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ABSTRACT 

System-on-a-chip (SoC) and reuse of intellectual property (IP) is the emerging paradigm 

for integrated circuit designs. To understand the unique challenges in IP development and 

SoC integration, a microprocessor core and a network processor SoC were developed. 

The Reuse Methodology Manual (RMM) by Keatling and Bricaud was used as a guide 

during the development of the IP core and the SoC. This thesis presents several examples 

taken from the microprocessor and SoC designs that either support or counter the claims 

made in RMM. The problem of SoC testing is also a highly researched area. In an effort 

to validate the concept of an on-chip test network, a packet-switching test access 

mechanism (TAM) was designed and integrated into the network processor SoC. The 

T A M , known as NIMA, is an on-chip network that supports different types of embedded 

core testing. The NIMA architecture was compared with a serial T A M and a multiple-

inputs T A M based on the Test Rail architecture. The three T A M designs were compared 

based on the total test time, area overhead, and complexity of the controlling mechanism. 

This thesis also discusses the trade-offs of the three T A M architectures and suggests 

some improvements for NIMA to reduce its area and delay overhead. 
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CHAPTER 1 INTRODUCTION 

The continuous reduction of device feature size ushers the possibility of integrating high-

level blocks -microprocessor, DSP core, memory module, and graphic controller etc.- on 

a single silicon substrate, where each block was formerly a chip on a printed circuit 

board. The so-called system-on-a-chip (SoC) design enables higher performance, lower 

power, and less package cost than an equivalent system implemented as traditional 

integrated circuits (ICs). The realization of such complex designs, however, is hindered 

by the parasitic properties of the semiconductor devices in deep-sub-micron (DSM) 

range. Issues in DSM technology include low noise margin, signal integrity due to 

coupling capacitance, interconnect delay, inductive effect of the wires, and sub-threshold 

conduction. To resolve the DSM issues, computer-aided-design (CAD) tools must 

incorporate improved circuit model and advanced circuits design techniques. Models that 

accurately represent the 3-D structure of the interconnects, inductance loop, and power 

consumption are essential to capture the DSM parasitic effects. Techniques such as 

shielding of wires that are susceptible to coupling, buffer insertion for global 

interconnect, and substrate biasing for reducing leakage current should be automated by 

the CAD tools in order to speed up the design process. 

Another limiting factor for creating a highly integrated system is the escalating cost of 

design, verification, and test. A typical application specific integrated circuit (ASIC) 

designed today consists of approximately 2-million gates in 7 RTL blocks [44]. The 

future system is expected to contain tens of millions gates or more. The traditional ASIC 

approach is not economic, if not impossible, due to the sheer amount of engineering 
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effort to code each block from scratch, perform multiple iterations of synthesis and 

integration, and generate test vectors for each blocks (not to mention the difficulty in 

testing the blocks once they are embedded inside the fabricated chip). In addition, the IC 

industry is characterized by short product life cycles and thus there is pressure to 

minimize time-to-market. Indeed, there is a widening gap between the engineering 

productivity and the IC design complexity that the technology allows [28] [14]. Figure 1 

illustrates the concept of the productivity gap. According to Moore's Law [59], the 

transistor density of the IC designs grows exponentially due to improvement in process 

technologies, but the productivity of the engineers (measured in gates per day) stays 

relatively constant. New design techniques and methods have allowed the IC design 

complexity to follow the growth of the manufacturing capability. Similar to how logic 

synthesis boosted the productivity of the design teams in the 90's, design reuse is 

expected to bridge the productivity gap confronted by today's engineers. 

Moore's Law 
Engineering Productivity 

a 

1970 1980 1990 2000 2010 

Figure 1. Productivity gap 
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The key concept of design reuse is to adopt Intellectual Property (IP), which could be a 

building block or an entire platform, from in-house design teams or third-party vendors to 

form the majority of the system logic. The IP vendors provide a description of the design 

to the system integrator, who integrate the IPs and add custom logic that differentiates the 

product from the competitors'. In most cases, some verification methods such as pre-

computed test data or self-test capability would accompany the design description so the 

system integrator can exercise the tests on the manufactured end product to ensure 

quality. This approach leverages previous design effort, reduce risk, and shorten 

development cycle. 

Figure 2 shows a generic SoC consisting of IP blocks, user-defined logic (UDL), 

embedded memory, a system communication mechanism, a core test mechanism, and the 

IEEE 1149.1 standard (also known as JTAG) for board testing. The IP blocks (either 

third-party of in-house) are self-contained, reusable, and designed to perform macro 

functions. Examples of digital IP blocks include a microprocessor, a DSP, and a PCI 

interface. The analog cores are typically phase-locked loop (PLL) modules and analog-

digital converters. The UDL is specific to the application of the SoC; it may serve merely 

as the glue logic between the cores, or it may be the key enhancement that allows the SoC 

to be differentiable. The communication mechanism, typically an on-chip bus, is an 

important aspect of the SoC since it impacts the overall speed of the design and defines 

the transaction protocol that must be agreed by all blocks. The core test mechanism is for 

post-manufacture testing. Its design ranges from simple wires that connect between block 

terminals and the I/O ports to sophisticated circuitries that automated the test process. It 
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is obvious that putting all these components together and ensuring that they function 

correctly is a major engineering effort. 

IP Block 1 , 

IP Block 2 

UDL IP Block 3 

Communication Mechanism 

A D PLL 

Em bee 
Memory ' '. 

Embedded 

Memory 

TAP c Core Test Mechanism 

IEEE 1149.1 Boundary Scan 

Figure 2. B l o c k diagram of a generic S o C chip 

Although promising, the SoC design methodology is still in its infancy. There are many 

challenges in IP authoring, embedded software design, system verification of the SoCs, 

and SoC testing. In addition, the industry at this moment has no standardized methods to 

address the problems of third-party IP delivery (where the IP could be soft, firm, or hard, 

with various hand-off requirements), IP security, IP library management, and integration 

of the IP test suits [30] [48]. 

In particular, test integration is a significant bottleneck due to the difficulty in creating an 

efficient chip-level test strategy. Inefficient test may extend development time due to 

testability-related revisions and incur a high cost in test equipment, or compromise the 

quality of the product. For instance, the traditional IC verification techniques use slower 
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clocks for testing, which suffer from reliability problem in SoC because the higher 

density of devices, and wires increase the chance of failure when the chip is running at 

full speed. Also the controllability and observability of the embedded blocks pose an 

access problem since the terminals of the embedded core may not be probed directly [9]. 

There has been tremendous effort from the IC industry to overcome the challenges in 

SoC design. The Virtual Socket Interface Alliance (VSIA), formed in 1996, has been 

working on standards for exchanging the IP blocks at physical and functional level [62]. 

With uniform standards, IP block can be portable from company-to-company and 

technology-to-technology. If successful, IP integration will be a matter of plug-and-play. 

In addition to standards that facilitate portability, new design flows are needed to create 

reusable IP blocks. The Reuse Methodology Manual (RMM) [33] is an attempt to capture 

the complex process of IP creation and integration. 

For SoC testing, many researchers believe that a hierarchical, built-in-self-test (BIST) 

scheme is the trend because of the low requirement on an external tester and the high 

scalability [28][9]. Two problems related to SoC testing are the standardization of IP test 

interface and transfer of test data from chip I/O pins to the embedded blocks. The IEEE 

PI500 group was formed with the goal of formulating standards for test interface and a 

formal language for describing a test procedure [58]. A number of research projects have 

been conducted in the area of test access mechanisms (TAMs) through chip I/O. Whestel 

proposed a technique for SoC verification by reusing the IEEE 1149.1 standard for board 

testing on an SoC, where the embedded cores are threaded together in a manner similar to 
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how the chips on a printed circuit board are serially connected [64]. Marinissen et. al. 

presents a structural test access mechanism known as a Test Rail that distributes the 

available test bandwidth among the blocks within an SoC [37]. Recently, the concept of 

network-on-a-chip is gaining in popularity in the research community, and [42] proposed 

a solution to the access problem using an on-chip network. 

The motivation of this research is to investigate the design and test issues of SoCs 

through a case study and to propose improvements for the existing methods. The first half 

of the research explores the design and reuse aspects by evaluating new VLSI design 

flows for the SoC paradigm. The second half of the research compares several test access 

mechanisms for SoC verification, discusses the trade-off between the competing 

approaches, and suggests implementation improvements that optimize the existing 

methods. This document is organized as follows. Chapter 2 describes the effort to create a 

reusable microprocessor. Chapter 3 discusses an SoC design that is built from the 

reusable microprocessor presented in Chapter 2 and various other blocks. Chapter 4 

presents several SoC test strategies and describes the on-chip test network in details. 

Chapter 5 compares three distinct chip-level test access mechanisms: serial based, bus 

based, and network based. It presents a comprehensive analysis for each of the three 

architectures and discusses their weakness and strength. Chapter 6 draws the conclusions 

and describes the future work. 
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C H A P T E R 2 R E U S A B L E IP C O R E D E S I G N (HC11) 

T h e t o p - d o w n d e s i g n l e v e l s o f a n S o C are s y s t e m , I P b l o c k s , s u b - b l o c k s , m a c r o c e l l s , 

gates, a n d t r a n s i s t o r s . I n th is thes is , the t e r m s I P b l o c k a n d c o r e are i n t e r c h a n g e a b l e as 

t h e y b o t h r e f e r to d e s i g n ent i t ies o f the s a m e l e v e l o f a b s t r a c t i o n . A n e x a m p l e o f a n S o C 

is a D V D o p t i c a l - d i s k c o n t r o l l e r , w h i c h has a m i c r o p r o c e s s o r c o r e , m e m o r y b l o c k s , a n d 

a n a l o g - t o - d i g i t a l c o m p o n e n t s [34]. T h e m i c r o p r o c e s s o r c o r e c o n s i s t s o f s u b - b l o c k s 

i n c l u d i n g a f i n i t e state m a c h i n e ( F S M ) , a n A L U , a n d a r e g i s t e r file. T h e A L U s u b - b l o c k 

has a f u l l - a d d e r m a c r o c e l l , a n d the m a c r o c e l l i s m a d e u p o f l o g i c gates that are, i n t u r n , 

i m p l e m e n t e d b y C M O S t r a n s i s t o r s . 

T o d a y ' s I P b l o c k s c a n b e c a t e g o r i z e d b a s e d o n t h e i r d e g r e e o f m o d i f i a b i l i t y . T h e 

d i f f e r e n t c a t e g o r i e s o f I P s c a n a l s o b e v i e w e d as the s a m e d e s i g n t a k e n f r o m d i f f e r e n t 

stages o f the I C d e s i g n f l o w . T h e soft I P s are d e s i g n s at the reg is ter- t ransfer l e v e l ( R T L ) . 

S o f t I P s are t y p i c a l l y d e l i v e r e d as V e r i l o g o r V H D L c o d e a n d a l l o w the h i g h e s t d e g r e e o f 

m o d i f i a b i l i t y . T h e soft I P s a l s o i m p o s e the greatest a m o u n t o f w o r k s i n c e the u s e r n e e d s 

to take the I P s t h r o u g h the p r o c e s s o f s y n t h e s i s , p h y s i c a l d e s i g n , a n d v e r i f i c a t i o n . T h e 

firm I P s are d e s i g n s p r e s e n t e d at the s c h e m a t i c l e v e l . F i r m I P s are d e l i v e r e d as 

s y n t h e s i z e d g a t e - l e v e l n e t l i s t , e i t h e r m a p p e d to a s p e c i f i c m a n u f a c t u r i n g p r o c e s s o r to a 

g e n e r i c l i b r a r y . S i n c e firm I P s are a l r e a d y i n the f o r m o f gates, m o d i f i c a t i o n o f the I P ' s 

f u n c t i o n a l i t y i s v i r t u a l l y i m p o s s i b l e , b u t i t s t i l l a l l o w s I P users to p l a c e a n d r o u t e the 

d e s i g n a c c o r d i n g to the S o C r e q u i r e m e n t s (e .g . a s p e c t r a t i o a n d shape) . T h e h a r d I P s are 

d e s i g n s i n the l a y o u t f o r m . H a r d I P s are e x c h a n g e d as G D S - I I files a n d h a v e the least 

d e g r e e o f m o d i f i a b i l i t y . A l t h o u g h h a r d I P s are a l r e a d y p l a c e d a n d r o u t e d a n d are t h u s 
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difficult to change, they are the most complete of the three categories of IPs and thus 

require the least design effort from the user [33]. 

The embedded memories are similar to the hard IPs in the sense that a memory block 

cannot be modified by the end user. But since the embedded memories are generated by 

memory compilers, the end user can decide the high-level specifications such as capacity 

and single-port versus dual-port. The memory compilers receive design parameters from 

the user and then generate the models of corresponding the memory block to be used 

throughout the design process. The actual memory block is placed on the chip by the 

foundry during fabrication. 

The soft IPs represent 10-15% of the third-party IP market today, and they are all digital 

designs [47]. The firm IPs have around 5% of the market share, and are mostly analog 

designs. The rest of 80-90% of the IP market is occupied by hard IPs, which include both 

digital and analog designs [47]. For internal IPs created for in-house use, soft IP 

dominates because they are portable across different generation of process technologies. 

The kinds of IPs available in today's market ranges from interface blocks, processors, 

analog/mix-signal functions, to programmable IPs. Common interface IPs include 

Ethernet, PCI bus client, and IEEE 1149.1 TAP controller. Examples of the processor IPs 

include general-purpose processors from ARM® or DSP cores from Texas Instruments®. 

Examples of analog/mix-signal IPs include PLL for clock jitter control, A/D converter, 

and Bluetooth™ baseband module from Tality®. The programmable IPs such as the 
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solutions offered by eASIC® and Actel® are reconfigurable logic blocks based on the 

traditional FPGA technology [56]. 

The key requirement for creating an SoC design is reusable IP blocks that support plug-

and-play integration. To reduce the development cost, IP integration must be automated 

as much as possible. A library of reusable IP blocks with various timing, area, and power 

configurations is also essential to SoC success as it allows mix-and-match of different IP 

blocks so the integrator can make the trade-offs that best suit the needs of the application. 

The rapid growth in the commercial IP business reflects this demand [34]. In addition, 

most system vendors already have internal designs that were created for one-use only in 

past projects. Categorizing and reworking these legacy designs for reusability also 

represent a major challenge. The process of creating a reusable IP block differs from the 

traditional ASIC design approach. Performance, area, power, and features may be 

sacrificed in order to ensure that the design will be reusable across different applications. 

