
OVNI: (Object Virtual Network Integrator)
A New Fast Algorithm for the Simulation of Very

Large Electric Networks in Real Time
by

LUIS R A F A E L LINARES-ROJAS

Elec. Eng., Universidad Central de Venezuela, Caracas, Venezuela, 1981
M.A.Sc.,The University of British Columbia, Vancouver, Canada. 1993

A THESIS S U B M I T T E D IN PARTIAL F U L F I L L M E N T OF

T H E R E Q U I R E M E N T S FOR T H E D E G R E E OF

D O C T O R OF P H I L O S O P H Y

i n

T H E F A C U L T Y OF G R A D U A T E STUDIES

(Department of Electrical & Computer Engineering)

We accept this thesis as conforming
to the required standard

T H E U N I V E R S I T Y OF BRITISH C O L U M B I A

August 2000

© Luis Rafael Linares-Rojas, 2000

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of EL . € i C T 2 (CAL AMP Cor\?CTT&&. €.N6lK€.€:^.lO<^

The University of British Columbia
Vancouver, Canada

Date AOq. 3 / y "2.GOO

DE-6 (2/88)

ABSTRACT

A portable fast algorithm for solving power electric and electronic networks,

and its implementation in the real-time simulator OVNI, are introduced. The

implementation of OVNI, object virtual network integrator, on an off-the-shelf

hardware platform, a 400 MHz Pentium-II workstation is presented. Simpli

fied fast-models, based on those used by the EMTP 1 , are included for the net

work elements: lumped resistors, capacitors, inductors —both linear and non

linear— and a constant parameters transmission lines model. Real-time mod

els for HVDC rectifying and inverting bridges, and for the corresponding PI-

controllers, using node hiding, were created specially for OVNI and reported in

this thesis. Core saturation and zero sequence flux in three phase core transform

ers are modelled. Fast non-linear models are included for current and potential

transformers. A fast modelling scheme to account for switching operations is

presented, and its successful implementation on an industrial product, reported.

Multilayer segmentation of the network, topological segmentation followed by

M A T E 2 segmentation, the node hiding technique, and a history sources lim

ited encapsulation scheme are introduced. Two fast asynchronous commutation

modelling techniques —DSDI3 and BIFE 4 — to eliminate spikes and numerical

oscillations are introduced. Industrial real-time test cases are included for power

system protective relays, and for high-voltage DC bridges and their correspond

ing controllers.

1 Acronym for Electromagnetic Transients Program.
2 Mul t i -Area Thevenin Equivalent.
3 Double Step, Double Interpolation.
4 Backward Interpolation, Forward Extrapolation.

C O N T E N T S

Abstract ii

Contents iii

List of Tables x

List of Figures xi

Preface xxii

Acknowledgements xxv

Dedication xxvii

Part I Motivation 1

1. Introduction 2

1.1 Research Claim and Contributions 9

Part II The Problem 10

2. The Problem 11

2.1 Real-Time Simulations 11

2.2 Digital Real-Time Simulations [1] 12

2.3 Frequency Bandwidth, Integration Rule, and Accuracy Limitations 13

2.4 Hard Real Time versus Soft Real Time Simulations 15

2.5 Network Size. Critical Complexity Network, CCN 16

Part III The Solution 19

3. Integration Rules in OVNI 20

3.1 Introduction 20

3.2 Accuracy and Stability 21

3.3 Frequency Response [2] 21

3.4 Choosing OVNI's rule • • • • 23

3.4.1 Calvino's second order rule 25

tit

Contents

3.4.2 Trapezoidal versus backward Euler's 25

3.4.3 Backward Euler's, a "lossy" rule 29

3.5 Improved performance of OVNI and backward Euler's 30

3.6 A single-phase power system test case 30

4. Digital Solution, Element Models 36

4.1 Solution versus Simulation 36

4.2 General purpose ODE-solvers 36

4.3 Discretizing the Network, not the Equations 37

4.4 Discrete-time model for an Element [3] 38

4.5 Basic models in the prototype 40

4.5.1 On Notation 41

4.5.2 Lumped Elements [3, 4] : 41

4.5.3 Transmission Lines [3, 5] 42

4.5.4 Single-phase non-linear core Transformer 49

4.5.5 Three-phase non-linear core Transformer 49

4.5.6 Switches 49

4.5.7 HVDC Modules 50

4.5.8 HVDC-current-loop Controller 50

4.5.9 Metal Oxide Varistors (MOV) 51

4.5.10 Measuring Transformers, ITs 52

5. Segmentation and OVNI 54

5.1 Introduction 54

5.2 The Tasks of the Simulator 54

5.3 Precalculation of Network Matrices 57

5.4 The Complexity Index, a metric 58

5.5 Sparsity and the Solution 58

5.6 Divide et Impera. Segmentation 59

5.7 Topological Segmentation 60

Contents

5.8 The Need for Topological Independent Segmentation, forwarding

MATE [6] 63

5.9 On Notation 67

5.10 Multi-Area Thevenin Equivalent, MATE 67

5.11 MATE and Diakoptics [7, 8] 73

5.12 MATE and the Compensation Method 74

5.13 Node Hiding and Element Models 74

5.14 Node Hiding. A numerical example 77

6. Sources, Links and Expanded MATE 82

6.1 Introduction 82

6.2 Precalculation of Source Values 82

6.3 Current Sources 85

6.4 Voltage Sources . . . 86

6.4.1 Grounded Voltage Sources —GVS 86

6.4.2 An example on Grounded Sources, MATE versus Norton 88

6.4.3 Ungrounded Voltage Sources, UVS 90

6.4.4 Voltage Sources "Ownership" 91

6.5 Extended MATE 92

6.5.1 Extended MATE: A numerical example 94

7. Switches and Asynchronous Commutation 98

7.1 Introduction 98

7.2 Switch Closing, Collapsing Nodes 99

7.3 Expanding a System of Linear Equations 101

7.4 Closing a Switch without collapsing a Node 102

7.4.1 A Numerical Example 103

7.5 Switch openings 104

7.6 Asynchronous Commutation in OVNI 107

7.6.1 Double Step-Double Interpolation, DSDI 109

7.7 DSDI's OVNI Modified Tasks Schedule 110

V

Contents

7.8 Single Step and Double Step Interpolation Details 114

Part IV OVNI Element Models 117

8. OVNI Element Models 118

8.1 Introduction 118

8.2 Current Transformers 118

8.3 Coupling-Capacitor Voltage Transformers 124

8.3.1 Potential transformer and reactors 124

8.3.2 Simplified equivalent circuit 126

8.3.3 CCVT model for real-time simulation 127

8.3.4 Potential Transformer Model, PT 128

9. The HVDC Model 132

9.1 Introduction 132

9.2 The three-phase linear transformer model 133

9.2.1 Single-phase transformer model 133

9.2.2 The three-phase transformer matrix/model 136

9.2.3 Adding the 6-valve bridge and the smoothing reactor . . 139

9.3 History sources in the hvdc-module 141

9.3.1 Examples 142

9.4 Hvdc matrices 142

9.5 Interface of the hvdc model and OVNI 144

10. HVDC-bridge Controller 146

10.1 Block View of the Controller 146

10.2 Stage One: The DC filter 147

10.3 Proportional-Integrative Block 148

10.4 Cycle position monitor and the Valve Scheduler 150

10.5 Cycle Ramp Synchronizer • 154

10.6 Modulating the firing angle 156

Contents

10.7 Filtering the angle reference voltage 158

11. Modelling saturation in power transformers 161

11.1 Saturation in single phase units 161

11.2 Saturation in three-phase units 162

11.3 Keeping track of a phase-leg's flux 164

11.4 Modification of the HVDC-module model to include saturation 165

11.5 History sources introduced by magnetization modelling 168

11.6 Effect of the saturation modelling in the primary current 169

Part V Implementation 171

12. OVNI, the simulator's engine 172

12.1 Introduction 172

12.2 Input Data File 172

12.3 Names in OVNI 173

12.4 From nodes to the network 174

12.5 Classes in OVNI 178

12.5.1 The Element Class, elm.t 178

12.5.2 The history source class, hsr_t 180

12.5.3 The subblock class, sub.t 181

12.5.4 The block class, blk.t 181

12.5.5 The clock object, tck 182

12.5.6 The simulation object, sim 183

12.5.7 The network class, net 183

12.6 How classes within OVNI relate to each other 184

12.7 Main tasks of the simulator's engine 184

12.7.1 Initialization • • , 185

12.7.2 Simulating the case 185

\ti i

Contents

13. OVPP, The Preprocessor 189

13.1 Introduction 189

13.2 The Preprocessor Input File 189

13.2.1 General Data 190

13.2.2 Lumped Elements 190

13.2.3 Intrablock "links" and Switches 191

13.2.4 Transmission Lines 193

13.2.5 Grounded Voltage Sources 194

13.2.6 High Voltage DC rectifier/inverter, HVDC 194

13.2.7 HVDC Controllers 196

13.3 Classes in the Preprocessor 197

13.3.1 The UsU Class 198

13.3.2 The nodListJ class 198

13.3.3 The sub.t class 199

13.3.4 The subblock list, subList.t, class 199

13.3.5 The blkJ class 199

13.3.6 The block list, blkLisU, class 200

13.4 Main Tasks of the Preprocessor 201

13.4.1 Creation of a list of all the nodes 202

13.4.2 Grouping Subblocks 204

13.4.3 Calculate Subblock Matrices 206

13.4.4 Grouping Blocks 208

Part VI Validation 209

14. Validation Tests 210

14.1 Introduction 210

14.2 Integration Issues 211

14.3 Asynchronous Commutation 212

14.4 Speed 215

Contents

14.4.1 Relay Testing 215

14.4.2 HVDC Systems 216

14.4.3 MATE vs. Conventional Solution 217

14.4.4 Cholesky vs. LU Decomposition 219

14.5 Accuracy 222

14.5.1 HVDC Module and its controller model 222

14.5.2 Relay Testing 237

Fart VII Conclusions 242

15. Conclusions and Future Work 243

15.1 Future work 245

IK

LIST OF TABLES

9.1 (Matrix "node") Connection nodes for transformers x, y, and z.

Rows are the transformers, and columns are the nodes 138

14.1 Solution time, per integration step, in microseconds 216

14.2 Solution time (in microseconds) . . . with the MATE segmentation

algorithm 218

14.3 Solution times . . . with standard unsegmented algorithm, 219

14.4 Solution times of Cholesky method versus LU 221

14.5 Solution time for a single-block network . . . using precalculation

for the link matrices 221

5C

LIST OF FIGURES

1 An HVDC test case 4

2 A protective relay test case 5

3 Multilayer segmentation: Topological segmentation, followed by

MATE-Diakoptics Segmentation. 6

4 All element models look and behave the same from the point of

view of the simulator's core 8

5 Front end and back end interfaces to OVNI's core 9

6 An observer watching over and controlling a system. . 11

7 From discrete to continuous, through D/A converters and amplifiers. 12

8 Magnitude distortion introduced by Trapezoidal rule at frequen

cies up to 40% the Nyquist's 14

9 Usefulness of the simulation results for: a) a hard real time sim

ulation; b) a soft real time simulation 15

10 Typical configuration of power networks used in protective relay

testing. . 16

11 Critical Complexity Network targeted for relay testing. It in

cludes two multicircuit transmission links, and MOV protection. 16

12 Target Network for HVDC controllers testing. The controllers

triggering the gate signals, used in tuning the simulator, are not

shown, but were included in the simulation 17

13 Frequency response, magnitude, for the rules: trapezoidal, back

ward Euler's, Simpson's, Gear's second order, Calvino's second

order 23

X/ '

List of Figures

14 Frequency response, phase shift, for the rules: trapezoidal, back

ward Euler's, Simpson's, Gear's second order, Calvifio's second

order 24

15 Error in magnitude introduced by trapezoidal and Backward Eu

ler's rule, up to 40% of the Nyquist's frequency. 26

16 Time delay introduced by backward Euler's rule at each frequency

up to Nyquist's 28

17 Single phase power system with a short circuit on the receiving

end, to test the different integration rules 31

18 Solution obtained by the EMTP with the CDA option activated

with an integration step At = 50 ps 32

19 Solution obtained by the EMTP with the CDA option activated

with an integration step At = 70 /is 32

20 Simpson's rule solution with At = 5//s. Voltages at all the nodes

in the network in Fig. 17 . 33

21 Trapezoidal rule solution with At = bOps. Voltages at all the

nodes in the network in Fig. 17 33

22 Backward Euler's rule solution with At — 50yus. Voltages at all

the nodes in the network in Fig. 17 34

23 Gear's second order rule solution with At = 50/i.s. Voltages at all

the nodes in the network in Fig. 17 34

24 Backward Euler's rule solution at an expanded integration step.

At = 70 /is 35

25 A test case for relay testing 37

26 Discretization process 38

27 a) Lumped inductor, and b) its discrete time domain model cor

responding to the trapezoidal integration rule 39

28 Lumped losses in the transmission line model 43

29 Single phase lossless transmission line 44

30 Single phase lossless transmission line model 44

x i i

List of Figures

31 Lossy single phase transmission line 44

32 History voltage source equivalent circuit 45

33 Lossy line equivalent circuit 45

34 Equivalent circuit for mode "i" 47

35 Multiphase transmission line model in phase-domain, [g] is a

matrix, all the other parameters are vectors 48

36 OVNIs HVDC module: a) detailed view; b) block view 50

37 Modelling the voltage clipping effect of the MOV 52

38 Tasks in OVNI's simulation cycle 55

39 A typical power electric system 61

40 a) Simple single-phase power system; b) Discrete-time equivalent

circuit for system in (a) 62

41 a) Power network topology; b) Corresponding conductance ma

trix [G]. . 63

42 Relay testing case with blocks identified 63

43 A partial view of an HVDC-controller test case with two topolog

ical blocks 64

44 Circuit with an ungrounded voltage source 65

45 An OVNI's link. 66

46 a) Network with MATE 'S subblocks delineated; b) Subblocks con

nected by links, after MATE 68

47 A link's voltage source and resistance, and the directions assumed

positive for current and voltages 70

48 MATE's Thevenin equivalent rendering for each of the subblocks.

Nodes a b e d represent docking ones 72

49 Node Hiding: Internal nodes and external nodes 75

50 Complete network with the node hiding region delineated. Ex

ternal nodes: (1) and (2). Internal nodes: (3) and (4) 78

51 Hiding zone: an element's model. See external nodes (1) and (2),

and internal nodes (3) and (4). . 79

X N '

List of Figures

52 "External" network, as seen by OVNI, with hidding region rep

resented as a "black-box" 79

53 The n prestored samples of a sinusoidal source 83

54 Wraparound of prestored source's samples 84

55 A current source in OVNI: its nodes 85

56 Precalculated time matrices corresponding to grounded voltage

sources in a subblock 87

57 Network with one grounded voltage source accounted for as a link. 88

58 Ungrounded voltage sources in OVNI: a) a link; b) not a link. . 91

59 Voltage sources "ownership", in OVNI 92

60 KCL nodal equations and KVL voltage sources equations, getting

ready for standard MATE 92

61 Extended matrices and vectors for the subblock with UVS's. Ex

tended MATE 94

62 Subblock with and ungrounded voltage source 95

63 Samples output stream, and asynchronous commutation 98

64 Short and long integration steps. Non real-time simulation. Data

are issued as soon as they are available 99

65 Short and long integration steps. Filler time slices. Data output

stream in a real time simulation 100

66 Closing a switch between nodes i and j 102

67 • Case to illustrate how to avoid collapsing nodes 103

68 Switch opening event: signal, and actual opening 105

69 Zero crossing and actual opening of a switch 105

70 Six valve rectifier circuit 106

71 Voltage before smoothing reactor 106

72 Non real time backtracking 107

73 Simple non regressive backtracking. 107

74 Accurate but too expensive backtracking 108

y / V

List of Figures

75 BIFE: Backward interpolation, forward extrapolation 109

76 DSDI used in OVNI. The most expensive step takes one regular

integration step with precalculated matrices, plus one inexpensive

linear interpolation I l l

77 OVNI's modified flowchart to include DSDI. Elements handle

three instances of their histories: h n e x t , h n o w , hbefore. When they

"decide" to backtrack, they discard h n e x t , and interpolate between

the other two 112

78 Linear interpolation between points (a, r0) and (6, rj,). bt is the

per unit backtracking necessary 115

79 Interpolation across the double step span 115

80 Equivalent circuit of current transformer (minus the ideal trans

former) referred to the burden side 119

81 Piecewise linear representation of magnetization in flux path. . . 121

82 Secondary current match between OVNI's model and EMTP's

discrete elements one. Both simulation coincide completely. . . . 123

83 Coupling Capacitor Voltage Transformer, CCVT. 124

84 Lumped parameter high frequency equivalent circuit of a two

winding transformer 125

85 High frequency model of a reactor 125

86 High frequency equivalent circuit for a two winding transformer. 126

87 Frequency response (ZShort) of a two winding transformer. Mea

sured and synthesized responses 127

88 Synthesized RLC network used to approximate Zshort{^)i multiple

peak high-accuracy synthesis. 127

89 Simplified model to represent only the main peak delivers accept

able accuracy. 128

90 PT's frequency response, 201og(Vr

out/Vr

in) dB versus frequency in

hertz 129

X V

List of Figures

91 Approximated PT's frequency response, as rendered by the two

polo continuous time Laplace transfer function 130

92 Equivalent circuit used to approximate the response of the PT. . 130

93 Approximated PT's frequency response, as rendered by the two

polo discrete time Backward Euler transfer function 131

94 Six valve module modelled for OVNI and its three parts: a) the

three-phase transformer; b) the six-valve bridge; c) the smoothing

reactor 132

95 Matrix precalculation scheme for blocks used in OVNI [9]. . . . 133

96 a) Single-phase transformer, Zsc referred to the primary; b) Zsc

referred to the secondary 134

97 Internal versus external node identification 135

98 Including the subnetwork's matrix into the network's matrix. . . 136

99 Node numbering in the hvdc module 137

100 Y d l l three-phase connection of single phase units 138

101 Procedure to incorporate the single phase units Yt matrices into

the module's Yn matrix 139

102 Status of the bridge as a bitwise variable 140

103 The vector of precalculated [Y] matrices 140

104 Discrete time model of the hvdc 6-valve module 141

105 A single phase discretized short circuit inductance 142

106 Total nodal currents for 'Ydll ' connection 143

107 Hvdc module with a Y d l l ' transformer connection 143

108 Total nodal currents for Y d l l ' connection 143

109 Inputs and output of the simplified current controller 146

110 Controller model block diagram 147

111 RC equivalent circuit for the PI block. 148

112 A full-wave valve bridge, with valves and phases identified. . . . 151

X V f '

List of Figures

113 a) Firing time points when alpha is zero; b) Firing points when

alpha is not zero 151

114 The ramp signal and the model's variables for a = 0 152

115 Data structure to select next valve to be fired, when the ramp so

requests 152

116 The ramp signal and the model's variables for a = 0, when gate

signals are issued for Yy and Yd modules 153

117 Scheduling the next valve to be fired: index, iNextValveToFire;

and arrays: aValveGroup and aValveSequence 153

118 Firing walls and initial value of the tick ramp counter at the

beginning of each reference cycle 154

119 Filtering the angle reference voltage signal 159

120 Discretized version of the reference angle voltage filter 159

121 Reference angle voltage Vac and its fundamentals obtained by the

filter described in this section 160

122 Magnetization branch in a single-phase transformer (non-linear) 161

123 a) Magnetization of a transformer core (typical); b) Two-segments

piecewise magnetization curve used 162

124 Saturation modelling for a single phase transformer 162

125 Non-saturated three phase core transformer 163

126 Three phase core transformer with phase-a's leg saturated. . . . 164

127 Non-saturated magnetization in three phase core transformers. . 165

128 Phase voltages and non-saturated magnetization currents. . . . 166

129 Including the non-saturated magnetization matrix, [Gns], into the

HVDC-module [G] matrix 167

130 Modelling saturation in the core 168

131 The six history sources introduced to model magnetization in the

transformer 169

List of Figures

132 Primary current with a linear core under steady state conditions,

OVNI's model and EMTP simulation. The large spikes belong to

OVNI's before DSDI, §7.7. Microtran/EMTP avoids them using

CDA [10] 170

133 Primary current with a saturated core under steady state con

ditions, OVNI's model and EMTP simulation. See caption to

Fig. 132 170

134 Standard abbreviations in OVNI 173

135 Hungarian notation prefixes as used in OVNI 173

136 Structure that represented originally a node in OVNI 174

137 Node array inside a subblock object 174

138 A node registration item, an element of the node registry array. 175

139 Network registry of nodes, and their spatial relationship with the

nodes, subblocks, blocks, and the network 175

140 The external history source class, hsr_t 176

141 Relationship among the elements, their history sources and the

subblock's 176

142 The element abstract class, elm.t 177

143 The subblock class, sub_t 181

144 The blk.t class, template for every block in the network 182

145 Header of the clock object, the ticker, tck.t 183

146 Services provided by the simulation object 183

147 Container/contained relationship of classes in OVNI 184

148 Initialization Task of the Engine 185

149 General structure of the preprocessor input file 191

150 Section on general data for a case with an integration step of fifty

microseconds and a total simulation time of fifty miliseconds. . . 192

xvii i

List of Figures

151 Section on lumped elements: including one resistor of 2017 con

nected between nodes TOPO and BURRO; an inductor of 20 mH,

and a capacitor of 20pF 192

152 This switch data section includes a single switch: the one between

nodes TOTUMA and COBIJA, a switch open at the beginning

of the simulation, with two open operations, one at seven hundres

microseconds, the other at twelve hundres microseconds 193

153 In this case, only one three phase transmission line has been in

cluded in the network 194

154 HVDC controller data 196

155 Every node is represented by a 'nod_t' structure and registered in

a cell of the list 'nodList_t' 197

156 A cell in the list.t class 198

157 The "head" cell and the circular linked list defined by list.t. . . 199

158 Methods and data items in the list.t class 200

159 Methods and data items in the nodList.t class 201

160 Each node in the network list is an instance of this structure. . . 202

161 Methods and data items in the subJ class 203

162 Methods and data items in the subListJ class 204

163 Interaction of classes in OVPP during node registration 205

164 Interaction of classes in OVPP during assembling of subblocks. . 206

165 Interaction of classes in OVPP during subblock matrix calculation. 207

166 Interaction of classes in OVPP during block grouping 209

167 A two-diode full wave rectifier case 212

168 For the two-diode retifier, current in the load 212

169 DSDI output for two-diode rectifier case 213

170 A six-valve three-phase rectifier group 213

171 EMTP algorithm results for the six-valve rectifier 214

172 DSDI results for the six-valve three-phase case 214

XIX

List of Figures

173 One of the six sections in the test network used to benchmark

MATE 217

174 Six node sections connected in a ring 218

175 Solution times, in microseconds, for MATE algorithm 219

176 Solution times for the standard unsegmented algorithm 220

177 In percentage, how much faster MATE is compared to the stan

dard unsegmented algorithm 220

178 Solution time for precalculated MATE link matrices 221

179 Percentage grains of precalculating the link matrices vs vs. cal

culating them on the run 222

180 Single module, six-valve test case used to validate the HVDC

module under steady state 224

181 Primary current, steady-state, linear transformer core. EMTP/MICROTRAN

and Dumbo (DU-99) 224

182 Primary current, steady state, linear transformer core. EMTP/Microtran

and Dumbo. A detail view 225

183 DC voltage in steady state: EMTP/Microtran and Dumbo. . . . 225

184 Voltage before and at steady state: EMTP/Microtran and Dumbo.

Initialization: two cycles for Dumbo 226

185 Zoom on the primary current, steady state, linear transformer

core. EMTP/Microtran and Dumbo 227

186 Primary current, steady state, non-linear transformer core. EMTP/Microtran

and Dumbo 227

187 Detail of primary current with non-linear core. EMTP/Microtran

and Dumbo 228

188 DC voltage, with non-linear transformer core. EMTP/Microtran

and Dumbo 228

189 12-valve case to validate behaviour of HVDC model under AC

faults 229

190 DC current, as calculated by: a) Microtran; b) Dumbo. 230

X X

List of Figures

191 Angle reference voltage for a) Microtran; b) Dumbo. Observe the

small phase error before the fault, and the large error during the

shortcircuit 231

192 Angle reference voltage for Microtran and Dumbo near the end

of the fault 231

193 A double bridge, twelve valve case used to explore the HVDC

module during and after a low impedance fault on the DC side. 232

194 Fault current (DC-side): a) EMTP/Microtran; b) Dumbo. . . . 233

195 Angle reference signals for EMTP/Microtran and Dumbo. Before,

during, and after the DC fault 233

196 During the DC fault period: a) Firing angle reference voltage, Vac

for Microtran; b) Reference voltage Vac, for Dumbo; c) Voltage

across valve zero in the YyO bridge, as obtained by Microtran. . 234

197 Valves zero and two of HVDC module YyO 235

198 Twelve valve, double bridge inverter case used to investigate com

mutation failure modelling 236

199 DC current before, during, and after the AC single phase fault,

in the inverter 236

200 Protective relay test case, with two multi-circuit segments and

MOV protection of series compensation 237

201 Voltage on phase b at FAULT1 237

YX i

PREFACE

This research began as a quest for an algorithm to solve power system networks

that was fast enough as to perform real-time equipment testing.

Testing of the algorithm focused on two cases provided by industry: a pro

tective relay test case, and an HVDC controller test case.

The work took the EMTP's algorithm as a starting point. The EMTP turned

out to be more than sixty times too slow for the second case mentioned above,

and fourteen times too slow for the first case.

In the first of the test cases, that algorithm spent more than two-thirds

of the time solving the nodal equation system, [G][v] = [h]1. To accelerate

the solution process, precalculation of all possible [G] matrices (and of their

triangular decompositions) was considered. It is easier to visualize the obstacles

ahead of this approach through an example (which will be detailed later in this

thesis): a 1000-node network with 1000 switches would require several trillions

of Earth-sized planets covered with RAM chips (continents and oceans as well)

to provide for storage to such set of matrices. However, conveniently segmenting

the same network, would bring down the memory requirements to less than 180

kilobytes.

Segmentation was introduced in three different forms: the one suggested by

the time delay provided by transmission lines (topological segmentation), the

new Multi-Area Thevenin Equivalent (expanded and presented in this thesis in

its full potential for the first time), and the also new node-hiding procedure.

The combination of those segmentation strategies was labelled multi-layer seg-

1 Where [G] is the network bus conductance matrix; [v] is the vector of nodal voltages, to
be computed; and [h] is the vector of total nodal currents.

X X I I

Preface

mentation. This segmentation yielded the performance looked for.

To eliminate the voltage spikes produced by switch or valve openings that

occur between simulation points, a new mechanism was introduced, the new

double-step and double-interpolation procedure, a technique that backtracks to

the occurrence of the switching event, and then advances by a double step to

fall back in synchronism with the real-time train of samples.

Buttressing the algorithm's robustness and stability, a careful integration-

rule study shed new light into the effect (in the time-domain) of the phase shift

that the backward Euler integration rule introduces (in the phase-domain).

The result of this work is a very fast and stable algorithm with no loss of

generality. During testing, as reported in this thesis, the algorithm delivered

real-time performance for the demanding test cases outlined above, and it did

so on an off-the-shelf PC-Pentium 400 MHz workstation.

This thesis is divided in several parts, as follows:

1. Motivation. A brief account of the events that triggered this research;

2. The problem. A description of the challenge to overcome at the outset of

the work;

3. The Solution. This is the main part of the thesis, it contains its contri

butions, which are scattered among several chapters: Chapter 3 presents

a new look at the backward Euler integration rule; Chapter 5 introduces,

in its general format, precalculation riding on top of a multi-layer form

of network segmentation (topological segmentation, the new Multi-Area

Thevenin Equivalent concept, and the also new node-hiding segmenta

tion strategy); Chapter 6 describes the precalculation subtleties of peri

odic sources used in OVNI, and extends and generalizes the multi-area

Thevenin equivalent concept to produce the very efficient tool that bring

the performance needed to meet the real-time deadline targeted (less than

fifty microseconds for the test case described above); Chapter 7 presents,

among other things, the new double step with double interpolation back-

XXI I i

Preface

tracking algorithm used to eliminate the voltage spikes introduced by

opening of switches between the instants where the simulation solves the

network, it does that with a mimimum overhead that keeps the whole

simulation within the real-time deadline;

4. New Models. Chapters 8, 9, 10, and 11 include measuring transformer

models, some non-linear element models with fast topology-change, and

a minimal functionality controller, the last two as examples of the imple

mentation of the node hiding strategy on an element model, and on the

creation of two element models that interact with one another;

5. Implementation. Chapters 12 and 13 describe the implementation of the

simulator core and of its preprocessor with some minimal detail;

6. Validation Tests. Chapter 14 shows several test cases where the simulator

delivered results whose accuracy is compared with those of the EMTP,

those results were obtained within the real-time bandwidth targeted;

7. Conclusions. Finally, Chapter 15 closes the thesis with a summary of

conclusions.

XXIV

ACKNOWLEDGEMENTS

"No book published is ever solely the work of the author. Assistance comes

from a variety of sources in as many different ways," wrote Jean M. Auel at the

introduction to her best-selling novel The Clan of the Cave Bear. This cannot be

more true than in the case of a thesis. So many people have contributed in one way

or another to help me reach this goal, from my mother, Rita Elena, who decided to

teach her three year old son to read and write, and both my wonderful elementary

school teachers, Sra. Rojas and Prof. Hernandez, to my father Rafael Jose, who

insisted on integrity, curiosity, and originality as the hallmark of a true human being.

My recognition and gratitude to Prof. Marti, who put in my hands this most

critical part of the OVNI project, and who always believed in my skill to somehow

pull the proverbial rabbit out of the hat and produce an ever faster and faster algo

rithm. I want to acknowledge him for his financial support, for sharing his impres

sive knowledge and intuition with me, but above all I want to thank him for his trust.

To Prof. Dommel, whose prompt advice and guidance during the first years of

my research widened my horizons in this his land, the land of the electromagnetic

transients analysis, I want to acknowledge and thank his kindness and support,.

To Mrs. Doris Metcalf, Ms. Cathleen Holtvolg, Ms. Katy Brindamour, Mrs.

Gail Schmidt, Ms. Anne Coates, Mr. Alan Prince, and Mr. Ken Madore, thanks for

their friendship and patience.

To Prof. Donaldson and Prof. Davies for trusting me with the young minds of

the students of ECE 263, 370, 373 and thus providing me with a necessary retreat

from the intense research activity (albeit for a few hours).

XXV

For all the help in preparing and setting the slides for the final presentation,

thanks to my daughter Jazmin Carolina, to my son Ivan Jose, and to my colleague

and friend Richard Rivas.

My appreciation and recognition goes to my friend Mr. Jesus Calvino-Fraga,

who interfaced OVNI with the real-world, and to my friend Mr. Jorge Hollman who

ported OVNI to his multi-PC cluster which allowed the simulator code to perform at

maximum efficiency.

I would also like to thank my friend and colleague, Dr. Salvador Acevedo, for

sharing his power electronics knowledge with me, and for his patience and tolerance

in having his model turned inside out and upside down to accommodate OVNI's

interface and the corresponding node simplification schemes. Thanks for the many

productive discussions about the nachos-problsm.

To this wonderful land, to Canada, to her people, to her future, thanks for wel

coming my family and myself, and for providing the platform on which all this has

been possible.

Last but not least, I thank my wife Maria Josefina, for her almost inexhaustible

patience, for her love, her support, and for kick-starting me when I needed it most.

To you all, my gratitude. May God bless you all!

Luis R. Linares-Rojas.

X X V /

/ dedicate this thesis to these three wonderful women

Maria Josefina, my wife

Jazmin Carolina, my daughter

Rita Elena, my mother

X X VI I

Part I

MOTIVATION

1-

1. INTRODUCTION

This thesis describes an effort to develop a general purpose digital simulator

for electric and electronic power networks, suitable for real-time closed-loop

equipment tests under flexible constraints of bandwidth and network complexity.

Simulation of an electric network can be viewed as the process to determine

its state at a certain number of points along the time axis. If the network is

described by its circuit theory representation, its state can be obtained as the

solution to a set of non-linear coupled partial differential equations [11]. Using

nodal analysis, for instance, this mathematical representation includes one of

such equations for each node in the network. Even for a small network, with

only a few tens of nodes, the solution task is rather demanding. When the

solution needs to be obtained within the constraints of a real-time simulation1,

the problem becomes even more challenging.

The Engineering community has been able to reduce the complexity of the

problem of determining the state of the network, at the price of reducing the

scope of the solution as well, by classifying the network's behaviour into oper

ational areas of interest, and applying suitable simplifying assumptions to each

of those areas separately. The most important of those areas are: steady-state

power flow [12, 13, 14], slow transients [15], fast transients [4], short-circuits

[16, 14], and real-time equipment testing.

This thesis presents an attempt to a unified solution, and explores its va

lidity on two counts, fast transients simulations, and real-time simulations for

equipment testing; away from analog simulations and into the realm of digital

1 i.e., a few microseconds.

1. Introduction 3

simulations.

For each of the areas of interest mentioned, industry counts on specialized

software based on the corresponding assumptions and restrictions. In particular,

for insulation coordination analysis, the standard tool, the E M T P 2 [4], is built

around the widest of the assumption sets, and uses a powerful discretization

process for the problem that provides the seed for the work presented in this

report. It is then convenient to establish the place of the E M T P in current

power engineering practice.

During the last decades, the electromagnetic transients program — E M T P —

has been gaining ground that used to be the sole domain of the expensive and

bulky analog network simulator T N A 3 [17], transients computations in power

systems. Today, the E M T P is the standard tool for this kind of simulations.

Even if already existing T N A s remain in service, most new needs are covered by

E M T P installations.

Cost and room use are two main areas where the E M T P has clear advantage

when compared with the T N A . Another advantage is enhanced flexibility: very

accurate models for system components can be developed and incorporated into

the E M T P . Such is the case of the power transmission line, whose distributed

parameters nature is not representable with the scaled-down analog models avail

able in a T N A 4 . In spite of those advantages, in cases when testing some device

requires real-time interaction between the device and the power system it is

connected to, the analog simulator T N A is very often still the answer.

However, if a computer program is to attain real-time performance while

simulating a power network, the program has to be capable of solving the system

equations fast enough to encompass the bandwidth required for the equipment

under test. In both, protective relay tests, and in H V D C controller tests, a

bandwidth between 2,000 Hz and 4,000 Hz is considered adequate [18, 19, 9].

2 Electromagnetic Transients Program
3 Transients Network Analyser.
4 Hybrid simulators include the best of both worlds, digital and analog, but at very high

costs.

1. Introduction 4

iimf.c.RLCfttttf
\ 130il.c.RLCflH««. 100km trarwniuton Ik

11th f c. RLC Utar
13th Te. RLCfiltar/

Th«v«rwi •gutvatam

0 (^ 1)

* \ i vj/ non-lM»af COM r—' r—- r—<
imoothmg rMctot

w i n -

' i f * ? * !
nm l.c.RLCfflWf

\ 13th !.c. RLC Wltr.

- W L ,

"Tour

a i m ;

>ofi*»« Thavtnio aquivaiam

F i g . 1; A n H V D C test case.

Using the trapezoidal integration rule as a reference, and keeping the maximum

distortion error introduced by the rule under 10%, an integration time-step

between 50/xs and 100/is is then necessary [10].

To perceive the performance improvement needed, two important test cases

were simulated wi th Microtran's E M T P 5 : the H V D C test case in F i g . 1, and

the protective relays test case whose one line diagram is shown in F i g . 2. Both

cases were run on a 200 M H z Pentium Pro workstation. For the first case, the

E M T P used an average 6 of 3120/xs7, that is, an improvement in speed of thirty

to sixty times is necessary for real-time performance. For the second case, an

improvement factor between seven and fourteen was found needed.

In spite of the strict speed requirements, the new breed of microchips and

computer architectures has been attracting researchers [18, 20, 21, 22, 23, 19,

24, 25, 26, 9, 27] into t rying to produce a digital real-time simulator. Most of

those researchers have chosen a hardware approach. Some mimic the topology of

the power network wi th a convenient arrangement of D S P ' s [18, 27] (some tried

5 U B C ' s P C version of the E M T P .
6 The critical step is —most likely— much larger than this, but internal probing into the

E M T P ' s simulation cycle was not available.
7 Actually, more than that, since capacitive snubbers and harmonic filters were not included

in this simulation.

1. Introduction 5

sys-1

©\ _,,v_rtm_

BUSt

250 km

coupted

150 km

1r
FAUL2

coupled M O V

BUS3 B U S 4

-OH r ©

Fig. 2: A protective relay test case.

this approach with transputers in the past [20, 21]), others rely on expensive

and sophisticated super-computer architectures [24] to meet real-time deadlines

for reduced size test cases8. Some other researchers [22] have attempted a tran

sient stability analysis of a power network by splitting the simulation loop into

spawned parallel child processes, where each of these processes is assigned a

node in a hypercube architecture system, according to a sophisticated mapping

pattern. The results reported in [22] show a speedup of 45% when moving from

one to two processors, but an additional gain in speed, for the linear part of

the problem, with four processors of only 15%. If more than four processors

were used, the additional overhead actually increased the total execution time.

In hardware based solutions like those in [18, 20, 21], the close match between

the particular network to be solved and the physical connection of boards (or

transputers, in the past) may render the solution inflexible9. Besides, depending

on customized hardware platforms, the upgrading cycle to new and faster hard

ware may be much slower than in the case of commercially available off-the-shelf

computer systems.

In the work that occupies us, an algorithmic-software-based method is intro

duced. By going back to the original set of non-linear coupled partial differen

tial equations,.a global view is obtained. The increased level of complexity of

8 Even though they originally employed supercomputers, the Mitsubishi group, with which
we performed common work in 1995, has recently switched to a P C solution for the hardware
[26].

9 As of this writing, [27] implemented an elegant solution around this problem.

1. Introduction 6

Fig. 3: Multilayer segmentation: Topological segmentation, followed by MATE-
Diakoptics Segmentation.

the representation is dealt with by fragmenting the network into smaller quasi-

decoupled fragments. Two fragmenting techniques are combined into a two step

process, topological segmentation [9], and MATE segmentation [28, 29], Fig. 3.

Further simplification and efficiency are achieved by hiding, or shading away,

certain nodes, and so reducing the effective size of the network fragments even

more. Also, as the smaller network fragments contain a reduced number of swi

tches, ergo a reduced number of switching states, and contain fewer nodes, after

node hiding, they become suitable for some judicious precalculation without loss

of generality in the solution [29].

Apart from the speed-related issues of the solution algorithm, growth-security

was also considered. The fast changing evolutionary process of real-time model

development for network elements imposes the need to incorporate simplicity

and flexibility in the interface between those element models and the integrator

proper. That is, we need to plug-in and out new models as old ones become

obsolete, as painlessly and reliably as possible. Some of those models may rep

resent a centre of fast-changing topology to the integrator, as in the case of the

HVDC model [30], or complex internal representations that must not perturb

1. Introduction 7

the core of the simulator with their details, as in the case of the time domain

frequency dependent transmission line model [31, 32]. Even models that include

non electrical issues, such as the synchronous generator model [33], must be

incorporated seamlessly and used within a common model-integrator-interface.

This goal was achieved by object-oriented design techniques [34]. All models,

present and future, are to be connected to the core through a common and

unique interface, Fig. 4. This means that they all look and behave the same,

as far as the core is concerned. In OOP 1 0 parlance, that common interface is

provided by a "defined" generic element, (an abstract class named elm_t), that

comprises all the behaviour groups11 of interest to the integrator core. The re

sult is that all models turn out to be a particular case of that abstract class,

with the additions and refinements that are unique to the model in question:

the models are classes that inherit the behaviour defined for the elm_t class.

The solution presented here relies on a fast solution algorithm, and has the

advantages of enhanced flexibility and upgradability: it is not hardwired to the

configuration of the network to be simulated, and its core (NI) is written in C++.

The algorithm is easily portable to faster hardware platforms, as they become

available, with the only concern in real-time applications of the adaptation of

port-cards, amplifiers, and the corresponding synchronization signals. During

the research cycle of this project, the core was developed on Intel platforms, run

on Sun workstations (for portability tests), moved to IBM RISC System/6000

Model 560 machines, where it delivered real-time performance for the first time,

with the first version of the integrator. More recently, the integrator was ported

back to Intel machines of later vintage, workstations of the Pentium series,

Pentium Pro 200 MHz, and lately to a Pentium II 400 MHz. That the simulator

delivered real-time performance12 on these inexpensive platforms is a sign of the

efficiency of the underlying algorithm. The integrator is portable.

1 0 Object Oriented Programming [34].
1 1 In O O P parlance, behaviour of an object describes one of the routines that can be applied

to the object.
1 2 Wi th in the target bandwidth and network size and configurations.

1. Introduction 8

transformer
model —

transmission
' line model

HVDC
model

"generic element"
(class elm_t)

Fig. 4: All element models look and behave the same from the point of view of the
simulator's core.

The design allowed the exploration of avenues for improved efficiency: latency

[2], dependent on the relatively different time constants of different sections of

the network; and backtracking, to cope with switching not produced at one of

the time points of the simulation [35].

The integrator solution must respond as well to events generated at both

interface ends, see Fig. 5. On the side of the user, OVNI interacts with OUI,

OVNI's user interface [36, 37] (due either to configuration changes in the net

work, or to the connection or removal of probes, voltmeters, ammeters, oscillo

scopes, etc.). On the hardware end, OVNI interacts with OV-XI [36, 38], the

back-end hardware interface with the real world (opening or closing signals, or

gate signals for controlled rectifier groups).

1. Introduction 9

OVNI's User Interface

OVNI's
External Interface

HARDWARE
EQUIPMENT
UNDER TEST

Fig. 5: Front end and back end interfaces to O V N I ' s core.

1.1 Research Claim and Contributions.

Our summarized claim is that "Real-time simulation of realistic power networks

is possible using stock computer hardware." To demonstrate that claim, this

thesis introduces as contributions: a) the use of backward Euler integration rule

as a preferred method, and demonstrates its validity; b) a multi-layer segmenta

tion scheme with: topological segmentation (introduced by lines time delay), an

extended multi-area Thevenin equivalent concept segmentation, a node-hiding

technique; c)a double-step double-interpolation technique to syncronize the sim

ulation both with switching operations and with the real-time output stream

with very low overhead.

Other central contribution was the implementation of the simulator around

the OOP paradigm in C++, which is both efficient enough for real-time per

formance, and extensible to allow new models to be added without modifying

the core. Also, a set of models was developed that prove the speed advantages

of the proposed solution algorithm. The resulting simulator was tested on two

real problems for real-time power networks simulation: a protective relay testing

case, and an HVDC controller testing case.

Part II

T H E P R O B L E M

10.

