
EMBEDDED TEST STRATEGIES FOR SYSTEM-ON-A-CHTP DESIGNS

by

Ronald Wai Kit Fung

B.A.Sc, The University of British Columbia, 1999

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Applied Science

in

The Faculty of Graduate Studies

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard

The University of British Columbia

April 2003

© Ronald Wai Kit Fung, 2003

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
t h i s thesis f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. It i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date

ABSTRACT

System-on-a-chip (SoC) with reuse of intellectual property (IP) is gaining acceptance as

the preferred style for integrated circuit (IC) designs. This paradigm shift poses great

challenges to the overall design and test methodologies. To support SoC design and test,

it is important to develop a corresponding set of Semiconductor Infrastructure IP (SI2P),

which includes all components surrounding an IP core to facilitate system integration,

timing synchronization, and test efforts. This thesis focuses on the SI2P needed for SoC

test.

First, a relationship is established between stuck-at (DC) and transition (AC) fault

detection when applying a set of test vectors to a given design. To exploit this

relationship, a new test pattern generation flow is proposed to maximize the DC fault

coverage level with test patterns targeted at AC faults. The resulting vector set is a

combination of pseudo-random test patterns and deterministic "top-up" vectors. The

fault coverage of this approach is competitive with that achievable by an automatic test

pattern generation (ATPG) tool.

A hardware implementation of on-chip test pattern generation as part of a logic built-in

self-test (logic BIST) solution is described. A matrix-based algorithm for constructing

deterministic pattern generator circuits based on linear feedback shift registers (LFSR's)

is presented. It is found that the resulting area overhead of the deterministic pattern

generator is significant relative to the IP core under test and is a function of deterministic

test pattern count. Additional SI2P components required for this embedded testing

approach are also described.

ii

TABLE OF CONTENTS

Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
Acronyms viii
Acknowledgements ix
Chapter 1 INTRODUCTION 1

1.1 Motivation 1
1.2 Research Goals 4
1.3 Thesis Organization 5

Chapter 2 ALGORITHM FOR COMBINED AC/DC ON-CHIP TESTING 7
2.1 Circuit Classifications 8

2.1.1 Testing Combinational Circuits 8
2.1.2 Testing Sequential Circuits 9

2.2 Fault Models 12
2.2.1 Stuck-At (DC) Fault Model 13
2.2.2 Transition (AC) Fault Model 14

2.3 Connection between DC and AC Fault Testing 15
2.4 Fault Coverage 19
2.5 Test Pattern Generation Flow 22
2.6 Fault Coverage Results 28
2.7 AC Fault Coverage Improvement 35

Chapter 3 LOGIC BIST HARDWARE DESIGN 37
3.1 Pseudo-Random Pattern Generation 38
3.2 Response Compaction 40
3.3 Controller 43

3.3.1 Controller for DC Faults 44
3.3.2 Controller for AC Faults 45

3.4 Deterministic Pattern Generation 47
3.4.1 On-Chip Deterministic Test Pattern Generation Approaches 47

3.4.1.1 Memory 47
3.4.1.2 Compaction 49
3.4.1.3 Compression 51

3.4.2 LFSR-Based Deterministic Pattern Generation Principles 52
3.4.3 LFSR-Based Deterministic Pattern Generation Pitfalls 56
3.4.4 Improved LFSR-Based Deterministic Pattern Generation 59

3.5 Pattern Generator Hardware and Area Overhead 65
Chapter 4 SOC TEST STRATEGY 73

4.1 Input/Output Registers 74
4.2 P1500 Core Wrapper..... 76
4.3 Fabrication of Core Level SI2P Solution 81
4.4 Application of P1500 Core Wrapper 83

Chapter 5 CONCLUSIONS 84

iii

5.1 Future Work 86
5.2 Contributions 87

References 89
Appendix A NUMERICAL FAULT COVERAGE RESULTS 92
Appendix B NUMERICAL AREA MEASUREMENT RESULTS 97
Appendix C IMPLEMENTATION OF SI2P COMPONENTS 99