To better understand the issues in creating a reusable IP block, a series of projects were 

initiated to create new IP blocks and to convert a one-use design to a reusable one, 

adopting RMM as the guide. 

The design chosen for reusability rework is the microprocessor core of a Motorola HC11 

microcontroller. The primary reason for choosing this particular design is the availability 

of information. Most industry-strength designs are proprietary and require expensive 

licensing. Also state-of-the-art designs are complex and have legal implications that make 

modification and distribution of these designs difficult. The HC11 core used in this 
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project can be obtained easily from public domain sources [57][41]. There are several 

other reasons for choosing this particular design. First, a processor core is by far the most 

prevalent IP block, as almost every application requires one. This makes the exercise of 

reusability rework more valuable as the IP will likely be used in future projects. 

Secondly, the design is synthesizable and has been verified and implemented on an 

FPGA by the original developers, so there is confidence in the quality of the design. 

Finally, the core developers working on this project all have prior knowledge of the 

HC11 micro-controller from a user perspective. Their familiarity with HC11 instruction 

set helps to reduce the initial learning curve. 

2.1 Introduction to HC11 

The HCl l s are popular micro-controllers for automotive control systems, robotics, 

consumer appliances, and other embedded applications. A typical micro-controller is 

composed of a central processing unit (CPU), static memory, non-volatile memory (e.g. 

EEPROM), and parallel and serial I/O devices, all connected using a processor local bus 

system. The design under investigation is the CPU for the HC11 family of micro

controllers. For the rest of this thesis, the design will be referred to as the HC11. The 

original code of the HC11 was written in VHDL behavioral description. A simple 

testbench for functional verification accompanied the original code. RTL simulation 

indicated that the design was functional, although the design was not created with 

reusability in mind. The HC11 core is a complex-instruction-set computer (CISC) that 

executes more than 130 instructions. It has enough complexity to make it a representative 

IP block and yet simple enough for the purpose of this research project. 
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The HC11 core is an 8-bit processor. It adopts a non-pipelined architecture and requires 

multiple clock cycles to execute a single instruction. Since the HC11 core is a CISC 

processor, the instructions have variable length depending on the addressing mode 

(direct, extended, indexed, immediate, inherent, or relative) and the type of data (8-bit or 

16-bit). All peripherals, I/O, and memory locations must reside in a unified 64-Kbytes 

address space. The HC11 core performs the standard integer operations, bit manipulation, 

and logic operations. In addition, the processor has specialized instructions for 

manipulating and exchanging data between the stack pointer and the internal registers, 

which allows efficient implementation of complex addressing schemes for DSP 

algorithms (e.g. FFT). Figure 2 shows the block diagram of the HC11 core. 

data in Data Register 

Branch 
Calculator 

CCR 

General 
Purpose 
Registers 

ALU 

data out 

Opcode Register 

Address Register 

Program Counter 

Stack Pointer 

State Register 

FSM 

Decoder 

-*• address 

Figure 3. HC11 block diagram 
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2.2 Design for reuse 

Since the goal of reuse is to create an IP block that can be used and possibly modified in 

other projects by other design teams, completeness of documentation and readability of 

the code are important. In this aspect, many of the techniques for reuse are simply good 

engineering practice. Examples of good practice suggested by R M M include: 

• Hierarchical organization: partition the design into sub-designs 

• Proper in-line comments and detailed design manual. 

• Good Coding styles: use meaningful names, consistent naming convention, and 

constants instead of hard-coded values 

The original VHDL description of the HC11 consists of one single, large entity. 

Considerable amount of time and effort was spent on re-organizing the code and breaking 

it down into sub-blocks. Since the description is behavioral, the partitioning is based on 

functionality rather than proximity of physical location or area of the logic elements. In 

the end, six entities were created [53]. Proper coding styles and formatting were applied 

during the coding of each new entity. Additional comments were added to help explain 

the purpose of the code. For reusability, an equivalent set of Verilog RTL code was also 

created. A more challenging task is to create a comprehensive document that captures the 

specifications of the design and records the development process so the user of the HC11 

block knows what changes were introduced to the design. For specifications, the on-line 

manual from Motorola [41] was referenced. Information about the newly created design 

hierarchy, simulation results, and the chosen design-for-test (DFT) strategy were then 

added to complete the document [29]. 
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Indeed, developing a reusable IP block requires more than just writing clean code and 

preparing good documentation. There are many technical issues that need to be 

addressed, as the IP developer must anticipate the application in which the IP block may 

be used. The RMM suggests several design-for-reuse guidelines, which include: 

• Use synchronous design instead of asynchronous because current timing-driven 

place-and-route tools produce better result with synchronous design 

• Avoid latches, as they have ambiguous timing. When latches are used, one cannot tell 

whether the data is intended to be latched at the beginning of the enable phase or the 

end, so there is no way to know whether time-borrowing is used or the path has delay 

problem. 

• Buffer the I/O of the core to create clean timing interfaces 

• Avoid tri-state-buffers because of drive strength issues. Manual transistor sizing is 

usually required and it makes them "non-reusable". In addition, tri-state buffers need 

special care during test or power-up to avoid bus contention. 

• Minimizing the number of clock domains 

• Thorough verification with 100-percent code-coverage testbench 

The importance of thorough verification is obvious. The problem lies in developing a 

good testbench, which is a major design effort by itself. In the case of the HC11, 

testbench development takes over 50% of the total development time. RMM recommends 

a bottom-up strategy for which sub-modules of a block are verified entirely before being 

integrated into the higher-level entity. This divide-and-conquer approach breaks down the 

block-level verification task into sub-tasks that can be handled individually. R M M also 
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suggests using EDA tools to accelerate the process of testbench generation and code 

coverage analysis to quantify the quality of the testbench. The original testbench suit that 

accompanied the HC11 code was very primitive and was only designed for the integrated 

core. Sub-block testbenches were developed during the reusability rework project and test 

cases for each HC11 instruction were created to supplement the original testbench. The 

testbenches were all handcrafted and simulation waveforms obtained through these 

testbenches were manually inspected. The process is time-consuming, but it is still the 

most cost-effective way of catching design errors. The EDA tools cannot completely 

replace the manual processes; they only speed up or simplify the tasks involved. In 

addition, code reviewing remains a very effective method for verification and should not 

be overlooked. 

RMM also advocates the practice of I/O buffering since it contains the timing problem 

within a core and provide clean interfaces for inter-block communication. This 

recommendation, however, has a significant impact on area and performance when 

applied to the HC11. After the initial addition of I/O buffers (i.e., all I/O ports were 

registered by edge-triggered flip-flops), the HC11 failed many instructions that involved 

memory access. Follow-up analysis of the state transition reveals that the data path and 

the control path were misaligned due to the additional cycles introduced by I/O buffers. 

So a memory write instruction that originally takes n cycles to complete now takes n + 1 

cycles, but the state machine still assumes n cycles for the instruction and generates the 

control signals accordingly. Clearly this recommendation cannot be applied blindly. 

RMM does not warn of this potential pit-fall because it assumes the IP block is designed 
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from scratch and the additional cycles from I/O buffering is taken into account during the 

design phase. To correct the misalignment, the entire state machine had to be re-coded to 

include the extra cycle. With I/O buffers, the HC11 behaves very similar to a pipelined 

design, so numerous wait states were inserted to clear the pipeline when branching 

occurs. After the state machine is corrected, the average cycles per instruction increases 

by 25%, and the synthesized gate area of the core becomes 34% larger than before the 

correction. In addition, changing the code increases the risk of introducing new errors and 

becomes extra verification burden. 

The penalty of adding I/O buffers to the HC11 is severe. Later, it was found that the 

problem could be mitigated by enlarging the IP boundary of the HC11 to include the 

interface logics and adding I/O buffers at the top-level entity. Figure 4 shows the 

proposed HC11 block with new boundary definition. The HC11, which is only the CPU 

part of the microcontroller, cannot perform any meaningful function by itself. It requires 

a local memory module for data storage and interface to external bus to communicate 

with other devices. If we consider the HC11, local memory, the local bus, and the 

external interface all as one single IP block, timing synchronization can be easily 

achieved within the IP block and we need only provide clean timing at the external 

interface. With the new definition, the state machine of HC11 does not need to be 

modified. This approach trades reuse granularity for performance, area, and redesign 

effort. 
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Figure 4. Refined block boundary of HC11 

2.3 Coding for Synthesis 

For a design to be reusable, it must be useable in the first place. One important aspect of 

creating useable HDL code is to ensure that it is synthesizable. The purpose of the HDL 

code is to describe a piece of hardware, and thus it must comply with certain rules set 

forth by the synthesis tool. The synthesis tool recognizes the constructs in the RTL code 

and translates them to equivalent gate-level netlists. However, not all RTL constructs are 

synthesizable. RMM suggests several guidelines for coding synthesizable designs and for 

avoiding mismatches between pre-synthesis and post-synthesis simulations. These 

include: 

1. Use the standard VHDL and Verilog template for inferring random logic 

2. Assign default values in conditional statements to avoid unintentional latch inference 

3. Specify a complete sensitivity list 

4. Use non-blocking assignments in Verilog always statements for sequential logic 

5. The case statements simulate faster and can be synthesized into faster circuit, and 

thus is preferred over if-then-else statement 
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According to RMM, guideline #4 avoids mismatches between pre-synthesis and post-

synthesis simulation, but the cause of the mismatch is not explained, nor is the usage of 

blocking vs. non-blocking statements in Verilog. The lack of explanation is a prevalent 

problem in RMM. Although RMM provides many useful guidelines, the designers 

sometimes can make a better decision by knowing the reason behind these guidelines. 

According to [11], the mismatch is caused by the scheduling policy of Verilog events, 

which dictates the blocking assignments to be scheduled before non-blocking assignment. 

When a design is in the RTL form, the software simulators must follow the scheduling 

rule, as it is part of the Verilog standard. For sequential logics modeled as blocking 

assignments, race condition could occur (a newly assigned signal is overwritten by 

another assignment before the next triggering clock edge) because all blocking 

assignments scheduled at the same time step are processed in arbitrary order. The race 

condition doesn't necessarily lead to incorrect synthesis, but it always results in incorrect 

pre-synthesis simulation. For combinational logic modeled as non-blocking assignments, 

the assignment results are not updated until the end of the current time step. This requires 

the signal that appears in both left-hand side and right-hand side of the assignments to be 

placed in the sensitivity list to model the correct behavior, but doing so will trigger the 

sensitivity list multiple times and thus waste simulation cycles. These observations lead 

to the following refined guidelines: 

1. Use non-blocking assignment in Verilog always statements for sequential logic 

2. Use blocking assignment in Verilog always statements for combinational logic 
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3. Use non-blocking assignments in Verilog always statements that model both 

sequential and combinational logic 

Traditionally, the flow from a high-level system model to RTL code has been done 

manually and the quality of the code (area and speed of the synthesized system) depends 

heavily on the skill and experience of the engineers. Since many of the synthesis and 

simulation problems can be avoided by using standard templates for the logic elements, 

the most efficient way of generating synthesizable RTL code, in the author's opinion, is 

behavioral synthesis. Behavioral synthesis generates RTL representation of a design from 

a higher-level description using control/data flow graph [5]. Similar to IP reuse, high-

level behavioral synthesis can leverage the expertise of experienced designers and at the 

same time automate both coding-for-synthesis and coding-for-reuse. This method also 

allows the engineers to focuses on system-level design and facilitates software/hardware 

co-simulation. The current candidates for the standard of behavioral synthesis language 

include SystemC [61] and Superlog [58]. 

Behavioral synthesis, however, is more than just mapping C/C++ code constructs to logic 

elements. A behavioral synthesis tool needs to schedule the high-level operations (such as 

add, multiply, and move) for optimal area or speed, automatically generate the 

controlling finite state machine (FSM), infer the most efficient memory element (register, 

register file, or random-access memory), and analyze the affect on system performance 

versus power consumption through architectural changes. Although behavioral synthesis 

is used predominantly for DSP application, the large saving in design cycle (as much as 5 
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times has been reported) makes it very attractive for IC designers in general [7]. The 

continuous improvements in scheduling algorithms and tool integration have made 

behavioral synthesis feasible for applications other than DSP. 

2.4 Design for Test (DFT) 

A reusable design should also include DFT that provides testability to the block and 

allows ease of integration into a system-level test strategy. There are a variety of block-

level DFT strategies: full/partial scan, BIST, and test path through functional logic. Full 

scan is the most prevalent strategy for manufacturing because of its high fault coverage 

and CAD tool support. Although scan has a small penalty in area and delay (signals must 

propagate through multiplexers), the overhead is negligible for most ASIC designs. 

