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ABSTRACT

In the thesis, geometric programming is coﬁsidered as a numeri-
cal op;imization‘technique. The problem of minimizing the integral
square error of a systeﬁ characterized by a second order plant with pfo-
portional—integral—derivative (PID) contrpller is investigated. Con-:
straints arerimposea upon the state of the s&stem in order to obtain
feasible solﬁtions and conditions thét are ameqable to the geometric
prograﬁming technique.

The application of geometric programming fequires the use of
approximation procedures to eliminate untenable conditibns in the.pbjeété
ive and constraint functions. The techniques utilizgd render éolutioné
that are easily obtainable, usually amounting to solving a set of linear
equations and requiring no differentiation of terms.. In addition, there_
is.rapid convergence to an optimuﬁ. The accuracy of the results is

dependent upon the validity of the\approximations}
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SYMBOLS -

Some common mathematical symbols used include:

X approximately equal to
> greater than
> equal to or greater than
< less than
< equal to or less than
A defined as
. z i summation of terms with index i ranging from m to n
m
n
I product of terms with index i ranging from m to n
=m
L[ 1 Laplace transform
joo
f " ds integral over the same dimension as the vector
-jo

J

The principal symbols used are defined below:

a; variable associated with error transfer function

aij exponent of variable in primal program

o variable associated with error transfer function

Ei initial value of primal variable

d§ optimum value of primal variable

bi coefficient of constraint equation

Bi variable associated with error transfer fupction for the time

delay system
c. variable associated with error transfer function for time

delay system



C(s)
c(t)

coefficient of a posynomial term

Laplace transform of system output response
system output response in time domain

variable vector in dual program

optimum value of dual variable

exponent of dual variable

Laplace transform of error transfer function
system error transfer function

dual exponent

system transfer function

PID controller transfer function

plant transfer function

k = 1...n, posynomial constraints in primal program
posynomial, primal objective function

plant parameter

system objective function: Integral Square Error
PID controller gain

Lagrange multiplier

dual variable associated with a forced constraint in the primal
program

number of primal variables

number of terms in the primal program

plant parameter

a posynqmial term

dual objective fumction

Laplace transform of system input.

system input in time domain

vi



system time delay

variable vector in primal program
settling time

PID derivative time constants

PID integral time constants

cost or objective function
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primal variable

plant parameter
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I. INTRODUCTION

1.1 Basic Concept of Optimization

The optimal design and control of systems and industrial pro-
cesses has long been of concern to the applied scientist and engineer,
and, indeed might be taken as the definition of the function and goal
of engineering. Usually in design problems a system is characterized
in mathematical terms by defining a desired objective function or per-
formance index which consists of fixed parameters and decision variables.
The objective of an optimal design is to choose those variables which
yield an optimum (usually maximum or minimum) valué of the performance
criterion. Traditional methods of achieving this are by differential‘
calculus and/or some kind of a search over the design variab}es, which
is often slow and exhausting. A recently developed theory called geo-
metric programming offers a more efficient method of solution in as much
as it is computationally more convenient and in addition rapidly approaches

the optimum of the objective function.

1.2 Fundamentals of Geometric Programming

Geometric programming was first formulated by Zener (1961) as
a method for optimizing engineering design. He considered the problem
of minimizing thé sum of component costs of a unit, when each cost
depends on products of the design variables, each variable raised to an
arbitrary but known power. In addition, it was required that the number
of components in the unit exceed the number of design variables by one.
Zener showed that the solution of such a problem can always be obtained
simply by solving a square system of 1inea; algebraic equations.

Zener's method was subsequently extended (Duffin, 1962a;



Duffin, 1962b; Duffin and Peterson, 1964) to optimization problems of a
more general nature, including those with inequality constraints. The
most comprehensive reference on geometric programming is the book of
Duffin, Peterson and Zener (1967) where the mathematical derivations
and some engineering applications are described in detail. The mathe-
matical treatment relies on a generalization of the inequality and
equality relationships between arithmetic and geométric means, as well
as other geometric concepts, such as orthogonality of vectors. Geometric
programming derivesbits name from its intimate connection with these
geometric concepts. The underlying premise is based on the fact that
the minimum of the arithmetic mean is equal to the maximum of fhe geo—
metric mean.

The basic mathematical concepts of geometric programming deal
with real valued functions called posynomials. A posynominal is given
by

n
g(t) = }
j=

P, (t) (1.1
1 3

where

m

a
P.(t) =¢. NI t, 1] 1.2
J( ) LT 3 (1.2)

Each coefficient cj is positive, while the exponents aij are arbitrary
réal numbers and the variables ti are restricted to take on positive
values, i.e. the domain of the posynomial is the positive orthant.

Geometric programming deals with minimizing posynomials subject
to a certain type of posynomial constraint. This minimization problem

is called the primal problem of geometric programming or simply, the

primal program.

In the primal program, the objective is to find a vector t¥*



that minimizes the function go(t) subject to the constraints

t;] >0, tp >0 ..., t >0 ' (1.3)
and g, (t) <1, g,(t) £ 1, ..., gp(t) <1 (1.4)
Ny "
Here g (t) = Yy P.(t), k=0,1,...,p (1.5)
2 k|
=M
m a
where Pj(t) = cjizl tizij (1.6)
and Mo =1, Mk = Nk—l + 1, k=1,...,p a.7)

The exponents aij are real_numbers and the coefficients cj are positive,
Thus the functions gk(t) are posynomials.

An important feature of geémetric programming is the central
role played by the terms Pj in the posynomials 8 Instead of focusing
on determining the optimal t*, the approach is to concentrate on evaluat-
ing the minimum of go(t) and the relative contribution of the terms
Pj(t) to this minimum. Only after they are determined is the optimal
t* found. Another important feature of geometric programming is the
concept of a duality theory.which associates with each primal program
a "dual" programming problem which is usually easier to solve than the
primal program,

The objective of the dual program is to find a vector &% that

maximizes the product function

N
p p
¥ = 11 (e /60891 T A (6D (1.8)
j=1 3 3 k=1
Mie
wheré ~Ak(5) = Z 8.y k = 1,..0.,p (1.9)



subject to the constraints

6120, 83 20, oo, 8y 20 (1.10)
N
o
Y8, =1 (1.11)
j=1
N
(o]
and ) a8, =0, 1=1,...,m (1.12)
jop 133

Here aij’ cj, Mk’ Nk are the same as in the primal program.
The dual program is obtained from the primal program. The
constants cj appearing in the dual function y(§) are the coefficients
of the posynominals 8y appearing in the primal objective function and
constraints. The variable Gj is associated with the jth term, Pj’ of
B k=0,1,...,p, so that each Sj is associated with one and only one
posynomial term Pj. Moreover, each_kk(é) is associated with the kth

.primal constraint gk(t) <1, The A therefore, are similar to Lagrange

k’

multipliers. The normality condition (1.11) is imposed on the dual
variables associated with the primal objective function only, while the
orthogonality conditions (1.12) apply to all dual variables. It should

be noted, also, that the ith constraint in (1.12) is associated with

th

the i~ primal variable ty through the exponents a, ;e

J
A primal or dual program is consistent if there exists at.
' least one vector that satisfies its constraints. A primal geometric

program is superconsistent if there exists at least one vector t > 0

such that R
gk(t) <1, k=1,...,p (1.13)

A vector t is called primal feasible if it satisfies the primal con-

straints (1.3) and (1.4) while a vector § is called dual feasible if it



satisfies the dual constraints (1.10), (1.11), and (1.12).

A primal program is said to be solvable if there is a feasible
vector, t, such that go(z) < go(t) for all feasible t. Similarly, a
dual program is said to be solvable if there exists a feasible vector §
such that ¥(8) > ¥(8) for all feasible §.

In terms of the preceding concepts, the following duality
theorem of geometric programming can be stated:

Theoren 1. If a primal geometric program is superconsistent and
solvable, then:
(i) The corresponding dual program is solvable.
(ii) The constrainted minimum of the primal program is equal to the

constrained maximum of the dual program, i.e. -

g, (t*) = v(8%) (1.14)

(iii) The relations between optimal primal and dual variables are

given by:
s % Pj(t*)/go(t*). 3= 1y, N
J [ (6% Pj(t*), j=M,enN k=1,...,p (1.15)
and
vkk(é*) [1 - gk(t*)] =0 k=1,...,p (1.16)

Thus, if a given primal geometric program is superconsistent
and solvable then Theorem 1 implies that instead of solving the primal
geometric program, the corresponding dual program may be solved and by (1.14)
the maximum of the dual is equal to the minimum of the primal. In addi-
tion, the upper and lower bounds on the solution of the primal and dual
programs can be obtained by evaluating go(t) and P(8) for feasible vectors
t and §, respectively. For such t and §, then go(t) > go(t*) = P(8*) > y(§).

The duality theorem enables the minimum value of the primal



objective function to be found without actuaily solving the primal pro-
gram, but relation (1.15) also gives a method to find the minimizing
vector t* from the knowledge of a maximizing vector §*. From (1.15)

it follows . that:

m
e, T t;aij = a;w(a*), 3= Lyee N (1.17)
i=1
and for k = 1,...,p, such that_xk(a*) >0
m a
cj 1 t? ij = 6§/Ak(6*)’ j = Mk""’Nk (1.18)

i=1
Taking the logarithm of both sides of each equation in (1.17) and (1.18)

and rearranging them yields

m
izl a;; log t} = 1qg(6§¢(s*)/cj), 5= LN (1.19)
and
m
* = * . = ]
izl 34 log t§ = log[Gj/(cj_xk(G )1, 3 Moseees N (1.20)

The optimal primal variables t? are thus found by solving the above
system of linear equations in the variables log ti.

Knowing that each term Pj in the primal objective function g,
is associated with one of the dual variables, it can be seen from (1.15)

that each optimal dual variable 5?, j=1,...,N,, represents the weight

or relative contribution of the term Pj to the minimum of go(t); Thus
by solving the dual program, one obtaing first the minimum of the pri-
mal objective function and then the relative contribution of each term
Pj to the optimal solution.

Since the feasible t are restricted to be positive, t* is also
positive; it follows then that each Pj(t*) in the objective function is

positive. By (1.15), therefore, those dual variables which correspond



to terms in the objective function are.positive, i.e. 6? > 0 for
j= l,...,No. The remaining Gj’ i.e. those §, corresponding to terms in
the constraints, are zero or positive, according as the particular con-
straint is loose (gk(t*)-< 1) or tight (gk(t*) = 1) at primal optimum.
More precisely relations (1.9), (1.10) and (1.16) imply:

(i) whenever gk(t*) < 1, the optimal dual variables 6?, j= Mk""Nk

vanish;

(ii) 4if 6; > 0, for some j = Mk?""Nk’ then gk(t*) = 1,

Moreover, by the second equation of (1.15) and the positivity of t*, it

can be concluded that'Ak(G*) > 0 for some k, implies 6? > 0 for
J =M N

1.3 Some Properties of Geometric Programming

The dual problem of geometric programming consists of maximiz-
.ing a given function subject to linear equations and nonnegativity con-
straints on the variables. A unique and easily obtained solution for
the linear equation arises when the number of equations in the dual con-
straint is the same as the number of dual variables. This case occurs
when the total number of terms, Np’ in the primal objective function
and constraints exceeds the number of primal variables, m, by one, i.e.

