
SYSTEM-ON-A-CHIP (SOC) DESIGN AND TEST - A C A S E STUDY

by

Louis Tzu-Leng Hong

B.A.Sc, The University of British Columbia, 2000

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Applied Science

in

The Faculty of Graduate Studies

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard

The University of British Columbia

August 2002

© Louis Tzu-Leng Hong, 2002

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements
f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I f u r t h e r agree that permission f o r extensive copying of
t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her r e p r e s e n t a t i v e s . I t i s understood that
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g ain s h a l l not
be allowed without my w r i t t e n permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

ABSTRACT

System-on-a-chip (SoC) and reuse of intellectual property (IP) is the emerging paradigm

for integrated circuit designs. To understand the unique challenges in IP development and

SoC integration, a microprocessor core and a network processor SoC were developed.

The Reuse Methodology Manual (RMM) by Keatling and Bricaud was used as a guide

during the development of the IP core and the SoC. This thesis presents several examples

taken from the microprocessor and SoC designs that either support or counter the claims

made in RMM. The problem of SoC testing is also a highly researched area. In an effort

to validate the concept of an on-chip test network, a packet-switching test access

mechanism (TAM) was designed and integrated into the network processor SoC. The

T A M , known as NIMA, is an on-chip network that supports different types of embedded

core testing. The NIMA architecture was compared with a serial T A M and a multiple-

inputs T A M based on the Test Rail architecture. The three T A M designs were compared

based on the total test time, area overhead, and complexity of the controlling mechanism.

This thesis also discusses the trade-offs of the three T A M architectures and suggests

some improvements for NIMA to reduce its area and delay overhead.

n

TABLE OF CONTENTS

Abstract ii
Table of Contents iii
List Figures iv
List Tables iv
Acronyms v
Acknowledgement vi
Chapter 1 Introduction 1
Chapter 2 Reusable IP Core Design (HC11) 7

2.1 Introduction to HC11 10
2.2 Design for reuse 12
2.3 Coding for Synthesis 16
2.4 Design for Test (DFT) 19
2.5 Prototyping 23

Chapter 3 SoC Design (Network Processor) 25
3.1 Architecture 26
3.2 Components 28
3.3 System Bus 34
3.4 Design for Test 36
3.5 Core Integration 41

3.5.1 I/O Buffering 42
3.5.2 Core Verification 43
3.5.3 Synthesis Strategy 45

3.6 S ystem Veri fi c ati on 47
Chapter 4 SoC Test Strategy 50

4.1 Test Access Problem 50
4.2 N M A Design 58

4.2.1 Physical Layer 59
4.2.2 Network Layer 60
4.2.3 Application Layer 62

4.3 NEVIA Implementation 63
4.4 NJJVIA Scheduling 66

Chapter 5 T A M Comparison 70
5.1 Serial T A M Implementation 70
5.2 Test Rail Implementation 71
5.3 Results 72

5.3.1 Test Performance 73
5.3.2 Area Overhead 77
5.3.3 T A M Design Automation 78
5.3.4 Summary 79

Chapter 6 Conclusions 82
6.1 Future Work 84
6.2 Contributions 84

References 86

iii

LIST FIGURES

Figure 1. Productivity gap 2
Figure 2. Block diagram of a generic SoC chip 4
Figure 3. HC11 block diagram 11
Figure 4. Refined block boundary of HC11 16
Figure 5. Using lock-up latch to combine scan cells of different clock domains 20
Figure 6. BIST strategy for HC11 21
Figure 7. Die photo of the fabricated HC11 core 24
Figure 8. Performance and flexibility trade-offs of network function implementations.. 26
Figure 9. Architecture of the Sitera network processor 27
Figure 10. Architecture of the simplified network processor 29
Figure 11. Hypothetical network 33
Figure 12. A M B A AHB architecture 35
Figure 13. Concept of the bus adapter 36
Figure 14. Block diagram of a P1500 wrapper for a core using BIST DFT 39
Figure 15. Structure of a wrapper cell 40
Figure 16. Network processor SoC with NIMA test network 41
Figure 17. Network processor module hierarchy 47
Figure 18. Multiplexer T A M . The dotted lines denote the test paths 53
Figure 19. Serial T A M . The dotted lines denote the test paths 54
Figure 20. Bus-based T A M 55
Figure 21. Transparent T A M . The dotted line denotes the internal test path 56
Figure 22. Test Rail T A M . The dotted lines denote the Test Tail 57
Figure 23. The 3-Layer Model of NIMA 59
Figure 24. Revised NIMA test packet format 61
Figure 25. NIMA network configuration 65
Figure 26. Flowchart of the NIMA scheduling algorithm 69
Figure 27. Conceptual diagrams of the three TAMs 70
Figure 28. Test time of the serial T A M vs. NIMA 74
Figure 29. Test time of the Test Rail T A M vs. NIMA 76

LIST TABLES

Table 1. Classification rules for the hypothetical network 33
Table 2. Core DFT strategy 37
Table 3. Gate area overhead comparison 78
Table 4: T A M Comparison 80

iv

ACRONYMS

A L U Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
A T E Automated Test Equipment
BIST Built-in Self Test
BDR Boundary Data Register
C A D Computer Aided Design
CISC Complex Instruction Set Computer
DFT Design for Test
D S M Deep Sub-Micron
DSP Digital Signal Processing
E D A Electronic Design Automation
FIFO First In First Out
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
F S M Finite State Machine
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IP Intellectual Property
JTAG Joint Test Access Group
LFSR Linear-Feedback Shift Register
PCI Peripheral Component Interface
PLL Phase Lock Loop
QoS Quality of Service
R T L Register Transfer Level
SoC System on a Chip
T A M Test Access Mechanism
U D L User Defined Logic
V H D L VHSIC (Very Fligh Speed Integrated Circuits) Hardware

Description Language
VLSI Very Large Scale Integration
VSIA Virtual Socket Interface Alliance

V

ACKNOWLEDGEMENT

I would like to thank Dr. Res Saleh for giving me the opportunity to study my Master

degree with him and to work in the SoC lab. Without his continuous guiding and support,

the completion of this thesis would not be possible.

This research is supported by PMC-Sierra, the National Sciences and Engineering

Research Council of Canada, Gennum Corporation, and Micronet. Their support is

greatly appreciated.

This thesis inherits a lot of work from the NIMA project, and I thank Dr. Andre Ivanov

and Mohsen Nahvi for providing valuable comments and information on NIMA. Also, I

would like to thank Professor Hussein Alnuweiri and Professor Alan Hu for their advices

on network processor design and system verification. I also thank Professor Steve Wilton

for serving on my thesis committee.

I owe much to my family, who encouraged me to pursue the Master degree in the first

place and has supported me during these years. I am also grateful to the following people

in the SoC lab, who contribute to the research directly or indirectly: Ronald, Gary, Julien,

Zahra, Martin, Simon, Victor, Kara, James, Laura, Roberto, and Roozbeh. It has been a

great pleasure to work with this team of energetic, bright researchers.

Finally, I dedicate this thesis to Peggy. Her encouragement and her confidence in me

have helped me through the difficult times.

vi

CHAPTER 1 INTRODUCTION

The continuous reduction of device feature size ushers the possibility of integrating high-

level blocks -microprocessor, DSP core, memory module, and graphic controller etc.- on

a single silicon substrate, where each block was formerly a chip on a printed circuit

board. The so-called system-on-a-chip (SoC) design enables higher performance, lower

power, and less package cost than an equivalent system implemented as traditional

integrated circuits (ICs). The realization of such complex designs, however, is hindered

by the parasitic properties of the semiconductor devices in deep-sub-micron (DSM)

range. Issues in DSM technology include low noise margin, signal integrity due to

coupling capacitance, interconnect delay, inductive effect of the wires, and sub-threshold

conduction. To resolve the DSM issues, computer-aided-design (CAD) tools must

incorporate improved circuit model and advanced circuits design techniques. Models that

accurately represent the 3-D structure of the interconnects, inductance loop, and power

consumption are essential to capture the DSM parasitic effects. Techniques such as

shielding of wires that are susceptible to coupling, buffer insertion for global

interconnect, and substrate biasing for reducing leakage current should be automated by

the CAD tools in order to speed up the design process.

Another limiting factor for creating a highly integrated system is the escalating cost of

design, verification, and test. A typical application specific integrated circuit (ASIC)

designed today consists of approximately 2-million gates in 7 RTL blocks [44]. The

future system is expected to contain tens of millions gates or more. The traditional ASIC

approach is not economic, if not impossible, due to the sheer amount of engineering

1

effort to code each block from scratch, perform multiple iterations of synthesis and

integration, and generate test vectors for each blocks (not to mention the difficulty in

testing the blocks once they are embedded inside the fabricated chip). In addition, the IC

industry is characterized by short product life cycles and thus there is pressure to

minimize time-to-market. Indeed, there is a widening gap between the engineering

productivity and the IC design complexity that the technology allows [28] [14]. Figure 1

illustrates the concept of the productivity gap. According to Moore's Law [59], the

transistor density of the IC designs grows exponentially due to improvement in process

technologies, but the productivity of the engineers (measured in gates per day) stays

relatively constant. New design techniques and methods have allowed the IC design

complexity to follow the growth of the manufacturing capability. Similar to how logic

synthesis boosted the productivity of the design teams in the 90's, design reuse is

expected to bridge the productivity gap confronted by today's engineers.

Moore's Law
Engineering Productivity

a

1970 1980 1990 2000 2010

Figure 1. Productivity gap

2

The key concept of design reuse is to adopt Intellectual Property (IP), which could be a

building block or an entire platform, from in-house design teams or third-party vendors to

form the majority of the system logic. The IP vendors provide a description of the design

to the system integrator, who integrate the IPs and add custom logic that differentiates the

product from the competitors'. In most cases, some verification methods such as pre-

computed test data or self-test capability would accompany the design description so the

system integrator can exercise the tests on the manufactured end product to ensure

quality. This approach leverages previous design effort, reduce risk, and shorten

development cycle.

Figure 2 shows a generic SoC consisting of IP blocks, user-defined logic (UDL),

embedded memory, a system communication mechanism, a core test mechanism, and the

IEEE 1149.1 standard (also known as JTAG) for board testing. The IP blocks (either

third-party of in-house) are self-contained, reusable, and designed to perform macro

functions. Examples of digital IP blocks include a microprocessor, a DSP, and a PCI

interface. The analog cores are typically phase-locked loop (PLL) modules and analog-

digital converters. The UDL is specific to the application of the SoC; it may serve merely

as the glue logic between the cores, or it may be the key enhancement that allows the SoC

to be differentiable. The communication mechanism, typically an on-chip bus, is an

important aspect of the SoC since it impacts the overall speed of the design and defines

the transaction protocol that must be agreed by all blocks. The core test mechanism is for

post-manufacture testing. Its design ranges from simple wires that connect between block

terminals and the I/O ports to sophisticated circuitries that automated the test process. It

3

is obvious that putting all these components together and ensuring that they function

correctly is a major engineering effort.

IP Block 1 ,

IP Block 2

UDL IP Block 3

Communication Mechanism

A D PLL

Em bee
Memory ' '.

Embedded

Memory

TAP c Core Test Mechanism

IEEE 1149.1 Boundary Scan

Figure 2. B l o c k diagram of a generic S o C chip

Although promising, the SoC design methodology is still in its infancy. There are many

challenges in IP authoring, embedded software design, system verification of the SoCs,

and SoC testing. In addition, the industry at this moment has no standardized methods to

address the problems of third-party IP delivery (where the IP could be soft, firm, or hard,

with various hand-off requirements), IP security, IP library management, and integration

of the IP test suits [30] [48].

In particular, test integration is a significant bottleneck due to the difficulty in creating an

efficient chip-level test strategy. Inefficient test may extend development time due to

testability-related revisions and incur a high cost in test equipment, or compromise the

quality of the product. For instance, the traditional IC verification techniques use slower

4

clocks for testing, which suffer from reliability problem in SoC because the higher

density of devices, and wires increase the chance of failure when the chip is running at

full speed. Also the controllability and observability of the embedded blocks pose an

access problem since the terminals of the embedded core may not be probed directly [9].

There has been tremendous effort from the IC industry to overcome the challenges in

SoC design. The Virtual Socket Interface Alliance (VSIA), formed in 1996, has been

working on standards for exchanging the IP blocks at physical and functional level [62].

With uniform standards, IP block can be portable from company-to-company and

technology-to-technology. If successful, IP integration will be a matter of plug-and-play.

In addition to standards that facilitate portability, new design flows are needed to create

reusable IP blocks. The Reuse Methodology Manual (RMM) [33] is an attempt to capture

the complex process of IP creation and integration.

For SoC testing, many researchers believe that a hierarchical, built-in-self-test (BIST)

scheme is the trend because of the low requirement on an external tester and the high

scalability [28][9]. Two problems related to SoC testing are the standardization of IP test

interface and transfer of test data from chip I/O pins to the embedded blocks. The IEEE

PI500 group was formed with the goal of formulating standards for test interface and a

formal language for describing a test procedure [58]. A number of research projects have

been conducted in the area of test access mechanisms (TAMs) through chip I/O. Whestel

proposed a technique for SoC verification by reusing the IEEE 1149.1 standard for board

testing on an SoC, where the embedded cores are threaded together in a manner similar to

5

how the chips on a printed circuit board are serially connected [64]. Marinissen et. al.

presents a structural test access mechanism known as a Test Rail that distributes the

available test bandwidth among the blocks within an SoC [37]. Recently, the concept of

network-on-a-chip is gaining in popularity in the research community, and [42] proposed

a solution to the access problem using an on-chip network.

The motivation of this research is to investigate the design and test issues of SoCs

through a case study and to propose improvements for the existing methods. The first half

of the research explores the design and reuse aspects by evaluating new VLSI design

flows for the SoC paradigm. The second half of the research compares several test access

mechanisms for SoC verification, discusses the trade-off between the competing

approaches, and suggests implementation improvements that optimize the existing

methods. This document is organized as follows. Chapter 2 describes the effort to create a

reusable microprocessor. Chapter 3 discusses an SoC design that is built from the

reusable microprocessor presented in Chapter 2 and various other blocks. Chapter 4

presents several SoC test strategies and describes the on-chip test network in details.

Chapter 5 compares three distinct chip-level test access mechanisms: serial based, bus

based, and network based. It presents a comprehensive analysis for each of the three

architectures and discusses their weakness and strength. Chapter 6 draws the conclusions

and describes the future work.

