by the frequency response characteristics of the integration rule used in 

the solution process, see § 3.4. 

To avoid the mismatch discussed above, the preprocessor in OVNI prestores 

in the source's table, not the number of samples that fit into one source cycle, 

but the number of samples n that fit in the least common multiple (LCM) of 

the source's period T, and the dominant integration step At, Eq. (96) 

Where, to make a valid use of the integer function "1cm", both T and At are 

truncated to microseconds with no fractional part. 

For instance, in the case of A i = 50/us, and a source frequency of 60 hertz, 

the preprocessor should store 1000 samples, and not just 334. That is, in this 

case it takes three source's cycles to resynchronize the precalculated table with 

the simulation discrete samples stream. But that table, in double precision 

n = 
lcm(r, Ai) 

A i 
+ 1 (96) 
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IEEE format, occupies more than 64 kilobytes. If the source is an odd one, 

with a frequency different from the rated frequency, Eq. (96) can be used. If, 

instead, the source is just one of many with that frequency in the network under 

simulation, it may be considered to change instead the integration step At up 

or down to the nearest divisor of the period associated with that frequency, 

Eq. (97). 

&tadj = (97) 
i n t (zb) 

For the same case introduced in the last paragraph, and using Eq. (97), an 

adjusted integration step could be calculated as Atadj — 50.048 or 49.898/is. 

Using this adjusted integration step reduces the number of necessary samples 

per source (to only 334 in the example that occupies us; i.e., in double precision, 

slightly more than two and a half kilobytes worth of memory). This is all 

accomplished without a significant change in the bandwidth of the simulation. 

also 
source _ current source 
node 

"from" f J\ 'to' node V y / 7 o o t e \ ^ ^ a / 

drain 
node 

Fig. 55: A current source in OVNI: its nodes. 

6.3 Current Sources 

The simulator uses a variant of nodal analysis to solve each one of the fragments 

into which the network has been broken by the multi-layer segmentation process 

described in sections 5.7 and 5.10. Nodal analysis accounts for current sources 

in a natural way, their values are computed at each time step, and those val

ues are duly accumulated into the corresponding nodal current vector —[ha] in 

Eq. (45)— at the proper time. 

The two nodes of a current source are identified, in this work, as the drain 
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node and the source node, according to Fig. 55. 

6.4 Voltage Sources 

In this work, voltage sources were the original motivation to explore Ho's mod

ified nodal analysis [54]. Later, in the light of MATE, new possibilities entered 

the picture. However, given the strict speed requirements on the simulator, ad

ditional options were explored and implemented. In OVNI different3 internal 

representations of voltage sources are used depending on the answer to these 

few questions: 

• Is the current in that source needed? 

• Is one of the nodes of the source connected to the ground or reference 

node? That is, the source is grounded. 

• Is the source part of a user-defined MATE boundary? 

In the next few sections, the different options used are introduced. 

6.4.1 Grounded Voltage Sources — G V S 

Inclusion of a voltage source in MATE'S solving scheme, § 5.2, creates a new 

link4 equation and its corresponding unknown current. Inclusion of a voltage 

source in Ho's modified nodal analysis [54] introduces the current in the source 

as an additional unknown, along with the corresponding equation. In short, 

a voltage source inclusion in OVNI's solution scheme seen so far expands the 

system of equations by one more row and one extra column. In exchange for the 

additional work the method delivers the current (and implicitly, the power too) 

for that voltage source. That is true even for grounded voltage sources (GVS)5 

3 All of this remains transparent to the user. 
4 Granting that the source is part of a segmenting user-defined boundary. 
5 A source connected between ground —or the reference node— and a certain node that is 

called here the GVS node or, more often, the &-node —k as in fcnown. 
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/ 2 3 

#ofGVS 
in subblock 

#nonGVS 
nodes in subblock 

* / 
[n „ J 
* nortorr 

1 2 3 

Fig. 56: Precalculated t ime matrices corresponding to grounded voltage sources i n a 
subblock. 

However, MATE's equations are redundant in the case of a GVS, since they 

imply calculation of the voltage of every node in the subblock, including the 

ungrounded nodes of GVS's; and the voltages of GVS-nodes are already known. 

So, in cases where neither current nor power in a GVS is needed, a different 

and more efficient path of computation is taken. 

First, we order the nodes in the subblock in such a way that all the nodes 

which are terminal to GVS's6 occupy the last k positions among the subblock's 

nodes. The other nodes in the subblock occupy the first u positions7. 

Nodal equations can be written for the subblock as 

Guu Guk vu hu 

Gku Gkk Vk hk 
(98) 

As Vk, the voltage vector of the GVS nodes with respect to the reference 

node, is known, the first row of Eq. (98) can be written 

[Guu][vu] + [Guk}[vk] = [K] 

[Guu][vu\ = [hu] - [Guk}[vk] (99) 

6 Labelled by O V N I known nodes or A>nodes 
7 Named by O V N I unknown nodes or u-nodes) 
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The product on the far right in Eq. (99) is the vector of Norton equivalent 

current sources corresponding to the k GVS in the subblock, feeding the u non-

GVS nodes, [hnorton]. 

Vectors [vk] and [hnortcm] = [Gufc][i;fc] are both precalculated and stored as 

matrices. The [ufc]'s precalculated matrix has as many rows as there are GVS 

nodes in the subblock, k. [/wtonj's precalculated matrix has one row per non-

GVS node in the subblock, u. Both matrices have as many columns as the least 

common multiple8, n, of the numbers ni, n 2 , . . . , of prestored samples for each 

GVS in the subblock. See Fig. 56. 

n = lcm(ni,n 2 ,n 3 , . . . ,nk) (100) 

6.4.2 A n example on Grounded Sources, M A T E versus N o r t o n 

To contrast the efficiency of the approach in § 6.4.1, when compared with MATE 

solution for grounded sources, a simple numerical example is included in this 

section. 

In the simple network with one grounded voltage source, GVS, shown in Fig. 

57, both solutions are compared. 

subblock A ground subblock B 

Fig. 57: Network with one grounded voltage source accounted for as a link. 

First, let us solve the problem considering that every voltage source in the 

network is a MATE link. This assumption produces the two subblocks outlined 

8 To avoid voltage distortion due to sample/step mismatch, as was seen in section 6.2 
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in Fig. 57, where subblock A is linked to ground by the 2V source/link and to 

subblock B. by the 3V source/link. 

The modified nodal analysis equations, reorganized according to MATE in

put requirements are in Eq. (101), where the first two rows correspond to sub-

block A, the next two rows to subblock B, and the last two rows to the links x 

and y. 

7 -3 0 0 1 0 0 

-3 3 0 0 0 1 v2 
0 

0 0 11 -6 -1 0 4 

0 0 -6 13 0 0 u4 -9 

1 0 -1 0 0 0 3 

0 1 0 0 0 0 Xy 2 

(101) 

Manipulating Eq. (101) according to MATE, § 5.10, produces 

1 0 0 0 0.2500 0.2500 Vl 0 

0 1 0 0 0.2500 0.5833 V2 0 

0 0 1 0 -0.1215 0 V3 -0.0187 

0 0 0 1 -0.0561 0 U 4 -0.7009 

0 0 0 0 -0.3715 -0.2500 2.9813 

0 0 0 0 -0.2500 -0.5833 ly 2 

The last two rows in Eq. (102) are MATE'S link equations that, once solved, 

yield the currents in the two links 

ix = -8.0354A iy = 0.0152A 

These link currents, inserted into the Thevenin equations represented by the 

four first rows of Eq. (102) result in the node voltages 

ui = 2.00517 u2 = 2.00007 

u3 = -0.99497 u4 = -1.15157 
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Now, if instead of making a link out of the grounded voltage source, subblock 

A absorbs and transforms it according to § 6.4.1 —the subblock's nodal current 

vector is null, since it is computed with the subblock disconnected from the rest 

of the network and there are no current sources in this subblock—. 

7 -3 0 

-3 3 2 0 
(103) 

This is the same as Eq. (98), from which the simplification in Eq. (99) is 

[7][fi] = [0] - [-3][2] (104) 

With this simplification of subblock A, Eq. (101) is reduced to 

7 0 0 1 6 

0 11 -6 -1 vz 4 

0 -6 13 0 -9 

0 0 0 0 lx 3 

(105) 

Thus the MATE equation in Eq. (102) becomes Eq. (106), where the link 

system of equations has been reduced in dimension. 

1 0 0 0.1429 0.8571 

0 1 0 -0.1215 Vz -0.0187 

0 0 1 -0.0561 -0.7009 

0 0 0 -0.2644 
-

2.1242 

This MATE system produces the same results reported above, minus the 

current through the grounded voltage source, but with fewer operations than 

were necessary to solve the original system in Eq. (102). 

6.4.3 Ungrounded Voltage Sources, U V S 

When an ungrounded voltage source occurs in a branch designated by the user 

as a MATE segmentation boundary (i.e., as a link branch), Fig. 58, the solution 

for the source falls in line with the basic MATE algorithm, as seen in § 5.10 on 

page 67. 
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ungrounded 
not-a-link 

ungrounded 
a-link 

O—1—W^~0—i—VA 

subblock A subblock B 

Fig. 58: Ungrounded voltage sources in OVNI: a) a link; b) not a link. 

If the ungrounded source, however, is not within a link branch, Fig. 58, its 

solution falls with the Extended MATE algorithm, seen in § 6.5 on page 92. 

6.4.4 Voltage Sources "Ownership" 

In a network that has been broken, first into blocks (topological segmentation, 

§ 5.7), then into subblocks (MATE segmentation, § 5.10), the issue of where 

voltage sources belong is not trivial. From what was said in § 6.4.1 and § 6.4.3, 

the dealing with voltage sources belongs with the solution of a block or of a 

subblock, as follows: 

• Grounded Voltage Sources (GVS) belong inside the corresponding sub-

block, which is the responsible for including them in the solution. 

• Ungrounded Voltage Sources (UVS) Two cases: 

— Link Sources (ULS). In the case when the source is part of a MATE's 

user defined boundary, the source is dealt with as one of MATE's 

links and handled directly by the enclosing block. 

- Non-link Sources (UNLS). In the case when the source is not part 

of a MATE's user defined boundary, the source, obviously, belongs 

inside a subblock, and it is solved for inside that subblock. 
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Voltage sources 
grounded — 

ungrounded 

in subblock. 
link 
not link 

in block, 
in subblock. 

Fig-. 59: Voltage sources "ownership", in OVNI. 

Figure 59 summarizes this section. 

6.5 Extended M A T E 

Before the need for an extension to MATE is established, let us begin by revis

iting its imagery. In this section, the subscript convention introduced in § 5.9 to 

indicate a matrix or vector dimensions is not used; subscripts to matrices and 

vectors indicate the subblock they belong to. 

Fig. 60: KCL nodal equations and KVL voltage sources equations, getting ready for 
standard MATE. 

Consider a topological block that has been segmented into two subblocks by 

a set of MATE'S links. The block's nodal K C L 9 equations plus its links K V L 1 0 

can be represented pictorically as in Fig. 60. A subblock A is in search of its 

nodal voltages [va], and is described by 

• its bus admittance matrix [Ya], 

• its nodal currents vector [ha], 

9 Kirchoff's Currents Law. 
1 0 Kirchoff's Voltages Law. 
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• and its connection matrix [Ctt]. 

The block works to determine its links currents [ix]. The links themselves are 

described by 

• the links resistance matrix11 [Rx], and 

• the links voltage sources vector [Vx]. 

After a preprocessing stage outlined by chapter the subblock A is described 

by its bus impedance matrix [ZA] (the inverse of [Vo]), its Thevenin impedance 

matrix [ZTO] (i-e-, the product of [ZA] and [CA]), and its Thevenin voltages vector 

[Ea] (product of [ZA] and [ha]). This convenient way of MATE's for identification 

of matrices and vectors in the problem stems from a basic assumption: that a 

subblock can only contain current sources or GVS's. 

In this section, MATE is extended to override those restrictions; albeit at 

the price of losing the physical meaning of matrices and vectors in the solution. 

Let us first see what the extension is, then explore its use in a short numerical 

example. 

The extensions necessary to deal with a subblock that includes UVS's —like 

the subblock A in Fig. 62— are (for that subblock, see Fig. 61) 

• Extend its nodal voltage vector [va] with a vector of UVS's currents at the 

bottom [isa], to produce the extended vector [v*]. 

• Extend its nodal current vector [ha] with a vector of UVS's voltages at the 

bottom [vsa], to produce the extended vector [hi]. 

• Extend its connection matrix [Ca] at the bottom with as many null rows 

as there are UVS's in the subblock, to generate the extended connection 

matrix [C*]. 

1 1 A diagonal matrix with one entry per link. 
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extended 
Ya matrix 

extended 
vectors Ca, Va, ha 

Fig. 61: Extended matrices and vectors for the subblock with UVS's. Extended 

• Extend its admittance matrix [Ya] with the internal UVS's connection 

matrix [Csa], as in Fig. 61, to generate the extended matrix [Y*]. 

• Finally, ignore the names of vectors and matrices in this subblock and build 

the extended matrices indicated in what follows —whose names are kept 

for the sake of mnemotecnic association, since they are not impedances or 

voltages anymore—, and then proceed as in standard MATE. The matrices 

are: 

- Extended or pseudo bus impedances, [Z*] = [Y*]~l, 

- Extended or pseudo Thevenin impedances [Z^a] = [Z*][C*], a n d 

- Extended or pseudo Thevenin voltages [El] = [Zl][h*a]. 

6.5.1 Ex tended M A T E : A numerical example 

In Fig. 62, a single block network has been broken into two subblocks by the 

4-ohm 3-volt link. The subblock on the right, A, includes an ungrounded voltage 

source (UVS). In this example, there are two voltage sources: one is part of a 

link, the 3-volt source; the other, is ungrounded and part of a subblock. 

MATE. 
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ungrounded 
not-a-link 

ungrounded 
a-link 

Fig. 62: Subblock with and ungrounded voltage source. 

(107) 

Introducing the currents in the voltage sources, ix and ik, as in the figure, 

the nodal equations are 

Node (1): 2ux + tx = 5 

Node (2): 3v2 - ix - ik = 0 

Node (3): 5v3 - 3v4 + ik = 0 

Node (4): 3u4 - 3u3 + 4u4 = 4 

The voltage sources introduced two unknowns, their currents ix and ik. They 

introduce two equations as well 

UVS source: v2 — v\ = 5 

Link source: v2 — v% + Mk = 3 

Solving the system of seven equations comprised by Eq. (107) and Eq. (108) 

we obtain 

(108) 

v4 = 0.7573 V; 

ix = 8.9587 A; 

ik = 0.1033 A. 

The equations, written in matrix form and including the UVS equation in 

subblock A's equations according to extended MATE, are 

ui = -1.9793 V 

v2 = 3.0207 V 

t>3 = 0.4337 V 
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2 0 1 0 0 0 Vi 5 

0 3 -1 0 0 -1 v2 
0 

- 1 1 0 0 0 0 lx 5 

0 0 0 5 -3 1 0 

0 0 0 -3 7 0 Vi 4 

0 1 0 -1 0 4 3 

(109) 

Premultiplying the rows corresponding to subblock A by the pseudo bus im

pedance matrix of the subblock; and also premultiplying the rows corresponding 

to subblock B by the subblock's pseudo bus impedance matrix, Eq. (109) be

comes 

1 0 0 0 0 -0.2 Vl -2 

0 1 0 0 0 -0.2 V2 3 

0 0 1 0 0 0.4 lx 9 

0 0 0 1 0 0.2692 V3 0.4615 

0 0 0 0 1 0.1154 Vi 0.7692 

0 1 0 -1 0 4 ik 3 

(110) 

The link matrix in this case has a single element. It is calculated from the 

pseudo-Thevenin impedances to produce the system of equations, 

1 0 0 0 0 -0.2 Vl -2 

0 1 0 0 0 -0.2 V2 3 

0 0 1 0 0 0.4 lx 9 

0 0 0 1 0 0.2692 V3 0.4615 

0 0 0 0 1 0.1154 Vi 0.7692 

0 0 0 0 0 4.4692 ik 0.4615 

(111) 

From the last equation, the link's current, is readily obtained as 

0.4615 
ik = —— = 0.1033 A 

4.4692 
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That value is then substituted in the other equations to determine the re

maining voltages and current. This process produces the same results for nodal 

voltages and currents in voltage sources (links' and UVS) as the ones obtained 

at the beginning of this section from the network equations, as expected. 

Vl -2 -0.2 -1.9793 " 

3 -0.2 3.0207 

. ^ — 9 — 0.4 [0.1033] = 8.9587 

0.4615 0.2692 0.4337 

0.7692 0.1154 0.7573 



7. SWITCHES AND ASYNCHRONOUS COMMUTATION 

7.1 In t roduc t ion 

When a switch operates, it alters the topology and size of the network. When 

a switch opens1, it creates two nodes where there was only one. When a switch 

closes, it collapses one of its two nodes. In this chapter, representation of swi

tches and their associated switching operations in OVNI are presented. The 

pros and cons of node collapsing are revised. 

In real time simulations of the kind targeted in this work, the calculated 

samples of some signals are issued to the external devices2 in an evenly time-

spaced stream of samples. More often than not, open switching operations do 

not occur at the moment of issuing the samples, i.e. asynchronous commutation, 

Fig. 63. A technique to cope with the voltage or current spikes generated by 

those asynchronous opening of switches is introduced in this chapter. 

signal (current) 
stream of synchronous samples 

issued by the simulator 

Fig. 63: Samples output stream, and asynchronous commutation. 

1 A n ideal switch. 
2 D / A , amplifiers, etc. 
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7.2 Swi t ch Clos ing , Col laps ing Nodes 

If switches are modelled as either ideal conductors —when closed—, or as perfect 

insulators —when opened—, the general topology of the network (as reflected 

in the system's matrix) is modified with each switching operation. That is, the 

number of nodes in the problem is reduced each time an ideal switch closes, 

and viceversa. In non real-time simulations, such situations can be exploited to 

speed-up those simulation intervals when switches are closed. In this case, the 

system becomes somewhat smaller and so does its matrix, which is now easier 

to triangularize or to invert, as necessary, Fig. 64. 

signal 

t 

datum issued as 
, computet 

switch operation 
collapsing or birth of nodes 

soon at 
1 

•it is 

h 
y ' _ *- y * y ' (7/770 3X7S 

cpt cpt cpt cpt 

computation time (cpt) 

Fig. 64: Short and long integration steps. Non real-time simulation. Data are issued 
as soon as they are available. 

The integration step that takes the longest time to compute is the one that 

takes precedence over all others in a real-time simulation. That is, to preserve 

the frequency spectrum of the output signal channeled through the digital-to-

analog converters, amplifiers, and out to the real world, samples are issued at 

equally distanced intervals along the time axis, as in Fig. 65. In that figure some 

integration steps take longer to compute than others (long steps), but there is 

always a filler time slice added to wait for the real time deadline. That filler is 

used by the hardware to transmit the data. 

It follows that a main target in this project has been the reduction of the 

long integration step depicted in Fig. 64. Precalculation of matrices, as was seen 



7. Switches and Asynchronous Commutation 100 

in sections 5.3 to 5.10, was advanced with such a goal in sight. The collapsing 

—or re-insertion— of nodes introduces an overhead on the long integration steps 

that, in theory, could be compensated by the reduction in computation burden 

during the short integration steps. However, as the length of that long step is the 

determining factor of the bandwidth of the simulation, that overhead becomes 

overwhelming. 

signal 

real time deadline 

computation time (cpt) 

Fig. 65: Short and long integration steps. Filler time slices. Data output stream in a 
real time simulation. 

Thus, in real time simulations it may not be to our advantage to reduce 

the number of nodes and the order of the system's matrix. In fact, such a re

arrangement is a costly one because of the management overhead (i.e., nodes 

reallocation, matrices re-dimensioning, and so). Also, in our efforts, addresses 

are sometimes precalculated for components in structures and arrays, and off

setting such positions in memory, when the number of nodes is reduced —or 

increased— during the simulation, carries with it a penalty in execution time 

terms. 

The approach used has been instead to distribute the computational burden 

more evenly over the integration steps. The short steps become longer, but 

the dominant long steps become much shorter, with an improved simulation 

bandwidth as a result. In short, the size of the matrices, and the number and 

position of allocated nodes, remains unchanged along the simulation as seen 

in § 7.4. 
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7.3 Expanding a System of Linear Equations 

As a basic framework, let us consider the possibility of introducing additional 

pseudo equations —and their corresponding pseudo unknowns— into systems of 

linear equations. The added equation will introduce a repeated unknown, that 

is, an unknown that is already in the system and associated with an existing 

equation. In this way, the new pseudo unknown solution value equates the value 

of the unknown it is mirroring. Let us clarify this with an example. 

Consider a system of algebraic linear equations represented by the matrix 

equation in Eq. (113). The system's solution is included to the right of the 

equation. 

10 -5 -3 X\ 10 Xi = 1.5364 

-5 7 -1 %2 = 0 => x2 = 1.0927 (113) 

_ -3 -1 9 . X 3 . . ~ 6 . £3 = -0.0331 

Let us introduce a pseudo unknown, X 4 , that mirrors x2. This is done by 

means of a fourth equation whose mutual terms with all the equations but 

that of the mirrored unknown are the same as in the original equation. The 

new equation has no coupling with the original equation and viceversa. The 

coefficient of the pseudo unknown in the new equation is equal to the coefficient 

of the mirrored unknown in the original equation. The expanded system is 

shown in Eq. (114). 

10 -5 -3 0 

-5 7 - 1 0 

- 3 - 1 9 0 

-5 0 - 1 7 

As expected, the value of the pseudo unknown £ 4 , is the same as that for 

the legitimate unknown x2. The introduced pseudo unknown could well be the 

voltage of a would-be collapsed node four, and as such it would share the same 

voltage as node two. 

Xi 10 Xi = 1.5364 

X2 0 x2 = 1.0927 X2 

X3 
-6 X3 = -0.0331 

X 4 0 X 4 = 1.0927 

(114) 



7. Switches and Asynchronous Commutation 102 

7.4 Clos ing a Swi tch wi thout collapsing a Node 

In the previous section, the possibility for introducing fictitious equation-unknown 

pairs that mirrored equations-unknowns already in the system was presented. 

In this section, that possibility is used to keep constant the dimensions of the 

network matrices when there is a switching operation. This constancy allows 

for a simplified and more efficient addressing scheme for use of precalculated 

matrices in the subblocks of the network. 

In a network, when an open switch between nodes i and j closes, the only 

two equations to modify are the equations for those two nodes. The process can 

be summarized more clearly in pseudo code as follows. Let [A], be the nodal 

analysis bus conductance matrix associated to an n node network. If nodes i 

and j are welded together by the closing of a switch, each element akp of matrix 

[A] changes according to the process described in Fig. 66. 

for k = 1 . . . n; that is, for every row k 
if k 7̂  i and k ^ j then 

O'ik Ojfc + (Xjk 
Ojk <— Oik 

endif 
endfor 
G>ii ^ da ~\~ Ojj 2(Zjj 
Ojjj ^ da 
for every do 

aij f- aji«— 0.0 

Fig. 66: Closing a switch between nodes i and j. 

Coefficients for self terms for both nodes i and j, an and a;j-, become the 

sum of their former values minus the former coupling between the two nodes, a^ 

and aji. Then, the coupling between the two nodes becomes zero and all other 

elements in both equations are now the sum of the equations' corresponding 

coefficients. 
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7.4.1 A Numerical Example 

In this section, a numerical example illustrates the procedure described in § 7.4 

to avoid collapsing nodes when a switch bridging them closes. Consider the 

circuit in Fig. 67, with a switch between nodes 2 and 4 originally open. 

Fig. 67: Case to illustrate how to avoid collapsing nodes. 

Let us begin writing the nodal equations before the switch closes. All four 

nodes display linearly independent equations, Eq. (115). 

(115) 

5 -3 0 0 V\ 0 

-3 20 -5 -8 -9 

0 -5 11 -6 v$ 7 

0 -8 -6 21 Vi 17 

Once the switch closes, if we choose to collapse the two nodes connected by 

the switch, 2 and 4, into a single one, 2, the network has now only three nodes, 

and its nodal equations are in Eq. (116). The solution to this system is on the 

right of the equation. 