NP =m+ 1 ‘ (1.21)

If the number of variables in the dual exceeds the number of
equations by one (i.e. the number of terms in the primal program is two
greater than the.number of variables) then the dual constraints may be
solved explicitly in terms of only one variable, thus reducing the pro-
blem to a maximization over a single variable. The next case, in which

the number of primal terms exceeds the number of variables by three,



would lead to a dual program in which a two-variable maximization needs
to be carried out. Each case is succeedingly more difficult than the
previous; the 'degree of difficulty' of a geometric program may be de-
fined by

Degree of difficulty = Np -m-1 (1.22)

Generally, well-formulated geometric programs can have arbitrary non-
negative degrees of difficulty.

The linear dual constraints (1.10) - (1.12) have the important
property that they are independent of the primal coefficients cj. Hence
the dual optimal solution for a problem with zero degree of difficulty
is invariant in the sense that no matter what the numerical values of
the coefficients cj are, the optimal dual variables are the same, since
they are uniquely determined by solving the dual constraints. When the
primal objective function represents a cost to be minimized, the optimal
dual variables measure the relative contribution of the various cost
items to the minimum cost. In the case of zero degrees of difficulty
each term in the primal objective function at the optimum has an invari-
ant weight represented by the unique solution of the linear dual con-
straints, thus providing insight into the engineering or economic
structure of the problem. An analysis to find the relative importance
of the terms in the primal objective function can be made, in the zero
degree of difficulty case, without prior knowledge of the numerical
values of the coefficients. From a computational point of view, evaluat-
ion of the optimal primal variables from (1.19) and (1.20) for positive
values of cj can be achieved without resolving the programming problem.

Thus the optimal primal variables are easily adjusted for any change in



the coefficients (a condition that could reflect altered design para-
meters or market fluctuations).

Complete solution of a geometric programming problem requires
either the minimization of a posynomial, subject to posynomial inequality
constraints (primal program) or the maxiﬁization of a nonlinear product
function, subject to linear inequality aqd equality constraints (dual
program). If the degree of difficulty is low i.e. zero or ome, solving
the dual is preferable since the optimization procedure is fairly easy.
For higher degrees of difficulty, the question is not as clearly decid-
able although the dual offers some advantages as has been noted by

Duffin, Peterson and Zener (1967).

1.4 Introductory Examples

As a preliminary, the general idea of geometric programming
will be illustrated by some examples that are indicative of the kind of
reasoning and results that pertain to geometric programming.

Consider the cost of producing a product to be made up of

several factors: the cost of raw materials is 1000n'v8 $/year, the cost

4000

nr.z

of operating one machine in the production process is $/year, while

the cost of operation of a second machine is 1000r $/year.  The object-
jve is to find values for n and r which minimize the total amnnual cost,

given by ' _
6 = 1000n° 2 + égg%“+‘1000r (1.23)

‘nr
In this unconstrained example, the optimal value of the parameters n*

and r* may be found by setting the first partial derivatives equal to

Zexro:

- _ (.8)(1000) _ _4000

) VRN I

= %; ((. 8) (1000n**8 - 4§99959_= 0 (1.24)

3¢
(559



(%%5 _ _4000(.2) | 000 - L (. 4000(.2)

*
n*r*l -2 r n*r*?z

+ 1000r*) = 0 (1.25)

The values of n* and r* can be found by solving the nonlinear equations
(1.24) and (1.25). However, the method of geometric programming does
not require the solution of nonlinear equations. Since the minimum
cost ¢* is made up of three cost terms, there is a unique distribution
among the terms that contribute to the cost. Let §;, 82, and §3 be
respectively, the fractions of the total minimum cost represented by

raw materials, operation of machine one and operation of machine two.

Then
.8
1000n*
§1 = ——¢*—— - (1.26)
5o ;'__fﬂﬁlliz (1.27)
: drnAr*"
- '1000r*
83 = —_TEEE_ (1.28)
Since the weights must sum to unity
81 + 8, + 83 ="1 (1.29)

Substituting (1.26), (1.27), and (1.28) into (1.24) and (1.25) gives

881 -8, =0 (1.30)

-.287 + 63

Il
o

(1.31)

Equations (1.29), (1.30) and (1.31) represent a system of three linear
equations in three unknowns which has the unique solution

§1 = 25/49, 8, = 20/49, 83 = 4/49 (1.32)
Hence in the optimal design, raw materials contribute 25/49 of the

total cost, machine one contributes 20/49, while machine two contributes

10

the remainder or 4/49. Note that to find this optimal cost distributiom,

the optimal values of the variables n and r did not have to be found.
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Since the sum of the weights is equal to unity then the mini-

mum cost can be written as

Substituting (1.26), (1.27) and (1.28) into (1.33) gives

.8
1000n* 8 4000 85 ,1000r*, 8
= ) N 2 ) P (1.34)
1 n*r*° g, 3
Rearranging,
1 10 §1 -6 - +
0% = ( 000)61(4000)62( 20)63 *( 884 Z)vr*( 285 §3) (1.35)

But by (1.30) and (1.31) the exponents of n* and r* vanish so that

83

ok = (1220)51(4000)52(1000) (1. 36)
1000 ., 25/49 ,4000 , 20/49 ;1000 4/49
or ¢* = (35759) (36729’ 759 = 4359.61 (1.37)

i.e. the minimum cost is $4359.61.

The optimum design variables can now be found. From (1.28)

_4 _ 1000r*
49 4359.61
or r* = 0.36 (1.38)

Similarly from (1.27)

20 _ 4000
%9 ~ (4359.61)n*(.36)-2

OT % = 2.74 ' (1.39)

These are the identical values to be obtained from a solution of the
nonlinear equations (1.24) and (1.25). It is clear that the geometric

programming approach was advantageous in that it required only minor

computation of linear equations to obtain a solution.



Consider a second example, similar to one appearing in
Eveleigh, 1967. TFor a system that is described by the transfer

function .

Cc(s) 1
G(s) = = (1.40)
R(s) s+ xzs2 + x18 + 1

the objective is to find values for the system parameters, X;, and X, ,
which will minimize the Integral Square Error (ISE) for the system.

This is given by:

2 2 2
x5+ K X X X, (1.41)
2(x1x, - 1) 2 2(x3x - D)

ISE =

As before, the optimal variables x? and x; may be obtained by setting

the first partial derivatives equal to zero

alsE _1___ M L.42)
9x; 2 (2xyxy - 2)2 )
2x 2x.x_2
9ISE _ 2 - 12 =0 (1.43)
3X2 (2X1X2 - 2) (2X1X2 - 2)2 *
and solving the nonlinear equations.
Alternately, let
X, < 2x1%p = 2 (1.44)
and substitute into (1.41) to obtain
X x 2
ISE = 5L + 2 ~ (1.45)
o

Thus a related problem is to solve the posynomial objective function
(1.45), subject to the constraint

30 ' 2
2x1Xo 2xX1X9 ~

(1.46)

To show the concepts and development of geometric programming as they

apply to this problem, consider the introduction of the Lagrangian

12



multiplier A; to form the augmented equation.

2

+ Ai(
[o]

X
[o) 2
2x1x2 2X1X2

¢ =

a (1.47)

X X
-1 2
7t x
Now let §1 and 8, be respectively the fractions of the total ISE re-
presented by the first and second terms in the ISE and let 63 and Sy be

the respective fractions of the restraining equation.

X, .
= 1.
§1 = 7, (1.48)
X22
82 = 53 (1.49)
o'a
- ALX
- 10,
§3 —llex2¢a, (1.50)
L 2h
T Tawd, (-0

The optimum of the

augmented equation, (1.47), can be found by the

~ traditional method of taking partial derivatives and equating to zero.

Thus,
A 2)
9, 1 _'Alxo ) Zkl =.l_cfl R %o IR (1.52)
90Xy 2 2x12x2 2x12x2 x1°2 2% % 2%1%2
2
. a¢a _ 2X2 - >\le _ 2>\l - -1_-(2}{2 _ lxo _ 2)\1 ) =0 (1 53)
Xy X 2 2 X X , % .
o 2xxp~  2xyx, . o 2xX, 2x1X
36 x2 A x,2  Ax
a__2 .1 1. 2., 109 _, (1.54)
9x 2 2x1%y X X 2X1Xy

[o}

Substituting (1.48)

§1 - 63 = Oy

287 - 83 — Oy

[}

- 8o +_63

- (1.51) into (1.52), (1.53) and (1.54) gives

0 (1.55)
0 (1.56)
0 (1.57)

13
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Equations (1.55), (1.56) and (1.57) are termed the orthogona-
lity conditions. The normality condition; applicable only to the primal
objective function is formed by noting that the fractions, §; and &y,
of (1.45) must sum to unity. Therefore, )

§1 + 8, =1 (1.58)

Equations (1.55) through (1.58) represent a system of four linear equat-

ions in four unknowns which has the unique solution
81% = 2/3, 8§,% = 1/3, §3% = 1/3, §u* = 1/3 (1.59)

The general relationship of the arithmetic mean to the geometric mean
for a series of weighted terms states that the weighted arithmetic mean
is eqﬁal to or greater than the corresponding weighted geometric mean.
From (1.47) this relationship can be expressed as:

x x 2 AX 2)

_ 1% 1
¢, 51( ) + 52( ) + (§;I§5339 + 54@5;555:?