6

C H A P T E R 2 R E U S A B L E IP C O R E D E S I G N (HC11)

T h e t o p - d o w n d e s i g n l e v e l s o f a n S o C are s y s t e m , I P b l o c k s , s u b - b l o c k s , m a c r o c e l l s ,

gates, a n d t r a n s i s t o r s . I n th is thes is , the t e r m s I P b l o c k a n d c o r e are i n t e r c h a n g e a b l e as

t h e y b o t h r e f e r to d e s i g n ent i t ies o f the s a m e l e v e l o f a b s t r a c t i o n . A n e x a m p l e o f a n S o C

is a D V D o p t i c a l - d i s k c o n t r o l l e r , w h i c h has a m i c r o p r o c e s s o r c o r e , m e m o r y b l o c k s , a n d

a n a l o g - t o - d i g i t a l c o m p o n e n t s [34]. T h e m i c r o p r o c e s s o r c o r e c o n s i s t s o f s u b - b l o c k s

i n c l u d i n g a f i n i t e state m a c h i n e (F S M) , a n A L U , a n d a r e g i s t e r file. T h e A L U s u b - b l o c k

has a f u l l - a d d e r m a c r o c e l l , a n d the m a c r o c e l l i s m a d e u p o f l o g i c gates that are, i n t u r n ,

i m p l e m e n t e d b y C M O S t r a n s i s t o r s .

T o d a y ' s I P b l o c k s c a n b e c a t e g o r i z e d b a s e d o n t h e i r d e g r e e o f m o d i f i a b i l i t y . T h e

d i f f e r e n t c a t e g o r i e s o f I P s c a n a l s o b e v i e w e d as the s a m e d e s i g n t a k e n f r o m d i f f e r e n t

stages o f the I C d e s i g n f l o w . T h e soft I P s are d e s i g n s at the reg is ter- t ransfer l e v e l (R T L) .

S o f t I P s are t y p i c a l l y d e l i v e r e d as V e r i l o g o r V H D L c o d e a n d a l l o w the h i g h e s t d e g r e e o f

m o d i f i a b i l i t y . T h e soft I P s a l s o i m p o s e the greatest a m o u n t o f w o r k s i n c e the u s e r n e e d s

to take the I P s t h r o u g h the p r o c e s s o f s y n t h e s i s , p h y s i c a l d e s i g n , a n d v e r i f i c a t i o n . T h e

firm I P s are d e s i g n s p r e s e n t e d at the s c h e m a t i c l e v e l . F i r m I P s are d e l i v e r e d as

s y n t h e s i z e d g a t e - l e v e l n e t l i s t , e i t h e r m a p p e d to a s p e c i f i c m a n u f a c t u r i n g p r o c e s s o r to a

g e n e r i c l i b r a r y . S i n c e firm I P s are a l r e a d y i n the f o r m o f gates, m o d i f i c a t i o n o f the I P ' s

f u n c t i o n a l i t y i s v i r t u a l l y i m p o s s i b l e , b u t i t s t i l l a l l o w s I P users to p l a c e a n d r o u t e the

d e s i g n a c c o r d i n g to the S o C r e q u i r e m e n t s (e .g . a s p e c t r a t i o a n d shape) . T h e h a r d I P s are

d e s i g n s i n the l a y o u t f o r m . H a r d I P s are e x c h a n g e d as G D S - I I files a n d h a v e the least

d e g r e e o f m o d i f i a b i l i t y . A l t h o u g h h a r d I P s are a l r e a d y p l a c e d a n d r o u t e d a n d are t h u s

7

difficult to change, they are the most complete of the three categories of IPs and thus

require the least design effort from the user [33].

The embedded memories are similar to the hard IPs in the sense that a memory block

cannot be modified by the end user. But since the embedded memories are generated by

memory compilers, the end user can decide the high-level specifications such as capacity

and single-port versus dual-port. The memory compilers receive design parameters from

the user and then generate the models of corresponding the memory block to be used

throughout the design process. The actual memory block is placed on the chip by the

foundry during fabrication.

The soft IPs represent 10-15% of the third-party IP market today, and they are all digital

designs [47]. The firm IPs have around 5% of the market share, and are mostly analog

designs. The rest of 80-90% of the IP market is occupied by hard IPs, which include both

digital and analog designs [47]. For internal IPs created for in-house use, soft IP

dominates because they are portable across different generation of process technologies.

The kinds of IPs available in today's market ranges from interface blocks, processors,

analog/mix-signal functions, to programmable IPs. Common interface IPs include

Ethernet, PCI bus client, and IEEE 1149.1 TAP controller. Examples of the processor IPs

include general-purpose processors from ARM® or DSP cores from Texas Instruments®.

Examples of analog/mix-signal IPs include PLL for clock jitter control, A/D converter,

and Bluetooth™ baseband module from Tality®. The programmable IPs such as the

8

solutions offered by eASIC® and Actel® are reconfigurable logic blocks based on the

traditional FPGA technology [56].

The key requirement for creating an SoC design is reusable IP blocks that support plug-

and-play integration. To reduce the development cost, IP integration must be automated

as much as possible. A library of reusable IP blocks with various timing, area, and power

configurations is also essential to SoC success as it allows mix-and-match of different IP

blocks so the integrator can make the trade-offs that best suit the needs of the application.

The rapid growth in the commercial IP business reflects this demand [34]. In addition,

most system vendors already have internal designs that were created for one-use only in

past projects. Categorizing and reworking these legacy designs for reusability also

represent a major challenge. The process of creating a reusable IP block differs from the

traditional ASIC design approach. Performance, area, power, and features may be

sacrificed in order to ensure that the design will be reusable across different applications.

To better understand the issues in creating a reusable IP block, a series of projects were

initiated to create new IP blocks and to convert a one-use design to a reusable one,

adopting RMM as the guide.

The design chosen for reusability rework is the microprocessor core of a Motorola HC11

microcontroller. The primary reason for choosing this particular design is the availability

of information. Most industry-strength designs are proprietary and require expensive

licensing. Also state-of-the-art designs are complex and have legal implications that make

modification and distribution of these designs difficult. The HC11 core used in this

9

project can be obtained easily from public domain sources [57][41]. There are several

other reasons for choosing this particular design. First, a processor core is by far the most

prevalent IP block, as almost every application requires one. This makes the exercise of

reusability rework more valuable as the IP will likely be used in future projects.

Secondly, the design is synthesizable and has been verified and implemented on an

FPGA by the original developers, so there is confidence in the quality of the design.

Finally, the core developers working on this project all have prior knowledge of the

HC11 micro-controller from a user perspective. Their familiarity with HC11 instruction

set helps to reduce the initial learning curve.

2.1 Introduction to HC11

The HCl l s are popular micro-controllers for automotive control systems, robotics,

consumer appliances, and other embedded applications. A typical micro-controller is

composed of a central processing unit (CPU), static memory, non-volatile memory (e.g.

EEPROM), and parallel and serial I/O devices, all connected using a processor local bus

system. The design under investigation is the CPU for the HC11 family of micro

controllers. For the rest of this thesis, the design will be referred to as the HC11. The

original code of the HC11 was written in VHDL behavioral description. A simple

testbench for functional verification accompanied the original code. RTL simulation

indicated that the design was functional, although the design was not created with

reusability in mind. The HC11 core is a complex-instruction-set computer (CISC) that

executes more than 130 instructions. It has enough complexity to make it a representative

IP block and yet simple enough for the purpose of this research project.

10

The HC11 core is an 8-bit processor. It adopts a non-pipelined architecture and requires

multiple clock cycles to execute a single instruction. Since the HC11 core is a CISC

processor, the instructions have variable length depending on the addressing mode

(direct, extended, indexed, immediate, inherent, or relative) and the type of data (8-bit or

16-bit). All peripherals, I/O, and memory locations must reside in a unified 64-Kbytes

address space. The HC11 core performs the standard integer operations, bit manipulation,

and logic operations. In addition, the processor has specialized instructions for

manipulating and exchanging data between the stack pointer and the internal registers,

which allows efficient implementation of complex addressing schemes for DSP

algorithms (e.g. FFT). Figure 2 shows the block diagram of the HC11 core.

data in Data Register

Branch
Calculator

CCR

General
Purpose
Registers

ALU

data out

Opcode Register

Address Register

Program Counter

Stack Pointer

State Register

FSM

Decoder

-*• address

Figure 3. HC11 block diagram

11

2.2 Design for reuse

Since the goal of reuse is to create an IP block that can be used and possibly modified in

other projects by other design teams, completeness of documentation and readability of

the code are important. In this aspect, many of the techniques for reuse are simply good

engineering practice. Examples of good practice suggested by R M M include:

• Hierarchical organization: partition the design into sub-designs

• Proper in-line comments and detailed design manual.

• Good Coding styles: use meaningful names, consistent naming convention, and

constants instead of hard-coded values

The original VHDL description of the HC11 consists of one single, large entity.

Considerable amount of time and effort was spent on re-organizing the code and breaking

it down into sub-blocks. Since the description is behavioral, the partitioning is based on

functionality rather than proximity of physical location or area of the logic elements. In

the end, six entities were created [53]. Proper coding styles and formatting were applied

during the coding of each new entity. Additional comments were added to help explain

the purpose of the code. For reusability, an equivalent set of Verilog RTL code was also

created. A more challenging task is to create a comprehensive document that captures the

specifications of the design and records the development process so the user of the HC11

block knows what changes were introduced to the design. For specifications, the on-line

manual from Motorola [41] was referenced. Information about the newly created design

hierarchy, simulation results, and the chosen design-for-test (DFT) strategy were then

added to complete the document [29].

12

Indeed, developing a reusable IP block requires more than just writing clean code and

preparing good documentation. There are many technical issues that need to be

addressed, as the IP developer must anticipate the application in which the IP block may

be used. The RMM suggests several design-for-reuse guidelines, which include:

• Use synchronous design instead of asynchronous because current timing-driven

place-and-route tools produce better result with synchronous design

• Avoid latches, as they have ambiguous timing. When latches are used, one cannot tell

whether the data is intended to be latched at the beginning of the enable phase or the

end, so there is no way to know whether time-borrowing is used or the path has delay

problem.

• Buffer the I/O of the core to create clean timing interfaces

• Avoid tri-state-buffers because of drive strength issues. Manual transistor sizing is

usually required and it makes them "non-reusable". In addition, tri-state buffers need

special care during test or power-up to avoid bus contention.

• Minimizing the number of clock domains

• Thorough verification with 100-percent code-coverage testbench

The importance of thorough verification is obvious. The problem lies in developing a

good testbench, which is a major design effort by itself. In the case of the HC11,

testbench development takes over 50% of the total development time. RMM recommends

a bottom-up strategy for which sub-modules of a block are verified entirely before being

integrated into the higher-level entity. This divide-and-conquer approach breaks down the

block-level verification task into sub-tasks that can be handled individually. R M M also

13

suggests using EDA tools to accelerate the process of testbench generation and code

coverage analysis to quantify the quality of the testbench. The original testbench suit that

accompanied the HC11 code was very primitive and was only designed for the integrated

core. Sub-block testbenches were developed during the reusability rework project and test

cases for each HC11 instruction were created to supplement the original testbench. The

testbenches were all handcrafted and simulation waveforms obtained through these

testbenches were manually inspected. The process is time-consuming, but it is still the

most cost-effective way of catching design errors. The EDA tools cannot completely

replace the manual processes; they only speed up or simplify the tasks involved. In

addition, code reviewing remains a very effective method for verification and should not

be overlooked.

RMM also advocates the practice of I/O buffering since it contains the timing problem

within a core and provide clean interfaces for inter-block communication. This

recommendation, however, has a significant impact on area and performance when

applied to the HC11. After the initial addition of I/O buffers (i.e., all I/O ports were

registered by edge-triggered flip-flops), the HC11 failed many instructions that involved

memory access. Follow-up analysis of the state transition reveals that the data path and

the control path were misaligned due to the additional cycles introduced by I/O buffers.

So a memory write instruction that originally takes n cycles to complete now takes n + 1

cycles, but the state machine still assumes n cycles for the instruction and generates the

control signals accordingly. Clearly this recommendation cannot be applied blindly.

RMM does not warn of this potential pit-fall because it assumes the IP block is designed

14

from scratch and the additional cycles from I/O buffering is taken into account during the

design phase. To correct the misalignment, the entire state machine had to be re-coded to

include the extra cycle. With I/O buffers, the HC11 behaves very similar to a pipelined

design, so numerous wait states were inserted to clear the pipeline when branching

occurs. After the state machine is corrected, the average cycles per instruction increases

by 25%, and the synthesized gate area of the core becomes 34% larger than before the

correction. In addition, changing the code increases the risk of introducing new errors and

becomes extra verification burden.

The penalty of adding I/O buffers to the HC11 is severe. Later, it was found that the

problem could be mitigated by enlarging the IP boundary of the HC11 to include the

interface logics and adding I/O buffers at the top-level entity. Figure 4 shows the

proposed HC11 block with new boundary definition. The HC11, which is only the CPU

part of the microcontroller, cannot perform any meaningful function by itself. It requires

a local memory module for data storage and interface to external bus to communicate

with other devices. If we consider the HC11, local memory, the local bus, and the

external interface all as one single IP block, timing synchronization can be easily

achieved within the IP block and we need only provide clean timing at the external

interface. With the new definition, the state machine of HC11 does not need to be

modified. This approach trades reuse granularity for performance, area, and redesign

effort.

15

Processor
Interface

ROM
Interface

Figure 4. Refined block boundary of HC11

2.3 Coding for Synthesis

For a design to be reusable, it must be useable in the first place. One important aspect of

creating useable HDL code is to ensure that it is synthesizable. The purpose of the HDL

code is to describe a piece of hardware, and thus it must comply with certain rules set

forth by the synthesis tool. The synthesis tool recognizes the constructs in the RTL code

and translates them to equivalent gate-level netlists. However, not all RTL constructs are

synthesizable. RMM suggests several guidelines for coding synthesizable designs and for

avoiding mismatches between pre-synthesis and post-synthesis simulations. These

include:

1. Use the standard VHDL and Verilog template for inferring random logic

2. Assign default values in conditional statements to avoid unintentional latch inference

3. Specify a complete sensitivity list

4. Use non-blocking assignments in Verilog always statements for sequential logic

5. The case statements simulate faster and can be synthesized into faster circuit, and

thus is preferred over if-then-else statement

16

According to RMM, guideline #4 avoids mismatches between pre-synthesis and post-

synthesis simulation, but the cause of the mismatch is not explained, nor is the usage of

blocking vs. non-blocking statements in Verilog. The lack of explanation is a prevalent

problem in RMM. Although RMM provides many useful guidelines, the designers

sometimes can make a better decision by knowing the reason behind these guidelines.

According to [11], the mismatch is caused by the scheduling policy of Verilog events,

which dictates the blocking assignments to be scheduled before non-blocking assignment.