C. 1 P1500 Wrapper Controller 99
C.2 NIMA Interface 101
C.3 NIMA Serializer Il l

iv

LIST OF TABLES

Table 1. Label entry descriptions 29
Table 2. Numerical fault coverage results 92
Table 3. Improved numerical fault coverage results 96
Table 4. Deterministic pattern generation circuitry area measurements 97
Table 5. Pseudo-random pattern generator and total test circuitry area measurements....97
Table 6. NTMA interface packet flags 105

v

LIST OF FIGURES

Figure 1. Productivity gap 1
Figure 2. SI2P for SoC test 3
Figure 3. Combinational circuit 9
Figure 4. Sequential circuit 10
Figure 5. Scan flip-flop 11
Figure 6. Sequential circuit with scan design 12
Figure 7. Stuck-at fault 13
Figure 8. Transition fault 15
Figure 9. AC test patterns for DC fault detection 16
Figure 10. DC fault coverage achieved by AC test patterns 22
Figure 11. Pseudo-random plus deterministic pattern coverage plot 24
Figure 12. Conceptual view of AC/DC test pattern generation flow 25
Figure 13. Detailed view of AC/DC test pattern generation flow 27
Figure 14. Fault coverage result plots 1 31
Figure 15. Fault coverage result plots 2 32
Figure 16. Fault coverage result plots 3 33
Figure 17. Fault coverage result plots 4 i 34
Figure 18. AC fault coverage improvement circuitry 35
Figure 19. Improved fault coverage plot 36
Figure 20. Canonical form of n-bit type 1 LFSR 38
Figure 21. Canonical form of n-bit type 2 LFSR 41
Figure 22. Response compaction circuit design 42
Figure 23. Overview of logic BIST design 43
Figure 24. DC fault timing diagram 44
Figure 25. DC pattern propagation 45
Figure 26. AC fault timing diagram 45
Figure 27. AC pattern propagation 46
Figure 28. Memory-based deterministic pattern generator 48
Figure 29. Bit-flipping deterministic pattern generator 50
Figure 30. Compression-based deterministic pattern 51
Figure 31. Deterministic LFSR implementation 53
Figure 32. 2-D Cost function of LFSR-based deterministic pattern generation 55
Figure 33, 3-D Cost function of LFSR-based deterministic pattern generation 55
Figure 34. Vertical test pattern split 57
Figure 35. Horizontal test pattern split 58
Figure 36. Deterministic pattern set segmentation 60
Figure 37. Deterministic pattern set segmentation example 61
Figure 38. Transition matrix calculation 61
Figure 39. Block diagram of LFSR 62
Figure 40. Proposed LFSR-based deterministic pattern generator 63
Figure 41. Matrix linear dependency elimination example 64
Figure 42. Test circuitry area measurement plots 1 67
Figure 43. Test circuitry area measurement plots 2 68

vi

Figure 44. Test circuitry area measurement plots 3 69
Figure 45. Test circuitry area measurement plots 4 70
Figure 46. SoC test strategy with SI2P 73
Figure 47. I/O buffering 75
Figure 48. P1500 wrapper 78
Figure 49. Wrapper cell structure 80
Figure 50. Overview of the fabricated HC11 with core level SI2P solution 82
Figure 51. Die photo of the fabricated HC 11 with core level SI2P solution 82
Figure 52. P1500 wrapper controller 100
Figure 53. P1500 wrapper controller state diagram 101
Figure 54. NEVIA interface block diagram 102
Figure 55. NEVIA test network interface timing diagram 103
Figure 56. P1500 wrapper controller interface timing diagram 103
Figure 57. NLMA interface state diagram 104
Figure 58. States traversed by LNSTR_ONLY flag 106
Figure 59. States traversed by LNSTR_COMP_DATA flag 106
Figure 60. States traversed by INSTR_JJNCOMP_DATA flag 107
Figure 61. States traversed by DATA_CONTINUE flag 107
Figure 62. States traversed by DATA_END flag 108
Figure 63. Buffering in NTMA interface 109
Figure 64. NEVIA packet spacing requirement 110
Figure 65. NTMA serializer structural overview 112