5 -3 0 Vl 0 

-3 25 -11 V2 = 8 

0 -11 11 _ _ 7 _ 

vi = 0.7377 V 

v2 = 1.2295 V 

i/ 3 = 1.8659 V 

(116) 

Applying now the procedure that was described in § 7.4 to keep constant 
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both the number of nodes and the dimension of the matrix in Eq. (115) produces 

Eq. (117) that correctly predicts that the voltages of nodes 2 and 4 will be equal 

once the switch is closed. Thus we have 

5 -3 0 0 ' Vl " 0 ' = 0.7377 V 

-3 25 -11 0 v2 
8 v2 = 1.2295 V 

0 -5 11 -6 Vi 7 —r vz = 1.8659 V 

-3 0 -11 25 
. V i . 8 = 1.2295 V 

(117) 

Let us now recapitulate. It goes without saying that solving the smaller 

system in Eq. (116) is simpler that solving the larger system in Eq. (117). How

ever, as it is the size of the larger of the two the one that imposes its weight 

on the bandwidth of the real time simulation and, more important, it is the 

additional burden of building, triangularizing, and changing addresses for the 

smaller matrix that is being avoided here. OVNI uses the constant size subblock 

procedure in § 7.4 in its preprocessing stage to generate and prestore constant 

size subblock matrices of the type of the one in Eq. (117). 

7.5 Switch openings 

In power networks, when an AC-switch is signaled to open, it waits until the 

next time that the current through it goes through zero3, see Fig. 68. 

In EMTP simulations the detection of the zero crossing occurs when the 

current through the switch waiting for opening changes sign, at b in Fig. 69. 

To avoid computational overhead, the actual zeroing of the current through 

the switch is not made until the next integration step after the zero crossing 

is detected, at c in Fig 69. This is an acceptable and efficient solution, given 

small enough integration steps, in most cases. In power electronics circuits, 

however, and in situations where the slope of the current just before the change 

of sign is large, this approach triggers spurious voltage spikes in highly inductive 

3 We will refer to this moment as the zero crossing of the current in the switch. 
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current through 
a switch 

4 

Fig. 68: Switch opening event: signal, and actual opening. 

neighbouring networks. 

To perceive the way such spurious spikes come to be, consider a situation 

where the current slope in Fig. 69 between points a and b is very steep. When the 

zero crossing is detected at point b, the value of the current has already drifted 

far away from zero4. If that value at b is issued to the rest of the network as the 

current in the switch, when the current is zeroed at c, the effective derivative of 

the current will be too big. That high current derivative is bound to produce 

voltage spikes in nearby inductive elements. Such was the case of the HVDC 

4 Actually, under a rapid changing current situation like this, the current at o is also far 
from zero, and nulling the current at b would still produce voltage spikes, but those would be 
legitimate voltage spikes that should appear in the actual circuit. 

current through a switch 
that is waiting for an opening 

a\ 

time 

datum issued at 
time b b 

Fig. 69: Zero crossing and actual opening of a switch. 
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Fig. 71: Voltage before smoothing reactor. 

rectifier bridge illustrated in Fig. 70, where the voltage at the load, and the 

spikes produced by the solution method, are illustrated in Fig. 71. 

In short, the simulator has to honor the request to open the switch as soon 

and exactly at the point where the zero crossing occurs. As the zero crossing is 

not evident to the simulator until the change of sign is detected, the zero crossing 

will already be in the past. A possible solution, in non real-time simulations, 

is to backtrack to the actual moment when the zero crossing occurred [57, 58], 

and issue the data at that particular moment in time, with the time stamp of 

the actual zero crossing itself. The result is a shortened integration step right 

at the opening of the switch. After that, the simulation proceeds at the regular 



7. Switches and Asynchronous Commutation 107 

sk 
fo 

1 

jnai to watch 
rzero crossing 

ze 

V / 

•o crossing 

^ \ 
\ > 

detected J? 

A / 

At 
A 

3W shifted train of 

At 

A 

samples 

A 

sk 
fo 

1 

jnai to watch 
rzero crossing 

ze 

V / 

•o crossing 

^ \ 
\ > 

' : • 

samples 

A 

V Y K y — t i m e 
At At ^ 

Fig. 72: Non real time backtracking. 
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Fig. 73: Simple non regressive backtracking. 

integration step; i.e., all future samples are slightly shifted to the left, Fig. 72. 

7.6 Asynchronous Commutation in OVNI 

In real-time simulations, however, it is not possible to go back in time, to back

track. In OVNI a compromise was made, see Fig. 73. Instead of releasing the 

completely wrong value at b1, a lesser evil approach is taken, the correct value 

at the zero crossing, Y(b) is issued slightly later, at b'. 

But even this can be too expensive. To obtain the data at the zero crossing, 

b in Fig. 73, not only the trivially zeroed current in the switch in necessary, but 
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first attempt, not re/eased 

second attemp 
(an expensive step) 

Fig. 74: Accurate but too expensive backtracking. 

the voltage at every node, and the history sources —and any other sources as 

well— at the same point b. In short, we could go back to a, and advance by the 

now known smaller Atshort to point b. 

But to do this, the network matrices would need recalculation since they 

depend on the integration step size. As the reduced integration step Ats/^ 

size is not known before the simulation, such matrices cannot be precalculated. 

That is, two complete step computations are necessary to produce the data to be 

issued at b —one of those computations is even more expensive than a regular 

one—. As a result, the bandwidth of the simulation is likely to fall to half 

its targeted value —far less, actually, given the additional overhead of matrix 

calculation and triangularization or inversion—. 

After the data just calculated, at b, is issued at b', the simulator would 

have to advance the enlarged integration step A t / ^ to fall back in step (at c) 

with the real time samples stream, Fig. 73. This results in another expensive 

recalculation of matrices. See Fig. 74 

A simpler and shorter approach is taken by OVNI. A linear interpolation of 

voltages and history source values between points o and b' produces the state 
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a 

regular step 
(detects zero crossing) 

/ regular advance 
/ A to pivot point Qk 

back to 
regular steps 

/ A 

backward forward 
linear interpolation linear extrapolation 

Fig. 75: BIFE: Backward interpolation, forward extrapolation. 

of the network at b, the zero crossing, much faster. The problem is now how 

to advance from b up to c in Fig. 73. One possibility, see Fig. 75, is to use 

the available matrices for A i and advance computationally from b to d, and 

then use linear extrapolation to reach the values needed at c, where they are 

issued. Then the simulation resumes. Such a solution produces satisfactory 

results and was reported in [35]. A disadvantage with this technique, however, is 

the prediction involved in the procedure (even though small). An improvement 

to that technique, which does not involve prediction is presented next. This 

technique will be called the inverse Critically Damped Adjustment, inverse CDA 

or "ADC, or simply "DSDI" (Double Step Double Interpolation). The process 

is described below. 

7.6.1 Doub le Step-Double Interpolat ion, DSDI 

OVNI uses, as was seen in § 3.5, the backward Euler integration rule5 to dis

cretize the equations of the network. 

From chapter 4, let us compare the discrete time equivalent conductance of 

5 Abbreviated in what follows as BE. 
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an inductor, L, in a simulation with an integration step, At, where BE was used 

to discretize the differential equations, Eq. (118), 

with the equivalent conductance produced by the trapezoidal rule of integration6, 

for the same inductor using the same integration step, Eq. (119). 

It follows that, for the inductor, TR produces a conductance half the value 

of that produced by BE. But this can also be interpreted as if one uses an 

integration step twice as big with TR than with BE, both rules produce the same 

equivalent conductance [10]. This situation applies for all discretizations in the 

network and we can say that if one uses an integration step twice as big with 

TR, than with BE, both rules produce the same network matrices. 

Up to the zero crossing, OVNI has been integrating with BE, and its as

sociated precalculated network matrices. OVNI is at b—after the backtracking 

obtained with linear interpolation between a and V—. Now, using now a double 

sized integration step, and TR as integration rule, it advances past c, up to d in 

Fig. 76 with the same precalculated matrices already available. The next output 

point, c, is reached by a safe interpolation between b and c'. 

7.7 D S D I ' s O V N I Mod i f i ed Tasks Schedule 

To accommodate for the double step double interpolation scheme (DSDI), the 

solution tasks described in § 5.2 need to be revised and extended. In particular, 

the updating of history sources —as a request issued by the simulator to the 

element models— has to include additional functionality, as follows. 

Refer to Fig. 77, where a flowchart of the tasks of the simulator, which in

cludes DSDI, is illustrated. The best way to describe the operation of the DSDI 

as implemented by OVNI is to go through the flowchart. First —assuming that 

6 The trapezoidal rule of integration is referred to in what follows as TR. 

At 
9BE = —r (118) 

At 
(119) 
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regular step 
(detects zero crossing) 

backward 
linear interpolation 

long forward step 
with trapezoidal rule 

back to 
regular steps 

A /. A 

backward 
linear interpolation 

Fig. 76: DSDI used in OVNI. The most expensive step takes one regular integration 
step with precalculated matrices, plus one inexpensive linear interpolation. 

all history and independent current sources have been evaluated already, or given 

initial values if this is the first time step—, accumulate nodal currents into the 

vector [Eh]. Second, solve the nodal system of equations, [G][v] = [T,h], for the 

external nodes voltages, v. Third, check to see if this is the time for a double 

step —that is, if flag interpolateDoubleStep7 is set—. Let us assume, in this first 

run, that this is not the case, that this is a regular step. Fourth, update ele

ment history sources for the next step. Then determine internal node voltages, 

and let the elements check for internal switch opening operations. If such an 

event occurs, the corresponding element sets a flag interpolate*, and determines 

the percentage of backtracking necessary to hit the exact point where the zero 

crossing occurred in the current through the just opened switch. That percent

age9 is bt. As part of the same block in the flowchart, a separate method is 

activated, that of checking for switch opening events in the prescheduled events 

7 Represented in the flowchart by an asterisk enclosed into a circle. 
8 Represented in the flowchart by an asterisk. 
9 Actually it is a per unit value. See next section for a detailed discussion of this item. 
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for every 
time step 

\ 1 

(1) Accum 
cur 

ulate nodal 
rents. 

\ I 

(2) Solve for nodal 
voltages. 

yes 

(4) Update history 
sources. . w 

-> 7k 
-> bt 

(5) 
yes 

)fc "interpolate", i.e., activate 
the first half of the DSDI 
procedure. 

'interpolateDoubleStep", i.e., 
activate the second half of 
the DSDI procedure. 

(9) Interpolate for 
voltages in double step 

1/2 -bt/2 
c c 

(10) Interpolate forh 
and advance single step 

Clear® 
May set* andbt 

- if it detects zero crossing 
in a current through a switch 
waiting to be opened, activate 
the % flag, and compute backtrack, bt. 

drops the just calcu
lated histories and 
interpolates between 
the previous two. 

(7) Interpolate for voltages 
K. bt 

NJ 

A/ 

(8) Interpolates forh 
and advance double step\ 
Clear M / 2dt 

Set (g) M -

Fig. 77: OVNI's modified flowchart to include DSDI. Elements handle three instances 
of their histories: h n e x t , h n o w , / i & e / o r e - When they "decide" to backtrack, 
they discard hnext, and interpolate between the other two. 
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list —either with the input data case, or by a controlling device under test—. 

If an external switch opening is detected, a corresponding bt backtracking is 

calculated, along with the setting of the same interpolate flag. Fifth, check if 

the interpolate flag is set, that is, if a switch opening operation was encoun

tered in the previous task. In this first run let us follow the main path of the 

flowchart; i.e, assume no switch opening was met, then: Sixth, the node voltages 

and any other output variables are made available for the D/A converters and 

amplifiers for output. Input logical signals from the real world are received and 

the corresponding switching events are scheduled by the event handler. 

Let us assume instead that a switch opening occurred in the fourth task 

above, then the test in the fifth task will branch the execution into: Seventh, 

if several switches opened, use the backtracking percentage bt, corresponding to 

the zero crossing that occurred the last. Using the last two calculated values 

for nodal voltages, interpolate for the ones corresponding to the moment of 

the chosen zero crossing. Eighth, request each element to discard the most 

recently calculated history sources values, and interpolate between the previous 

two values —which the element has to keep at each time step—. The element 

interpolates too for internal nodes voltages and from that interpolated point in 

time updates the history source advancing with the formula corresponding to 

the trapezoidal rule of integration; i.e., a double step (step (3) in Fig. 76. The 

integrator clears the interpolate flag, and sets the flag interpolateDoubleStep. 

Now, task number six outputs the voltages and signals just interpolated (value 

at point b' in the figure of reference). 

Now the simulator is at the top of the flowchart again, but with a set inter

polateDoubleStep flag. It goes through tasks number one and two, and obtains 

external node voltages at point d in Fig. 76. When the simulation reaches task 

three this time, it branches into tasks number nine and ten, following a clearing 

of flag interpolate by the simulator, it performs a new double set of interpolations 

—but using not bt, but [| - —: one interpolation for external node voltages, 

and another for the elements history sources and internal node voltages. From 
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the interpolated values of their history sources, and using the backward Euler's 

rule of integration, the elements advance a single step and reenter synchronism 

with the output stream of data. The elements, and the switching events han

dler, check for any switch opening occurring between the point b in F i g . 76, 

and the recently interpolated values. If a switch opening condition is met, the 

corresponding element at c, or the switching events handler, reactivates the flag 

interpolate. The simulator now clears flag interpolateDoubleStep, which brings 

the simulation back either to the normal backward Euler's single stepping — i f 

interpolate was not just set—, or to the first half of the D S D I procedure — i f an 

A C switch opening was just detected and the interpolate flag was activated—. 

7.8 Single Step and Double Step Interpolation Details 

Only A C switches waiting for an opening operation have their currents monitored 

for a zero crossing, either inside the model where they reside, or among the 

corresponding block's links, or even perhaps wi th one of a subblock's switches. 

D C switches operate synchronously wi th the simulation stream and are not 

subject to the problems tackled by the D S D I procedure. 

When an A C switch has been "marked" for opening, its model (if it is part 

of one), or the switching events handler of the simulator (if it is not), keeps a 

computational eye on its current waiting for a zero crossing. Such a current 

wi l l be referred to, in what follows as the reference current. In F i g . 78a, a zero 

crossing in a reference current has just occurred between points o and 6; i.e., 

between values ra and r-(,10. How far back into the last integration step the zero 

crossing, and the interpolation, w i l l have to go is given by the backtracking, bt. 

bt = — ^ — = = 0.25 (120) 
r b - r a -12 v 

Once a backtrack has been found necessary, either in tasks four or ten in 

1 0 In the first implementations of OVNI—before DSDI—, this zero crossing was detected by a 
painful extraction of the sign bit within the I E E E double precision floating point representation 
of both values, and a subsequent digital and operation. Given the relative timings of Intel's 
Pentium fmul, floating point multiplications, a simple test for ra x rb < 0 is fast enough. 
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Fig. 78: Linear interpolation between points (a, r a ) and (6, rb). 6t is the per unit 
backtracking necessary. 

Fig. 77, all other variables (voltages and history source values) are interpolated 

for in tasks seven and eight, according to Eq. (121) and Fig. 78b. 

yc = Vb + (ya - yb)bt ( 1 2 1 ) 

Then, at the next pass through the loop in Fig. 77, after voltages and history 

values have already been determined for the double step point d, 

in Fig. 79, an interpolation is performed in tasks nine and ten, with a modified 

backtrack factor dbt that relates to the available bt in Eq. (120) above according 

to Eq. ( 1 2 2 ) , using the same form of Eq. ( 1 2 1 ) . Thus 

(1-W)A< = 1 W 
2At 2 2 v ' 
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Ve = Vd + (Vc ~ Vd)dht (123) 

Finally, if during task number ten a new switch opening is detected between 

b' and c in Fig. 79 u, a modified backtracking factor, mbt is established in the 

same way as bt was obtained in Eq. (120). 

1 1 Not between b' and the point obtained at the end of the double step advance, point c' in 
Fig. 76. 
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8. OVNI E L E M E N T MODELS 

8.1 In t roduct ion 

Several new models developed during this project allowed for the testing of 

OVNI's performance under the two test cases targeted in chapter 2: protective 

relay testing, and HVDC controller testing. This part of the report describes 

those models. 

The models are: 

• metal oxide varistors (MOVs) already described in § 4.5.9 on page 51; 

• measuring transformers, introduced in § 4.5.10 and detailed in the follow

ing two sections, § 8.2 and § 8.3; 

• HVDC modules, detailed in chapter 9, included to illustrate the general for

mat that element models developed for OVNI should follow, in particular 

that model shows how to implement the "node hiding" concept introduced 

in this thesis, § 5.13, inside a model to streamline the simulation; 

• a simplistic HVDC controller model was developed only to explore the 

HVDC module functionality, and is described in chapter 10 as an example 

of an OVNI model that interacts directly with another element model, all 

within the frame of OVNI's solution. 

8.2 Cur ren t Transformers 

A non-iterative model for the current transformer (CT) that incorporates the 

saturation characteristics of the CT's core was presented in [53]. In this model, 

the secondary current of the CT, is, is calculated from the primary current, ip 
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—determined by the integrator core—, and from the present saturation state of 

the CT magnetic core. 

Fig. 80: Equivalent circuit of current transformer (minus the ideal transformer) re
ferred to the burden side. 

A. Equivalent Circuit 

Figure 80 shows an equivalent circuit of the current transformer with all quan

tities referred to the secondary side. In that figure: 

• i'v— primary current referred to the secondary side. 

• %Ft— current in phase with the fundamental component of the voltage in

duced in the core; i.e., current through resistor Rpe, for the approximation 

of iron core losses. 

• im= magnetizing current through non-linear inductor. 

• is= secondary current. 

Since the CT perceives its primary current as applied by a current source, 

the primary leakage impedance, Z\, does not affect the results; therefore it is 

not needed. 

The current in the primary can be written as the sum of three component 

currents, Eq. (124). Each of those components can be expressed as a function 

of the flux linkages in the transformer core, A, which leads to a single equation 

for is (the output of the model) as a function of i'p (input from the integrator). 
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i'P = *Fe + im + h (124) 

B. Core Loss Branch 

The voltage across the core loss resistance is also the voltage induced by the 

magnetic flux linkages, A, in the core. 

v = RFe • iFe (125) 

» " § <126> 

Integrating Eq. (126), then applying the trapezoidal rule to approximate the 

voltage integral, and finally substituting Eq. (124) into the resulting expression, 

the right-hand side of Eq. (126) becomes {Xnew - A0w)/(At); and the left-hand 

side becomes RFei^Fe-new + i>Fe-oid)/2, where subscripts "new" and "old" refer 

to the values at the present time step t and the preceding time step (t — Ai), 

respectively. 

^Fe-new = C-Fe. ' Xnew + hpe-old (127) 

where hpe-oid is a history term evaluated as follows 

h>Fe-old = —CFe ' XFe - iFe-old (128) 

where the constant coefficient is defined as 

c* = jds ( 1 2 9 ) 

C. Magnetizing Branch 

The non-linear relationship between magnetization current, im, and flux link

ages, A, for the magnetizing branch can be approximated by the piecewise linear 

curve, Fig. 81. 

With the operating point in the linear segment starting at (A s t a r t , istart), a n d 

defining L as the slope of that segment, 

im — istart = ~f ' (A — Ktart) (130) 
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Fig. 81: Piecewise linear representation of magnetization in flux path. 

Defining the known constant km for each segment, as in Eq. (131), Eq. (130) 

can be rewritten as in Eq. (132). 

km — istart 

1 

A start 

L 

A + km 

(131) 

(132) 

D. Secondary side branch 

If the secondary leakage impedance is combined with the burden into a total 

secondary impedance 

Rs + JU)LS = (R2 + Rburden) + i^(-^2 + -^(mrden) 

the voltage v, in Eqs. (125) and (126) is also 

dis v = Rsis + juLs • — 
dt 

(133) 

(134) 

Eliminating v from Eqs. (134) and (126), integrating the resulting expression 

and applying the trapezoidal integration rule 

Anew ^old — Rn • new Is—old + LS 

Is—new I's—old (135) 
At 2 ' ~" 2 

Defining the history term hs as in next equation, we can solve for is-new as 

in Eq. (137) and obtain 
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hs-oid = —csX0id — dgis-oid (136) 

is—new = CsXnew + hs—0id (137) 

with the two constants 

\t ds = cs ^ 
2 

CS = L I R ' A t d s = c°\ ~ L s I (138) 

(139) 

E . Secondary current as function of p r imary current 

From Eqs. (124, 127, 132 and 137) we obtains 

i'p = iFe + im + is= {^Fe + + A + (hFe + km + hs) 

Express the flux linkages, A, as a function of the secondary current, is, from 

Eq. (137), and the desired expression of is = f(i'p) is obtained as follows 

is = h (i'p - hFe - hm - hs) + hs (140) 

where ki is the constant defined as 

k i = °-\ (141) 
CFe+Z+Cs 

If the history terms (h'a) are known from values at the preceding time step, 

the secondary current can be obtained from the primary current from Eq. (140) 

with only one multiplication and four additions. 

F . U p d a t i n g his tory terms 

Once the new secondary current ia-new has been calculated at time t, all history 

terms need to be updated to advance the solution by At. In the updating 

calculations, the term cs • Xnew is used instead of Xnew, and is obtained from 

Eq. (137), 

CgX-new — is—new ŝ—o/d (142) 
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The history term for the secondary side branch follows from Eq. (136), 

hs—new ~ ~esXnew — dsis—new (143) 

The history term for the core loss branch is obtained from the formula 

^Fe-new — &Fe (c»A n e w) — hpc-old (144) 

which follows from Eq. (128) when iFe-new is replaced with its expression from 

Eq. (127). The constant kpe is defined as 

kFe = 
2cF e (145) 

These updating formulas add another two multiplications and three additions 

to the effort required in each time step, for a total of three multiplications and 

seven additions. There is also a check needed to see if cs • XneW in Eq. (143) 

has moved the operating point into another segment in the piecewise linear 

representation of the magnetization curve. 

o.i 0.2. 0.3 0.4 OS °G> v \0 

Fig. 82: Secondary current match between OVNI's model and EMTP's discrete ele
ments one. 
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G . Va l i da t i on of the model 

Figure 82 compares the result of this algorithm with the one obtained with the 

standard EMTP solution method. Both answers are practically identical. 

The case used for this test was taken from a field test comparison described 

in [59], where six segments were used to represent the magnetization curve. For 

the duplication of test results described in [60], simulation results with a two-

segment representation were almost as accurate as those from more detailed 

representations. In the two-segment case, the knee point seems to carry more 

weight than all other parameters of the saturation curve. 

wau VOLTAGE usve 

Fig. 83: Coupling Capacitor Voltage Transformer, CCVT. 

8.3 Coup l ing-Capac i to r Vol tage Transformers 

Figure 83 shows a simplified schematic of a coupling capacitor voltage trans

former. A detailed wide frequency band model of a CCVT is complicated due 

to the magnetic and capacitive interactions in the various parts of the compo

nent magnetic devices (tuning reactor, potential transformer, and ferroresonance 

suppresor) [61, 62]. 

8.3.1 Po ten t i a l transformer and reactors 

Figure 84 shows a lumped parameter equivalent circuit for a single phase two-

winding transformer [50]. Terminals 1-3 are input, and 2-4, output. This model 

is valid for frequencies up to hundreds of kilohertz. Several stray capacitances in-
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Fig. 84: Lumped parameter high frequency equivalent circuit of a two winding trans
former. 

side the device have been included: winding to winding (CHL), turn to turn (CH, 

CI) and winding to ground (CHG, C L Q ) , together with the frequency dependent 

leakage impedance (Zieak(u)) and the core magnetization branch (Zm(u>)) which 

is possibly nonlinear and frequency dependant. 

It is convenient to relocate the core magnetization branch across the outside 

terminals of the winding closest to the core (usually the low-voltage winding). 

Then this branch can be modelled in as much detail as desired and allowed by 

the simulation time constraints. Saturation and hysteresis characteristics of the 

branch can influence the low frequency response of the solution [63]. 

CHQ/2 Z leak U 

<W2 

H r 
Zm(co) 

Fig. 85: High frequency model of a reactor. 

In devices, like the tuning reactor and the ferroresonance suppressor in 
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Fig. 83, that have only one coil, the equivalent circuit, Fig. 85, is half the 

equivalent circuit for a two winding transformer shown in Fig. 84. In a reactor 

the magnetization branch Zm is the main impedance in the circuit. However, re

actors are designed and built so that they do not saturate and both Z[eak and Z m 

can be modelled as linear frequency dependent R-L branches. Those branches 

can be synthesized in a similar way as Zieak in the two winding transformer. 

Fig. 86: High frequency equivalent circuit for a two winding transformer. 

8.3.2 Simpl i f ied equivalent c i rcui t 

A circuit transformation can be used to move C H L , the capacitance that bridges 

both sides of a two winding transformer, to one side [64], as in Fig. 86. The 

resulting circuit has a capacitance in parallel with Zieak plus additional capaci

tances in parallel with CH and C L . 

Once the outermost capacitances at ports 1-3 and 2-4 have been removed 

(computationally), the impedance Zieak in parallel with C#x/a is the short cir

cuit impedance measured at a short circuit test. Chimklai and Marti [50] present 

a method to obtain, from simple measurements, the various capacitances in the 

equivalent circuit, as well as the short circuit impedance ZShwt {Zieak in parallel 

with CHL/O). In Fig. 87, a typical measured short circuit impedance response 

can be seen. 



