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A B S T R A C T 

The brain-computer interface (BCI) has emerged as a potential and radically new mode 
of communication for users with neuromuscular impairments since it provides a 
communication channel based on human brain activity as opposed to peripheral nerves and 
muscles. It is a practical problem to detect user commands among spontaneous 
Electroencephalograph signals. Low-Frequency Asynchronous Switch Design (LF-ASD) is one of 
the leading means of addressing this problem. Although the performance of the LF-ASD is 
encouraging, it is not yet sufficient for real world application. The main goal of this research 
study is to improve the design of the LF-ASD BCI technique, and then evaluate the 
performance of this modified design. 

In this work, the Energy Feature related to Voluntary Movement Related Potential 
(VMRP) was determined. An energy normalization transform was proposed corresponding to 
this Energy Feature. A simulation model was set up and E E G data from five able-bodied 
subjects was applied for offline evaluation. The impact of this normalization transform was 
evaluated in two studies: the impact of this transform on the low frequency E E G and the 
impact on the performances of the LF-ASD. By analyzing the experimental results, the 
characteristics of this normalization filter were determined. 

In Study 1, it was determined that the proposed normalization transform has two major 
benefits to the low frequency E E G components (0-4 Hz), which is used by the LF-ASD. 
First, it can decrease the input scale variance. Consequently, it resulted in more stable feature 
sets and then a higher successful classification rate. Second, it can increase the separation 
between the V M R P and idle data. Another side benefit is that the proposed normalization 
transform can also adjust the input scale automatically. 

In Study 2, the performances of the LF-ASD with and without this normalization 
transform were compared. For four out of the five subjects, this transform increased the 
successful classification rate (True Positive rate with the corresponding False Positive rate at 
1%) by 7.7%, 8.3%, 8.5% and 18.9% respectively. By applying an alternative energy 
normalization transform, the performance increased by 0.4% for the fifth subject. In the 
future with the parameters of the LF-ASD, especially the codebook in the Feature Classifier, 
derived from the normalized data, the performance could be further improved. 

The two studies also showed that, although this transform is non-linear in the broadband 
(0-64 Hz), it does not distort the features used by the L F - A S D . Therefore, it would not 
hamper the performance of the LF-ASD. 

The work concluded with the introduction of potential features related to V M R P in the 
phase spectrum. 
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Chapter 1 

I N T R O D U C T I O N 

Over the last three decades, research in Human Computer Interaction (HCI) has been 
focused on obtaining effective and efficient communication between computers and humans. 
As a result of recent advances in signal processing technologies and increased computing 
power, novel sensing modalities, such as speech, vision-based gesture recognition, facial 
expressions, eye tracking, force-sensing and the electroencephalograph (EEG), have been 
introduced as potential input signals that could be embodied in a HCI system. 

Brain Computer Interface (BCI) research is a branch of HCI research that interprets a 
user's intent from electrical activity of the brain. The term BCI has been formally defined in 
[1] as a "communication system that does not depend on the brain's normal output pathways 
of peripheral nerves and muscles". In a BCI system, electrical brain activity is recorded from 
electrodes implanted under the skull or attached on the surface of the scalp. The recorded 
signal is then analyzed by a signal-processing unit, which produces control signals that relate 
to the intent of the human being. These control signals are then used as input to intelligent 
devices. One of the ultimate goals of the BCI research is to develop an improved interface for 
individuals with a high-level of impairment, such as those with severe stages of Amyotropic 
Lateral Sclerosis (ALS), Multiple Sclerosis (MS), or high-level spinal-cord injuries (SCI). 
The realization of a BCI would allow these people to effectively control devices such as 
wheelchairs, robotic assist appliances, computers and neural prostheses. 

Measurement of the brain electrical activity by E E G using electrodes placed on the 
surface of the scalp is the most common basis for BCI research. Implanted electrodes are 
generally considered too invasive. Other methods such as magnetoencephalography are too 
expensive and cumbersome to be practical. 

For intermittent control applications, the leading non-invasive (EEG-based) technique is 
the LF-ASD [2]. (Refer to Chapter 2 for a review of BCI technologies) Although the 
performance results achieved to date are encouraging, the L F - A S D error rates are not good 
enough for real world applications. For example, with False Positive rates around 1%, the 
successful classification rates are in the range from 44% to 81% with the L F _ A S D [3] 
[2;4;5]. 

It has been postulated that the performance of the LF-ASD could be improved by 
normalizing the input signal energy in a manner shown in Figure 1.1 b [6]. This idea is based 
on observations [7-9] that E E G high-frequency signal energy decreased significantly during 
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periods of movement. It is hypothesized that normalization would relatively increase the 
strength of the low-frequency features used by the LF-ASD during movement, and thus 
improve the separation between idle and active class EEG. Consequently, this is expected to 
lead to improve the performance of the LF-ASD . 
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b) 
Figure 1.1 a) The original LF-ASD without the Energy Normalization Transform; b) The 

modified LF-ASD with the Energy Normalization Transform 
Energy normalization is expected to have a secondary benefit that can make the system 

relatively independent of the input scale. As seen in [3], the Feature Classifier of the LF-ASD 
is amplitude dependent. The codebook in the LF-ASD is static and supposed to be matched 
to the input signal with a specific scale. By utilizing the Energy Normalization Transform, 
the modified LF-ASD will be less sensitive to variations in input amplitude, and the input 
scale could be automatically adjusted. Thus, the error rate could be improved. 

In this work, a new transform, the Energy Normalization Transform, is proposed to 
improve the design of the LF-ASD. 

1.1 Research Goals 
The goal of this work was to test the hypothesis that the Energy Normalization Transform 

would decrease the error rates of the LF-ASD and make the LF-ASD design less sensitive to 
fluctuations in EEG amplitude. In order to evaluate the modified design over the original 
LF-ASD design (shown in Figure L i b and a), two studies were conducted. The goals of the 
first study were 1) to determine the energy characteristics of bipolar EEG related to 
movement potential, and 2) determine the impact of the Energy Normalization Transform on 
low frequency EEG by comparing the characteristics of signals SLFP and SNLFP (shown in 
Figure 1.1). The goal of the second study was to determine the impact of the Energy 
Normalization Transform on the performance of the LF-ASD by comparing error rates in the 
system output SFC and SNFC. 

1 . 2 Overview of the Thesis 
Chapter 2 presents a summary of relevant research that provided the groundwork for the 

development of the modified LF-ASD with the energy normalization transform. Chapter 3 
provides details of the algorithm of the improved system design and also its rationale. In 
Chapter 4, the methodology to study the impact of the Energy Normalization Transform on 
both low frequency data and the performance of the LF-ASD is specified. The signal 
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characteristics related to both voluntary movement-related potential ( V M R P ) and idle E E G 
are also introduced in Chapter 4. The results from the two studies are presented and discussed 
in Chapter 5. Chapter 6 contains conclusions and suggestions for future work. A list of 
abbreviations related to this work is provided in Appendix A . Appendix B describes how the 
E E G data was recorded. Appendix C contains plots that offer additional comprehensive 
results to show the impact of energy normalization on low frequency E E G data and the 
performance of the L F - A S D over subjects in various bipolar channels. 
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Chapter 2 

B A C K G R O U N D 

Over the last three decades, research on BCI has been focused on finding an alternative 
communication channel to the existing interface techniques. To date there are more than 20 
research groups working on BCI worldwide. Two categories of switches, continuous and 
intermittent, are under development by various BCI labs. In this chapter, three topics are 
presented. First, the major BCI techniques are reviewed and evaluated. Second, the 
characteristics of the EEG signals related to voluntary movement related potential (VMRP) 
are reviewed. Third, a few applications of normalization transform used in fields such as 
radar, EKG, and Chinese handwriting recognition are discussed. 

2 . 1 Brain-Computer Interface (BCI) Research 
BCI researchers study the electrical activity detected from the brain. Brain cells 

communicate by producing tiny electrical impulses and the cumulative effect of those signals 
can be detected by electrodes over various areas of the brain. These signals have multiple 
applications, such as bioengineering application, human subject monitoring, and 
neuroscience research. 

Since EEG has good time resolution and can be obtained by inexpensive equipment 
through noninvasive acquisition, it is regarded as a good signal source for BCI research. The 
methodology to acquire the electrical brain signal falls into two categories: invasive 
acquisition and non-invasive acquisition. In invasive acquisition, the electrodes are implanted 
under the skull; while in non-invasive acquisition, surgery is not needed. For example, 
electroencephalography (EEG) and magnetoencephalography (EMG), positron emission 
tomography (PET) and functional magnetic resonance imaging (fMRI) are signal sources 
based on non-invasive acquisition, while EcoG is a technology based on invasive acquisition. 
They are all potential technologies, which can be used in a BCI. Since EEG is obtained using 
non-invasive acquisition with inexpensive equipment and research results have shown that 
EEG is capable of revealing information related to human intentions [1], it is regarded as a 
good signal source to be used in a practical BCI for people with disabilities. 
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2.1.1 BCI System Design 
To date, researchers have designed a few BCI applications for different applications. To 

provide a context of those designs, a functional model of a BCI system is discussed in this 
section. Mason and Birch [10] proposed the functional model, which provided a protocol to 
describe a BCI design. The simplified functional model of a BCI system is provided in 
Figure 2.1 

Device 

user-reported error 

Figure 2.1 Functional Model of a BCI System 

The BCI control component is device-independent. Its function includes signal 
recording, signal amplifying, feature extraction and feature classification. It performs like an 
interpreter between the human brain and the output of logical level signals. There are two 
types of BCI control: intermittent and continuous. Intermittent BCI Control permits users to 
take control of the system intermittently when they desire. Continuous BCI control expects 
users continuously producing control signals. 

Control Interface translates logic signals from the BCI Control into signals with 
semantic meanings; it shows the user the interpretation results of the BCI Control, and then 
allows the user to make dynamic adjustment. For example, when a subject was using a 
virtual keyboard BCI system, the user's intent was interpreted and fed back to him through a 
monitor, such that the user could adjust his brainwave dynamically during the operation. In 
addition, the On/Off Mechanism is in the control interface and it defines how the host system 
is turned on and off. 

Device controller can translate the semantic signal into a physical control signal, which 
is used to drive the device. 

"It is an important problem for practical applications: detection of the user commands 
without the timing cues provided by structured trails." [11] Based on this thought, the 
applications of BCI design fall into two categories: continues application and intermittent 
application. Continuous applications need users to produce control signal all the time, while 
intermittent applications allow users to give control intent signal intermittently at their own 
pace. 
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2.1.2 Existing System Designs 

2.1.2.1 BCI Research at the Wadsworth Centre 

The Wadsworth Centre in New York [12] [13] [12] is one of the leading BCI research 
centres in the world. One of their well-known projects is a BCI system, which could move a 
cursor towards a given target on the screen [12]. It is a continuous application, and it has a 
continuous BCI Control. No report exists about the successful classification rate when the 
subject is in the idle state. The features, which the designers use for control of the cursor, are 
the amplitudes of the signal at the mu (8-12 Hz) and beta (18-26 Hz) band over the sensory-
motor cortex. It has been proved that movement or preparation for movement is typically 
accompanied by a decrease in the mu or beta band rhythms, and this decrease in the mu and 
beta band has been labelled as "event related desynchronization (ERD)" [13]. 

In one study, subjects were required to drive a one-dimensional cursor to a target. The 
chance performance is 50%. 16 subjects including three spinal cord injured and two A L S 
subjects were reported to have achieved the accuracy rates ranging from 51% to 94% after 
training [12]. For six of the sixteen subjects who had completed at least 20 training sessions, 
the last four to five sessions from each subject were used to report the results. The other ten 
subjects completed ten sessions, and only sessions nine and ten were reported. Subjects 
varied greatly in their learning rates, and accuracies higher than 90% were expected to take 
several months to develop. No information about the performance difference between the 
subjects with disabilities and the able-bodied subjects was reported. When they applied this 
technology to develop a precise one-dimensional control and choose among up to 8 different 
targets, they achieved information transfer rates up to 20-25 bits/min [14]. 

In another study [15], a cursor was designed to move in two dimensions, where the 
chance performance was 25%. The three able-bodied subjects, who had been trained and 
achieved good result in one dimension cursor moving sessions, were introduced to the 
experiment. After five to six training sessions of moving the cursor in two dimensions, 
accuracies of 60% to 65% were reported over the three subjects. 

2.1.2.2 The Graz BCI System 

The Graz BCI system [16-18] is a famous BCI Design to detect a subject's finger flexion. 
This application is a continuous application and has a continuous BCI Control. No report of 
the Graz BCI system exists about its successful classification rate when the subject is in the 
idle state. The feature that Pfurtscheller and his colleagues chose to study was the changes in 
amplitude in the mu, beta rhythm and other frequencies bands from 5 to 30 Hz associated 
with preparation of specific movements [16-18]. 

In the prototypes of this system[16], the subject was asked to press a micro-switch with 
either his/her left index finger or right index finger upon presentation of a stimulus cue on a 
computer monitor. The E E G was recorded from electrodes overlying the sensory-motor 
areas, and the signals were analyzed in subject-specific frequency bands and classified on­
line using a neural network. The result of the detection was then fed back to the subject via a 
monitor. The first 3-4 training sessions were for setting up the neural net by non-supervised 
learning. Every session lasted around 1 hour. After that, in 6-7 subsequent sessions, user 
feedback, which defined how well the classifier could recognize the user's intention, was 
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offered to the users for supervised learning, and the neural net parameters were adjusted 
between daily sessions. Trials that did not match both left and right hand finger movement 
were rejected. 