vii

ACRONYMS

ASIC Application Specific Integrated Circuit
ATE Automated Test Equipment
ATPG Automatic Test Pattern Generation
BDR Boundary Data Register
BIST Built-in Self-Test
CAD Computer Aided Design
CDR Core Data Register
CMOS Complementary Metal-Oxide-Silicon
CRC Cyclic Redundancy Check
DFT Design for Test
DSM Deep Sub-Micron
FF Flip-Flop
FSM Finite State Machine
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IP Intellectual Property
ITRS International Technology Roadmap of Semiconductors
JTAG Joint Test Action Group
LFSR Linear Feedback Shift Register
MISR Multiple-Input Signature Recognizer
MUX Multiplexer
NIMA Novel Indirect and Modular Architecture for TAM
PI Primary input
PO Primary output
PPI Pseudo-primary input
PPO Pseudo-primary output
PRPG Pseudo-Random Pattern Generation
ROM Read-Only Memory
RTL Register Transfer Level
SIZP Semiconductor Infrastructure IP
SISR Single-Input Signature Recognizer
SoC System on a Chip
TAM Test Access Mechanism
TAP Test Access Port
VHDL VHSIC (Very High Speed Integrated Circuits) Hardware

Description Language
VLSI Very Large Scale Integration
WIR Wrapper Instruction Register

ACKNOWLEDGEMENTS

It has been an extremely pleasant experience to study for this Masters degree with Dr.

Resve Saleh at University of British Columbia. Throughout the stay with the SoC

Research Group, Dr. Resve Saleh has provided continuous support and valuable advice

vital for the completion of this research. His efforts and involvement in this research are

greatly appreciated. Expert advice has also been received from Dr. Andre Ivanov and Dr.

Steve Wilton. Their useful comments helped to focus the research direction.

Throughout this research, a team of brilliant researchers has been remarkable in offering

insightful opinions and generous assistance. This unforgettable team is sincerely

honoured and treasured - Gary, Louis, Marwa, and Victor. Without their continuous

motivation and support, the completion of this research would not be possible.

Moreover, the entire SoC Research Group at UBC is deeply cherished for their constant

sharing of wisdom and sense of humour.

Last but not least, this thesis is dedicated to my family, Eric, Nancy, Edmond, and Mancy

who have been extraordinarily supportive throughout my years at UBC. Their

encouragement is one of the strongest motivations for the pursuit of this Masters degree.

This research is supported by PMC-Sierra, Canadian Microelectronic Corporation, and

Advanced Systems Institute.

ix

CHAPTER 1 INTRODUCTION

1 . 1 M o t i v a t i o n

System-on-a-Chip (SoC) is gaining acceptance as the preferred style for integrated circuit

(IC) designs. It serves as an effective methodology to close the gap between engineering

productivity and the IC design complexity enabled by technology advancements

predicted by Moore's Law [32].

1970 1980 1990 2000 2010

Figure 1. Productivity gap

As illustrated in Figure 1, engineering productivity in IC design always lags behind the

achievable IC complexity forecasted by Moore's Law. This gap widens gradually with

technology advancements. It is only with innovations in design methodologies that this

gap can be reduced momentarily. At the present time, design reuse is the most promising

methodology to close this gap between engineering productivity and technology

advancements. Design reuse is at the heart of the introduction of intellectual property

(IP) blocks and SoC design. Without such a design methodology, closing the gap

1

between engineering productivity and technology advancements becomes difficult and

thus potential capabilities of semiconductors cannot be realized.