RMM and other sources [55][10] provide details on how to create scan-compatible 

designs using several well-known guidelines. These guidelines are either to ensure the 

operation of the scan structure or are the result of tester and ATPG tool limitations. The 

guidelines include: 

• No sequentially generated asynchronous set or reset should be used. Asynchronous 

control signals can render the flip-flop uncontrollable during scan shift 

• Avoid more than one triggering edges in one clock domain. Dual-edge designs makes 

timing analysis more difficult and creates edge placement problem in the tester 

• Avoid tri-state buffers to prevent signal contention during scan shift 

• Avoid gated clocks. The flops using gated clocks cannot be clocked from primary 

input and thus impossible to scan in data 

• Avoid latches because of unreliable test capture. 
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The HC11 adopts the logic BIST strategy. A single scan chain was inserted into the 

synthesized netlist of HC11 using Design Compiler™ from Synopsys®. Scan insertion is 

a two-stage process. First scannable flip-flops are used during mapping from RTL to 

technology-specific netlist. This is accomplished by the -scan option of the compile 

command. Then the test ports of the scannable flip-flops are stitched together by the 

insert_scan command. Since HC11 contains two separate clock domains, a lock-up latch 

was inserted between the two clock domains during scan stitching. Figure 5 demonstrates 

how the lock-up latch is inserted between scan cells belonging to two different clock 

domains. Shifting test vectors through multiple-clock-domain scan chain resembles a 

clock skew problem. Using the scan chain in Figure 5 as an example, if CLK2 is later 

than CLK1, flip-flop C and flip-flop B will register the same value at the same clock 

cycle and thus the data will be shifted one cycle too early. With the lock-up latch in 

place, the value of flip-flop B is available to flip-flop C only after the falling edge of 

CLK1. In effect, the lock-up latch delays the scan data for half a clock cycle and thus 

increases the scan chain's tolerance to skew. 
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Figure 5. Using lock-up latch to combine scan cells of different clock domains 
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After the scan chain was in place, a BIST block was integrated into the top-level IP block 

as shown in Figure 6. The BIST uses a 32-bit linear-feedback shift register (LFSR) to 

generate pseudo-random test vectors and uses a signature analyzer to compress the test 

result. In order to control the HC11 during test mode, the clock to the HC11 is gated 

inside the BIST. Furthermore, latches are used in the BIST to prevent glitches and race 

condition. A state machine within the BIST generates the control signals to the LFSR and 

the scan counter. The LFSR and the counter must be started precisely at the same time, so 

latches are used to hold control signals for half clock period such that both the LFSR and 

the scan counter start exactly at the triggering edge of the following cycle. 

elk 

gated_clk 
HC11 

-w scan chain 

scan out 

BIST 

Top-level IP Block 

Figure 6. BIST strategy for HC11 

Although the usage of gated clocks and latches is discouraged by RMM, we found both 

techniques necessary for the desired BIST functionality. The argument against clock 

gating is the danger of generating glitches, which will trigger unintentional capture of the 

flip-flops. In addition, the flip-flops clocked by the gated clock may not be scannable 

because the automatic test equipment (ATE) cannot control the gating signal, thus 

controllability during testing is lost. To overcome the problem, the clock gating logic in 
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the BIST is carefully designed so that glitches could not occur as a result of switching of 

the gating signal. Since the HC11 is triggered by the falling edge of the clock, the gated 

clock is forced to VDD when disabled so the gated clock can only monotonically rise to 

VDD as the gating signal switches. The argument of non-scannable flops does not apply 

here since the BIST replaces the ATE and takes control of the clock during testing. 

The dilemma posed by the BIST is how to verify the correctness of the BIST itself before 

it is used to test core logic. Often a chip is discarded regardless the correctness of the 

BIST if the BIST generates a wrong signature. Testing BIST is useful in a redundancy 

scheme where multiple instances of BIST are available and a backup BIST can be 

activated to replace the faulty one. To address this issue, full scan test methodology is 

used for the BIST. Since latches are used inside the BIST, they affect the testability of the 

BIST. The ATPG tool expects a single edge event at the sequential logic, while the 

latches respond to both clock edges [14]. If the latches are driven by clocks, there is 

potential danger of a race condition in which scan data may be captured too early. If the 

latches are driven by enable signals that are generated by other logic, then ATPG may not 

be able to propagate faults through the latches because they do not behave as pure 

combinational circuits. To solve the latch problems in scan-based design, the common 

approaches are to either replace the latches with scannable variant during synthesis or 

make the latches transparent during testing. Since our standard gate library does not 

provide scannable latches, the approach of using transparent mode is adopted. 
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After successful scan insertion, a complete timing analysis of the design is required to 

ensure that there is no hold-time violation or race conditions in the scan chains. The 

problem is that there was no tool for static-timing analysis installed on-site. The best that 

could be done was to explore the options offered by Design Compiler for scan insertion 

and to perform gate-level simulation to catch any glitch and setup/hold time violations. 

Moreover, power analysis needs to be performed on the design with the scan chain 

inserted. The Power Compiler allows estimation of power consumption based on only the 

synthesized gates and an abstract wire-load model. This of course is a very rough 

estimation since the result does not include an accurate calculation the power due to 

interconnects and does not use the actual activity factor (which needs to be obtained 

through simulation). These problems need to be addressed as better tools become 

available. 

2.5 Prototyping 

Testing on the physical implementation of the IP block is necessary to guarantee the 

usability of the IP block before integration into SoC. This is especially true for a third-

party IP vendor who must demonstrate the validity of the IP block. As a result, 

prototyping is an essential part of IP block verification [33]. The most common approach 

of IP prototyping is either an FPGA implementation or a complete implementation as an 

ASIC design. FPGA is suitable for debugging, but it does not have the speed and area 

advantages of ASIC technology. The HC11 was implemented on both as an ASIC and on 

a FPGA. The ASIC design uses TSMC 0.18um technology and was carried out using 

Cadence back-end tools. Figure 7 shows the finished chip of the HC11 in loose-die. 
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Valuable experience in physical design and packaging for digital circuits had been learnt 

from this exercise. The F P G A on which the HC11 was implemented is a Xi l inx Virtex-

2000E integrated into a rapid-prototyping board with an A R M T D M I 7 core. From our 

experience, the ASIC implementation takes 2899 logic gates and runs at 50 M H z . The 

F P G A , on the other hand, takes 2557 4-input LUTs and runs at a maximum frequency of 

23 M H z . It is clear that the F P G A implementation cannot compete with ASIC even with 

a small design such as the HC11. However, the quick turnaround time from design 

modification to re-test and the cost effectiveness comparing to ASIC re-spin makes 

F P G A ideal for the initial validation. 

Figure 7. Die photo of the fabricated HC11 core 
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CHAPTER 3 SOC DESIGN (NETWORK PROCESSOR) 

Many practical issues of an IP design do not emerge until it is actually applied in a real 

system. As a result, integration of an IP block in an SoC is an important validation step. 

In fact, most design managers will not use third-party IP unless it has been proven in 

larger SoC designs. However, IP integration poses distinct challenges in SoC design. 

Contrary to traditional ASIC design, an SoC combines several logic and memory blocks 

and often requires parallel development of hardware and software. The choice of the IP 

blocks and the method by which they interact are critical to the performance, power and 

area of the end system. In an attempt to understand the SoC design process and how 

reusability of the core affects integration, a simplified network processor was developed 

and the HC11 was used as one of its IP cores. 

A network processor is a packet-processing engine that performs routing and a host of 

other network-related functions. The typical tasks handled by a network processor 

include packet classification, forwarding, header update, encryption, traffic management, 

and quality-of-service (QoS) [31]. In fact, any device that provides some form of network 

services may be claimed to be a network processor. Despite the lack of a clear definition, 

most network processors do have the common attribute of enhanced programmability to 

offer better post-manufacture flexibility than the hard-wired ASIC switches and routers. 

The programmability is usually built into the modules at the higher OSI stack, where 

protocols are constantly being refined and invented. Most network processors also 

provide means to accelerate tasks that must be performed on a regular basis and thus is 

critical to the throughput of the system. This usually applies to functions at the lower OSI 
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stack where the protocol is standardized and can be implemented completely in hardware. 

For instance, by including a barrel shifter to facilitate the parsing of IPv4 packet headers, 

a network processor consumes 2000 extra gates but its performance increases by 30% 

[38]. As a result, a network processor is really a trade-off between the ASIC solution and 

general-purpose CPU approach, as shown by Figure 8. A network processor is a suitable 

candidate for studying SoC because the functionality requires a wide variety of logic and 

memory components, and thus provides an opportunity to explore core integration and 

test issues. Moreover, the bandwidth requirement of the network traffic demands an 

efficient communication path between the blocks, so a network processor is an ideal test 

bed for high-speed bus design. 

Flexibility 

Figure 8. Performance and flexibility trade-offs of network function implementations 

3.1 Architecture 

An industry-strength network processor is an extremely complex system that is the fruit 

of years of research and development. Rather than designing such a complex system from 

scratch, an architecture was chosen from a commercial vender and scaled back to fit the 
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design capacity of the researchers. The architecture of the simplified network processor 

was constructed by consulting information gathered from [31][43][24][21][51], and was 

inspired by the Sitera network processor [50]. The simplified network processor unit 

(NPU) classifies and forwards IPv4 packets and has a rudimentary firewall functionality 

that relies on the classification result. The NPU was modeled after the Sitera architecture 

and has similar processing flow of classification, Layer-4-and-above functions, look-ups, 

and queuing. The system performs primarily OSI Layer 3 services. It is intended to be a 

router in local-area network for a corporate environment where the low-level protocols 

are stable and well defined. The design assumes that the incoming link is a 100Mbps 

Ethernet connection and the average packet size is 500 bytes. Then for it to achieve the 

proposed processing time of 4 cycles/byte, the NPU should operate at minimum of 

50MHz. In comparison, a real network processor is usually targeted at gigabit links, has 

an average process time of 80 cycles/byte, and operates at 200~300MHz [38]. 
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Figure 9. Architecture of the Sitera network processor 
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3.2 Components 

The major components of the NPU include a pre-processing unit, a classifier, an 

embedded processor, a post-processing unit, and various memory components as shown 

in Figure 10. The embedded processor is the HC11 discussed in Chapter 2, and the other 

logic blocks are standard ASIC blocks. The embedded processor is a reusable IP block 

and the PCI interface is assumed to be available from a third-party vender, while the 

other logic blocks are considered as UDLs designed specifically for the NPU SoC. 

Although their functionalities are tailored for the NPU and the likelihood of reuse is low, 

the UDLs are still designed following the reuse guidelines. By conforming to the reuse 

guidelines, the blocks should have clean interfaces and good coding that help the task of 

integration and possibly the debugging process. The UDLs in the NPU, including the 

classifier, the pre-processing unit, and the post-processing unit, were all developed from 

scratch and designed with proper DFT for structural test. The components communicate 

to each other through either an AMBA™-compliant high-speed bus or through point-to-

point connections. The AMBA-compliant bus was developed based on the AMBA AHB 

specifications publicly distributed by A R M [2]. The AMBA bus uses a pipelined design 

for data transfer that satisfies the bandwidth requirement of network processors. This bus 

will be described in more details in a section to follow. 

The pre-processing unit is responsible for receiving inbound packets from an external 

physical layer (OSI Layer 2) device. The pre-processing unit separates the header of the 

received packet from the payload portion and sends only the header to the classifier. Its 

counter part, the post-processing unit, is responsible for assembling the header and the 
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payload of the packet to be sent out of the NPU. The pre-processing unit also notifies the 

classifier when an error occurs in the inbound packet. In the current implementation, the 

packet is discarded when an error occurs. 
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Figure 10. Architecture of the simplified network processor 

The classifier accelerates the operation of the NPU by implementing the longest-prefix 

matching of IPv4 address in hardware. The IPv4 address in today's network is actually a 

combination of a network address and a host address on the network [35]. The prefix 

refers to the network address portion of the IPv4 address. For example, if the IPv4 
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address of a machine is 192.168.4.12 with a subnet mask of 255.255.255.0, then the 

192.168.4 portion represents the network address and 12 indicates the host address of the 

machine. Adjusting the subnet mask allows the network administrator to trade off the 

number of networks with number of hosts on each network. Due to the masking, a given 

IPv4 address may match multiple networks, so the longest matching prefix is needed to 

resolve the aliasing. Some routers use a ternary content-addressable memory ( C A M ) with 

the IPv4 address as the C A M tag and the host address of the next hop as the data. Others 

use binary search trees or hash tables implemented in software [21] [25]. In the N P U , the 

classifier narrows down the search space by identifying the flow, which is a range of IPv4 

addresses. Each flow is represented by a class ID, which can be used later at the C A M for 

route look-up. This approach requires less C A M space and is faster then the software-

based searching algorithm [25]. 

The classifier also allows information other than the IPv4 address to be used in making 

forwarding decision. In fact, the classifier allows arbitrary header field to be matched and 

thus enables differentiated services by matching the source/destination address and the 

transport protocol. Using a set of highly optimized classification rules rather a procedural 

language such as C to direct the operation, the classifier can perform faster then a RISC 

processor and the classification code is easier to debug than a C program [46]. 

The embedded processor in a real network processor is intended to process high-level 

functions at Layer 4 or higher. Examples of such functions include: 
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• Policy-based networking - exercises company policies such as priority definition, 

security enforcement, and route selection based on the user and the application 

• Server load balancing - redirect the traffic among servers based on URL, server load, 

or user credential. An example is the proxy server that stores frequently accessed web 

pages 

• Quality of Service - allow jitter-sensitive applications such as video and voice to have 

higher priority 

• Network monitoring and analysis - high-speed capture of the network traffic to 

provide information for network planning and troubleshooting [1] 

The above functions all require header information at Layer 4 or above. Currently there is 

no standardized protocol for any of these functions. It is unlikely that they will be 

standardized, since different network services providers desire different implementations 

of these functions to suit their business model. In the NPU, the embedded processor is 

only used for executing the classification results, which is explained later. The 

assumption is that if any high-level function is to be included in the future, it can be 

implemented as software and then executed by the embedded processor. 

Once the components are integrated, the NPU can transport an IPv4 packet from the input 

port to one of the output ports based on the routing information in the packet header. The 

flow starts with the pre-processing unit receiving a packet in byte-wide chunks from a 

Layer 2 device. The pre-processing unit then stores the packet in the packet memory and 

copies the header portion of the packet to the classifier. The classifier processes the 

header according to the classification rules and produces a class ID and an action tag. 
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Using the action tag, the embedded processor can decide whether to further process the 

packet in software or simply allow/disallow the packet to flow through the engine. If the 

packet has the permission to flow through the engine, the embedded processor looks up 

the next hop by matching the class ID in the C A M and sends transfer request to the post

processing unit. One post-processing unit resides at each corresponding output port. Once 

a transfer request is received, the post-processing unit will transfer the packet from the 

packet memory to the output FIFO. The outbound packet will be retrieved by a 

downstream Layer 2 device and will continue to travel through the network. 

Figure 11 shows a hypothetical network in which the NPU may be used. The network is 

designed to be such that the first 24 bits of the IP address identify the subnet, while the 

last 8 bits identify the individual terminals connected to the subnet. Table 1 shows a 

sample of classification rules for this network. The rules are to be executed one after the 

other in the order they are stored in memory, until one of them is matched. A rule is said 

to be matched when the header fields in the current packet matches all the corresponding 

fields in the rule. The rules in Table 1 were setup so the NPU filters out any Internet 

traffic (using HTTP transport protocol) from subnet 168.1.4.x to subnet 168.1.1.x and 

blocks any FTP requests to terminal 168.1.3.5, while allowing all other traffic to flow 

through the network. The NPU handles the tasks on the data path. The tasks on the 

control path, such as routing table update, are assumed to be performed by a host 

computer connected to the PCI interface. 
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Figure 11. Hypothetical network 

Table 1. Classification rules for the hypothetical network 

Layer 3 
source 

Layer 3 
destination 

Layer 4 
protocol 

Layer4 dest. 
port 

Class ID Action 

Rule 1 168.1.4.X 168.1.1.X TCP (6) HTTP (80) 1 Deny 
Rule 3 X 168.1.3.5 TCP (6) FTP (20) 2 Deny 
Rule 6 X X X X 3 Permit 

The X means don't care 

The current design of the NPU shown in Figure 10 contains only one pre-processing unit 

and one post-processing unit to handle one input and one output channel respectively. 

