VACUUM DEPOSITED OPTICAL PHASE FTLTERS by
B.A.SChen Graf

A Thesis Submitted In Partial Fulfilment Of The Requirements For The Degree of Master Of Applied Science

in the Department of
Electrical Engineering
We accept this thesis as conforming to the required standard
The University of British Columbia April, 1976

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Eleefrical Engineering
The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T lW

Date Gun 30,1976

ABSTRACT

The advantages of an optical spatial phase filter constructed by thickness variations are put forward and a method of fabricating such a device using vacuum deposition techniques is detailed.

The design and construction of a vacuum system to produce such a device is outlined. The system comprises a vacuum chamber with a source holder for zinc sulfide, an electronically controlled shutter, an aperture, and a substrate and holder mounted on an $x-y$ motion table driven by stepper motors. The system is controlled by a minicomputer and measurements of thickness are made by an ellipsometer controlled by the minicomputer.

Experiments conducted with the system determine the spatial resolution and closed loop control capabilities to be adequate. An analysis of the results of the tests concludes that with further refinements it seems feasible to fabricate spatial phase filters by using vacuum deposition techniques.

Page

Abstract i
Table of Contents ii
List of Tables iii
List of Figures iv
Acknowledgement v
Introduction 1
Chapter I - Background 4
Chapter II - Hardware and Software 12
Chapter III - Results and Conclusions 32
References and Bibliography 46
Appendix I - A Brogram to Calculate Phase Changes Produced by Varying Thickness 47
Appendix II - A Program to Calculate Fourier Transform Twice 53
Appendix III - Listing of the Software Written for the PDP-8e 56

LIST OF TABLES

Page

1. Device 33 of Computer Interface 21
2. Scan of Aluminum Coated Substrate 33

LIST OF FIGURES

Page

1. Transmission and Reflection Optical Systems 5
2. Angle of Incidence 6
3. Spatial Fourier Transform Example 10
4. Vacuum Chamber Details 13
5. Ellipsometer Schematic 16
6. Flowchart of Subroutine BAL 24
7. Analyzer Scan of Squares 1-3 35
8. Polarizer Scan of Squares $1-3$ 36
9. Polarizer and Analyzer Scan of Square 4 37
10. Analyzer Scan for Squares Deposited While on Control 39
11. Polarizer Scan for Squares Deposited While on Control 40
12. $\Delta-\psi$ Plot (Experimental) 42
13. $\Delta-\Psi$ Plot (Calculated) 43

ACKNOWLEDGEMENT

The author wishes to express his sincere thanks and gratitude to Professor L. Young for his supervision and for his patience which is above and beyond the call of duty. Special thanks is due to the author's wife, Margaret-Ellen Graf, for her diligent efforts in typing and proofreading.

Acknowledgement is also due to Professor B. P. Hildebrand for suggesting the topic, to M. Thewalt for his assistance in carrying it out, and to Mr. J. Stuber of the machine shop in the Department of Electrical Engineering for his excellent work.

INTRODUCTION

This thesis is an investigation of the practicality of producing optical phase filters using vacuum deposition techniques.

Consider an optical system consisting of two parallel planes separated by some distance. The electromagnetic field intensity in one plane is a function of the intensity in the other plane. To produce specific intensity functions in one plane from a particular intensity function in the other requires, in general, a complex valued filter to be placed between the two. An example of such a filter is a lens.

An ideal lens can be represented mathematically as a multiplicative factor of the form, ${ }^{1}$

$$
\begin{equation*}
\exp -j c\left(x^{2}+y^{2}\right) \tag{1}
\end{equation*}
$$

where c is a constant and x, y are perpendicular reference axes. It is desirable to be able to produce more complicated phase functions than that of the lens. In fact, the corrections that must be made to a real lens so that it approximates the ideal more closely require a much more complex phase function. ${ }^{2}$

A simple form of phase filter was used by Tsujiuchi to correct lens aberrations and to produce optical systems with two focii. ${ }^{3}$ The filters used were very simple in that they consisted only of a pattern of half wavelength retardations. Approximations were made in the calculations of the filter pattern in order to easily fabricate the devices.

Recently holographic techniques have been used to produce phase filters. ${ }^{4}$ In the referenced work the authors used an amplitude hologram. Less than ten per cent of the signal power was deflected into the beam that has the desired altered phase. ${ }^{5}$

The most straightforward method of producing a pattern of phase variation would seem to be the use of a transparent material with a pattern of thickness variation. The material must have an index of refraction different from the transmission medium so that the speed of light is different in the filter. Thus the thickness variations convert to phase variations. With the aid of an index matching layer a phase filter of this type passes all of the available input signal power and is thus a significant improvement over the holographic type of filter. The thickness variation type of phase filter could conceivably be used in many applications in the field of optical information processing and spatial filtering where conventional photographic holograms are now used.

Researchers at I.B.M. have produced thickness variation phase filters which they call Kinoforms. ${ }^{6}$. The devices are constructed by bleaching computer generated photonegatives. Bleaching removes the dark material in the negative, leaving a transparent pattern of thickness. It is pointed out that the ideal way of fabricating such devices would be to produce the thickness directly and not rely on a transformation from
intensity to phase.
In this thesis an investigation is made of a method of fabricating a two dimensional device with thickness variations suitable for use as a phase filter in an optical system.

Starting with a parallel faced slab or substrate of transparent material, additional material must be added or removed to produce a thickness variation over the surface. Removal of material was not further explored, although developments in laser etching techniques make it look feasible. There are a number of methods of adding material to a substrate such as vacuum deposition, sputtering and screening. Of these, vacuum deposition seemed to be the most promising technique and was singled out for investigation.

Vacuum deposition was chosen for further study for a number of reasons. The technique has been used widely in the field of optics for various purposes such as anti-reflection films and multi-layer frequency selective filters. The materials used in vacuum deposition have been studied and are well documented. $7,8,9,10$

The following chapters describe the work performed to investigate the feasibility of fabricating phase filters by vacuum deposition techniques. Chapter I is a description of the proposed filter and the method of production. Chapter II describes the hardware designed and constructed, and the software written. Chapter III is a summary of the results and conclusions of the investigation.

CHAPTER I - BACKGROUND

A dielectric material will cause a phase change of the light transmitted through it in the following way. Consider Figure 1(a). The optical system between the two fixed reference planes z_{0} and z_{1} can be considered as a system with a transmission coefficient T.

$$
\begin{equation*}
T=\frac{\left(1+r_{01} r_{12}+r_{01}+r_{12}\right)}{1+r_{01} r_{12} e^{-2 j \theta_{2}}} e^{-j\left(\theta_{1}+\theta_{2}+\theta_{3}\right)} \tag{2}
\end{equation*}
$$

$r_{i j}$ is the Fresnel reflection coefficient from medium i to medium j. The reflection coefficient for perpendicularly polarized light is

$$
\begin{equation*}
r_{i j}=\frac{n_{i} \cos \emptyset_{i}-n_{j} \cos \emptyset_{j}}{n_{i} \cos \emptyset_{i}+n_{j} \cos \emptyset_{j}} \tag{3}
\end{equation*}
$$

and for parallel polarization

$$
\begin{equation*}
r_{i j}=\frac{n_{i} \cos \emptyset_{j}-n_{j} \cos \emptyset_{i}}{n_{i} \cos \emptyset_{j}+n_{j} \cos \emptyset_{i}^{\prime}} \tag{4}
\end{equation*}
$$

\emptyset_{i} and \emptyset_{j} are defined in Figure 2. The optical path lengths θ_{i} 's are given by

$$
\begin{equation*}
\theta_{i}=\frac{2 \pi}{\lambda} n_{i} d_{i} \cos \emptyset_{i} \tag{5}
\end{equation*}
$$

Transmission and Reflection Optical Systems

- 6 -

Figure 2. Angle of Incidence
where λ is the wavelength of the light, n_{i} is the refractive index of the $i^{\text {th }}$ medium, and d_{i} is the thickness of the $i^{\text {th }}$ medium. By varying the thickness d_{1}, the phase change introduced by the optical system is altered.

A similar result can be achieved by using the reflection geometry of Figure 1(b). The optical system between the two planes z_{0} and z_{1} can be characterized by a reflection coefficient

$$
\begin{equation*}
R=\frac{\left(1+r_{01}+r_{12}+r_{01} r_{12}\right)\left(r_{01}+r_{12} e^{-j 2 \theta_{1}}\right)}{1+r_{01} r_{12} e^{-j 2 \theta_{1}}} e^{-2 j \theta_{0}} \tag{6}
\end{equation*}
$$

The computer program in Appendix I was used to calculate the phase changes produced by varying the thickness of the dielectric layer. The arbitrary zero of phase change was chosen to occur when the dielectric layer has zero thickness. Appendix I lists the computed change of phase due to dielectric thickness.

For the transmission geometry, the optical constants used in the equations were chosen for a film of magnesium fluoride on glass in air. For the reflection geometry, the constants used correspond to a film of zinc sulfide on ans aluminum backing in air. These constants were chosen because they represent materials that have been frequently used in the field of optics.

A phase filter, being a device which alters the phase of a plane wave as a function of two dimensions, could be
used in much the same manner as an interference hologram to store information and create images. This property can be demonstrated by utilizing the Fourier transformation property of a lens. A lens displays the two dimensional spatial Fourier transform of the intensity of one of its focal planes in the other focal plane. Thus, if an image is placed in the focal plane of a lens, its Fourier transform would appear in the other focal plane. The Fourier transform of a real image is in general a complex valued function.

The amplitude part of such a function can be easily constructed with a photographic transparency. If a phase filter could be constructed with the appropriate pattern of phase, one should be able to produce an image from the complex valued Fourier transform. Even without the amplitude part of the filter, it should be able to produce a reasonable image. This experiment was simulated numerically by using the Fast Fourier Transform program available on the University of British Columbia I.B.M. 360 computer system.

A two dimensional black-white image was digitized and then transformed into the spatial frequency plane. There the individual spatial frequencies were altered by normalizing each amplitude to unity while leaving the phases intact. This simulates the effect of illuminating the phase filter without amplitude compensation with a unit amplitude plane wave. The Fourier transform of the altered transform was then taken. This corresponds to the reconstruction process with a lens. Taking the Fourier transform twice,
instead of taking the transform and its inverse, results in the axes being inverted.

The program written to demonstrate this effect is listed in Appendix II. The input to the program is the digitized pattern of Figure 3(a). The intensity function is spread by the amplitude normalizing. However, the bright areas, as indicated by the pattern of Figure 3(b), still show a reproduction of the original. The results of the computer experiment demonstrate the capabilities of a phase filter.

Vacuum deposition requires that the material to be deposited be heated to the vapour state and then condensed on the substrate. To produce a phase filter with vacuum techniques, involves the deposition of a varying thickness dielectric on the surface of a substrate such that the thickness is a function of the position on the surface. This involves controlling the position of deposition and also controlling the thickness of deposition.

Position of deposition can be controlled by collimating the vapour from the deposition source into a narrow beam and exposing the substrate only to that beam. The substrate must then be moved about so that the beam covers the entire surface. Use of this method restricts the spatial resolution to the fineness of the beam. An ellipsometer was available to measure the thickness of the deposited layer. The measurements from the ellipsometer could be used to determine the thickness of the layer that was currently being deposited

and thus indicate when the layer was thick enough before proceeding to the next area.

The ellipsometer had been previously automated by connecting it to a Digital Equipment Corporation PDP 8-e minicomputer. This computer was ideally suited to control the positioning of the substrate and to control the thickness of the deposition at any one point. It would also be simple to communicate the pattern of phase required to a minicomputer since the pattern would, in all probability, be generated by a large computer.

To further investigate the feasibility of producing phase filters by vacuum techniques, additional apparatus had to be designed, constructed and tested. The control strategy had also to be designed and implemented.

CHAPTER II - HARDWARE AND SOFTWARE

The technique of vacuum deposition requires a chamber equipped with a pumping system that can maintain pressures lower than 1×10^{-5} Torr. In this chamber, the source material to be deposited must be heated to a high temperature so that it vaporizes. The substrate must be held in proximity to the source so that the vapour condenses on its surface. Figure 4 is a sketch of the vacuum system designed and built to test the feasibility of producing a pattern of varying thickness deposit.

The main section of the chamber houses an $x-y$ movement upon which the substrate is mounted. The $x-y$ movement is driven by two stepper motors mounted within the chamber and powered from an electrical feedthrough on the side of the chamber. The rear of the chamber has a connection to the pumping system.

The front section of the chamber has angled sides and a barrel shaped nosepiece. The sides, which form a "V" with an interior angle of 140 degrees, are fitted with windows such that a light beam entering the center of one window at right angles would strike the substrate at an angle of incidence of 70 degrees and reflect out the other window. An electromagnetically operated shutter is fitted along the center line of the chamber as close to the point of intersection with the right angles to the windows as possible without interfering with the passage of light from

Figure 4. Vacuum Chamber Details
window to substrate to window. Between the shutter and substrate is a mask with a square aperture. The barrel of the chamber contains the source. The source is a round tantalum tube that is connected to high current electrical feedthroughs at the end of the barrel. The endpiece also contains an electrical feedthrough for the operation of the shutter. The source shutter and mask all lie along the center line of the chamber. Thus, the source is only able to deposit material on that section of the substrate visible to the source through the mask and then, only when the shutter is open. The motion of the $x-y$ movement presents different areas of the substrate to the source.

The windows are fitted in such a way that the entire chamber can be placed between the two arms of an ellipsometer. Thus, the thickness of the area being deposited can be monitored in situ.

The chamber is constructed of helium-arc welded type 316 stainless steel. The front section separates from the main chamber to allow servicing of the substrate. The two sections are bolted together and sealed with a large "O" ring. The source and feedthroughs are mounted on a flange that is bolted to the front end of the barrel section. The entire chamber is mounted on a large aluminum plate that facilitates locating the unit on the ellipsometer.