2. THE P R O B L E M

2.1 Real-Time Simulations

Real-time simulations stem from a situation like the one depicted in Fig. 6.

An observer interacts with a system. The observer perceives the behaviour of

the system, sends controlling signals to it, and watches the system's response to

those signals; all this in a continuous cycle.

Fig. 6: An observer watching over and controlling a system.

The system could be an aeroplane, then the observer would be a pilot; or

the system could be a power electric network, and the observer would be a

protective relay, or an HVDC controller perhaps. In either case, if the purpose

of the interaction is to evaluate the capability of the observer to perform under

different circumstances, providing the observer with the real system (i.e., the

aeroplane or the actual power system) is out of the question. The evaluating

11.

2. The Problem 12

agency presents the observer instead with a substitute system, a simulated one,

where mistakes or malfunction will not result in an unthinkable catastrophe.

To produce a meaningful evaluation of the performance of the observer, the

simulated system needs to make the observer believe that it is interacting with

the real system. The simulator, the agent in charge of creating such an illusion,

must receive the observer signals, process them, calculate and release the correct

behaviour of the system; and do it all "fast enough" to create that illusion. Such

is the task of a real-time simulator.

2.2 D i g i t a l R e a l - T i m e Simulat ions [1]

When the simulator is a digital one, by its own nature it cannot produce a

continuous behavioural signal. Instead, the digital simulator issues a sequence

of samples spaced "close enough" in time as not to miss any significant ripple

in the behaviour of the system being simulated. It produces a discrete time

simulation. Between the digital simulator and the observer stands a digital to

analog converter and amplifying block, Fig. 7. This block fills in the gaps

between the discrete samples produced by the digital simulator, and delivers a

continuous time signal to the observer.

Fig. 7: From discrete to continuous, through D/A converters and amplifiers.

2. The Problem 13

2.3 Frequency B a n d w i d t h , Integration Ru le , and A c c u r a c y L i m i t a

tions

The samples issued by the simulator must be close enough to one another as to

include up to the highest frequency component of interest in the behaviour of the

system. According to Nyquist sampling theorem [39], the relationship between

the frequency of the fastest frequency component, the Nyquist frequency, fNy,

and the time distance of the samples is such that at least two samples of each

cycle of that component are present in the discrete signal. The time between

two consecutive samples, the simulation step or integration step, At, relates to

fpfy according to Eq. (1).

The smaller the integration step At, the wider the bandwidth of the solution

produced by the simulator, but the higher the performance requirements on the

simulator. For a given integration step, At, the theoretical bandwidth of the

simulation is given by the Nyquist frequency, f^y

fNy - (2)

For an integration step At = 50/is, the theoretical bandwidth would be

^ = 2 x 5 0 x l O - ° = 1 M ° ° h e I t Z (3)

This bandwidth holds only if the samples are taken out through observation

of the correct continuous signal. In the case of a digital simulator, the samples

are produced by a painstaking numerical integration process of the equations

that describe the system. The accuracy of the integration process depends on

the integration rule utilized, and on the size of the integration step. The theo

retical bandwidth suggested by Eq. (2) is drastically reduced by the distortion

introduced by the integration rule. As will be seen in the next chapter, the

2. The Problem 14

EMTP's trapezoidal rule introduces a magnitude distortion according to Fig. 8.

Magnitude Error for Trapezoidal Rule

0 0.1 0.2 0.3 0.4
frequency 0/1, f/fNy

Fig. 8: Magnitude distortion introduced by Trapezoidal rule at frequencies up to 40%
the Nyquist's.

In protective relay tests, also in HVDC controller tests, the range of frequen

cies of interest goes up to 2,000 Hz. Depending on the tolerated distortion, see

Fig. 8 and Eq. (2), the integration step in those test cases should be no larger1

than

At — 50/xs for error < 3%

At = 100/us for error < 10%

These two results coincide with the recommendations in [17].

1 If trapezoidal rule of integration is used.

2. The Problem 15

2.4 H a r d R e a l T i m e versus Soft R e a l T i m e Simulat ions

From what has been said so far, it is evident that the simulator is in a race

to do all of its duties by the time deadline imposed by the frequency response

desired and the integration rule applied. That is the real-time deadline. When

the simulator fails to meet that deadline, the value of the simulation suffers.

In some cases, the value of the simulation decreases with the extent by which

the simulator failed to meet the real time deadline. In other cases, the value

of the simulation is null if not produced within the deadline boundaries. The

first kind is. labelled soft real-time simulations; the second kind, hard real-time

simulations [40] , see Fig. 9.

value of simulation

100
HARD
REAL-TIME

real-time
deadline

100'.

value of simulation

SOFT
REAL-TIME

it-
real-time
deadline

Fig. 9: Usefulness of the simulation results for: a) a hard real time simulation; b) a
soft real time simulation.

For instance, when a real-time controller for a bread toaster misses its real

time deadline, it produces browner toasts, not quite the perfect one, but edible

enough. The value of the simulation has been reduced, but some benefit can

still be obtained from it; a sample of soft real-time simulation, Fig. 9b. On the

other hand, when an auto-pilot landing real-time controller for aircrafts fails to

meet its real-time deadlines, even if by a minor margin, the catastrophic results

render the simulation completely invalid; this is a hard-time simulation indeed,

Fig. 9a.

During the first years of the project, OVNI was considered a hard-real time

2. The Problem 16

(%)— VA 'nr - -0 OLD-
VA ITT '

O T P vW -©

Fig. 10: Typical configuration of power networks used in protective relay testing.

simulator, however, recently, under the light shed by experience some consider

ation was given to whether it could be a soft-real-time simulator under certain

conditions. In particular, when a critical event occurs between two output bursts

(the ones at the ends of their corresponding integration steps), the distinction

between outputting the correct value at the critical moment, or the extrapolated

one at the proper time, was proven irrelevant in all of the test cases [35].

2.5 Ne twork Size. C r i t i c a l C o m p l e x i t y Network , C C N

The size of the power network to be simulated is given by the number of nodes

and branches —one branch per lumped element or switch, 2n branches per

n-phase transmission line in the discretized equivalent network [3, 4]. The com

putational effort necessary at each simulation step grows with the size of the

network [41, 4].

In any real-time simulator, associated with a particular arrangement of hard-

sys-1 250 km 150 km

coupled

BUS1 FAUL2

coupled

VC2
BUS3 BUS4

sys-2

Fig. 11: Critical Complexity Network targeted for relay testing. It includes two mul
ticircuit transmission links, and MOV protection.

2. The Problem 17

ware and software, there is always a limit in the complexity of the network that

can be simulated in real-time. That is defined as the critical complexity network,

C C N . Even very crude solution algorithms are capable of real-time performance

for three or four-node networks. OVNI's algorithm segmentation lends itself

naturally to a multi-machine solution; i.e., a segment of the network is solved

in a module, a workstation working in parallel with others in charge of different

segments of the network. Thus, networks of arbitrary size can be simulated by

adding additional workstations. The efficiency of the algorithm is normalized, in

what follows, by the critical complexity network associated with a single module

configuration, a single workstation.

nth f.c. RLC filter

\ 13th f.c. RLC fitter.

3-phase Thevenln equivalent

100km transmission link

11th I.e. RLC fi
13th f.c. RLC filter/

\ i w non-linear cort — L — l

mn
4- YyO

nth I.e. RLC (liter
ft

smoothing reactor

valve + snubber

13th I.e. RLC filter,

non-linear < \ l ^ nor-imo

U3C

i Ydi 1

ft

ft ft

3

1

YyO
1th f.c. RLC

13th f.c. RLC filter.

I- JEST

• a i "
Dyl i

3-phase Thevenkn equivalent

Fig. 12: Target Network for HVDC controllers testing. The controllers triggering the
gate signals, used in tuning the simulator, are not shown, but were included
in the simulation.

In its minimal hardware configuration, single module, two real-time test tasks

have been targeted and explored for the present report; namely: protective relay

testing, and HVDC controllers testing. For the first case, the critical complexity

network must include sufficient detail to cover the relay's protection zone and

the simulated fault or operating switches. The network outside that zone may

be represented by compact multiphase coupled-impedance Thevenin's equivalent

circuits [4, 33].

2. The Problem . 18

The compromise between performance and accuracy sketched in § 2.3 reduces

the configuration of the network to be simulated to one like that in Fig. 10,

which is similar to the reported test case in [18]. A more demanding test net

work, including multicircuit transmission links (capability included in OVNI's

prototype) was used instead, the network shown in Fig. 11.

For HVDC controllers testing, the CCN includes two multiphase Thevenin

equivalents for the surrounding AC-networks (one on the rectifier side, and an

other on the inverter side), a two-pole DC-transmission link, a 12-valve rectifying

substation including the two corresponding three phase transformers, and a 12-

valve inverter substation with its two three-phase transformers, Fig. 12.

Part III

THE SOLUTION

1 3 -

3 . INTEGRATION RULES IN OVNI

3.1 In t roduct ion

Digital simulation pivots around the integration rule chosen to solve the dif

ferential equations that describe the system being simulated. Ironically, this

integration rule is also the weakest link in the entire simulation process [41].

Ever since the introduction of the EMTP 1 in the late sixties by Dommel [3],

the trapezoidal integration rule became de facto the standard rule when it comes

to digital solution of electric power networks [4]. That choice has been later

substantiated and made more robust by the introduction of the Critical Damping

Adjustment (CDA) by Marti and Lin [19] in the late eighties. Currently, the

trapezoidal integration rule is tacitly accepted as the underlying platform under

every attempt to achieve digital real-time simulation [18, 9, 17, 23, 42, 24, 25,

26, 27]. Even the ubiquitous fifty microseconds targeted deadline is but the

consequence of:

• The needed 2 kHz bandwidth, associated with the tests described in the

previous chapters.

• A tolerated magnitude distortion of 3%.

• The use of the trapezoidal integration rule.

In this chapter, several promising integration rules are examined, and OVNI's

deviant choice is justified.

1 The Electromagnetics Transients Program.

2.0.

3. Integration Rules in OVNI 21

3.2 A c c u r a c y and Stab i l i ty

The validity and convenience of an integration rule in a real-time simulator

is given by its accuracy, its stability, and its simplicity. In loose terms, the

accuracy states how close the numerical solution, produced by the integration

rule, is to the actual exact solution along all of its simulation or solution time

span. The stability of a rule signals that the numerical solution will stay within

a certain "distance" of the exact solution; that is, that it will not drift away

eventually toward infinity. The simplicity of the rule has an impact on the

overall performance of the simulation.

To evaluate the first aspect of an integration rule performance, even if both

using different methods, [41] and [19] both recur to a differential equation whose

exact solution is known: a first order one. In this thesis a different approach

will be used to probe more deeply into the nature of the rules, but for the

same reasons as those of the previous two authors, a first order system, the

voltage/current relationship in an inductor is used. To normalize the results, a

unit inductance was used (i.e., L = 1 henry), Eq. (4).

= d £) = di^
y ' dt dt y 1

To perceive and quantify the distortion introduced by an integration rule on

a solution wave, the effect of the rule on frequency components ranging between

DC and Nyquist's frequency is readily studied in the following sections. However,

in order to gain a fresh insight into the behaviour of the rules under scrutiny,

instead of finding the Z-domain transfer function corresponding to each rule, and

mapping the z variable to the frequency domain, as in [19], a different approach

is used in this chapter.

3.3 Frequency Response [2]

When the integration step, At, is kept fixed, as in our case, the bandwidth of

the solution spans up to the Nyquist frequency, f ^ y = To explore how

3. Integration Rules in OVNI 22

an integration rule responds to each frequency within this bandwidth a simple

experiment was set up. A variable frequency sinusoidal voltage source is set

to feed a one-henry inductor, L — IH. At each frequency, the current wave,

magnitude and phase shift, was obtained through the integration rule under

scrutiny and compared with the actual exact phasor solution to the equation

Eq. (4).

Actually, at each frequency, the effective admittance of the inductor, as ren

dered by the integration rule, is calculated; i.e., the quotient of the phasor

representing the current wave obtained by the rule, and the phasor representing

the voltage wave applied by the source. That admittance, Ye(u), can then be

compared with the exact admittance of the inductor, Yx(ui).

n M = (5)

UJ Li

Then, the quotient a complex number, is plotted, in magnitude and

angle along the spectrum up to the Nyquist's frequency. The closer that quo

tient stays to the real unit, magnitude one, phase zero, the more accurate the

integration rule is.

The procedure is simple enough. However, as the frequencies get closer to

Nyquist's, the reduced number of samples per cycle of the solution imposes

an additional complication. A filter is used to extract and smooth out the

sinusoidal wave corresponding to the particular frequency. The filter, described

by Eq. (6), produces the value of the current at any point in time, t, even

between the samples delivered by the integration rule, which are represented by

the sequence2 id(k • At) for k = 0,1,2,...; where At is the sampling span or

integration step.
2 In our case, the sum spans up to the last sample produced by the simulation —a finite

sum, but the infinite span was kept in Eq . (6) above as an indication of the distortion incurred
when handling a finite number of samples—, and the cycle calculated by filtering was chosen
as close as possible to the centre of the sequence.

3. Integration Rules in OVNI 23

The distorted admittance (with respect to the exact one), in magnitude and

phase, as produced by each of the five studied integration rules (trapezoidal,

Simpson's, Gear's second order, backward Euler's, Calviho's second order [38])

is shown in Figs. 13 and 14.

Amplitude Frequency Response

1 I
1 i

1 i i i , .
i i i , i

— (Simpson? j ; ,

i . -1 _i i L_ L • f •
- -L u 1

i 1

r i
i i

i i
i i

! 1

_ i - - - r~ " _ -4 -

1

r

- J " J "

i f \ \ J-'
. / ,
T / "I S» I

* - r i
i i i
i i i

i
j . J

i -

1

" <
r
t

r

i

i

i

T 1 l
l 1 1

_ -L _i :

i i _ _ J - - '
- i i i

~ r \ - A +--""'

1 1 1

r i n i
i
r T H IX

Trapezoidal i N .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency 0/1, f/fNy

Fig. 13: Frequency response, magnitude, for the rules: trapezoidal, backward Euler's,
Simpson's, Gear's second order, Calvifio's second order.

3.4 Choosing OVNI's rule

From the response depicted in Figs. 13 and 14, Simpson's rule, with zero phase

shift and the closest to unity magnitude response, seems to be the best choice. Its

magnitude response, Fig. 13, drifts toward infinity, however, at frequencies close

to Nyquist's. In other words, Simpson's rule although apparently accurate, is

unstable. This last statement needs to be bounded. Simpson's needs very small3

integration steps to remain stable (This, evidently, brings the significant high

3 As compared with the steps used by the other rules.

3. Integration Rules in OVNI 24

90-

80-

70-

60 -

> 5 0 "

40 -

' 30 -

20-

10-

0 '

-ioi-

Phase Frequency Response

I /

/
I 7

I / ' /

BEulpi

Gear

tSimpson

Trapezoidal

0.4 0.5 0.6
frequency 0/1, f/fNy

Fig. 14: Frequency response, phase shift, for the rules: trapezoidal, backward Euler's,
Simpson's, Gear's second order, Calvifio's second order.

frequency components of the signal into the "finite" response region of the rule).

In the single phase power system used to compare performance of the rules in

§3.6, Simpson's rule needed up to ten times smaller integration steps than the

other rules in order not to go ballistic. Simpson's is thus disqualified.

Gear's second order rule, while maintaining a more even magnitude response

along the spectrum, introduces a relatively large magnitude distortion at the

most important low-frequency range, fig. 13. Even worse, Gear's rule shifts

the different frequency components by a different amount along the time axis,

see Fig. 14, distorting thus the shape of the wave, and smoothing out abrupt

changes, or even creating false spikes on its own; see §3.6. Gear's rule is also

eliminated.

Three rules remain to be reviewed: Calvifio's second order, trapezoidal, and

Backward Euler's.

3. Integration Rules in OVNI 25

3.4.1 Calvi f io ' s second order rule

This rule merits a separate section. It combines a closer to ideal response for

the most important low frequency components, both in magnitude, and in phase

shift. Overall, however, it reaches the 3% error at about the same frequency as

Trapezoidal, and so it imposes the same integration step on the simulator for this

accuracy limit. At the same time, the rule raises the computational burden of

the simulator by up to three times, increasing effectively the computation time

per step. In a case like the one in Fig. 11, where the rule's computational costs

accounts for 15% of the total integration time per cycle using trapezoidal rule,

the percentage used by Calvifio's rule —assuming that the rest of the simulation

process remains unaffected— could reach 35% of the cycle. And the whole cycle

would then consume 30% more time.

The non zero phase shift of this rule endows it with power loss characteris

tics and improved stability, same as Gear's, or B.E. However, its non straight

line phase characteristic penalizes it with the same distortion as Gear's when

the integration step is not kept reasonably small: uneven frequency component

shifting along the time axis.

3.4.2 Trapezoida l versus backward Euler ' s

Trapezoidal and backward Euler's rules show a different strength each: trape

zoidal has an ideal zero phase shift, but the magnitude response of backward

Euler's is significatively better, as witnessed by the relative magnitude error plot

in Fig. 15.

Now we turn our attention to the weaknesses of those two rules. For the

trapezoidal rule, take the voltage/current equation for an inductor, Eq. (4), and

integrate it along the interval (t — At,t), Eq. (7)

The right hand side is an exact definite integral, after approximating the left

(7)

3. Integration Rules in OVNI 26

Relative Error

0.2 0.3
frequency 0/1, t/fNy

Fig. 15: Error in magnitude introduced by trapezoidal and Backward Euler's rule, up
to 40% of the Nyquist's frequency.

hand side with a trapezoidal rule area [3].

v(t) + v{t - At)
At = Li(t) - L i (t - At) (8)

Assuming that the Z-transform of voltage v(t) and current i(t) in the inductor

are V(z) and I(z) respectively, Eq. (8) can be written in the Z-transform domain

[39].

o r

V(z)[l + z-l] = £l{z)[l-z-i]

The impedance transfer function in the Z-domain is

(9)

Z{z)
V{z) 2Lz-\ (10)
I(z) At z + 1

with a pole at p = —1. But that pole, once inserted into the natural or transient

discrete time response of Eq. (11), shows an oscillatory never decaying response.

This phenomenon was identified by [43, 19] and labelled critical unstability.

3. Integration Rules in OVNI 27

n(k) = C.pk fork = 0,1,2,... (11)

Marti and Lin [19] identified the problem and buttressed the trapezoidal

rule with an intelligent switching to the more stable Backward Euler's, albeit

only when those critical undampened oscillations were detected, and only for

two integration steps. That procedure, Critical Damping Adjustment (CDA),

is the standard arrangement in EMTP solutions today. The price for the added

stability, however, is too high for real-time simulations, the integration step

where CDA is found necessary incurs in twice as many computations as a regular

step. So, it seems CDA is out of the question in our quest.

Finally, we consider the Backward Euler's rule apparent liability, its non zero

phase shift response, Fig. 14. Traditionally, that phase response has been asso

ciated with the same sort of distortion produced by Gear's rule; i.e., wave shape

distortion produced by uneven "lateral" displacement of the wave's frequency

components along the time axis. In what follows, we will see that that assertion

is not quite correct.

Figure 14 shows that B.E. shifts each frequency component by a different

angle, but let us look more carefully into it.

The component at frequency / , according to Fig. 14, is shifted by an angle

9 given by Eq. (12), but this 9 phase shift is displacing the component a certain

amount of time to the right on the time axis; i.e., the component is being

"delayed" by 5 seconds. To translate 9 into <5, it is necessary to keep in mind that

the time span equivalent to one degree in a fundamental frequency component

corresponds to three degrees in a triple frequency component, and so on with

higher frequency components, as in Eq. (13).

0=J-9O° (12)
JNy

i = x . 9 0 » . J L = i = as)
/„„ 360° 4 / w „ 2

3. Integration Rules in OVNI 28

In other words, every frequency component is shifted the same amount of

time, S — At/2. Conclusion: The wave shape should not suffer on the account

of the phase shift alone. The effect is only to delay the wave by one half the

integration step. To validate experimentally this conclusion, and using the same

circuit arrangement as for the frequency response, each frequency component

actual time delay was determined and plotted in Fig. 16 for an integration

step At = 50 ps. The deviations from the predicted 25 ps stems from the 2,880

samples per cycle used to represent every frequency component.

The difference between backward Euler and Gear's rule is that the latter's

phase characteristic is not straight line crossing zero at DC. Every rule with a

"curved" phase response will suffer the same distortion penalty as Gear's. That

is not the case with Backward Euler's Rule.

Backward Euler introduced delay at Dt=50us
25.21 1 1 1 1 , 1 1 r- 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Irequency 0/1,1/fNy

Fig. 16: Time delay introduced by backward Euler's rule at each frequency up to
Nyquist's.

There are still, however, a positive and a negative side to the non zero phase

response of B.E.

3. Integration Rules in OVNI 29

3.4.3 Backward Euler's, a "lossy" rule

An important implication of backward Euler's phase response, Fig. 14 is that the

equivalent admittance of the inductor, as represented by the rule, has not only

an imaginary part, but a real part as well. The rule represents the inductor by

an inductor in parallel to a resistor. In other words, the rule's representation of

the inductor (and of the capacitor too) incurrs in active power losses not present

in the actual circuit. It may be said [39] that that power drainage is responsible

for the absolute stability of this rule: it dampens out an otherwise never dying

oscillation. But those power losses also subdue somehow the different frequency

components of the wave.

It can be shown [39] that the trapezoidal rule represents an inductor L, by

an equivalent approximate inductor Le whose value depends on the frequency

L ^) = L - uAt/2 (1 4)

Along the same lines, backward Euler's rule represents the same inductor L

by a parallel arrangement of an equivalent inductor Le with the same value as

the approximate inductor introduced by the trapezoidal rule above, in Eq. (14),

but with the addition of a parallel resistor Re with the value

fl, = ft (15)

Observe that the parallel resistor value in Eq. (15) does not depend on the

frequency of the signal, the way the equivalent inductance Le in Eq. (14) does.

It follows that the rule drains from each frequency component a power that

is proportional to the square of the amplitude of the voltage component; i.e.,

"smaller" components get less damped that "larger" ones.

It is this lossy characteristic that is responsible for reducing the "spikiness"

of the response, not the phase shifting. The end result is absolute stability

and reduced numerical spikes. The physical spikes in the response do not get

masked, or shifted, the way Gear's rule does, they are slightly damped by the

3. Integration Rules in OVNI 30

lossy characteristic of the rule. See the simulations in § 3.6.

3.5 Improved performance of OVNI and backward Euler's

Summarizing, backward Euler's rule is more stable and its magnitude response

is more accurate than the contender's. If the ^ time delay is tolerable, which

was the case in the simulations run to validate OVNI, backward Euler's rule

improves the overall performance of the simulator like this:

• The number of floating point operations necessary to update some sources4

becomes null, considering that such updating accounted for 15% of the

simulation time during each integration step for the case in Fig. 2, the

benchmark case I, the performance improvement in this updating stage is

(16)
nc + nL

where nc is the number of capacitors, and ni the number of inductors in

the circuit.

• More importantly, as the 3% magnitude distortion barrier is reached by

backward Euler's at a frequency 50% higher than the one at which trape

zoidal reaches 3% error, Fig. 15, the integration step can be 50% larger

for the same amplitude distortion, stretching thus the real-time deadline

and the performance requirements of the final algorithm. This produces

the equivalent effect of a fifty percent performance improvement on the

original algorithm.

3.6 A single-phase power system test case

To observe each of the rules at work, the simple single-phase reduced power

network in Fig. 17 was solved separately with each of the rules. The simula

tion proceeded at5 At = 50 /xs, up to 40 ms. At t = 17 ms the receiving end

4 Associated with capacitive elements. See chapter on models, 4.
5 For all the rules, except Simpson's.

3. Integration Rules in OVNI 31

of the transmission line is shorted by the switch illustrated. As a reference,

the simulations produced by the EMTP with critical damping adjustment, for

50 us and for At = 70 /xs are included in Figs. 18 and 19. Those two figures

show the voltage at nodes flag and glen.6 It is interesting to observe how the

EMTP+CDA solution deteriorates when changing the integration step from 50

to 70 /is, Figs. 18 and 19, which does not happen so drastically, as expected, for

the plain backward Euler solution, Figs. 22 and 24.

Fig. 17: Single phase power system with a short circuit on the receiving end, to test
the different integration rules.

Simpson's rule proved unstable when At = 50 /J,S was used. It was necessary

to reduce the integration step to five microseconds to obtain stable results, at

least up to 40 ms.

The results obtained with each of the four rules are presented in the or

der from higher "spikiness" to lower: Simpson's, trapezoidal, backward Euler's,

Gear's. The curves in Figs. 20 up to 24 illustrate the material exposed in the

first part of this chapter. From Simpson's extreme unstability and spikiness, to

Gear's phase distortion smoothing of the actual physical spikes (and introduc

tion of false ones).

Finally, in Fig. 24, to illustrate the increased magnitude accuracy of B.E.,

the system is solved at At = 70 ps. Compare those results with the ones in

Fig. 22.

6 Voltages for the same nodes (with no additional labelling) are presented for the other rules
in Figs. 20 to 24.

3. Integration Rules in OVNI 32

v[GLEN](d[FLAGK1)

f l a g , '

•• • : h

M f /
\

\

! . !

5 1 0 1 5 2 0 2 5 3 0 3 5
T i m e (m s)

Fig. 18: Solution obtained by the EMTP with the CDA option activated with an
integration step At = 50 fj,s.

Fig. 19: Solution obtained by the EMTP with the CDA option activated with an
integration step At — 70 us.

3. Integration Rules in OVNI 33

Simpson's Rule al Dl = 5us
800

15 20
millisec

Fig. 20: Simpson's rule solution with At = 5us. Voltages at all the nodes in the
network in Fig. 17

800
Trapezoidal

15 20
miilisec

35 40

Fig. 21: Trapezoidal rule solution with At = SOps. Voltages at all the nodes in the
network in Fig. 17

3. Integration Rules in OVNI 34

Backward Euler
8001

15 20 25
millisec

Fig. 22: Backward Euler's rule solution with At = 50/xs. Voltages at all the nodes in
the network in Fig. 17

Gear's 2nd Order

600

400

2001

! oi

-200

-400

-600

-800,

— 1 — — 1

' '\

1 1

/ ~

\ ' / 1

I ' \ ' ' /
/ 1 ' \

/i
/

V

V

1
I

\ ; \ if
\ 1 1 / 1

/
/

/
\

\ ii - - \
1 /

\ 1 i i 1

\ i i 1

-
i

10 15 20 25
millisec

30 35 40

Fig. 23: Gear's second order rule solution with At = 50/xs. Voltages at all the nodes
in the network in Fig. 17.

3. Integration Rules in OVNI 35

Fig. 24: Backward Euler's rule solution at an expanded integration step. At = 70 u-s.

4. DIGITAL SOLUTION, ELEMENT MODELS

4.1 Solution versus Simulation

In the context of this thesis, solution of a network is a one-time-point issue,1 and

simulation of the same network is an effort related to a sequence of time-points.

To solve an electric2 network is to establish by whatever means, empirical or

computational, the voltages in the nodes of the network, and the currents in the

branches between those nodes. In a work of the nature that occupies us here,

the method will be, of course, computational.

To simulate an electric network is to solve the network along a segment of

the time axis. This process, by force of the tools selected, is discrete3 in nature.

To simulate the network is then reduced to solving it at a certain convenient

number of points along the time interval of interest.

4.2 General purpose ODE-solvers

Once digital simulation is agreed upon (versus TNAs analog one), the process

becomes one of solving the differential equation set that represents the behaviour

of the network along the corresponding time interval. It is at this point where

a question arises naturally, whether a regular all-purpose differential-equation-

solver could do the job. After considering the tedious and error prone task

of putting together the tens, hundreds, or perhaps thousands, of equations,

1 The author is familiar with the standard use of 'solution' as applied to the closed form
time expression of voltages and currents in the network, when such a closed form analytical
expression is obtainable. In this work, however, solution stands for time-point solution, which
lends itself to the discrete-time nature of the process to be implemented.

2 In this report, no difference is made between electric and electronic circuits.
3 As opposed to continuous simulation, like the ones obtained with T N A s , analog simulators.

36.

r

4. Digital Solution, Element Models 37

and feed those equations to a differential-equation-solver, the answer begins to

outline itself. Furthermore, a minor modification in the network could imply

a major change in the set of equations. When, even after surmounting the

equation building difficulty, a generic DE-solution algorithm was put to the test,

simulation times obtained (even for moderate-size systems) fell well behind those

delivered by the EMTP, and abysmally far behind from the deadlines imposed

by real-time simulation under the bandwidth targeted. This result should come

as surprise to nobody, considering the task at hand.

sys-1
vWjirm_

FAUL1
250 km 150 km

BUS1

coupled

FAVL2

coupled M Q V

S I •f*
BUS3 BUS4

500 k V sys-2

BUSS

Fig. 25: A test case for relay testing.

As a sample of the performance aimed at, one of the benchmark test cases for

OVNI, the target network for protective relay tests, Fig. 25, represents solving a

set of forty differential equations coupled in forty unknown voltages, and doing

so in less that thirty microseconds4, a very demanding task indeed.

4.3 D i sc re t i z ing the Network , not the Equat ions

Granted the need for a completely new tool, one faces the sometimes formidable

job of putting together the set of coupled differential equations that describe

the electric network (same as for a generic DE-solver), and then discretizing

the equations through some convenient integration rule, according to what was

said in the last chapter. The inversion of those two steps, starting point of

OVNIs algorithm, was introduced by Prof. Dommel [3]. First, discretize each

4 To allow for the necessary hardware communication overhead.

4. Digital Solution, Element Models 38

element, or rather its voltage-current characteristic equation. Then, represent

the discretized v-i equation by a convenient array of resistors and sources. And

finally, assemble the network using those discrete-time models for each of the

original elements, see Fig. 26.

integration "discrete"
network

N E T W O R K E L E M E N T S
volt-curr.

characteristic
for the element.

discrete-time
(sources and R's).

Fig. 26: Discret izat ion process.

The resulting discretized network contains only resistances and sources, re

gardless of the original nature of the elements. Putting together the discretized

network, and building the corresponding network equations becomes an issue of

elegant simplicity.

The manner in which an element model is developed is outlined in the fol

lowing section for one element, as an example.

4.4 Discrete-time model for an Element [3]

The discussion [3] in this section (§ 4.4) belongs in an appendix, but, given

the flow of ideas in this discussion, it was included in-line with the rest of the

text for the convenience of the reader. To illustrate what was just said in the

previous section, let us consider an element, a linear inductor, Fig. 27a, and put

it through the process outlined above, Fig. 26.

The v-i equation for that inductor, relates the voltage across the inductor,

v(t), with the current through it, i(t), as in Eq. (17). Integrating both sides

of this last equation along the time interval between t — At and t, we obtain

4. Digital Solution, Element Models 39

V(t)

m—t—TYYs—z n

i(t)

Fig. 27: a) Lumped inductor, and b) its discrete time domain model corresponding to
the trapezoidal integration rule.

Eq. (18).

v(t) = Ld-M (17)

t

I
t

v(t)dt = L.i(t) -L-i(t- At) (18)
t-At

If a numeric integration rule, let us say backward Euler's, is used to approxi

mate the left hand side, and reorganizing the terms, the current in the inductor

at the end of the interval, i(t), appears as a function of the voltage across the

inductor at the same point in time, v(t), and the values corresponding to the

initial point of the time interval (t — At), that is, to the history of the inductor,

Eqs. (19) and (20)..

i(t) = ̂ -v{t)+i{t- At) (19)
E

i(t) = g • v(t) - h(t) (20)

But this last equation describes the current in the inductor as the sum of a

current proportional to the voltage in the inductor with a historic current, or

in circuit form, that the inductor behaves like a resistor with a conductance of

At/L in parallel to a current source, h(t), that depends on historic values: a

history source, Fig. 27. Granted the relative compactness of the discretization

and modelling process for the linear inductor, doing the same for some network

components have proved to be tasks challenging enough as to be the central

4. Digital Solution, Element Models 40

topic of doctoral theses in their own right [44]. OVNI is expected to grow that

way, along the years, but to furbish its two probing tasks of equipment testing

(protective relays and controllers for high-voltage-direct-current converters) a

basic set of streamlined discrete-time models was included, as reported in the

next sections, and in chapters 9, 10, and 11. Two groups of elements, lumped

and transmission lines, have been borrowed, adapted, streamlined and optimized

to take advantage of OVNI's architecture, from the ubiquitous EMTP, all other

elements have been developed specifically for OVNI.

4.5 Basic models in the prototype

Once the main tasks of the simulator are introduced in the next chapter, it

becomes evident, in the case illustrated in Fig. 25, that element models are re

sponsible for 14.7% of the total time of simulation. OVNIs core stands on its

Own, separate from the element models. However, to test the core for its benefits

and liabilities, it was necessary to furnish that core with a few basic element mod

els, namely: resistors, inductors, capacitors (both linear and non-linear ones),

single-phase and multi-phase transmission lines (both models differ significantly,

the first one is not a particular case ofthe latter), metal-oxide-varistors (MOV),

single-phase transformer units (including the modelling of their core saturation),

three-phase transformer units (with modelling of saturation produced by zero

sequence set of magnetomotive forces), HVDC rectifying modules and their cor

responding firing angle controllers, and switching operations5.

Given its final use, those basic models are streamlined and optimized in its

execution to deliver maximum performance. Implementation of those models

within the frame of high-pluggability6, for OVNI, is an issue in itself described

in detail in a later chapter.

5 Switching operations are an intrinsic function of the core.
6 The convenient removal of an obsolete model, and substitution with a better —more

accurate or faster— one.

4. Digital Solution, Element Models 41

4.5.1 O n N o t a t i o n

In what follows the element under study is connected between nodes k —initial

node— and m —final node—. Time advances in discrete steps of fixed and pre

determined size At. At the end ofthe current step, v(t) is the voltage across the

element and i(t) the current through it. The values v(t—At) and i(t — At) corre

spond to the end of the previous step (which are known, of course). The models

listed in the following sections correspond to the backward Euler's integration

rule. Expressions corresponding to the trapezoidal rule are obtained readily

applying its approximation to the integral on the left-hand side of Eq. (18).

4.5.2 L u m p e d Elements [3, 4]

The resistor is simply represented by a resistance between k and m. The lin

ear inductor and the linear capacitor are modelled by the equivalent circuit in

Fig. 27b. The parameters g (equivalent discrete conductance), and h(t) (history

current source) in that figure are given, for backward Euler rule, by Eqs. (21)

for the inductor.

At
9 L = T

hL(t) = -i(t-At) (21)

But from Fig. 27b, the history term h(t) can be written in terms of the

inductor voltage at the previous time step, as h(t) = h(t - At) - g -v(t - At).

For the capacitor, the same model in Fig. 27b is obtained, but with the

parameters given by Eqs. (22).

C
9 C = At

hc(t) = ^-v(t-At) (22)

From Fig. 27b and equations (21) and (22) it is seen that the behaviour of

the model depends on the element state at the previous step: its history, h(t).

4. Digital Solution, Element Models 42

The equivalent conductances corresponding to the trapezoidal rule are given

in Eq. (23).
At

9 L = 2L

9c = ft (23)

The history values corresponding to the trapezoidal rule of integration (rule

which is used in the DSDI procedure, to be introduced in chapter 7) were sim

plified by Martiin [45] as

hL(t) = hL(t - At) - 2gL • v{t - At) (24)

hcit) = 2gc-v(t- At) - hc{t - At) (25)

To update the history source value hs(t), with this simplified model, it is

only necessary to keep track of the previous value of the source hs(t — At), since

the voltage across the element is to be calculated at each time step anyway.

4.5.3 Transmiss ion Lines [3, 5]

Transmission lines and their models are at the centre of OVNI strategies to

exploit the network sparsity, as will be seen in chapter 5. Given the distributed

parameter characteristic of the power transmission line, modelling it is not as

straightforward as for lumped L and C elements. In what follows, it is assumed

that the line parameters are independent of frequency, a necessary compromise

between performance and accuracy adequate for a large number of applications

[46].

It will also be assumed that both inductance and capacitance are uniformly

distributed along the line [47]. The per metre values for those parameters are:

L, in H/m; C, in F/m. Shunt conductance is assumed negligible and series

resistance is treated as lumped into two loss-equivalent resistances at each end

of the line. Each of those resistances is equal to one half the total series resistance

of the line. If R, Vt/m, is the series resistance per metre of the line, and I the

4. Digital Solution, Element Models 43

m

k HT/2k-
-—tyvV-c

A A

/oss/ess line

vk

m T"1

 m

=—VA—:
m m

Fig. 28: Lumped losses in the transmission line model.

total length in metres, the total series resistance is RT = R • l- The previous

simplification leaves a lossless transmission line surrounded by two RT/2 resistors

as in Fig. 28.

4.5.3.1 Lossless Single Phase Transmission L ine M o d e l

Dommel demonstrated [3] that the single phase lossless transmission line in

Fig. 29 can be represented by the equivalent circuit in Fig. 30, where Zc = y/L/C

is the surge or characteristic impedance of the line, in f2. History sources hm(t)

and hk(t) depend on the voltage and current at the other end of the line r

seconds before [3] —r = / • VLC is the travelling time of the line, in seconds—

according to Eqs. (26). vm{t - T) . .
hk{t) = + im(t - T)

hm(t) = Vj^f^-+ ik(t - T) (26)

That is, the behaviour of this model depends on the state of the line r seconds

before: its history. This model remains applicable to lines whose length is such

that r > At. The model is exact, it does not depend on the selection of numeric

integration rule since none is used. A decision that affects the accuracy of this

model is that of the interpolation scheme for cases where r is not a multiple

of A i .

4. Digital Solution, Element Models 44

'k ^ lossless line 'm m

K m

Fig. 29: Single phase lossless transmission line.

Fig. 30: Single phase lossless transmission line model.

4.5.3.2 Lossy Single Phase Transmission L ine M o d e l

Combining the model in the previous section with the lumped resistances pro

posed in Fig. 28, one arrives at the model sketched in Fig. 31. If the history

current sources in Fig. 31 are transformed into equivalent voltage sources, the

circuit becomes the one shown in Fig. 32. The history voltage source is, for

node k

ek{t) = vm{t -r) + Zc- im(t - T) (27)

me k-
k—MA m- Rt/2

A M — m <-

Fig. 31: Lossy single phase transmission line.

4. Digital Solution, Element Models 45

Fig. 32: History voltage source equivalent circuit.

It depends upon the voltage of the fictitious node m'. To reduce the workload

of the simulator it is convenient to hide this node (as well as node k', on the

right side) inside the model. Voltage at ml can be written

/ R
v m (* ~ r) = vm(t ~T)~ — • lm(t - T)

Substituting Eq. (28) into Eq. (27) we finally obtain

R
e*(t) = vm(t - T) + Ze- im(t - T)

(28)

(29)

with an analogous expression for em(t). Converting the voltage sources back into

current sources, the complete lossy line equivalent circuit of Fig. 33 is obtained,

where the history current sources are given in terms of historic values of current

and voltage at the real nodes of the line according to Eq. (30) and Eq. (31).

'k 'm k 1 1 I 1 :—m «-—

Fig. 33: Lossy fine equivalent circuit.

hk(t)

hm(t)

~ tm[t r)+ ^

zc + %
1

Z + Ei-z/ c -r 2

vm{t - r)

vk{t - r)

(30)

(31)

4. Digital Solution, Element Models 46

4.5.3.3 Multi-phase transmission line

If the two ends of an n-phase transmission line are named k —the sending7

end— and m 8 —the receiving end—, the state of the line is given by two vectors

of voltages [vk(t)] and [um(*)] and two vectors of currents and [im(t)]. The

parameter characterization of this line includes two full matrices of size nxn, one

with the inductances per metre, in H/m, [L]; and another with the capacitances

per metre, in F/m, [C], [47].

If the phase quantities given by the four vectors in the previous paragraph

are transformed according to Wedepohl's [48] modal component transformation

(Eqs. (32)), two vectors of modal voltages [Vk(t)] and [V (̂t)] —one for each end

of the line— and two vectors of modal currents [Ik{t)\ and [im(t)] —same as

with the voltages— are obtained

where transformation matrices [S] and [Q]9 depend on the physical configuration

of the conductors in the line [48]. The modal transformation diagonalizes the

matrices [L] and [C], [49], into matrices [Ld] and [Cd].

Voltages and currents for each mode are related in the same way that voltages

and currents in the single-phase line are related [3, 48]. An equivalent circuit

can be established for each mode like the one in Fig. 34, where

Vki = voltage of mode i at sending end k.

Vmi = voltage of mode i at receiving end m.

7 The names sending end and receiving end have historical roots in times when power
networks used to be mostly radial.

8 Actually both k and m are vectors whose entries identify the individual nodes on each
end of the line.

9 In O V N I these matrices are determined in a preprocessing step (i.e., outside the real-time
loop) by M T - L I N E , part of the Microtran suite.

[Vm(t)}

lh(t)}

[Ut)\

[S\-lMt)]
[S\-l[Vm{t))

[QWikit)]

[Q)-l[im(t)]

(32)

4. Digital Solution, Element Models 47

177* * 1 1 / » „ , i 1 ™ <
'ki

vki
mi | | * /m/

ci
vmi

Fig. 34: Equivalent circuit for mode "i".

Iki = current of mode i at sending end k.

Imi = current of mode i at receiving end m.

ZCi = characteristic impedance for mode i.

Hki = history current source on sending end k for mode i.

Hmi — history current source on receiving end m for mode i.

In terms of and C ^ 1 0 , the characteristic impedance for mode i is

z« = Vl <33>
The speed of propagation for waves of mode i along the transmission line is

y/LdiCdi ^ ^

from which it follows that if / is the total length of the line, the travelling time

for mode i is

n = — = I • yjLdiCdi (35)

History current sources Hki and Hmi depend on modal current and modal

voltage at the other end of the line T* seconds before according to Eqs. (36) and

(37).

Hki(t) = V m i { t ~ T l) + Imi(t - n) (36)

Hmi(t) = V k i { t ~ T i) + Ut - n) (37)

1 0 The i-th element in transformed inductance and capacitance diagonal matrices [Ld] and

4. Digital Solution, Element Models 48

Equations (36) and (37) define the entries of two modal-history-source vec

tors, one for the sending end [Hk(t)] and another for the receiving end [Hm(t)].

These two vectors are transformed back to the time domain through the corre

sponding inverse transformation, two history current source vectors are obtained

for each phase —one for each end of the line—.

[M*)l = [Q][Hk(t)\ (38)

[hm(t)} = [Q][Hm(t)] (39)

Applying the same inverse transformation to the decoupled modal-characteristic-

conductance matrix

[Q? (40)

the full [g] matrix is obtained. Matrix [g] is the transmission line contribution11

to the network bus conductance matrix [G] in Eq. (45).