Clearly a network router should be capable of handling multiple channels of inbound and 

outbound packets. Therefore, a real network processor should probably have multiple 

instances of the NPU design operating in parallel, with each instance being responsible 

for one input/output channel. Also the C A M module of the NPU for storing routing 
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information and a PCI module for connection to host computer were not available at the 

time the system was developed. An SRAM module is used instead as placeholder for the 

C A M . In addition, the HC11 core consists of only the central-processing unit and the 

supporting modules such as interrupt controller, local memory, and ROM controller are 

missing. Even if all the missing hardware were available, an embedded program still 

needs to be developed and loaded into a ROM accessible by HC11. As a result, the 

network processor is not functionally completed. Nevertheless, the current 

implementation is sufficient for the purpose of investigating core DFT designs and 

experimenting with different T A M approaches, which is the intended purpose. 

3.3 System Bus 

The system bus in the NPU is an AMBA-compliant, multiplexer-based bus. It is 

responsible for transporting functional data between the cores in the NPU. Although a 

multiplexer-based bus consumes more area, this type of bus is favoured in SoC design 

because it does not have the power-on and drive strength issues of a tri-stated bus [33]. 

Figure 12 shows the architecture of the A M B A bus. The architecture requires a 

distinction between masters and slaves. By definition, a master is a component that can 

initiate and respond to data transfer, whereas a salve can only respond to data transfer. 

Each data transfer consists of an address phase and a data phase. The bus design uses two 

types of multiplexers to accomplish data transfers: one for delivering address from 

masters to slaves, and the other for delivering data either from masters to slaves or from 

slaves to masters. The separation of address and data paths allows consecutive transfers 

to be pipelined and thus increases the bus performance [2], 
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Figure 12. A M B A A H B architecture 

The concept of bus adapters has been used in the integration of the cores with the system 

bus. The idea is that instead of connecting the cores directly to the system bus, adapters 

that are customized to individual cores are created to serve as intermediate interface 

modules between the cores and the bus. By using the adapters, the cores are shielded 

from the details of the bus interface and the design of the cores can be simplified. Figure 

13 demonstrates the concept of the bus adapter. In the current implementation, adapters 

with generic interfacing rules are possible since none of the logic blocks in the NPU uses 

advanced A M B A bus function such as burst transfer, locked transfer, and split mode. 

And while the A M B A bus uses pipelined transfer, the NPU cores do not. The conversion 

between pipelined transfers and non-pipelined ones is handled within the adapters. In 

addition, the use of adapters facilitates the adoption of an alternative bus architecture in 

the future, as only the adapters would need to be modified and the cores could remain 
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unchanged. Although the development of the adapters demands more effort and may be 

error prone, using the adapters allows system integration and core development to 

proceed concurrently. The system integrator can design the adapters and test inter-block 

communication, while the core designers can focus on delivering the core functionality. 

AMBA Bus Interface 
addr, rw, 
wdata, rdata 
busrqst, grant 
ready, resp, size, 
burst, type, ... 

Generic Bus Interface 
addr, rw 
wdata, rdata 
rqst, grant 

Figure 13. Concept of the bus adapter 

3.4 Design for Test 

For testing at the core level, full-can testing is deployed in the pre-processing unit and the 

post-processing unit. A single scan chain is inserted into each block, and scan vectors 

(generated by Synopsys Test Compiler) are to be supplied from off-chip. To create a 

heterogeneous testing environment, a BIST strategy is used for the other blocks. A BIST 

controller is implemented for the classifier and the embedded processor (HC11). When 

the BIST is active, it overrides the functional clock of the logic cores with a gated clock 

and generates the scan-enable signal from its internal state machine. The BIST can also 

be bypassed by asserting the appropriate control signal so the core can be tested by the 

full-scan method as well. Testing of the memory modules is to be performed by dedicated 
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memory BIST, which is different from the logic BIST used by the classifier and 

embedded processor. The memory BIST runs a simplified marching C algorithm and has 

rudimentary diagnostic support. The test data is transferred by an on-chip packet-

switching network based on the NIMA concept presented [42]. NIMA will be described 

in a later chapter. Table 2 summaries the DFT strategies for the cores inside the NPU. 

Table 2. Core DFT strategy 

Core DFT Strategy Scan Length Vector Count 
Pre-Processing Unit Full Scan 642 509 
Post-Processing Unit Full Scan 326 286 
Classifier Logic BIST 518 2048 
Processor (HC11) Logic BIST 181 2048 
Program Memory Memory BIST N/A 129 
Data Memory (CAM) Memory BIST N/A 129 

For testing at the system level, P1500-compliant wrappers were developed to encapsulate 

individual cores and their associated test structures. P1500 is a standard under 

development by IEEE targeted specifically for embedded core testing [58]. Its purpose is 

to provide a uniform interface between the cores and the chip-level test access 

mechanism, analogous to how IEEE 1149.1 facilitates board-level testing. In fact, the 

PI500 wrapper is very similar to the legacy IEEE 1149.1 boundary scan in both 

architecture and operation. The most noticeable differences are the absence of TAP 

controller and the addition of parallel test port in PI 500 wrappers. By detaching the TAP 

controller and providing more access ports, the serial-input constraint of IEEE 1149.1 is 

removed and a greater variety of test access mechanisms are supported. The wrappers for 

the NPU cores are developed based on the most recent information published by the 
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standard committee [45], with some minor adjustments to adapt to the NIMA test 

network. 

The PI 500 wrapper has four control inputs and one pair of serial data input and output as 

shown in Figure 14. The serial input, WSI, is used to transport wrapper instructions and 

test data. Instructions for the wrapper are shifted serially into the Wrapper Instruction 

Register (WIR) and various enable signals are generated from the control logic based on 

the content of the WIR and the four control inputs. The Core Data Registers (CDRs) are 

used to capture test results or to provide signatures to BIST and multiple-input sequence 

recognizer (MISR). The ring of flip-flop around the core forms the Boundary Data 

Register (BDR) that isolates the core's functional interface from other blocks in the SoC 

during testing. When exercising full-scan test on the wrapped core, the test vector is 

serially shifted in through WSI, and scan output is serially shifted out through WSO. If a 

MISR is instantiated, the scan output is also captured by the MISR and compacted to 

produce a signature. Both the core and the BIST support full scan, so the MISR can be 

used for compacting results from testing either module. Note that according to the IEEE 

1149.1 standard, the serial output is stable at the falling edge of the clock. In an attempt 

to adhere to the established IEEE 1149.1 standard as much as possible, a negative-edge-

triggered flop is added to buffer the WSO signal. The implication of using both clock 

edges is that the time window for data to propagate through the wrapper is reduced to half 

a clock period. 

38 



Select 
Capture 

Shift 
Update 

WSI 
WSO 

Figure 14. Block diagram of a PI 500 wrapper for a core using BIST DFT 

Depending on the requirement, the cell of the BDR may be simplified to reduce area 

overhead. The current design of the cell consists of two D-flip-flops and a multiplexer. 

The design of double flip-flop is derived from the IEEE 1149.1 standard [39]. In this 

design, the capture flip-flops provide stable data to the core while the new data is being 

shifted through the shift flip-flops, and thus prevent the internal state of the core from 

being altered unintentionally. To save routing area, reset lines are omitted for the D-flip-

flops. To ensure that the core receives deterministic values from the wrapper cells, the 

core is connected to the functional inputs/outputs through the multiplexers during 

wrapper reset. The core inputs are connected to the capture flip-flops only after valid data 

are loaded using the wrapper PRELOAD instruction. 
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Figure 15. Structure of a wrapper cell 

As shown in Figure 16, all blocks in the NPU except the bus module are wrapped by 

PI500. The bus module is not wrapped because the on-chip bus is not to be tested by the 

full scan method and also because adding BDRs around the bus will cause excessive area 

overhead. During testing, test data (either test vectors or commands to the BIST) is 

formatted into test packets and sent to the designated block. In order to translate the test 

packets into information that can be used by the test structure of individual blocks, a 

dedicated NIMA interface module is developed for each core. The NIMA interface 

modules, shown as square boxes attached to the P1500-wrapped cores in Figure 16, 

interpret the payload of the test packet and control the PI 500 inputs based on the content 

of the payload. For instance, if the payload of the packet contains a test vector for the 

embedded processor, the interface module toggles the Select, Capture, Shift, and Update 

signals of the PI500 wrapper appropriately so the vector is shifted into the core through 

the WSI input. 
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Figure 16. Network processor SoC with NIMA test network 

3.5 Core Integration 

Various integration issues surface during the integration process in which the network 

processor is constructed from the HC11 IP block and the UDLs. Since the cores are 

integrated as soft IPs, their RTL codes are imported into the Synopsys Design Compiler 

for synthesis. Proper timing and capacitive loading constraints need to be entered into the 

tool in order for it to synthesize the design to meet the targeted speed. For this project, 

area and power are not constrained and thus are not optimized. Although area and power 
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are not properly considered, there are still many integration problems common to today's 

IC designs that need to be solved. Among the important integration issues are I/O 

buffering of the cores, core verification, and synthesis strategy. 

3.5.1 I/O Buf fer ing 

I/O buffering of all SoC cores is strongly recommended by RMM. As described earlier, 

adding I/O buffers has the benefit of localized timing. As the size and the speed of design 

increases, it becomes increasingly difficult for signals to propagate through the silicon 

chip within the given time window. Due to aggressive design goals, signals have to 

propagate through more stages of logic in a shorter clock period, and the risk of not 

meeting timing increases. By registering the I/O of the cores, the timing problem is 

localized in the sense that the delay through one core does not affect the delay through 

another one, as long as each core meets its own timing budget. Then a discrete number of 

clock cycles is allocated for the communication between the cores. This is important for 

reuse since the designer of one core does not necessarily have control over another core, 

so each core must achieve timing closure independently. 

Registering I/O, however, has adverse effect on inter-core communication. Often the 

inputs to a core are used to drive state machines or generate control signals of a data path. 

By registering the input, one clock cycle of delay is introduced between the time when 

the inputs become valid and when the core responds to the inputs. Similarly, by 

registering the output of a core, the downstream core would not receive the new data until 

one cycle later. The extra cycle disrupts the synchronization of data between the cores 
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that are closely related. An example in the NPU SoC is the interaction between the FIFO 

and the classifier that reads from it. After the classifier reads the last piece of data from 

the FIFO, the FIFO sets the empty flag. However, the flag is not detected immediately by 

the classifier as a result of I/O buffering, so the classifier may continue to read from the 

FIFO and mistaken the default value as valid data. The remedy currently employed is to 

make the classifier read the almost-empty flag instead of the empty flag and set the empty 

threshold in the FIFO properly so there are enough clock cycles for the flag to propagate 

to the classifier. One may argue that the FIFO should be integrated closely with the 

classifier and thus eliminating the need for I/O buffering. The counter argument is that by 

moving the FIFO close to the classifier, the core that writes to the FIFO sees a longer 

path and their interconnect delay there could be a problem. Furthermore, since the testing 

strategy for the FIFO has not been defined, integrating the FIFO into the classifier 

complicates the DFT strategy of the core. 

3.5.2 Core Ver i f icat ion 

Inconsistent core implementation is a problem that constantly impedes the integration 

process of the NPU. Since different cores were designed by different engineers, 

inconsistency occurred when wrong assumptions were made regarding the inter-

dependency of the cores or when the design specifications were misinterpreted. In other 

times, the inconsistency was simply the result of the design errors. Common errors that 

are obscure and hard to detect include: 

• Errors when translating the code between Verilog and VHDL. For example, the '&' 

operator is valid in both HDL but have different meaning. In Verilog, it means the 
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logic AND function; in VHDL, it means literal concatenation. Misuse of the 

operator results in syntactically correct but semantically incorrect code. 

• Constants that are not updated when the design specification changes. Hard-coded 

values are often used for length of bit vector, default values, and the mask for bit 

masking. 

As mentioned in Chapter 2, an IP block should be fully verified before integration. 

However, achieving 100% code coverage is not as easy as it sounds. Generating a good 

set of testbench and test vectors could take longer than developing the core itself. From 

our experience, the extra cycle in testbench development extends the development time 

by 2 to 2.5 times. In addition, calculating the code coverage requires support from the 

RTL simulation tool. The NCSIM™ Verilog/VHDL simulator from Cadence has such a 

capability, but we lack the license for advanced coverage report, which is needed to 

accelerate testbench development. During the integration of the NPU, most of the 

inconsistencies caused by misinterpretation were resolved in design phase rather than 

during integration, thanks to close interaction between the system integrator and the core 

designers; 60% of the inconsistencies during integration were caused by designs that 

were not tested properly and thus still contained design errors when handed over. 

Behavioral synthesis could be useful here since it eliminates most of the manual work in 

RTL coding and also facilitates the creation of an executable specification that can be 

used in formal verification. 
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3.5.3 Synthes is Strategy 

Developing a coherent synthesis strategy is a complicated process. Design Compiler from 

Synopsys is capable of many different synthesis approaches, including top-down, bottom-

up, and a combination of these two approaches [13]. The selection of a synthesis strategy 

has a direct impact on the optimization results of the design and the run-time of the CAD 

tool. In the top-down approach, all design entities are read into the tool at once and the 

compilation process takes care of the inter-block dependencies automatically. However, 

top-down approach is possible only if there are adequate memory and CPU resources. 

The bottom-up approach synthesizes one design at time starting from the entities at the 

lowest end of the hierarchy. The bottom-up approach requires less memory than the top-

down approach and allows timing budgeting, and thus is the suitable choice for most 

modern designs. Its disadvantage is that multiple iterations are usually required to 

achieve stable inter-block interfaces. RMM recommends a bottom-up approach for SoC 

design. This approach mandates a set of synthesis scripts for each core to be written so 

the core can be quickly re-configured and re-synthesized for use in different projects. 