In the last test session with two choice trials (i.e. left hand vs. right hand imaginary), 
three users can reach accuracies of 91.3%, 68.2%, and 87.3%. This group's recent research 
was focused on autoregressive frequency analysis and use of alternative spatial filters to 
improve classification. It was reported that about 90% of people were capable of using this 
system with accuracies similar as those above [11]. 

2.1.2.3 VEP-Based BCI 

The VEP-Based BCI [19] can figure out which letter a subject is looking at in an 8 by 8 
letter array shown on the screen. This application is a continuous application and has a 
continuous BCI Control. No report of the VEP-Based BCI system exists about its successful 
classification rate when the subject is in the idle state. Since the feature of V E P depends on 
the gaze direction (therefore, on extra-ocular muscles and the cranial nerves that activate 
them [11]), VEP-based BCIs are dependent BCIs. 

Sutter [19] studied steady-state visual evoked potentials (VEPs) recorded from the visual 
cortex of the brain. He presented a 64-symbol array (an 8 X 8 grid on a CRT screen) to 
subjects who were asked to concentrate visually on a letter of their choice. The colour of 
each letter could be changed rapidly at a unique frequency between red/green to evoke 
detectable signals using scalp electrodes over the visual cortex. The response to the visual 
pattern on the screen depends on the letter (direction) that the subject was looking at. This 
response was then compared with templates attained during a training session. From these 
comparisons, the system determined which symbol the user was looking at. 

The prototype system was tested with over 70 able-bodied and approximately 20 severely 
disabled subjects. After one hour of training, one subject with A L S was able to reach 
communication rates of 10 to 12 words/minute using implanted electrodes, while able-bodied 
subjects achieved communication rates of 10 to 12 words/minute [11]. 

2.1.2.4 P300-Based BCI 

P300 is an event-related brain potential (ERP) elicited by rare, task-relevant events and 
has a latency of approximately 300 milliseconds. The amplitude of the P300 varies directly 
with the relevance of the eliciting events and inversely with the probability of the stimuli. 
The P300-Based BCI [20] was designed to tell which character the subject wants to pick out 
of a 6 by 6 matrix. This application is a continuous application and has a continuous BCI 
Control. No report of the P300-Based BCI system exists about its successful classification 
rate when the subject is in the idle state. The P300-Based BCI is different from the VEP-
based BCI. The P300-Base BCI system records E E G from the parietal site, while the VEP-
Based BCI acquires E E G from the scalp over the visual cortex. The potential generation of 
P300 depends mainly on the user's intent, and not on the precise orientation of the eyes[20]. 
In people with visual impairments, auditory or tactile stimuli might be used. A P-300-based 
BCI has an apparent advantage in that it requires no initial user training: P300 is a typical or 
naive response to a desired choice. However, P300 and related potentials are likely to change 
over time. In the long term P300 might habituate so that BCI performance deteriorates (or 
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improves). Therefore, appropriate adaptation by the translation algorithm is likely to be 
important [11]. 

Using the features of the P300, Farwell and Donchin [21] developed the P300-Based BCI 
system that can tell which character the subject wants to pick out of a 6 by 6 matrix on a 
screen displaying visual stimuli that elicits unique response related to each cell in the matrix. 
This P300-Based BCI could serve as a keyboard emulation system providing a mean 
communication rate of 2.3 characters per minute with 95% accuracy [21]. 

2.1.2.5 The Thought Translation Device (TTD) 
The TTD [22;23] was designed to interpret the binary choice made by the brain. This 

application is a continuous application and has a continuous BCI Control. No report of the 
TTD BCI system exists about its successful classification rate when the subject is in the idle 
state. Slow Cortical Potentials (SCPs) of E E G measured at the vertex is the feature related to 
human intention, which the TTD use. 

Birbaumer and his colleagues built their system by studying slow cortical potentials 
(SCPs) in a 2-second rhythm [22;23]. They demonstrated that subjects with A L S could use 
this technique for conducting a binary choice through the alphabet in order to select letters or 
words from a language support program. After prolonged training of hundreds of sessions, 
three subjects with A L S were able to achieve self-control. Mean percentage accuracies for 
the binary synchronous selection of tasks based on the last 20 sessions for these three 
subjects were reported to be 86.7%, 46.2%, and 66.1% for the selection task with 
corresponding 51.5%, 74.0%, and 76.2% for the rejection task respectively. Two of these 
A L S subjects were reported to be able to write their own correspondence by using the TTD at 
an average speed of 2 minutes per each letter selection [22;23]. A recent report said that the 
improved TTD can help subjects have two choice accuracies of 65-90% at the speed of 0.15-
3.0 letters per min [11]. Although these rates are low, the system is useful to and highly 
valued by people with high-level locked in disabilities. 

2.1.2.6 Cross-Correlation Based Brain Interface (CCBBI) 

CCBBI [24] was designed to differentiate a movement related E E G from spontaneous 
E E G signal. This application is an intermittent application and has an intermittent BCI 
Control. The designer studied the motor related signal in EcoG, which was recorded by 
invasive electrodes under the skull. Using the trigger-averaged event related potential (ERP), 
a template of V M R P was obtained. Then by cross-correlation of the averaged template with 
the input of continuous EcoG, the cross-correlation coefficients were obtained. If the 
coefficients were greater than a threshold value, the interface would be in the activated state. 
With the higher signal quality of ECoG over E E G , it was reported that the True Positive rate 
of this system could be higher than 90%, with the corresponding False Positive rate of 1%. 
However, the invasive data acquisition is a major limitation. 

2.1.2.7 The OPM (Outlier Processing Method) 

The O P M [25] was designed to differentiate a movement related E E G from spontaneous 
E E G signal. This application is an intermittent application and has an intermittent BCI 
Control. The O P M is based on the premise that E E G activity measured from the scalp can be 
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modeled as the summation of event-related potentials (ERPs) and statistically independent 
background E E G activity. In this approach, a generalized robust maximum likelihood 
estimate is utilized to provide a robust estimate of the ongoing, underlying E E G process, 
which in turn is subtracted from the original E E G activity to yield an estimate of the outlier 
potential. The time series of outliers produces waveform patterns that provide single-trial 
event-related information. In addition, O P M has the potential to differentiate between 
different types of movement, such as left hand, right hand and foot movement. 

It was reported that the True Positive rate of this system was around 25%, with the 
corresponding False Positive rate of 1%. 

2.1.2.8 The LF-ASD (Low Frequency -Asynchronous Switch Device) 

The L F - A S D [3] is an intermittent application and it has an intermittent BCI Control that 
was designed to recognize potentials related to VMRPs in E E G measured over the sensori­
motor and supplementary motor cortices. The translation algorithm uses features extracted 
from the 0-4Hz band in six bipolar E E G channels. VMRPs is recognized in ongoing E E G 
rather than in the E E G associated with externally paced trials. Thus, it can detect of the user 
commands without the timing cues provided by structured trails [11]. By analyzing E E G 
with a custom wavelet, the features related to voluntary movement related potential (VMRP) 
periods showed a definite difference from that in the idle periods. L F - A S D is a mainstream 
intermittent BCI application. To provide a context of its design, the signal processing 
components of the L F - A S D are shown in Figure 2.2. 

Feature 
Extractor 

SFE ^ 
Feature 
Classifier 

Feature 
Extractor w 

Feature 
Classifier 

Figure 2.2 The simple model of the L F - A S D 

The LF-ASD includes a Low Pass Filter (LPF) with the cut-off frequency at 4 Hz, a 
Feature Extractor, and a Feature Classifier. The input of the L F - A S D is a six-dimension 
bipolar E E G signal recorded from F,- FC, , Fz- FCz, F 2 - F C 2 , F C i - C i , FCz-Cz and F C 2 - C 2 on 
the scalp. Refer to Figure 2.3. Before being inputted into the L F - A S D , the record E E G was 
amplified and sampled at 128 Hz. 
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Figure 2.3 Electrode distribution of the L F - A S D 

The function of the LPF is to decrease the interference with the features in the low 
frequency band. In the Feature Extractor, the features were derived using Equation 2.1. 

_ | £,(«)• Ej(n) Ei(n)>0and £ . ( « ) > 0 ^ ^ 
u I 0 otherwise 

where the elemental features, Ej and Ej, were defined by 
E{(n) = eki (n + ai)-eki (n + p.), i = 1, 2,..., M (2.2) 

Ej(n) = ek](n + aj)-ekj(n+Bj),j = 1, 2,...,M (2.3) 

where ek(n) is the kth observed, bipolar E E G signal, n indicates discrete samples of time, a,-, 
Pi, aj, and Pj are system delay parameters, and M is the number of features evaluated. The 
sub-subscript / used in ek(n) associates the pair of delay parameters a,- and Pi to the bipolar 
signal ek(n) and similarly for subscript j. The notation does not imply that different bipolar 
signals were used in obtaining the pair of Ej(n) and E/n). 

In order to increase the robustness of the signal detection to trial-by-trial latency 
variation, these feature values were collapsed over l/8 t h of a second into the aggregate 
features defined by 

G^n) = max(giJ(n-S),gij(n-7),...,gij(n + l)) (2.4) 

where max(.) represents the maximum value in the data set. 
The extracted feature values are then sent to the Feature Classifier to matched a codebook 

representing active (containing VMRP) and the idle EEG. The Feature Classifier implements 
a one-nearest-neighbor (1-NN) classifier, which determines if the features belong to V M R P 
(active) or spontaneous (idle) EEG. The codebook is a template representing the idle and 
active pattern in the Feature Classifier. An example of the codebook is shown in Figure 2.4. 
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Codebook sampleof the Feature Classifier 
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The Idle Pattern 
The Active Pattern 

'••5|S!*: 

1 1.5 2 
Featureamplitude in Channel 1 x.10 

Figure 2.4 An example of a codebook in the Feature Classifier in Channel 1 vs. Channel 4 

Note: Since it is impossible to plot the codebook in 6-dimension hyperspace, this example 
shows the codebook in 2 dimensions only. 

As indicated in Chapter 1, Birch and Mason evaluated the performance of the LF-ASD. 
Its True Positive rate was in the range of 44%-81% with the corresponding False Positive of 
1% [3] [4;5]. Although the L F - A S D is a leading intermittent control application and its 
performance is encouraging, its correct classification rate is still not good enough for real 
world applications. Hence research directed at improving this performance is required. 

2 . 2 Characteristics of Movement-Related E E G 
E E G is a complex, unstable signal and it is easily corrupted by noise from other sources, 

such as eye movement, muscle movement and other brain electrical activity unrelated to 
V M R P . Therefore, single trial analysis is difficult. One effective way to study E E G is to 
employ the ensemble average of the signal or features. The averaged signal is used as a 
template for characteristic analysis. L.Deecke [26] averaged the bipolar E E G signal 
containing movement potentials from location of C3+2-C3, which is close to location of F C i -
C i . As indicated earlier, two electrodes over F C i - C i are used in the L F - A S D . Therefore, one 
could expect that the characteristics of the bipolar signal recorded from F C i - C i should be 
similar to that recorded from C3+2-C3. The averaged result centred at the onset of a finger 
switch was provided by L.Deecke and shown in Figure 2.5. 
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Figure 2.5 The typical ensemble average of the IVMRP recoded from C3+2 -C 3 

In Figure 2.5, the averaged signal related to the movement potential can be divided into 
two parts. In the first part, which is called the movement preparation period, the curve bends 
towards positive. In the second part, which is called the movement period, the curve goes in 
the negative direction. In addition, signal recorded in the idle periods is approximately a zero 
mean random process [27]. 

The difference between E E G around VMRPs and in idle periods exists not only in the 
time domain, but also in the frequency domain. Jasper and Penfield [9] studied the mu (8-
12Hz) rhythm. They reported that the signal amplitude in the mu band dropped dramatically 
during periods of V M R P in six out of nine subjects' EEG. They also noticed that this 
amplitude decrease varied over subjects. Mason furthered the observation in the broadband 
[7]. He found that, when the movement potential occurred, the energy of E E G in the higher 
frequency band decreased significantly. Therefore, the energy in the broadband at VMRPs 
would decrease, comparing with that in the idle periods. This observation was made on 
aggregate data. Therefore, it is possible that a single trial test result does not always follow 
this rule. However, it does suggest that some form of signal-energy normalization may 
improve features of active E E G in the low frequency band. 

2.3 Normalization theory 
In real world applications, scientists have found that the performance of a design is 

usually undesirably influenced by some factors represented in the single trial signal. 
Normalization is defined as an operation to make the system performance independent of 
these factors [28]. For example, in the research on Chinese character recognition, the style of 
handwriting is usually individualized. It is hard to match the handwriting to the print-style 
fonts. In order to decrease this dependence of recognition accuracy on the individualized 
writing style, a two-dimension normalization operation could be applied. One of the well-
known algorithms is to normalize the Chinese characters by relatively equalizing the density 
of the black-dots within the character space [29]. The comparison with and without 
normalization operation with this principle is shown in Figure 2.6. After the normalization 
operation, the position of the character was adjusted to be independent of individual 
preference, and then the successful classification rate increased [29]. 
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Figure 2.6 a) Chinese character without normalization, b) The Chinese character with 
normalization. 