The pumping system connected to the rear of the main chamber consists of a mechanical rotary pump for roughing from atmospheric pressures and an oil diffusion pump for
higher vacuums. This arrangement of pumps is able to adequately maintain a pressure of less than 1×10^{-5} Torr. The chamber and $x-y$ movement were designed for this experiment. The construction was carried out by Mr. J. Stuber.

The ellipsometer used to monitor film thickness had been previously equipped to make measurements under control of a minicomputer. An ellipsometer is a device which measures two optical quantities called Δ and ψ which are related to the reflection coefficients of an optical system by

$$
\begin{equation*}
\tan \psi^{\frac{\mathfrak{j} \cdot \Delta}{D}}=\frac{R_{p}}{R_{S}} \tag{7}
\end{equation*}
$$

where R_{p} is the reflection coefficient for parallel polarized light and R_{s} is the reflection coefficient for perpendicular polarized light.

A schematic diagram of the ellipsometer is given in Figure 5. The polarizer and analyzer are polaroids and the quarter wave plate is a Soleil Babinet compensator that introduces a phase change of 90 degrees between the perpendicular and parallel polarizations of the light beam. The intensity of the light emerging from the analyzer is given by

$$
\begin{equation*}
I=I_{0} \sin ^{2}(\psi+A)-\sin 2 \psi \sin \frac{1}{2}\left(\Delta-\Delta^{\prime \prime}\right) \tag{8}
\end{equation*}
$$

${ }^{1}{ }^{\prime}$ is defined by

1 - laser light source
2 - polarizer with shaft encoder and drive motor
3 - sample
4 - quarter wave plate
5 - analyzer with shaft encoder and drive motor
6 - photomultiplier tube light detector

Figure 5. Ellipsometer Schematic

$$
\begin{equation*}
\tan \Delta^{\prime}=\sin \delta \tan \left(2 P-\frac{\pi}{2}\right) \tag{9}
\end{equation*}
$$

where δ is the retardation of the quarter wave plate, and A is the analyzer setting and P is the polarizer setting.

Making a measurement with the ellipsometer, or balancing the ellipsometer, involves determining a combination of polarizer and analyzer settings that produces a null in the light intensity emerging from the analyzer.

With the quarter wave plate set at -45° to the plane of incidence, at extinction the relations between $₫$ and P, and $\boldsymbol{\psi}$ and A are:

$$
\begin{align*}
\boldsymbol{\Delta} & =90^{\circ}-2 \mathrm{P} & 135^{\circ}>\mathrm{P} & >-45^{\circ} \\
\boldsymbol{\psi} & =\mathrm{A} & 90^{\circ}>\mathrm{A} & >0 \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
\Delta & =2 \mathrm{P}-90^{\circ} & 225^{\circ}>\mathrm{P}>45^{\circ} \\
\boldsymbol{\psi} & =180^{\circ}-\mathrm{A} & 180^{\circ}>\mathrm{A}>90^{\circ} \tag{11}
\end{align*}
$$

A detailed list of all combinations of analyser and polarizer settings that produce a null is given by F.L. McCrackin et al. ${ }^{12}$

Because the signal from the photomultiplier falls to insignificant levels near a null, it was not possible to determine the position of the null directly. Fortunately, both I versus A and I versus P characteristics are symmetrical about the null point. I versus P is symmetrical provided δ is close to 90 degrees. Thus, by determining equal intensities on either side of the minimum, the position of the null can be determined as the midpoint.

Both the polarizer and analyzer are driven by stepping
motors geared so that one step rotates the polaroid by 0.01 degrees. The positions of the polarizer and analyzer are measured by a shaft encoder connected to the drive gearing in each unit. The two encoders are read by a multiplexed decoder to provide a five digit BCD output which ranges from 000.00 degrees to 359.99 degrees. The analyzer shaft encoder was mounted in opposition to the scale engraved in the analyzer so that the reading from the encoder must be complimented by 360 degrees to make it compatible. The light intensity monitored by the photomultiplier is read through a multiplexed ten bit analog to digital converter. The ellipsometer had previously been interfaced to a PDP-8e minicomputer. The shaft encoder and photomultiplier were input to the computer and the computer was able to turn the stepper motors on the analyzer and polarizer. The interface was expanded so that the computer was able to rotate the stepper motors connected to the $x-y$ drive in the vacuum chamber. The shutter was also operated through the computer interface.

Operator communication to the system was made via an ASR-33 teletype. The teletype handler program operates the teletype under interrupt control. All input from the keyboard is put into a buffer until it is used and removed by a program requiring input. All print output is put into another buffer which the teletype handler tries to keep empty by outputting the contents on the printer. Since teletype input and output are performed on an interrupt basis, the
computer is able to carry out control tasks in the background while serving the teletype.

A simple operating system was written to allow an operator to initiate control actions from the keyboard. When first started, the operating system initializes flags and counters used throughout the programs in the system. The only other function of the operating system is to check the keyboard buffer for inputs and translate these inputs into control programs to execute. Commands take the form of two truncated ASCII characters. The operating system compares inputs with a table of names it recognizes. If a match is made, the control program in the address table corresponding to the name table is executed. The control programs are all subroutines that return to the operating system when they have completed their task.

For this thesis, it was required to operate the ellipsometer and the shutter and $x-y$ drive in the chamber. Also a higher level program was required to coordinate these controls in such a way as to produce a deposit of a required thickness. Two commands that were implemented were "set the polarizer" (SP), and "set the analyzer" (SA). Either command expected a five digit input from the keyboard that represented the position required of the analyzer or polarizer. These two programs first read the shaft encoder to determine the present position of the unit and then output the appropriate number of steps to turn the unit to the required position in the direction that required the
least motion.
The two commands to move the x-direction and y-direction stepper motors on the $x-y$ drive in the chamber were given the names MX and MY respectively. The programs associated with these commands expected inputs from keyboard to indicate direction of movement in the plane and the distance of travel. Direction was indicated by "F" and "R". An "F" meant to the right in the x-direction and up in the y-direction when looking at the chamber from the source end. "R" is the opposite of "F".

All four stepper motors, the shaft encoder multiplexer and the shutter switch were connected to device 33 in the computer interface. This device was a set of twelve flip flops, one per bit of the computer word as defined in Table 1. The IOP2 pulse from the computer output the accumulator to set the flip flops. The IOP4 pulse was used to send a pulse to the stepper motors that had their enable bit set. The pulse was steered to the clockwise or counterclockwise input on the stepper motor controllers by the direction bit. Thus, any of the four stepper motors could be moved by first setting its enable and direction bits with an IOP2 pulse and then sending an IOP4 pulse for each step.

Once the gating for a motor had been set, a routine labelled STEP was used to output one step pulse to the motor. The motors used had a resonance at approximately 200 steps per second. To mun the motors at a speed above the resonance required that they be accelerated from a stopped position.

Bit Position

0
1

2
3
4

5
6
7
8
9
10
11

Function
Polarizer motor direction
Polarizer motor enable
Analyzer motor direction
Analyzer motor enable
Y-axis motor direction
Y-axis motor enable
X -axis motor direction
X -axis motor enable
Unused
Unused
Shutter control
Shaft encoder gate

Since timing was generated by software, it was not convenient to run more than one motor at a time. The hardware status of device 33 was stored in a location labelled DIR. Bit 9 of DIR was used for a flag to indicate that acceleration was required. The routine $S T E P$ accelerated the motors by shortening the time between pulses from a maximum when the flag was first set to a minimum after a certain number of pulses had been sent. At this time the flag was cleared.

The output of the multiplexed shaft encoder was connected to device 30 in the interface. The shaft encoder was always set to read the analyzer when the analyzer motor was selected, and the polarizer, when the polarizer motor was selected. The IOP2 pulse was used to strobe the high order two BCD digits into the accumulator and the IOP4 pulse was used to strobe the three low order BCD digits. These numbers were read by a program named RDSFT and were stored in locations SHFTH and SHFTL respectively.

The output from the photomultiplier on the ellipsometer was measured by the computer with an analog to digital converter, device 32 in the interface. The program, ANALG, was responsible for reading the analog to digital converter and converting the reading into volts.

To take a reading from the ellipsometer requires that the polarizer and analyzer be positioned so that the output from the photomultiplier is a minimum. The suggested procedure is to first balance, that is, find a minimum of, the polarizer. ${ }^{11}$ Then the analyzer is balanced. The
polarizer is again balanced and finally the analyzer is balanced again. This procedure can be commanded from the keyboard with a BE input. The procedure is really a combination of the two commands $B A$ and $B P$ which balance the analyzer and polarizer respectively. These two routines set the gating for the appropriate stepper motors and then call upon a common routine calied BALU.

The routine BAL (see Figure 6) determines the position of a minimum photomultiplier reading by finding equal intensities around a minimum. To avoid noise problems due to low signal levels, the sum of many readings is taken. First a running sum of readings is taken by moving the motor one step, reading the photomultiplier and adding the reading to the sum. The sum is taken over sixty-four steps. A second running sum is taken and compared with the first. If the second sum is larger, the motor is reversed and the routine restarted. Otherwise, the first sum is replaced by the second and the second sum is taken again and again compared with the first. A flag is set to indicate the minimum has not yet been passed. At some point the second sum will be larger than the first indicating that the minimum has been passed. Another set of readings is taken and this sum is saved as the comparison on one side of the minimum. The motor is reversed and run back two sets of readings. The next set of readings is saved, reading by reading, along with the running sum. From here on, every time the motor is stepped, the newest reading is put at the beginning of the

REVERSE DRIVE MOTOR DIRECTION.

DIVIDE DISTANCE BETWEEN CURRENT POSITION AND COMPARISON SUM POSITION IN HALF.

MOVE TO BALANCE POSITION.

RETURN FROM BAL SUBROUTINE.
buffer and the oldest one is removed. The running sum is also adjusted by adding on the newest reading and subtracting the oldest. This running sum is compared with the comparison sum and as soon as it is equal to or larger than the comparison sum, the position of the minimum can be determined as the midpoint of the two sums. The motor is reversed and driven to the midpoint. The analyzer and polarizer positions and photomultiplier reading at the balance point are printed on the teletype.

The shutter in the chamber could be operated from the keyboard with the two commands "open shutter" (OS), and "close shutter" (CS). These commands changed the state of a flip flop on device 33 in the interface. The shutter solenoid was energized by a power transistor driven by the flip flop.

Closed loop control of film thickness was accomplished by setting the analyzer and polarizer to the positions at which a balance would occur if the film were the correct thickness. The shutter was then opened until the photomultiplier output dropped to a minimum. The shutter was closed to stop the deposition process. This procedure was commandable from the keyboard and given the name $S B$, "stop on balance". For noise immunity, the SB program uses sums of readings instead of a single reading of the photomultiplier.

A typical sequence of commands that produces a deposit of a specified thickness is the following:

The MX and MY commands move the substrate to a desired position and the SA and SP commands move the analyzer and polarizer to the balance position. The SB command finally opens the shutter and closes it when a balance occurs. The distances for the MX and MY commands are in units of the mask aperture width so that adjoining areas can be reached by moving in increments of one.

The teletype input program was written so that the paper tape reader on the ASR 33 was enabled if there was room in the input buffer. Thus, the operation of the system could be controlled with commands stored on paper tape. In this way the thickness pattern of the substrate could be generated on a large computer system where it could be converted to analyzer and polarizer settings. The large computer system would then generate an ASCII paper control tape. The physical pattern could then be produced with the hardware described by reading this tape.

CHAPTER III - RESULTS AND CONCLUSIONS

To test the performance of the equipment, two experiments were conducted. The first experiment consisted of depositing material to study the deposition process and products. The second experiment was a check of the closed loop control of the system.

The substrate used was an optical glass flat, 25×25 millimeters. The substrate was coated with a layer of vacuum deposited aluminum to give it a reflecting surface. The substrate was transferred to the $x-y$ movable holder in the vacuum chamber. The chamber was evacuated in preparation for deposition of zinc sulfide.

Before any depositions were made on the bare aluminum surface of the substrate, the surface was checked for uniformity. This was accomplished by moving the $x-y$ holder so that the ellipsometer could take readings of different areas of the surface. A map of the surface uniformity is given in Table 2.

The $x-y$ holder was then set to a corner of the substrate and the evaporation current turned on. The shutter was opened and zinc sulfide allowed to deposit through the aperture onto the substrate. The ellipsometer was used to observe the evaporation process. After a suitable thickness of zinc sulfide had been deposited, the evaporation was halted by closing the shutter. The $x-y$ holder was then moved a distance equal to the width of the aperture,

> Top - Polarizer
> Bottom - Analyzer

Table 2. Scan of Aluminum Coated Substrate
1.59 millimeters. The shutter was then again opened to deposit onto an area adjacent to the first. A thickness of zinc sulfide different from the first area was then deposited on the second. The procedure was repeated for a third time to form three adjacent areas of different thicknesses.

After the third area, the shutter was closed and the $x-y$ holder moved at right angles a distance twice the width of the aperture. At this position, a thickness of zinc sulfide was again deposited. The holder was then positioned a little beyond the edge of the last square deposited and an ellipsometer reading was taken. The holder was then moved a small distance, 47 micrometers, towards the square and another reading was taken. This process was repeated until the profile of the entire square was obtained. The holder was then positioned near the area of the three adjacent squares and a similar scan was made along the center line of the three squares. The readings are presented graphically in Figures 7, 8 and 9.