Currently the NPU is synthesized from the cores using the bottom-up approach. In this 

flow, the core and its BIST module (if present) are synthesized separately with proper 

timing constraints applied to each of them. For this project, area and power are not 

important and thus the clock definition and the I/O characteristics are the only constraints 

specified in the synthesis script. Once the core and BIST are synthesized, they are set to 

don 't-touch to prevent further modifications, and a top design is created to instantiate the 

synthesized netlists. At one level of hierarchy above, another entity is created to 
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instantiate the top design and the PI500 circuits. The synthesized, P1500-wrapped cores 

are then referenced during the synthesis of the NPU. Figure 17 demonstrates the design 

hierarchy from core up. At the design hierarchy below the core level, the bottom-up 

strategy becomes inefficient in terms of chip area and code organization; collapsing all 

sub-blocks into a single module and synthesizing it as a whole becomes a better approach 

when the design is small. In this top-down approach, the timing characterization is 

performed on the top-level module and then propagated down to the sub-blocks by the 

CAD tool. Then during synthesis, the boundaries of the sub-blocks are removed, allowing 

better area optimization by the CAD tool. 

Since the cores are synthesized using a bottom-up approach, preliminary driving and 

loading constraints (i.e., boundary constraints) are applied for the first synthesis attempt. 

The driver is assumed to be a typical two-input NAND gate, and the load is assumed to 

be a D-flip-flop. The correct driving and loading parameters are captured by the 

characterize and write_script commands during integration of the core. The core should 

then be re-synthesized with the correct constraints and re-integrated. This flow is 

described in [13]. The NPU synthesis was successful and the only timing violations were 

related to the clock network. Since the clock trees are inserted only in the back-end flow, 

the synthesis tool can only estimate the clock delay based on user inputs and the wire 

model from the library. By specifying an ideal clock network that has large drive strength 

(which is a normal assumption for pre-layout synthesis), the violations were eliminated. 

Timing closure could be attributed to the I/O buffers; without the I/O buffers at the core 
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interfaces, many long paths crossing the core boundary would have delay problem that 

may require iterations of synthesis to resolve. 

Figure 17. Network processor module hierarchy 

3.6 System Verification 

System verification is an important part of the SoC design process and it is perhaps the 

most difficult part. Today's SoC consists of many components that need to perform 

complex functions individually and also need to interact with each other seamlessly. The 

traditional verification approach for ASIC design is to apply functional test vectors as 
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stimulus to the input and then compare the output against some expected values [32]. 

This requires many test vectors to implement the different test cases of the core. 

Checking the correctness of the components by toggling the inputs and observing the 

outputs is an extremely difficult task in an SoC environment. Not only are the signals 

embedded (controllability and observability problems), but also the sheer number of 

signals makes the task unmanageable. The suggested verification approach for SoC is to 

abstract the operations of the cores into transactions [3 2] [40]. For instance, the read/write 

signal, the bus request/grant signal, and the address bits can be grouped as a 'read' 

transaction on a system bus. Validating a transaction involves checking the toggling 

sequence of the read/write and bus control signals and determining whether the address in 

the transaction is within the permitted range. The transactions should be automatically 

checked by some monitor entities to ensure that there is no illegal transaction. For a 

system that uses a bus for inter-block communication, the bus interfaces are the ideal 

locations to implement such transaction monitors [33]. In other words, the bus interfaces 

can act as the control and observation points for functional verification of the SoC. 

For the NPU SoC, the system is partially verified by simulating the bus adapters. A 

Verilog testbench that instantiated the bus adapters and the AMBA-compliant bus was 

developed. The testbench models the actual cores and sends appropriate control/data 

signals to the adapters to initiate transactions between the cores. The transactions were 

then verified by manually inspect the waveform of the signals at the receiving end of the 

transactions. The following transactions that will occur during the normal operations of 

the NPU have been verified: 
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• The pre-processing unit writes to the packet memory 

• The classifier reads from the program memory 

• The embedded processor reads from the packet memory 

• The embedded processor reads from the C A M 

• The embedded processor writes to the post-processing unit 

• The post-processing unit reads from the packet memory 

The assumption here is that the cores have been implemented correctly according to the 

specifications and are verified individually using core-level testbench. Due to the time 

constraint of the project, system level simulation involving the actual cores has not been 

performed. In addition, random test cases such as the transactions in arbitrary orders, and 

corner cases such as when the embedded processor performs a write transaction to the 

post-processing unit while the post-processing unit is busy, need to be covered to ensure 

that there is no test escapes. Furthermore, there are point-to-point communication paths 

between the cores that do not make use of the A M B A bus and the adapters. These 

interfaces need to be tested as well. 
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C H A P T E R 4 S O C T E S T S T R A T E G Y 

The problem of testing an SoC can be partitioned into two sub-problems: the provision of 

resources for conducting the test (i.e. the test access mechanism and the test controller) 

and the test scheduling. The design goal of the test access mechanism is to provide access 

to the embedded core from the chip I/O pins while at the same time minimizing the 

impact on the test performance and the performance of the SoC. The purpose of test 

scheduling is to devise an efficient test schedule that optimizes the test application time 

and also constrains the power consumption during test [36]. The T A M design and 

optimization is a hardware problem that involves logic design, interconnect issues, circuit 

techniques, and logic integration. The test scheduling, on the other hand, is largely a 

software problem that can be solved by mathematical theories and modeling. This section 

first describes the existing researches on T A M designs, analyzes their pros and cons, and 

then presents the implementation of the T A M for the NPU SoC described in previous 

chapter. This is followed by a discussion of the scheduling algorithm for the particular 

T A M integrated into the NPU SoC. 

4.1 Test Access Problem 

Most experts agree that test access is a major challenge in SoC design [36]. In traditional 

ASIC design, the terminals of the IC are all connected to the I/O pins of the manufactured 

chip, so an A T E can observe and control the signals on the design terminals. In SoC, 

many of the cores interfaces are buried within the system; only the cores with interface to 

the external system have terminals connected to the chip I/O pins. In addition, functional 
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and structural testing of the cores both require sending test vectors to the cores and 

receiving responses from the cores. Not only does the volume of test data increase due to 

larger number of cores integrated into the system, but also the delay problem (due to 

interconnect coupling of wires in close proximity and increasing length of global wire) of 

SoC makes reliable transportation of test data more difficult. The large number of bit 

streams for testing an SoC also means that the memory capacity of the A T E must be 

increased, which translates to higher overall test cost. Furthermore, as IDDQ testing 

becomes less and less effective due to increasing sub-threshold currents, alternative test 

method such as at-speed (AC) testing gains importance. Supporting AC testing on the 

traditional scan chains, however, require higher performance ATEs and printed circuit 

boards. 

Besides the standard IC design parameters of performance, area, and power, design of the 

T A M also influences other factors such as test application time, quality of the test, and 

the reusability of the test program. Long test times translate into expensive tests, since the 

time the chip spends on the tester determines the test costs. Low-fault-coverage test due 

to flawed T A M design risks faulty designs to pass the manufacture test. The quality of 

the product will suffer and the defects may only be detected by expensive field testing or 

worse, field failures. In the reuse paradigm, the IP cores may be designed by a third party 

and delivered in hard form or encrypted for IP protection. In this case the core integrator 

must treat the IP cores as black boxes and rely on the core creator to put in the necessary 

DFT structures and provide the test program. Since yesterday's IC chip may be today's 

legacy IP, and today's SoC may be tomorrow's IP block, reusing the existing test 

51 



method/program represents significant savings in SoC development. As a result, the test 

time, test quality, and test reuse may significantly affect the overall cost of the SoC and 

its derivative products, and should be considered carefully. In addition, test integration is 

an important factor in the design of the T A M , as today's SoC is likely to use a 

combination of scan and BIST methods. Even within the scan method, there are different 

techniques such as multiplexed D-flip-flop and LSSD, each with different control 

mechanisms. There is no guarantee that a given IP core will use a particular DFT method, 

or if the IP core comes with DFT at all. Therefore, a T A M design must be flexible 

enough to support a wide variety of DFTs. 

Among the TAMs that are presented in the literature, the proposed designs can be 

categorized based on the method of connection from the chip I/O pins to the cores. The 

simplest of all TAMs is the multiplexer T A M , which use multiplexers to share chip I/O 

pins among the cores. The multiplexer T A M suggested by [27] is easy to design and 

operate. On top of the multiplexers, the scheme uses AND gates for test isolation and OR 

gates for merging core outputs. It maps the core interface to a sub-set of the chip I/O pins, 

so both digital and analog test can be applied through the ATE. Debugging is 

straightforward since the active core can be isolated from the non-active core using the 

AND gates and can be directly accessed from the package pins. The disadvantage of the 

multiplexer T A M is that it is not scalable. As the size of the SoC increases, more 

multiplexers and associated control inputs are required, and this increases the routing 

overhead rapidly. Although at-speed test is possible, delay and/or skew caused by the 

multiplexers need to be taken into account. In addition, the multiplexer T A M cannot test 
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interconnects between the cores and may not be applicable when the number of the core 

terminals exceeds the number of chip I/O pins. 

Input N 
Test In 

Core A 
Core C 

Output Cl 
Test out 

Input B 
Core B 

Output B 

Figure 18. Multiplexer T A M . The dotted lines denote the test paths 

The serial T A M is based on the established IEEE 1149.1 standard for board testing. The 

same IEEE 1149.1 structure is redesigned for chip testing [64]. In the proposed 

architecture, a scan wrapper envelops the core, and the serial output of one core is 

connected to the serial input of another. The same IEEE 1149.1 TAP controller can be 

used for core test after additional circuitry for coordinating the activities of the cores are 

added. The serial T A M approach has a very small routing overhead comparing to the 

other TAMs. Although the serial T A M reuses the IEEE 1149.1 standard and occupies 

very few pins for testing, it is not suitable for SoCs with more than a few cores as the test 

time using the serial test input would be prohibitively long. 
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Figure 19. Serial T A M . The dotted lines denote the test paths 

References [54] and [63] report different variants of the bus TAMs. The bus T A M uses 

an n-bit wide data bus for transferring test data to and from the chip, and an m-bit wide 

control bus for transferring enabling signals that determine the access of the cores to the 

data bus. The bus T A M essentially brings the core terminal to the chip I/O pins via the 

data bus. The core terminals are connected to the test bus through various access control 

logic that isolates the core from the bus when it is not under test. The bus T A M provides 

some degrees of scalability by allowing the bus width to increase with the increasing 

number of cores. The bus T A M also permits digital, analogue, and at-speed test. The 

limitation of the bus T A M is that it allows only one core to gain access of the data bus at 

a time. As a result, tests that require multiple cores running in parallel cannot be 

performed. Although it is possible to use a functional bus as a test bus as suggested in 

[63], the approach is ad-hoc since there is no guarantee that the width and/or direction of 

the functional bus would satisfy the requirement of the core test. 
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Figure 20. Bus-based T A M 
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Transparent T A M is based on hierarchical testability analysis (HTA) to obtain core 

transparency so that tests can be performed through normal functional paths [19]. The 

idea of HTA is to start solving the testability problem at the design phase. Code 

generators have been developed to produce cores whose internal nodes are easier to 

control and observe than cores that are handcrafted. The procedure proposed in [19] 

leverages the HTA code generator to obtain cores with high testability. If the result of 

HTA does not produce enough transparency, several techniques are described for 

establishing transparent paths by adding hardware such as multiplexers, observing flip-

flops and latches, etc. During SoC testing, the transparent path of one core serves as 

transport media for the adjacent cores. The transparent T A M has low area and delay 

overhead, but the technique results in ad-hoc test procedures as the definition of the test 

ports differ from one core to the other. Moreover, the technique cannot be applied to all 

cores; it is particularly not suitable for the microprocessors or other data-path intensive 

circuits. 
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Figure 21. Transparent T A M . The dotted line denotes the internal test path 

The Test Rail T A M presented in [37] is a refinement of the test bus architecture. Similar 

to the bus TAM, an n-bit bus is provided to transfer test data. Unlike the bus T A M , the n-

bit wide bus can be split into smaller buses for cores that do not require that much 

bandwidth and later merged for cores that do require the bandwidth. The Test Rail thus 

offers more flexibility and allows core integrator to optimize the T A M either for area or 

for test application time. A layer of interface called Test Shell is required to surround the 

functional interface of the core. The purpose of the Test Shell is similar to that of the 

PI500 wrapper; both provide test isolation, test bypass, interconnect test function, and the 

capability of capturing a snap shot of the core I/O. The Test Shell is regulated by a set of 

dedicated control signals shared by all cores. The width of the Test Rail for a particular 

core is determined after considering such factors as available chip I/O pins, test 

application time, and silicon area. A methodological approach for calculating the minimal 

Test Rail width and the optimal distribution of the total test width among the SoC cores is 

given in [8]. The strength of the Test Rail is its large number of possible configurations. 

In fact, the Test Rail is the generalization of the multiple-scan-chain architecture widely 

used in the industry. The weakness of the Test Rail includes the extra control signals that 
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add to area overhead and the extra effort to calculate the optimal width and bandwidth 

distribution. Pre-processing and post-processing of the test data is also required in order 

to format the IP test vectors into a system test program and to extract the test results. 

Input A 

Test In 

Input B 

Core A 

Core B 

Core C 

Output C 

Test Out 

Output B 

Figure 22. Test Rail T A M . The dotted lines denote the Test Tail 

Finally, a novel approach using an on-chip network to deliver test data is proposed in 

[42]. The network-on-chip TAM, known as NIMA, adopts the packet-switching concept 

in computer network and applies it in SoC testing. The cores are assumed to have test 

harnesses such as the Test Shell for Test Rail or the PI500 wrapper already in place. The 

wrapped cores are then connected to the network through NIMA interface modules. The 

network itself consists of routers and wires that link the routers together. The on-chip test 

network is a promising T A M architecture for two main reasons. First, many researchers 

agree that layered network design is the best approach for global (long-wire) 

communication of future SoCs [49]. A structural network allows the electrical properties 

of the wires to be optimized and controlled, and also provides better utilization of the 

wires [4][12]. Second, the network is essentially a solution to a communication problem, 

so it does not make any assumption on the application that uses the communication 
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service. As a result, a network T A M inherently supports any kind of test strategy, 

whether it is full scan, BIST, scan complementing BIST, or any on-chip vs. off-chip 

source/sink combinations. 