Cochran [28] reviewed the existing normalization approaches. Assuming the input signal 
to a normalization transform is x(t) and the none-zero norm of the input is TJ(x), the output 
signal of a normalization transform is y(t) - x(t) lrj(x). 

T] (x) is usually defined as following: 
The value of 7] is the integration of x(t) in the normalization window. 

dt 

1. 

T](x) = j\x(t) 
within normalization window 

2. Also in some cases, r/(x) is defined as its maximum (or minimum) value within the 
normalization window. 

rj(x) = sup (x) 
within normalization window 

where sup(.) means to get the maximal (minimal) value in the normalization window. 
3. r] (x) can be defined in terms of the measurement of "size" of the signal that is 

meaningful within the context. 
In addition, Cochran [28] pointed out that most of the normalization approaches are 

"highly non-linear" operations. There are inherent difficulties in approximating the 
normalization algorithm even locally by a linear operator. Since a Fourier transform is 
usually applied to the analysis of the linear and time-invariant system, "this non-linear nature 
of the signal normalization makes frequency response analysis of the normalization filter 
meaningless." This issue will be taken into account and is discussed in more detail in 
Chapter 5. 

Although to date most E E G researchers used very simple methods, such as low-pass or 
band-pass filtering, to decrease interference from noise, normalization operations were 
widely applied in radar, E C G , and other one-dimension signal processing. Those examples 
provide reference to E E G normalization. 

2.3.1 Normalization Based on Radar Maximum Likelihood 
Estimation 

In radar or sonar signal processing, in order to decrease dependence of the correct 
decision rate on the noise power, researchers employ a normalization operation with the 
observation input divided by the noise power. The approach is shown in Figure 2.7 [30]. 
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Figure 2.7 Normalization based on radar maximum likelihood estimation. 

Since the noise power is unknown, an estimation is made in block A . In the white 
Gaussian noise case, L(.) can be replaced by a Matched Filter, while A is the estimation of 
the noise power, which corresponds to the norm, T] (x), in Cochran's review. Based on 
different assumptions, there are several approaches to estimate the noise power. The 
performance of the estimation and corresponding classification depend on the density 
distribution of the noise. 

2.3.2 Normalization of Electrocardiogram Signals 

Chu and Delp [31] proposed a morphological normalization method to eliminate both 
spike noise (with sharp amplitude but short duration) and slow background baseline drift in a 
E C G signal. They named the two basic normalization operators as Dilation and Erosion. 

Dilation and Erosion are basic normalization operations. The Dilation operation outputs 
the maximal value of the input signal in the normalization window, while the Erosion 
operation outputs the minimal value of the input signal in the normalization window. This is 
similar to sup(.) operation in Cochran's review, but it is more complex in the following 
procedure. 

Dilation and Erosion are used in tandem in the E C G normalization transform. Dilation 
followed by Erosion is defined as Closing, while Erosion followed by Dilation is defined as 
Opening. If the normalization window size is small, the Opening and Closing algorithm can 
be applied to eliminate (positive and negative) spikes with short duration. If normalization 
window size is large, Opening and Closing algorithm can be used to obtain the baseline 
background drift. Then by using the original signal minus it, baseline background drift can be 
eliminated. 

In a real application, in order to eliminate both the (positive and negative) spikes and 
slow baseline drift, opening and closing are usually combined as shown in Figure 2.8. To 
achieve slow baseline drift, the normalization window size applied in the second step is 
hundreds of times larger than those in the first step. 
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Figure 2.8 Block diagram of the algorithm for suppressing impulse noise and normalizing 
baseline background drift 
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Chapter 3 
D E S I G N O F T H E M O D I F I E D L F - A S D 

As described in Chapter 2, the LF-ASD is one of the leading intermittent switches. 
Although its performance is encouraging, it is not good enough for real-world applications. 
The LF-ASD needs to be modified to improve its error rate. In this chapter, first, a signal-
processing approach, Energy Normalization Transform, and the modified LF-ASD are 
proposed. The rationale of the new design is also briefly introduced. Second, power 
characteristics of the test data are studied in detail to support the design rationale of the 
proposed new design. 

3.1 The Proposed Modified LF-ASD 

3.1.1 Design 
The proposed design of the modified LF-ASD was shown in Figure 1.1b and the original 

design of the L F - A S D was shown in Figure 1.1 a. In the original design, the input to the low-
pass filter (LPF), denoted as S,N is a six-dimension bipolar E E G signal recorded from F i - F C i , 
Fz-FCz, F 2 - F C 2 , FC1-C1, FCz-Cz and F C 2 - C 2 sampled at 128 Hz. The cut-off frequency of 
the LPF is 4 Hz. The Feature Extractor of the LF-ASD extracts custom features related to 
VMRPs. The Feature Classifier implements a one-nearest-neighbor (1-NN) classifier, which 
determines if the input signals are related to a user state of voluntary movement or passive 
(idle) observation. In the modified design, the Energy Normalization Transform is before the 
LPF, and all the other components are the same as defined in [3]. The thought was originated 
from the radar signal normalization [30]. 

The Energy Normalization Transform was implemented using Equation 3.1 

J 2 ] 5 ^ ( n - j ) 
y.v=-(vt,„-D/2 

where S (ri) is the input to the LF-ASD, $N(ri) is the output of the transform, and WN , which 
defines the length of a data window, is called Normalization Window Size. 

3.1.2 Optimal Parameter Determination 
The optimal value of WN is the only parameter in the Energy Normalization Transform. It 

was determined by measuring the capability to achieve the largest separation between the 
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Voluntary Movement Related Potential (VMRP) and the idle data under a given separation 
rule. The method of its determination is listed in the following paragraphs: 

First, by putting an observation window centred at the onset of voluntary movement 
related potential (VMRP), an active data set containing V M R P and an idle data set 
containing spontaneous E E G can be determined. Data contaminated by ocular artefact are 
discarded. Second, the optimal WN could be obtained by exhaustive search for the maximal 
class separation between the active and idle data set. Since small WN values may cause 
distortion, small WN values are ignored in the exhaustive search. 

The detail description about how to separate the idle and active E E G signal and the 
method of the exhaustive search in this work is provided in Section 4.3.1. 

3.1.3 Design Rationale 

The design of the modified LF-ASD is based on several BCI researchers' observations 
and the study results related to the E E G power variation in this work. Two factors, the 
instantaneous power decrease around movement potentials and the E E G power variation over 
time and subjects, could result in false classifications of the original L F - A S D . The Energy 
Normalization Transform (ENT) can combat these two negative factors. Therefore, it was 
postulated that ENT could improve the system performance. 

3.1.3.1 Power Variation 
Study results in Section 3.2 shows that power of the bipolar E E G varies over time and 

from subject to subject. This may cause undesirable amplitude variation. Since the LF-ASD 
was designed to extract features from signal amplitudes, this power variation might result in 
undesirable signal amplitude variation, and consequently cause false classifications during 
operation. The proposed ENT can decrease the sensitivity of the system to power variation, 
and consequently decrease the error rate of the L F - A S D . 

3.1.3.2 E E G Signal Power Decrease during Periods of VMRP 

Jasper and Penfield [9] reported the mu rhythm (8-12 Hz) decrease and Pfurtscheller et 
al. [8] reported the beta rhythm (18-26 Hz) decrease when people are in a state of tension or 
movement. Mason [7] found that the signal power in the frequency components greater than 
4Hz decreased significantly during V M R P periods, while at the same time the signal power 
in the frequency components less than 4Hz did not decrease. This power decrease in the high 
frequency band may cause the overall power in the broadband (0-64Hz) to decrease during 
VMRPs. In this work, this phenomenon is named as the Energy Feature related to V M R P . In 
addition, for the L F - A S D , the codebook vectors representing the idle pattern in the Feature 
Classifier usually has a smaller norm value than the codebook vectors representing the active 
pattern. (An example of codebook vectors used by the L F - A S D is provided in Figure 2.4.) 
The power decrease around VMRPs reduces the distance between idle and active codebook. 
The proposed ENT is designed to increase signal power around VMRPs , and then it could 
increase the distance between the idle and active codebooks, and thereby increases the 
successful classification rate. 
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3.1.4 Concerns Related to the Modified LF-ASD Design 

Since the ENT is not a linear operation as discussed in the Chapter 2, a major concern is 
whether or not the ENT distorts the features related to the V M R P . If these features were 
distorted, it would potentially hamper the performance of the Feature Classifier of the L F -
ASD. The answer to this concern is that it does not distort the features, and the demonstration 
will be provided in Chapter 5. It turns out that by properly choosing the filter parameters, the 
ENT does not distort the magnitude and phase spectrum of the V M R P and the idle E E G in 0-
4 Hz band. Therefore it does not distort the features related to V M P R . 

3.2 Study to Determine E E G Power Characteristics 
Related to VMRP Detection 

Although the researchers [7] [32;33] have reported the existence of the Energy Feature 
related to V M R P , further observation across more subjects was required. In this section, 
power characteristics of the E E G data in the Neil Squire BCI lab were tested over 5 subjects. 

3.2.1 Power Variation over Time and Subjects: 
A session of E E G is defined as the data recorded from a subject on the same day. In a 

session, if the data are recorded over several periods into several data sets, each set is defined 
as a run of E E G . Each run lasts around 2 minutes in this work. 

The test data in this work were acquired from five subjects. Data with eye blink 
contamination was discarded. (For details regarding how the. E E G data was acquired, see 
Appendix B.) These subjects were asked to perform the same set of tasks involving voluntary 
right finger flexions over eight separate runs in a session. 

To prove E E G power varies over time, the average power of the E E G signal in each E E G 
run was calculated, as in Equation 3.2 below, and compared. 

Length of a run / 

^ Sample Amplitude 2<n) / 
Average Power - n=0 /T , (3.2) 

/ Length of a run 

Table 3.1 Average Power of E E G recorded from F C i - C i across different runs and subjects 

I Runl Run2 Run3 Run4 Run 5 Run 6 Run 7 Run 8 
[Subjectl 6.44 7.07 6.28 7.12 6.86 6.68 5.63 6.15 
Subject2 8.14 7.47 11.97 12.26 11.93 12.24 12.06 11.78 
Subject3 7.07 7.04 6.31 6.06 6.42 7.07 7.07 7.98 
Subject4 4.00 3.29 3.76 3.10 3.49 3.84 3.42 3.57 
Subject5 2.59 2.71 2.67 2.89 2.64 2.78 2.56 2.81 

Table 3.1 shows that E E G power varies over both time and subjects. Since the Feature 
Classifier of the LF-ASD is sensitive to the input amplitude variation [3], the E E G power 
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variation over time hampers the system performance. The impact of power variation over 
time on the system performance is evaluated in Chapter 4 and Chapter 5. 

3.2.2 Power Decrease during the Period around V M R P (Energy Feature of 
VMRP) 

The subjects were asked to trigger a finger switch upon the presentation of a stimulus cue 
on a computer monitor. In between trials, subjects were in a passive observation state. Thus, 
the EEG signal, containing both active and idle data, and a control signal revealing the finger 
switch activation time were obtained. EEG contaminated by Ocular Artefact were discarded. 

[HPF >4Hz 
Onset of Finger Switch MHz 

Concatenating 
ttrials into a set 

I 

EEG input 
LPF 

(MHz 
Idle VMRP Idle 

Observation Window 04Hz 

-> • I 
Broadband signal Separating the data 

containing VMRP from Broadband signal 
the idle data. 

Calculating average 
power by Equation 3.3 

Concatenating 
trials into a set 

Calculating average 
power by Equation 3.3 

Concatenating 
trials into a set 

Calculating average 
power by Equation 3.3 

Concatenating 
trials into a set 

Calculating average 
power by Equation 3.3 

Concatenating 
trials into a set 

Calculating average 
power by Equation 3.3 

Figure 3.1 Procedure to Analyze the Energy Feature related to VMRP 
The experiment, as shown in Figure 3.1, was designed to obtain the average signal power 

of the EEG data around finger switch activations in the high (>4Hz), low (0-4Hz) and broad 
(>=0Hz) frequency band respectively. As shown in Figure 3.1, first, the original EEG data 
was filtered into three signals: low frequency component (0-4Hz), high frequency component 
(>4Hz) and broadband signal (>=0FIz). Second, the active data around VMRPs were 
obtained by an Observation Window centred at the onset time of the finger switch. Data 
falling into the Observation Window belongs to the active pattern, while the data falling out 
of the Observation Window represents the idle pattern. As the Observation Window Size 
(Wo) increases, more data belonging to the idle pattern may fall into the Observation 
Window. (Note: Wo is different from WN- Wo defines how to separate active and idle data in 
the original EEG runs, while WN is the normalization window size defined in Equation 3.1.) 
Third, for a specific Wo and in each frequency band, the data in the Observation Windows 
were put together into an active data set representing the active EEG. Fourth, for the high 
frequency, low frequency and broadband EEG signal respectively, the average power of the 
active EEG data was derived by .Equation 3.3. Assuming total sample number in the active 
data set is N, then 

N / 

^ Sample Amplitude 2 00 / 
Average Power of the active data = " = 0 A (3-3) 

If (due to the energy decrease in the high frequency band) the overall signal power 
decrease around VMRP is true, both in the broad and high frequency band, the average 
power of the signal in the active data set should increase consistently against the increase in 
the Wo (i.e. more idle data falls into the active set). The study results are provided below: 

1. In the broadband, the average power of the data in the active set vs. Wo. 
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Power of VMRP in the Broadband vs. Length of the Observation Window 
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2. In the high frequency band, the average power of the data in the active set vs. W a 
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b) 
3. In the low frequency band, the average power of the data in the active set vs. W 0 . 
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C) 
Figure 3.2 For Subject PP, average power of the data falling into the Observation Windows 
vs. the window length (W 0 ) a) in the broadband; b) in the high-frequency band; c) in the low-
frequency band. 

