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ABSTRACT 

System-on-a-chip (SoC) with reuse of intellectual property (IP) is gaining acceptance as 

the preferred style for integrated circuit (IC) designs. This paradigm shift poses great 

challenges to the overall design and test methodologies. To support SoC design and test, 

it is important to develop a corresponding set of Semiconductor Infrastructure IP (SI2P), 

which includes all components surrounding an IP core to facilitate system integration, 

timing synchronization, and test efforts. This thesis focuses on the SI2P needed for SoC 

test. 

First, a relationship is established between stuck-at (DC) and transition (AC) fault 

detection when applying a set of test vectors to a given design. To exploit this 

relationship, a new test pattern generation flow is proposed to maximize the DC fault 

coverage level with test patterns targeted at AC faults. The resulting vector set is a 

combination of pseudo-random test patterns and deterministic "top-up" vectors. The 

fault coverage of this approach is competitive with that achievable by an automatic test 

pattern generation (ATPG) tool. 

A hardware implementation of on-chip test pattern generation as part of a logic built-in 

self-test (logic BIST) solution is described. A matrix-based algorithm for constructing 

deterministic pattern generator circuits based on linear feedback shift registers (LFSR's) 

is presented. It is found that the resulting area overhead of the deterministic pattern 

generator is significant relative to the IP core under test and is a function of deterministic 

test pattern count. Additional SI2P components required for this embedded testing 

approach are also described. 
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CHAPTER 1 INTRODUCTION 

1 . 1 M o t i v a t i o n 

System-on-a-Chip (SoC) is gaining acceptance as the preferred style for integrated circuit 

(IC) designs. It serves as an effective methodology to close the gap between engineering 

productivity and the IC design complexity enabled by technology advancements 

predicted by Moore's Law [32]. 

1970 1980 1990 2000 2010 

Figure 1. Productivity gap 

As illustrated in Figure 1, engineering productivity in IC design always lags behind the 

achievable IC complexity forecasted by Moore's Law. This gap widens gradually with 

technology advancements. It is only with innovations in design methodologies that this 

gap can be reduced momentarily. At the present time, design reuse is the most promising 

methodology to close this gap between engineering productivity and technology 

advancements. Design reuse is at the heart of the introduction of intellectual property 

(IP) blocks and SoC design. Without such a design methodology, closing the gap 
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between engineering productivity and technology advancements becomes difficult and 

thus potential capabilities of semiconductors cannot be realized. 

Aside from rigorous development of reusable IP cores, other issues such as system 

integration of IP, the inter-block communication and test are essential portions of a SoC 

design. The integration of IP cores in a SoC requires the management of the timing 

synchronization of cores that may operate in different clock domains. Standard bus 

architectures such as AMBA [1] and CoreConnect [5] have been defined to allow 

each of integration of processor, memory and interface blocks. Test wrappers such as 

IEEE P1500 [24][31] have been developed to manage IP test issues. These supporting 

components can be viewed collectively as Semiconductor Infrastructure IP (SI2P) [11] to 

enable ease of integration. Without such interoperability, SoC designs are too complex to 

design and test. Consequently, SoC designs should, in fact, be defined as the integration 

of IP cores and SI2P; lacking either one will limit industry adoption of the SoC design 

paradigm. 

As an example that is pertinent to this thesis, Figure 2 shows the role that SI2P plays in 

SoC testing. Each core is encased by a PI500 wrapper to provide a unified interface for 

test control purposes. The wrapper control signals can be generated by a user-defined 

test controller which is enabled by external sources. In addition, a user-defined parallel 

test access mechanism (TAM) can be implemented for speedy test data transportation 

to/from individual IP cores. All of these items comprise SI P that support the actual IP 

cores in a SoC design. 
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Figure 2. SI2P for SoC test 

Design-for-Test (DFT) for SoC design is a major concern for semiconductor vendors and 

customers [6]. This is due to increasing design complexity enabled by the reuse of 

intellectual property (IP) cores and the increasing cost of automated test equipments 

(ATE's) [4]. As SoC integrated circuits (IC's) are designed, IP cores are often buried 

deep in the design hierarchy that causes accessibility issues since the terminals of the IP 

cores may not be controllable nor observable directly by ATE's. Furthermore, third-party 

IP cores are often purchased and integrated by a semiconductor design house to assemble 

the final SoC design. With 80-90% of the IP market occupied by hard IP's provided in 

the layout form [25], IP cores bundled with embedded test solutions become attractive. 

This advocates extensive use of logic built-in self-test (logic BIST). Also, this 

corresponds to the future projections of the Test and Test Equipment Working Group of 

International Technology Roadmap of Semiconductors 2001 (ITRS 2001) which states 
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"Logic BIST technique must evolve to support new fault models, fault analysis, and 

deterministic test" [13]. Thus, the importance of logic BIST is apparent and is one of the 

major motivations of this research. 

There are several possible options for IP block testing and each differs in how test stimuli 

are delivered to individual IP core. Generally, these options vary from fully off-chip to 

fully on-chip test pattern sources. A mix of the on-chip and off-chip options constitutes a 

third option which may be deemed viable in some circumstances. This research aims at 

minimizing off-chip intervention during testing and thus it pursues after a completely on-

chip solution. 

1.2 R e s e a r c h G o a l s 

There are three objectives in this research: 

1. To establish a relationship between stuck-at (DC) and transition (AC) fault 

detection. To design a logic BIST scheme for an IP core to detect as many easily 

detectable DC and AC faults as possible with least amount of resources in terms 

of hardware and design effort. 

2. To develop a test generation flow for combined DC and AC fault detection using 

pseudo-random pattern generation (PRPG) and automatic test pattern generated 

(ATPG) deterministic "top-up" patterns. Such an algorithm should exploit the 

connection between DC and AC faults to select test patterns wisely for both 

stuck-at and transition fault testing. The achievable fault coverage should 

compete with commercial tools. 
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3. To develop an on-chip deterministic pattern generator which specially targets the 

faults not detected by pseudo-random test patterns. Such hardware should be 

generated automatically given a set of deterministic patterns. 

4. To develop SI P concepts further with test harnesses flexible enough to enable 

communication with most test access mechanisms (TAM's). The overall 

approach should be validated by design, fabrication and test of an IP core with 

SI2P support. 

1.3 T h e s i s O r g a n i z a t i o n 

Chapter 2 of this thesis gives an overview of terminologies and basics on testing. It 

introduces the idea of taking advantage of the commonalities between AC and DC fault 

detection. Based on the AC and DC fault commonalities identified, it proposes a test 

pattern generation flow that combines pseudo-random and deterministic pattern 

generation methods. It also presents the results of the test pattern generation flow by 

reporting the achievable fault coverage against that of a commercial ATPG tool. 

Chapter 3 describes the hardware design necessary for implementing the results of the 

test pattern generation flow as a logic BIST solution. It also identifies possible methods 

for on-chip deterministic test pattern generation and proposes an algorithm to design a 

linear feedback shift register (LFSR) based circuit for deterministic test pattern 

generation. Then it reports the area overhead incurred by the logic BIST circuitry. 
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Chapter 4 presents the SI2P-related components with an introduction of PI500 standard 

under development by IEEE for communication with the TAM. An example of an HC11 

core wrapped with PI500 and supplied with an AC/DC logic BIST scheme is described. 

The design is fabricated in a 0.18/im CMOS technology. 

Finally, Chapter 5 concludes with a brief summary, possible future research direction, 

and the contributions of this project to SoC research. 
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CHAPTER 2 ALGORITHM FOR COMBINED AC/DC ON-CHIP 

TESTING 

This chapter presents some principles of testing upon which this research is based. First, 

it explains the differences and similarities between combinational and sequential circuit 

testing. With this knowledge of the target circuits, two fault models, namely stuck-at 

(DC) and transition (AC) faults, are examined. Subsequently, the similarities between 

the DC and AC fault testing are identified and how these connections can be leveraged 

for combined DC and AC testing are explained. Further, it describes how the quality of 

test is measured by fault coverage evaluation. 

Once the connections between the DC and AC fault testing are established, an overall test 

pattern generation flow is described. Then, it presents the significant results of this 

pattern generation flow with a summary of the achievable fault coverage readings 

compared to a commercial ATPG tool. These fault coverage results are obtained from 

the TetraMAX™ ATPG and fault simulation tool by Synopsys®. 

The results are collected from ITC'99 IP cores [30] to evaluate the proposed method on 

standard benchmarks. Further, IP cores designed in-house at UBC for the development 

of a simple network processor have also been used in this evaluation. Each of these IP 

cores has a single scan chain and is registered at the input and output ports for the reasons 

outlined later in Section 4.1. 
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2 . 1 C i r c u i t C l a s s i f i c a t i o n s 

This section examines two types of digital circuits, which serve as the test targets. These 

two types of circuits are combinational and sequential circuits. 

2.1.1 Testing Combinational Circuits 

Combinational circuits are the simplest type of digital circuits realized at the gate level. 

These circuits consist of elementary logic operators such as buffer, NOT, AND, NAND, 

OR, NOR, XOR, XNOR, and multiplexer (MUX). These logic gates are memoryless: 

the outputs of these elements only depend on the logical operations with the current 

inputs. Any logic equation can be implemented by connecting up these elementary gates 

accordingly. 

During fabrication, a defect may be introduced in the circuit, as denoted by X in Figure 3, 

due to wafer defects or process variations. As a result, all parts must be tested after 

manufacture to ensure their proper operation. When combinational circuits are tested, 

test stimuli are applied to the primary inputs (Pi's) and the test responses are observed at 

the primary outputs (PO's). If the responses at the outputs are not as expected, it implies 

that at least one defect exists in the fabricated circuit. Figure 3 shows a simple 

combinational circuit with Pi's and PO's. A manufacturing defect located at the 

indicated connection can be detected by controlling the inputs of the AND gate and 

observing the signal behaviour at POrj. Defects can be modeled as faults in a variety of 

ways as explained in Section 2.2. 
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Figure 3. Combinational circuit 

Combinational circuits are considered to be easy to test if all internal nodes can be 

directly controlled by the inputs and directly observed at the outputs by the application of 

appropriate test patterns. 

2.1.2 Testing Sequential Circuits 

Sequential circuits are identical to combinational circuits except for the inclusion of 

memory elements such as flip-flops (FF's). FF's are usually driven by a clock, which 

serves as the signal for controlling when the outputs from combinational circuits are to be 

stored as FF contents. The outputs of sequential circuits depend on both the current Pi's 

and the current states of the FF's. Figure 4 shows a sequential circuit with the Pi's, PO's, 

pseudo-primary inputs (PPI's) and pseudo-primary outputs (PPO's). 
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Figure 4. Sequential circuit 

PPFs and PPO's are neither easily controllable nor observable externally because they 

may be buried deep inside the circuit. Due to this reduced controllability and 

observability, sequential circuits are difficult to test since the PO's are dependent upon 

the previous inputs encoded in the FF states. Unfortunately, this type of circuits is 

always encountered in logic designs since finite state machines (FSM's) are usually 

implemented as sequential logic systems. 

In order to efficiently test these circuits, a standard technique to greatly increase 

controllability and observability is employed by introducing a test mode in all FF's. 

During the test mode, the output of a FF is functionally connected to the input of another 

FF in the circuit. All FF's connected in this way form a long chain to compose a shift 

register. Logic values can be shifted into the FF's serially to set their outputs. These 

values are used as inputs to the combinational circuits between the FF's. As a result, the 

sequential test problem is converted into a combinational test problem. This well-known 

technique is called scan design [33] [3] [23]. 
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Figure 5. Scan flip-flop 

Figure 5 shows the design of a sample DFF suitable for scan design. A scan FF is an 

ordinary DFF with a MUX inserted in front of the data input. The signal to the DFF data 

input is selectable with the scan enable (SE) pin. In the figure, when SE=0, the D input 

of the SDFF is routed as the input for the DFF. When SE=1, the SD input of the SDFF is 

selected as the input of the DFE. The SD input is connected to the output of the previous 

SDFF in the scan chain. 

Long scan chains hinder manufacturing test by consuming valuable test time on ATE's. 

Multiple scan chains can exist in a sequential circuit to speed up shifting if one scan chain 

should become too long. 
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Figure 6. Sequential circuit with scan design 

With the aid of SDFF design, Figure 6 shows a sequential circuit with scan insertion. 

When testing, the desired FF states would be shifted into the FF's in the test mode 

(SE=1) and the Pi's would be set to appropriate values. When the system clock is 

applied in the normal mode (SE=0), the PPO's are captured in the FF's and PO's can be 

examined externally. The PPO's are examined by observing the scan out (SO) pin when 

shifting the scan chain as a shift register in test mode (SE=1). Note that the next desired 

FF states could be shifted in while the current states of the FF's are being shifted out of 

the scan chain. 

Proper fault modeling is essential to high-quality IC testing. At an abstract level, it is a 

representation of the defects that characterize the unintended differences between the 

2 . 2 F a u l t M o d e l s 
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fabricated hardware and its intended design [3][14]. Many fault models exist and this 

research focuses on two of them: stuck-at (DC) and transition (AC) fault models. 

2.2.1 Stuck-At (DC) Fault Model 

If a manufacturing defect causes an internal node to be inadvertently held to logic 1 or 0, 

it is referred to as a stuck-at fault. It is also referred to as a DC fault due to the static 

nature of the fault. This fault is modeled by assigning a constant logic value (0 or 1) to 

an interconnection section within a gate-level netlist. Such interconnection could be an 

input or output of a logic gate or a flip-flop. Each interconnection is modeled by two 

variants of this fault. Stuck-at-1 (s-a-1) fault is modeled by assigning a constant logic 1 

to an interconnection section. Conversely, an interconnection with a constant logic 0 

assignment is called a stuck-at-0 (s-a-0) fault. A combinational circuit with a s-a-0 fault, 

denoted by X, is shown in Figure 7. 

Figure 7. Stuck-at fault 

The role of stuck-at faults is to model the defects which cause interconnections not to 

toggle irrespective of the inputs of the gates or FF's driving them. A stuck-at fault test 

must first activate the fault and then propagate the result to the output. For example, if 

fault site X has a s-a-0 fault, the output of AND0 gate should be driven to the opposite 
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logic state of 1 by setting ENi and IN2 to 1. In order for the response at fault site X to be 

observable at OUTo and/or O U T i , offpaths INo and IN3 must be set to non-controlling 

logic values of 1 and 0 respectively to allow the propagation of output from ANDo to 

OUTo and OUT,. 