In the phase domain, the multiphase transmission line can be visualized by

the vector/matrix-parameter equivalent circuit in Fig. 35.

[g] = [Q]

l/Zcl 0 ••• 0

0 i / z c 2 . . . 0

0 0

Fig. 35: Multiphase transmission line model in phase-domain, [g] is a matrix, all the
other parameters are vectors.

At both ends of the line.

4. Digital Solution, Element Models 49

4.5.4 Single-phase non-linear core Transformer

A new simplified model for a single phase transformer with a non-linear mag
netic core whose characteristic has been piecewise linearized was prepared for
this project. This model does not consider the frequency dependency of the
transformer's characteristics like the one developed by Suthep and Marti [50],
whose incorporation into OVNI is part of an ongoing effort.

The complete description of this model is included in chapter 9, along with
that of the HVDC module created within the frame of this project as well.

4.5.5 Three-phase non-linear core Transformer

A combination of three single phase transformers modelled according to §4.5.4
provides the flexibility necessary to describe any connection group. In particular,
inside the HVDC module to be described in chapter 9, two groups are detailed,
namely YyO and Ydll . The three phase model is more than a conglomerate of
single phase models. It incorporates the effect of zero sequence flux linkages in
the magnetic circuit of three phase units.

The complete description of the saturation modelling, for positive, negative,
and zero sequence flux linkages, is postponed until chapter 11.

4.5.6 Switches

Along the simulation, some time steps bring more computational burden to the
simulator than others; namely, those steps when a topological change in the
network occurs. That is, when a switch or set of switches operates. Since all
steps need to be of the same length, it is the computationally longest step (CLS)
the one that defines the real-time bandwidth of the simulation. OVNI goes to
great lengths to reduce the size of that longest step, CLS.

For the solution method chosen, as described in chapter 5, the topology of
the network is described by certain matrices and either their inverses or their LU
decompositions. When a switching operation occurs, it is necessary to rebuild
and invert (or triangularize) those matrices, an expensive process.

4. Digital Solution, Element Models 50

Switches i n O V N I are represented in one of three different forms, depending

on the necessities of the simulation: as an ideal switch, wi th infinite impedance

when open and zero impedance when closed; as a low-high resistance branch; or

as a l ink between two M A T E sub-blocks (See chapter 5).

4.5.7 H V D C Modules

To allow for the fast-switching network modelling targeted in chapter 2, high

voltage direct current converters modules are included in O V N I .

gate firing signals
gate firing signals

6

. M

(b)

Fig. 36: OVNIs HVDC module: a) detailed view; b) block view.

To optimize the interaction between the rectifier or inverter group and the

integrator, the model targetted a six-valve module, F i g . 36. The module includes

the AC-s ide filters (11th and 13th harmonics [51]) , a three phase transformer

(including saturation modelling), six valves (thyristor groups) wi th their cor

responding R C snubbers (used to model physical snubbers, not to compensate

numerical issues), and a smoothing reactor. The description in detail of this

model developed for O V N I , is postponed unti l chapter 9.

4.5.8 HVDC-current-loop Controller

Even though the H V D C module model prepared for O V N I targets the testing of

H V D C controllers, during the design and test of the H V D C module itself (par

ticularly its commutation failure modelling features) the need for some minimal-

functionality controller became evident. A constant current loop, proportional

4. Digital Solution, Element Models 51

integrative controller was prepared and optimized, and its details are described

in chapter 10.

4.5.9 Metal Oxide Varistors (MOV)

In the series compensation modules included in the test case for protective relays

shown in Fig. 25, metal oxide varistors (MOV) are connected in parallel with

the series capacitors as a protection against overvoltages.

To represent the freezing effect of the voltage across the protected condenser

when that voltage reaches the knee value is accomplished by a computationally

very efficient tactic12: let us consider the capacitor's voltage current relationship,

which can be integrated on both sides along the time axis between the points

(t — At) and t, approximating the integral with backward Eulers Rule:

i(t) -At = C • v(t) -C -v{t- At) (42)

i(t) = ^t-v(t)-^-v(t-At) = g-v(t)-h(t) (43)

As was seen in a previous section, this last expression can be represented as

a circuit by the parallel of a resistor with conductance g, and a current source

h(t), whose value depends on the previous voltage of the capacitor, v(t — At),

Fig. 27b. Also, from Eq. (42), the voltage can be written as

v(t) = + v(t - At) = ^ + v(t - At) = f • i{t) + £ • h(t) (44)

This last expression implies the expected result that under a constant current

i(t) = K, the voltage grows linearly. It also implies that, still under constant

current, if one refrains from updating the history source, h(t), the voltage does

not change.

1 2 Backward Euler's rule is used in this section.

4. Digital Solution, Element Models 52

MOV
v(t) under constant current

knee
c

discretization

9

conditionally updated
history source

voltage clipping
effect

time

Fig. 37: Modelling the voltage clipping effect of the MOV.

The voltage clipping effect of MOVs is then simulated simply by checking the

voltage across the protected condenser, and, if the voltage has reached the knee-

value for the varistor, skip the updating of the corresponding history source.

If anything, the activation of the varistor will reduce the execution time of the

corresponding integration step, albeit by a minimal amount.

4.5.10 Measuring Transformers, ITs

It is not what happens in the network, but what the instrument transformers

make of it that determines the reaction either of the protective relay, of the

HVDC controller, or of any other monitoring device. Hence, it is essential to

model accurately the non-linear characteristics of those transformers.

Apart from the special case of ferroresonance, measuring transformers have

no impact on the solution of the power network [52]. It follows that the network

can (and is) solved apart from the current and voltage instrument transformers.

After that, the currents and voltages in the network are put through the men

tioned transformers-non-linear characteristics to obtain the output which will

be amplified for the monitoring or controlling devices to see.

At first, this decoupling between the network solution, and its instrument

transformers' suggested the possibility of modelling the IT's on separate pro

cessing units, perhaps DSP boards. However, given the impressive improvement

4. Digital Solution, Element Models 53

in processing speed provided by the hardware industry, and for the sake of sim

plicity and maintainability, it became evident the convenience of running the

IT's models not as special processes, but as integral parts of the main solution

mechanism.

Two non-linear models were created for this project, as reported in [53]. The

details of those models, one for current transformers, and another for potential

transformers and CCVTs, are detailed in chapter 8, in the part on new element

models developed during this project according to OVNI's guidelines for models

construction.

5. SEGMENTATION AND OVNI

5.1 In t roduc t ion

The solution adopted in this project is presented in stages. First, without con

sidering either node hiding, Topological Segmentation, or MATE's Segmentation.

Then Topological Segmentation, followed by MATE Segmentation, and finally

Node Hiding.

5.2 The Tasks of the Simulator

Once the original network has been conveniently discretized into a DC-resistive

network, as was seen in the previous chapter, the simulation proper begins. A

modified nodal analysis method [54] was selected as the framework on top of

which the solution algorithm proceeds. At each integration step five stages or

tasks can be identified, see Fig. 38.

1. Updating History and External Sources. Even if all sources in the dis

cretized network are DC during each integration step, most sources change

value from step to step. Some change according to an external rule, ex

ternal sources. Others obtain a new value that depends on the previous

history of voltages and currents in the elements whose models those sources

are part of, history sources, as was seen in the last chapter. It follows that

at each time step all sources need to be updated: external sources, accord

ing to their external rule, and history sources, by the elements themselves,

according to their own internal rules.

2. Accumulating Nodal Currents. As a first approximation, to simplify the

first description of the solution method, for the time being let us waive the

5"t

5. Segmentation and OVNI 55

acknowledge
swiching eventi (c)

solve for node
voltages (d)

output (e)

<J) < ^ " ^)

Fig. 38: Tasks in OVNI's simulation cycle.

two-layer segmentation scheme as well as the node hiding technique1. Also,

in this first discussion, let us assume that all voltage sources have been

transformed into equivalent current sources through multi-phase Thevenin's

to Norton's equivalents conversions. The next step toward the solution of

the network at this time step is to add up all the current sources into nodal

currents, in vector [ha] in Eq. (45), where a is the total of nodes in the

network. In what follows, subscripts indicate the dimensions of arrays.

[Goa] M = [ha] (45)

3. Handling Topology-Changing Events. The simulator acknowledges events

that produce changes in the topology of the network during the current

1 Both to be described later in this chapter.

5. Segmentation and OVNI 56

integration step and rebuilds the discretized network conductance matrix

[GQQ], according to switch positions and to the status of any other topology

changing device —diodes, thyristors, piecewise nonlinear elements.

4. Solving for Nodal Voltages. Finally, solve Eq. (45) for the nodal voltages

[va]. This step involves either the LU-decomposition or the inversion of

the [Gaa] matrix, and correspondingly, backward substitution or matrix

multiplication applied to the nodal current vector [ha\. The first part 2 can

be skipped in those integration steps where there is no topological change

detected in task (3) above.

5. Outputting Results. Make the requested voltages and currents available

for output at the corresponding data ports.

Submitting a first non-segmented implementation of the tasks listed above

to a profiler, and using test case RT-092, see Fig. 11, it was found that the

simulation step execution time was partitioned as follows:

• Updating history sources, 14.7 %.

• Accumulating Nodal Currents, 19.6 %.

• Updating Topology and Solving for nodal voltages, 65.8 %.

This partition of the execution time shows that tasks (3) and (4), updating

topology and solving for nodal voltages, are the ones taking the lion's share

(almost two thirds) out of the simulation loop time. In this work, a significant

effort has been expended to improve the performance of these two tasks, not

only from an algorithmic point of view but also at the implementation level. In

this context, and to alleviate the computational burden of those tasks of the

simulation3, let us now consider the precalculation of network matrices.

2 LU-decomposition, or matrix inversion.
3 A t the reduced price of moving much of that burden out to a preprocessing stage.

5. Segmentation and OVNI 57

5.3 P reca lcu la t ion of Network Matr ices

To free the simulator of the enormous burden of matrix rebuilding and trian-

gularization —or inversion— at every time step at which a topology change is

detected —tasks (3) and (4) in section 5.2 on page 54—, precalculation and

storing of matrices for every possible topology can be considered.

The promise of this option, however, hits the wall of feasibility in a way better

described by an example. Let us consider a 1000 node network that includes

1000 switches. The admittance matrix of this network, using double precision,

occupies
1000 x 1000 x 8 = 8,000, OOObytes,

that is, almost eight megabytes4 for a single topology matrix. Now, with 1000

switches, the network has as many as 2 1 0 0 0 possible topologies. If a matrix is

to be precalculated and stored for each one of those topologies, it will need

an amount of memory better described as follows: using high density DIMM

128 megabytes chips, at an average of 20 cm2 per 128 megabytes, the space it

occupies in an average Pentium II motherboard5, and also assuming that all

the surface of the Earth could be covered —oceans as well— with a single layer

of such chips, the total memory on the Earth surface6 would then be in the

order of 3.26 x 1019 megabytes. It would still be necessary to have 8.17 x 10301

megabytes, that is, 2.51 x 10282 Earth-sized planets so covered, to prestore every

possible topology matrix for the network in question. While the sparsity of those

matrices, as seen in section 5.5, reduces the necessary storage to about 0.4% of

the original value, we are still left in need of 1.00 x 10280 Earth-sized planets so

covered.

Even under the sobering indications shed by the previous discussion, and

to allow us to examine the prestorage possibility under a different light, it is

4 7.629 megabytes, since one megabyte is defined not as one million bytes, but as 2 2 0 =
1048576 bytes.

5 PCPartner VIB878DS Series.
6 Assuming that the Earth is a perfect sphere with radius equal to its equatorial and polar

average: 6367 km (according to the Random House Webster's Unabridged Dictionary, 1996.)

5. Segmentation and OVNI 58

convenient to introduce a metric, the complexity metric.

5.4 The C o m p l e x i t y Index, a metr ic

The computational effort of solving a network grows with the square of the

number of its nodes, a. The memory requirements incurred to reduce that

effort through precalculation of key network matrices grow with the power of

two raised to the number of switches in the network, o.

In this work, the complexity index of a network is introduced, and defined

for coupled networks7 as follows

(= 2 f f x a 2 (46)

For a network segmented into several decoupled subnetworks, the complexity

index is defined as the sum of the complexity indices of each of its n subnetworks,

each calculated as per Eq. (46).
71

(= 2 " x a | + 2 f J x ^ + - + 2"n x ^ = ^ 2 f f ' x aj (47)

In Eq. (47), i = 1, 2, 3, • - • , n identifies the corresponding decoupled sub

network.

5.5 Sparsi ty and the Solu t ion

In general, most nodes in a power electric network are terminal to no more than

three branches. This translates, for the discretized network, into a nodal analysis

admittance matrix with an average of four non-zero elements per row8. As one

considers larger networks (i.e, with a greater number of nodes) the sparsity of

the matrix, defined as the percentage of null elements in the admittance matrix,

grows. Using the first two sentences in this section as a guide, a network with

one thousand nodes would have a matrix with an occupancy (the complement

to 100 of sparsity) in the vicinity of

7 As opposed to networks consisting of several decoupled subnetworks.
8 Even for three phase coupled branches, the occupancy per row is still only in the vicinity

of five.

5. Segmentation and OVNI 59

number of nonnull elm
occupancy — x 100 =

total number of elm
1 0 0 0 X 4 =0.4% (48)

1000 x 1000

A very sparsely populated matrix indeed, with a sparsity of 99.6 %.

This enormous sparsity can be exploited to reduce the computational bur

den of the simulation, as well as the storage required, as described by Tinney

[55]. The EMTP applies this technique in solving power electric networks [4].

However, the convenience of this very efficient storing algorithm is curtailed, at

execution time, by an intense address-computation overhead. So, even with the

time savings provided by skipping operations involving null elements in the ma

trices, timings fall short of the real time deadlines associated with the targeted

bandwidth (as stated in a previous chapter). A different approach to exploiting

sparsity is used in this project as described in this chapter and the next one.

5.6 Divide et Impera. Segmentation

Roman general Julius Caesar, c. 100-44 B.C., advised divide et impera9. OVNI

follows this advice to the letter. From the complexity index c, defined in section

5.4, it follows that a smaller (one with fewer nodes) and simpler (one with fewer

switches) network can be solved more rapidly, and with a reduced allocation

of computational resources. Not a surprising result. To meet the desired real

time deadline, using a two-layer segmentation process, OVNI breaks the original

network into a set of smaller decoupled subnetworks, each one with fewer nodes

and switches than the original one. The exponential dependency of c on the

number of nodes a, and on the number of switches a, Eqs. (46) and (47), suggests

the advantage of such segmentation process.

A numerical example is in order. Consider the same 1000 node network with

9 Lat in for divide and rule, sometimes rendered instead as divide and conquer.

5. Segmentation and OVNI 60

1000 switches introduced in section 5.3. According to Eq. (46), the complexity

index of that network is

10002 x 2 1 0 0 0 = 1.07 x 10307

If such network could be broken into 3-node pieces with 3 switches each (332

of them plus a 4 nodes/4 switches one), the complexity index of the segmented

network would be, as per Eq. (47)

332 x 32 x 23 + 42 x 24 = 24160

The complexity index has come down by more than 300 orders of magnitude.

Prestoring the corresponding matrices in double precision (8 bytes per datum)

would require

24160 x 8 = 193280 bytes

That is, less than 190 kilobytes! Admittedly, this segmentation example

into 3-node subnetworks seems a bit forced, and optimistic, but it serves as

an indication of the benefits to be gained through segmentation, and to bring

precalculation back into the realm of feasibility. Besides, in the cases run to

validate the different aspects of this project, it became evident that in three

phase power networks many of the subnetworks obtained during the segmenta

tion process, to be described later, do have 3 nodes (a fact that is exploited in

the implementation).

Summarizing, segmentation reduces the size and the number of the matrices

to be considered in the solution. But the question remains, how to segment the

original power network?

5.7 T o p o l o g i c a l Segmenta t ion

Figure 39 shows a typical power electric system, with power generation plants,

load centres, and substations, all linked together by transmission lines. Electric

signals travel along a transmission line at a speed close to that of light, but even

at that speed, given the considerable length of these most visible parts of power

5. Segmentation and OVNI 61

Fig. 39: A typical power electric system.

networks (very often in the hundreds of kilometres), electric phenomena at one

end of a line does not reach the other end instantaneously.

As an approximate numerical example, let us consider a 300 km transmission

line; approximating the propagation velocity of signals on that line to the speed

of light (and using c = 3x 108 m/s)10, also neglecting the differences in velocity of

the different transmission modes as described by Eq. (35), one obtains the time

delay with which the line passes a signal from one end to the other, r = 1 ms, the

travelling time. But in our current bandwidth of interest, with integration steps

of fifty microseconds, one millisecond equates to some twenty steps. That is,

whatever happens in one of the areas in Fig. 39 linked by a 300 km transmission

line will not have any effect on the neighbouring areas until twenty computational

cycles later. Hence, the transmission line decouples the areas it links.

An alternative way of visualizing this decoupling introduced by transmission

1 0 Given the approximate nature of this example, no more accurate value was used for the
speed of light, c.

5. Segmentation and OVNI 62

Fig. 40: a) Simple single-phase power system; b) Discrete-time equivalent circuit for
system in (a).

lines in power electric networks, and the one that triggered the possibility in

the mind of the author, is to take a simple power network with one single phase

transmission line linking two areas as in Fig. 40a, and apply the discretization

process outlined in the previous chapter to it, Fig. 40b. The decoupling intro

duced by the line is evident in the discretized network, where the line's model

is effectively breaking the system into two blocks. In this work, block is defined

as each of the parts into which the transmission link topology breaks the power

network, see Fig. 41a.

This topological segmentation breaks the original problem implicit in tasks

(3) and (4) in section 5.2, into several smaller problems of the same shape

as that represented by Eq. (45). The sparsity of the network is exploited by

this segmentation scheme by the reorganization of the nodes according to the

topology boundaries defined by the transmission lines as illustrated in Fig. 41b.

It was observed that the size of those blocks ranges, for a typical power

network, between 3 —the majority of the blocks— and 12, in multiples of 3

5. Segmentation and OVNI 63

Fig. 41: a) Power network topology; b) Corresponding conductance matrix [G].

sys-1

(E~th\\ 3ph Th.
V _ / equivalent

250 km
FAUL1

coupled fault

150 km

BUSP FAUL2

8US2.

\
coupled

$US3

MUV

500 kV

100 km 3-phase
Tlieveninl
equivalei

sys-2

¥3
BUS5

BUS4
3-node block

3-node block

Fig. 42: Relay testing case with blocks identified.

nodes11. This simplifies the allocation of memory to the corresponding matrices

in a way where memory address calculations are minimized, as discussed in the

chapters dedicated to implementation details. For instance, the relay testing

case in Fig. 42 exhibits two 3-node blocks, one 6-node block, and one 9-node

block12.

5.8 T h e Need for Topological Independent Segmentation, forwarding

M A T E [6]

When one of the blocks introduced by topological segmentation in the previous

section grows past a critical size (defined by its number of nodes, branches, and

1 1 Considering only those nodes which are not terminal to any voltage source.
1 2 W i t h line protection interruptors closed. This issue is dealt with through M A T E segmen

tation, as discussed later in this thesis.

5. Segmentation and OVNI 64

\ 1 » l . c . flLCM

3 - p n a M Ttmunm a q u i v a l a n l

1 1

ft ft
\ 1 3 « n t e . S L C M

"I.
: 1

TTS
ft ft

ft

ft

Rfl

f fl

r j [M

fl

m. n s n r
Ov' i

Fig. 43: A partial view of an HVDC-controller test case with two topological blocks.

sources), as in the case of the HVDC-controller testing case depicted (partially)

in Fig. 43, the need for a segmentation scheme independent on the presence of

transmission lines becomes evident. The MATE concept (Multiarea Thevenin

Equivalents) introduced in [6] provides a framework for arbitrary system subdivi

sion along any convenient connecting branches. The concept has been extended

in this thesis to achieve maximum solution generality and maximum computa

tional efficiency.

Instead of presenting MATE, the multi-area Thevenin equivalent segmenta

tion concept in its extended form, an introductory simple numerical example

is described. In the next section MATE, in its basic form, is described more

rigorously. Finally, MATE's relationship to Classic Diakoptics is established.

In EMTP's original algorithm, ungrounded voltage sources were not in

cluded. To include an ungrounded voltage source (i.e., one not connected to

the reference or ground node) we can attach to it an unknown current, Ix, and

use the relationship between the voltages at the nodes of the source, as im

posed by the source itself, as an additional equation13 [54]. All of this, however,

expands the dimension of the problem.

1 3 Additional to the nodal equations themselves.

5. Segmentation and OVNI 65

block a) S i e m e n s ' r e f block b

Fig. 44: Circuit with an ungrounded voltage source.

Let us begin with the simple circuit in Fig. 44, with one ungrounded voltage

source. Including the current ix through the voltage source among the unknown

nodal voltages, va and Vb with respect to the reference node, the two nodal

equations plus the v-source equation are presented in matrix form in Eq. (49).

2 0

0 5

1 -1 0

Va
" 3 "

Vb 7

_ 4 _

(49)

If the voltage source were not present, the system would consist of two com

pletely decoupled blocks described by the upper-left partition of Eq. (49), as in

Eq. (50), where the first equation describes the left-hand decoupled block and

the second equation the right-hand one, blocks a and b in Fig. 44 respectively.

(50)

After multiplying the first row by the inverse of 2, and the second row by

the inverse of 5, the unitary matrix appearing on the left hand side delivers the

nodal voltages if the voltage source is not present. Let us call those voltages

Ea and Eb respectively, which are but the Thevenin voltages corresponding to

those nodes for each of the decoupled blocks.

2 0 Va
3

0 5 Vb 7

5. Segmentation and OVNI 66

Ea 3/2

7/5

If the same process of scaling each row is applied to the top two in the original

Eq. (49), and then the two first rows are used to nullify the coefficients of the

third row corresponding to nodal voltages, one obtains Eq. (51).

1 0 1/2

0 1 -1/5

0 0 -7/5

' 3/2

Vb = 7/5

. 3 9 / 5 .

(51)

From the equation represented by the last row, obtaining the current ix

through the voltage source linking the two otherwise decoupled blocks of the

network is simple enough. Once so obtained, ix can be used to complement

the Thevenin voltages of the nodes and produce the actual nodal voltages as in

Eq. (52):

[*«] (52)

But any arbitrarily chosen conductor can be considered as a null voltage

source. That source can be used both as a link that joins and as a boundary

that separates any two parts of the network. Such connecting branches are called

links in this work, and include, in general, a resistor Rx in series with a voltage

source Vx (either or both can be null), as in Fig. 45.

Va Ea 1/2"
U 1 =

3/2 1/2"

Vb Eb . _ 1 / 5 .
I ' x J —

7/5 . - 1 / 5 .

"from" node-

V

"to" node

Fig. 45: An OVNI's link.

5. Segmentation and OVNI 67

5.9 O n N o t a t i o n

Before continuing, let us agree on a few notational issues. In what follows, the

number of nodes in a network (or subnetwork) is a; also, nodes are identified in

the global network by the first few letters of the alphabet, ab c— The number

of links14 in the network is ip, and link branches are identified by the letters, j k

I....

Uppercase letters stand for known quantities, lowercase letters for unknown

ones. Magnitudes introduced by the segmentation process exhibit a curly hat.

Physical quantities present in the original network are written without a hat.

As for matrices and vectors, all vectors described are assumed to be column

vectors; i.e. a row vector is indicated as a transposed column vector. Vectors

display their dimension as a subscript. Matrices, also, carry their dimensions as

subscripts in the order row first, column last. When a matrix is transposed, its

subscripts change order.

As an example, [Yaa} is a known admittance matrix of dimensions corre

sponding to the total number of nodes in the network, a; as it has no hat,

is a known it corresponds to the original network. On the other hand, jz v

impedance matrix introduced by the segmentation process with dimensions cor

responding to the number of links in the network, ip. As a third example, [Cav]

is a connection matrix to be defined later, with a row for each node in the net

work, and a column for each link. The transposed of this last matrix is written

[C* a] . Observe that the subscripts are not part of the name of the matrix, but

merely an indication of its dimensions.

5.10 M u l t i - A r e a Thevenin Equivalent , M A T E

Once the segments into which the network is to be broken have been delineated,

Fig. 46a, the branches connecting those segments are labelled links by Marti

[6]. The result of the segmentation process can be seen in Fig. 46b, a cluster

1 4 Branches connecting the segments produced by M A T E , the Mult i -Area Thevenin
Equivalent.

5. Segmentation and OVNI 68

of subblocks15 connected by links. In that figure, the line between any two

subblocks, let us say A and B, represents possibly several links connecting some

nodes in subblock A to some nodes in subblock B.

Fig. 46: a) Network with M A T E ' S subblocks delineated; b) Subblocks connected by

links, after M A T E .

To solve any of the subblocks, let us say A, independently from the rest of

the network, we include all link current contributions, to the subblock's

own current sources [l£]. But the link current contributions, j^J, is related

to the link currents vector through a connection matrix [C£v] according to

Eq. (53) .

= K J [«J (53)

The connection matrix [C£v] has a row per each node in subblock A, and

a column for every link in the whole network. That is, each element of that

connection matrix relates a node in the subblock to a link in the network. That

element is zero if the link does not touch the corresponding node; it is +1 if

the link arrives in the node; it is -1 if the link leaves the node (To impose some

regularity of formation on matrices related to this segmentation process, the

author found it convenient to assign a direction to each link; a direction that

coincides with the link's assumed current direction).

1 5 In O N V I , M A T E segmentation is applied after topological segmentation, hence it is applied

to some (possibly all) of the blocks generated by topological segmentation. This is the reason

why M A T E segments are called subblocks.

5. Segmentation and OVNI 69

Now we can write modified nodal equations corresponding to subblock A 1 6 ,

as shown in Eq. (54) below.

[GL] M = [tf] + (54)

Putting together all the matrix equations of the form of Eq. (54), one for

each subblock, into a single matrix equation for the segmented network (hence

the hat on the corresponding conductance matrix, indicating that it is the

block-diagonal matrix corresponding to the segmented cluster produced by the

method, Fig. 46), one obtains Eq. (55) —written first in explicit form to illus

trate its block-diagonal nature, then in a more compact form, Eq. (56)—.

G otot

0
0

0
G?.

0
0 aa

0 GZ aa

yA
ua IA iA

V'a = IB + ~iB

IC ic

(55)

(56) [Va] = [Ia] + [Ta]

However, as the links contribution vector, [ia], is an unknown, it belongs in

the left hand side of the equation. Also, substituting Eq. (53), into Eq. (56)

after the vector [ia] has been moved to the left side, one obtains Eq. (57).

[va] - [Catp] [iv] = [Ia] (57)

The system in Eq. (57), however, has more unknowns (a 4- ip) than equations

(a). The <p additional necessary equations are provided by the ip links' voltages

relationships. For one of such links, represented in Fig. 47 including its voltage

source and resistance, the corresponding K V L 1 7 expression can be written as in

Eq. (58).

Vlink + Rx-ix = Vx

(58)

(59)

A.

1 6 In Eq . (5 4) , which applies only to subblock A, a is the total number of nodes in subblock

1 7 Kirchoff's voltage law.

5. Segmentation and OVNI 70

IX

"from".
Rx V x

•Wr-0-
Vlink

"to'

Fig. 47: A link's voltage source and resistance, and the directions assumed positive
for current and voltages.

The set of all the links equations, of the form of Eq. (59), can be rewritten

in matrix form as:

KJ + [KP] K] = [Vv] (60)

The vector of link voltages K] can be related to the nodal voltages [va] by

the connection matrix [B^] according to Eq. (61), below.

V<P. — [B(pa. Va, (61)

Each element of that matrix relates a node (indicated by the column index)

of the network to a link (identified by the row index) as follows:

• the element is zero if the corresponding link is not connected to the node;

• the element is +1 if the link arrives in the node;

• the element is -1 if the link leaves the node.

In short, this matrix is nothing but the transposed [Cav>]:

(62)

Applying Eq. (62) to Eq. (60) we arrive at the <p additional equations in

Eq. (63), where

tances.

R, is a diagonal matrix with the corresponding links resis-

R J KJ + [£ J K] = [vv] (63)

5. Segmentation and OVNI 71

Equations (57) and (63) comprise the complete set of necessary equations to

solve for the unknowns:

R<ptp
(64)

aa 0 0

0 CB

aa
0

0 0 nc
aa

r~>At
^<pa

nBt
^tpa

fCt
^ipa

IA

IB
xa

IC
(65)

As l ^ a a j is block diagonal, its inverse is also block diagonal with Homer

Brown's bus impedance matrices [15] occupying the space formerly used by the

subblock; i.e.,

[ZL] = [GL]'1 (66)
Premultiplying each subblock's nodal equations by its bus impedance matrix,

given by Eq. (66), we obtain

zL o 0 0 ' aa 0 0

o z*. 0 0
<

0 CB 0 -CB

0 0 7C

aa 0 0 0 Cc

0 0 0 1
1

r*At r*Bt
^<pa

r<ct

VA ' IA'
>

IB

\ /

1{p
4

UA

^ aa
0 o

0 UB

^aa
0

0 0 uc

riBt
u

V a
ret
^Va

_ y A r*A
^aa^atp

_7fl f<B
aar^aip

_yC f<C
^aa^ay)

R, VP

yA rA

7B TB

aa a

z£„lS!

(67)

(68)

In Eq. (68), [UA

a] is the unitary matrix with dimensions equal to the number

of nodes in subblock A. Each of the first three rows in Eq. (68) can be written

as in Eq. (69) below, which shows that if there were actually no links with other

5. Segmentation and OVNI 72

Fig. 48: MATE'S Thevenin equivalent rendering for each of the subblocks. Nodes a b
c d represent docking ones.

subblocks18, the voltages of the nodes in subblock A would be given simply by

the product [ZA

a.IA]. Thus we conclude that this product is nothing other than

the Thevenin voltages of the subblock's nodes, Eq. (70). This last discussion also

implies that the elements in the product [ZA

aCA

v] are the subblock's Thevenin

impedances as seen by the network's links, as in Eq. (71). In summary, we have

K] = KVal + [**] (69)

[E^] = [ZA

aIA] (70)

= [ZLCtp] (71)

The network nodal voltages can then be written as

[va] = [E*] + [ZS,] [i*] (72)

On the other hand, the last row in Eq. (68), after a manipulation that will

be used explicitly in the section on node hiding, can be simplified to:

M = [vv - CJXI (73)

[Vi = [Vv ~ C^E*] (74)

That is, if iv = 0.

5. Segmentation and OVNI 73

The solution of this last smaller system of equations yields the <p link currents,

[ip], that, once substituted into Eq. (72), produce the corrected nodal voltages,

[va]. The matrix Zvv will be the object of further study later in this thesis.

In the next two sections, the relationship between MATE and Kron's Diakop-

tics is discussed, along with a comment on the compensation method. Let us now

meet the imagery behind the equations, as generated by MATE: Equation (72)

depicts each subblock as a multisource Thevenin equivalent with as many self

resistances as there are docking-nodes19 in the subblock, and a Thevenin mutual

coupling stage, as in Fig. 48.

5.11 M A T E and Diakopt ics [7, 8]

It was at a point well into the process of developing OVNI that the connec

tion between MATE and Kron's Diakoptics became clear, after a comment by

Dr. Dommel triggered several weeks of bibliographical research through the work

of Kron; using both Kron's [7] own original tensor analysis on the subject, and

Brumeller's [8] exploitations on Kron's work. The result of those weeks of work

is summarized in this section.

Kron takes the original network and separates it into an equivalent network

and a removed network. Then he reasons that if current sources are applied

to the equivalent network, sources that inject into it the very same currents

that were fed before by what is now the removed network, and —at the same

time— the removed network is excited by voltage sources that apply to it the

same voltages that appeared in it when it was part of the whole original network;

then all voltages and currents in the two new networks (equivalent and removed)

will be the same they were in the original one.

Using tensor analysis, Kron arrived indeed at equations equivalent to Eqs. (57)

and (63) 2 0 obtained in the previous section, which are known as the Diakoptics

1 9 Nodes to which links axe connected
2 0 W i t h Vv = 0, since Kron does not consider voltage sources in the removed network but

for the ones applied to it to compensate for its removal from the rest of the network.

5. Segmentation and OVNI 74

fundamental equations21, minus the Thevenin equivalent interpretation, and mi

nus the extensions to be described in chapter 6, both of which smooth out the

implementation of the segmentation process.

5.12 M A T E and the Compensation Method

When MATE is applied to isolate a nonlinear element from the linear part of

the network, and using connecting links with no resistance or voltage source, we

obtain the EMTP compensation method [4].

5.13 Node Hiding and Element Models

During tasks (3) and (4) described in Sec. 5.2, OVNI solves a form of Eq. (45) for

the nodal voltages of the network. If some of those nodes could be hidden away

from the integrator, OVNI, the latter's task would be a simpler and faster one.

At some point a solution for those hidden nodes will be necessary. However, if

the solution for the hidden nodes could be assigned to code written specifically

for the topology and characteristics of the region comprising these nodes, two

gains would be obtained: the hiding is in itself a form of segmentation with

the advantages seen in Sec. 5.6; and the customized code would bring increased

efficiency.

But customized code sounds like anathema in a work set to achieve a gen

eral purpose simulator. This does not need to be so. The models for system

elements22 include more often than not many nodes, a few of which are connec

tion nodes to other elements in the network, physical or externa] nodes23, the

rest having been introduced by the modelling process, model or internal nodes2i,

see Fig. 49. The element model is a region of the network with known topology

and characteristics for which customized code can be written, and the internal

nodes are good candidates to be hidden away from the main network solver,

2 1 Actually, a complimentary form of the Diakoptics fundamental equations, since the origi
nal ones relate to loop currents method, and not to nodal analysis, as noted by Brumeller.

2 2 See section 4.5.3.3 on page 46 for the multi-phase transmission line model, as an example.
2 3 Also called nodes type a, or simply a-nodes, in this work.
2 4 Also, b nodes.

5. Segmentation and OVNI 75

Fig-. 49: Node Hiding: Internal nodes and external nodes.

OVNI. But the hidden nodes have to have some impact on the network, that

impact is studied in what follows.

For a particular hidden-node region, let us identify the external node quan

tities by the subscript a, and the internal node quantities by the subscript b.

The voltages25 of the external nodes of the region are in the vector [va] and the

corresponding nodal currents26 in [ha]. For the internal nodes, voltages are

and currents [/i0]. Nodal equations can be written for all those nodes:

Gaa Gab

Gba Gbb

Now, for a moment, let us assume that the voltages of the external nodes are

known (they are calculated by the integrator core, OVNI, and passed as data

down to the hiding region code). From the second matrix equation in Eq. (75),

h] = [Gbb]-1
 ([h] - [Gba}[Va}) (76)

This means that if the total current contributions to internal nodes, [fib], are

known, the hidden-node region can use Eq. (76) to determine, from the given

and known value of [va] the voltages of the internal nodes, [t/0]. Equation (76)

2 5 W i t h respect to the reference node.
2 6 Before hiding some of the nodes.

Va ha

Vb hb
(75)

5. Segmentation and OVNI 76

can be custom coded for the region (the element model).

Let us now write the equation for the external nodes implicit in Eq. (75),

[Gaa] [Va] + [Gab] [vb] = [ha] (77)

Substituting the expression for internal nodes voltages in Eq. (76) into Eq. (77),

[Gaa] [va] + [Gab] [Gbb]~l [hb] - [Gab] [Gbb]-X [Gba] [va] = [ha] (78)

([Gaa] - [Gab] [G^]-1 [Gba]) [va] = [ha] - [Gab] [Gw]"1 [hb] (79)

This means that the hidden-node region contribution to the external network

conductance matrix is the modified matrix in Eq. (80) with dimension equal to

the number of external nodes, a.

[Gh

aa

dden] = {{Gaa} - [Gab] [Gbb]-1 [Gba]) (80)

From Eq. (79), the hiding of the nodes modifies the current contribution

from the hiding zone into the external nodes according to

[hh

a

idden] = [ha] - [Gab] [G,*}-1 [hb] (81)

Summarizing, the contribution of the region to the general network is:

[Gh

aa

dden] [va] = Kidden] (82)

As the general network solver, the integrator knows nothing about hidden

nodes. Managing the matrices defined by Eqs. (80) and (81) is the sole task

of the subregion's code, customized and optimized. At each time step, OVNI

solves for all external nodes in the network, through topological and MATE

segmentation schemes, according to the combined implementation described in

the next chapter. Then, those external nodes voltages are passed down to the

hidden-node regions (element models), which use Eq. (76) to obtain the internal

nodes voltages, necessary to update the region's history sources. Next, the re

gion updates all its sources, independent and history ones, and accumulates the

corresponding contributions to internal and to external nodes into [hb] and [ha]

5. Segmentation and OVNI 77

respectively. Before releasing the contribution of the region to OVNI, the region

corrects [ha] as in Eq. (81). Finally, the subregion checks for any internal topo

logical changes (switching) and produces and passes to OVNI the corresponding

[G^ r f d e n] matrix. Given the reduced size of a hidden-node region, it is likely

to include a small number of switches, which implies a few possible topologies,

with a few possible reduced matrices [G^ 6 "] • This means that all those matri

ces can be precalculated and prestored before the actual simulation begins with

enormous gains in speed, and only a minor penalty in memory usage.

As an example of how element models can take advantage of node hiding to

improve the overall performance of the simulator, part of the work described in

this thesis included the implementation of an HVDC module model according to

the guidelines described above. The resulting model and its implementation in

OVNI are described in Chapter 6. To test the mentioned model it was necessary

to create a basic firing-angle controller, which is described in Chapter 7.

The manipulation described in Eqs. (75) to (79), but only for equation sys

tems where the equations to be eliminated have a zero right hand side, was

introduced by G. Kron [7]. In this sense the reduction described in this section

is a generalization of Kron's Reduction and such is the name used for it hence

forth, Generalized Kron's Reduction. The concept of node hiding is also used

in other modelling approaches where the internal structure of the element is

reduced down to its external nodes. For example, Marti's frequency dependent

transmission line model [44], or the Ward Equivalent technique used in stability

analysis [56]. The Node Hiding concept as presented here, however, does not

have the limitations of the Ward Equivalent described in [56].

5.14 N o d e H i d i n g . A numerical example

At this point, in order to clarify and settle ideas, a numerical example of the

node hiding technique seems convenient. Consider the 4-node circuit in Fig. 50

(where all values are either amperes or Siemens, as appropriate). To validate

the solution obtained through node hiding, let us first solve the network with

5. Segmentation and OVNI 78

reference
hidingregion <

Fig. 50: Complete network with the node hiding region delineated. External nodes:
(1) and (2). Internal nodes: (3) and (4).

standard nodal analysis. The equations for the complete system are:

6 -1 -1 -2 ' Vl 3 "

-1 5 -2 0 V2 10

-1 -2 4 -1 2

-2 0 -1 4 0

(83)

And the solution of this system defines the nodal voltages

2.479

V2 3.948

V3 3.630

2.147

(84)

Let us now use node hiding instead. In Fig. 51, the subnetwork chosen to be

the hidden-node region (presumably an element's model) has its external and

internal nodes clearly identified.

In Fig. 52, the hidden-node region is represented as a black-box to emphasize

the opacity of the zone as seen by the simulator, who is in charge of the external

(and reduced) network, as seen in this figure. The contribution to the external

nodes relayed from currents fed into internal nodes of the hiding region is, as

5. Segmentation and OVNI 79

reference' . reference
'„ hiding region

Fig. 51: Hiding zone: an element's model. See external nodes (1) and (2), and internal
nodes (3) and (4).

hiding region

Fig. 52: "External" network, as seen by OVNI, with hidding region represented as a
"black-box".

per Eq. (81),

^relayed -1 -2 4 -1
- l

2 0.8
Relayed -2 0 -1 4 0 1.066...

amps (85)

The external network, minus the hidden-node region (HR), has two nodes:

(1) and (2), and the conductance matrix (also minus HR):

3 -1

-1 3
[Gex] — (86)

5. Segmentation and OVNI 80

The hidden-node region contributes the matrix [GHR] t o t n e external sys

tem. This matrix is computed at a preprocessing stage from the hiding region's

"whole" matrix (the one that describes HR with all its nodes, and not connected

to the outside world):

3 0 ! -1 -1

[GHR] —

From Eq. (80),

[GHR] —
3 0

0 2

-1 -2

-2 0

0 2 -2 0

-1 -2 4 -1

-2 0 -1 4

4 -1
- l

-1 -2 .1.4
-1 4 -2 0 -0.8

(87)

0.93
(88)

The total external network is represented by the sum of [GEX] and [GHR]'-

[G] =
4.4 -1.8

-1.8 3.9333
(89)

Current contribution from HR is given by Eq. (81):

0 0.8 0.8
+ =

5 1.06666 6.06666
[h-HR] =

The external solver receives Eq. (90) results and solves

(90)

4.4 -1.8 Vl 3 0.8 Vl

= + -1.8 3.933 V2 5 6.0666
(91)

The external solver "sees" only Eq. (91), and computes:

«i = 2.479 V

v2 = 3.948 V
(92)

5. Segmentation and OVNI 81

Which are the same results obtained in Eq. (84) from the standard solution.

At this point HR takes those values in Eq. (92) provided by the simulator and

uses Eq. (76) to find its internal node voltages:

3̂ 4 -1 "7 2 -1 -2 2.479) . 2.630

U 4 -1 4 [0 -2 0 3.948) ' 2.147
(93)

All tasks in Eqs. (88, 90, and 93) are under the charge of HR, leaving the

simulator's core the much lighter burden of solving Eq. (91). When HR is an

element model, its topology is of predictable and limited change nature, ergo its

matrices and operations in Eqs. (88, 90, and 93) can be greatly optimized. This

will be examined further in chapter 9.

6. SOURCES, LINKS AND EXPANDED M A T E

6.1 In t roduct ion

Two main issues of the solution are described in this chapter: the representation

of current and voltage sources in OVNI; and an extension of MATE to handle

more efficiently ungrounded voltage sources that are not part of a link. In this

sense, this chapter deals with the first task of the simulator, as seen in Sec. 5.2

6.2 Preca lcu la t ion of Source Values

Sources in OVNI fall into one of these categories:

• DC sources,

• Time-periodic sources1.

For the second category, periodic sources, determination of their values at

each time step requires some computational effort (from a minimum of time-

boundary testing, in the case of a square wave, up to the expensive and sophis

ticated numerical involvement of a sine wave2)

To reduce the impact of source updating, source values are calculated and

stored in tables before the simulation begins. Those tables are made available

to the integrator during the simulation.

The first attempt to do this was to use one cycle of the source's signal. To

represent one cycle of a periodic source with a period of T seconds, see Fig. 53,

1 Sinusoidal, sawtooth, square wave, triangular sources, etc.
2 On a Pentium II, a sine computation takes the numerical coprocessing subblock of the

C P U up to 30 times that of a sum's [57].