The results of the other four subjects' E E G are provided in Appendix C. 

From the results above, the following observations were made: 
1. The average power of high frequency components (>4Hz) increased consistently with 

increasing observation window size. In other words, the power of the high frequency 
E E G decreased around VMRPs. This was consistent over different subjects. 

2. The power of the low frequency components (0-4Hz) did not decrease around 
VMRPs. This rule was consistent over different subjects. 

3. The power of the broadband E E G (>=OHz) increased with increasing observation 
window size (Wo). This showed that the power of the E E G in the broadband dropped 
during periods of V M P R activity. In this work, this phenomenon is named "Energy 
Feature related to V M P R " . This feature was consistent over most signals of the 
subjects. 

4. The study results across subjects and across channels (Provided in Appendix C) 
showed that, in the broadband, the Energy Feature related to V M P R was stronger in 
the 1st, 2 n d and 3 r d channel, while it was less strong in the 4 t h, 5 t h, 6 t h channels. The 
signal powers in the front electrodes (Channels 1-3) in broadband had a stronger 
decrease than that in the back electrodes (Channel 4-6). For example, for all the 
subjects in the study, in Channels 1-3 power of the broadband E E G decreased 
consistently in the range of 5.8%- 41.7% during VMRPs, while in Channels 4-6, for 
four out of five subjects in the study, power of the broadband E E G decreased in the 
range of 3.1%-29.1% around VMRPs. For the fifth subject's (Subject CB) in 
Channels 4-6, power of the broadband E E G did not drop around V M R P , but had a 
little increase. Further study on Subject C B ' E E G showed that power increase during 
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V M R P periods was caused by the power increase in the low frequency components, 
although the power in the high frequency band decreased. 

In order to compare the power distribution between the spontaneous E E G and E E G 
around VMRPs in the frequency domain, the magnitude spectrum of active and idle E E G 
were derived in the study. The derivation method is provided below. 

Similar to the method of separating data containing VMRPs from the idle data described 
in Figure 3.1, in the broadband, the E E G signal was separated into an active and an idle data 
set using an Observation Window centred at the onset of the finger switch. In order to 
decrease the spectral leakage in the frequency domain analysis, in this step a Hamming 
Window replaced the rectangle window as the Observation Windows to separate data around 
VMRPs from idle data. After that, an FFT was applied on the windowed data for the active 
and idle magnitude spectrums. Finally the ensemble average of the magnitude spectrum of 
both V M R P and idle patterns were achieved and are shown in Figure 3.3. This study was free 
of eye-blink contamination. 

mu Rhythm Observation 

Idle-
VMRP 

3500 

2500 

1500 

-20 0: 20 
Frequencyjn Hz 

Figure 3.3 Analysis of the idle and active data in the frequency domain for Subject PP's 
E E G in Channel 1 ( F i - F d ) over 80 trails 

Observations were made as follows: 
When the subject was in a state of being relaxed or idle, signal energy in the 8-12 Hz and 

18-26Hz band increased, i.e. mu and beta rhythm appeared. While the subjects were in 
movement states, signal power in the mu and beta band decreased dramatically. The signal 
energy in the high frequency band decreased significantly during movement potential 
periods. 
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Overall, conclusions drawn from experimental results in Section 3.2 are as follows: 
During the V M R P periods, due to the significant power decrease in the high frequency 

band (>4Hz), broadband power decreases, but power in the low frequency band (0-4Hz) does 
not decrease around VMRPs. Since the power decrease is one of the features related to 
movement activities, which was named the "Energy Feature related to V M R P " in this work. 

Generally, this Energy Feature related to V M R P is consistent over subjects and across 
channels. The Energy Feature related to V M R P is stronger in the 1-3 channels than that in 
the 4-6 channels. For a minority of the subjects (One out of five in this work), the Energy 
Feature does not apply to some of the signals in the 4 t h - 6 th channels. 
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Chapter 4 
E V A L U A T I O N O F T H E M O D I F I E D L F - A S D 

To evaluate the impact of the Energy Normalization Transform (ENT) described in 
Chapter 3, two studies were conducted. The first study analyzed the impact of the ENT on 
the low frequency components of bipolar E E G (SNLFP in Figure 1.1b). The second study 
analyzed the impact of the ENT on the performance of the L F - A S D (SNFcin Figure L ib ) . In 
Section 4.2, the characteristics of the test data are discussed, which is the foundation for 
further discussions. The methodologies of evaluation for the two studies are provided in 
Section 4.3.1, which includes a method to quantify the separation between idle and V M R P 
E E G data, methods to quantify the performance of the (modified) L F - A S D , and a method 
used in this work to determine the optimal parameter values of the ENT. In addition to the 
two studies, a demonstration method, which shows that the ENT, a non-linear operation in 
the broadband (>=0 Hz), does not distort the features related to V M R P in the low frequency 
band (0-4Hz), is provided in section 4.3.2. 

4.1 Objectives of the Studies 
1. Evaluate the error rate of the modified LF-ASD. 
2. Determine the impact of the Energy Normalization Transform on the low frequency 

components of bipolar EEG. 
3. Determine the impact of the Energy Normalization Transform on the performance of 

the modified LF-ASD 
4. Determine the characteristics of the Energy Normalization Transform: whether or not 

the normalization-transform distorts the features related to V M R P detection; the 
influence of the different W N (Normalization Window Size) values on the 
performance of the modified L F - A S D ; analysis about how the ENT improves the 
system performance. 

5. Find and introduce new potential features of the voluntary movement related 
potential. 

4.2 Test Data Characteristics 
Pre-recorded data from five right-handed able-bodied subjects were chosen for the two 

studies in this chapter. The detailed acquisition process is provided in Appendix B. Since it is 
much easier to measure the movement-related potential of an able-bodied subject than that of 
a subject with a disability, Voluntary Movement-Related Potential (VMRP) of able-bodied 
subjects was studied in this work as an initial phase. According to Decety and Boisson [34], 
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the E E G related to IVMRP recorded from people with spinal cord injuries (SCI) was not 
different from that of able-bodies subjects, while Bozorgzadeh [2;35] mentioned there were 
slight differences in averaged IVMRP between able-bodied subjects and subjects with SCI. 
After this initial exploration, which proves the fact that the signal processing approach can 
effectively help able-bodied subjects improve error rates, the application can be extended to 
subjects with a disability. This has been left for future studies. 

For each subject, his or her E E G was recorded in four runs in each session. In each run, 
subjects were instructed to trigger a finger switch by cues shown on a screen, while passive 
observation periods were recorded between the finger switch activations. For each run, 
approximately twenty periods of V M R P free of ocular artifact were collected. In addition, for 
each subject, two extra runs of E E G lasting two minutes were recorded in a period of passive 
observation. E E G section contaminated by Ocular Artifact was discarded. The data used in 
this study was from the same session for each subject. The impact of the ENT over different 
sessions was left for future studies. 

A l l the subjects in this work did not customize the system before the data was acquired. 
In a real application, in order to obtain better performance, a BCI system may get feedback 
from the user, and then this information is used to adapt the parameters of the BCI system 
components, such as the codebook in the Feature Extractor. This procedure is named 
customization. Since this work was an offline study and its purpose was to improve the 
performance of the L F - A S D with a signal processing approach instead of seeking help from 
human factors, customization is beyond its scope. Consequently in this work, by using 
generic L F - A S D parameters, which were derived from a non-normalized E E G , across all 
subjects, the relative performance improvement with and without the Energy Normalization 
Transform was the focus. In the future, customization may be applied to further improve 
error rates. The subject information is shown in Table 4.1. 

Table 4.1 The subject information 

P.P. K.T M.B M.P C B . 
Gender Female Female Male Female Male 

Age 54 31 39 35 57 

4.2.1 Power Characteristics of the Bipolar EEG 
As shown in Table 3.1, a characteristic of the bipolar E E G is its power variation over 

time and across different subjects. Power variation results in unstable features in the Feature 
Extractor, which makes the Feature Classification problem more difficult and, hence, 
introduces higher error rates. Its impact to the LF-ASD is shown in Chapter 5. 

It has been shown in Chapter 3 that, compared with that of the idle data nearby, the 
power in the E E G signal during V M R P periods decreased. The significant power decrease in 
the high-frequency band accounts for this phenomenon. For details, please refer to Figure 3.2 
(a) (b) (c). 
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4.2.2 Time Amplitude Characteristic of the Low Frequency E E G 
(0-4Hz) 

The ensemble average of the low frequency E E G (SLFpin Figure 1.1a) around VMRPs 
was derived from pre-recorded E E G by an offline study. The pre-recorded E E G signal was 
obtained as described in Appendix B. Then a rectangle observation window was imposed and 
centred at the onset of the finger switch, which gave a measurement of the V M R P , as shown 
in Figure 4.1. The centre of the observation window, which was marked by the onset of the 
finger switch, divided the observation window into front and rear. The data falling into the 
front window were named M l ; the data falling into the rear window were named M2; the 
data falling in between the observation windows were named Idle2. For comparison with 
Idle2, another E E G session was recorded when the subject was in a state of passive 
observation and this data set was named Idlel. E E G contaminated by Ocular Artifact was 
discarded. 

<TI> t . ; : .«~ . r v . < t on Window 

F i n g e r 
— — S w i t c h 

A c t i v i t i o n 
ISO 200 250 

Figure 4.1 The definition of M l , M2 and Idle2 

The ensemble averages of the low frequency data representing V M R P were produced by 
time locking and centering the signal to the onset of a finger switch with one second pro and 
post to the center respectively. 

For subject PP, the ensemble averages of the low frequency E E G from Channels 1-6 are 
shown in Figure 4.2. 
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Ensemble Average of the non-normalized signal for Subject P.P 
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Figure 4.2 Ensemble average of the low frequency E E G (Subject PP) centred at a finger 
switch with one second before and after the centred in Channels 1-6 

This ensemble average of the low frequency signal recorded from FC1-C1 (Channel 4) is 
similar to that of C3+2-C3 reported by L.Deecke [26] (See Chapter 2). It also has a positive 
movement preparation section and a negative movement activation section. But the signal of 
F C i - C i has a stronger movement activation section, while the signal of C3+2-C3 has a stronger 
movement preparation section. 

By ensemble averaging of the low frequency E E G centred at the onset of V M R P , the 
following observations can be made: 
1. Before the onset of the finger switch, the averaged curve of M l bends above zero and 

the mean amplitude values of M l are slightly positive. 
2. After the onset of the finger switch, the averaged curve of M2 bends quickly and 

strongly negative and then gradually, it bends back towards zero. 
3. In the idle period, Idle2 is approximately a zero-mean random process. 

The density distributions of the M l and M 2 in Channel 1, which was recorded from F i -
F C i , are shown in Figure 4.3. 
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Amplitude 

Figure 4.3 The density distributions of M l vs. M2 for Subject PP in Channel 1 

0.0451 

(a) (b) 
Figure 4.4 (For Subject PP in Channel 1) a)The density distribution of M2 vs. Idle2 (Idlel); 

b)The density distribution of M l vs. Idle2 (Idlel) 

By observing the relationships of M l , M2 and Idle2, conclusions were drawn as follows: 
1. In terms of density distribution, Idle2 was similar to Idlel. Therefore, from this point 

on, Idle2 is used to represent the passive observation data. 
2. The density distributions of active data (M1/M2) showed separation from the idle 

data (Idlel/Idle2). However, the difference between means of active and idle data was 
not very large. This indicates the difficulty of differentiating the active from the idle 
trials. 

3. Compared to the separation between M l and Idle2, M2 and Idle2 showed much larger 
separation. Therefore, from this point on in this work, the data separation between 
VMRP and the passive observation was represented by the separation between M2 
and Idle2. 

4. The mean of M2 was negative; the mean of Idle2 was approximately zero; the mean 
of M l was positive, but its absolute value was very small. 
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4.3 Evaluation Methodology 
In this section, methods to evaluate the impact of the Energy Normalization Transform 

and determine its characteristics are introduced. First, the impact of the Energy 
Normalization Transform is studied in two phases: the impact on the low frequency EEG 
(SNLFP in Figure 1.1b) and the impact on the performance of the LF-ASD (SN Fc in Figure 
1.1b). Second, distortion caused by the ENT is discussed. In addition, a theoretical formula to 
calculate the error rate of the LF-ASD is provided. 

4.3.1 Methods to Evaluate the Impact of the Energy 
Normalization Transform 

4.3.1.1 Determination of the ENT Impact to the Output of the LPF 

To study the impact of the ENT on low frequency EEG, the characteristics of low 
frequency signal SNLPF, SELPF and SLPF, which were defined in Figure 4.5, were compared. 
ENTOPT is the energy normalization transform with optimal normalization window size. 
While "ENT with WN = the run length" applies the total sample number of the data in an 
EEG run as the normalization window size of the ENT. The rationale of this evaluation 
method is provided in the following sections. 

