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Abstract 

In recent years, tremendous growth has occurred in the use of cellular mobile communica­

tions around the world. This thesis studies Quality of Service (QoS) provisioning in cellular 

mobile networks. In order to guarantee the handoff dropping probability of mobile users in cellu­

lar networks, call admission control and bandwidth reservation schemes are proposed based on 

more realistic assumptions than those made in existing proposals. A mobility prediction scheme is 

derived from data compression techniques that are both theoretically optimal and good in prac­

tice. In order to utilize resources more efficiently, the proposed scheme predicts not only which 

cell the mobile will handoff to but also when the handoff will occur. Based on the mobility predic­

tion, bandwidth is reserved to guarantee a given target handoff dropping probability. Simulation 

results show that the proposed schemes meet our design goals and outperform the static reserva­

tion scheme. 

We also develop a framework of combining QoS provisioning and mobility management 

in cellular mobile networks. The key component of this framework is a common mobility predic­

tion scheme, which can be used in both locating/paging mobiles and in making admission deci­

sions. Novel QoS provisioning and mobility management schemes are proposed in this 

framework. The performance of the proposed schemes is evaluated using simulations. 

Adaptive multimedia applications that can operate over a wide range of available band-

widths are expected to be used in future cellular mobile networks. We present a QoS provisioning 

scheme in adaptive multimedia cellular networks via reinforcement learning. The proposed 

scheme does not require explicit state transition probabilities, and therefore, the underlying 

assumptions of this scheme are more realistic than those in previous schemes. Simulation results 

ii 



demonstrate the superior performance of the proposed scheme over some of the existing methods. 

Finally, call admission control for cellular-to-Internet protocol (IP) internetworking is 

studied. In order to provide QoS to the Internet and avoid scalability problems, several recent 

papers propose endpoint measurement-based admission control (EMAC) scheme. Although 

EMAC has many desirable features in the wireline networks as shown in previous work, in this 

thesis, we show that several distinct characteristics in cellular mobile networks make EMAC dif­

ficult to implement. A novel mobile-EMAC (M-EMAC) scheme for cellular-to-IP internetwork­

ing is proposed. Simulation results show that M-EMAC outperforms EMAC in cellular mobile 

networks. 
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Chapter I Introduction 1 

Chapter 1 Introduction 

1.1 QoS Provisioning in Cellular Mobile Networks 

In recent years, there has been significant growth in the use of cellular mobile telephony 

for communications around the world. With the growing demand for integrated services support­

ing data traffic such as the world wide web (WWW) and e-mail as well as multimedia such as 

video and audio in cellular mobile networks, quality of service (QoS) provisioning is becoming 

more and more important. Due to the intrinsic characteristics of cellular mobile networks, such as 

the scarcity of wireless bandwidth, location-dependent and time-varying wireless links and user 

mobility, QoS provisioning in cellular mobile networks is more challenging than in wireline 

networks. 

To utilize the radio spectrum efficiently, a cellular architecture is used in wireless mobile 

networks. The geographical coverage area is partitioned into cells, each served by a base station. 

Since a mobile user may change cells a number of times during the lifetime of a call, availability 

of wireless network resources at a call's setup time does not necessarily guarantee that wireless 

network resources are available throughout the lifetime of a call. Due to handoff and mobility, 

overload conditions can occur if the communication needs of a number of mobile terminals 

populating a small area exceed the total capacity of all base stations within their reach. Thus, 

users may experience performance degradations due to mobile handoffs. This problem will be 

magnified in future micro/picro-cellular networks, where handoff events may occur at a much 

higher rate compared to today's macro-cellular systems [63]. Call admission control (CAC) and 

bandwidth reservation are required to address this problem. Since forced call terminations, due to 

handoff blocking, are generally more objectionable than new call blocking, we consider Phd, the 
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probability of handoff dropping, as a call-level QoS metric provisioned by CAC for non-

adaptive traffic, which cannot change bandwidth during the lifetime of a call. As it is imprac­

tical to completely eliminate handoff call dropping, the best option is to keep Phd below a 

target level. Moreover, maximizing resource utilization while keeping Pnb, the probability of 

new call blocking, below a target value is another critical factor for evaluating CAC 

algorithms. 

Another important issue in cellular networks is mobility management (MM). Since 

mobile users are free to move within the area covered by the network, the network needs to 

first determine a particular user's location whenever there is a need to establish communica­

tion with that user. The problem of mobility management is usually divided into two parts: 

paging and location updating. Paging is the network operation to find the exact location of a 

called mobile user, whereas the location update process keeps track of each mobile's general 

location so as to reduce both paging cost and delay. Recent research shows that per-user 

mobility information plays an important role in designing efficient MM algorithms. Since 

per-user mobility information is very important for QoS provisioning as well, it will be 

helpful to consider MM and QoS provisioning jointly and have them share information with 

each other. 

The scarce and highly fluctuating bandwidth of wireless links has motivated the 

development of adaptive multimedia applications that can operate over a wide range of 

available bandwidths. In adaptive multimedia applications, the bandwidth of a call can be 

dynamically adjusted to adapt to the various communication environments, especially in link 
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overload situations. Moreover, the systems proposed for future cellular mobile networks 

provide flexible radio resource allocation functions, based on resource availability conditions. 

Under this adaptive multimedia framework, a bandwidth adaptation (BA) algorithm needs to 

be used in conjunction with the CAC algorithm for QoS provisioning. CAC decides the 

admission or rejection of new and handoff calls, whereas BA reallocates the bandwidth of 

ongoing calls. 

Cellular mobile networks usually have to internetwork with wireline networks for 

end-to-end communications. As the Internet evolves into a global communication infrastruc­

ture, Internet services and Internet communications using open standard protocols (including 

those being developed to support the QoS guarantees required for multimedia and premium 

services) are expected to play key roles in future generation cellular mobile networks. There 

is a growing demand for replacing the current same-service-to-all paradigm in the Internet 

with a model in which packets, applications, and users are treated differently based on their 

service needs. Several schemes have recently been proposed to provide QoS in the Internet, 

such as integrated service (IntServ), differentiated service (DiffServ) and the endpoint 

measurement-based admission control (EMAC) schemes. Therefore, there are two sets of 

different QoS definitions and mechanisms in cellular mobile networks and the Internet. 

However, the QoS experienced by a mobile user is end-to-end, that is, from the server to the 

mobile host. So, effective internetworking schemes between cellular networks and the 

Internet are very important to guarantee the end-to-end QoS. 

The rest of this chapter is organized as follows. Section 1.2 gives an overview of 
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related work. Section 1.3 discusses the motivations of this work. Section 1.4 summarizes our 

contributions. Section 1.5 describes the organization of this thesis. 

1.2 Overview of Related Work 

1.2.1 Cal l Admission Control for Non-Adaptive Traffic 

The guard channel policy [41], [60] and fractional guard channel policy [62] 

determine the number of guard channels, which are reserved statically for handoffs, by 

considering just the status of local cell. Users are assumed to be uniformly located in any cell 

of the mobile network under these policies. 

In a distributed call admission control scheme [55], not only the status of a local cell 

but also that of adjacent cells are considered. The total required bandwidth for both handoff 

and existing calls is calculated under the assumptions of exponentially-distributed channel 

holding time and perfect knowledge of the rate of handoff. These assumptions are unrealistic 

in real networks. 

There have also been some research efforts to consider user mobility in designing 

CAC. The shadow cluster scheme [47] estimates future resource requirements in a collection 

of cells, called the shadow cluster, which a mobile is likely to visit in the future. Admission 

control is performed based on this estimate. However, this proposal lacks a mechanism to 

determine the shadow cluster in real networks, as it assumes either precise knowledge of user 

mobility or totally random user movement. 

In [57], bandwidth is reserved in neighboring cells based on user movement predic-
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tion, and an algorithm is used to control the size of reserved bandwidth pool. However, this 

scheme does not estimate channel holding time, and therefore, cannot be applied directly for 

efficient bandwidth reservation. In [24], user mobility is estimated based on the aggregate 

history ofthe handoff observed in each cell. This scheme assumes that each mobile will 

handoff to neighboring cells with equal probability in the mobility estimate time window. 

This assumption may not be realistic in general. 

1.2.2 Mobility Management 

Several M M schemes have been proposed in the literature. A good survey can be 

found in [78]. Two M M schemes related to this thesis are summarized as follows. 

In location area (LA)-based scheme, the coverage area is partitioned into a number of 

LAs. Each L A contains a group of cells. All base stations within the same L A broadcast the 

identifier (ID) of its L A periodically. Each mobile terminal compares its registered L A ID 

with the current broadcast L A ID. A location update is triggered if the two IDs are different. 

Upon a call arrival for a particular mobile terminal, all the cells within its current L A are 

polled simultaneously, ensuring success within a single step. The LA-based update scheme is 

widely adopted by the current cellular systems, including the EIA/TIA IS-41 [3] and the 

Global System for Mobile Communication (GSM) networks [54]. The main drawback of this 

scheme is that for an L A with a large number of cells, a significant amount of radio bandwidth 

is consumed in paging for each call arrival. In addition, mobile terminals located close to an 

L A boundary may perform excessive location updates as they move back and forth between 

two LAs. 
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The idea of the path-based scheme [13] is based on a data compression algorithm 

proposed by Ziv and Lempel. It works as an add-on module to the underlying update scheme 

(e.g., LA-based), which generates the movement history. However, a real update message is 

not sent to the network for each symbol. As with data compression, the algorithm parses the 

sequence of symbols to form code words for transmissions. The network database maintains 

the movement history in a compact form by a trie, which can by considered to be a part of the 

user's profile. Upon a call arrival, selective paging based on the trie information is used to 

locate the mobile terminal. 

1.2.3 Call Admission Control and Bandwidth Adaptation for Adaptive 
Traffic 

Channel sub-rating scheme for telephony services is proposed in [50]. "Sub-rating" 

refers to an occupied full-rate channel being temporarily divided into two channels at half the 

original rate: one to serve the existing call and the other to serve the new request. Authors in 

[94] consider a similar scheme with one class of non-adaptive service and one class of 

adaptive service. In [25], an analytical model is derived for one class of adaptive service. The 

extension of these schemes designed for one class of adaptive traffic to the case of multiple 

classes in real cellular networks may not be an easy task. 

Talukdar et al. [71] study the trade-offs between network overload and fairness in 

bandwidth adaptation for multiple classes of adaptive multimedia. However, the proposed 

scheme in [71] does not consider maximizing wireless network utilization and may result in 

sub-optimal solution. 
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Markov decision process formulation and linear programming are used in [82]. The 

large state and action space problems in [82] may hinder the deployment of this scheme in 

practical networks. Authors in [89] use a simulated annealing algorithm to find the optimal 

call-mix selection. In these schemes, only the status of the local cell is considered in QoS 

provisioning for adaptive multimedia. It is well known that the status of neighboring cells has 

an increased influence on the QoS of the local cell in future multimedia cellular networks 

[63], and therefore, the status information of neighboring cells is very important for the QoS 

provisioning that can adapt to changes in the traffic pattern. 

Authors in [35] and [45] make fine attempts to consider the status information of 

neighboring cells. However, only one class of traffic is studied and they do not consider 

maximizing network revenue. 

1.2.4 QoS Provisioning in the Internet 

The traditional approach to addressing this problem is an IntServ architecture [18], in 

which applications and users request a certain performance level that can be guaranteed using 

resource reservation and admission control mechanisms. While such architectures provide 

excellent QoS, they face significant deployment and scalability difficulties. 

DiffServ [15] is another approach to provide QoS for the Internet. The DiffServ model 

is characterized by marking and creation of several traffic classes receiving differentiated 

treatment. DiffServ requires no per-flow admission control or signaling, and routers do not 

maintain any per-flow state. The combination of provisioning, service-level-agreements and 

DiffServ router mechanisms may prove sufficient for providing QoS for individual real-time 
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flows. 

Attempting to combine DiffServ's superior scalability with IntServ's superior QoS, 

several recent papers [14], [19], [28], [42] have proposed the novel approach of using EMAC. 

In these designs, the end host probes the network by sending probe packets at the data rate it 

would like to reserve and recording the resulting level of packet losses (or congestion marks). 

The host then admits the flow only if the loss (or marking) percentage is below some thresh­

old value. Since EMAC requires no explicit support from the routers, and since routers keep 

no per-flow state and do not process reservation requests, this is an attempt to use the regular 

best-effort infrastructure (with its DiffServ extensions), and by adding control algorithms at 

the endpoints, deliver a real-time service. Analysis and simulation results from previous work 

suggest that a soft real-time service based on endpoint probing may be viable. 

1.3 Motivations 

To guarantee Phd below a target level and maximize resource utilization at the same 

time for non-adaptive traffic, several CAC schemes have been reported in the literature. 

Although most of these proposals have achieved this goal, these schemes are derived under 

unrealistic assumptions. First of all, structured cell configurations are commonly used. 

Circular, hexagonal or square cell configurations are often used in two-dimensional models, 

and a linear model is commonly used in the one-dimensional case [24], [47], [55]. Although 

these network topology models simplify the analyses, they do not accurately represent a real 

cellular network, where the cell shape and size may vary depending on the receiver sensitiv­

ity, antenna radiation pattern of the base station and propagation environment, and where the 
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number of neighboring cells varies from cell to cell. We believe a generalized graph model is 

more appropriate to represent the topology of an actual cellular network. Second, most 

existing schemes assume channel holding time follows an exponential distribution, which is 

independent and identically distributed for all calls. However, simulation studies and field 

data have shown that exponentially distributed channel holding time is not accurate in actual 

networks [31], [44]. Third, the symmetric random walk model has been quite popular among 

researchers in characterizing individual movement behavior. In this model, a mobile user 

moves to any one of the neighboring cells with equal probability after leaving a cell. This 

model does not take into account the direction of the mobile user. In general, a mobile user 

usually travels with a destination in mind. So, the mobile's location in the future is likely to be 

correlated with its movement history. Motivated by these observations, we investigate 

efficient CAC and bandwidth reservation schemes based on assumptions more realistic than 

existing proposals. 

Another part of our work focuses on a framework combining QoS provisioning and 

mobility management. The motivations behind this part of our work are based on the 

following observations. First, it is generally assumed in the literature that the sole purpose of 

the location update mechanism is to aid the paging process, and that the CAC decision should 

be based on a different information set. However, the MM problem in cellular networks arises 

primarily because of user mobility. On the other hand, user mobility is also the primary reason 

why CAC in cellular networks is required to take extra steps to guarantee call-level QoS. So, 

the information used to solve one problem may be useful for solving another one. Second, 

recent work [13], [66], [78] has considered per-user mobility patterns to design more efficient 
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MM schemes. Authors in [47], [57], [83] have also considered per-user mobility patterns in 

CAC in cellular networks. Since analytic and simulation results in these papers show that the 

per-user mobility pattern can provide the basis for effective solutions that address these two 

system requirements, it will be helpful to consider them jointly and make them share 

information with each other. Third, in solving the MM problem, some schemes [8], [ 13], [48] 

only use out-of-session (i.e., between call arrivals) movements and ignore in-session (i.e., 

during the calls) mobility information. On the other hand, only in-session movements, but not 

out-of-session movements, are used in designing CAC in [24], [83]. In fact, both in-session 

and out-of-session movements are parts of a user's mobility pattern. Therefore, it is expected 

that using all available mobility information will improve the performance of both CAC and 

MM schemes. 

In adaptive multimedia cellular mobile networks, maximizing revenue while meeting 

QoS constraints suggests a constrained semi-Markov decision process (SMDP) [53]. The 

traditional model-based solutions [61] to SMDP, which require state transition probabilities, 

suffer from two "curses": The curse of dimensionality and the curse of modeling. The curse of 

dimensionality is that the complexity and solution space in these algorithms increase 

exponentially as the number of states increases. QoS provisioning in adaptive multimedia 

cellular networks involves very large state space, which makes model-based solutions 

infeasible. The curse of modeling is that in order to apply model-based methods, it is first 

necessary to express state transition probabilities explicitly. This is very difficult in real 

cellular networks due to irregular network topology, different propagation environments and 

random user mobility. These curses suffered by model-based approaches motivate us to 
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pursue alternative solutions. A model-free reinforcement learning (RL)-based approach, 

which does not require explicit state transition probabilities, is studied in this thesis. 

The motivations behind our work on CAC for cellular-to-IP internetworking are based 

on the experience of Transmission Control Protocol (TCP) on wireless domain. Like reliable 

transport protocols such as TCP, EMAC is an end-to-end scheme. It is well known that TCP is 

tuned to perform well over wireline links and has degraded performance over wireless links. 

Consequently, many modifications of TCP have been made to improve the performance of 

TCP in such an environment [7]. Motivated from this experience, we believe that it is better to 

consider the wireless environment before the deployment of EMAC than to modify it after it 

is widely accepted. We will study the performance of EMAC in cellular mobile networks and 

propose a CAC scheme for cellular-to-IP internetworking. 

1.4 Main Contributions 

The main contributions of this thesis are as follows: 

• Mobility-based predictive C A C and bandwidth reservation: To provide the call 

level QoS for non-adaptive traffic in cellular mobile networks, we propose to statisti­

cally predict user mobility based on the mobility history of users. The mobility 

prediction scheme is derived from data compression techniques that are both theoret­

ically optimal and good in practice. In order to utilize resources more efficiently, we 

predict not only the cell to which the mobile will handoff, but also when the handoff 

will occur. We also adaptively control the admission threshold to achieve a better 

balance between guaranteeing handoff dropping probability and maximizing 
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resource utilization. Results show that the proposed schemes meet our design goals 

and outperform other schemes. 