82.

6. Sources, Links and Expanded MATE 83

value
(AA/)

time axis

^ \ n-th
sample

Fig. 53: The n prestored samples of a sinusoidal source.

in a simulation with an integration step At, n samples are necessary, as given

by Eq. (94), where "int" is the integer part function.

This simplification, however, brings the problem of sample mismatch at the

end of the cycle in cases where the integration step is not a divisor of the source's

period. Observe sample n in Fig. 54, the last one of the source's prestored

samples (if only one-cycle of the source is so treated). At the next integration

step, identified in that figure as n+l, the integrator expects the correct value

for the source, Kij/u- Instead, the table index wraps around and produces the

value labelled Vwr(mg in the figure.

The sampling mismatch is effectively reducing the frequency of the source's

wave, and introducing higher frequency components. In short, this method

distorts the signal of the represented source.

The reduction in the source's effective frequency, in percentage, is given by

Eq. (95), where n is the number of prestored samples as calculated by Eq. (94).

(94)

(95)

6. Sources, Links and Expanded MATE 84

value
(AA/)

right

/ wrong

time axis

Fig. 54: Wraparound of prestored source's samples.

In a simulation with At — 50/iS, a 60 Hz source is represented by its n = 334

samples. Its frequency decreases 0.2% in the process, down to 59.88 Hz. At

this rate, in only ten cycles of simulation, the source's phase lags 7.2°. The

additional distortion implied by the introduction of high frequency components

is of relatively little consequence, being very small to begin with, and further

damped by the frequency response characteristics of the integration rule used in

the solution process, see § 3.4.

To avoid the mismatch discussed above, the preprocessor in OVNI prestores

in the source's table, not the number of samples that fit into one source cycle,

but the number of samples n that fit in the least common multiple (LCM) of

the source's period T, and the dominant integration step At, Eq. (96)

Where, to make a valid use of the integer function "1cm", both T and At are

truncated to microseconds with no fractional part.

For instance, in the case of A i = 50/us, and a source frequency of 60 hertz,

the preprocessor should store 1000 samples, and not just 334. That is, in this

case it takes three source's cycles to resynchronize the precalculated table with

the simulation discrete samples stream. But that table, in double precision

n =
lcm(r, Ai)

A i
+ 1 (96)

6. Sources, Links and Expanded MATE 85

IEEE format, occupies more than 64 kilobytes. If the source is an odd one,

with a frequency different from the rated frequency, Eq. (96) can be used. If,

instead, the source is just one of many with that frequency in the network under

simulation, it may be considered to change instead the integration step At up

or down to the nearest divisor of the period associated with that frequency,

Eq. (97).

&tadj = (97)
i n t (zb)

For the same case introduced in the last paragraph, and using Eq. (97), an

adjusted integration step could be calculated as Atadj — 50.048 or 49.898/is.

Using this adjusted integration step reduces the number of necessary samples

per source (to only 334 in the example that occupies us; i.e., in double precision,

slightly more than two and a half kilobytes worth of memory). This is all

accomplished without a significant change in the bandwidth of the simulation.

also
source _ current source
node

"from" f J\ 'to' node V y / 7 o o t e \ ^ ^ a /

drain
node

Fig. 55: A current source in OVNI: its nodes.

6.3 Current Sources

The simulator uses a variant of nodal analysis to solve each one of the fragments

into which the network has been broken by the multi-layer segmentation process

described in sections 5.7 and 5.10. Nodal analysis accounts for current sources

in a natural way, their values are computed at each time step, and those val

ues are duly accumulated into the corresponding nodal current vector —[ha] in

Eq. (45)— at the proper time.

The two nodes of a current source are identified, in this work, as the drain

6. Sources, Links and Expanded MATE 86

node and the source node, according to Fig. 55.

6.4 Voltage Sources

In this work, voltage sources were the original motivation to explore Ho's mod

ified nodal analysis [54]. Later, in the light of MATE, new possibilities entered

the picture. However, given the strict speed requirements on the simulator, ad

ditional options were explored and implemented. In OVNI different3 internal

representations of voltage sources are used depending on the answer to these

few questions:

• Is the current in that source needed?

• Is one of the nodes of the source connected to the ground or reference

node? That is, the source is grounded.

• Is the source part of a user-defined MATE boundary?

In the next few sections, the different options used are introduced.

6.4.1 Grounded Voltage Sources — G V S

Inclusion of a voltage source in MATE'S solving scheme, § 5.2, creates a new

link4 equation and its corresponding unknown current. Inclusion of a voltage

source in Ho's modified nodal analysis [54] introduces the current in the source

as an additional unknown, along with the corresponding equation. In short,

a voltage source inclusion in OVNI's solution scheme seen so far expands the

system of equations by one more row and one extra column. In exchange for the

additional work the method delivers the current (and implicitly, the power too)

for that voltage source. That is true even for grounded voltage sources (GVS)5

3 All of this remains transparent to the user.
4 Granting that the source is part of a segmenting user-defined boundary.
5 A source connected between ground —or the reference node— and a certain node that is

called here the GVS node or, more often, the &-node —k as in fcnown.

6. Sources, Links and Expanded MATE 87

/ 2 3

#ofGVS
in subblock

#nonGVS
nodes in subblock

* /
[n „ J
* nortorr

1 2 3

Fig. 56: Precalculated t ime matrices corresponding to grounded voltage sources i n a
subblock.

However, MATE's equations are redundant in the case of a GVS, since they

imply calculation of the voltage of every node in the subblock, including the

ungrounded nodes of GVS's; and the voltages of GVS-nodes are already known.

So, in cases where neither current nor power in a GVS is needed, a different

and more efficient path of computation is taken.

First, we order the nodes in the subblock in such a way that all the nodes

which are terminal to GVS's6 occupy the last k positions among the subblock's

nodes. The other nodes in the subblock occupy the first u positions7.

Nodal equations can be written for the subblock as

Guu Guk vu hu

Gku Gkk Vk hk
(98)

As Vk, the voltage vector of the GVS nodes with respect to the reference

node, is known, the first row of Eq. (98) can be written

[Guu][vu] + [Guk}[vk] = [K]

[Guu][vu\ = [hu] - [Guk}[vk] (99)

6 Labelled by O V N I known nodes or A>nodes
7 Named by O V N I unknown nodes or u-nodes)

6. Sources, Links and Expanded MATE 88

The product on the far right in Eq. (99) is the vector of Norton equivalent

current sources corresponding to the k GVS in the subblock, feeding the u non-

GVS nodes, [hnorton].

Vectors [vk] and [hnortcm] = [Gufc][i;fc] are both precalculated and stored as

matrices. The [ufc]'s precalculated matrix has as many rows as there are GVS

nodes in the subblock, k. [/wtonj's precalculated matrix has one row per non-

GVS node in the subblock, u. Both matrices have as many columns as the least

common multiple8, n, of the numbers ni, n 2 , . . . , of prestored samples for each

GVS in the subblock. See Fig. 56.

n = lcm(ni,n 2 ,n 3 , . . . ,nk) (100)

6.4.2 A n example on Grounded Sources, M A T E versus N o r t o n

To contrast the efficiency of the approach in § 6.4.1, when compared with MATE

solution for grounded sources, a simple numerical example is included in this

section.

In the simple network with one grounded voltage source, GVS, shown in Fig.

57, both solutions are compared.

subblock A ground subblock B

Fig. 57: Network with one grounded voltage source accounted for as a link.

First, let us solve the problem considering that every voltage source in the

network is a MATE link. This assumption produces the two subblocks outlined

8 To avoid voltage distortion due to sample/step mismatch, as was seen in section 6.2

6. Sources, Links and Expanded MATE 89

in Fig. 57, where subblock A is linked to ground by the 2V source/link and to

subblock B. by the 3V source/link.

The modified nodal analysis equations, reorganized according to MATE in

put requirements are in Eq. (101), where the first two rows correspond to sub-

block A, the next two rows to subblock B, and the last two rows to the links x

and y.

7 -3 0 0 1 0 0

-3 3 0 0 0 1 v2
0

0 0 11 -6 -1 0 4

0 0 -6 13 0 0 u4 -9

1 0 -1 0 0 0 3

0 1 0 0 0 0 Xy 2

(101)

Manipulating Eq. (101) according to MATE, § 5.10, produces

1 0 0 0 0.2500 0.2500 Vl 0

0 1 0 0 0.2500 0.5833 V2 0

0 0 1 0 -0.1215 0 V3 -0.0187

0 0 0 1 -0.0561 0 U 4 -0.7009

0 0 0 0 -0.3715 -0.2500 2.9813

0 0 0 0 -0.2500 -0.5833 ly 2

The last two rows in Eq. (102) are MATE'S link equations that, once solved,

yield the currents in the two links

ix = -8.0354A iy = 0.0152A

These link currents, inserted into the Thevenin equations represented by the

four first rows of Eq. (102) result in the node voltages

ui = 2.00517 u2 = 2.00007

u3 = -0.99497 u4 = -1.15157

6. Sources, Links and Expanded MATE 90

Now, if instead of making a link out of the grounded voltage source, subblock

A absorbs and transforms it according to § 6.4.1 —the subblock's nodal current

vector is null, since it is computed with the subblock disconnected from the rest

of the network and there are no current sources in this subblock—.

7 -3 0

-3 3 2 0
(103)

This is the same as Eq. (98), from which the simplification in Eq. (99) is

[7][fi] = [0] - [-3][2] (104)

With this simplification of subblock A, Eq. (101) is reduced to

7 0 0 1 6

0 11 -6 -1 vz 4

0 -6 13 0 -9

0 0 0 0 lx 3

(105)

Thus the MATE equation in Eq. (102) becomes Eq. (106), where the link

system of equations has been reduced in dimension.

1 0 0 0.1429 0.8571

0 1 0 -0.1215 Vz -0.0187

0 0 1 -0.0561 -0.7009

0 0 0 -0.2644
-

2.1242

This MATE system produces the same results reported above, minus the

current through the grounded voltage source, but with fewer operations than

were necessary to solve the original system in Eq. (102).

6.4.3 Ungrounded Voltage Sources, U V S

When an ungrounded voltage source occurs in a branch designated by the user

as a MATE segmentation boundary (i.e., as a link branch), Fig. 58, the solution

for the source falls in line with the basic MATE algorithm, as seen in § 5.10 on

page 67.

6. Sources, Links and Expanded MATE 91

ungrounded
not-a-link

ungrounded
a-link

O—1—W^~0—i—VA

subblock A subblock B

Fig. 58: Ungrounded voltage sources in OVNI: a) a link; b) not a link.

If the ungrounded source, however, is not within a link branch, Fig. 58, its

solution falls with the Extended MATE algorithm, seen in § 6.5 on page 92.

6.4.4 Voltage Sources "Ownership"

In a network that has been broken, first into blocks (topological segmentation,

§ 5.7), then into subblocks (MATE segmentation, § 5.10), the issue of where

voltage sources belong is not trivial. From what was said in § 6.4.1 and § 6.4.3,

the dealing with voltage sources belongs with the solution of a block or of a

subblock, as follows:

• Grounded Voltage Sources (GVS) belong inside the corresponding sub-

block, which is the responsible for including them in the solution.

• Ungrounded Voltage Sources (UVS) Two cases:

— Link Sources (ULS). In the case when the source is part of a MATE's

user defined boundary, the source is dealt with as one of MATE's

links and handled directly by the enclosing block.

- Non-link Sources (UNLS). In the case when the source is not part

of a MATE's user defined boundary, the source, obviously, belongs

inside a subblock, and it is solved for inside that subblock.

6. Sources, Links and Expanded MATE 92

Voltage sources
grounded —

ungrounded

in subblock.
link
not link

in block,
in subblock.

Fig-. 59: Voltage sources "ownership", in OVNI.

Figure 59 summarizes this section.

6.5 Extended M A T E

Before the need for an extension to MATE is established, let us begin by revis

iting its imagery. In this section, the subscript convention introduced in § 5.9 to

indicate a matrix or vector dimensions is not used; subscripts to matrices and

vectors indicate the subblock they belong to.

Fig. 60: KCL nodal equations and KVL voltage sources equations, getting ready for
standard MATE.

Consider a topological block that has been segmented into two subblocks by

a set of MATE'S links. The block's nodal K C L 9 equations plus its links K V L 1 0

can be represented pictorically as in Fig. 60. A subblock A is in search of its

nodal voltages [va], and is described by

• its bus admittance matrix [Ya],

• its nodal currents vector [ha],

9 Kirchoff's Currents Law.
1 0 Kirchoff's Voltages Law.

6. Sources, Links and Expanded MATE 93

• and its connection matrix [Ctt].

The block works to determine its links currents [ix]. The links themselves are

described by

• the links resistance matrix11 [Rx], and

• the links voltage sources vector [Vx].

After a preprocessing stage outlined by chapter the subblock A is described

by its bus impedance matrix [ZA] (the inverse of [Vo]), its Thevenin impedance

matrix [ZTO] (i-e-, the product of [ZA] and [CA]), and its Thevenin voltages vector

[Ea] (product of [ZA] and [ha]). This convenient way of MATE's for identification

of matrices and vectors in the problem stems from a basic assumption: that a

subblock can only contain current sources or GVS's.

In this section, MATE is extended to override those restrictions; albeit at

the price of losing the physical meaning of matrices and vectors in the solution.

Let us first see what the extension is, then explore its use in a short numerical

example.

The extensions necessary to deal with a subblock that includes UVS's —like

the subblock A in Fig. 62— are (for that subblock, see Fig. 61)

• Extend its nodal voltage vector [va] with a vector of UVS's currents at the

bottom [isa], to produce the extended vector [v*].

• Extend its nodal current vector [ha] with a vector of UVS's voltages at the

bottom [vsa], to produce the extended vector [hi].

• Extend its connection matrix [Ca] at the bottom with as many null rows

as there are UVS's in the subblock, to generate the extended connection

matrix [C*].

1 1 A diagonal matrix with one entry per link.

6. Sources, Links and Expanded MATE 94

extended
Ya matrix

extended
vectors Ca, Va, ha

Fig. 61: Extended matrices and vectors for the subblock with UVS's. Extended

• Extend its admittance matrix [Ya] with the internal UVS's connection

matrix [Csa], as in Fig. 61, to generate the extended matrix [Y*].

• Finally, ignore the names of vectors and matrices in this subblock and build

the extended matrices indicated in what follows —whose names are kept

for the sake of mnemotecnic association, since they are not impedances or

voltages anymore—, and then proceed as in standard MATE. The matrices

are:

- Extended or pseudo bus impedances, [Z*] = [Y*]~l,

- Extended or pseudo Thevenin impedances [Z^a] = [Z*][C*], a n d

- Extended or pseudo Thevenin voltages [El] = [Zl][h*a].

6.5.1 Ex tended M A T E : A numerical example

In Fig. 62, a single block network has been broken into two subblocks by the

4-ohm 3-volt link. The subblock on the right, A, includes an ungrounded voltage

source (UVS). In this example, there are two voltage sources: one is part of a

link, the 3-volt source; the other, is ungrounded and part of a subblock.

MATE.

6. Sources, Links and Expanded MATE 95

ungrounded
not-a-link

ungrounded
a-link

Fig. 62: Subblock with and ungrounded voltage source.

(107)

Introducing the currents in the voltage sources, ix and ik, as in the figure,

the nodal equations are

Node (1): 2ux + tx = 5

Node (2): 3v2 - ix - ik = 0

Node (3): 5v3 - 3v4 + ik = 0

Node (4): 3u4 - 3u3 + 4u4 = 4

The voltage sources introduced two unknowns, their currents ix and ik. They

introduce two equations as well

UVS source: v2 — v\ = 5

Link source: v2 — v% + Mk = 3

Solving the system of seven equations comprised by Eq. (107) and Eq. (108)

we obtain

(108)

v4 = 0.7573 V;

ix = 8.9587 A;

ik = 0.1033 A.

The equations, written in matrix form and including the UVS equation in

subblock A's equations according to extended MATE, are

ui = -1.9793 V

v2 = 3.0207 V

t>3 = 0.4337 V

6. Sources, Links and Expanded MATE 96

2 0 1 0 0 0 Vi 5

0 3 -1 0 0 -1 v2
0

- 1 1 0 0 0 0 lx 5

0 0 0 5 -3 1 0

0 0 0 -3 7 0 Vi 4

0 1 0 -1 0 4 3

(109)

Premultiplying the rows corresponding to subblock A by the pseudo bus im

pedance matrix of the subblock; and also premultiplying the rows corresponding

to subblock B by the subblock's pseudo bus impedance matrix, Eq. (109) be

comes

1 0 0 0 0 -0.2 Vl -2

0 1 0 0 0 -0.2 V2 3

0 0 1 0 0 0.4 lx 9

0 0 0 1 0 0.2692 V3 0.4615

0 0 0 0 1 0.1154 Vi 0.7692

0 1 0 -1 0 4 ik 3

(110)

The link matrix in this case has a single element. It is calculated from the

pseudo-Thevenin impedances to produce the system of equations,

1 0 0 0 0 -0.2 Vl -2

0 1 0 0 0 -0.2 V2 3

0 0 1 0 0 0.4 lx 9

0 0 0 1 0 0.2692 V3 0.4615

0 0 0 0 1 0.1154 Vi 0.7692

0 0 0 0 0 4.4692 ik 0.4615

(111)

From the last equation, the link's current, is readily obtained as

0.4615
ik = —— = 0.1033 A

4.4692

6. Sources, Links and Expanded MATE 97

That value is then substituted in the other equations to determine the re

maining voltages and current. This process produces the same results for nodal

voltages and currents in voltage sources (links' and UVS) as the ones obtained

at the beginning of this section from the network equations, as expected.

Vl -2 -0.2 -1.9793 "

3 -0.2 3.0207

. ^ — 9 — 0.4 [0.1033] = 8.9587

0.4615 0.2692 0.4337

0.7692 0.1154 0.7573

7. SWITCHES AND ASYNCHRONOUS COMMUTATION

7.1 In t roduc t ion

When a switch operates, it alters the topology and size of the network. When

a switch opens1, it creates two nodes where there was only one. When a switch

closes, it collapses one of its two nodes. In this chapter, representation of swi

tches and their associated switching operations in OVNI are presented. The

pros and cons of node collapsing are revised.

In real time simulations of the kind targeted in this work, the calculated

samples of some signals are issued to the external devices2 in an evenly time-

spaced stream of samples. More often than not, open switching operations do

not occur at the moment of issuing the samples, i.e. asynchronous commutation,

Fig. 63. A technique to cope with the voltage or current spikes generated by

those asynchronous opening of switches is introduced in this chapter.

signal (current)
stream of synchronous samples

issued by the simulator

Fig. 63: Samples output stream, and asynchronous commutation.

1 A n ideal switch.
2 D / A , amplifiers, etc.

7. Switches and Asynchronous Commutation 99

7.2 Swi t ch Clos ing , Col laps ing Nodes

If switches are modelled as either ideal conductors —when closed—, or as perfect

insulators —when opened—, the general topology of the network (as reflected

in the system's matrix) is modified with each switching operation. That is, the

number of nodes in the problem is reduced each time an ideal switch closes,

and viceversa. In non real-time simulations, such situations can be exploited to

speed-up those simulation intervals when switches are closed. In this case, the

system becomes somewhat smaller and so does its matrix, which is now easier

to triangularize or to invert, as necessary, Fig. 64.

signal

t

datum issued as
, computet

switch operation
collapsing or birth of nodes

soon at
1

•it is

h
y ' _ *- y * y ' (7/770 3X7S

cpt cpt cpt cpt

computation time (cpt)

Fig. 64: Short and long integration steps. Non real-time simulation. Data are issued
as soon as they are available.

The integration step that takes the longest time to compute is the one that

takes precedence over all others in a real-time simulation. That is, to preserve

the frequency spectrum of the output signal channeled through the digital-to-

analog converters, amplifiers, and out to the real world, samples are issued at

equally distanced intervals along the time axis, as in Fig. 65. In that figure some

integration steps take longer to compute than others (long steps), but there is

always a filler time slice added to wait for the real time deadline. That filler is

used by the hardware to transmit the data.

It follows that a main target in this project has been the reduction of the

long integration step depicted in Fig. 64. Precalculation of matrices, as was seen

7. Switches and Asynchronous Commutation 100

in sections 5.3 to 5.10, was advanced with such a goal in sight. The collapsing

—or re-insertion— of nodes introduces an overhead on the long integration steps

that, in theory, could be compensated by the reduction in computation burden

during the short integration steps. However, as the length of that long step is the

determining factor of the bandwidth of the simulation, that overhead becomes

overwhelming.

signal

real time deadline

computation time (cpt)

Fig. 65: Short and long integration steps. Filler time slices. Data output stream in a
real time simulation.

Thus, in real time simulations it may not be to our advantage to reduce

the number of nodes and the order of the system's matrix. In fact, such a re

arrangement is a costly one because of the management overhead (i.e., nodes

reallocation, matrices re-dimensioning, and so). Also, in our efforts, addresses

are sometimes precalculated for components in structures and arrays, and off

setting such positions in memory, when the number of nodes is reduced —or

increased— during the simulation, carries with it a penalty in execution time

terms.

The approach used has been instead to distribute the computational burden

more evenly over the integration steps. The short steps become longer, but

the dominant long steps become much shorter, with an improved simulation

bandwidth as a result. In short, the size of the matrices, and the number and

position of allocated nodes, remains unchanged along the simulation as seen

in § 7.4.

7. Switches and Asynchronous Commutation 101

7.3 Expanding a System of Linear Equations

As a basic framework, let us consider the possibility of introducing additional

pseudo equations —and their corresponding pseudo unknowns— into systems of

linear equations. The added equation will introduce a repeated unknown, that

is, an unknown that is already in the system and associated with an existing

equation. In this way, the new pseudo unknown solution value equates the value

of the unknown it is mirroring. Let us clarify this with an example.

Consider a system of algebraic linear equations represented by the matrix

equation in Eq. (113). The system's solution is included to the right of the

equation.

10 -5 -3 X\ 10 Xi = 1.5364

-5 7 -1 %2 = 0 => x2 = 1.0927 (113)

_ -3 -1 9 . X 3 . . ~ 6 . £3 = -0.0331

Let us introduce a pseudo unknown, X 4 , that mirrors x2. This is done by

means of a fourth equation whose mutual terms with all the equations but

that of the mirrored unknown are the same as in the original equation. The

new equation has no coupling with the original equation and viceversa. The

coefficient of the pseudo unknown in the new equation is equal to the coefficient

of the mirrored unknown in the original equation. The expanded system is

shown in Eq. (114).

10 -5 -3 0

-5 7 - 1 0

- 3 - 1 9 0

-5 0 - 1 7

As expected, the value of the pseudo unknown £ 4 , is the same as that for

the legitimate unknown x2. The introduced pseudo unknown could well be the

voltage of a would-be collapsed node four, and as such it would share the same

voltage as node two.

Xi 10 Xi = 1.5364

X2 0 x2 = 1.0927 X2

X3
-6 X3 = -0.0331

X 4 0 X 4 = 1.0927

(114)

7. Switches and Asynchronous Commutation 102

7.4 Clos ing a Swi tch wi thout collapsing a Node

In the previous section, the possibility for introducing fictitious equation-unknown

pairs that mirrored equations-unknowns already in the system was presented.

In this section, that possibility is used to keep constant the dimensions of the

network matrices when there is a switching operation. This constancy allows

for a simplified and more efficient addressing scheme for use of precalculated

matrices in the subblocks of the network.

In a network, when an open switch between nodes i and j closes, the only

two equations to modify are the equations for those two nodes. The process can

be summarized more clearly in pseudo code as follows. Let [A], be the nodal

analysis bus conductance matrix associated to an n node network. If nodes i

and j are welded together by the closing of a switch, each element akp of matrix

[A] changes according to the process described in Fig. 66.

for k = 1 . . . n; that is, for every row k
if k 7̂ i and k ^ j then

O'ik Ojfc + (Xjk
Ojk <— Oik

endif
endfor
G>ii ^ da ~\~ Ojj 2(Zjj
Ojjj ^ da
for every do

aij f- aji«— 0.0

Fig. 66: Closing a switch between nodes i and j.

Coefficients for self terms for both nodes i and j, an and a;j-, become the

sum of their former values minus the former coupling between the two nodes, a^

and aji. Then, the coupling between the two nodes becomes zero and all other

elements in both equations are now the sum of the equations' corresponding

coefficients.

7. Switches and Asynchronous Commutation 103

7.4.1 A Numerical Example

In this section, a numerical example illustrates the procedure described in § 7.4

to avoid collapsing nodes when a switch bridging them closes. Consider the

circuit in Fig. 67, with a switch between nodes 2 and 4 originally open.

Fig. 67: Case to illustrate how to avoid collapsing nodes.

Let us begin writing the nodal equations before the switch closes. All four

nodes display linearly independent equations, Eq. (115).

(115)

5 -3 0 0 V\ 0

-3 20 -5 -8 -9

0 -5 11 -6 v$ 7

0 -8 -6 21 Vi 17

Once the switch closes, if we choose to collapse the two nodes connected by

the switch, 2 and 4, into a single one, 2, the network has now only three nodes,

and its nodal equations are in Eq. (116). The solution to this system is on the

right of the equation.

5 -3 0 Vl 0

-3 25 -11 V2 = 8

0 -11 11 _ _ 7 _

vi = 0.7377 V

v2 = 1.2295 V

i/ 3 = 1.8659 V

(116)

Applying now the procedure that was described in § 7.4 to keep constant

7. Switches and Asynchronous Commutation 104

both the number of nodes and the dimension of the matrix in Eq. (115) produces

Eq. (117) that correctly predicts that the voltages of nodes 2 and 4 will be equal

once the switch is closed. Thus we have

5 -3 0 0 ' Vl " 0 ' = 0.7377 V

-3 25 -11 0 v2
8 v2 = 1.2295 V

0 -5 11 -6 Vi 7 —r vz = 1.8659 V

-3 0 -11 25
. V i . 8 = 1.2295 V

(117)

Let us now recapitulate. It goes without saying that solving the smaller

system in Eq. (116) is simpler that solving the larger system in Eq. (117). How

ever, as it is the size of the larger of the two the one that imposes its weight

on the bandwidth of the real time simulation and, more important, it is the

additional burden of building, triangularizing, and changing addresses for the

smaller matrix that is being avoided here. OVNI uses the constant size subblock

procedure in § 7.4 in its preprocessing stage to generate and prestore constant

size subblock matrices of the type of the one in Eq. (117).

7.5 Switch openings

In power networks, when an AC-switch is signaled to open, it waits until the

next time that the current through it goes through zero3, see Fig. 68.

In EMTP simulations the detection of the zero crossing occurs when the

current through the switch waiting for opening changes sign, at b in Fig. 69.

To avoid computational overhead, the actual zeroing of the current through

the switch is not made until the next integration step after the zero crossing

is detected, at c in Fig 69. This is an acceptable and efficient solution, given

small enough integration steps, in most cases. In power electronics circuits,

however, and in situations where the slope of the current just before the change

of sign is large, this approach triggers spurious voltage spikes in highly inductive

3 We will refer to this moment as the zero crossing of the current in the switch.

7. Switches and Asynchronous Commutation 105

current through
a switch

4

Fig. 68: Switch opening event: signal, and actual opening.

neighbouring networks.

To perceive the way such spurious spikes come to be, consider a situation

where the current slope in Fig. 69 between points a and b is very steep. When the

zero crossing is detected at point b, the value of the current has already drifted

far away from zero4. If that value at b is issued to the rest of the network as the

current in the switch, when the current is zeroed at c, the effective derivative of

the current will be too big. That high current derivative is bound to produce

voltage spikes in nearby inductive elements. Such was the case of the HVDC

4 Actually, under a rapid changing current situation like this, the current at o is also far
from zero, and nulling the current at b would still produce voltage spikes, but those would be
legitimate voltage spikes that should appear in the actual circuit.

current through a switch
that is waiting for an opening

a\

time

datum issued at
time b b

Fig. 69: Zero crossing and actual opening of a switch.

7. Switches and Asynchronous Commutation 106

Fig. 71: Voltage before smoothing reactor.

rectifier bridge illustrated in Fig. 70, where the voltage at the load, and the

spikes produced by the solution method, are illustrated in Fig. 71.

In short, the simulator has to honor the request to open the switch as soon

and exactly at the point where the zero crossing occurs. As the zero crossing is

not evident to the simulator until the change of sign is detected, the zero crossing

will already be in the past. A possible solution, in non real-time simulations,

is to backtrack to the actual moment when the zero crossing occurred [57, 58],

and issue the data at that particular moment in time, with the time stamp of

the actual zero crossing itself. The result is a shortened integration step right

at the opening of the switch. After that, the simulation proceeds at the regular

7. Switches and Asynchronous Commutation 107

sk
fo

1

jnai to watch
rzero crossing

ze

V /

•o crossing

^ \
\ >

detected J?

A /

At
A

3W shifted train of

At

A

samples

A

sk
fo

1

jnai to watch
rzero crossing

ze

V /

•o crossing

^ \
\ >

' : •

samples

A

V Y K y — t i m e
At At ^

Fig. 72: Non real time backtracking.

t

a

^\ short step *

A \

6

^ long step *

A

^ regular step 1

A

t

\ T

v. / \ A A J "me yv \ v v
zero crossing regular step "

Fig. 73: Simple non regressive backtracking.

integration step; i.e., all future samples are slightly shifted to the left, Fig. 72.

7.6 Asynchronous Commutation in OVNI

In real-time simulations, however, it is not possible to go back in time, to back

track. In OVNI a compromise was made, see Fig. 73. Instead of releasing the

completely wrong value at b1, a lesser evil approach is taken, the correct value

at the zero crossing, Y(b) is issued slightly later, at b'.

But even this can be too expensive. To obtain the data at the zero crossing,

b in Fig. 73, not only the trivially zeroed current in the switch in necessary, but

7. Switches and Asynchronous Commutation 108

first attempt, not re/eased

second attemp
(an expensive step)

Fig. 74: Accurate but too expensive backtracking.

the voltage at every node, and the history sources —and any other sources as

well— at the same point b. In short, we could go back to a, and advance by the

now known smaller Atshort to point b.

But to do this, the network matrices would need recalculation since they

depend on the integration step size. As the reduced integration step Ats/^

size is not known before the simulation, such matrices cannot be precalculated.

That is, two complete step computations are necessary to produce the data to be

issued at b —one of those computations is even more expensive than a regular

one—. As a result, the bandwidth of the simulation is likely to fall to half

its targeted value —far less, actually, given the additional overhead of matrix

calculation and triangularization or inversion—.

After the data just calculated, at b, is issued at b', the simulator would

have to advance the enlarged integration step A t / ^ to fall back in step (at c)

with the real time samples stream, Fig. 73. This results in another expensive

recalculation of matrices. See Fig. 74

A simpler and shorter approach is taken by OVNI. A linear interpolation of

voltages and history source values between points o and b' produces the state

7. Switches and Asynchronous Commutation 109

a

regular step
(detects zero crossing)

/ regular advance
/ A to pivot point Qk

back to
regular steps

/ A

backward forward
linear interpolation linear extrapolation

Fig. 75: BIFE: Backward interpolation, forward extrapolation.

of the network at b, the zero crossing, much faster. The problem is now how

to advance from b up to c in Fig. 73. One possibility, see Fig. 75, is to use

the available matrices for A i and advance computationally from b to d, and

then use linear extrapolation to reach the values needed at c, where they are

issued. Then the simulation resumes. Such a solution produces satisfactory

results and was reported in [35]. A disadvantage with this technique, however, is

the prediction involved in the procedure (even though small). An improvement

to that technique, which does not involve prediction is presented next. This

technique will be called the inverse Critically Damped Adjustment, inverse CDA

or "ADC, or simply "DSDI" (Double Step Double Interpolation). The process

is described below.

7.6.1 Doub le Step-Double Interpolat ion, DSDI

OVNI uses, as was seen in § 3.5, the backward Euler integration rule5 to dis

cretize the equations of the network.

From chapter 4, let us compare the discrete time equivalent conductance of

5 Abbreviated in what follows as BE.

7. Switches and Asynchronous Commutation 110

an inductor, L, in a simulation with an integration step, At, where BE was used

to discretize the differential equations, Eq. (118),

with the equivalent conductance produced by the trapezoidal rule of integration6,

for the same inductor using the same integration step, Eq. (119).

It follows that, for the inductor, TR produces a conductance half the value

of that produced by BE. But this can also be interpreted as if one uses an

integration step twice as big with TR than with BE, both rules produce the same

equivalent conductance [10]. This situation applies for all discretizations in the

network and we can say that if one uses an integration step twice as big with

TR, than with BE, both rules produce the same network matrices.

Up to the zero crossing, OVNI has been integrating with BE, and its as

sociated precalculated network matrices. OVNI is at b—after the backtracking

obtained with linear interpolation between a and V—. Now, using now a double

sized integration step, and TR as integration rule, it advances past c, up to d in

Fig. 76 with the same precalculated matrices already available. The next output

point, c, is reached by a safe interpolation between b and c'.

7.7 D S D I ' s O V N I Mod i f i ed Tasks Schedule

To accommodate for the double step double interpolation scheme (DSDI), the

solution tasks described in § 5.2 need to be revised and extended. In particular,

the updating of history sources —as a request issued by the simulator to the

element models— has to include additional functionality, as follows.

Refer to Fig. 77, where a flowchart of the tasks of the simulator, which in

cludes DSDI, is illustrated. The best way to describe the operation of the DSDI

as implemented by OVNI is to go through the flowchart. First —assuming that

6 The trapezoidal rule of integration is referred to in what follows as TR.

At
9BE = —r (118)

At
(119)

7. Switches and Asynchronous Commutation 111

regular step
(detects zero crossing)

backward
linear interpolation

long forward step
with trapezoidal rule

back to
regular steps

A /. A

backward
linear interpolation

Fig. 76: DSDI used in OVNI. The most expensive step takes one regular integration
step with precalculated matrices, plus one inexpensive linear interpolation.

all history and independent current sources have been evaluated already, or given

initial values if this is the first time step—, accumulate nodal currents into the

vector [Eh]. Second, solve the nodal system of equations, [G][v] = [T,h], for the

external nodes voltages, v. Third, check to see if this is the time for a double

step —that is, if flag interpolateDoubleStep7 is set—. Let us assume, in this first

run, that this is not the case, that this is a regular step. Fourth, update ele

ment history sources for the next step. Then determine internal node voltages,

and let the elements check for internal switch opening operations. If such an

event occurs, the corresponding element sets a flag interpolate*, and determines

the percentage of backtracking necessary to hit the exact point where the zero

crossing occurred in the current through the just opened switch. That percent

age9 is bt. As part of the same block in the flowchart, a separate method is

activated, that of checking for switch opening events in the prescheduled events

7 Represented in the flowchart by an asterisk enclosed into a circle.
8 Represented in the flowchart by an asterisk.
9 Actually it is a per unit value. See next section for a detailed discussion of this item.

7. Switches and Asynchronous Commutation 112

for every
time step

\ 1

(1) Accum
cur

ulate nodal
rents.

\ I

(2) Solve for nodal
voltages.

yes

(4) Update history
sources. . w

-> 7k
-> bt

(5)
yes

)fc "interpolate", i.e., activate
the first half of the DSDI
procedure.

'interpolateDoubleStep", i.e.,
activate the second half of
the DSDI procedure.

(9) Interpolate for
voltages in double step

1/2 -bt/2
c c

(10) Interpolate forh
and advance single step

Clear®
May set* andbt

- if it detects zero crossing
in a current through a switch
waiting to be opened, activate
the % flag, and compute backtrack, bt.

drops the just calcu
lated histories and
interpolates between
the previous two.

(7) Interpolate for voltages
K. bt

NJ

A/

(8) Interpolates forh
and advance double step\
Clear M / 2dt

Set (g) M -

Fig. 77: OVNI's modified flowchart to include DSDI. Elements handle three instances
of their histories: h n e x t , h n o w , / i & e / o r e - When they "decide" to backtrack,
they discard hnext, and interpolate between the other two.

7. Switches and Asynchronous Commutation 113

list —either with the input data case, or by a controlling device under test—.

If an external switch opening is detected, a corresponding bt backtracking is

calculated, along with the setting of the same interpolate flag. Fifth, check if

the interpolate flag is set, that is, if a switch opening operation was encoun

tered in the previous task. In this first run let us follow the main path of the

flowchart; i.e, assume no switch opening was met, then: Sixth, the node voltages

and any other output variables are made available for the D/A converters and

amplifiers for output. Input logical signals from the real world are received and

the corresponding switching events are scheduled by the event handler.

Let us assume instead that a switch opening occurred in the fourth task

above, then the test in the fifth task will branch the execution into: Seventh,

if several switches opened, use the backtracking percentage bt, corresponding to

the zero crossing that occurred the last. Using the last two calculated values

for nodal voltages, interpolate for the ones corresponding to the moment of

the chosen zero crossing. Eighth, request each element to discard the most

recently calculated history sources values, and interpolate between the previous

two values —which the element has to keep at each time step—. The element

interpolates too for internal nodes voltages and from that interpolated point in

time updates the history source advancing with the formula corresponding to

the trapezoidal rule of integration; i.e., a double step (step (3) in Fig. 76. The

integrator clears the interpolate flag, and sets the flag interpolateDoubleStep.

Now, task number six outputs the voltages and signals just interpolated (value

at point b' in the figure of reference).

Now the simulator is at the top of the flowchart again, but with a set inter

polateDoubleStep flag. It goes through tasks number one and two, and obtains

external node voltages at point d in Fig. 76. When the simulation reaches task

three this time, it branches into tasks number nine and ten, following a clearing

of flag interpolate by the simulator, it performs a new double set of interpolations

—but using not bt, but [| - —: one interpolation for external node voltages,

and another for the elements history sources and internal node voltages. From

7. Switches and Asynchronous Commutation 114

the interpolated values of their history sources, and using the backward Euler's

rule of integration, the elements advance a single step and reenter synchronism

with the output stream of data. The elements, and the switching events han

dler, check for any switch opening occurring between the point b in F i g . 76,

and the recently interpolated values. If a switch opening condition is met, the

corresponding element at c, or the switching events handler, reactivates the flag

interpolate. The simulator now clears flag interpolateDoubleStep, which brings

the simulation back either to the normal backward Euler's single stepping — i f

interpolate was not just set—, or to the first half of the D S D I procedure — i f an

A C switch opening was just detected and the interpolate flag was activated—.

7.8 Single Step and Double Step Interpolation Details

Only A C switches waiting for an opening operation have their currents monitored

for a zero crossing, either inside the model where they reside, or among the

corresponding block's links, or even perhaps wi th one of a subblock's switches.

D C switches operate synchronously wi th the simulation stream and are not

subject to the problems tackled by the D S D I procedure.

When an A C switch has been "marked" for opening, its model (if it is part

of one), or the switching events handler of the simulator (if it is not), keeps a

computational eye on its current waiting for a zero crossing. Such a current

wi l l be referred to, in what follows as the reference current. In F i g . 78a, a zero

crossing in a reference current has just occurred between points o and 6; i.e.,

between values ra and r-(,10. How far back into the last integration step the zero

crossing, and the interpolation, w i l l have to go is given by the backtracking, bt.

bt = — ^ — = = 0.25 (120)
r b - r a -12 v

Once a backtrack has been found necessary, either in tasks four or ten in

1 0 In the first implementations of OVNI—before DSDI—, this zero crossing was detected by a
painful extraction of the sign bit within the I E E E double precision floating point representation
of both values, and a subsequent digital and operation. Given the relative timings of Intel's
Pentium fmul, floating point multiplications, a simple test for ra x rb < 0 is fast enough.

7. Switches and Asynchronous Commutation 115

Fig. 78: Linear interpolation between points (a, r a) and (6, rb). 6t is the per unit
backtracking necessary.

Fig. 77, all other variables (voltages and history source values) are interpolated

for in tasks seven and eight, according to Eq. (121) and Fig. 78b.

yc = Vb + (ya - yb)bt (1 2 1)

Then, at the next pass through the loop in Fig. 77, after voltages and history

values have already been determined for the double step point d,

in Fig. 79, an interpolation is performed in tasks nine and ten, with a modified

backtrack factor dbt that relates to the available bt in Eq. (120) above according

to Eq. (1 2 2) , using the same form of Eq. (1 2 1) . Thus

(1-W)A< = 1 W
2At 2 2 v '

7. Switches and Asynchronous Commutation 116

Ve = Vd + (Vc ~ Vd)dht (123)

Finally, if during task number ten a new switch opening is detected between

b' and c in Fig. 79 u, a modified backtracking factor, mbt is established in the

same way as bt was obtained in Eq. (120).

1 1 Not between b' and the point obtained at the end of the double step advance, point c' in
Fig. 76.

Part IV

OVNI ELEMENT MODELS

117-

8. OVNI E L E M E N T MODELS

8.1 In t roduct ion

Several new models developed during this project allowed for the testing of

OVNI's performance under the two test cases targeted in chapter 2: protective

relay testing, and HVDC controller testing. This part of the report describes

those models.

The models are:

• metal oxide varistors (MOVs) already described in § 4.5.9 on page 51;

• measuring transformers, introduced in § 4.5.10 and detailed in the follow

ing two sections, § 8.2 and § 8.3;

• HVDC modules, detailed in chapter 9, included to illustrate the general for

mat that element models developed for OVNI should follow, in particular

that model shows how to implement the "node hiding" concept introduced

in this thesis, § 5.13, inside a model to streamline the simulation;

• a simplistic HVDC controller model was developed only to explore the

HVDC module functionality, and is described in chapter 10 as an example

of an OVNI model that interacts directly with another element model, all

within the frame of OVNI's solution.

8.2 Cur ren t Transformers

A non-iterative model for the current transformer (CT) that incorporates the

saturation characteristics of the CT's core was presented in [53]. In this model,

the secondary current of the CT, is, is calculated from the primary current, ip

8. OVNI Element Models 119

—determined by the integrator core—, and from the present saturation state of

the CT magnetic core.

Fig. 80: Equivalent circuit of current transformer (minus the ideal transformer) re
ferred to the burden side.

A. Equivalent Circuit

Figure 80 shows an equivalent circuit of the current transformer with all quan

tities referred to the secondary side. In that figure:

• i'v— primary current referred to the secondary side.

• %Ft— current in phase with the fundamental component of the voltage in

duced in the core; i.e., current through resistor Rpe, for the approximation

of iron core losses.

• im= magnetizing current through non-linear inductor.

• is= secondary current.

Since the CT perceives its primary current as applied by a current source,

the primary leakage impedance, Z\, does not affect the results; therefore it is

not needed.

The current in the primary can be written as the sum of three component

currents, Eq. (124). Each of those components can be expressed as a function

of the flux linkages in the transformer core, A, which leads to a single equation

for is (the output of the model) as a function of i'p (input from the integrator).