The second experiment was performed to determine the capabilities of the control system. For this experiment different areas of the same substrate were used. Suitable values of polarizer and analyzer readings were chosen from the first set of evaporations. These readings were used to produce a control tape for the second experiment. Four areas adjacent to one another were to be evaporated upon. The vacuum system was prepared and evacuated. After the

Figure 7. Analyzer Scan of Squares 1-3

Figure 8. Polarizer Scan of Squares 1-3

Figure 9. Polarizer and Analyzer Scan of Square 4
evaporation current was turned on, the control tape was read into the computer and the computer was allowed to control the evaporations and movements of the $x-y$ holder. The photomultiplier reading was observed while the process was taking place.

The control system successfully found a null on the first square deposited, halted deposition and went on to the next square. On the second square, the null was very shallow and two shallow nulls were bypassed before manual intervention caused the process to proceed to the third and fourth squares. The control system again successfully detected nulls on these two areas and halted evaporation.

After the fourth square, the evaporation current was turned off and the ellipsometer was used to scan the center line of the four squares taking readings at short intervals. The scan is graphically presented in Figures 10 and 11. Finally, the holder was moved to a bare area and with the shutter open, continuous ellipsometer readings were taken. The $\Delta-\psi$ curve from this data was plotted in Figure 12.

Using the average values of polarizer and analyzer readings from Table 2, the optical constants of the aluminum substrate, as viewed through the windows on the chamber, were determined using McCracken's program. ${ }^{11}$ Using values for the index of zinc sulfide, the $\Delta-\Psi$ curve for the filter was calculated again using McCracken's program. This curve is presented graphically in Figure 13.

The scan of the bare aluminum substrate indicated that

Figure 10. Analyzer Scan for Squares Deposited While on Control

Figure 11. Polarizer Scan for Squares Deposited While on Control
the surface was uniformi.to an equivalent thickness of 20 angstroms of zinc sulfide as judged from the $\Delta-\psi$ curve of Figure 13. The Δ and ψ readings for the aluminum covered substrate, however, do not fit on the calculated curve for zinc sulfide on aluminum. The reason for this is probably that the "bare" aluminum is not really bare but has a coating of aluminum oxide which forms when aluminum is exposed to air. Therefore, the ellipsometer is actually measuring the aluminum and aluminum oxide layer as the substrate.

The results of the first experiment indicate mixed conclusions. The ellipsometer scan of the deposited squares point to nonuniform depositions and this was confirmed by visual examination of the substrate. The squares labelled 2 and 4 in Figures 7,8 and 9 were uneven. The scan does, however, show clearly the definition of the squares. The edges of the square are defined by drastic changes in ellipsometer readings and the center sections are reasonably smooth.

The ellipsometer curve drawn from the measurements of the second experiment, Figure 12 , differs from the theoretical curve for zinc sulfide on aluminum, Figure 13. Again, the most probable cause for this is the coating of aluminum oxide on the bare substrate. The index of vacuum deposited zinc sulfide films has been discovered to depend on the details of deposition such as rate of deposition, temperature and pressure. ${ }^{8}$ These findings could also contribute to the difference.

Figure 12. $\Delta-\Psi$ Plot (Experimental)

Figure 13. $\Delta-\psi$ Plot (Calculated)

The computer control of thickness was successful to a limited extent. The actual control mechanism and algorithm performed well. The shutter was automatically closed to stop deposition after just passing the low point of a minimum from the ellipsometer readings. A poor selection process caused values of polarizer and analyzer readings to be chosen as setpoints. The chosen readings did not fall on the curve of Figure 12. The poor setpoints were evidenced by the shallow minimum in the ellipsometer output. The control system stopped deposition when it came as close as possible to the setpoints. During the deposition of the square labelled "D" in Figures 10 and 11, a sharp minimum was observed and as seen from later analysis, the control system came very close to the desired setpoints. The setpoints are shown as dotted straight lines in Figures 10 and 11.

The equipment built and experiments made have only tested the feasibility of producing phase filters with vacuum deposition techniques. To produce useful devices, the spatial resolution of the deposition system must be increased by an order of magnitude. This involves smaller apertures and closer tolerances on the positioning mechanisms. The experiments conducted have shown that the resolution used is attainable. The deposition system must be calibrated and errors introduced by the surface condition of the substrate must be accounted for. During the tests of this thesis, these factors were ignored as only relative
thickness of deposit was aimed for. The control and measurement systems seem capable of the tasks required of them. Thus, if further tests to calibrate the system were made, absolute thickness variations should be achievable.

In summary, a method of fabricating optical phase filters has been investigated. Possible uses of an optical phase filter have been proposed. The hardware to fabricate such a phase filter using vacuum deposition techniques was designed and constructed. Software was written to control production of the phase filters by a digital computer. And finally, the first steps were taken to produce the devices. The difficulties encountered were not fundamental in nature and require only refinements in technique to solve.

REFERENCES AND BIBLIOGRAPHY

1. Goodman, J.W.: Introduction to Fourier Optics, p. 80, McGraw Hill, New York, 1968.
2. Tsujiuchi, J.: "Correction of Optical Images by Compensation of Aberrations and by Spatial Frequency Filtering", Progress in Optics, Volume $2: 133$ (1963).
3. Ibid, pp. 145-149.
4. Upatnieko, J., A. Vander Lugt and E. Leith: "Correction of Lens Aberrations by Means of Holograms", Journal of Applied Optics, Volume 5:589 (1966).
5. Ibid, p. 590.
6. Lesem, L.B., P.M. Hirsh, and J.A. Jordan Jr.: IBM Journal of Residential Development, Volume 13:150 (1969).
7. McCabe, L., and J. Metals: AIME Transactions, Volume 200:969 (1954).
8. Rood, J.L.: "Evaporated Zinc Sulfide Films", Journal of the Optical Society of America, Volume 41:201 (1951).
9. Ha11, J.F., and W.F.C. Ferguson: "Optical Properties of Cadmium Sulfide and Zinc Sulfide from 0.6 Micron to 14 Microns", Journal of the Optical Society of America, Volume 45:714 (1955).
10. Holland, L., and Steckelmacher, W.: Vacuum, Volume 2:346 (1952).
11. McCrackin, F.L.: A Fortran Program for Analysis of Ellipsometer Measurements, N.B.S. TN479, 1969.
12. McCrackin, F.L., Passaglia, E., Stromberg, R.R., and Steinberg, H.L.: Journal of Research of the National Bureau of Standards, 67A (1963).

;APPENDIX I

A Program to Calculate Phase Changes Produced by Varying Thickness

$N O=(1.00,0000)$
$N 1=(2.23,0: 00)$
$N 2=(1.20,-6.90)$

WAVELENGTH $=6238$. ANGSTROMS

THICKNESS (ANSSTROMS)

PHASE CHANGE (DEGREES)

- 53 -

APPENDIX II

A Program to Calculate Fourier Transform Twice

APPENDIX III

Listing of the Software Written for the PDP-8e

0376	0100	0000	Shate,	0	/ VARIABLES
0077	0101	0000	SHFTL,	0	
0100	- 0102	0000	DGVL,	0	
0101	0103	0000	DVMH,	0	
0102	0104	0200	MSDIG,	0	
0103	0105	0000	UVimb,	0	
01104	0106	8000	ASUML,	0	
0105	0107	0000	ASUMh,	0	
0106	0110	0000	Dİis,	\square	
8107	0111	0100	ST:IL,	100	
0110	0112	7700	STKLC,	-100	
0111	0113	0000	SUMA1,	0	
6112	0114	0500	Sumita,	0	
0.113	.0.115	0000	Sumbi,	0	1
0114	0116	03000	SuMLe,	0	
0115	0117	0000	STPCNT,	0	
0116	6120	1177	STSTR,	1177	
0117	0121	0000	AL,	0	
0120	0122	0600	At,	0	
8121	0123	00003	BL,	0	
0122	3124	0000	BH,	0	
8123	0125	0000	CL,	0	
0124	0126	0800	CH ,	0	
0125	0127	0063	POLCU,	3	
0126	0130	4810	ANZCD,	4010	
8127	[)131	0200	M $2 \times 0 \mathrm{CD}$,	200	
0130	0132	0040	Mercd,	40	
0131	0133	0000	UECL,	0	
0132	0134	0000	DECH,	6)	
0133	0135	66nd	DESTL,	S	
61134	0136	9080	DESEi,	0	
1135			,		
0136			,		
0137				*200	
0140		.	1		
0141			1		
0142			/ DVERis	UPT SERUICE	
0143			1		
0144	0200	3370	INTSER,	DCA ACCUVí	/SAUE AC
0145	0201	7804		HAL	
0146	0208	3371		DCA LI.VK	/SAUE LINK
0147	0203	7701		ACL	
8150	0204	3372		DCA MQSAVE	/SAVE. MQ
0151	0205	6031		KSF	/KEYBOARD?
0152	0206	7410		SKP	
0153	0267	5302		JMP KYBRD	
0154	0210	6041		TSF	/TELETYPE?
0155	0211	7410		SKP	
8156	0212	5223		JIMP TELTP	/IF NEITHER
0157	0213	7306	EXTINT,	Cla clle.	/THEN EXIT
3160	0214	1371		TAD LIVK	
0161	0215	7110		CLL MAG	ARESTORE LINK
0162	0216	1372		TAD GQSAUE	
0163	0217	7421		MQL	/RESTORE MQ
D1 164	0220	1310		TAD ACCUM	/RESTORE AC
0165	6221	6001		10.5	ITUKN IVT ON
61 166	0222	5400		JMP I 0	/EETUKN
0167			/		
0170			1		
0171			/telety	PE SERUICE	
0172			1		
0173	0223	1373	TELTP,	TAD TELCNT	/AKE THERE MORE
0174	0224	7450		Siva	chari to type

0175	0225	5244		JMip	CTHIJP	JNO
0176	0226	7041		CIA		/YES
0177	0227	7001		1 AC		
4200	0230	7041		CIA		/ DECREVEVT CHAR
0201	0231	3373		DCA	telcevt	counter
1202	0232	1012		TAD	TYFEPT	/END OF BUFFER
0203	6233	7841		CIA		/AREA REACHED?
0204	8.834	1362		TAD	Endeuf	
0235	0235	7640	.	SZA	cla	
0206	0236	5241		JMP	Notend	/NO
0207	0237	1363		TAD	StbuF	/YESPRESET TO
1210	0240	3012		DCA	TYPEPT	ISTART
0211	0241	1412	NOTEND,	TAD	I TYPEPT	/GET CHAR FROM
0212					- .	/BUFFER
0213	0242	6046		TLS		ITYPE IT
0214	0243	52.13		JMF	ExTINT	/EXIT
0215	0244	7201	CTHUP,	CLA	IAC	/ NO MORE CHAP
0216	0245	3364		DCA	TFLAG	/SET TFLAG
0217	0246	6042		TCF		clean tty flag
0220						/TO Stop tty
0221	0247	5213		JMF	Extint	/EXIT
02e2			1			
0223			1			
2224			/PuT CHA	AR IN	, BUFFER	BE TYPED
0225			,			
0226	0250	0000	BUFFER,	\square		CHAE IN AC
0227	0251	3411		DCA	I: BuFpT	IPUT CHAR IN BuFF
0230	0252	2373		ISZ	TELCNT	/ INCBE char count
0231	0253	1373	BUFLP1,	TAD	TELCNT	CHECK FOF FULL
0232	0254	1363		TAD	ST3U6	BUFFEFE WAIT
0233	8055	7041		CIA		TIN LOOP UVTIL
0234	0256	1362		TAD	Endbuf	/THERE IS ROOM
0235	0257	7650		SNA	Cla	
0236	0260	5253		JMp	BUFLP!	
0237	0261	6002		IOF		ANOT FULL. TURN
82.40						/OFF INT TO AVOID
0241						/COMPLICATIONS
3242	0262	1011		TAD	BUFPT	/CHECK FOR EVD
0243	0263	7041		CIA		/OF BUFFER AREA
0244	0264	1362		TAD	ENDEBUF	:
02.45	0265	7640		SZA	CLA	
8246	0266	5271		JMP	Noteds	NOT END
0247	0267	1363		TAD	STBuF	/END - RESET TO.
0250	0276	3011		DCA	BUFPT	START
0251	0271	1364	NOTEDB,	TAD	T FLAG	/TEST TFLAG
0252	0272	7640		SZA	Cla	/FLAG UP - MUST
0253	0273	5276		JMP	Cltflg	/RESTAFT TTY
0254	0274	6001		10 N		NOT UP - Contlivue
0255	0275	5650		JMP	I BUFFER	/EXIT - AC Clears
0256	0276	3364	CLTFLG,	DCA	Tflag	/CLEAR TFLAG
0257	0277	6040		SPF		/RESTART TTY EY
0260.						/SETTING TTY FLAG
0261						ITO RAISE I.VT.
0262	0300	6001		I ON		continue
2263	0301	5650		JMP	1 BUFFER	/EXIT - AC ClEAR
0264			/			
0265			1			
0266			/ KEYboa	id S	EtuICE	
0267			'			
0270	0302	6034	KY 3RD,	Kfis		/READ KBD
0271	9363	3413		DCA	I KYBDPT	/STORE
0272	0304	2374		I SZ	KBDCNT	I INCRE CHAR COUNT
0273	0305	1013		TAD	KYBDPT	/CHECK FOR END