4.2 NIMA Design 

The key concept in NIMA is to establish an indirect digital communication between the 

source/sink and the cores using packet-switching connections. For IC testing using this 

method, test vectors are converted to packets before they are sent to the cores for which 

they are intended. Test results can be sent to the test sink in a similar fashion. The design 

of the network is based on the network stack paradigm established in the 

telecommunication field, namely the OSI 7-layer model. This formal approach 

decomposes the design problem into a set of simpler, traceable, and modular tasks. Each 

layer of the network can be individually optimized to meet the particular power, area, and 

performance requirements of the SoC test network. Since the tasks involved in SoC 

testing are well defined and not as diverse or complex as those in computer networking, 

the OSI 7-layer model can be simplified to a 3-layer model consisting of a Physical 

Layer, a Network Layer, and an Application Layer as shown in Figure 23. 
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Figure 23. The 3-Layer Model of NIMA 

4.2.1 Physical Layer 

The physical layer deals with the actual medium for interconnection. For contemporary 

ICs, the physical medium is the metal wire that is routed between the SoC blocks. The 

physical level specifies the voltage level of the signal on the wire, the timing of the signal 

events, the signaling techniques, and other physical properties of the link, such as 

protection measures against crosstalk. In the end, the physical layer presents the data 

exchanged between the SoC blocks as a stream of 1 's and O's to the upper layer. 

In the OSI 7-layer model, a data link layer sits above the physical layer to handle error 

detection and access control. We omit this layer in our design because we believe the 

reliability of the physical link can be maintained with proper circuit techniques (e.g., 

buffer insertion to mitigate delay problems and shielding to protect victim wires against 

aggressor crosstalk noise). For access control, the problem can be alleviated to one of 

packet scheduling in software since the data traffic in SoC testing is predictable. In other 

words, the SoC designer has complete control over when a block should have access to 

the network during testing. 
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4.2.2 Network Layer 

The network layer dictates the details of how data is transmitted across the network. 

Information in this layer includes the switching technologies and network topology. In 

our design, the network layer is based on virtual indirect connection provided by micro-

routers. To simplify the network layer, packets are sent in a particular order and are 

required to reach their destination in that order. To reduce transmission delay in the 

network, we adopt wormhole routing in which the packet is forwarded to the output as 

soon as the destination is known, without waiting for the tail of the packet to arrive [22]. 

To minimize the need to maintain routing information, the packets are routed using 

source routing, meaning the route is predefined. In addition, the network layer specifies 

the synchronization scheme of the packets. Asynchronous packet transfer is possible and 

is likely to be the way of future as centralized communication scheme becomes 

increasingly difficult to achieve in a large SoC design [4]. We opt for a synchronous 

approach instead as it is still applicable in today's SoC and has better support from the 

existing CAD tools. The synchronous scheme implies that the routers must operate within 

the same clock domain. 

The network architecture assumes a single source for sending out test packets and a 

single sink for collecting the returning packets from the cores as in the original proposal 

suggested by [42]. However, the NIMA packet format has been modified from the 

original proposal in order to support a scalable implementation of the NIMA network. 

The original NIMA has only a width of one, and it is deemed insufficient for handling 

large test traffic. The improved version used in this project increases the network 
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bandwidth by changing the width from 1 to an arbitrary number. The packet format has 

been changed accordingly, and the current format is depicted in Figure 24. 
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Figure 24. Revised NIMA test packet format 

The packet is best described as a two-dimensional array. The row represents the width of 

the packet, and the column represents the length of the packet. The synchronization word, 

the payload-length field, the address-length field, and the address field must reside in row 

0 of a packet. As shown in Figure 24, S, LD, and LA denote the length of their 

corresponding fields. These values are the dominating factor in determining the size of 

the packet header, and should be designed carefully to minimize overhead. The unused 

spaces in the packet header are filled with zeros. The following is a brief description of 

each field in the header: 

• Synchronization Word - signals the beginning of a packet 

• Payload Length - stores the length of the payload. The addition of this field to the 

original format to allow the payload to have an arbitrary length 

• Address Length - stores the length of the address. Since the address must be a 

multiple of two bits (related to the fanout of NIMA router), the address length is 

actually the number of bit pairs. 
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• Address - destination address of the core for that packet 

• Code - binary code used to generate the channel-ready signal in the last router 

The payload portion of the packet contains test information such as control bits to the 

NIMA interface module, instruction to the PI500 wrapper, test vector to the embedded 

core, and control bits to the BIST, etc. The bits of the payload must fill up each column 

from row 0 down to the last row before the next column can be used. This rule is required 

because the decoding logic in the NIMA interface module reads the packet in a column-

by-column manner. The rows of the packet must be properly aligned so that row 0 is 

applied to the least-significant bit of the test port, row 1 to the second-significant bit, and 

so forth until row n is applied to the most-significant bit. This rule is derived from the 

fact that the NIMA router assumes the useful header information to reside only in row 0. 

4.2.3 App l ica t ion Layer 

The application layer in our design is an aggregation of the 4th to the 7th layers in the 

OSI model. It defines the protocol for accessing the network. At this level, the data is 

comprised of test vectors and DFT control signals that have to be converted to/from 

packets. The network architecture allows arbitrary bit width for the channel, so the packet 

could be a block of two-dimensional bit arrays instead of a one-dimensional bit stream. 

As the result, the blocks that wish to use the network must have the capability to scale the 

packet payload into the bit width suitable for its application. For packets wider than 1 bit, 

special ready signals are needed to indicate which bits are valid, as the data may not 

completely fill the bit array. 
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Since the cores could come from different design team at different organizations, a 

standardized test interface is critical. As mentioned before, the PI500 is currently under 

development by the IEEE with the intention of being the de facto standard. In this 

approach, core tests are to be carried out using PI500 instructions. Custom PI500 

instructions are required to support full scan test as well as any other DFT strategies. 

Furthermore, a mechanism is needed to generate the PI500 control signals in the correct 

sequence at the core side. A set of wrapper control flags was devised to serve as 

instructions for this control mechanism. This results in two additional hierarchies in the 

message that is to be "packetized". 

4.3 NIMA Implementation 

To validate the concept, the network T A M NIMA was integrated into the synthesized 

NPU design. NIMA is a layered design that offers modularity and flexibility. However, 

redesign of the original NIMA was necessary to achieve a scalable solution. The NIMA 

network as proposed in [42] uses a single test port and the test packets are serially 

transported across the chip. It was found that the serial design can limit the bandwidth of 

the NIMA network and does not allow the full potential of NIMA to be realized. 

Fortunately, the NIMA architecture is highly flexible and it is fairly straightforward to 

extend the width of the network to multiple bits. The only complication is that with the 

increase in bandwidth, buffers need to be introduced. 
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For the Physical Layer, we use the traditional metal interconnect as the physical medium. 

The voltage on the wire is expected to swing between OV and 1.8V, which is a typical 

range for the targeted 0.18um technology. The power consumption of the SoC during 

testing is well below the budget, based on the estimated calculation done by Power 

Compiler, so no special signalling technique is used. For process technology 0.18um and 

below, the coupling capacitance between neighbouring nets dominates over the ground 

capacitance [52][23]. As a result, crosstalk is an issue that needs to be considered. Instead 

of implementing guarding wires around the NIMA nets, we decided to route the wires as 

part of a standard design flow and use the built-in capability of the routing tool to check 

for crosstalk violations. The target chip has sufficient real estate and the wires can be 

spaced apart to reduce crosstalk. 

For the Network Layer, the analysis of total test time and scheduling showed that a NIMA 

width of 4 is sufficient for the current NPU implementation. The NIMA router is the 

basic component of the network. The current router implementation supports one input 

channel and four output channels (fan out of 4). Based on the number of cores within in 

the SoC and the length of test vectors for the cores, the parameters of the packet header 

were set as following: S = 6, LQ = 10, and LA = 6. These parameters were hard-coded in 

the RTL code of the router. To integrate the NIMA network with the NPU SoC, a top-

level design named NPU_NIMA was developed and it instantiates the NPU, the NIMA 

interface modules, and the NIMA routers. The NIMA_NPU design has the routing 

configuration shown in Figure 25. Note that the cores using full scan DFT require large 

amounts of test traffic from an off-chip supplier, so they are connected to the highest-
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level router to minimize delay through the network. The current implementation does not 

have a network for transporting test traffic from the embedded cores to the off-chip test 

equipment (i.e. the sink), so the wrapper scan output of the six cores are connected 

directly to the chip I/O for observing the activity during test. 
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Figure 25. NIMA network configuration 

To support a scalable NIMA network, a funnel device is added in the NIMA interface 

module (residing at the Application Layer) to buffer the test packet. The funnel device is 

essentially a special FIFO that has different input and output data width. The input width 

of the funnel is the width of the NIMA network, and the output width is the number of 

scan chains in the core. Currently implementation of the core in NPU has only one scan-

chain, thus the funnel output is always a single bit stream. 
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4.4 NIMA Scheduling 

Scheduling is another application-layer function. The performance of NIMA depends 

strongly on the scheduler, which determines when to send a particular test packet from 

the source. The scheduler needs to ensure that proper initialization sequences for testing 

individual cores are applied and that test results are not overwritten before they are 

retrieved. The scheduler also must prevent conflicts of the network resource usage and at 

the same time minimize the test application time. During the actual test, simultaneously 

activating all core DFT may result in power dissipation that exceeds the chip junction or 

package heat tolerance, so the scheduler needs to control the activity of the DFTs based 

on a given power budget. Moreover, the test data from NIMA network may arrive at a 

faster rate than can be consumed by the core, so a buffering scheme is incorporated to 

ensure the PI500 wrapper gets the data only when it is ready to accept it. To prevent 

buffer overflow, constraints are applied to the time interval between consecutive packets 

destined to the same core. One more issue that is starting to become important is the 

noise of simultaneously switching circuits. In DSM technologies, the wires are narrow 

but tall, so there is stronger coupling between neighbouring wires on the same layer. In 

addition, IR drop could be a problem as large amount of transistors switch at the same 

time. These constraints also need to be built into the scheduler, although the power issue 

is perhaps most important. 

Before we can construct the scheduler, we need to understand the operation of the NIMA 

T A M in more details. The time for a packet to pass through the SoC is consisted of two 

parts: the delivery time - which is the time required by the NIMA T A M to deliver the 
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packet to the designated core - and the process time - which is the time to decode the 

packet and process the payload. The delivery time through NIMA is made shorter 

(through increase in NIMA bandwidth) then the process time so that NIMA can serve 

another core while the core(s) that already receive the packet is busy processing the 

payload. After NIMA has transported a packet for a particular core, it cannot send 

another packet to the same core until the first packet has been completely processed. If all 

cores in the system are busy processing their packets, then NIMA will be idle until one of 

the cores in the system has completely processed its packet. It is also possible that a core 

may sit idle after it completes its current packet because NIMA is busy transporting the 

packet for another core. The NIMA idle time is to be minimized through architectural 

design. The goal of the scheduler is to minimize the total test time by avoiding idle cycles 

at the cores. 

The NIMA scheduling problem is very similar to a class of well-studied problem in the 

domain of single-process task scheduling. The problem, known as Sequencing with 

Intervals, is a decision problem described as follows: 

Given a finite set of tasks T, and for each task t from T, there is a release 
time r(t) > 0, a deadline d(t) > 1, and a length l(t) > 1, does there exist a 
feasible schedule for T that satisfies the release time and deadline 
constraints for all the tasks in T? [18] 

It is easy to see that the Sequencing with Intervals problem becomes a decision problem 

of NIMA scheduling by replacing the tasks by packets, the release time r(t) by the 

process time of the previous packet to the same core, and the deadline d(t) by a constant 

value K for all tasks. If the decision problem can be shown to be NP-complete, then so is 
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the optimization problem of finding the schedule with the minimum K. The Sequencing 

with Intervals problem has been shown to be NP-complete, and the same proof presented 

in [18] can shows that the decision problem (and thus the optimization problem) of 

NIMA scheduling is also NP-complete. This provides enough incentive for us to look for 

a heuristic algorithm rather than an exact one. 

The current scheduling algorithm, shown in Figure 26, is based on the observation that if 

a long packet is scheduled first, it may be possible for NIMA to deliver the shorter 

packets while the core with long packet is still processing the first packet, and thus 

minimize the idle time of the cores. As a result, the algorithm sends the packet for the 

first-ready core. The ready time for a core is calculated in the algorithm based on the time 

to deliver the packet and the time to perform the test. If more than one core is ready at the 

same time, the core with larger scan chain (resulting in larger payload) has higher 

priority. The algorithm also looks ahead in time so that a non-ready core with a longer 

scan chain may preempt a ready core with a shorter scan chain. This heuristic sometimes 

reduces the idle time of the core DFT and thus decreases overall test time. It is not know 

at this moment whether this schedule produces the minimum total test time. Using 

heuristic methods to derive the optimal scheduling algorithm is the subject of future 

research. 
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Figure 26. Flowchart of the NIMA scheduling algorithm 
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C H A P T E R 5 T A M C O M P A R I S O N 

In order to understand its advantages and disadvantages, the NIMA T A M was compared 

with other TAMs integrated on the same platform. Two TAMs, the serial T A M and the 

Test Rail, were implemented on the same NPU SoC platform on which the NIMA T A M 

was implemented. Figure 27 shows the conceptual diagram of the three T A M 

architectures. The serial T A M serves as the baseline approach since it has the least area 

overhead but the worst test application time; the improvement of the other two TAMs can 

be realized by comparing to the serial TAM. The Test Rail is one of the state-of-art T A M 

architectures that is often used as a comparison for new T A M designs. This chapter 

describes the implementation of the serial and Test Rail TAMs and presents the 

comparison results of the three TAMs. 

Serial P1500 Test Rail Test Network 

• D 

Figure 27. Conceptual diagrams of the three TAMs 

5.1 Serial TAM Implementation 

The serial T A M is created by simply threading the serial test output (provided by PI500 

wrapper) of one core to the serial test input of another. Since the serial T A M was 

intended to be the T A M with bare minimum hardware, no TAP controller is added. 
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Instead, the control signals to the wrapper were directly controlled off-chip. The PI500 

wrapper provides a bypass register to allow the packets to bypass unintended cores. This 

feature allows the BIST-ready cores to have their BIST modules initiated, and then the 

wrappers of these cores can be put to bypass so the cores that use full scan can be tested 

while the BISTs are running. In addition, for cores with multiple scan chains, the PI500 

wrapper also allocates parallel test ports that can accommodate shifting of multiple scan 

chain simultaneously. 