• A framework combining QoS provisioning and mobility management: We 

propose a novel framework to solve QoS and mobility management problems in 

cellular networks using a common user mobility prediction scheme.We use all 

available location information of the mobile, both during calls and between calls, for 

a more accurate modeling of individual users' mobility. Particularly, in our 

framework, not only location updates between calls but also handoff records during 

a call lifetime are used to build the mobility trie. Results show that more effective 

solutions to both CAC and mobility management can be realized from this 

framework. 

• Solving QoS provisioning for adaptive multimedia using reinforcement 

learning: We present a QoS provisioning scheme for adaptive multimedia in cellular 

mobile networks via reinforcement learning, which can maximize the network 

revenue subject to several predetermined QoS constraints. Unlike other model-based 

algorithms, our scheme does not require the explicit state transition probabilities, 

and therefore, the underlying assumptions of our scheme are more realistic than 

those in previous schemes. Simulation results demonstrate the superior performance 

of the proposed scheme to some of the existing methods. 

• A CAC scheme for cellular-to-IP internetworking: Although EMAC has many 

desirable features in the wireline networks, as shown in the previous work, in this 



Chapter 1 Introduction 13 

thesis we show that several distinct characteristics in cellular mobile networks make 

E M A C difficult to implement. We propose a mobile-EMAC (M-EMAC) scheme to 

internetwork cellular networks to the Internet. Results show that the proposed 

scheme performs better than E M A C in cellular mobile networks. 

1.5 Organization ofthe Thesis 

The rest ofthe thesis is organized as follows. In Chapter 2, we propose and analyze 

the mobility-based predictive C A C and bandwidth reservation schemes. The mobility predic­

tion approach derived from optimal data compression scheme is described. Based on the 

mobility prediction, efficient C A C and bandwidth reservation schemes are proposed. We 

present performance comparisons using simulations. In Chapter 3, we propose a framework 

that combines QoS provisioning and mobility management. We present numerical results and 

compare the performance with other schemes. In Chapter 4, we propose to solve the QoS 

provisioning problem for adaptive multimedia in cellular mobile networks via reinforcement 

learning. We describe the formulation of the problem and our reinforcement-learning-based 

approach. Performance comparisons with other schemes by simulations are given. In Chapter 

5, we present the numerical results of E M A C performance in cellular mobile networks. A 

novel M - E M A C scheme is proposed and its performance is evaluated using simulations. 

Finally, Chapter 6 concludes the thesis with a summary of the presented work and some 

suggestions for future work. 
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Chapter 2 Mobility-Based Call Admission Control and 
Bandwidth Reservation 

2.1 Introduction 

In this chapter, we address the issues of CAC and bandwidth reservation by proposing 

and evaluating mobility-based predictive schemes under more realistic assumptions [83], 

[87]. In order to guarantee the handoff dropping probability, we propose to statistically predict 

user mobility based on the mobility history of users. Using this prediction scheme, we can 

predict not only the cell to which the mobile will handoff, but also when the handoff will 

occur. Bandwidth is reserved to guarantee some target handoff dropping probability. We also 

adaptively control the admission threshold to achieve a better balance between guaranteeing 

handoff dropping probability and maximizing resource utilization. Simulation results show 

that the proposed schemes meet our design goals and outperform the static reservation 

scheme. 

The rest of this chapter is organized as follows. System models that are more realistic 

than those considered previously in similar work are illustrated in Section 2.2. In Section 2.3, 

we describe and analyze the mobility prediction schemes. Based on the mobility prediction, 

efficient CAC and bandwidth reservation schemes are proposed in Section 2.4. Simulation 

results are presented and discussed in Section 2.5. A summary is given in Section 2.6. 

2.2 Model Description 

We consider a mobile communication network with a cellular wireless infrastructure. 

A handoff could fail due to insufficient bandwidth in the new cell, causing the handoff call to 
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be dropped. In this study, we do not consider (1) soft handoff in Code Division Multiple 

Access (CDMA) systems [75], in which a mobile can communicate with two or more base 

stations simultaneously; (2) delay-insensitive applications, which can tolerate long handoff 

time delay caused by insufficient bandwidth. We describe the network topology, channel 

holding time distribution and user mobility pattern considered in our study in the following 

subsections. 

2.2.1 Network Topology 

To address CAC and bandwidth reservation problems, most researchers model cellular 

networks by structured graphs. Circular, hexagonal or square cell configurations are often 

used in two-dimensional models, and a linear model is commonly used in the one-dimen­

sional case. Although these network topologies simplify the analyses, they do not accurately 

represent a real cellular network, where the number of neighboring cells varies from cell to 

cell, and the shape and size of each cell may vary depending on receiver sensitivity, antenna 

radiation pattern ofthe base station, and the propagation environment. 

Our network topology model is not restricted to structured cell configuration, such as 

hexagonal or linear. We use a generalized graph model to represent the actual cellular net­

work. The network is modeled as a connected graph G = [V, E), where the vertex-set Vrepre­

sents the set of base stations, each serving a single cell, and the edge-set E represents the 

adjacency between pairs of cells. Figure 2.1 shows an example network representation with 

vertex-set V = {a, b, c, /} and edge-set E = {(a, b), (a, c), (k, /)}. 
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Figure 2.1 Modeling an actual cellular network 

2.2.2 Channel Holding Time 

The channel holding time is defined as the time during which a new or handoff call 

occupies a channel in a given cell, and it is dependent on the mobility of the user. While this is 

similar to the call holding time in the fixed telephone network, it is often a fraction of the total 

call duration in a cellular mobile network and needs not have the same statistical properties 

[31], [44]. Most research work on CAC and bandwidth reservation assumes the channel hold­

ing time follows an exponential distribution [41], [47], [62], which is independent and identi­

cally distributed (i.i.d.) for all cells. Like the structured models for network topology, i.i.d. 

exponential distribution simplifies the analyses, but does not give an accurate representation 

of the real characteristics of cellular networks. 

We assume that the channel holding time follows a general distribution, which allows 

the i.i.d. exponential channel holding time assumption to be relaxed. 
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2.2.3 User Mobility Pattern 

The symmetric random walk model has been quite popular among researchers in char­

acterizing individual movement behavior [55], [62]. In such a model, a mobile user will move 

to any one of the neighboring cells with equal probability after leaving a cell. This model does 

not take into account the trajectory and channel holding time of a mobile. 

In cellular mobile networks, the mobility of a user during a call can be represented by 

a sequence of events, N, H^, H2, H ^ , H n , E , where N represents the event that a new call 

is admitted, Hn represents the event of a mobile's nth handoff and E represents the call termi­

nation event. Note that in some cases, there are no handoff events during the lifetime of a call 

and thus no Hn in the sequence of events. In this sequence, TV = (m, /, t), where m represents 

the mobile requesting the call, i represents the original cell and t represents the time when the 

call arrives; Hn = (Tk,j), where Tk is the time elapsed since the beginning of the call and j is 

the cell to which the mobile will handoff; and E = (Tk). We quantize the relative time into 

slots of equal duration T, a design parameter. So, Tk is the Ath time slot since the beginning of 

the call. 

In general, a mobile user usually travels with a specific destination in mind. So, the 

mobile's location and channel holding time in the future are likely to be correlated with its 

movement history. Therefore, in our model, the sequence of events N, Hh H2, # 3 , .... Hn, .... E 

is assumed to be generated by an mth order Markov source, in which the states correspond to 

the contexts of the previous m events. The probabilities of possible next events can depend on 

a list of m previous events. 
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2.3 Mobility Prediction 

We derive probabilistic predictions of user mobility based on the accumulated behav­

ior history of each specific mobile. The rationale behind the scheme is the observation that a 

user's mobility pattern is a reflection of the routines of his/her life and that most mobile users 

have favorite routes and habitual movement patterns. This repetitive nature of mobility pat­

terns suggests the stationarity of a sequence of events generated by an mth order Markov 

source. Thus, we can learn those patterns from the mobility history of a particular user and 

predict the user's next move when those patterns reappear. 

A similar prediction approach is used in [13] to solve the mobility management prob­

lem in cellular networks. This scheme records only the locations of mobile users to predict 

their future locations and cannot be used directly to derive efficient CAC and bandwidth res­

ervation schemes. Although the possibility of using this method for QoS provisioning in cel­

lular networks is mentioned in [13], as far as we know, our proposal is the first to realize this 

possibility. The novelty of our proposal compared to the previous one is that we record both 

the locations and the handoff times of mobile users. Therefore, we can derive a novel predic­

tion method that predicts not only where a mobile user will handoff, but also when the hand-

off is likely to occur. Based on this novel prediction method, we further propose CAC and 

bandwidth reservation schemes that are more efficient than existing methods. 

The prediction approach is motivated from optimal data compression methods. In data 

compression, a data set (e.g., a text file or an image) is decomposed into a sequence of events, 

and encoded using as few bits as possible. Thus, short codewords should be assigned to more 
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probable events and longer codewords should be assigned to less probable events. So, in order 

to compress data well, one has to be able to predict future data well, and hence a good data 

compressor should also be a good predictor. If a data compressor expects a certain character 

to be next with a very high probability, it will assign that character a relatively short code. If 

the overall code length is small, then the predictions of the data compressor must have been 

good. 

2.3.1 Optimal Data Compression 

In this study, we develop our mobility prediction algorithm based on the Ziv-Lempel 

algorithms for data compression, which are both theoretically optimal and good in practice. 

The original word-based Ziv-Lempel encoder [95] breaks the input string into block-to-vari­

able codes. The algorithm parses each block of size n in a greedy manner into distinct sub­

strings x\, x2, x„ with the following property: For each j > 1, substring x, without its last 

character is equal to some previous substring x,-, where 0 <i <j. Substring x, is encoded by 

the value /, using \\og2(j -1)1 bits, followed by the ASCII encoding of the last character of 

Xj, using riog 2ctl bits, where a is the size of the input sequence's alphabet. Because of this 

Prefix Property, substrings parsed so far can be efficiently maintained in a trie [46], 

The equivalent character-based Ziv-Lempel algorithm builds in on-line fashion a 

probabilistic model (or a trie) that feeds probability information to an arithmetic coder [80], 

which encodes a sequence of probability of p using log,(l /p) = -log,/? bits. We show by 

example how these algorithms work. 
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Figure 2.2 The trie constructed in Example 2.1 

Example 2.1: Let the alphabet be {a, b, c}. We consider an input string "ababcab-

cababcab ..." that the Ziv-Lempel encoder parses as "(a)(b)(ab)(c)(abc)(aba)(bc)(ab...)... " 

Each substring in the parse is encoded as a pointer followed by a character. In particular, the 

match "ah" ofthe sixth substring "aba" is encoded using flog25] bits with a value 3, since 

the match "ab" is the third substring, and the last character "a" is encoded using [ log 23 "| bits, 

since the alphabet size is 3. 

In the character-based version of Ziv-Lempel encoder, a trie is built when each previ­

ous substring ends. The trie at the end of the seventh substring is pictured in Figure 2.2. There 

are four previous substrings beginning with an "a", two beginning with a "b" and one begin-

4 
ning with a "c." The character "a" is therefore assigned a probability of - at the root, "b" is 
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2 1 
assigned a probability of - at the root, and "c" is assigned a probability of - at the root. Sim­
ilarly, ofthe four substrings that begin with an "a," three begin with an "ah" giving the prob-

3 
ability of - for "6," and so on. Any sequence that leads from the root of the trie to a leaf 

traverses a sequence of probabilities of P,, P2, P3, whose product FT/?, equals - . The 

arithmetic coder encodes the sequence with -log-FJ/', 2-1 
i 

= riog27"| =3 bits. Note that the 

square nodes in Figure 2.2 denote the last nodes ending the sequences. 

2.3.2 Mobility Prediction 

Our mobility prediction scheme is based on the character-based version of the Ziv-

Lempel algorithm. The sequence of events N, H]t H2, # 3 , Hn, E during the lifetime of a 

call corresponds to the substring in the Ziv-Lempel algorithm. The mobility database of every 

mobile at specific time holds a mobility trie, which is a probability model corresponding to 

that of the Ziv-Lempel algorithm. Each node, except for the root, in the mobility trie preserves 

the relevant statistics that can be used to predict the probability of following events. As in 

data compression, the mobility trie of the mobile is built in an on-line fashion. When a mobile 

requests a new call, the predictor sets the current node to the root of the trie according to the 

mobile, cell and time, and calculates the probabilities of all possible events of this mobile. 

Upon recording an actual event of the mobile, the predictor "walks" down the trie and is ready 

for the next prediction. When an event is not in the mobility trie, a prediction fault is gener-
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initialize mobility trie :=null 
initialize number_of_event :=0 
loop 

wait for next event e 
if (e is a new call) 

look for a trie with a root of e in the database 
if (cannot find such a trie) 

create a trie :=single node (the root) 
endif 

e lse 
if (e exists in the trie) 

number_of_event :=number_of_event + 1 
e lse 

create a leaf e 
calculate the probabil i t ies of poss ib le events 

based on the number_of_event of leaves 
forever 

Figure 2.3 A pseudo-code of mobility prediction 

ated and the trie is updated. A pseudo-code description of the mobility prediction scheme is 

given in Figure 2.3. 

Figure 2.4 shows an example of the mobility trie of mobile m at cell a in the time 

interval 8:00-9:00 a.m. When the mobile requests a new call in cell a in the time interval 8:00-

9:00 a.m., we can use the statistics preserved in the nodes of its mobility trie to predict the 

probabilities of the next possible events of this mobile: it will terminate the call without hand-

2 
offs in the 2nd time slot with probability of —, handoff to cell b in the 2nd time slot with 

56 
probability of , and so on. 56 

2.3.3 Analysis of the Mobility Prediction Scheme 

We first analyze the optimality of the word-based Ziv-Lempel algorithm and show 

that the character-based Ziv-Lempel algorithm is as least as good as the word-based approach. 
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T2, 
[2/56] [5/56] 

Figure 2.4 A mobility trie used for mobility prediction 

Then, we will establish that our mobility prediction scheme inherits the optimality of these 

data compression algorithms. 

Given a sequence x" of length n over an alphabet A of a letters and an information 

lossless (IL) compressor C accepting inputs over A, let |C(JC")| denote the length, in bits, of 

the output that C produces on xn. The compression ratio pc(x") attained by C for x" is [95]: 

Q ( x n ) = |C (S") | 
* C K nlog2(cc) 

(2.1) 
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Define pa(x") as the best compression ratio attainable for x" by any IL compressor of 

a states. Sequence x" is parsed into different phrases: x"- x{, x2, x,, and t(x") is the 

maximal possible number of distinct phrases. Define: 

q(x")= 'OOlogzCC*'')) . (2.2) nlog2(a) 

A result in [95] shows that 

pa(x") > q(x") - 5(a, n) with lim 5(a, n) = 0. (2.3) 
n —» co 

So, q(x") is a lower bound on the compression ratio attainable for x" by any codebook. 

The Ziv-Lempel incremental parsing algorithm achieves for any sequence x" given to 

it a compression ratio that is (asymptotically) equal to q(x"), and thus the algorithm is univer­

sal and asymptotically optimal [67]. 

In [9], it has been shown that the code length obtained in the character-based version 

of the Ziv-Lempel algorithm is as least as good as that obtained using the word-based 

approach. Hence, the optimality result in [95] holds without change for the character-based 

approach. 

We define the event fault rate to be the total number of event faults that our mobility 

prediction algorithm incurs, divided by the total number of events. Also, we define the 
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expected fault rate to be the best possible fault rate achievable by any prediction algorithm 

that makes its prediction based only on the past history. 

A result in [76] shows this: 

If the source is a stationary mth order Markov source, the expected event fault rate of 

our prediction algorithm is within an additive factor of 0(1/ Jn) from the expected event 

fault rate of the source, where n is the length of the event sequence. 

From these, we see that our mobility prediction algorithm inherits the asymptotic opti­

mally of the Ziv-Lempel algorithm. By modeling the sequence of events during the lifetime 

of a call as that generated by a stationary mth order Markov source and predicting next events 

using the mobility prediction scheme derived from the Ziv-Lempel algorithm, we can predict 

not only to which cell a mobile will handoff, but also when the handoff will occur. 

2.3.4 Implementation Considerations 

The mobility prediction scheme proposed above maintains the statistics in a trie, 

which can be stored in the user profile in cellular mobile networks. An important issue is how 

this model can be implemented. In fact, a trie is a multiway tree with a path from the root to a 

unique node for each string represented in the tree. There are many ways to implement the 

nodes of a trie. The simplest approach is to create an array of pointers for each node in the trie 

with a pointer for each character of the input alphabet (Figure 2.5-a). This method can waste 

considerable memory space, particularly if some characters of the alphabet are rarely used. 

An alternative is to use a linked list at each node, with one item for each possible branch 
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1 

1 c 
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(b) 
Figure 2.5 Implementation of trie nodes in Figure 2.2: (a) array and (b) linked list. 

(Figure 2.5-b). The space needed for a node in the linked list requires two pointers, one 

counter and a symbol. A straightforward implementation of this would consume 13 bytes, and 

these could be packed into perhaps 11 bytes. This uses memory economically, but can be 

more processing intensive. Some improvement may be achieved by moving an item to the 

front of the list each time it is used. A trie can also be implemented as a single hash table with 

an entry for each node. The memory consumed by a trie can be reduced by truncating it 

prematurely at a shallow depth, and using some other data structure for subsequent characters. 