Aside from rigorous development of reusable IP cores, other issues such as system

integration of IP, the inter-block communication and test are essential portions of a SoC

design. The integration of IP cores in a SoC requires the management of the timing

synchronization of cores that may operate in different clock domains. Standard bus

architectures such as AMBA [1] and CoreConnect [5] have been defined to allow

each of integration of processor, memory and interface blocks. Test wrappers such as

IEEE P1500 [24][31] have been developed to manage IP test issues. These supporting

components can be viewed collectively as Semiconductor Infrastructure IP (SI2P) [11] to

enable ease of integration. Without such interoperability, SoC designs are too complex to

design and test. Consequently, SoC designs should, in fact, be defined as the integration

of IP cores and SI2P; lacking either one will limit industry adoption of the SoC design

paradigm.

As an example that is pertinent to this thesis, Figure 2 shows the role that SI2P plays in

SoC testing. Each core is encased by a PI500 wrapper to provide a unified interface for

test control purposes. The wrapper control signals can be generated by a user-defined

test controller which is enabled by external sources. In addition, a user-defined parallel

test access mechanism (TAM) can be implemented for speedy test data transportation

to/from individual IP cores. All of these items comprise SI P that support the actual IP

cores in a SoC design.

2

From Source
User-Defined Parallel TAM

To Sink

PI
fl ft

PO " f l PO

Functional
Inputs.

PI500 Wrapper

Core 1

W I R

Functional Functional
Outputs^ Inputs!

[
uts. Inputs.

...
Wrapper Controls

PI 500 Wrapper

CoreN

W I R

Functional
Outpul

Serial T A M
I

User-Defined Test Controller

T-}

Serial T A M

Figure 2. SI2P for SoC test

Design-for-Test (DFT) for SoC design is a major concern for semiconductor vendors and

customers [6]. This is due to increasing design complexity enabled by the reuse of

intellectual property (IP) cores and the increasing cost of automated test equipments

(ATE's) [4]. As SoC integrated circuits (IC's) are designed, IP cores are often buried

deep in the design hierarchy that causes accessibility issues since the terminals of the IP

cores may not be controllable nor observable directly by ATE's. Furthermore, third-party

IP cores are often purchased and integrated by a semiconductor design house to assemble

the final SoC design. With 80-90% of the IP market occupied by hard IP's provided in

the layout form [25], IP cores bundled with embedded test solutions become attractive.

This advocates extensive use of logic built-in self-test (logic BIST). Also, this

corresponds to the future projections of the Test and Test Equipment Working Group of

International Technology Roadmap of Semiconductors 2001 (ITRS 2001) which states

3

"Logic BIST technique must evolve to support new fault models, fault analysis, and

deterministic test" [13]. Thus, the importance of logic BIST is apparent and is one of the

major motivations of this research.

There are several possible options for IP block testing and each differs in how test stimuli

are delivered to individual IP core. Generally, these options vary from fully off-chip to

fully on-chip test pattern sources. A mix of the on-chip and off-chip options constitutes a

third option which may be deemed viable in some circumstances. This research aims at

minimizing off-chip intervention during testing and thus it pursues after a completely on-

chip solution.

1.2 R e s e a r c h G o a l s

There are three objectives in this research:

1. To establish a relationship between stuck-at (DC) and transition (AC) fault

detection. To design a logic BIST scheme for an IP core to detect as many easily

detectable DC and AC faults as possible with least amount of resources in terms

of hardware and design effort.

2. To develop a test generation flow for combined DC and AC fault detection using

pseudo-random pattern generation (PRPG) and automatic test pattern generated

(ATPG) deterministic "top-up" patterns. Such an algorithm should exploit the

connection between DC and AC faults to select test patterns wisely for both

stuck-at and transition fault testing. The achievable fault coverage should

compete with commercial tools.

4

3. To develop an on-chip deterministic pattern generator which specially targets the

faults not detected by pseudo-random test patterns. Such hardware should be

generated automatically given a set of deterministic patterns.