2.2.2 Transition (AC) Fault Model 

Another type of fault occurs when a signal attempts to make a logic transition but is very 

slow in doing so. This is referred to as a delay fault which is also called an AC fault 

since it is dynamic in nature. There are many different delay fault models, namely 

transition, gate, line, path, and segment delay fault models [19]. This research focuses on 

the transition fault model and it is referred to as the AC fault model in the context of this 

thesis. There are two types of AC transition faults for each gate: slow-to-rise (s-t-r) and 

slow-to-fall (s-t-f). To initiate a signal transition, two patterns (Pi, P2) are necessary. For 

a s-t-f fault, Pi is responsible for configuring the target gate for a s-a-0 fault, thus forcing 

the gate output to be 1. Then P2, targeting the gate for s-a-1 fault, is applied to cause a 

signal transition to be observed at the PO or PPO after some specific delay. The opposite 

is done to detect for s-t-r faults. The purpose of this fault model is to model a defectively 

slow switching gate that potentially causes failure of a circuit path to meet specific timing 

requirements. AC faults are important to test since they validate that the design meets the 

timing specification. With higher and higher speeds, on-chip fault detection may be the 

only viable approach since the ATE's are having problems keeping pace with chip 

speeds. 
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Figure 8. Transition fault 

In Figure 8, the s-t-f fault at AND0 gate can be tested by applying a s-a-0 pattern as Pi. 

As a result, the output of the gate is driven to 1 with TN\ and r N 2 set to 1. Then P2, 

targeting for the s-a-1 fault at ANDo gate, is applied to initiate a signal transition by 

setting IN,, IN2 or both to 0. For the entire duration of above testing, INo and IN3 should 

be kept at the non-controlling states of 1 and 0 respectively in order for the transition at 

output of ANDo to be observable at OUT0 and/or O U T i . 

2 . 3 C o n n e c t i o n b e t w e e n D C a n d A C F a u l t T e s t i n g 

From the descriptions in the previous sections, one can see that the fundamental concepts 

of DC and AC fault testing are related. As mentioned in Section 2.2.2, during AC fault 

testing, all gate outputs are driven to opposite states to stimulate rising and falling signal 

transitions. Such transitions are expected to complete within a specific time limit which 

is usually dictated by the system clock period of the sequential circuits under test. If any 

transition does not complete within the specified amount of time, it is considered as an 

AC fault. 
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When a circuit is analyzed for AC faults, a list of all possible AC fault sites is 

constructed. These AC fault sites are located at logic gates and each logic gate generates 

two faults, namely slow-to-rise (s-t-r) and slow-to-fall (s-t-f). Such a list is called the AC 

fault list and a complete AC fault list is usually composed of two times the number of 

gates [3]. This AC fault list is used by automatic test pattern generation (ATPG) and 

fault simulation tools. The former is responsible for crafting the necessary test patterns to 

detect faults specified in a fault list; the latter is responsible for determining the number 

of faults within a fault list that a test pattern set capable of detecting. When considering 

the AC fault list, each AC fault is composed of two DC faults. Each s-t-r fault is 

composed of a s-a-1 followed by a s-a-0 fault at the fault site as explained in Section 

2.2.2. Similarly, each s-t-f fault is composed of a s-a-0 and s-a-1 sequence. AC fault 

testing is simply a more stringent test, in terms of timing, than its DC fault testing 

counterpart. In other words, an AC fault is derived from a pair of DC faults. This 

relationship is exploited in this research work. The claim is that patterns targeting for AC 

faults also provide a certain degree of DC fault coverage. 
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Figure 9. A C test patterns for D C fault detection 

During AC fault testing of the circuit in Figure 9, a test pattern is shifted into the scan 

chain of an IP core as in any scan-based testing. After a desired pattern is shifted into 
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place, the SDFF's in the scan chain are switched to normal mode such that they are ready 

to capture the outputs from the combinational blocks. This is followed by two 

consecutive at-speed system clock cycles, which is referred to as double-clocking in this 

thesis. Then, the scan chain is filled with responses from the combinational circuit 

blocks, which are waiting to be shifted out through the scan chain. Correctness of these 

responses implies the non-existence of the AC faults that this test particular test pattern is 

capable of detecting. 

As mentioned earlier, two consecutive at-speed system clock cycles are to be applied to 

the IP core. This is due to the necessity to initiate signal transitions through the 

combination blocks. Just before the application of the first system clock cycle in normal 

mode, outputs from the combinational blocks are waiting at the inputs of the FF's. When 

the first system clock in normal mode is applied, these outputs are stored in the FF's. 

These new FF contents are likely to be in the opposite states of what the FF's used to 

have just before the first system clock hits in normal mode. Such changes in FF contents 

are the sources of signal transitions necessary at the inputs of the combination blocks for 

AC fault detection. Then the second system clock in normal mode simply captures the 

output signal transitions at the combinational blocks within a functional period of the 

circuit. 

In cases when DC faults exist in the combinational blocks as denoted by X in Figure 9, 

their effects are likely to emerge as erroneous responses from the combinational blocks, 

which are captured by the first system clock in normal mode. This directly causes inputs 
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to the downstream combinational blocks to be different from the expected values. As a 

result, the second set of responses is likely to be incorrect. These mismatches are 

captured by the second system clock cycle in normal mode and are shifted out for 

examination. In effect, AC test patterns do not immediately report DC faults as they 

occur. Instead, AC test patterns rely on the DC fault effects to propagate one more level 

downstream before they are captured for examination. 

In cases when the DC faults only occur in combinational logic block 2, they prohibit 

certain signal transition occurrences at the combinational logic block outputs. This is true 

regardless of the combinational logic block 2 input changes caused by the first system 

clock cycle in normal mode. Effectively, AC faults in combinational logic block 2 are 

captured with the second system clock cycle in normal mode and are shifted out for 

examination. 

Since two consecutive system clock cycles are supplied in normal mode, it is possible 

that one DC fault in the first system cycle in normal mode masks other DC faults in the 

second clock cycle in normal mode, or vice versa. This situation sacrifices DC fault 

coverage and appears to be a flaw to the approach. However, a similar situation also 

appears in the case of multiple stuck-at faults. It is possible that one fault cancels out the 

effect of another fault to produce correct outputs. These cases are usually not considered 

in practice due to exponential increase in complexity of test pattern generation [3]. A 

similar argument can be made for AC vector detection of DC faults. 
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This approach also promotes reduction of total test time since the AC fault test time 

targets not only AC faults but also DC faults. Since the first part of the logic BIST 

operation involves pseudo-random test patterns, these patterns normally account for most 

of the total pattern count. It does not require two separate passes, one for AC faults and 

another for DC faults. 

2 . 4 F a u l t C o v e r a g e 

With the DC and AC fault models established, a useful metric to quantify the test 

performance is required. Fault coverage is a measure of the number of tested faults 

versus all the possible faults in a circuit. Following the notation in [28], fault coverage is 

defined to be: 

Detected faults + (Possibly detected faults x Possibly detected credit) X T QQ<̂  ^^ 
All faults 

The Detected fault category is made up of two classes: 

• Faults detected by simulation are determined by generating patterns and 

simulating to verify that the patterns result in the faults being detected. 

• Faults detected by implication do not have to be detected by specific patterns, 

because these faults result from shifting scan chains. The faults in this class 

usually occur along the scan chain paths and include clock pins and scan-data 

inputs and outputs of the scan cells. 

The Possibly detected fault category is made up of two classes: 

• ATPG possibly detected class contains faults for which the difference between the 

good machine and the faulty machine results in a simulated output of X rather 

19 



than 1 or 0. Analysis proves that the fault cannot be definitely detected under 

current ATPG conditions, only possibly detected. For example, with faults on the 

enable line of an internal tri-state driver, the off state of the enable can only be 

possibly detected because the resulting Z state on the data bus quickly becomes an 

X state as it is captured into a scan cell or passes through other internal logic. 

• Not analyzed - possibly detected class also contains faults for which the 

difference between the good machine and the faulty machine results in a 

simulated output of X rather than 1 or 0. However, the analysis to prove that the 

fault cannot be definitely detected using current ATPG conditions is not 

conclusive. Like the previous class, the simulation cannot tell the expected output 

of the faulty machine. 

Partial credit is given for possibly detected faults in the test coverage calculation. This 

partial credit is by default 50 percent and is variable [28]. This credit is awarded to faults 

belonging to the possibly detected category because the ATPG tool cannot definitively 

dismiss the possibility of such faults not being detectable in the implemented design on 

silicon. 

Fault coverage basically is a representation of the test quality of a pattern set in capturing 

the faults in the fault list. It also serves as a criterion for deciding whether further test 

pattern development is required. Often, certain minimum fault coverage must be 

achieved before a design is sent out for fabrication in order to guarantee quality and 

robustness of the resulting designs. 
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As described to in Section 2.3, DC fault coverage is achieved with application of AC test 

patterns. An experiment has been conducted to investigate such effects. Pseudo-random 

patterns are generated and fed to the scan chain of an IP core. Such patterns are double-

clocked by a scheme, also referred to as the broadside method [27], where two 

consecutive at-speed system clocks are applied to the IP core in normal mode. Then the 

content of the scan chain is shifted out. Such stimuli and responses, along with a DC 

fault list containing all possible DC fault sites in the EP core, are used as inputs to a fault 

simulation tool for DC fault coverage assessment. In Figure 10, it is shown that a high 

DC fault coverage can be obtained in this manner. The DC fault coverage versus AC test 

pattern count can reach above 90% for this example. The attempt is to claim that 

although the DC fault coverage achievable by AC test patterns varies between IP cores, 

some DC fault coverage can be derived from AC fault testing. 
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Figure 10. D C fault coverage achieved by A C test patterns 

2.5 Test Pattern Generation Flow 

With the relationship established between A C and DC fault tests, a test pattern generation 

flow suitable for a logic BIST implementation must be devised. Since the generation of 

an optimal test pattern set is unlikely due to the difficulty of the problem, heuristic 

methods and existing fault simulation and test generation tools are used to produce the 

test set. The concept is to firstly use pseudo-random test vectors for easily detectable 

faults. If the achieved fault coverage is insufficient, then A T P G tools are used to provide 

additional top-up patterns which specially target the remaining faults. 
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Since pseudo-random test patterns are easy to generate on-chip, they are used for easily 

detectable faults. Such patterns are applied using the double-clocking scheme explained 

earlier to achieve AC fault coverage and at the same time provide DC fault coverage as a 

side effect. If the AC fault coverage is considered insufficient after the execution of these 

pseudo-random test patterns, AC deterministic top-up test patterns can be generated by an 

ATPG tool for improved AC fault coverage. Then these AC pseudo-random and AC 

deterministic top-up test patterns are evaluated for DC fault coverage. Again, if the 

achieved DC fault coverage is deemed unsatisfactory, an ATPG tool can be employed to 

generate DC deterministic top-up test patterns for added DC fault coverage level. 

This approach attempts to minimize the need for including these deterministic top-up 

patterns on-chip in the hope of simplifying the design when implemented as a logic BIST 

scheme. To take advantage of the relationship between AC and DC fault testing, all AC 

fault tests are conducted before that of DC faults. Such a strategy attempts to maximize 

the DC fault coverage as a side effect of AC fault tests. Consequently, all AC fault tests 

are detecting not only AC faults, but also DC faults simultaneously. 

For this research, Verilog-XL™ by Cadence® is used for logic simulation to collect the 

stimuli and responses of the IP cores when pseudo-random logic BIST circuit is in 

operation. TetraMAX™ ATPG tool by Synopsys® is used as both the ATPG and fault 

simulation tool, although any ATPG and fault simulation tool can be used for this 

purpose. TetraMAX™ is able to generate AC test patterns based on the double-clocking 

scheme and report fault coverage numbers for the same method. Figure 11 shows that 
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double-clocked pseudo-random test patterns are capable of detecting many AC faults 

within the initial test patterns as indicated by the initial steep incline in the fault coverage. 

It also shows the test coverage improvement that deterministic top-up test patterns 

provides above that of the pseudo-random test patterns. After the test coverage 

achievable by the pseudo-random test patterns begins to saturate, deterministic top-up test 

patterns can be applied to boost up the test coverage to a desirable level. 

AC BIST with TopUp Test Coverage 

Deterministic 
- Top-up Patterns 

Pseudo-
Random Test 

Patterns 

i i i i i i 
0 1 2: 3 4 5 6 7 

Number of Patterns 
x 10' 

Figure 11. Pseudo-random plus deterministic pattern coverage plot 

This suggests that pseudo-random test patterns are suitable for the first phase of testing to 

detect the easily detectable faults. After the fault coverage saturates, the pseudo-random 

test patterns are no longer effective at fault detection. This is where the additional top-up 

test patterns become important in boosting up the fault coverage to a desirable level. It is 
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possible to truncate the number of pseudo-random test patterns once they do not provide 

significant fault coverage improvement. This effectively eliminates bombardment of the 

IP core with more than necessary pseudo-random test patterns. Then, the remaining 

faults can be detected by the deterministic top-up test patterns. The point of truncation is 

at the IP core designer's discretion based on the target fault coverage and available test 

time on ATE's . 

A conceptual view of the test pattern generation flow is shown in Figure 12. The 

particulars of this flow are explored in Figure 13. 

A C fault testing with double-clocked 
pseudo-random test patterns 

A T P G tool generates deterministic A C test patterns 
targeting for the A C faults remaining after application 

of the A C pseudo-random test patterns above 

A T P G tool generates deterministic D C test patterns 
targeting for the D C faults remaining after 

application of all the A C test patterns above 
(Exploit connection between A C / D C faults) 

Figure 12. Conceptual view of A C / D C test pattern generation flow 

Figure 13 is the detailed overall flow diagram for the test pattern generation flow. First, a 

logic simulation is performed on an IP core with pseudo-random test patterns according 

to the double-clocking scheme. The responses are collected and recorded for further 

Start 
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processing. These AC pseudo-random test patterns, along with a complete AC fault list 

containing all AC fault sites of the IP core, serve as inputs to a fault simulation tool to 

evaluate the AC fault coverage of the pseudo-random test patterns. The undetected AC 

faults are recorded as a partial AC fault list for later use. If the AC fault coverage is 

insufficient at this stage, ATPG on the IP core is performed with the partial AC fault list. 

This step generates deterministic top-up test patterns targeted for the remaining AC faults 

not detected by the pseudo-random AC patterns. 

Next, the AC pseudo-random test patterns and a complete DC fault list containing all DC 

fault sites of the EP core, along with the AC deterministic top-up test patterns, if 

applicable, are fed into a fault simulation tool for DC fault coverage evaluation. The 

undetected DC faults are again recorded as a partial DC fault list. If the DC fault 

coverage is unsatisfactory, ATPG is performed on the EP core with the partial DC fault 

list obtained earlier. Consequently, DC deterministic top-up test patterns are generated to 

detect the remaining DC faults. 

For an on-chip approach of this test pattern generation flow, the AC pseudo-random test 

patterns must be generated pseudo-randomly on-chip. If applicable, the AC and/or DC 

deterministic top-up test patterns must be encoded on-chip somehow to be regenerated 

on-chip on demand. This is the subject of Chapter 3. 
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Figure 13. Detailed view of A C / D C test pattern generation flow 
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2.6 Fault Coverage Results 

In order to evaluate the performance of the test pattern generation flow, fault coverage 

results of a number of IP cores are collected and analyzed. Each core is taken through the 

procedure outlined in Figure 13 to determine the fault coverage achievable by the test 

pattern generation flow. For comparison purposes, fault coverage results are collected 

assuming that all Pi's and PO's are directly accessible by the ATE with no restriction. 