For further details, the reader can consult books on algorithms and data structures. 

In practice, in order to reduce the memory and computation complexity, it is desirable 

to limit the size ofthe data structure for prediction. Several techniques are known for limiting 

data structure size in [69]. An explicit upper bound S is placed on the size of the data 
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structure. The data structure is either frozen when its size reaches S, flushed and rebuilt when 

its size reaches S, or frozen when its size reaches S/2 and a new one is built while the old one 

is used for prediction. There are also more sophisticated techniques that use tags to determine 

what nodes are to be deleted when its size reaches S [21]. In the simulations, a linked list with 

11 bytes at each node is used and the scheme in [21] is employed to maintain the size S = 40. 

2.4 Call Admission Control and Bandwidth Reservation 

2.4.1 Calculation of P(i,j, Tk) 

Our approach is based on the predicted mobility of each user. We calculate P(i,j, Tk), 

the probability that a mobile originally in cell / will visit cell j during time slot Tk. From the 

mobility trie, we can see that a mobile taking different paths can visit a certain cell in the same 

slot. Using the total probability theorem [58], we must add all of these probabilities to get 

P(i,j, Tk) . Example 2.2 shows how to get this probability. 

Example 2.2: A mobile m requests a new call at cell a in the time interval 8:00-9:00 

a.m. From the mobility trie in Figure 2.4, we can see that m can take several different paths to 

visit cell b. We describe these paths by sequences of events: 

Path l:N(m, a, 8:00-9:00 a.m.), H(Th b), E(T2). 

3 3 3 
By Path 1, m will visit cell b in Tj and T2 with probability: - x - = — . 

Path 2: N(m, a, 8:00-9:00 a.m.), H(T2, b), E(T4). 
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15 5 5 
By Path 2, m will visit cell b in T2, T3 and T4 with probability: — x — = — 

Path 3: N(m, a, 8:00-9:00 a.m.), H{T2, b), H(T2, d)... 

By Path 3, m will visit cell b in T2 with probability: = -̂ , 
56 15 56 

Path 4: N(m, a, 8:00-9:00 a.m.), H(T2, b), H(T5, d)... 

By Path 4, m will visit cell b in T2, r 3, T4 and T5 with probability: 

15 4_ = 4_ 
56 X 15 56 

So, 

ur u n 3 , 5 , 6 , 4 18 

J>(~, b, T4) = | + 1 = 1 and 

P («, f t , r , ) = ± . 

2.4.2 The Most Likely Cell-Time 

When a mobile is active in cell i, we can get the most likely cell-time (MLCT) of that 
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mobile, a cluster of time units at a cluster of cells when and where a mobile will most likely 

visit in the future. We select cell j and time slot Tk with P{i,j, Tk) greater than zero to form 

the MLCT of this mobile. 

2.4.3 Bandwidth Reservation 

Using P(i,j, Tk), the probabilities of handing off from cell-/' into cell j during time slot 

Tk of mobile m, we can obtain the required bandwidth Br(i,j, m, Tk) to be reserved in cell j 

during the time slot Tk for the expected handoff of mobile m from cell i: 

Br(U, m, Tk) = P(i,j, Tk) • B(m) , (2.4) 

where B(m) is the bandwidth required by m. In this study, we assume that the traffic 

characteristics and the desired packet-level QoS guarantees (e.g., delay, jitter, loss and 

throughput) can together be represented by effective bandwidth. Techniques for computing 

the effective bandwidth for different traffic characteristics and QoS requirements can be 

found in [29], [39]. Moreover, the reserved bandwidth Br(j, Tk), which is the aggregate 

bandwidth to be reserved in cell j during Tk, is calculated as: 

Br(J, Tk) = X Br(i,j, m, Tk) , (2.5) 
111 € M,ie I 

where M is the set of mobiles which will handoff to cell j from a set of cells / during Tk. 

Finally, the free bandwidth left after the reservation is: 

BjO\Tk) = B-Br(J,Tk) , - (2-6) 
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where B is the total bandwidth in cell j. 

2.4.4 Call Admission Control and Bandwidth Reservation for New Calls 

When a new call arriving at mobile m with a bandwidth requirement B(m) requires 

admission to cell i, the CAC algorithm first checks if the current free bandwidth of cell i can 

support the call. The call is rejected if the cell does not have enough free bandwidth. 

Otherwise, CAC will check the availability of free bandwidth in the MLCT of this mobile. 

The checking result can be written as: 

Check(j, Tk,B(m)) 
\,Bj(j,Tk)>B(m) 

M i ^ , otherwise 
(2.7) 

Based on these values, the new call will be admitted if the following holds: 

£ P(iJ,Tk)-Check(J,Tk,B(m))>a £ P(iJ,Tk) , (2.8) 
j,TkeMLCT /, Tk e MLCT 

where a is the admission threshold and should be controlled adaptively. We will describe 

how to control this threshold in the next subsection. 

When a new call is admitted, bandwidth is reserved in the mobile's MLCT. And the 

free bandwidth in the MLCT is updated accordingly. 

2.4.5 Adaptive Control of Admission Threshold 

The mobility prediction functions may not work well for some mobile users, 

especially those who do not have favorite routes. Moreover, if the admission threshold a is 
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too small, the handoff dropping probability may exceed the target value; if a is too large, 

resource utilization will decrease. So, admission threshold a should be controlled adaptively. 

We calculate Phd, the handoff dropping probability of a mobile, by dividing the 

number of handoff drops to the total number of its calls recorded in the mobility trie. Let 

TPhd denote the target value of handoff dropping probability of mobile m. If Phd < TPhd, 

admission threshold a is decreased by s, a design parameter; otherwise, a is increased by 

e. The calculation of Phd and the update of admission threshold are done upon call 

completion. 

By adaptive control of a, we can achieve a better balance of guaranteeing Phd and 

maximizing resource utilization. 

2.4.6 Call Admission Control and Bandwidth Reservation for Handoff 
Calls 

When a mobile m, with bandwidth requirement B(m), requires handoff to cell /, CAC 

will calculate P(i,j, Tk) and get the MLCT of m based on the mobility trie. Bandwidth is 

reserved for m in its MLCT accordingly. The CAC algorithm will admit the handoff call if the 

current free bandwidth of cell / can support the call. 

2.5 Simulation Results and Discussions 

In this section, we present and discuss the simulation results of the proposed schemes 

as well as comparisons with two other CAC schemes. 

We consider a coverage area that consists of 40 base stations, each of which has 6 
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neighbors on average. The distance between two base stations is 1 mile. Since most mobile 

users have favorite routes, we assume that each mobile user has 5 possible different paths in 

the network. The user will take these 5 paths with probability of 0.5, 0.2, 0.1, 0.1, 0.1 respec­

tively. Among the cells within a path, mobile users can have a new call request with equal 

probabilities. During a call, the mobile will stay at the original cell or move along the path. If 

a call does not terminate when the mobile reaches the end of the path, it will stay at the end 

cell of that path. The path is generated as follows: (1) Select two nodes in the graph randomly 

as original and destination nodes; and (2) Whenever the mobile user leaves the current cell, it 

moves to a neighboring cell that is closest to the destination. Note that two paths with at least 

one edge not in common are different paths, and that different mobile users can have the same 

paths. 

Also, we apply the following assumptions in our model: 

1. Each cell has a fixed link capacity of 40 bandwidth units (BUs). 

2. Time is quantized into units of T= 30s. 

3. A call is either for voice (requiring 1 BU) or video (requiring 4 BUs). 

4. Call durations are the same for all calls and exponentially distributed with a mean value of 

3 minutes. 

5. Call requests are generated.according to a Poisson process with rate A. (calls/cell/m). 

6. The speeds of mobiles are uniformly distributed between 0 and 40 miles/hour. 

7. The target hand off dropping probabilities are the same for all mobiles: Pnd= 0.01. 

8. Admission threshold a is initialized to 1 in each simulation and adaptive factor e = 0.02. 
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The offered load is calculated as follows: 

Offered Load = 3 • X • ((1 - Pv) • 4 + Pv), 

where Pv is the percentage of voice in the offered traffic. The physical meaning of the offered 

load is the total bandwidth units required on average to support all existing calls. 

Simulations start without any pre-memorized information of mobiles. Long-term 

handoff dropping probability, new call blocking probability and utilization are obtained for a 

lOOh simulation time duration. During each simulation, a mobility trie is constructed for each 

mobile and its mobility is predicted. Based on the prediction, an MLCT is constructed. Then 

CAC algorithm will check the availability of bandwidth and decide to admit or reject the new 

call and handoff call requests using the algorithms described in Section 2.4. If the call is 

admitted, bandwidth is reserved in the mobile's MLCT accordingly. 

Figure 2.6 shows Pnb and Phd as functions of the offered load for two values of Pv: 0.8 

and 1. The probabilities of handoff dropping are kept below the target values 0.01 irrespective 

of the offered load and P r This shows that the proposed CAC and bandwidth reservation 

schemes achieve one of our goals: keeping Phd below a target level. We also observe that Pnb 

and Phd increase as Pv decreases under the same offered load. This is because the video calls 

need more bandwidth. Figure 2.7 shows the average utilization as a function of the offered 

load with different values of Pv 

Since the time slot is used in our mobility prediction scheme, the selection of time slot 

duration Twill influence both the convergence speed and the network utilization. We study 
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this issue in the following. In simulations, we choose 3 values of T, 15s, 30s and 90s. Figure 

2.8 shows the handoff dropping probabilities as functions of simulation time with different 

time slot durations. In the beginning ofthe simulation, the system knows little about the 

mobility of mobile users and the handoff dropping probabilities cannot be kept below the 

target value 0.01. As the simulation goes on, the prediction tends to converge and the target 

handoff dropping probability can be guaranteed. From Figure 2.8 we can see that the 

convergence is faster when Tis 90s than when Tis 30s, which is in turn faster than when T is 

15s. The reason for this is that the mobility sequence will be long when Tis small, and when T 

is large, the sequence will be short. The longer the sequence, the slower the convergence 

speed. It seems that it is better to have a large value of T, since the convergence will be fast. 

However, a large value of T means that the prediction is not accurate, and results in low 

utilization, which can be seen clearly in Figure 2.9. The utilization is higher when Tis 15s 

than when Tis 30s, which is higher than when Tis 90s. Therefore, choosing a suitable value 

of T according to real network conditions is very important for getting the best performance 

from the proposed scheme. 

We also compare the proposed CAC and bandwidth reservation schemes with the well 

known static reservation scheme [41], [60]. In the static reservation scheme, a set of 

bandwidth is reserved statically for handoff calls. In our simulation, we consider 4 BUs and 5 

BUs reserved permanently for handoff calls in each cell. For comparison, we call our scheme 

cell-time-reservation. 

Figures 2.10 and 2.11 show that the static reservation scheme with 4 and 5 BUs 



Chapter 2 Mobility-Based Call Admission Control and Bandwidth Reservation 35 

reserved for handoff calls can keep Phd below the target value of 0.01 when the network has a 

light load, but the reserved bandwidth is not enough when the offered load becomes heavier. 

Hence, this scheme cannot achieve the design goal. Although the static reservation scheme 

has almost the same PM compared with our scheme when the network load is lighter, its Pnb is 

higher in this area, i.e., it admits less new calls than our scheme for any given Pnh. In the static 

reservation scheme, Phd may be kept below the target value by statically reserving more 

bandwidth for handoff calls. However, this will result in higher Pnb, which means lower 

utilization if Pnb were to be reduced to an acceptable level. From these results, we can see that 

our proposed cell-time-reservation scheme achieves a better balance of guaranteeing Phd and 

maximizing utilization. 

2.6 Summary 

In this chapter, we have proposed call admission control and bandwidth reservation 

schemes for non-adaptive traffic in cellular mobile networks based on assumptions more 

realistic than existing proposals. The proposed schemes are applicable to arbitrary cell topolo­

gies and the channel holding time can follow a general distribution. The sequences of events 

of new call admission, handoffs and call termination are modeled by stationary mth order 

Markov sources. We derived novel probabilistic predictions of next events based on the 

mobility history of users, using an algorithm motivated by optimal data compression. Based 

on the mobility prediction of where and when the mobile will handoff to the next cell, CAC 

and bandwidth reservation schemes have been developed. The performance of the proposed 

schemes have been studied using computer simulations. Results show that our schemes can 

achieve a better balance of guaranteeing handoff dropping probability while maximizing 
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resource utilization, and they outperform the static reservation scheme. 
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Chapter 3 A Framework Combining QoS Provisioning 
and Mobility Management 

3.1 Introduction 

In this chapter, we propose a framework combining QoS provisioning and mobility 

management in cellular networks [84], [88], [89]. Since user mobility is the primary reason 

why both CAC and mobility management problems arise, the information used to solve one 

problem may be useful for solving another one. Moreover, recent work shows that the per­

user mobility pattern plays an important role in both of these two issues. It will be helpful to 

consider them jointly and have them share information with each other. Therefore, we can use 

the mobility prediction scheme in Chapter 2 as the key component in this framework, which 

can be used in both locating/paging mobiles and making admission decisions. Using this 

framework, we propose a new path-based MM scheme and a new CAC scheme that use all 

available mobility information. Simulation results are presented to show the performance 

improvements of the new QoS and MM schemes in this framework. 

The rest of this chapter is organized as follows. The common mobility prediction 

scheme is described in Section 3.2. In Section 3.3, we describe the location update and paging 

schemes in our framework. The new CAC scheme is described in Section 3.4. A summary of 

this chapter is given in Section 3.5. 

3.2 Common Mobility Prediction Scheme 

If the position of a user can always be predicted in advance, then no explicit update is 

necessary and the optimal location area is the one that minimizes paging cost, i.e., a single 
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cell. On the other hand, if the network knows accurately where the mobile will move when 

the mobile needs to perform a handoff during a call, a more efficient CAC scheme can be 

designed. Therefore, the key component in our framework combining QoS provisioning and 

MM together is a common mobility prediction scheme that can be used for both paging 

mobiles and making admission decisions. In Chapter 2, we show that the mobility prediction 

scheme derived from the optimal data compression algorithm is optimal in terms of event 

fault rate. However, in Chapter 2, we only use the in-session (i.e., during calls) mobility 

information and ignore the out-of-session (i.e., between call arrivals) movements. In fact, 

both in-session and out-of-session movements are part of a user's mobility pattern. It is 

expected that using all available mobility information will improve the performance of both 

CAC and MM schemes. 

Although the Ziv-Lempel-based prediction scheme, which is used in Chapter 2, is 

shown to be optimal, the prediction by partial match (PPM) scheme usually outperforms the 

Ziv-Lempel algorithm due to implementation considerations and a faster convergence rate 

[9]. The basis of the PPM algorithm of order m is a set of m+1 Markov predictors. A Markov 

predictor of order j predicts the next event based on the j immediately preceding events. In 

order for PPM to work well, the network needs to maintain all contexts of order 0, 1, m. 

Note that although an enhanced symbol-wise model is used in [13], it cannot store all the 

contexts of different orders, which will eventually affect the convergence rate and prediction 

performance. Here, we use another trie [9] which will combine all contexts together into a 

single data structure. The following example demonstrates the data structure and how PPM 

works. 
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Figure 3.1 The trie constructed in Example 3.1 

E x a m p l e 3.1: Assume that a mobile has visited a sequence of cells, 

"ababcabcababcab..." which is same as the input string in Example 2.1. The mobile can send 

the "compressed" sequence of cells to the network. A trie at the end of the 7th subsequence is 

built at the network side, shown in Figure 3.1. Assume that the predictor in the network 

knows the last three cells visited by the mobile are "abc" and wants to predict the 

probabilities of cells that the mobile will next visit. We can estimate the probability 

distribution with order 0, 1, and 2. First, we can see that only one child "a" follows path '"be" 

in an order-2 prediction. So, we assign P2a = 1, P^b ~ ® > a n c * ^2c = ® • Second, in an 

order-1 prediction based on the context "c", we assign Pla = 1 , P l b = 0 and Plc = 0 , 

since one child "a" is in the subtries rooted at node "c". Finally, in an order-0 estimate, we 

start from the root of the whole trie and get PQa = 5/13, PQb = 5/13 and P0c = 3/13. 

Given a blending weight vector w = [wQ, w,, w 2] , the blended probability assignment is: 
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Pa = W2-P2a + W l - P l a + W 0 - P i Oa 

Pb = W2-P2b + W l - P l b + W0-P< Ob 

Pc = w 2 - P 2 c + w r P l c + w0-p< Oc 

The weights can be fixed values or adapt as prediction proceeds to give more 

emphasis to high-order models. Different ways of choosing the weighs correspond to 

different PPM methods [9]. 

3.3 Mobility Management in the Combined Framework 

In this section, we will present the MM scheme in the proposed combined framework 

using both out-of-session and in-session location information. Since analytic and simulation 

results in previous work show that path-based MM scheme is an efficient approach, we adopt 

the path-based scheme proposed in [13]. However, unlike with the original path-based 

scheme, in which the sole purpose of the location update is to aid paging, and where paging 

process depends only on the information provided by a location update, we use all available 

location information of a mobile for a more accurate modeling of individual users' mobility 

patterns. We present the original path-based scheme, our new path-based scheme, and 

numerical results of performance comparisons between the two schemes in the following 

subsections. 