4. To develop SI P concepts further with test harnesses flexible enough to enable

communication with most test access mechanisms (TAM's). The overall

approach should be validated by design, fabrication and test of an IP core with

SI2P support.

1.3 T h e s i s O r g a n i z a t i o n

Chapter 2 of this thesis gives an overview of terminologies and basics on testing. It

introduces the idea of taking advantage of the commonalities between AC and DC fault

detection. Based on the AC and DC fault commonalities identified, it proposes a test

pattern generation flow that combines pseudo-random and deterministic pattern

generation methods. It also presents the results of the test pattern generation flow by

reporting the achievable fault coverage against that of a commercial ATPG tool.

Chapter 3 describes the hardware design necessary for implementing the results of the

test pattern generation flow as a logic BIST solution. It also identifies possible methods

for on-chip deterministic test pattern generation and proposes an algorithm to design a

linear feedback shift register (LFSR) based circuit for deterministic test pattern

generation. Then it reports the area overhead incurred by the logic BIST circuitry.

5

Chapter 4 presents the SI2P-related components with an introduction of PI500 standard

under development by IEEE for communication with the TAM. An example of an HC11

core wrapped with PI500 and supplied with an AC/DC logic BIST scheme is described.

The design is fabricated in a 0.18/im CMOS technology.

Finally, Chapter 5 concludes with a brief summary, possible future research direction,

and the contributions of this project to SoC research.

6

CHAPTER 2 ALGORITHM FOR COMBINED AC/DC ON-CHIP

TESTING

This chapter presents some principles of testing upon which this research is based. First,

it explains the differences and similarities between combinational and sequential circuit

testing. With this knowledge of the target circuits, two fault models, namely stuck-at

(DC) and transition (AC) faults, are examined. Subsequently, the similarities between

the DC and AC fault testing are identified and how these connections can be leveraged

for combined DC and AC testing are explained. Further, it describes how the quality of

test is measured by fault coverage evaluation.

Once the connections between the DC and AC fault testing are established, an overall test

pattern generation flow is described. Then, it presents the significant results of this

pattern generation flow with a summary of the achievable fault coverage readings

compared to a commercial ATPG tool. These fault coverage results are obtained from

the TetraMAX™ ATPG and fault simulation tool by Synopsys®.

The results are collected from ITC'99 IP cores [30] to evaluate the proposed method on

standard benchmarks. Further, IP cores designed in-house at UBC for the development

of a simple network processor have also been used in this evaluation. Each of these IP

cores has a single scan chain and is registered at the input and output ports for the reasons

outlined later in Section 4.1.

7

2 . 1 C i r c u i t C l a s s i f i c a t i o n s

This section examines two types of digital circuits, which serve as the test targets. These

two types of circuits are combinational and sequential circuits.

2.1.1 Testing Combinational Circuits

Combinational circuits are the simplest type of digital circuits realized at the gate level.

These circuits consist of elementary logic operators such as buffer, NOT, AND, NAND,

OR, NOR, XOR, XNOR, and multiplexer (MUX). These logic gates are memoryless:

the outputs of these elements only depend on the logical operations with the current

inputs. Any logic equation can be implemented by connecting up these elementary gates

accordingly.

During fabrication, a defect may be introduced in the circuit, as denoted by X in Figure 3,

due to wafer defects or process variations. As a result, all parts must be tested after

manufacture to ensure their proper operation. When combinational circuits are tested,

test stimuli are applied to the primary inputs (Pi's) and the test responses are observed at

the primary outputs (PO's). If the responses at the outputs are not as expected, it implies

that at least one defect exists in the fabricated circuit. Figure 3 shows a simple

combinational circuit with Pi's and PO's. A manufacturing defect located at the

indicated connection can be detected by controlling the inputs of the AND gate and

observing the signal behaviour at POrj. Defects can be modeled as faults in a variety of

ways as explained in Section 2.2.