ENT C LPF 
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Figure 4.5 Evaluation of the impact of the Energy Normalization Transform 
As discussed in Chapter 1, the Energy Normalization Transform was postulated to have 

two major benefits to the low frequency EEG. First, it desensitizes the system to the variance 
of the input signal; second, it captures the Energy Feature related to VMRP, and then 
increases class separation. Another side benefit of ENT is that it can automatically adjust the 
mean scale of the input EEG to match the static codebook in the Feature Classifier better. 

ENT can decrease the signal variance of the low frequency EEG. This can be evaluated 
by comparing the standard deviation of SNLFP and SLPF, as shown in Figure 4.5. The signal 
with smaller deviation should produce more stable features in the Feature Extractor. Thus, it 
makes the system insensitive to input signal variance and improves system error rates. 

To prove that the ENT can increase class separation between the active and idle data by 
capturing the Energy Feature of VMRP, in Figure 4.5, the filtered EEG with normalization 
(SNLPF) was compared to the filtered EEG without normalization (SELPF)- The "ENT with WN 

= the run length" is applied to adjust the amplitude of EEG in each run. This results in the 
data amplitude in each EEG run ranging from -1 to 1 approximately. Thus, regardless the 
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mean amplitude difference, active (idle) data in a run are similar to active (idle) data in 
another runs after the "ENT with W N = the run length". By this means, data across runs 
could be combined together to compute the class separation by a statistic approach. "ENT 
with W N = the run length" was only used to analyze the characteristics of the non-normalized 
data. Since that WN (total sample number of data in a run) is too large, the operation can only 
adjust the scale of data in a run but it cannot affect the power relative during movement 
potential periods. Thus, to evaluate the benefit of increased class separation by capturing the 
Energy Feature related to V M R P , the signal SELPF, in Figure 4.5, can represent the low 
frequency E E G components without normalization, while SNLPF, in Figure 4.5, is applied to 
represent the low frequency E E G components with ENTOPT- However, using SELPF to 
represent non-normalized low frequency E E G , the comparison results between signal with 
and without normalization was conservative, because, in reality, the compensated signal 
(SELPF) has better quality than the original signal (SLPF). 

In order to compare the characteristics of SNLPF and SELPF and then determine class 
separation increase with the ENT by capturing the Energy Feature related to V M R P , it is 
necessary to quantify the class separation between the active data and the idle data. In this 
work, the separation between the two data sets is indicated by Difference Of Means (DOM), 
which is defined by Equation 4.1 below: 
DOM = [mean(active EEG) - mean(idle EEG)]I variability of the idle EEG (4.1) 

The D O M between M2 and Idle2, as defined in Figure 4.1, is named DOM22, and the 
D O M between M l and Idle2 is named DOM12. A larger D O M means better class separation 
between active and idle signal. As discussed in Section 4.2.2, M2 have larger difference from 
Idle2 than M l , thus DOM22 is much larger than DOM12. Therefore, DOM22 is applied to 
represent the class separation between active and idle E E G data in this work. "Variability of 
the idle E E G " in Equation 4.1 is defined by the range in which 98% of Idle2 data fall. The 
observation window size used to obtain M2 and Idle2 are described below. 

As described in Section 3.1.2, normalization window size (WN) is the only parameter 
involved in the ENT. But in order to obtain the optimal WN value, we need to get active (M2) 
and idle (Idle2) E E G data. Thus, like described in Figure 4.1, we need to know the optimal 
value of observation window size (W 0 ) . Wo is a parameter for evaluation, which determine 
the best data sets representing the idle and active EEG for analysis, (i.e. by using the finger 
switch as the measurement of movement, the parameter Wo defines how to separate M l , M2 
and Idle2 from the E E G signal,) as shown in Figure 4.1; while WN is the normalization 
window size in the ENT, which is defined in Equation 3.1. During evaluation, the optimal 
combination of Wo and WN values should correspond to the best separation (DOM) between 
the V M R P and the idle data. In this work, by exhaustive searching through the combinations 
of WN and Wo, it was found that the optimal W N and Wo could be independent of each other. 
(The detailed information is provided in Figure 5.1 in Section 5.2.1.1.) Therefore, the optimal 
parameter values of WN and Wo were determined separately as follows: 

a) Method to Determine the Optimal Value of W 0 

Since D O M is the indicator of separation between the idle and active class and the 
optimal value of WN and Wo are independent of each other (See Figure 5.1), the optimal Wo 
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can be obtained by exhaustive search for the maximal DOM while fixing Normalization 
Window Size (WN) at a specific value. 

(Separating data into an 
Onset of the finger switch a c t i v e set and an idle set) 

W N is fixed. 

ENT(WN) LPF ENT(WN) LPF 
-Idle2 Ml M2 

Observation Window 

•*• Wo is a variable. •* 

Idle2 

Computing the DOM 
between the idle and 

active class 

Figure 4.6 Procedure of the optimal Observation Window Size determination 

b) Method to Determine the Optimal Value of W N 

After the optimal Wo has been determined Wo was fixed at its optimal value and the 
optimal W N was determined by exhaustive search for the maximal DOM, as shown in Figure 
4.7. Since very small Normalization Window Sizes may cause undesirable distortion to the 
original signal, results corresponding to the very small normalization window sizes were 
ignored. 

Onset of the finger 
(Separating the original signal into an 
active dataset and an idle data set) 

W N is a variable. 

ENT(WN) LPF 
"*"Idle2 Ml | M2 

-r 
Observation Window 

(W 0is fixed at its optimal value.) 

Idle2 
Computing the DOM 
between the idle and 
active data 

Figure 4.7 Procedure of the optimal Normalization Window Size determination 
With the optimal combination of W N and Wo, the DOM with the ENT can be achieved. 

In addition, corresponding to the optimal Wo, the maximal DOM for non-normalized data 
(SELPF) can be obtained as well. The difference between the maximal DOM with 
normalization and the DOM without normalization indicates the capability of the ENT to 
improve the data separation. 

4.3.1.2 Determination of the ENT Impact on the LF-ASD Performance 
As discussed in Section 4.3.1.1, the ENT has two major benefits and one side benefit to 

the filtered EEG signal. The two major benefits are: first, it decreases the EEG scale variance 
and hence makes the features generated more stable; second, it captures the Energy Feature 
related to VMRP, which increases the class separation between the idle and active data. 
These two major benefits can result in system performance improvement. 
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Figure 4.8 Evaluation of the E N T impact on the L F - A S D performance 
The model, shown in Figure 4.8, was designed to evaluate the L F - A S D performance 

improvement by the two factors. To evaluate the influence of scale/power variance of the 
input signal to the L F - A S D system performance, a large normalization window size was 
applied to the normalization filter shown as "ENT with a large W N " block in the model. This 
large normalization window cannot capture the Energy Feature related to V M R P , but it can 
decrease the scale variance of the input E E G . This large normalization window size was 
determined by observing a plot of D O M vs. WN with optimal Wo, as shown in Figure 5.2, 
and details of its derivation are provided in Section 5.2.1.2. The operation of "ENTOPT" can 
both decrease input scale variance and capture the Energy Feature related to V M R P . sFc, sLNFC 

and SNFC , which are defined in Figure 4.8, are output of the L F - A S D . sFC is the original non-
normalized output; sLNFC represents the output of the L F - A S D with the input scale variance 
decreased; sNFC represents the output of the LF-ASD with both input scale variance decreased 
and Energy Feature related to V M R P captured. The difference between sLNFC and sFC shows 
how much the scale variance influences the system performance. The difference between 
sLNFC and S N F C shows how much the system performance can be improved by capturing the 
new Energy Feature related to V M R P . By this means, the performance improvements by the 
two factors of the ENT can be evaluated individually. 

The output of the L F - A S D has 2 states only, indicating the active pattern or the idle 
pattern. By comparing the BCI switch decision result with the control signal system 
performance evaluation can be obtained in terms of True Positive, False Positive, True 
Negative and False Negative. These definitions are illustrated in Figure 4.9. When BCI 
output = 1, it indicates the movement potential is detected. When the BCI output = 0, it 
indicates that idle state is detected. The finger switch activation indicates the real movement 
potential event, which was applied as a control to compare with the BCI decision. An 
observation window is applied around finger switch activation. Note: the size of the 
observation window in Figure 4.10 is 128 samples (total duration of one second), with one 
quarter-second pre finger switch activation and three quarter-seconds post finger switch 
activation. This division is based on the fact that M2 shows larger separation from Idle2 than 
M l . 
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Figure 4.9 Definition of True Positive, True Negative, False Negative and False Positive 

If the output of the Feature Classifier is the active pattern and appears within the 
observation window, the LF-ASD is assumed to have made the correct decision; this event is 
named True Positive (TP). If the output of the Feature Classifier is the idle pattern and no 
output indicating the active pattern appears in the observation window, the LF-ASD is 
assumed to have made a wrong decision; this event is named False Negative (FN). If the 
output of the Feature Classifier is the idle pattern and no output indicating the active pattern 
appears beyond the observation window, the LF-ASD is assumed to have made a correct 
decision; this event is named True Negative (TN). If the output of the Feature Classifier is 
the active pattern and appears beyond the observation window, the LF-ASD is assumed to 
have made a wrong decision; this event is named False Positive (FP). 

In case of the LF-ASD, once the BCI switch is on, it will hold on for a period (hold on 
samples). The probabilities of the four events are named PTP, PFN, PTN and PFP respectively. 
PTP and PFP can be obtained by Equation 4.2. The evaluation is ocular artefact free. 

Number of TP events .. 
PTP = (4-2) 

Number of finger switch activations 
n Number of FP events 
p • 1 

FP — 

Number of samples falling out of observation windows - hold on samples of FP 
Equation 4.3 shows the relationship of PTP, PFN, PTN and Ppp. 
PFN =1-PTP ' ' (4.3) 

PTN =1- PFP 
Thus, a pair of PTP and PFP could represent the system performance without redundancy. 

While a series of PTP and PFP values can represent the system performance on different 
conditions. By plotting PTp against PFP and connecting the dots corresponding to different 
pairs of PTP and PFP, a Receiver Operating Characteristic Curve (ROC Curve) [36] can be 
obtained to represent the system performance on different conditions. In order to obtain 
different PTP and PFP pairs, a scalar was applied on the codebook in the Feature Classifier. 
This scalar can change the relative distance of the feature set to the codebook representing 
the active or idle class, resulting in different corresponding PTP/PFP pairs (i.e. different points 
on the ROC curve). Every ROC Curve goes from (0,0) to (1,1). It shows the performance of 
the system on all conditions. In this evaluation, every W N value corresponded to a ROC 
Curve; different WN values correspond to different ROC Curve, indicating the system 
performance for various values of WN. 
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An example of ROC Curve is shown in Figure 4.10. 

False Positive, 

Figure 4.10 An example of ROC Curves 
In this work, two metrics were provided to quantify the difference between system output 

with and without normalization (sLNFC, sNPC and sFC ), as shown in Figure 4.8: PTp 
corresponding to a specific PFp and Area-under-ROC-Curve. The first is a point on the ROC 
Curve; the second is the area surrounded by a ROC Curve and axes. 

a) . PTP corresponding to a specific PFP 
An evaluation study of a subject's frustration level caused by BCI system error [37] 

showed that a user's frustration becomes quite prominent with a False Positive rate (PFP) 
between 1.7% and 4%. Over 4%, the users regard the system not useable. Therefore, in this 
work, for the purpose of practical application, when PFP value was at 0.2%, 0.4% and 1% 
respectively, the corresponding PTp values with and without the normalization operation were 
compared. Each of them corresponds to a point on the ROC Curve. 
b) . Area-under-ROC-Curve (PFP<=1%) 

Area-under-ROC-Curve is an indicator of the overall performance of a classifier. A larger 
area indicates a better performance. For example, in Figure 4.10, the chance performance of 
the classifier is represented by the diagonal ROC Curve, where the values of PTp and PFP are 
equal to each other. In this case, the Area-under-ROC-Curve is 0.5. In Figure 4.10, the best 
performance is represented by the right-angle ROC Curve, which starts at (0,0) goes through 
(0,1) and then terminates at (1,1). This indicates that Pjp value can be as high as 100% with 
the corresponding PFP value of 0%. In this case, Area-under-ROC-Curve is 1. As a 
performance indicator of a real application, Area-under-ROC-Curve always varies in the 
range of 0.5 to 1.0. Specifically, in this work, only the ROC-Curve section with small PFp 
values is interested. Therefore, only when Ppp <= 1%, Area-under-ROC-Curve was 
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calculated. By comparison of the Area-under-ROC-Curve values (PFP <= 1%), overall 
performance (PFP <= 1%) of the two systems can be compared. 

The theoretical error rate of the system depends on the probability of the active event or 
the probability of the idle event. If these values had been known, the error rate of the system 
could have been calculated easily by the formula below. P(.) represents probability of an 
event; P< A | B > represents the conditional probability of A given B in Equation 4.4. 
P(error) = P(VMRP | Idle) x P(Idle) + P(ldle | VMRP) x P(VMRP) 

However, in the real world, the probabilities of the idle event and the active event are not 
predictable. Therefore, the theoretical error rate of the system is not a practical metric to 
evaluate the system performance. 