8. OVNI Element MnAvl* 127 

7 5 K \OOK ^ \ HA 

Fig. 87: Frequency response (Z3hort) of a two winding transformer. Measured and 
synthesized responses. 

Fig. 88: Synthesized RLC network used to approximate Z,/iort(w), multiple peak high-
accuracy synthesis. 

It is shown in [50] that Z,hort(u) (Fig- 87) can be matched very accurately 

with a number of RLC blocks as in Fig. 88, one block per resonant peak. 

8.3.3 C C V T m o d e l for rea l - t ime s i m u l a t i o n 

A very accurate C C V T model can be obtained by combination of the PT model 

described above with corresponding models for the tuning reactor, ferroreso-

nance suppression circuit and the Cs of the capacitive divider, in a similar 

manner to that suggested in [63]. However, in the suit of tests targeted by this 

simulator, the accepted bandwidth (once the distortion of the integration rule 

has been accounted for) is only of 2 to 4 kHz. 
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(a) 

Fig. 89: Simplified model to represent only the main peak delivers acceptable accuracy. 

It was considered that under these conditions it is sufficient to approximate 

the first resonant region in Fig. 87. A very reasonable approximation of this 

region can be achieved with a simple RLC combination, as in Fig. 89. In this 

minimal approximation, HQ and L 0 can be taken as the 60Hz values, while C\ 

is calculated to match the first resonance peak. 

This procedure delivers a two port model that is independent of the burden. 

For cases where the burden is known, see § 8.3.4 for a convenient and efficient 

alternative. 

8.3.4 Po ten t i a l Transformer M o d e l , P T 

For cases where value of the burden to the PT is known, a simpler approach 

is used. This model for the potential transformer (PT), used in OVNI, was 

presented in [65]. The model approximates the PT's non-flat frequency response 

in Fig. 90 by a two-pole transfer function of the form 

The output voltage is computed, in the time domain, as a function of the 

input voltage and the magnetization history of the PT's core. From the fre

quency response in Fig. 90, the two finite poles are: pi = 251 rad/sec and 

P2 = 628 rad/sec. The constant k = 950. Figure 91 shows the magnitude re-

Vout(s) 
Vin(s) = k-

(s + pi){s + p2) 
s (146) 
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Fig. 90: PT's frequency response, 201og(Vout/Vin) dB versus frequency in hertz. 

sponse of the approximating function in the continuous time domain rendered 

in the frequency domain by a Laplace transform. 

With backward Euler's rule, the z-transform of the transfer function is pro

duced by the substitution in Eq. (146) of s = After some manipulation, 

the z-domain transfer function for B.E. is 

kz(z - l)z 
H(z) = (147) 

k\Z2 + k2z + 1 

where ki = 1 - p2At -pxAt + pip2A?t, k2 =piAt + p2At - 2, and k3 = k • At. 

The magnitude of the resulting discrete time function response can be seen in 

Fig. 93. In the bandwidth targeted by this simulator the response approximates 

satisfactorily the one of the real PT in Fig. 90. 

The transfer function used in simulating the PT's nonlinear frequency char

acteristics is equivalent to feeding the input voltage as VS0UTCe in Fig. 92, and 

computing the source's current according to Eq. (148). That current is stripped 

of its units and its magnitude equates the output voltage of the PT. 
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L a p l a c e t r a n s f o r m o f H 

Fig. 91: Approximated PT's frequency response, as rendered by the two polo contin
uous time Laplace transfer function. 

= r ' v ^ ~ t r • u (* " A *) + IT • *(* " At) + T- • *(* " 2A«)] (148) 

Fig. 92: Equivalent circuit used to approximate the response of the PT. 

In the equivalent circuit in Fig. 92, the conductance g = k^/ki, and the 

history current source h(t) = & • v(t - At) + • i(t - At) + i • i(* - 2At). The 

model includes, as in equation above, four multiplications and three additions 

per integration step. 
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Backward Euler 
5, 

Fig. 93: Approximated PT's frequency response, as rendered by the two polo discrete 
time Backward Euler transfer function. 



9. THE HVDC MODEL 

9.1 I n t r o d u c t i o n 

The HVDC model described in this chapter is the result of a team effort [30] 

in which this author was responsible for developing the solution algorithm to 

achieve real-time performance. 

The idea behind the model is to represent a six-valve module like the one 

on Fig. 94, with the same technique introduced in [9]; i.e., to consider a valve 

operation in the same way that switching operations were included in [9]. That 

is, for every possible switch/valve open/close combination, the corresponding 

block/module conductance matrix is precalculated and prestored for fast re

trieval during the simulation proper. All those matrices are prestored in a vector 

of matrices. That vector is indexed by an integer variable, iVlvStatus, whose 

internal bit representation corresponds to the open/close state of each one of 

the switches/valves in the block/module, Fig. 95. 

Fig. 94: Six valve module modelled for OVNI and its three parts: a) the three-phase 
transformer; b) the six-valve bridge; c) the smoothing reactor. 

At a first attempt, MATE alone was used to separate several of those six 

valve modules in a 24 valve case, but still the timings —even if significantly 

faster than the EMTP's 3120 /xs/step on a 200 MHz Pentium Pro workstation— 

(c) 

/ Y Y Y \ 

\B2_. 
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fell in the vecinity of 770^sec/step1. Then, OVNI's Node Hiding scheme was 

applied to each module, as described in § 5.13 on page 74. It was this last 

technique, implemented as described in this chapter, that brought the timings 

down to 81 sec/step. On OVNI's current 400 MHz machine, performance falls 

comfortably within the real-time deadline targeted. 

SW1 

STATUS 1 0 1 

sw# 2 1 0 

Fig. 95: M a t r i x precalculat ion scheme for blocks used i n O V N I [9]. 

9.2 T h e three-phase linear transformer mode l 

Starting with a linear single-phase unit, the 3-phase transformer model is built. 

Hence, it is convenient to begin with that single-phase transformer model. 
9.2.1 Single-phase transformer model 

The single-phase transformer model takes into account: a) the short circuit 

impedance, or rather, its inverse, Y, and b) the transformers ratio, a. See 

Figs. 96. 

From Fig. 96a, the current in the primary can be written in terms of the 

voltages as: 

h = Y (VI - aV2) = YVi - aYV2 (149) 

1 Results obtained in a previous work programmed in Ada95. 
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Fig. 96: a) Single-phase transformer, Zsc referred to the primary; b) Zsc referred to 
the secondary. 

From Fig. 96b, the corresponding expression for the secondary current is: 

h = a2Y (V2 - Vi/a) = -aYVx + a2YV2 (150) 

In matrix form Eqs. (149) and (150) can be expressed: 

Y -aY Vi h 
-aY o?Y v2 h 

(151) 

If no node in the single phase transformer is grounded, and they are connected 

to nodes a, b, c, and d, as indicated in Figs. 96, voltages Vi and V2, as well as 

the primary and secondary currents can be written in terms of the voltages of 

each of those four nodes with respect to the reference node (ground), wherever 

it may be in the adjacent network. Thus we have 

Vi = va-vb, ia = h, h = i2 

(152) 
V2 = Vc-Vd, Ib = -Iu h = -I2 

In this case the 2 x 2 matrix in Eq. (151) becomes the 4 x 4 matrix in 

Eq. (153), which makes no assumptions on the way the single-phase transformer 

is connected within the network. 

Y -Y -aY aY ' V." 'la 

-Y Y aY -aY vb h 

-aY aY a2Y -a2Y vc h 

aY -aY -a2Y a2Y _ A 

(153) 
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9.2.1.1 Transformer D a t a 

For each of single-phase units in a three-phase bank, this data is to be collected: 

• kVi, rated kilovolts on primary. 

• kV~2, rated kilovolts on secondary. 

• MVA, rating of single-phase unit. 

• Zsc, short circuit impedance in percentage. 

The short circuit impedance is assumed to be purely inductive. The short 

circuit or series inductance is (where f, is the frequency in hertz): 

The transformer's ratio, regardless of which side is high-voltage, is, for the 

purpose of this model given by 

a = ^ (155) 
kV2

 y ' 

Three conductances are then calculated from the Lsc and o values thus 

obtained; namely: gn, gx2, and g22, defined as follows (using Backward-Euler 

integration rule, where At is the discretization integration step chosen): 
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At 
0n - 7—> 012 = 0-011. 022 = a 0ii (156) 

(157) 

Then the single-phase unit [Y] matrix can be written simply as: 

011 -011 -012 012 

-011 011 012 -012 

—012 012 022 —022 

_ 012 —012 —022 022 J 

9.2.2 T h e three-phase transformer m a t r i x / m o d e l 

In general, a 4-node subnetwork represented by its 4 x 4 [Ys] matrix, and con

nected to a surrounding network at nodes m, n, p, and q, (as indicated in Fig. 97) 

contributes to the networks [Yn] matrix as sketched in Fig. 98, and outlined in 

the C-code in the listing in Fig. 101. 

Subnetwork Matrix 

m n p q 

Network [Yn] Matrix 

Fig. 98: Including the subnetwork's matrix into the network's matrix. 

As an example of the way to include the subnetworks admittance matrix, 
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[Ys] into the network's [Yn], let us detail the inclusion of one of the elements. 

In the subnetwork illustrated in Fig. 97, the nodes identified by the subnetwork 

as 1, 2, 3, and 4, are actually (from the point of view of the network) nodes 7, 

3, 2, and ground. The element Ys(l, 3) has to be added to the network's Yn(7,2). 

a rrrr\ 

• I 
6 

i i 

V 1 1 7, k 

i i i i 
_ 

5 

Fig -. 99: Node numbering in the hvdc module. 

9.2.2.1 A complete three-phase example 

As a complete numerical example, let us build the Y-matrix of an hvdc-module, 

Fig. 99, minus the 6-valve bridge, and minus the smoothing reactor. 

Each single-phase units data is: 50 MVA, 100/230 kV, Zsc = 10%, 50 Hz, 

and the discretization will be done using backward Euler's integration rule and 

an integration step of At — 50 u,s. Using the formulas in Eqs. (154,155 and 156) 

L- = ^ x i ^ x d 5 o = 0 - 0 6 3 6 7 / f <158> 

a = ^ = 0.4348 (159) 
230 v ' 

gu = 50 x 10"6/63.67 x 10"3 = 0.7854 mS 

012 = 0.4348 x 0.7854 = 0.3415 mS (160) 

g22 = 0.43482 x 0.7854 = 0.1485 mS 

The single-phase transformer matrix is, according to Eq. (157) 



9. The HVDC Model 138 

a or 1 b or 2 c or 3 d or 4 
1 or x 1 0 6 8 
2 or y 2 0 7 6 
3 or z 3 0 8 7 

Tab. 9.1: (Matrix "node") Connection nodes for transformers x, y, and z. Rows axe 
the transformers, and columns are the nodes. 

0.7854 -0.7854 -0.3415 0.3415 

-0.7854 0.7854 0.3415 -0.3415 

-0.3415 0.3415 0.1485 -0.1485 

0.3415 -0.3415 -0.1485 0.1485 

(161) 

Now, with three of those single phase units, let's call them transformers x, 

y, and z, in a Ydll connection, we can add each of their contributions to the 

module's matrix [YN]- In Fig. 100, the details of the connection to the module 

nodes are shown. Those nodes are tabulated in Table 9.1, the matrix "node". 

The process is better described by the C-code in the listing in Fig. 101. 

ground. 

9^3 •vw-J 4 

Fig. 100: Ydl l three-phase connection of single phase units. 

The resulting matrix for the nine node module is 
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f o r ( t r = 1; t r <= 3; tr++ ){ 

f o r ( row = 1; row <= 4; row++ ){ 

f o r ( c o l = 1; c o l <= 4; col++ ){ 

extNodel = n o d e [ t r ] [ r o w ] ; / / Network node number. 

extNode2 = n o d e [ t r ] [ c o l ] ; / / Network node number. 

Ym[ extNodel ] [ extNode2 ] += Yt [row] [ c o l ] ; 

} 

} 

} 

Fig. 101: Procedure to incorporate the single phase units Yt matrices into the mod
ule's Yn matrix. 

0.7854 

0 

0 

0 

0 

0 

0.7854 

0 

0 

0 

0 

0 

0.7854 0 0 

0 0 0 

-0.3415 0.3415 

0 

0 

0 0 -0.3415 

0 0 0.3415 

0 

0 

0 

0.2969 

0 0 

0 0 

0 

-0.3415 

0.3415 

0 

0 

0.3415 0 

0 0 

-0.3415 0 

0 0 

0 0 

0 -0.3415 0.3415 0 0 -0.1485 

0.3415 0 -0.3415 0 0 -0.1485 -0.1485 

0 0 0 0 0 0 0 

-0.1485 -0.1485 0 

0.2969 -0.1485 0 

0.2969 0 

0 0 
(162) 

9.2.3 A d d i n g the 6-valve bridge and the smoothing reactor 

Each one of the six valves in the bridge is modelled as a resistor with one of two 

possible values depending on whether the valve is open (OFF) or closed (ON). 

The values chosen for the resistance are 1 mf2 when the valve is conducting (ON) 

or 1 Gft when it is not conducting (OFF). 

The combination of ON/OFF values states for the six valves is what we call 

the status of the bridge. The current status of the bridge is kept in an integer 

variable (status) where the six least significant bits store the state of each of the 
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six valves. Those bits are set to one for ON valves, and reset to zero for OFF 

valves. See Fig. 102. 

° i A , « \ 

STATUS 
5 4 3 2 1 
1 0 0 0 ,1 1 

V*Jv»3/*Op*n-

0 BIT/VALVE 

STATUS m 14 

V t l v O l l C l o — d 
Wv» lltclo—d 
Vmtv* 5 It clottd 

Fig. 102: Status of the bridge as a bitwise variable. 

For 6-valves there are 26 = 64 possible combinations of ON/OFF states (even 

if some are not possible under normal conditions). For each of those 64 combi

nations one can precalculate (during the preprocessing stage) the corresponding 

[Y] matrix of the whole module. The 64 matrices thus obtained are stored in a 

vector of matrices with 64 elements, subscripted from 0 to 63, see Fig. 103. It is 

worth noting that the variable "status" contains in the first six bits of its binary 

representation the OPEN/CLOSE status of each of the valves in the bridge. 

That variable "status" when interpreted as a digital integer indexes the proper 

[Y] matrix to be used to represent the module at any time-step. 

Vector ot Matrices 
(Precalculated) 

p 1 
1 

^35 

STATUS (35) 

(Active (Y] matrix) 

Fig. 103: The vector of precalculated [Y] matrices. 
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The smoothing reactor contributes to each of the sixty four matrices with its 

discrete equivalent conductance, according to the selected integration rule. For 

the backward Euler's rule, the equivalent conductance of that reactor is 

9 smooth = j (163) 
•^smooth 

This conductance value will be added to positions —according to Fig. (99)— 

(9, 9) and (6, 6), and subtracted from positions (6, 9) and (9, 6) in each of the 

[Y] matrices calculated above. 

9.3 H i s t o r y sources i n the hvdc-module 

Now that the resistive contribution of the hvdc-module to the network's [Y] ma

trix, in any of its sixty four possible o n / o f f valve combinations has been taken 

care of, let us focus our attention on the current history sources. In the hvdc 

module, there is one history source from the discrete model of the smoothing 

reactor, and one history source for each single-phase transformer unit, corre

sponding to the discretization of its short circuit inductance, see Fig. 104. 

4 

5 

Fig-. 104: Discrete time model of the hvdc 6-valve module. 

Before considering the accounting of each of those history sources into the 
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total nodal currents, let us examine the history source in the single-phase trans

former unit as depicted in Fig. 105. 

The short circuit inductance equivalent discretized history source contributes 

to the total nodal currents of node "a" with a value of plus-/it, and to node "c" 

with minus-rit; it also contributes to nodal currents of node "c" with minus-a-rit, 

and to node "d" with plus-o • ht. The voltage across the short circuit inductance 

that is used to update the history source ht is VL , as expressed in Eq. (164) 

9 . 3 . 1 Examples 

To illustrate the whole process of history current accumulation into the nodes 

of the hvdc-module, let us consider the two transformer connections included in 

the code: YyO and Ydll. In Fig. 107 the Ydll connection shows clearly where 

the different single-phase units are connected within the module. From there 

and according to what was said in the previous section, the nodal current vector 

for the YyO connection is shown in Fig. 106. 

9 . 4 H v d c matrices 

The 9 x 9 (or 10 x 10) G-matrix (the Y-matrix is real, thus it is a G — 

conductance— matrix) of the hvdc module relates the total nodal currents, [h], 

in the module with the voltages of its nodes, [v], according to Eq. (165). 

Fig. 105: A single phase discretized short circuit inductance. 

vL = va - vb - a (vc - vd) (164) 
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node 
1 2 3 4 5 6 7 8 9 10 

h x hy 0 - a h x -ahy "s a(hx+hy +hz) 

Fig. 106: Total nodal currents for 'Ydll' connection. 

ground ^ Q 

Fig. 107: Hvdc module with a 'Ydll' transformer connection. 

[G] [v] = [h] (165) 

From all the nodes in the model, only the first five will remain visible to the 

solver, let us call them "a" nodes, and the rest "b" nodes. Making use of this 

definitions, and subscripts, Eq. (165) can be written using a matrix partition as 

in Eq. (166). 

node 

'noda 

1 2 3 4 5 6 7 8 9 

0 -ah 2 h s 

- a h ^ ahy 

Fig. 108: Total nodal currents for 'Ydll' connection. 
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Gab Va 

Gba Gbb 
(166) 

Next, and using the Generalized-Kron's reduction, the system of equations 

in Eq. (166), becomes the reduced one in Eq. (167). 

[Grea] [va] = [hred] (167) 

where 
Gred — Gaa - GabG^b Gba 

hred = ha — GabGbbhb 

9.5 Interface of the hvdc model and O V N I 

At each time step, the driver determines the voltages for the "a" nodes, as 

defined above, based on the history values hA calculated by the module in the 

previous step; i.e., OVNI calculates v\. 

Next, it is the module's model turn again. It receives vA, the voltages of the 

"connection-nodes", and counting on the availability of the hs history values 

calculated by the model itself during the previous time step, the model proceeds 

to establish the voltages for the "6" nodes: 

VB = G^1 {hb - GbaVa) (169) 

Now, with all the modules nodes voltages, VA and VB (just calculated), the 

model computes HA and /i# for the next time step. Before returning the hA 

vector to OVNI, it includes the effect of the reduced nodes like this: 

Kew <- / C e u - GabG^hb (170) 

where h%ev is the value of the currents vector ha, before accounting for the in

ternal nodes contributions in vector hb] h™w is the vector once the contributions 

have been included, and ready to be exported to OVNI as external source's his

tory terms; the matrix product GabGbb

l is precalculated and identified as GmiX 

in the code. 
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Finally, the module's model returns to OVNI, the core. 



10. HVDC-BRIDGE CONTROLLER 

To explore some of the limitations and capabilities of the HVDC-bridge model 

developed previously, a basic current control loop model was introduced. This 

model incorporates a simple proportional-integrative amplifier, receives as input 

the DC-output current of the rectifier group and, as synchronization signals, the 

input voltages to the bridge groups, and issues the gate signals corresponding to 

each of the twelve valves in a pair Yy/Yd transformer-bridge group, see Fig. 109. 

synchronization, 
voltages 

CONTROLLER 

, current input 

gate signals 

Fig. 109: Inputs and output of the simplified current controller. 

10.1 B l o c k V i e w of the Cont ro l le r 

The controller strives to maintain the DC current at a desired value, the refer

ence value. The controller adjusts the firing angle of the valves as it considers 
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necessary to achieve that goal. 

In Fig. 110, a block schematic is shown that illustrates the general struc

ture of the controller modelled. The D . C . raw current, read from one of the 

H V D C bridges after smoothing, is put through a filter to keep only the D . C . 

component. The filtered D . C . current is compared against a reference value, 

and the difference is labelled the error for the purposes of the PI amplifier, the 

next stage. The PI block produces the raw or apparent needed change in the 

firing angle, Aa*. This proposed change in alpha is then clipped, if necessary, 

to keep the firing angle within the limits imposed by the user. Next, in the 

cycle-position stage, the controller determines whether, including the proposed 

change, it is time to trigger the next valve. If triggering time conditions are met, 

the valve-scheduler takes over, produces the necessary gate signal, and activates 

the ramp-cycle synchronizer that, using as input voltages on the primary of the 

transformer-group, reset the ramp-cycle counters. 

raw DC 
current 

reference 
voltage(s) 

*\ DC filter] 
DC 

current 

jsi signal 
^conditioning c u r r e n t 

Proportionals Integral Aa* 
Block 

reference DC 

clean 
preference 

cycle-ramp 
synchronizer 

valve-scheduler l< 
(activate) 

Y 
to valves 

gate pulse 

CLIPPER 
limits enforcer 

Aa 

f v> 
Aa 

f 
cycle-

mo 
position 
nitor 

Fig. 110: Controller model block diagram. 

10.2 Stage One: T h e D C filter 

The signal that needs to be kept at the chosen reference value, is the output 

current of the rectifying HVDC-bridge. Regardless of the smoothing effect of the 



10. HVDC-bridge Controller 148 

inductive stage in the bridge, the output current still contains some harmonics 

that need to be filtered out before the current is put to the controller. To extract 

the DC component from the current, a simple RC filter was used. 

10.3 Proport ional- Integrat ive B l o c k 

In this stage1, and using as input the error (e), that is, the difference between 

the DC component of the HVDC bridge output current and the reference value, 

the necessary change in the firing angle is computed as sketched in Eq. (171). 

^ = I DC ^reference (171) 

Aa* = Kp€ + Kt f e • dt 

To discretize the second part of Eq. (171), one can observe that it describes 

the current voltage relationship of the series RC circuit fed by a current source, 

as illustrated in Fig. Ilia. In that circuit, the current has a value of epsilon, e; 

the voltage is delta alpha asterix, Aa*; the resistance has a value Kp; and the 

capacitance a value l/Ki. 

- V v \ — | 

=© 4= 1 / * c V 

R • R c 

i—Wv W\— i 

© * © 

Fig. Ill: RC equivalent circuit for the PI block. 

Once discretized, the equivalent circuit of the PI block appears in Fig. Illb. 

If the backward Euler's integration rule is used to discretize the circuit, Rc and 

e(t) are given by Eq. (172). 

1 Even if in analog control systems the Pi-block is implemented by an amplifer with the 
appropriate feedback, and as such has been referred to as the "Pi-amplifier" in that context, 
in the case of a digital controller, the use of the name block seems more appropriate. 
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R = KP 

Rc=f = Kr.At (172) 

e(t) = Vc(t - At) 

From the circuit in Fig. Illb, the voltage across the capacitor can be deter

mined as 

VC = V - R-i (173) 

Combining Eq. (173) with Eq. (172c), the history voltage source e(t) is ex

pressed 

e(t) = V(t -At)-R-i{t - At) (174) 

We know that the total voltage, V, is but delta alpha asterix, the correction in 

the firing angle. We also know that the current, i, is the error e. Simplifying our 

notation for values in the previous integration step by applying an apostrophe 

to them2, Eq. (174) becomes 

e =A'a - Kpe' (175) 

where A'a is the correction of the firing angle at the previous time step; and e' 

is the error at the previous time step. 

The total voltage across the RC group, V, is then calculated 

v = e + (R + Rc)i = e + RT-i (176) 

Substituting previous equations into Eq. (176), the last one becomes Eq. (177). 

A a = A'a - Kp • e' + (Kp + Kr • At) e (177) 

where A'a — Kp • e' is called hist in the code since it depends on previous step's 

values of error and angle change; also (Kp + Kr • At) is the value of the resistor 

RT in the code. 

2 That is, for any function of time, a; = f(t), x = x(t), and x' = x(t - At). 
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At every time step, the necessary change in the firing angle is then computed, 

Aa = hist + RT-e (178) 

Now all that remains is an efficient formula to update that history value, 

hist. At the previous time step the correction is also given by Eq. (179), i.e. 

A'a = hist' + RT • e' = hist' + Kp.e' + K:.e' (179) 

Substituting this into the definition of hist implicit in Eq. (177), the updating 

formula for the history value hist is 

hist = hist' + Kj At e' = hist' + Rc e' (180) 

At every time step Eqs. (178, 180) are used. The first one to determine the 

necessary change in firing angle, the other one to calculate the hist value that 

will be used at the next time step. 

10.4 C y c l e pos i t ion moni tor and the Valve Scheduler 

The controller issues gate signals both for the six valves of a YyO-transformer-

bridge module as for the six valves of a Ydll-transformer-bridge module, as 

intimated by Fig. 109. However, to simplify the explanation of the cycle position 

monitor (and of the valve scheduler), it is better to review the process when 

applied only to one of the modules, let us say the YyO one. After the method is 

explained, the combined effect of both types of bridges is accounted for. 