5.2 Test Rail Implementation 

The other T A M used in the comparison is a variant of the Test Rail approach. The Test 

Rail T A M is often used as the reference design in SoC test research because it is a very 

generic architecture that can be highly optimized for area or test time. For our 

implementation, time-division multiplexing is used to control the access [16]. A core on 

the shared lines automatically assumes control over the bus when an internal counter 

reaches some predetermined value, each associated with a different time slot. This 

eliminates the need for an address bus. A TAP controller and an access controller are 

attached to each P1500-wrapped core. The access controller is composed of a 32-bit 

counter and some clock-gating logic. The 32-bit counter is implemented as a shift 

register. Before the test starts, a mask value is loaded into the shift register. During 

testing, the mask value is cycled through the shift register to produce the desired effect of 

a periodic counter. An arbitrary bit is chosen as the enable signal to the clock-gating 

logic. When the enable signal is asserted, the clock to the TAP controller and the PI500-

wrapped core runs freely and the blocks function normally. When the enable signal is de-
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asserted, the activities within the blocks are suspended. One exception is the BIST within 

the PI 500 wrapper. It is allowed to run on its own regardless of the enable signal in order 

to minimize test time. For scheduling, a genetic algorithm is used to partition the test 

bandwidth among the cores and calculate the best bit-sharing configuration, if some bits 

in the bandwidth are to be shared [15]. 

5.3 Results 

The SoC and the integrated TAMs were simulated at the gate-level. The details in the 

timing cycles were used to build a C/C++ model for each T A M architecture to allow 

simulation of different test scenarios. There were two types of DFT used in the network 

processor: full scan and BIST. The BIST approach has the advantage of lower test traffic 

than full scan. In addition, a BIST approach avoids off-chip vector storage and 

management, thus simplifying the ATE setup. However, the current BIST algorithm is 

based on pseudo-random pattern generation, which typically suffers from reduced fault 

coverage. To mitigate the problem, we require BIST to use more vectors (two to ten 

times more) than full-scan test. This of course results in longer test time. Consequently, it 

is important to explore the impact of various BIST and full-scan DFT combinations when 

considering the choice of T A M architectures. The T A M architectures were compared in 

six different scenarios. In the first scenario, all cores but two use BIST for testing. In each 

of the following scenarios, more cores that use full-scan DFT are added, which results in 

a larger volume of test data that need to be transferred onto the chip. Power estimation 

indicates that the power budget is not exceeded even when all DFT structures are 
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operating concurrently. As a result, the DFT structures are allowed to run in parallel 

whenever possible 

5.3.1 Test Per formance 

Figure 28 shows the scan test time of serial T A M vs. NIMA. The vertical axis is the total 

test time (in clock cycles) to exercise core scan chains, and the horizontal axis indicates 

the total test data (in bits) transferred, which is calculated from the number of the test 

vectors for the NPU and the size of these test vectors. The longest BIST execution time is 

approximately 530,000 cycles for all six scenarios, and it is chosen as the threshold for 

total test time. The graph clearly suggests that the serial T A M is not practical. The total 

test time of the serial T A M exceeds the chosen threshold after the second scenario. The 

NIMA T A M is able to scale down the total test time by using larger bit width (the graph 

shows the scan test time of NIMA of width from 1 bit to 32 bits). NIMA with a width of 

1 is performing worse than the serial T A M due to the extra overhead introduced by the 

packet header and the NIMA interface modules. NIMA with a width of 2 or above 

performs better than the serial T A M in all scenarios. As the number of full-scan cores 

increases, larger NIMA bit widths are required to keep the total test time bounded by the 

chosen threshold. In the last scenario where all logic cores in the SoC use full scan, an 8-

bit NIMA is sufficient to keep the total test time below the chosen threshold of 530,000 

cycles. 

The graph also shows that the test time is a linear function of the data that needs to be 

transferred. So by moving toward the BIST-oriented DFT (moving toward the left hand 
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side of the x-axis), the test time is decreased linearly. Whether the saving in test time 

justifies the extra logic for BIST is a trade-off that must be analyzed by the chip 

designers. However, the technology scaling has made the area overhead less a concern as 

the designers can afford to implement more logic, whereas test time is a growing problem 

due to the increasing number of IP blocks that are integrated. According to [28] and [9], 

the trend of the industry is to adopt BIST and other test automation schemes for SoC 

testing. For a system that uses BIST as the primary DFT method, the design of the T A M 

architecture makes little difference in test time as evidenced by the graph. However, the 

reality is that a T A M is required more than just to transport scan vectors. A T A M is 

needed to send test vectors for diagnostic purposed and for functional verification of the 

embedded blocks. As a result, an efficient T A M design is essential to SoC testing. 

Scan Test Time of NIMA and Serial TAM vs. Total Bits Transferred 

Figure 28. Test time of the serial T A M vs. NIMA 
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Figure 29 shows the Test Rail and NIMA test time of exercising full-scan DFTs using 

different test widths (from 1 bit to 5 bits). The results suggest that NIMA performs better 

or comparable to the Test Rail. The low performance of Test Rail with a small test width 

is caused by the limitation of the time-division multiplexing scheme of the Test Rail 

TAM. When the width is small, there are fewer wires to be shared among the cores, so 

the multiplexing scheme becomes less efficient. When the Test Rail T A M cannot 

distribute the available resources according to the data requirement of the cores, delays 

increase as cores with small data loads occupy the resources that could otherwise be used 

by the cores with large loads. The graph also shows that as the bit width of the T A M 

increases, the improvement in test time is diminishing. This is true for both NIMA and 

the Test Rail. For instance, there is a 40% improvement in test time when the bit width is 

increased from 1 bit to 2 bits, but the improvement is less than 15% in the case of from 4 

bits to 5 bits. This observation is best described by the relation between total scan test 

time, total test bits of the SoC, and the bit width of the T A M , which can be abstractly 

formulated as 

^ . . Total test bits 
Total scan test time = (\) 

Bit width of the T A M v ' 

When the bit width of the T A M is 1, the total scan test time in cycles is the same as the 

number of test bits to the SoC. By increasing the bit width of the T A M above 1, we 

parallelize the test process of the SoC. Since the total scan test time is inversely 

proportional to the T A M bit width, larger bit widths yield less improvement. 
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Scan Test Time of NIMA and Test Rail vs. Total Bits Transferred 

1.50E+06 

Total Bits Transferred 

Figure 29. Test time of the Test Rail T A M vs. NIMA 

Regardless of which T A M is used, the scan test time of the SoC has a lower bound, 

which is the longest test time of the cores. Using Equation 1, the optimal T A M width can 

be derived as the ratio of the total scan test time to the longest core test time, i.e. 

where ti is the test time core i, and tmax is the longest test time of all cores. Then the 

theoretical best total test time is either the time to send in all the test data using the 

optimal T A M bit width, or the maximum BIST run time if the BIST run time dominates. 

Equation 3 gives the theoretical best test time in cycles. 

W o P t = r o u n d 
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T o P t = 

I ' . 

w. 
s 1 BIST max 

opt 

(3) 

Equation 3 assumes that all BIST-based cores can run their BIST simultaneously. The 

equation is only an approximation because it does not include the cycles for scan capture 

nor the delay through the TAM. The network T A M cannot achieve the theoretical best 

time because of the packet header overhead. The Test Rail cannot achieve the theoretical 

best time because of the granularity problem similar to the finite arithmetic error in 

digitized data. Specifically, the mask value of the Test Rail cannot perfectly match the 

ratio of the test data between the cores, so the Test Rail cannot achieve the optimal test 

bandwidth distribution. 

5.3.2 Area Overhead 

Aside from test time, there are many other factors that need to be evaluated for thorough 

comparison. Area overhead is one of the important design factors. Table 3 shows the gate 

area overhead of the three T A M architectures. The serial T A M requires no additional 

logic, and thus has zero gate area overhead. The Test Rail T A M requires a time-division 

multiplexer for each core, so the gate area overhead is derived from the multiplexer logic, 

and it has been shown to be approximately 1% of the total NPU gate area. The NIMA 

requires interface module at each core and routers to connect the network. The gate-area 

overhead has been calculated to be around 70% of the NPU gate area. For a real SoC 

design, area overhead this large will certainly be unacceptable. A more detailed analysis 

shows that 80% of this area overhead is attributed to the buffer memory used in the 
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interface modules. The overhead could be reduced by optimizing the buffer memory 

design, such as by using smaller memory cells or minimize the buffer size requirement. 

Table 3. Gate area overhead comparison 

T A M Gate A r e a (um^) Percen tage o f NPU 
Serial TAM 0 0% 
Test Rail TAM 18882 1% 
NIMA 1343192 70% 

A more effective method for reducing area overhead of NIMA is reuse of system 

memory. If the NIMA T A M could use the functional memory modules already integrated 

in the SoC as the buffer memory, then the area overhead would decrease dramatically. As 

a result, the NIMA T A M will benefit from a distributed memory architecture where 

memory blocks are distributed across the chip rather then centralized in a large memory 

core. In fact, networking ICs often require large amount of memories [38][17][1]. For 

instance, [6] describes a networking SoC that contain 121 memory modules occupying 

50% of the die area. In the case of the NPU SoC, there are also many memory elements 

in the proposed architectures (the FIFOs between the cores) as shown in Figure 10. 

Redesign of the interfaces to the FIFOs would allow them to be as buffers required by the 

NIMA interface modules. 

5.3.3 TAM Design Au tomat ion 

Synthesis automation is also an important consideration for T A M design, since building 

the T A M and the associated infrastructure manually is inefficient and error-prone. All 

three of the T A M designs compared can be built using standard cells and ASIC place-

and-route tool. The PI500 wrappers consist of only standard logic elements such as D-
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flip-flop, muxes, and AND gates, and can be automated generated by a script. The scan 

chains inside the cores require careful design to avoid timing violation during shift mode 

and capture mode, especially if there are scan chains that cross different clock domains 

[55]. Fortunately, scan-based methodology is widely supported by the industry and the 

CAD tools have the capability to construct race-free scan chains. 

5.3.4 Summary 

Table 4 summarizes the factors that SoC designers should consider when choosing a 

T A M architecture. Although a Serial T A M results in the longest test time, it is still 

included in the comparison because it offers the minimal area and routing overhead, 

which may be more important than other factors in certain applications. Judging from the 

merits that are presented, Test Rail is a better T A M if area overhead is important, while 

the NIMA is preferred if reducing I/O pin count is paramount. NIMA is able to save pin 

count because the control signals are embedded in the packets; once a packet arrived at 

the core, the interface module decodes the packet and generates appropriate control 

signals. The argument one could make is that the designer can serialize the control 

signals of the Test Rail by adding a shift register and hence reduce pin count [3]. The 

problem is that the test time becomes longer as the extra cycles are needed to setup the 

control signals and caution need to be taken to ensure that the cores' tests are not 

invalided while the control signals is being updated. 
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Table 4: T A M Comparison 

Serial Test Rail NIMA 
Test Time - Long test time + Can be scaled down + Can be scaled down 
Logic Area + No overhead + Less than 2% of the 

SoC area 
Overhead due to 
routers, interface 
logic, and funnels 
that act as buffers 

Long Wire Control lines scale 
with the number of 
cores 

Control lines scale 
with the number of 
cores 

+ No control lines 

Total Test 
Pin 

+ Constant number of 
dedicated test pins 

- 3x width of Test Rail + 2x width of NIMA 
network 

Synthesis 
Automation 

+ Can be automated + Can be automated + Can be automated 

Pre- and 
Post
processing 
of test data 

+ ATPG, pattern 
comparison 

ATPG, distributing 
test data according to 
optimized test width 
and core assignment, 
and re-organizing test 
outputs for analysis 

ATPG, test packet 
generation, packet 
scheduling, and 
extract test results 
from returned 
packets 

+ = advantage 
- = disadvantage 

The control signals of the Test Rail are a hidden cost that is not emphasized in previous 

research papers. The number of I/O pins available for testing and the extra routing 

resource required by T A M control signals are important considerations. The proposed 

NIMA approach reduces the pin count and wires for control signals at the expense of 

more silicon area for additional logic. Many T A M designs also propose the use of the 

IEEE 1149.1 TAP controller as the central on-chip test control [9][64][54]. This can be 

done by adding custom TAP instructions and decoding logic to generate test control 

signals specific to the TAMs. In the case of NIMA, a centralized test control is not 

required since the schedule is re-computed and the test control signals are completely 

embedded inside the test packets. By incorporating the technique of embedding control 

signals into the test-rail architecture, a scalable T A M with low area overhead and low pin 

count could be devised. However, NIMA has other advantages that are not found in the 

other T A M architectures. 
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One additional advantage of NIMA is that it allows the test bandwidth to be re-allocated 

dynamically. For instance, during diagnostic test, engineers can use the full bandwidth of 

the network to test a single core if so desired. For the Test Rail, the bandwidth allocated 

to a particular core is fixed during implementation of the TAM. Furthermore, it appears 

that to achieve any significant improvement in performance, the T A M should be 

decoupled from the core DFT. Our current architectures of the NIMA T A M and Test Rail 

both use the same clock frequency as the core DFT. If the number of I/O pins available 

for testing is less than optimal, clocking the T A M at higher speed makes up for the lack 

of bit width and thus reduces test time. The Test Rail is an extension to the scan chain 

concept and is difficult to decouple from the core DFT. NIMA on the other hand, is 

conceived as a system completely independent of the core DFT, and thus allows such 

decoupling to be implemented naturally. A similar de-coupling scheme of separating 

communication from computation has already been proposed for the functional data 

transfer between the cores, although it is not yet clear that it is the solution for developing 

high-speed SoCs [49]. 

81 



C H A P T E R 6 C O N C L U S I O N S 

The first part of this thesis work is a study of the reuse methodology based on the RMM. 

A reusable core (HC11) was developed by redesigning a legacy RTL block. The 

techniques described in RMM were applied to the core, but it was found that the time and 

effort spent in retrofitting the legacy block with reuse techniques were not justified. A 

better approach to convert a legacy block is to start the development from scratch and 

apply the reuse techniques coherently in the design flow. Another lesson learned from the 

exercise is that although the recommendations made by RMM are valid in general, there 

are situations where they should not be applied directly. It is important for the designers 

to fully understand the reasons behind these recommendations and analyze the effects 

before adopting them to the designs. 