When a design is in the RTL form, the software simulators must follow the scheduling

rule, as it is part of the Verilog standard. For sequential logics modeled as blocking

assignments, race condition could occur (a newly assigned signal is overwritten by

another assignment before the next triggering clock edge) because all blocking

assignments scheduled at the same time step are processed in arbitrary order. The race

condition doesn't necessarily lead to incorrect synthesis, but it always results in incorrect

pre-synthesis simulation. For combinational logic modeled as non-blocking assignments,

the assignment results are not updated until the end of the current time step. This requires

the signal that appears in both left-hand side and right-hand side of the assignments to be

placed in the sensitivity list to model the correct behavior, but doing so will trigger the

sensitivity list multiple times and thus waste simulation cycles. These observations lead

to the following refined guidelines:

1. Use non-blocking assignment in Verilog always statements for sequential logic

2. Use blocking assignment in Verilog always statements for combinational logic

17

3. Use non-blocking assignments in Verilog always statements that model both

sequential and combinational logic

Traditionally, the flow from a high-level system model to RTL code has been done

manually and the quality of the code (area and speed of the synthesized system) depends

heavily on the skill and experience of the engineers. Since many of the synthesis and

simulation problems can be avoided by using standard templates for the logic elements,

the most efficient way of generating synthesizable RTL code, in the author's opinion, is

behavioral synthesis. Behavioral synthesis generates RTL representation of a design from

a higher-level description using control/data flow graph [5]. Similar to IP reuse, high-

level behavioral synthesis can leverage the expertise of experienced designers and at the

same time automate both coding-for-synthesis and coding-for-reuse. This method also

allows the engineers to focuses on system-level design and facilitates software/hardware

co-simulation. The current candidates for the standard of behavioral synthesis language

include SystemC [61] and Superlog [58].

Behavioral synthesis, however, is more than just mapping C/C++ code constructs to logic

elements. A behavioral synthesis tool needs to schedule the high-level operations (such as

add, multiply, and move) for optimal area or speed, automatically generate the

controlling finite state machine (FSM), infer the most efficient memory element (register,

register file, or random-access memory), and analyze the affect on system performance

versus power consumption through architectural changes. Although behavioral synthesis

is used predominantly for DSP application, the large saving in design cycle (as much as 5

18

times has been reported) makes it very attractive for IC designers in general [7]. The

continuous improvements in scheduling algorithms and tool integration have made

behavioral synthesis feasible for applications other than DSP.

2.4 Design for Test (DFT)

A reusable design should also include DFT that provides testability to the block and

allows ease of integration into a system-level test strategy. There are a variety of block-

level DFT strategies: full/partial scan, BIST, and test path through functional logic. Full

scan is the most prevalent strategy for manufacturing because of its high fault coverage

and CAD tool support. Although scan has a small penalty in area and delay (signals must

propagate through multiplexers), the overhead is negligible for most ASIC designs.

RMM and other sources [55][10] provide details on how to create scan-compatible

designs using several well-known guidelines. These guidelines are either to ensure the

operation of the scan structure or are the result of tester and ATPG tool limitations. The

guidelines include:

• No sequentially generated asynchronous set or reset should be used. Asynchronous

control signals can render the flip-flop uncontrollable during scan shift

• Avoid more than one triggering edges in one clock domain. Dual-edge designs makes

timing analysis more difficult and creates edge placement problem in the tester

• Avoid tri-state buffers to prevent signal contention during scan shift

• Avoid gated clocks. The flops using gated clocks cannot be clocked from primary

input and thus impossible to scan in data

• Avoid latches because of unreliable test capture.

19

The HC11 adopts the logic BIST strategy. A single scan chain was inserted into the

synthesized netlist of HC11 using Design Compiler™ from Synopsys®. Scan insertion is

a two-stage process. First scannable flip-flops are used during mapping from RTL to

technology-specific netlist. This is accomplished by the -scan option of the compile

command. Then the test ports of the scannable flip-flops are stitched together by the

insert_scan command. Since HC11 contains two separate clock domains, a lock-up latch

was inserted between the two clock domains during scan stitching. Figure 5 demonstrates

how the lock-up latch is inserted between scan cells belonging to two different clock

domains. Shifting test vectors through multiple-clock-domain scan chain resembles a

clock skew problem. Using the scan chain in Figure 5 as an example, if CLK2 is later

than CLK1, flip-flop C and flip-flop B will register the same value at the same clock

cycle and thus the data will be shifted one cycle too early. With the lock-up latch in

place, the value of flip-flop B is available to flip-flop C only after the falling edge of

CLK1. In effect, the lock-up latch delays the scan data for half a clock cycle and thus

increases the scan chain's tolerance to skew.

Combinational Logic

D
SI

^ B

D Q
LL

EN

CLK2

D Q
SI
„ c

Figure 5. Using lock-up latch to combine scan cells of different clock domains

20

After the scan chain was in place, a BIST block was integrated into the top-level IP block

as shown in Figure 6. The BIST uses a 32-bit linear-feedback shift register (LFSR) to

generate pseudo-random test vectors and uses a signature analyzer to compress the test

result. In order to control the HC11 during test mode, the clock to the HC11 is gated

inside the BIST. Furthermore, latches are used in the BIST to prevent glitches and race

condition. A state machine within the BIST generates the control signals to the LFSR and

the scan counter. The LFSR and the counter must be started precisely at the same time, so

latches are used to hold control signals for half clock period such that both the LFSR and

the scan counter start exactly at the triggering edge of the following cycle.

elk

gated_clk
HC11

-w scan chain

scan out

BIST

Top-level IP Block

Figure 6. BIST strategy for HC11

Although the usage of gated clocks and latches is discouraged by RMM, we found both

techniques necessary for the desired BIST functionality. The argument against clock

gating is the danger of generating glitches, which will trigger unintentional capture of the

flip-flops. In addition, the flip-flops clocked by the gated clock may not be scannable

because the automatic test equipment (ATE) cannot control the gating signal, thus

controllability during testing is lost. To overcome the problem, the clock gating logic in

21

the BIST is carefully designed so that glitches could not occur as a result of switching of

the gating signal. Since the HC11 is triggered by the falling edge of the clock, the gated

clock is forced to VDD when disabled so the gated clock can only monotonically rise to

VDD as the gating signal switches. The argument of non-scannable flops does not apply

here since the BIST replaces the ATE and takes control of the clock during testing.

The dilemma posed by the BIST is how to verify the correctness of the BIST itself before

it is used to test core logic. Often a chip is discarded regardless the correctness of the

BIST if the BIST generates a wrong signature. Testing BIST is useful in a redundancy

scheme where multiple instances of BIST are available and a backup BIST can be

activated to replace the faulty one. To address this issue, full scan test methodology is

used for the BIST. Since latches are used inside the BIST, they affect the testability of the

BIST. The ATPG tool expects a single edge event at the sequential logic, while the

latches respond to both clock edges [14]. If the latches are driven by clocks, there is

potential danger of a race condition in which scan data may be captured too early. If the

latches are driven by enable signals that are generated by other logic, then ATPG may not

be able to propagate faults through the latches because they do not behave as pure

combinational circuits. To solve the latch problems in scan-based design, the common

approaches are to either replace the latches with scannable variant during synthesis or

make the latches transparent during testing. Since our standard gate library does not

provide scannable latches, the approach of using transparent mode is adopted.

22

After successful scan insertion, a complete timing analysis of the design is required to

ensure that there is no hold-time violation or race conditions in the scan chains. The

problem is that there was no tool for static-timing analysis installed on-site. The best that

could be done was to explore the options offered by Design Compiler for scan insertion

and to perform gate-level simulation to catch any glitch and setup/hold time violations.

Moreover, power analysis needs to be performed on the design with the scan chain

inserted. The Power Compiler allows estimation of power consumption based on only the

synthesized gates and an abstract wire-load model. This of course is a very rough

estimation since the result does not include an accurate calculation the power due to

interconnects and does not use the actual activity factor (which needs to be obtained

through simulation). These problems need to be addressed as better tools become

available.

2.5 Prototyping

Testing on the physical implementation of the IP block is necessary to guarantee the

usability of the IP block before integration into SoC. This is especially true for a third-

party IP vendor who must demonstrate the validity of the IP block. As a result,

prototyping is an essential part of IP block verification [33]. The most common approach

of IP prototyping is either an FPGA implementation or a complete implementation as an

ASIC design. FPGA is suitable for debugging, but it does not have the speed and area

advantages of ASIC technology. The HC11 was implemented on both as an ASIC and on

a FPGA. The ASIC design uses TSMC 0.18um technology and was carried out using

Cadence back-end tools. Figure 7 shows the finished chip of the HC11 in loose-die.

23

Valuable experience in physical design and packaging for digital circuits had been learnt

from this exercise. The F P G A on which the HC11 was implemented is a Xi l inx Virtex-

2000E integrated into a rapid-prototyping board with an A R M T D M I 7 core. From our

experience, the ASIC implementation takes 2899 logic gates and runs at 50 M H z . The

F P G A , on the other hand, takes 2557 4-input LUTs and runs at a maximum frequency of

23 M H z . It is clear that the F P G A implementation cannot compete with ASIC even with

a small design such as the HC11. However, the quick turnaround time from design

modification to re-test and the cost effectiveness comparing to ASIC re-spin makes

F P G A ideal for the initial validation.

Figure 7. Die photo of the fabricated HC11 core

24

CHAPTER 3 SOC DESIGN (NETWORK PROCESSOR)

Many practical issues of an IP design do not emerge until it is actually applied in a real

system. As a result, integration of an IP block in an SoC is an important validation step.

In fact, most design managers will not use third-party IP unless it has been proven in

larger SoC designs. However, IP integration poses distinct challenges in SoC design.

Contrary to traditional ASIC design, an SoC combines several logic and memory blocks

and often requires parallel development of hardware and software. The choice of the IP

blocks and the method by which they interact are critical to the performance, power and

area of the end system. In an attempt to understand the SoC design process and how

reusability of the core affects integration, a simplified network processor was developed

and the HC11 was used as one of its IP cores.

A network processor is a packet-processing engine that performs routing and a host of

other network-related functions. The typical tasks handled by a network processor

include packet classification, forwarding, header update, encryption, traffic management,

and quality-of-service (QoS) [31]. In fact, any device that provides some form of network

services may be claimed to be a network processor. Despite the lack of a clear definition,

most network processors do have the common attribute of enhanced programmability to

offer better post-manufacture flexibility than the hard-wired ASIC switches and routers.

The programmability is usually built into the modules at the higher OSI stack, where

protocols are constantly being refined and invented. Most network processors also

provide means to accelerate tasks that must be performed on a regular basis and thus is

critical to the throughput of the system. This usually applies to functions at the lower OSI

25

stack where the protocol is standardized and can be implemented completely in hardware.

For instance, by including a barrel shifter to facilitate the parsing of IPv4 packet headers,

a network processor consumes 2000 extra gates but its performance increases by 30%

[38]. As a result, a network processor is really a trade-off between the ASIC solution and

general-purpose CPU approach, as shown by Figure 8. A network processor is a suitable

candidate for studying SoC because the functionality requires a wide variety of logic and

memory components, and thus provides an opportunity to explore core integration and

test issues. Moreover, the bandwidth requirement of the network traffic demands an

efficient communication path between the blocks, so a network processor is an ideal test

bed for high-speed bus design.

Flexibility

Figure 8. Performance and flexibility trade-offs of network function implementations

3.1 Architecture

An industry-strength network processor is an extremely complex system that is the fruit

of years of research and development. Rather than designing such a complex system from

scratch, an architecture was chosen from a commercial vender and scaled back to fit the

26

design capacity of the researchers. The architecture of the simplified network processor

was constructed by consulting information gathered from [31][43][24][21][51], and was

inspired by the Sitera network processor [50]. The simplified network processor unit

(NPU) classifies and forwards IPv4 packets and has a rudimentary firewall functionality

that relies on the classification result. The NPU was modeled after the Sitera architecture

and has similar processing flow of classification, Layer-4-and-above functions, look-ups,

and queuing. The system performs primarily OSI Layer 3 services. It is intended to be a

router in local-area network for a corporate environment where the low-level protocols

are stable and well defined. The design assumes that the incoming link is a 100Mbps

Ethernet connection and the average packet size is 500 bytes. Then for it to achieve the

proposed processing time of 4 cycles/byte, the NPU should operate at minimum of

50MHz. In comparison, a real network processor is usually targeted at gigabit links, has

an average process time of 80 cycles/byte, and operates at 200~300MHz [38].

General Purpose
CPU

Classifier \—,

Classifier M

Classifier —

Classifier

Order
Management

Payload
Management

Embedded
Processor

Lookup

Embedded
Processor

Lookup

Embedded
Processor

Lookup

Embedded
Processor
Embedded
Processor

Lookup

Memory

Queue
Management

r*\ Qos

Qos

Payload
Management

Qos

Qos

Figure 9. Architecture of the Sitera network processor

27

3.2 Components

The major components of the NPU include a pre-processing unit, a classifier, an

embedded processor, a post-processing unit, and various memory components as shown

in Figure 10. The embedded processor is the HC11 discussed in Chapter 2, and the other

logic blocks are standard ASIC blocks. The embedded processor is a reusable IP block

and the PCI interface is assumed to be available from a third-party vender, while the

other logic blocks are considered as UDLs designed specifically for the NPU SoC.

Although their functionalities are tailored for the NPU and the likelihood of reuse is low,

the UDLs are still designed following the reuse guidelines. By conforming to the reuse

guidelines, the blocks should have clean interfaces and good coding that help the task of

integration and possibly the debugging process. The UDLs in the NPU, including the

classifier, the pre-processing unit, and the post-processing unit, were all developed from

scratch and designed with proper DFT for structural test. The components communicate

to each other through either an AMBA™-compliant high-speed bus or through point-to-

point connections. The AMBA-compliant bus was developed based on the AMBA AHB

specifications publicly distributed by A R M [2]. The AMBA bus uses a pipelined design

for data transfer that satisfies the bandwidth requirement of network processors. This bus

will be described in more details in a section to follow.

The pre-processing unit is responsible for receiving inbound packets from an external

physical layer (OSI Layer 2) device. The pre-processing unit separates the header of the

received packet from the payload portion and sends only the header to the classifier. Its

counter part, the post-processing unit, is responsible for assembling the header and the

28

payload of the packet to be sent out of the NPU. The pre-processing unit also notifies the

classifier when an error occurs in the inbound packet. In the current implementation, the

packet is discarded when an error occurs.

IP pkt Memory
controller < H

Program
Memory

CAM

K PCI
y Interface

P̂ostprocessing
Unit

< H

* H

4 H •

12

FIFO

Pre-processing
Unit

FIFO

Classifier

FIFO

« H
Embeded
Processor
(HC11)

Figure 10. Architecture of the simplified network processor

The classifier accelerates the operation of the NPU by implementing the longest-prefix

matching of IPv4 address in hardware. The IPv4 address in today's network is actually a

combination of a network address and a host address on the network [35]. The prefix

refers to the network address portion of the IPv4 address. For example, if the IPv4

29

address of a machine is 192.168.4.12 with a subnet mask of 255.255.255.0, then the

192.168.4 portion represents the network address and 12 indicates the host address of the

machine. Adjusting the subnet mask allows the network administrator to trade off the

number of networks with number of hosts on each network. Due to the masking, a given

IPv4 address may match multiple networks, so the longest matching prefix is needed to

resolve the aliasing. Some routers use a ternary content-addressable memory (C A M) with

the IPv4 address as the C A M tag and the host address of the next hop as the data. Others

use binary search trees or hash tables implemented in software [21] [25]. In the N P U , the

classifier narrows down the search space by identifying the flow, which is a range of IPv4

addresses. Each flow is represented by a class ID, which can be used later at the C A M for

route look-up. This approach requires less C A M space and is faster then the software-

based searching algorithm [25].