In what follows, and to simplify the description of the processes, valves in 

the bridge are numbered from zero to five, and connected to phases A, B, and C 

of the transformer secondary according to Fig. 112. Further down this section, 

when need arises to refer to valves in both types of modules, YyO and Ydll, the 

valves will be labelled: YQ, YI, Y2, Y3, Y±, and Y5 for the YyO module; and D0> 

Di, D2, Dz, £>4, and £>5 for the Ydll module. 

Figure 113 shows the voltages in phases A, B, and C, connected to the 

bridge as depicted in Fig. 112. In Fig. 113a, also, if firing angle is set to zero 

degrees (this controller is symmetric in the sense that the same firing angle is 
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A-
B-
C -

Fig. 112: A full-wave valve bridge, with valves and phases identified. 

applied to all valves), valves need to be fired at the time points and sequence 

there indicated. Time points which are separated by the constant (under no 

controller modulation) interval of sixty degrees (translated into time units, to 

be sure). 

valve 0 valve 2 valve 4 valve 0 valve 0 valve 2 valve 4 valve 0 

0 O005 OOi 0015" 0.02 

Fig. 113: a) Firing time points when alpha is zero; b) Firing points when alpha is not 
zero. 

This effect can be produced by two separate but combined data processes: a 

counter, tick, that goes from zero to sixty degrees, the reference, held in variable 

tickRef (with some modification, to be seen), and is compared at each time step 
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against its limit, sixty. When the counter, tick, hits the limit, a valve needs 

to be fired; which valve to fire, is the question answered by the second data 

process, an infinite periodic sequence, 0, 1, . . . , 5, 0, 1, . . . , 5, etc., simulated 

by an array of six elements, aValveSequence, and an index that wraps around, 

iNextValveToFire. These two data processes can be visualized, the first by a 

saw-tooth ramp, as in Fig. 114; and the second one, by a circular array, see 

Fig. 115. 

Uick 

tickRef 

> 

fir 
( 

f 1 i i 1 
e fire fire fire fire 
) 1 2 3 4 

F i g . 114: T h e ramp signal and the model 's variables for a = 0. 

Fig. 115: D a t a structure to select next valve to be fired, when the ramp so requests. 

If a Yd-module is controlled by the same control unit than the previous Yy-

module, gate signals have to be issued each 30°, one for the Yd-module, and next 

one for the Yy-module, according to the sequence: DQ, YQ, DI, Y\, D2, Y2, D^, 
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/Mick 

fire 
DO 

fire fire fire 
YO D1 Y1 

f 1 fire 
D2 

Fig. 116: The ramp signal and the model's variables for a = 0, when gate signals are 
issued for Yy and Yd modules. 

F 3 , -D4, Y±, L>5, K 5, and repeat. That is twelve possibilities. In this case tickRef 

is 30°, and aValveSequence is complemented by a parallel array: aValveGroup, 

that indicates if the next valve to be fired is in a Yd-module, zero-code, or in a 

Yy-module, one-code. In this case, the index variable, iNextValveToFire, wraps 

around at 11 down to zero. See Figs. 116 and 117. 

Fig. 117: Scheduling the next valve to be fired: index, iNextValveToFire; and arrays: 
aValveGroup and aValveSequence. 
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10.5 C y c l e R a m p Synchronizer 

At the beginning of each cycle of the input voltage, the position of the tick 

counter within the cycle of the reference signal needs to be determined. To do 

so, the reference point a = 0 in Fig. 113a, is obtained as the moment when the 

two voltage reference signals, voltages of phases a and c, are equal and positive. 

In the first implementation of the controller, a semi-infinite bus with constant 

frequency is assumed at the primary of the transformers feeding the bridges, 

under that assumption synchronization becomes a simple task of keeping track 

of the number of integration steps that have passed by, and comparing the count 

with the number of steps per cycle, i.e. no need for the additional input sketched 

in Fig. 109. However, under more general conditions, that signal may come from 

a less ideal source and present some higher harmonic content that forces upon 

us the introduction of some kind of filtering to extract the fundamental of the 

voltages in phases a and b before comparing them. For details of this reference 

fundamental extraction see § 10.7. at the end of this chapter. There, a simplified 

and sufficiently accurate filtering scheme with high computational efficiency is 

described. This was the filter adopted for this controller. 

A tick 

value of 
tick at the, 
beginning 
of a cycle 

FIRING WALLS 

(firing angle) 

Fig. 118: Firing walls and initial value of the tick ramp counter at the beginning of 
each reference cycle. 

In the previous section, to determine when to fire a valve, we used a step 

counter, tick, incremented at each time step, and checked if it had hit one of 
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the vertical edges of the sawtooth wave we used to explain the operation of the 

firing process in Figs. 112 and 116, repeated here as Fig. 118 for convenience. 

Let us call those vertical edges firing-walls. So the process of firing is reduced to 

counting steps, and waiting for the counter, tick, to reach the next firing-wall. 

At the beginning of a cycle, that is when va is equal to vb and positive, we 

determine how far from the next firing-wall the tick counter is. This process 

also sets the index iNextValveToFire at the right position within the arrays in 

Fig. 117, above. 

All this process was implemented in the method CalcTicklniCycle of the class 

ctl_t, the class that describes any controller entity. The name of the method 

stands for " Calculate the value of Tick at the Initial moment of the Cycle". As 

input, it takes the firing angle a, and returns two values: the correct value for 

tick, and the position for index iNextValveToFire. Depending on whether the 

firing angle is in the intervals between one and 30°, or between 30° and 60°, or 

any of the other 30° wide intervals shown in Fig. 118, the two output values are 

calculated as in the following code listing: 

int clt_t::CalcTicklniCycle( double alpha ).{.'• 
// It returns the position of "tick" at beginning of cycle, 
// and sets up index INextValveToFire. 

i f ( 1 <= alpha £& alpha < 30 )( 
INextValveToFire =0; 
return int( 30.5 - alpha ); 

}else i f f alpha < 60 ){ 
iNextValveToFire = 0; 
return int( 60.5 - alpha ); 

}else i f ( alpha < 90 ){ 
INextValveToFire « 0; 
return int( 90.5 - alpha ); 

Jelse i f f alpha < 120 ){ 
iNextValveToFire - 0; 
return int( 120.5 - alpha ); 

)else i f ( alpha < 150 ){ 
iNextValveToFire - 0; 
return int( 150.5 - alpha ); 

lelse i f f alpha < 180 ){ 
iNextValveToFire = 0; 
return int( 180.5 - alpha ); 

}else{ 
// Error condition! 

) 
) 
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10.6 M o d u l a t i n g the firing angle 

At each time step, and using the formulas in Eqs. (178) and (180), the controller 

determines the necessary change in the firing angle, Aa. This change in alpha 

is the "time distance" that the firing walls need to be displaced to the right, 

or, what is equivalent, by how much we need to move the tick counter to the 

left (easier, since it is a single operation). Then, the tick counter is compared 

versus the next firing wall, if there is a hit a request to fire is issued as seen in 

previous sections. This functionality is implemented in the method SenseAnd-

SetUpGateSignalsQ, the core ofthe controller, in the listing that follows. 

// This code does not use DC prefiltering. 
// First, the proportional/integrative section: 
error = hvdc[ ilnHVDC ].GetldcO 
delAlpha •+= Rt * error + hist; 
hist += Rc * error; 
// Clipping,To respect min and 
// max values of alpha. 
newAlpha = alpha + delAlpha; 
i f ( newAlpha > alphaMax ){ 

delAlpha = alphaMax - alpha; 
}else i f ( nevAlpha < alphaMin ){ 

delAlpha = alphaMin - alpha; 
} 

// Yes, alpha goes in degrees, 
// but time here i s discrete, 
// so convert delAlpha into 
// "steps". 

delAlphaSteps = ... 
// Now, let's check i f the "ramp" 
// hit the firing wall! 

- iRef; // In amperes. 
// Accumulate change. 
// Update history term. 

an array with all 
the hvdc modules 
in the system. 

hvdcfj 

i l n H V D C 
which HVDC's 
output current is 
controlled by the 
CTL unit. 

method that 
delivers the 
output DC current 
of that HVDC 
module. 

tick++; // Up goes the ramp! 
i f ( tick - delAlphaStep >= tickRef ){ // Bang! Time to FIRE! 

alpha += delAlpha; // Change in firing angle accepted! 
delAlpha — 0; // We can start accumulating change again, 
tick = 0; // Reset the "ramp". 
// Now, let's schedule...what valve to fire!? 
activeGroup = aValveGroup[ iNextValveToFire ]; 
activeValve = aValveSequence[ INextValveToFire ]; 

// Point to next valve, for the next time step. 
i f ( -H-iNextVal veToFire > 11 ) // Wrap around, 0..11 valves! 

iNextValveToFire = 0; (CONTINUES...) 
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(...COMES FROM PREVIOUS PAGE) 

// Now issue the gate signals. 

// Sets the b i t i n the "gateSgnl" of the "activeGroup" 
// (Odelta, l=wye) corresponding to the "activeValve". 

gateSgnl[ activeGroup ] |= 1 « activeValve; 

//To control the pulse width, we reset the counter, 
// which, incremented every time step, is used to decide 
// when to turn the gate signal off for that "activeValve" 
// of that "activeGroup". 

pulseWidthCounter[ activeGroup ][ activeValve ] = -1; 

} // Ends IF fir i n g wall was hit! 
I — L 

gateSgnl[][] bits(valves) 
^ • v ^ 5 4 3 2 1 0 

delta (0) 0 0 1 1 0 1 

wye(1) 1 0 0 1 1 0 

gate signals are efficently passed 
to the HVDC bridges, as bits encased 
into a convenient integer variable, gateSgnl. 

Next, the controller gets synchronized with the voltage signals at the primary 

of the transformer, as was seen in a previous section, and, finally, the controller 

checks for gate pulses due for termination in each of the twelve valves, as in the 

listing on the next page. 

Now some final implementation notes. To simplify the counting of degrees 

at each step, during initialization the controller calculates the coefficient 

steps Per Degree = 1.0/(360 * FREQ * deltaT) 

Also during initialization, the controller converts the counter limit, 30°, into 
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f o r ( g r o u p =0; g roup < 2; group-H- ){ / / F o r D o r Y c o n n e x t i o n s , 
f o r ( v a l v e = 0; v a l v e < 6; v a l v e ){ / / F o r e a c h v a l v e , 

/ / I f t h e p u l s e r e a c h e d i t s l i m i t i n w i d t h . . . 
i f ( ++pulseWidthCounter [ g roup ] [ v a l v e ] >=> p u l s e W i d t h ){ 

p u l s e W i d t h C o u n t e r [ g roup ] [ v a l v e ] = - 3 0 0 0 0 ; / / L a r g e n e g a t i v e ! 
g a t e S n g l [ g roup ] &= - ( 1 « v a l v e ) ; / / T u r n s o f f g a t e s i g n a l ! 

} 
} 

} 

integration step count and puts it in variable tickRef. 

tickRef = integer jpart-of (30 * steps Per Degree + 0.5) 

10.7 Filtering the angle reference voltage 

In this work a simplified and computationally highly efficient filter was used to 

extract the fundamental component out of the angle reference voltage (VAC — 

VA - Vc), a parallel RLC filter, as illustrated in Fig. 119, tuned to the AC 

network rated frequency. The bandwidth should be narrow enough as to filter 

out the high frequency components introduced in this voltage by the switching 

of the valves; but chosen appropriately, it can include both 60 and 50 Hz with 

the same parameter values. It was chosen to tune it to f0 = 50 Hz, with a 

bandwidth B = 34.3 Hz, with half power frequencies at f\ = 35.7 Hz, and 

/ 2 = 70 Hz respectively. 

In this type of filter, the resonance frequency in rad/sec is given by 

Also, the bandwidth B can be calculated: 

1 
B = u2 - ui = — 
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Fig. 119: Filtering the angle reference voltage signal. 

The resonance frequency is the geometric mean of the half power frequencies: 

From all said above, and the last three equations, the filter parameters chosen 

were: R = 45.81 fi; L = 0.1 H; C = 101.32 fiF. 

Fig. 120: Discretized version of the reference angle voltage filter. 

In Fig. 120, the discretized version of the filter can be seen. The input signal 

(voltage between phases o and c of the primary of the transformer) is fed into 

this filter as a current ij^ and the filtering proper is achieved in only two sums 

and one multiplication: 

Vfiltered = Req{hc + + */iv), 
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where i/jv is numerically identical to VAC-

Using backward Euler's as the integration rule, during initialization of the 

controller the constant discrete equivalent conductances for the capacitor, gc, 

and for the inductor, gL, are calculated a$ ^ 

9 = R ' 9 c = Xt> 9 L = T 
Then, also during preprocessing (i.e., at initialization), the equivalent resis

tance is determined according to 

7? 1 

9 + 9L + 9C 

At every time step, the two history sources seen in Fig. 12 and used in the 

filtering equation are updated according to 

hL = h'L - gL -v' 

he = 9c • v\ 

where v' is the previous time step value of the filtered voltage. 

The effect of this filter can be appreciated in Fig. 121, where voltage Vac is 

compared to the output of the filter, its fundamental. 

: 

: 

—\ —\ 

. . . . . . A" V . . . . . . . A-
"\\ 

. . . . . . V . . . . . . . 

t -T 
0 1 a O . I M o I T a i r s o . i a o . ias o . i a 0 . 19s 0.2 

Fig. 121: Reference angle voltage Vac and its fundamentals obtained by the filter de
scribed in this section. 



11. MODELLING SATURATION IN POWER 

TRANSFORMERS 

The transformer model described in the HVDC multi-state model section of this 

report is a linear one; i.e., saturation in the core is not considered. To incorpo

rate the effect of magnetic saturation, two different situations were considered, 

namely: three-phase banks of single-phase units [4]; and three-phase units with 

coils mounted on a three-leg core [66]. 

11.1 Sa tura t ion i n single phase units 

When the three-phase transformer is a bank of single phase units, independence 

of magnetic paths in each of the three phases simplifies modelling of saturation 

in the core. Magnetization of the core is accounted for, in this case, by a non

linear inductor connected across the low-voltage side of the single-phase unit, as 

in Fig. 122. 

Fig. 122: Magnetization branch in a single-phase transformer (non-linear) 

Given the magnetization characteristic of power transformers for these appli

cations, see Fig. 123a, magnetization currents when the core is not saturated can 

be safely neglected. Hand in hand with the previous modelling compromise goes 

the accuracy and convenience of representing the magnetization characteristic 

of the core by a two slope curve, as in Fig. 123b. 

U t . 
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slope = Isoi 

Fig. 123: a) Magnetization of a transformer core (typical); b) Two-segments piecewise 
magnetization curve used. 

Summarizing: a magnetization branch is not included in the equivalent cir

cuit unless saturation is detected during simulation; once saturation is sensed, 

an inductor is introduced as shown in Fig. 124, with the value of the slope in 

the saturated part of the characteristic in Fig. 123. Data required from the user 

includes, the flux-linkages value for the saturation knee in Fig. 123, Xsat, and 

the slope of the saturated part of that curve, Lsat, that is: 

LSat = ^r, forX > Xsat (181) 

close, 
if flux is 
in saturated 
region 

Fig. 124: Saturation modelling for a single phase transformer. 

11.2 Satura t ion i n three-phase units 

When coils for the three phases are mounted on a three-phase magnetic core, 

interaction of magnetic flux among the three legs and the surrounding media 

creates a more complicated scenario. In this case, the non saturated three phase 

unit is modelled by its open circuit test values: F0° and Y+, the open circuit 

admittance for zero sequence, and the open circuit admittance for positive (and 
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negative) sequence. An approximation is made since F0°c >> Y0
+

C
l, when the 

phase self and mutual admittances are calculated according to Eqs. (182), we 

can safely neglect and write the magnetization non-saturated matrix as in 

Eq. (183). Saturation in three-phase units is modelled by 

V _ Y°+2Y+ ^ Y° 
/ s - 3— ~ ~T 

Ym — _ Y°-Y+ 
3 

Y° 
(182) 

[Yns] 

XI 
3 
YI 3 
Y° 

L 3 

XI 3 
XI 3 
XI 3 

XI 3 
XI 3 
XI 
3 . 

(183) 

A non-saturated three phase transformer unit is represented by the models 

of each of the phases with a coupled group of magnetization admittances that 

shunts the three phases to ground, as in Fig. 125. 

coupled group 

Fig. 125: Non-saturated three phase core transformer. 

Flux in each phase in monitored and, if in a particular phase, flux enters 

the saturated region of the magnetization characteristic, a saturated magneti

zation equivalent inductance, with the same value as described in Eq. (181), is 

1 For three-leg cores. 
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introduced in shunt with that phase, as illustrated in Fig. 126, for the case of 

phase-a's leg saturation. 

Fig. 126: Three phase core transformer with phase-a's leg saturated. 

So, all counted, there are eight possible [Y] matrix contributions for three 

phase unit, be it a three phase core device, or a bank of single phase units. 

The eight possibilities account for all possible saturation states in the three legs, 

magnetically independent or not. 

11.3 K e e p i n g track of a phase-leg's flux 

To determine whether a core leg is saturated, it is necessary to keep track of 

each leg's flux linkages at every time step. To do this, beginning with the 

phase voltage, v(t), at the end of the last processed integration step, starting 

with Faraday's Law (see Eq. 184); then integrating both sides along the time 

interval between (t — At) and t, and using the backward Euler's integration 

rule to approximate the definite integral on the left side, we obtain the discrete 

equation on the right hand part of Eq. (184). 

The last expression in Eq. (184), once reorganized as in Eq. (185) can be 

v = — =• v(t) • At « X(t) - X(t - At) (184) 
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used to keep track of the phase's flux linkages at each time step, provided one 

knows the flux linkages at the previous time step, and the current voltage across 

the phase coil (on the side on which Lsat, and Xsat were specified). 

If the leg-flux linkages just calculated happen to jump over the saturation 

knee defined by A s a t , the saturated inductor Lsat needs to be introduced in the 

model shunting the corresponding phase (as in Fig. 126, for the case where 

saturation of the leg corresponding to phase a was detected). 

Fig. 127: Non-saturated magnetization in three phase core transformers. 

11.4 Mod i f i ca t i on of the H V D C - m o d u l e model to include saturat ion 

First, let us consider the non-saturated magnetization branch, NSB (only for 

three-leg cores), and its relationship with the linear HVDC-module model, Fig. 127 

From the open circuit test data provided by the user, Y° and Y+, one deter

mines the coupled group of L's, the NSB, as represented by the admittance 

A(i) = A(t - At) + v(t) • At (185) 

0 
HVDC 
module 

matrix [Yns], Eqs. (186, 187, and 188). 

Ys = 
Y° + 2Y+ 

(186) 
3 

Y°-Y+ 

(187) 
3 
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[Yns] = 

V Y Y 

Ym Ys Ym 

Y Y Y 
l m * m 1 s 

(188) 

The inductance matrix, or rather its inverse, [L] \ is readily obtained from 

Eq. (188) result as explained in Eq. (189) below. 

[L] = 2 T T / • [Yn8] 

Where / , in hertz, is the frequency of the open circuit test. 

(189) 

a 

• 

V 
7 

• 

tit 

• 

Fig. 128: Phase voltages and non-saturated magnetization currents. 

As we are representing the non-saturated magnetization phenomenon by 

a group of coupled inductances as seen in Fig. 127, the relationship between 

phase voltages (grouped in vector [v]) and non-saturated magnetization currents 

(grouped in vector [i]) is: 

Va ia 

Vb ; W = ib 

ic_ 

(190) 

Where [L] is the inductance matrix whose inverse has been obtained in Eq. (189). 

Integrating Eq. (190) between instants (t- At) and t, and simplifying notation: 

[v] = [v(t)\ and [v1] — [v(t — At)}, same for currents. 

J [v] • dt = [L] ([»] - [i']) 
t - A t 

(191) 
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Next, we approximate the left-hand side integral in Eq. (191) using backward 

Euler's rule, and obtain Eq. (192). 

[v] • At = [L] ([i] - [i']) (192) 

Premultiplying Eq. (192) by [L] _ 1 , from Eq. (189), and solving for [i], the non-

saturated currents at the end of the active integration step: 

[i] = At-[L]~l [v] + (193) 

Defining the matrix [Gn$] and the vector [hns] as in Eq. (194), Eq. (193) can be 

rewritten in its canonical form, shown in Eq. (195). 

[Gns] = At • [L]-1; [ M = -K] (194) 

[»] = [Gn.][v] - [hns] (195) 

Inclusion of this [Gns] matrix into the [G] matrix of the HVDC-module is illus

trated in Fig. 129. 

0 1 2 3 4 

Coupled group of L's \ 
representing non-saturated 

magnetization. 

Fig. 129: Including the non-saturated magnetization matrix, [Gns], into the HVDC-
module [G] matrix. 

When any leg becomes saturated, an inductor with a value Lsat, supplied by 

the user (see § 11.1 in this chapter, pag. 161), is connected between either node 

0, 1, or 2 (depending on which leg became saturated) and ground. See Fig. 130. 

In this case the equivalent conductance, using the backward Euler's integration 

rule: 
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9sat — (196) 

0 
HVDC 
module 

non-saturatedt 

magnetization 

X 

Fig-. 130: Modelling saturation in the core. 

is added to the diagonal element in the module's [G] matrix, corresponding to 

that node. The inclusion of the three switches outlined in Fig. 130, raises the 

number of possible status of the whole extended module (that is, including the 

magnetization effect) from 26 up to 29. To represent the status of the extended 

module, three more bits will be necessary in the status word, which brings the 

number of precalculated C7-matrices per HVDC module up to: 

Those matrices continue to be 5 x 5 ones, which in double precision repre

sentation amount to: 

a small memory investment for the enormous performance benefit obtained. 

11.5 H i s t o r y sources in t roduced by magnetizat ion model l ing 

Six new current history sources need to be included and updated by the model. 

One for each saturated branch, and three from the coupled group of non-

saturated magnetization model, as shown in Fig. 131. 

2 ( 6 + 3 ) = 512 matrices 

5 x 2 x 8 x 512 = 40,960 bytes = 40 kbytes 
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Fig. 131: The six history sources introduced to model magnetization in the trans
former. 

Each of the saturated branch history sources, hs, is updated, after using back

ward Euler's rule for discretizing the corresponding inductance, by the formula 

in Eq. (197), where gsat is defined in Eq. (196) for inductor k, where A: = 0,1,2. 

hneXt,teP = ^ _ ^ . ^ ( l 9 ? ) 

For the non-saturated modelling group, the three history sources, connected 

as in Fig. 131, are updated by Eq. (198) —again using backward Euler's. 

[hneXt,teP] = [ M _ r g ^ j ( l 9 g ) 

11.6 Effect of the saturat ion model l ing i n the p r imary current 

In Fig. 132 below, the current in the phase a of the primary of an HVDC 

module transformer is shown ignoring saturation of the core, that is, a linear 

core transformer is assumed. 

In Fig. 133, for the same situation depicted in Fig. 132, the saturation of the 

transformer core has been modelled as described in this report, and occurrence 

of peaks and valleys in that current corresponds to the expected results. 
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Fig. 132: Primary current with a linear 
model and EMTP simulation. 
DSDI, §7.7. Microtran/EMTP 

core under steady state conditions, OVNI's 
The large spikes belong to OVNI's before 

avoids them using CDA [10]. 

Fig. 133: Primary current with a saturated core under steady state conditions, OVNI's 
model and EMTP simulation. See caption to Fig. 132. 
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12. OVNI, THE SIMULATOR'S ENGINE 

12.1 Introduction 

The best, up to date, and most complete description of the core is the code itself. As 
the next best thing, this chapter describes succinctly the implementation of the inte
grator proper. OVNI is an OOP application written in C++1. 

Each one of the major parts of the solution: clock, network, events, blocks, 
subblocks, elements, history sources, etc., is represented in OVNI as an object, an 
instantiation of some class, as described in what follows. 

12.2 Input Data File 

Data to the engine comes in human readable format. That data file is created by 
OVPP, the preprocessor, described in the previous chapter. 

The file presents several labelled "environments2." Each environment starts 
with the keyword . B E G I N followed by a label that identifies the particular environ
ment: G E N E R A L , E L E M E N T S , B L O C K S , E V E N T S , etc. Each environment 
finishes with the keyword . E N D and the same label used in the opening .BEGIN of 
that environment. 

Inside most environments, there are subenvironments, for instance, in the 
E L E M E N T S environment there is a subenvironment for transmission lines, 
. B E G I N L I N E S E N D L I N E S , and inside again a separate subsuben-
vironment for each particular line: . B E G I N L I N E - 3 E N D L I N E - 3 . 