2 ALX 2

8o, "170 (83, 1 8y
(X 52) (2X1X25 3) (2X1X26|+) (1'60)

%

81
ST

)

Equation (1.60) indicates the transition from the primal problem (mini-
mizing the arithmetic series) to the associated dual problem (maximizing
the geometric series). At the extremes there is equality between the

expressions. Hence
§ § 1 §3,1 & §1~63-8 268,-8 3-8 —§0+8 §q+8
o * = 16—-) 2( ) 3( ) . 61 3700, x20276370 402%03 5 O5¥Oy
a 26 o)
(1.61)

But by (1.55), (1.56) and (1.57) the exponents of x1%, X%, and xo* vanish

so that
¢

D N R NP § Sy §3+8
2= G5 6D (253) 3( AN (1.62)

and from (1.50), (1.54) and (1.55)



.%T(s3+aq) -1 or § 348y = Ag (1.63)
Thus,
b % = (5%;961(%;96265%5)63G§;)6W(63+64)(63+5”) ' (1.64)
or
% = (2(2%3))2/3((1%3>)1/3(2{1§3)>1/3((1}3))1/3(1/3+1/3)(l/3+l/3)= 2/2

(1.65)
The theory of geometric programming states that the maximum of the dual
problem is equal to the minimum of the primal problem. Hence the mini-
mum of the ISE is 3/2. It should be noted that this was obtained with-
out first obtaining the optimum of the design variables, x; and xp.
The .relationship between the optimal primal and dual variables is given
by (1.1&) and (1.18). Substituting in values obtained from (1.59) and

(1.65) yields

x *
_%_.=-51*¢a(5*) =1 (1.66)
x %2
2= Sp%e,(6%) = % (1.67)
o
X % 63*
o , ‘
2%X1%x0% N §g% + Syu* =3 (1.68)
. s *
D (1.69)

XIFR,® | Sg% + 8%

Solution of these equations yields the optimal parameters x1* = 2,

xo* = 1, which may be verified by substituting into Equations (1.46)

and (1.43).

15
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II, APPROXIMATION TECHNIQUES

2.1 Standard Approximation Procedures

The direct application of . geometric programming as an optimiza-
tion technique is restricted by two main limitations -~ for problems with
high 'degree of difficulty', the solution could require a multi-variable
maximization procedure to be employed in addition to the geometric pro-
gramming procedures; and the requirement that each term in the primal
objective and constraining equations be positive. Recently several
techniques (Avriel, Dembo and Passy, 1975; Avriel and Williams, 1970;
Avriel and Williams, 1971; Duffin, 1970) have been developed to over-
come the limitations of nonpositive terms. In‘'general, these methods
require the introduction of new variables in any objective function
which contains negative coefficients, or a rearrangement of the inequa-
lity constraints if these contain negative terms. Unfortunately, the
resultant functions may still contain many complicated and inconvenient
terms. The method of Duffin, Peterson and Zener, 1967, in their exposi-
tory book does not require the introduction of additional terms and yet
can still handle some nonposynomial functioné. Hence it may be potent-
ially more useful in the solution of many engineering problems.

In this method, a function f(tl,tz,..u,tng that is not a

posynomial might be approximated by a posynomial. There is no unique

method of doing this but the following is typical. Suppose that
f(tl,tz,...,tm) = g(tl,tz,...,tm) + h(tl,tz,...,'tm) (2.1)

where g is a posynomial and h is not. To approximate h by a single
term posynomial a rough estimate of the range of variability of each

variable t is made. Let Es be the geometric mean of this range. Then



(El;Ez,...,Eﬁ) is termed the operating point. Now, if u(t) is a single-

term posynomial such that

u(t) = ctlaltzaz...tmam (2.2)

then
—~ t]_ a t2 a tm'a
u(t) = u(®) (@I (> (2.3)
t1 t2 tm
and
"Eigau
o 3t A aj, j=1,2,...,m 2.4)

J

thus, h is approximated as

: - tl a tz a t a
h(t) ¥ B (P IED2...(™n (2.5)

t) t, t

where

t. 5h
2, = [GD 5] J=1,2,...,m (2.6)

; t=t °’
This approximation is equivalent to expanding log h in a power series
in terms of the variables zj,= 1og(tj/25) and neglecting all but the
linear terms. If h(t) is positive, f is approximated by a posynomial
The approximation is such that f and the posynomial have the same value

and the same first partial derivatives at the operating point'E.

2.2 Approximation Using a Non-derivative Technique

.It is interesting to note that similar approximation results
can be obtained without the use of differentiation. This result is
derived from the basic arithmetic - geometric relationships and the
resultant equality at the extremes.

Consider the expression

g(t) = ] c,t1%1 ...t %im (2.7)

1

17
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where c; can be either positive or negative. At the operating point
E&,E},...,E&, (2.7) takes on the value g(t) and each term contributes a
fraction of this total equal to its value divided by the total. That is
. T 21,,.T %n
i m

1.
A, = (2.8)
* g (b)

Now the arithmetic - geometric relationship is given by:

. e e i1 g %m
i1 im A 1 m .
z R ™ )1 (2.9)

i i i
and at the extremes, equality holds. Hence

: c.t, 21 ...t %im
m - .
g(t) & T (—= — . g(e)) i (2.10)

c.TH1 T %m
m

i
Since the sum of the weights, Ai, must add to unity, then
£ 211, ¢ ¥m

g(t) ¥ g(t) T (" )24 (2.11)
g, 711, ¢ 10
1 m

where g(t) is now a posynomial.

An additional and important benefit to be realized by this
approximation and the one of Section 2.1, is that although the original
expression may contain several terms, the approximation can condense
them into a single term. Hence, techniques of this type may be used as
a means of reducing the degree of difficulty of the original problem
since they can reduce the difference between the number of terms and
the number of variablei‘in the primal problem,

With initially appearing to be universally applicable, these
methods must be thoroughly investigated before Being applied to engineer-

ing problems. However, the techniques of approximation, together with



the features of geometric programming when judiciously applied, yield

considerable benefits in the analysis of optimization problems.
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III. GEOMETRIC PROGRAMMING APPLICATION TO A PID CONTROL SYSTEM

3.1 Introduction

Many industrial processes can be adequately defined by a re-
latively simple mathematical model consisting of a second order lag plus
dead time. The design of a control system for this type of process
requires the choice of a controller and adjustment of the system para-
meters to produce an "optimum" result, i.e. usually obtaining a minimum
or maximum value of a performance index or cost function.

Geometric programming can be applied to this problem with
optimum or near optimum sdlutions obtained with a minimum of computa-
tional intricacies. That is, from an arbitrary starting condition, the
optimum is approached in a single computational step by basically solv-

ing only linear equationms.

3.2 PID Controller and System Definitions

A type of controller that is commonly used in industrial pro-
cesses is the proportional - integral - derivative (PID) controller.

The transfer function for this is

_ 1 :
Gc(s) = Kc(l + Ty + TdS) (3.1)

and the control problem requires selection of the parameters Kc, Tos
and T4 SO as to optimize a selected performance index such as the inte-
gral square error for the closed loop system to which the controller is
applied.

Initially let the time delay be zero and consider a plant

with the open-loop transfer function
wn Y
s? + 2tw_ + w 2
_ n n

Gp(s) = (3.2)



Letting
ay = ZCwn
a = wnz
as = wn?-y
yields
. _ a, .
G _(s) = 2
P s” + ays + ap
C(s
G.(s) GP(S) ( )

U)Z'Y

2

G_(s) A plant = >
p - s + 2ztw.s +tw
n n

_ 1
Gc(s) A PID controller = Kc(l + ;;§'+ TdS)

Fig. 1 System Configuration

(3.3)

(3.4)

(3.6)

For a closed-loop system of the form shown in Figure 1, with

the cascade compensation network, Gc’ given by (3.1) then

E(s) _ 1
R(s) 1+ Gc(s)Gp(s)

Substituting (3.1) and (3.6) into (3.7) gives

E(s) _ s(s?+a s+az)

R(s)

1
- Kea
s(sz+als+a2) + s 3

) ) 2
N (1+TiS+TdeS )

(3.7

21



2
s(s“t+a;sta,)

3, 2 i
+ + + a,taszK ) + agK
s +s” (a3 a3Kch) s(artag c) as C/'ri

(3.8)
Letting
_ a3Kc (3.9)
o T .
0] = as + ach (3.10)
ap = a] + ask T, (3.11)
then, )
E(s) _ s(s“ta;stay)
R(s) 3, _2 ' (3.12)
s +tass +a1s+uo
If the input to the system is a unit step, then R(s) = 1/s, and
consequently 2
s +als+a2
E(s) = 3 > . (3.13)
s +aos +als+ao

Equation (3.13) is the error tramnsfer function for the system
of Fig. 1. It has been shown (Newton, Gould, Kaiser, 1964) that the
integral square error, ISE, can be expressed in terms of functions like

(3.13) by means of Parseval's theorem in the form

J°° C(s)C( s)
ISE = ff Sd(s)d(-s)

From tabulated values of the integral, the closed-loop system objective

function is given by:
oo, + (a,2-2a)a_+.a2a

1
1sg = 2t —Fg 22 (3.14)
20,0509 (1 - alag)

The optimization problem is to determine values of ays 01 and oo

that minimize Equation (3.14).

22



3.3 Constraint Derivation

As many aspects of design theory apply to mathematical models,
the usefulness of the theory is determined by how close1§ the model
agrees with the physical problem under consideration. Fdr example,
optimization could yield a mathematically realizable system in theory
but one that physically results in unrealistic responses. That is, the
act of optimization could drive signals in parts of the model correspond-
ing to the fixed elements of the control system to such high peak values
that the model is no longer a valid approximation. Thus the design
theory is restricted in usefulness. One method of avoiding this condi-
tion is to impose constraints upon the system to insure that the result-
ant optimum parameter choice yields a system that is practical. For
the PID controller problem, a constraint condition that could be imposed
upon the system is to force the output response and consequently the
" error, e(t), to be a specified value at some specified time, t. In
this manner, the response can be controlled so as to avoid a condition
of over-driven signals within the system.

From (3.13)

g2+a1s+a2
B(e) = b2 (3.15)
s tays +aysto
Therefore s2(l+a,/sta,/s?)
E(s) = (3.16)

s3(l+a2/s+a1/sz+ao/s3)

Dividing the numerator by the denominator and disregarding terms greater

N

than s' gives

a - Ca.-a.-a.a.+0.2 20040 2-a_a.-a_ o -0 X

1~ % 2 o s

. 1 51%7 % Th%T TR M T 0 317y
[] 82 83 :

E(s) & s1(L +

which yields in the time domain,

23
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e(t) =1+ (aj-ax)t + (az—al—a1d2+d22)§z-+ (2d1d2+a22al—alal-azaz—uz3—a0)t3/6
(3.18)
By rearranging terms, (3.18) can be written as
oy (£2/2+a1t3/6) + oy (t+art2/2+a,t3/6) + a,3t3/6 - 2(£3/6)ajay -
(a1t3/6+t2/2)0r2 = 1 - e(t) + ajt + ayt?/2 - a0£3/6 (3.19)

Now,
c(t) = r(t) - e(t) (3.20)

and for a unit step input,

r(t) 1 (3.21)

Therefore

c(t) 1 - e(t) (3.22)

and
c(t) + a t + a2t2/2 - a0t3/6 = ul(t2/2+a1t3/6) + az(t+a1t2/2+a2t3/6) +

0,3t3/6 ~ 2(t3/6)ay0, - (t2/2+a;t3/6)a,2 (3.23)
In general a, << 1 and the term aot3/6 can be disregarded. Thus by

specifying a value of c(t) at a time t, the L.H.S. of Equation (3.23)

is a constant, say Y. Therefore, the constraint may be written as

Y = bjo; + bpap + bzay3d - 2b3d1a2 - bjog? (3.24)
where :

Y A c(t) + ajt + a,t?/2 (3.25)

b, 4.t2/2 + a;t%/6 (3.26)

by At + ajt?/2 + a,t3/6 (3.27)

b3 A t3/6 (3.28)

The optimization problem is now to minimize

2_ \ 2
.aoul + (a1 _232)q0.+ a,“a

gaoalaz(l—ao/aluz)

ISE = 2

(3.29)



subject to the constraint

Y > bia; + b20t2 + b30l.23 - 2bgojon - b]_Ol.zz . (3.30)

Inspection of (3.29) and (3.30) indicate that the equations contain
both positive and negative terms, and as such, are mnot solvaﬁle by
ordinary geometric programming procedures. In addition, the number of
terms compared to the number of variables, indicates a high degree of
difficulty. To apply geometric programming to the optimization problem
then requires some degree of approximation of the two functions in
order to reduce the degree of difficulty and eliminate the negative
terms. The following Sections contain various ways of approximation

and a comparison of the results achieved by the different me thods.