The classifier also allows information other than the IPv4 address to be used in making

forwarding decision. In fact, the classifier allows arbitrary header field to be matched and

thus enables differentiated services by matching the source/destination address and the

transport protocol. Using a set of highly optimized classification rules rather a procedural

language such as C to direct the operation, the classifier can perform faster then a RISC

processor and the classification code is easier to debug than a C program [46].

The embedded processor in a real network processor is intended to process high-level

functions at Layer 4 or higher. Examples of such functions include:

30

• Policy-based networking - exercises company policies such as priority definition,

security enforcement, and route selection based on the user and the application

• Server load balancing - redirect the traffic among servers based on URL, server load,

or user credential. An example is the proxy server that stores frequently accessed web

pages

• Quality of Service - allow jitter-sensitive applications such as video and voice to have

higher priority

• Network monitoring and analysis - high-speed capture of the network traffic to

provide information for network planning and troubleshooting [1]

The above functions all require header information at Layer 4 or above. Currently there is

no standardized protocol for any of these functions. It is unlikely that they will be

standardized, since different network services providers desire different implementations

of these functions to suit their business model. In the NPU, the embedded processor is

only used for executing the classification results, which is explained later. The

assumption is that if any high-level function is to be included in the future, it can be

implemented as software and then executed by the embedded processor.

Once the components are integrated, the NPU can transport an IPv4 packet from the input

port to one of the output ports based on the routing information in the packet header. The

flow starts with the pre-processing unit receiving a packet in byte-wide chunks from a

Layer 2 device. The pre-processing unit then stores the packet in the packet memory and

copies the header portion of the packet to the classifier. The classifier processes the

header according to the classification rules and produces a class ID and an action tag.

31

Using the action tag, the embedded processor can decide whether to further process the

packet in software or simply allow/disallow the packet to flow through the engine. If the

packet has the permission to flow through the engine, the embedded processor looks up

the next hop by matching the class ID in the C A M and sends transfer request to the post

processing unit. One post-processing unit resides at each corresponding output port. Once

a transfer request is received, the post-processing unit will transfer the packet from the

packet memory to the output FIFO. The outbound packet will be retrieved by a

downstream Layer 2 device and will continue to travel through the network.

Figure 11 shows a hypothetical network in which the NPU may be used. The network is

designed to be such that the first 24 bits of the IP address identify the subnet, while the

last 8 bits identify the individual terminals connected to the subnet. Table 1 shows a

sample of classification rules for this network. The rules are to be executed one after the

other in the order they are stored in memory, until one of them is matched. A rule is said

to be matched when the header fields in the current packet matches all the corresponding

fields in the rule. The rules in Table 1 were setup so the NPU filters out any Internet

traffic (using HTTP transport protocol) from subnet 168.1.4.x to subnet 168.1.1.x and

blocks any FTP requests to terminal 168.1.3.5, while allowing all other traffic to flow

through the network. The NPU handles the tasks on the data path. The tasks on the

control path, such as routing table update, are assumed to be performed by a host

computer connected to the PCI interface.

32

kg.'.y.

168.1.2.0

168.1.2.x

168.1.3.x

B
168.1.3.5

y
168.1.4.0

Figure 11. Hypothetical network

Table 1. Classification rules for the hypothetical network

Layer 3
source

Layer 3
destination

Layer 4
protocol

Layer4 dest.
port

Class ID Action

Rule 1 168.1.4.X 168.1.1.X TCP (6) HTTP (80) 1 Deny
Rule 3 X 168.1.3.5 TCP (6) FTP (20) 2 Deny
Rule 6 X X X X 3 Permit

The X means don't care

The current design of the NPU shown in Figure 10 contains only one pre-processing unit

and one post-processing unit to handle one input and one output channel respectively.

Clearly a network router should be capable of handling multiple channels of inbound and

outbound packets. Therefore, a real network processor should probably have multiple

instances of the NPU design operating in parallel, with each instance being responsible

for one input/output channel. Also the C A M module of the NPU for storing routing

I 168.1.2.8
168.1.1.0

| 168.1.1.6

Routi

I 168.1.3.6 |

I 168.1.3.8

| 168.1.4.6 |

168.1.4.x

33

information and a PCI module for connection to host computer were not available at the

time the system was developed. An SRAM module is used instead as placeholder for the

C A M . In addition, the HC11 core consists of only the central-processing unit and the

supporting modules such as interrupt controller, local memory, and ROM controller are

missing. Even if all the missing hardware were available, an embedded program still

needs to be developed and loaded into a ROM accessible by HC11. As a result, the

network processor is not functionally completed. Nevertheless, the current

implementation is sufficient for the purpose of investigating core DFT designs and

experimenting with different T A M approaches, which is the intended purpose.

3.3 System Bus

The system bus in the NPU is an AMBA-compliant, multiplexer-based bus. It is

responsible for transporting functional data between the cores in the NPU. Although a

multiplexer-based bus consumes more area, this type of bus is favoured in SoC design

because it does not have the power-on and drive strength issues of a tri-stated bus [33].

Figure 12 shows the architecture of the A M B A bus. The architecture requires a

distinction between masters and slaves. By definition, a master is a component that can

initiate and respond to data transfer, whereas a salve can only respond to data transfer.

Each data transfer consists of an address phase and a data phase. The bus design uses two

types of multiplexers to accomplish data transfers: one for delivering address from

masters to slaves, and the other for delivering data either from masters to slaves or from

slaves to masters. The separation of address and data paths allows consecutive transfers

to be pipelined and thus increases the bus performance [2],

34

Arbiter

Master
1

Master
2

Master
3

HRDATA

Address and
control mux

Write <Sata mux

Read data mux

Decoder

HADDR

Slave
1

Slave
2

Slave
3

Slave
1

Figure 12. A M B A A H B architecture

The concept of bus adapters has been used in the integration of the cores with the system

bus. The idea is that instead of connecting the cores directly to the system bus, adapters

that are customized to individual cores are created to serve as intermediate interface

modules between the cores and the bus. By using the adapters, the cores are shielded

from the details of the bus interface and the design of the cores can be simplified. Figure

13 demonstrates the concept of the bus adapter. In the current implementation, adapters

with generic interfacing rules are possible since none of the logic blocks in the NPU uses

advanced A M B A bus function such as burst transfer, locked transfer, and split mode.

And while the A M B A bus uses pipelined transfer, the NPU cores do not. The conversion

between pipelined transfers and non-pipelined ones is handled within the adapters. In

addition, the use of adapters facilitates the adoption of an alternative bus architecture in

the future, as only the adapters would need to be modified and the cores could remain

35

unchanged. Although the development of the adapters demands more effort and may be

error prone, using the adapters allows system integration and core development to

proceed concurrently. The system integrator can design the adapters and test inter-block

communication, while the core designers can focus on delivering the core functionality.

AMBA Bus Interface
addr, rw,
wdata, rdata
busrqst, grant
ready, resp, size,
burst, type, ...

Generic Bus Interface
addr, rw
wdata, rdata
rqst, grant

Figure 13. Concept of the bus adapter

3.4 Design for Test

For testing at the core level, full-can testing is deployed in the pre-processing unit and the

post-processing unit. A single scan chain is inserted into each block, and scan vectors

(generated by Synopsys Test Compiler) are to be supplied from off-chip. To create a

heterogeneous testing environment, a BIST strategy is used for the other blocks. A BIST

controller is implemented for the classifier and the embedded processor (HC11). When

the BIST is active, it overrides the functional clock of the logic cores with a gated clock

and generates the scan-enable signal from its internal state machine. The BIST can also

be bypassed by asserting the appropriate control signal so the core can be tested by the

full-scan method as well. Testing of the memory modules is to be performed by dedicated

36

memory BIST, which is different from the logic BIST used by the classifier and

embedded processor. The memory BIST runs a simplified marching C algorithm and has

rudimentary diagnostic support. The test data is transferred by an on-chip packet-

switching network based on the NIMA concept presented [42]. NIMA will be described

in a later chapter. Table 2 summaries the DFT strategies for the cores inside the NPU.

Table 2. Core DFT strategy

Core DFT Strategy Scan Length Vector Count
Pre-Processing Unit Full Scan 642 509
Post-Processing Unit Full Scan 326 286
Classifier Logic BIST 518 2048
Processor (HC11) Logic BIST 181 2048
Program Memory Memory BIST N/A 129
Data Memory (CAM) Memory BIST N/A 129

For testing at the system level, P1500-compliant wrappers were developed to encapsulate

individual cores and their associated test structures. P1500 is a standard under

development by IEEE targeted specifically for embedded core testing [58]. Its purpose is

to provide a uniform interface between the cores and the chip-level test access

mechanism, analogous to how IEEE 1149.1 facilitates board-level testing. In fact, the

PI500 wrapper is very similar to the legacy IEEE 1149.1 boundary scan in both

architecture and operation. The most noticeable differences are the absence of TAP

controller and the addition of parallel test port in PI 500 wrappers. By detaching the TAP

controller and providing more access ports, the serial-input constraint of IEEE 1149.1 is

removed and a greater variety of test access mechanisms are supported. The wrappers for

the NPU cores are developed based on the most recent information published by the

37

standard committee [45], with some minor adjustments to adapt to the NIMA test

network.

The PI 500 wrapper has four control inputs and one pair of serial data input and output as

shown in Figure 14. The serial input, WSI, is used to transport wrapper instructions and

test data. Instructions for the wrapper are shifted serially into the Wrapper Instruction

Register (WIR) and various enable signals are generated from the control logic based on

the content of the WIR and the four control inputs. The Core Data Registers (CDRs) are

used to capture test results or to provide signatures to BIST and multiple-input sequence

recognizer (MISR). The ring of flip-flop around the core forms the Boundary Data

Register (BDR) that isolates the core's functional interface from other blocks in the SoC

during testing. When exercising full-scan test on the wrapped core, the test vector is

serially shifted in through WSI, and scan output is serially shifted out through WSO. If a

MISR is instantiated, the scan output is also captured by the MISR and compacted to

produce a signature. Both the core and the BIST support full scan, so the MISR can be

used for compacting results from testing either module. Note that according to the IEEE

1149.1 standard, the serial output is stable at the falling edge of the clock. In an attempt

to adhere to the established IEEE 1149.1 standard as much as possible, a negative-edge-

triggered flop is added to buffer the WSO signal. The implication of using both clock

edges is that the time window for data to propagate through the wrapper is reduced to half

a clock period.

38

Select
Capture

Shift
Update

WSI
WSO

Figure 14. Block diagram of a PI 500 wrapper for a core using BIST DFT

Depending on the requirement, the cell of the BDR may be simplified to reduce area

overhead. The current design of the cell consists of two D-flip-flops and a multiplexer.

The design of double flip-flop is derived from the IEEE 1149.1 standard [39]. In this

design, the capture flip-flops provide stable data to the core while the new data is being

shifted through the shift flip-flops, and thus prevent the internal state of the core from

being altered unintentionally. To save routing area, reset lines are omitted for the D-flip-

flops. To ensure that the core receives deterministic values from the wrapper cells, the

core is connected to the functional inputs/outputs through the multiplexers during

wrapper reset. The core inputs are connected to the capture flip-flops only after valid data

are loaded using the wrapper PRELOAD instruction.

39

Shift port to next wrapper cell

Functional port

Shift
FF

Capture
FF

Wrapper Cell

Functional port

Shift port from previous wrapper cell

Figure 15. Structure of a wrapper cell

As shown in Figure 16, all blocks in the NPU except the bus module are wrapped by

PI500. The bus module is not wrapped because the on-chip bus is not to be tested by the

full scan method and also because adding BDRs around the bus will cause excessive area

overhead. During testing, test data (either test vectors or commands to the BIST) is

formatted into test packets and sent to the designated block. In order to translate the test

packets into information that can be used by the test structure of individual blocks, a

dedicated NIMA interface module is developed for each core. The NIMA interface

modules, shown as square boxes attached to the P1500-wrapped cores in Figure 16,

interpret the payload of the test packet and control the PI 500 inputs based on the content

of the payload. For instance, if the payload of the packet contains a test vector for the

embedded processor, the interface module toggles the Select, Capture, Shift, and Update

signals of the PI500 wrapper appropriately so the vector is shifted into the core through

the WSI input.

40

, NIMA
l/F P 1 5 0 0

' ' imory
Interface K

y IP pkt i

NIMA
l/F ..

NIMA
l/F

BIST

P1500Ki

Program
Memory

BIST

P1500

port 1 (packet
Post-processing

Unit

Slave
A Adapter

Slave
Adapter

Slave
Adapter

P1500

NIMA
l/F

Adaptor
Y I P nL-t

Slave
Adapter

IP pkt

IP pkt Master
Adapte r

Mastei
Adapte

Maste
Adapte

Arbiter

Mmux

Decoder

Smux

AMBA-Compiiant B

m12

Pre-processing
Unit

Embeded
Processor

(HC11)

:RT500,
NIMA

l/F

• P 1 5 0 0

NIMA
l/F

P1500

NIMA
l/F

Figure 16. Network processor SoC with NIMA test network

3.5 Core Integration

Various integration issues surface during the integration process in which the network

processor is constructed from the HC11 IP block and the UDLs. Since the cores are

integrated as soft IPs, their RTL codes are imported into the Synopsys Design Compiler

for synthesis. Proper timing and capacitive loading constraints need to be entered into the

tool in order for it to synthesize the design to meet the targeted speed. For this project,

area and power are not constrained and thus are not optimized. Although area and power

4 1

are not properly considered, there are still many integration problems common to today's

IC designs that need to be solved. Among the important integration issues are I/O

buffering of the cores, core verification, and synthesis strategy.

3.5.1 I/O Buf fer ing

I/O buffering of all SoC cores is strongly recommended by RMM. As described earlier,

adding I/O buffers has the benefit of localized timing. As the size and the speed of design

increases, it becomes increasingly difficult for signals to propagate through the silicon

chip within the given time window. Due to aggressive design goals, signals have to

propagate through more stages of logic in a shorter clock period, and the risk of not

meeting timing increases. By registering the I/O of the cores, the timing problem is

localized in the sense that the delay through one core does not affect the delay through

another one, as long as each core meets its own timing budget. Then a discrete number of

clock cycles is allocated for the communication between the cores. This is important for

reuse since the designer of one core does not necessarily have control over another core,

so each core must achieve timing closure independently.

Registering I/O, however, has adverse effect on inter-core communication. Often the

inputs to a core are used to drive state machines or generate control signals of a data path.