Data items inside environments begin with a label separated by a colon from its 
value, for example: charac_impedance_per_mode: 7 2 4 6 1 5 6 1 5 . 

All of this makes the input file easy to read for the user, if need arises, but not 
to write, which is the complex job of OVPP. 

' The first version of its core was written originally in Ada95 [67]. 
2 Which are akin to LaTeX's environments [71]. 

(71-
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12.3 Names in O V N I 

A uniform hungarian [70] notation was used in labelling variables and types in the 
core's code. Variable names begin with a lowercase letter, functions with an upper
case one, constants enjoy a full uppercase name, type descriptors end with an 
underscore-tee. The different entities isolated by the solution are abbreviated by a 
three letter code, as follows in the extract from the code included in Fig. 134. 

/ / • • • T T A N D A R n A f i T V F V T A T T f l M ' ? , .. / / 

// BLK = b l o c k . 
// CHM = c h a m e l e o n . 
// CSR c u r r e n t s o u r c e . 
// ELM = e l e m e n t . 
// EVN = e v e n t ( s w i t c h i n g e v e n t , e t c . ) 
// HSR = h i s t o r y s o u r c e . 
// LNK l i n k . 
// NET = n e t w o r k . 
// NOD = n o d e . 
// NTJM = number (as i n number o f i t e m s , e x . : numNod, n u m B l k , e t c . ) 
// PAR = ( s u f f i x ) p a r a m e t e r ( t o a f u n c t i o n , when name i s a m b i g u o u s . ) 
// SCH = s w i t c h . 
// SIM = s i m u l a t i o n . 
// SRC = s o u r c e . 

T 
Fig. 134: Standard abbreviations in OVNI. 

The hungarian notation prefixes adapted for use in the code can be seen in Fig. 135, 
below. 

/ / V A R I A B L E NAMES CONVENTIONS 
/ / T h i s p r o g r a m u s e s t h e " H u n g a r i a n " c o n v e n t i o n t o name i t s v a r i a b l e s . 
/ / I n p a r t i c u l a r , v a r i a b l e s whose names s t a r t w i t h a l o w e r c a s e : 
// p = p o i n t e r s . E x . : pNod , i s a p o i n t e r t o a node s t r u c t u r e . 
// a = a r r a y . E x . : aNod , i s an a r r a y o f node s t r u c t u r e s . 
// apNod , a r r a y o f p o i n t e r s t o node s t r u c t u r e s . 
// i = i n d e x i n t o a n a r r a y . E x . : i N o d , i n d e x i n t o an a r r a y o f n o d e s 
// g g l o b a l v a r i a b l e . 
// m = m o d u l e v a r i a b l e . ( G o b a l w i t h i n t h e m o d u l e ) . 
// c = c o u n t . E x . : c N o d P e n d , c o u n t o f n o d e s t h a t n e e d p r o c e s s i n g 
// e = e l e m e n t o f a n a r r a y . 
// d d i f f e r e n c e b e t w e e n two v a r i a b l e s o f t h e same t y p e . 
// X = p a r a m e t e r t o a f u n c t i o n . U s e d when t h e r e i s a m b i g u i t y . 

' I I 

Fig. 135: Hungarian notation prefixes as used in OVNI. 

Also, modular variables (those visible only within a C++ file) begin with a lower
case m letter. Global variables, when they exist at all, exhibit a lowercase g as the 
first letter of their names. As an example, the network node registry array, to be 
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introduced in the next section, is a module visible variable within the netj file: 
mapNodZer. It is a module visible (m), array (a), of pointers (p) to nodes (nod), 
indexed from zero up (zer). 

12.4 F r o m nodes to the network 

The simplest and most basic entity in OVNI's description of the network is the 
node. A node was represented originally by the structure in Fig. 136. Two pieces of 
data define the state of a node, its voltage, v (defined with respect to the reference 
node), and its total current, h. 

s t r u c t n o d _ t { 
d o u b l e re / / T o t a l c u r r e n t e n t e r i n g t h e n o d e . 
d o u b l e V ; 

) ; 
/ / V o l t a g e t o r e f e r e n c e n o d e . 

i 

Fig. 136: Structure that represented originally a node in OVNI. 

The network simulated in OVNI is a conglomerate of nodes associated accord
ing to a connectivity matrix defined by the elements. Nodes connected galvani-
cally,3 but not including both ends of any link, are clustered together into an array 
which is put inside a subblock entity, an instantiation of the class subj, as in 

Fig. 137: Node array inside a subblock object. 

Fig. 137. 
Regardless of where the actual nodes are (each as an element of an array in one 

of the subblock objects described later in this chapter), to keep track of each one of 
them, the network (unique instantiation of the class netj) maintains an array of 
pointers to the nodes which is initialized right before the simulation begins, the 

That is, not connected to both ends of the same transmission line. 
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II NOD_T 
/ / Every node i n the network i s accounted for i n an a r r a y , mapNodZer, 
/ / which i s a data member of the "net" c l a s s . Each node corresponds 
/ / to one element i n t o t h i s a r r a y . In t h i s implementation the a r r a y ' s 
/ / name i s 'mapNod' (an a r r a y of p o i n t e r s to s t r u c t u r e s ~nod_t). 
/ / The t o t a l number of ex terna l nodes i n the network (nodes which are 
/ / v i s i b l e to the core of the i n t e g r a t o r , as oppossed to nodes i n s i d e 
/ / the models themselves) . Ground, or reference node, corresponds to 
/ / the zero th element, mapNodZer[0]. Example: to r e f e r to the a c t u a l 
/ / name of the node whose index i s 6 . . . mapNodZer[6]->name. 
/ / A l s o , ground/reference node i s ass igned b lock #-1, and sub-block #-1, 
/ / which of course i s a n o n - e x i s t i n g b l k / s u b . (See d e f i n i t i o n s above). 

s t r u c t nod_t 
{ 

char sName[MAX_LENGTH_N0DE_NAMES+1]; / / A c t u a l name of the node, 
i n t i B l k ; / / Which t o p o l o g i c a l b lock i t belongs i n . 
i n t iSub; / / Which sub-block i n s i d e that ' b l o c k ' . 
i n t iPosInSub; / / R e l a t i v e p o s i t i o n of node w i t h i n sub-b lock . 
REAL *pH; / / Po in ter to a c t u a l node current f i e l d . 

Fig. 138: A node registration item, an element of the node registry array. 

network nodes registry, mapNodZer. The array element is seen in Fig. 138, and the 

network 
mapNodZer 

Fig. 139: Network registry of nodes, and their spatial relationship with the nodes, 
subblocks, blocks, and the network. 
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II H S R _ T 
/ / E v e r y e x t e r n a l h i s t o r y s o u r c e i s o n e i n s t a n t i a t i o n o f t h i s c l a s s . 

c l a s s h s r t 

{ 
p r i v a t e : 

R E A L v a l u e ; / / A c t u a l v a l u e o f t h e c u r r e n t s o u r c e . 
R E A L * p N o d F r o m H ; / / P o i n t e r t o a c t u a l ' f r o m ' n o d e c u r r e n t f i e l d . 
R E A L * p N o d T o H ; / / P o i n t e r t o a c t u a l ' t o ' n o d e c u r r e n t f i e l d , 

p u b l i c : 
R E A L * G i v e A d r H s r () { r e t u r n l v a l u e , - } ; 
v o i d S e t F r o m N o d H ( R E A L * p ) { p N o d F r o m H = p ; } ; 
v o i d S e t T o N o d H ( R E A L * p ) { p N o d T o H = p , - } ; 
v o i d D r a i n A n d P o u r ( ) { * p N o d F r o m H - = v a l u e ; * p N o d T o H + = v a l u e ; } ; 

i 

Fig. 140: The external history source class, hsrj. 

registry array itself and its spatial relationship with the nodes, in Fig. 139. 
The next most basic entity in OVNI is the history source, an object instantiated 

from the class hsrj, seen in Fig. 140. History sources are allocated at the request of 
the corresponding element, and clustered together into an array under the supervi
sion of the network object itself. Each history source is granted access to the current 
field of each of its nodes (the h field in Figs. 136 and 137). And, when fulfilling the 
request for allocation, the network provides the client element with access to the 
"value" field of the source. This allows for the element updating of its history 
sources without the overhead of message passing imposed by a more orthodox 
OOP4 approach. See Fig. 141. 

Fig. 141: Relationship among the elements, their history sources and the subblock's 
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In increasing order of complexity, our attention now turns to the element class, 
to the models of the physical elements that embody the network. Element models, 
in their immense and ever growing variety, are not part of the simulator core. But 
being the intense centers of activity they are, the data exchange with the core, and a 
generic outline to a highly efficient implementation of models was provided in a 
previous chapter (under the heading of node-hiding). That outline is implemented as 

/ / E L M _ T 
/ / E v e r y e l e m e n t i n O V N I i s a d e s c e n d a n t o f t h i s c o m m o n a b s t r a c t c l a s s . 
// 
c l a s s e l m _ t { 
p u b l i c : 

v i r t u a l v o i d R e a d D a t a ( F I L E * f ) 
v i r t u a l v o i d U p d a t e H s r ( ) ; 

p r o t e c t e d : 
I N T c N u m X N o d ; // N u m b e r o f e x t e r n a l n o d e s . 
I N T c N u m X H s r ; // N u m b e r o f e x t e r n a l h i s t o r y s o u r c e s . 

I N T * a X N o d I d ; // E x t e r n a l n o d e s , a s i d ' d b y t h e n e t w o r k . 

p C o n s R e a l _ t * a p X N o d V ; // P o i n t e r s t o t h e X - n o d e s v o l t a g e s . 
R E A L * * a p X H s r ; // P o i n t e r s t o t h e e x t e r n a l h i s t o r y s o u r c e s . 

v o i d G e t B a s i c D a t a ( F I L E * f ) 

i 

Fig. 142: The element abstract class elmj. 

an abstract5 class elmj, Fig. 142, from which more concrete ones will be derived as 
descendants, inheriting in the process the service definitions necessary for the op
eration of the core. The core will exchange messages and services with the elements 
through the common interface provided by that abstract class. Every element model 
is kept track of by a pointer in an element registry array maintained by the network 
object, mapElm. The relationship of those elements to the external nodes they are 
connected to, and to the external history sources they are contributing to the net
work, is seen in Fig. 141. 

Subblocks are associated to one another either by links (in the MATE sense), or 
by transmission links. Subblocks connected by links are said to belong in the same 
block, according to the convention established in the discussion on MATE segmen
tation. In this sense, a block can be perceived as a cluster of subblocks. In OVNI's 

4 Object Oriented Programming. 
5 In OOP parlance, an abstract class is one from which no actual objects are created. 
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current implementation, a block is an instance of class blkj, and contains an array 

of subblocks, aSub. The links that determine the cluster of subblocks identified as a 

block are described by a simple structure with fields that identify the subblocks and 

nodes it is connected to, its resistance (if any), and its associated voltage source (if 

any). Such links are grouped in an array inside each corresponding block object. 

Independent voltage sources associated to links are part of the block, they are ac

counted for as an array of structures with vectors of precalculated values, with an 

associated number of samples, and the ubiquitous time index. Grounded voltage 

sources belong inside subblock objects, and include not only the array of precalcu

lated values, the number of samples, and the time index, but also all the precalcu

lated components outlined in section 9.4.1. 

12.5. Classes in O V N I 

Several of the classes in the engine have a unique instantiation: network, clock, 

simulation, event handler. They were developed originally as Ada83 modules that 

became ADT's modules in C++.- All other classes spawn multiple objects represent

ing every block, history source, element, etc. This last group is implemented as C++ 

classes.6 

OVNI's classes description begins with the entity of the problem space that 

suggested OOP technology as a convenient paradigm to implement the solution, the 

element. 

12.5.1 The Element Class, elm_t 

Decades of EMTP experience have made it clear that an application of the nature of 

OVNI's is bound to start with a core, presented in this thesis, and develop with 

contributions of element models coming from several sources, and at different times 

in the future. 

As model developers plug their creations into OVNI, the core must be able to 

continue to operate and remain unchanged. That unburdens model developers, and 

protects the core from careless unwilling introduction of errors7 into its main code. 

OOP promise of encapsulation provides for such protection. However, given 

6 They were Ada95 tagged records, in the original conception of the solution. 
7 The euphemistically called bugs. 
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allow for (in theory) all future possibilites of the needs of models, as supplied by the 
core. This need is provided by OOP's polymorphism, that makes it possible for 
OVNI to deal with all element models, present and future, as if they were "forms" of 
an abstract sort of element, an abstract class in OOP parlance, an elmj. All ele
ments, included and to be developed, are instances of classes that derive their func
tionality from that abstract class. Class elmj is a common ancestor to all element 
classes in OVNI. 

Interaction between the core and the element models include: requests by the 
core (the client) for the element (the server) to update the external history sources 
that the element contributes to the network around it; request by the chamaeleonic 
(non-linear) element (the client) to the core (the server) to update the corresponding 
subblock conductance matrix due to the element's recent topological change; request 
by the element (client again) to the core (server) to provide the addresses (without 
permission to write) of the voltage fields of the nodes that the element is connected 
to; request by the element (client) to the core (server) to provide the addresses (with 
writing permission) of the current fields of the history sources that the element will 
have to update at every time step, when so required by the core (see the first service 
listed here.) 

The interaction between an element and the rest of the network occurs at the so 
called external nodes. The element keeps track of the number of nodes that connect 
it to the rest of the network (external nodes), the number of history sources that the 
element contributes to those external nodes (external history sources), and identifica
tion of each of those nodes, and of each of those history sources. In the current 
implementation, to improve the performance of the solution, elements are kept 
abreast of the nodes voltages and allowed to update the corresponding external 
history sources without incurring into method calling overhead. In short, elements 
are provided by the core with pointers to constant values that take them to the nodes 
(which belong inside a certain subblock object) voltage fields directly, but prevent 
them from modifying those values unwittingly. Otherwise, the element would have 
to request the corresponding information service from the network, that would pass 
the message to the block in question, who in turn would advance the message down 
to the subblock that contains the node, a lengthy and expensive message passing. 
The pro of the taken approach is improved efficiency, the cons include the waiving 
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of some independence between the classes. But that last price has been kept at a 

minimum by making the data accessed by the element, atomic, that is, of an unstruc

tured type (floating point values). 

12.5.1.1 Methods provided by elmj 

In Fig. 142, a view of the abstract ancestor class of all the elements in O V N I , elmj 

is included. In that figure, the arguments common to all elements in O V N I can be 

identified: the number of connection nodes (external nodes), the number of history 

sources the element contributes to the network (external history sources), an array of 

pointers to the external nodes voltages (visualized in F ig . 141), necessary for the 

element during the updating of its history. 

Two services are provided by the class elmj: 

a) ReadData, a request issued to the element during the initialization of the case 

that the element acknowledges by reading its data from the input file, and initializing 

all o f its data structures. A t that stage also, the element requests of the network, 

netj, the addresses of the voltage fields corresponding to the connection nodes of 

the element, and the addresses of the current fields of the history sources that the 

element is feeding into the network; 

b) UdateHsr, a request issued by the network during the simulation, at each 

time step, to take the nodal voltages and recompute the history sources of the ele

ment (at this stage, also, the element decides its topological changes, i f any, and 

notifies the network, through the corresponding messages —see the section on the 

network, b e l o w — of the necessary changes affecting the corresponding subblock 

matrices. 

12.5.2 The history source class, hsr_t 

History sources, even i f conceptually belonging within the element models, are rep

resented as objects of the class hsrj, and are grouped together inside the network 

object, ready to service the network in its request for accumulating nodal currents. 

The link with the corresponding element model is made once, at the initialization 

stage, when the source provides the element with the address of its current field, see 

Fig . 140. 
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Fig. 140. 

12.5.3 The subblock class, sub_t 

Each of MATE's subblocks, as described in a previous chapter, is implemented as 
an instantiation of class subj, Fig. 143. 

c l a s s sub_t{ 
p u b l i c : 

/ / Gets sub's data from f i l e ' f 
v o i d I n i t ( 

F I L E * f, // Already opened and p o s i t , f i l e . 
i n t iB lkCode , // P o s . e n c l o s i n g b lock i n net . 
i n t iSubCode ) ,- // Pos .of subblock i n e n c l o s i n g b l o c k . 

v o i d UpdateEthO ; // Update Thevenin's v o l t a g e s . 
const REAL** G e t P t r Z M a t r i x O ; // D e l i v e r s address of Z mat. 
const REAL * G e t P t r E t h V e c t o r ( ) ; // D e l i v e r s address of Eth vec . 

/ / Given the enveloping b l o c k ' s l i n k s currents i n vec tor 1 a L n k V o l t s ' , 
/ / do c a l c u l a t e the subblock ' s nodes vo l tages . 
v o i d CalcNodeVolts ( const REAL* aLnkCurr ); 

/ / To al low the b lock to r e g i s t e r i t s l i n k s , the b lock passes 
/ / the number of l i n k s , and the two a l l o c a t e d and i n i t i a l i z e d 
/ / v e c t o r s 'aLnkNod' and ' a L n k E n t e r s ' . 
v o i d R e g i s t e r L n M INT cNumLinkPar, INT *aLnkNodPar, BOOL *aLnkEntersPar ); 

/ / T o hook up a new 1 aZ' matr ix by the corresponding chameleon elm. 
v o i d HookUpMatrix( REAL **aNewZMat ) ; 

p r i v a t e : 
INT i B l k ; // In which b l k i s t h i s sub. 
INT iSub; // What sub i s t h i s i n that b l k . 
INT cNumNod; // Number of nodes i n sub. 
INT *aNodId;. // Net ' s i n d e n t i f i e r s for the nodes. 
REAL *aNodV; // Nodes vo l tages (1..n). 
REAL *aNodH; // Nodes t o t a l current s ( l . . n ) . 
REAL **aZ; // Z matr ix , i . e . inv ( G[] ) . 
REAL *aEth; // Thevenin vo l tages (1..n) 

INT cNumLnk ; // Number of l i n k s i n b l o c k . 
INT *aLnkNod; // Links connect ion nodes i n sub. 
BOOL *aLnkEnters; // TRUE = Link enter t h i s sub. 

BOOL chameleon; // TRUE = t h i s subblock i s a cham. 

T 
Fig . 143: The subblock class subj. 

12.5.4 The block class, blk_t 

Subblocks are clustered into an array inside the corresponding block, together with 

the corresponding links, etc. As can be seen in Fig. 144. 
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c l a s s b l k _ t 

{ 
p u b l i c : 

b l k _ t ( F I L E * f , I N T i B l k C o d e ) ; 

v o i d H o o k C h a m M a t r i x ( I N T i S u b , R E A L * * p N e w M a t r i x ) ; 
v o i d H o o k V o l t T o L n k ( I N T i L n k , R E A L * p ) ; 
v o i d C a l c N o d e V o l t s ( ) ; 

p r o t e c t e d : 

I N T b l k l d ; / / I d e n t i f i c a t i o n c o d e o f t h i s b l o c k . 

I N T c N u m L n k ; / / N u m b e r o f " l i n k s ' i n t h i s b l o c k . 
I N T c L n k C l o s e d ; / / N u m b e r o f c l o s e d l i n k s i n t h e b l o c k . 
l n k _ t * * a p L n k ; / / A r r a y o f p o i n t e r s t o ' l i n k s ' i n t h i s b l k . 

/ / O p e n ' l i n k s ' a r e a t t h e b o t t o m o f t h e a r r a y . 
l n k _ t * * a p L n k I d ; / / S a m e a s ' a p L n k ' , b u t i n v a r i a b l e . T o i d . t h e m . 

/ / T h e f o l l o w i n g a r r a y s a r e i n d e x e d a c c o r d i n g t o t h e o r d e r o f l i n k s 
/ / a s i n ' a p L n k ' , t h a t i s c l o s e d l i n k s a t t h e t o p . 
R E A L * * a L n k M a t ; / / ' l i n k ' m a t r i x f o r t h e b l o c k . 
R E A L * a L n k C u r r ; / / A r r a y o f l i n k s c u r r e n t s . 
R E A L * a L n k V o l t ; / / R H S o f l i n k c u r r e n t e q u a t i o n s y s t e m . 

R E A L * a C h o l D i a g ; / / A u x i l i a r y v e c t o r u s e d i n s o l v i n g l i n k s e q u a t i o n s . 

/ / T h i s a r r a y f o l l o w s t h e o r d e r i n ' a p L n k l d ' . 
R E A L * a L n k C u r r U n s o r t e d ; / / S a m e a s ' a L n k C u r r ' b u t w i t h t h e o r d e r o f 

/ / t h e l i n k s a s c r e a t e d b y t h e p r e p r o c e s s o r . 

I N T c N u m S u b ; / / N u m b e r o f ' s u b - b l o c k s ' i n s i d e t h i s b l o c k . 
s u b _ t * * a p S u b ; / / A r r a y o f p o i n t e r s t o s u b - b l o c k s . 

b o o l e a n c h m C h a n g e d ; / / T R U E = o n e o f b l o c k ' s c h a m e l e o n s c h a n g e d ! 
b o o l e a n s w t E v e n t O c c u r r e d ; / / T R U E = a l i n k j u s t c l o s e d o r o p e n e d , 
b o o l e a n I n k M a t J u s t R e b u i l t ; / / T R U E = a L n k M a t h a s n o t b e e n t r i a n g u l a r i z e d . 

v o i d S o r t L n k O ; / / P u t s c l o s e d l i n k s f i r s t i n a r r a y ' a p L n k ' . 
v o i d B u i l d L n k M a t () ,• / / B u i l d t h e l i n k s m a t r i x . 
v o i d H a n d l e T o p o l o g y C h a n g e s () ,- / / W h e n l i n k s o p e r a t e o r c h a m e l e o n s c h a n g e 

Fig . 144: The blkj class, template for every block in the network. 

5.5 The clock object, tck 

The clock is a single instantiated object, implemented thus as an ADT walled inside 
its implementation file "tck.cpp", and interfaced to the rest of the core by its header 
"tck.h", as in Fig. 145. 

The clock unit defines its own integer arithmetic, which allows it to count, with 
one microsecond steps, up to 3.2xl0974 trillion years. This accounts for the non-
measurability of the continuous simulation premise, that is, on-line monitoring of 
power networks, envisaged as one of the applications of this thesis. 



12. OVNI, the simulation engine 183 

typedef long count t; // 0..999 999 999 (1 b i l minus one) 
// Note: t h i s type does not enforce 
// these l i m i t s , so i t ' s up to prog 

v o i d TckResetCounter( ) ; // Sets to zero the counter . 
v o i d TckAdvanceCounter() ; // Advance count by o n e . 
v o i d TckGetCounter // R e t u r n s . . . 

(count_t i x H i g h , // high nine d i g i t s of t i c k e r , 
count_t i xMid , // and middle nine d i g i t s , 
count_t StxLow) ,• // and l e a s t s i g n i f . nine d i g i t s . 

v o i d TckSetMax // Sets the maximum t i c k l i m i t a t : 
(count_t xHigh, // high nine d i g i t s o f t i c k e r , 
count_t xMid, // and middle nine d i g i t s , 
count_t xLow); // and l e a s t s i g n i f . nine d i g i t s . 

boolean TckCountBelowMax(),- // TRUE = S imulat ion has not ended. 

Fig. 145: Header of the clock object, the ticker, tckj. 

12.5.6 The simulation object, sim 

The simulation is the top level object, right under the director8. As a single 
instantiation entity, it was implemented as an ADT encapsulated inside a C++ file, 
sim.cpp, and providing services to the rest of the implementation as defined in its 
header sim.h, which is included in Fig. 146. 

v o i d S i m l n i t i a l i z e // Reads f i l e / n e t w r k , rese t s t imer . 
( char *nameInFile, // Name of input f i l e (the netwkr) . 

char *nameOutFile, // Name of the mai l output f i l e . 
char *nameLogFile ),• // Name of the e v e n t / l o g f i l e . 

v o i d SimDoTheLoops(); // Loop along time a x i s , doing the 
// s i m u l a t i o n proper . 

T 

Fig . 146: Services provided by the simulation object. 

12.5.7 The network class, net 

The network, net, under the command of the simulation object, sim, and in continu
ous consulting with the clock object, tck, and with the event handler object, is the 
great activator in OVNI's core. It (the net) contains the array of node registry, that 
points into every external node in the system, mapNodZer; the array of elements in 
the system, mapElm; the array of blocks, mapBlk; and several other bits. 

8 The OOP section of the code that issues the cues for the object-actors to perform. 
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12.6. H o w classes within O V N I relate to each other 

Up to this point, most of the classes and entities in OVNI have been introduced, and 
some inkling of the way they relate to each other has been intimated. In Fig. 147, 
the inclusion relationship is sketched. There the simulation, sim, commands the 
network, net, to consult the event manager, evn, and the clock keeper, tck, at the 
highest level of the process. 