This situation implies the ATPG tool is allowed to generate the best suitable test patterns 

to attain the highest fault coverage results with least amount of test patterns. These are 

labeled as the "ATPG unconstrained" entries. These entries represent the best attainable 

fault coverage results under ideal test conditions. 

However, real-time toggling of Pi's and PO's on EP cores may be difficult to realize in a 

logic BIST scheme. Therefore, all Pi's of each EP core are initially assumed to connect to 

the logic state 0 during test to simplify the Pi's signaling. For the same reasons, all PO's 

of each EP core are not strobed during test. Consequently, each EP core is subjected to 

fault coverage analysis by the ATPG tool under the above stated conditions. This 

resembles the situation in which EP core is buried in the SoC design such that direct 

controls and examinations of each PI and PO ports are cumbersome, if not impossible. 

These results serve as reference points for the performance of the logic BIST test flow 

proposed in Section 2.5 since each EP core is tested under the similar external test 

conditions. These results are displayed as the "ATPG constrained" entries for each EP 

core. 
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Furthermore, all IP cores are initially tested with 65535 A C pseudo-random test patterns 

to provide preliminary A C fault coverage assessments while keeping the A C logic 

simulation time within reasonable ranges. In practice, the number of A C pseudo-random 

test patterns can be truncated once they are analyzed to provide limited A C fault coverage 

improvements. Moreover, the A C pseudo-random test pattern count, in combination with 

the scan chain length of an IP core, contributes to the duration that the IP core spends on 

an ATE. This consideration must be taken into account when determining the number 

A C pseudo-random test patterns to deliver to an IP core for A C fault testing. Table 1 

summarizes the definition of each label entry used throughout this section. 

Table 1. Label entry descriptions 

L a b e l E n t r y Descript ion 

A C A T P G unconstrained Targets A C fault coverage. Pi's and PO's are controllable and 
observable by A T P G tool respectively. Shows the highest fault 
coverage achievable by A T P G tool under ideal test conditions. 

A C A T P G constrained Targets A C fault coverage. During testing, Pi's are connected to 
constant logic state 0; PO's are not strobed. Serves as a reference point 
when IP core is solely tested by A T P G tool generated test patterns. 

A C pseudo-random Targets A C fault coverage. During testing, Pi's are connected to 
constant logic state 0; PO's are not strobed. Test patterns are generated 
pseudo-randomly by the logic BIST circuitry. 

A C pseudo-random + Det. Targets A C fault coverage. Test conditions are similar to that of A C 
pseudo-random. Top-up test patterns are generated by A T P G tool 
according to test pattern generation flow in Section 2.5. 

D C A T P G unconstrained Targets D C fault coverage. Pi's and PO's are controllable and 
observable by A T P G tool respectively. Shows the highest fault 
coverage achievable by A T P G tool under ideal test conditions. 

D C A T P G constrained Targets D C fault coverage. During testing, Pi's are connected to 
constant logic state 0; PO's are not strobed. Serves as a reference point 
when IP core is solely tested by A T P G tool generated test patterns. 

D C pseudo-random Targets D C fault coverage. During testing, Pi's are connected to 
constant logic state 0; PO's are not strobed. A C test patterns are 
employed according to Section 2.5. 

D C pseudo-random + Det. Targets D C fault coverage. Test conditions are similar to that of D C 
pseudo-random. Top-up test patterns are generated by A T P G tool 
according to test pattern generation flow in Section 2.5. 

Fault coverage results were all obtained using the TetraMAX A T P G and fault 

simulation tool by Synopsys®. The following plots provide bar chart comparisons of the 
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fault coverage results obtained from the test pattern generation flow introduced in Section 

2.5. Detailed numerical fault coverage results are given in Appendix A while the 

graphical plots of the results are included from Figure 14 to Figure 17. The DC and AC 

fault coverage results were obtained from TetraMAX™. It should be noted that each tool 

has some limitations in algorithms and implementation. Therefore, different results may 

be observed with different ATPG and fault simulation tools. 
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Figure 14. Fault coverage result plots 1 
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Figure 17. Fault coverage result plots 4 

In general, the proposed test pattern generation flow achieves comparable performance to 

that of the "ATPG constrained" entries. Namely, fault coverage results of the "pseudo

random + Det." entries were equal to, or even exceed, that of the "ATPG constrained" 

entries. This supports the effectiveness of the proposed logic BIST test flow with 

reduced ATE test data volume. Such a claim is apparent with dramatic decreases in 

deterministic test pattern count between the "ATPG constrained" and "pseudo-random + 

Det." entries in each IP core. Consequently, interactions between ATE and chip are 
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decreased to reduce the ATE memory and speed burdens. These reduced ATE 

requirements would translate into the immediate benefit of lowering the costs of 

manufacturing tests. 

2.7 AC Fault Coverage Improvement 

As illustrated in the fault coverage results of Section 2.6, some IP cores such as ITC'99 

b04, suffer from low AC fault coverage. This can be observed by large differences in AC 

fault coverage between the "AC unconstrained" and "AC constrained" results. The cause 

can be traced back to the constraints that all Pi's are tied to logic 0 when the IP cores are 

being tested by the logic BIST circuitry as explained in Section 2.6. This inevitably 

limits the capability of the IP cores to initiate transitions to the inputs. This has negative 

effects on AC fault coverage. To compensate for this effect, an extra circuit can be built 

at each input port of the IP cores to allow input signal transition activities and is 

illustrated in Figure 18. Note that all IP cores are registered at the inputs and outputs 

according to Section 4.1. 
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IP Core 
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Figure 18. A C fault coverage improvement circuitry 
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With the addition of a SDFF and a MUX, input transitions are facilitated when the 

ACTEST pin is set to logic 1 throughout AC fault testing. Opposite values in the SDFF's 

imply transitions to the downstream combination blocks. This signal is set to logic 0 

throughout DC fault testing to allow DC fault detection in the functional paths; it also 

should be kept at logic 0 when the IP core is in functional mode. This technique can be 

employed whenever AC fault coverage suffers significantly from constrained inputs. 

Analyses have been conducted on rTC'99 b04 IP core implemented with these extra 

circuits. Significant AC fault coverage improvements are observed as depicted in Figure 

19 and numerical values are given in Appendix A. This addresses any perceived 

limitations of the approach described in this chapter. 
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Figure 19. Improved fault coverage plot 
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CHAPTER 3 LOGIC BIST HARDWARE DESIGN 

With the arrival of SoC design era, IP cores are often purchased from third party vendors. 

It is desirable to have each IP core equipped with a self-contained test methodology 

capable of being integrated seamlessly into any TAM. Such a requirement encourages an 

on-chip circuitry which automatically tests the IP and returns with a pass or fail result, or 

perhaps diagnostic information about any faults encountered. Typically, the on-chip 

solution takes the form of a built-in self-test (BIST) logic circuit. The concept of BIST is 

widely recognized and used in memory testing due to the structural regularity of memory. 

However, the utilization of BIST in logic circuits has not drawn much interest due to the 

inherent complexity of logic circuits, especially sequential circuits with large number of 

Pi's and PPI's [16]. These circuits often require specially-crafted deterministic test 

patterns which are difficult to generate on-chip. 

The goal of this research is to implement a logic BIST approach that automatically 

generates and applies the AC and DC test patterns from Section 2.5. The standard BIST 

approach is to use a pseudo-random pattern generator. However, the approach in this 

research also requires a set of deterministic top-up test patterns. This chapter explains the 

logic BIST circuit components that are responsible for pseudo-random pattern generation, 

response compaction, control, and deterministic pattern generation. A novel approach to 

deterministic pattern generator is described. The area overhead incurred by these logic 

BIST circuitry are presented. The area measurements are collected from the Design 

Compiler™ logic synthesis tool by Synopsys®. 
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These results are collected using standard benchmarks from ITC'99 IP cores as 

mentioned in Chapter 2. Further, IP cores designed in-house at UBC for the development 

of a simple network processor have also been used for this purpose. Each of these IP 

cores has a single scan chain and is registered at the input and output ports for the reasons 

outlined later in Section 4.1. 

3 . 1 Pseudo-Random Pattern Generation 

In order to simplify the logic BIST hardware design, a linear feedback shift register 

(LFSR) is implemented to produce the pseudo-random bit patterns. Figure 20 shows a 

canonical form of the type 1 LFSR with exclusive OR (XOR) feedback connections; 

exclusive NOR (XNOR) feedbacks can also be used for implementation. 

ho 0 

• • <— 

h, 6 

DFF 
X 0 

DFF 
Xi 

DFF 
X 0 

DFF 
Xi 

hn-3<x> hn-2Q hn-iQ 
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DFF 
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DFF 
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Figure 20. Canonical form of n-bit type 1 LFSR 

The feedback tap locations, indicated by the ho to h„.i coefficients, are strategically 

selected and represents a primitive polynomial that causes the n-bit LFSR to traverse all 

2n-l possible states. The one particular missing state is either the all-zero or all-one state, 

depending on whether XOR or XNOR is used in the feedback taps, to prevent a lock-up 

situation. Such a sequence through 2n-l states is called a maximum-length sequence [8]. 
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For mathematical analysis, an LFSR of this type can be conveniently represented and 

manipulated by matrix algebra with modulus-2 addition. If XOR gates were used to 

implement the LFSR, addition operations must comply with the XOR logic. Since there 

are no carry or borrow operations in XORing arithmetic, the results are 0+0=0, 0+1=1, 

1+0=1, 1+1=0. Conversely, if XNOR gates were used for the LFSR implementation, 

addition must comply with the XNOR operation. Again, with no carries or borrows, 

0+0=1, 0+1=0,1+0=0, 1+1=1. Assuming the current LFSR state is represented by: 

X(t) = [x 0(0,X 1(0,-,'XB_ 2(0,X I I_ 1(r)] (2) 

then, the next LFSR state can be calculated as a product of the matrix multiplication: 

X(t + l) = X(t)Tc (3) 

where the transition matrix, T c, is an nxn binary matrix and is defined as: 

l 0 0 0 

h 0 1 0 0 

K-3 0 0 1 0 

K-l 0 0 0 1 
0 0 0 0 

(4) 

The variables ho to hn.i in the T c matrix specify the feedback tap connections. When 

there is a connection to the feedback network, the variable corresponding to the feedback 

connection is assigned a binary value of 1. On the other hand, the variable is assigned a 

binary value of 0 if the corresponding feedback connection does not exist. Each 
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multiplication of the LFSR with T c corresponds to a right shift of the LFSR. As a result, 

the operation of the LFSR can be fully predicted by such matrix algebra. 

Bits produced at the Xn.i position are fed into the scan chain of the IP core as scan 

patterns. The implemented LFSR for pseudo-random pattern generation consists of 32 

bits and employs XNOR gate with the feedback taps located at: 

X31+X21+Xl+1 " (5) 

In other words, there are 4 feedback tap locations and they are located at h3i, h2\, hi and 

ho. The choice of implementing a 32-bit LFSR for pseudo-random test pattern generation 

is based on its capability of traversing 232-l states before it revisits any one of the 

previous states. This ensures the LFSR does not wrap around and produces the same 

pseudo-random patterns before completion of the logic BIST circuitry operation. In 

order for a 32-bit LFSR to traverse all 232-l states, the aforesaid feedback tap 

configuration is only one of the many possible feedback tap configurations. 

3.2 Response Compaction 

When an IP core is being tested, the results being shifted out from the IP core scan chain 

must be collected for verification against the correct results. However, it is impractical to 

store all the response bits for later inspection nor is it acceptable to send the response bits 

off-chip for verification in the context of a logic BIST implementation. Both of these 

methods require either large amount of storage or high ATE bandwidth. Therefore, a 

circuit is implemented to compact the response bits into a signature which is compared, at 
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the end of logic BIST operation, against that obtained from logic simulation. This circuit 

is also known as a Single-Input Signature Recognizer (SISR) when it accepts a single 

response stream from the IP core under test. Similarly, it is known as a Multiple-Input 

Signature Recognizer (MISR) when it accepts multiple response streams from multiple 

scan chains. 
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Figure 21. Canonical form of n-bit type 2 LFSR 

Another type of LFSR serves as the basis of the compaction circuit. Figure 21 shows the 

canonical form of the circuit generally known as a type 2 LFSR. Similar to the type 1 

LFSR, matrix algebra can also applied to this type of LFSR. The nxn transition matrix, 

T c, for type 2 LFSR is defined as: 

T. -

0 l 0 0 0 
0 0 1 0 0 

0 0 0 1 0 
0 0 0 0 1 
K hx K • 

(6) 

A cyclic redundancy check (CRC) is implemented for the compaction task. This scheme 

is widely used in the field of telecommunications for error detection [8]. The 

implementation is a CRC-32 design based on the type 2 LFSR with feedback tap 
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locations selected according to cyclic code theory in telecommunications. The 

characteristic polynomial selected for the feedback tap location is: 

X32 + X26 + X 23 + X 22 + X16 + X12 + Xn + X10 + Xs + X1 + Xs + X* + X2 + Xx +1 
(7) 

In other words, the LFSR consists of 32 bits and has 14 feedback tap locations. These 

feedback taps are located at h26, h23, h22, h i6 , h i 2 , hn, h i o , hg , h7, h s , lu, h2, h i , and ho. The 

response bits from the IP core scan chain undergo an XOR operation with Xn_i before 

being fed into the Xo DFF as shown in Figure 22. 
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Figure 22. Response compaction circuit design 

This CRC circuit simply performs polynomial modulus-2 division. The characteristic 

polynomial, implemented as the feedback tap locations, acts as the divisor while the bits 

received from the IP scan chain compose the dividend. In each clock cycle, this CRC 

circuit divides the characteristic polynomial into the IP response bits and stores the 

remainder in the LFSR state. This remainder serves as the signature of the test and is 

compared against the signature derived from simulation to determine the IP core 

integrity. This circuit is able to calculate the signature in a real-time fashion; it is capable 

of performing the division using the serial bit stream from the IP scan chain. In effect, as 
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the last bit from the IP core enters the CRC circuit, the signature already resides in the 

current LFSR state and thus results of the IP core test is available immediately after the 

last response pattern is scanned out from IP core. 

3.3 Controller 

The logic BIST controller is responsible for coordinating the operation between the IP, 

pattern generation block and response compaction block. Figure 23 provides a 

conceptual relationship of these four blocks. 
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Figure 23. Overview of logic BIST design 

The controller is an FSM and is responsible for gating the system clock to the IP during 

test. It is also responsible for keeping count of number of bits and number of patterns 

being shifted into the IP. This is necessary for proper sequencing of the scan enable 

signal to switch the IP between normal and test modes as required by any scan design. 