3.3.1 The Original Path-Based Scheme 

In path-based MM scheme [13], movement path history rather than current location is 

sent in an update message. The movement path history consists of a list of cell IDs the mobile 

terminal has crossed after the last update. The path-based scheme works as an add-on module 
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~i : Information used in location prediction of time Tc 

Figure 3.2 The original path-based scheme 

to the underlying update scheme (e.g., LA-based), which generates the movement path 

history. However, a real update message is not sent to the network by the mobile for each 

movement. As with data compression, the algorithm sends the "compressed" movements to 

the network. For simplicity, assume that a mobile has visited a sequence of cells, 

"ababcabCaBabcaB..." which is same as that shown in Example 3.1. The capital letters 

represent the cells in which the mobile had a call, i.e., the in-session location information, and 

other letters represent the cells in which the mobile did not have a call, i.e., out-of-session 

location information. The transmissions of update messages in the original path-based scheme 

are shown in Figure 3.2, where Tc is the current time. 

Assume that the mobile is called at time Tc. The network can predict the location 

probability from previous update messages using the mobility prediction scheme in Section 

3.2. After getting probabilities Pa, Pb and Pc, the network will page the mobile by ordering 

cells according to a decreasing sequence of probability values. 
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Figure 3.3 The proposed path-based scheme 

3.3.2 The New Path-Based Scheme 

The original path-based scheme does not use the in-session location information. 

However, the network knows the exact location of a mobile during the call session, which is 

very useful in searching the mobile, especially when the call-to-mobility ratio is high. 

Therefore, we propose to use this information in the new path-based MM scheme. In the 

proposed new path-based scheme shown in Figure 3.3, a mobile will give the network all 

unreported location information during the call session. Note that this in-session location 

information report requires little extra resources, because a mobile must report its location 

and any location changes to the network during each call in current cellular systems. 

Otherwise, the call cannot be delivered correctly. After the in-session location information 

report, the mobile will send a location update message only after it transverses a new path 

unseen before. For example, in Figure 3.3, a new out-of-session sequence "aba" is sent to the 

network after the in-session location information report in "C." There are 6 location updates 

before the time Tcin Figure 3.3, which is less than 7 location updates in the original path-

based scheme. Without loss of generality, since some location information of a mobile is 
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reported to the network during the call session, the location sequences reported by out-of-

session location updates in the new scheme should be shorter than those in the original 

scheme. Therefore, fewer update messages are needed in the new scheme, especially when 

the call-to-mobility ratio is high. 

On the network side, the same mobility trie is constructed to predict user mobility. 

However, in the new scheme, we can use more up-to-date information to make the prediction. 

For example, "caB" is used in Figure 3.3 and "aBc" is used in Figure 3.2. Obviously, 

prediction in the new scheme will be more accurate. If there is no in-session information 

between the last update and the current time, the prediction will be the same in the new 

scheme as in the original one. 

3.3.3 Simulation Results and Discussions 

The simulation environment is similar to that in Chapter 2. We assume that the cell 

residence time follows an i.i.d. Gamma distribution with average time l/ur minutes. New calls 

arrive according to Poisson process with rate A, per minute and call durations are 

exponentially distributed with a mean value of l/ud, which is 3 minutes, p = X/ur is the 

call-to-mobility ratio. The underlying location update scheme is movement-based [8], which 

generates the movement path history. In this scheme, each mobile terminal counts the number 

of boundary crossings between cells incurred by its movements. A location update is 

performed when this number exceeds a predefined movement threshold. We use 1 as the 

threshold in the simulations. 

Given specific parameters, we can get the update messages when using the original 
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path-based scheme, denoted as "Update (original)." The term "Update (new)" denotes the 

number of update messages when using the new path-based scheme. The performance gain is 

the ratio Update (original)/Update (new). A similar procedure is used in evaluating the paging 

process. "Paging (original/new)" denotes the number of cells paged in the original/new 

scheme and Paging (original)/Paging (new) is the performance gain. Figures 3.4 and 3.5 show 

the performance gain versus the call-to-mobility ratio with different cell residence time. From 

these two figures, we can see that the performance gain is always greater than one. That is, 

Update (original) > Update (new) and Paging (original) > Paging (new). This implies that the 

proposed new scheme has less cost for mobility management, and therefore, has better 

performance than the original one. When the call-to-mobility ratio is small, the performance 

gain is not significant in these two figures. However, when the call-to-mobility ratio is large, 

the new scheme needs much fewer update messages and paging cells than the original one. 

This is because the new scheme uses both in-session and out-of-session information in the 

location management process. The higher the call-to-mobility ratio, the more in-session 

mobility information is used in the new scheme. We also observe that cell residence time has 

some effects on the performance gain in these figures. When cell residence time is small (i.e., 

ur is large), the mobile travels a lot and has more mobility information. The new scheme can 

give a better model and more accurate prediction of user mobility, and therefore, has more 

performance gain over the original one. 

3.4 Call Admission Control in the Combined Framework 

Due to in-session user mobility, the CAC scheme needs to perform mobility-related 

QoS provisioning in cellular networks. If the in-session user mobility can be predicted, 
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efficient CAC schemes can be designed. In this section, we propose a novel CAC scheme 

within our combined framework. The key idea in our CAC scheme is to predict where and 

when the mobile will subsequently visit when the mobile originates or accepts a call. Then, 

we can check the availability of resources in these cells when resources are needed. If the 

resources are available, they are reserved for this mobile to guarantee the target Pnd, the 

probability of handoff call being dropped. In our framework, we can easily predict to which 

cell the mobile will move using our common mobility prediction scheme described in Section 

3.3. However, since we do not record the time in our combined framework, we need to 

determine the time interval of the visit to make efficient resource reservations. Fortunately, 

we can use the mobile station positioning technology developed and standardized recently in 

[64] to get this time interval. We present these ideas in the following subsections. 

3.4.1 Time Interval Prediction 

For the purpose of satisfying the US FCC E-911 location requirement and for driving 

location information applications in Europe, recent advances in mobile station positioning 

technology can locate a mobile within a certain accuracy level (i.e., 50m in 67% of cases and 

150m in 95% of cases for handset based location solution, mandated by US FCC) [64]. We 

can use this location information to improve the system performance and increase wireless 

system functionality for location-based commercial services. In this study we are interested in 

how to design better CAC schemes using this technology. A variety of basic technologies are 

available to determine accurate position locations. One of them is the enhanced observed time 

difference (E-OTD) technology [3], which has been standardized for location services in 

GSM-based systems. 
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In the E-OTD method, the unknown mobile position p = (x, y) is estimated by 

processing the time difference of arrival (TDOA) measurements between the mobile and at 

least three base transceiver stations (BTSs) of known co-ordinates, BTS1; BTS2, BTSN. 

The TDOA between BT^ (the serving BTS) and BTS, (i = 2 , N - the neighbor BTSs) 

defines a hyperbola whose foci coincide with the co-ordinates of the two BTSs. At least two 

hyperbolas (i.e., two TDOAs) are minimally sufficient to estimate the mobile position, as 

shown in Figure 3 . 6 . The TDOA is defined as the geometric time difference (GTD). GTD, = 

ti - T,- 0 = 2 , A O , where x, and x,- are the absolute propagation delays from the serving and 

the ith neighbor BTSs to the mobile. In principle, GTD can be determined by measuring the 

difference in reception epochs (REs) of bursts synchronously transmitted by the BTSs and 

received by the mobile. In practice, due to the non-synchronized BTSs, the different 

transmission epochs must be taken into account, x, is defined as x, = tRx, - tTx., where tRx, and 

tTx, are, respectively, the reception and transmission epochs of the burst from the ith BTS. 

With these definitions, GTD, can be written as the difference between the observed time 

difference (OTD) and the real time difference (RTD): 

GTD, = T , - x, = {tRXi - tRx) - (tTX{ - tTx) = OTD,- - RTD,. 

The mobile itself assists the location estimation by measuring the OTDs. The RTDs 

are measured by network monitoring equipment deployed in fixed and known locations. The 

positioning problem in the absence of measurement errors can be formulated with a set of AM 

equations describing hyperbolas with foci at the BTSs' co-ordinates (xit yj) (i= 1 ,AO and 

intersecting at p = (x, y): 
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GTD, = J{x -xxf + {y- y,)2 - J(x - xf + (y - y,)2, i = 1,...,N (3.1) 

where c is the speed of light. Exact non-iterative solutions of this problem can be found in 

[30]. 

If we can get the estimations of a mobile's locations, it is not difficult for us to 

estimate the velocity of the mobile, from which we can predict the time interval of the visit. 

However, in real applications, equation 3.1 is rendered inconsistent by measurement noise. A 

linear regression setup can be used to smooth the data for more accurate velocity and position 

estimation of a mobile [40]. In this scheme, k previous estimations are used to get the 

mobile's current estimated velocity and position. Let p(r„) = [x{tn), y(tn)], n = 1, M 

represent the estimated locations at subsequent time points tn. The velocity of a mobile can be 

obtained [40]: 

v(fB) = ||v(f,-)|| = [v z,(0 + v^(0] 1 / 2 , (3.2) 

where vx(tn) = 
X (tj-t)[x(tj)-x] 

j = n - k + 1 

2 (h-i) 

and vy(tn) = 
£ (tj-i)[y(tj)-y] 

j = n - k + 1 

n 

with t = I h 
\ j = n - t + l J 

/k , X — 1 x(tj) 
\J = n-k+l 

•• n-k+\ 

( 
/k and y = 1 y(tj) /k . The 

estimated position of the mobile at time tn is: 

(3.3) 

where 6(r„) is the estimated original position at time t0 = 0. ox(tn) = x-vx(tn) • t and 

oy(tn) = y-vy(tn) • t. 
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After getting the estimated velocity and the position of a mobile from equations 3.2 

and 3.3, we can predict the time interval during which a mobile will visit a cell. Let ta(i, j) 

denote the time when the mobile in cell i will arrive at celland tji, j) denote the time when 

the mobile in cell i will depart from cell;'. ta(i, j) and td{i, j) can be calculated as: 

ta{Ui) = d i V ^ j ) and td(i,j) = + ̂  • (3.4) 

where d(p(t),j) is the distance between the current position p(0 and the boundary of cell i 

and j, and d(j) is the route distance inside cell j. We assume this distance information is 

available from an internal map of the relevant area, since such information is essential to 

provide some location services in the future. 

3.4.2 Call Admission Control Scheme 

The CAC scheme in our combined framework is similar to that in Chapter 2. We calculate 
p(Uj, ta, td), the probability that a mobile original in cell / will visit cell j during the time 
interval ta and td. Assume that the call durations follow exponential distribution with a mean 
value of \/ud. 

P(iJ, ta, td) = P(i,j) • P(The call is not terminated by td) 

= P(i,j) • *TudeUi,dt 
id 

= P{i,j)-e-u<\ (3.5) 

where P(i, j) can be calculated using the common mobility prediction scheme in Section 3.2. 

When a mobile is active in cell i, we can get the most likely cell-time (MLCT) of that mobile, 

a cluster of cells and time where and when the mobile will most likely visit in the future. We 



Chapter 3 A Framework Combining QoS Provisioning and Mobility Management 51 

select cell j and time ta, td with P(i,j, ta, td) greater than zero to form the MLCT of this 

mobile. 

Using P(i,j, ta, td), we can obtain the required bandwidth Br (i, j, m, ta, td) to be 

reserved in cell j for the expected handoff of m from cell i: 

Br(i,j,m,ta,td) = P(i,j,ta,td)-B{m) , (3.6) 

where B(m) is the effective bandwidth required by m. Moreover, the reserved bandwidth 

Br(j> td)» which is the aggregate bandwidth to be reserved in cell j during the time interval 

ta and td, is calculated as: 

Br(j,t„,td) = £ Br(i,j,m,ta,td) , (3.7) 

where M is a set of mobiles which will visit cell j from a set of cells / during the time interval. 

Br(j, ta, td) may not be a constant value due to the continuous time and the summation of 

equation 3.7. Finally, the free bandwidth left after the reservation is: 

B/J,ta,td) = B-Br(J,ta,td) , (3.8) 

where B is the total bandwidth in cell j. Again, note that Bj(j, ta, td) may not be a constant 

value. Let min[5y(/', ta, td)] denote the minimum value of free bandwidth in cell j during the 

time interval. 

When a new call arriving at mobile m with a bandwidth requirement B(m) requires 

admission to cell i, the CAC algorithm first checks if the current free bandwidth of cell i can 

support the call. The call is rejected if the cell does not have enough free bandwidth. 
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Otherwise, CAC will check the availability of free bandwidth in the MLCT of this mobile. 

The checking result can be written as the following: 

Check(j, ta, td, B(m)) = 

l,imn[Bj(j,ta,td)]<B(m) 

™ ™ < - < < ) \ otherwise ' ^ 
B(m) 

Based on these values, the new call will be admitted if the following holds: 

I P(i,j,ta,td)Check(j,ta,td,B(m))>a £ P{i,j,ta,td) , (3.10) 
t,„ id e MLCT j, ta, td e MLCT 

where a is the admission threshold and should be controlled adaptively. 

3.4.3 Simulation Results and Discussions 

The simulation environment is similar to that in Chapter 2. Some differences are as 

follows. We use 100 BUs as the link capacity to test our schemes in large link capacity 

situations. Moreover, we assume that the position information of a mobile is available but 

with error. The error of mobile position estimation follows a normal distribution Â O, a2) 

with o = 51 m, which will have an accuracy level of 50 m in 67% of the cases [3]. From the 

mobile's position information, we predict the time interval during which a mobile will visit a 

cell. 

Figure 3.7 shows the new call blocking probability Pnb and handoff dropping 

probability Phd as functions of offered load with two values of voice ratio. We observe that 

the handoff dropping probabilities are kept below the target value of 1%, which is similar to 

that in Chapter 2. Next, we evaluate the impact of different values of the adaptive factor e, 
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which is used to adaptively control the admission threshold to achieve a better balance of 

guaranteeing Phd and maximizing resource utilization. Figure 3.8 shows Phd as functions of 

simulation time in a cell with the offered load of 100 and ur = 0.2. We experiment with three 

values of £,0.01, 0.02 and 0.04. In the beginning of the simulation, the system has little 

information about users and cannot predict mobility accurately. Then, the admission threshold 

a is increased by a step of e to keep Pnd below the target value. From Figure 3.8, we observe 

that the scheme under-reacts when e = 0.01 and cannot quickly keep Phd below 1%, whereas 

it over-reacts when e = 0.04 and makes the Phd fluctuate near the target value. The value of 

0.02 can keep Phd below the target value with reasonable speed and has no fluctuation. 

Choosing a suitable value of e according to real network conditions is very important to get 

the best performance from the proposed scheme. We use 8 = 0.02 in other simulations. 

We also compare the proposed CAC with two other schemes: (1) OKS98 [57]; and (2) 

YL01 [83] presented in Chapter 2. In OKS 98, bandwidth is reserved in all neighboring cells 

when a mobile has a new call or handoffs to a new cell. We choose the best scheme in [57] 

called movement-based and bandwidth-based for comparisons. In this scheme, different 

bandwidth is reserved in different neighboring cells based on user movement prediction and 

an algorithm is used to control the size of reserved bandwidth pool. However, OKS98 does 

not address how to predict user mobility. We can input the mobility prediction in our 

framework to OKS98. Thus, it can use the information regarding where the mobile will move 

in the reservation. Note that OKS98 does not use the prediction of when the mobile will 

move. In YL01, the mobility prediction scheme and CAC scheme are similar to those 

considered here. However, only in-session, but not out-of-session, mobility information is 
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collected and used for prediction. The proposed scheme is called combined framework (CF)-

CAC in the following. 

Figure 3.9 shows the new call blocking probability and handoff dropping probability 

of CF-CAC, OKS98 and YL01. We observe that OKS98 can also keep Phd below the target 

value. However, it has higher Pnb, which means fewer new calls being admitted. This is 

because the proposed scheme predicts not only to which cell the mobile will handoff but also 

when the handoff will occur. Based on these mobility predictions, we can reserve bandwidth 

more efficiently. Because both YL01 and CF-CAC predict where and when of handoffs, the 

Pnb and Phd of YL01 are quite similar to those of CF-CAC, which are omitted in Figure 3.9. 

The utilization comparisons of these three schemes with different offered loads are shown in 

Figure 3.10. As expected, CF-CAC and YL01 have similar utilization, which is higher than 

that in OKS98. Figure 3.11 plots the Phd as functions of simulation time in a cell in YL01 and 

CF-CAC when the offered load is 100 and ur = 0.2. From this figure, we can observe that Phd 

can be kept below the target value in CF-CAC much faster than that in YL01. This is because 

although both schemes record user mobility history to make predictions, the proposed scheme 

uses all mobility information, both in-session and out-of-session, which makes the predictions 

converge faster compared with that of YL01. The proposed scheme is more desirable in a real 

network where user mobility and traffic patterns change over time, since it can adapt to 

changes faster, and therefore, make more accurate predictions. 