4.3.2 Effect of Energy Normalization Transform on the Features 
Related to VMRP 

According to Cochran's work [28], which has been discussed in Chapter 2, most 
normalization operations are non-linear. In the broadband, the proposed energy normalization 
transform, given in Equation 4.5, is a non-linear operation as well. S^(n) is input and Su(n) 
is output of ENT. 

However, because the LF-ASD extracts the features only from the information located in 
the low frequency band (0-4Hz), it is significant whether or not this transform distorts the 
features in the 0-4 Hz band. The distortion to the signal depends on the value of the 
Normalization Window Size (WN). Some cases are discussed below: 
1. The size of the normalization window is 1. 

In this case, the ENT formula can be simplified as 

SN(n) can be either 1, when SIN(n) is positive, or - 1 , when SIN(n) is negative. Thus, the 
output values are normalized into 1 or -1 . This operation is not a linear operation in the 0-
4Hz band, and it seriously distorts features related to V M R P . 

Therefore, ENT with a small normalization window size may cause distortion of the 
features used by the L F - A S D , which may hamper the system performance. 
2. The size of the normalization window is very large. 

In this case, the formula for the ENT will be simplified as: 

(4.4) 
= PFP x P(ldle)+ (1 - PTP) x P(VMRP) 

(4.5) 

(4.6) 

SN(ri) = 
Energy per sampleof the data in the normalizdton window 

(4.7) 
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If the normalization window size is very large, the energy per sample of the data in the 
normalization window should be the same as the energy per sample of the data in that EEG 
run. Consequently, the denominator of Equation 4.7 would become a constant scalar, and 
SN(n) would become the product of SIN(n) with a constant. In this case, the density 
distributions of the signal with and without normalization would be identical except the scale. 
Therefore, the ENT with a very large W N cannot help to differentiate the VMRP and the idle 
class. 
3. The normalization window size is properly chosen. 

To determine whether or not the ENT with the optimal WN value distorts the features 
used by the LF-ASD in the 0-4Hz band, in the frequency domain the responses of the ENT to 
different input classes are considered. There are three potential input classes: Idle, M l and 
M2. If the ENT does not distort both the phase and the magnitude spectrums of each class in 
the 0-4 Hz band, then it will not distort the features related to VMRP detection in the LF-
ASD. 
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Chapter 5 
R E S U L T S A N D D I S C U S S I O N 

5.1 Overview 
According to the evaluation methodologies described in Chapter 4, Simulink blocks were 

implemented and the experimental results were determined. 
In this chapter, the experimental results are reported first followed by a discussion of the 

results. The results are organized into four areas: the optimal parameter values of the 
modified L F - A S D ; the two major benefits of the ENT to E E G components in the low 
frequency band; the enhanced performance of the modified L F - A S D measured by Area-
under-ROC-Curve (PFP<=1%) and P T p corresponding to a specific Ppp; and a demonstration 
that the Energy Normalization Transform (ENT) does not distort the features related to 
V M R P detection in the LF-ASD. The discussion section shows that the ENT could increase 
the separation between the idle and the active E E G class and can desensitize the system to 
the input scale variance. As a result of these two benefits, this transform can improve the 
error rate of the L F - A S D . 

5.2 Results 

5.2.1 The Optimal Parameter Values 

5.2.1.1 Determination of the Optimal Observation Window Size (W0) 

According to the procedure shown in Figure 4.6, by fixing W N (Normalization Window 
Size) at a given value and then changing Wo, a curve showing D O M vs. Wo can be achieved. 
Thus, four curves are shown in Figure 5.1, corresponding to WN at 21, 23, 51 and 101 
respectively. In addition, a curve derived from the low frequency E E G without the 
normalization operation is shown in Figure 5.1. 
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Figure 5.1 Determination of the Optimal Wo for Channel 1 of Subject PP 
For Subject PP in Channel 1, Figure 5.1 shows: 

1) Regardless of the Normalization Window Size, DOMs, the indicators of data 
separation, reach the maximal value unanimously at the same Wo- This shows that 
Wo determination is independent of that of WN. 

2) A normalized signal with a reasonable normalization window size always has better 
separation than the corresponding non-normalized signal. 

The optimal observation window size (Wo) defines the best data set representing VMRP 
and the idle pattern in terms of DOM. Moreover, it has been shown that the optimal Wo 
determination can be independent of optimal W N . Therefore, in the case of Figure 5.1, the 
optimal Wo is 62. Table 5.1 lists the optimal Observation Window Size over the five subjects 
in Channels 1-6. 

Table 5.1 The optimal value of W 0 over five subjects in Channels 1-6 (in sample) 

PP KT MP MB CB 
Channel 1 62 30 54 46 58 
Channel 2 62 30 54 48 58 
Channel 3 62 30 54 48 55 
Channel 4 70 30 80 30 58 
Channel 5 70 30 88 50 60 
Channel 6 80 30 88 55 70 

5.2.1.2 Determination of the Optimal W N 

Since determination of optimal W N can be independent of W 0 , as in the procedure shown 
in Figure 4.7, by fixing Wo at the optimal value, which was determined in Section 5.2.1.1, 
and then exhaustively searching through W N , the optimal W N was achieved. Figure 5.2 
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shows an example 
Channel 1. 

of the impact of different W N values on D O M for Subject PP in 

Figure 5.2 Optimal WN determination for Channel 1 of Subject PP 

In Figure 5.2, the curve of D O M shows four phases following the change in W N : 
1. The Oscillation Phase (W N is between 1 to 40.): In this phase, in terms of a single 

sample, the ENT increases the separation between the idle and active E E G class. 
However, ENT with a small WN would distort the features related to V M R P and 
would result in many False Positives. (For details, please refer to Section 4.3.2.) 
Therefore, the optimal WN was not selected from this phase. 

2. Optimal Value Determination Phase (W N is between 40 and 80.): The normalization 
operation improves the separation between the idle and active data. At the same time, 
it causes little feature distortion. (For details, refer to the analysis in Section 4.3.2.) 

3. Steep Falling Phase (W N is between 80 and 250.): Following the increase in 
normalization window size, D O M decreases steeply, indicating that the ENT is losing 
its ability to capture the Energy Feature of V M R P . 

4. Flat Phase (W N is greater than 250.): When W N is larger than 250, the ENT has lost 
its ability to capture the Energy Feature related to V M R P . However, the separation 
between the active and idle data is still greater that that of non-normalized EEG. 
Following a further increase in W N , the curve gradually bends towards the best 
performance of the non-normalized signal (For details, please refer to Section 4.3.2.). 

In conclusion, the optimal WN should correspond to the maximal value of the curve in the 
Optimal Value Determination Phase. In the case shown in Figure 5.2, the optimal separation 
corresponds approximately to WN at 51. Table 5.2 shows the optimal WN values over the 
five subjects and over the six channels of the LF-ASD. 
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Table 5.2 The optimal W N for the five subjects over channels (in sample) 

PP KT MP MB CB 

Channel 1 51 55 40 55 51 
Channel 2 47 51 40 40 55 
Channel 3 51 51 40 51 55 
Channel 4 51 51 48 49 51 
Channel 5 51 51 51 40 55 
Channel 6 55 51 47 51 47 

5.2.2 Effect of the ENT on Low Frequency EEG 
As discussed in Chapter 4, the ENT has two major benefits to the low frequency EEG 

components: improved separation between the movement-related and non-movement-related 
EEG; decreased scale variance. 

5.2.2.1 Improved Separation between the Idle and Active E E G 
In general, for all the subjects, this Energy Normalization Transform increased the 

separation between movement related and non-movement-related data. For example, Figure 
5.3 shows that class separation in Subject PP's Channel 1 (Fi-FCi) increases with the ENT. 
After the ENT, the mean of the active data moved towards -1. Consequently, the DOM 
between active and idle data increased by 45%, from 0.340 to 0.493. Table 5.3 lists DOMs 
between the active and idle EEG class with and without the ENT over channels and over 
subjects. It is noted that for EEG in Channels 5-6 of subject CB, the proposed ENT did not 
increase data separation. The reason is provided in the discussion section. 

Without Normalization With Normalization 
0 . 0 4 5 - ' 0 . 0 3 r V _ 

A m p l i t u d e A m p l i t u d e -

(a) (b) 

Figure 5.3 Density distribution of signal amplitude for active and idle EEG data in Channel 1 
for Subject PP a) without normalization, and b) with normalization 

Since the active data is composed of M l and M2, the impact of ENT on Difference Of 
Means between M l and Idle2 (DOM12) was also studied. However, experimental results 
showed that the ENT did not have an obvious impact on DOM12. For example, for subject 
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PP 's E E G in Channel 1, the D 0 M 1 2 with and without normalization were both 0.022, which 
was less than 10% of the corresponding D O M 2 2 , as indicated in Table 5.3. Therefore, in 
terms of optimal classification, the D O M 1 2 seems much less important than D O M 2 2 , and the 
E N T impact on D O M 1 2 is not shown in detail in this work. A l l in al l , the E N T did not 
deteriorate D O M 1 2 . 

Table 5.3 The separation between the active and idle data with and without the E N T 

Subject Channel DOM without 
Normalization 

DOM with 
Normalization 

0.493 

Percentage 
Increase 

Subject PP 1 0.340 

DOM with 
Normalization 

0.493 45.0% Subject PP 
2 0.327 0.431 31.8% 

Subject PP 

3 0.350 0.483 38.0% 

Subject PP 

4 0.190 0.258 36.3% 

Subject PP 

5 0.160 0.196 22.5% 

6 0.190 0.238 25.3% 

Subject KT 1 0.172 0.228 32.6% Subject KT 
2 0.148 0.194 31.1% 

Subject KT 

3 0.175 0.268 53.1% 

Subject KT 

4 0.171 0.227 32.8% 

Subject KT 

5 0.150 0.219 46.0% 

Subject KT 

6 0.252 0.343 
0.230 

36.1% 
15.0% Subject MP 1 0.200 

0.343 
0.230 

36.1% 
15.0% Subject MP 

2 0.232 0.265 14.2% 
Subject MP 

3 0.114 0.150 31.6% 

Subject MP 

4 0.101 0.107 6.0% 

Subject MP 

5 0.052 0.052 0.0% 

Subject MP 

6 0.07 0.093 32.9% 

Subject MB 1 0.332 0.414 24.7% Subject MB 
2 0.328 0.440 34.2% 

Subject MB 

3 0.335 0.473 41.2% 

Subject MB 

4 0.210 0.252 20.0% 

Subject MB 

5 0.152 0.187 23.0% 

Subject MB 

6 0.147 0.179 21.8% 

Subject CB 1 0.319 0.405 26.9% Subject CB 
2 0.358 0.432 20.7% 

Subject CB 

3 0.240 0.320 33.3% 

Subject CB 

4 0.421 0.453 7.6% 

Subject CB 

5 0.504 0.492 -2.3% 

Subject CB 

6 0.410 0.396 -3.4% 

5.2.2.2 Decreased Scale Variation of the Low Frequency E E G 
For E E G in the first channel for Subject P P , the standard deviation of the low frequency 

E E G without normalization is 1.902, while the standard deviation of the normalized low 
frequency E E G is 1.30. The standard deviations of the low frequency E E G with and without 
normalization over the five subjects in the first channel are shown in Table 5.4. 
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Table 5.4 Standard deviations of the low frequency E E G with and without normalization 
over subjects 

Subject P P Subject K T Subject C B Subject M P Subject M B 

Without E N T 1.30 1.23 1.41 1.21 1.31 
With E N T 1.91 1.82 2.10 1.85 1.93 

In conclusion, the E N T can decrease the amplitude variance of the signal. In addition, the 
E N T can also automatically adjust the mean input amplitude, which, as indicated earlier, is 
its side benefit. 

5.2.3 The Effect of the ENT on the LF-ASD Performance 

The effect of the E N T on the L F - A S D performance was evaluated by PTP corresponding 
to a specific P Fp and Area-under-ROC Curve (<=1%). (Since in the real world people are 
interested in system performance at small PFP only, in this work the Area-under-ROC-Curve 
with corresponding PFP values only no greater than 1% was calculated.) Two factors resulted 
in the performance improvement of the L F - A S D : captured Energy Feature related to V M R P 
and decreased scale variance. As discussed in Section 5.2.1.2, when the W N is larger than 
250 (in the Steep Falling Phase), the E N T can no longer capture the Energy Feature related 
to V M R P ; however, it can help to decrease scale variance. Therefore, in the evaluation 
design as shown in Figure 4.8, the E N T with W N value of 251 was applied as the " E N T with 
a large W N " to decrease scale variance of the input signal only, while the E N T with the 
optimal W N value was supposed to be capable of both capturing the Energy Feature related to 
V M R P and decreasing the scale variance. Thus, the effect of the Energy Feature related to 
V M R P capture and scale variance decrease can be approximately separated. 

5.2.3.1 Evaluation Based on the Area-Under-ROC-Curve (PFP<=1 %) 

Figure 5.4 shows an example of R O C Curves (in interested section) with and without 
normalization across different W N values. It shows that Area-under-ROC-Curve (Ppp<=l%) 
of the modified L F - A S D is larger than that of the original L F - A S D . 