8. OVNI Element Models 120

i'P = *Fe + im + h (124)

B. Core Loss Branch

The voltage across the core loss resistance is also the voltage induced by the

magnetic flux linkages, A, in the core.

v = RFe • iFe (125)

» " § <126>

Integrating Eq. (126), then applying the trapezoidal rule to approximate the

voltage integral, and finally substituting Eq. (124) into the resulting expression,

the right-hand side of Eq. (126) becomes {Xnew - A0w)/(At); and the left-hand

side becomes RFei^Fe-new + i>Fe-oid)/2, where subscripts "new" and "old" refer

to the values at the present time step t and the preceding time step (t — Ai),

respectively.

^Fe-new = C-Fe. ' Xnew + hpe-old (127)

where hpe-oid is a history term evaluated as follows

h>Fe-old = —CFe ' XFe - iFe-old (128)

where the constant coefficient is defined as

c* = jds (1 2 9)

C. Magnetizing Branch

The non-linear relationship between magnetization current, im, and flux link

ages, A, for the magnetizing branch can be approximated by the piecewise linear

curve, Fig. 81.

With the operating point in the linear segment starting at (A s t a r t , istart), a n d

defining L as the slope of that segment,

im — istart = ~f ' (A — Ktart) (130)

8. OVNI Element Models 121

Fig. 81: Piecewise linear representation of magnetization in flux path.

Defining the known constant km for each segment, as in Eq. (131), Eq. (130)

can be rewritten as in Eq. (132).

km — istart

1

A start

L

A + km

(131)

(132)

D. Secondary side branch

If the secondary leakage impedance is combined with the burden into a total

secondary impedance

Rs + JU)LS = (R2 + Rburden) + i^(-^2 + -^(mrden)

the voltage v, in Eqs. (125) and (126) is also

dis v = Rsis + juLs • —
dt

(133)

(134)

Eliminating v from Eqs. (134) and (126), integrating the resulting expression

and applying the trapezoidal integration rule

Anew ^old — Rn • new Is—old + LS

Is—new I's—old (135)
At 2 ' ~" 2

Defining the history term hs as in next equation, we can solve for is-new as

in Eq. (137) and obtain

8. OVNI Element Models 122

hs-oid = —csX0id — dgis-oid (136)

is—new = CsXnew + hs—0id (137)

with the two constants

\t ds = cs ^
2

CS = L I R ' A t d s = c°\ ~ L s I (138)

(139)

E . Secondary current as function of p r imary current

From Eqs. (124, 127, 132 and 137) we obtains

i'p = iFe + im + is= {^Fe + + A + (hFe + km + hs)

Express the flux linkages, A, as a function of the secondary current, is, from

Eq. (137), and the desired expression of is = f(i'p) is obtained as follows

is = h (i'p - hFe - hm - hs) + hs (140)

where ki is the constant defined as

k i = °-\ (141)
CFe+Z+Cs

If the history terms (h'a) are known from values at the preceding time step,

the secondary current can be obtained from the primary current from Eq. (140)

with only one multiplication and four additions.

F . U p d a t i n g his tory terms

Once the new secondary current ia-new has been calculated at time t, all history

terms need to be updated to advance the solution by At. In the updating

calculations, the term cs • Xnew is used instead of Xnew, and is obtained from

Eq. (137),

CgX-new — is—new ŝ—o/d (142)

8. OVNI Element Models 123

The history term for the secondary side branch follows from Eq. (136),

hs—new ~ ~esXnew — dsis—new (143)

The history term for the core loss branch is obtained from the formula

^Fe-new — &Fe (c»A n e w) — hpc-old (144)

which follows from Eq. (128) when iFe-new is replaced with its expression from

Eq. (127). The constant kpe is defined as

kFe =
2cF e (145)

These updating formulas add another two multiplications and three additions

to the effort required in each time step, for a total of three multiplications and

seven additions. There is also a check needed to see if cs • XneW in Eq. (143)

has moved the operating point into another segment in the piecewise linear

representation of the magnetization curve.

o.i 0.2. 0.3 0.4 OS °G> v \0

Fig. 82: Secondary current match between OVNI's model and EMTP's discrete ele
ments one.

8. OVNI Element Models 124

G . Va l i da t i on of the model

Figure 82 compares the result of this algorithm with the one obtained with the

standard EMTP solution method. Both answers are practically identical.

The case used for this test was taken from a field test comparison described

in [59], where six segments were used to represent the magnetization curve. For

the duplication of test results described in [60], simulation results with a two-

segment representation were almost as accurate as those from more detailed

representations. In the two-segment case, the knee point seems to carry more

weight than all other parameters of the saturation curve.

wau VOLTAGE usve

Fig. 83: Coupling Capacitor Voltage Transformer, CCVT.

8.3 Coup l ing-Capac i to r Vol tage Transformers

Figure 83 shows a simplified schematic of a coupling capacitor voltage trans

former. A detailed wide frequency band model of a CCVT is complicated due

to the magnetic and capacitive interactions in the various parts of the compo

nent magnetic devices (tuning reactor, potential transformer, and ferroresonance

suppresor) [61, 62].

8.3.1 Po ten t i a l transformer and reactors

Figure 84 shows a lumped parameter equivalent circuit for a single phase two-

winding transformer [50]. Terminals 1-3 are input, and 2-4, output. This model

is valid for frequencies up to hundreds of kilohertz. Several stray capacitances in-

8. OVNI Element Models 125

Fig. 84: Lumped parameter high frequency equivalent circuit of a two winding trans
former.

side the device have been included: winding to winding (CHL), turn to turn (CH,

CI) and winding to ground (CHG, C L Q) , together with the frequency dependent

leakage impedance (Zieak(u)) and the core magnetization branch (Zm(u>)) which

is possibly nonlinear and frequency dependant.

It is convenient to relocate the core magnetization branch across the outside

terminals of the winding closest to the core (usually the low-voltage winding).

Then this branch can be modelled in as much detail as desired and allowed by

the simulation time constraints. Saturation and hysteresis characteristics of the

branch can influence the low frequency response of the solution [63].

CHQ/2 Z leak U

<W2

H r
Zm(co)

Fig. 85: High frequency model of a reactor.

In devices, like the tuning reactor and the ferroresonance suppressor in

8. OVNI Element Models 126

Fig. 83, that have only one coil, the equivalent circuit, Fig. 85, is half the

equivalent circuit for a two winding transformer shown in Fig. 84. In a reactor

the magnetization branch Zm is the main impedance in the circuit. However, re

actors are designed and built so that they do not saturate and both Z[eak and Z m

can be modelled as linear frequency dependent R-L branches. Those branches

can be synthesized in a similar way as Zieak in the two winding transformer.

Fig. 86: High frequency equivalent circuit for a two winding transformer.

8.3.2 Simpl i f ied equivalent c i rcui t

A circuit transformation can be used to move C H L , the capacitance that bridges

both sides of a two winding transformer, to one side [64], as in Fig. 86. The

resulting circuit has a capacitance in parallel with Zieak plus additional capaci

tances in parallel with CH and C L .

Once the outermost capacitances at ports 1-3 and 2-4 have been removed

(computationally), the impedance Zieak in parallel with C#x/a is the short cir

cuit impedance measured at a short circuit test. Chimklai and Marti [50] present

a method to obtain, from simple measurements, the various capacitances in the

equivalent circuit, as well as the short circuit impedance ZShwt {Zieak in parallel

with CHL/O). In Fig. 87, a typical measured short circuit impedance response

can be seen.

8. OVNI Element MnAvl* 127

7 5 K \OOK ^ \ HA

Fig. 87: Frequency response (Z3hort) of a two winding transformer. Measured and
synthesized responses.

Fig. 88: Synthesized RLC network used to approximate Z,/iort(w), multiple peak high-
accuracy synthesis.

It is shown in [50] that Z,hort(u) (Fig- 87) can be matched very accurately

with a number of RLC blocks as in Fig. 88, one block per resonant peak.

8.3.3 C C V T m o d e l for rea l - t ime s i m u l a t i o n

A very accurate C C V T model can be obtained by combination of the PT model

described above with corresponding models for the tuning reactor, ferroreso-

nance suppression circuit and the Cs of the capacitive divider, in a similar

manner to that suggested in [63]. However, in the suit of tests targeted by this

simulator, the accepted bandwidth (once the distortion of the integration rule

has been accounted for) is only of 2 to 4 kHz.

8. OVNI Element Models 128

(a)

Fig. 89: Simplified model to represent only the main peak delivers acceptable accuracy.

It was considered that under these conditions it is sufficient to approximate

the first resonant region in Fig. 87. A very reasonable approximation of this

region can be achieved with a simple RLC combination, as in Fig. 89. In this

minimal approximation, HQ and L 0 can be taken as the 60Hz values, while C\

is calculated to match the first resonance peak.

This procedure delivers a two port model that is independent of the burden.

For cases where the burden is known, see § 8.3.4 for a convenient and efficient

alternative.

8.3.4 Po ten t i a l Transformer M o d e l , P T

For cases where value of the burden to the PT is known, a simpler approach

is used. This model for the potential transformer (PT), used in OVNI, was

presented in [65]. The model approximates the PT's non-flat frequency response

in Fig. 90 by a two-pole transfer function of the form

The output voltage is computed, in the time domain, as a function of the

input voltage and the magnetization history of the PT's core. From the fre

quency response in Fig. 90, the two finite poles are: pi = 251 rad/sec and

P2 = 628 rad/sec. The constant k = 950. Figure 91 shows the magnitude re-

Vout(s)
Vin(s) = k-

(s + pi){s + p2)
s (146)

8. OVNI Element Mor/e/s 129

10

0

-10,

•30

I

•30

•40

•90

40

•TJ

e a m r e d by m l n g a i l g n a l g e n c r a j o f !
: : •• • i; : i i l l

: h i

10 100 1000

Frequency [Hz]

10,000

Fig. 90: PT's frequency response, 201og(Vout/Vin) dB versus frequency in hertz.

sponse of the approximating function in the continuous time domain rendered

in the frequency domain by a Laplace transform.

With backward Euler's rule, the z-transform of the transfer function is pro

duced by the substitution in Eq. (146) of s = After some manipulation,

the z-domain transfer function for B.E. is

kz(z - l)z
H(z) = (147)

k\Z2 + k2z + 1

where ki = 1 - p2At -pxAt + pip2A?t, k2 =piAt + p2At - 2, and k3 = k • At.

The magnitude of the resulting discrete time function response can be seen in

Fig. 93. In the bandwidth targeted by this simulator the response approximates

satisfactorily the one of the real PT in Fig. 90.

The transfer function used in simulating the PT's nonlinear frequency char

acteristics is equivalent to feeding the input voltage as VS0UTCe in Fig. 92, and

computing the source's current according to Eq. (148). That current is stripped

of its units and its magnitude equates the output voltage of the PT.

8. OVNI Element Models 130

L a p l a c e t r a n s f o r m o f H

Fig. 91: Approximated PT's frequency response, as rendered by the two polo contin
uous time Laplace transfer function.

= r ' v ^ ~ t r • u (* " A *) + IT • *(* " At) + T- • *(* " 2A«)] (148)

Fig. 92: Equivalent circuit used to approximate the response of the PT.

In the equivalent circuit in Fig. 92, the conductance g = k^/ki, and the

history current source h(t) = & • v(t - At) + • i(t - At) + i • i(* - 2At). The

model includes, as in equation above, four multiplications and three additions

per integration step.

8. OVNI Element Models 131

Backward Euler
5,

Fig. 93: Approximated PT's frequency response, as rendered by the two polo discrete
time Backward Euler transfer function.

9. THE HVDC MODEL

9.1 I n t r o d u c t i o n

The HVDC model described in this chapter is the result of a team effort [30]

in which this author was responsible for developing the solution algorithm to

achieve real-time performance.

The idea behind the model is to represent a six-valve module like the one

on Fig. 94, with the same technique introduced in [9]; i.e., to consider a valve

operation in the same way that switching operations were included in [9]. That

is, for every possible switch/valve open/close combination, the corresponding

block/module conductance matrix is precalculated and prestored for fast re

trieval during the simulation proper. All those matrices are prestored in a vector

of matrices. That vector is indexed by an integer variable, iVlvStatus, whose

internal bit representation corresponds to the open/close state of each one of

the switches/valves in the block/module, Fig. 95.

Fig. 94: Six valve module modelled for OVNI and its three parts: a) the three-phase
transformer; b) the six-valve bridge; c) the smoothing reactor.

At a first attempt, MATE alone was used to separate several of those six

valve modules in a 24 valve case, but still the timings —even if significantly

faster than the EMTP's 3120 /xs/step on a 200 MHz Pentium Pro workstation—

(c)

/ Y Y Y \

\B2_.

9. The HVDC Model 133

fell in the vecinity of 770^sec/step1. Then, OVNI's Node Hiding scheme was

applied to each module, as described in § 5.13 on page 74. It was this last

technique, implemented as described in this chapter, that brought the timings

down to 81 sec/step. On OVNI's current 400 MHz machine, performance falls

comfortably within the real-time deadline targeted.

SW1

STATUS 1 0 1

sw# 2 1 0

Fig. 95: M a t r i x precalculat ion scheme for blocks used i n O V N I [9].

9.2 T h e three-phase linear transformer mode l

Starting with a linear single-phase unit, the 3-phase transformer model is built.

Hence, it is convenient to begin with that single-phase transformer model.
9.2.1 Single-phase transformer model

The single-phase transformer model takes into account: a) the short circuit

impedance, or rather, its inverse, Y, and b) the transformers ratio, a. See

Figs. 96.

From Fig. 96a, the current in the primary can be written in terms of the

voltages as:

h = Y (VI - aV2) = YVi - aYV2 (149)

1 Results obtained in a previous work programmed in Ada95.

9. The HVDC Model 134

Fig. 96: a) Single-phase transformer, Zsc referred to the primary; b) Zsc referred to
the secondary.

From Fig. 96b, the corresponding expression for the secondary current is:

h = a2Y (V2 - Vi/a) = -aYVx + a2YV2 (150)

In matrix form Eqs. (149) and (150) can be expressed:

Y -aY Vi h
-aY o?Y v2 h

(151)

If no node in the single phase transformer is grounded, and they are connected

to nodes a, b, c, and d, as indicated in Figs. 96, voltages Vi and V2, as well as

the primary and secondary currents can be written in terms of the voltages of

each of those four nodes with respect to the reference node (ground), wherever

it may be in the adjacent network. Thus we have

Vi = va-vb, ia = h, h = i2

(152)
V2 = Vc-Vd, Ib = -Iu h = -I2

In this case the 2 x 2 matrix in Eq. (151) becomes the 4 x 4 matrix in

Eq. (153), which makes no assumptions on the way the single-phase transformer

is connected within the network.

Y -Y -aY aY ' V." 'la

-Y Y aY -aY vb h

-aY aY a2Y -a2Y vc h

aY -aY -a2Y a2Y _ A

(153)

9. The HVDC Model 135

9.2.1.1 Transformer D a t a

For each of single-phase units in a three-phase bank, this data is to be collected:

• kVi, rated kilovolts on primary.

• kV~2, rated kilovolts on secondary.

• MVA, rating of single-phase unit.

• Zsc, short circuit impedance in percentage.

The short circuit impedance is assumed to be purely inductive. The short

circuit or series inductance is (where f, is the frequency in hertz):

The transformer's ratio, regardless of which side is high-voltage, is, for the

purpose of this model given by

a = ^ (155)
kV2

 y '

Three conductances are then calculated from the Lsc and o values thus

obtained; namely: gn, gx2, and g22, defined as follows (using Backward-Euler

integration rule, where At is the discretization integration step chosen):

9. The HVDC Model 136

At
0n - 7—> 012 = 0-011. 022 = a 0ii (156)

(157)

Then the single-phase unit [Y] matrix can be written simply as:

011 -011 -012 012

-011 011 012 -012

—012 012 022 —022

_ 012 —012 —022 022 J

9.2.2 T h e three-phase transformer m a t r i x / m o d e l

In general, a 4-node subnetwork represented by its 4 x 4 [Ys] matrix, and con

nected to a surrounding network at nodes m, n, p, and q, (as indicated in Fig. 97)

contributes to the networks [Yn] matrix as sketched in Fig. 98, and outlined in

the C-code in the listing in Fig. 101.

Subnetwork Matrix

m n p q

Network [Yn] Matrix

Fig. 98: Including the subnetwork's matrix into the network's matrix.

As an example of the way to include the subnetworks admittance matrix,

9. The HVDC Model 137

[Ys] into the network's [Yn], let us detail the inclusion of one of the elements.

In the subnetwork illustrated in Fig. 97, the nodes identified by the subnetwork

as 1, 2, 3, and 4, are actually (from the point of view of the network) nodes 7,

3, 2, and ground. The element Ys(l, 3) has to be added to the network's Yn(7,2).

a rrrr\

• I
6

i i

V 1 1 7, k

i i i i
_

5

Fig -. 99: Node numbering in the hvdc module.

9.2.2.1 A complete three-phase example

As a complete numerical example, let us build the Y-matrix of an hvdc-module,

Fig. 99, minus the 6-valve bridge, and minus the smoothing reactor.

Each single-phase units data is: 50 MVA, 100/230 kV, Zsc = 10%, 50 Hz,

and the discretization will be done using backward Euler's integration rule and

an integration step of At — 50 u,s. Using the formulas in Eqs. (154,155 and 156)

L- = ^ x i ^ x d 5 o = 0 - 0 6 3 6 7 / f <158>

a = ^ = 0.4348 (159)
230 v '

gu = 50 x 10"6/63.67 x 10"3 = 0.7854 mS

012 = 0.4348 x 0.7854 = 0.3415 mS (160)

g22 = 0.43482 x 0.7854 = 0.1485 mS

The single-phase transformer matrix is, according to Eq. (157)

9. The HVDC Model 138

a or 1 b or 2 c or 3 d or 4
1 or x 1 0 6 8
2 or y 2 0 7 6
3 or z 3 0 8 7

Tab. 9.1: (Matrix "node") Connection nodes for transformers x, y, and z. Rows axe
the transformers, and columns are the nodes.

0.7854 -0.7854 -0.3415 0.3415

-0.7854 0.7854 0.3415 -0.3415

-0.3415 0.3415 0.1485 -0.1485

0.3415 -0.3415 -0.1485 0.1485

(161)

Now, with three of those single phase units, let's call them transformers x,

y, and z, in a Ydll connection, we can add each of their contributions to the

module's matrix [YN]- In Fig. 100, the details of the connection to the module

nodes are shown. Those nodes are tabulated in Table 9.1, the matrix "node".

The process is better described by the C-code in the listing in Fig. 101.

ground.

9^3 •vw-J 4

Fig. 100: Ydl l three-phase connection of single phase units.

The resulting matrix for the nine node module is

9. The HVDC Model 139

f o r (t r = 1; t r <= 3; tr++){

f o r (row = 1; row <= 4; row++){

f o r (c o l = 1; c o l <= 4; col++){

extNodel = n o d e [t r] [r o w] ; / / Network node number.

extNode2 = n o d e [t r] [c o l] ; / / Network node number.

Ym[extNodel] [extNode2] += Yt [row] [c o l] ;

}

}

}

Fig. 101: Procedure to incorporate the single phase units Yt matrices into the mod
ule's Yn matrix.

0.7854

0

0

0

0

0

0.7854

0

0

0

0

0

0.7854 0 0

0 0 0

-0.3415 0.3415

0

0

0 0 -0.3415

0 0 0.3415

0

0

0

0.2969

0 0

0 0

0

-0.3415

0.3415

0

0

0.3415 0

0 0

-0.3415 0

0 0

0 0

0 -0.3415 0.3415 0 0 -0.1485

0.3415 0 -0.3415 0 0 -0.1485 -0.1485

0 0 0 0 0 0 0

-0.1485 -0.1485 0

0.2969 -0.1485 0

0.2969 0

0 0
(162)

9.2.3 A d d i n g the 6-valve bridge and the smoothing reactor

Each one of the six valves in the bridge is modelled as a resistor with one of two

possible values depending on whether the valve is open (OFF) or closed (ON).

The values chosen for the resistance are 1 mf2 when the valve is conducting (ON)

or 1 Gft when it is not conducting (OFF).

The combination of ON/OFF values states for the six valves is what we call

the status of the bridge. The current status of the bridge is kept in an integer

variable (status) where the six least significant bits store the state of each of the

9. The HVDC Model 140

six valves. Those bits are set to one for ON valves, and reset to zero for OFF

valves. See Fig. 102.

° i A , « \

STATUS
5 4 3 2 1
1 0 0 0 ,1 1

V*Jv»3/*Op*n-

0 BIT/VALVE

STATUS m 14

V t l v O l l C l o — d
Wv» lltclo—d
Vmtv* 5 It clottd

Fig. 102: Status of the bridge as a bitwise variable.

For 6-valves there are 26 = 64 possible combinations of ON/OFF states (even

if some are not possible under normal conditions). For each of those 64 combi

nations one can precalculate (during the preprocessing stage) the corresponding

[Y] matrix of the whole module. The 64 matrices thus obtained are stored in a

vector of matrices with 64 elements, subscripted from 0 to 63, see Fig. 103. It is

worth noting that the variable "status" contains in the first six bits of its binary

representation the OPEN/CLOSE status of each of the valves in the bridge.

That variable "status" when interpreted as a digital integer indexes the proper

[Y] matrix to be used to represent the module at any time-step.

Vector ot Matrices
(Precalculated)

p 1
1

^35

STATUS (35)

(Active (Y] matrix)

Fig. 103: The vector of precalculated [Y] matrices.

9. The HVDC Model 141

The smoothing reactor contributes to each of the sixty four matrices with its

discrete equivalent conductance, according to the selected integration rule. For

the backward Euler's rule, the equivalent conductance of that reactor is

9 smooth = j (163)
•^smooth

This conductance value will be added to positions —according to Fig. (99)—

(9, 9) and (6, 6), and subtracted from positions (6, 9) and (9, 6) in each of the

[Y] matrices calculated above.

9.3 H i s t o r y sources i n the hvdc-module

Now that the resistive contribution of the hvdc-module to the network's [Y] ma

trix, in any of its sixty four possible o n / o f f valve combinations has been taken

care of, let us focus our attention on the current history sources. In the hvdc

module, there is one history source from the discrete model of the smoothing

reactor, and one history source for each single-phase transformer unit, corre

sponding to the discretization of its short circuit inductance, see Fig. 104.

4

5

Fig-. 104: Discrete time model of the hvdc 6-valve module.

Before considering the accounting of each of those history sources into the

9. The HVDC Model 142

total nodal currents, let us examine the history source in the single-phase trans

former unit as depicted in Fig. 105.

The short circuit inductance equivalent discretized history source contributes

to the total nodal currents of node "a" with a value of plus-/it, and to node "c"

with minus-rit; it also contributes to nodal currents of node "c" with minus-a-rit,

and to node "d" with plus-o • ht. The voltage across the short circuit inductance

that is used to update the history source ht is VL , as expressed in Eq. (164)

9 . 3 . 1 Examples

To illustrate the whole process of history current accumulation into the nodes

of the hvdc-module, let us consider the two transformer connections included in

the code: YyO and Ydll. In Fig. 107 the Ydll connection shows clearly where

the different single-phase units are connected within the module. From there

and according to what was said in the previous section, the nodal current vector

for the YyO connection is shown in Fig. 106.

9 . 4 H v d c matrices

The 9 x 9 (or 10 x 10) G-matrix (the Y-matrix is real, thus it is a G —

conductance— matrix) of the hvdc module relates the total nodal currents, [h],

in the module with the voltages of its nodes, [v], according to Eq. (165).

Fig. 105: A single phase discretized short circuit inductance.

vL = va - vb - a (vc - vd) (164)

9. The HVDC Model 143

node
1 2 3 4 5 6 7 8 9 10

h x hy 0 - a h x -ahy "s a(hx+hy +hz)

Fig. 106: Total nodal currents for 'Ydll' connection.

ground ^ Q

Fig. 107: Hvdc module with a 'Ydll' transformer connection.

[G] [v] = [h] (165)

From all the nodes in the model, only the first five will remain visible to the

solver, let us call them "a" nodes, and the rest "b" nodes. Making use of this

definitions, and subscripts, Eq. (165) can be written using a matrix partition as

in Eq. (166).

node

'noda

1 2 3 4 5 6 7 8 9

0 -ah 2 h s

- a h ^ ahy

Fig. 108: Total nodal currents for 'Ydll' connection.

9. The HVDC Model 144

Gab Va

Gba Gbb
(166)

Next, and using the Generalized-Kron's reduction, the system of equations

in Eq. (166), becomes the reduced one in Eq. (167).

[Grea] [va] = [hred] (167)

where
Gred — Gaa - GabG^b Gba

hred = ha — GabGbbhb

9.5 Interface of the hvdc model and O V N I

At each time step, the driver determines the voltages for the "a" nodes, as

defined above, based on the history values hA calculated by the module in the

previous step; i.e., OVNI calculates v\.

Next, it is the module's model turn again. It receives vA, the voltages of the

"connection-nodes", and counting on the availability of the hs history values

calculated by the model itself during the previous time step, the model proceeds

to establish the voltages for the "6" nodes:

VB = G^1 {hb - GbaVa) (169)

Now, with all the modules nodes voltages, VA and VB (just calculated), the

model computes HA and /i# for the next time step. Before returning the hA

vector to OVNI, it includes the effect of the reduced nodes like this:

Kew <- / C e u - GabG^hb (170)

where h%ev is the value of the currents vector ha, before accounting for the in

ternal nodes contributions in vector hb] h™w is the vector once the contributions

have been included, and ready to be exported to OVNI as external source's his

tory terms; the matrix product GabGbb

l is precalculated and identified as GmiX

in the code.

9. The HVDC Model 145

Finally, the module's model returns to OVNI, the core.

10. HVDC-BRIDGE CONTROLLER

To explore some of the limitations and capabilities of the HVDC-bridge model

developed previously, a basic current control loop model was introduced. This

model incorporates a simple proportional-integrative amplifier, receives as input

the DC-output current of the rectifier group and, as synchronization signals, the

input voltages to the bridge groups, and issues the gate signals corresponding to

each of the twelve valves in a pair Yy/Yd transformer-bridge group, see Fig. 109.

synchronization,
voltages

CONTROLLER

, current input

gate signals

Fig. 109: Inputs and output of the simplified current controller.

10.1 B l o c k V i e w of the Cont ro l le r

The controller strives to maintain the DC current at a desired value, the refer

ence value. The controller adjusts the firing angle of the valves as it considers

10. HVDC-bridge Controller 147

necessary to achieve that goal.

In Fig. 110, a block schematic is shown that illustrates the general struc

ture of the controller modelled. The D . C . raw current, read from one of the

H V D C bridges after smoothing, is put through a filter to keep only the D . C .

component. The filtered D . C . current is compared against a reference value,

and the difference is labelled the error for the purposes of the PI amplifier, the

next stage. The PI block produces the raw or apparent needed change in the

firing angle, Aa*. This proposed change in alpha is then clipped, if necessary,

to keep the firing angle within the limits imposed by the user. Next, in the

cycle-position stage, the controller determines whether, including the proposed

change, it is time to trigger the next valve. If triggering time conditions are met,

the valve-scheduler takes over, produces the necessary gate signal, and activates

the ramp-cycle synchronizer that, using as input voltages on the primary of the

transformer-group, reset the ramp-cycle counters.

raw DC
current

reference
voltage(s)

*\ DC filter]
DC

current

jsi signal
^conditioning c u r r e n t

Proportionals Integral Aa*
Block

reference DC

clean
preference

cycle-ramp
synchronizer

valve-scheduler l<
(activate)

Y
to valves

gate pulse

CLIPPER
limits enforcer

Aa

f v>
Aa

f
cycle-

mo
position
nitor

Fig. 110: Controller model block diagram.

10.2 Stage One: T h e D C filter

The signal that needs to be kept at the chosen reference value, is the output

current of the rectifying HVDC-bridge. Regardless of the smoothing effect of the

10. HVDC-bridge Controller 148

inductive stage in the bridge, the output current still contains some harmonics

that need to be filtered out before the current is put to the controller. To extract

the DC component from the current, a simple RC filter was used.

10.3 Proport ional- Integrat ive B l o c k

In this stage1, and using as input the error (e), that is, the difference between

the DC component of the HVDC bridge output current and the reference value,

the necessary change in the firing angle is computed as sketched in Eq. (171).

^ = I DC ^reference (171)

Aa* = Kp€ + Kt f e • dt

To discretize the second part of Eq. (171), one can observe that it describes

the current voltage relationship of the series RC circuit fed by a current source,

as illustrated in Fig. Ilia. In that circuit, the current has a value of epsilon, e;

the voltage is delta alpha asterix, Aa*; the resistance has a value Kp; and the

capacitance a value l/Ki.

- V v \ — |

=© 4= 1 / * c V

R • R c

i—Wv W\— i

© * ©

Fig. Ill: RC equivalent circuit for the PI block.

Once discretized, the equivalent circuit of the PI block appears in Fig. Illb.

If the backward Euler's integration rule is used to discretize the circuit, Rc and

e(t) are given by Eq. (172).

1 Even if in analog control systems the Pi-block is implemented by an amplifer with the
appropriate feedback, and as such has been referred to as the "Pi-amplifier" in that context,
in the case of a digital controller, the use of the name block seems more appropriate.

10. HVDC-bridge Controller 149

R = KP

Rc=f = Kr.At (172)

e(t) = Vc(t - At)

From the circuit in Fig. Illb, the voltage across the capacitor can be deter

mined as

VC = V - R-i (173)

Combining Eq. (173) with Eq. (172c), the history voltage source e(t) is ex

pressed

e(t) = V(t -At)-R-i{t - At) (174)

We know that the total voltage, V, is but delta alpha asterix, the correction in

the firing angle. We also know that the current, i, is the error e. Simplifying our

notation for values in the previous integration step by applying an apostrophe

to them2, Eq. (174) becomes

e =A'a - Kpe' (175)

where A'a is the correction of the firing angle at the previous time step; and e'

is the error at the previous time step.

The total voltage across the RC group, V, is then calculated

v = e + (R + Rc)i = e + RT-i (176)

Substituting previous equations into Eq. (176), the last one becomes Eq. (177).

A a = A'a - Kp • e' + (Kp + Kr • At) e (177)

where A'a — Kp • e' is called hist in the code since it depends on previous step's

values of error and angle change; also (Kp + Kr • At) is the value of the resistor

RT in the code.

2 That is, for any function of time, a; = f(t), x = x(t), and x' = x(t - At).

10. HVDC-bridge Controller 150

At every time step, the necessary change in the firing angle is then computed,

Aa = hist + RT-e (178)

Now all that remains is an efficient formula to update that history value,

hist. At the previous time step the correction is also given by Eq. (179), i.e.

A'a = hist' + RT • e' = hist' + Kp.e' + K:.e' (179)

Substituting this into the definition of hist implicit in Eq. (177), the updating

formula for the history value hist is

hist = hist' + Kj At e' = hist' + Rc e' (180)

At every time step Eqs. (178, 180) are used. The first one to determine the

necessary change in firing angle, the other one to calculate the hist value that

will be used at the next time step.

10.4 C y c l e pos i t ion moni tor and the Valve Scheduler

The controller issues gate signals both for the six valves of a YyO-transformer-

bridge module as for the six valves of a Ydll-transformer-bridge module, as

intimated by Fig. 109. However, to simplify the explanation of the cycle position

monitor (and of the valve scheduler), it is better to review the process when

applied only to one of the modules, let us say the YyO one. After the method is

explained, the combined effect of both types of bridges is accounted for.

In what follows, and to simplify the description of the processes, valves in

the bridge are numbered from zero to five, and connected to phases A, B, and C

of the transformer secondary according to Fig. 112. Further down this section,

when need arises to refer to valves in both types of modules, YyO and Ydll, the

valves will be labelled: YQ, YI, Y2, Y3, Y±, and Y5 for the YyO module; and D0>

Di, D2, Dz, £>4, and £>5 for the Ydll module.

Figure 113 shows the voltages in phases A, B, and C, connected to the

bridge as depicted in Fig. 112. In Fig. 113a, also, if firing angle is set to zero

degrees (this controller is symmetric in the sense that the same firing angle is

10. HVDC-bridge Controller 151

A-
B-
C -

Fig. 112: A full-wave valve bridge, with valves and phases identified.

applied to all valves), valves need to be fired at the time points and sequence

there indicated. Time points which are separated by the constant (under no

controller modulation) interval of sixty degrees (translated into time units, to

be sure).

valve 0 valve 2 valve 4 valve 0 valve 0 valve 2 valve 4 valve 0

0 O005 OOi 0015" 0.02

Fig. 113: a) Firing time points when alpha is zero; b) Firing points when alpha is not
zero.

This effect can be produced by two separate but combined data processes: a

counter, tick, that goes from zero to sixty degrees, the reference, held in variable

tickRef (with some modification, to be seen), and is compared at each time step

10. HVDC-bridge Controller 152

against its limit, sixty. When the counter, tick, hits the limit, a valve needs

to be fired; which valve to fire, is the question answered by the second data

process, an infinite periodic sequence, 0, 1, . . . , 5, 0, 1, . . . , 5, etc., simulated

by an array of six elements, aValveSequence, and an index that wraps around,

iNextValveToFire. These two data processes can be visualized, the first by a

saw-tooth ramp, as in Fig. 114; and the second one, by a circular array, see

Fig. 115.

Uick

tickRef

>

fir
(

f 1 i i 1
e fire fire fire fire
) 1 2 3 4

F i g . 114: T h e ramp signal and the model 's variables for a = 0.

Fig. 115: D a t a structure to select next valve to be fired, when the ramp so requests.

If a Yd-module is controlled by the same control unit than the previous Yy-

module, gate signals have to be issued each 30°, one for the Yd-module, and next

one for the Yy-module, according to the sequence: DQ, YQ, DI, Y\, D2, Y2, D^,

10. HVDC-bridge Controller 153

/Mick

fire
DO

fire fire fire
YO D1 Y1

f 1 fire
D2

Fig. 116: The ramp signal and the model's variables for a = 0, when gate signals are
issued for Yy and Yd modules.

F 3 , -D4, Y±, L>5, K 5, and repeat. That is twelve possibilities. In this case tickRef

is 30°, and aValveSequence is complemented by a parallel array: aValveGroup,

that indicates if the next valve to be fired is in a Yd-module, zero-code, or in a

Yy-module, one-code. In this case, the index variable, iNextValveToFire, wraps

around at 11 down to zero. See Figs. 116 and 117.

Fig. 117: Scheduling the next valve to be fired: index, iNextValveToFire; and arrays:
aValveGroup and aValveSequence.

10. HVDC-bridge Controller 154

10.5 C y c l e R a m p Synchronizer

At the beginning of each cycle of the input voltage, the position of the tick

counter within the cycle of the reference signal needs to be determined. To do

so, the reference point a = 0 in Fig. 113a, is obtained as the moment when the

two voltage reference signals, voltages of phases a and c, are equal and positive.

In the first implementation of the controller, a semi-infinite bus with constant

frequency is assumed at the primary of the transformers feeding the bridges,

under that assumption synchronization becomes a simple task of keeping track

of the number of integration steps that have passed by, and comparing the count

with the number of steps per cycle, i.e. no need for the additional input sketched

in Fig. 109. However, under more general conditions, that signal may come from

a less ideal source and present some higher harmonic content that forces upon

us the introduction of some kind of filtering to extract the fundamental of the

voltages in phases a and b before comparing them. For details of this reference

fundamental extraction see § 10.7. at the end of this chapter. There, a simplified

and sufficiently accurate filtering scheme with high computational efficiency is

described. This was the filter adopted for this controller.

A tick

value of
tick at the,
beginning
of a cycle

FIRING WALLS

(firing angle)

Fig. 118: Firing walls and initial value of the tick ramp counter at the beginning of
each reference cycle.

In the previous section, to determine when to fire a valve, we used a step

counter, tick, incremented at each time step, and checked if it had hit one of

10. HVDC-bridge Controller 155

the vertical edges of the sawtooth wave we used to explain the operation of the

firing process in Figs. 112 and 116, repeated here as Fig. 118 for convenience.

Let us call those vertical edges firing-walls. So the process of firing is reduced to

counting steps, and waiting for the counter, tick, to reach the next firing-wall.

At the beginning of a cycle, that is when va is equal to vb and positive, we

determine how far from the next firing-wall the tick counter is. This process

also sets the index iNextValveToFire at the right position within the arrays in

Fig. 117, above.

All this process was implemented in the method CalcTicklniCycle of the class

ctl_t, the class that describes any controller entity. The name of the method

stands for " Calculate the value of Tick at the Initial moment of the Cycle". As

input, it takes the firing angle a, and returns two values: the correct value for

tick, and the position for index iNextValveToFire. Depending on whether the

firing angle is in the intervals between one and 30°, or between 30° and 60°, or

any of the other 30° wide intervals shown in Fig. 118, the two output values are

calculated as in the following code listing:

int clt_t::CalcTicklniCycle(double alpha).{.'•
// It returns the position of "tick" at beginning of cycle,
// and sets up index INextValveToFire.

i f (1 <= alpha £& alpha < 30)(
INextValveToFire =0;
return int(30.5 - alpha);

}else i f f alpha < 60){
iNextValveToFire = 0;
return int(60.5 - alpha);

}else i f (alpha < 90){
INextValveToFire « 0;
return int(90.5 - alpha);

Jelse i f f alpha < 120){
iNextValveToFire - 0;
return int(120.5 - alpha);

)else i f (alpha < 150){
iNextValveToFire - 0;
return int(150.5 - alpha);

lelse i f f alpha < 180){
iNextValveToFire = 0;
return int(180.5 - alpha);

}else{
// Error condition!

)
)

10. HVDC-bridge Controller 156

10.6 M o d u l a t i n g the firing angle

At each time step, and using the formulas in Eqs. (178) and (180), the controller

determines the necessary change in the firing angle, Aa. This change in alpha

is the "time distance" that the firing walls need to be displaced to the right,

or, what is equivalent, by how much we need to move the tick counter to the

left (easier, since it is a single operation). Then, the tick counter is compared

versus the next firing wall, if there is a hit a request to fire is issued as seen in

previous sections. This functionality is implemented in the method SenseAnd-

SetUpGateSignalsQ, the core ofthe controller, in the listing that follows.

// This code does not use DC prefiltering.
// First, the proportional/integrative section:
error = hvdc[ilnHVDC].GetldcO
delAlpha •+= Rt * error + hist;
hist += Rc * error;
// Clipping,To respect min and
// max values of alpha.
newAlpha = alpha + delAlpha;
i f (newAlpha > alphaMax){

delAlpha = alphaMax - alpha;
}else i f (nevAlpha < alphaMin){

delAlpha = alphaMin - alpha;
}

// Yes, alpha goes in degrees,
// but time here i s discrete,
// so convert delAlpha into
// "steps".

delAlphaSteps = ...
// Now, let's check i f the "ramp"
// hit the firing wall!

- iRef; // In amperes.
// Accumulate change.
// Update history term.

an array with all
the hvdc modules
in the system.

hvdcfj

i l n H V D C
which HVDC's
output current is
controlled by the
CTL unit.

method that
delivers the
output DC current
of that HVDC
module.

tick++; // Up goes the ramp!
i f (tick - delAlphaStep >= tickRef){ // Bang! Time to FIRE!

alpha += delAlpha; // Change in firing angle accepted!
delAlpha — 0; // We can start accumulating change again,
tick = 0; // Reset the "ramp".
// Now, let's schedule...what valve to fire!?
activeGroup = aValveGroup[iNextValveToFire];
activeValve = aValveSequence[INextValveToFire];

// Point to next valve, for the next time step.
i f (-H-iNextVal veToFire > 11) // Wrap around, 0..11 valves!

iNextValveToFire = 0; (CONTINUES...)

10. HVDC-bridge Controller 157

(...COMES FROM PREVIOUS PAGE)

// Now issue the gate signals.

// Sets the b i t i n the "gateSgnl" of the "activeGroup"
// (Odelta, l=wye) corresponding to the "activeValve".

gateSgnl[activeGroup] |= 1 « activeValve;

//To control the pulse width, we reset the counter,
// which, incremented every time step, is used to decide
// when to turn the gate signal off for that "activeValve"
// of that "activeGroup".

pulseWidthCounter[activeGroup][activeValve] = -1;

} // Ends IF fir i n g wall was hit!
I — L

gateSgnl[][] bits(valves)
^ • v ^ 5 4 3 2 1 0

delta (0) 0 0 1 1 0 1

wye(1) 1 0 0 1 1 0

gate signals are efficently passed
to the HVDC bridges, as bits encased
into a convenient integer variable, gateSgnl.

Next, the controller gets synchronized with the voltage signals at the primary

of the transformer, as was seen in a previous section, and, finally, the controller

checks for gate pulses due for termination in each of the twelve valves, as in the

listing on the next page.

Now some final implementation notes. To simplify the counting of degrees

at each step, during initialization the controller calculates the coefficient

steps Per Degree = 1.0/(360 * FREQ * deltaT)

Also during initialization, the controller converts the counter limit, 30°, into

10. HVDC-bridge Controller 158

f o r (g r o u p =0; g roup < 2; group-H-){ / / F o r D o r Y c o n n e x t i o n s ,
f o r (v a l v e = 0; v a l v e < 6; v a l v e){ / / F o r e a c h v a l v e ,

/ / I f t h e p u l s e r e a c h e d i t s l i m i t i n w i d t h . . .
i f (++pulseWidthCounter [g roup] [v a l v e] >=> p u l s e W i d t h){

p u l s e W i d t h C o u n t e r [g roup] [v a l v e] = - 3 0 0 0 0 ; / / L a r g e n e g a t i v e !
g a t e S n g l [g roup] &= - (1 « v a l v e) ; / / T u r n s o f f g a t e s i g n a l !

}
}

}

integration step count and puts it in variable tickRef.

tickRef = integer jpart-of (30 * steps Per Degree + 0.5)

10.7 Filtering the angle reference voltage

In this work a simplified and computationally highly efficient filter was used to

extract the fundamental component out of the angle reference voltage (VAC —

VA - Vc), a parallel RLC filter, as illustrated in Fig. 119, tuned to the AC

network rated frequency. The bandwidth should be narrow enough as to filter

out the high frequency components introduced in this voltage by the switching

of the valves; but chosen appropriately, it can include both 60 and 50 Hz with

the same parameter values. It was chosen to tune it to f0 = 50 Hz, with a

bandwidth B = 34.3 Hz, with half power frequencies at f\ = 35.7 Hz, and

/ 2 = 70 Hz respectively.

In this type of filter, the resonance frequency in rad/sec is given by

Also, the bandwidth B can be calculated:

1
B = u2 - ui = —

10. HVDC-bridge Controller 159

Fig. 119: Filtering the angle reference voltage signal.