3.3.1 Approximation of the Constraint by a Straight Line

Consider the plant of Fig. 1 to have the following parameters.

a] = ZCwn ='0.,25 : (3.31)
ay = & % = 0.01 (3,32)
ag = ngY = 0.03 (3.33)

In addition, it is desired to make the output c(t) have the value 0.5

at time T = 0.25 seconds. Scaling the time axis by'a factor of 10,

and substituting the above values into the constraint equation, (3.30),

gives:

Y = 1.15625 = 3.7760; + 3.307ay + 2.6040p3 - 5.208aqap - 3.7760,2
(3.34)

A plot of this equation is shown in Fig. 2.  Since a large portion of

the curve is néarly linear a simple method of approximating the con-

straint is by a straight line of the form

Cjog + Crap = 1 (3.35)

25



Notes

1 Constraint Condition
e{t)y=.5at t=.25

2
37760 +3.307(!2-0-2.6040(:23—5.208a1a2—3.776a2 =1,15625

) 1 1

0.0

2 3 VR \6 7

Figure 2 Constraint Equation

o,

a7



To determine the values of the parameters c; and c,, a technique that

matches (3.34) and (3.35) at one point plus equatihg their slopes is

used.
(1) at the point ay = 0
' 1
a; = —= .3062 (3.36)
¢1
Therefore, cq é-%— = 3.2669 (3.37)
1

(2) at the point d2= 0, dl“ 0.3062 the slope of (3.34) is

do.
ddi T T 3,307 - ?ZZS§<.3062> = -2.2052 (3.38)
and from (3.35)
do, ¢
BT e (3.39)
From (3.37), (3.38), and (3.39)
¢, = 1.4815 (3.40)

Therefore the original constraint equation has been approximated by the

straight line,
3.22690a7 + 1.48150, = 1 (3.41)

A plot of this function and Equation (3.34) are shown in Fig. 3.

The optimization problem is now to minimize (3.29) subject to
the constraint of (3.41). Inspection of the equations indicate that
only the denominator of (3.29) contains a negative coefficient (since,
from (3.31) and (3.32), alz'> 2a,) and, as such, the expression is not

a posynomial. However, for o small,

% ~1 %
_ a
(1 0L10L2) vl G109 (3.42)
and - a a. +(a.2=2a,)o_ + a,2o o
1 1 2 2 Y2
ISE & -2 “927 %0 o

(1 +

20, 0102 alag) (3.43)
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=== actual constraint

cpprox. of constraint

optimum
(.0731,.5124}

0.0

t t : : + : >
0 2 3 4 5 6 7 a,
v \
Figure 3 Linear Approximation of Constraint
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Both (3.43) and (3.41) are posynomials, containing a total of
eight terms. Thus,
N =38 (3.44)
and, since there are three primal variables,
m= 3 (3.45)
From (1.22)

degree of difficulty = Np -m-1=4 (3.46)

which indicates that a unique solution would be difficult to obtain by

geometric programming. To overcome this, the number of terms in Equat-

29

ion (3.43) can be reduced to ultimately yield a zero degree of difficulty

problem. Since (3.41) contains two terms, this requires (3.43) to be
condensed to a total of two terms also.

Take as a nominal starting point
a1 = .1531, ap = .3375 (3.47)

which lies at the approximate mid-point of (3.41). The initial value

o s E;, is chosen as that value which will minimize (3.43). That is,

2 2 2
© 3ISE % 2 1,1, 7% 8
=1+ Y (= —) + = ( : + == =0 3.48
da, a1as 2a02d1 ajos 20 20q00 Zaoal) ( )
Solving (3.48) gives )
2., 2 )
a,%a,%0,
a = (3.49)

a; + a2 - 2ap

Substituting, (3.31), (3.32), and (3.47) into (3.49) yields

a = 0.0031 : (3.50)

Condensation of the ISE into two terms is done by the method

outlined in Section 2.1 .



Letting,
¢1

then for

and
3¢1

Boco

3,
daaq

a¢
3@2

Now

and,

b1

Substituting (3.52), (3.53), and (3.57) through (3.59) into (3.60) gives

as an approximation to (3.51), the single term expression

$1

88'

~v 1. 2440(

)

1+ —>
0102
10031, & = .1531, O
1+ —>=1.609
ajar
=L 19,3531
A(li OqCQo
= - —2— = -.3919
ui alzdz
EO
= - —— = -,1778
Obi O!.10F.22
— 3¢1 -1
a - °* 1 = .0566
o} Bao
_ ad’l |
a1 531— « ¢ = -.0566
— 34’1 — -1
o ErTy + 97 = -.0566
FLCRybo (1 b2
o a1 oo

.0566

.3375

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

(3.

51)

52)

53)

54)

55)

56)

57)

58)

59)

60)

61)
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Similarily, letting

- . ,
a o, (a1 .2g2)ao + a,“a,

92 & 20, 0102 (3.62)
then, by rearranging terms
(a,2-2a,) a,?
_ 1 91 TE% "2 .
bp = Za, a1+ o ) + 2u0a1 (3.63)
If a12—2a2
kAl+—— (3.64)
Gl
then _ a,>-2a,
k=1+— = 1,2776 (3.65)
01
and 2
3k a;°-2a
o = - —— = =1.8131 (3.66)
aaf = 2
a4 a
_— 8k ¢t
by = m 3a, ki o -.2173 (3.67)
Hence,
- %1y .
k¥ k ()0 = .8497a,7-2173 (3.68)
G1
Now from (3.63), .
0o = 424907 21730571 4+ .oooos%‘lul'l (3.69)
and since,
ISE = ¢1'¢2 (3.70)

therefore,

ISE & .5286&0'0566&;?-2739a2fl~0566 +. .000062a0j.9434&1—1.0566d2—.0566
(3.71)

Eq. (3.71) is an approximation of (3.43) in which the number of terms

has been reduced to two. The optimization problem is now:

Minimize

ISE % .5286u0.oseédl-.z739d2—1.0566 + .ooooezao'-9“3“d1'1'0556d2’~°566

(3.72)



subject to
3.266901 + 1.4815a, <1 (3.73)

Applying geometric programming to the above problem results
in the formulation of the dual problem

Maximize

.5286, 87 . 000062, 85 ,3.2669,83,1.4815, 8 § g+
b(s) = (258601 (00006202 3:2880) 03 LRy S (s 510) VTN (3.74)

subject to the normality and orthogonality conditions given by (1.11)

and (1.12)
Therefore
§; + 8,=1 (3.75)
056681 ~ .943465 = 0 (3.76)
-.273987 - 1.056685 + 63 = 0 (3.77)
-1.056687 - .05668, + 6y = 0 (3.78)
Solution of Equation (3.75) through (3.78) results in
§1%* = 0.9434 (3.79)
8§o% = 0.0566 (3.80)
§3% = 0.3174 (3.81)
Sy* =1 (3.82)
and substitution of these values into.(3.74). gives . |
P(s*) = 1.7471 ‘ (3.83)

From (l.14) the maximum of the dual function is equal to the minimum of
the primal objective function

Hence
min ISE = max P(6*) = 1.7471 (3.84)

By Equations (1.17) and (1.18) the primal variables that give this
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result are determined from
1) 0.5286ao-°566u1'-2739a2-1-0566 = §1*Y(8*) = 1.6483 (3.85)

(2) 0.0000620, =+ 9434 71:0566,=-0566 = g,%y(s%) = 0.0989 (3.86)

(3) 3.2669a; = S3%/(83% + §,%) = 0.2409 (3.87)

(4) 1.48150,

Sy*/(83* + 8,%)

0.7591 (3.88)

The values of a s 01, and o, that simultaneously satisfy (3.85) through

(3.88) are
ao* = 0.0078 (3.89)
ay* = 0.0737 (3.90)
ap* = 0.5124 (3.91)

From Equations (3.9), (3.10), and (3.11), the system parameters are

given as

Otl* - 3.2
K & ——————= 2,12 (3.92)
C 33
a3Kc
T = = = 8.17 (3.93)
(o)
% -
I M R (3.94)
d a3Kc * :

A plot of the output response of the system for a umit step
displacement input is shown in Fig. 4. From the plot it can be seen
that the constraining condition has been met since the output has an
épproximate value of 0.5 at a scaled time of t = 2.5 seconds. Addition-
ally, a measure of the largest error between input and output during

the transient state is called overshoot and can be defined by

_ _Maximum overshoot
Per cent overshoot = Tinal desired value x 100 (3.95)




.64

overshoot

unit step input

—— —
+ ' 4 — + + : +
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 t-time

Figure 4 Output Response— Linear Consiraint @



35

From Fig. 4

Per cent overshoot = %L%% x 100 = 15% (3.96)

The settling time can be defined as the time required for the response
to decrease to and stay within a specified percentage, say 5 per cent

of its final value. From Fig. 4
TS A settling time = 2.7 seconds (3.97)

Finally a measure of the degree of conformity of the approiimations of
(3.72) and (3.73) to the actual value of the integral square error and
constraint can be obtained by comparing a computer calculated value of
ISE = 2.0479 with the value of 1.7471 calculated using geometric pro-

gramming. From the above, it can be seen that the methods and proced-
ures utilized can produce valid results with a minimum of computational

complexity.

3.3.2 Approximation of the Constraint by a Curved and Straight Line

Although the optimized value of the ISE obtained by making
the approximations of Section 3.3.1 is close to the actual value calcu-
lated with no approximations, it is apparent that the agreement between
the two can be improved. Furthermore it is noted, from Fig. 3, that
while the straight line given by (3.41) generally follows. the original
constraint, there are regions of large deviation. An enhancement in
this approximation can be obtained if Equation (3.41) is replaced by
two curves - a straight line for that portion of the curve that appears
to be fairly linear (a; > 0.16) and a curved line for the non-linear
portion of the constraint (o < 0.16).