Further, it controls the enabling of the pattern generation and response compaction 

43 



blocks. The controller has a minor difference in operation when it is targeting for DC 

versus AC faults. 

3.3.1 Controller for DC Faults 

When the controller is used for DC fault detection, it only supplies one system clock 

cycle to the IP core during normal mode, after shifting the test patterns into the scan 

chain. This conforms with the clocking for DC fault detection with scan designs. Figure 

24 shows the timing diagram of the controller when detecting DC faults. 
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Figure 24. D C fault timing diagram 

Since there is only a single system clock cycle applied to the IP core during normal 

mode, the outputs at one level of FF's are propagated through only one block of 

combinational logic as illustrated in Figure 25. Then the responses are captured and 

ready for shifting out of the scan chain in order to be analyzed. 
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Figure 25. D C pattern propagation 

3.3.2 Controller for AC Faults 

When the controller is used for AC fault detection, it applies two consecutive at-speed 

system clock cycles to the IP core during normal mode surrounded by test modes 

[27][20] [3]. They are called double-clocked AC test patterns in this research. Figure 26 

shows a timing diagram of the controller when detecting AC faults. 
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Figure 26. A C fault timing diagram 

Since there are two consecutive at-speed system clock cycles applied to the IP core 

during normal mode, the outputs at one level of FF's are propagated two levels 

downstream through two blocks of combinational logic as shown in Figure 27. This is 
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often called the broadside method [27], although it is referred to as the double-clocking 

method in this thesis. 

First level propagation Second level propagation 

Figure 27. A C pattern propagation 

As mentioned in Chapter 2, an AC fault requires two patterns to initiate a desired signal 

transition. Before the first system clock hits in normal mode, FF bank 2 has certain bit 

pattern created by the scan chain shifting and serves as the first vector for combinational 

block 2. After the first system clock in normal mode, FF bank 2 captures outputs from 

combinational block 1 and serves as the second pattern for combinational block 2. When 

the second system clock cycle in normal mode hits, combinational block 2 outputs are 

captured in FF bank 3 and ready for shifting out for examination. This scheme relies on 

the circuit's combinational logic, namely combinational block 1, to produce the second 

pattern as required for AC fault testing. Therefore, the logic BIST circuit generates 

pseudo-random vectors that will be double-clocked to serve as the AC test. 
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3.4 Deterministic Pattern Generation 

As an integral part of the test pattern generation flow proposed in Section 2.5, 

deterministic pattern generators are required to produce the deterministic top-up test 

pattern to boost the fault coverage up from that achieved by the pseudo-random test 

pattern set. This section investigates the generation of deterministic test patterns on-chip. 

This has always been a difficult issue and often hinders the widespread acceptance of 

logic BIST. In this chapter, possible approaches for on-chip test vector generation are 

investigated. Furthermore, a method based on using LFSR's and matrix algebra is 

proposed to overcome the shortcomings which exist in the other approaches. 

3.4.1 On-Chip Deterministic Test Pattern Generation Approaches 

There are several methods that can be used when generating deterministic test patterns 

on-chip. All of these methods have a common goal of reproducing a pre-defined set of 

test patterns. They mainly vary in how test pattern bits are stored and represented. 

Memory storage, compaction, and compression are discussed. 

3.4.1.1 Memory 

This is probably the most intuitive and simple method to generate deterministic test 

patterns on-chip. The pattern bits are simply stored in read-only memory (ROM) which 

is designed and implemented at design time. During operation, a controller with address 

decoding capability simply fetches the test pattern bits by performing memory reads and 

feeds the bits to the IP core under test. Test responses are collected from the IP core and 
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compacted by a response compaction block. Figure 28 shows logic BIST with use of 

memory. 
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Figure 28. Memory-based deterministic pattern generator 

The advantage of this approach is the simplicity in implementation. Designers are 

required to decide on the test patterns and design a ROM block to store these test pattern 

bits. Then the entire design can be sent for fabrication. 

With this method, it minimizes the coupling between the ATE and the IP testing since 

only minimal interaction is required; thus reduction on ATE requirements for testing high 

performance chips can be achieved. However, there are several disadvantages. One 

obvious drawback is the correctness of ROM contents after fabrication. It is quite 

possible that defective ROM invalidates the entire deterministic test vector generation 

process and causes misleading results. A failure reported by logic BIST may be caused 

by incorrect test patterns due to defective ROM contents. As a result, a memory BIST 

and bit error correction for the ROM may be necessary to ensure the ROM integrity. 
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Therefore, memory testing, diagnosis and repair would be required in a ROM 

implementation. 

3.4.1.2 Compaction 

This method involves generating non-exact test patterns on-chip which achieve fault 

coverage comparable to that of the exact test patterns. It attempts to simplify the 

hardware involved by sacrificing the correct generation of some bits in test vectors. 

These non-exact bits are the don't care bits, usually represented by X, which exist in most 

of the test patterns generated by ATPG tools. 

One implementation is the bit-flipping algorithm [35] [18] [17]. It relies on an LFSR to 

produce a stream of bit patterns. This bit stream is then compared against the test pattern 

bits generated by the ATPG tool to determine bits with opposite values. These bits, 

identified by the pattern and bit counts, are the ones which must be forced to the opposite 

logic values (flipped). The don't care bits generated by the ATPG tool are ignored and 

do not require flipping to the opposite values. In order to flip the LFSR generated bits 

appropriately, a combinational logic block is required to generate a signal based on the 

pattern and bit counter. This signal represents whether current bit requires to be flipped. 

Figure 29 depicts the overall structure of this method. 
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Figure 29. Bit-flipping deterministic pattern generator 

The advantage of this method is the simplicity of implementation. It merely requires a 

comparison between the LFSR generated bit sequence and that of the test patterns. Then 

the bit-flipping combinational logic can be automatically generated based on the pattern 

and bit counts. A probabilistic analysis claims that the output of LFSR which feeds an IP 

core scan chain has to be modified only at a few bit positions in order to transform the 

pseudo-random patterns into a complete test set [35] [18]. 

Nevertheless, the robustness of this algorithm may be compromised when half of the 

LFSR generated bits mismatch the ATPG tool generated deterministic test pattern bits. 

In this case, the XOR gate in Figure 29 can simply be replaced by an XNOR gate to 

reduce logic. Furthermore, size of the bit-flipping combinational logic expands as the 

number of bits flips increases. As a result, this method may not be as robust as claimed 

in [35][18]. 
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3.4.1.3 Compression 

This method attempts to minimize the volume of test data from the ATE to the chip. By 

sending compressed test data to each IP core and providing hardware to decompress the 

test data, the ATE bandwidth requirement is expected to be reduced [34]. Such a method 

involves implementation of a decompressor to decode the test data. Figure 30 shows an 

overview of the design. 
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Figure 30. Compression-based deterministic pattern 

The coupling between the ATE and the core still exists to some extent although the test 

data volume is reduced. It is possible to store the exact, compressed test data in an on-

chip ROM to minimize the involvement of ATE. By introducing the use of a ROM, the 

drawbacks of using memory mentioned in Section 3.4.1.1 are encountered. Furthermore, 
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the degree of compression possible is always limited for a variety of reasons. If only 

minimal compression can be achieved, the main purpose and advantages of this method 

are defeated. 

3.4.2 LFSR-Based Deterministic Pattern Generation Principles 

This section describes an LFSR-based deterministic pattern generation method which 

utilizes matrix algebra to determine the feedback tap locations of a LFSR. This algorithm 

is based on the work in references [29] [7]. With properly specified feedback tap 

locations, the desirable patterns can be regenerated in consecutive clock cycles. The 

algorithm initially assumes an n-bit type 2 LFSR illustrated in Figure 21. 

Recall that the next state of type 2 LFSR can be calculated by matrix algebra according to 

Equation 3: X(t+1) = X(t)Tc. Consider a transformation of X(t) to X'(t) with an arbitrary, 

invertible nxn matrix A according to the relationship: 

X'(t) = X(t)A (8) 

then: 

X\t + l) X(t + l)A (9) 

X'(t + 1) X(t)TcA according to (3) 

X'(t + l) X\t)A~lTcA according to (8) 

X'(t + 1) X'(t)Ts (10) 
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By observation, Equation 3 and Equation 10 have similar forms. This implies the next 

state of the LFSR, X'(t+1), can be controlled if the LFSR feedback connections are 

implemented according to that specified by T s. Further, note that nxn matrix A is 

arbitrary and can be chosen such that its rows correspond to the desired deterministic 

patterns. 

The LFSR feedback connections can be read off from the T s matrix. The input of j * FF is 

calculated by exclusive-or (XOR) operation of the i t h FF outputs if the corresponding ty 

entries in T s matrix equal to 1. Input of the j t h FF is connected to ground if all entries in 

the j * column of T s matrix equal to 0. Figure 31 illustrates the feedback tap connections 

of a 4-bit LFSR implied by a 4x4 T s matrix. 

0 1 0 1 
0 1 1 0 
0 1 0 0 
1 1 0 1 

X 2 H X 3 M 

Figure 31. Deterministic LFSR implementation 

If Equation 10 were modified such that X'(t) = A, then Equation 10 becomes: 

X'(t +1) = X'(t)T5 = AA~lTcA = ITCA = TCA (11) 
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where I is an nxn identity matrix with all entries set to 0 except along the diagonal. 

Considering the definition of the nxn T c matrix and principles of matrix algebra, the 

quantity X'(t+1) merely represents a transformed version of A with all rows shifted up by 

one row. This is precisely the desired behavior which the LFSR in one clock cycle later 

should produce: the next desirable deterministic pattern corresponding to the next row in 

the nxn matrix A. 

One of the issues of this approach is that the implementation of such a pattern generator 

may require a large number of FF's. Analysis was performed on this algorithm to 

observe its behaviour when the number of bits and number of test patterns increase. 

Figure 32 is a 2-D plot of a slice of the worst-case cost function, in terms of number of 

FF's, against the number of patterns or the number of bits in a pattern. The 3-D plot of 

simultaneous variations in the number of patterns and the number of bits in a pattern is 

given in Figure 33. It is observed that the number of FF's required for the LFSR 

implementation is linear with the number of test patterns when the number of bits per 

pattern is fixed. A similar observation is seen with variation in the number of bits per 

pattern while the number of patterns is kept constant. This suggests that the cost, 

measured by the number of required FF's, for implementing an LFSR-based deterministic 

pattern generator is directly proportional to the variations in the number of patterns and 

the number of bits per pattern. As a result, the number of deterministic patterns to be 

generated should be kept small in an effort to minimize the amount of hardware involved 

in the deterministic pattern generator. 
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3.4.3 LFSR-Based Deterministic Pattern Generation Pitfalls 

With the algorithm introduced in Section 3.4.2, the LFSR feedback tap locations capable 

of generating deterministic patterns can be calculated conveniently. However, further 

consideration of this algorithm reveals a serious flaw. The deterministic test patterns are 

fed into the IP core scan chain with hundreds of scan elements which corresponds to the 

length of each test pattern. This length, n, is represented by the width of the A matrix. 

According to the algorithm, the LFSR length is at least as long as the width, n, of the A 

matrix. This implies the LFSR length is as long as, if not longer than, the IP scan chain 

length. Such a property is undesirable because it potentially leads to large area overhead. 

Further, the algorithm requires the A matrix to be a square matrix which implies the 

number of rows, m, equals the number of columns, n. Since rows in matrix A represent 

deterministic test patterns, the above requirement implies the patterns must be appended 

with dummy bits when pattern count, m, mismatches the scan chain length, n. Because 

these deterministic patterns are assembled by ATPG tools, designers have limited control 

over the pattern count given a target fault coverage. As a result, the above requirement 

produces an inefficient implementation of the LFSR-based deterministic pattern 

generator. The length of such LFSR thus becomes at least max(m, n) if the algorithm 

were to be strictly followed. 

There is a possible argument that the aforementioned issues can be alleviated, to some 

extent, by implementation of multiple scan chains in the IP core. Such inclusion of 

multiple scan chains affects vertical splitting of matrix A into multiple matrices. Figure 
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34 shows an example of splitting the A matrix up into three matrices a, b, and c 

n bits 

m A 
vectors 

n/3 bits n/3 bits n/3 bits 

m a b c 
vectors 

corresponding to IP core implemented with three scan chains of length n/3 each. 

Figure 34. Vertical test pattern split 

There are situations where the number of scan cells is approximately three times as many 

as the number of patterns. In terms of the A matrix, n ~ 3m. As a result of having 

multiple scan chains, the three resultant matrices have dimensions of n/3, which 

approximates m. This satisfies the requirement of having square matrices for 

deterministic patterns. 

Unfortunately, this solution has the cost of having to implement one LFSR for each scan 

chain. Further, the EP synthesis flow is disrupted as a consequence. Designers must 

estimate the number of patterns, m, ahead of synthesis in order to decide on the number 

of scan chains to be inserted for the design. Unfortunately, such estimation is not always 

easy as it is often difficult to guess without gate-level synthesis of the EP core. As a 

result, this approach can potentially cause unnecessary iterations on the design flow and 
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may have negative consequences on the design schedule. Moreover, it is usually not a 

good approach to over-constrain the design based on the test strategy used; otherwise, the 

reusability of the IP cores can be compromised. 

In cases where the number of patterns, m, exceeds the scan chain length, n, it is possible 

to partition the number of patterns, m, such that each partition resembles the length of the 

scan chain. Figure 35 shows an example of dividing the matrix A into three sections of a, 

b, and c. Similar to earlier example, the resultant matrices a, b, and c are divided such 

that square matrices are produced with n ~ m/3. 

n bits 
n bits 

m 
vectors 

m/3 
vectors 

m/3 
vectors 

m/3 
vectors 

Figure 35. Horizontal test pattern split 

This approach treats the three matrices a, b, and c as separate matrices and each requires 

an independent LFSR implementation. Each LFSR is responsible for generating the 

deterministic patterns specified in each matrix. This approach does not require 

unnecessary iterations to the design flow since the deterministic patterns are divided in 

accordance to the scan chain length n. Therefore, a priori estimation of the deterministic 

pattern count is unnecessary. As a result, the scan chain design of IP core is not 
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constrained by the test strategy. However, if the bits per pattern n should become too 

large due to lengthy scan chain, this scheme suffers from implementation of long LFSR 

length. Again, this is due to the fact that LFSR length is at least as long as the larger of 

the pattern matrix length and width dimensions. 

In order to address the above mentioned issues, a deterministic pattern partitioning 

scheme is introduced in Section 3.4.4. This approach combines the above two methods 

discussed in this section to eliminate their pitfalls. 