The impact of the E N T for other subjects, in terms of Area under R O C Curve (PFp<=l%), 
is provided in Table 5.5. R O C Curves with and without normalization for other subjects are 
provided in Appendix C. It is noted that, although E N T improved the performance for the 
other four subjects, it did not improve performance for subject C B . The reason for it is 
provided in discussion part. 
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ROC Curve (Part) of the LF-ASD with and without ENT for Subject PP 

Without ENT 

15 

Figure 5.4 The ROC Curves (PFp<=l%) of Subject PP with different W N values and the 
corresponding ROC Curve without normalization 

5.2.3.2 Evaluation Based on P T P Corresponding to a Specific P F P 

Table 5.6 lists the performance of the LF-ASD with and without normalization in terms 
of Pjp Corresponding to a Specific P F P , across five subjects. 
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5.2.4 Demonstration that the ENT Does Not Distort the Features 
Used in the LF-ASD 

As mentioned in Chapter 4, in the 0-4 Hz band, if the ENT does not distort the magnitude 
and phase spectrums of M l , M2 and Idle2, it will not distort the features related to VMRP 
that are used in the LF-ASD. The frequency spectrums of M l , M2 and Idle2 pre and post the 
ENT are compared in Figure 5.5 a and b where W N is optimal. 

W i t h o u t N o r m a l i z a t i o n W i t h N o r m a l i z a t i o n 
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(b) 
Figure 5.5 Comparison of spectral properties between EEG with and without ENT (WN=51) 
for Subject PP, a) Magnitude spectra of M l and M2 activity relative to Idle2, and b) Phase 
spectra of M l , M2 and Idle2 

Figure 5.5 shows that the ENT did not distort the phase and magnitude spectrums in the 
0-4Hz band. Thus, it did not distort the features used by the LF-ASD 
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5.2 Discussion 

5.3.1 Results Discussion 

5.3.1.lOptimal Signal Processing Parameter Determination 

According to Figure 5.2 and Table 5.2, the optimal observation window size is 
independent of the normalization window size; the optimal Normalization Window Size is 
approximately 51 over different channels across the five subjects studied. Further studies are 
required to see if this observation holds over a larger population. 

5.3.1.2 Impact of ENT on the Low Frequency E E G Components 

The ENT had two major contributions to the low frequency EEG: first, it decreased the 
low frequency EEG scale variance; second, it increased the separation between active and the 
idle EEG class. In addition, a side benefit of the normalization transform is that it can adjust 
the input scale automatically. 
1 Decreased scale variance: 

The Energy Normalization Transform helped to decrease the standard deviation of low 
frequency EEG amplitude. This shows that this normalization can desensitize the system to 
input amplitude variation. The decreased scale variance resulted in more stable features in the 
Feature Extractor, which could match the static codebook better in the Feature Classifier. 
2 Increased separation between the active and idle EEG class: 

When the normalization window size was at the optimal value, the ENT can best increase 
class separation by capturing the Energy Feature related to VMRP. The averaged separation 
increase over channels with normalization across all subjects is shown in Table 5.7. 

Table 5.7 Averaged separation increase over channels with the ENT across subjects 

Channel 1 2 3 4 5 6 
DOM 28.8% 26.4% 39.4% 20.5% 17.8% 22.5% 

Improvement 
According to the results in Table 5.7, with the ENT, the separation improvement in the 

first three channels was more pronounced than that in the last three channels. Referring to the 
details shown in Table 5.3, data separation in Channels 1-3 across all subjects increased 
consistently with the proposed ENT. The same was true for Channels 4-6, for all subjects 
except Subject CB. The reason why the ENT did not increase the class separation for Subject 
CB is discussed in detail in the next section. 

In conclusion, the ENT can increase the separation between the active and idle EEG class. 
And it is expected to improve the performance of the LF-ASD. But there is variation. 

5.3.1.3 The Impact of ENT on Performance of the LF-ASD 

The performance improvement was caused by two factors of ENT: decreased input scale 
variance and the Energy Feature related to VMRP. For 4 out of 5 subjects, with the 
corresponding False Positive rate at 1%, the proposed normalization transform increased the 
True Positive rate by 7.7%, 8.3%, 8.5% and 18.9%. Thus, the overall performance of the LF-
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ASD for these subjects was improved from 66.1%-82.7% to 85.0%-90.4%. For the fifth 
subject (Subject CB), who had the highest non-normalized accuracy of 90.5%, the 
performance remained at 90% with normalization. 

Average Power of data in Observation Window centered at MP vs. the window size for Subject CB 

8:5 r 
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Size of Observation Window (Wo) Centred at the F|nger Switch (In Sample Numbers) 

Figure 5.6 (For Subject CB in the broad band,) Average power of data falling in the 
Observation Window centered at finger switch activations vs. observation window size (Wo) 

Since the ENT did not improve the error rate for Subject CB (except at PFp=0.1%), the 
characteristics of his EEG were studied and shown in Figure 5.6. It is noted: 
1. In Channels 1-3, the Energy Feature related to VMRP existed. However, compared 

with other subjects (Refer to Appendix C), the Energy Feature was less strong. 
2. In Channels 4-6, EEG signal power around VMRPs is even stronger than (or as 

strong as) that the idle periods. This is not consistent with other subjects' EEG. 
Further details (in Figure C l show in Appendix C) show that, for Channels 4-6 of 
Subject CB, although the power in the high frequency band decreased, the power in 
the low frequency band also increased. This resulted in the signal power in broadband 
(>=0Hz) increase around VMRP. As a consequence, the proposed ENT cannot help 
to increase the data separation. 

As a solution, an alternate normalization scheme was proposed and tested. The ENT with 
W N at 251 was applied to Channels 4-6, while the data in Channels 1-3 was normalized with 
W N at 51 to capture the Energy Feature. For this subject, the performances of LF-ASD with 
different normalization schemes are compared in Figure 5.7. For Subject CB, results in Table 
5.8 compare the performance of different normalization schemes. 
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ROC Curves (Part) of the LF-ASD with and without the ENT for Subject C B 

Figure 5 . 7 The ROC Curves of Subject CB with different normalization schemes and the 
corresponding ROC Curve without normalization 

Table 5 .8 Performance of LF-ASD with different normalization schemes for Subject CB 

Area under ROCC 
(PFP<=1%) 

P T P with PFP=0.1% P T P with PFP=0.4% P T P with PFP=1% 

Non-Normalized 0.064 18.7% 66.4% 90.5% 

Original Scheme 0.061 23.4% 60.1% 88.7% 

Alternative 
Scheme 

0.0625 21.7% 61.1% 90.9% 

Relative to other subjects, Subject CB's ROC Curves with and without normalization, as 
shown in Figure 5.7, are very close to each other. The weak Energy Feature in his E E G 
signal accounts for this. With the corresponding PFP = 1 % , for Subject C B , the modified LF-
ASD with the alternative normalization scheme improved PTP by 0.4%. 

Thus with different normalization schemes, PTP improved from 6 6 . 1 % - 9 0 . 5 % to 85 .0%-
9 0 . 9 % with corresponding PFP = 1 % over the five subjects. 

In terms of Area-under-ROC-Curve ( P F P = 1%), the modified L F - A S D with ENT does 
not seem better than the system without ENT (0 .00625 vs. 0 .00640) . This result may be due 
to the following reasons: 
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1. The shape of the non-normalized codebook is slightly different from that of the 
normalized codebook. This in fact may help the system without normalization perform 
better. If the Energy Feature in the signal were strong, this slight influence could be 
negligible; but if the Energy Feature is not strong, as in this case, the influence from this 
factor could be noticed. If the codebook had been changed into a normalized one, with 
the increased data separation in Channels 1-3, which is indicated by D O M , the new 
normalization scheme should have achieved better performance. 

2. The parameters in the Feature Extractor are optimal to non-normalized data, and that is 
also in the favour of the system without normalization. 

3. In this offline evaluation, it is possible that the amount of data is not enough, in which 
case the performance of the original system was exaggerated. It is somewhat suspect that 
Subject CB achieved a PTP with corresponding PFP at 1% higher than 90% without 
normalization. According to the previous evaluation work, the original L F - A S D has not 
achieved this type of performance. Typically, PTp without normalization should be less 
than 80% with the corresponding PFP at 1% [35]. 

In conclusion, if more data were collected from this subject, the set of codebook and 
other parameters of the system were obtained from normalized data, the improved system 
with the optimal normalization scheme should have better performance than the system 
without normalization. 

In the future, several approaches can be applied to further improve the system 
performance. The Feature Classifier in this work was not customized to the subjects data in 
this work. Instead, a standard (generalized) codebook and parameters were used, which were 
derived from a set of non-normalized data from a previous subject not used in this study. The 
system performance is expected further improved by customization and applying the 
codebook generated from the normalized EEG. In addition, the shape of the current 
normalization window is a rectangle window and it may not be. optimal. Other window 
shapes may be more suitable to capture the Energy Feature related to V M R P , and achieve 
better performance. 

5.3.2 Potential Features Related to VMRP in the Magnitude and 
Phase Spectrum 

There were four classes of E E G data used in this study. These were Idlel, Idle2, M l and 
M2. The phase and magnitude spectrums of these signal classes, which were acquired by the 
procedure introduced in Section 4.2.2, are provided in Figure 5.8. 
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Figure 5.8 Magnitude and phase spectrums of Idlel, Idle2, M l and M2 for Subject K T in 
Channel 1 

1. Features in the magnitude spectrum: 
The features related to V M R P in the magnitude spectrum have been studied thoroughly 

by a few researchers over the last five decades. Jasper and Penfield [9] observed the mu 
rhythm (8-12 Hz) decrease during the movement potential periods; Pfurtscheller et al. [8] 
observed beta rhythm (18-26 Hz) decrease during movement potential periods. Researchers 
named these observations Event Related Desynchronization (ERD). However, according to 
Jasper and Penfield [9], some subjects may not have distinctive E R D . For example, Jasper 
and Penfield [9] reported 3 in 9 subjects in their study did not have mu rhythm in idle 
periods. In this study, magnitude spectrums, as shown in Figure 5.8, were derived from E E G 
in Channel 1 of subject KT . 
Observations from this data were: 

a) . Idle2 has strong mu and beta rhythm. Therefore, Idle2 can best represent the pattern of 
idle E E G . 
b) . M2 does not have mu and beta rhythm. Therefore, M2 can best represent the pattern 
of V M R P . 
c) . Although Idlel is idle E E G , it does not have mu rhythm but beta rhythm. 
d) . Although M l is active EEG, it has both mu and beta rhythm. 
In conclusion, the features related to V M R P , mu and beta rhythm in the magnitude 

spectrum, did not seem to be distinctive for differentiating the active or idle class. 2. Features in the phase spectrum 
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Previous BCI researchers appear to have ignored the study of the features related to 
V M R P in the phase spectrum. Most likely, this is due to the fact that most BCI researchers 
are neural scientists or psychologists. Therefore they do not have a DSP background. In this 
work, the phase spectrum related to V M R P was studied. The results are shown in Figure 5.8 
and observations are made as follows: 

a) The phase spectrums of Idlel and Idle2 seemed to be very similar in the broadband. 
The phases of both Idlel and Idle2 have an amplitude spike value of 1.5 at 0 Hz, and 
oscillate slightly within the range between -0.2 and 0.2 when the frequency is larger 
than 3 Hz. 

b) The phase spectrum of M2 is distinctively different from the other classes. It has an 
amplitude of 3.14 at 0 Hz, and then falls to -1 at 4.5 Hz; the second peak appears 
with the amplitude of +1 at 7.5 Hz. Between 10 and 55 Hz, the curve oscillates within 
the range of -0.5 to +0.5. Between 55 Hz and 64 Hz, the curve oscillates within the 
range of -1 to +1. 

c) The phase spectrum of M l is unique among the four patterns as well. 
It has an amplitude of +1 at 0 Hz, which oscillates greatly between 0 and 8 Hz: 
Between 10 and 50 Hz, the curve oscillates slightly within the range of -0.5 to +0.5. 
Between 50 Hz and 64 Hz, the curve oscillates strongly within the range of -1.2 to 
+1.2. 

The phase of M l seemed to be different from that of Idlel (or Idle2) in the 0-8Hz band, 
while the phase of M2 is different from that of Idlel (or Idle2) in the 50-64Hz band. It is first 
found that information in the 50-64 Hz band is useful for V M R P detection. In conclusion, 
since the phases of Idlel and Idle2 are very similar and the phases of either M l or M2 have 
distinctive differences from that of Idlel (or Idle2), information in the phase spectrum is 
sufficient for the V M R P detection. 

To date E E G related to V M P R for subject PP and K T were analyzed in the phase 
spectrum, and their spectrums are very similar (Figure 5.5 and 5.8). However, it is too 
ambitious to draw conclusions based on only two subjects' EEG. In the near future, it would 
be worthwhile to analyze the phase spectrum for more subjects. 
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C H A P T E R 6 
C O N C L U S I O N S 

The evaluation with data from five able-bodied subjects indicates that the proposed 
system with Energy Normalization Transform (ENT) has better performance than the 
original. The ENT separates signal classes better, decreases input variance to the Feature 
Extractor, decreases overall error rates, and makes the overall design less sensitive to 
variations in input scale. This study has verified the original hypotheses that energy 
normalization would increase separation between signal classes leading to a decrease in the 
error rate of the L F - A S D . 