0274	0306	7041		CIA		/OF BUFFER ABEA
0275	0307	1365		TAD	E.VDK!3F	/AND RESET IF
0276	0310	7640		SZA	Cla	/AT END
0277	0311	5314		Jit	KY.VEVD	
0300	0312	1366		TAD	STKYBF	
0301	0313	3013		DCA	KYBDPT	
0302	0314	1374	KY:VEND,	TAD	KBDCNT	/TEST FOR FULL
0363	0315	1366		TAD	STKY3F	/BUFFER
0304	0316	7041		CIA		
0305	8317	1365		TAD	Endisbr	
0306	0320	7650		Siva	cla	
0307	0321	5324		JMip	SETKFL	CBIFFER FULL
0310	0322	6032		KCC		/ NOT FULL - SET
0311						/READER HUN
0312	0323	5213		JMP	Extiat	/EXIT
0313	0324	7201	SETKFL,	CLA	IAC	/FULL - SET KYFILAG
0314	0325	3367		DCA	KYFLAG	
0315	0326	6030		KCF		/CLEAR KBD FLAG
8316						/DO NOT SET READER
0317						/RIN
0320	0327	5213		JMp	EXTINT	/EXIT
0321			1			
0322			1			
0323			1 TO REMO	OVE A	Character	FBOM KBD BUFFER
10324			1.			
0325	0330.	6030	READS	0		
6326	0331	1374		TAO	niblcut	/IF BUFFER IS
0327	0332	7650		SNA	CLA	/EMPTY, WAIT FOR
0330	0333	5331		JiP	- -2	/SOME INPUT
0331	Q334	6002		IOF		IINT OFF TO AUOID
0332						COMPLICATIONS
0333	8335	7240		CLA	CMA	d DECREMEVT CHAR
0334	0336	1374		TAD	KBDCNT	/COUNTER
0335	0337	3374		DCA	mbdent	
0336	0340	1014		TAD	READFT	CHECK FOR END OF
0337	0341	7041		CIA		/BUFFER AND RESET
0340	0342	1365		TAD	ENDKBF	/IF AT END
0341	0343	7640		SZA	CLA	
0342	0344	53.47		JMP	KYND?	
0343	0345	1366		TAD	STKYBF	
0344	03.46	3014		DCA	READPT	
0345	0347	1367	Krnde,	TAD	KYFLAG	/WAS READEF
0346	0350	7648		SZA	Cla	/STOPPED?
0347	0351	5355		JMP	Flagup	/YES
0350	0352	1414		TAD	I READPT	/NO - GET CHAB
0351	0353	6001		ION		/LEAVE IN AC
0352	0354	5730		JMP	I READ3	/EXIT
0353	0355	3367	Flagup,	DCA	KYFLAG	clicar kyflag
0354	0356	6032		KCC		/RESTART READER
0355	0357	1414		TAD	1 fiEADPT	/GET CHAFACTEF
0356	0360	6001		ION		/LEAVE IN AC
0357	0361	5730		JMP	I READS	/EXIT
0360	0362	7177	ENDEUF,	7177		/END OF OUTPUT
0361						CBUFFER
0362	0363	6777	STBUF,	6777		/START OF OUTPUT
0363						/BUFFER
0364	0364	0006	Tillag,	0		
B365	0365	7377	EVDKBF,	7377		/END OF InPut
0366						/BUFFER
0367	0366	7177	Stryse,	7177		/START OF INPUT
0370						/BUFFER
0371	0367	0000	KYFLAG,	0		
0372	0370	0000	ACCUM,	0		

- 60 - .

0472
0473
0474 0475 - 0447 0000

0476	0450	3300
0477	0451	1303
0500	0452	3302
0501	0453	1277
0502	0454	3274
0563	0455	1304
0504	0456	3273
0505	0457	4217
0506	0463	5647

ITO PRINT THE VUMBEH IN THE AC AS A 3 /DIGIT BCD NUMBER
1
PritDC, \varnothing

DCA	Number	/STORE
TAD	KC3	/SET NO OF DIGITS
DCA	DISCTR	/TO 3
TAD	KC4	/SET NO OF BITS
DCA	hotiver	IPEH DIGIT TO 4
TAD	Maski7	/SET UP 4 BIT MASK
DCA	MASK	
JMS	Print	/USE PRINT
JMP	PRTDC	/EXIT - AC CLEAR

,
/TO PRINT THE NUMBER IN THE AC AS A
14 DIGIT OCTAL NUMBEH
1
PRTOC, 0

DCA NUMBER	/STORE NUMEER
TAD KC4	/SET NO OF DIGITS
DCA DIGCTR	1 TO 4
TAD KC3	/SET NO OF BITS
DCA ROTVBE	/PER DIGIT TO 3
TAD MASK7	/SET UF A 3 BIT
DCA MASK	MASK
JMS PRINT	JUSE PRINT
JMP I PATOC	/EXIT - AC ClEEA

1
MASK: θ
アOTNB2:
MASK7, 7
K260. 260
кС4, -4
NUMBER, 0
STNBA, 0
DIGCTA, \varnothing
KC3. - -3
MASK17, 17
STEOT: 0
$\%$
ITO READ THE AVALOG CHANNEL WHOSE CODE IS IN THE AC 1

AVALG, 0
6323 /CHANNEL SELECT
$6321 /$ WAIT FOR FLAG
JMP - - 1
CLA CLL
6324 /READ
CMA /INPUT IN OPPOSITE
/LOGIC
MULT BY 5
/SPLIT RESULT INTO
12 WORDS
/DIUIDE HIGH WORD
/BY 64.
MULT BY 25
/STORE

0571	0527	7701	ACL	
0572	0530	0341	AND MK77	/GET LOW HALF
0573	0531	4453	JMS I AMULT5	
0574	0532	4453	JMS I AMULTS	MMULT BY 25
0575	0533	6340	AND MK770G	/DIVIDE LOW HALF
0576	0534	7082	BSw	/BY 64
0577	0535	1342	TAD SHIGH	/PUT HALUES BACK
0600	0536	7010	RAR	/DIUIDE BY 2
0601				/ RESULT IS TO
0602				M MULTBY (1000/1024)
0603	0537	5706	JMP I AVALG	/EXIT - RESULT
0604				/LEFT IN AC
0605	0540	7700	MK7700, 7700	
0606	0541	0077	MK77, 77	
0607	0542	0000	SHIGH, 0	
0610			-	
0611			1	
0612			\% TO INITILIZE THE POINT	TERS AVD FLAGS
0613			/FOR THE OPEHATING SYSTE	
0614			'	
0615	0543	0000	INITZE, $\square^{\text {O }}$	
0616	0544	7200	CLA	
0617	0545	1366	TAD KiK1777	- VNTILIZE
0620	0546	3011	DCA BUFPT	POINTERS
0621	0547	1366	TAD KK1777	
0622	0550	3012	DCA TYPEPT	
0623	0551	1367	TAD KK2177	
0624	0552	3013	DCA KYBDPT	
0625	0553	1367	TAD KKC177	
0626	8554	3014	DCA READFT	
0627	0555	7201	CLA IAC	
0630	0556	3770	DCA 1 ATFLAG	/SET FLAGS
0631	0557	7201	CLA IAC	
0632	0560	3771	DCA I AKFLAG	
0633	0561	3773	DCA I ATLCNT	/Clear counters
0634	0562	3772	DCA I AKYCNT	
0635	0563	6032	KCC	
0636	0564	6001	I ON	/TURN INTERBLJPT ON
0637	0565	5743	JMP I INITZE	/EXIT - AC CLEAR
0640			1	
0641	0566	6777	Kর1777, 6777	
0642	0567	7177	Kイ2177, 7177	
0643	0570	0364	ATFLAG, TFLAG	
064.4	0571	0367	AKFLAG, KYflag	
0645	0572	0374	AKYCNT, KBDCNT	
0646	0573	0373	ATLCNT, TELCNT	
0647	0574	0000	LiSPRT, \varnothing	
0650			\%	
0651			'	
0652			*600	
0653			1	
0654			'	
0655			/PUT OUT PULSE TO STEP	Motors
0656			,	
0657	0600	0000	STEP1, 0	
0660	0601	6334	6334	/PULSE TO STEP
0661	0602	7200	CLA	
0662	0603	1210	TAD WT	/WAIT LOOP
0663	0604	7001	1 AC	
0664	0605	7440	SZA	.
0665	0636	5204	UMP - -2	
0666	0607	5600	JMP I STEP1	/EXIT - AC CLEAR
0667	0610	6500	WT, 6500	d delay fon a rate

0670					1OF 400 STEPS/SEC
0671			1		
0672			1		
0673	0611	0000	WAIT,	0	
0674	. 0612	3225		DCA ENDTIM	
0675	0613	6342		6342	
0676	0614	6341	WLP1,	6341	
0677	0615	5214		Jmp e-1	-
0763	0616	6344		6344	
0791	0617	7040		CMA	
0702	0620	7041		CIA	
0703	0621	1225		TAD EVDTIM	
0704	4622	7440		SZA	
0705	0623	5214		JMP WLCFI	
0706	06.24	5611		JMP I GAIT	
0707	0625	0000	EVDTIM,	\square	
0710			,		
0711			γ		
8712			/READ SHA	AFt EnCODER	
0713			'		
0714	0626	0000	RDSFT,	0	
0715	0627	7200		CLA	
0716	0630	6302		6302	/BEAD AND StORE
0717	0631	3100		DCA SHFTH	$/ 2 \mathrm{MSD}$
0720	0632	6304		6394	/FEAD AND STORE
0721	0633	3101		DCA SHFTL	13 LSD
0722	0634	5626		JMP I RDSFT	/EXIT - AC CLEAR
0723			1		
0724			1		
0725			/READ D	gital volt meter	
0720			,		
0727	0635	0000	RDDVM,	\square	
0730	0636	7300		CLA Cll	
4731	06.37	6311		6311	'IEEAD HIGH wORD
0732	0640	0252		AND MASK40	/TEST FLAG IN
0733	0641	7440		SZA	P13T 6
0734	0642	5236		JMP - - 4	/WAlT FOH FLAG
8735	0643	7200		CLA	ITO GO DOWN
0736	0644	6301		6301	/READ AND STORE
0737	0645	3102		DCA DUML	/LOW WORD
6740	0646	6311		6311	/READ AND STORE
0741	0647	0253		AND MASK37	/HIGH WOFD CONLY
0742	0650	3103		DCA DUMH	11 BCD CHAB)
6743	0651	5635		JMP I RDDUM	/EXIT - AC ClEAR
0744	0652	0040	MASK40,	40	
0745	0653	0037	MASK37,	37	.
0746			/	-	
0747			,		
0750			/TO ACC	elerate motors	.
0751			1		
0752	0654	0000	STEP,	\emptyset	
07.53	0655	7200		Cla	
0754	0656	1110		TAD DIR	/CHECK ACCEL FLAG
0755					/(BIT 9 OF DIR)
0756	0657	0315		AND MSKD1	
0757	0660	7640		SZA Cla	
0760	0661	5267		JMP ACCST	/FLAG $=1$, START
0761					/ACCELERATION
0762	0662	1316		TAD ACCSTP	/FLAG=0, CONTINUE
0763					/ ACCELERATION
0764	8663	7640		SZA Cla	CHECK FOR END
0765					/OF ACCEL
0766	0664	5302		JMP ACCNTU	ANO - CONT ACCEL

0767	0665	4200		JMS STEPI	/YES - STEP MOTOR
0770	0666	5654		JMP I STEP	/EXIT - AC CLEAR
0771	0667	7001	ACCST,	IAC	/START ACCEL
0772	0670	7440		SZA	/LET MOTOK SETtLE
0773	0671	5267		JMP - -	
0774	0672	1315		TAD MSKDI	
0775	0673	7840		CMA	
0776	0674	6110		AVD DIR	/CLEAR FLAG 1N
0777	0675	3110		DCA Dİ?	/dib to continue
1000					/ACLELEKATION
1001	0676	1317		TAD SKCle	/SET NUMBER OF
1002	0677	3316		DCA ACCSTP	/STEPS IN ACCEL
1003	0706	1326		TAD UTI	/SET ORIGINAL
1004	0701	3321		DCA WTIME	/EXTAA DELAY
1065	0702	4200	ACC.NTU,	Juis Stepl	STEP MOTOR
1066	0703	1321		TAD WTIME	
1007	0764	1322		TAD ACTIME	/DECBEASE EXTRA
1010	0765	3321		DCA WTIME	/ delay time
1011	0766	1321		TAD WTIME	
1012	0787	7001		IAC	/WAIT EXTRA DELAY
1013	0710	7440		SZA	
1014	0711	5307		JMp - - 2	
1015	0712	2316		ISZ ACCSTP	/INCBEMENT ACCEL
1016					COUNTER
1017	6713	5654		JMP I STEP	
1020	0714	5654		JMP I STEP.	/EXIT - AC CLEAR
1021	0715	10000	MSKDI,	1000	/MASK FOR FLAG
1022	0716	0000	ACCSTP,	\emptyset	/ACCEL Step Count
1023	0717	7760	SkC16,	-20	/ NUMBER OF ACCEL
1024					Steps
1025	0720	5700	WT1,	5700	/ORIGINAL EXTEA
1026					d DELAY
1027	0721	0000	WTIME,	0	/TEMP STORAGE
1030	0722	0100	ACTIME,	100	/DECFEASE, IV DELAY
1031			/		
1032			1		
1033			/TO Com	LIMENT ANALYZER	READING BY 360.00
1834			/		
1035	0723	0000	AnZCP,	0	
1036	0724	7200		CLA	
1037	0725	1101		TAD SHFTL	/CONVERT LSDS
1040	0726	4442		JMS I ADCBIN	/(SHFTL) TO SIN
1041	0727	7641		CIA	
1042	0730	1345		TAD K10000	1000(DEC)-SHFTL
1043	0731	4441		JMS I ABSBBCD	CONUERT TO BCD
1644	0732	1105		TAD DVUMS	PPUT BCD RESULT
1045	0733	3101		DCA SHFTL	/BACK IN SHFTL
1046	6734	1100		TAD SHFTH	/COVUERT MSDS
1047	0735	4442		JMS I ADCBIN	/(SHFTH) TO BIN
1050	0736	7041		CIA	
1051	0737	1104		TAD MSDIG	/35(DEC)+CAFRY
1052	0740	1346		TAD K35D	1-SHFTH
1053	6741	4441		JMS I ABNBCD	/CONVERT TO BCD
1054	0742	1105		TAD DNUMB	/PUT BCD RESULT
1055	0743	3100		DCA SHFTH.	IIN SHFTH
1056	0744	5723		JMP I AVZCP	/EXIT - AC CLEAR
1057	0745	1750	K1000D,	1758	11000(DEC
1060	0746	0043	K35D,	43	/35(DEC)
1061			1		-
1062			1		
1063				*1000	
1064			1		
1065			!		
-					