With values previously given, from Equations (3.31), (3.32),

and (3.33) the constraint equation is
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1.15625 = 3.776a; + 3.307a, + 2.604a,3 - 5.208a10, — 3.77605%  (3.98)

For the region a; < 0.16, (3.98) can be approximated by an equation of
the form
clop + cpup !t =1 (3.99)
A method that matches (3.98) and (3.99) at two different points, plus
making their slopes equal at one of the points can be utilized to deter-
mine values for c¢; , c», and 0.
(1) Substituting a; = 0 into (3.98) and solving for o, yields
ap, = .5800 | (3.100)
(2) Similarly at the point dl = 0.16
as = .3998 ’ (3.101)
(3) The slope of (3.98) is obtained by taking the.derivative’of:
a5 with respect to aj.
da, 5.208a, - 3.776

Therefore vl . : (3.102)
1 3.307 + 7.8la,2 - 5.208a; - 7.55209

At oy = 0.16, ap = 0.3998,

qu

5&; = - 2.4090 (3.103)

Now the slope of (3.99) is

Yo . .CL .
Z_ . L (3.104)
co(1 + o)ay

30L1

and substitution of the points (0.0, 0.58) and (0.16, 0.3998) into (3.99)

and equating (3.103) to (3.104) gives the following

¢y (.58) 110 = 1 (3.105)
c1(.16) + c5(.3998) 10 = 1 © (3.106)
C1

-— = -2.4090 (3.107)

cpr (L + 0)(.3998)°
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which can be solved to yield

c; = 5.0785 (3.108)
¢y = 11.6031 (3.109)
¢ = 3.5 (3.110)

Thus the original constraint can be partially approximated by the equation
5.0785a; + 11.63lay"**> =1 (3.111)

A plot of (3.111) and (3.98) is shown in Fié. 5. From this, it can be
seen that there is good agreement between the two equations for the
region o] < .16 but for a; > .16, the approximafion is no longer valid.
However, in this region, the original constraint appeafs to be almost

linear, and it can be approximated by a straight .line of the form
c3oy + cyop = 1 (3.112)

Choosing two points on the original constraint, say (0.16, 0.3998) and

(0.306, 0) and substituting into (3.112) gives

c3 = 3.2680 (3.113)

cy = 1.1934 (3.114)

Thus, the additional approximation of the constraint curve is

3.26800; + 1.1934ay = 1 (3.115)

for the region aj; > 0.16. A plot of both approximations plus the ori-
ginal constraint curve is shown in Fig. 6. It is apparent that the
agreement is good.

The optimization problem is now given by:
o a, + (a.2-2a )o_ + a_2o
1 1 2 2
Minimize ISE = — —2 (3.116)
_ %
20,0061(12(1 0L10t2)




~ — = actual constraint

opprox. of constraint

o,
54
A4
RO o
2 T S~o
45
5.0785¢¢) +11.60310¢5 =1
JT
[ 1
1 i
0.0 .2 .3
Figure 5

Partial

Approximation of Constraint

8¢



4+

.3

)

~== gctual constraint

. approx. of constraint

nominal
(.2350,..2000)

2
5.078501+11.6031 oz;"'5=1 intermediate :
A e e e e e e e e i e e e m oo (L1600, .3998) _ . . . . .. -
optimum
(.1201, .4705)
Jt .
3.26B001+1,1934 g =1
: ; = : ' : . — >
0.0 1 2 3 .4 5 \é 7 o,
\
Figure 6

Two Line Approximation of Constraint

6¢



4y

Subject to :
5.0785a; + 11.6031ap"5 <1 - - (3.117)

and 3.2680a; + 1.1934ap < 1 | (3.118)

To facilitate a solution to this problem it is necessary to make the

same type approximations and condensation of (3.116) as used in Section

. 3.3.1. In addition, since there are two constraint equations involved,

computational complexity can be avqided if the problem is solved in a
piecewise fashion. That is, if each constraiﬁt is considered individ-
ually it is possible to determine if only one is valid and at the.saﬁe
time, the degree of difficulty associated with the problem will remain .
low. |

First consider (3.118) to be the effective constraint and

take as initial conditiomns, the point_aj = 0.235, ap = 0.2, In a

manner similar to that of Section 3.3.1, (3.116) can be approximated by

the two term expression

{

ISE & .5535ao.036401-.189602—1.036k + .000059ao‘-9635a1‘1-035“a2‘-°36”
(3.119)
Now consider a bound on ) that is a, 2 a. Thus, the optimization pro-

blem is to minimize (3.119) subject to (3.118) and
aa l<1 (3.120)

Applying the concept of duality to the problem results in the
formation of the alternate problem of maximizing the dual 6bjective
function subject to the constraints of normality and orthogonality.

This is given as

.5535
83

65

. .2680 1.19 -+
Max. 9(8) = ( 1 002259)62(3.56 )03 5 34)6u(3§)65(53+5u)63 Suss

©(3.121)



subject to

§; + §o = 1
.036451 - .963652 =0
-.18968; - 1.036468,+83 - 65 = 0

-1.03648; - .03648, + 8, = O

(3.122)
(3.123)
(3.124)

(3.125)

Since (3.122) through (3.125) represent a set of four linear equations
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in five unknowns, there is no unique solution. However, solving in terms

of the variable §3 yields

§1% = .9636

8% .= .0364

§ak = 8%

su% =1

5% = 83k — .2204

Substituting into (3.121) now gives

.5535, <9636 000059, -036% 3.2680, § 3*

*) = (——= flihloo s
V™) = Coe3g)  Coses Cogx )
§ 2 %+1 §1%—.2204 8
(8 3%+1) 3 Qg;;:éiiazﬁ 3 (8 3%-.2204) 3
Hence
V(%) = .5415(3.§2§0)63 363*._"‘220l+(63*+1)63*+1

(3.126)

(3.127)

(3.128) "

(3.129)

(3.130)

*—,2204

(3.131)

(3.132)

It has been shown (Duffin, Peterson, Zener, 1967) that the functions

P(8) and &n Y(8§) have the same maximizing points.

Consequently the

maximum value of (3.132) can be obtained by taking the natural logari-

thm of both sides of the equation, taking the derivative with respect

to §3*% and then equating to zero. This gives
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gn $(6%) = =6134+§,*[4n 3.2680-2n83%] + (53%-.2204)%n a + (83%+1)4n(83*+1)

(3.133)
and
‘ 8§ % .8 o%+1
An_P(S*) _ _ 3 3 i
38 5% 2n 3.2680 - 2nd3* 5% + 2n a + n(S3*+1) + (g;;;iﬁ = 0
(3.134)
Therefore
2n 3.2680a = n[83*/(§3%+1)] (3.135)
and 53*
3.2680a = W (3.136)
the
2
3%ny _ _ 1 + 1 . 1 <0 for 83%* >0

28 432 §3% T SoRFL.  O4%(6 3%41)

Equation (3.136) indicates the conditions for a maximum value of the

dual objective function. In addition,' from Equation (1.18) the follow-

ing holds
53*
3.268007 = '63_*4'—]? (3.137)
and -1
aa; =1 - (3.138)
Substituting a = o; into (3.137) yields
53*
3.2680a = 7557 (3.139)

which is identical to that condition necessary for a maximum of the dual
function as shown in Equation (3.136). This implies that the optimum
solution lies on the line o =.a. Consequently, the region for o; > a
can be disregarded in the search for a global optimum. That is, if -

a = 0.16, then o1* has a value of 0.16 or less and the constraint given

by
3.26800, + 1.1934a, =1



43

should no longer be considered applicable since the optimum lies in the
region a; < 0.16. The problem now consists of minimizing (3.116) subject
to the single constraint given by (3.117).

Taking a = 0.16 and substituting into (3.136) yields

§5* = 1.0960 (3.140)
Therefore, from (3.132)
W®) = .5415(3:2880)1.0960(,16) - 8756 (2.0960)2+ 0960 = 1.6997  (3.141)

Equation (3.141) gives a sub-optimal value to the problem that is
attainable with the constraints imposed by (3.117) and (3.120). Under

these conditions the following also holds true:

.5535ao*-°36”a1*f-1896a2*f1-°36“ = §1%P(6%) = 1.6375 (3.142)
.oooos9ao*--9636d1*-1-036ﬁa2*f-°36“ = 5,%P(8%) = 0619 (3.143)
3.2680a,% = §3%/(83% + §,%) = .5229 (3.144)
1.19340p% = 8u%/(53% + §,%) = 4771 (3.145)
16071 =1 (3.146)

A solution to the above set of equations gives

o * =.0.0053 | (3.147)
% =.0.16 (3.148)
a® = 0.3998 (3.149)

With these values,(3.116) is re-condensed in a manner similar to before

to give

ISE % .5649&60768a1_'2867a2‘1'0768 + .oooossao'-9232a1-1°0768a2-f0768
(3.150)

which is now to be minimized subject to the constraint

5.07850; + 11.6031ay**5 < 1 (3.151)
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Applying the concept of duality results in maximizing

5y = (.5649) 1 000066)62(5 0;85)63(11 603184 (5 1,y 0308 (3.152)
subject to
§, 4 65 = 1 (3.153)
.076887 - .923285 = 0 (3.154)
—.286761 - 1°076852,+ §3 =0 (3.155)
~1.076881 ~ .07685, + 43585 = 0 (3.156)
Equations (3.153) through (3.156) can be solved uniquely to give
§1' = 0.9232 (3.157)
'62' = 0.0768 | (3.158)
8§3' = 0.3474 (3.159)
§,' = 0.2222 (3.160)

Therefore,

bty = (2849 gg‘;g) 9232(_090_0_6£) 0768(5__0_7_32) 3u7u(11_6_03_l_) .2222( 5696) + 5696

]

1.6397 (3.161)

which is the optimum value of the integral square error. From (1.17)
and (1.18) the value of the system parameters that give this optimum

are determined from

.56490_+0768q,7-28674,71:0768 = §,"y(s") = 1.5138 (3.162)
.000066&0"9232a1“1'0768d2"0768 = 5,"9(8") = .1259 (3.163)
5.0785a; = 83" /(83" + &,") = .6099- (3.164)

11.6031a,"%+% = 64" /(83" + 84') = .3901 (3.165)
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which yield

a ' = .0035 (3.166)
a;' = 31201 (3.167)
a' = .4705 (3.168)

Substitution of (3.166), (3.167) and (3.168) into (3.9), (3.10) and

(3.11) gives the following optimum controller parameters

3.67 (3.169)

K =

C
T; < 31.46 (3.170)
Tq = 2,00 (3.171)

Fig. 7 is a plot of the output response of the system with the above

controller parameters. From the plot it is seen that

.06
1.00

Per cent overshoot x 100 = 6%

and
1.15 seconds

Lo
I

It is also evident that the constraint condition (e(t) = .5 at t = 2.5)
is met. The computer calculated value of the integral square error is
1.6612 which compares favorably with the value of 1.6397 determined by
geometric programming. This indicates that the method of representing
the constraint equation by two less complex expressions and condensing
the objective function into a form convenient for geometric programming

can.yield very good results.