The network, net, contains the elements (as forms of elmj), the blocks (as 
instantiations of blkj), the history sources (instantiations of hsrj). The blocks 
contain the subblocks (instantiations of subj), the links (of type Inkj). The sub-
blocks contain the nodes, the grounded voltage sources, the independent current 
sources, and the non-link switches. 

12.7. M a i n tasks of the simulator's engine 

In a previous chapter of this thesis, the main tasks were revised. In this section the 
implementation of those tasks, as services requested by some object and provided 
by some other object among those described in the fist part of this chapter, follows. 

director 

i container 

Fig . 147: Container/contained relationship o f classes in O V N I . 
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12.7.1 Initialization 

During initialization, the director activates the simulation, sim, through the service 
request Simlnitialize,9 and passes to it the names of three files: the input data file, 
the log file, and the output file (used to validate the solution, or to keep record of 
some variable, not in real time simulations). The simulation checks the existence of 
the input file, and opens the three files. 

The simulation reads the general data associated with the present run and ini
tializes the clock, tck, through the service TckSetMax and TckSetDeltaT. 

Next, the simulation requests the network, net, to read its data and initialize its 
data structures, through the service request Netlnitialize. The network proceeds to 
read its data, and sets up its internal structures for registration of nodes, for history 
sources, for elements, for blocks, etc. 

Finally, the network signals each element to read its data and proceed with 
model initialization, through the request pElm->ReadData (where pElm is a pointer 

Netlnitialize 

ReadData 

service 
client >. server . 

request 

Fig. 148: Initialization Task of the Engine, 

to a particular element). 

12.7.2 Simulating the case 

The centre of activity of the core is the loop itself, the set of subtasks that are 

9 The "dot" notation is conspicuously absent of this first stage, since the objects involved (sim, net, 
tck, evn) were implemented as ADTs and not as instantiations of a class. As a matter of notation, in 
such cases, OVNI 's code maintains the three letter acronym of the object as the prefix of all its 
methods (service requests). 
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executed at each simulation time step. At this stage, right after the initialization task, 
the director requests of the simulation object to SimDoTheLoops. Each of the 
subtasks comprised by this service request was a major issue of the project and de
serve its own subsection, as follows. 

12.7.2.1 Updating History Sources 

At the begining of each simulation step, the network net, traverses its register of 
elements in the case, and requests of each to update the history sources that belong 
to it. This is done through the service request UpdateHsr. 

During the service to this request, each element goes through some common 
steps: 

a) Grab its external nodes voltages —available to it directly since the registra
tion part of the initialization—; 

b) Through the node hiding equations described in chapter 5, determine the 
voltage of its internal nodes for the current time step; 

c) Determine the necessary changes to its topology, if any, and submit (if neces
sary) a request to the network to receive a new "contribution" matrix and to "hook" 
it to the corresponding subblock matrix; 

d) Calculate the external and internal history sources, and again through the 
node hiding equations mentioned above, refer all of them to equivalent external 
history sources that are then delived directly to the corresponding history source 
object —'the element has direct acess to its history sources value fields since the 
registration stage of the initialization, as was seen in a previous section of this 
chapter—•. 

12.7.2.2 Accumulat ing nodal currents 

Once the value for each current source in the case is known (independent and history 
souces), the version of the nodal analysis method used in the core solution requires 
that the currents being fed to each node are summed into a node total, the nodal 
currents. Each node accumulates this total current in its h field, see Fig. 137. 

At this stage, in service of the request NetAccumNodalCurrents (issued by the 
simulation object sim) first the network net, clears the current fields of all the 
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external nodes in the case (the network gains access to them, through the data in its 
node registration record array mapNodZer), then the net requests of each of its reg
istered history source objects, the service DrainAndPour. Each history source was 
given direct access to its two nodes /i-fields during the registration stage of the ini
tialization, so the history source can add its value to the /z-field of its destination 
node and subtract it from the corresponding field of its origin node. 

12.7.2.3 Solving for nodal voltages 

The task of solving for voltages at the nodes has been the major concern at the out
set of this project, it befits this task to end the description of the implementation of 
the core. The simulation sim, issues the service request NetCalcNodalVoltages to the 
network net. The network traverses its registry of topological blocks and requests of 
each one of them to determine the voltages of the nodes it encloses through the 
service request CalcNodeVolts. 

II (4) 
/ / It i s the b locks who know how to c a l c u l a t e the node vo l tages , g i -
/ / ven the node cu r ren ts . As b locks are contained i n the network, 
/ / the l a s t one commands each of i t s b locks , one a f te r another, or 
/ / a l l at the same t ime, i f t h i s procedure i s spawned among severa l 
/ / p rocessors . There must not be any data content ion , s ince the 
/ / only wr i t t en data i s that of nodes vo l tages , and those vol tages 
/ / belong i ns ide each b l o c k ' s sub-b locks . 

vo id NetCalcNodalVol tages!) / / Determine the vol tage of each node. 
{ 

i n t i ; . 

f o r ( i = l ; i<=mcNumBlk; i++) / / Requests to each block to . . . 
mapBlk [ i ] ->CalcNodeVol ts( ) ; / / . . .compute i t s nodes vo l tages . 

) 

I 

The block10 so activated enters in its MATE computation cycle (as described in 
a previous chapter): 

a) If during the previous integration step the event handler evn issued a topol
ogy change signal, the block reshufles its links, to keep the closed ones at the top of 
its list, which allows for the same Cholesky solution method procedure to be applied 
to each of the open-close-links combinations. To do this without losing track of 
which link is which, the block maintains two arrays of pointers to the enclosed links, 

1 0 If the block contains a single subblock (no internal subsegmentation), it issues the subblock the 
service request apSub[ 1 ]->CalcNodVolt(), and that is all that is necessary at this stage. 
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links, a fixed one, that is set and left during the initialization process, that is used to 
access the currents and state of the link at any moment, and a movable one, that is 
reshufled to keep on top pointers to the closed links (the so called active ones). In 
this case also, the block needs to recompute its links matrix, by quick polling its 
contributing subblocks according to the latest topology as determined by the links 
status. Another possibility contemplated at this stage is that there was no external 
event serviced, but one of the internal chamaeleon (non linear) elements changed 
topology, in this case the block simply recomputes its links matrix; 

b) The block signals each of its subblocks to establish the latter's Thevenin 
voltages of its nodes, service apSub[i]-> UpdateEthQ; 

c) The block polls each of its subblocks to contribute with the corresponding 
recently calculated Thevenin voltages to its right hand side vector of the links cur
rent system of equations; 

d) The block solves the links system of equations for the links currents; 
e) Finally the block passes the links currents to each of its subblocks and re

quests of it to produce the corrected nodal voltages, subblock method 
apSub[i]->CalcNodeVolts(apLnkCurrUnsorted); 



13. OVPP, THE PREPROCESSOR 

13.1 In t roduct ion 

The simulator's core was implemented in two main modules: the preprocessor, 

OVPP, described in this chapter; and the engine, OVNI, described in the next 

chapter. 

The preprocessing stage of the simulator, OVPP, is an OOP 1 application 

built around one custom designed circular double-linked list class, list.t, and five 

descendent classes: the node-list object-class, the subblock class, the subblock 

list class, the block class, and the block list object-class. The preprocessor was 

developed2 in C++ and compiled on the target machine with the GNU g++ 

compiler. 

The operative word in the design of the simulator has been precalculation. 

Most of the precalculation involved has been moved to the preprocessing stage 

to keep the engine lean and fast. This chapter begins with a description of the 

raw data input file to the preprocessor, and continues with a description of the 

preprocessor proper. 

13.2 T h e Preprocessor Input F i l e 

The input data to the preprocessor is in human readable form for the convenience 

of the case creator. It is in a free format text file with the extension OVP. The 

basic template of such file can be generated with the included utility OV-TMP. 

The indentation shown in the following example is there to make reading easier 

1 Object Oriented Programming [34] 
2 Originally O V N I began as an O O P project developed on Ada95 [67], but delays in the 

availability of industrial strength compilers forced the move toward C++ . [68] 
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for the human user, it is not necessary for the program, but recommended. 

The significant data in the file begins with the keyword .BEGIN.FILE. Be

fore that keyword, any comment can be included for identification purposes. 

The data in the file is divided into nine sections3: GENERAL DATA, LUMPED, 

LINES, HVDC, CONTROLLERS, COUPLED, SOURCES, SWITCHES, OUT

PUT. Each section ends with the keyword .END followed by the corresponding 

section label. Some of the data items are preceded by a label, included by the 

utility O V - T M P 4 . Each of those labels explains the meaning of the following 

data item (see Fig . 149 on p. 191). 

13.2.1 General Data 

The GENERAL.DATA section includes two data items: the one labelled "deltaT:" 

for the integration step in seconds; the other identified "totalTime:" for the total 

simulation time, also in seconds. 

13.2.2 Lumped Elements 

Following the respectable tradition ofthe E M T P (see chapter 1), even though all 

element models, with the single exception of the distributed transmission line 

model, are represented as lumped equivalents, O V N I refers to lumped linear 

resistors, inductors, and capacitors, as lumped elements. 

This section begins counting the total number of lumped elements (linear 

resistors, inductors, and capacitors) in the network 5, "number.of Jumped:". For 

each lumped element, a line 6 that includes (see Fig. 151), without labels, an 

uppercase letter R, L, or C , depending on the nature ofthe element; a parameter, 

in ohms, milihenrys, or microfarads, depending on the nature of the element; 

3 This number of sections will increase as more models are attached to the simulator. 
4 The preprocessor input file, * . O V P , is to be generated by OVNI's graphic user interface, 

OUI [37] 
5 In a future version of the preprocessor this data item, along with the similar ones for other 

element types, will be dropped. 
6 A separate line is not absolutely necessary, given the free format of the file, but highly 

convenient for the human reader. 
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.BEGIN F I L E 
.BEGIN GENERAL_DATA 

.END GENERAL_DATA 

.BEGIN LUMPED 

.END LUMPED 

.BEGIN COUPLED 

.END COUPLED 

.BEGIN LINES 

.END LINES 

.BEGIN CONTROLLERS 

.END CONTROLLERS 

.BEGIN HVDC 

.END HVDC 

.BEGIN SOURCES 

.END SOURCES 

.BEGIN OUTPUT 

.END OUTPUT 
.END F I L E 

Fig. 149: General structure of the preprocessor input file. 

and the two nodes that the element is connected to, each node as a string of 

up to six letters (The ground or reference node can be entered as either GND, 

GROUND, or EARTH.) 

13.2.3 Intrablock " l inks" and Switches 

Switches in OVNI can be represented by either a MATE intrablock link, or 

an ideal or resistive intrasubblock switch. Two data sections accommodate 

each of those categories. The SWITCHES section includes labels for: " num

ber _of_switches:", and for each of the switches included in this section: "ini-

tial_node:" (a seven character string name), and "final_node:", for the two nodes 
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. B E G I N G E N E R A L - D A T A 

d e l t a _ t : 5 0 . O e - 6 

t o t a l _ t i m e : 5 0 . O e - 3 

. E N D G E N E R A L _ D A T A 

1 • • • i 

Fig. 150: Section on general data for a case with an integration step of fifty microsec
onds and a total simulation time of fifty miliseconds. 

.BEGIN LUMPED 
number_of_lumped: 3 
R 2 0 . 0 TOPO BURRO 
L 2 0 . 0 PERRO GATO 
C 2 0 . 0 MAKO T I Z A 

.END LUMPED 

1 - - - - - - - — r\ 

Fig. 151: Section on lumped elements: including one resistor of 20Q, connected be
tween nodes TOPO and BURRO; an inductor of 20mH, and a capacitor 
of 20pF. 

of the switch; a flag "initiallyjclosed_yes/no:" that indicates the initial status of 
the switch; the number of open operations prescheduled for this switch, "num
ber _of.openings:"; and the number of close operations, "number_of.closings:"; 
then, after the label "open:" and separated by spaces, a list of the times for 
each opening operation; same as for open operations, for close operations there 
is the label "close:", see Fig. 152. 

Intrablock links include a few additional fields: "ohms:", the resistance of 
the link, in ohms; "volts_are_DC_yes/no:", a flag that indicates if the voltage 
source associated with this link is DC or sinusoidal AC; "volts:", amplitude of 
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.BEGIN SWITCHES 
number_of_swicches: 1 
.BEGIN SWITCH-0 

init i a l _ n o d e : TOTUMA 
final_node: COBIJA 
initially_closed_yes/no: no 
number_of _openings: 2 
nun\ber_of _closings: 3 
open: 700e-6 1200e-6 
close: 300e-6 1000e-6 5000e-6 

.END SWITCH-0 
.END SWITCHES 

Fig. 152: T h i s switch data section includes a single switch: the one between nodes 

TOTUMA a n d COBIJA, a switch open at the beginning of the simulation, 

with two open operations, one at seven hundres microseconds, the other at 

twelve hundres microseconds. 

voltage wave (or value of DC one); "hertz:", frequency of source, if it is an AC 

one, zero otherwise; "radians:", phase shift in radians of the AC voltage sine 

wave; and "frozen_closed_yes/no:", a flag that identifies this node as a mock up 

switch, one that will never open7. 

13.2.4 Transmiss ion Lines 

For transmission lines, the constant parameter model is included. The LINES 

section starts with the number of transmission lines in the network, "num

ber _ofTines:", followed by a line section for each line included. 

The line section presents five fields, labelled: "number_of_phases:"; "Zc:", fol

lowed by a blank space separated list of values for the characteristic impedance, 

in ohms, of each of the transmission modes8 of the line; "delay:", followed by a 

list of the delays, in seconds, for each of the transmission modes; "nodes:", a list 

of strings for the nodes listed phase by phase, and send end to receiving end (fol

lowing each node is a yes/no flag that requests for the current in that particular 

7 As is the case when a link is introduced to separate two sections of a block where there is 

no switch. 
8 In the order mode zero, mode one, etc.. 
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phase/node to be computed and output), see Fig. 153; "q-matrix:", the modal 

transformation matrix9 corresponding to the line geometrical configuration. 

. B E G I N L I N E S 

n u m b e r _ o f _ l i n e s : 1 

. B E G I N L I N E - 0 

n u m b e r _ o f _ p h a s e s : 3 

Z c : 6 3 7 . 9 2 7 8 . 7 3 2 8 . 1 

d e l a y : 0 . 5 e - 3 0 . 3 5 e - 3 0 . 3 5 e - 3 

n o d e s : N I n o N4 y e s N2 n o N5 n o N3 n o N6 n o 

q - m a t r i x : 

0 . 5 9 2 4 2 8 8 5 5 - 0 . 4 1 2 3 3 6 2 0 - 0 . 7 0 7 1 0 6 7 8 

0 . 5 4 5 9 4 5 5 2 0 0 . 8 1 2 3 7 7 7 4 0 . 0 0 0 0 0 0 0 0 

0 . 5 9 2 4 2 8 8 5 5 - 0 . 4 1 2 3 3 6 2 0 - 0 . 7 0 7 1 0 6 7 8 

. E N D L I N E - 0 

. E N D L I N E S 

Fig. 153: In this case, only one three phase transmission line has been included in the 

network. 

13.2.5 G r o u n d e d Voltage Sources 

Voltage sources in the simulator are included by one of two devices: as a per

manently closed link, § 13.2.3, with the corresponding voltage source; or, in 

cases where the source is grounded and we do not care about its current, as a 

"grounded voltage source" that is included inside a subblock, for an improved 

performance of the simulator. 

A grounded voltage source includes: the single non ground node the source 

is connected to, "node:"; a flag to indicate if the source is DC or AC sinusoidal, 

"DC_source_yes/no:"; and the same fields already described in § 13.2.3, "volts:", 

"herts:", and "radians:". 

13.2.6 H i g h Vol tage D C rect if ier / inverter , H V D C 

HVDC modules data sections, HVDCs, include: 

• "controlled_by:", identifies the controller that triggers this module's valves. 

9 Generated by M T L i n e , or a similar utility program. 
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• "transformer_Y/D:", indicates whether the three-phase transformer in the 

module has a YyO or a Dyll connection; 

• "dc_line_reactor?_y/n:", a flag that signals if this module includes a smooth

ing reactor; 

• "dc_reactor_valuein_mH:", value of the smoothing reactor; 

• "nodes:", to which five nodes this module is connected to, five strings (of 

no more than six characters each) separated by blank spaces; 

• "starting_Mode:", a list of six strings (each either ON, or OFF), corre

sponding to the initial status of the six valves in the module; 

• "MVA:", capacity of the three-phase transformer in the module; 

• "KV1:", line voltage rating of the transformer primary, in kilovolts; 

• "KV2:", line voltage rating of the secondary; 

• "Zsc%:", short circuit impedance10 in percentage; 

• "holding.current:", minimum value of the current through a valve at which 

a closed valve so remains; 

• "threshold_voltage:", minimum value of a valve voltage at which it starts 

to conduct; 

• "Tq:", recovery time for the valves, in seconds, the time the valve needs 

to vacate its depletion zone around the junction; 

• "number_of_failures:", number of preprogrammed simulated valve failures, 

for testing of controlling schemes. For each failure, include a line that 

specifies the instant of the failure, which valve will fail1 1, the number of 

Or reactance rather. 
Valves are identified by an integer from one to six. 
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integration steps that the failure will be sustained, and the type of failure 

(misfire, follow through). 

. B E G I N C O N T R O L 

n u m b e r _ o f _ c o n t r o l l e r s : 1 
. B E G I N C O N T R O L - 1 

K p : 0 . 0 0 0 1 

K i : 0 . 0 0 0 0 0 5 

r e f e r e n c e _ c u r r e n t : 1 8 0 0 
f i r i n g A n g l e : 1 5 

a l f a _ m i n : 5 

a l f a _ m a x : 1 7 0 

p u l s e _ w i d t h : 90 

s e n s e d H V D C : 1 

n u m b e r O f C o n t r o l l e d H V D C : 2 
c o n t r o l l e d _ H V D C : 1 2 

p r i n t _ o u t p u t _ c o n t r o l l e r _ y e s / n o : n o 

p r i n t _ r a r a p _ y e s / n o : n o 
p r i n t _ a l f a _ y e s / n o : n o 

p r i n t _ w y e _ g a t e s _ y e s / n o : n o 

p r i n t _ d e l t a _ g a t e s _ y e s / n o : n o 

p r i n t _ D C _ c u r r e n t _ y e s / n o : n o 

p r i n e _ p r e _ r e a c t o r _ v o l t a g e _ y e s / n o : n o 
. E N D C O N T R O L - 1 

. E N D C O N T R O L 

Fig. 154: HVDC controller data. 

13.2.7 H V D C Control lers 

The original purpose of the HVDC model was to provide for a scenario to 

test the corresponding controllers. However, to test and verify the model it

self, it was necessary to develop and model a simplified controller, a propor-

tional/integrative controller targeted on a given reference value for the DC cur

rent, and modifying the firing angle of the module valves. 

The data describing the controller includes the fields: "Kp:", proportional 

constant; "Ki:", integrative constant; "reference-current:", desired value for 

the DC current; "firingAngle:", initial firing angle for the gate signals, in de-
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grees; "alfa_min:", minimum possible setting for the firing angle a, in degrees; 

"alfa_max:", maximum possible setting for the firing angle, a, in degrees; "pul-

seWidth:", width of gate firing pulses, in degrees; "sensedHVDC:", what HVDC 

module's DC current is being monitored and controlled; "numberOfControlled-

HVDC:", how many HVDC modules are triggered by this controller; "con

trolled JTVDC:", a list of the numbers that identify all the HVDC modules fired 

by this controller. 

For in depth studies of the process of control, a few additional output signals 

can be requested as illustrated in Fig. 154. 

e n u m n o d T y p e _ t { L U M P E D , SOURCE, L I N E ) ; 

s t r u c t n o d _ t { 

n o d T y p e _ t n o d T y p e ; 

c h a r n a m e [ 7 ] ; 

i n t i B l k ; / / W h a t b l o c k c o n t a i n s i t ( 1 . . c N u m B l k ) . 

i n t i S u b ; / / w h a t s u b b l o c k i n s i d e t h a t b l o c k . 

b o o l p e n d i n g S c n d P a s s ; / / T R U E = p e n d i n g f o r a s e c o n d p a s s . 

Fig. 155: Every node is represented by a 'nod.t' structure and registered in a cell of 
the list 'nodList_t'. 

13.3 Classes i n the Preprocessor 

As was mentioned in § 13.1, the preprocessing stage of the simulator, OVPP, 

was built around an ancestor class, HstJ, a double link circular list class. Four 

other application specific classes inherit their basic methods and data elements 

from the list.t class. Those are: nodListJ, a list-class derived as public from 

UstJ with all the nodes12 in the network; sub.t, a class —a public descendant of 

list-t— that describes the activities associated with a subblock in the network13; 

subListJ, a list of all subblocks in the network; blkJ, to describe blocks in the 

1 2 External nodes, as defined in § 5.13. 
1 3 A subblock in the sense seen in § 5.10 on page 67. 
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network; and MkListJ, a list of all the blocks in the network, a description of 

the segmented network that, once set up, is ready for output. 

The best way to describe the functionality of each of the object classes in

troduced above is to present its data and method elements. 

13.3.1 The list.t Class 

The original ancestor of the hierarchical family of classes in OVPP is UstJ, a 

double-link circular list [69]. It is build around a basic unit of data, the list-cell, 

a structure with the type definition shown in Fig. 156. 

t y p e d e f v o i d * p t r _ t ; / / A g e n e r i c p o i n t e r . 

s t r u c t c e l l _ t { 

c e l l _ t ' p P r e v C e l l ; / / P t r . t o p r e v i o u s c e l l . 

c e l l _ t * p N e x t C e l l ; / / P t r . t o n e x t c e l l . 

p t r _ t p C o n t e n t s ; / / P t r . t o d a t a h o o k e d t o c e l l . 

) ; 

t y p e d e f c e l l _ t * p C e l l _ t ; / / P t r . t o a c e l l . 

Fig. 156: A cell in the list.t class. 

The list.t class contains a hook to hang the actual list of cells, the head of the 

list, a pointer to the "head" cell, a neutral-no-data cell that serves as a binding 

between the first cell and the last cell, as seen in Fig. 157. 

The public methods available to the client of the list.t class are listed, and 

described very briefly, in Fig. 158. 

13.3.2 T h e nodList.t class 

The nodeList is a linked list that inherits as public from the ancestor list.t, 

§ 13.3.1. Its cells contain each one of the external nodes in the network. Its 

interface is presented in Fig. 159. Each element within this list is represented 

by a structure of the type in Fig. 160. 
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Fig. 157: The "head" cell and the circular linked list defined by list.t. 

13.3.3 T h e sub.t class 

Each subblock in the problem is represented in the preprocessor by sub.t, a 

linked list of nodes (each node is identified by the integer code generated during 

the registration that specifies the position of the node within the network list 

nodList.t, see § 13.3.2.) In Fig. 161, the methods and data items of the subblock 

class, sub.t. 

13.3.4 T h e subblock l is t , subList.t, class 

All the subblocks in the network are included in the list subList, an instantiation 

of the class subList.t, public descendant of the list.t class, Fig. 162. During the 

process of subdivision of the network nodes (in nodList) into subblocks, accord

ing to the MATE criteria, the nodes are registered (by the nodList itself) with 

the subblock list, subList), that passes the node to its corresponding subblock 

object, see § 13.3.3. 

13.3.5 T h e blk.t class 

Each block in the problem is represented in the preprocessor by blk.t, a linked 

list of subblocks (subJ instantiations) (identified by the integer code generated 

during the registration that specifies the position of the subblock within the 
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c l a s s l i 3 t _ t { 

p r o t e c t e d : 

p C e l l _ t p H e a d ; / / H e a d o f t h e l i n k e d l i s t { S e e F i g . XI.9) . 

i n t c N u m C e l l ; / / C u r r e n t n u m b e r o f c e l l s i n t h e l i s t , 

p u b l i c : 

l i s t _ t ( ) ; / / C o n s t r u c t o r . 

- l i s t _ t ( ) ; / / D e s t r u c t o r . 

p C e l l _ t N e w C e l l ( p t r _ t p D a t a , p C e l l _ t p P r e v C e l l ; p C e l l _ t p N e x t C e l l ) ; 

/ / ' N e w C e l l * c r e a t e s a n d i n i t i a l i z e s a n e w c e l l , i t d o e s n o t l i n k i t . 

i n l i n e b o o l I a L i s t E m p t y {) ,- / / T R U E = t h e l i s t c o n t a i n s n o c e l l s , 

i n l i n e i n t G e t N u m C e l l s ( ) ; / / R e t u r n s t h e n u m b e r o f c e l l s , 

i n l i n e p C e l l _ t G e t H e a d O ; / / R e t u r n s p t r . t o t h e h e a d c e l l , 

i n l i n e p C e l l _ t G e t F i r s t C e l l ( ) ,- / / R t n . p t r . t o f i r s t c e l l , 

i n l i n e p C e l l _ t G e t L a s t C e l l ( ) ; / / R t n . p t r . t o l a s t c e l l . 

p C e l l _ t G e t N e x t C e l l ( p C e l l _ t p C e l 1 ) ; / / R t n . p t r . t o n e x t c e l l t o g i v e n o n e . 