The resonance frequency is the geometric mean of the half power frequencies:

From all said above, and the last three equations, the filter parameters chosen

were: R = 45.81 fi; L = 0.1 H; C = 101.32 fiF.

Fig. 120: Discretized version of the reference angle voltage filter.

In Fig. 120, the discretized version of the filter can be seen. The input signal

(voltage between phases o and c of the primary of the transformer) is fed into

this filter as a current ij^ and the filtering proper is achieved in only two sums

and one multiplication:

Vfiltered = Req{hc + + */iv),

10. HVDC-bridge Controller 160

where i/jv is numerically identical to VAC-

Using backward Euler's as the integration rule, during initialization of the

controller the constant discrete equivalent conductances for the capacitor, gc,

and for the inductor, gL, are calculated a$ ^

9 = R ' 9 c = Xt> 9 L = T
Then, also during preprocessing (i.e., at initialization), the equivalent resis

tance is determined according to

7? 1

9 + 9L + 9C

At every time step, the two history sources seen in Fig. 12 and used in the

filtering equation are updated according to

hL = h'L - gL -v'

he = 9c • v\

where v' is the previous time step value of the filtered voltage.

The effect of this filter can be appreciated in Fig. 121, where voltage Vac is

compared to the output of the filter, its fundamental.

:

:

—\ —\

. A" V A-
"\\

. V

t -T
0 1 a O . I M o I T a i r s o . i a o . ias o . i a 0 . 19s 0.2

Fig. 121: Reference angle voltage Vac and its fundamentals obtained by the filter de
scribed in this section.

11. MODELLING SATURATION IN POWER

TRANSFORMERS

The transformer model described in the HVDC multi-state model section of this

report is a linear one; i.e., saturation in the core is not considered. To incorpo

rate the effect of magnetic saturation, two different situations were considered,

namely: three-phase banks of single-phase units [4]; and three-phase units with

coils mounted on a three-leg core [66].

11.1 Sa tura t ion i n single phase units

When the three-phase transformer is a bank of single phase units, independence

of magnetic paths in each of the three phases simplifies modelling of saturation

in the core. Magnetization of the core is accounted for, in this case, by a non

linear inductor connected across the low-voltage side of the single-phase unit, as

in Fig. 122.

Fig. 122: Magnetization branch in a single-phase transformer (non-linear)

Given the magnetization characteristic of power transformers for these appli

cations, see Fig. 123a, magnetization currents when the core is not saturated can

be safely neglected. Hand in hand with the previous modelling compromise goes

the accuracy and convenience of representing the magnetization characteristic

of the core by a two slope curve, as in Fig. 123b.

U t .

11. Modelling saturation in power transformers 162

slope = Isoi

Fig. 123: a) Magnetization of a transformer core (typical); b) Two-segments piecewise
magnetization curve used.

Summarizing: a magnetization branch is not included in the equivalent cir

cuit unless saturation is detected during simulation; once saturation is sensed,

an inductor is introduced as shown in Fig. 124, with the value of the slope in

the saturated part of the characteristic in Fig. 123. Data required from the user

includes, the flux-linkages value for the saturation knee in Fig. 123, Xsat, and

the slope of the saturated part of that curve, Lsat, that is:

LSat = ^r, forX > Xsat (181)

close,
if flux is
in saturated
region

Fig. 124: Saturation modelling for a single phase transformer.

11.2 Satura t ion i n three-phase units

When coils for the three phases are mounted on a three-phase magnetic core,

interaction of magnetic flux among the three legs and the surrounding media

creates a more complicated scenario. In this case, the non saturated three phase

unit is modelled by its open circuit test values: F0° and Y+, the open circuit

admittance for zero sequence, and the open circuit admittance for positive (and

11. Modelling saturation in power transformers 163

negative) sequence. An approximation is made since F0°c >> Y0
+

C
l, when the

phase self and mutual admittances are calculated according to Eqs. (182), we

can safely neglect and write the magnetization non-saturated matrix as in

Eq. (183). Saturation in three-phase units is modelled by

V _ Y°+2Y+ ^ Y°
/ s - 3— ~ ~T

Ym — _ Y°-Y+
3

Y°
(182)

[Yns]

XI
3
YI 3
Y°

L 3

XI 3
XI 3
XI 3

XI 3
XI 3
XI
3 .

(183)

A non-saturated three phase transformer unit is represented by the models

of each of the phases with a coupled group of magnetization admittances that

shunts the three phases to ground, as in Fig. 125.

coupled group

Fig. 125: Non-saturated three phase core transformer.

Flux in each phase in monitored and, if in a particular phase, flux enters

the saturated region of the magnetization characteristic, a saturated magneti

zation equivalent inductance, with the same value as described in Eq. (181), is

1 For three-leg cores.

11. Modelling saturation in power transformers 164

introduced in shunt with that phase, as illustrated in Fig. 126, for the case of

phase-a's leg saturation.

Fig. 126: Three phase core transformer with phase-a's leg saturated.

So, all counted, there are eight possible [Y] matrix contributions for three

phase unit, be it a three phase core device, or a bank of single phase units.

The eight possibilities account for all possible saturation states in the three legs,

magnetically independent or not.

11.3 K e e p i n g track of a phase-leg's flux

To determine whether a core leg is saturated, it is necessary to keep track of

each leg's flux linkages at every time step. To do this, beginning with the

phase voltage, v(t), at the end of the last processed integration step, starting

with Faraday's Law (see Eq. 184); then integrating both sides along the time

interval between (t — At) and t, and using the backward Euler's integration

rule to approximate the definite integral on the left side, we obtain the discrete

equation on the right hand part of Eq. (184).

The last expression in Eq. (184), once reorganized as in Eq. (185) can be

v = — =• v(t) • At « X(t) - X(t - At) (184)

11. Modelling saturation in power transformers 165

used to keep track of the phase's flux linkages at each time step, provided one

knows the flux linkages at the previous time step, and the current voltage across

the phase coil (on the side on which Lsat, and Xsat were specified).

If the leg-flux linkages just calculated happen to jump over the saturation

knee defined by A s a t , the saturated inductor Lsat needs to be introduced in the

model shunting the corresponding phase (as in Fig. 126, for the case where

saturation of the leg corresponding to phase a was detected).

Fig. 127: Non-saturated magnetization in three phase core transformers.

11.4 Mod i f i ca t i on of the H V D C - m o d u l e model to include saturat ion

First, let us consider the non-saturated magnetization branch, NSB (only for

three-leg cores), and its relationship with the linear HVDC-module model, Fig. 127

From the open circuit test data provided by the user, Y° and Y+, one deter

mines the coupled group of L's, the NSB, as represented by the admittance

A(i) = A(t - At) + v(t) • At (185)

0
HVDC
module

matrix [Yns], Eqs. (186, 187, and 188).

Ys =
Y° + 2Y+

(186)
3

Y°-Y+

(187)
3

11. Modelling saturation in power transformers 166

[Yns] =

V Y Y

Ym Ys Ym

Y Y Y
l m * m 1 s

(188)

The inductance matrix, or rather its inverse, [L] \ is readily obtained from

Eq. (188) result as explained in Eq. (189) below.

[L] = 2 T T / • [Yn8]

Where / , in hertz, is the frequency of the open circuit test.

(189)

a

•

V
7

•

tit

•

Fig. 128: Phase voltages and non-saturated magnetization currents.

As we are representing the non-saturated magnetization phenomenon by

a group of coupled inductances as seen in Fig. 127, the relationship between

phase voltages (grouped in vector [v]) and non-saturated magnetization currents

(grouped in vector [i]) is:

Va ia

Vb ; W = ib

ic_

(190)

Where [L] is the inductance matrix whose inverse has been obtained in Eq. (189).

Integrating Eq. (190) between instants (t- At) and t, and simplifying notation:

[v] = [v(t)\ and [v1] — [v(t — At)}, same for currents.

J [v] • dt = [L] ([»] - [i'])
t - A t

(191)

11. Modelling saturation in power transformers 167

Next, we approximate the left-hand side integral in Eq. (191) using backward

Euler's rule, and obtain Eq. (192).

[v] • At = [L] ([i] - [i']) (192)

Premultiplying Eq. (192) by [L] _ 1 , from Eq. (189), and solving for [i], the non-

saturated currents at the end of the active integration step:

[i] = At-[L]~l [v] + (193)

Defining the matrix [Gn$] and the vector [hns] as in Eq. (194), Eq. (193) can be

rewritten in its canonical form, shown in Eq. (195).

[Gns] = At • [L]-1; [M = -K] (194)

[»] = [Gn.][v] - [hns] (195)

Inclusion of this [Gns] matrix into the [G] matrix of the HVDC-module is illus

trated in Fig. 129.

0 1 2 3 4

Coupled group of L's \
representing non-saturated

magnetization.

Fig. 129: Including the non-saturated magnetization matrix, [Gns], into the HVDC-
module [G] matrix.

When any leg becomes saturated, an inductor with a value Lsat, supplied by

the user (see § 11.1 in this chapter, pag. 161), is connected between either node

0, 1, or 2 (depending on which leg became saturated) and ground. See Fig. 130.

In this case the equivalent conductance, using the backward Euler's integration

rule:

11. Modelling saturation in power transformers 168

9sat — (196)

0
HVDC
module

non-saturatedt

magnetization

X

Fig-. 130: Modelling saturation in the core.

is added to the diagonal element in the module's [G] matrix, corresponding to

that node. The inclusion of the three switches outlined in Fig. 130, raises the

number of possible status of the whole extended module (that is, including the

magnetization effect) from 26 up to 29. To represent the status of the extended

module, three more bits will be necessary in the status word, which brings the

number of precalculated C7-matrices per HVDC module up to:

Those matrices continue to be 5 x 5 ones, which in double precision repre

sentation amount to:

a small memory investment for the enormous performance benefit obtained.

11.5 H i s t o r y sources in t roduced by magnetizat ion model l ing

Six new current history sources need to be included and updated by the model.

One for each saturated branch, and three from the coupled group of non-

saturated magnetization model, as shown in Fig. 131.

2 (6 + 3) = 512 matrices

5 x 2 x 8 x 512 = 40,960 bytes = 40 kbytes

i l . Modelling saturation in power transformers 169

Fig. 131: The six history sources introduced to model magnetization in the trans
former.

Each of the saturated branch history sources, hs, is updated, after using back

ward Euler's rule for discretizing the corresponding inductance, by the formula

in Eq. (197), where gsat is defined in Eq. (196) for inductor k, where A: = 0,1,2.

hneXt,teP = ^ _ ^ . ^ (l 9 ?)

For the non-saturated modelling group, the three history sources, connected

as in Fig. 131, are updated by Eq. (198) —again using backward Euler's.

[hneXt,teP] = [M _ r g ^ j (l 9 g)

11.6 Effect of the saturat ion model l ing i n the p r imary current

In Fig. 132 below, the current in the phase a of the primary of an HVDC

module transformer is shown ignoring saturation of the core, that is, a linear

core transformer is assumed.

In Fig. 133, for the same situation depicted in Fig. 132, the saturation of the

transformer core has been modelled as described in this report, and occurrence

of peaks and valleys in that current corresponds to the expected results.

11. Modelling saturation in power transformers 170

Fig. 132: Primary current with a linear
model and EMTP simulation.
DSDI, §7.7. Microtran/EMTP

core under steady state conditions, OVNI's
The large spikes belong to OVNI's before

avoids them using CDA [10].

Fig. 133: Primary current with a saturated core under steady state conditions, OVNI's
model and EMTP simulation. See caption to Fig. 132.

Part V

IMPLEMENTATION

17/-

12. OVNI, THE SIMULATOR'S ENGINE

12.1 Introduction

The best, up to date, and most complete description of the core is the code itself. As
the next best thing, this chapter describes succinctly the implementation of the inte
grator proper. OVNI is an OOP application written in C++1.

Each one of the major parts of the solution: clock, network, events, blocks,
subblocks, elements, history sources, etc., is represented in OVNI as an object, an
instantiation of some class, as described in what follows.

12.2 Input Data File

Data to the engine comes in human readable format. That data file is created by
OVPP, the preprocessor, described in the previous chapter.

The file presents several labelled "environments2." Each environment starts
with the keyword . B E G I N followed by a label that identifies the particular environ
ment: G E N E R A L , E L E M E N T S , B L O C K S , E V E N T S , etc. Each environment
finishes with the keyword . E N D and the same label used in the opening .BEGIN of
that environment.

Inside most environments, there are subenvironments, for instance, in the
E L E M E N T S environment there is a subenvironment for transmission lines,
. B E G I N L I N E S E N D L I N E S , and inside again a separate subsuben-
vironment for each particular line: . B E G I N L I N E - 3 E N D L I N E - 3 .

Data items inside environments begin with a label separated by a colon from its
value, for example: charac_impedance_per_mode: 7 2 4 6 1 5 6 1 5 .

All of this makes the input file easy to read for the user, if need arises, but not
to write, which is the complex job of OVPP.

' The first version of its core was written originally in Ada95 [67].
2 Which are akin to LaTeX's environments [71].

(71-

12. OVNI. the simulation engine 173

12.3 Names in O V N I

A uniform hungarian [70] notation was used in labelling variables and types in the
core's code. Variable names begin with a lowercase letter, functions with an upper
case one, constants enjoy a full uppercase name, type descriptors end with an
underscore-tee. The different entities isolated by the solution are abbreviated by a
three letter code, as follows in the extract from the code included in Fig. 134.

/ / • • • T T A N D A R n A f i T V F V T A T T f l M ' ? , .. / /

// BLK = b l o c k .
// CHM = c h a m e l e o n .
// CSR c u r r e n t s o u r c e .
// ELM = e l e m e n t .
// EVN = e v e n t (s w i t c h i n g e v e n t , e t c .)
// HSR = h i s t o r y s o u r c e .
// LNK l i n k .
// NET = n e t w o r k .
// NOD = n o d e .
// NTJM = number (as i n number o f i t e m s , e x . : numNod, n u m B l k , e t c .)
// PAR = (s u f f i x) p a r a m e t e r (t o a f u n c t i o n , when name i s a m b i g u o u s .)
// SCH = s w i t c h .
// SIM = s i m u l a t i o n .
// SRC = s o u r c e .

T
Fig. 134: Standard abbreviations in OVNI.

The hungarian notation prefixes adapted for use in the code can be seen in Fig. 135,
below.

/ / V A R I A B L E NAMES CONVENTIONS
/ / T h i s p r o g r a m u s e s t h e " H u n g a r i a n " c o n v e n t i o n t o name i t s v a r i a b l e s .
/ / I n p a r t i c u l a r , v a r i a b l e s whose names s t a r t w i t h a l o w e r c a s e :
// p = p o i n t e r s . E x . : pNod , i s a p o i n t e r t o a node s t r u c t u r e .
// a = a r r a y . E x . : aNod , i s an a r r a y o f node s t r u c t u r e s .
// apNod , a r r a y o f p o i n t e r s t o node s t r u c t u r e s .
// i = i n d e x i n t o a n a r r a y . E x . : i N o d , i n d e x i n t o an a r r a y o f n o d e s
// g g l o b a l v a r i a b l e .
// m = m o d u l e v a r i a b l e . (G o b a l w i t h i n t h e m o d u l e) .
// c = c o u n t . E x . : c N o d P e n d , c o u n t o f n o d e s t h a t n e e d p r o c e s s i n g
// e = e l e m e n t o f a n a r r a y .
// d d i f f e r e n c e b e t w e e n two v a r i a b l e s o f t h e same t y p e .
// X = p a r a m e t e r t o a f u n c t i o n . U s e d when t h e r e i s a m b i g u i t y .

' I I

Fig. 135: Hungarian notation prefixes as used in OVNI.

Also, modular variables (those visible only within a C++ file) begin with a lower
case m letter. Global variables, when they exist at all, exhibit a lowercase g as the
first letter of their names. As an example, the network node registry array, to be

12. OVNI, the simulation engine 174

introduced in the next section, is a module visible variable within the netj file:
mapNodZer. It is a module visible (m), array (a), of pointers (p) to nodes (nod),
indexed from zero up (zer).

12.4 F r o m nodes to the network

The simplest and most basic entity in OVNI's description of the network is the
node. A node was represented originally by the structure in Fig. 136. Two pieces of
data define the state of a node, its voltage, v (defined with respect to the reference
node), and its total current, h.

s t r u c t n o d _ t {
d o u b l e re / / T o t a l c u r r e n t e n t e r i n g t h e n o d e .
d o u b l e V ;

) ;
/ / V o l t a g e t o r e f e r e n c e n o d e .

i

Fig. 136: Structure that represented originally a node in OVNI.

The network simulated in OVNI is a conglomerate of nodes associated accord
ing to a connectivity matrix defined by the elements. Nodes connected galvani-
cally,3 but not including both ends of any link, are clustered together into an array
which is put inside a subblock entity, an instantiation of the class subj, as in

Fig. 137: Node array inside a subblock object.

Fig. 137.
Regardless of where the actual nodes are (each as an element of an array in one

of the subblock objects described later in this chapter), to keep track of each one of
them, the network (unique instantiation of the class netj) maintains an array of
pointers to the nodes which is initialized right before the simulation begins, the

That is, not connected to both ends of the same transmission line.

12. OVNI, the simulation ensine 175

II NOD_T
/ / Every node i n the network i s accounted for i n an a r r a y , mapNodZer,
/ / which i s a data member of the "net" c l a s s . Each node corresponds
/ / to one element i n t o t h i s a r r a y . In t h i s implementation the a r r a y ' s
/ / name i s 'mapNod' (an a r r a y of p o i n t e r s to s t r u c t u r e s ~nod_t).
/ / The t o t a l number of ex terna l nodes i n the network (nodes which are
/ / v i s i b l e to the core of the i n t e g r a t o r , as oppossed to nodes i n s i d e
/ / the models themselves) . Ground, or reference node, corresponds to
/ / the zero th element, mapNodZer[0]. Example: to r e f e r to the a c t u a l
/ / name of the node whose index i s 6 . . . mapNodZer[6]->name.
/ / A l s o , ground/reference node i s ass igned b lock #-1, and sub-block #-1,
/ / which of course i s a n o n - e x i s t i n g b l k / s u b . (See d e f i n i t i o n s above).

s t r u c t nod_t
{

char sName[MAX_LENGTH_N0DE_NAMES+1]; / / A c t u a l name of the node,
i n t i B l k ; / / Which t o p o l o g i c a l b lock i t belongs i n .
i n t iSub; / / Which sub-block i n s i d e that ' b l o c k ' .
i n t iPosInSub; / / R e l a t i v e p o s i t i o n of node w i t h i n sub-b lock .
REAL *pH; / / Po in ter to a c t u a l node current f i e l d .

Fig. 138: A node registration item, an element of the node registry array.

network nodes registry, mapNodZer. The array element is seen in Fig. 138, and the

network
mapNodZer

Fig. 139: Network registry of nodes, and their spatial relationship with the nodes,
subblocks, blocks, and the network.

12. OVNI. the simulation ensine _ l_76

II H S R _ T
/ / E v e r y e x t e r n a l h i s t o r y s o u r c e i s o n e i n s t a n t i a t i o n o f t h i s c l a s s .

c l a s s h s r t

{
p r i v a t e :

R E A L v a l u e ; / / A c t u a l v a l u e o f t h e c u r r e n t s o u r c e .
R E A L * p N o d F r o m H ; / / P o i n t e r t o a c t u a l ' f r o m ' n o d e c u r r e n t f i e l d .
R E A L * p N o d T o H ; / / P o i n t e r t o a c t u a l ' t o ' n o d e c u r r e n t f i e l d ,

p u b l i c :
R E A L * G i v e A d r H s r () { r e t u r n l v a l u e , - } ;
v o i d S e t F r o m N o d H (R E A L * p) { p N o d F r o m H = p ; } ;
v o i d S e t T o N o d H (R E A L * p) { p N o d T o H = p , - } ;
v o i d D r a i n A n d P o u r () { * p N o d F r o m H - = v a l u e ; * p N o d T o H + = v a l u e ; } ;

i

Fig. 140: The external history source class, hsrj.

registry array itself and its spatial relationship with the nodes, in Fig. 139.
The next most basic entity in OVNI is the history source, an object instantiated

from the class hsrj, seen in Fig. 140. History sources are allocated at the request of
the corresponding element, and clustered together into an array under the supervi
sion of the network object itself. Each history source is granted access to the current
field of each of its nodes (the h field in Figs. 136 and 137). And, when fulfilling the
request for allocation, the network provides the client element with access to the
"value" field of the source. This allows for the element updating of its history
sources without the overhead of message passing imposed by a more orthodox
OOP4 approach. See Fig. 141.

Fig. 141: Relationship among the elements, their history sources and the subblock's

12. OVNI. the simulation engine 177

In increasing order of complexity, our attention now turns to the element class,
to the models of the physical elements that embody the network. Element models,
in their immense and ever growing variety, are not part of the simulator core. But
being the intense centers of activity they are, the data exchange with the core, and a
generic outline to a highly efficient implementation of models was provided in a
previous chapter (under the heading of node-hiding). That outline is implemented as

/ / E L M _ T
/ / E v e r y e l e m e n t i n O V N I i s a d e s c e n d a n t o f t h i s c o m m o n a b s t r a c t c l a s s .
//
c l a s s e l m _ t {
p u b l i c :

v i r t u a l v o i d R e a d D a t a (F I L E * f)
v i r t u a l v o i d U p d a t e H s r () ;

p r o t e c t e d :
I N T c N u m X N o d ; // N u m b e r o f e x t e r n a l n o d e s .
I N T c N u m X H s r ; // N u m b e r o f e x t e r n a l h i s t o r y s o u r c e s .

I N T * a X N o d I d ; // E x t e r n a l n o d e s , a s i d ' d b y t h e n e t w o r k .

p C o n s R e a l _ t * a p X N o d V ; // P o i n t e r s t o t h e X - n o d e s v o l t a g e s .
R E A L * * a p X H s r ; // P o i n t e r s t o t h e e x t e r n a l h i s t o r y s o u r c e s .

v o i d G e t B a s i c D a t a (F I L E * f)

i

Fig. 142: The element abstract class elmj.

an abstract5 class elmj, Fig. 142, from which more concrete ones will be derived as
descendants, inheriting in the process the service definitions necessary for the op
eration of the core. The core will exchange messages and services with the elements
through the common interface provided by that abstract class. Every element model
is kept track of by a pointer in an element registry array maintained by the network
object, mapElm. The relationship of those elements to the external nodes they are
connected to, and to the external history sources they are contributing to the net
work, is seen in Fig. 141.

Subblocks are associated to one another either by links (in the MATE sense), or
by transmission links. Subblocks connected by links are said to belong in the same
block, according to the convention established in the discussion on MATE segmen
tation. In this sense, a block can be perceived as a cluster of subblocks. In OVNI's

4 Object Oriented Programming.
5 In OOP parlance, an abstract class is one from which no actual objects are created.

12. OVNI. the simulation engine 178

current implementation, a block is an instance of class blkj, and contains an array

of subblocks, aSub. The links that determine the cluster of subblocks identified as a

block are described by a simple structure with fields that identify the subblocks and

nodes it is connected to, its resistance (if any), and its associated voltage source (if

any). Such links are grouped in an array inside each corresponding block object.

Independent voltage sources associated to links are part of the block, they are ac

counted for as an array of structures with vectors of precalculated values, with an

associated number of samples, and the ubiquitous time index. Grounded voltage

sources belong inside subblock objects, and include not only the array of precalcu

lated values, the number of samples, and the time index, but also all the precalcu

lated components outlined in section 9.4.1.

12.5. Classes in O V N I

Several of the classes in the engine have a unique instantiation: network, clock,

simulation, event handler. They were developed originally as Ada83 modules that

became ADT's modules in C++.- All other classes spawn multiple objects represent

ing every block, history source, element, etc. This last group is implemented as C++

classes.6

OVNI's classes description begins with the entity of the problem space that

suggested OOP technology as a convenient paradigm to implement the solution, the

element.

12.5.1 The Element Class, elm_t

Decades of EMTP experience have made it clear that an application of the nature of

OVNI's is bound to start with a core, presented in this thesis, and develop with

contributions of element models coming from several sources, and at different times

in the future.

As model developers plug their creations into OVNI, the core must be able to

continue to operate and remain unchanged. That unburdens model developers, and

protects the core from careless unwilling introduction of errors7 into its main code.

OOP promise of encapsulation provides for such protection. However, given

6 They were Ada95 tagged records, in the original conception of the solution.
7 The euphemistically called bugs.

12. OVNI. the simulation ensine 179

allow for (in theory) all future possibilites of the needs of models, as supplied by the
core. This need is provided by OOP's polymorphism, that makes it possible for
OVNI to deal with all element models, present and future, as if they were "forms" of
an abstract sort of element, an abstract class in OOP parlance, an elmj. All ele
ments, included and to be developed, are instances of classes that derive their func
tionality from that abstract class. Class elmj is a common ancestor to all element
classes in OVNI.

Interaction between the core and the element models include: requests by the
core (the client) for the element (the server) to update the external history sources
that the element contributes to the network around it; request by the chamaeleonic
(non-linear) element (the client) to the core (the server) to update the corresponding
subblock conductance matrix due to the element's recent topological change; request
by the element (client again) to the core (server) to provide the addresses (without
permission to write) of the voltage fields of the nodes that the element is connected
to; request by the element (client) to the core (server) to provide the addresses (with
writing permission) of the current fields of the history sources that the element will
have to update at every time step, when so required by the core (see the first service
listed here.)

The interaction between an element and the rest of the network occurs at the so
called external nodes. The element keeps track of the number of nodes that connect
it to the rest of the network (external nodes), the number of history sources that the
element contributes to those external nodes (external history sources), and identifica
tion of each of those nodes, and of each of those history sources. In the current
implementation, to improve the performance of the solution, elements are kept
abreast of the nodes voltages and allowed to update the corresponding external
history sources without incurring into method calling overhead. In short, elements
are provided by the core with pointers to constant values that take them to the nodes
(which belong inside a certain subblock object) voltage fields directly, but prevent
them from modifying those values unwittingly. Otherwise, the element would have
to request the corresponding information service from the network, that would pass
the message to the block in question, who in turn would advance the message down
to the subblock that contains the node, a lengthy and expensive message passing.
The pro of the taken approach is improved efficiency, the cons include the waiving

12. OVNI. the simulation enzine 180

of some independence between the classes. But that last price has been kept at a

minimum by making the data accessed by the element, atomic, that is, of an unstruc

tured type (floating point values).

12.5.1.1 Methods provided by elmj

In Fig. 142, a view of the abstract ancestor class of all the elements in O V N I , elmj

is included. In that figure, the arguments common to all elements in O V N I can be

identified: the number of connection nodes (external nodes), the number of history

sources the element contributes to the network (external history sources), an array of

pointers to the external nodes voltages (visualized in F ig . 141), necessary for the

element during the updating of its history.

Two services are provided by the class elmj:

a) ReadData, a request issued to the element during the initialization of the case

that the element acknowledges by reading its data from the input file, and initializing

all o f its data structures. A t that stage also, the element requests of the network,

netj, the addresses of the voltage fields corresponding to the connection nodes of

the element, and the addresses of the current fields of the history sources that the

element is feeding into the network;

b) UdateHsr, a request issued by the network during the simulation, at each

time step, to take the nodal voltages and recompute the history sources of the ele

ment (at this stage, also, the element decides its topological changes, i f any, and

notifies the network, through the corresponding messages —see the section on the

network, b e l o w — of the necessary changes affecting the corresponding subblock

matrices.

12.5.2 The history source class, hsr_t

History sources, even i f conceptually belonging within the element models, are rep

resented as objects of the class hsrj, and are grouped together inside the network

object, ready to service the network in its request for accumulating nodal currents.

The link with the corresponding element model is made once, at the initialization

stage, when the source provides the element with the address of its current field, see

Fig . 140.

12. OVNI, the simulation engine 181

Fig. 140.

12.5.3 The subblock class, sub_t

Each of MATE's subblocks, as described in a previous chapter, is implemented as
an instantiation of class subj, Fig. 143.

c l a s s sub_t{
p u b l i c :

/ / Gets sub's data from f i l e ' f
v o i d I n i t (

F I L E * f, // Already opened and p o s i t , f i l e .
i n t iB lkCode , // P o s . e n c l o s i n g b lock i n net .
i n t iSubCode) ,- // Pos .of subblock i n e n c l o s i n g b l o c k .

v o i d UpdateEthO ; // Update Thevenin's v o l t a g e s .
const REAL** G e t P t r Z M a t r i x O ; // D e l i v e r s address of Z mat.
const REAL * G e t P t r E t h V e c t o r () ; // D e l i v e r s address of Eth vec .

/ / Given the enveloping b l o c k ' s l i n k s currents i n vec tor 1 a L n k V o l t s ' ,
/ / do c a l c u l a t e the subblock ' s nodes vo l tages .
v o i d CalcNodeVolts (const REAL* aLnkCurr);

/ / To al low the b lock to r e g i s t e r i t s l i n k s , the b lock passes
/ / the number of l i n k s , and the two a l l o c a t e d and i n i t i a l i z e d
/ / v e c t o r s 'aLnkNod' and ' a L n k E n t e r s ' .
v o i d R e g i s t e r L n M INT cNumLinkPar, INT *aLnkNodPar, BOOL *aLnkEntersPar);

/ / T o hook up a new 1 aZ' matr ix by the corresponding chameleon elm.
v o i d HookUpMatrix(REAL **aNewZMat) ;

p r i v a t e :
INT i B l k ; // In which b l k i s t h i s sub.
INT iSub; // What sub i s t h i s i n that b l k .
INT cNumNod; // Number of nodes i n sub.
INT *aNodId;. // Net ' s i n d e n t i f i e r s for the nodes.
REAL *aNodV; // Nodes vo l tages (1..n).
REAL *aNodH; // Nodes t o t a l current s (l . . n) .
REAL **aZ; // Z matr ix , i . e . inv (G[]) .
REAL *aEth; // Thevenin vo l tages (1..n)

INT cNumLnk ; // Number of l i n k s i n b l o c k .
INT *aLnkNod; // Links connect ion nodes i n sub.
BOOL *aLnkEnters; // TRUE = Link enter t h i s sub.

BOOL chameleon; // TRUE = t h i s subblock i s a cham.

T
Fig . 143: The subblock class subj.

12.5.4 The block class, blk_t

Subblocks are clustered into an array inside the corresponding block, together with

the corresponding links, etc. As can be seen in Fig. 144.

12. OVNI. the simulation eneine 182

c l a s s b l k _ t

{
p u b l i c :

b l k _ t (F I L E * f , I N T i B l k C o d e) ;

v o i d H o o k C h a m M a t r i x (I N T i S u b , R E A L * * p N e w M a t r i x) ;
v o i d H o o k V o l t T o L n k (I N T i L n k , R E A L * p) ;
v o i d C a l c N o d e V o l t s () ;

p r o t e c t e d :

I N T b l k l d ; / / I d e n t i f i c a t i o n c o d e o f t h i s b l o c k .

I N T c N u m L n k ; / / N u m b e r o f " l i n k s ' i n t h i s b l o c k .
I N T c L n k C l o s e d ; / / N u m b e r o f c l o s e d l i n k s i n t h e b l o c k .
l n k _ t * * a p L n k ; / / A r r a y o f p o i n t e r s t o ' l i n k s ' i n t h i s b l k .

/ / O p e n ' l i n k s ' a r e a t t h e b o t t o m o f t h e a r r a y .
l n k _ t * * a p L n k I d ; / / S a m e a s ' a p L n k ' , b u t i n v a r i a b l e . T o i d . t h e m .

/ / T h e f o l l o w i n g a r r a y s a r e i n d e x e d a c c o r d i n g t o t h e o r d e r o f l i n k s
/ / a s i n ' a p L n k ' , t h a t i s c l o s e d l i n k s a t t h e t o p .
R E A L * * a L n k M a t ; / / ' l i n k ' m a t r i x f o r t h e b l o c k .
R E A L * a L n k C u r r ; / / A r r a y o f l i n k s c u r r e n t s .
R E A L * a L n k V o l t ; / / R H S o f l i n k c u r r e n t e q u a t i o n s y s t e m .

R E A L * a C h o l D i a g ; / / A u x i l i a r y v e c t o r u s e d i n s o l v i n g l i n k s e q u a t i o n s .

/ / T h i s a r r a y f o l l o w s t h e o r d e r i n ' a p L n k l d ' .
R E A L * a L n k C u r r U n s o r t e d ; / / S a m e a s ' a L n k C u r r ' b u t w i t h t h e o r d e r o f

/ / t h e l i n k s a s c r e a t e d b y t h e p r e p r o c e s s o r .

I N T c N u m S u b ; / / N u m b e r o f ' s u b - b l o c k s ' i n s i d e t h i s b l o c k .
s u b _ t * * a p S u b ; / / A r r a y o f p o i n t e r s t o s u b - b l o c k s .

b o o l e a n c h m C h a n g e d ; / / T R U E = o n e o f b l o c k ' s c h a m e l e o n s c h a n g e d !
b o o l e a n s w t E v e n t O c c u r r e d ; / / T R U E = a l i n k j u s t c l o s e d o r o p e n e d ,
b o o l e a n I n k M a t J u s t R e b u i l t ; / / T R U E = a L n k M a t h a s n o t b e e n t r i a n g u l a r i z e d .

v o i d S o r t L n k O ; / / P u t s c l o s e d l i n k s f i r s t i n a r r a y ' a p L n k ' .
v o i d B u i l d L n k M a t () ,• / / B u i l d t h e l i n k s m a t r i x .
v o i d H a n d l e T o p o l o g y C h a n g e s () ,- / / W h e n l i n k s o p e r a t e o r c h a m e l e o n s c h a n g e

Fig . 144: The blkj class, template for every block in the network.

5.5 The clock object, tck

The clock is a single instantiated object, implemented thus as an ADT walled inside
its implementation file "tck.cpp", and interfaced to the rest of the core by its header
"tck.h", as in Fig. 145.

The clock unit defines its own integer arithmetic, which allows it to count, with
one microsecond steps, up to 3.2xl0974 trillion years. This accounts for the non-
measurability of the continuous simulation premise, that is, on-line monitoring of
power networks, envisaged as one of the applications of this thesis.

12. OVNI, the simulation engine 183

typedef long count t; // 0..999 999 999 (1 b i l minus one)
// Note: t h i s type does not enforce
// these l i m i t s , so i t ' s up to prog

v o i d TckResetCounter() ; // Sets to zero the counter .
v o i d TckAdvanceCounter() ; // Advance count by o n e .
v o i d TckGetCounter // R e t u r n s . . .

(count_t i x H i g h , // high nine d i g i t s of t i c k e r ,
count_t i xMid , // and middle nine d i g i t s ,
count_t StxLow) ,• // and l e a s t s i g n i f . nine d i g i t s .

v o i d TckSetMax // Sets the maximum t i c k l i m i t a t :
(count_t xHigh, // high nine d i g i t s o f t i c k e r ,
count_t xMid, // and middle nine d i g i t s ,
count_t xLow); // and l e a s t s i g n i f . nine d i g i t s .

boolean TckCountBelowMax(),- // TRUE = S imulat ion has not ended.

Fig. 145: Header of the clock object, the ticker, tckj.

12.5.6 The simulation object, sim

The simulation is the top level object, right under the director8. As a single
instantiation entity, it was implemented as an ADT encapsulated inside a C++ file,
sim.cpp, and providing services to the rest of the implementation as defined in its
header sim.h, which is included in Fig. 146.

v o i d S i m l n i t i a l i z e // Reads f i l e / n e t w r k , rese t s t imer .
(char *nameInFile, // Name of input f i l e (the netwkr) .

char *nameOutFile, // Name of the mai l output f i l e .
char *nameLogFile),• // Name of the e v e n t / l o g f i l e .

v o i d SimDoTheLoops(); // Loop along time a x i s , doing the
// s i m u l a t i o n proper .

T

Fig . 146: Services provided by the simulation object.

12.5.7 The network class, net

The network, net, under the command of the simulation object, sim, and in continu
ous consulting with the clock object, tck, and with the event handler object, is the
great activator in OVNI's core. It (the net) contains the array of node registry, that
points into every external node in the system, mapNodZer; the array of elements in
the system, mapElm; the array of blocks, mapBlk; and several other bits.

8 The OOP section of the code that issues the cues for the object-actors to perform.

12. OVNI. the simulation engine 184

12.6. H o w classes within O V N I relate to each other

Up to this point, most of the classes and entities in OVNI have been introduced, and
some inkling of the way they relate to each other has been intimated. In Fig. 147,
the inclusion relationship is sketched. There the simulation, sim, commands the
network, net, to consult the event manager, evn, and the clock keeper, tck, at the
highest level of the process.

The network, net, contains the elements (as forms of elmj), the blocks (as
instantiations of blkj), the history sources (instantiations of hsrj). The blocks
contain the subblocks (instantiations of subj), the links (of type Inkj). The sub-
blocks contain the nodes, the grounded voltage sources, the independent current
sources, and the non-link switches.

12.7. M a i n tasks of the simulator's engine

In a previous chapter of this thesis, the main tasks were revised. In this section the
implementation of those tasks, as services requested by some object and provided
by some other object among those described in the fist part of this chapter, follows.

director

i container

Fig . 147: Container/contained relationship o f classes in O V N I .

12. OVNI, the simulation eneine 185

12.7.1 Initialization

During initialization, the director activates the simulation, sim, through the service
request Simlnitialize,9 and passes to it the names of three files: the input data file,
the log file, and the output file (used to validate the solution, or to keep record of
some variable, not in real time simulations). The simulation checks the existence of
the input file, and opens the three files.

The simulation reads the general data associated with the present run and ini
tializes the clock, tck, through the service TckSetMax and TckSetDeltaT.

Next, the simulation requests the network, net, to read its data and initialize its
data structures, through the service request Netlnitialize. The network proceeds to
read its data, and sets up its internal structures for registration of nodes, for history
sources, for elements, for blocks, etc.

Finally, the network signals each element to read its data and proceed with
model initialization, through the request pElm->ReadData (where pElm is a pointer

Netlnitialize

ReadData

service
client >. server .

request

Fig. 148: Initialization Task of the Engine,

to a particular element).

12.7.2 Simulating the case

The centre of activity of the core is the loop itself, the set of subtasks that are

9 The "dot" notation is conspicuously absent of this first stage, since the objects involved (sim, net,
tck, evn) were implemented as ADTs and not as instantiations of a class. As a matter of notation, in
such cases, OVNI 's code maintains the three letter acronym of the object as the prefix of all its
methods (service requests).

12. OVNI. the simulation engine 186

executed at each simulation time step. At this stage, right after the initialization task,
the director requests of the simulation object to SimDoTheLoops. Each of the
subtasks comprised by this service request was a major issue of the project and de
serve its own subsection, as follows.

12.7.2.1 Updating History Sources

At the begining of each simulation step, the network net, traverses its register of
elements in the case, and requests of each to update the history sources that belong
to it. This is done through the service request UpdateHsr.

During the service to this request, each element goes through some common
steps:

a) Grab its external nodes voltages —available to it directly since the registra
tion part of the initialization—;

b) Through the node hiding equations described in chapter 5, determine the
voltage of its internal nodes for the current time step;

c) Determine the necessary changes to its topology, if any, and submit (if neces
sary) a request to the network to receive a new "contribution" matrix and to "hook"
it to the corresponding subblock matrix;

d) Calculate the external and internal history sources, and again through the
node hiding equations mentioned above, refer all of them to equivalent external
history sources that are then delived directly to the corresponding history source
object —'the element has direct acess to its history sources value fields since the
registration stage of the initialization, as was seen in a previous section of this
chapter—•.

12.7.2.2 Accumulat ing nodal currents

Once the value for each current source in the case is known (independent and history
souces), the version of the nodal analysis method used in the core solution requires
that the currents being fed to each node are summed into a node total, the nodal
currents. Each node accumulates this total current in its h field, see Fig. 137.

At this stage, in service of the request NetAccumNodalCurrents (issued by the
simulation object sim) first the network net, clears the current fields of all the

12. OVNI. the simulation eneine 187

external nodes in the case (the network gains access to them, through the data in its
node registration record array mapNodZer), then the net requests of each of its reg
istered history source objects, the service DrainAndPour. Each history source was
given direct access to its two nodes /i-fields during the registration stage of the ini
tialization, so the history source can add its value to the /z-field of its destination
node and subtract it from the corresponding field of its origin node.

12.7.2.3 Solving for nodal voltages

The task of solving for voltages at the nodes has been the major concern at the out
set of this project, it befits this task to end the description of the implementation of
the core. The simulation sim, issues the service request NetCalcNodalVoltages to the
network net. The network traverses its registry of topological blocks and requests of
each one of them to determine the voltages of the nodes it encloses through the
service request CalcNodeVolts.

II (4)
/ / It i s the b locks who know how to c a l c u l a t e the node vo l tages , g i -
/ / ven the node cu r ren ts . As b locks are contained i n the network,
/ / the l a s t one commands each of i t s b locks , one a f te r another, or
/ / a l l at the same t ime, i f t h i s procedure i s spawned among severa l
/ / p rocessors . There must not be any data content ion , s ince the
/ / only wr i t t en data i s that of nodes vo l tages , and those vol tages
/ / belong i ns ide each b l o c k ' s sub-b locks .

vo id NetCalcNodalVol tages!) / / Determine the vol tage of each node.
{

i n t i ; .

f o r (i = l ; i<=mcNumBlk; i++) / / Requests to each block to . . .
mapBlk [i] ->CalcNodeVol ts() ; / / . . .compute i t s nodes vo l tages .

)

I

The block10 so activated enters in its MATE computation cycle (as described in
a previous chapter):

a) If during the previous integration step the event handler evn issued a topol
ogy change signal, the block reshufles its links, to keep the closed ones at the top of
its list, which allows for the same Cholesky solution method procedure to be applied
to each of the open-close-links combinations. To do this without losing track of
which link is which, the block maintains two arrays of pointers to the enclosed links,

1 0 If the block contains a single subblock (no internal subsegmentation), it issues the subblock the
service request apSub[1]->CalcNodVolt(), and that is all that is necessary at this stage.

12. OVNI. the simulation engine 188

links, a fixed one, that is set and left during the initialization process, that is used to
access the currents and state of the link at any moment, and a movable one, that is
reshufled to keep on top pointers to the closed links (the so called active ones). In
this case also, the block needs to recompute its links matrix, by quick polling its
contributing subblocks according to the latest topology as determined by the links
status. Another possibility contemplated at this stage is that there was no external
event serviced, but one of the internal chamaeleon (non linear) elements changed
topology, in this case the block simply recomputes its links matrix;

b) The block signals each of its subblocks to establish the latter's Thevenin
voltages of its nodes, service apSub[i]-> UpdateEthQ;

c) The block polls each of its subblocks to contribute with the corresponding
recently calculated Thevenin voltages to its right hand side vector of the links cur
rent system of equations;

d) The block solves the links system of equations for the links currents;
e) Finally the block passes the links currents to each of its subblocks and re

quests of it to produce the corrected nodal voltages, subblock method
apSub[i]->CalcNodeVolts(apLnkCurrUnsorted);

13. OVPP, THE PREPROCESSOR

13.1 In t roduct ion

The simulator's core was implemented in two main modules: the preprocessor,

OVPP, described in this chapter; and the engine, OVNI, described in the next

chapter.