3.3.3 Approximation of the Constraint by the Method of Duffin,

Peterson and Zener

The Duffin, et al, approximation procedure of Section 2.1 is
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very powerful as if allows the problems of non-posynomial terms and
high degrees of difficulty to be overcome. The method does have a
drawback as the approximation is often a very poor representation of

a function throughout its entire domain. However, if the condensation
can be made in a region that is close to the optimum, then it is pos-—.

sible to obtain valid results.

By re-arranging (3.18) an expression for the error can be
written as

e(t) = 1+ ajt + (a,+a,2)t2/2 + (20705 +aja2)t3/6 -

[01.2t‘+ (a1+ala2)t2/2 + (0L0+a1a1+a2q2+a23)t3/6 (3.172)
Since |
cgt) =1 - e(t) (3.173)
Therefore
-c(t) = a1t + (a2+a22)t2/2 + (207109 +a1a22)t3/6 -
[a2t + ((11+8.1C12)t2/2 + (ao+a1d,1+a2a2+a23)t3/6 (3.174)
Let
g1 & o t3/6 + ) (t2/2+a;t3/6) + oy (tta;t?/2+a,t3/6) + ay%t3/6
N (3.175)
and '
g, b c(t) + ajt + apt2/2 + 2a70,t3/6 + 0,2 (t2/2+a,t3/6) (3.176)
For the same plant parameters and constraint condition, i.e. e(t) = .5

at t = 2.5 as in Section 3.3.1, Equations (3.175) and (3.176) give:

g1 2.604a_ + 3.77601 + 3.3070p + 2.604052 (3.177)

8> 1.156 + 5.208070, + 3.7760,2 (3.178)

and for the constraint condition

g8, = g (3.179)



then

2.604a  + 3,7760; + 3.307ay + 2.604ay2 = 1.156 + 5.208aj0p + 3.7760,2
(3.180)

To determine a feasible point around which to approximate the constraint

condition consider the following. From (3.174), the slope of the out-

put response is

- % = a; + (a2+a22)t + (20!.10!.2 +a1a22)t2/2 -
[ap + (a1t+ajon)t + (a0+a1a1+a2a2+u23)t2/2] (3.181)
at t = 0,
_ %5 = a; - ap (3.182)
Since the desired output response has a slope of 0.2, i.e. Ac/At = .5/2.5,

for small values of t, then substituting this into Equation (3.182) gives

ap = .2 +a; = .2+ .25 = .45 (3.183)
Now assume that a, = 0 and since g; = g,

3.7760; + 3.307(.45) + 2.604(.45)° = 1.156 + 5.208(.45)a; + 3.776(.45)%
(3.184)

from which
oy = 0.137 (3.185)

It has been shown by Equation (3.44) that a nominal E; can be obtained

once values of dl and dz are known. From (3.183) and (3.185) then

A
242
a,“oac0q

E; = |- = .00393 (3.186)
a1 + a;2 - 23,

Substituting (3.186) and (3.183) into (3.184) now gives

) = .1297 . (3.187)
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Using (3.183), (3.186) and (3.187) a condensation of the ISE,
Equation (3.14), can be made in a manner similar to that previously

calculated. This gives:

1SE % .50760!.0"06330!.1—'3108a2_1’0633 + .0000630L0—-93670‘1—1'-06330,'2_—-0633

(3.188)
From (3.177) let
g, = Ky + 2.6040,3 (3.189)
where
Ky A 2.6040L0 + 3.77607 + 3.3070y (3.190)

Now condense K, into a single posynomial term around E;, E}, Eé by the
method of Duffin:

Ky = 2.6040_ + 3.776a) + 3.307a, = 1.9881 (3.191)

and
8K1 ‘
L1 = 2.604 . (3.192)
20 Cli
o
K .
—L_ =3.776 (3.193)
dag | oq
. BKl
— 1 _ = 3.307 (3.194)
3&27 a4
From which 5K
b =ao —_ .K;~!=.0051 (3.195)
o 0 o0 Ty
o
9K
—_ 1 —
= — . =1 =
b1 oy Say T Ky 2463 (3.196)
K
= 1 me1
b2 = 02 3062 Ei Kl. .7485 _ (3.197)

and

. Q. o Qo .
Ky & Kl(:g)bo(:l)bl(:g)bz = 6.1484(10.0051&1.2463&2.7'+85 (3.198)

(63 o]
o %1 2
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Therefore
8, % 6.1484ao-0051a1-2“63a2-7“85 + 2.604a,3 (3.199)

In a similar fashion g; can be condensed to give
g, & 5.6783, 13660, 8289 (3.200)
Substituting (3.199) and (3.200) into (3.179),
6‘1484d0.0051d1.2463d2-7485 +2,604053= 5.6783d1-1366a2-8283_3 202

which can be re-written as

6.14840 +0091a, 24634, 7485 + 2.6040,°

= 1 (3.202)
5.6783&1'1366a2'8289

Therefore
1.08280t0'00510t1'1097(12-'075'* + .4586&1_'13660&2‘;761 =1 (3.203)
To satisfy the requirements of geometric programming this is written as
.an inequality constraint and the problem in an approximated form is:
Minimize
ISE = .5076&0‘0638u1_‘3208a2_1‘0633 + .000063u0'9367a1_1‘0633u2_'0633
(3.204)

subject to

1.08280_0051q, 10970, 0754 4 458607 "13660,2°1761 < 1 (3.205)

A plot of the approximate form of the constraint equation is
shown in Fig. 8. It can be seen that over a small region the approxima-
tion holds to the original constraint but diverges rapidly beyond the
region of interest.

Solving (3.204) and (3.205) in the standard geometric pro-

gramming manner gives

Max P(8%) min ISE = 1.66226 (3.206)

and

Q
*
]

0.0033 (3.207)
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0.1129 ‘ (3.208)

Q

—
*

]

*
1

= 0.4793 : (3.209)

from which, by Equations (3.9), (3.10) and (3.11)

K, = 3.43 (3.210)
T = 30.89 (3.211)
Ty = 2.23 (3.212)

A plot of the output response is shown in Fig. 9. It can be
seen that the constraint condition has been met and

Per cent overshoot = i;g%’x.loo = 4% (3.213)

In addition, the response settles right into the 5 per cent limit. The
computer calculated value of the integral square error is 1.6707 which

compares favorablywith the approximate value of 1.6623. It is interest-

ing to note that although the response of Fig. 9 appears better than that

of Section 3.3.2 the value of the performance index is higher (1.66226
‘versus 1.66106).. This ‘is due to the fact that the response of Fig. 9

rises slower than that of Fig. 7 resulting in a slightly larger error.
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IV. GEOMETRIC PROGRAMMING APPLICATION TO A PID CONTROL SYSTEM WITH
TIME DELAY h

4.1 System Definitions and Constraint Derivation

A large number of control systems are characterized by the
fact that the output responds to a transient input only after a given
time interval. Due to the time delay effect, the transfer function of
these systems are no longer quotients of polynomials, but usually con-
tain the term e_T'S where T denotes the time delay or tramsportation

lag. Figure 10 depicts the PID controller system with time delay.

R(s)+<> E(s) €4 c
= 6 () et o () )

w 2

n ¥

G _(s) A plant =
P s2 + 2w s + 2
n n

[op]
(p]
~~
0
N
>

1
A controller = Kc(l + ;T§-+ TdS)

o
1>

time delay

Fig. 10 PID Controller with Time Delay

The over-all system transfer function is

-Ts .
C(s) _ Gc(s)Gp(s)e

R(s)

_ (4.1)
1+ Gc(s)Gp(s)é Ts -

As a result of the numerator exponential, there is a direct lag of T

seconds between input and output. 1In addition, the closed loop



performaﬁce of the system is affected by the delay because of the factor
e_TS in the denominator. For example, the stability of the system is
modified by the presence of this factor.

In any analytical analysis, the transcendental transfer func-
tion has classically been considered by approximating the expomential
by a rational algebraic function, such as the first few terms of the
Maclaurin series. Thus
éTs5 252 733

T
%l—Ts'+'—2%—-'T+ .o (4.2)

Considering only small values of T, this can be further simplified to
eI x - Ts (4.3)

Let the system of Fig. 10 be defined by the following state.

equations.

x;, = c(t) . (4.4)

X, = X, (4.5)

x3 = fedt (4.6) -
Therefore, from Fig. 10

v W sz
n
Xy(s) = > 2 (4.7)
‘ s + 2tw s + w
n- n

or v '

s2%; + Zgwnsxl + wn2X1 = wnsz (4.8)

which can be written as

X + 2;mﬁi1 + wnle = wnzyu (4.9)
Since e(t) = r(t) - x;(t) (4.10)
and for r(t) =1 (4.11)

then x1=1-e (4.12)
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% = 8(t) - &

(4.13)

where §(t) is the impulse function and can be disregarded for t > O.

Therefore
X] = -e

and Equation (4.9) can be re~written as

>

= —wnz(l -e) + Zané + wnzyu
Now ue . -Ts
s) = Ede X Ed(l - Ts)

or,

u(t) = ey~ Téd
But, from Fig. 10

K E(s)
ed(s) = KE(s) + > + KctdE(s)s

which becomes in the time domain

- _£. 2
ed(t) = Kce + T fedt + Kche
and Kce
ed = Kce + —;T-+ Kcrde
i
Therefore, from (4.17)
Kce
Cu(t) = eq ~ T (Kce +—T;+ KCTde)

Substituting (4.18) and (4.21) into (4.15) gives

K
—-“ = - 2 -y A 2 —c
—-e 0 (1-e) + ZCwne + w y[Kce+ T, fedt + KcT

d

Rearranging,

5 (1o 2 ; ) 2
el 0 yKCTdT) + e(ZCwn 0 YKcT+wn~YKch) +

0i o wﬁzchT wnzyK
R . ! .
e(wn w YKC T ) +

< fedt
i .

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

c€ TK ]
Ti - che

(4.22)

(4.23)
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As before, let

a] = 2tw (4.24)
a = w 2 ‘ (4.25)
n
az = w 2y (4.26)
n
and define
c; A wnzch (4.27)
co A wnzYKch (4.28)
2
S YK
cg A ——= (4.29)
i
Substituting into (4.23) gives
E(1-cyT) +-é(ajtcy—cT) + e(aptcy-c3T) + czfedt = wn2 (4.30)

When taking Laplace Transforms of the error the following initial condi-
tions hold

L[&] = sE(s) - e(0') = sE(s) - 1 (4.31)

L[] = s2B(s) - se(07) - &(0") = 82E(s)-s-&(07) (4.32)

s ooty e
where e(0 ) is the initial rate of the error for the system.