1165	1052	7100		CLL	
1166	1053	3154		DCA MSDIG	/Clear
1167	1654	1342		TAD BivBit	
1170	1055	1344	B.vLP1,	TAD KClüO	/SUBT 1000 FROM
1171	1056	7500		SMA	ABIN NO.
1172	1057	5263		JMP BACK	/IF AC IS NOT NEG
1173	1060	7430		SZL	10A LINK=0 THEN
1174	1061	5263		JMP BACK	/INCREMENT MSDIG
1175	1062	5266		JMP FINISH	$/$ AND SUBT 1000
1176	1063	2104	EACR,	ISZ MSDIG	/AGAIN
1177	1064	7100		CLL	
1200	1065	5255		JMP B:VLP1	
1201	1066	3342	FINISH,	DCA BNBR	/IFAC IS LT 0
1202	1067	1344		TAD KC1000	/AND L=1, THEN
1203	1070	7041		CIA	/HAVE SJ3T 1000
1204	1071	1342		TAD BNER	/OVCE TOO OFTEN
1295	1072	3342		DCA BABR	/ADD 1000 BACK ON
1206			/		
1207	1073	7300		Cla cll	
1210	1074	3343		DCA DIG	/Clear
1211	1075	1342		TAD BNBR	
1212	1076	1345	BVLPE,	TAD KC1OO	/SUBT 100 FROM 3IN
1213	1077	7500		SMA	/IF AC IS NOT NEG
1214	1100	5302		MP BK2	/THEN INCREMEVT
1215	1101	5324		JMP FNHZ	/dig And SUBT
1216	1102	2343	BK2,	ISZ DIG	/again
1217	1103	5276		JMP BNLPA	
1220	1104	3342	FNita,	DCA BNBE	/AC IS NEG - SAUE
1221	1105	1343		TAD DIG	IPUT NO. OF SUBT
1222	1106	7106		CLL RTL	/IN MSD POSITION
1223	1.107	-7006		ETL	/OF DNMME
1224	1110	3105		DCA DVUMB	
1225	1111	1345		TAD KC100	/ADD 100 BACK
1226	1112	7041		CiA	/TO BIN NO.
1227	1113	1342		TAD B.VBR	
1230	1114	3342		DCA BNBR	
1231			1		
1232	1115	7300		CLA CLL	
1233	1116	3343		DCA DIG	/Clear
1234	1117	1342		TAD BNBR	
12.35	1120	1346	BNLP3,	TAD KCib	/SUBT 10 FROM
1236	1121	7500		SMA	/BINNO. IF
1237	1122	5324		JIMP BKK3	/AC IS NOT NEG
1240	1123	5326		JMP FNH3	IINCR DIG AND
1241	1124	2343	BK3,	ISZ DIG	/SUBT AGAIN
1242	1125	5320		JMP BVLP3	
1243	1126	3342	Fin3,	dCA Bnbr	/AC IS NEG - SAUE
1244	1127	1343		TAD DIG	/PUT NO. OF SUBT
1245	1130	1105		TAD DVUMB	/IN MID DIG OF
1246	1131	7106		CLL HTL	/DNUMB
1247	1132	7006		RTL	
1250	1133	3105		DCA DVUMB	
1251	1134	1346		TAD KC10	/ADD 10 BACK TO
1252	1135	7041		CIA	/BIN NO.
1253	1136	1342		TAD BNBR	
1254	1137	1105		TAD DVUMB	/PART LEFT IS LSD
1255	1140	3105		DCA dNUMB	1OF DNUMB
1256	1141	5650		JMP I B.VBCD	/EXIT - AC CLEAR
1257			$\%$		
1260	1142	0000	BNBR,	0	/STOR FOR BI: N NO.
1261	1143	0000	DIG,	0	/STOR FOR DIG
1262	1144	6030	KC1000,	6030	1-1000
1263	1145	7634	KC100.	7634	/-100

1363	1351	1354		TAD	PHTOCD	/SET PTM CODE
1364	1352	4431		JMS	I AA.valg	/USE AVALG
1365	1353	5747		Jinp	I RDPTO	/EXIT - RESUT IN
1366						/AC
1367	1354	0017	FHTOCD,	17		/CODE FOR PTM
1370						/ ANALG CHANNEL
1371			/			
1372			/			
1373				*140		
1374			/			
1375			,			
1376			/TO REUE	ERSE	ELLIPSOMETEF	MOTORS
1377			/			
1400	1490	0000	REV,	0		
1401	1401	7200		Cla		
1402	1402	1110		TAD	DIR	
1483	1403	0216		AND	MSKDIR	/SEPARATE
1404						/DIRECTION SITS
1405	1494	7040		CMA		COMPLIMENT DIR
1406						/BITS
1407	1405	9216		AND	MSKDIH	
1410	1406	3220.		DCA	CHDI:	/STORE COMP DIR
1411						BITS
1412	1407	1110		TAD	Dİ	
1413	1410	0217		AND	MSKDRE	CLEAR OLD DIR
1414						- BITS AND Flag
1415	1411	1233		TAD	FLGSET	/SET FLAG TO
1416						/accelerate
1417	1412	1220		TAD	CHDIR	/SET CHANGED Dİ
1420						/BITS
1421	1413	63.32		6332		YSET FLIP FLORS
1422	1414	3110		DCA	DIR	/RESTORE IN DIR
1423	1415	5600		JMP	I REV	/EXIT - AC CLEAR
1424	1416	0005	MSKDIR,	5		/MASK FOR DIB
1425						/BITS
1426	1417	6772	MSKDR2,	6772		/TO CLEAR FLAG
1427						/AND DIH BITS
1430	1420	0000	CHDIR,	0		/temp Storage
1431			/			
1432			1			
1433			/TO SET	ACCE	ELERATION FLA	g and flip flops
1434			FFOR MO	TORS		
1435			\prime			
1436	1421	0000	SETM,	0		
1437	1422	3234		DCA	MOTOR	/CODE FOR MOTORS
1440						/WAS IN AC
1441						/STORE IT
1442	1423	1110		TAD	DIR	
1443	1424	0232		ANO	MSKDE!	/DO NOT CHANGE
1444						/SWITCH FF
1445	1425	1233		TAD	FlGSET	/SET FLAG TO
1446						ISTART ACCEL
1447	1426	1234		TAD	MOTOR	/SET MOTOR
1450						/ INFOMMATION
1451	1427	6332		6332		/SET FLIP FLOPS
1452	1430	3110		DCA	DIR	Store IN DIR
1453	1431	5621		Jip	I SETM	/EXIT - AC CLEAR
1454	1432	2000	MSKDE1,	2000		MASK FOR SWITCH
1455						/FLIP FLOP
1456	1433	1000	FLGSET,	1000		ITO SET FLAG
1.457	1434	0000	MOTOR,	0		$/$ TEMP Storage
1460			1			
1461			1			

1462
1463 1464 1465 1466 1467
1470
1471
1472
1473
1474
1475
1476
1477
$1500 \quad 1444 \quad 0125$
1501
1502
1503
1504
1503
1506
1507
1510
1511
1512
1513
1514
1515
1516
1517
$1520 \quad 1 \% 60$
1521
1522
1523
1524

1525

1526
1527
$1530 \quad 1466 \quad 7200$
1531
1532
1533
1534
1535
1536
1537
1540
1541
1542
1543
1544
1545
1546
1547
$1550 \quad 1506 \quad 1622$
$1551 \quad 15071625$
1552 - 15101633
155315111660
$1554 \quad 1512 \quad 1713$

```
/TO RUN MOTORS NUNBER OF STEPS IN AC
/
MOVE, Q
    CIA /SET COUNTER
        DCA STPCNT
        JS I ASTEP /STEP MOTORS
        1SZ STPCNT
        JMP - -2 /LOOP
        JMP I MOUE /EXIT - AC CLEAR
\prime'
/THE JUMP IN CMPSM (FOS USE IN BAL ROUTINE)
/
COMPG, CL /IF SUME IS LESS
            TAD APOS1 THAN SUM1 THEN GO
            DCA SRLTS1 /TO POS 1
            TAD APOSO /OTHERWISE GO TO
            DCA SPGTS1 /POS O
            JMP CMPSM
%
COMP1, CLA /IF SUMZ IS LESS
            TAD APOS1 /THAN SUM1 THEN
            DCA SELTS1 /GO TO POS 1
            TAD APOS2., /OTHERWISE GO TO
            DCA S2GTS1 /POS 2
            JMP CMPSM
                %
COMP?. CLA FIF SUM2 IS LESS
            TAD APOS3 /THAN SUM1 THEN
            DCA SRLTS1 /GO TO POS 3
            TADrAPOS4 /OTHERWISE GO TO
            DCA SEGTSI /POS 4
                            JMP CMPSM
CNPSM, CLA /TO PERFORM
            TAD SUMLI ISUMI-SIJMC IN
            DCA AL /DOUBLE PRECISION
            TAD S!JMHI /AND TEST RESULT
            DCA AH
            TAD SUML2
            DCA BL
            TAD SumHE
            DCA BH
            JMS I ADPSUB /(A-B=C)
            TAD CH
            SMA
            JMP I SELTSI /SUME LT SUM1
            JMP I SQGTSI /SUME GT SUM:
SEGTS1, D /ADDRESS SET BY
S2LTSI, O}/COMP ROUTINES
APOS0, POSO /LIST OF
APOS1, POS1 /ADDRESSES
APOS2, POS2
APOS3. POS3
APOS4, POS4
\prime
/TO FILL STACK ORIGINALLY AND KEEP A
/SUM OF THE READINGS
```


1663
1661
1662 1663 1664 1665 1666 1667 1670 1671 1672

1701

1703
1704
1705 1796
$1707 \quad 1620 \quad 5727$

1710
1711
1712
1713
1714
17151625 720月
$1716 \quad-1626 \quad 1114$

1732	1634	4443
1732	1635	1106
1733	1636	3115
1734	1637	1107
1735	1640	3113
1736	1641	1111
1737	1642	4444
1740	1643	1111
1741	1644	4444
1742	1645	4726
1743	1646	7200
1744	1650	1117
1745	1651	1106
1746	1652	3116
1747	1653	1111
1750	1654	1111
1751	1655	1111
1752	1656	3321
1753		

TO BALANCE THE ELLIPSOMETER /
BAL,

CLA IAC DCA BLFLAC JMS I ASUM DCA POSCT

TAD ASUMH
DCA SUMid
TAD ASUML dCA SUMLi
JMS I ASUM TAD ASUMH

DCA SUMHZ
tad asijml
DCA SUMLE
TAD BLFLAG SZA

JMP I ACOMP
JMP I ACOMPI
JMS I ABEV
DCA BLFLAG
JMP STBL
CLA
TAD SMME
DCA SUAHI
TAD SUMLE
DCA SUMLI
JMP BALLP1
JMS I ASUM
/SET FLAG TO /INDICATE START /TAKE SET OF READS clear position /POINTER
/STORE READINGS
IN SUM1 (HIGH YAND LOW)
/TAKE ANOTHER SET
/OF READINGS AND
/STORE IN SUMZ
/CHECK FLAG. A
CLEAR FLAG
/INDICATES THAT
/A MINIMUM IS
/BEING APPROACHED
/COMPARE SUMI
/AND SUMP
/GOING ABAY FROM /MIN. REU MOTORS
/CLEAR FLAG• START
cover again
/GOING TOWARD A MIN
put Sume tive
SUM1
/RETURN TO TAKE
ISUME AGAIN
/GOING AWAY FROM
MIN AFTER HAUING
/PASSED THIZOUGH IT
/TAKE, A SET OF
/READINGS TO BE
IUSED FOR
COMPARISON
/rev motors
/STORE READINGS
/IN SUMI

MOVE BACK TWO
/SETS OF READINGS
/STORE NEXT SET
/OF READINGS IN
/STACK AND STORE
/THE SUM IN SUMZ
/SET POSITION
/POINTER TO NO.
/OF STEPS TAKEN
/FROM COMPARISON
/SUM
/COMPARE SUMZ AND