3.5 Summary 

In this chapter, we have presented a novel framework combining QoS provisioning 
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and MM using all available mobility information. The key component of this framework is a 

common mobility prediction scheme, which can be used in both paging mobiles and making 

admission decisions. In addition, a new path-based MM scheme in the combined framework 

was proposed. Numerical results show that the new scheme offers performance gains over the 

original in terms of reduced update and paging costs. Finally, a CAC scheme based on our 

framework has been proposed. The proposed CAC scheme can predict where the mobile will 

handoff using the common mobility prediction scheme, and when the handoff will occur 

using positioning technology. Simulation results show that the proposed scheme meets our 

design goal and outperforms the CAC scheme in Chapter 2 and an existing scheme in [57]. 
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Chapter 4 QoS Provisioning for Adaptive Multimedia 

4.1 Introduction 

The last two chapters only consider non-adaptive traffic and non-adaptive cellular 

mobile networks, where the bandwidth of new or ongoing calls cannot be changed. However, 

in recent years, the scarce and highly fluctuating bandwidth of wireless links has motivated 

the development of adaptive multimedia applications that can operate over a wide range of 

available bandwidths. In adaptive multimedia applications, the bandwidth of a call can be 

dynamically adjusted to adapt to the. various communication environments, especially in the 

link overload situations. Under this adaptive multimedia framework in cellular mobile 

networks, a bandwidth adaptation algorithm needs to be used in conjunction with the CAC 

algorithm for QoS provisioning. 

This chapter presents a novel average reward reinforcement learning approach to 

solve the QoS provisioning problem for adaptive multimedia in cellular networks that aims to 

maximize the network revenue while satisfying several predetermined QoS constraints [90], 

[91]. The novelties of the proposed scheme are as follows: 

1. The proposed scheme takes into account the effects of the status of neighboring cells with 

multiple classes of traffic, enabling it to dynamically adapt to changes in the traffic 

condition. 

2. The underlying assumptions of the proposed scheme are more realistic than those in 

previous schemes. Particularly, the scheme does not need prior knowledge of system state 

transition probabilities, which are very difficult to estimate in practice due to the irregular 
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network topology, different propagation environment and random user mobility. 

3. The algorithm can control the adaptation frequency effectively by formulating the cost of 

the bandwidth adaptation in the model. It is observed in [25], [71] that frequent bandwidth 

switching among different levels may consume a lot of resources and may be even worse 

than a large degradation ratio. The proposed scheme can control the adaptation frequency 

more effectively than previous schemes. 

4. Trading off action space with state space is proposed in our scheme. As mentioned in [82], 

the large action space problem may hinder the deployment of the scheme in [82] in real 

systems. With the approach of trading off action space with state space, the large action 

space problem in QoS provisioning can be solved. 

5. Average reward RL is used in this study. Average reward RL is more suitable than 

discounted reward RL in solving QoS provisioning problems in adaptive multimedia 

cellular networks. 

6. Handoff dropping probability, average allocated bandwidth and inter-class fairness are 

considered simultaneously as QoS constraints in our scheme and can be kept below the 

predetermined values. 

The rest of this chapter is organized as follows. Section 4.2 describes the QoS 

provisioning problems in the adaptive multimedia framework. Section 4.3 introduces the 

average reward reinforcement learning algorithm. Our new approach to solve the QoS 

provisioning is presented in Section 4.4. Section 4.5 discusses some implementation issues of 

our approach. Section 4.6 presents and discusses the simulation results. Finally, we conclude 

this chapter in Section 4.7. 
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4.2 QoS Provisioning in Adaptive Framework 

4.2.1 Adaptive Multimedia Applications 

Originally, adaptive multimedia applications are introduced in the wireline networks. 

Congestion in wireline broadband networks can cause fluctuations in the availability of 

network resources, thereby resulting in severe degradation of QoS. To overcome this 

problem, many techniques are proposed such as the adaptation of compression parameters 

[73] and layered coding [81]. The much more severe resource and bandwidth fluctuations in 

cellular mobile networks make it interesting to consider the use of adaptive multimedia in 

future cellular mobile systems. 

In adaptive multimedia applications, a multimedia call can dynamically change its 

bandwidth to adapt to the fluctuating communication environment throughout its lifetime. 

Assume that there are K classes of services in the network. A class i call uses bandwidth 

among {bn , ba, biJy bKNg} where bu < biU+1) for i = 1, 2, K,j = 1, 2, A7,- and 

Nj is the highest bandwidth level which can be used by class i calls. For example, using the 

layered coding technique, a raw video sequence is compressed into several layers [81], say, 

three layers: a base layer and two enhancement layers. The base layer can be independently 

decoded and it provides basic video quality; the enhancement layers can only be decoded 

together with the base layer and they further refine the quality of the base layer. Therefore, a 

video stream compressed into three layers can adapt to three levels of bandwidth usage (e.g., 

64 kbps, 256 kbps, and 1Mbps). 
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4.2.2 Adaptive Cellular Mobile Networks 

Compared to wireline networks, the fluctuations in resource availability in cellular 

mobile networks are much more severe. This stems from two inherent characteristics of 

cellular mobile networks: fading and mobility. The fading in a wireless channel is highly 

varying with time and spatial dependencies which results in a transmission link with highly 

varying bandwidth. Moreover, mobile users are free to move from one cell to another one. 

The availability of resources of the original cell does not necessarily guarantee that the 

resources are available in new cells. The change in network resources can result in a major 

fluctuation in the availability of network resources served for a call. 

Due to the severe fluctuation of resources in wireless mobile networks, the ability of 

adapting to the communication environment is very important in future cellular mobile 

systems. For example, in universal mobile telecommunications system (UMTS), a radio 

bearer established for a call can be dynamically reconfigured during the call session [1]. 

Figure 4.1 shows the signaling procedure between user terminal (UE) and universal terrestrial 

U E UTRAN 

RADIO BEARER 
RECONFIGURATION 

RADIO BEARER 
RECONFIGURATION COMPLETE 

Figure 4.1 Radio bearer reconfiguration in UMTS 
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radio access network (UTRAN) in radio bearer reconfiguration. Radio bearer information in 

UMTS includes most of the information in layer 2 and layer 1 for that call, e.g., radio link 

control (RLC), power control, spreading factor, diversity, etc. By reconfiguring the radio 

bearer, the bandwidth of a call can be changed dynamically during a call session. 

4.2.3 QoS Provisioning in Adaptive Framework 

The goal of QoS provisioning in an adaptive multimedia framework is to maximize 

the long-term network revenue and guarantee QoS constraints. We consider two important 

modules for QoS provisioning, CAC and BA, in this study. When a cell is in under-loaded 

condition, CAC tries to accept every call and BA tries to allocate as much bandwidth as 

possible to each call. However, network congestion may occur and QoS constraints may be 

violated. In this case, calls should be rejected by CAC or degraded to a lower bandwidth by 

BA. On the other hand, if a call releases the bandwidth due to either call completion or 

handoff to another cell, some of the calls left in that cell might increase their bandwidths. To 

decide which call to accept and which call(s) to change the bandwidth are the roles of CAC 

and BA, respectively, in the adaptive multimedia framework. 

To reduce network signaling overhead, we assume that the BA can only be used when 

a call arrival or departure occurs. That is, BA will not be used when a brief congestion occurs 

due to channel fading, because the reallocation of resources will be outdated when it is 

received by the mobile and the action taken in response to the brief congestion is likely to be 

ineffective. Low level mechanisms such as error correction coding and efficient packet 

scheduling are usually used to handle brief throughput variations of wireless links. 
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Smaller cells (micro/picro-cells) will be employed in future cellular mobile networks 

to increase capacity. Therefore, the number of handoffs during a call's lifetime is likely to be 

increased and the status of neighboring cells has an increased influence on the QoS of the 

local cell. In order to adapt to changes in traffic pattern, the status information of neighboring 

cells should be considered in QoS provisioning. 

We consider three QoS constraints in this study. Since forced call terminations due to 

handoff dropping are generally more objectionable than new call blocking, an important call-

level QoS constraint in wireless cellular networks is Phd , the probability of handoff dropping, 

which is same as that in non-adaptive case considered in Chapters 2 and 3. In addition, 

although adaptive applications can tolerate decreased bandwidth, it is desirable for some 

applications to have a bound on the average allocated bandwidth. So, we need another QoS 

parameter to quantify the average bandwidth received by a call. The normalized average 

allocated bandwidth of class i calls, denoted as AB1, is the ratio of the average bandwidth 

received by class i calls to the bandwidth with un-degraded service. In order to guarantee the 

QoS of adaptive multimedia, AB' should also be kept above a target value. Finally, due to 

bandwidth adaptation, some calls may operate at very high bandwidth levels, whereas some 

calls within the same class may operate at very low bandwidth levels. This is undesirable 

from users' perspective. Therefore, QoS provisioning scheme should be fair to all calls within 

one class and intra-class fairness is another QoS constraint. These constraints will be 

formulated in Section 4.4. 

We formulate the QoS provisioning problem as a semi-Markov decision process 
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(SMDP) [61]. There are several well-known algorithms, such as policy iteration, value 

iteration and linear programming [61] that find the optimal solution of SMDP. However, these 

traditional model-based solutions (require state transition probabilities) to SMDP suffer from 

two "curses": The curse of dimensionality and the curse of modeling. These curses motivate 

us to pursue alternative approach to solve this problem. 

4.2.4 Average Reward RL 

In recent year, an alternative approach called reinforcement learning has become a 

topic of intensive research. RL combines concepts from dynamic programming, stochastic 

approximation via simulation, and function approximation that may be performed with the 

help of regression or neural networks. This method has two distinct advantages over model-

based methods. The first is that it can handle problems with complex transitions by making 

judicious use of stochastic approximation thereby eliminating the need to compute or store 

the transition probabilities. Secondly, RL can integrate within it various function approxima­

tion methods (e.g., neural networks), which can be used to approximate the value function 

even when the size of the state space is gargantuan. 

Most of the published research in RL is focused on the discounted sum of rewards as 

the optimality metric. In some domains, such as economics, discounting can be used to 

represent "interest" earned on rewards, so that an action that generates an immediate reward 

will be preferred over one that generates the same reward some steps into the future. Q-

learning [77] is one of the most popular discounted reward RL algorithms. These techniques, 

however, cannot extend automatically to the average reward problem, which is harder to 
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analyze even when the model is readily available. Not surprisingly, the corresponding 

developments for average reward problems have been slower. In many engineering design 

and decision making problems, performance measures may not suitably be described in 

economic terms, and hence it may be preferable to compare policies based on time averaged 

expected reward rather than expected total discounted reward. Some examples of such 

measures are average waiting time of a job in the queue, average number of customers in the 

system, average throughput of a machine, and average percentage of satisfied demands in an 

inventory system. The QoS provisioning problem in this study falls in this category. 

Discounted RL methods, e.g., g-learning, can lead to sub-optimal behavior and may converge 

much more slowly than average reward RL methods [52]. An algorithm for average reward 

RL called SMART (Semi-Markov Average Reward Technique) [26], [37], [38] has emerged 

recently. The convergence analysis of this algorithm is given in [37] and it has been success­

fully applied to production inventory [26] and airline seat allocation [38] problems. 

We use this average reward RL method to solve the QoS provisioning problem for 

adaptive wireless multimedia in this chapter. The formulation and the performance of this 

method in solving QoS provisioning are presented in the following sections. 

4.3 Average Reward RL for Solving SMDP 

4.3.1 Average Reward SMDP 

For an SMDP, let 5 be a finite set of states and A be a set of possible actions. For 

se S, when an action a e A is chosen, a lump sum reward of k(s, a) is received. Further 

accrual of reward occurs at a rate c(s\ s, a), s' e S, for the time the natural process remains 
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in state s' between the decision epochs. Note that the natural process may change state several 

times between decision epochs, and therefore, the rate at which the rewards are accumulated 

between decision epochs may vary. The expected reward between two decision epochs, given 

that the system is in state s, and a is chosen at the first decision epoch, may be expressed as: 

r(s,a) = k(s, a) + E^f c(W„ s, a)dt^ , (4.1) 

where x is the transition time to the second decision epoch, and W, denotes the state of the 

natural process. Let n, denote the number of decisions made up to time t. Starting from state s 

at time 0 and using a policy 7t, the expected total reward generated by the process up to time t 

can be written as: 

n , - i 

v^s) = E:^'oc(wu,Sn,an)du+ £ + j • (4.2) 

The average reward gn for a policy can be given as: 

EnA £ [k(sm an) + £+,c(W„ an)dt] 

g\s) = l i m — [ — . (4.3) 

E: 
N 

St-
n = 0 

where a„ represents the time of the (n+l)th decision epoch and T„ = an +, - rj„. 

The Bellman optimality equation for average reward SMDPs can be stated as follows 

[61]. 

Theorem 4.1: Under considerations of average reward over an infinite time horizon 
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for any unichain SMDP, there exists a scalar g* and a value function R* satisfying the 

system of equations for all s' e S, 

R*(s) = max(r(s, a)-g*y(s, a) + £ ' (4-4) 

where y(s, a) is the expected sojourn time in state s when action a is taken in it, and Pss(a) 

is the probability of transition from state s to state s' under action a in one step. 

For a proof of Theorem 4.1, see Chapter 11 of [61 ]. 

There are several model-based algorithms that can be derived from the above Bellman 

equation for solving SMDPs. However, the two "curses" suffered by the model-based 

algorithms make these model-based algorithms impractical in solving SMDP for QoS 

provisioning in adaptive multimedia cellular systems. Therefore, we use the model-free RL 

algorithm to solve the average reward SMDP, which is described in the following subsection. 

4.3.2 Solving the Average Reward SMDP Using RL 

RL is a way of teaching agents (decision makers) optimal policies by assigning 

rewards and punishments for their actions based on the temporal feedback obtained during 

active interactions of the agent with the system environment. In the RL model depicted in 

Figure 4.2, a learning agent selects an action for the system that leads the system along a 

unique path till another decision-making state is encountered. At this time, the system needs 

to consult with the learning agent for the next state. During a state transition, the agent gathers 

information about the new state, immediate reward and the time spent during the state-transi­

tion, based on which the agent updates its knowledge base using an algorithm and selects the 
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Figure 4.2 A reinforcement learning model 

next action. The process is repeated and the learning agent continues to improve its perfor­

mance. 

Average reward RL uses the action value representation that is similar to its counter­

part, g-learning. The action value Rn(s, a) represents the average adjusted value of doing an 

action a in state s once, and then following policy n subsequently [52]. Let R*(s, a) be the 

average adjusted value by choosing actions optimally. The Bellman equation for average 

reward SMDPs equation 4.4 can be rewritten as: 

R*(s, a) = r(s, a) - g*y(s, a) + £ P„.(a) max R*(s\ b) . (4.5) 
I ' E S 

The optimal policy is n*(s) = arg max R*(s\ b). Since the R function makes the action 
be A 

explicit, the average reward RL algorithm estimates action values on-line using a temporal 

difference method, and then uses them to define a policy. The action value of state-action pair 
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(s, a) visited at the nth decision making epoch is updated as follows. Assume that action a in 

state 5 results in a system transition to s' at the subsequent decision epoch, then, 

Rnew(s>a) = (l-an)Rold(S>a) + an\-ract(S,>S>a)-PnXn+ max RoM{s\ b)] , (4.6) 

where a„ is the learning rate parameter for updating of the action value of a state-action pair 

of the nth decision epoch and ract{s\ s, a) is the actual cumulative reward earned between nth 

and (n+l)th decision epochs. x„ is the actual sojourn time between the decision epochs. In the 

original version of SMART [26], the reward rate, p„, is shown as: 

where T(ri) denotes the sum of the time spent in all states visited till the nth epoch. The 

original version of SMART does not involve a step-size (learning rate) and hence its rate of 

change per iteration is not controlled, which will results in the divergence behavior of this 

algorithm in some situations. A new version of SMART is proposed and the convergence 

proof is given in [37]. In the new version algorithm, the reward rate, p„, is: 

Pn = 
r ( » - l ) p , . 1 + r(j ,

> j , a ) 

T(n) 
(4.7) 

Pn = (l-pVOPrt-l + PV 
T(n- l)p „ _ i + r(s\ s, a) 

T(n) (4.8) 

where (3„_! is the learning rate parameter. If each action is executed in each state an infinite 

number of times on an infinite run and a„, (3„ are decayed appropriately, the above learning 

algorithm will converge to optimality [37]. 



Chapter 4 QoS Provisioning for Adaptive Multimedia 72 

4.4 Formulation of QoS Provisioning in Adaptive Framework 

In adaptive multimedia cellular networks, we assume that call arrivals including new 

and handoff call arrivals follow a Poisson distribution. Each call needs a service time that is 

exponentially distributed. The arrival distribution and the service distribution are independent 

to each other. The QoS provisioning for adaptive multimedia problem can be formulated as an 

S M D P . In order to utilize the average reward RL algorithm, it is necessary to identify the 

system state, actions, rewards, and constraints. The exploration method to guarantee the RL 

algorithm convergence and the method to trade off action space with state space are also 

described in this section. 

4.4.1 State, Actions and Rewards 

At random times an event e can occur in a cell c, where e is either a new call arrival, a 

handoff call arrival, a call termination, or a call handoff to a neighboring cell. At this time, 

cell c is in a particular configuration x defined by the number of each type of ongoing calls in 

cell c. x = (xi i, JCT 2, ...,xij, XKNK ), where stands for the number of ongoing calls of class 

/ using bandwidth btj in cell c for 1 < i < K and 1 <j < N,•. Recall that K is the number of 

service classes in the system and N(- is the highest bandwidth level of class i defined in Section 

4.2. Since the status of neighboring cells is very important for the QoS provisioning, we 

should consider it in the state description. The status of neighboring cells y can be defined as 

the number of each type of ongoing calls in all neighboring cells of cell c. y = (y i T , y 1 2 , ..., ytj, 

yKNi(), where y^ stands for the number of ongoing calls of class i using bandwidth in all 

neighboring cells of cell c. The configurations and the event together determine the state, s = 
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(x,y,e). 