3.4.4 Improved LFSR-Based Deterministic Pattern Generation 

In order to facilitate robust application of the algorithm introduced in Section 3.4.2 for 

calculating the feedback taps, a scheme is proposed to partition the deterministic patterns 

represented in matrix A. Such a scheme eliminates the issues mentioned in Section 3.4.3; 

it also guarantees robustness regardless of the scan chain length n and pattern count m of 

the deterministic pattern set. Moreover, the length of the resultant LFSR only ranges 

from \ 4n ] to 2\ 4n 1 inclusive. The schemes in Section 3.4.3 require the LFSR length to 

range between n to 2n-2— in the first scheme; the second scheme requires the LFSR 
m 

m 
length to range between m to 2m -2—. 

n 

In the proposed scheme, each row in matrix A representing a single pattern is considered 

as a matrix. Therefore, m matrices are formed from a deterministic pattern set of m 
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patterns. Each of the m patterns is divided into segments of length [ yfn ~|. Figure 36 

depicts the partitioning of a deterministic pattern set in a generalized notation. 

Figure 36. Deterministic pattern set segmentation 

Figure 37 shows a numerical example of partitioning a 4-pattern deterministic set for an 

IP core with a scan chain length of 9. Four 3x3 matrices are formed as a result. 
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Figure 37. Deterministic pattern set segmentation example 

Each of the matrices is treated independently with the LFSR feedback taps calculated by 

the algorithm outlined in Section 3.4.2. Figure 38 shows how the feedback taps for the So 

matrix is calculated. 
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Figure 38. Transition matrix calculation 
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The LFSR feedback taps would be implemented as depicted in Figure 31, according to 

the T s matrix in Figure 38. Each subsequent matrix is calculated in a similar fashion, 

yielding one feedback tap configuration each. Consequently, there is a total of 3 

feedback tap settings. Setting So corresponds to feedback tap configuration for pattern 0 

and similar for the latter. When setting So is selected, segments for pattern 0 are 

produced in the LFSR with each clock cycle. Therefore, the contents of the LFSR must 

be serially shifted into the IP core scan chain before the LFSR is clocked again for the 

next segment. Figure 39 shows a block diagram of the resulting LFSR for a set of 

deterministic patterns. 

Select 

Mode 
Select 

Feedback,—M Feedback Network 

LFSR T̂o Scan 
Chain 

Figure 39. Block diagram of LFSR 

In order to provide smooth transition from one pattern to the next, each matrix is 

appended with the first segment of the next pattern. The reason for having such a 

structure is to ensure the LFSR content is initialized to first segment of next pattern after 

all segments of current pattern are shifted into the IP scan chain. When the next feedback 

tap setting is selected, the first segment corresponding to next pattern already resides as 

the content of the LFSR. As a result, the segment length is determined according to the 

condition exemplified by the pseudo code: 
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if (n> 

segmentLength = [Vn~|+1 
else 

segmentLength = 

This condition ensures that the resultant matrices are as square as possible with the 

capability to hold one extra segment after accommodating all the bits in a single pattern. 

Figure 40 shows the overall structure of the deterministic pattern generator. The pattern 

count serves as the selection control for feedback tap settings. There is a mode selection 

on the shift register to select whether to serially shift contents to the IP core scan chain or 

take the outputs of the feedback block to produce the next segment. 

Bit Counter 

Deterministic Pattern Generator 
Scan Enable 

Gated Clock 

Controller K=> Pattern Counter 

Mode fl 

Linear Feedback Network 

3 Shift Register 
Scan 

PatterrLJ 

Response Compactor 
IP Response 
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IP Core with 
Scan Chain 

Figure 40. Proposed LFSR-based deterministic pattern generator 

The reason that LFSR ranges up to 2[ 4n 1 is due to the matrix inversion process. 

Invertible matrices must be square, and linearly independent for all rows. Linear 

63 



dependency implies a row can be formed by linear combination of any other rows in the 

matrix [2]. Unfortunately, it is impractical to force the segments to be linearly 

independent from one another since they represent deterministic test pattern bits specified 

by the ATPG tool. When linear dependency exists, a new column is appended to the 

right side of the matrix to eliminate the linear dependency. Figure 41 serves as an 

example for such a process. 
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R2 
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Figure 41. Matrix linear dependency elimination example 

As seen in the figure, R2 of matrix A is a linear combination of Ro and Ri (modulus-2 

addition). In order to break the linear dependency, a new column is added with a 1 in R2 

to make it linearly independent from Ro and Ri. Since the matrix must be square in order 

for inversion, a new row R3 is added with a 1 in the third column to again ensure linear 

independency with other rows. Such a matrix is now invertible with the addition of one 

extra column which translates into expansion of LFSR length by one. In the worst case, 

all rows in the matrix are linear combinations of the first two rows. Consequently, the 

LFSR length ranges up to (T 4n 1+1) + (T 4n 1+1) - 2 = l\ yjn 1. 
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3.5 Pattern Generator Hardware and Area Overhead 

In order to facilitate the calculation for T s matrices according to the algorithm described 

in Section 3.4.4, a computer program was implemented. This program takes the 

deterministic pattern set as input and then segments the pattern set as described. It 

produces the RTL (Verilog and/or VHDL) code that specifies the LFSR with all the 

calculated feedback settings. Since the controller design only requires minor parametric 

modifications according to the deterministic pattern set specifications, it is simply 

attached to the LFSR. Finally, these blocks are synthesized together to produce gate-

level netlist. Therefore, the LFSR calculation and coding process are completely 

automated once the deterministic pattern set is available from the ATPG tool. 

Furthermore, such deterministic pattern generator can be easily integrated with the logic 

BIST circuitry to execute the test flow outlined in Section 2.5. 

The advantages of this scheme are its simplicity in implementation and capability of 

being automated. Also, the required number of FF's only ranges from [-<Jn~\ to 2[yfn 1. 

However, this scheme also has some disadvantages. One major concern is the amount of 

hardware involved in the implementation of the feedback tap configurations; one 

configuration is required by each pattern. This is partially justifiable. As the number of 

patterns m increases, the total number of bits to be reproduced (mxn) increases 

accordingly. It is unreasonable to demand the hardware implementing such generator to 

remain fixed while the number of bits to be reproduced increases. Thus, the hardware 

growth induced by the increase in the total number of bits in the deterministic pattern set 

is deemed necessary and reasonable. 
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The area overhead contributed by the pseudo-random and deterministic pattern 

generation circuitry were determined with report_area command in the Design 

Compiler™ synthesis tool by Synopsys®. Detailed area measurements are given in 

numerical format in Appendix B. 

The graphical plots of the area measurements are displayed from Figure 42 to Figure 45. 

The plots provide area comparisons between the IP cores and the corresponding pattern 

generators. The area of the pattern generators are shown as bar charts to illustrate their 

respective contributions to the total test circuitry area. Also, the number of test patterns 

encoded by each pattern generator is shown in the legend of each plot. 
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Figure 42. Test circuitry area measurement plots 1 
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Figure 44. Test circuitry area measurement plots 3 
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Figure 45. Test circuitry area measurement plots 4 

As seen in the above plots, the area overhead required by the test circuitry are high. For 

the deterministic pattern generators, the area overhead measurements vary from 53.3% 

(HC11) to 1180.3% (ITC'99 b02). From the plots, the area overhead measurements 

appear to be more significant with smaller IP cores with short scan chain lengths such as 

ITC'99 b02. This observation is sensible because each deterministic pattern generator 

includes certain basic components, such as controller and response compactor, which 

occupy certain silicon area irrespective to size of the IP core under test. As a result, the 

deterministic pattern generation circuitry must occupy certain amount of area which may 

deem large relative to the IP core under test. Further, the number of deterministic test 
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patterns has a direct effect on the deterministic pattern generator area. This is apparent as 

more deterministic test patterns translate into more deterministic test bits. In order to 

generate more deterministic test bits, it is reasonable to employ more hardware and 

demand more silicon estate. This is analogous to using more RAM cells to store more 

data bits. 

The AC pseudo-random pattern generation circuitry area overhead measurements suggest 

the AC pseudo-random pattern generation circuitry area overhead vary relative to the size 

of the IP core under test. They range from 9.1% (ITC'99 bl5) to 1786.0% (ITC'99 b02). 

In general, AC pseudo-random pattern generators incur higher area overhead on smaller 

D? cores with shorter scan chain length. This observation is justified because each AC 

pseudo-random pattern generator requires certain minimum amount of silicon area for 

basic components such as controller, pattern generator, and response compactor. This is 

supported by the fact that AC pseudo-random pattern generators occupy relatively 

constant amount of area irrespective to the IP core under test. 

From the above analysis, the test pattern generation flow implemented as logic BIST 

solution is more suitable for large IP cores in order to alleviate the impact of test circuitry 

area overhead to acceptable levels. Also, the number of deterministic top-up test patterns 

plays major role in the area overhead contributions. Therefore, it is desirable to minimize 

the number of deterministic top-up test patterns. This can be achieved by increasing the 

number of pseudo-random test patterns in the logic BIST circuitry in the hope of 

detecting more faults before involvement of the ATPG tool. With less remaining faults 
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in the fault list as input to the ATPG tool, the number of deterministic top-up patterns 

generated should theoretically be reduced. 

Also, the deterministic pattern generator area can be reduced by taking advantage of the 

don't care test bits in the ATPG generated top-up test patterns. Thus, during 

manipulation of the deterministic pattern generator, greater degree of freedom can be 

exploited to produce a possibly simpler design with less complex LFSR feedback 

network connections. Such a reduction in complexity equates to reduction in the overall 

area of the resulting deterministic pattern generator. 

Ultimately, as attempts are made to reduce the role of the off-chip ATE, the amount of 

silicon area devoted to on-chip test infrastructure will increase. With ITRS predictions of 

memory dominating the chip area [12], it is possible to claim some of this area for test 

purposes. In parallel, techniques to further reduce the area of on-chip deterministic 

pattern generators can be investigated. 
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CHAPTER 4 SOC TEST STRATEGY 

One of the most challenging issues in SoC design is to establish the top-level test strategy 

for the fabricated design. In the SoC design paradigm, an IC is developed by integrating 

individual IP cores onto a single chip. Since SoC design promotes reuse of IP cores, they 

are often deployed in various design applications. As a result, IP cores must be designed 

to support various test access mechanisms (TAM) due to different test strategies. In 

order to enhance IP core development and test efforts, standards that encourage a 

common platform for testing are essential. Such a platform is then leveraged to devise a 

TAM which facilitates top-level testing. 

Figure 46 shows an overview of a possible SoC test strategy with the concept of SI P 

introduced in Section 1.1. Depicted this way, the IP cores are a small part of the SoC 

integration process. The key point is that there is a substantial amount of work needed to 

design the general infrastructure for a chip, and in particular the test SI2P. 
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Figure 46. SoC test strategy with SI P 
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This chapter focuses on the design-for-test (DFT) infrastructure needed for SoC design. 

It first explains the importance of input/output (I/O) registers on individual IP cores. 

Then it examines the operation of the PI500 wrapper which acts as the test harness 

around all IP cores. As an illustration, an HC11 core is designed and fabricated with a 

DC logic BIST circuitry, AC logic BIST circuitry, and PI500 wrapper. Lastly, the 

chapter describes the supportive logic, which enables the seamless interface between the 

PI500 wrappers and a particular TAM implementation known as NTMA [21]. 

4.1 Input/Output Registers 

Placing registers at the inputs and outputs (i.e., I/O buffering) for IP cores is a strongly 

recommended practice for the SoC design style [15]. As the size and speed of design 

increase, signals are given shorter time window to propagate from one point to another on 

the silicon. Due to aggressive design goals and complexities, signals must propagate 

through increasingly more stages of system logic within a given time frame. Therefore, 

the increase in risks of designs not capable of fulfilling timing constraints becomes 

inevitable. I/O buffering offers synchronous inputs and outputs to/from an D? core by 

placing FF's at all signals around the core except some special signals such as the system 

clock and reset. Each input signal is connected to the system logic through a FF. 

Similarly, each output signal leaves the system logic by connecting to a FF which in turn 

drives the signal from the IP core. Figure 47 illustrates the concept of I/O buffering. 
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IP Core 

Figure 47. I/O buffering 

The addition of I/O buffers enables localized timing on each IP core such that timing 

budgets can be analyzed and estimated on a core-to-core basis. As a result, specific setup 

and hold times may be established for all inputs and outputs. This is essential for IP core 

development because they are often designed as standalone modules which may interact 

with any other modules not known at design time. Furthermore, it is important for each 

core to achieve timing closure independently. Since they are often reused in many 

designs, their ability to meet and guarantee their own specified timing requirements are 

imperative to overall functionality of the final integrated SoC. These I/O registers act as 

a boundary for an IP core such that any timing error within the IP core can be intercepted 

and isolated from the rest of the system. Consequently, timing delays occurring in one IP 

core does not affect the timing of another. This makes the SoC design style manageable 

and predictable because timing related issues can be identified at early stages with a 

bottom-up design style. 
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From the point of view of DFT and scan deign, I/O buffering required for timing can be 

exploited for testing on IP cores. Since the Pi's and PO's of individual cores are buried 

deep in the SoC architecture, they often cause accessibility problems with respect to 

external ATE's. With I/O registration, the I/O buffers are included as part of the scan 

chain. As a result, the Pi's and PO's are indirectly controlled through the scan chain. 

Since scan design is the most widely accepted and efficient method thus far to test 

sequential circuits, at least one scan chain must exist in an IP core. Thus, the efforts 

involved in including the I/O buffers in a scan chain are minimal. However, the gains in 

controllability on the IP core inputs and observability on the IP core outputs are 

enormous when these inputs and outputs may not even be accessible at all if I/O registers 

were not deployed. 

4.2 P1500 Core Wrapper 

To serve as a standard platform for testing IP cores in the SoC environment, the PI500 

standard is being drafted by IEEE to specifically target embedded core testing [31]. Its 

main role is to define a uniform interface that allows all P1500-compliant EP cores to 

precisely exchange test-related signals with any test access mechanism (TAM) designed 

according to the PI500 standard. As a result, EP cores can be simply viewed as plug-and-

play modules which can be replaced by one another with minimal compatibility concerns 

on test harnesses. 

The PI500 standard is modeled after the EEEE JTAG 1149.1 standard for board-level 

testing, also known as boundary scan [31][26][23]. P1500 can be considered as a scaled 
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version of the JTAG standard; IP cores are viewed as individual IC chips while the entire 

SoC is viewed as the system board. Despite the similarity in concept between the two 

standards, there are notable distinctions between them. These variations provide more 

flexibility to PI500 compliant IP cores without sacrificing the robustness offered in the 

JTAG standard. One of the most prominent differences between the two standards is the 

absence of the test access port (TAP) controller from the P1500 standard. This controller 

is a FSM and is an integral part of the JTAG standard to enforce strict signal sequencing 

when communicating with the test harnesses. With the absence of such a controller, the 

P1500 standard relies on the TAM designer to provide the proper signal sequences for 

test information correspondence. Another notable difference is the addition of parallel 

test port. The JTAG standard stipulates only one pair of test data input (TDI) and test 

data output (TDO), which limits test data throughput. On the other hand, the P1500 

standard allows possibility for increased throughput with a variable number of test data 

inputs and outputs. This allows the opportunity for realizing parallelism in test data 

movement when speedy transportation of test data is demanded. 