By registering the input, one clock cycle of delay is introduced between the time when

the inputs become valid and when the core responds to the inputs. Similarly, by

registering the output of a core, the downstream core would not receive the new data until

one cycle later. The extra cycle disrupts the synchronization of data between the cores

42

that are closely related. An example in the NPU SoC is the interaction between the FIFO

and the classifier that reads from it. After the classifier reads the last piece of data from

the FIFO, the FIFO sets the empty flag. However, the flag is not detected immediately by

the classifier as a result of I/O buffering, so the classifier may continue to read from the

FIFO and mistaken the default value as valid data. The remedy currently employed is to

make the classifier read the almost-empty flag instead of the empty flag and set the empty

threshold in the FIFO properly so there are enough clock cycles for the flag to propagate

to the classifier. One may argue that the FIFO should be integrated closely with the

classifier and thus eliminating the need for I/O buffering. The counter argument is that by

moving the FIFO close to the classifier, the core that writes to the FIFO sees a longer

path and their interconnect delay there could be a problem. Furthermore, since the testing

strategy for the FIFO has not been defined, integrating the FIFO into the classifier

complicates the DFT strategy of the core.

3.5.2 Core Ver i f icat ion

Inconsistent core implementation is a problem that constantly impedes the integration

process of the NPU. Since different cores were designed by different engineers,

inconsistency occurred when wrong assumptions were made regarding the inter-

dependency of the cores or when the design specifications were misinterpreted. In other

times, the inconsistency was simply the result of the design errors. Common errors that

are obscure and hard to detect include:

• Errors when translating the code between Verilog and VHDL. For example, the '&'

operator is valid in both HDL but have different meaning. In Verilog, it means the

43

logic AND function; in VHDL, it means literal concatenation. Misuse of the

operator results in syntactically correct but semantically incorrect code.

• Constants that are not updated when the design specification changes. Hard-coded

values are often used for length of bit vector, default values, and the mask for bit

masking.

As mentioned in Chapter 2, an IP block should be fully verified before integration.

However, achieving 100% code coverage is not as easy as it sounds. Generating a good

set of testbench and test vectors could take longer than developing the core itself. From

our experience, the extra cycle in testbench development extends the development time

by 2 to 2.5 times. In addition, calculating the code coverage requires support from the

RTL simulation tool. The NCSIM™ Verilog/VHDL simulator from Cadence has such a

capability, but we lack the license for advanced coverage report, which is needed to

accelerate testbench development. During the integration of the NPU, most of the

inconsistencies caused by misinterpretation were resolved in design phase rather than

during integration, thanks to close interaction between the system integrator and the core

designers; 60% of the inconsistencies during integration were caused by designs that

were not tested properly and thus still contained design errors when handed over.

Behavioral synthesis could be useful here since it eliminates most of the manual work in

RTL coding and also facilitates the creation of an executable specification that can be

used in formal verification.

44

3.5.3 Synthes is Strategy

Developing a coherent synthesis strategy is a complicated process. Design Compiler from

Synopsys is capable of many different synthesis approaches, including top-down, bottom-

up, and a combination of these two approaches [13]. The selection of a synthesis strategy

has a direct impact on the optimization results of the design and the run-time of the CAD

tool. In the top-down approach, all design entities are read into the tool at once and the

compilation process takes care of the inter-block dependencies automatically. However,

top-down approach is possible only if there are adequate memory and CPU resources.

The bottom-up approach synthesizes one design at time starting from the entities at the

lowest end of the hierarchy. The bottom-up approach requires less memory than the top-

down approach and allows timing budgeting, and thus is the suitable choice for most

modern designs. Its disadvantage is that multiple iterations are usually required to

achieve stable inter-block interfaces. RMM recommends a bottom-up approach for SoC

design. This approach mandates a set of synthesis scripts for each core to be written so

the core can be quickly re-configured and re-synthesized for use in different projects.

Currently the NPU is synthesized from the cores using the bottom-up approach. In this

flow, the core and its BIST module (if present) are synthesized separately with proper

timing constraints applied to each of them. For this project, area and power are not

important and thus the clock definition and the I/O characteristics are the only constraints

specified in the synthesis script. Once the core and BIST are synthesized, they are set to

don 't-touch to prevent further modifications, and a top design is created to instantiate the

synthesized netlists. At one level of hierarchy above, another entity is created to

45

instantiate the top design and the PI500 circuits. The synthesized, P1500-wrapped cores

are then referenced during the synthesis of the NPU. Figure 17 demonstrates the design

hierarchy from core up. At the design hierarchy below the core level, the bottom-up

strategy becomes inefficient in terms of chip area and code organization; collapsing all

sub-blocks into a single module and synthesizing it as a whole becomes a better approach

when the design is small. In this top-down approach, the timing characterization is

performed on the top-level module and then propagated down to the sub-blocks by the

CAD tool. Then during synthesis, the boundaries of the sub-blocks are removed, allowing

better area optimization by the CAD tool.

Since the cores are synthesized using a bottom-up approach, preliminary driving and

loading constraints (i.e., boundary constraints) are applied for the first synthesis attempt.

The driver is assumed to be a typical two-input NAND gate, and the load is assumed to

be a D-flip-flop. The correct driving and loading parameters are captured by the

characterize and write_script commands during integration of the core. The core should

then be re-synthesized with the correct constraints and re-integrated. This flow is

described in [13]. The NPU synthesis was successful and the only timing violations were

related to the clock network. Since the clock trees are inserted only in the back-end flow,

the synthesis tool can only estimate the clock delay based on user inputs and the wire

model from the library. By specifying an ideal clock network that has large drive strength

(which is a normal assumption for pre-layout synthesis), the violations were eliminated.

Timing closure could be attributed to the I/O buffers; without the I/O buffers at the core

46

interfaces, many long paths crossing the core boundary would have delay problem that

may require iterations of synthesis to resolve.

Figure 17. Network processor module hierarchy

3.6 System Verification

System verification is an important part of the SoC design process and it is perhaps the

most difficult part. Today's SoC consists of many components that need to perform

complex functions individually and also need to interact with each other seamlessly. The

traditional verification approach for ASIC design is to apply functional test vectors as

47

stimulus to the input and then compare the output against some expected values [32].

This requires many test vectors to implement the different test cases of the core.

Checking the correctness of the components by toggling the inputs and observing the

outputs is an extremely difficult task in an SoC environment. Not only are the signals

embedded (controllability and observability problems), but also the sheer number of

signals makes the task unmanageable. The suggested verification approach for SoC is to

abstract the operations of the cores into transactions [3 2] [40]. For instance, the read/write

signal, the bus request/grant signal, and the address bits can be grouped as a 'read'

transaction on a system bus. Validating a transaction involves checking the toggling

sequence of the read/write and bus control signals and determining whether the address in

the transaction is within the permitted range. The transactions should be automatically

checked by some monitor entities to ensure that there is no illegal transaction. For a

system that uses a bus for inter-block communication, the bus interfaces are the ideal

locations to implement such transaction monitors [33]. In other words, the bus interfaces

can act as the control and observation points for functional verification of the SoC.

For the NPU SoC, the system is partially verified by simulating the bus adapters. A

Verilog testbench that instantiated the bus adapters and the AMBA-compliant bus was

developed. The testbench models the actual cores and sends appropriate control/data

signals to the adapters to initiate transactions between the cores. The transactions were

then verified by manually inspect the waveform of the signals at the receiving end of the

transactions. The following transactions that will occur during the normal operations of

the NPU have been verified:

48

• The pre-processing unit writes to the packet memory

• The classifier reads from the program memory

• The embedded processor reads from the packet memory

• The embedded processor reads from the C A M

• The embedded processor writes to the post-processing unit

• The post-processing unit reads from the packet memory

The assumption here is that the cores have been implemented correctly according to the

specifications and are verified individually using core-level testbench. Due to the time

constraint of the project, system level simulation involving the actual cores has not been

performed. In addition, random test cases such as the transactions in arbitrary orders, and

corner cases such as when the embedded processor performs a write transaction to the

post-processing unit while the post-processing unit is busy, need to be covered to ensure

that there is no test escapes. Furthermore, there are point-to-point communication paths

between the cores that do not make use of the A M B A bus and the adapters. These

interfaces need to be tested as well.

49

C H A P T E R 4 S O C T E S T S T R A T E G Y

The problem of testing an SoC can be partitioned into two sub-problems: the provision of

resources for conducting the test (i.e. the test access mechanism and the test controller)

and the test scheduling. The design goal of the test access mechanism is to provide access

to the embedded core from the chip I/O pins while at the same time minimizing the

impact on the test performance and the performance of the SoC. The purpose of test

scheduling is to devise an efficient test schedule that optimizes the test application time

and also constrains the power consumption during test [36]. The T A M design and

optimization is a hardware problem that involves logic design, interconnect issues, circuit

techniques, and logic integration. The test scheduling, on the other hand, is largely a

software problem that can be solved by mathematical theories and modeling. This section

first describes the existing researches on T A M designs, analyzes their pros and cons, and

then presents the implementation of the T A M for the NPU SoC described in previous

chapter. This is followed by a discussion of the scheduling algorithm for the particular

T A M integrated into the NPU SoC.

4.1 Test Access Problem

Most experts agree that test access is a major challenge in SoC design [36]. In traditional

ASIC design, the terminals of the IC are all connected to the I/O pins of the manufactured

chip, so an A T E can observe and control the signals on the design terminals. In SoC,

many of the cores interfaces are buried within the system; only the cores with interface to

the external system have terminals connected to the chip I/O pins. In addition, functional

50

and structural testing of the cores both require sending test vectors to the cores and

receiving responses from the cores. Not only does the volume of test data increase due to

larger number of cores integrated into the system, but also the delay problem (due to

interconnect coupling of wires in close proximity and increasing length of global wire) of

SoC makes reliable transportation of test data more difficult. The large number of bit

streams for testing an SoC also means that the memory capacity of the A T E must be

increased, which translates to higher overall test cost. Furthermore, as IDDQ testing

becomes less and less effective due to increasing sub-threshold currents, alternative test

method such as at-speed (AC) testing gains importance. Supporting AC testing on the

traditional scan chains, however, require higher performance ATEs and printed circuit

boards.

Besides the standard IC design parameters of performance, area, and power, design of the

T A M also influences other factors such as test application time, quality of the test, and

the reusability of the test program. Long test times translate into expensive tests, since the

time the chip spends on the tester determines the test costs. Low-fault-coverage test due

to flawed T A M design risks faulty designs to pass the manufacture test. The quality of

the product will suffer and the defects may only be detected by expensive field testing or

worse, field failures. In the reuse paradigm, the IP cores may be designed by a third party

and delivered in hard form or encrypted for IP protection. In this case the core integrator

must treat the IP cores as black boxes and rely on the core creator to put in the necessary

DFT structures and provide the test program. Since yesterday's IC chip may be today's

legacy IP, and today's SoC may be tomorrow's IP block, reusing the existing test

51

method/program represents significant savings in SoC development. As a result, the test

time, test quality, and test reuse may significantly affect the overall cost of the SoC and

its derivative products, and should be considered carefully. In addition, test integration is

an important factor in the design of the T A M , as today's SoC is likely to use a

combination of scan and BIST methods. Even within the scan method, there are different

techniques such as multiplexed D-flip-flop and LSSD, each with different control

mechanisms. There is no guarantee that a given IP core will use a particular DFT method,

or if the IP core comes with DFT at all. Therefore, a T A M design must be flexible

enough to support a wide variety of DFTs.

Among the TAMs that are presented in the literature, the proposed designs can be

categorized based on the method of connection from the chip I/O pins to the cores. The

simplest of all TAMs is the multiplexer T A M , which use multiplexers to share chip I/O

pins among the cores. The multiplexer T A M suggested by [27] is easy to design and

operate. On top of the multiplexers, the scheme uses AND gates for test isolation and OR

gates for merging core outputs. It maps the core interface to a sub-set of the chip I/O pins,

so both digital and analog test can be applied through the ATE. Debugging is

straightforward since the active core can be isolated from the non-active core using the

AND gates and can be directly accessed from the package pins. The disadvantage of the

multiplexer T A M is that it is not scalable. As the size of the SoC increases, more

multiplexers and associated control inputs are required, and this increases the routing

overhead rapidly. Although at-speed test is possible, delay and/or skew caused by the

multiplexers need to be taken into account. In addition, the multiplexer T A M cannot test

52

interconnects between the cores and may not be applicable when the number of the core

terminals exceeds the number of chip I/O pins.

Input N
Test In

Core A
Core C

Output Cl
Test out

Input B
Core B

Output B

Figure 18. Multiplexer T A M . The dotted lines denote the test paths

The serial T A M is based on the established IEEE 1149.1 standard for board testing. The

same IEEE 1149.1 structure is redesigned for chip testing [64]. In the proposed

architecture, a scan wrapper envelops the core, and the serial output of one core is

connected to the serial input of another. The same IEEE 1149.1 TAP controller can be

used for core test after additional circuitry for coordinating the activities of the cores are

added. The serial T A M approach has a very small routing overhead comparing to the

other TAMs. Although the serial T A M reuses the IEEE 1149.1 standard and occupies

very few pins for testing, it is not suitable for SoCs with more than a few cores as the test

time using the serial test input would be prohibitively long.

53

Input A/
Test In

Input B

Output C

Test Out

Output B

Figure 19. Serial T A M . The dotted lines denote the test paths

References [54] and [63] report different variants of the bus TAMs. The bus T A M uses

an n-bit wide data bus for transferring test data to and from the chip, and an m-bit wide

control bus for transferring enabling signals that determine the access of the cores to the

data bus. The bus T A M essentially brings the core terminal to the chip I/O pins via the

data bus. The core terminals are connected to the test bus through various access control

logic that isolates the core from the bus when it is not under test. The bus T A M provides

some degrees of scalability by allowing the bus width to increase with the increasing

number of cores. The bus T A M also permits digital, analogue, and at-speed test. The

limitation of the bus T A M is that it allows only one core to gain access of the data bus at

a time. As a result, tests that require multiple cores running in parallel cannot be

performed. Although it is possible to use a functional bus as a test bus as suggested in

[63], the approach is ad-hoc since there is no guarantee that the width and/or direction of

the functional bus would satisfy the requirement of the core test.

54

Input A

T e s t j n

Input B

Core A Core C

Test Bus

Core B

Figure 20. Bus-based T A M

Output C

Test Out

Output B

Transparent T A M is based on hierarchical testability analysis (HTA) to obtain core

transparency so that tests can be performed through normal functional paths [19]. The

idea of HTA is to start solving the testability problem at the design phase. Code

generators have been developed to produce cores whose internal nodes are easier to

control and observe than cores that are handcrafted. The procedure proposed in [19]

leverages the HTA code generator to obtain cores with high testability. If the result of

HTA does not produce enough transparency, several techniques are described for

establishing transparent paths by adding hardware such as multiplexers, observing flip-

flops and latches, etc. During SoC testing, the transparent path of one core serves as

transport media for the adjacent cores. The transparent T A M has low area and delay

overhead, but the technique results in ad-hoc test procedures as the definition of the test

ports differ from one core to the other. Moreover, the technique cannot be applied to all

cores; it is particularly not suitable for the microprocessors or other data-path intensive

circuits.