^ p C e l l _ t G e t P r e v C e l l ( p C e l l _ t p C e l l ) ; / / R t n . p t r . t o p r e v i o u s c e l l . 

v o i d I n s C e l l ( p C e l l _ t p C u t O f f C e l 1,- p t r _ t p D a t a ) ; / / I n s e r t i n f r o n t o f a c e l l . 

v o i d D e l C e l l { p C e l l _ t p C e l l ) ; / / D e l e t e a c e l l f r o m t h e l i s t . 

p C e l l _ t G e t C e l I C o n t a i n s ( p t r _ t p D a t a J ; / / R t n . p t r . t o c e l l w i t h t h i s d a t a . 

i n t G e t C e l I P o s { p C e l l _ t p C e l l ) ; / / R t n . p o s i t i o n o f t h i s c e l l i n t h e l i s t . 

p C e l l _ t G e t C e l l A t P o s ( i n t p o s ) ; / / R t n . p t r . c o c e l l a t p o s i t i o n ' p o s " . 

v o i d i n s I n F r o n c ( p t r _ t p D a t a ) ; / / I n s e r t i n f r o n t o f t h e l i s t . 

v o i d i n s A t E n d ( p t r _ t p D a t a ) ; / / I n s e r t t h i s d a t a a t t h e e n d o f t h e l i s t . 

Fig. 158: Methods and data items in the list.t class. 

network subblock list subListJ, see § 13.3.4. The methods and data items in the 

block, blk.t, class are parallel to those in the subblock class, subJ in Fig. 161, 

with the differences corresponding to the contents of the block class (subblocks 

instead of nodes). 

13.3.6 T h e block l is t , blkList-t, class 

All the blocks in the network are included in the list blkList, an instantiation of 

the class blkListJ, public descendant of the list.t class. This class mimics the 

functionality of the subblock list (subList), with the difference that the first one 

contains blocks, into which subblocks are registered, while the latter contains 

subblocks into which nodes are registered. 

During the process of subdivision of the network subblocks (in subList) into 

blocks, according to the connectivity provided by the links and the decoupling 

introduced by the transmission lines, the subblocks are registered (by the subList 

itself) with the block list, blkList), that passes the subblock to its corresponding 

block object. 
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c l a s s n o d L i s t _ t : : p u b l i c l i s t _ t ( 

p u b l i c : 

n o d L i s t _ t ; / / C o n s t r u c t o r . 

i n t P u t N o d f c h a r *sName, n o d T y p e _ t e N o d T y p e ) ; 

i n t G e t N u m N o d e s ( ) ; 

p N o d _ t G e t N o d P t r ( i n t i P o s ) ; 

p N o d _ t G e t N o d P t r ( c h a r * s N a m e ) ; 

i n t G e t N o d P o s ( c h a r * s N a m e ) ; 

c h a r * G e t N o d N a m e ( i n t i P o s ) ; 

n o d T y p e _ t G e t N o d T y p e ( i n t i P o s ) ; 

n o d T y p e _ t G e t N o d T y p e ( c h a r * s N a m e ) ; 

v o i d S e t N o d P e n d i n g ( i n t i P o s ) ; 

b o o l P e n d N o d L e f t ( ) ; 

i n t G e t F i r s t N o d I n S u b ( i n t * i S u b ) ; 

i n t G e t N e x t N o d l n S u b ( ) ; 

} ; 

Fig. 159: Methods and data items in the nodList.t class. 

The methods and data items of this blkLisLt class are parallel to those in 

subListJ, with the differences due to the nature of the contents of each list. 

At the beginning of the preprocessing, once all the elements have been loaded 

from the input data file, each one of them is given the opportunity to register 

their external nodes into the network node list nodeList. The elements regis

ter their nodes by requesting the service "PutNode" from the nodeList object. 

That service returns to the element the numeric code that identifies the reg

istered node in the network. The registration service provided by "PutNode" 

also requires from the element a categorization of the node as belonging to a 

LUMPED element, or to a LINE, or perhaps to a grounded voltage SOURCE. 

13.4 M a i n Tasks of the Preprocessor 

The goal of the preprocessor is the creation of the input file to the engine, to 

OVNI. In that file, the network has already been broken into blocks, and these 

into subblocks. That file identifies each element (or part of it), and every node 
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enum nodType_t{LUMPED, SOURCE, LINE}; 

struct nod_t{ 
nodType_t eType; 
char sName; 
int iBlk; 
int iSub; 
bool bPend; 

}; 

Fig. 160: E a c h node i n the network list is an instance of this structure. 

as belonging to this or that subblock, which is part of the corresponding block. 

Besides all that, the conductance matrices for each subblock corresponding 

to every possible open/close switch combination within the subblock (or an 

indication of the "chameleonic" non linear element associated to it) need to be 

calculated (precalculated, if you will, since this is the preprocessing stage.) Such 

goal is broken in the following sections into "tasks". The tasks are described as 

message exchange between the objects in the application, under the prompt of 

the director (the hub of the preprocessor, a task scheduler.) 

13.4.1 Crea t ion of a list of a l l the nodes 

The first task the preprocessor tackles is the creation of a list of all the nodes 

in the network, nodList. The director (hub) prompts every element in the sys

tem, apElm\\, to register its nodes with the list nodList through the method 

"nodList.PutNod". In this task, the elements are clients, and the list of nodes is 

the server. The service provided, PutNod, takes a node as described below, and 

returns to the client a numeric global-network identification code for the node14. 

Nodes passed for registration through the PutNod method, are identified by 

1 4 Nodes carry two identification codes, the global network code, and another that identifies 
it within the subblock that contains it. 
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s t r u c t c h m _ t ( 

i n t c N u m N o d e s ; 

i n t * a i P o s N o d I n S u b ; 

}; 

t y p e d e f c h m _ t * p C h m _ t ; 

c l a s s s u b _ t : p u b l i c l i s t _ t { 

i n t i B l k ; 

b o o l b P e n d ; 

p C e l l _ t p P i r s t S r c N o d e ; 

d o u b l e * * a M a t r i x ; 

d o u b l e * " a G a b ; 

l i s t _ t I C h m ; 

v o i d C r e a t e M a t r i c e s ( ) ,-

p C h m _ t G e t P t r C h m d n c i C h m ) : 

p u b l i c : 

s u b _ t ( ) ; 

v o i d P u t N o d f i n t i N o d P o s , n o d T y p e _ t e T y p e ) ; 

i n t N o d P o s I n S u b ( i n t i N o d P o s ) ; 

i n t L i s t P o s O f N o d l n S u b f i n t i N o d P o s I n S u b ) ; 

v o i d A d d M a t r i x E l m f i n t r o w , i n t c o l , d o u b l e v a l u e ) ; 

i n t N u m N o d e s ( ) ; 

i n t N u m S r c N o d e s ( ) ; 

i n t N u m N o n S r c N o d e s ( ) ; 

i n t A d d C h m f i n t c N u m N o d , i n t • a i N o d P o s I n S u b ) ; / / A d d a c h a m e l e o n w i t h n n o d e s i n p ( ] . 

i n t N u m C h m O ; / / R e t u r n s t h e n u m b e r o f c h a m e l e o n s . 

i n t N u m N o d I n C h m { i n t i c h m ) ; / / N u m b e r o f n o d e s i n c h a m e l e o n . 

i n t G e t P o s I n S u b O f C h m N o d ( i n t i C h m , i n t i N o d P o s I n C h m ) ; 

/ / C h a m e l e o n s a r e n u m b e r e d 1 . . , 

/ / S u b b l o c k n o d e s a l s o l... b u t n o d e s 

/ / i n s i d e a c h a m e l e o n a r e 0 . . . 

d o u b l e G e t G a a E l m l i n t r o w , i n t c o l ) ; / / R e t u r n s a n e l m o f [ G a a ] . 

d o u b l e G e t G a b E l m ( i n t r o w , i n t c o l ) ; / / R e t u r n s a n e l m o f ( G a b ] . 

) ; 

/ / A c h a m e l e o n i s s e e n i n s i d e a s u b b l o c k . 

/ / N u m b e r o f n o d e s i n t h e c h a m e l e o n . 

/ / A r r a y o f p o s i t i o n o f t h e n o d e s w i t h 

/ / R e p r e s e n t s a s u b b l o c k . 

/ / W h a t b l o c k c o n t a i n s t h i s s u b b l o c k . 

/ / S u b b l o c k p e n d i n g f o r i n c l u s i o n i n b l o c k . 

/ / P t r . t o c e l l w i t h f i r s t s r c . n o d e . 

/ / [ G a a G a b ) R e c t a n g u l a r m a t r i x . 

/ / [ G a b ] , { j u s t p t r s i n t o ' m a t r i x ' ) . 

/ / L i s t w i t h a l l c h a m e l e o n s i n b l o c k . 

Fig. 161: Methods and data items in the subJ class. 

their string-name, and characterized as either: lumped, source, or line nodes, 

depending on whether they are terminal to a grounded voltage source, or to a 

line, or to something else. A line identifier takes precedence over any of the 

other two. A source identifier takes precedence over the lumped identifier only. 

Ideal voltage sources are not tolerated connected to a line node15. See Fig. 163. 

Each cell of the nodList double-linked list, contains a node represented by 

the structure in Fig. 155. 

1 5 Use a link-source in such a case. 
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s t r u c t c h m _ t ( 

i n t c N u m N o d e s ; 

i n t ' a i P o s N o d l n S u b ; 

) : 

/ / A c h a m e l e o n i s s e e n i n s i d e a s u b b l o c k . 
/ / N u m b e r o f n o d e s i n t h e c h a m e l e o n . 
/ / A r r a y o f p o s i t i o n o f t h e n o d e s w i t h 

t y p e d e f c h m _ t * p c h m _ t ; 

c l a s s s u b _ t ; p u b l i c l i s t _ t { 

i n t i B l k ; 

b o o l b P e n d ; 

/ / R e p r e s e n t s a s u b b l o c k . 

/ / W h a t b l o c k c o n t a i n s t h i s s u b b l o c k . 

/ / S u b b l o c k p e n d i n g f o r i n c l u s i o n i n b l o c k . 

p C e l l _ t p F i r s t S r c N o d e ; 
d o u b l e * ' a M a t r i x ; 
d o u b l e " a G a b ; 
l i s t _ t I C h m ; 

/ / P t r . t o c e l l w i t h f i r s t s r c . n o d e . 
/ / [ G a a G a b ) R e c t a n g u l a r m a t r i x . 

/ / [ G a b ) , ( j u s t p t r s i n t o ' m a t r i x - ) . 

/ / L i s t w i t h a l l c h a m e l e o n s i n b l o c k . 

v o i d C r e a t e M a t r i c e s ( ) ; 
p C h m _ t G e t P t r C h m l i n t i C h m ) ; 

p u b l i c : 

s u b _ t ( ) ; 

v o i d P u t N o d f i n t i N o d P o s , n o d T y p e _ t e T y p e ) ; 
i n t N o d P o s I n S u b l i n t i N o d P o s ) ; 
i n t L i s t P o s O f N o d I n S u b ( i n t I N o d P o s I n S u b ) ; 

v o i d A d d M a t r i x E l m ( i n t r o w , i n t c o l , d o u b l e v a l u e ) ; 

i n t NumNodesI) ; 
i n t N u m S r c N o d e s ( ) ; 
i n t N u m N o n S r c N o d e s ( ) ; 

i n t A d d C h m f i n t c N u m N o d , i n t * a i N o d P o s I n S u b ) ; / / A d d a c h a m e l e o n w i t h n n o d e s i n p ( ) . 
i n t N u m C h m f ) ; / / R e t u r n s t h e n u m b e r o f c h a m e l e o n s , 
i n t N u m N o d I n C h m ( i n t i C h m ) ; / / N u m b e r o f n o d e s i n c h a m e l e o n , 

i n t G e t P o s I n S u b O f C h m N o d d n t i C h m , i n t i N o d P o s I n C h m ) ; 

13.4.2 G r o u p i n g Subblocks 

The list of nodes knows whether any of its nodes has been associated to a 

subblock, or block. The director (hub) requests of the list nodList to provide 

a non grouped node, along with the identifier of a subblock that has not been 

created yet (information the nodList has, since its nodes keep the code of the 

subblocks and blocks they belong, if they do, or an invalid code if they don't. 

See Fig. 164.) 

In this case the client is the hub, and the server method is "nodList.Get-

FirstNodlnSub". The two data items received by the hub are the active node, 

iNodActive, and the subblock under creation, iSublnCreation. 

The active node is presented by the hub to each element. The element checks 

/ / C h a m e l e o n s a r e n u m b e r e d 1... 
/ / S u b b l o c k n o d e s a l s o 1 . . , b u t n o d e s 
/ / i n s i d e a c h a m e l e o n a r e 0 . . . 

d o u b l e G e t G a a E l m ( i n t r o w , i n t c o l ) ; / / R e t u r n s a n e l m o f [ G a a ] . 

d o u b l e G e t G a b E l m l i n t r o w , i n t c o l ) ; / / R e t u r n s a n e l m o f [ G a b ] . 

>; 

Fig. 162: Methods and data items in the subList J class. 
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Fig. 163: Interaction of classes in OVPP during node registration. 

if it is connected to the node. If it is, the element adopts the subblock under 

creation as its own, and so it records it. In this case, also, the element notifies 

that all the other element's nodes16 are to be marked as pending for more possible 

elements connected to them and part of the same subblock. In short, as pending 

to be proposed as active nodes during the next step. The notification to the list 

of nodes is made by the element through the method "nodList.SetNodPending." 

Now the director keeps asking of the nodList for another node in the current 

subblock (which it produces as one of the nodes already marked as pending), 

though the method "nodList.GetNextNodlnSub." This node becomes the active 

node and is subject to the same process as the first one was. This goes on until 

there is no pending node left in the nodList, which means that the subblock is 

complete. 

Every time the nodes list, nodList, is asked by another node in the block being 

1 6 W i t h the very important exception of transmission line nodes, which are grouped as left 
group, and right group. In this case each group is treated as a separate lumped element. 
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elements 

Fig. 164: Interaction of classes in OVPP during assembling of subblocks. 

assembled, nodList registers that node with the list of subblocks, subList, that in 

turn sends the node to one of its component object subblocks, an instantiation 

of class sub.t. 

At this point, the hub asks the nodList for another first node in a non created 

subblock, and the process continues, until no unaligned node is left. 

13.4.3 Calcula te Subblock Mat r i ces 

Now that the subblocks have been partitioned, and properly organized within 

the subList object, it is time to determine the conductance matrix of each of 
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those subblocks. That goal is reached through three subtasks, as follows. See 

Fig. 165. 

nod ID code in sub 

Fig. 165: Interaction of classes in O V P P during subblock matrix calculation. 

13.4.3.1 Refer element nodes to subblocks 

In this task, the director prompts each element in the network to obtain the 

subblock relative identification code for each one of its external nodes. This will 

allow, further down the road, for the elements to contribute their conductance 

matrix into the subblock's at the correct positions. 

Each element, a client, request from the subblock list, subList, the server, 

for each node identified by its global code, and its subblock (which the element 

obtained in the previous task, see § 13.4.2), what is the subblock id code for 

that node. The service invoked is "subList.NodPosInSub."17 

1 7 The reason for the name of the method is that the id code for the node is but the relative 
position of that node inside the subblock. 
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13.4.3.2 A d d Element Cont r ibu t ions to Subblocks 

Now each element is directed by the hub to pour its conductance matrix contri

bution into the corresponding subblock's, by the service provided by the list of 

subblocks, "subList.AddMatrixElm." 

13.4.3.3 Associate Chameleons to Subblocks 

The completion of the subblocks matrices is delayed for subblocks that include 

non linear elements, called chameleons in OVNI and in OVPP. In this task, the 

hub prompts each one of the elements that if it is itself a chameleon, to come 

forward and request inclusion into its corresponding subblock from the subList, 

via the service "subList.AddChm." 

The subList object passes the chameleon's inclusion request down to the 

corresponding block object, again through the service provided by the method 

"blk.AddChm." 

13.4.4 G r o u p i n g Blocks 

Now that the subblocks have been dealt with, the director starts the grouping 

of subblocks into blocks, as established by the links provided in the data file. 

To do this, the hub goes through the same steps followed to form the subblocks, 

but using subList instead of nodList, since before we were grouping nodes, and 

now we are grouping subblocks. The connectivity of subblocks is governed by 

links, in the very same way connectivity of nodes is defined by elements. Then it 

follows that the director will use links as elements were used before, see Fig. 166. 

Putting it all together, first the director lets each link in the network to 

request from the nodList to which subblocks it is connected. Then the subList is 

asked by the director to provide the first non aligned subblock (i.e., a subblock 

not included into any block yet), and the corresponding new block id code. 

The service is "subList.GetFirstSublnBlk." That subblock becomes the active 

subblock, which is presented to each link in the network. The link, in turn, 

checks if it is connected to the active subblock, if it is, record the block being 
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DIRECTOR 

Fig. 166: Interaction of classes in OVPP during block grouping. 

assembled as its own and requests from subList to mark the other subblock the 

link is connected to as "pending." At the end of this stage, all subblocks linked 

to the active one have been marked as pending and will be part of the same 

block being grouped. 

Now the director asks of the subList for another subblock within the same 

block being assembled, the service is "subList.GetNextSublnBlk." This subblock 

becomes the active one and goes through the same process as the first one. The 

hub keeps asking for more subblocks in the current block, until none is left, the 

blocks have been assembled. 

At each time the subList provided a subblock in the current block, subList 

registers the subblock with the list of blocks blkList, that passes the registration 
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request down to the corresponding block object, and instantiation of class blkJ. 

At the end of this task the list of blocks has been filled, and the blocks know 

which subblocks belong in them. The program is ready for output. 
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14. Validation Tests 

14. VALIDATION TESTS 

14.1 In t roduct ion 

Validation of an algorithm for real time simulation of any kind of system involves two 
aspects: validation of its accuracy and validation of its speed. Those are the two main 
aspects considered in this chapter. 

However, OVNI's accuracy and speed are built on: a) a judicious choice of back
ward Euler's integration rule, supported and improved by b) the double step double 
interpolation backtrack-advance procedure; c) precalculation and triggering of new 
states made possible by d) topological segmentation, e) MATE segmentation, and f) 
the node hiding element model streamlining strategy; where MATE segmentation 
allowed for the efficient choice of Cholesky's algorithm to obtain links currents. 

This chapter's organization follows, as close as possible, the order of the topics 
listed in the previous paragraph. In the next section, Sec. 14.2, a quick review of the 
tests on integration rule issues reported in chapter 3. Following it, Sec. 14.3, test 
cases that illustrate the drastic effect of DSDI on two switching circuits. Then, in 
section 14.4, the aspect of 'speed' mentioned on the first paragraph of this section. 
That speed exploration includes subsections for timings corresponding to the two 
target cases outlined in chapter 1, the relay test case (Sec. 14.4.1), and the HVDC 
controller case (Sec. 14.4.2). That speed section also includes a subsection, 14.4.3, 
that reviews the performance advantages of MATE segmentation and the associated 
precalculation. Subsection 14.4.4 explores Cholesky's perormance by itself. To end 
this chapter, in section 14.5, a suit of tests that explores the accuracy of ONVI's simu
lation on different situations associated with the main two test cases, is included 

Part1 of the tests reported in this chapter were run on a Pentium II 200 MHz 
workstation with 32 Mbytes of RAM, 2 Gbytes hard drive at the Real Time Simulation 

' The reason for the duality of the hardware platform is historic. As the project evolved, the tests to 
assert real-time performance were applied to the then current version of the simulator on the available 
workstation, and the results published. To keep match between the published results (albeit slower 
than the ones obtainable with the newer and faster hardware platform), the same 200 M H z machine 
results were kept in those sections of this thesis report. 
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Laboratory at UBC, CICSR 043, as specified in the section describing the particular 
test; some of the tests were run on an AMD-K6(2) 400 MHz workstation with 256 
Mbytes of RAM, and 15 Gbytes hard drive, as indicated in the corresponding section. 
The most critical performance tests were confirmed by measurements done separately 
at Mitsubishi Corporation, Tokyo, Japan; and at Electricite de France, Direction des 
Etudes et Recherche at Clamart, Paris, France. 

14.2 In tegra t ion Issues 

OVNI's integration process profits from the stability and accuracy of the backward 
Euler's integration rule, as established in chapter 3. The associated tests were included 
in that chapter. In particular the experiments that advanced backward Euler's as a rule 
with no phase shift associated distortion, Figs. 14 and 16, and the tests on a simplified 
single-phase power network that explored the possibility suggested by Fig. 15, that 
with backward Euler's rule an integration step almost 50% larger can be used for the 
same 3% magnitude distortion (which provides a speed advantage to OVNI), Figs. 22 
and 24. 

In cases where switching operations occurs off synchronism with the sampling 
process, the anomalous introduction of inverse currents through opening switches, and 
the consequent opening of non-zero currents, was solved by the introduction of the 
double step double interpolation procedure, in section 7.6.1. The tests that explore 
that procedure are included in the next three pages, under section 14.3. 
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14.3 A s y n c h r o n o u s C o m m u t a t i o n 

To explore the validity of the DSDI resynchronization shift to accommodate asyn
chronous commutation, two cases already presented in [35] are included. First, a 
relatively simple two-diode full wave rectifier circuit, Fig. 167. And next, a six-valve 
three-phase rectifier group, Fig. 170. 

T D2 

1 N-
Fig. 167: A two-diode full wave rectifier case. 

Both cases were run first on the EMTP algorithm to illustrate the occurrence of 
large spurious current spikes in the diodes as a result of asynchronous commutation 
of the diodes. 

Fig. 168: For the two-diode rectifier, current in the load, current in diode one, current 
in diode two. Observe the current spikes of almost ten thousand amperes, when the 

load current peaks at less than five amperes. 
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Fig. 169: DSDI output for two-diode rectifier case, a) Current in the load; 
b) Current in diode one; c) Current in diode two. 

For the two-diode rectifier, with voltage sources of 200 Vrms, 60 Hz, a load of 
50 ohms, and a reactor of 1 mH [35], the EMTP algorithm's results for: load current, 
current in first diode, and current in second diode, are illustrated in Fig. 168. The 
same circuit, once the DSDI resynchronization shift has been included in the solution, 
produced, for the same currents just mentioned, the spike-free results presented in 
Fig. 169. 

Fig. 170: A six-valve three-phase rectifier group. 
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Fig. 171: EMTP algorithm results for the six-valve rectifier: a) Load current; b) Valve 
one current; c) Valve three current. 

For the six-diode case in Fig. 170, the asynchronous commutation of diodes one 
and two produced, in the EMTP algorithm, the spikes illustrated in Fig. 171. The 
solution with DSDI of the same six-valve case generated the spike free results shown 
in Fig. 172. 
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Fig. 172: DSDI results for the six-valve three-phase case, a) Load current; b) Valve 
one current; c) Valve three current. 
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14.4 S p e e d 

The performance of the final product, the software that embodies the algorithm devel
oped during this project, is to be measured, not as overall simulation speed (i.e., how 
many seconds of computing time it takes to take so many seconds of real time.) but as 
the speed associated with the integration step that takes the longest to compute, the 
slowest integration step, the critical step. The time consumed by that critical step can 
be related by the complexity of the computations involved, or perhaps to the refresh
ing of the associated cache. 

To predict what will be the conditions that produce such a critical step in a sim
ple case is possible. However, in a more realistic case, observation and measurement 
of the execution time of each time step of the simulation is desirable. Such measure
ments were possible thanks to the fine grain time routines created by Mr. Jesus 
Calvino-Fraga. The timings obtained were also subjected to validation (in the most 
critical cases reported in this thesis) by the research centre of L'Electricite de France, 
Direction des Etudes et Recherches, at Clamart, Paris, France, under the direct super
vision of the author. Independently, the same set of timings were corroborated by 
Mitsubishi Corporation of Japan. Both agencies accepted the accuracy validation 
against the EMTP as an acceptable method. 

To validate performance, the two target systems introduced at the begining of 
this thesis are used, the case for protective relay testing, and the case for HVDC con
trollers testing. 