The PI500 standard is realized by a wrapper design around an IP core. The wrapper 

contains six mandatory control inputs, one serial data input and one serial data output. 

Optionally, the wrapper can include variable numbers of inputs and outputs for parallel 

test data movement. Figure 48 presents an overview of the PI500 wrapper [24]. 
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Figure 48. PI500 wrapper 

The WRCK and WRSTN pins are the wrapper clock and reset respectively to provide the 

corresponding signals to wrapper logic. The wrapper serial input (WSI) is responsible for 

transporting instructions and serial data into the wrapper. The SELECTWIR input 

determines whether the signal on the WSI input is serially shifted to the wrapper 

instruction register (WIR) or other destinations inside the wrapper. Based on the content 

in WIR and the four control inputs, various internal control signals are generated to 

control other components within the wrapper. The ring of registers around the wrapper 

comprises the boundary data register (BDR) which isolates the core from its functional 

connections in the SoC during test. Before and during the exercise of full-scan test or 
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operation of logic BIST circuitry on the core, the BDR is set to a known state in order to 

provide a predictable test environment. During full-scan core test, test patterns are 

serially shifted into the WSI pin while the scan responses are serially shifted out of the 

WSO pin. The scanned-out bits of the full-scan test can also be compacted at the 

multiple-input signature recognizer (MISR) for a signature which is captured by a core 

data register (CDR) to be serially shifted out from the WSO output. WSO acts as the sole 

output from which core and wrapper responses are exported. In an attempt to model the 

JTAG standard, the WSO pin changes state at the falling edge of WRCK while all other 

wrapper logic are triggered on the rising edge. As a result, a negative-edge triggered FF 

is implemented to buffer the WSO output. The CDR's are designer definable and are 

instantiated as many times as deemed necessary. One major function of the CDR is to 

provide and capture the BIST or MISR signature after its operation. The bypass register 

is responsible for transporting the signal from WSI input to WSO output verbatim. 

The architecture of each BDR cell is not strictly specified in the PI500 standard and can 

be varied upon different requirements. The implementation used in this research consists 

of two FF's and two MUX's as illustrated in Figure 49. 
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Figure 49. Wrapper cell structure 

The structure is similar to that specified in the JTAG standard [22]. The update FF keeps 

the data connected to the functional output port stable while shifting occurs between the 

shift/capture FF's in adjacent cells. The content of shift/capture FF is sent to the update 

FF only after shifting in the BDR completes. This ensures signals conceived by the IP 

core inputs are unaltered while the desired contents are being shifted into the BDR. This 

is a precaution against adverse effects on the core while BDR shifting. During BDR shift 

operations, the MUX in front of the shift/capture FF selects the shift out port from the 

previous BDR cell to form a shift register chain. During BDR capture operation, the 

MUX is configured to capture the cell functional input such that the value is stored and 

then exported by later shift operation. Depending on WIR content and the control inputs, 

the MUX at the cell functional output selects either functional input or update FF. BDR 

becomes non-invasive when each cell is bypassed by connection of the functional input 

to functional output through this MUX. 
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4.3 Fabrication of Core Level SfP Solution 

In order to demonstrate the use of the aforementioned concepts, an IP core is designed 

and fabricated. The implemented IP core is a microcontroller modeled after the 

functionalities of an HC11 microcontroller by Motorola®. It is equipped with DC and 

AC pseudo-random pattern generation circuitry to provide a feasibility test for 

incorporating the double-clocking scheme of Section 3.3.2 in silicon. The IP core and the 

two logic BIST circuitry are wrapped by a P1500 wrapper as described in Section 4.2. 

This design was taken through the physical design flow for 0.18/im CMOS and was sent 

for fabrication. 

Figure 50 is an overview of the fabricated design. The HC11 core is implemented with 

two logic BIST circuitry blocks. One logic BIST circuitry is responsible for generating 

pseudo-random test patterns targeted for DC faults while the other is targeted for AC 

faults. The HC11 core and logic BIST circuitry blocks are wrapped according to the 

P1500 standard. The HC11 core area is approximately equivalent to 7542 gates (The 

area of a 2-input NAND gate in this library is 11.53jLtm and is used as a reference for 

gate count measurements). The DC logic BIST circuitry block occupies an area of about 

1518 gates while its AC counterpart occupies an area of about 1526 gates. Each equates 

to approximately 20% of the HC11 core area. The PI500 wrapper accounts for 

additional 4350 gates and is equivalent to 58% of the HC11 core area. The area taken up 

by the SI2P components are large relative to the size of the HC11 core. However, given 

the size of the HC11 core is small by itself, the area overhead incurred by the SI P 

components are magnified as a result. Figure 51 is a die photo of the fabricated design 
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and testing of this is still in progress. A logic simulation of the test sequence is available 

on the gate-level netlist of the design. Stimuli and responses of the design are collected 

and converted to external test patterns to be applied from the ATE. 

Functional 
Inputs 

P1500[ 

PI 500 Wrapper 

!• 

i n 

Controls [ 

HC11 Core 

PI500 Controller 

• 
• 
• 

LO. 

J ^Functional 
L _ J Outputs 

DC AC 
BIST BIST 

^ 1 5 0 0 
Outputs 

Figure 50. Overview of the fabricated HC11 with core level SI P solution 

Figure 51. Die photo of the fabricated HC11 with core level SI2P solution 
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4.4 Application of P1500 Core Wrapper 

The next stage of the SI P design is the chip level integration of the PI500-wrapped IP 

cores with a packet-switched test network known as NIMA [21][10]. Additional SI2P 

components are required as adaptors for interfacing with NTMA test network. 

The NIMA test network is deployed in a network processor designed in-house at UBC. It 

is fabricated and included as part of another research project at UBC [9]. A paper is also 

published describing the deployment and performance of this NIMA test network [10]. 

The in-depth implementation details are given in Appendix C. 
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CHAPTER 5 CONCLUSIONS 

Intellectual property (IP) cores, which are the building blocks for System-on-a-Chip 

(SoC) design, are often purchased from third-party vendors and integrated together by 

system architects to construct the final SoC design. EP cores released with certain self-

test mechanisms are highly recommended to relieve the test development burden from the 

system architects who may not have enough internal knowledge of the EP cores to 

effectively devise suitable test methodologies. For this purpose, logic built-in self-test 

(logic BIST) is an attractive solution. The logic BIST concept is realized by inclusion of 

an extra circuitry which tests an EP core and reports the result. 

The first part of this research investigates the relationship between the stuck-at (DC) and 

transition (AC) faults. These commonalities are then justified and analyzed to support 

the proposal of a heuristic test pattern generation flow which exploits this relationship to 

reduce the test efforts. It utilizes the AC test pattern to detect not only the AC faults, but 

also the DC faults. Therefore, the number of test patterns which strictly target DC faults 

can be reduced. Also in the proposed test flow, pseudo-random test patterns, sequenced 

according to the double-clocking method, are applied to the EP core under test first to 

detect the easy-to-catch AC and DC faults. The remaining AC faults are then detected 

with the AC deterministic test patterns generated by an ATPG tool. After the AC 

pseudo-random and AC deterministic test patterns are applied to test for the DC faults, an 

ATPG tool is again employed to assemble additional DC deterministic patterns which 

target the remaining DC faults. This scheme effectively cuts down the number of both 

AC and DC deterministic test patterns necessary to test an EP core. Analysis shows that 
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the proposed test flow achieves comparable, in many instances better, fault coverage 

results to that which simply relies on the ATPG tool to generate deterministic test 

patterns. The DC and AC fault coverage results were obtained from TetraMAX™. It 

should be noted that each tool has some limitations in algorithms and implementation. 

Therefore, different results may be observed with different ATPG and fault simulation 

tools. 

The second part of this research focuses on deployment of the test pattern generation flow 

as a logic BIST scheme. It involves on-chip generation of pseudo-random test patterns 

and ATPG tool specified AC and DC deterministic test patterns. For deterministic test 

pattern generation, a scheme based on a type 2 linear feedback shift register (LFSR) is 

proposed. The LFSR feedback tap locations are systematically identifiable with matrix 

manipulations. The deterministic patterns are partitioned into segments which are 

reorganized into matrices. These matrices are then manipulated to identify the feedback 

tap locations which are capable of generating the specified segments when the LFSR is 

sequenced correctly. Due to the regularities of these operations, a computer program is 

written to facilitate the matrix manipulation efforts. The RTL code, Verilog or VHDL, 

for the LFSR can be generated according to a given set of deterministic test patterns. 

Area overhead measurements of the deterministic pattern generators are analyzed to 

conclude that the area overhead results are more significant for smaller IP cores. This is 

due to the fact that at least certain minimum amount of area must be occupied by some 

basic components necessary for the deterministic pattern generation. Furthermore, it is 

observed that the number of deterministic test patterns to be generated greatly affect the 
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area overhead measurements. More deterministic test patterns translate into greater area 

overhead. Therefore, it is advisable to apply the logic BIST test flow to large EP cores to 

absorb the minimum area requirements of the test circuitry. Moreover, the deterministic 

test pattern count should be kept at a minimum to aid in area requirement reduction. 

The third part of the research involves the realization of Semiconductor Infrastructure EP 

(SI2P) in a SoC environment. This includes the implementation of test harnesses around 

EP cores to interface with a packet switched test access mechanism (TAM) known as 

NEMA. As a result, EP cores are encapsulated by wrappers which are implemented 

according to the PI500 standard. The implementation serves as a feasibility test for the 

emerging PI500 standard. In order to control each PI500 wrapper with ease, a state 

machine which resembles the TAP controller from the EEEE 1149.1 JTAG standard is 

designed to properly sequence the P1500 wrapper control signals. For the purposes of 

communication with the packet switched NEMA network, the NEMA interface and NEMA 

serializer are implemented as adapters to bridge the NIMA network and the EP cores. All 

of these components are implemented as reusable modules that can be replicated in 

different SoC designs. They are imperative to the concept of SoC design since they offer 

modularity and reusability. Without them, SoC testing becomes a difficult and 

unmanageable task which possibly impedes the progress of the SoC design paradigm. 

5.1 Future Work 

The future work involves testing of a fabricated design of the HC11 EP core with AC and 

DC logic BIST circuitry. Test vectors and waveforms are readily available for the task. 
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The LFSR responsible for generating on-chip deterministic test patterns can be optimized 

by exploiting the don't care bits in the deterministic test pattern set generated by the 

ATPG tool. In the hope of providing greater degree of freedom during matrix 

manipulations, the LFSR feedback network can be simplified to occupy less valuable 

silicon area. 

The area overhead of the total test circuitry can be reduced by sharing common 

components, such as counters and response compactors, amongst pseudo-random and 

deterministic pattern generators. Further, controllers of the AC and DC deterministic 

pattern generators can potentially be merged to minimize hardware resources. Finally, 

the test circuitry and harnesses can be upgraded with minimal modifications to support 

multiple scan chains in an IP core when one scan chain is deemed inadequate. 

5.2 Contributions 

This section summarizes the contributions of this research: 

1. Identified relationship between DC and AC faults to propose a heuristic test 

pattern generation flow which potentially reduces the total number of test patterns 

required to test an IP core. The test flow is applicable for AC and DC fault 

detection and takes advantage of pseudo-random test pattern generation to reduce 

the deterministic test pattern count. 

2. Conducted fault coverage analyses on the test pattern generation flow with the 

TetraMAX™ ATPG tool from Synopsys® to demonstrate that high fault 

coverage can be obtained. 
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3. Devised an LFSR-based scheme for on-chip deterministic test pattern generation. 

4. Facilitated the design of hardware for deterministic test pattern generation by 

writing a computer program to automatically generate the RTL code for the LFSR 

given a deterministic test pattern set. 

5. Implemented test harnesses for interface between IP cores and a packet-switched 

test access mechanism (TAM) known as NTMA to strengthen the concept of SI P. 
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APPENDIX A NUMERICAL FAULT COVERAGE RESULTS 

The appendix presents the numerical fault coverage results corresponding to the fault 

coverage plots of the IP cores in Section 2.6. 

Table 2. Numerical fault coverage results 

Pat te rn C o u n t F a u l t Coverage (%) Pat te rn C o u n t 
Co l lapsed Uncol lapsed 

I T C ' 9 9 b O l (9 scan cells) 
A C A T P G unconstrained 16 88.36 90.14 
A C A T P G constrained 14 73.71 72.79 
A C pseudo-random 65535 74.57 73.47 
A C pseudo-random + Det. 65535 + 0 74.57 73.47 
D C A T P G unconstrained 13 95.07 95.92 
D C A T P G constrained 12 93.10 93.88 
D C pseudo-random 65535 94.09 94.56 
D C pseudo-random + Det. 65535 + 0 94.09 94.56 
I T C ' 9 9 b02 (6 scan cells) 
A C A T P G unconstrained 13 85.21 86.78 
A C A T P G constrained 10 73.94 74.71 
A C pseudo-random 65535 73.94 74.71 
A C pseudo-random + Det. 65535 + 0 73.94 74.71 
D C A T P G unconstrained 11 94.44 94.83 
D C A T P G constrained 10 93.65 93.68 
D C pseudo-random 65535 92.86 93.10 
D C pseudo-random + Det. 65535 + 1 93.65 93.68 
I T C ' 9 9 b03 (38 scan cells) 
A C A T P G unconstrained 25 86.04 87.25 

1 A C A T P G constrained 25 83.48 83.96 
1 A C pseudo-random 65535 84.62 84.97 
1 A C pseudo-random + Det. 65535 + 0 84.62 84.97 

D C A T P G unconstrained 22 93.67 94.32 
D C A T P G constrained 21 91.87 92.30 
D C pseudo-random 65535 92.77 93.06 
D C pseudo-random + Det. 65535 + 0 92.77 93.06 
I T C ' 9 9 b04 (85 scan cells) 
A C A T P G unconstrained 57 84.37 85.91 
A C A T P G constrained 6 47.57 45.87 
A C pseudo-random 65535 52.79 51.64 
A C pseudo-random + Det. 65535 + 0 52.79 51.64 
D C A T P G unconstrained 54 94.80 95.57 
D C A T P G constrained 61 93.62 94.31 
D C pseudo-random 65535 94.29 94.73 
D C pseudo-random + Det. 65535 + 2 94.39 94.88 
I T C ' 9 9 b05 (71 scan cells) 
A C A T P G unconstrained 94 69.78 70.65 
A C A T P G constrained 94 66.95 68.22 
A C pseudo-random 65535 69.04 70.04 
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A C pseudo-random + Det. 65535 + 6 69.34 70.28 
D C A T P G unconstrained 46 80.02 81.76 
D C A T P G constrained 44 77.58 80.21 
D C pseudo-random 65541 79.99 81.72 
D C pseudo-random + Det. 65541+ 1 80.02 81.74 
I T C ' 9 9 b06 (17 scan cells) 