55

Input A/
Test In

Core C

Core A

Output Cl
Test Out

Input B/
Test In

Core B

Output Bl
Test out

Figure 21. Transparent T A M . The dotted line denotes the internal test path

The Test Rail T A M presented in [37] is a refinement of the test bus architecture. Similar

to the bus TAM, an n-bit bus is provided to transfer test data. Unlike the bus T A M , the n-

bit wide bus can be split into smaller buses for cores that do not require that much

bandwidth and later merged for cores that do require the bandwidth. The Test Rail thus

offers more flexibility and allows core integrator to optimize the T A M either for area or

for test application time. A layer of interface called Test Shell is required to surround the

functional interface of the core. The purpose of the Test Shell is similar to that of the

PI500 wrapper; both provide test isolation, test bypass, interconnect test function, and the

capability of capturing a snap shot of the core I/O. The Test Shell is regulated by a set of

dedicated control signals shared by all cores. The width of the Test Rail for a particular

core is determined after considering such factors as available chip I/O pins, test

application time, and silicon area. A methodological approach for calculating the minimal

Test Rail width and the optimal distribution of the total test width among the SoC cores is

given in [8]. The strength of the Test Rail is its large number of possible configurations.

In fact, the Test Rail is the generalization of the multiple-scan-chain architecture widely

used in the industry. The weakness of the Test Rail includes the extra control signals that

56

add to area overhead and the extra effort to calculate the optimal width and bandwidth

distribution. Pre-processing and post-processing of the test data is also required in order

to format the IP test vectors into a system test program and to extract the test results.

Input A

Test In

Input B

Core A

Core B

Core C

Output C

Test Out

Output B

Figure 22. Test Rail T A M . The dotted lines denote the Test Tail

Finally, a novel approach using an on-chip network to deliver test data is proposed in

[42]. The network-on-chip TAM, known as NIMA, adopts the packet-switching concept

in computer network and applies it in SoC testing. The cores are assumed to have test

harnesses such as the Test Shell for Test Rail or the PI500 wrapper already in place. The

wrapped cores are then connected to the network through NIMA interface modules. The

network itself consists of routers and wires that link the routers together. The on-chip test

network is a promising T A M architecture for two main reasons. First, many researchers

agree that layered network design is the best approach for global (long-wire)

communication of future SoCs [49]. A structural network allows the electrical properties

of the wires to be optimized and controlled, and also provides better utilization of the

wires [4][12]. Second, the network is essentially a solution to a communication problem,

so it does not make any assumption on the application that uses the communication

57

service. As a result, a network T A M inherently supports any kind of test strategy,

whether it is full scan, BIST, scan complementing BIST, or any on-chip vs. off-chip

source/sink combinations.

4.2 NIMA Design

The key concept in NIMA is to establish an indirect digital communication between the

source/sink and the cores using packet-switching connections. For IC testing using this

method, test vectors are converted to packets before they are sent to the cores for which

they are intended. Test results can be sent to the test sink in a similar fashion. The design

of the network is based on the network stack paradigm established in the

telecommunication field, namely the OSI 7-layer model. This formal approach

decomposes the design problem into a set of simpler, traceable, and modular tasks. Each

layer of the network can be individually optimized to meet the particular power, area, and

performance requirements of the SoC test network. Since the tasks involved in SoC

testing are well defined and not as diverse or complex as those in computer networking,

the OSI 7-layer model can be simplified to a 3-layer model consisting of a Physical

Layer, a Network Layer, and an Application Layer as shown in Figure 23.

58

Figure 23. The 3-Layer Model of NIMA

4.2.1 Physical Layer

The physical layer deals with the actual medium for interconnection. For contemporary

ICs, the physical medium is the metal wire that is routed between the SoC blocks. The

physical level specifies the voltage level of the signal on the wire, the timing of the signal

events, the signaling techniques, and other physical properties of the link, such as

protection measures against crosstalk. In the end, the physical layer presents the data

exchanged between the SoC blocks as a stream of 1 's and O's to the upper layer.

In the OSI 7-layer model, a data link layer sits above the physical layer to handle error

detection and access control. We omit this layer in our design because we believe the

reliability of the physical link can be maintained with proper circuit techniques (e.g.,

buffer insertion to mitigate delay problems and shielding to protect victim wires against

aggressor crosstalk noise). For access control, the problem can be alleviated to one of

packet scheduling in software since the data traffic in SoC testing is predictable. In other

words, the SoC designer has complete control over when a block should have access to

the network during testing.

59

4.2.2 Network Layer

The network layer dictates the details of how data is transmitted across the network.

Information in this layer includes the switching technologies and network topology. In

our design, the network layer is based on virtual indirect connection provided by micro-

routers. To simplify the network layer, packets are sent in a particular order and are

required to reach their destination in that order. To reduce transmission delay in the

network, we adopt wormhole routing in which the packet is forwarded to the output as

soon as the destination is known, without waiting for the tail of the packet to arrive [22].

To minimize the need to maintain routing information, the packets are routed using

source routing, meaning the route is predefined. In addition, the network layer specifies

the synchronization scheme of the packets. Asynchronous packet transfer is possible and

is likely to be the way of future as centralized communication scheme becomes

increasingly difficult to achieve in a large SoC design [4]. We opt for a synchronous

approach instead as it is still applicable in today's SoC and has better support from the

existing CAD tools. The synchronous scheme implies that the routers must operate within

the same clock domain.

The network architecture assumes a single source for sending out test packets and a

single sink for collecting the returning packets from the cores as in the original proposal

suggested by [42]. However, the NIMA packet format has been modified from the

original proposal in order to support a scalable implementation of the NIMA network.

The original NIMA has only a width of one, and it is deemed insufficient for handling

large test traffic. The improved version used in this project increases the network

60

bandwidth by changing the width from 1 to an arbitrary number. The packet format has

been changed accordingly, and the current format is depicted in Figure 24.

column

>

0 Sync. Word 1 Payload Length | Address Length Address

o

•> n

Zeros

C
o

d
e

Zeros r ^ r

Y
J)

Y
Header Payload

Figure 24. Revised NIMA test packet format

The packet is best described as a two-dimensional array. The row represents the width of

the packet, and the column represents the length of the packet. The synchronization word,

the payload-length field, the address-length field, and the address field must reside in row

0 of a packet. As shown in Figure 24, S, LD, and LA denote the length of their

corresponding fields. These values are the dominating factor in determining the size of

the packet header, and should be designed carefully to minimize overhead. The unused

spaces in the packet header are filled with zeros. The following is a brief description of

each field in the header:

• Synchronization Word - signals the beginning of a packet

• Payload Length - stores the length of the payload. The addition of this field to the

original format to allow the payload to have an arbitrary length

• Address Length - stores the length of the address. Since the address must be a

multiple of two bits (related to the fanout of NIMA router), the address length is

actually the number of bit pairs.

61

• Address - destination address of the core for that packet

• Code - binary code used to generate the channel-ready signal in the last router

The payload portion of the packet contains test information such as control bits to the

NIMA interface module, instruction to the PI500 wrapper, test vector to the embedded

core, and control bits to the BIST, etc. The bits of the payload must fill up each column

from row 0 down to the last row before the next column can be used. This rule is required

because the decoding logic in the NIMA interface module reads the packet in a column-

by-column manner. The rows of the packet must be properly aligned so that row 0 is

applied to the least-significant bit of the test port, row 1 to the second-significant bit, and

so forth until row n is applied to the most-significant bit. This rule is derived from the

fact that the NIMA router assumes the useful header information to reside only in row 0.

4.2.3 App l ica t ion Layer

The application layer in our design is an aggregation of the 4th to the 7th layers in the

OSI model. It defines the protocol for accessing the network. At this level, the data is

comprised of test vectors and DFT control signals that have to be converted to/from

packets. The network architecture allows arbitrary bit width for the channel, so the packet

could be a block of two-dimensional bit arrays instead of a one-dimensional bit stream.

As the result, the blocks that wish to use the network must have the capability to scale the

packet payload into the bit width suitable for its application. For packets wider than 1 bit,

special ready signals are needed to indicate which bits are valid, as the data may not

completely fill the bit array.

62

Since the cores could come from different design team at different organizations, a

standardized test interface is critical. As mentioned before, the PI500 is currently under

development by the IEEE with the intention of being the de facto standard. In this

approach, core tests are to be carried out using PI500 instructions. Custom PI500

instructions are required to support full scan test as well as any other DFT strategies.

Furthermore, a mechanism is needed to generate the PI500 control signals in the correct

sequence at the core side. A set of wrapper control flags was devised to serve as

instructions for this control mechanism. This results in two additional hierarchies in the

message that is to be "packetized".

4.3 NIMA Implementation

To validate the concept, the network T A M NIMA was integrated into the synthesized

NPU design. NIMA is a layered design that offers modularity and flexibility. However,

redesign of the original NIMA was necessary to achieve a scalable solution. The NIMA

network as proposed in [42] uses a single test port and the test packets are serially

transported across the chip. It was found that the serial design can limit the bandwidth of

the NIMA network and does not allow the full potential of NIMA to be realized.

Fortunately, the NIMA architecture is highly flexible and it is fairly straightforward to

extend the width of the network to multiple bits. The only complication is that with the

increase in bandwidth, buffers need to be introduced.

63

For the Physical Layer, we use the traditional metal interconnect as the physical medium.

The voltage on the wire is expected to swing between OV and 1.8V, which is a typical

range for the targeted 0.18um technology. The power consumption of the SoC during

testing is well below the budget, based on the estimated calculation done by Power

Compiler, so no special signalling technique is used. For process technology 0.18um and

below, the coupling capacitance between neighbouring nets dominates over the ground

capacitance [52][23]. As a result, crosstalk is an issue that needs to be considered. Instead

of implementing guarding wires around the NIMA nets, we decided to route the wires as

part of a standard design flow and use the built-in capability of the routing tool to check

for crosstalk violations. The target chip has sufficient real estate and the wires can be

spaced apart to reduce crosstalk.

For the Network Layer, the analysis of total test time and scheduling showed that a NIMA

width of 4 is sufficient for the current NPU implementation. The NIMA router is the

basic component of the network. The current router implementation supports one input

channel and four output channels (fan out of 4). Based on the number of cores within in

the SoC and the length of test vectors for the cores, the parameters of the packet header

were set as following: S = 6, LQ = 10, and LA = 6. These parameters were hard-coded in

the RTL code of the router. To integrate the NIMA network with the NPU SoC, a top-

level design named NPU_NIMA was developed and it instantiates the NPU, the NIMA

interface modules, and the NIMA routers. The NIMA_NPU design has the routing

configuration shown in Figure 25. Note that the cores using full scan DFT require large

amounts of test traffic from an off-chip supplier, so they are connected to the highest-

64

level router to minimize delay through the network. The current implementation does not

have a network for transporting test traffic from the embedded cores to the off-chip test

equipment (i.e. the sink), so the wrapper scan output of the six cores are connected

directly to the chip I/O for observing the activity during test.

Channel 0

Pre
processing

Unit

P1500

Router'
0

-Channel 1-

Channel 2

Post
processing

Unit

P1500

Channel 0

Router<

Channel 1

Channel 2

I

Channel 3

Program
Memory

P1500

Packet
Memory

P1500

Classifier

P1500

HC11

P1500

Figure 25. NIMA network configuration

To support a scalable NIMA network, a funnel device is added in the NIMA interface

module (residing at the Application Layer) to buffer the test packet. The funnel device is

essentially a special FIFO that has different input and output data width. The input width

of the funnel is the width of the NIMA network, and the output width is the number of

scan chains in the core. Currently implementation of the core in NPU has only one scan-

chain, thus the funnel output is always a single bit stream.

65

4.4 NIMA Scheduling

Scheduling is another application-layer function. The performance of NIMA depends

strongly on the scheduler, which determines when to send a particular test packet from

the source. The scheduler needs to ensure that proper initialization sequences for testing

individual cores are applied and that test results are not overwritten before they are

retrieved. The scheduler also must prevent conflicts of the network resource usage and at

the same time minimize the test application time. During the actual test, simultaneously

activating all core DFT may result in power dissipation that exceeds the chip junction or

package heat tolerance, so the scheduler needs to control the activity of the DFTs based

on a given power budget. Moreover, the test data from NIMA network may arrive at a

faster rate than can be consumed by the core, so a buffering scheme is incorporated to

ensure the PI500 wrapper gets the data only when it is ready to accept it. To prevent

buffer overflow, constraints are applied to the time interval between consecutive packets

destined to the same core. One more issue that is starting to become important is the

noise of simultaneously switching circuits. In DSM technologies, the wires are narrow

but tall, so there is stronger coupling between neighbouring wires on the same layer. In

addition, IR drop could be a problem as large amount of transistors switch at the same

time. These constraints also need to be built into the scheduler, although the power issue

is perhaps most important.

Before we can construct the scheduler, we need to understand the operation of the NIMA

T A M in more details. The time for a packet to pass through the SoC is consisted of two

parts: the delivery time - which is the time required by the NIMA T A M to deliver the

66

packet to the designated core - and the process time - which is the time to decode the

packet and process the payload. The delivery time through NIMA is made shorter

(through increase in NIMA bandwidth) then the process time so that NIMA can serve

another core while the core(s) that already receive the packet is busy processing the

payload. After NIMA has transported a packet for a particular core, it cannot send

another packet to the same core until the first packet has been completely processed. If all

cores in the system are busy processing their packets, then NIMA will be idle until one of

the cores in the system has completely processed its packet. It is also possible that a core

may sit idle after it completes its current packet because NIMA is busy transporting the

packet for another core. The NIMA idle time is to be minimized through architectural

design. The goal of the scheduler is to minimize the total test time by avoiding idle cycles

at the cores.

The NIMA scheduling problem is very similar to a class of well-studied problem in the

domain of single-process task scheduling. The problem, known as Sequencing with

Intervals, is a decision problem described as follows:

Given a finite set of tasks T, and for each task t from T, there is a release
time r(t) > 0, a deadline d(t) > 1, and a length l(t) > 1, does there exist a
feasible schedule for T that satisfies the release time and deadline
constraints for all the tasks in T? [18]

It is easy to see that the Sequencing with Intervals problem becomes a decision problem

of NIMA scheduling by replacing the tasks by packets, the release time r(t) by the

process time of the previous packet to the same core, and the deadline d(t) by a constant

value K for all tasks. If the decision problem can be shown to be NP-complete, then so is

67

the optimization problem of finding the schedule with the minimum K. The Sequencing

with Intervals problem has been shown to be NP-complete, and the same proof presented

in [18] can shows that the decision problem (and thus the optimization problem) of

NIMA scheduling is also NP-complete. This provides enough incentive for us to look for

a heuristic algorithm rather than an exact one.