1757			-		/SUM1
1760	1600	7200	POS3,	Cla	/HAVE NOT YET
1761					come to same
1762					/DISTANCE FROM MIN
1763					/AS COMPARI SON SUM
17.64	1661	2321		ISZ POSCT	$/$ IVCRE POS POINTER
1765	1662	4445		Jins I ARDPTO	/TAKE A SINGLE
1766					/READING
1767	1663	7421		MQL	
1770	1664	7701		ACL	/STORE IT IN STACK
1771	1665	4725		JMS I ASTACK	
1772	1666	3123		DCA BL	/SUBTRACT READING
1773	1667	3124		DCA BH	/REMOUED FROM STACK
1774	1670	7701		ACL	/FROM READING PUT
1775	1671	3121		dCA AL	IIN STACK
1776	1672	3122		DCA AH:	
1777	1673	4447		JMS I ADPSUB	
2000	1674	1125		TAD CL,	/ADD RESULT TO
2001	1675	3121		DCA AL	/ Suma
2082	1676	1126		TAD CH	
2003	1677	3122		DCA AH	
2004	1700	1116		TAD SUMLE	
2005	1761	3123		DCA BL.	
2006	1782	1114		TAD SUMH2	
2067	1703	3124		DCA BH	
2010	1704	4450		JMS I ADPADD	
2011	1705	1125		TAD CL	
2012	1706	3116		DCA SUMLZ	
2013	1707	1126		TAD CH	
2914	1710	3114		DCA SUMHC	
2015	1711	+133		UMS I ASTEP	TMOUE MOTOR ONE
2016					/STEP
2017	1712	5731		JMP I ACOMPZ	/COMPARE SUM 1
2020					/AND SUME
2021					/IF SUM2 LT Somi
2022					/BETURN TO POS3
2023	1713	4443	POS4,	JMS I AREV	/OTHETMISE HAUE
202.4					$/$ Found balaivce
2025					/REVERSE MOTORS
2026	1714	7300		Cla cll	/DRIUE TO MIDPOINT
2027	1715	1321		TAD POSCT	/OF SUM1 AND SUME
2030	1716	7910		RAR	
2031	1717	4444		JMS I AMOUE	
2032	1725	5600		JMP I BAL	/EXIT - AC CLEAR
2033					/ELLIPSOMETER
2034					JUNIT LEFT AT
2035					/BALANCED POSITION
2036	1721	0000	POSCT,	0	/POSITION POINTER
2037	1722	0000	hlldble	0	
2040	1723	0000	BLFLAG,	0	/BALANCE FLAG
2041	1724	1326	ASUM,	SUM	/ADDRESSES USED
2042	1725	1300	ASTACK,	STACK	/BY BAL ROUTINE,
2043	1726	1513	ASTORE,	STORE	
2044	1727	1444	ACOMPC,	COMPO	
2045	1730	1452	ACOMipl.	Compl	
2046	1731	1460	Acompes	Compe	
2047			/		
2650			1		
2051				*2000	
2052			1		
2053			1		
2054			TO SET	DEHIRED UNIT	ELLIPSOMETER
2055			1 TO A	EQUIRED POSIT	

```
- 73 -
```

2056			1		
2057	2000	n006	SETEL,	0	
2060	2001	4435		JMS I ARDSFT	/READ Shaft Encoder
2061	2302	1353		TAD FGU	/TO DETERMINE POS
2962	2003	7164		CLL RAL	/OF UNIT
2063	2064	7630		SZL CLA	/DETERMINE WHETHER
2064					/ANZ OH: POL IS TO
2065	2005	4451		JMS I AAVZCP	/SET. IF ANZ
2066					/COMPLIMENT BY 360
2067	2006	1101		TAD SHFTL	
2070	2007	3133		DCA DECL	COONVERT POSITION
2671	2010	1100		TAD SHFTH	/FROM BCD TO BINARY
2072	2011	3134		DCA DECH	
2073	2012	4.457		JMS I ADPDEV	
2074	2013	1125		TAD CL	
2075	2014	3101		DCA SEFTL	/STORE POS IN
2076	2015	1126		TAD Ci	/SHAFT(LOW, HIGH)
2077	2016	3100		DCA SHFTH	
2103	2017	1135		TAD DESTL	
2101	2020	3121		DCA AL	/PERFORM
2102	2021	1136		TAD DESTH	/(DEST-SHAFT)
2103	2022	3122		DCA AH	
2104	2083	1101		TAD SHFTL	
2105	2624	3123		DCA BL	
2106	2025	1100		TAD SHFTH	
2107	2026	3124		DCA BH	
2116	2027	4447	SUBPT,	JMS I ADPSUB	/IS RESULT - VE,
2111	2930	1126		TAD CH	10, OR + VE?
2112	2031	7640		SLA CLA	
2113	2932	5236		CMP - + 4	
2114	2633	-1125		Tab Cl	
2115	2034	7650		S.VA CLA	
2116	2035	5600		JMP I SETEL	/IFOTHEN DONE
2117	2036	1126		TAD CH	
2120	2037	7700		Sma cla	
2121	2040	5260		Jivp AHEAD	/IF + VE JUMP
2122	2041	1135		TAD DESTL	
2123	2042	3123		DCA BL	/IF-VE INTER-
2124	2043	1136		TAD DESTH	/CHANGE DEST AND
2125	2644	3124		DCA BH	/SHAFT AND DIR
2126	2045	1101		TAD SHFTL	CODES (FUD FOS
2127	2046	3121		DCA AL	/BKD AND VICE
2130	2047	1100		TAD SHFTH	/UERSA)
2131	2050	3122		DCA AH	
2132	2051	1366		TAD BKWD	
2133	2052	3377		DCA BHLDK	
2134	2053	1365		TAD FUD	
2135	2054	3366		DCA BKWD	
2136	2055	1377		TAD BHLDK	
2137	2056	3365		DCA FWD	
2140	2057	5227		JMiP SUBPT	/DO SUBT AGAIN
2141	2060	1126	AHEAD,	TAD CH	
2142	2061	3372		DCA DMSEH	/STOEE DEST-SHAFT
- 2143	2062	1125		TAD CL	/IN DMSE
2144	2063	3371		DCA DMSEL	
2145	2064	1126		TAD CH	
2146	2065	312.2		DCA AH	/PERFORM
2147	2066	1125		TAD CCl	(DMSE-180.00)
2150	:2067	3121		DCA AL	/TO DETERMINE
2151	2070	1373		TAD H180	/SHORTEST DIPECTIO
2152	2071	3124		DCA. BG	'to travel
2153	2072	1374		TAD L180	
2154	2073	3123		DCA BL	

2155	20) 74	4447		JMS I ADPSIB	
2156	2075	1126		TAD CH	
2157	2076	7710		SPA CLA	
2160	2677	5326		Jif MUEFWD	/IF-VE OR \emptyset
2161					/MOUE FORWARD
2162	2100	1375		TAD : 360	IIF + UE
2163	2161	3122		DCA AH	/PERFORM
2164	2162	1376		TAD L360	/(360.00-DMSE)
2165	2103	3121		DCA AL	
2166	2104	1372		TAD DMSEH	
2167	2105	3124		DCA BH	
2170	2106	1371		TAD DMSEL	
2171	2107	3123		DCA BL.	
2.172	2116	4447		JMS I ADPSUB	
2173	2111	1366		TAD BKid	
2174	2112	4452		JMS I ASETM	ISET MOTORS TO
2175	2113	1126		TAD CH	M MOUE BACKWARDS
2176	2114	7450		S:NA	MOUE 10000(OCT)
2177	2115	5323		JMP + +6	/STEPS FOB EACH
2200	2116	70.41		CIA	count in Ch
2201	2117	3126		DCA CH	
2202	2129	4444		UMS I ANOUE	
2203	2121	2126		ISZ CH	
2204	2122	5320		JMP - -2	
2205	2123	1125		TAD CL	MOUE CL StEPS
2206	2124	4444		JMS I AMOUE	
2207	2125	5600		JMP I SETEL	/EXIT - AC CLEAR
2210	2126	1365	MUEFWD,	TAD FWD	
2211	2127	4452		JMS I ASETM	/SET MOTORS TO
$291 ?$	2130	1372		TAD DMSEH	MOUE FORWARD
29:3	2131	$\cdots 7450$		SUA	
2214	2132	5340		- MP $\cdot+6$	MOUE AS ABOVE
2215	2133	7041		CIA	
2216	2134	3372		DCA DMSEH	
2217	2135	4444		Jims I AMOUE	
2220	2136	2372		ISZ DMSEH	
2221	2137	5335		JMP - 2	
2222	2140	1371		TAD DUSEL	
2223	2141	4444		JVIS I AMOVE	
2224	2142	5600		JMP I SETEL	
2225			1		
2226			1		
2227			1 TO SET	THE ANALYZER TO	THE POSITION
2230			/STORED	IN DESTH, DESTL	(A TWO WORD BINARY
2231			AVUMBER	IN THE RANGE 0	TO 35999 DECIMAL)/
2232	2143	0000	SETAN,	0	
2233	2144	1130		TAD ANZCD	/GET ANZ CODE
2234	2145	4452		JMS I ASETM	/SET GATING
2235	2146	1130		TAD ANZCD	
2235	2147	3366		DCA BEnID	ISET FND AND BKGD
2237	2150	1367		TAD A.VZ2	CODES TO BE USED
2240	2151	3365		DCA FWD	/By SETEL
2241	2152	4200		JMS SETEL	
2242	21.53	5743		JMP I SETAN	/EXIT - AC CLEAR
2243			1		
2244			'		
2245			/TO SET	POLARI ZEF AS AB	OVE
2246			/		
2247	2154	0000	SETPL,	0	
2250	2155	1127		TAD POLCD	/GET POL CODE
2251	2156	4452		JMS I ASETM	
2252	2157	1127		TAD POLCD	/AS ABOUE
2253	2160	3365		DCA FWD	

2254	2161	1370		TAD POLA	
2255	2162	3365		DCA BKDD	
2256	2163	42.00		JMS SETEL	
-2257	2164	5754.		UMP I SETPL	/EXIT - AC ClEAR
22.60			/		
2261	2165	0000	FND,	0	
2262	2166	0000	B	0	
2263	2167	4014	A.vze,	4014	
2264	2170	0602	POL2,	2	
22.25	2171	0000	DMSEL,	0	
2266	2172	0000	DASEH,	0	
2267	2173	0064	H180,	4	
2270	2174	3120	L180,	3120	
2271	2175	0010	H360,	10	
2272	2176	6248	L360,	6240	
2273	2177	0300	B:1LDK,	0	
2274				*2200	
2275			1		
22.76			1		
2277			/TO COiv	VERT A TWO WOR	SCD NUMBER TO BINARY
2306			/BCD IN	DECH, DECL BI:	IN CH,CL
2301			/		
2302	2200	0000	DPDEN,	0	
2303	2201	1134		TAD DECH	CONVEITP HIGH
2304	2002	4442		MS I ADCBIN	/WORD TO BIN
2305	2203	3237		DCA DPXEL	
2366	2204	3240		DCA DPXRH	
2367	2205	4245		JMS DPK2	
2310	2206	4245		JMS DPYZ	MULT BY 2X2X2=8
2311	2907	4245		UMS DPX?	
2312	2010	1943		TED CxT3	ISET UP TO MULT
2313	22.11	3244		DCA CNT3HD	/BY $5 \times 5 \times 5=125$
2314	2212	1237		TAD DPK2L	
2315	2213	32.41		DCA DPX5L	
2316	2214	1240		TAD DPX2H	
2317	2215	3242		DCA DPX5	
2320	2216	4255		JMS DPX5	MULT BY 5
2321	2217	1126		TAD CH	
2322	2220	3248		DCA DPX5H	/NET BESULT IS TO
2323	2221	1125		TAD CL	MULT DECET BY
2324	2222	3241		DCA DPXSL	11000 (DECIMAL).
2325	2223	2244		ISZ CUT3HD	
2326	2224	5216		JMP - 6	
2327	2225	1125		TAD CL.	
2330	2226	. 3121		DCA AL,	
2331	2227	1126		TAD CH.	
2332	2230	3122		DCA AH	
2333	2231	1133		TAD DECL	/CONVERT DECl
2334	2232	4442		JMS I ADCBIN	/TO BINARY
2335	2233	3123		DCA BL	
2336	2234	3124		DCA BH	/ADD TO HIGH PART
2337	2235	4450		JMiS I ADPADD	
2340	2236	5600		JMP I DPDEN	/EXIT - AC Clea
2341	2237	0000	DPY ${ }^{\text {L }}$,	0	
2342	2240	0000	DPXEH,	0	
2343	2241	0003	DPX5L,	0	
2344	2242	0000	DPX5H,	0	
2345	2243	7775	CNT3.	-3	
2346	2244	0000	CNT3HD,	0	
2347	,		1		
2350			1		
2351			/DOUBLE PRECISION MULTIPLY BY 2		
2352			/INPUT	AND OUTPUT IN	X2H, DPM2L

2353			1		
2354	2245	0260	DPX2,	0	
2355	2246	1237		TAD DPYAL	
2350	2247	7104		CLL RAL	/ROTATE ONE LEFT
2357	2250	3237		DCA DPX2L	
2360	2251	1240		TAD DPXZH	
2361	2252	7004		RAL	
2362	2253	3240		DCA DPX2H	
2363	2254	5645		JMP I DPXC	/EXIT - AC CLEAR
2364			,		
2365			1		
2366				DOUELE PRECISION MULT	PLY BY 5
2367			/INPUT IN DPX5H, DPXSL		OUTPUT In Ch, Cl
2370			\%		
2371	2255	0003	DPX5.	0	
2372	2256	1241		TAD DPXSL	/SET UP TO X2
2373	2257	3237		DCA DPXCL	
2374	2266	1242		TAD DPY5H	
2375	2261	3240		DCA DPXEH	
2376	2262	4245		JMS DPXE	182
2377	2263	4245		JMS Dexa	182
2406	2264	1237		TAD DPX2L	
2421	2265	3121		DCA AL	/ADD ON ORIGINAL
2402	2266	1240		TAD DPX2H	/ NUMEER
2403	2267	3122		DCA AH	
2464	2270	1241		TAD DPX5L	
2405	2271	3123		DCA Bi	
2406	2272	1242		TAD DPX5H	
2407	2273	3124		DCA BH	
C410	2274	4456		JMS I ADPADD	
2411	2275	5655		UMP I DPX 5	/EXIT - AC CLEAR
2412			/		
2413			,		
2414			TO TUEN	V ON POUER TRAN	SISTOR
2415			,		
2416	2276	0000	ONSW,	θ	
2417	2277	7200		CLA	
2420	2300	1110		TAD DIR	CLEAR BIT 1
2421	2301	0315		AND MK2000	/OF DIR
2422	2302	1316		TAD MC2000	/SET BIT i OFDIR
2423	2303	6332		6332	/SET GATES
2424	2304	3110		DCA DIR	/STORE CHANGE
2425	2305	5676		JMP I ONSW	/EXIT - AC CLEAR
2426			1		
2427			1		
2430			/TO TUAN	N OFF POWER TRA	VSISTOR
2431			. $/$		
2432	2306	0000	OFFSW,	0	
2433	2307	7200		CLA	
2434	2310	1110		TAD DIR	CLEAR BIT 1
2435	2311	0315		Aivd MK2000	/OF DIR
2436	2312	6332		6332	/SET GATES
2437	2313	3110		DCA DIa	/STORE CHANGE
2440	2314	5706		JMP I OFFSW	/EXIT - AC CLEAR
2441			1		
2442	2315	5777.	MK2000,	5777	
2443	2316	2000	MC2000.	2000	
2444	-		1		
2445			1		
2446				*2400	
2447			1		
2450			/		
2451			/TO BALA	ANCE THE POLARI	ZER AND TYPE