A C A T P G unconstrained 14 81.52 83.17 
A C A T P G constrained 7 63.04 64.18 
A C pseudo-random 65535 66.03 66.83 
A C pseudo-random + Det. 65535 + 0 66.03 66.83 

| D C A T P G unconstrained 15 93.87 94.71 
D C A T P G constrained 15 90.18 91.35 
D C pseudo-random 65535 93.25 93.75 
D C pseudo-random + Det. 65535 + 0 93.25 93.75 
I T C ' 9 9 b07 (58 scan cells) 
A C A T P G unconstrained 54 81.13 82.61 
A C A T P G constrained 51 77.54 79.15 
A C pseudo-random 65535 75.93 76.87 
A C pseudo-random + Det. 65535 + 16 79.33 80.71 
D C A T P G unconstrained 41 94.80 95.82 
D C A T P G constrained 40 93.70 94.93 
D C pseudo-random 65551 94.73 95.71 
D C pseudo-random + Det. 65551 +0 94.73 95.71 
I T C ' 9 9 b08 (34 scan cells) 
A C A T P G unconstrained 41 76.35 77.10 
A C A T P G constrained 40 71.31 70.65 
A C pseudo-random 65535 73.30 72.39 
A C pseudo-random + Det. 65535 + 0 73.30 72.39 
D C A T P G unconstrained 37 93.97 94.68 
D C A T P G constrained 38 91.78 92.13 
D C pseudo-random 65535 92.74 92.94 
D C pseudo-random + Det. 65535 + 0 92.74 92.94 
I T C ' 9 9 b09 (30 scan cells) 
A C A T P G unconstrained 25 82.60 84.78 
A C A T P G constrained 25 81.08 82.90 
A C pseudo-random 65535 81.63 83.49 
A C pseudo-random + Det. 65535 + 0 81.63 83.49 
D C A T P G unconstrained 25 94.64 95.78 
D C A T P G constrained 23 94.48 95.55 
D C pseudo-random 65535 94.48 95.55 
D C pseudo-random + Det. 65535 + 0 94.48 95.55 
I T C ' 9 9 b l O (34 scan cells) 
A C A T P G unconstrained 41 79.72 81.32 
A C A T P G constrained 22 55.99 54.84 
A C pseudo-random 65535 57.83 56.42 
A C pseudo-random + Det. 65535 + 0 57.83 56.42 
D C A T P G unconstrained 40 94.63 95.75 
D C A T P G constrained 39 91.81 92.59 
D C pseudo-random 65535 92.62 93.18 
D C pseudo-random + Det. 65535 + 1 93.15 93.58 
I T C ' 9 9 b l l (44 scan cells) 

A C A T P G unconstrained 65 77.89 78.79 

93 



A C A T P G constrained 65 76.25 76.78 
A C pseudo-random 65535 78.63 78.88 
A C pseudo-random + Det. 65535 + 3 79.02 79.25 
D C A T P G unconstrained 58 94.04 93.04 
D C A T P G constrained 58 92.84 91.92 
D C pseudo-random 65538 93.54 92.38 
D C pseudo-random + Det. 65538 + 0 93.54 92.38 
ITC'99 bl2 (132 scan cells) 
A C A T P G unconstrained 260 83.71 84.71 
A C A T P G constrained 254 79.63 80.02 
A C pseudo-random 65535 77.61 77.63 
A C pseudo-random + Det. 65535 + 30 80.53 80.75 
D C A T P G unconstrained 112 96.09 96.90 
D C A T P G constrained 108 95.70 96.53 
D C pseudo-random 65565 95.83 96.60 
D C pseudo-random + Det. 65565 + 5 95.96 96.71 
ITC'99 bl3 (73 scan cells) 
A C A T P G unconstrained 33 73.34 73.98 
A C A T P G constrained 33 69.43 69.03 
A C pseudo-random 65535 69.89 69.03 
A C pseudo-random + Det. 65535 + 14 71.35 70.68 
D C A T P G unconstrained 28 93.50 93.75 
D C A T P G constrained 24 91.46 91.59 
D C pseudo-random 65549 92.77 92.61 
D C pseudo-random + Det. 65549 + 0 92.77 92.61 
ITC'99 bl4 (331 scan cells) 
A C A T P G unconstrained 1068 90.55 91.99 
A C A T P G constrained 273 65.18 65.43 
A C pseudo-random 65535 74.49 74.43 
A C pseudo-random + Det. 65535 + 58 75.99 76.01 
D C A T P G unconstrained 1000 97.12 98.21 
D C A T P G constrained 1014 96.53 97.79 
D C pseudo-random 65593 88.99 87.80 
D C pseudo-random + Det. 65593 + 581 96.98 98.05 
ITC'99 b l4_ l (331 scan cells) 
A C A T P G unconstrained 847 78.50 79.47 
A C A T P G constrained 194 59.17 58.95 
A C pseudo-random 65535 65.19 64.85 
A C pseudo-random + Det. 65535 + 32 66.48 66.18 
D C A T P G unconstrained 724 85.74 84.85 
D C A T P G constrained 708 85.12 84.41 
D C pseudo-random 65567 79.54 76.71 
D C pseudo-random + Det. 65567 + 416 85.60 84.69 
ITC'99 bl5 (554 scan cells) 
A C A T P G unconstrained 907 77.88 77.91 
A C A T P G constrained 858 72.18 72.68 
A C pseudo-random 65535 55.88 56.16 
A C pseudo-random + Det. 65535 + 511 72.83 72.94 
D C A T P G unconstrained 723 95.94 95.89 
D C A T P G constrained 725 95.37 95.46 
D C pseudo-random 66046 93.30 92.80 
D C pseudo-random + Det. 66046 + 251 95.87 95.81 
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I T C ' 9 9 b ! 5 _ l (554 scan cells) 
A C A T P G unconstrained 909 80.81 82.31 
A C A T P G constrained 832 74.38 76.43 
A C pseudo-random 65535 61.50 63.99 
A C pseudo-random + Det. 65535 + 490 76.15 77.96 
D C A T P G unconstrained 648 96.60 97.16 
D C A T P G constrained 653 96.02 96.69 
D C pseudo-random 66025 94.86 95.58 
D C pseudo-random + Det. 66025 + 127 96.53 97.06 
H C 1 1 (181 scan cells) 
A C A T P G unconstrained 679 81.36 82.14 
A C A T P G constrained 346 51.99 53.99 
A C pseudo-random 65535 55.81 57.41 
A C pseudo-random + Det. 65535 + 95 57.53 59.23 
D C A T P G unconstrained 436 96.61 97.37 
D C A T P G constrained 431 94.79 95.67 
D C pseudo-random 65630 94.74 95.45 
D C pseudo-random + Det. 65630 + 26 95.27 96.01 
Post Processor (326 scan cells) 
A C A T P G unconstrained 251 74.70 75.54 
A C A T P G constrained 115 55.25 52.41 
A C pseudo-random 65535 44.63 39.84 
A C pseudo-random + Det. 65535 + 91 56.31 52.76 
D C A T P G unconstrained 209 94.24 95.74 
D C A T P G constrained 213 87.01 88.36 

| D C pseudo-random 65626 78.33 73.07 
D C pseudo-random + Det. 65626 + 169 89.42 90.05 
Class i f ie r (518 scan cells) 
A C A T P G unconstrained 317 84.23 85.09 
A C A T P G constrained 242 77.35 78.05 
A C pseudo-random 65535 72.10 73.01 
A C pseudo-random + Det. 65535 + 126 79.59 80.08 
D C A T P G unconstrained 141 95.08 95.54 
D C A T P G constrained 136 93.90 94.24 
D C pseudo-random 65661 94.67 94.87 
D C pseudo-random + Det. 65661 + 0 94.67 94.87 
P r e Processor (642 scan cells) 
A C A T P G unconstrained 289 70.19 69.09 
A C A T P G constrained 128 58.50 57.24 
A C pseudo-random 65535 59.00 56.45 
A C pseudo-random + Det. 65535 + 77 62.33 60.60 
D C A T P G unconstrained 319 94.76 95.35 
D C A T P G constrained 322 93.57 94.30 
D C pseudo-random 65612 93.33 92.97 
D C pseudo-random + Det. 65612 + 96 94.68 95.23 
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Table 3. Improved numerical fault coverage results 

Pattern Count Fault Coverage (%) Pattern Count 
Collapsed | Uncollapsed 

ITC'99 b04 (96 scan cells) 
A C A T P G unconstrained 56 82.99 84.57 
A C A T P G constrained 52 79.85 81.38 
A C pseudo-random 65535 82.22 83.56 
A C pseudo-random + Det. 65535 + 0 82.22 83.56 
D C A T P G unconstrained 57 93.28 94.34 
D C A T P G constrained 62 90.62 91.92 
D C pseudo-random 65535 92.22 93.53 
D C pseudo-random + Det. 65535 +1 92.36 93.64 
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APPENDIX B NUMERICAL AREA MEASUREMENT RESULTS 

The appendix presents the area measurements in detailed numerical format. These results 

correspond to the area measurement plots of the IP cores and pattern generators given in 

Section 3.5. 

Table 4. Deterministic pattern generation circuitry area measurements 

I P C o r e I P C o r e 
S c a n 

C h a i n 
L e n g t h 

I P C o r e 
C e l l 

A r e a 

A C Determin ist ic Pa t te rn 
Genera to r 

D C Determin is t ic P a t t e r n 
Genera to r 

I P C o r e I P C o r e 
S c a n 

C h a i n 
L e n g t h 

I P C o r e 
C e l l 

A r e a Pat te rn 
C o u n t 

C e l l A r e a % Pat te rn 
C o u n t 

C e l l 
A r e a 

% 

ITC'99 bOl 9 1288.8 0 0.0 0.0 0 0.0 0.0 
ITC'99 b02 6 784.7 0 0.0 0.0 1 9261.4 1180.3 
ITC'99 b03 38 4769.0 0 0.0 0.0 0 0.0 0.0 
ITC'99 b04 85 13375.8 0 0.0 0.0 2 13949.1 104.3 
ITC'99 b05 71 16880.4 6 16900.7 100.1 1 11993.5 71.1 
ITC'99 b06 17 2004.3 0 0.0 0.0 0 0.0 0.0 
ITC'99 b07 58 9070.4 16 20677.6 228.0 0 0.0 0.0 
ITC'99 b08 34 4874.6 0 0.0 0.0 0 0.0 0.0 
ITC'99 b09 30 4411.2 0 0.0 0.0 0 0.0 0.0 
ITC'99 b 10 34 4809.6 0 0.0 0.0 1 11188.5 232.6 
ITC'99 b l l 44 9041.9 3 13140.0 145.3 0 0.0 0.0 
ITC'99 bl2 132 24222.9 30 42119.7 173.9 5 18726.2 77.3 
ITC'99 bl3 73 9729.0 14 21742.8 223.5 0 0.0 0.0 
ITC'99 bl4 331 130314.9 58 132197.3 101.4 581 828859.4 636.0 
ITC'99 b l4_ l 331 125180.0 32 90411.0 72.2 416 630437.8 503.6 
ITC'99 bl5 554 171954.5 511 1274621.8 741.3 251 691185.7 402.0 
ITC'99 b l5_ l 554 162717.2 490 1231612.3 756.9 127 425490.6 261.5 
HC11 181 93232.2 95 114682.5 123.0 26 49665.4 53.3 
Post Processor 326 47559.4 91 189709.5 398.9 169 302875.8 636.8 
Classifier 518 73721.7 126 374821.0 508.4 0 0.0 0.0 
Pre Processor 642 94513.1 77 327297.9 346.3 96 394291.1 417.2 

Table 5. Pseudo-random pattern generator and total test circuitry area measurements 

I P C o r e I P C o r e C e l l A C P s e u d o - R a n d o m Pat te rn To ta l Test C i r c u i t r y 1 
A r e a Genera to r 

C e l l A r e a % C e l l A r e a % 

ITC'99 bOl 1288.8 14128.0 1096.2 14128.0 1096.2 
ITC'99 b02 784.7 14014.1 1786.0 23275.6 2966.3 
ITC'99 b03 4769.0 15050.9 315.6 15050.9 315.6 
ITC'99 b04 13375.8 15168.8 113.4 29117.9 217.7 
ITC'99 b05 16880.4 15254.2 90.4 44148.4 261.5 
ITC'99 b06 2004.3 14282.5 712.6 14282.5 712.6 
ITC'99 b07 9070.4 15022.4 165.6 35700.1 393.6 
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ITC'99 b08 4874.6 15042.7 308.6 15042.7 308.6 
ITC'99 b09 4411.2 14880.1 337.3 14880.1 337.3 
ITC'99 blO 4809.6 15042.7 312.8 26231.3 545.4 
ITC'99 b l l 9041.9 15059.0 166.5 28199.0 311.9 
ITC'99 bl2 24222.9 15400.5 63.6 76246.3 314.8 
ITC'99 bl3 9729.0 15176.9 156.0 36919.7 379.5 
ITC'99 b 14 130314.9 15620.1 12.0 976676.8 749.5 
ITC'99 b l4_ l 125180.0 15620.1 12.5 736468.8 588.3 
ITC'99 bl5 171954.5 15721.7 9.1 1981529.1 1152.4 
ITC'99 b l5_ l 162717.2 15721.7 9.7 1672824.6 1028.1 
HC11 93232.2 18827.7 20.2 183175.6 196.5 
Post Processor 47559.4 15571.3 32.7 508156.5 1068.5 
Classifier 73721.7 15725.8 21.3 390546.7 529.8 
Pre Processor 94513.1 15644.5 16.6 737233.4 780.0 
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APPENDIX C IMPLEMENTATION OF SI2P COMPONENTS 

This appendix contains in-depth implementation details on how the PI500 wrapper 

would be integrated at the chip level when using the NIMA packet-switching test 

network as the TAM design [21][10]. NTMA is a packet-switched test network which is 

constructed in a tree configuration. All IP cores in the SoC are located at the leaves of 

the tree. The internal nodes represent routers which are responsible for forwarding test 

packets towards the leaves. In order for seamless communication, supportive logic 

blocks are inserted between each P1500 wrapper and NTMA test network. A P1500 

wrapper connects to the test network, in sequence, through a wrapper controller, a NIMA 

interface, and a NIMA serializer. This appendix focuses on the design of these three 

components. 