The current scheduling algorithm, shown in Figure 26, is based on the observation that if

a long packet is scheduled first, it may be possible for NIMA to deliver the shorter

packets while the core with long packet is still processing the first packet, and thus

minimize the idle time of the cores. As a result, the algorithm sends the packet for the

first-ready core. The ready time for a core is calculated in the algorithm based on the time

to deliver the packet and the time to perform the test. If more than one core is ready at the

same time, the core with larger scan chain (resulting in larger payload) has higher

priority. The algorithm also looks ahead in time so that a non-ready core with a longer

scan chain may preempt a ready core with a shorter scan chain. This heuristic sometimes

reduces the idle time of the core DFT and thus decreases overall test time. It is not know

at this moment whether this schedule produces the minimum total test time. Using

heuristic methods to derive the optimal scheduling algorithm is the subject of future

research.

68

Figure 26. Flowchart of the NIMA scheduling algorithm

69

C H A P T E R 5 T A M C O M P A R I S O N

In order to understand its advantages and disadvantages, the NIMA T A M was compared

with other TAMs integrated on the same platform. Two TAMs, the serial T A M and the

Test Rail, were implemented on the same NPU SoC platform on which the NIMA T A M

was implemented. Figure 27 shows the conceptual diagram of the three T A M

architectures. The serial T A M serves as the baseline approach since it has the least area

overhead but the worst test application time; the improvement of the other two TAMs can

be realized by comparing to the serial TAM. The Test Rail is one of the state-of-art T A M

architectures that is often used as a comparison for new T A M designs. This chapter

describes the implementation of the serial and Test Rail TAMs and presents the

comparison results of the three TAMs.

Serial P1500 Test Rail Test Network

• D

Figure 27. Conceptual diagrams of the three TAMs

5.1 Serial TAM Implementation

The serial T A M is created by simply threading the serial test output (provided by PI500

wrapper) of one core to the serial test input of another. Since the serial T A M was

intended to be the T A M with bare minimum hardware, no TAP controller is added.

70

Instead, the control signals to the wrapper were directly controlled off-chip. The PI500

wrapper provides a bypass register to allow the packets to bypass unintended cores. This

feature allows the BIST-ready cores to have their BIST modules initiated, and then the

wrappers of these cores can be put to bypass so the cores that use full scan can be tested

while the BISTs are running. In addition, for cores with multiple scan chains, the PI500

wrapper also allocates parallel test ports that can accommodate shifting of multiple scan

chain simultaneously.

5.2 Test Rail Implementation

The other T A M used in the comparison is a variant of the Test Rail approach. The Test

Rail T A M is often used as the reference design in SoC test research because it is a very

generic architecture that can be highly optimized for area or test time. For our

implementation, time-division multiplexing is used to control the access [16]. A core on

the shared lines automatically assumes control over the bus when an internal counter

reaches some predetermined value, each associated with a different time slot. This

eliminates the need for an address bus. A TAP controller and an access controller are

attached to each P1500-wrapped core. The access controller is composed of a 32-bit

counter and some clock-gating logic. The 32-bit counter is implemented as a shift

register. Before the test starts, a mask value is loaded into the shift register. During

testing, the mask value is cycled through the shift register to produce the desired effect of

a periodic counter. An arbitrary bit is chosen as the enable signal to the clock-gating

logic. When the enable signal is asserted, the clock to the TAP controller and the PI500-

wrapped core runs freely and the blocks function normally. When the enable signal is de-

71

asserted, the activities within the blocks are suspended. One exception is the BIST within

the PI 500 wrapper. It is allowed to run on its own regardless of the enable signal in order

to minimize test time. For scheduling, a genetic algorithm is used to partition the test

bandwidth among the cores and calculate the best bit-sharing configuration, if some bits

in the bandwidth are to be shared [15].

5.3 Results

The SoC and the integrated TAMs were simulated at the gate-level. The details in the

timing cycles were used to build a C/C++ model for each T A M architecture to allow

simulation of different test scenarios. There were two types of DFT used in the network

processor: full scan and BIST. The BIST approach has the advantage of lower test traffic

than full scan. In addition, a BIST approach avoids off-chip vector storage and

management, thus simplifying the ATE setup. However, the current BIST algorithm is

based on pseudo-random pattern generation, which typically suffers from reduced fault

coverage. To mitigate the problem, we require BIST to use more vectors (two to ten

times more) than full-scan test. This of course results in longer test time. Consequently, it

is important to explore the impact of various BIST and full-scan DFT combinations when

considering the choice of T A M architectures. The T A M architectures were compared in

six different scenarios. In the first scenario, all cores but two use BIST for testing. In each

of the following scenarios, more cores that use full-scan DFT are added, which results in

a larger volume of test data that need to be transferred onto the chip. Power estimation

indicates that the power budget is not exceeded even when all DFT structures are

72

operating concurrently. As a result, the DFT structures are allowed to run in parallel

whenever possible

5.3.1 Test Per formance

Figure 28 shows the scan test time of serial T A M vs. NIMA. The vertical axis is the total

test time (in clock cycles) to exercise core scan chains, and the horizontal axis indicates

the total test data (in bits) transferred, which is calculated from the number of the test

vectors for the NPU and the size of these test vectors. The longest BIST execution time is

approximately 530,000 cycles for all six scenarios, and it is chosen as the threshold for

total test time. The graph clearly suggests that the serial T A M is not practical. The total

test time of the serial T A M exceeds the chosen threshold after the second scenario. The

NIMA T A M is able to scale down the total test time by using larger bit width (the graph

shows the scan test time of NIMA of width from 1 bit to 32 bits). NIMA with a width of

1 is performing worse than the serial T A M due to the extra overhead introduced by the

packet header and the NIMA interface modules. NIMA with a width of 2 or above

performs better than the serial T A M in all scenarios. As the number of full-scan cores

increases, larger NIMA bit widths are required to keep the total test time bounded by the

chosen threshold. In the last scenario where all logic cores in the SoC use full scan, an 8-

bit NIMA is sufficient to keep the total test time below the chosen threshold of 530,000

cycles.

The graph also shows that the test time is a linear function of the data that needs to be

transferred. So by moving toward the BIST-oriented DFT (moving toward the left hand

73

side of the x-axis), the test time is decreased linearly. Whether the saving in test time

justifies the extra logic for BIST is a trade-off that must be analyzed by the chip

designers. However, the technology scaling has made the area overhead less a concern as

the designers can afford to implement more logic, whereas test time is a growing problem

due to the increasing number of IP blocks that are integrated. According to [28] and [9],

the trend of the industry is to adopt BIST and other test automation schemes for SoC

testing. For a system that uses BIST as the primary DFT method, the design of the T A M

architecture makes little difference in test time as evidenced by the graph. However, the

reality is that a T A M is required more than just to transport scan vectors. A T A M is

needed to send test vectors for diagnostic purposed and for functional verification of the

embedded blocks. As a result, an efficient T A M design is essential to SoC testing.

Scan Test Time of NIMA and Serial TAM vs. Total Bits Transferred

Figure 28. Test time of the serial T A M vs. NIMA

74

Figure 29 shows the Test Rail and NIMA test time of exercising full-scan DFTs using

different test widths (from 1 bit to 5 bits). The results suggest that NIMA performs better

or comparable to the Test Rail. The low performance of Test Rail with a small test width

is caused by the limitation of the time-division multiplexing scheme of the Test Rail

TAM. When the width is small, there are fewer wires to be shared among the cores, so

the multiplexing scheme becomes less efficient. When the Test Rail T A M cannot

distribute the available resources according to the data requirement of the cores, delays

increase as cores with small data loads occupy the resources that could otherwise be used

by the cores with large loads. The graph also shows that as the bit width of the T A M

increases, the improvement in test time is diminishing. This is true for both NIMA and

the Test Rail. For instance, there is a 40% improvement in test time when the bit width is

increased from 1 bit to 2 bits, but the improvement is less than 15% in the case of from 4

bits to 5 bits. This observation is best described by the relation between total scan test

time, total test bits of the SoC, and the bit width of the T A M , which can be abstractly

formulated as

^ . . Total test bits
Total scan test time = (\)

Bit width of the T A M v '

When the bit width of the T A M is 1, the total scan test time in cycles is the same as the

number of test bits to the SoC. By increasing the bit width of the T A M above 1, we

parallelize the test process of the SoC. Since the total scan test time is inversely

proportional to the T A M bit width, larger bit widths yield less improvement.

75

Scan Test Time of NIMA and Test Rail vs. Total Bits Transferred

1.50E+06

Total Bits Transferred

Figure 29. Test time of the Test Rail T A M vs. NIMA

Regardless of which T A M is used, the scan test time of the SoC has a lower bound,

which is the longest test time of the cores. Using Equation 1, the optimal T A M width can

be derived as the ratio of the total scan test time to the longest core test time, i.e.

where ti is the test time core i, and tmax is the longest test time of all cores. Then the

theoretical best total test time is either the time to send in all the test data using the

optimal T A M bit width, or the maximum BIST run time if the BIST run time dominates.

Equation 3 gives the theoretical best test time in cycles.

W o P t = r o u n d

76

T o P t =

I ' .

w.
s 1 BIST max

opt

(3)

Equation 3 assumes that all BIST-based cores can run their BIST simultaneously. The

equation is only an approximation because it does not include the cycles for scan capture

nor the delay through the TAM. The network T A M cannot achieve the theoretical best

time because of the packet header overhead. The Test Rail cannot achieve the theoretical

best time because of the granularity problem similar to the finite arithmetic error in

digitized data. Specifically, the mask value of the Test Rail cannot perfectly match the

ratio of the test data between the cores, so the Test Rail cannot achieve the optimal test

bandwidth distribution.

5.3.2 Area Overhead

Aside from test time, there are many other factors that need to be evaluated for thorough

comparison. Area overhead is one of the important design factors. Table 3 shows the gate

area overhead of the three T A M architectures. The serial T A M requires no additional

logic, and thus has zero gate area overhead. The Test Rail T A M requires a time-division

multiplexer for each core, so the gate area overhead is derived from the multiplexer logic,

and it has been shown to be approximately 1% of the total NPU gate area. The NIMA

requires interface module at each core and routers to connect the network. The gate-area

overhead has been calculated to be around 70% of the NPU gate area. For a real SoC

design, area overhead this large will certainly be unacceptable. A more detailed analysis

shows that 80% of this area overhead is attributed to the buffer memory used in the

77

interface modules. The overhead could be reduced by optimizing the buffer memory

design, such as by using smaller memory cells or minimize the buffer size requirement.

Table 3. Gate area overhead comparison

T A M Gate A r e a (um^) Percen tage o f NPU
Serial TAM 0 0%
Test Rail TAM 18882 1%
NIMA 1343192 70%

A more effective method for reducing area overhead of NIMA is reuse of system

memory. If the NIMA T A M could use the functional memory modules already integrated

in the SoC as the buffer memory, then the area overhead would decrease dramatically. As

a result, the NIMA T A M will benefit from a distributed memory architecture where

memory blocks are distributed across the chip rather then centralized in a large memory

core. In fact, networking ICs often require large amount of memories [38][17][1]. For

instance, [6] describes a networking SoC that contain 121 memory modules occupying

50% of the die area. In the case of the NPU SoC, there are also many memory elements

in the proposed architectures (the FIFOs between the cores) as shown in Figure 10.

Redesign of the interfaces to the FIFOs would allow them to be as buffers required by the

NIMA interface modules.

5.3.3 TAM Design Au tomat ion

Synthesis automation is also an important consideration for T A M design, since building

the T A M and the associated infrastructure manually is inefficient and error-prone. All

three of the T A M designs compared can be built using standard cells and ASIC place-

and-route tool. The PI500 wrappers consist of only standard logic elements such as D-

78

flip-flop, muxes, and AND gates, and can be automated generated by a script. The scan

chains inside the cores require careful design to avoid timing violation during shift mode

and capture mode, especially if there are scan chains that cross different clock domains

[55]. Fortunately, scan-based methodology is widely supported by the industry and the

CAD tools have the capability to construct race-free scan chains.

5.3.4 Summary

Table 4 summarizes the factors that SoC designers should consider when choosing a

T A M architecture. Although a Serial T A M results in the longest test time, it is still

included in the comparison because it offers the minimal area and routing overhead,

which may be more important than other factors in certain applications. Judging from the

merits that are presented, Test Rail is a better T A M if area overhead is important, while

the NIMA is preferred if reducing I/O pin count is paramount. NIMA is able to save pin

count because the control signals are embedded in the packets; once a packet arrived at

the core, the interface module decodes the packet and generates appropriate control

signals. The argument one could make is that the designer can serialize the control

signals of the Test Rail by adding a shift register and hence reduce pin count [3]. The

problem is that the test time becomes longer as the extra cycles are needed to setup the

control signals and caution need to be taken to ensure that the cores' tests are not

invalided while the control signals is being updated.

79

Table 4: T A M Comparison

Serial Test Rail NIMA
Test Time - Long test time + Can be scaled down + Can be scaled down
Logic Area + No overhead + Less than 2% of the

SoC area
Overhead due to
routers, interface
logic, and funnels
that act as buffers

Long Wire Control lines scale
with the number of
cores

Control lines scale
with the number of
cores

+ No control lines

Total Test
Pin

+ Constant number of
dedicated test pins

- 3x width of Test Rail + 2x width of NIMA
network

Synthesis
Automation

+ Can be automated + Can be automated + Can be automated

Pre- and
Post
processing
of test data

+ ATPG, pattern
comparison

ATPG, distributing
test data according to
optimized test width
and core assignment,
and re-organizing test
outputs for analysis

ATPG, test packet
generation, packet
scheduling, and
extract test results
from returned
packets

+ = advantage
- = disadvantage

The control signals of the Test Rail are a hidden cost that is not emphasized in previous

research papers. The number of I/O pins available for testing and the extra routing

resource required by T A M control signals are important considerations. The proposed

NIMA approach reduces the pin count and wires for control signals at the expense of

more silicon area for additional logic. Many T A M designs also propose the use of the

IEEE 1149.1 TAP controller as the central on-chip test control [9][64][54]. This can be

done by adding custom TAP instructions and decoding logic to generate test control

signals specific to the TAMs. In the case of NIMA, a centralized test control is not

required since the schedule is re-computed and the test control signals are completely

embedded inside the test packets. By incorporating the technique of embedding control

signals into the test-rail architecture, a scalable T A M with low area overhead and low pin

count could be devised. However, NIMA has other advantages that are not found in the

other T A M architectures.

80

One additional advantage of NIMA is that it allows the test bandwidth to be re-allocated

dynamically. For instance, during diagnostic test, engineers can use the full bandwidth of

the network to test a single core if so desired. For the Test Rail, the bandwidth allocated

to a particular core is fixed during implementation of the TAM. Furthermore, it appears

that to achieve any significant improvement in performance, the T A M should be

decoupled from the core DFT. Our current architectures of the NIMA T A M and Test Rail

both use the same clock frequency as the core DFT. If the number of I/O pins available

for testing is less than optimal, clocking the T A M at higher speed makes up for the lack

of bit width and thus reduces test time. The Test Rail is an extension to the scan chain

concept and is difficult to decouple from the core DFT. NIMA on the other hand, is

conceived as a system completely independent of the core DFT, and thus allows such

decoupling to be implemented naturally. A similar de-coupling scheme of separating

communication from computation has already been proposed for the functional data

transfer between the cores, although it is not yet clear that it is the solution for developing

high-speed SoCs [49].