The preprocessing stage of the simulator, OVPP, is an OOP 1 application

built around one custom designed circular double-linked list class, list.t, and five

descendent classes: the node-list object-class, the subblock class, the subblock

list class, the block class, and the block list object-class. The preprocessor was

developed2 in C++ and compiled on the target machine with the GNU g++

compiler.

The operative word in the design of the simulator has been precalculation.

Most of the precalculation involved has been moved to the preprocessing stage

to keep the engine lean and fast. This chapter begins with a description of the

raw data input file to the preprocessor, and continues with a description of the

preprocessor proper.

13.2 T h e Preprocessor Input F i l e

The input data to the preprocessor is in human readable form for the convenience

of the case creator. It is in a free format text file with the extension OVP. The

basic template of such file can be generated with the included utility OV-TMP.

The indentation shown in the following example is there to make reading easier

1 Object Oriented Programming [34]
2 Originally O V N I began as an O O P project developed on Ada95 [67], but delays in the

availability of industrial strength compilers forced the move toward C++ . [68]

13. OVPP, The Preprocessor 190

for the human user, it is not necessary for the program, but recommended.

The significant data in the file begins with the keyword .BEGIN.FILE. Be

fore that keyword, any comment can be included for identification purposes.

The data in the file is divided into nine sections3: GENERAL DATA, LUMPED,

LINES, HVDC, CONTROLLERS, COUPLED, SOURCES, SWITCHES, OUT

PUT. Each section ends with the keyword .END followed by the corresponding

section label. Some of the data items are preceded by a label, included by the

utility O V - T M P 4 . Each of those labels explains the meaning of the following

data item (see Fig . 149 on p. 191).

13.2.1 General Data

The GENERAL.DATA section includes two data items: the one labelled "deltaT:"

for the integration step in seconds; the other identified "totalTime:" for the total

simulation time, also in seconds.

13.2.2 Lumped Elements

Following the respectable tradition ofthe E M T P (see chapter 1), even though all

element models, with the single exception of the distributed transmission line

model, are represented as lumped equivalents, O V N I refers to lumped linear

resistors, inductors, and capacitors, as lumped elements.

This section begins counting the total number of lumped elements (linear

resistors, inductors, and capacitors) in the network 5, "number.of Jumped:". For

each lumped element, a line 6 that includes (see Fig. 151), without labels, an

uppercase letter R, L, or C , depending on the nature ofthe element; a parameter,

in ohms, milihenrys, or microfarads, depending on the nature of the element;

3 This number of sections will increase as more models are attached to the simulator.
4 The preprocessor input file, * . O V P , is to be generated by OVNI's graphic user interface,

OUI [37]
5 In a future version of the preprocessor this data item, along with the similar ones for other

element types, will be dropped.
6 A separate line is not absolutely necessary, given the free format of the file, but highly

convenient for the human reader.

13. OVPP, The Preprocessor 191

.BEGIN F I L E
.BEGIN GENERAL_DATA

.END GENERAL_DATA

.BEGIN LUMPED

.END LUMPED

.BEGIN COUPLED

.END COUPLED

.BEGIN LINES

.END LINES

.BEGIN CONTROLLERS

.END CONTROLLERS

.BEGIN HVDC

.END HVDC

.BEGIN SOURCES

.END SOURCES

.BEGIN OUTPUT

.END OUTPUT
.END F I L E

Fig. 149: General structure of the preprocessor input file.

and the two nodes that the element is connected to, each node as a string of

up to six letters (The ground or reference node can be entered as either GND,

GROUND, or EARTH.)

13.2.3 Intrablock " l inks" and Switches

Switches in OVNI can be represented by either a MATE intrablock link, or

an ideal or resistive intrasubblock switch. Two data sections accommodate

each of those categories. The SWITCHES section includes labels for: " num

ber _of_switches:", and for each of the switches included in this section: "ini-

tial_node:" (a seven character string name), and "final_node:", for the two nodes

13. OVPP, The Preprocessor 192

. B E G I N G E N E R A L - D A T A

d e l t a _ t : 5 0 . O e - 6

t o t a l _ t i m e : 5 0 . O e - 3

. E N D G E N E R A L _ D A T A

1 • • • i

Fig. 150: Section on general data for a case with an integration step of fifty microsec
onds and a total simulation time of fifty miliseconds.

.BEGIN LUMPED
number_of_lumped: 3
R 2 0 . 0 TOPO BURRO
L 2 0 . 0 PERRO GATO
C 2 0 . 0 MAKO T I Z A

.END LUMPED

1 - - - - - - - — r\

Fig. 151: Section on lumped elements: including one resistor of 20Q, connected be
tween nodes TOPO and BURRO; an inductor of 20mH, and a capacitor
of 20pF.

of the switch; a flag "initiallyjclosed_yes/no:" that indicates the initial status of
the switch; the number of open operations prescheduled for this switch, "num
ber _of.openings:"; and the number of close operations, "number_of.closings:";
then, after the label "open:" and separated by spaces, a list of the times for
each opening operation; same as for open operations, for close operations there
is the label "close:", see Fig. 152.

Intrablock links include a few additional fields: "ohms:", the resistance of
the link, in ohms; "volts_are_DC_yes/no:", a flag that indicates if the voltage
source associated with this link is DC or sinusoidal AC; "volts:", amplitude of

13. OVPP, The Preprocessor 193

.BEGIN SWITCHES
number_of_swicches: 1
.BEGIN SWITCH-0

init i a l _ n o d e : TOTUMA
final_node: COBIJA
initially_closed_yes/no: no
number_of _openings: 2
nun\ber_of _closings: 3
open: 700e-6 1200e-6
close: 300e-6 1000e-6 5000e-6

.END SWITCH-0
.END SWITCHES

Fig. 152: T h i s switch data section includes a single switch: the one between nodes

TOTUMA a n d COBIJA, a switch open at the beginning of the simulation,

with two open operations, one at seven hundres microseconds, the other at

twelve hundres microseconds.

voltage wave (or value of DC one); "hertz:", frequency of source, if it is an AC

one, zero otherwise; "radians:", phase shift in radians of the AC voltage sine

wave; and "frozen_closed_yes/no:", a flag that identifies this node as a mock up

switch, one that will never open7.

13.2.4 Transmiss ion Lines

For transmission lines, the constant parameter model is included. The LINES

section starts with the number of transmission lines in the network, "num

ber _ofTines:", followed by a line section for each line included.

The line section presents five fields, labelled: "number_of_phases:"; "Zc:", fol

lowed by a blank space separated list of values for the characteristic impedance,

in ohms, of each of the transmission modes8 of the line; "delay:", followed by a

list of the delays, in seconds, for each of the transmission modes; "nodes:", a list

of strings for the nodes listed phase by phase, and send end to receiving end (fol

lowing each node is a yes/no flag that requests for the current in that particular

7 As is the case when a link is introduced to separate two sections of a block where there is

no switch.
8 In the order mode zero, mode one, etc..

13. OVPP, The Preprocessor 194

phase/node to be computed and output), see Fig. 153; "q-matrix:", the modal

transformation matrix9 corresponding to the line geometrical configuration.

. B E G I N L I N E S

n u m b e r _ o f _ l i n e s : 1

. B E G I N L I N E - 0

n u m b e r _ o f _ p h a s e s : 3

Z c : 6 3 7 . 9 2 7 8 . 7 3 2 8 . 1

d e l a y : 0 . 5 e - 3 0 . 3 5 e - 3 0 . 3 5 e - 3

n o d e s : N I n o N4 y e s N2 n o N5 n o N3 n o N6 n o

q - m a t r i x :

0 . 5 9 2 4 2 8 8 5 5 - 0 . 4 1 2 3 3 6 2 0 - 0 . 7 0 7 1 0 6 7 8

0 . 5 4 5 9 4 5 5 2 0 0 . 8 1 2 3 7 7 7 4 0 . 0 0 0 0 0 0 0 0

0 . 5 9 2 4 2 8 8 5 5 - 0 . 4 1 2 3 3 6 2 0 - 0 . 7 0 7 1 0 6 7 8

. E N D L I N E - 0

. E N D L I N E S

Fig. 153: In this case, only one three phase transmission line has been included in the

network.

13.2.5 G r o u n d e d Voltage Sources

Voltage sources in the simulator are included by one of two devices: as a per

manently closed link, § 13.2.3, with the corresponding voltage source; or, in

cases where the source is grounded and we do not care about its current, as a

"grounded voltage source" that is included inside a subblock, for an improved

performance of the simulator.

A grounded voltage source includes: the single non ground node the source

is connected to, "node:"; a flag to indicate if the source is DC or AC sinusoidal,

"DC_source_yes/no:"; and the same fields already described in § 13.2.3, "volts:",

"herts:", and "radians:".

13.2.6 H i g h Vol tage D C rect if ier / inverter , H V D C

HVDC modules data sections, HVDCs, include:

• "controlled_by:", identifies the controller that triggers this module's valves.

9 Generated by M T L i n e , or a similar utility program.

13. OVPP, The Preprocessor 195

• "transformer_Y/D:", indicates whether the three-phase transformer in the

module has a YyO or a Dyll connection;

• "dc_line_reactor?_y/n:", a flag that signals if this module includes a smooth

ing reactor;

• "dc_reactor_valuein_mH:", value of the smoothing reactor;

• "nodes:", to which five nodes this module is connected to, five strings (of

no more than six characters each) separated by blank spaces;

• "starting_Mode:", a list of six strings (each either ON, or OFF), corre

sponding to the initial status of the six valves in the module;

• "MVA:", capacity of the three-phase transformer in the module;

• "KV1:", line voltage rating of the transformer primary, in kilovolts;

• "KV2:", line voltage rating of the secondary;

• "Zsc%:", short circuit impedance10 in percentage;

• "holding.current:", minimum value of the current through a valve at which

a closed valve so remains;

• "threshold_voltage:", minimum value of a valve voltage at which it starts

to conduct;

• "Tq:", recovery time for the valves, in seconds, the time the valve needs

to vacate its depletion zone around the junction;

• "number_of_failures:", number of preprogrammed simulated valve failures,

for testing of controlling schemes. For each failure, include a line that

specifies the instant of the failure, which valve will fail1 1, the number of

Or reactance rather.
Valves are identified by an integer from one to six.

13. OVPP, The Preprocessor 196

integration steps that the failure will be sustained, and the type of failure

(misfire, follow through).

. B E G I N C O N T R O L

n u m b e r _ o f _ c o n t r o l l e r s : 1
. B E G I N C O N T R O L - 1

K p : 0 . 0 0 0 1

K i : 0 . 0 0 0 0 0 5

r e f e r e n c e _ c u r r e n t : 1 8 0 0
f i r i n g A n g l e : 1 5

a l f a _ m i n : 5

a l f a _ m a x : 1 7 0

p u l s e _ w i d t h : 90

s e n s e d H V D C : 1

n u m b e r O f C o n t r o l l e d H V D C : 2
c o n t r o l l e d _ H V D C : 1 2

p r i n t _ o u t p u t _ c o n t r o l l e r _ y e s / n o : n o

p r i n t _ r a r a p _ y e s / n o : n o
p r i n t _ a l f a _ y e s / n o : n o

p r i n t _ w y e _ g a t e s _ y e s / n o : n o

p r i n t _ d e l t a _ g a t e s _ y e s / n o : n o

p r i n t _ D C _ c u r r e n t _ y e s / n o : n o

p r i n e _ p r e _ r e a c t o r _ v o l t a g e _ y e s / n o : n o
. E N D C O N T R O L - 1

. E N D C O N T R O L

Fig. 154: HVDC controller data.

13.2.7 H V D C Control lers

The original purpose of the HVDC model was to provide for a scenario to

test the corresponding controllers. However, to test and verify the model it

self, it was necessary to develop and model a simplified controller, a propor-

tional/integrative controller targeted on a given reference value for the DC cur

rent, and modifying the firing angle of the module valves.

The data describing the controller includes the fields: "Kp:", proportional

constant; "Ki:", integrative constant; "reference-current:", desired value for

the DC current; "firingAngle:", initial firing angle for the gate signals, in de-

13. OVPP, The Preprocessor 197

grees; "alfa_min:", minimum possible setting for the firing angle a, in degrees;

"alfa_max:", maximum possible setting for the firing angle, a, in degrees; "pul-

seWidth:", width of gate firing pulses, in degrees; "sensedHVDC:", what HVDC

module's DC current is being monitored and controlled; "numberOfControlled-

HVDC:", how many HVDC modules are triggered by this controller; "con

trolled JTVDC:", a list of the numbers that identify all the HVDC modules fired

by this controller.

For in depth studies of the process of control, a few additional output signals

can be requested as illustrated in Fig. 154.

e n u m n o d T y p e _ t { L U M P E D , SOURCE, L I N E) ;

s t r u c t n o d _ t {

n o d T y p e _ t n o d T y p e ;

c h a r n a m e [7] ;

i n t i B l k ; / / W h a t b l o c k c o n t a i n s i t (1 . . c N u m B l k) .

i n t i S u b ; / / w h a t s u b b l o c k i n s i d e t h a t b l o c k .

b o o l p e n d i n g S c n d P a s s ; / / T R U E = p e n d i n g f o r a s e c o n d p a s s .

Fig. 155: Every node is represented by a 'nod.t' structure and registered in a cell of
the list 'nodList_t'.

13.3 Classes i n the Preprocessor

As was mentioned in § 13.1, the preprocessing stage of the simulator, OVPP,

was built around an ancestor class, HstJ, a double link circular list class. Four

other application specific classes inherit their basic methods and data elements

from the list.t class. Those are: nodListJ, a list-class derived as public from

UstJ with all the nodes12 in the network; sub.t, a class —a public descendant of

list-t— that describes the activities associated with a subblock in the network13;

subListJ, a list of all subblocks in the network; blkJ, to describe blocks in the

1 2 External nodes, as defined in § 5.13.
1 3 A subblock in the sense seen in § 5.10 on page 67.

13. OVPP, The Preprocessor 198

network; and MkListJ, a list of all the blocks in the network, a description of

the segmented network that, once set up, is ready for output.

The best way to describe the functionality of each of the object classes in

troduced above is to present its data and method elements.

13.3.1 The list.t Class

The original ancestor of the hierarchical family of classes in OVPP is UstJ, a

double-link circular list [69]. It is build around a basic unit of data, the list-cell,

a structure with the type definition shown in Fig. 156.

t y p e d e f v o i d * p t r _ t ; / / A g e n e r i c p o i n t e r .

s t r u c t c e l l _ t {

c e l l _ t ' p P r e v C e l l ; / / P t r . t o p r e v i o u s c e l l .

c e l l _ t * p N e x t C e l l ; / / P t r . t o n e x t c e l l .

p t r _ t p C o n t e n t s ; / / P t r . t o d a t a h o o k e d t o c e l l .

) ;

t y p e d e f c e l l _ t * p C e l l _ t ; / / P t r . t o a c e l l .

Fig. 156: A cell in the list.t class.

The list.t class contains a hook to hang the actual list of cells, the head of the

list, a pointer to the "head" cell, a neutral-no-data cell that serves as a binding

between the first cell and the last cell, as seen in Fig. 157.

The public methods available to the client of the list.t class are listed, and

described very briefly, in Fig. 158.

13.3.2 T h e nodList.t class

The nodeList is a linked list that inherits as public from the ancestor list.t,

§ 13.3.1. Its cells contain each one of the external nodes in the network. Its

interface is presented in Fig. 159. Each element within this list is represented

by a structure of the type in Fig. 160.

13. OVPP, The Preprocessor 199

Fig. 157: The "head" cell and the circular linked list defined by list.t.

13.3.3 T h e sub.t class

Each subblock in the problem is represented in the preprocessor by sub.t, a

linked list of nodes (each node is identified by the integer code generated during

the registration that specifies the position of the node within the network list

nodList.t, see § 13.3.2.) In Fig. 161, the methods and data items of the subblock

class, sub.t.

13.3.4 T h e subblock l is t , subList.t, class

All the subblocks in the network are included in the list subList, an instantiation

of the class subList.t, public descendant of the list.t class, Fig. 162. During the

process of subdivision of the network nodes (in nodList) into subblocks, accord

ing to the MATE criteria, the nodes are registered (by the nodList itself) with

the subblock list, subList), that passes the node to its corresponding subblock

object, see § 13.3.3.

13.3.5 T h e blk.t class

Each block in the problem is represented in the preprocessor by blk.t, a linked

list of subblocks (subJ instantiations) (identified by the integer code generated

during the registration that specifies the position of the subblock within the

13. OVPP, The Preprocessor 200

c l a s s l i 3 t _ t {

p r o t e c t e d :

p C e l l _ t p H e a d ; / / H e a d o f t h e l i n k e d l i s t { S e e F i g . XI.9) .

i n t c N u m C e l l ; / / C u r r e n t n u m b e r o f c e l l s i n t h e l i s t ,

p u b l i c :

l i s t _ t () ; / / C o n s t r u c t o r .

- l i s t _ t () ; / / D e s t r u c t o r .

p C e l l _ t N e w C e l l (p t r _ t p D a t a , p C e l l _ t p P r e v C e l l ; p C e l l _ t p N e x t C e l l) ;

/ / ' N e w C e l l * c r e a t e s a n d i n i t i a l i z e s a n e w c e l l , i t d o e s n o t l i n k i t .

i n l i n e b o o l I a L i s t E m p t y {) ,- / / T R U E = t h e l i s t c o n t a i n s n o c e l l s ,

i n l i n e i n t G e t N u m C e l l s () ; / / R e t u r n s t h e n u m b e r o f c e l l s ,

i n l i n e p C e l l _ t G e t H e a d O ; / / R e t u r n s p t r . t o t h e h e a d c e l l ,

i n l i n e p C e l l _ t G e t F i r s t C e l l () ,- / / R t n . p t r . t o f i r s t c e l l ,

i n l i n e p C e l l _ t G e t L a s t C e l l () ; / / R t n . p t r . t o l a s t c e l l .

p C e l l _ t G e t N e x t C e l l (p C e l l _ t p C e l 1) ; / / R t n . p t r . t o n e x t c e l l t o g i v e n o n e .

^ p C e l l _ t G e t P r e v C e l l (p C e l l _ t p C e l l) ; / / R t n . p t r . t o p r e v i o u s c e l l .

v o i d I n s C e l l (p C e l l _ t p C u t O f f C e l 1,- p t r _ t p D a t a) ; / / I n s e r t i n f r o n t o f a c e l l .

v o i d D e l C e l l { p C e l l _ t p C e l l) ; / / D e l e t e a c e l l f r o m t h e l i s t .

p C e l l _ t G e t C e l I C o n t a i n s (p t r _ t p D a t a J ; / / R t n . p t r . t o c e l l w i t h t h i s d a t a .

i n t G e t C e l I P o s { p C e l l _ t p C e l l) ; / / R t n . p o s i t i o n o f t h i s c e l l i n t h e l i s t .

p C e l l _ t G e t C e l l A t P o s (i n t p o s) ; / / R t n . p t r . c o c e l l a t p o s i t i o n ' p o s " .

v o i d i n s I n F r o n c (p t r _ t p D a t a) ; / / I n s e r t i n f r o n t o f t h e l i s t .

v o i d i n s A t E n d (p t r _ t p D a t a) ; / / I n s e r t t h i s d a t a a t t h e e n d o f t h e l i s t .

Fig. 158: Methods and data items in the list.t class.

network subblock list subListJ, see § 13.3.4. The methods and data items in the

block, blk.t, class are parallel to those in the subblock class, subJ in Fig. 161,

with the differences corresponding to the contents of the block class (subblocks

instead of nodes).

13.3.6 T h e block l is t , blkList-t, class

All the blocks in the network are included in the list blkList, an instantiation of

the class blkListJ, public descendant of the list.t class. This class mimics the

functionality of the subblock list (subList), with the difference that the first one

contains blocks, into which subblocks are registered, while the latter contains

subblocks into which nodes are registered.

During the process of subdivision of the network subblocks (in subList) into

blocks, according to the connectivity provided by the links and the decoupling

introduced by the transmission lines, the subblocks are registered (by the subList

itself) with the block list, blkList), that passes the subblock to its corresponding

block object.

13. OVPP, The Preprocessor 201

c l a s s n o d L i s t _ t : : p u b l i c l i s t _ t (

p u b l i c :

n o d L i s t _ t ; / / C o n s t r u c t o r .

i n t P u t N o d f c h a r *sName, n o d T y p e _ t e N o d T y p e) ;

i n t G e t N u m N o d e s () ;

p N o d _ t G e t N o d P t r (i n t i P o s) ;

p N o d _ t G e t N o d P t r (c h a r * s N a m e) ;

i n t G e t N o d P o s (c h a r * s N a m e) ;

c h a r * G e t N o d N a m e (i n t i P o s) ;

n o d T y p e _ t G e t N o d T y p e (i n t i P o s) ;

n o d T y p e _ t G e t N o d T y p e (c h a r * s N a m e) ;

v o i d S e t N o d P e n d i n g (i n t i P o s) ;

b o o l P e n d N o d L e f t () ;

i n t G e t F i r s t N o d I n S u b (i n t * i S u b) ;

i n t G e t N e x t N o d l n S u b () ;

} ;

Fig. 159: Methods and data items in the nodList.t class.

The methods and data items of this blkLisLt class are parallel to those in

subListJ, with the differences due to the nature of the contents of each list.

At the beginning of the preprocessing, once all the elements have been loaded

from the input data file, each one of them is given the opportunity to register

their external nodes into the network node list nodeList. The elements regis

ter their nodes by requesting the service "PutNode" from the nodeList object.

That service returns to the element the numeric code that identifies the reg

istered node in the network. The registration service provided by "PutNode"

also requires from the element a categorization of the node as belonging to a

LUMPED element, or to a LINE, or perhaps to a grounded voltage SOURCE.

13.4 M a i n Tasks of the Preprocessor

The goal of the preprocessor is the creation of the input file to the engine, to

OVNI. In that file, the network has already been broken into blocks, and these

into subblocks. That file identifies each element (or part of it), and every node

13. OVPP, The Preprocessor 202

enum nodType_t{LUMPED, SOURCE, LINE};

struct nod_t{
nodType_t eType;
char sName;
int iBlk;
int iSub;
bool bPend;

};

Fig. 160: E a c h node i n the network list is an instance of this structure.

as belonging to this or that subblock, which is part of the corresponding block.

Besides all that, the conductance matrices for each subblock corresponding

to every possible open/close switch combination within the subblock (or an

indication of the "chameleonic" non linear element associated to it) need to be

calculated (precalculated, if you will, since this is the preprocessing stage.) Such

goal is broken in the following sections into "tasks". The tasks are described as

message exchange between the objects in the application, under the prompt of

the director (the hub of the preprocessor, a task scheduler.)

13.4.1 Crea t ion of a list of a l l the nodes

The first task the preprocessor tackles is the creation of a list of all the nodes

in the network, nodList. The director (hub) prompts every element in the sys

tem, apElm\\, to register its nodes with the list nodList through the method

"nodList.PutNod". In this task, the elements are clients, and the list of nodes is

the server. The service provided, PutNod, takes a node as described below, and

returns to the client a numeric global-network identification code for the node14.

Nodes passed for registration through the PutNod method, are identified by

1 4 Nodes carry two identification codes, the global network code, and another that identifies
it within the subblock that contains it.

13. OVPP, The Preprocessor 203

s t r u c t c h m _ t (

i n t c N u m N o d e s ;

i n t * a i P o s N o d I n S u b ;

};

t y p e d e f c h m _ t * p C h m _ t ;

c l a s s s u b _ t : p u b l i c l i s t _ t {

i n t i B l k ;

b o o l b P e n d ;

p C e l l _ t p P i r s t S r c N o d e ;

d o u b l e * * a M a t r i x ;

d o u b l e * " a G a b ;

l i s t _ t I C h m ;

v o i d C r e a t e M a t r i c e s () ,-

p C h m _ t G e t P t r C h m d n c i C h m) :

p u b l i c :

s u b _ t () ;

v o i d P u t N o d f i n t i N o d P o s , n o d T y p e _ t e T y p e) ;

i n t N o d P o s I n S u b (i n t i N o d P o s) ;

i n t L i s t P o s O f N o d l n S u b f i n t i N o d P o s I n S u b) ;

v o i d A d d M a t r i x E l m f i n t r o w , i n t c o l , d o u b l e v a l u e) ;

i n t N u m N o d e s () ;

i n t N u m S r c N o d e s () ;

i n t N u m N o n S r c N o d e s () ;

i n t A d d C h m f i n t c N u m N o d , i n t • a i N o d P o s I n S u b) ; / / A d d a c h a m e l e o n w i t h n n o d e s i n p (] .

i n t N u m C h m O ; / / R e t u r n s t h e n u m b e r o f c h a m e l e o n s .

i n t N u m N o d I n C h m { i n t i c h m) ; / / N u m b e r o f n o d e s i n c h a m e l e o n .

i n t G e t P o s I n S u b O f C h m N o d (i n t i C h m , i n t i N o d P o s I n C h m) ;

/ / C h a m e l e o n s a r e n u m b e r e d 1 . . ,

/ / S u b b l o c k n o d e s a l s o l... b u t n o d e s

/ / i n s i d e a c h a m e l e o n a r e 0 . . .

d o u b l e G e t G a a E l m l i n t r o w , i n t c o l) ; / / R e t u r n s a n e l m o f [G a a] .

d o u b l e G e t G a b E l m (i n t r o w , i n t c o l) ; / / R e t u r n s a n e l m o f (G a b] .

) ;

/ / A c h a m e l e o n i s s e e n i n s i d e a s u b b l o c k .

/ / N u m b e r o f n o d e s i n t h e c h a m e l e o n .

/ / A r r a y o f p o s i t i o n o f t h e n o d e s w i t h

/ / R e p r e s e n t s a s u b b l o c k .

/ / W h a t b l o c k c o n t a i n s t h i s s u b b l o c k .

/ / S u b b l o c k p e n d i n g f o r i n c l u s i o n i n b l o c k .

/ / P t r . t o c e l l w i t h f i r s t s r c . n o d e .

/ / [G a a G a b) R e c t a n g u l a r m a t r i x .

/ / [G a b] , { j u s t p t r s i n t o ' m a t r i x ') .

/ / L i s t w i t h a l l c h a m e l e o n s i n b l o c k .

Fig. 161: Methods and data items in the subJ class.

their string-name, and characterized as either: lumped, source, or line nodes,

depending on whether they are terminal to a grounded voltage source, or to a

line, or to something else. A line identifier takes precedence over any of the

other two. A source identifier takes precedence over the lumped identifier only.

Ideal voltage sources are not tolerated connected to a line node15. See Fig. 163.

Each cell of the nodList double-linked list, contains a node represented by

the structure in Fig. 155.

1 5 Use a link-source in such a case.

13. OVPP, The Preprocessor 204

s t r u c t c h m _ t (

i n t c N u m N o d e s ;

i n t ' a i P o s N o d l n S u b ;

) :

/ / A c h a m e l e o n i s s e e n i n s i d e a s u b b l o c k .
/ / N u m b e r o f n o d e s i n t h e c h a m e l e o n .
/ / A r r a y o f p o s i t i o n o f t h e n o d e s w i t h

t y p e d e f c h m _ t * p c h m _ t ;

c l a s s s u b _ t ; p u b l i c l i s t _ t {

i n t i B l k ;

b o o l b P e n d ;

/ / R e p r e s e n t s a s u b b l o c k .

/ / W h a t b l o c k c o n t a i n s t h i s s u b b l o c k .

/ / S u b b l o c k p e n d i n g f o r i n c l u s i o n i n b l o c k .

p C e l l _ t p F i r s t S r c N o d e ;
d o u b l e * ' a M a t r i x ;
d o u b l e " a G a b ;
l i s t _ t I C h m ;

/ / P t r . t o c e l l w i t h f i r s t s r c . n o d e .
/ / [G a a G a b) R e c t a n g u l a r m a t r i x .

/ / [G a b) , (j u s t p t r s i n t o ' m a t r i x -) .

/ / L i s t w i t h a l l c h a m e l e o n s i n b l o c k .

v o i d C r e a t e M a t r i c e s () ;
p C h m _ t G e t P t r C h m l i n t i C h m) ;

p u b l i c :

s u b _ t () ;

v o i d P u t N o d f i n t i N o d P o s , n o d T y p e _ t e T y p e) ;
i n t N o d P o s I n S u b l i n t i N o d P o s) ;
i n t L i s t P o s O f N o d I n S u b (i n t I N o d P o s I n S u b) ;

v o i d A d d M a t r i x E l m (i n t r o w , i n t c o l , d o u b l e v a l u e) ;

i n t NumNodesI) ;
i n t N u m S r c N o d e s () ;
i n t N u m N o n S r c N o d e s () ;

i n t A d d C h m f i n t c N u m N o d , i n t * a i N o d P o s I n S u b) ; / / A d d a c h a m e l e o n w i t h n n o d e s i n p () .
i n t N u m C h m f) ; / / R e t u r n s t h e n u m b e r o f c h a m e l e o n s ,
i n t N u m N o d I n C h m (i n t i C h m) ; / / N u m b e r o f n o d e s i n c h a m e l e o n ,

i n t G e t P o s I n S u b O f C h m N o d d n t i C h m , i n t i N o d P o s I n C h m) ;

13.4.2 G r o u p i n g Subblocks

The list of nodes knows whether any of its nodes has been associated to a

subblock, or block. The director (hub) requests of the list nodList to provide

a non grouped node, along with the identifier of a subblock that has not been

created yet (information the nodList has, since its nodes keep the code of the

subblocks and blocks they belong, if they do, or an invalid code if they don't.

See Fig. 164.)

In this case the client is the hub, and the server method is "nodList.Get-

FirstNodlnSub". The two data items received by the hub are the active node,

iNodActive, and the subblock under creation, iSublnCreation.

The active node is presented by the hub to each element. The element checks

/ / C h a m e l e o n s a r e n u m b e r e d 1...
/ / S u b b l o c k n o d e s a l s o 1 . . , b u t n o d e s
/ / i n s i d e a c h a m e l e o n a r e 0 . . .

d o u b l e G e t G a a E l m (i n t r o w , i n t c o l) ; / / R e t u r n s a n e l m o f [G a a] .

d o u b l e G e t G a b E l m l i n t r o w , i n t c o l) ; / / R e t u r n s a n e l m o f [G a b] .

>;

Fig. 162: Methods and data items in the subList J class.

13. OVPP, The Preprocessor 205

Fig. 163: Interaction of classes in OVPP during node registration.

if it is connected to the node. If it is, the element adopts the subblock under

creation as its own, and so it records it. In this case, also, the element notifies

that all the other element's nodes16 are to be marked as pending for more possible

elements connected to them and part of the same subblock. In short, as pending

to be proposed as active nodes during the next step. The notification to the list

of nodes is made by the element through the method "nodList.SetNodPending."

Now the director keeps asking of the nodList for another node in the current

subblock (which it produces as one of the nodes already marked as pending),

though the method "nodList.GetNextNodlnSub." This node becomes the active

node and is subject to the same process as the first one was. This goes on until

there is no pending node left in the nodList, which means that the subblock is

complete.

Every time the nodes list, nodList, is asked by another node in the block being

1 6 W i t h the very important exception of transmission line nodes, which are grouped as left
group, and right group. In this case each group is treated as a separate lumped element.

13. OVPP, The Preprocessor 206

elements

Fig. 164: Interaction of classes in OVPP during assembling of subblocks.

assembled, nodList registers that node with the list of subblocks, subList, that in

turn sends the node to one of its component object subblocks, an instantiation

of class sub.t.

At this point, the hub asks the nodList for another first node in a non created

subblock, and the process continues, until no unaligned node is left.

13.4.3 Calcula te Subblock Mat r i ces

Now that the subblocks have been partitioned, and properly organized within

the subList object, it is time to determine the conductance matrix of each of

13. OVPP, The Preprocessor 207

those subblocks. That goal is reached through three subtasks, as follows. See

Fig. 165.

nod ID code in sub

Fig. 165: Interaction of classes in O V P P during subblock matrix calculation.

13.4.3.1 Refer element nodes to subblocks

In this task, the director prompts each element in the network to obtain the

subblock relative identification code for each one of its external nodes. This will

allow, further down the road, for the elements to contribute their conductance

matrix into the subblock's at the correct positions.

Each element, a client, request from the subblock list, subList, the server,

for each node identified by its global code, and its subblock (which the element

obtained in the previous task, see § 13.4.2), what is the subblock id code for

that node. The service invoked is "subList.NodPosInSub."17

1 7 The reason for the name of the method is that the id code for the node is but the relative
position of that node inside the subblock.

13. OVPP, The Preprocessor 208

13.4.3.2 A d d Element Cont r ibu t ions to Subblocks

Now each element is directed by the hub to pour its conductance matrix contri

bution into the corresponding subblock's, by the service provided by the list of

subblocks, "subList.AddMatrixElm."

13.4.3.3 Associate Chameleons to Subblocks

The completion of the subblocks matrices is delayed for subblocks that include

non linear elements, called chameleons in OVNI and in OVPP. In this task, the

hub prompts each one of the elements that if it is itself a chameleon, to come

forward and request inclusion into its corresponding subblock from the subList,

via the service "subList.AddChm."

The subList object passes the chameleon's inclusion request down to the

corresponding block object, again through the service provided by the method

"blk.AddChm."

13.4.4 G r o u p i n g Blocks

Now that the subblocks have been dealt with, the director starts the grouping

of subblocks into blocks, as established by the links provided in the data file.

To do this, the hub goes through the same steps followed to form the subblocks,

but using subList instead of nodList, since before we were grouping nodes, and

now we are grouping subblocks. The connectivity of subblocks is governed by

links, in the very same way connectivity of nodes is defined by elements. Then it

follows that the director will use links as elements were used before, see Fig. 166.

Putting it all together, first the director lets each link in the network to

request from the nodList to which subblocks it is connected. Then the subList is

asked by the director to provide the first non aligned subblock (i.e., a subblock

not included into any block yet), and the corresponding new block id code.

The service is "subList.GetFirstSublnBlk." That subblock becomes the active

subblock, which is presented to each link in the network. The link, in turn,

checks if it is connected to the active subblock, if it is, record the block being

13. OVPP, The Preprocessor 209

DIRECTOR

Fig. 166: Interaction of classes in OVPP during block grouping.

assembled as its own and requests from subList to mark the other subblock the

link is connected to as "pending." At the end of this stage, all subblocks linked

to the active one have been marked as pending and will be part of the same

block being grouped.

Now the director asks of the subList for another subblock within the same

block being assembled, the service is "subList.GetNextSublnBlk." This subblock

becomes the active one and goes through the same process as the first one. The

hub keeps asking for more subblocks in the current block, until none is left, the

blocks have been assembled.

At each time the subList provided a subblock in the current block, subList

registers the subblock with the list of blocks blkList, that passes the registration

13. OVPP, The Preprocessor 210

request down to the corresponding block object, and instantiation of class blkJ.

At the end of this task the list of blocks has been filled, and the blocks know

which subblocks belong in them. The program is ready for output.

Part VI

VALIDATION

14. Validation Tests

14. VALIDATION TESTS

14.1 In t roduct ion

Validation of an algorithm for real time simulation of any kind of system involves two
aspects: validation of its accuracy and validation of its speed. Those are the two main
aspects considered in this chapter.

However, OVNI's accuracy and speed are built on: a) a judicious choice of back
ward Euler's integration rule, supported and improved by b) the double step double
interpolation backtrack-advance procedure; c) precalculation and triggering of new
states made possible by d) topological segmentation, e) MATE segmentation, and f)
the node hiding element model streamlining strategy; where MATE segmentation
allowed for the efficient choice of Cholesky's algorithm to obtain links currents.

This chapter's organization follows, as close as possible, the order of the topics
listed in the previous paragraph. In the next section, Sec. 14.2, a quick review of the
tests on integration rule issues reported in chapter 3. Following it, Sec. 14.3, test
cases that illustrate the drastic effect of DSDI on two switching circuits. Then, in
section 14.4, the aspect of 'speed' mentioned on the first paragraph of this section.
That speed exploration includes subsections for timings corresponding to the two
target cases outlined in chapter 1, the relay test case (Sec. 14.4.1), and the HVDC
controller case (Sec. 14.4.2). That speed section also includes a subsection, 14.4.3,
that reviews the performance advantages of MATE segmentation and the associated
precalculation. Subsection 14.4.4 explores Cholesky's perormance by itself. To end
this chapter, in section 14.5, a suit of tests that explores the accuracy of ONVI's simu
lation on different situations associated with the main two test cases, is included

Part1 of the tests reported in this chapter were run on a Pentium II 200 MHz
workstation with 32 Mbytes of RAM, 2 Gbytes hard drive at the Real Time Simulation

' The reason for the duality of the hardware platform is historic. As the project evolved, the tests to
assert real-time performance were applied to the then current version of the simulator on the available
workstation, and the results published. To keep match between the published results (albeit slower
than the ones obtainable with the newer and faster hardware platform), the same 200 M H z machine
results were kept in those sections of this thesis report.

14. Validation Tests 213

Laboratory at UBC, CICSR 043, as specified in the section describing the particular
test; some of the tests were run on an AMD-K6(2) 400 MHz workstation with 256
Mbytes of RAM, and 15 Gbytes hard drive, as indicated in the corresponding section.
The most critical performance tests were confirmed by measurements done separately
at Mitsubishi Corporation, Tokyo, Japan; and at Electricite de France, Direction des
Etudes et Recherche at Clamart, Paris, France.

14.2 In tegra t ion Issues

OVNI's integration process profits from the stability and accuracy of the backward
Euler's integration rule, as established in chapter 3. The associated tests were included
in that chapter. In particular the experiments that advanced backward Euler's as a rule
with no phase shift associated distortion, Figs. 14 and 16, and the tests on a simplified
single-phase power network that explored the possibility suggested by Fig. 15, that
with backward Euler's rule an integration step almost 50% larger can be used for the
same 3% magnitude distortion (which provides a speed advantage to OVNI), Figs. 22
and 24.

In cases where switching operations occurs off synchronism with the sampling
process, the anomalous introduction of inverse currents through opening switches, and
the consequent opening of non-zero currents, was solved by the introduction of the
double step double interpolation procedure, in section 7.6.1. The tests that explore
that procedure are included in the next three pages, under section 14.3.

14. Validation Tests 214

14.3 A s y n c h r o n o u s C o m m u t a t i o n

To explore the validity of the DSDI resynchronization shift to accommodate asyn
chronous commutation, two cases already presented in [35] are included. First, a
relatively simple two-diode full wave rectifier circuit, Fig. 167. And next, a six-valve
three-phase rectifier group, Fig. 170.

T D2

1 N-
Fig. 167: A two-diode full wave rectifier case.

Both cases were run first on the EMTP algorithm to illustrate the occurrence of
large spurious current spikes in the diodes as a result of asynchronous commutation
of the diodes.

Fig. 168: For the two-diode rectifier, current in the load, current in diode one, current
in diode two. Observe the current spikes of almost ten thousand amperes, when the

load current peaks at less than five amperes.

14. Validation Tests 215

Fig. 169: DSDI output for two-diode rectifier case, a) Current in the load;
b) Current in diode one; c) Current in diode two.

For the two-diode rectifier, with voltage sources of 200 Vrms, 60 Hz, a load of
50 ohms, and a reactor of 1 mH [35], the EMTP algorithm's results for: load current,
current in first diode, and current in second diode, are illustrated in Fig. 168. The
same circuit, once the DSDI resynchronization shift has been included in the solution,
produced, for the same currents just mentioned, the spike-free results presented in
Fig. 169.

Fig. 170: A six-valve three-phase rectifier group.

14. Validation Tests 216

i bad/A

MIA

W3/A

0 0 2 0 0 3 0 0 * 0 0 5

U s e e

Fig. 171: EMTP algorithm results for the six-valve rectifier: a) Load current; b) Valve
one current; c) Valve three current.

For the six-diode case in Fig. 170, the asynchronous commutation of diodes one
and two produced, in the EMTP algorithm, the spikes illustrated in Fig. 171. The
solution with DSDI of the same six-valve case generated the spike free results shown
in Fig. 172.

10

8

itoaoYA
6

YVYVWYWYVYYYVY1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10,

5

V1/A

7 W

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10.

5

W3/A
0

7 V X rvx 7 V \

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
t/sec

Fig. 172: DSDI results for the six-valve three-phase case, a) Load current; b) Valve
one current; c) Valve three current.

14. Validation Tests 217

14.4 S p e e d

The performance of the final product, the software that embodies the algorithm devel
oped during this project, is to be measured, not as overall simulation speed (i.e., how
many seconds of computing time it takes to take so many seconds of real time.) but as
the speed associated with the integration step that takes the longest to compute, the
slowest integration step, the critical step. The time consumed by that critical step can
be related by the complexity of the computations involved, or perhaps to the refresh
ing of the associated cache.

To predict what will be the conditions that produce such a critical step in a sim
ple case is possible. However, in a more realistic case, observation and measurement
of the execution time of each time step of the simulation is desirable. Such measure
ments were possible thanks to the fine grain time routines created by Mr. Jesus
Calvino-Fraga. The timings obtained were also subjected to validation (in the most
critical cases reported in this thesis) by the research centre of L'Electricite de France,
Direction des Etudes et Recherches, at Clamart, Paris, France, under the direct super
vision of the author. Independently, the same set of timings were corroborated by
Mitsubishi Corporation of Japan. Both agencies accepted the accuracy validation
against the EMTP as an acceptable method.

To validate performance, the two target systems introduced at the begining of
this thesis are used, the case for protective relay testing, and the case for HVDC con
trollers testing.

14.4.1 R e l a y T e s t i n g

The relay testing case in Fig. 200 was the workhorse on top of which every single test
of OVNI's solution was tried at one point or another. This configuration was pro
posed by the industry, and includes two segments of two three-phase transmission
lines running along the same right-of-way, coupled to each other (a six-phase coupled
group), one segment before a fault site, and another after it. It also includes series
capacitive compensation and metal oxide varistor protection. On the right healthy
side of the system, a three-phase transmission link brings in an equivalent three-phase
Thevenin for the network "on the right." The same applies for the network "on the
left."

14. Validation Tests 218

This configuration has been running for weeks on the single workstation version
of the hardware solution bn top of which OVNI runs, this single workstation hard
ware implementation, thanks to Mr. Jesus Calvino-Fraga [38]. In this implementa
tion, the switches that simulate single, dual, and three-phase faults at the bus of
contingency, are wired to the simulator as three physical switches. It runs, on that
single 400MHz, Pentium Pro workstation at 35 microseconds per step, well within
the targeted bandwidth to accommodate for the necessary data exchange overhead.