However, from (4.13)
-e = il = X9 (4-33)

and from (4.9)

2

X] =%y = wnzyu - chnil -0 %y (4.34)

Integrating gives

-é& = Xy wnzyfudt - chnxl —bmnzfxldt (4.35)

Due to the time delay in the system, there is no output res-
+
ponse to any input for the time period 0 < t < T+0 . Consequently,

x; = 0 and (4.35) can be written as
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- = Xy = wnzyfudt (4.36)

Additionally, since there is no feedback occurring within the system for
this time period
’ K
Cc -
ey = K r(t) + ) fr(t)dt + K T, r(t) (4.37)

For a unit step displacement input

r(t) =1,  r(t) = §(t) (4.38)
and since %i >> T _ \

ey & K_+ K 1 8(t) (4.39)
Now :

u(t) = ed(t—T) X KCTdG(t—T) (4.40)
since

r(t-T) = 0 for 0 < t < T+0

Hence Equation (4.36) becomes

& = % (TH0T) = w 2¥K T, (4.41)
and so (4.32) can be written as
L[] = s2E(s) - s +,wnzchrd (4.42)

Taking the Laplace transform of (4.30) with initial conditions of (4.31)

and (4.42) yields

E(s) [(1-cpT)s2 + (art cy—c1T)s + ap + c3(1 - T/Ti) + c3/s] =

(1-c,T)s + a; + c?T - 1T + ay/s (4.43)
or s?2 + Bls +-Bo
E(s) = - - (4.44)
s3 + aps? + ags + a
where c,
o = m——— (4.45)



a + c1 - ¢ T
al - l - C2T
_ a; + cy = clT
vaz 1 - C2T
g =2
(o] 1 - C2T
27 -
; _‘al + c2 T clT
1= 1 - C2T

(4.46)

(4.47)

(4.48)

(4.49)

In the analysis of Section 3, it was convenient to impose a

constraint upon the output response of the system.

For the system with
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time delay, it is advantageous to consider an alternate constraint - that

of making the initial rate of response of the output to be equal to or

less than a fixed value. That is,

+
%(0°) = ¢y = wnzYKch < constant

From (4.47) clT a + c,

2+ 12 c,T T T1- coT

(o

and from (4.46)
céT a, ¢4

1-+‘1 - CzT 1 - coT T 1 - coT

o

Substituting (4.45) into (4.52) gives

a ¢

1 - c,T T1- coT

3] + uoT -

which when substituted into (4.51) gives

a, + c2,+ a2T

ar + a T + aoTz = = constant

1- C2T

(4.50)

(4.51)

(4.52)

4.53)

(4.54)

From this, it can be seen that the system variables a s 01 , Gp are

constrained.



4.2 Examination of the Performarice Index

The integral square error for the system of Fig. 10 and
Equation (4.44) can be determined from tables (Newton, Gould and Kaiser,

1964) to be

ISE = —=>2

2

o a. + (B.2-28 )a_ + B 20
1 ° .°2 ° (4.55)
2a0a1a2 - 2ao

In the above equation, as Q15 G2 and B; are function of the system

variables Kc’ To» and T, and are thus variables themselves, while Bo is

d

a constant.

However, from Equation (4.49)

a; + CZZT - clT a; - clT ‘ 022T
By = - 1 — = + . (4.56)
- ¢cpT 1 - cT 1 - 3T
and from Equation (4.47)
a. - ¢, T . c
1 1 2
1 - coT %2 =1 C cyT (4.57)
Therefore,
.‘cz(*1.+‘czT)
Bl = 0o + = 0Op = Co (4.58)

(1 - C2T)
In addition, it has been shown in Section 3.3.1, that by differentiating
the expression for the integral square error with respect to R and
equating to zero, then a  can be expressed as a function of the other
variables in the equation. That is

a = aZB " (4.59)
© °V ay + 812 - 28,

Thus it can be seen that the number of independent variables in the
performance index can be reduced to two.
When applying the approximation procedures of Section 2 to an

expression, it is convenient to first plot that expression in order to



determine a feasible regioh over which the approximation can be made.
Fig. 11 is a plotbof Equation (4.55) showing a family of constant cost
(ISE) curves. It is obvious, that there is a region of discontinuity
of the function and that minimization is possible only for those values
of ay beyond the discontinuity.

Consider now a condensation of Equation (4.55) around the
operating point Ei, &; into a single term posynomial by the method of

Section 2.2.  From (4.59), and (4.58), let
$; = a; + B2 - 28, =01 + 0p2 = 2a5cy + cp2 - 28, (4.60)

which can be approximated by

A 2 A
b1 & ¢1(—) 1= 2( 28 (4.61)
o1 Gzz 02
where
91 = a1 + a2 - 2agey + cp? - 28 (4.62)
El
Ay = — (4.63)
$1
32
by = — (4.64)
, 3
2;2C2‘
Az = = '— (4.65)
¢1 »
Thus, (4.59) can be expressed as o -
. i al(l/Z—AI/Z)uz (1-Dy-03/2) (4.66)
where
o = [¢101 AI— 2A2_A3]_1/2 (4.67)

o

Now from (4.55) let
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$2 = 2a0a1&2 - 20,2 (4.68)
Substituting (4.66) into (4.68) yields

by = 2@1&13/2_A1/2u22_A2-A3/2 _ 2@12d11_A1d22—2A2_A3 ' (4.69)

which can be approximated by

: 3/2-04/2 % 2-0As=Ar /2 A % 1-A % 2=-205=A 5 A
5y % By (o) /201122 2=02=03/2 by (L3103 2,2-209=B3y b5 70
o G2 o1 ]
where
zé - 2¢13ﬁ3/2-A1/2322_A2_A3/2-- 2@ l Al 2 =2A0-A3g (4.71)
.2@13&3/2_AI/2552—A2_A3/2
b2 '
2¢12a1—Alaéz—2A2-A3-
Ag =~ - (4.73)
Similarly, let
- ~. 2_ 2_ 2 :
¢3 = a art (ay“=2aycotey st)uo + 8 %0y (4.74)

which becomes,

1/2-81/2,, 1-B5-13/2

= (u1+a22—2a2c2+c22—260)Qldl + B°2a2 (4.75)

Equation (4.75) can be approximated by

-4 —Aom Aa
3 % ¢3(( )3/2 /2 2 2)1 A2 A3/2)A6(( 1,1/2- A1/2( 23 Bo-83/2,87
G2 o] oo
(= 1)1/2 A1/2( 2y 2=y~ A3/2)A8( 1)1/2 A1/2( 2)1 Ap— A3/2)A9( 2810
01 0o o 0 a
(4.76)
where

— (L12-83/25 1-82-83/2

93 = (o1+ay2-2a,catcy?-28 )@ 50255 4.77)

63



= 3/2-—A1/2&' l—Az—A3/2

A = 1 _ 2 -
¢3
o, /202 3-0obs/2
Ay = — 5]
¢3
511/2—A1/2522—A2-A3/2
AS = - — . @1_(—2(22)
b3
— 1/2-01/2— 1-Ay-A3/2
0"]. (12 2
Ag = —— < 9y (e fZBO)
¢3
B 2o
0 2
Ayg = —=

and finally the integral square error. can be approximated by

by
ISE & —
Y oo

To examine this method and the resultant posynomial expression

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

consider several examples. From Fig. 11, take the point Eﬁ = .170,

Eé = .36 which lies on the curve ISE = 1.62.

T = time delay = .1 or 1 scaled
C2 = X2(0+) = initial 'rate = mnzYKch = 0.2
From (4.48)
a2
Bo = if:—zz =.0.0125

Substituting the above values into the derived expressions yields

%1 = .1706

= .9965

>
—
I

>
N
|

= .7597

In -addition, assume

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)
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Ay = -.8441 (4.90)
$; = .0089 (4.91)
Therefore . - : . .
o N .0089a;° 00184, 4256 (4.92)
Similarly,
9, = .0005 (4.93)
Ay = 1,1026 (4.94) -
As = -.1026 (4.95) -
Therefore
& Gl 1.0018 02 l.6642 1.1026 dl. .0035 -az 1.3247 -.1026
92 & [(77¢) 36 (T30 36 (4.96)
= .0204ay1"10424,1-1970 (4.97)
and _
63 = .0008 (4.98)
Ag = .9283 (4.99)
Ay = ,7068 (4.100)
Ag = -.7855 (4.101)
Ag = .0823 (4.102)
Ayg = .0678 (4.103)
: % 1.0018. %2..6624_ .9283. %1 .p018, %2 2.6624_ .7068
$3 % 0008173~ (3¢ ) (179 T3

65

07 o, O _ oy . Oy )
.(c____).0018(73691.6624) -7855((_I76)-0018(_§€)-6624)-0823(_369o0678

.170

= .0164G1'9300a21’3132

(4.104)

(4.105)
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Equation (4.83) gives

. .9300, 1.3132
¢3 .0164@1 a2 ~

ISE % = .8021a;~-17420,--3838 (4.106)

%2 02040,1-10424,1.6970

Now take the pointlal = ,152, Eé = .375 which also lies on the
curve ISE = 1.62, With the same time delay and initial rate of response
as given in Equations (4.84) and (4.85), the ISE can be approximated in

a similar manner to give
ISE = .8939q,7*1957¢,™-2348 (4.107)

The appréximations to the ISE given by Equations (4;107) and
(4.106) are compared to the actual ISE Equation (4.55) in Fig. 12.
It'éan be seen that the choice of an operating point or point of approxi-
mation has a great influence on the shape of the condensed curve. That
is, for a comparatively small shift of the operating point, the resultant
shape and slope of the condensed curve are very different. This is due
to the unique shape of Equation (4.55), making the approximation valid
only over a local region, and indicates that whenever approximations are
to be made, it is important to thoroughly examine the function when

choosing an operating point in order to obtain’feasible results.-

4.3 Optimization Procedure

In general, it has been shown in Section 4.2 that the cost
(ISE) equation for the time delay system can be condensed into a single

term posynomial of the form
ISE % ¢ ay"la,"2 (4.108)

where - :
N, "2 , | (4.109)

Y
I
-e-lle-l
N |w
e|
[

Q
N
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n1

np = (A-8,=83/2) (Ag+hg=285) + (2-Ap-A3/2) (Ag=Ay) + (3-Dp-A3/2)A7HA1g
(4.111)
In addition, Section 4.1 derived a constraint for the system
in the form of Equation (4.54). For small agy, this can be approximated

by the linear equation

T + 0y < Ky | (4.112)
wheré _ a, + c, + a2T

K; A constant = T T (4.113)
or

1/K3(oT+as) < 1 : (4.114)

Equations (4.108) and (4.114) are both posynomials in which
the total number of terms (three) is one greater than the number of
variables (a; and a,). Hence, the degree of difficulty is zero and
a solution by geometric programming is readily accomplished. First

the dual is formed.