81

C H A P T E R 6 C O N C L U S I O N S

The first part of this thesis work is a study of the reuse methodology based on the RMM.

A reusable core (HC11) was developed by redesigning a legacy RTL block. The

techniques described in RMM were applied to the core, but it was found that the time and

effort spent in retrofitting the legacy block with reuse techniques were not justified. A

better approach to convert a legacy block is to start the development from scratch and

apply the reuse techniques coherently in the design flow. Another lesson learned from the

exercise is that although the recommendations made by RMM are valid in general, there

are situations where they should not be applied directly. It is important for the designers

to fully understand the reasons behind these recommendations and analyze the effects

before adopting them to the designs.

In addition, we find that the cost of reuse is high. Based on our experiment, the

development time for a legacy core is estimated to be 3 times longer than a non-reusable

one (the RMM estimate for a reusable design starting from scratch is 2 to 3x). In our

case, learning the design and re-coding takes lx, testbench development accounts for lx,

and documentation and prototyping accounts for another lx. The testbenches are perhaps

the most valuable part of the project because of the effort put into the development and its

reuse potential. As suggested by RMM, the design should be reused lOx or more in order

to recover the investment on reuse. For reuse methodology to be efficient, more support

from the CAD tools is required. In addition to the testbench automation tools suggested

by RMM, behavioral synthesis promises a faster and error-proof way of generating

82

reusable code, and formal verification and automated bus monitors should help simplify

the verification task both at the core level and at the system level.

The second part of the thesis was the development of an SoC platform (NPU). The SoC

was created using the HC11 and several other ASIC blocks. Since the design of a SoC is

a major undertaking and could not be done within the scope of the thesis, the

functionality of the SoC has been scaled back. Nonetheless, the project uncovered the

major issues in SoC design, including bus interface design, inter-block timing, and SoC

test, and provided solutions to these problems. The development of the SoC also reaches

a point that the system allows various T A M architectures to be implemented and

compared, which is the primary goal of this SoC.

The third part of the thesis involves integrating the NIMA T A M architecture into the

NPU SoC and comparing NIMA with the serial T A M and the Test Rail T A M . We hoped

to show that NIMA is a viable solution to the SoC test access problem. The results

indicate that NIMA's performance is comparable to that of the Test Rail, but the area

overhead is higher than the other architectures. The area overhead of NIMA can be

reduced by optimizing the buffer memory or by making architectural changes to allow

existing memory blocks to be reused. NIMA does have other benefits such as requiring

fewer control signals and allowing the T A M to operate at a different frequency than the

cores. These characteristics of NIMA make it an ideal candidate as a top-level T A M

architecture for exchanging test data across an SoC, supported by other low-area-

overhead T A M architectures that operate within a localized area of the chip.

83

6.1 Future Work

The future work for the H C l l core involves testing the fabricated chip. The future work

for the NPU SoC includes performing system-level simulation using the actual cores and

more test cases. Also an embedded software for the H C l 1 also needs to be developed in

order to operate the NPU system. The future work for the NIMA T A M includes testing

the fabricated NPU-NIMA chip and optimization of the NIMA design. The timing

overhead of NIMA can be reduced by shortening the packet header, and the size of the

router (considered as area overhead) can be minimized by more efficient coding. To

reduce the area overhead due to the buffer in the NIMA interface modules, the logic

surrounding the FIFOs needs to be modified so the FIFOs can be used by NIMA as well

as the NPU. We would also like to extend the router design to support duplex packet

transfers and explore asynchronous packet transfers using techniques such as self-timed

clock encoding and handshaking [20]. Finally, the NIMA scheduler algorithm requires

further investigation and a power constraint needs to be incorporated into the scheduler.

6.2 Contributions

This thesis work evaluates the reuse methodology using R M M as the guideline. The work

provides insights into the recommendations made by R M M and argues their applicability

using real design examples. A reusable core (HC11) was developed during the thesis

work to demonstrate the processes converting a legacy IP to a reusable one. Using the

HC11 and other ASIC blocks, a network processor (NPU) SoC was also developed. The

NPU is intended to be a research platform and the cores are available as soft IPs. The

NIMA T A M concept was implemented on this SoC platform and the process helped

84

refine the NIMA architecture. This thesis also discusses the trade-offs of the three T A M

architectures and suggests some improvements for NIMA to reduce its area and delay

overhead.

85

R E F E R E N C E S

[I] "7-Layer Packet Processing: A Performance Analysis." White paper, EZchip
Technologies, 2000 <http://www.ezchip.com>.

[2] "AMBA Specification Rev 2.0." A R M Ltd., 1999 <http://www.arm.com>.

[3] Aerts, Joep and Erik Jan Marinissen. "Scan Chain Design for Test Time Reduction
in Core-Based ICs." Proc. of IEEE International Test Conference, 1998, pp. 448-
457.

[4] Benini, L. and G. De Micheli, "Networks on Chips: A New SoC Paradigm", IEEE
Computer, January 2002, pp. 70-77.

[5] Bergamaschi, Reinaldo A. "Bridging the Domains of High-Level and Logic
Synthesis." IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 21, No. 5, May 2002, pp. 582-596.

[6] Bommireddy, A. et. al. "Test and Debug of Networking SoCs - A Case Study." Proc.
of 18th IEEE VLSI Test Symposium, 2000, pp. 121-126.

[7] Camposano, Raul. "Behavioral Synthesis." Tutorial, Design Automation
Conference, June 1996.

[8] Chakrabarty, Krishnendu. "Optimal Test Access Architecture for System-on-a-
Chip." A C M Transactions on Design Automation of Electronic Systems, Vol. 6, No.
1, January 2001, pp. 26^19.

[9] Chandramouli, R. and Stephen Pateras. "Testing Systems on a Chip." IEEE
Spectrum, November 1996, pp. 42-47.

[10] Crouch, Alfred L. Design-for-Test for Digital ICs and Embedded Core Systems.
NJ:Prentice Hall, 1999.

[II] Cummings, Cliff. "Nonblocking Assignment in Verilog Synthesis." SNUG article,
<http: //www. deepchip. com>.

[12] Dally W. J. and B. Towles, "Route Packets, Not Wires: On-Chip Interconnect
Network", Design Automation Conference, June 18-22, 2001, pp. 684-689.

[13] "Design Compiler User's Guide: Chapter 8 - Optimizing the Design." Synopsys Inc.,
2000, pp. 1-48.

[14] "Designing with Reuse in Mind." Seminar presentation slides, Qualis Design
Corporation, 2000 <http://www.qualis.com>.

86

http://www.ezchip.com
http://www.arm.com
http://www.qualis.com

[15] Edabi, Z. S. and A. Ivanov. "Design of an Optimal Test Access Architecture Using a
Genetic Algorithm." Proc. of the Tenth Asian Test Symposium, 2001, pp. 205-210

[16] Edabi, Zahra Sabat and Julien Lamoureux. "TDM T A M Results." Report for
EECE579, Department of Electrical and Computer Engineering, University of
British Columbia, December 2001.

[17] Editors, "Next Generation Network Processor Technologies - Enabling Cost
Effective Solutions for 2.5 Gbps to 40 Gbps Network Services." White paper, Intel,
October 2001 <http://www.intel.com/design/network/papers>.

[18] Garey, Michael R. and David S. Johnson. Computer and Intractability - a Guide to
the Theory of NP-Completeness. New York: Freeman and Company, 1979

[19] Ghosh, I., N.K. Jha, and S. Dey. "A Low Overhead Design for Testability & Test
Generation Technique for Core-Based Systems." IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 18, No. 11, November 1999,
pp.1661-1676.

[20] Greenstreet, Mark. "Opportunities for Asynchronous Design." Presentation at the
University of British Columbia, August 6, 2002.

[21] Gupta, Pankaj et al. "Packet Classification on Multiple Fields." Proceeding of A C M
SIGCOMM, 1999, pp. 150-160.

[22] Guerrier, Pierre and Alan Greiner. "A Genetic Architecture for On-Chip Packet
Switched Interconnects." Proc. of Design, Automation and Test in Europe
Conference and Exhibition 2000, 2000, pp. 250 -256.

[23] Huang, C H . "TSMC 0.18um Mixed Signal 1P6M Salicide 1.8V/3.3V SPICE
Models." TSMC document, December 2000.

[24] Husak, David. "Network Processors: A Definition and Comparison." White Paper,
C-PORT, 2000 <http://www.cportcorp.com>.

[25] Ichiriu, Mike. "High Performance Level 3 Forwarding." White paper, NetLogic
Microsystems, 2000 <http://www.netlogicmicro.com>.

[26] Illman, Richard and Greg Aldrich. "On-time Finish Rests With Multiple Clocks."
ISD magazine online archive, May 8, 2002 <http://www.isdmag.com>.

[27] Immaneni, Venkata and Srinivas Raman. "Direct Access Test Scheme - Design of
Block and Core Cells for Embedded ASIC." Proc. of IEEE International Test
Conference, September 1990, pp. 488-492.

87

http://www.intel.com/design/network/papers
http://www.cportcorp.com
http://www.netlogicmicro.com
http://www.isdmag.com

["281 International Technology Roadmap for Semiconductors, Design Chapter, 1999
<http://public.itrs.net>.

[29] Ishkintana, Laura. "System-on-a-chip Reusability Study." Report for EECE496,
Department of Electrical and Computer Engineering, University of British
Columbia, December 2001.

[30] Janac, George et. al. "IP Supply Chain." ISD magazine online archive, March 1,
2001 <http://www.isdmag.com>.

[31] Jenkins, Charlie. "Speed and Throughput of Programmable State Machines for
Classification of OC192 Data." White Paper, Solidum Systems, 2000.

[32] Karnane, Kishore and Leonard Drucker. "How Do You Know If Your Design Has
Been Fully Verified?" Online presentation by Cadence, February 7, 2002
<http://www.netseminar.com>.

[33] Keatling, Michael and Pierre Bricaud. Reuse Methodology Manual. Second edition,
Boston: Kluwer Academic Publishers, 1999.

[34] Levin, Peter L., and Reimhold Ludwig. "Crossroads for Mixed-Signal Chips." IEEE
Spectrum, March 2002, pp.38-43.

[35] "Longest Prefix Match using the LN17010 Search Engine." Application Note 003,
Lara Networks Inc., 1999 <http://www.laranetworks.com>.

[36] Marinissen, E. J. and Yervant Zorian. "Challenges in Test Core-Based System ICs."
IEEE Communication Magazine, Vol. 37, Issue 6, June 1999, pp. 104-109.

[37] Marinissen, E. J. et al. "A structured & Scalable Mechanism for Test Access to
Embedded Reusable Cores." Proc. of IEEE International Test Conference, 1998, pp.
284-293.

[38] Min, John. "Accelerating Network Applications with a User-Configurable
Processor." Online presentation by ARC Cores, <http://www.techonline.com>.

[39] Mohor, Igor. "Boundary Scan Implementation." <http://www.opencores.org>.

[40] Mosenoson, Guy. "Practical Approaches to SoC Verification." White paper, Verisity
<http://www.verisity.com>.

[41]"M68HC11 Reference Manual." Rev 5, Motorola Inc., February 2002
<http ://www.motorola.com/semiconductors>.

[42] Nahvi, Mohsen and Andre Ivanov. "A Packet-Switching Communication-Based Test
Access Mechanism for System Chips." IEEE European Test Workshop 2001.

88

http://public.itrs.net
http://www.isdmag.com
http://www.netseminar.com
http://www.laranetworks.com
http://www.techonline.com
http://www.opencores.org
http://www.verisity.com
http://www.motorola.com/semiconductors

[43] Partridge, Craig et al. "A 50-Gb/s IP Router." IEEE/ACM Transactions on
Networking, Vol. 6. No. 3 (June 1998): 237-248.

[44] Petropoulus, Leo and Jeff McVay "Verification and Debug of Xtensa Configurable
Processors." Online presentation by Mentor and Tensilica, February 2002,
<http ://www. techonline. com>.

[45] Richhetti, Mike. "Overview of Proposed IEEE P1500 Scalable Architecture for
Testing Embedded Cores." Slides of the presentation at Design Automation
Conference, June 20, 2001, pp. 1-26.

[46] Rothfus, Eric J. "The Case for a Classification Language." White paper, Agere Inc.
<http ://www. agere. com>.

[47] Saleh, Res. Notes, ms. University of British Columbia, August 2002.

[48] Santarini, Michael. "Standards group VSIA focuses on adoption challenges."
EEDesign online archive, August 16, 2000 <http://www.eedesign.com>.

[49] Sgroi, M. et al., "Addressing the System-on-a-Chip interconnect Woes Through
Communication-Based Design", Design Automation Conference, 2001, pp. 667-672.

[50] Sheafor, Stephen J. "Network Processors: Ushering in a New Era of Performance
and Flexibility." White Paper, Sitera <http://www.sitera.com>.

[51] Shung, Bernard. "Network Processing ICs." ISSCC 2001 Tutorial, February 2001.

[52] "Static Crosstalk Analysis." White paper, Synopsys Inc., 2001
<http://www.synopsys.com>.

[53] Tumpach, Chris. "A Study of Reuse Methodology Through the Modification of a
Microprocessor Core." Report for EECE496, Department of Electrical and
Computer Engineering, University of British Columbia, December 2000.

[54] Varma, P. and S. Bhatia, " A Structured Test Re-Use Methodology for Core-Based
System Chips." Proc. of IEEE International Test Conference, 1998, pp. 294-302.

[55] Wagner, Kenneth D. "Robust Scan-Based Logic Test in VDSM Technologies."
IEEE Computer, November 1999, pp. 66-74.

[56] Website, <http://www.design-reuse.com>.

[57] Website, <http://www.gmvhdl.com>.

[58] Website, <http://grouper.ieee.org/groups/1500>.

89

http://www.eedesign.com
http://www.sitera.com
http://www.synopsys.com
http://www.design-reuse.com
http://www.gmvhdl.com
http://grouper.ieee.org/groups/1500

[59] Website, <http://www.intel.com/research/silicori/mooreslaw.htm>.

[60] Website, <http://www.superlog.org>.

[61] Website, <http://www.systemc.org>.

[62] Website, <http://www.vsia.org>.

[63] Whetsel, Lee. "Addressable Test Ports, an Approach to Testing Embedded Cores."
Proc. of IEEE International Test Conference, 1999, pp. 1055-1064.

[64] Whetsel, Lee. "An IEEE 1149.1 Based Test Access Architecture for ICs with
Embedded Cores." Proc. of IEEE International Test Conference, 1997, pp. 69-78.

[65] Zorian, Yervant. "System Chip Test Strategy." Design Automation Conference,
1998, pp.752-757.

90

http://www.intel.com/research/silicori/mooreslaw.htm
http://www.superlog.org
http://www.systemc.org
http://www.vsia.org