14.4.1 R e l a y T e s t i n g 

The relay testing case in Fig. 200 was the workhorse on top of which every single test 
of OVNI's solution was tried at one point or another. This configuration was pro
posed by the industry, and includes two segments of two three-phase transmission 
lines running along the same right-of-way, coupled to each other (a six-phase coupled 
group), one segment before a fault site, and another after it. It also includes series 
capacitive compensation and metal oxide varistor protection. On the right healthy 
side of the system, a three-phase transmission link brings in an equivalent three-phase 
Thevenin for the network "on the right." The same applies for the network "on the 
left." 
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This configuration has been running for weeks on the single workstation version 
of the hardware solution bn top of which OVNI runs, this single workstation hard
ware implementation, thanks to Mr. Jesus Calvino-Fraga [38]. In this implementa
tion, the switches that simulate single, dual, and three-phase faults at the bus of 
contingency, are wired to the simulator as three physical switches. It runs, on that 
single 400MHz, Pentium Pro workstation at 35 microseconds per step, well within 
the targeted bandwidth to accommodate for the necessary data exchange overhead. 

The same case, in an illustration of the flexibility of OVNI's solution algorithm 
and code, has been running also on the parallel processing five-workstation version of 
OVNI, a hardware implementation possible thanks to Mr. Jorge Hollman [71]. There, 
Mr. Hollman prepared the 234-node test case in Fig. 179, and run it on the five 
400MHz Pentium PC cluster. The solution times generated by OVNI on this parallel 
processing platform were 46 microseconds per integration step for the case just men
tioned (this case would run on a single machine at 164 microseconds per step.). 

14.4.2 H V D C Systems 

The extended HVDC substation model, including saturation and zero sequence mod
elling and nine AC filters rendered the timings shown in the table below. These tim
ings were obtained on a Pentium Pro 200 MHz workstation (the inclusion of the 
filters and the saturation models amounted to about 1% of the model's history sources 
updating time.) [30] 

Case Description # valves Microtran (us) DU-99(us) 
l Monopolar 6-pulse 

converter 
6 459 26 

2 Monopolar 12-pulse 
converter 

12 983 46 

3 Bipolar 6-pulse coverter 12 897 51 

4 Bipolar 12-pulse 
converter 

24 3,120 81 

Table 14.1 Solution time, per integration step, in microseconds, of four HVDC cases. 
Comparison between the EMTP and OVNI's prototype solutions times on a Pentium 

Pro 200 MHz. 
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Fig . 173: One o f the six sections in the test network used to benchmark M A T E 

14.4.3 M A T E vs . C o n v e n t i o n a l S o l u t i o n 

To constrast the speed of MATE segmentation with the standard unsegmented one, 
the same network was run on the same hardware, with both methods. The network 
was built linking together network sections like the one in Fig. 173. Every node in 
the section is grounded through a resistor, and connected to every other node in the 
section through some other resistor. Also, there is a current source from ground to 
every node in the section. In Fig 173, one of such sections, with six nodes, is illus
trated. Each section (subblock) is connected to two other sections through two links, 
see Fig. 174. Each link includes a voltage source in series with a resistor. The sec
tions are so connected in a ring (i.e., the last section is linked to the first one.) Tests 
were run with networks consisting from two to six sections, where each section had 
from two to six nodes. The resulting timings are given in Tables 14.2, for MATE, 
and 14.3, for the standard unsegmented solution. The performance differences can be 
better appreciated in the 3 D graphics included in the following pages: Fig. 175 (solu
tion times for MATE segmented algorithm for different networks with sections from 
two up to six nodes); Fig. 176 (solution times for a standard unsegmented solution 
algorithm); and Fig. 177 (percentage of improvement from the standard to the 
MATE's algorithm for the 36 networks tested in this section). 
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Fig. 174: Six node sections connected in a ring. 

nodes in each subblock 

1 
-Q 

3 

2 

2 3 4 5 6 

2 2.9 3.5 4.2 4.3 5.4 

3 5.1 5.3 6 6.9 7.8 

4 6.7 6.8 6.9 8.4 9.5 

5 8.2 9.1 10.2 11.3 12.2 

$ 11.5 11.7 12.7 13.1 13.3 

Table 14.2. Solution time (in microseconds) for a single-block network with several 
subblocks, and of varying nodes per subblock, with the 

M A T E segmentation algorithm. 
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nodes in each subblock 

2 3 4 5 6 

2 15.7 24.6 38.6 55.5 75.7 

J 31.7 56.3 88 136 191 

4 57 106 172 260 375 

5 91.7 173 287 445 649 

6 142 262 446 697 1,033 

Table 14.3. Solution times in microseconds with standard unsegmented algorithm, 
for networks formed by <row> number of sections (subblocks), where each section 

Fig . 175: Solution times, in microseconds, for MATE algorithm, corresponding to a 
network o f so many (2..6) subblocks with a given amount (2..6) o f nodes per block. 

14.4.4 C h o l e s k y vs . L U D e c o m p o s i t i o n 

At every time step, and in each of the topological blocks, the simulator needs to solve 
a system of algebraic equations. The system whose solution produces the currents in 
the block's MATE links. In cases where the subblocks included in the block do not 
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Fig 176: Solution times for the unsegmented standard solution algorithm 
corresponding to a network with so many subblocks (1..6) with a number o f nodes 

in each subblock (1..6). 

% gain 

F i g 177: In percentage, how much faster M A T E is compared to the standard 
sgmented algorithm for the kind o f networks studied. unset 

contain non linear elements or switches, the links matrices can be precalculated, but 

in general that is not so2. 
The solution of the links system was first approached with a robust and efficient 

L U decomposition algorithm with partial pivoting. The results were satisfactory but 

» in the current implementation, the links matrices are never precalculated. But it may be conven.ent 

to do so in a future revision. 
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size (n x n) LU (usee) Cholesky(us) 

2x2 3.9 1.3 

3x3 5.1 2.1 

4x4 6.3 3.8 

5x5 8.8 4.6 

6x6 13 6.4 

7x7 17.2 8 

8x8 22 11 

9x9 27.3 14.7 

lOx 10 33.1 17.6 

11 x 11 41.5 22.2 

12x12 49 26.4 

Table 14.4. Solution times of Cholesky method versus LU decomposition, in 
microseconds. 

left room for improvement in cases where HVDC module controllers were included. 
To stretch the performance of the engine, an alternative solution method was revised: 
Cholesky's. Cholesky works only on system whose equation matrix is positive defi
nite. That a matrix A is positive definite means, geometrically, that when the rota
tional transformation implied by the matrix A is applied to a vector V in the same 
hyperdimensional space where the matrix rotation is defined )a geometrical interpre
tation of space), the resulting vector turns out to be closer than ninety degrees from 
the original one. In the more succinct notation of vector analysis [73]: 

v-A • v>0 
Where the dot represents matrix vector multiplication, and also vector dot product. 
Another interpretation to a matrix A being positive definite is that given in chapter 11 
of [73], a matrix whose eigenvalues are all positive. But a positive eigenvalue im
plies a decaying natural response mode, which is always the case for the networks 
simulated here. Summarizing, Cholesky is safe to apply in the case of interest. The 
advantages in speed of the modified implementation with no pivoting used in this 
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work of Cholesky's versus LU decomposition is patent in the tests run below. Those 
tests were performed on systems with 2, 3,... 12 links. In each case, Cholesky's algo
rithm beat LU decomposition by a factor close to two. This suit of tests was run on a 
AMD-K6 II 400MHz workstation, and compiled with Visual C++ version 5.0 with all 
optimizations switches on (release version). 

14.4.5 P r e c a l c u l a t i o n vs . L i v e C o m p u t a t i o n 

In cases where all the subblocks in a block have fixed topology, i.e. they contain 
neither switches nor non-linear elements (no chamaeleons), the link matrices corre
sponding to every possible open-close link combination can be precalculated. In this 
case, the matrices inverses are prestored. The same 36 cases used to benchmark the 
previous two sections are used for this section too. The solution times obtained are 
included in Table 14.5. Graphically, the solution times can be seen in Fig. 178, and 
the improvement in percentage, with respect to non-precalculated MATE, in Fig. 179. 

nodes in each subblock 

2 3 4 5 6 

2 0.9* 1.7 2 2.9 3.8 

3 0.95* 2.6 3.3 4.1 4.8 

4 2.6 3.3 4.3 5.3 6.3 

5 3.4 4.2 5.3 6.6 7.7 

6 4.3 5.5 5.8 8 9.2 

Table 14.5. Solution time (in microseconds) for a single-block network with several 
subblocks, and of varying nodes per subblock, using precalculation for the links 

matrices. (*) Under the granularity of the timer routines. 
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Fig . 178: Solution time for precalculated M A T E link matrices, corresponding to 
blocks with subblocks from two to six, and with two to six nodes per subblock. 

F ig . 179: Percentage gains o f precalculating the links matrices vs. calculating them 
on the run, both within M A T E ' s framework, for different number and sizes o f 
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14.5 A c c u r a c y 

To validate the accuracy of a simulation algorithm and its software, the ideal valida
tion tool would be the actual system being simulated. A contrast between the pre
dicted behaviour of the system as simulated, versus the observed behaviour of the real 
system. In the case of a simulator for an electric power network for the kind of tests 
targeted in this project, such procedure is out of the question: It is impractical to sub
ject the actual power network of a province (or part of) to this or that contingency that 
can be contrasted against the one predicted by the simulator. 

The next best path3, and the one used in this case, is to validate the accuracy of 
the simulator against an already thoroughly validated simulator (albeit a non real time 
one), the EMTP in this case. The EMTP is the industry standard for transients simu
lation in power electric networks. The EMTP brings with it more than three decades 
of validation at hundreds of sites all over the world. 

For this section, the tests associated with separate issues of the algorithm, mod
els, solution process, etc., are included in separate subsections. 

14.5.1 H V D C M o d u l e a n d its C o n t r o l l e r M o d e l 

The HVDC module model, the corresponding controller model, in OVNI's implemen
tation were tested and validated for steady state and under fault operating conditions 
by performing comparisons with the Electromagnetic Transients Program EMTP 
(Microtran® Version). This section presents a detailed description of these test cases. 
These simulations do not include asynchronous switching compensation techniques to 
reinitialize the solution during current commutations and, therefore, present the char
acteristic spikes of fixed time step solutions. Simulations illustrating the effective
ness of such compensation techniques are presented in a separate section. 

The validation tests reported in this section were performed in comparison with 
Microtran® version 2.08h, with the version of the simulator's code dubbed DU-994. 
Both programs were run on a Pentium Pro 200 MHz workstation under Windows 95. 
The five test cases included in this suite are: a) Steady-state; b) Saturation Model for 
3 Another possibility would have been to contrast the simulator against a TNA simulation, but the 
EMTP, as intimated in the introduction to this thesis, has substituted the TNA for most applications. 
4 Acronym coined at the UBC-RT Lab after the author commented on the non-AI nature of the 
version used as driver for these tests. That version was nicknamed "Dumbo." So are labelled the test 
curves. 
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the three-phase transformers including zero sequence flux; c) AC fault; d) DC fault; 
e) Commutation failure. 

14.5.1.1 S t e a d y - S t a t e V a l i d a t i o n T e s t 

To assess the HVDC model validity under steady state, a single HVDC six-valve case 
was set up and run on DU-99, and on the EMTP/Microtran®. In this test, saturation 
modelling of the transformer was turned off. Saturation model validation is presented 
in Section 14.5.1.2. 

Signals on both sides of the model, as calculated by DU-99, were compared with 
the corresponding ones obtained with EMTP/Microtran®, namely: primary current of 
the transformer, Fig. 181, and 182; and DC voltage at the load, Fig. 183 and 184. 

Apart from the commutation spikes, the match between the two programs is very 
good. The reason why the commutation spikes do not appear in Microtran's output is 
that Microtran does not plot the first half step of the combined trapezoidal/backward 
Euler's CDA implementation. The HVDC model uses only the backward Euler's rule 
at full-size integration steps and all simulation steps are plotted. 
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Fig. 180: Single module, six-valve test case used to validate the HVDC module under 
steady state. 
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Fig. 181: Primary current, steady state, linear transformer core. EMTP/MICROTRAN and 
Dumbo (DU-99). 
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Fig. 182: Primary current, steady state, linear transformer core, EMTP/Microtran and 
Dumbo. A detail view. 
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Fig. 183: DC voltage in steady state: EMTP/Microtran and Dumbo. 
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Fig . 184: Voltage before and at steady state: EMTP/Micro t ran and Dumbo. 
Initialization, two cycles for Dumbo. 

14.5.1.2 S a t u r a t i o n o f T r a n s f o r m e r C o r e 

To assess the validity of the proposed model for three-leg three-phase transformers, 
the same single HVDC six-valve case used for steady state assessment (Fig. 180) was 
simulated with nonlinear inductors in the EMTP/Microtran case file, and compared 
with the results produced by DU-99 with the saturation module enabled. 

Signals on both sides of the model, as calculated by DU-99, were compared with 
the corresponding ones obtained with the EMTP/Microtran, namely: primary current 
of the transformer, Fig 186 and 187; and DC voltage at the load, Fig. 188. Output 
voltage change was not observable as compared with the case with no saturation. 
This was expected, given the relatively low impedance between the bridge and the 
ideal sources of the Thevenin equivalent of the AC power group. Saturation distor
tion of primary current is noticeable, as can be seen by comparing Fig. 185 from the 
validation test for steady state with no saturation, against Fig. 186 and 187. 
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Fig. 185: Zoom on the primary current, steady state, linear transformer core. 
EMTP/Microtran and Dumbo. Note: Both coincide but-[or *fre spikes introduced by Dumbo 

without DSDI activated, Sec. 7.7, Microtran avoids them using CDA. 
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Fig. 186: Primary current, steady state, non-linear transformer core. 
EMTP/Microtran and Dumbo. See note in caption for Fig. 185. 
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Fig. 187: Detail of primary current with non-linear core. 
EMTP/Microtran and Dumbo. See note to Fig. 185. 
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Fig. 188: DC voltage, with non-linear transformer core. 
EMTP/Microtran and Dumbo. See note to Fig. 185. 
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14.5.1.3 S i n g l e P h a s e A C F a u l t 

To validate the performance of the HVDC module during faults on the AC side of the 
bridge, a 12-valve rectifier case, Fig. 189, was prepared. The test case was run both 
on DU-99 and on Microtran. 

The DC current leaving the HVDC module, IDC, can be seen in Fig. 190, which 
shows both Microtran's and DU-99 results. 

CONTROLLER ,Iref=1800A 

Fig . 189: 12-valve case to validate behaviour o f H V D C model under A C faults. 

The small initial one degree firing angle difference is due to Microtran taking the 
reference angle from the ideal sources versus DU-99 taking the reference angle from 
the primary of the tranformers. That difference becomes greatly amplified under the 
large currents imposed by the short circuit on the AC side. In Fig. 191, the "ideal" 
reference voltage for firing angle used by Microtran is compared to the "actual" sub
station reference voltage used by DU-99 to synchronize its gate signals. The small 
initial error, rounded to one degree, incurred by Microtran becomes a huge 18 degree 
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Fig. 190: DC current, as calculated by: a) Microtran; b) Dumbo. Note: Microtran version used 
did not have variable control signal implemented. 

firing angle error during the fault, as seen in Fig. 191. 
In Fig. 190b, which shows the DC current as calculated by DU-99, one can iden

tify three zones of interest against the uniformity of Microtran's results in Fig. 190a. 
In zone A of Fig. 190b, DU-99's controller is still firing the bridge's valves using the 
angle reference obtained at the last going-up zero crossing of the reference voltage, 
Fig. 191, which is the same as Microtran is doing. This is the reason for the match 
between both results in this zone. Zone B starts when, into the faulted period, the 
reference voltage crosses zero going up again. At that point, DU-99 notices the shift 
of almost 18 degrees, and corrects its firing signals to maintain the prescribed fifteen 
degrees, while Microtran continues to use the same reference, introducing an effective 
firing angle off by the above mentioned 18 degrees. Right after the fault ends, see 
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Fig. 191: Angle reference voltage for a) Microtran; b) Dumbo. Observe the small phase 
error before the fault, and the large error during the shortcircuit. 

Fig. 192, DU-99 continues to use its previous angle reference, and then, past the fault 
end, at the next going-up zero crossing of its reference, DU-99 readjusts its firing 
angles correspondingly to keep the desired fifteen degrees. 
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Fig. 192: Angle reference voltage for Microtran and Dumbo near the end of the fault. 
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14.5.1.4 D C F a u l t 

The case used to validate the HVDC module against the EMTP/Microtran was the 
twelve valve double bridge Yy/Yd case illustrated in Fig. 193. A switch across the 
DC load simulated a low impedance short-circuit. To observe the recovery of the 
model after a DC fault removal, the switch simulating the short circuit opens after a 
short time. 

In Fig. 194, the DC current across the smoothing reactor is shown before, during, 
and after the DC short circuit was applied at t = 0.2 sec. and removed at t = 0.3 sec. 

CONTROLLER ,Iref=l800A 

300ohm 

Fig. 193: A double bridge, twelve valve case used to explore the HVDC module during and 
after a low impedance fault on the DC side. 

EMTP/Microtran predicts a slightly smaller DC current during the fault. The reason 
for that lies in the way Microtran measures the firing angle of the valves. Microtran's 
reference angle is taken from the voltage between phases A and C of the ideal sources 
in the Thevenin equivalent representing the external system. 

DU-99 uses instead, as angle of reference, the phase of the voltage between 
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Fig. 194: Fault current (DC-side): a) EMTP/Microtran; b) Dumbo. 

phases A and C of the primary of the three-phase transformer, see detail in Fig. 193. 
The phase difference between the two references used by the two programs is less 
than one degree under steady state conditions, that is, before the fault (after it as 
well), Fig. 195. However, during the high currents period of the fault, both references 
drift away from each other as shown in Fig. 195 and 196. And, Microtran's firing at 
fifteen degrees from its ideal reference is translated into an effective firing angle of 
more than forty degrees, Fig. 196, this reducing the feeding DC voltage, and the pre
dicted current. 

L - i L I _ i l _ i I —Z. L - J -
200 220 240 260 280 300 320 Tim e (m 8) 

Fig. 195: Angle reference signals for EMTP/Microtran and Dumbo. 
Before, during, and after the DC fault. 
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235 240 245 250 255 260 
Time (ms) 

Fig. 196: During the DC fault period: a) Firing angle reference voltage, Vac for Microtran; 
b) Reference voltage Vac, for Dumbo; 

c) Voltage across valve zero in the Yyo bridge as obtained by Microtran. 
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14.5.1.5 Commutation Failure 

In a case with two bridges (twelve valves) operating as an inverter fed by an 800 kV 
dc voltage source and a resistor (Thevenin equivalent of the rectifier group), during 
an AC single phase fault, the first valve of the YyO bridge group fails to open, and 
prevents its next-in-sequence to operate: a commutation failure scenario. In Fig. 197, 
current through both valves is shown; the failed attempt of valve zero to go off, and 
of valve two (Valves are numbered 0, 1, 2, 3, 4, and 5, in the normal firing sequence) 
to take over, is illustrated. 

The configuration of the test case is shown in Fig. 198. The proportional-
integrative controller is set at 1880 A, with Kp = 0.0001 and Ki = 0.00001. Firing 
angle begins at 115 degrees, and is left to the care of the controller to maintain the 
reference DC current. The AC single phase to ground fault is simulated by the switch 
included in Fig. 198. 
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Fig. 198: Twelve valve, double bridge inverter case 
used to investigate commutation failure modelling. 

Figure 199 shows the steady state obtained by the controller on the inverter, with 
the settings mentioned before. This figure also illustrates the recovery of the 
controller-module group after the fault is cleared. 
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Fig. 199: DC current before, during, and after the AC single phase fault, in the inverter. 
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Fig. 200: Fault event simulation for relay testing, with two multi-circuit segments and 
MOV protection of series compensation. 

14.5.3 R e l a y T e s t i n g 

The accuracy of the simulator was put to the test case in [9], a case proposed by in
dustry, Fig. 200. The two segments of the power network neighbouring the transmis
sion system where the relay is to operate are represented by three-phase Thevenin 
equivalents. The case includes two segments of six phase links (two coupled three-
phase lines running along the same right of way). One segment, 250 km, before the 
fault; the other, 150 km, to the right of the fault site ending in a series compensating 
capacitors protected by MOVs. The system is linked, on the right, by a 100 km three-
phase line to the equivalent of the power network labelled sys-2, and directly on the 
left, to the power system labelled sys-1. 

The voltage on one of the "healthy" phases (b) at the bus of the fault, when plot
ted both by the EMTP and by OVNI, are shown on Fig. 201. To the naked eye, there 
seems to be no difference. When subject to some numerical scrutiny, it turns out to 
be a difference 0.0005 % between the two solutions5 [67]. 

Fig.201: Voltage on phase b at F A U L T 1. 

5 Up to 0.0025 %, if the percentage is taken with respect to the EMTP value at each time, instead of 
using the maximum value of the EMTP's solution as percentage reference. 



Part VII 

CONCLUSIONS 



15. CONCLUSIONS AND FUTURE WORK 

This project began as a quest for a low cost real time simulator for power 

networks. Even though the solution has the potential of tackling simulations 

traditionally solved with load flow, stability programs as well, once the necessary 

element models have been attached to the core developed in this work, the focus 

has been kept on achieving real time on two counts: testing protective relays, 

and testing HVDC controllers. 

A bandwidth of 2 kHz at a maximum 3 % magnitude distortion was taken as 

sufficient. Backward Euler's integration rule was found clean of the traditional 

blame attached to it, namely: it was found that it delays all frequency compo

nents of the signal it processes by the same time shift, half the integration step 

used. In short, backward Euler's rule, with a magnitude response distortion 

better that trapezoidal's, and also more stable, was chosen as the rule for the 

integrator. The integration step necessary under this conditions ranges in the 

vicinity of 70/Jsec/step. The real time deadline. 

To meet the deadline mentioned in the previous paragraph, precalculation 

was presented in a way that does not preclude the generality of the solution, nor 

taxes the system memory requirements beyond reasonable limints. 

To make precalculation a viable option, a three level segmentation scheme 

was introduced: (a) topological segmentation, followed by (b) MATE, (the multi-

area Thevenin equivalent concept) with critical fast topology changing elements 

(or areas under certain conditions) being used as node shrouds under (c) the 

node hiding technique introduced in this thesis. 

Once MATE segmentation was set in place, Cholesky's linear system solution 

method was included to find MATE's links currents, which brought a reduction 
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by half of that particular step. 

The MATE concept was extended to take advantage of the presence of 

grounded voltage sources, and methods to optimize the building of the MATE's 

links matrix and to process links was introduced. Also included was a procedure 

to cope with ideal switch operations without collapsing or creating nodes in the 

network. 

Several new models were created for this project: an HVDC module model, 

as a sample of the benefits of node hiding (node hiding brought the HVDC sim

ulations, already using MATE, from the vicinity of one thousand microseconds 

per step, down to within the real time deadline); a controller for HVDC valves. 

A novel technique for modelling the effect of zero sequence magnetic flux in the 

three-phase core of the HVDC model was also introduced. 

To cope with asynchronous operation of switches, the ADC (or DSDI) method 

of backtracking was introduced. This non iterative procedure prevents the oc

currence of numerically induced spikes in the solution. 

The problem described in the introductory chapter, and detailed in the 

"problem" part of this report, has been successfully resolved: real time sim

ulation of an electric network for equipment testing on inexpensive off-the-shelf 

hardware platforms. Performances of 35 //sec/step for protective relay testing 

cases, and of 27 /isec/step for HVDC controllers testing cases, were achived on 

a single Pentium Pro 400 MHz workstation. 

The non hardware specific algorithm and code produced make it easy to 

move on to newer and faster machines as they become available. The solution 

algorithm, and its code, segment the network in a way that allows for "coarse 

grain" paralellization, as shown in the results in [73], where the algorithm solved 

a 234-node power network at a rate of 45 //sec/step on a parallel cluster of five 

Pentium type processors. 

A method to investigate the frequency response, and stability of "hybrid" in

tegration rules that have no closed form transfer function to which a Z-transform 

process can be applied, has been introduced. 



15. Conclusions and Future Work 245 

Last but not least, demonstration of the advantages of backward Euler's rule 

as the main one in the simulator gives the solution presented in this report a 

touch of elegant simplicity and stability. 

15.1 Future work 

The author is currently investigating the possibilities of taking advantage of 

the presence of voltage sources as a simplifying factor to reduce further the 

complexity of the network. 

The models created by Dr. Kwok-Wai in [33] need to be attached to OVNI 

to pursue load-flow type of simulations. 

Further study of latency exploitation [2], to account for the coupling of neigh

bouring zones running at different integration steps is necessary, and its imple

mentation in OVNI is necessary. 

Inclusion of models for electrical machinery, DC motors, induction and syn

chronous machines; also of frequency dependent transmission lines models. 
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