2452	/OUT THE BALAVCE POSITION				
2453	'				
2454	2400	0000	BALP,	0	
2455	2401	7200		Cla	
2456	2402	1127		TAD POLCD	/SET POL
2457	2403	4452		JMS I ASETM	CODE
2460	2404	4214		Jis balu	IUSE BALU
2461	2405	5600		JMP I BALP	/EXIT - AC CLEAR
2462			1		
2463			1		
2464			/TO BAL	ance the nvaly	AND TYPE
2465			/OUT Ti	B BALANCE POSI	
2466			1		
2467	2406	0060	BALA,	0	
2470	2407	7206		cla	
2471	2410	1130		TAD AVZCD	/SET A VZ.
2472	2411	4452		JMS I ASETM	CODE
2473	2412	4214		JMS BALU	/USE BALU
2474	2413	5606		UMP I BALA	/EXIT - AC CLEAR
2475			/		
2476			1	- •	
2477			/TO EAAL	ANCE THE UNIT	ECIFIED ABOUE
2500			/		
2501	2414	0000	BALU,	\square	
2502	2415	4432.		JMS I ASPACE	
2503	2416	4432		JMS I ASPACE	/TYPE 2 SPACES
2504	2417	4446		JMS I ABAL	/BALANCE
2505	2420	1247		TAD CHICD	/ BEAD
2506	2421	4431		JMS I AANALG	/PHOTOMULTIPLIER
2507	2422	3352		DCA ESIG	/STORE READING
2510	2423	.4435		JMS I ABDSFT	/READ SHAFT ENCODER
2511	2424	1110		TAD DIR	/IF AVZ THEV COMP
2512	2425	7104		CLl RAL	/BY 360.60
2513	2426	7630		SZL CLA	
2514	2427	4451		UMS I AANECP	
2515	2430	1100		TAD SHFTH	/PRINT OUT
2516	2431	4440		JMS I APRTDC	/SHAFT ENCODER?
2517	2432	1101		TAD SHFTL	
2520	2433	4440		Jims I APATDC	
2521	2434.	4432		JMS 1 ASPACE	
2522	2435	4432		JMS I ASPACE	/PRINT 3 SPACES
2523	2436	4432		UNS I ASPACE	
2524	2437	1250		TAD CE	
2525	2440	4454		JiS I ABUFF	/TYPE ES(ERROR
2526	2441	1251		TAD CS	/SIG:VAL)
2527	2442	4454		JMS I ABUFF	
2530	2443	4432		JMS I ASPACE	/leave space
2531	2444	1352		TAD ESIG	/PRINT OUT ES
2532	2445	4437		JMS I APRTOC	
2533	2446	5614		JMP I BALU	/EXIT - AC CLEAR
2534	2447	0017	CHICD,	0.17	
2535	2450	0305	CE,	305	
2536	2451	0323	CS,	323	
2537			1		
2540			1		
2541			TO DO	A COMLETE BGL	E OF THE
2542			/ELLIP	OMETER AND TYP	OUT THE RESULTS
2543			1		
2544	2452	0000	SALE,	0	
2545	2453	1127		TAD POLCD	/SET POL
2546	2454	4452		JMS I ASETM	/CODE.
2547	2455	4446		JMS I ABAL	/BALANCE POL
2550	2456	1130		TAD ANZCD	/SET ANZ

2551	2457	4452		JMS I ASETM	/CODE
2552	2460	4446		UMS I ABAL	/BALAVCE ANZ
2553	2461	1127		TAD POLCD	/SET POL
2554	2462	4452		UMS I ASETM	code
2555	2463	4446		JMS I ABAL	/BALANCE POL
2556	2464	4432		JMS I ASPACE	
2557	2465	4432		JMS I ASPACE	/TYPE 3 SPACES
2560	2466	4432		JMS I ASPACE	
2561	2467	4435		JMS I ARDSFT	/READ SHAFT EVCODER
2562	2470	1344		TAD CP	
2563	2471	4454		JNS I Abupr	/TYPE "POL
2564	2472	1345		TAD CO	
2565	2473	4454		JMS I ABUFF	
2566	2474	1346		TAD CLC	
2567	2475	4454		MiS I ABUFF	
2570	2476	4432		U4S I ASPACE	/LEAVE A SPACE
2571	2477	1100		TAD SHFTH	
2572	2500	4440		JMS I APRTDC	/Bint OUT SHAFT
2573	2501	1181		TAD SHFTL	/ENCODER (POL)
2574	2502	4440		JVS I APETDC	
2575	2503	4432		MMS I ASPACE	
2576	2504	4432		JMS I ASPACE	/leave 3 spaces
2577	2505	4432		JMS I ASPACE	
2600	2506	1347		TAD CA	
2601	2507	4454		JMS I ABUFF	/TYPE "ANZ"
2602	2519	1350		TAD CN	
2603	2511	4454		JMS I ABUFF	
2.604	2512	1351		TAD CZ	
2605	2513	4454		JMS I ABUFF	
2606	2514	4432		UVS I ASPACE	/LEAVE A SPACE
C60゙ 7	8515	1130		TAD Hived	/SET A.vz
2610	2516	4452		JMS I ASETM	/CODE
2611	2517	4446		JMS J ABAL	/BALANCE ANZ
2612	2520	1247		TAD CHICD	/ BEAD
2613	2521	4431		JMS I AAVALG	/PHOTOMULTIPLIER
2614	2522	3352		DCA ESIG	/STORE
2615	2523	4435		JMS I ARDSFT	/aEAD Shaft encoder
2616	2524	4451		JMS I AANZCP	COMPLIMENT BY
2617	2525	1100		TAD SHFTH	1360.00
2620	2526	4440		JMS I APRTDC	/PRINT OUT SHAFT
2621	2527	1101		TAD SHFTL	/ENCODER (AVZ)
2622	. 2530	4440		JMS I APRTDC	
2623	2531	4432		JMS I ASPACE	
2624	2532	4432		JMS I ASPACE	/LEAVE 3 SpACES
2625	2533	4432		JMS I ASPACE	
2626	2534	1250		TAD CE	
2627	2535	4454		JMS I ABUFF	/TYPE "ES"
2638	2536	1251		TAD CS	
2631	2537.	4454		JMS I ABUFF	
2632	2540	4432		JMS I ASFACE	/LEAVE SPACE
2633	2541	1352		TAD ESIG	/TYPE OUT ES
2634	2542	4437		JMS I APRTOC	
2635	2543	5652		JMP I BALE	/EXIT - AC CLEAK
2636	2544	0320	CP,	320	
2637	2545	0.317	CO,	317	
2640	2546	0314	Cle,	314	
2641	2547	0301	CA,	301	
2642	2550	. 0316	CN,	316	
2643	2551	0332	CZ ,	332	
2644	2552	0000	ESIG,	0	
2645			1		
2646			/		
2647				*2600	

2650			1		
2651			/		
2652			/TO SET	THE AVALYCER F	HOM THE KEYBOARD
2653			1		
2654	2600	0000	SETAR,	0	
2655	2601	4432		JMS I ASPACE	
2656	2602	4432		Jivs I ASPACE	/TYPE TWO SPACES
2657	2633	4214		JMS RDEVE	/:EAD A 5 DIGIT
2660					/BCD NUMBER
2661	2604	4460		JMS I ASETAN	JUSE SETAN ROUTINE
2662	2605	5600		JMP I SETAR	/EXIT - AC ClEAB
2663			,		
2664			'		
. 26.65			/TO SET	THE POLARIZER	FROM THE KEYBOARD
2666			1		
2667	2606	9000	SETPR,	6	
2670	2607	4432		JMS I ASPACE	/TYPE TWO SPACES
2671	2610	4432		JMS I ASPACE	
2672	2611	4214		JMS RDFUE	/READ NUMBER
2673	2612	4461		UMS I ASETPL	/USE SETPL
2674	2613	5606		JMP I SETPR	/EXIT - AC CLEAB
2675			1		
2676			'		
2677			1 TOREA	A 5 DIGIT BCD	CHARACTER FROM
2700			/THE KE	YBOARD	
2701			1		
2702	2614	0000	RDFUE,	6	
2703	2615	4455		JMS I AREADB	/READ FIBST CHAR
2704	2616	7421		MQL	
2705	2617	7701		ACL	
2706	8620	4454		JMS I ABUFF	STYPE IT
2707	2621	7701		ACL	
2710	2622	1300		TAD N260	/REMOUE ASKII CODE
2711	2623	7106		CLL BTL	/ROTATE 4 ElTS
2712	2624	7006		RTL	/LEFT
2713	2685	3134		DCA DECH	/STORE IN DECH
2714	2626	4455		JMS I AREADB	/GET SUD CHAR
2715	2627	7421		MQL	
2716	2630	7701		ACL	
2717	2631	4454		JMS I ABUFF	/TYPE IT
2720	2632	7701		ACL	
2721	2633	1300		TAD M260	/REMOUE ASKII
2722	2634	1134		TAD DECH	
2723	2635	3134		DCA DECH	/ADD TO DECH
2724	2636	4455		JMS I AREADB	/GET 3RD CHAR
2725	2637	7421		MOL	
2726	2640	7701		ACL	
2727	2641	4454		JMS I ABUFF	/TYPE IT
2730	2642	7761		ACL	
2731	2643	1300		TAD M260	/REMOUE ASKII
2732	2644	7110		CLL RAR?	
2733	2645	7012		BTA	/STOHE IN HIGH
2734	2646	7612		RTR	/ORDER 4 EITS OF
2735	2647.	3133		DCA DECL	1 DECL
2736	2650	4455		UMS I AREADB	/GET 4TH CHAR
2737	2651	7421		MQL	
2740	2652	7701		ACL,	
2741	2653	4454		JNS I ABUFF	/TYPE IT
2742	2654	7761		ACL	
2743	2655	1360		TAD M260	/REMOUE ASKII
2744	2656	7106		CLL RTL	/STORE IN MIDDLE
2745	2657	7006		RTL	14 BITS OF
2746	2660	1133		TAD DECL	/DECL

2747	2661	3133		DCA DECL	
2.756	2662	4455		UMS I AREADB	/GET LAST CHAR
2751	2663	7401	1	MQL	
2752	2664	7701		ACL	
2753	2665	4454		JMS I ABUFF	/IYPE IT
2754	2666	7701		ACL	
2755	2667	1300		tad MeGb	/REMOUE ASKII
2756	2670	1133		TAD DECL	/STORE IN LOU
2757	2671	3133		DCA DECL	14 BITS OF DECL
2763	2672	4457		JMS I ADPDBN	CONVERT TO BIN
2761	2673	1126		TAD CH	
2762	2674	3136		dCA Destri	/STOFE IN
2763	2675	1125		TAD CL	/DESTINATION
8764	2676	3135		DCA DESTL	/(DESTH, DESTL)
2765	2677	5614		JMP I RDFVE	/EXIT - ac ciear
2766	2700	7520	N260,	-260	
2767			,		
2776			/		
2771				*3000	
2772			/		
2773			/		
2774			1 IO MOVE	MOTOES FROM	KYBRD
2775			,		
2776	3000	0000	MOTE,	0	
2777	3001	4432		JMS 1 ASPACE	/TYPE SPACE
3000	3002	4455		JMS I AREADS	/GET FR CHAR
3001	3003	7421		MQL	/SAVE
3602	3004	7701		ACL	
30103	3005	4454		Jivs i ABUFF	/TYPE FR CHAR
3034	3606	4432		vins I ASPACE	/type Space
3005	3007	1360		TAD MOTINF	IINTEFROGATE XY
3006	3010	1301		TAD MX	
3007	3011	7640		SZA Cla	
3010	3012	5231		JMP YM	/XY IS NOT X
3011	3913	7701		ACL	/XY IS X
3012	3014	1302		TAD MF	/ INTEisROGATE
3013					/FOR REU CHAR
3014	3015	7640		SZA CLA	
3015	3016	5222		Jap mXR	/FR IS NOT F
3016	3017	1131		TAD M2XCD	/FR IS F - SET
3017	3020	4452		Jis I ASETM	MOTORS X -FOR
3020	3021	5252		JMP RUNM	/RUN MOTORS
3021	3022	7701	MXR,	ACL	/LOAD FR CHAR
302.2	3023	1303		TAD MR	/IS IT R
3023	3024	7640		SZA CLA	
3024	3025	5600		Jmp l MOTK	NO - EXIT
3025	3026	1304		TAD M2XCDR	YES - SET MOTORS
3026	3027	4452		JMS I ASETM	TO X-AEV
3027	3030	5252		JMP HUWM	/RUN MOTORS
3030	3031	1300	YM,	TAD MOTINF	/IS XY CHAR Y
3031	3032	1305		TAD MY	
3032	3033	7640		SLA CLA	
3033	3034	5606		JMP I MOTR	/NO - EXIT
3034	3035	7701		ACL	/YES GET FR CHAR
3035	3036	1302		TAD MF	
3036	3037	7640		SZA CLA	
3037	3640	5244		JMP MYR	
3040	3041	1132		TAD MEYCD	'. SAME FOR Y
3041	3042	4452		JMS I ASETM	, AS FOH X
3042	3043	5252		JMP RUNM	
3043	3044	7701	MYR,	ACL	
3044	3045	1303		TAD MR	
3045	3046	7640		SZA CLA	

```
- 81 - .
```