Study results showed that the proposed transform had two major benefits to the system 
performance. First, the proposed transform increased the difference between the active and 
idle signal classes. It can increase the class separation in the range from 17.8% to 39.4% in 
channels 1-6. Second, it desensitized the system performance to the input signal amplitude 
variance. The filtered signal variance with ENT decreased from around 1.9 to 1.3. These two 
improvements (wider separation and more stable feature sets in the Feature Extractor, which 
could match the static codebook in the Feature Classifier better) resulted in decreased overall 
error rates. For 4 out of 5 subjects, with the corresponding False Positive rate (PFP) at 1%, 
the proposed transform increased the system performance by 7.7%, 8.3%, 8.5% and 18.9% 
respectively in terms of True Positive rate (PTP). Thus, the overall performance of the L F -
ASD for these subjects was improved from 66.1%-82.7% to 85.0%-90.4%. For the fifth 
subject (Subject CB), who had the highest non-normalized accuracy of 90.5%, the 
performance did not change notably with normalization. In the future with the codebook 
derived from the normalized data, the performance could be further improved. As a side 
benefit, the ENT can also make design less sensitive to the input scale. 

In the broad band, the Energy Normalization Transform is a non-linear transform. 
However, for bipolar E E G signals used by the L F - A S D , although the Energy Normalization 
Transform distorted the phase spectrum in the high frequency band, it had no visible 
distortion to the features related to V M R P located in the 0-4 Hz band. In conclusion, the 
proposed transform does not cause distortion to signal features in a specific frequency band 
used by the L F - A S D . 

Study results of idle/active data characteristics showed that, in general, signal power in 
channels 1-6 decreased during periods around movement potential. This conclusion is 
consistent with the observations discussed in Section 3.1.3 [7-9], but some variation was 
noticed. The signal power in the front electrodes (Channels 1-3) had a stronger decrease than 
that in the back electrodes (Channels 4-6). For example, for all the subjects in the study, 
average power of E E G signals in Channels 1-3 decreased consistently by 5.8%- 41.7%. 
While in Channels 4-6, for four out of five subjects in the study, E E G average energy 
decreased by 3.1%-29.1%, but for the other subject (Subject CB) his E E G signal power in 
Channel 4-6 did not drop around V M R P . 
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Study results also show that the signal power decrease happened approximately 0.75 
second before the finger switch activation until 0.75 seconds after the finger switch 
activation. 

6.1 Summary of Contributions 
The main contributions of this work are: 

1. A design of a new signal processing method, the Energy Normalization Transform, 
that improves the LF-ASD system performance and does not distort the features 
related to V M R P . 

2. A methodology for the optimal parameters of the filters in the Energy Normalization 
Transform. 

3. A Simulink module that implements the Energy Normalization Transform and a 
Simulink system that implements the modified LF-ASD. 

4. Two studies that evaluated the effect of the Energy Normalization Transform on the 
filtered E E G data and on the performance of the L F - A S D . 

5. Enhanced understanding of the energy drop in E E G during movement periods. 

6.2 Suggested Future Work 
Suggestions for modifying the proposed system and evaluation methodologies are: 

1. Evaluate the performance of the modified L F - A S D on-line. 
2. Evaluate the performance of the modified L F - A S D on a larger pool of subjects, 

including those with spinal-cord injuries. 
3. Explore additional shapes of the normalization window in the ENT, which might 

fit the characteristics of the E E G related to movement potential better than 
rectangle window. 

4. Study the effect of codebook customization on the modified LF-ASD, and 
determine the relationship between the effect of the Energy Normalization 
Transform and the effect of codebook customization. It is expected that codebook 
customization could further improve the performance of the modified LF-ASD. 

5. Customize the normalization scheme to the users. (Refer to Chapter 5 for 
discussion of the normalization schemes.) It has been noted that E E G 
characteristics of Subject CB are different from the other four subjects in this 
study. Consequently, the alternative scheme of Energy Normalization Transform 
is more suitable for Subject CB. A future user of the modified L F - A S D could 
choose a normalization scheme, which works best for him or her. 

6. Study the potential features observed in the phase spectrum. In Chapter 5, 
potential features related to V M R P detection in the phase spectrum were 
observed. They should be tested against a large amount of data and an increased 
number of subjects. 

7. In pursuit of a multi-function switch, combination of the O P M (See Section 
2.1.2.7) and the LF-ASD may be pursued because of the potential of the O P M to 
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differentiate between different types of movement, such as left hand, right hand 
and foot movement. 
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Appendix A 

T A B L E S 

A . l Glossary of Abbreviations 

S I N > S L P F . S F E , Spc Signals of the original LF-ASD defined in Figure 1.1a 

S I N > S N . S N L P F > S N F E . S N F C Signals of the modified LF-ASD with optimal window size defined in Figure 1.1b 

S I N > S E N > S E L P F > S E F E > S E F C Signals of the modified LF-ASD with W N = the length of the run defined in Figure 4.5 

S I N > S L N . S L N L P F . S L N F E > S L N F C Signals of the modified LF-ASD with W N = 250 defined in Figure 4.8 
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Symbol Expanded Term 
AID Analog to Digital 
ALS Amyotropic Lateral Sclerosis 
Area under ROC 
Curve 

Area of region confined by the Receiver Operating Characteristic Curve 

BCI Brain-Computer Interface 
CRT Cathodic Ray Tube 
EcoG Electrocorticogram 
EEG Electroencephalograph 
EMG Electromyograph 
ENT Energy Normalization Transform 
ENTOPT Energy Normalization Transform with optimal normalization window size 
EOG Electro-oc ulograph 
ERD Event-Related Desynchronization 
fMRI Functional Magnetic Resonance Imaging 
FN False Negative 
FP False Positive 
HCI Human-Computer Interface 
IVMRP Imagined Voluntary Movement-Related Potential 
Idle 1 The EEG recorded in the passive observation period 
Idle 2 The EEG in the passive observation period between the periods of two 

finger switch activations 
LF-ASD Low-Frequency Asynchronous Switch Design 
MEG Magnetoencephalography 
M l Data of voluntary movement-related potential falling into the front part of 

the Observation Window which is centred at the onset of the finger switch 
activations 

M2 Data of voluntary movement-related potential falling into the rear part of 
the Observation Window which is centred at the onset of the finger switch 
activations 

MI Primary Motor Area 
MS Multiple Sclerosis 
OPM Outlier Processing Method 
PET Positron Emission Tomography 
ROC Curve Receiver Operating Characteristic Curve 
SCI Spinal Cord Injury 
SCP Slow Cortical Potential 
SMA Supplementary Motor Area 
VEP Visual Evoked Potential 
VMRP Voluntary Movement-Related Potential 
wN Size of the normalization window 
Wo Size of the observation window centered at finger switch activations 
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Appendix B 

P R O C E D U R E S O F D A T A A C Q U I S I T I O N 
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B.l Hardware Description 

A m p l i f i e r 

Headbox , — 

control terminal 

Figure B . l Hardware description of the L F - A S D 

As shown in Figure B . l , E-Cap with non-invasive electrodes is applied to acquire the 
mono-polar EEG. The location of the recording electrodes is in S M A and M I as shown in 
Figure 2.3. In order to keep the analysis free of the Ocular Artifact contamination, electrodes 
are applied to record E O G from a subject's eye-lips. For the purpose of evaluation, a finger 
switch is used to record the on/off information into a control signal. An amplifier is applied 
to adjust the mean amplitude of E E G mono-polar that makes the signal power relatively 
stable. In A/D interface and A/D board, the signal is sampled at 128 Hz. Then the digital 
signal is saved onto hard disk for offline analysis or input into the L F - A S D for on-line single 
trial analysis. The display monitor is used for showing instruction to the user, giving cues 
about when to activate the finger switch or imagine the finger switch activation. The 
researchers use the control terminal to direct the study. 

62 



B.2 Data Acquisition Strategy 

Five able-bodied subjects participated in the study. For each subject, eight runs of E E G 
were recorded. For each run, approximately 20 finger movements free of ocular artifact were 
recorded. In addition, for each subject, in the passive observation period, A E E G signal, 
which last for 4 minutes, was recorded to represent the idle state E E G . 

A computer program, which was designed to display a red, yellow or blue dot on the 
display terminal, was activated in the experiment. The dots with different colors were 
prompted to a subject in a sequence each per time. In the orientation phase, a subject was 
expected to activate the finger switch at the appearance of the yellow dot and remain in a 
passive observation state for the rest of the time. After orientation phase, in order to keep the 
V M R P free of the visual evoked potential (VEP) contamination, yellow dots were no longer 
displayed to the users. Since the red and blue dots were still presented to the subject at the 
original pace and order, with a blank screen where the yellow dot was previously, the subject 
should have been able to predict the transition time of the non-displayed yellow dots and then 
activate (or imagine to activate) the finger switch. The experiment was designed in two 
phases: the training phase, which including the orientation phase, and the data acquisition 
phase. 

The training phase was designed for the subjects to learn the synchronization between 
finger switch activations (for an able-bodied subject, or imaginary right hand finger flexion, 
for a subject with a disability,) and the appearance of yellow dots, both shown and unshown. 
At the end of this training phase, the subjects were expected to be able to activate (or imagine 
to activate) the finger switch at the exact time when a yellow dot should have appeared. 
Through a display monitor, a researcher could observe the synchronization between the 
appearance of a yellow dot and the finger switch activation (or, for people with a disability, a 
B C I switch activation) to tell whether the subject had learned to predict precisely. 

The data acquisition phase followed the training phase. In this phase, the able-bodied 
subjects, who sat on a chair, were required to follow the instructions shown on the screen to 
conduct a right index finger flexion, which triggered a micro switch. The programmed cues 
instructed the subjects when to activate the finger switch and when to be in a state of passive 
observation. The finger switch activations were marked into a control signal used as the 
measure of the switch activation time. (This method can also applied to a subject with a 
disability. He can conduct imaginary right hand switch activation and the transition time of 
non-displayed yellow dots, which was programmed and supposed to be synchronized with 
the imaginary finger flexion after training, can be recorded as the control signal.) A t the same 
time, E O G was recorded. E E G trials contaminated by ocular artefacts were discarded by 
referring to this E O G signal. 
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Appendix C 

A D D I T I O N A L S T U D Y R E S U L T S 
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Figure C.1 (For Subject CB's E E G in Channels 1-6) a) Power around V M R P vs. length of 
the observation window centred at the finger switch in the broadband; b) Power around 
V M R P vs. length of the observation window centred at the finger switch in the low 
frequency band; c) Power around V M R P vs. length of the observation window centred at the 
finger switch in the high frequency band 
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Figure C.2 (For Subject MP's E E G in Channels 1-6) a) Power around V M R P vs. length of 
the observation window centred at the finger switch in the broadband; b) Power around 
V M R P vs. length of the observation window centred at the finger switch in the low 
frequency band; c) Power around V M R P vs. length of the observation window centred at the 
finger switch in the high frequency band 
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Energy Per Sample of BroadBahd/ ih a window centered at Finger Switch for Subject M.B 
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Energy Per Sample of Low frequency band in a window centered at Finger Switch for Subject M.B 
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(c) 

Figure C.3 (For Subject M B ' s E E G in Channels 1-6) a) Power around V M R P vs. length of 
the observation window centred at the finger switch in the broadband; b) Power around 
V M R P vs. length of the observation window centred at the finger switch in the low 
frequency band; c) Power around V M R P vs. length of the observation window centred at the 
finger switch in the high frequency band 

Energy : Per Sample of Broad Band iri a^window centered : :at Finger Switch for Subject K.T 
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Average Energy per Sample of High-Frequency '.band iri a window centred at the Finger Switch" for Subject rCT 
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(c) 
Figure C.4 (For Subject KT's E E G in Channels 1-6) a) Power around V M R P vs. length of 
the observation window centred at the finger switch in the broadband; b) Power around 
V M R P vs. length of the observation window centred at the finger switch in the low 
frequency band; c) Power around V M R P vs. length of the observation window centred at the 
finger switch in the high frequency band 

Note: The E E G energy variation condition near the finger switch activation for Subject PP 
has been provided in Figure 3.2. 
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DOM vs Normalization Window Size in Channel 1-6 for Subject CB 
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DOM.vs., Normalization Window Size in channels 1-6 for Subject MP 
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DOM'vs. Normalization Window :;Size;,ih;Channe.r~1-6 for-Subject PP 
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DOM vs. Normalization Window Size in; Channel 1-6for Subject KT 
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DOM vs. Normalization Window Size in channels 1-6 for Subject M B 
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Figure C.5 Determination of the optimal Normalization Window Size (DOM vs. W N ) in 
Channels 1-6 a) for Subject CB ; b) for Subject M P ; c) for Subject PP; d) for Subject KT; e) 

for Subject M B 
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The ROC Curve of the LF-ASD.with iNbrmalizatibn-arid without Nornalizatibnfbr .Subject MP 
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The ROC Curve of the LF-ASD with Normalization and without Normalization for Subject KT 
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e) 
Figure C .6 ROC Curves of the LF-ASD with and without the ENT a) for Subject M P ; b) for 

Subject M B ; c) for Subject PP; d) for Subject CB; e) for Subject K T 
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