We assume that each cell has a fixed channel capacity C and cell c has M neighboring 

cells. The state space is defined by as: 
f K Ni K N, -j 

S = \s(x,y,e):2 5 > A ^ ; £ ^yi]bu^MC\ . 

The state space will increase dynamically by considering the status of neighboring 

cells. It will be very difficult, if not impossible, to solve the problem using model-based 

approaches. 

When an event occurs, the agent must choose an action according to the state. An 

action can be denoted as: a = (aa, ad, au), where aa stands for the admission decision, i.e., 

admit (aa = 1) or reject (aa = 0 ) , ad stands for the action of bandwidth degradation when a call 

is accepted and au stands for the action of bandwidth upgrade when there is a departure (call 

termination or handoff to a neighboring cell) from cell c. ad has the form 

ad = {(d\2, ..., d% ..., f/N'K

l), 1 < i < K, Kj < Nh 1 < n <j}, 

where d"j denotes the number of ongoing class i calls using bandwidth by that are degraded to 

bandwidth bm. au has the form 

1 $ 

au= ( ( " 1 2 , ••;u"j, i<i<K, 1 <j<N,J<n<N,}, 

where u"j denotes the number of ongoing class i calls using bandwidth that are upgraded to 

bandwidth bin. 
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After the action of bandwidth degradation, the configuration (x n, xi2, •••,xij,..., XKNK ) 

becomes 

' AT, JV, N, j - l Nk-l > 

xn
 + X d\m,xn+ £ dlm — d\2, ...,Xjj+ £ X ̂ </' •••>XKNK~ £ 

^ m = 2 m = 3 m =j+l m = 1 m = l , 

Similarly, after the action of bandwidth upgrade, the configuration (xii, xl2, ...,Xij,..., XKNK) 

becomes 
( N, j - l N, Nk-\ \ 

M l l > *12 + " l l - 2J M ] 2 - - • ' XU 2J 2J UV> - - X K N K

+ 2-, UKm • 
^ m — 2 m = 3 m - 1 m = + 1 m = 1 y 

Based on the action taken in a state, the network earns immediate deterministic 

revenue due to the carried traffic in the cell. On the other hand, in order to inform the senders 

and receivers of their new bandwidths in the bandwidth adaptation, extra signaling overhead 

is required, which will consume radio and fixed line bandwidth, as well as the battery power 

in the mobile. It is observed in [25], [71] that frequent bandwidth switching among different 

levels may consume a lot of resources and may be even worse than a large degradation ratio. 

Thus, there is a trade-off between the network resources utilized by the calls and the signaling 

and processing load incurred by bandwidth adaptation operation. We use a function to model 

the cost due to the action of bandwidth adaptation. The definition of the cost function depends 

on specific traffic, user terminal, network architecture, etc. in real networks. One intuitive 

definition is that the cost is proportional to the number of bandwidth adaptation operations, 

which is used in this study. 

Let rtj be the reward rate of a class i call using bandwidth bip ca be the cost of one 
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bandwidth adaptation operation, and Na(a) be the total number of bandwidth adaptation 

operations in action a. The actual cumulative reward, ract(s\ s, a), between two successive 

decision epochs starting in state s (with action a) and ending in state s' can be calculated as: 

K N, 

ract{s\ s, a) = Tacl(s\ s, a) £ £ x'uru - N„(a)c„ , 
• = \j= i 

where Tact(s\ s, a) is the actual sojourn time between the decision epochs. 

By formulating the cost of the bandwidth adaptation operation in the model, we can 

control the adaptation operation frequency effectively. Note that all ongoing calls in the cell, 

including those that have been degraded or upgraded, contribute to the reward racl(s\ s, a). 

Therefore, we do not need an extra term to formulate the penalty related to the bandwidth 

degradation. 

4.4.2 Constraints 

For a general SMDP with L constraints, the optimal policy for at most L of the states is 

randomized [6]. Since L is much smaller than the total number of states in the QoS provision­

ing problem considered in this study, the non-randomized stationary policy learned by RL is 

often a good approximation to the optimal policy [34]. To avoid the complications of random­

ization, we concentrate on non-randomized policies in this study. 

As mentioned in Section 4.2, the first QoS constraint is related to the handoff 

dropping probability. Upon the nth decision epoch, the probability of a handoff call being 
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dropped, denoted as Phd{sn), should be kept below a target value. Let TPhd denote the target 

maximum allowed handoff dropping probability. The constraint associated with Phd can be 

formulated as: 

N 

l im < TPhd . 

" ~* °° N 

n = 0 

The Lagrange multiplier formulation relating the constrained optimization to an 

unconstrained optimization [11], [12] is used in this study to deal with the handoff dropping 

constraint. To fit into this formulation, we need to include the history information in our state 

descriptor. The new state descriptor is's = (Nhp Nnd, x, s), where Nhr and Nnc{ are the total 

number of handoff call requests and handoff call drops, respectively, from each class, x is the 

time interval between the last and the current decision epochs, and s is the original state 

descriptor. In order to make the state space finite, quantified values of Phd = Nhd/Nhr and x 

are used. 

A Lagrange multiplier to is used for the parameterized reward 

; racl{s\'s,a) = ract{'s\ 1, a) - (az('s', s, a), 

where racl(s\ s, a) is the original reward function and z(s\ s, a) = PArf(S)TflC,(5', s, a) 

is the cost function associated with the constraint. A nice monotonicity property associated 
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with to shown in [11] facilitates the search for a suitable co. 

The second QoS constraint is related to AB', the normalized average allocated 

bandwidth of class i calls, let B' denote the bandwidth allocated to class i calls, AB' can be 

defined as the mean of B'/biN over all class / calls in the current cell. Recall that biNj is the 

bandwidth of a class i call with un-degraded service. 

N, 

AB< = E\f\ = mi = ^_ 
biN, X xu 

7 = 1 

,i = l,...,K 

AB' should be kept larger than the target value TAB': 

ABl>TABl,i = \,...,K 

The third QoS constraint is the intra-class fairness constraint, which can be character­

ized as the variance of B'/biN over all class i calls in the current cell: 
N, N: 

flM _ var{fl'} _ E{{Bi)2}-E2{Bi) _ 7 = 1 j . i 
2Zxu2Zxu(bu) ~ 

VB' = var ̂ - = , 
biN, biN. 

t N, \ 

Z xubu 
V7 = l J 

i = 1, ...,K. 

biN. 
( N, \ 

l x u 
VJ = 1 J 

VB' reflects how different are the bandwidths between class i calls. For absolute 
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fairness, VB' should be kept to zero all the time. However, this will be very difficult in the 

real situation. Therefore, it is better to keep VB' below a target value TVB' as well: 

VB'>TVB\i = 1, K • 

Afi'and VB' are intrinsic properties of a state. With the current state and action 

information (s, a), we can forecast AB' and VB' in the next state s', AB'(s') and VB'(s'). If 

ABl(s?) < TAB1 and VB'(s') < TVB1, i = 1, K, the action is feasible. Otherwise, this action 

should be eliminated from the feasible action set A(s). 

4.4.3 Exploration 

As mentioned in Section 4.3, each action should be executed in each state an infinite 

number of times to guarantee the convergence of RL algorithms. This is called exploration 

[10]. Exploration plays an important role in ensuring that all the states of the underlying 

Markov chain are visited by the system and all the potentially beneficial actions in each state 

are tried out. Therefore, with a small probability pn upon the nth decision-making epoch, 

decisions other than that with the highest action value should be taken. 

In this work, we use the Darken-Chang-Moody search-then-converge procedure [27] 

to decay the learning rates an, and the exploration rate pn. In the following expression, 0„ 

O 
can be substituted by an, P„ and pn for learning and exploration respectively. 0„ = y-^- , 
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where u = —p-—, where 0 O and 0 r are constants. 0 r + n 

4.4.4 Trading off Action Space Complexity with State Space Complexity 

We can see that the action space in our formulation is quite large. It will be very time-

consuming to find the suitable action given a specific state using RL. As mentioned in [82], 

the large action space problem may hinder the deployment of the scheme proposed in [82] in 

real networks where the number of bandwidth levels is usually large. In this work, we propose 

a method to trade off action space complexity with state space complexity in the QoS 

provisioning scheme using an algorithm described in [10]. The advantages of doing this are 

that the action space will be reduced and the extra state space complexity may still be dealt 

with by using the function approximation described in Section 4.5. 

Suppose that a call arrival event occurs in a cell with state s, the action that can be 

chosen from is a = (aa, d\2, d"j, cCK

Nl(

l), where there are at most 

V = 1+XZ(/ -1) components. We can break down the action a into a sequence of V 
i = 1; = 2 

controls 
&ai d\2i •••> djj, CIKNK > 3.i\d introduce some artificial intermediate "states (s, cta), 

(s, aa, d\2), ..., (s, aa, d\2, d"j, cfK

k

Nt'), and the corresponding transitions to model the 

effect of these actions. In this way, the action space is simplified at the expense of introducing 

V- 1 additional layers of states and V- 1 additional action values R(s, a), R(s, aa, d\2) 

R(s, aa, d\2, • •., dip ..., c$Nk

2) in addition to R(s, aa, d\2, ..., dn

u, ..., cfK

k

Nk'). Actually, we view 
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the problem as a deterministic dynamic programming problem with V stage. For 

v = 1, ..., V, we can have an v-solution (a partial solution involving just v components) for 

the vth stage of the problem. The terminal state corresponds to the V-solution (a complete 

solution with V components). Moreover, instead of selecting the controls in a fixed order, it is 

possible to leave order subject to choice. 

In the reformulated problem, at any given state s = (Nnr Nhd, x, x, y, e) where e is a 

call arrival of class i, the control choices are: 

1. Reject the call, in which case the configuration x does not evolve. 

2. Admit the call and no bandwidth adaptation is needed, in which case the configuration x 

evolves to (xu, xn, ..., xu, ..., xiNi + 1, . . . , XKNK) . 

3. Admit the call and bandwidth adaptation is needed. In this case, the problem can be divided 

into V stages. On the vth stage (v = 1, V), one particular call type that has not been 

selected in previous stages, say the one using bandwidth b,j with xtJ > 0, can be selected 

and there are following options: 

a. Degrade one call using bandwidth btj one level, in which case the configuration x 

evolves to (xn,xl2, xtj_, + 1, * y - 1, . . . , xiNi + 1, . . . , xKNf) . 

b. Degrade two calls using bandwidth btj one level, in which case the configuration x 

evolves to (xu, x12, ..., xu_2 + 2, xu - 2, . . . , xiNi + 1, . . . , XKNK) . 

c. Increase the number of calls being degraded until the call arrival can be accommo­

dated. Please note that the number of options depends on specific selected call type 

and the class of call arrival. 
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The similar trade-off can be done when a call departure event occurs. 

4.5 Implementation Considerations 

4.5.1 Approximate Representation of Action Values 

In practice, an important issue is how to store the action value R(s, a) in cellular 

mobile networks. There are several approaches, among which the lookup table is the most 

straightforward method to represent action values. A lookup table representation means that a 

separate variable R(s, a) is kept in memory for each state-action pair (s, a). This method will 

be prohibitive when the number of state-action pairs becomes large because memory require­

ment can be huge. Approximate representation should be used to break the curse of 

dimensionality in the face of very large state spaces. A neural network is an efficient method 

to represent the action values. A common popular neural network architecture is the multi­

layer perceptron (MLP) with a single hidden layer [10] as shown in Figure 4.3. Under this 

architecture, the state-action pair (s, a) is encoded as a vector and transformed linearly 

through the input layer involving coefficients in this layer to give several scalars. Then, each 

of these scalars becomes the input to the sigmoidal function in the hidden layer. Finally, the 

outputs of the sigmoidal functions are linearly combined using coefficients to produce the 

final output. These coefficients are also known as weights of the network. 

The network is trained in a supervised fashion using the back-propagation algorithm. 

This means that during training both network inputs and target outputs are used. An input 

pattern is applied to the network and an output is generated. This output is compared to the 

corresponding target output and an error is produced and propagated back through the 
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Linear Sigmoidal Linear 
Layer Layer Layer 

Figure 4.3 The neural network used in approximation 

network, and the network weights are adjusted to minimize the sum of the errors squared. The 

procedure is repeated until the error is reduced to a sufficient level. 

4.5.2 Structure and Pseudo-code 

The structure of the RL-based QoS provisioning scheme is shown in Figure 4.4. First 

of all, an event (either a call arrival or a call departure) occurs and a state s can be identified 

by getting the status of the local cell and neighboring cells. Then, a set of actions {a} can be 

found according to the state. Feed the state and action information into the neural network to 

get the action values. With probability 1 -pn, choose the action with the largest action value. 

Otherwise, perform the exploration, i.e., choose an action randomly. When the next event 

occurs, the action value is updated and the process is repeated. A pseudo-code description of 

the proposed scheme is given in Figure 4.5. 

4.6 Simulation Results and Discussions 

A cellular network of 19 cells is used in our simulations, as shown in Figure 4.6. To 
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Identify 
state s 
Identify 
state s 

Find action 
set {a} 
Find action 
set {a} 

Retrieve 
action 
values 

a 

With probability l-pn 

choose and execute an 
action with the largest 
action value. Otherwise, 
perform the exploration. 

Action value 
representation OH Action value update 

The next 
event 
occurs 

Figure 4.4 The structure of the QoS provisioning scheme 

initialize iteration count n -.= 0, action value R(s, a) := 0, 
cumulative reward CR := 0, total time T := 0, 
reward rate p o := o 

while n < MAX_STEPS do 
calculate p„,a„ , fusing iteration count n 
with probability of (l - pn), tradeoff action space with state 

space and choose an action^ e A that maximizes R(sm,aJ. 
Otherwise, choose a random (exploratory) action from A 

execute the chosen action 
wait for the next event e 
update Rm(sn,a,) = (l-a„)RM(s n,a.) + 

if the action value is stored in neural network 
R„w(s„,aJ-RM(s„,aJ is served as an back 
propagated error to learn the weight parameters in 
the neural network 

endif 
if an exploration action was not chosen 

update CR = CK + r(s„tl,,s-„,aj, 
= r +r(.v„tl,i„,a„) and 

endif 
update iteration count n = n + 1 

Figure 4.5 A pseudo-code of the QoS provisioning scheme 

avoid the edge effect o f the f i n i t e n e t w o r k s i z e , wrap-around is applied to the edge cells so 

that each cell has six neighbors. For example, cells 2, 9,10,14,18 and 19 are the neighbors of 
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cell 8. Each cell has a fixed bandwidth of 2 Mbps. Two classes of flows are considered (see 

Table 4.1). Class 1 traffic has three different bandwidth levels, 128, 192 and 256 kbps. 64, 96 

8 
1 9 > 9 

18 
7 . 

2 
3 

10 

17 
6 , 

1 
4 

11 

16 
15 , 

5 
v13 

12 

Figure 4.6 A cellular network used in simulations 

and 128 kbps are the three possible bandwidth levels of class 2 traffic. Two reward functions 

are used in simulations, as shown in Table 4.1. Reward function 1 represents the scenario that 

the reward generated by a call is a linear growing function with the bandwidth assigned to the 

call. Specifically, rtj = bij. In reward function 2, a convex function rtJ = -22£—^—^ ' n ^ -
" max 

is used, where bmax is largest bandwidth used by a call in the network. We assume that the 

highest possible bandwidth level is requested by the call arrival. That is, call arrival of class 1 

always requests 256 kbps and call arrival of class 2 always requests 128 kbps. Then the 

Table 4.1 Experimental parameters 

Traffic 
Class 

Bandwidth 
Level 
(kbps) 

Reward 
Function 1 

Reward 
Function 2 

Class 1 bn: 128 rn: 128 r u : 192 Class 1 
bn: 192 r 1 2 : 192 r 1 2 : 240 

Class 1 

bn: 256 r 1 3 : 256 r 1 3: 256 
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Table 4.1 Experimental parameters 

Traffic 
Class 

Bandwidth 
Level 
(kbps) 

Reward 
Function 1 

Reward 
Function 2 

Class 2 b2l: 64 r 2 1: 64 r 2 1: 112 Class 2 
b22: 96 r22- 96 r22: 156 

Class 2 

b23: 128 r 2 3: 128 r 2 3: 192 

network will make the CAC decision and decide which bandwidth level the call can use if it is 

admitted. 30% of the offered traffic is from class 1. Moreover, call holding time and cell 

residence time are assumed to follow exponential distributions with mean values 180 seconds 

and 150 seconds, respectively. The probability of a user handing off to any adjacent cell is 

equally likely. The target maximum allowed handoff dropping probability, TPhd, is 1% for 

both classes. Other QoS parameters are changed in the simulations. 

The action values are learnt by running the simulation for 30 million steps with a 

constant new call arrival rate of 0.1 calls/cell/second. The constants used for the learning and 

exploration rates are chosen as ot0 = p o = p0 = 0.1, and ar = p% = pr = 10n , which are 

common values in the Darken-Chang-Moody decaying scheme [27]. The monotonicity 

property associated with the Lagrange multiplier shown in [11] is used to search a suitable to, 

which is 157560 in the simulations. A multi-layer neural network is used in the approximate 

representation of action values. There are 31 inputs units representing the state and action, 20 

hidden units with sigmoid functions, and one output unit representing the action value. 