In addition, we find that the cost of reuse is high. Based on our experiment, the 

development time for a legacy core is estimated to be 3 times longer than a non-reusable 

one (the RMM estimate for a reusable design starting from scratch is 2 to 3x). In our 

case, learning the design and re-coding takes lx, testbench development accounts for lx, 

and documentation and prototyping accounts for another lx. The testbenches are perhaps 

the most valuable part of the project because of the effort put into the development and its 

reuse potential. As suggested by RMM, the design should be reused lOx or more in order 

to recover the investment on reuse. For reuse methodology to be efficient, more support 

from the CAD tools is required. In addition to the testbench automation tools suggested 

by RMM, behavioral synthesis promises a faster and error-proof way of generating 
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reusable code, and formal verification and automated bus monitors should help simplify 

the verification task both at the core level and at the system level. 

The second part of the thesis was the development of an SoC platform (NPU). The SoC 

was created using the HC11 and several other ASIC blocks. Since the design of a SoC is 

a major undertaking and could not be done within the scope of the thesis, the 

functionality of the SoC has been scaled back. Nonetheless, the project uncovered the 

major issues in SoC design, including bus interface design, inter-block timing, and SoC 

test, and provided solutions to these problems. The development of the SoC also reaches 

a point that the system allows various T A M architectures to be implemented and 

compared, which is the primary goal of this SoC. 

The third part of the thesis involves integrating the NIMA T A M architecture into the 

NPU SoC and comparing NIMA with the serial T A M and the Test Rail T A M . We hoped 

to show that NIMA is a viable solution to the SoC test access problem. The results 

indicate that NIMA's performance is comparable to that of the Test Rail, but the area 

overhead is higher than the other architectures. The area overhead of NIMA can be 

reduced by optimizing the buffer memory or by making architectural changes to allow 

existing memory blocks to be reused. NIMA does have other benefits such as requiring 

fewer control signals and allowing the T A M to operate at a different frequency than the 

cores. These characteristics of NIMA make it an ideal candidate as a top-level T A M 

architecture for exchanging test data across an SoC, supported by other low-area-

overhead T A M architectures that operate within a localized area of the chip. 
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6.1 Future Work 

The future work for the H C l l core involves testing the fabricated chip. The future work 

for the NPU SoC includes performing system-level simulation using the actual cores and 

more test cases. Also an embedded software for the H C l 1 also needs to be developed in 

order to operate the NPU system. The future work for the NIMA T A M includes testing 

the fabricated NPU-NIMA chip and optimization of the NIMA design. The timing 

overhead of NIMA can be reduced by shortening the packet header, and the size of the 

router (considered as area overhead) can be minimized by more efficient coding. To 

reduce the area overhead due to the buffer in the NIMA interface modules, the logic 

surrounding the FIFOs needs to be modified so the FIFOs can be used by NIMA as well 

as the NPU. We would also like to extend the router design to support duplex packet 

transfers and explore asynchronous packet transfers using techniques such as self-timed 

clock encoding and handshaking [20]. Finally, the NIMA scheduler algorithm requires 

further investigation and a power constraint needs to be incorporated into the scheduler. 

6.2 Contributions 

This thesis work evaluates the reuse methodology using R M M as the guideline. The work 

provides insights into the recommendations made by R M M and argues their applicability 

using real design examples. A reusable core (HC11) was developed during the thesis 

work to demonstrate the processes converting a legacy IP to a reusable one. Using the 

HC11 and other ASIC blocks, a network processor (NPU) SoC was also developed. The 

NPU is intended to be a research platform and the cores are available as soft IPs. The 

NIMA T A M concept was implemented on this SoC platform and the process helped 
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refine the NIMA architecture. This thesis also discusses the trade-offs of the three T A M 

architectures and suggests some improvements for NIMA to reduce its area and delay 

overhead. 

85 



R E F E R E N C E S 

[I] "7-Layer Packet Processing: A Performance Analysis." White paper, EZchip 
Technologies, 2000 <http://www.ezchip.com>. 

[2] "AMBA Specification Rev 2.0." A R M Ltd., 1999 <http://www.arm.com>. 

[3] Aerts, Joep and Erik Jan Marinissen. "Scan Chain Design for Test Time Reduction 
in Core-Based ICs." Proc. of IEEE International Test Conference, 1998, pp. 448-
457. 

[4] Benini, L. and G. De Micheli, "Networks on Chips: A New SoC Paradigm", IEEE 
Computer, January 2002, pp. 70-77. 

[5] Bergamaschi, Reinaldo A. "Bridging the Domains of High-Level and Logic 
Synthesis." IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, Vol. 21, No. 5, May 2002, pp. 582-596. 

[6] Bommireddy, A. et. al. "Test and Debug of Networking SoCs - A Case Study." Proc. 
of 18th IEEE VLSI Test Symposium, 2000, pp. 121-126. 

[7] Camposano, Raul. "Behavioral Synthesis." Tutorial, Design Automation 
Conference, June 1996. 

[8] Chakrabarty, Krishnendu. "Optimal Test Access Architecture for System-on-a-
Chip." A C M Transactions on Design Automation of Electronic Systems, Vol. 6, No. 
1, January 2001, pp. 26^19. 

[9] Chandramouli, R. and Stephen Pateras. "Testing Systems on a Chip." IEEE 
Spectrum, November 1996, pp. 42-47. 

[10] Crouch, Alfred L. Design-for-Test for Digital ICs and Embedded Core Systems. 
NJ:Prentice Hall, 1999. 

[II] Cummings, Cliff. "Nonblocking Assignment in Verilog Synthesis." SNUG article, 
<http: //www. deepchip. com>. 

[12] Dally W. J. and B. Towles, "Route Packets, Not Wires: On-Chip Interconnect 
Network", Design Automation Conference, June 18-22, 2001, pp. 684-689. 

[13] "Design Compiler User's Guide: Chapter 8 - Optimizing the Design." Synopsys Inc., 
2000, pp. 1-48. 

[14] "Designing with Reuse in Mind." Seminar presentation slides, Qualis Design 
Corporation, 2000 <http://www.qualis.com>. 

86 

http://www.ezchip.com
http://www.arm.com
http://www.qualis.com


[15] Edabi, Z. S. and A. Ivanov. "Design of an Optimal Test Access Architecture Using a 
Genetic Algorithm." Proc. of the Tenth Asian Test Symposium, 2001, pp. 205-210 

[16] Edabi, Zahra Sabat and Julien Lamoureux. "TDM T A M Results." Report for 
EECE579, Department of Electrical and Computer Engineering, University of 
British Columbia, December 2001. 

[17] Editors, "Next Generation Network Processor Technologies - Enabling Cost 
Effective Solutions for 2.5 Gbps to 40 Gbps Network Services." White paper, Intel, 
October 2001 <http://www.intel.com/design/network/papers>. 

[18] Garey, Michael R. and David S. Johnson. Computer and Intractability - a Guide to 
the Theory of NP-Completeness. New York: Freeman and Company, 1979 

[19] Ghosh, I., N.K. Jha, and S. Dey. "A Low Overhead Design for Testability & Test 
Generation Technique for Core-Based Systems." IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 18, No. 11, November 1999, 
pp.1661-1676. 

[20] Greenstreet, Mark. "Opportunities for Asynchronous Design." Presentation at the 
University of British Columbia, August 6, 2002. 

[21] Gupta, Pankaj et al. "Packet Classification on Multiple Fields." Proceeding of A C M 
SIGCOMM, 1999, pp. 150-160. 

[22] Guerrier, Pierre and Alan Greiner. "A Genetic Architecture for On-Chip Packet 
Switched Interconnects." Proc. of Design, Automation and Test in Europe 
Conference and Exhibition 2000, 2000, pp. 250 -256. 

[23] Huang, C H . "TSMC 0.18um Mixed Signal 1P6M Salicide 1.8V/3.3V SPICE 
Models." TSMC document, December 2000. 

[24] Husak, David. "Network Processors: A Definition and Comparison." White Paper, 
C-PORT, 2000 <http://www.cportcorp.com>. 

[25] Ichiriu, Mike. "High Performance Level 3 Forwarding." White paper, NetLogic 
Microsystems, 2000 <http://www.netlogicmicro.com>. 

[26] Illman, Richard and Greg Aldrich. "On-time Finish Rests With Multiple Clocks." 
ISD magazine online archive, May 8, 2002 <http://www.isdmag.com>. 

[27] Immaneni, Venkata and Srinivas Raman. "Direct Access Test Scheme - Design of 
Block and Core Cells for Embedded ASIC." Proc. of IEEE International Test 
Conference, September 1990, pp. 488-492. 

87 

http://www.intel.com/design/network/papers
http://www.cportcorp.com
http://www.netlogicmicro.com
http://www.isdmag.com


["281 International Technology Roadmap for Semiconductors, Design Chapter, 1999 
<http://public.itrs.net>. 

[29] Ishkintana, Laura. "System-on-a-chip Reusability Study." Report for EECE496, 
Department of Electrical and Computer Engineering, University of British 
Columbia, December 2001. 

[30] Janac, George et. al. "IP Supply Chain." ISD magazine online archive, March 1, 
2001 <http://www.isdmag.com>. 

[31] Jenkins, Charlie. "Speed and Throughput of Programmable State Machines for 
Classification of OC192 Data." White Paper, Solidum Systems, 2000. 

[32] Karnane, Kishore and Leonard Drucker. "How Do You Know If Your Design Has 
Been Fully Verified?" Online presentation by Cadence, February 7, 2002 
<http://www.netseminar.com>. 

[33] Keatling, Michael and Pierre Bricaud. Reuse Methodology Manual. Second edition, 
Boston: Kluwer Academic Publishers, 1999. 

[34] Levin, Peter L., and Reimhold Ludwig. "Crossroads for Mixed-Signal Chips." IEEE 
Spectrum, March 2002, pp.38-43. 

[35] "Longest Prefix Match using the LN17010 Search Engine." Application Note 003, 
Lara Networks Inc., 1999 <http://www.laranetworks.com>. 

[36] Marinissen, E. J. and Yervant Zorian. "Challenges in Test Core-Based System ICs." 
IEEE Communication Magazine, Vol. 37, Issue 6, June 1999, pp. 104-109. 

[37] Marinissen, E. J. et al. "A structured & Scalable Mechanism for Test Access to 
Embedded Reusable Cores." Proc. of IEEE International Test Conference, 1998, pp. 
284-293. 

[38] Min, John. "Accelerating Network Applications with a User-Configurable 
Processor." Online presentation by ARC Cores, <http://www.techonline.com>. 

[39] Mohor, Igor. "Boundary Scan Implementation." <http://www.opencores.org>. 

[40] Mosenoson, Guy. "Practical Approaches to SoC Verification." White paper, Verisity 
<http://www.verisity.com>. 

[41]"M68HC11 Reference Manual." Rev 5, Motorola Inc., February 2002 
<http ://www.motorola.com/semiconductors>. 

[42] Nahvi, Mohsen and Andre Ivanov. "A Packet-Switching Communication-Based Test 
Access Mechanism for System Chips." IEEE European Test Workshop 2001. 

88 

http://public.itrs.net
http://www.isdmag.com
http://www.netseminar.com
http://www.laranetworks.com
http://www.techonline.com
http://www.opencores.org
http://www.verisity.com
http://www.motorola.com/semiconductors


[43] Partridge, Craig et al. "A 50-Gb/s IP Router." IEEE/ACM Transactions on 
Networking, Vol. 6. No. 3 (June 1998): 237-248. 

[44] Petropoulus, Leo and Jeff McVay "Verification and Debug of Xtensa Configurable 
Processors." Online presentation by Mentor and Tensilica, February 2002, 
<http ://www. techonline. com>. 

[45] Richhetti, Mike. "Overview of Proposed IEEE P1500 Scalable Architecture for 
Testing Embedded Cores." Slides of the presentation at Design Automation 
Conference, June 20, 2001, pp. 1-26. 

[46] Rothfus, Eric J. "The Case for a Classification Language." White paper, Agere Inc. 
<http ://www. agere. com>. 

[47] Saleh, Res. Notes, ms. University of British Columbia, August 2002. 

[48] Santarini, Michael. "Standards group VSIA focuses on adoption challenges." 
EEDesign online archive, August 16, 2000 <http://www.eedesign.com>. 

[49] Sgroi, M. et al., "Addressing the System-on-a-Chip interconnect Woes Through 
Communication-Based Design", Design Automation Conference, 2001, pp. 667-672. 

[50] Sheafor, Stephen J. "Network Processors: Ushering in a New Era of Performance 
and Flexibility." White Paper, Sitera <http://www.sitera.com>. 

[51] Shung, Bernard. "Network Processing ICs." ISSCC 2001 Tutorial, February 2001. 

[52] "Static Crosstalk Analysis." White paper, Synopsys Inc., 2001 
<http://www.synopsys.com>. 

[53] Tumpach, Chris. "A Study of Reuse Methodology Through the Modification of a 
Microprocessor Core." Report for EECE496, Department of Electrical and 
Computer Engineering, University of British Columbia, December 2000. 

[54] Varma, P. and S. Bhatia, " A Structured Test Re-Use Methodology for Core-Based 
System Chips." Proc. of IEEE International Test Conference, 1998, pp. 294-302. 

[55] Wagner, Kenneth D. "Robust Scan-Based Logic Test in VDSM Technologies." 
IEEE Computer, November 1999, pp. 66-74. 

[56] Website, <http://www.design-reuse.com>. 

[57] Website, <http://www.gmvhdl.com>. 

[58] Website, <http://grouper.ieee.org/groups/1500>. 

89 

http://www.eedesign.com
http://www.sitera.com
http://www.synopsys.com
http://www.design-reuse.com
http://www.gmvhdl.com
http://grouper.ieee.org/groups/1500


[59] Website, <http://www.intel.com/research/silicori/mooreslaw.htm>. 

[60] Website, <http://www.superlog.org>. 

[61] Website, <http://www.systemc.org>. 

[62] Website, <http://www.vsia.org>. 

[63] Whetsel, Lee. "Addressable Test Ports, an Approach to Testing Embedded Cores." 
Proc. of IEEE International Test Conference, 1999, pp. 1055-1064. 

[64] Whetsel, Lee. "An IEEE 1149.1 Based Test Access Architecture for ICs with 
Embedded Cores." Proc. of IEEE International Test Conference, 1997, pp. 69-78. 

[65] Zorian, Yervant. "System Chip Test Strategy." Design Automation Conference, 
1998, pp.752-757. 

90 

http://www.intel.com/research/silicori/mooreslaw.htm
http://www.superlog.org
http://www.systemc.org
http://www.vsia.org