T(1/K) 1/K1

WO = @D 2 G

)63(52+83) (4.115)

3

Equation (4.115) is to be maximized subject to the normality and ortho-

gonality conditions of (1.1i) and (1.12), which for this system are:

§, =1 (4.116)
N8y +6, =0 (4.117)
M8y + 83 =0 (4.118)

These have the unique solution

§1% = 1 | (4.119)

62* = —T]l (4.120)

(3/2-01/2) (Ag-Dy) + (1/2-81/2) (Ar+Ag+Ag=2A5) (4.110)
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§3% = -1 (4.121)

which when substituted into (4.115) yields the maximum value of ¥(§),
and simultaneously the minimum value of ISE. At an optimum, the follow-

ing conditions from Equations (1.17) and (1.18) are satisfied:

C%a,M1g,"2 = 5 %P(s*) (4.122)
(T/Ky)ay = 8%/ (8% + §3%) (4.123)
(1/K1)ap = 83%/ (8% + §3%) (4.124)

The optimum value of the parameters aj and o, are then found from
simultaneously satisfying (4.122), (4.123) and (4.124). 1In addition,

from (4.59)

. 0!.1* .
0‘0* = a:zv*Bo - - (4.125)
Vo * + B1° ~ ZBO i

Substitution of uo*, a1*, and a,* into Equations (4.45), (4.46) and
(4.47) will yield solutions for the parameter c¢;, c, and c3 which
then can be used in Equations (4.27), (4.28) and (4.29) to find values
of the controller parameters, Kc’ Ty and T4 which yield the minimum
ISE. |

It is interesting to note that froﬁ Equation (1.10) it is
required that all 61 be equal to or greater than zero for a feasible
solution to the optimization problem. From Equations (4.120) and'

(4.121) this is possible only if

1 = (3/2-81/2) (by=0g)+(1/2-81/2) (285=B7=Dg=Bg) 2 O (4.126)

(1-Dp=A3/2) (285-Dg=Ag)+(2-Dp-A3/2) (by=Dg)=A7(3-Dp=A3/2) = Ay 2 0

(4.127)

Equation (4.126) and (4.127) can be used as a means of determining if
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an approximation around a particular point will yield a feasible

solution.

Consider an example of the optimization procedure. Previously

it has been shown that an approximation of Equation (4.55) around the

point El =

.152, a, =

ISE

N .8939a,”

. 19570!.2_

.375 gives

234

8 (4.128)

For a;, ap, az as givenin Section 3 and T = 1 then

Ky =

V(&) = ¢

a, + ¢, + a.T

61=l

-.19578; + &,

These have the unique solution

r _zczT 2 = 575 (4.129)
and from Equation (4.114) the constraint on the system becomes
1.7391 (a7 + op) < 1. (4.130)
Substituting values from (4.128) and (4.130) into (4.115) gives
8939)61(1 7391)62(1 7391)63(6 +5 )62+63 (4.131)
from which the normality and orthogonality conditions are.
(4.132)
=0 (4.133)
- -.2348571 + 83 =0 (4.134)
1, §8,*% = .1957, §3* = .2348 (4.135)

Substitution of (4.135) into (4.131) gives the maximum of the dual

(equal to the minimum of the primal objective function) as:

8939

1,1.7391

).1957(

Y(8*) = (=

)1

(

.1957

1.7391
.2348

22222y (,1957+.2348) - 1957+.2348 = 1 5261

(4.136)
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At an optimum Equation (4.122), (4.123) and (4.124) hold.

Therefore:

.8939a,7"19574,7 <2348 = g xy(s%) = 1.5261

1.7391aq = 8%/ (8% + 83%) = .4546

1.7391a, = 83*%/(8,% + 8§3%) = .5454
from which

ar* = .2614

ar* = ,3136

and from Equation (4.125)

a_* = 0.0040

(o]

Equations (4.45), (4.46) and (4.47) can be solved to give

¢y = .2017
ey = .202
c3 = .0032

The controller parameters are

K, = cy/ag = 6.73
T, = ci/es = 63.03:
T4 = co/ep = 1.00

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

A pictorial representation of the procedure is shown in Fig.

13. The approximate performance index is shown in relationship to the

constraint equation and it is seen that the point of condensation

El = .152, Eé = .375 does not initially satisfy the constraint condi-

tion. At an optimum, the parameters o) and ap have been shifted to lie

on the constraint curve and there is tangency with the performance
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(.2614, .3136)

-.1957  -.2348
.8939@, o, =1,5261
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Figure 13  Curve Shift Due to Optimization Procedure
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index curve.
A plot of the output response for the system with controller
parameters given by Equations (4.146), and (4.147) and (4.148) is

shown in Fig. 14. Ffom this

Per cent overshoot = 1'33 x 100 =-45% (4.149)
and the settling time is
T_. = 3.0 seconds (4.150)

s

These values indicate a somewhat oscillatory nature for the system that
could be undesirable. To determine why an "optimization'" procedure
yielded these results requires an examination of the approximate and
actual forms of the performance index.

As seen from Fig. 13, thé optimization procedure has resulted
in a shift of the curve of Equation (4.128) to a new position tangent
with the constraint equation at the point o1* = .2614, oo¥* = ,3136.

At this new position, the value of (4.128) is found from (4.136) to be
1.5261. The system response, Fig. 14, has been determined from con-
troller parameter values that satisfy (4.136). Héwever, when these
values are substituted in the actual form of the performance index its
value is :
a ko * + (B *%-28 )a * + B, 2ay*

2
ISE = —> £ 1.6772 (4.151)
2

20 %g-ko.k — *
a *aj*a, Zao

This'is higher than the value (ISE = 1.6200) at the initial conditioms,
(E& = .152, Eé = .375) and since the response of Fig. 14 is derived from
equations that contain no approximations, explains why the output res-
ponse is non-optimum. In addition from Fig. 15 it is evident that at

an "optimum" (i.e. oj* = .2614, ap* = .3136), the agreement between the
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approximate and actual forms of the integral square error is not good.
This is evident by the dissimilar shapes of the curves and the fact that
only the point a;*, ap,* is common to both.

As previously seen, an approximation of (4.55) at the point

El,= .170, Eé = .36 gives
ISE % .8021a;”*1742q,7+3838 (4.152)

Minimization of this equation, subject to the constraint condition of

Equation (4,130) is as follows:

We) = € 8021)61(1 7321)52(1 7391)53(52+53)52+53 (46.153)
8§ =1 | (4.154)
~1 17428, + 85 = 0 (4.155)
-.38388; + §5.= 0 (4.156)

Equations (4.154), (4.155) and (4.156) have the unique solution
8% =1, So% = 1742, §a* = .3838 (4.157)

Substitution of (4.157) into (4.153) gives the maximum of the dual and

minimum of (4.152) to be

.8021 1.7391, .1745 ,1.7391, . 3838
e N T ET L (

P(8%) = ( ) (703 .5580)°5580 = 71,5445 (4.158)

In addition

80210, 17024,7+ 3838 = g %y (8%) = 1.5445 (4.159)
1.7391a; = 6,%/(8,% + S3%) = ,3122 (4.160)
1.73910p = 83%/(8,% + §3%) = .6878 (4.161)

from which
oa1* = .1795 (4.162)



ap* = ,3955 (4.163)

and from Equation (4.125)
0g* = .0048 (4.164)

Using these values the controller parameters are found to be

R_ = 4.58 (4.165)
T, = 36.16 (4.166)
T, = 1.46 (4.167)

Substitution of (4.162), (4.163) and (4.164) into Equation (4.55) gives

the actual value of the performance index to be

a %o % + (B,%2-28 )a *+ B 2q *
1 1
ISE = —> : : o 0 9 = 1.5530 (4.167)
20 *al*az* - 20 %2 '
o o

The agreement between Eqn. (4.158) and (4.167) is good, indicating that
the output response with parameter values from (4.165) through (4.167)
should be better than that of Fig. 14. Fig. 16 confirms that this is
so. It is seen that |

7

Per cent overshoot = I*%a x 100 = 27% - (4.168)

and ’
T = 2.0 seconds (4.169)

s
In addition Fig. 17 shows a plot of Equations (4.158) and (4.167). The
shape of the curves confirms the close agreement between the two

expressions at the point of interest.
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V. SUMMARY AND CONCLUSIONS

A problem expressed as
minimize go(t)
subject to gk(t) S-Gk k=1, ... (5.1)
where the g's are posynomials, can be expressed as a geometric program-—
ming problem. It is possible to solve (5.1) by a direct search in the
t variables. However, the presence of nonlinear constraints poses par-
ticular difficulties, and it has been demonstrated that it is more feas-
ible to maximinze a dual function w(E) where the constraints that 6 must
satisfy are linear. A knowledge of the maximizing vector E-proVides a
complete solution to the problem.

Generally, engineering problems like (5.1) contain more terms
than variables. This constitutes a high degree of difficulty and an’
explicit solution is not readily available unless access to extensive
computer programs (Zener, 1971; Avriel, Dembo, and Passy, 1975) is pos-
sible. In addition, not all terms in the equation are likely to be pos-
itive. These difficulties can be overcome by using techniques of approk—
imation, in which non-posynomial equations containing many terms can be
condensed to positive expressions that contain fewer terms. Succeésively
applying this technique can eventually lead to a zero degree of diffi-
culty problem. An approximation technique was developed from the arith-
metic-geometric relationships that required no differentiation of terms
making it particularly easy to apply to complicated expressionms.

Although the techniques of approximation can be utilized to
obtain problems that are readily solvablé the method must be applied

judiciously. An examination of the intended expression should be made
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in order that a feasible operating point be chosen around which to con-<
dense the equation. Failure to do this could result in an optimization
of the approximate equation but a final value of the actual expression’
that is greater than that for the original operating point.

Formulation of a control system problem requires the choice
of an objective function, such as the integfal square error, plus the
imposition of constraints upon’:the system performance. For a second
order system with proportional-integral-derivative controller, the con-
straints can be developed to not only yield a physically plausible sys-
tem, but also in a manner to make a'solution by geometric programming
more viable. That is for a given objective function, a choice of con-
straints is made that mathematically restricts the system variables to
feasible values, and at the same time lends itself to the geometric
programming concepts.

Once a problem has been formulated and expressed in a suitable
fashion, a solution by geometric programming is easily accomplished,
usually amounting to solving a set of linear equations. The minimum
value of the objective function is obtained without first determining
parameter values for achieving this minimum. However, the power of the
method becomes apparent when it is seen that the optimum is approached
in a single computational step. This, together with the ease of the
mathematical operations involved, make geometric programming an attrac-

tive optimization technique.
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