Among the 31 input units, one unit represents the event; six units represent the status of the 

local cell and six units represent the status of neighboring cells; one unit represents the 
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handoff dropping probability; one unit represents the time interval between the last and the 

current decision epochs; 13 units represent the action; one unit represents the number of 

bandwidth adaptation operations; one unit represent the Lagrange multiplier; one unit is the 

bias unit that always has an input of one. The neural network is trained on-line by using the 

back-propagation algorithm in conjunction with the reinforcement learning. 

Two QoS provisioning schemes are used for comparisons, guard channel (GC) 

scheme [41], [60] for non-adaptive traffic and ZCD02 scheme [92] for adaptive multimedia. 

256 kbps is reserved for handoff calls in the GC scheme. In ZCD02, an optimal call mix 

selection scheme is derived using simulated annealing. The proposed scheme is called RL in 

the following. The linear reward function is used in all simulation experiments unless 

otherwise mentioned. 

We first use uniform traffic in simulations, where the traffic load is the same among all 

19 cells. Call arrivals of both classes to each cell form a Poisson process with mean A,. 

The average rewards of different schemes normalized by the GC scheme are shown in 

Figure 4.7. Average allocated bandwidth and intra-class fairness constraints are not consid­

ered here. We can see that RL and ZCD02 yield more rewards than GC. In GC scheme, 

bandwidth adaptation is not used and a call will be rejected if no free bandwidth is available. 

Both RL and ZCD02 have bandwidth adaptation function, and therefore, can yield more 

rewards than GC. In Figure 4.7, the reward of the proposed scheme is similar to that in 

ZCD02, because both of them can maximize network revenue in QoS provisioning. We can 

also observe that at low traffic load, as the new call arrival rate increases, the gain becomes 
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more significant. This is because the heavier the offered load, the more the bandwidth adapta­

tion is needed when the cell is not saturated. However, when the traffic is high and the cell is 

becoming saturated, the performance gain of RL and ZCD02 over GC is less significant. The 

cost of adaptation operation is not considered, i.e., ca = 0, in Figure 4.7. 

Figure 4.8 shows the effects of ca, the cost of adaptation operation, when new call 

arrival rate is 0.067 calls/cell/second. The reward of ZCD02 drops quickly as ca increases, 

and even becomes less than that in GC when ca = 150. In contrast, the reward drops slowly 

in RL. Since the proposed scheme formulates ca in the reward function, it eliminates those 

actions requiring a large number of adaptation operations when ca is high by comparing the 

action values of different actions. Therefore, the proposed scheme can control the adaptation 

cost, and therefore, the adaptation frequency, effectively. We use c„ = 30 in the following 

simulation experiments. 

Figure 4.9 shows that RL maintains an almost constant handoff dropping probability 

for a large range of new call arrival rates. In contrast, neither ZCD02 nor GC can enforce the 

QoS guarantee for the handoff dropping probability. We can reduce the handoff dropping 

probability in GC scheme by increasing the number of guard channels and in ZCD02 by 

increasing the "virtual gain function" of handoff calls. However, this will further reduce the 

reward earned in these two schemes. Figures 4.10 and 4.11 show the new call blocking 

probabilities of class 1 and class 2 traffic, respectively. Both ZCD02 and RL have less 

blocking probabilities compared with GC, because both of them have adaptation capability 

and can accept more new calls. 
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Figures 4.12 and 4.13 show the normalized allocated average bandwidths of class 1 

and class 2 traffic, respectively. TAB' = 0.7 is considered here. We can observe that as the 

new call arrival rate increases, the average bandwidths of both classes in ZCD02 and RL 

decrease. This is the result of the bandwidth adaptation. For some applications, it maybe 

desirable to have a bounded average allocated bandwidth. In Figures 4.12 and 4.13, it is 

shown that the normalized allocated average bandwidth can be bounded by the target value in 

RL. In contrast, ZCD02 cannot guarantee this average bandwidth QoS constraint. The 

average bandwidth of GC is always 1, because no adaptation operation is done in GC. Please 

note that the lowest possible normalized average bandwidth is 0.5 for both classes. This can 

be seen from Table 4.1, where the lowest bandwidth level.is half of the highest bandwidth 

level for both classes. The normalized bandwidth variance, TVB, an indicator of intra-class 

fairness, is shown in Figures 4.14 and 4.15. We can see that RL can keep the bandwidth 

variance below the target value. Since the bandwidth in GC cannot be changed, the bandwidth 

variance is always 0 in GC. It can be seen that ZCD02 has very large bandwidth variance, 

which means that intra-class fairness cannot be satisfied in ZCD02. The achievements of 

higher QoS requirements come at a cost to the system. The effects of different values of TAB 

and TVB on the average reward are shown in Figures 4.16 and 4.17, respectively. We can see 

that higher TAB, which is preferred from users' point of view, will reduce the reward. 

Similarly, lower TVB, which means higher intra-class fairness, will reduce the reward as 

well. 

We also consider a non-uniform traffic situation, where the cells in the second ring, 
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i.e., cell 2-7 in Figure 4.6, have 1.5 times the new call arrival rate in the outer ring, i.e., cell 8-

19. The central cell has 2 times the new call arrival rate in the outer ring. Since the method of 

predicting handoff rate from neighboring cells is not given in ZCD02, a static predicted 

handoff rate is used in the revenue function, and we call it ZCD02-static. Figure 4.18 shows 

that RL yields more rewards than ZCD02-static and GC schemes. The performance gain of 

RL over GC and the difference between RL and ZCD02-static are significant in the non­

uniform traffic situation. This is because our RL method takes into account the status of 

neighboring cells, and therefore, it can dynamically adapt to different traffic patterns. 

The traffic load in cellular networks is typically time varying. A typical traffic pattern 

[32] during a 24 hour business day is shown in Figure 4.19. The peak hours occur around 

11:00 a.m. and 4:00 p.m. Figure 4.20 plots the normalized average rewards under the assump­

tion that the traffic loads are both non-uniformly distributed and temporally varying 

(maximum 0.067 calls/second). The reward is calculated on an hour-by-hour basis. The 

improvement of the proposed scheme over ZCD02-static is apparent. 

b^ (b b 
We then use a convex reward function rtj = — ^ in the simulations. 

O max 

The reward rate for specific bandwidth level of each class is shown in Table 4.1. The simula­

tion results using the convex reward function show a very similar pattern to those using the 

linear reward function, and therefore, only one figure is provided here. Figure 4.21 shows the 

average rewards of different QoS schemes with non-uniform traffic. We can see that Figure 

4.21 is similar to Figure 4.18. 
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ZCD02 uses simulated annealing to find the optimal call-mix, in which a variable 

called temperature is decreased periodically by employing a monotone descendent cooling 

function. We follow the example given in ZCD02, where 90 temperature steps are used and 

each step repeats 100 times. In each of 9000 steps, the revenue and the constraints are re­

evaluated. In RL, since neural network is used in the approximate representation, the major 

operations required to make the CAC and BA decisions come from retrieving action values 

and comparing these action values. We run the simulations with a fixed call arrival rate of 0.1 

calls/second for 1000 call arrivals and departures, and calculate the average number of 

operations (additions, multiplications and comparisons) required to make one decision. Table 

4.2 shows the average number of operations. We observe that ZCD02 needs many more 

operations than RL to make the CAC and BA decisions. This shows that ZCD02 will be more 

expensive than RL for computation resources in practice. However, training is needed for the 

RL approach, whereas ZCD02 and GC do not need any training. 

4.7 Summary 

In this chapter, we have proposed a QoS provisioning scheme for adaptive multimedia 

in cellular mobile networks. By considering the status of neighboring cells, the proposed 

scheme can dynamically adapt to the changes in traffic condition. The rapid growth in the 

number of states and the difficulty to estimate the state transition probabilities in practical 

cellular systems motivate us to choose a model free average reward reinforcement learning 

solution to solve this problem. A method to trade off action space with state space has been 

proposed to solve the large action space problem in QoS provisioning. Three QoS constraints, 

handoff dropping probability, average allocated bandwidth and intra-class fairness are consid-
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ered in the scheme. Simulation results have been presented to show the effectiveness of the 

proposed scheme in adaptive multimedia cellular networks. 
Table 4.2 Number of numerical operations 

QoS Schemes Number of numerical 
Operations 

ZCD02 181,240 
RL 9,872 
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Adaptation operation cost 

Figure 4.8 Normalized average rewards vs. adaptation operation cost 
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Figure 4.9 Handoff dropping probabilities 
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Figure 4.10 New call blocking probabilities of class 1 calls 
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Figure 4.11 New call blocking probabilities of class 2 calls 
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Figure 4.12 Normalized average bandwidths of class 1 calls 
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Figure 4.13 Normalized average bandwidths of class 2 calls 
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Figure 4.14 Normalized bandwidths variance of class 1 calls 

Figure 4.15 Normalized bandwidths variance of class 2 calls 
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Figure 4.16 Normalized average rewards for different average bandwidth requirements 
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Figure 4.17 Normalized average rewards for different bandwidth variance requirements 
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Figure 4.18 Normalized average rewards with non-uniform traffic 
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Figure 4.19 A traffic pattern of a typical business day 
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Figure 4.20 Normalized average rewards with time varying traffic 

Figure 4.21 Normalized average rewards with convex reward function and non-uniform traffic 
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Chapter 5 M-EMAC for Cellular-to-IP Internetworking 

5.1 Introduction 

In this chapter, we address the issue of end-to-end QoS provisioning in cellular-to-IP 

internetworking. When a mobile/wireless user access the Internet via a cellular network, the 

traffic passes through two networks: cellular network and Internet. In these two networks, 

they have different QoS definitions and mechanisms. However, the QoS experienced by users 

is end-to-end, i.e., from the server to the mobile host. Therefore, effective internetworking 

schemes between cellular networks and the Internet are very important to guarantee the end-

to-end QoS. Particularly, we study the EMAC scheme that is proposed to enable QoS in the 

Internet over wireline networks. Although EMAC has many desirable features in the wireline 

networks as shown in previous work, in this chapter, we will show that several distinct 

characteristics in cellular mobile networks make EMAC difficult to implement. On the other 

hand, cellular mobile network, e.g., UMTS, has been designed to include its own call 

admission control functions. We propose a mobile EMAC (M-EMAC) scheme for cellular-to-

IP internetworking [85], [86]. Simulation results show that M-EMAC outperforms EMAC in 

the cellular mobile domain. 

The rest of this chapter is organized as follows. The EMAC scheme is presented in 

Section 5.2. Section 5.3 describes the performance of EMAC in cellular mobile networks. M-

EMAC is proposed and its performance is evaluated in Section 5.4. Finally, we conclude this 

chapter in Section 5.5. 
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5.2 EMAC Scheme for the Internet 

The basic feature of E M A C proposed in previous work is to use end-to-end measure­

ments to determine whether the QoS requested by a new call can be supported over the net­

work, and i f so to accept the new call . Figure 5.1 shows the two phases of a cal l : a probing 

phase and, i f the call is accepted, a data transmission phase. First the sender that wants to set 

up a real-time call probes the network by transmitting a stream of fixed-length packets at con­

stant intervals, at the data rate that it wishes to reserve over the network. Upon reception of 

the first probing packet, the receiver starts measuring the probing packets' arrival statistics 

over a measurement period x . The measured statistics can be as simple as the average rate 

received during the period x , or more complex including delay and jitter statistics. A t the end 

of the measurement period, the receiver estimates whether there are enough resources avail-

Sender Receiver 

transmission 
phase 

Data 

Probing 
phase 

Figure 5.1 EMAC scheme for the Internet 
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able along the call path to meet a predetermined QoS requirement based on the statistics col­

lected. The sender is notified of this decision to start the data transmission phase or abort the 

call. 

In EMAC schemes, core routers are stateless and they need only to discriminate 

between classes of packets, in full agreement with the DiffServ paradigm. As observed in 

[19], there is a bandwidth stolen problem when fair queueing is used to service admission-

controlled traffic; i.e., the bandwidth of a call having a successful probing phase may be sto­

len by subsequent arrivals. So, one should not use fair queueing or its variants to service 

admission-controlled traffic. Moreover, the admission-controlled traffic will coexist with cur­

rent best-effort traffic and it is necessary to provide isolation between them. So, one must use 

scheduling mechanisms with strict rate limits on the admission-controlled flows. Based on 

these considerations, we use priority queueing with a rate limiter [93] to separate admission-

controlled flows from best-effort ones, with FIFO service within the admission-controlled 

traffic itself in the following study. 

Moreover, there are two choices in probing [19]: (a) send the probe packets at a lower 

priority than the admission-controlled data traffic (but still at a higher priority than best-effort 

traffic), called out-of-band probing; and (b) send the probe packets at the same priority as data 

traffic, called in-band probing. We will study both of these choices in our simulations. 

5.3 EMAC in Cellular Mobile Networks 

Similar to TCP, EMAC has been designed to operate over wireline networks, where 

the hosts are fixed, the bit error rate (BER) is very low and packet losses occur mostly 
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because of congestion. However, in cellular mobile networks, the scarce bandwidth, higher 

BER on wireless links and host mobility combine to make the implementation of EMAC 

challenging. We study these issues in the following subsections. 

5.3.1 Low Bandwidth 

Compared to the bandwidth of a typical Ethernet which is around 10 Mbps (100 Mbps 

for fast Ethernet), the link capacity in cellular mobile networks is very scarce. For example, 

3G systems such as UMTS offer only about 380 kbps for high mobility users requiring wide-

area coverage. For EMAC to work well in such networks, the loss probability experienced by 

the probe packet in the probing phase must be a good predictor of the loss probability experi­

enced by the data in the data transmission phase. We study this relationship in UMTS net­

works by simulations. 

In the simulation models, mobile users communicate with servers elsewhere through a 

wireless access network. We assume the majority of the traffic is sent from servers outside the 

cellular access network to the mobile users, and the sole congestion point of the system is the 

forward radio link. For simplicity, the amount of uplink traffic is assumed to be negligible and 

have no queueing delay. The link layer assumptions in the simulation follow the specifica­

tions for Enhanced Data rate for GSM Evolution (EDGE) [33], which is one of the radio 

access technologies in UMTS. Without going into greater detail, one can assume that there is 

one time frame every 20 msec, divided into 8 time-slots. A user is allowed to occupy one or 

multiple time-slots in each frame. EDGE also defines eight different combinations of modula­

tion and coding schemes, which have different data rates and robustness. A link adaptation 
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algorithm tries to select the most effective combination based on current channel conditions. 

For this study, we fix the modulation and coding scheme to the one with the second highest 

rate. It allows 112 bytes per time slot (excluding header), which results in a peak data rate of 

44.8 kbytes/sec (358 kbps) [33]. In addition to using fixed modulation and coding scheme, we 

also assume that there is no packet error over the radio link in the current study, to investigate 

the effects of bandwidth difference between wireless and wireline networks on EMAC. 

In addition, we have also developed a similar wireline model for comparisons. The 

link bandwidth in the wireline model is 10 Mbps. The traffic in both models are generated by 

on-off traffic sources, as shown in Tables 5.1 and 5.2. One source has exponentially distrib­

uted on and off times with a mean of 1 second and the lifetime is exponentially distributed 

with a mean of 300 seconds. Another one has on and off times generated by a Pareto distribu­

tion with a mean of 1 second and the lifetime is taken from a lognormal distribution with a 

median of 300 seconds following. Due to the lower data rate in the cellular network, we 

expect mobile users to be more cautious about downloading very large files. So, we set the 
Table 5.1 Simulation parameters of traffic source 1 

Model Burst Rate On Time Off Time Average 
Rate Lifetime 

Wireless 80 kbps 1 s (exp.) 1 s (exp.) 40 kbps 300 s (exp.) 
Wireline 512 kbps 1 s (exp.) 1 s (exp.) 256 kbps 300 s (exp.) 

Table 5.2 Simulation parameters of traffic source 2 

Model Burst Rate On Time Off Time Average 
Rate Lifetime 

Wireless 80 kbps 1 s (Pareto) 1 s (Pareto) 40 kbps 300 s (logn.) 
Wireline 512 kbps 1 s (Pareto) 1 s (Pareto) 256 kbps 300 s (logn.) 
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average data rate to a lower value of 40 kbps in the wireless model and 256 kbps in the wire­

line model. Session arrivals are generated according to a Poisson process. 

In our simulations, only packet loss but not delay due to the network congestion is 

considered by the admission control process. Delay is instead limited by the use of small buff­

ers in the nodes, which should provide packet-scale buffering [65]. The admission-controlled 

traffic is given strict priority over best-effort traffic, but there is a bandwidth limit. In our sim­

ulations, we merely simulated the admission-controlled traffic as being serviced by a queue 

running at the speed of its bandwidth limit. This is very close to the behavior of a rate-limited 

priority queue. Simulations are run for 6,000 simulation seconds. The probe loss rate is calcu­

lated at the end of each probing period. Moreover, the packet loss probability of the estab­

lished sessions in the network is also recorded in the simulations for comparisons. We first 

consider the out-of-band probing scheme, which has two priority queues, one for the high pri­

ority accepted data traffic and the other for probe packets. 10 packets of the accepted data 

traffic and one packet of the probe stream can be buffered at the node.The probing time is 5 

seconds. 