C . 1 P 1 5 0 0 W r a p p e r C o n t r o l l e r 

To control the P1500 wrapper with ease, a controller which resembles that of the IEEE 

1149.1 JTAG standard is adopted [22]. The wrapper controller is a Moore FSM with 

sixteen states that sequences the four PI500 control inputs, namely SELECTWIR, 

CAPTUREWR, SHTETWR and UPDATEWR. Figure 52 shows interface of wrapper 

controller to a PI500 wrapper. 
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Figure 52. PI500 wrapper controller 

The wrapper controller operates in accordance with the JTAG TAP controller. Its state 

changes are controller by a single test mode select (TMS) input triggered on the rising 

edge of the test clock (TCK). The state diagram of a P1500 wrapper controller is given in 

Figure 53. It is also the basis of the NIMA interface since it is designed to translate the 

packets from the NIMA test network to generate control signals understandable to the 

wrapper controller. 
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Figure 53. P1500 wrapper controller state diagram 

C.2 NIMA Interface 

The NIMA interface is implemented as a Mealy FSM that controls the PI500 wrapper 

controller by accepting and interpreting serial bit streams from the NIMA test network. 

Since NTMA is a packet-switched test network, incoming serial bit streams represent 

packets encoded with flag and payload. The responsibility of NIMA interface is to 
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identify the flag in each packet and sequence the downstream PI500 wrapper controller 

accordingly. Figure 54 shows a block view of the NTMA interface. 

T C K 

-• TRSTB N I M A 
T M S 

Interface 
ready 

TDI 
-> channel 

P i n T y p e D e s c r i p t i o n 

T C K Input Clock input to the block 

TRSTB Input Active low synchronous reset 

ready Input Flag indicating the validity of the 
channel pin 

channel Input Serial bit data from the NIMA 
network interface 

T M S Output Test mode select signal to P1500 
wrapper controller 

TDI Output Test data input to P1500 wrapper 
controller 

Figure 54. NIMA interface block diagram 

TCK and TRSTB inputs are the system clock and reset to NIMA interface respectively. 

Since this block and the PI500 wrapper controller operate in accordance, they share these 

two system inputs. The ready and channel inputs are the NIMA interface signals and are 

responsible for accepting packets of serial data from the NTMA test network. The NEMA 

test network provides the ready signal when a valid packet is available. It notifies the 

NEMA interface to accept the first bit of a packet from the channel pin. The ready signal 

is asserted shortly after a rising edge of the clock, which is at the same time as the bit at 

the channel input becomes valid. The ready signal is deasserted shortly after the rising 

clock edge of the last valid data bit at the channel input. Figure 55 shows a timing 

diagram of the interface. 
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TCK 

ready 

channel invalid X valid X invalid 

Figure 55. NIMA test network interface timing diagram 

TMS and TDI inputs are responsible for controlling the PI500 wrapper controller and 

traversing it through the proper states. TMS pin is responsible for state changes in the 

P1500 wrapper controller state diagram in Figure 53. TDI is responsible for serially 

shifting out bits at the rising edge of the clock during the Shift-ER or Shift-DR states. 

TDI starts shifting at the first rising edge following the PI500 wrapper controller enters 

the shift state; and the last shift occurs as the P1500 wrapper controller leaves the shift 

and enters the exitl state. Figure 56 shows the corresponding timing diagram. 

First Shift Last Shift 

TCK 

Wrapper — 
controllercapture 
state — X Shift X Exitl 

Figure 56. P1500 wrapper controller interface timing diagram 

As described earlier, NIMA interface is implemented as a Mealy FSM and designed to 

manipulate the PI500 wrapper controller. They share a very similar state transition 

diagram with absence of several states, given the characteristics of a packet-switched 
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network such as NTMA. Figure 57 exhibits the state transition diagram of the NTMA 

interface. 

(X Test-Logic-
Reset 

(X Run-
Test/Idle 

Select-DR-
Scan 

Select-IR-
Scan 

Capture-DR 

l^""3^^ Shift-PR ^ 

Exitl-PR 

Pause-PR 

Pause 1-PR 

I 
Exit2-PR 

Capture-LR 

Shift-LR X ) 
Exitl-IR 

Update-LR 

Update-PR 

Figure 57. NIMA interface state diagram 

Each packet arriving the NTMA interface is divided into two parts, flag and data. The 

flag specifies the type of information contained in the data portion of the packet; it also 

specifies the path to take in the PI500 wrapper controller state machine. There are two 
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main sets of flags. One set is mainly associated with instructing the machine to travel 

through the instruction branch of the PI500 wrapper controller; the other set is mainly 

associated with traveling solely along the data branch of the PI500 wrapper controller. 

All instruction flags have 3 bits with a value of 0 in the most significant bit (MSB) in the 

form of OXX; on the other hand, all data flags only have 2 bits with a value of 1 in the 

MSB in the form of IX. Table 6 lists the flags with corresponding definitions. 

Table 6. NIMA interface packet flags 

Flag 

RESET 

000 

Value 

000 

Description 

Resets the N I M A interface by bringing the state machine to the 

Test-Logic-Reset state with a maximum of 5 clock cycles 

regardless of its currently state. 

INSTR O N L Y 001 

001 instr 

Specifies the data portion of the packet contains instruction to be 

sent to the P1500 WIR. There should be just enough number of 

data bits to fill the P1500 WIR. 

INSTR C O M P D A T A 010 

010 mstr data 

Specifies the data portion of the packet contains instruction to be 

sent to the P1500 WIR, as well as at least one bit to be sent to the 

PI500 wrapper data register. There should be enough number of 

bits to fill both the P1500 WIR and at least one bit to completely 

fill the PI500 data register. 

INSTR_INCOMP_DATA 011 

011 instr data 

Similar to INSTR_COMP_DATA flag. The data portion 

contains incomplete data that can be continued with subsequent 

packets having D A T A _ C O N T I N U E or D A T A _ E N D flags. 

D A T A C O N T I N U E 10 

10 data 

Specifies the data portion only contains incomplete data to be 

sent to the data register of the P1500 wrapper. The incomplete 

data can be continued with subsequent packets having 

D A T A _ C O N T I N U E or D A T A _ E N D flags. 

D A T A E N D 11 

11 data 

Specifies the data portion only contains data to be sent to the data 

register of the PI500 wrapper. Data packets with this flag are the 
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last packets that complete the data transmission to the data 

register. 

When the INSTR_ONLY flag is received, the state machine traverses along the 

instruction branch, shifts in the instruction bits in the Shift-IR state, then returns and stays 

idle in the Run-Test/Idle state. At the Run-Test/Idle state, it waits for the next packet to 

come in from the NTMA test network. 

Run-Test/Idle Select-DR-Scan —• Select-tR-Scan -> Capture-IR -> Shift-IR 

J i 
Update-LR Exitl-IR Update-LR Exitl-IR 

Figure 58. States traversed by INSTR_ONLY flag 

When the INSTR_COMP_DATA flag is received, the state machine behaves similarly to 

the INSTR_ONLY flag except that it does not return to the Run-Test/Idle state 

immediately after the instruction bits have been shifted in. Instead, after shifting of the 

instruction bits, it moves to the Select-DR-Scan state and progresses to the Shift-DR state 

to shift in the data bits before moving back to the Run-Test/Idle state. 

Run-Test/Idle Select-DR-Scan Select-LR-Scan Capture-IR -> 
I 

Capture-DR Select-DR-Scan 4- Update-IR <-

Shift-DR Exitl-DR Update-DR 

Figure 59. States traversed by INSTR_COMP_DATA flag 
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When the INSTR_INCOMP_DATA flag is received, the state machine behaves similarly 

to receiving the INSTR_COMP_DATA flag except that it does not return to the Run-

Test/Idle state after the data have been shifted in. Instead, after shifting of the data bits, it 

moves to the Pause-DR state where it waits for the next data packet to come in. 

Run-Test/Idle fe Select-DR-Scan fe Select-IR-Scan fe Capture-IR Shift-IR Run-Test/Idle Select-DR-Scan 
W 

Select-IR-Scan 
W 

Capture-IR Shift-IR 

Capture-DR Select-DR-Scan Update-IR Exitl-IR 

Shift-DR fe Exitl-DR fe Pause-DR Shift-DR 
W 

Exitl-DR 
W 

Pause-DR p 

Figure 60. States traversed by INSTR_INCOMP_DATA flag 

The first bit of the DATA_CONTINUE flag can start arriving at the NTMA interface 

when the state machine is in either Run-Test/Idle or Pause-DR state. This flag specifies 

that the data portion of the packet contains data bits that are to be shifted in during the 

Shift-DR state. After the data bits have been shifted in, the state machine moves to the 

Pause-DR state and waits for the next data packet to arrive. 

Run-Test/Idle fe Select-DR-Scan fe Capture-DR Run-Test/Idle 
W 

Select-DR-Scan 
W 

Capture-DR Shift-DR fe Exitl-DR Shift-DR 
W 

Exitl-DR 

Pause-DR 

Pause-DR fe Pausel-DR fe Exit2-DR fe Shift-DR fe Exitl-DR Pause-DR 
w 

Pausel-DR 
w 

Exit2-DR 
W 

Shift-DR Exitl-DR 

Pause-DR 

Figure 61. States traversed by D A T A _ C O N T I N U E flag 

The DATA_END flag is basically identical to the DATA_CONTFNUE flag except that 

after the data bits have been shifted in, the state machine moves to the Run-Test/Idle 
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instead of moving to the Pause-DR state. It is at the Run-Test/Idle state that the NIMA 

interface waits for the next packet to arrive. 

Run-Test/Idle Select-DR-Scan Capture-DR Shift-DR >w Exitl -DR Run-Test/Idle 
w 

Select-DR-Scan 
W 

Capture-DR 
W 

Shift-DR 
W 

j t 
Update-DR 

t 
Update-DR 

Pause-DR Pausel-DR Exit2-DR >v Shift-DR Exitl -DR Pause-DR 
W 

Pausel-DR 
w 

Exit2-DR 
w 

Shift-DR 
w 

i 

Update-DR Update-DR 

Figure 62. States traversed by D A T A _ E N D flag 

There are circumstances where a soft reset is triggered. This is implemented to ensure 

the NTMA interface, as well as the PI500 wrapper controller, gracefully handles packets 

that do not comply with the protocol. When a soft reset is triggered, the state machine 

traverses through the state diagram and returns to the reset state. There are several ways 

to engage the soft reset mode. One way to engage a soft reset to the NTMA interface is to 

issue a packet with a RESET flag. When the NIMA interface sees this flag, it engages a 

soft reset and proceeds as described earlier. A soft reset is also engaged if the 

LNSTR_ONLY packets do not contain enough data bits to fill the PI500 WIR. For 

example, if the PI500 WIR is four bits wide, the data portion of the packet must be at 

least 4 bits long; otherwise, a soft reset is engaged. 

A soft reset is initiated with inappropriately formatted INSTR_COMP_DATA or 

INSTR_INCOMP_DATA packets. There must be not only enough bits to fill the P1500 

WIR, but also at least one bit to fill the P1500 wrapper data register. For example, given 

a four-bit-wide PI500 WIR, the data portion of the packet must be at least 5 bits long. 
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Packets received at inappropriate states can also trigger a soft reset. The start of data 

packets, DATA_CONTINUE and DATA_END, can only be received when the NTMA 

interface is in either Run-Test/Idle or Pause-DR state. If instruction packets are received 

when the NTMA interface is in the Pause-DR state, a soft reset is triggered because during 

that state, the state machine expects bits to be shifted into the TAP controller data register 

only. 

Since the bits from the NIMA test network arrive continuously and serially, these 

incoming bits must be buffered in order to properly pass the incoming bits to the output 

TDI pin. To accomplish this task, a multi-buffer selection system is implemented. 

Figure 63 shows a conceptual view of the buffer pool. 

channel 

Hag Buffer 
(3 bits) 

/N 

Instr-Data Buffer 
(1 bit) 

Data Buffer 
(4 bits) 

TDI 

Figure 63. Buffering in NIMA interface 

The flag buffer is responsible for storing the flag portion of the packets. Once the 

appropriate number of bits, 2 or 3 depending on the flag type, are shifted into the flag 

buffer, the flag buffer is disabled to retain the flag values for later reference. 

The instruction-data buffer provides a one-cycle delay for bits to be shifted out during the 

Shift-IR and Shift-DR states. This is necessary due to the fact that the last shift operation 
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occurs as the state machine changes from Shift to Exit state. If the channel were 

connected directly to TDI, the PI500 wrapper controller would shift in one extra bit as it 

enters the Exit state. 

The data buffer is simply a concatenation of the one-bit instruction-data buffer and 4 

more shift registers. These 5 shift registers provide sufficient delay for 

INSTR_COMP_DATA and ENSTRJNCOMP_DATA as the state machine works its 

way from the Shift-IR state to the Shift-DR state. This is necessary because these two 

types of packets have the PI500 WIR instruction bits immediately followed by the PI500 

wrapper data bits in the data part of the packets. 

During the design of the NIMA interface, efforts have been made to maximize the 

robustness of the block. However, to ensure the proper state transitions, it is required to 

have a gap of at least 8 clock cycles between payloads of the packets. Each payload 

contains a flag portion and a data portion understandable to the NTMA interface. Each 

header holds the routing information on which the corresponding payload relies to 

navigate the NIMA network. This should be easily complied because the number of bits 

required in the header of each packet usually exceeds the stated requirement. Thus the bit 

stream appears as depicted in Figure 64. 

Header (> 8 bits) Payload Header (> 8 bits) Payload 

Figure 64. NIMA packet spacing requirement 

110 



C.3 NIMA Serializer 

Since NEMA test network is a packet-switched network, test packets must be able to 

arrive the designated cores at a higher rate in order to spare the network for other cores. 

If this were not achieved, the NEMA test network would become a circuit-switched 

network rather than a packet switching network. 

There are several ways to accomplish the goal of having the NEMA network operating 

faster than the cores. The most obvious method is to have the NEMA network running at 

a higher clock speed than that of the cores. However different clock domains in the test 

network would be introduced as a result. This is undesirable because interfacing across 

different clock domains is quite error prone and requires extra design precautions. The 

second method is to widen the NEMA test network bus and introduce buffering in each 

NIMA router such that they all behave like the ones used for the Internet connections. 

The third method is to again widen the NEMA test network bus and introduce First-In-

First-Out (FIFO) control at each core whose incoming traffic rate is larger than the 

outgoing traffic rate. In order to achieve this method, a NTMA serializer is required to 

temporarily store the incoming test packets and feed the cores with those packets at a 

slower rate by having the incoming bus width (M) strictly larger than the outgoing bus 

width (N). In other words, M > N. When M = N, then there is no need for the existence 

of the NTMA serializer. 
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The NIMA serializer is an essential component for enabling the packet-switching 

capability of the NTMA test network. It is simply a FIFO controller with the input data 

bus width larger than that of the output data bus. In order to implement the NTMA 

serializer, dual port memory, either implemented as banks of flip-flops or RAM, is 

required. At the read side of the dual port memory, a shift register is employed to control 

the number of parallel bits available to the serializer output. Figure 65 depicts the NEMA 

serializer structural overview. 
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Figure 65. NIMA serializer structural overview 
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