3046	3047	5604		JWP I MOTK	
3047	3350	1306		TAD M2YCDR	
3050	3051	4452		JMS I ASETM	
3651	3052	4455	RUW ${ }^{\text {a }}$,	JS I AsEadB	/READ FIBST OF
3052	3053	1307		TAD Me 60 M	/TWO DIGITS TO
3053	3054	7166		CLL תTL.	/DETERMINE NO
3054	3055	7006		BTL	/0F 1/16' TO
3055	3056	3316		DCA SIXTN	/PLATES
3636	3057	4435		Jins I AREADB	
3057	3069	1367		TAD M260M	
3060	3061	1310		TAD SIXTN	
3061	3062	7421		MOL	
3062	3063	7701		ACL	/SAVE
3063	3364	4432		JMS I ASPACE	GTYPE SPACE
3664	3065	7701		ACL	
3065	3066	4440		UMS I APETDC	/TYPE OUT MOVE-
3066					MENT OF PLATES
3067	3067	7701		ACL	
3678	3070	4442		JMS I ADCBIN	/CONUERT MOUE-
3071					IENT TO BINARY
3678	3071	7041		CIA	/SET UP COUNTER
3073	3072	3310		DCA SIXTN	
3074.	3073	1311		TAB SIXTEN	
3075	3074	4444		dis I Amove	/5TEP 1/16"
3076	3075	2310		ISZ SIXTN	/STEP REQUIRED
3077	3076	5273		JMP - - 3	/ NO OF $1 / 16^{\prime \prime}$
3100	3077	5608		UMP 1 MOTR	/EXIT - AC CLEAR
3101	3100	0000	MOTI:NF,	0	
3102	3101	7453	MX,	-330	
3103	3102	7472	MF,	-306	
3104	3103	7456	NiP,	-322	
3105	3104	0300	Mexcon,	300	
3106	3105	7447	BY,	-331	
3187	3106	0060	M2YCDR,	60	
3110	3107	7520	M260n,	-260	
3111	3110	0000	SIXTN,	0	
3112	3111	2000	SIXTEN,	2000	
3113	3112	0330	MXC,	330	
3114	3113	0331	MYC,	331	
3115			1	\because	
3116			1		
3117			1 TO MOUE	X MOTOR	
3120			1		
3121	3114	0000	MOTEX,	\emptyset	
3122	3115	7200		CLA	
3123	3116	1312		TAD MXC	/PUT "X' IN MOTOR
3124	3117	3300		DCA MOTINF	/INFO
3125	3120	4200		JMS MOTR	/USE MOTR ROUTINE
3126	3121	5714		JMP I MOTEX	/RETURN
3127			/		
3130			1		
3131			ITO MOVE	Y M MOTOR	
3132			,		
3133	3122	0000	HOTRY;	θ	
3134	3123	7200		CLA	
3135	3124	1313		TAD MYC	/PUT "Y'" IN MOTOR
3136	3125	3300		DCA MOTIVF	/INFO
3137	3126	4200		JMS MOTR	/USE MOTR ROUTINE
3140	3127	5722		JMP I MOTRY	/RETURN
$314!$			1		- .
3142			1		
3143				*3200	
3144			1		


```
- 83 - 
```

3244	3403	4456		JMS I AINIT	/INITILIZE
3245	3401	4430		JWS I ACMLF	CELLF
3246	3402	4455	STSYS,	JMS I AREADB	/READ A CHAS
3247	3403	7421		MQL	/ Save it
3250	3404	7701		ACL	LOAD IT
3251	3405	4454		JMS I ABUFF	/TYPE IT
3252	3406	7701		ACL	/LOAD AGAIN
3253	3407	1246		TAD KC300	/SU3 300
3254	3410	7002		BSW	/BYTE SWAP
3255	3411	3247		DCA CHATRAD	1SAVE $15 T$ CHAR
32.56	3412	4455		JMS I AMEADE	/read zind char
32.57	3413	7421		MOL	
3260	3414	7701		ACL	
3261	34.15	4454		JNS I ABUFF	/TYPE IT
3262	3416	7701		ACL	
3263	3417	1246		TAD KC300	/SURT 300
3264	3420	1247		TAD CHAEAD	PPUT IN LOW BYTE
3265	3421	3247	-	dCA Chabad	AUTH $15 T$ CHAR
3266	3422	1243		TAD STL.ST	/SET ADDRESS OF
3267	3423	3015		DCA LSTPT	/POINTER
3270	3424	1415		TAD I LSTPT	/GET COMPARISON
3271	3425	7041		CIA	/WORD. NEGATE
3272	3426	7450		SNA	10 Indicates End
3273	3427	5241		JMP EVDLST	/OF LIST
3274	3430	1247		tad charad	/COmPARE
3275	3431	7640		SZA CLA	/IF NOT THE SAME
3276	3432	5224		JMP - -6	/GET NEXT COMP
3277	3433	1315		TAD LSTPT	/ADDRESS OF LOC
3360	3434	1244		TAD ADLST	/IS SUMM
3361	3435	3245		DCA fiSSTOR	iSAUE ADDAESS
3302	3436	1645		TAD 1 ADSTOR	/GET ADURESS OF
3303	3437	3245		DCA ADSTOE	/COMMAND, SAVE IT
3304	3440	4645		UMS I ADSTOR	/ EXECUTE COMNAND
3305	3441	4430	EVDL.ST,	JMS I ACmLF	/CRLF ENDS COMMAND
3306	3442	5202		UMP STSYS	/START OUER
3307	3443	3677	STLST,	3677	
3310	3444	0040	ADLST,	46	
3311	3445	00000	ADSTOR,	0	
3312	3446	7500	KC3D0,	-300	
3313	3447	0000	CHARAD,	0	
3314			'		
3315			1		
3316		-		*3700	
3317	3700	0205	ABE,	0205	/CODES FOR
3320	3761	0201	ABA,	0201	/Compari son
3321	3702	0220	ABP,	0220	
3322	3703	2301	ASA,	2301	
3323	3704	2320	ASP,	2320	
3324	3705	1530	Alux,	1530	
3325	3706	1531	AMY,	1531	
3326	3707	2302	ASB,	2302	
3327	3710	1723	AOS,	1723	
3330	3711	0323	ACS,	0323	
3331	3712	0000	AEND,	0	
3332			/		
3333			1	- .	
3334				*3740	
3335	3740	2452	BBE,	BALE	/ADDRESSES
3336	3741	2406	BBA,	BALA	/OF SUBROUTINES
3337	3742	2400	BBP.	BALP	
3340	3743	2600	BSA,	SETAR	
3341	3744	2606	BSP,	SETPR	
3342	3745	3114	BMX,	MOTEX	

3343	3746	3122	BMY,	MOTRY
3344	3747	0164	BSB,	ASTOP
3345	3750	2276	BOS,	ONSW
3346	3751	2306	ECS,	OFFSW
3347			1	
3350			1	

NO ERGORS
AAVALG DO31
AA:NZCP 0651
ABA 3701
ABAL 0046
ABE 3700
ABNECD 0041
ABP 3762
ABUFF 0054
ACCNTU 0762
ACCST 0667
ACCSTP 07!6
ACCUM 0376
ACL 7701
ACOMFO 1727
ACOMP $1 \quad 1730$
ACOMPE 1731
ACELFF 0030
ACS 3711
ACTIME 0722
ADCBI.V 6042
ADLST 3444
AOPADD 0050
ADPDBN 0057
ADPSUB 0047
ADSTOR: 3445
AEND 3712
AH 0122
AHEAD 2060
AINIT 0056
AINTSi 0002
AKFLAG 0571
AKYCNT 0572
AL 0121
ARIOVE 6044
AmULTS 0053
AMX 3705
ANY 3796
ANALG 0506
AVZCD 0130
AVZCP 0723
ANZ2 . 2167
AOFFSN 0063
AONSW 0062
AOS 3710
APOSO 1506
AFOS1 1507
APOS2 1510
APOS3 1511
APOS4 1512
APRTDC 0040
APRTOC 8037
ARDEUM 0036
ARDPTO 0045
ARDSFT 0035

AREAD 3	0055
AREV	0043
ASA	3723
ASB	3707
ASETAV	0306
ASTM	0052
ASETPL	10061
ASP	3704
ASPACE	0032
ASTACK	1725
ASTEP	0033
ASTOP	0064
ASTOLE	1726
ASum	17.24
ASUMA	0107
A.Sjorl	0106
ATFLAG	0570
ATLCNT	0573
AWAIT	0034
BACK	1063
BAL	1606
BALA	2406
BALE	2452
BALLP 1	1611
BALP	2400
BALU	2414
BSA	3741
B3E	3740
B3P	3742
B0S	3751
Bri	0124
BHLDK	2177
BKod	2166
BK2	1192
BK3	1124
BL	0123
BLFLAG	172.3
BMX	3745
Bir	3746
BVECD	1050
BNBA	1142
BELP 1	1055
BNLP2	1076
B.VLP 3	1120
BOS	3750
BSA	3743
BSS	3747
BSP	3744
BS:	7002
BUFFER	0253
BUFLP1	0253
BUFPT	0011
CA	2547
CAM	7621
CE	2450
CH	0126
CHARAD	3447
CHDİ	1420
CH 1 CD	2447
CL	0125
Clasup	7721
CLC	2546
Cltflg	0276

CMPSM	1466
CN	2550
Cotst	3231
CNT3	2243
CNT3FD	2244
CNT4	3254
co	2545
comp	1444
comp 1	1452
compe	1460
C?	2544
CRLF	0400
CS	2451
Cheup	0.444
CZ	2551
DCBIN	1000
DECA	0134
DECL	0133
DESTH	0136
DESTL	0135
DIG	1143
DIGCTR	0502
DIH	0110
DMSEH	2172
DMSEL	2171
DUFLAG	32.40
DNumb	0105
DPADD	1541
DPDEV	2980
desua	1553
DPXE	2245
DPXeri	2240
DPXEL	2237
DPX5	2255
DPXSH	2242
DPK5L	2241
DUMG	0103
DUML	0102
EvDSUF	0362
ENDKBF	0365
ENDLST	3441
ENDSK1	1325
EVDSTK	0010
ENDSTP	3235
ENDTIM	0625
ESIG	2552
ExTINT	0213
FINISH	1066
Flagup	0355
FLGSET	1433
Finde	1104
FNH3	1126
FWD	2165
HLDDEL 1	1722
H180	2173
H360	2175
INITZE	0543
INTRPT	0000
INTSER	0200
YBDCNT	0374
KCF	6030
KC1D	1146
KC100	1145

KC1000	1144
KC3	0503
10300	3446
RC 4	0477
KK1777	0566
KK2177	8567
SPDPS	1571
KYBUPT	6313
KYBED	6302
KYFLAG	0367
EY:VDe	6347
KYNEND	6314
K1000D	6745
K212	614 414
K215	0415
K840	0416
1260	6) 476
K35D	0746
LINK	0371
LEPRET	0574
LPSTP	3207
LPSUM	1335
LSTPT	0015
L180	2174
L360	-2176
MASK	0473
MASK17	0504
MASK37	6 65.3
MASK40	665?
Mask?	0475
mCedoc	23:6
M F	3102
M M 17	1025
MK2000	2315
MK366	1026
MK7400	1027
MK77	0541
NK7700	0540
NLT100	1344
Mubis	1043
MOTINE	3100
MOTOR	1434
MOTR	3000
MOTRX	3114
MOTRY	3122
MOUE	1435
MQA	7501
MOL	7421
masave	0372
AR	3103
MSDIE	0104
MSKDIR	1416
MSKDİ1	1432
MSKDRE	1417
MSKD1	0715
MuLT 10	1030
MULT5	1634
MUEFWD	2126
MX	3101
MXC	3112
- MXH	3022
MY	3105
MYC	3113

NYR	3644
M2xCD	0131
M2xCDR	3104
MEYCD	0132
neycur	3106
W260	2700
H260m	3107
$\because 4 \mathrm{C}$	3255
NOTEDB	0271
NOTENO	6241
LUMSEER	0500
OCNSA	1024
OFFSS	2306
ONSW	2276
PHTOCD	1354
POLCD	0127
POL2	2170
POSCT	1721
POSO	1622
POS 1	1625
pose	1633
POS3	1660
POS4	1713
Phint	0417
PRTUC	0447
PRTOC	0461
RDDOM	0635
RDFUE	2614
nDPT0	1347
RDP4	3243
zospe	6626
READB	0330
READPT	0014
REV	1406
HOTNBR	0474
nuwn	3052
SETAN	2143
SETAK	2600
SETEL	2000
SETKFL	0384
SETM	1481
SETPL	2154
SETPR	2606
SHFTH	0108
SHFTL	6101
SHIGH	0542
SIXTEN	3111
SIXTN	3110
SKC16	0717
SM1	3241
5 M 2	3242
SPACE	0407
SPF	6040
STACK	1300
STBL.	1603
STBUF	0363
STEP	0654
STEP 1	0600
STKL	0111
STKLC	0112
STKYBF	0366
STLP1	1523
STLST	3443

STN3R	3501
STOP	2200
Store	1513
STPCNT	0117
STPNO	3237
STBOT	6505
STSTK	0120
STSYS	3402
SUBPT	2027
SUA	1326
Sumh 1	0113
SUMHE	0114
SUMLI	0115
SUBLE	Q116
Sumpto	3256
SUSTE!	1323
SUSTEE	1324
Spp	7521
Segtsi	1504
S2LTS1	1505
TELCNT	9373
TELTP	0283
TFLAG	0364
TYPEPT	0612
UNPACK	0425
UPHILL	3223
WAIT	0511
WLP1	0614
WT	0610
UTIME	0721
wTi	\%720
YM	3031