A robust EMAC should relate the probe loss probability experienced at the receiver to 

the expected session loss probability. Although this may be true in wireline networks, as 

shown in previous work, this relationship is very weak in the wireless domain. Figure 5.2 

shows the probe loss probability and session loss probability using out-of-band probing in the 

wireless model. Figure 5.3 shows the probe loss probability and session loss probability using 

out-of-band probing in the wireline model. Traffic source 1 is used in these simulations. The 
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Figure 5.2 Out-of-band probing in the wireline model 

offered load is such that the utilizations are 0.56 in both cases. The probe loss rate in the wire­

less model shows wide fluctuations, ranging from 0.02 to 0.74, although the session data loss 

rate has little variation. On the other hand, in the wireline case, the probe loss rate is much 

more constant and may act as a predictor for the session data loss rate. (Note that the scale of 

the vertical axis in Figure 5.3 is different from that in Figure 5.2.) Similar results have been 

obtained using traffic source 2. The key reason for the poor performance of out-of-band prob­

ing in the wireless domain is the low bandwidth and the burstiness of the data traffic. When 

the bandwidth is low, the multiplexing level is low and data traffic is active for only short 

periods of time. As a result, when data traffic is active, the probe packets cannot compete with 

the data packets, so the probe loss rate varies greatly, even when the utilization of the link is 

as low as 0.56. We can certainly increase the probing time to improve the performance, but it 

results in a substantial delay before the host can start sending data and much bandwidth being 
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Figure 5.3 Out-of-band probing in the wireless model 
wasted, which are not desirable in real networks. 

One may think that this problem can be avoided using in-band probing, with the probe 

packets treated at the same priority level as data. We will study in-band probing in the follow­

ing. As shown in [19], there is a thrashing problem. When so many flows are probing at once 

that the drop rate is significant, none of the probing flows will be accepted. So, slow-start 

probing is suggested [19], whereby the probing rate slowly ramps up, to detect congestion 

without unnecessarily creating it. For example, we first probe at rate r/16 for 1 s, where r is 

the peak rate of the call; if the loss (or mark) percentage is below a threshold then probe at 

rate of r/8 for 1 s and the loss rate is checked again. This process is continued for 5 s. 

Although this scheme can prevent thrashing, the probing result in each shortened step, say 1 s, 

will not be accurate in predicting the actual session data loss rate, because there is a trade-off 

between probing time and prediction accuracy, especially in wireless networks. Figures 5.4 
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Figure 5.4 In-band probing in the wireline model 

and 5.5 show the probe loss probability and session data loss probability using in-band prob­

ing with traffic source 1 in the wireless model and wireline model, respectively. In these sim­

ulations, the probe is sent with the same priority as data at r/4 rate for 1 s in each case. Again, 

we see that in the wireless case, the probe loss probability during each 1 s interval varies 

greatly ranging from 0 to 0.41, thus giving poor predictions of the session data loss rates. 

(Note again that the scale of the vertical axis in Figure 5.5 is different from that in Figure 5.4.) 

The results of using traffic source 2 are similar. The poor performance of in-band probing is 

again due to the low bandwidth and the burstiness of the traffic, and also the short probing 

period. 

5.3.2 User Mobility 

Since mobile users may change cells a number of times during the lifetime of their 
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Figure 5.5 In-band probing in the wireless model 

calls, availability of wireless network resources at the call setup time does not necessarily 

guarantee that resources will be available throughout the lifetime of a call. Therefore, the 

probing result from one cell during the probing phase of a call may not predict accurately the 

session data loss rate during the lifetime of a call. One possible solution is to probe all the 

paths that the mobile user will visit during the lifetime. This is however not feasible in prac­

tice as probing is done in an end-to-end manner and it is not possible to probe for resource 

availability in the potential handoff cells in which the mobile user is not currently located. 

Furthermore, since the mobility of users is usually not known a priori, any approach that 

probes all potential handoff cells will waste a lot of precious wireless bandwidth. 
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5.3.3 High Bit Error Rate 

Wireless hosts use radio transmission for communications. This mode of communica­

tion is vulnerable to signal degradations due to the propagation environment and interference 

from other transmissions. BERs on wireless links are found to be about 10~6 or worse, com­

pared to 10~12 or better for fibre optic links. Moreover, communication over wireless links is 

often characterized by sporadic high BERs due to multipath fading [7]. The two main classes 

of techniques employed by reliable link-layer protocols are: forward error correction, and 

automatic retransmissions of lost packets. In UMTS, retransmission schemes are used at the 

radio link control/medium access control (RLC/MAC) layers. Since previous EMAC propos­

als are for wireline networks, only packet losses or congestion marks are considered as accep­

tance threshold, which is based on the assumption that packets are lost (or marked) because of 

network congestion. Unfortunately, this is not enough if wireless links are included in the 

probing path, because packets can be lost for reasons other than congestion and will be 

retransmitted over the wireless links. We show this by simulations of RLC block transmis­

sions over the air, with random block loss rate 3%. Figure 5.6 shows the sequence numbers of 

RLC blocks sent at specific time instants with the star dot indicting a lost block that is subse­

quently retransmitted. 

High BER and retransmissions in wireless links complicate the application of EMAC 

in wireless mobile networks, as they need to be considered in admission decisions, in addition 

to packet losses and congestion marks. 
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Figure 5.6 Retransmissions of RLC blocks 

5.4 Mobile-EMAC for Cellular-to-IP Internetworking 

From the analysis and simulation results presented in the last section, we see that the 

distinct characteristics of cellular mobile networks make EMAC unsuitable for applications in 

the wireless domain. However, since EMAC has many desirable features in the wireline 

Internet, especially within the DiffServ framework, it could potentially be widely adopted in 

the future. Consequently we should have a scheme to internetwork the cellular network to the 

wireline Internet to add to the potential success of EMAC in the future. In this section, we. 

first review the QoS management functions in UMTS, based on which we propose a mobile-

EMAC scheme that incorporates the internetworking function. The performance of the 

proposed scheme is evaluated by simulations. 
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5.4.1 U M T S QoS Management Functions 

Since UMTS is designed to provide multimedia and packet-switched services, Internet 

and intranet access, entertainment and value-added services, the UMTS standardization pro­

cess has taken steps to tackle QoS management functions in the 3rd generation partnership 

project (3GPP) [2]. QoS provisioning in UMTS is based on the traffic classification model 

with four main traffic classes: Conversational, Streaming, Interactive and Background 

classes. The main distinguishing factor between these classes is the delay sensitiveness of the 

traffic: Conversational class has the most stringent delay requirement, whereas Background 

class is the most delay insensitive class. 

In addition to classifying the traffic, the network needs to have means to provide and 

maintain the QoS for each admitted user traffic stream. UMTS QoS management functions 

can be logically divided into control and user plane functions. Call admission control 

addressed in this study belongs to the control plane functions described below. 

The control plane incorporates the following four main entities. The service manager 

co-ordinates the functions of the control plane for establishing, modifying and maintaining 

the service it is responsible for. The translation function converts between the internal service 

primitives for UMTS bearer service control and the various protocols for service control of 

external networks that are interconnected to the UMTS network, including conversion 

between UMTS BS attributes and QoS attributes of the external networks' service control 

protocols. Admission/capability control maintains information about all available resources 

of a network entity and resources allocated to all UMTS bearer services, determines for each 
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UMTS bearer service request or modification whether the required resources can be provided 

by this entity, and reserves these resources if they are allocated to the UMTS bearer service. 

Subscription control checks the administrative rights of the UMTS bearer service users to use 

the requested services with the specified QoS attributes. The QoS management functions for 

controlling the UMTS bearer service are shown in Figure 5.7. These functions support the 

establishment and modification of UMTS bearer services by signaling/negotiation with the 

UMTS external services and by the establishment or modification of appropriate UMTS inter­

nal services with the required characteristics. 

5.4.2 Mobi le -EMAC Scheme 

Since UMTS already incorporates admission control and capacity allocation functions 
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in its control plane that will be optimized for the wireless environment, information for call 

admission decision is readily available in the network elements. Thus the use of probing 

within the UMTS segment is unnecessary. Moreover, the UMTS control plane specifically 

includes translation functions that can be used to facilitate internetworking between UMTS 

and the various protocols for service control of external networks. Therefore, in our proposed 

M-EMAC, we terminate the EMAC probing for the wireline Internet at the UMTS gateway 

that serves as a pseudo-end-point for the EMAC protocol, as shown in Figure 5.8. We assume 

the majority of the traffic is sent from a remote host to the mobile host. In this case the gate­

way receives the probing packets and translates the QoS parameters inside the probing pack­

ets into UMTS QoS parameters. Then the admission/capacity control functions in UMTS 

check whether or not such a call request can be admitted and return the result using UMTS 

signaling. After the gateway gets both the checking result within UMTS and the probing 

result from the Internet, an admission decision can be made based on these results and the end 

hosts are informed accordingly. Figure 5.9 shows this procedure. In this internetworking 
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Figure 5.9 Mobile-EMAC procedure 

approach, the probing packets need not go through the UMTS network and we can avoid the 

problems described in Section 5.3. 

5.4.3 Performance Evaluation 

In this subsection, we compare the performance of EMAC in wireless domain with 

that of the proposed M-EMAC. The simulation models include the EDGE model and the 10 

Mbps wireline model described in Section 5.3. The traffic is sent from a server to a mobile via 

the 10 Mbps wireline network and the wireless EDGE network. There is a gateway between 

the wireless and wireline networks, which has the functions described in the last subsection. 

The radio link assumptions are the same as in Section 5.3, i.e., a fixed modulation and coding 

scheme. The traffic sources are also the same as before. In the M-EMAC scheme, the tradi-
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tional measurement-based admission control (MBAC) [43] is used in the wireless network. 

As shown in [20], although various MBAC algorithms in the literature are derived from 

diverse motivations and theories, they all produce essentially the same performance. So, we 

use a simple measured sum (MS) algorithm [20] in the wireless part of the M-EMAC scheme. 

In EMAC schemes, we test the out-of-band probing in EMAC with acceptance thresholds 8 = 

0.05, 0.09, 0.15, 0.25, 0.4, and the in-band probing in EMAC with £ = 0.01, 0.03, 0.05, 0.07, 

0.09. 

We evaluate EMAC and the proposed M-EMAC algorithms according to how well 

they are able to achieve the highest possible utilization for a given level of service failure 

probability. We compare the performance frontier or loss-load curve achieved by each algo­

rithm. The loss-load curve depicts the rate of packet losses that occur at a given level of wire­

less channel utilization, as experienced by the mobile host. Figures 5.10 and 5.11 show loss-

load curves of EMAC and M-EMAC. For a given EMAC algorithm (in-band probing or out-

of-band probing) each point shown on the curve reflects the loss probability and utilization 

produced by a different e value. For the M-EMAC scheme, we test the utilization with differ­

ent loss rates of 0.0009, 0.003, 0.01, 0.03 and 0.09. Simulations are run for 6000 simulation 

seconds. Data collected during the first 1500 seconds are discarded. The plot data are 

obtained by averaging over 10 simulation runs with different random seeds. Traffic source 1 

is used in these simulations. Other simulation parameters are the same as presented in the pre­

vious section. 

In Figure 5.10, where the probing time is 5 seconds, the frontiers of EMAC with in-
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band and out-of-band probing seem to be fairly close to each other. However, for a given level 

of utilization the loss rates achieved by EMAC (both in-band probing and out-of-band prob­

ing) are much higher than those achieved by M-EMAC. The reason is that the probe loss rates 

do not give very accurate predictions of the session data loss rates in the wireless domain, as 

explained in Section 5.3. EMAC could presumably achieve better performance by probing for 

longer time periods. Figure 5.11 shows the loss-load curves achieved by EMAC with 20 sec­

ond probes. We can see that out-of-band probing for 20 seconds can achieve a better perfor­

mance than probing for 5 seconds (but still worse than that of M-EMAC), since a longer 

probing time yields probe loss rates that are closer to the session loss rates. However, while a 

longer time for in-band probing leads to decreased packet drop rates, they can cause the utili­

zation to be decreased substantially. Since the probe and data packets have the same priority, 

longer probing time means that more bandwidth is consumed by probe packets. We can get 

similar results using traffic source 2. These results show that the proposed M-EMAC outper­

forms EMAC in the mobile/wireless domain. 

5.5 Summary 

In this chapter, we have studied the performance of EMAC in cellular mobile 

networks. Simulation and analysis results show that EMAC may not be suitable for cellular 

mobile environments due to the scarce bandwidth, user mobility and high bit error rate. On 

the other hand, cellular mobile network such as UMTS already includes call control and 

capacity allocation functions optimized for its environment. This motivates the M-EMAC 

scheme proposed in this study for cellular-to-IP internetworking. In the M-EMAC scheme, 

the gateway makes admission decisions based on the results of EMAC probing on the 
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wireline side and the admission control on the wireless side. Simulation results show that M-

EMAC outperforms EMAC in the cellular mobile domain in terms of the end-to-end packet 

loss rate at any given level of channel utilization. 
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Chapter 6 Conclusions 

We conclude this thesis with a summary of our contributions and suggestions for 

future work. 

6.1 Summary 

In Chapter 2, we proposed call admission control and bandwidth reservation schemes 

for non-adaptive traffic in cellular mobile networks, based on assumptions more realistic than 

in existing proposals. The sequences of events of new call admission, handoffs and call 

termination are modeled by stationary mth order Markov sources. We derived probabilistic 

predictions of next events based on the mobility history of users, using an algorithm 

motivated by optimal data compression. Based on the mobility prediction of where and when 

the mobile will handoff to the next cell, call admission control and bandwidth reservation 

schemes were developed. The performance of the proposed schemes has been studied using 

computer simulations. Handoff dropping probabilities can be kept below a target value in the 

proposed call admission control and bandwidth reservation schemes. It is also shown that our 

schemes can achieve a better balance of guaranteeing handoff dropping probability while 

maximizing resource utilization, and they outperform the static reservation scheme. 

In Chapter 3, we presented a framework combining QoS provisioning and mobility 

management. In this framework, we use all available information, both during calls and 

between calls to build the mobility trie, which is used in mobility prediction. Networks can 

use this mobility prediction scheme in both paging mobiles and making admission decisions. 

A new path-based MM scheme in the combined framework was proposed. Numerical results 
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show that the new scheme has performance gain over the original one, in that the new scheme 

can reduce both location update and paging costs. A new CAC scheme in our framework was 

proposed in the framework. The proposed CAC scheme can predict where the mobile will 

handoff using the common mobility prediction scheme and when the handoff will occur using 

positioning technology. Based on mobility predictions, bandwidth can be reserved more 

efficiently. Simulation results show that the proposed scheme meets our design goal and 

outperforms some existing schemes. 

In Chapter 4, we proposed a QoS provisioning scheme for adaptive multimedia in 

cellular mobile networks. The rapid growth in the number of states and the difficulty to 

estimate the state transition probabilities in practical cellular systems motivate us to choose a 

model-free reinforcement learning solution to solve this problem. Three QoS constraints, 

handoff dropping probability, average allocated bandwidth and intra-class fairness are consid­

ered in this scheme. The algorithm can control the adaptation frequency effectively by 

formulating the cost of bandwidth adaptation in the model. Trading off'action space with state 

space was proposed to solve the large action space problem in QoS provisioning. The perfor­

mance of the proposed scheme was demonstrated by simulations. The algorithm works well 

under a variety of traffic conditions with reasonable computation complexity. 

Finally, we studied the performance of EMAC in cellular mobile networks in Chapter 

5. Although EMAC has many desirable features in wireline networks, simulation and analysis 

results show that EMAC may not be suitable in a cellular mobile environment due to the 

scarce bandwidth, user mobility, and high bit error rate. Since EMAC has many desirable 
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features in the wireline Internet, especially within the DiffServ framework, it could 

potentially be widely adopted in the future. We proposed an M-EMAC scheme to internet­

work the cellular network to the wireline Internet to add to the potential success of EMAC in 

the future. In the M-EMAC scheme, the gateway makes admission decisions based on the 

results of EMAC probing on the wireline side and the admission control on the wireless side. 

Simulation results show that the loss rates achieved by EMAC are much higher than those 

achieved by the proposed M-EMAC for a given level of utilization. These results demonstrate 

that M-EMAC outperforms EMAC in cellular mobile networks. 

6.2 Further Work 

In the course of the investigations reported in this thesis, a number of interesting 

problems have been discovered which merit further research. 

• More Realistic Traffic and Mobility Models: Traffic and mobility models are 

essential for solving QoS provisioning problems in future cellular mobile networks. 

Although there are some traffic and mobility models available in the literature, new 

applications, such as multimedia message services (MMS), gaming and positioning 

applications, are emerging very fast. Few of the existing models are general enough 

to provide good approximations for these new applications. Further work is required 

in this area. 

• Vertical Handoff: Future wireless mobile networks will be heterogeneous. Simulta­

neously there will be a proliferation of different wireless access technologies - from 

those providing global coverage, such as cellular mobile networks, to those provid-
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ing wireless hotspots such as wireless local area network (WLAN). As a result, 

mobile communications will be conducted over heterogeneous wireless networks. 

Continuous connectivity and QoS provisioning in these networks remain open 

issues. 

• Other QoS Provisioning Schemes in the Internet: Many other schemes to provide 

QoS in the Internet have been proposed, including new scheduling algorithms and 

new CAC schemes. To guarantee the end-to-end QoS of cellular mobile users, there 

may be some internetworking issues for mobile users accessing the wireless Internet. 

Finding an efficient way to internetwork cellular mobile network to the Internet is a 

very interesting problem. 

• User Profile: Some schemes in this thesis predict user mobility based on mobile 

users' histories, positions, velocities, etc. This information has to be stored in the 

user profile, which is very important to provide personalized services in future 

cellular mobile networks. An efficient way of collecting, storing, updating and 

disseminating the user profile information is crucial. 
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