The same case, in an illustration of the flexibility of OVNI's solution algorithm
and code, has been running also on the parallel processing five-workstation version of
OVNI, a hardware implementation possible thanks to Mr. Jorge Hollman [71]. There,
Mr. Hollman prepared the 234-node test case in Fig. 179, and run it on the five
400MHz Pentium PC cluster. The solution times generated by OVNI on this parallel
processing platform were 46 microseconds per integration step for the case just men
tioned (this case would run on a single machine at 164 microseconds per step.).

14.4.2 H V D C Systems

The extended HVDC substation model, including saturation and zero sequence mod
elling and nine AC filters rendered the timings shown in the table below. These tim
ings were obtained on a Pentium Pro 200 MHz workstation (the inclusion of the
filters and the saturation models amounted to about 1% of the model's history sources
updating time.) [30]

Case Description # valves Microtran (us) DU-99(us)
l Monopolar 6-pulse

converter
6 459 26

2 Monopolar 12-pulse
converter

12 983 46

3 Bipolar 6-pulse coverter 12 897 51

4 Bipolar 12-pulse
converter

24 3,120 81

Table 14.1 Solution time, per integration step, in microseconds, of four HVDC cases.
Comparison between the EMTP and OVNI's prototype solutions times on a Pentium

Pro 200 MHz.

14. Validation Tests 219

Fig . 173: One o f the six sections in the test network used to benchmark M A T E

14.4.3 M A T E vs . C o n v e n t i o n a l S o l u t i o n

To constrast the speed of MATE segmentation with the standard unsegmented one,
the same network was run on the same hardware, with both methods. The network
was built linking together network sections like the one in Fig. 173. Every node in
the section is grounded through a resistor, and connected to every other node in the
section through some other resistor. Also, there is a current source from ground to
every node in the section. In Fig 173, one of such sections, with six nodes, is illus
trated. Each section (subblock) is connected to two other sections through two links,
see Fig. 174. Each link includes a voltage source in series with a resistor. The sec
tions are so connected in a ring (i.e., the last section is linked to the first one.) Tests
were run with networks consisting from two to six sections, where each section had
from two to six nodes. The resulting timings are given in Tables 14.2, for MATE,
and 14.3, for the standard unsegmented solution. The performance differences can be
better appreciated in the 3 D graphics included in the following pages: Fig. 175 (solu
tion times for MATE segmented algorithm for different networks with sections from
two up to six nodes); Fig. 176 (solution times for a standard unsegmented solution
algorithm); and Fig. 177 (percentage of improvement from the standard to the
MATE's algorithm for the 36 networks tested in this section).

14. Validation Tests 220

Fig. 174: Six node sections connected in a ring.

nodes in each subblock

1
-Q

3

2

2 3 4 5 6

2 2.9 3.5 4.2 4.3 5.4

3 5.1 5.3 6 6.9 7.8

4 6.7 6.8 6.9 8.4 9.5

5 8.2 9.1 10.2 11.3 12.2

$ 11.5 11.7 12.7 13.1 13.3

Table 14.2. Solution time (in microseconds) for a single-block network with several
subblocks, and of varying nodes per subblock, with the

M A T E segmentation algorithm.

14. Validation Tests 221

nodes in each subblock

2 3 4 5 6

2 15.7 24.6 38.6 55.5 75.7

J 31.7 56.3 88 136 191

4 57 106 172 260 375

5 91.7 173 287 445 649

6 142 262 446 697 1,033

Table 14.3. Solution times in microseconds with standard unsegmented algorithm,
for networks formed by <row> number of sections (subblocks), where each section

Fig . 175: Solution times, in microseconds, for MATE algorithm, corresponding to a
network o f so many (2..6) subblocks with a given amount (2..6) o f nodes per block.

14.4.4 C h o l e s k y vs . L U D e c o m p o s i t i o n

At every time step, and in each of the topological blocks, the simulator needs to solve
a system of algebraic equations. The system whose solution produces the currents in
the block's MATE links. In cases where the subblocks included in the block do not

1200^. - -

10001 , -

solution
 8 0 0 i '

time (us) 8004. -
400

• •

2 2 no1 ,desPer

lbblo >c*

Fig 176: Solution times for the unsegmented standard solution algorithm
corresponding to a network with so many subblocks (1..6) with a number o f nodes

in each subblock (1..6).

% gain

F i g 177: In percentage, how much faster M A T E is compared to the standard
sgmented algorithm for the kind o f networks studied. unset

contain non linear elements or switches, the links matrices can be precalculated, but

in general that is not so2.
The solution of the links system was first approached with a robust and efficient

L U decomposition algorithm with partial pivoting. The results were satisfactory but

» in the current implementation, the links matrices are never precalculated. But it may be conven.ent

to do so in a future revision.

14. Validation Tests 223

size (n x n) LU (usee) Cholesky(us)

2x2 3.9 1.3

3x3 5.1 2.1

4x4 6.3 3.8

5x5 8.8 4.6

6x6 13 6.4

7x7 17.2 8

8x8 22 11

9x9 27.3 14.7

lOx 10 33.1 17.6

11 x 11 41.5 22.2

12x12 49 26.4

Table 14.4. Solution times of Cholesky method versus LU decomposition, in
microseconds.

left room for improvement in cases where HVDC module controllers were included.
To stretch the performance of the engine, an alternative solution method was revised:
Cholesky's. Cholesky works only on system whose equation matrix is positive defi
nite. That a matrix A is positive definite means, geometrically, that when the rota
tional transformation implied by the matrix A is applied to a vector V in the same
hyperdimensional space where the matrix rotation is defined)a geometrical interpre
tation of space), the resulting vector turns out to be closer than ninety degrees from
the original one. In the more succinct notation of vector analysis [73]:

v-A • v>0
Where the dot represents matrix vector multiplication, and also vector dot product.
Another interpretation to a matrix A being positive definite is that given in chapter 11
of [73], a matrix whose eigenvalues are all positive. But a positive eigenvalue im
plies a decaying natural response mode, which is always the case for the networks
simulated here. Summarizing, Cholesky is safe to apply in the case of interest. The
advantages in speed of the modified implementation with no pivoting used in this

14. Validation Tests 224

work of Cholesky's versus LU decomposition is patent in the tests run below. Those
tests were performed on systems with 2, 3,... 12 links. In each case, Cholesky's algo
rithm beat LU decomposition by a factor close to two. This suit of tests was run on a
AMD-K6 II 400MHz workstation, and compiled with Visual C++ version 5.0 with all
optimizations switches on (release version).

14.4.5 P r e c a l c u l a t i o n vs . L i v e C o m p u t a t i o n

In cases where all the subblocks in a block have fixed topology, i.e. they contain
neither switches nor non-linear elements (no chamaeleons), the link matrices corre
sponding to every possible open-close link combination can be precalculated. In this
case, the matrices inverses are prestored. The same 36 cases used to benchmark the
previous two sections are used for this section too. The solution times obtained are
included in Table 14.5. Graphically, the solution times can be seen in Fig. 178, and
the improvement in percentage, with respect to non-precalculated MATE, in Fig. 179.

nodes in each subblock

2 3 4 5 6

2 0.9* 1.7 2 2.9 3.8

3 0.95* 2.6 3.3 4.1 4.8

4 2.6 3.3 4.3 5.3 6.3

5 3.4 4.2 5.3 6.6 7.7

6 4.3 5.5 5.8 8 9.2

Table 14.5. Solution time (in microseconds) for a single-block network with several
subblocks, and of varying nodes per subblock, using precalculation for the links

matrices. (*) Under the granularity of the timer routines.

14. Validation Tests 225

Fig . 178: Solution time for precalculated M A T E link matrices, corresponding to
blocks with subblocks from two to six, and with two to six nodes per subblock.

F ig . 179: Percentage gains o f precalculating the links matrices vs. calculating them
on the run, both within M A T E ' s framework, for different number and sizes o f

14 Validation Tests 226

14.5 A c c u r a c y

To validate the accuracy of a simulation algorithm and its software, the ideal valida
tion tool would be the actual system being simulated. A contrast between the pre
dicted behaviour of the system as simulated, versus the observed behaviour of the real
system. In the case of a simulator for an electric power network for the kind of tests
targeted in this project, such procedure is out of the question: It is impractical to sub
ject the actual power network of a province (or part of) to this or that contingency that
can be contrasted against the one predicted by the simulator.

The next best path3, and the one used in this case, is to validate the accuracy of
the simulator against an already thoroughly validated simulator (albeit a non real time
one), the EMTP in this case. The EMTP is the industry standard for transients simu
lation in power electric networks. The EMTP brings with it more than three decades
of validation at hundreds of sites all over the world.

For this section, the tests associated with separate issues of the algorithm, mod
els, solution process, etc., are included in separate subsections.

14.5.1 H V D C M o d u l e a n d its C o n t r o l l e r M o d e l

The HVDC module model, the corresponding controller model, in OVNI's implemen
tation were tested and validated for steady state and under fault operating conditions
by performing comparisons with the Electromagnetic Transients Program EMTP
(Microtran® Version). This section presents a detailed description of these test cases.
These simulations do not include asynchronous switching compensation techniques to
reinitialize the solution during current commutations and, therefore, present the char
acteristic spikes of fixed time step solutions. Simulations illustrating the effective
ness of such compensation techniques are presented in a separate section.

The validation tests reported in this section were performed in comparison with
Microtran® version 2.08h, with the version of the simulator's code dubbed DU-994.
Both programs were run on a Pentium Pro 200 MHz workstation under Windows 95.
The five test cases included in this suite are: a) Steady-state; b) Saturation Model for
3 Another possibility would have been to contrast the simulator against a TNA simulation, but the
EMTP, as intimated in the introduction to this thesis, has substituted the TNA for most applications.
4 Acronym coined at the UBC-RT Lab after the author commented on the non-AI nature of the
version used as driver for these tests. That version was nicknamed "Dumbo." So are labelled the test
curves.

. 14. Validation Tests 227

the three-phase transformers including zero sequence flux; c) AC fault; d) DC fault;
e) Commutation failure.

14.5.1.1 S t e a d y - S t a t e V a l i d a t i o n T e s t

To assess the HVDC model validity under steady state, a single HVDC six-valve case
was set up and run on DU-99, and on the EMTP/Microtran®. In this test, saturation
modelling of the transformer was turned off. Saturation model validation is presented
in Section 14.5.1.2.

Signals on both sides of the model, as calculated by DU-99, were compared with
the corresponding ones obtained with EMTP/Microtran®, namely: primary current of
the transformer, Fig. 181, and 182; and DC voltage at the load, Fig. 183 and 184.

Apart from the commutation spikes, the match between the two programs is very
good. The reason why the commutation spikes do not appear in Microtran's output is
that Microtran does not plot the first half step of the combined trapezoidal/backward
Euler's CDA implementation. The HVDC model uses only the backward Euler's rule
at full-size integration steps and all simulation steps are plotted.

14. Validation Tests 228

Fig. 180: Single module, six-valve test case used to validate the HVDC module under
steady state.

1.000

-1,000

t

I
I

I
I
I
I

;

I

EMTP/Microtran

NDufnbo

;

r ~

I
i

I
i
I
I
i i

125 130 135 140 145 150 155
T ime (ms)

Fig. 181: Primary current, steady state, linear transformer core. EMTP/MICROTRAN and
Dumbo (DU-99).

14. Validation Tests 229

f - - -
I I

I I
I I
I]

T " " -1

|

Di jmbo |

I / : :
i i

|

! \ i J L
i k ; _^7Tr^ \ T

!

i E M T P / M i c r o t f a n

;
- I I . _ L 1

142 143 144 145 146 147 148 149
Time (ms)

Fig. 182: Primary current, steady state, linear transformer core, EMTP/Microtran and
Dumbo. A detail view.

282 284 286 288 290 292
Time (ms)

Fig. 183: DC voltage in steady state: EMTP/Microtran and Dumbo.

14. Validation Tests 230

300,000

200.000

Sane valves are no!. AH valves are firing,
firing yet in 1st eye- but firing-angle.

reference signal has From 3rd cycle on, steady state is reached
not reached steady state j •

40
T ime (ms)

60

Fig . 184: Voltage before and at steady state: EMTP/Micro t ran and Dumbo.
Initialization, two cycles for Dumbo.

14.5.1.2 S a t u r a t i o n o f T r a n s f o r m e r C o r e

To assess the validity of the proposed model for three-leg three-phase transformers,
the same single HVDC six-valve case used for steady state assessment (Fig. 180) was
simulated with nonlinear inductors in the EMTP/Microtran case file, and compared
with the results produced by DU-99 with the saturation module enabled.

Signals on both sides of the model, as calculated by DU-99, were compared with
the corresponding ones obtained with the EMTP/Microtran, namely: primary current
of the transformer, Fig 186 and 187; and DC voltage at the load, Fig. 188. Output
voltage change was not observable as compared with the case with no saturation.
This was expected, given the relatively low impedance between the bridge and the
ideal sources of the Thevenin equivalent of the AC power group. Saturation distor
tion of primary current is noticeable, as can be seen by comparing Fig. 185 from the
validation test for steady state with no saturation, against Fig. 186 and 187.

14 Validation Tests 231

Fig. 185: Zoom on the primary current, steady state, linear transformer core.
EMTP/Microtran and Dumbo. Note: Both coincide but-[or *fre spikes introduced by Dumbo

without DSDI activated, Sec. 7.7, Microtran avoids them using CDA.

!- y-

1

T 1 T

140 150 160 170
Time (ms)

Fig. 186: Primary current, steady state, non-linear transformer core.
EMTP/Microtran and Dumbo. See note in caption for Fig. 185.

14. Validation Testa 232

1.000

500

0

140 145 150
T I M E (-ms)

Fig. 187: Detail of primary current with non-linear core.
EMTP/Microtran and Dumbo. See note to Fig. 185.

300,000

250,000

200,000

230 235 240
Time (ms)

Fig. 188: DC voltage, with non-linear transformer core.
EMTP/Microtran and Dumbo. See note to Fig. 185.

14. Validation Tests 233

14.5.1.3 S i n g l e P h a s e A C F a u l t

To validate the performance of the HVDC module during faults on the AC side of the
bridge, a 12-valve rectifier case, Fig. 189, was prepared. The test case was run both
on DU-99 and on Microtran.

The DC current leaving the HVDC module, IDC, can be seen in Fig. 190, which
shows both Microtran's and DU-99 results.

CONTROLLER ,Iref=1800A

Fig . 189: 12-valve case to validate behaviour o f H V D C model under A C faults.

The small initial one degree firing angle difference is due to Microtran taking the
reference angle from the ideal sources versus DU-99 taking the reference angle from
the primary of the tranformers. That difference becomes greatly amplified under the
large currents imposed by the short circuit on the AC side. In Fig. 191, the "ideal"
reference voltage for firing angle used by Microtran is compared to the "actual" sub
station reference voltage used by DU-99 to synchronize its gate signals. The small
initial error, rounded to one degree, incurred by Microtran becomes a huge 18 degree

1 8 0 0

6 0 0

4 0 0

2 0 0

1 0 0 0

5 0 0

6 0 0

4 0 0

2 0 0

i , j / : j " - j "

ZorleA] • i " i ' " " i

:.: i
\ • Zone B •

[i ! i ; ! 1 ; • I

1! III HI It T(i^oneC ; j
| j • i | 1 ; ; ;

i : : :

. . .
[1 ! i

. . .

i i i i ; i i i i

Fig. 190: DC current, as calculated by: a) Microtran; b) Dumbo. Note: Microtran version used
did not have variable control signal implemented.

firing angle error during the fault, as seen in Fig. 191.
In Fig. 190b, which shows the DC current as calculated by DU-99, one can iden

tify three zones of interest against the uniformity of Microtran's results in Fig. 190a.
In zone A of Fig. 190b, DU-99's controller is still firing the bridge's valves using the
angle reference obtained at the last going-up zero crossing of the reference voltage,
Fig. 191, which is the same as Microtran is doing. This is the reason for the match
between both results in this zone. Zone B starts when, into the faulted period, the
reference voltage crosses zero going up again. At that point, DU-99 notices the shift
of almost 18 degrees, and corrects its firing signals to maintain the prescribed fifteen
degrees, while Microtran continues to use the same reference, introducing an effective
firing angle off by the above mentioned 18 degrees. Right after the fault ends, see

14. Validation Tests 235

i , -|

/ \

-

-

Vy Duml
\\ refere

A\ /

/ —I \

o's / ! \

^ c e / / ! v\
-

-

—j — _ _ -I

/ Microtrai
J referenct
J

\\ir

> \ \
\ '

f \ | \\
f 18 deg \ \

J difference. \ \

-

-
j t-aun Begins \ f \ V y / 1 \

1 \ /
•

-

-

190 200 210 220 230 240
T i m e (m s)

Fig. 191: Angle reference voltage for a) Microtran; b) Dumbo. Observe the small phase
error before the fault, and the large error during the shortcircuit.

Fig. 192, DU-99 continues to use its previous angle reference, and then, past the fault
end, at the next going-up zero crossing of its reference, DU-99 readjusts its firing
angles correspondingly to keep the desired fifteen degrees.

i 1
1
1

1

i

/ Dumbo's! last \
• i " ^ synch before \

Dumbo "rejalizes"
the reference /
point has cjhanged /

r " ~ ^ T 1

fault end£ \
i \
i \
i \

fault ends
i_!

i j

i /
i /

V 1 I

i
i
i

290 295 300 305 310 315 320
T i m e (m s)

Fig. 192: Angle reference voltage for Microtran and Dumbo near the end of the fault.

14. Validation Tests 236

14.5.1.4 D C F a u l t

The case used to validate the HVDC module against the EMTP/Microtran was the
twelve valve double bridge Yy/Yd case illustrated in Fig. 193. A switch across the
DC load simulated a low impedance short-circuit. To observe the recovery of the
model after a DC fault removal, the switch simulating the short circuit opens after a
short time.

In Fig. 194, the DC current across the smoothing reactor is shown before, during,
and after the DC short circuit was applied at t = 0.2 sec. and removed at t = 0.3 sec.

CONTROLLER ,Iref=l800A

300ohm

Fig. 193: A double bridge, twelve valve case used to explore the HVDC module during and
after a low impedance fault on the DC side.

EMTP/Microtran predicts a slightly smaller DC current during the fault. The reason
for that lies in the way Microtran measures the firing angle of the valves. Microtran's
reference angle is taken from the voltage between phases A and C of the ideal sources
in the Thevenin equivalent representing the external system.

DU-99 uses instead, as angle of reference, the phase of the voltage between

14. Validation Tests 237

J U u . - u . _ _ 1 _ + _ , _ 1 1 J 1 _ 1 U

I
I
I

Dumbo's ^ ^ ^ ^ ^ ^

>^ EMTP/Microtran's

I /
I /

V
200 300 Tim« (m»)

Fig. 194: Fault current (DC-side): a) EMTP/Microtran; b) Dumbo.

phases A and C of the primary of the three-phase transformer, see detail in Fig. 193.
The phase difference between the two references used by the two programs is less
than one degree under steady state conditions, that is, before the fault (after it as
well), Fig. 195. However, during the high currents period of the fault, both references
drift away from each other as shown in Fig. 195 and 196. And, Microtran's firing at
fifteen degrees from its ideal reference is translated into an effective firing angle of
more than forty degrees, Fig. 196, this reducing the feeding DC voltage, and the pre
dicted current.

L - i L I _ i l _ i I —Z. L - J -
200 220 240 260 280 300 320 Tim e (m 8)

Fig. 195: Angle reference signals for EMTP/Microtran and Dumbo.
Before, during, and after the DC fault.

14. Validation Tests 238

235 240 245 250 255 260
Time (ms)

Fig. 196: During the DC fault period: a) Firing angle reference voltage, Vac for Microtran;
b) Reference voltage Vac, for Dumbo;

c) Voltage across valve zero in the Yyo bridge as obtained by Microtran.

14 Validation Tests 239

14.5.1.5 Commutation Failure

In a case with two bridges (twelve valves) operating as an inverter fed by an 800 kV
dc voltage source and a resistor (Thevenin equivalent of the rectifier group), during
an AC single phase fault, the first valve of the YyO bridge group fails to open, and
prevents its next-in-sequence to operate: a commutation failure scenario. In Fig. 197,
current through both valves is shown; the failed attempt of valve zero to go off, and
of valve two (Valves are numbered 0, 1, 2, 3, 4, and 5, in the normal firing sequence)
to take over, is illustrated.

The configuration of the test case is shown in Fig. 198. The proportional-
integrative controller is set at 1880 A, with Kp = 0.0001 and Ki = 0.00001. Firing
angle begins at 115 degrees, and is left to the care of the controller to maintain the
reference DC current. The AC single phase to ground fault is simulated by the switch
included in Fig. 198.

14. Validation Tests 240

Vac A
angle

sw (fault) reference i

CONTROLLER Iref-I880A

kp=O.OOOT
ki=0.00001
a=H5

345kV,50Hz
15mH

Gate signals 0.6H

jnnrv

. 300ohm

_ eookVDC

Fig. 198: Twelve valve, double bridge inverter case
used to investigate commutation failure modelling.

Figure 199 shows the steady state obtained by the controller on the inverter, with
the settings mentioned before. This figure also illustrates the recovery of the
controller-module group after the fault is cleared.

1 1 1

1 1 1

1 1 1

1 1 1

1 I-
1
1

V

f
1
t
1
1
i

4 0 0 6 0 0
T i m e (m •)

Fig. 199: DC current before, during, and after the AC single phase fault, in the inverter.

sys-1
FAUL1

K— I M t "

BUS1

t n f
coupled fault coupled

"1

FAUL2 BUS3 BUS4

500 kV Sy S . 2

8US5

Fig. 200: Fault event simulation for relay testing, with two multi-circuit segments and
MOV protection of series compensation.

14.5.3 R e l a y T e s t i n g

The accuracy of the simulator was put to the test case in [9], a case proposed by in
dustry, Fig. 200. The two segments of the power network neighbouring the transmis
sion system where the relay is to operate are represented by three-phase Thevenin
equivalents. The case includes two segments of six phase links (two coupled three-
phase lines running along the same right of way). One segment, 250 km, before the
fault; the other, 150 km, to the right of the fault site ending in a series compensating
capacitors protected by MOVs. The system is linked, on the right, by a 100 km three-
phase line to the equivalent of the power network labelled sys-2, and directly on the
left, to the power system labelled sys-1.

The voltage on one of the "healthy" phases (b) at the bus of the fault, when plot
ted both by the EMTP and by OVNI, are shown on Fig. 201. To the naked eye, there
seems to be no difference. When subject to some numerical scrutiny, it turns out to
be a difference 0.0005 % between the two solutions5 [67].

Fig.201: Voltage on phase b at F A U L T 1.

5 Up to 0.0025 %, if the percentage is taken with respect to the EMTP value at each time, instead of
using the maximum value of the EMTP's solution as percentage reference.

Part VII

CONCLUSIONS

15. CONCLUSIONS AND FUTURE WORK

This project began as a quest for a low cost real time simulator for power

networks. Even though the solution has the potential of tackling simulations

traditionally solved with load flow, stability programs as well, once the necessary

element models have been attached to the core developed in this work, the focus

has been kept on achieving real time on two counts: testing protective relays,

and testing HVDC controllers.

A bandwidth of 2 kHz at a maximum 3 % magnitude distortion was taken as

sufficient. Backward Euler's integration rule was found clean of the traditional

blame attached to it, namely: it was found that it delays all frequency compo

nents of the signal it processes by the same time shift, half the integration step

used. In short, backward Euler's rule, with a magnitude response distortion

better that trapezoidal's, and also more stable, was chosen as the rule for the

integrator. The integration step necessary under this conditions ranges in the

vicinity of 70/Jsec/step. The real time deadline.

To meet the deadline mentioned in the previous paragraph, precalculation

was presented in a way that does not preclude the generality of the solution, nor

taxes the system memory requirements beyond reasonable limints.

To make precalculation a viable option, a three level segmentation scheme

was introduced: (a) topological segmentation, followed by (b) MATE, (the multi-

area Thevenin equivalent concept) with critical fast topology changing elements

(or areas under certain conditions) being used as node shrouds under (c) the

node hiding technique introduced in this thesis.

Once MATE segmentation was set in place, Cholesky's linear system solution

method was included to find MATE's links currents, which brought a reduction

15. Conclusions and Future Work 244

by half of that particular step.

The MATE concept was extended to take advantage of the presence of

grounded voltage sources, and methods to optimize the building of the MATE's

links matrix and to process links was introduced. Also included was a procedure

to cope with ideal switch operations without collapsing or creating nodes in the

network.

Several new models were created for this project: an HVDC module model,

as a sample of the benefits of node hiding (node hiding brought the HVDC sim

ulations, already using MATE, from the vicinity of one thousand microseconds

per step, down to within the real time deadline); a controller for HVDC valves.

A novel technique for modelling the effect of zero sequence magnetic flux in the

three-phase core of the HVDC model was also introduced.

To cope with asynchronous operation of switches, the ADC (or DSDI) method

of backtracking was introduced. This non iterative procedure prevents the oc

currence of numerically induced spikes in the solution.

The problem described in the introductory chapter, and detailed in the

"problem" part of this report, has been successfully resolved: real time sim

ulation of an electric network for equipment testing on inexpensive off-the-shelf

hardware platforms. Performances of 35 //sec/step for protective relay testing

cases, and of 27 /isec/step for HVDC controllers testing cases, were achived on

a single Pentium Pro 400 MHz workstation.

The non hardware specific algorithm and code produced make it easy to

move on to newer and faster machines as they become available. The solution

algorithm, and its code, segment the network in a way that allows for "coarse

grain" paralellization, as shown in the results in [73], where the algorithm solved

a 234-node power network at a rate of 45 //sec/step on a parallel cluster of five

Pentium type processors.

A method to investigate the frequency response, and stability of "hybrid" in

tegration rules that have no closed form transfer function to which a Z-transform

process can be applied, has been introduced.

15. Conclusions and Future Work 245

Last but not least, demonstration of the advantages of backward Euler's rule

as the main one in the simulator gives the solution presented in this report a

touch of elegant simplicity and stability.

15.1 Future work

The author is currently investigating the possibilities of taking advantage of

the presence of voltage sources as a simplifying factor to reduce further the

complexity of the network.

The models created by Dr. Kwok-Wai in [33] need to be attached to OVNI

to pursue load-flow type of simulations.

Further study of latency exploitation [2], to account for the coupling of neigh

bouring zones running at different integration steps is necessary, and its imple

mentation in OVNI is necessary.

Inclusion of models for electrical machinery, DC motors, induction and syn

chronous machines; also of frequency dependent transmission lines models.

BIBLIOGRAPHY

[1] P.R. Lawrence and K. Mauch, Real-Time Microcomputer System Design:

An Introduction, McGraw-Hill Book Company, Inc., New York, 1987.

[2] L.R. Linares and J.R. Marti, "Sub-area latency in a real-time power net

work simulator," in Proceedings IPST'95, IPST'95, Ed., Lisbon, Portugal,

September 1995, International Conference on Power System Transients, pp.

541-545.

[3] Hermann W. Dommel, "Digital computer solution of electromagnetic tran

sients in single- and multiphase networks," in Transactions of Power Ap

paratus and Systems, Vol PAS-88, No. 4, IEEE, Ed. IEEE Power Society,

April 1969, pp. 388-399.

[4] Hermann W. Dommel, EMTP Theory Book, Microtran Power Systems

Analysis Corporation, Vancouver, B.C., second edition, 1992.

[5] J.R. Marti, B.W. Garret, H.W. Dommel, and L.M. Wedepohl, "Transients

simulation in power systems: Frequency domain and time domain analy

sis," in Power System Planning & Operation Section, CEA, Ed., Montreal,

Quebec, Canada, March 1985, Canadian Electrical Association.

[6] J.R. Marti, "Internal report on multi-area thevenin equivalent," A hand

written write-up where Dr. Marti presents MATE through an example cir

cuit with three two/three node subnetworks connected with resistive links.

He compares there MATE'S number of operations with Woodbury's method

and with the standard solution., January 1994.

-

Bibliography 247

[7] Gabriel Kron, Tensor Analysis of Networks, Wiley and Sons, New York,

1939.

[8] A. Brameller, M.N. John, and M.R. Scott, Practical Diakoptics for Electri

cal Networks, Lowel & Brydone, London, 1969.

[9] J.R. Marti and L.R. Linares, "Real-Time EMTP-based transients simu

lation," in IEEE Trans, on Power Systems, Vol. 9, No. 3, IEEE, Ed.,

Vancouver, B.C., Canada, August 1994, IEEE Power Society, pp. 1309-

1317.

[10] J.R. Marti and Jiming Lin, "Suppression of Numerical Oscillations in the

EMTP," in IEEE Proceedingson PES'88, Power Engineering Society, Ed.,

Portland, Oregon, July 29-29 1988, IEEE.

[11] Paul M. Chirlian, Basic Network Theory, McGraw-Hill Book Company

Inc., New York, 1969.

[12] L.A. Dunstan, "Digital load flow studies," in Trans. AIEE, Vol. 73, pt.

IIIA, AIEE, Ed. AIEE, 1954, pp. 825-832.

[13] W.D. Stevenson, Elements of Power System Analysis, McGraw-Hill Book

Company, New York, second edition, 1962.

[14] G.W. Stagg and A.H. El-Abiad, Computer Methods in Power Systems

Analysis, McGraw-Hill Book Company, New York, 1968.

[15] E.W. Kimbark, Power System Stability, John Wiley and Sons, Inc., New

York, 1948.

[16] H.E. Brown and C E . Person, "Short circuit studies of large systems by the

impedance matrix method," in Proc. Power Ind. Computer Appl, Power

Ind. Computer Appl., Ed., Pittsburgh, Pa., 1967, Power Ind. Computer

Appl., pp. 335-342.

Bibliography 248

[17] Institute of Electrical Engineering Universidad Nacionai de San Juan,

"Transients network analyser," in Web page at www.iee.unsj.edu.ar, San

Juan, Mendoza, Argentina, 2000.

[18] P.G. McLaren, R. Kuffel, R Wierckx, J. Giesbrecht, and L. Arendt, "A real

time digital simulator for testing relays," in IEEE Transactions on Power

Delivery, Vol. 7, No. 1, IEEE, Ed. IEEE Power Society, January 1992, pp.

207-213.

[19] M. Kezunovig, M. Aganagic, V. Skendzic, J. Domaszewicz, J.K. Bladow,

D.M. Hamai, and S.M. McKenna, "Transients computation for relay testing

in real-time," in Transactions on Power Delivery, Vol. 9, No. 3, IEEE, Ed.

IEEE Power Society, July 1994, pp. 1298-1307.

[20] R.C. Durie and C. Pottle, "An extensible real-time digital transient network

analyser," in Trans. PWRS, Paper WM 175-0, Winter Meeting, IEEE, Ed.

IEEE Power Society, January 1992.

[21] D.M. Falcao, E. Kaszkurewicz, and H.L. Almeida, "Application of parallel

processing techniques to the simulation of power system electromagnetic

transients," in Trans, on PWRS, Paper WM 287-3, Winter Meeting, IEEE,

Ed. IEEE Power Society, January 1992.

[22] S.Y. Lee, H.D. Chiang, K.G. Lee, and B.Y. Ku, "Parallel power system

transient stability analysis on hypercube multiprocessors," in Trans, on

Power Systems, Vol 6, No. 3, IEEE, Ed. IEEE Power Society, August

1991, pp. 1337-1342.

[23] Soumagne J . -C , Mercier P., Rizzi J . -C , Do V.Q., Sybille G., and Giroux P.,

"Development of the IREQ simulator," Proceedings of 1997 International

Conference on Digital Power Systems Simulators, pp. 31-6, 1997.

[24] Electricite de France, "Arene: The digital transient network analyser,"

http://www.iee.unsj.edu.ar

Bibliography 249

in Web page: http:// im.edfgdf.fr/ er/ en/ genser/ presta/ logici/ arene/

arene.htm, Paris, France, 1997.

[25] Kulicke B., Lerch E., Ruhle O., and Winter W., "Netomac-caiculating,

analyzing and optimizing the dynamic of electrical systems in time and fre

quency domain," Proceedings of International Conference on Power Sys

tems Transients (IPST'99), pp. 1-6, 1999.

[26] Fujimoto Y., Yuan Bin, Taoka H., Tezuka H., Sumimoto S., and Ishikawa

Y., "Real-time power system simulator on a PC cluster," Proceedings

of International Conference on Power Systems Transients (IPST'99), pp.

671-6, 1999.

[27] Kuffel R., Giesbrecht J., Maguire T., Wierckx R.P., and McLaren P., "Rtds-

a fully digital power system simulator operating in real time," Proceedings

of Stockholm Power Tech International Symposium on Electric Power En

gineering, pp. 49-54 vol.4, 1995.

[28] J.R. Marti and L.R. Linares, "OVNI: An object approach to real-time

power system solutions, part i: Mate diakoptics.," in Submitted, IEEE,

Ed., 2000.

[29] L.R. Linares and J.R. Marti, "OVNI: An object approach to real-time

power system solutions, part i: Object oriented solution.," in Submitted,

IEEE, Ed., 2000.

[30] S. Acevedo, L.R. Linares, J.R. Marti, and Y. Fujimoto, "Efficient HVDC

converter model for real time transients simulation," in Proceedings on

Power Delivery, Vol. 1, No. I, IEEE, Ed., San Diego, CA, June 1998,

IEEE Power Society, pp. 1-7.

[31] Fernando Castellanos, Full frequency dependent phase-domain modelling of

transmission lines and corona phenomena, Ph.D. thesis, The University of

British Columbia, Vancouver, B.C., Canada, 1997.

http://
http://im.edfgdf.fr/

Bibliography 250

[32] Fernando Jose Marcano, "Modelling of transmission lines using idempotent

decomposition," M.S. thesis, The University of British Columbia, Vancou

ver, B.C., Canada, April 1996.

[33] Louie Kwok-Wai, Aggregation of Voltage and Frequency Dependent Elec

trical Loads, Ph.D. thesis, The University of British Columbia, Vancouver,

B.C., Canada, July 1999.

[34] Grady Booch, Object-oriented analysis and design with applications, vol. 1

of Benjamin/Cummings series in object-oriented software engineering, Ben-

jamin/Cummings Pub. Co., Redwood City, Calif., 2nd. ed. edition, 1994.

[35] K. Strunz, L. Linares, J.R. Marti, O. Huet, and X. Lombard, "Efficient

and Accurate Representation of Asynchronous Network Structure Changing

Phenomena in Digital Real Time Simulators," in IEEE Trans, on Power

Systems, IEEE, Ed. IEEE Power Society, December 1998.

[36] J.R. Marti, L.R. Linares, J. Calvino, and H.W. Dommel, "OVNI: An Object

Approach to Real-Time Power System Simulators," in IEEE Trans, on

POWERCON'98, IEEE, Ed., Beijing, China, August 18-21 1998, IEEE

Power Society, pp. 977-981.

[37] Roberto Rosales S., "Simulation environment for a real time simulator,"

M.S. thesis, The University of British Columbia, Vancouver, B.C., Canada,

April 1997.

[38] Jesus Calviho-Fraga, "Implementation of a real time simulator for relay

testing," M.S. thesis, The University of British Columbia, Vancouver, B.C.,

Canada, April 1999.

[39] J.R. Marti, "Notes on elec 560," Graduate course given by Dr. Marti during

the winter of 1992 at the University of British Columbia., 1992.

Bibliography 251

[40] Gregory Bond, "Notes on software testing," Graduate course given by

Dr. Bond during the winter of 1994 at the University of British Columbia.,

1994.

[41] Leon O. Chua, Computer-aided analysis of electronic circuits : algorithms

and computational techniques, Prentice-Hall, Englewood Cliffs, N.J., 1975.

[42] Kezunovic M. and Galijasevic Z., "An advanced PC-based digital simulator

for protective relay testing," Proceedings of 1997 International Conference

on Digital Power Systems Simulators, pp. 9-14, 1997.

[43] Fernando L. Alvarado, Robert H. Lasseter, and Juan J. Sanchez, "Testing

of Trapezoidal Integration with damping for the Solution of Power Transient

Problems," IEEE Trans. PAS 102,, no. 12, pp. 3787-3790, December 1983.

[44] Jose Marti, The problem of frequency dependence in transmission line mod

elling, Ph.D. thesis, The University of British Columbia, Vancouver, B.C.,

Canada, 1981, vii, 200 leaves : diagrs.; 28 cm. Bibliography: leaves 198-200.

[45] J.R. Marti, "Internal report on updating lumped elements sources," Jan

uary 1991.

[46] Hermann W. Dommel, "Notes on elec 551," Graduate course given by Dr.

Dommel during the winter of 1992 at the University of British Columbia.,

1992.

[47] L.F. Woodruff, Principles of Electric Power Transmission, John Wiley and

Sons, Inc., New York, second (13th printing) edition, 1956.

[48] L.M. Wedepohl, "Application of matrix methods to the solution of travel

ling wave phenomena in polyphase systems," Proc. IEE, vol. 110, no. 12,

pp. 2200-2210, 1963.

[49] Frank Salazar, "Modelacion modal de lineas de transmision," M.S. thesis,

Universidad Central de Venezuela, Caracas, Venezuela, 1982.

Bibliography 252

[50] S. Chimklai and J.R. Marti, "Simplified three-phase transformer model

for electromagnetic transient studies," Trans, on Power Delivery, vol.

94SM410-1, pp. 8 pages, July 1994.

[51] Ned Mohan, Tore M. Undeland, and William P. Robbins, Power Electron

ics, vol. 1, John Wiley & Sons, Inc., second edition, 1995.

[52] Araujo A.E.A., Soudack A.C., and Marti J.R., "Ferroresonance in power

systems: chaotic behaviour," IEE Proceedings C (Generation, Transmission

and Distribution), vol. 140, no. 3, pp. 237-40, 1993.

[53] J.R. Marti, L.R. Linares, and H.W. Dommel, "Current transformers and

coupling-capacitor voltage transformers in real-time simulations," IEEE

Transactions on Power Delivery, vol. 12, no. 1, pp. 164-8, January 1997.

[54] Chung-Wen Ho, E. Ruehly, and P.A. Brennan, "The modified nodal ap

proach to network analysis," in IEEE Transactions on Circuits and Systems

vol.CAS-22, no.6, IEEE, Ed., June 1975, pp. 504-509.

[55] W.F. Tinney and J.W. Walker, "Solution of sparse network equations by

optimally ordered triangular factorizations," in IEEE Proceedings, Vol. 55,

IEEE, Ed. IEEE, November 1967, pp. 1801-1809.

[56] A. Monticelli, S. Deckmann, Garcia A., and B. Scott, "Real-Time External

Equivalent for Static Security Analysis," Trans, on Power Apparatus and

Systems, vol. PAS98, no. 2, pp. 498-504, March/April 1979.

[57] Quantasm Corporation, "Assembly language tools, tips and tricks (web

page link)," in Web page: http:// www.quantasm.com// opcode-j-html,

2000.

[58] A.E.A Araujo, H.W. Dommel, and J.R. Marti, "Converter Simulations with

the EMTP: Simultaneous Solution and Backtracking Technique," Proc.

IEEE Intl. Conference, Athens, Greece, vol. Athens Power Tech APT'93,

Semptember 5-8 1993.

http://
http://www.quantasm.com//

Bibliography 253

[59] Araujo A.E.A., Dommel H.W., and Marti J.R., "Simultaneous solution

of power and control systems equations," IEEE Transactions on Power

Systems, vol. 8, no. 4, pp. 1483-9, 1993.

[60] Hermann W. Dommel, Case Studies for Electromagnetic Transients, Micro

tran Power Systems Analysis Corporation, Vancouver, B.C., second edition,

1993.

[61] M. et al. Kezunovig, C.W. et al. Fromen, and F. Philips, "Experimental

evaluation of emtp-based current transformer models for protective relay

transient study," in Transactions on Power Delivery, Vol. 9, No. 1, IEEE,

Ed. IEEE Power Society, January 1994, pp. 405-413.

[62] M. et al. Kezunovig, C.W. et al. Fromen, and S.L. Nilson, "Digital models

of coupling capacitor voltage transformers for protective relay transient

studies," in Transactions on Power Delivery, Vol. 7, No. 4, IEEE, Ed.

IEEE Power Society, October 1992, pp. 1927-1935.

[63] L. Kojovic, M. et al. Kezunovig, and C.W. et al. Fromen, "A new method for

the CCVT performance analysis using field measurements, signal processing

and EMTP modeling," in Transactions on Power Delivery, Vol. 9, No. 4,

IEEE, Ed. IEEE Power Society, October 1994, pp. 1907-1915.

[64] J.R. Lucas, P.G. McLaren, W.W.L. Keerthipala, and R.P. Jayasinghe, "Im

proved simulation models for current and voltage transformers in relay stud

ies," in IEEE Transactions on Power Delivery, Vol. 7, No. 1, IEEE, Ed.

IEEE Power Society, January 1992, pp. 152-159.

[65] G.R. Slemon and A. Stranghen, Electric Machines, vol. 1, Addison-Wesley,

pp. 139-141., 1980.

[66] M. Kezunovic, et al., J.R. Marti, H.W. Dommel, and L.R. Linares, "Real

Time Simulator for Relay Testing, Progress report #FC65-90WA 07990 to

Bibliography 254

the Department of Energy, Western Area Power Administration," August

1991.

[67] H.W. Dommel, "Conversation with Dr. Dommel on possibilites to model the

zero sequence component of three-phase core transformers magnetization,"

At Dr. Marti's office, June 1998.

[68] John G. P. Barnes, Programming in Ada 95, Addison-Wesley, 1996.

[69] Bjarne Stroustrup, The C++ programming language, Addison-Wesley,

third edition.

[70] Nicklaus Wirth, Algorithms + Data Structure = Programs, vol. 1 of Series

on Automatic Computation, Prentice-Hall International, Inc., London, first

edition, 1976.

[71] Steve McConnell, Code Complete, vol. 1, Microsoft Press, Redmond, Wash.,

first edition, January 1993.

[72] Michel Goossens, Frank Mittelbach, and Alexander Samarin, The LaTeX

Companion, vol. 1, Addison-Wesley, Reading, Massachusetts, first edition,

1993.

[73] Jorge Ariel Hollman, "Real time distributed network simulation with PC

clusters," M.S. thesis, The University of British Columbia, EE, Vancouver,

Canada, December 1999.

[74] Luis Rafael Linares-Rojas, "A real time simulator for power electric net

works," M.S. thesis, The University of British Columbia, EE, Vancouver,

Canada, April 1993.

[75] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery, Numerical Recipes in C, Cambridge Univ. Press, Cambridge,

Mass., January 1993.