8

Figure 3. Combinational circuit

Combinational circuits are considered to be easy to test if all internal nodes can be

directly controlled by the inputs and directly observed at the outputs by the application of

appropriate test patterns.

2.1.2 Testing Sequential Circuits

Sequential circuits are identical to combinational circuits except for the inclusion of

memory elements such as flip-flops (FF's). FF's are usually driven by a clock, which

serves as the signal for controlling when the outputs from combinational circuits are to be

stored as FF contents. The outputs of sequential circuits depend on both the current Pi's

and the current states of the FF's. Figure 4 shows a sequential circuit with the Pi's, PO's,

pseudo-primary inputs (PPI's) and pseudo-primary outputs (PPO's).

9

PI [> Combinational
Circuits

PPI PPO

Clock
.2"
E

Figure 4. Sequential circuit

PPFs and PPO's are neither easily controllable nor observable externally because they

may be buried deep inside the circuit. Due to this reduced controllability and

observability, sequential circuits are difficult to test since the PO's are dependent upon

the previous inputs encoded in the FF states. Unfortunately, this type of circuits is

always encountered in logic designs since finite state machines (FSM's) are usually

implemented as sequential logic systems.

In order to efficiently test these circuits, a standard technique to greatly increase

controllability and observability is employed by introducing a test mode in all FF's.

During the test mode, the output of a FF is functionally connected to the input of another

FF in the circuit. All FF's connected in this way form a long chain to compose a shift

register. Logic values can be shifted into the FF's serially to set their outputs. These

values are used as inputs to the combinational circuits between the FF's. As a result, the

sequential test problem is converted into a combinational test problem. This well-known

technique is called scan design [33] [3] [23].

10

Scan DFF (SDFF)

D
SD D 0 0

DFF

SE-
Clk- Clk OB OB

Figure 5. Scan flip-flop

Figure 5 shows the design of a sample DFF suitable for scan design. A scan FF is an

ordinary DFF with a MUX inserted in front of the data input. The signal to the DFF data

input is selectable with the scan enable (SE) pin. In the figure, when SE=0, the D input

of the SDFF is routed as the input for the DFF. When SE=1, the SD input of the SDFF is

selected as the input of the DFE. The SD input is connected to the output of the previous

SDFF in the scan chain.

Long scan chains hinder manufacturing test by consuming valuable test time on ATE's.

Multiple scan chains can exist in a sequential circuit to speed up shifting if one scan chain

should become too long.

11

D
SD

Q Scan out (SO)

SDFF
SE
Clk QB

Scan in (SI)
D
SD

Q M

Scan enable (SE)
Clk

SDFF
SE
Clk QB

Figure 6. Sequential circuit with scan design

With the aid of SDFF design, Figure 6 shows a sequential circuit with scan insertion.

When testing, the desired FF states would be shifted into the FF's in the test mode

(SE=1) and the Pi's would be set to appropriate values. When the system clock is

applied in the normal mode (SE=0), the PPO's are captured in the FF's and PO's can be

examined externally. The PPO's are examined by observing the scan out (SO) pin when

shifting the scan chain as a shift register in test mode (SE=1). Note that the next desired

FF states could be shifted in while the current states of the FF's are being shifted out of

the scan chain.

Proper fault modeling is essential to high-quality IC testing. At an abstract level, it is a

representation of the defects that characterize the unintended differences between the

2 . 2 F a u l t M o d e l s

12

fabricated hardware and its intended design [3][14]. Many fault models exist and this

research focuses on two of them: stuck-at (DC) and transition (AC) fault models.

2.2.1 Stuck-At (DC) Fault Model

If a manufacturing defect causes an internal node to be inadvertently held to logic 1 or 0,

it is referred to as a stuck-at fault. It is also referred to as a DC fault due to the static

nature of the fault. This fault is modeled by assigning a constant logic value (0 or 1) to

an interconnection section within a gate-level netlist. Such interconnection could be an

input or output of a logic gate or a flip-flop. Each interconnection is modeled by two

variants of this fault. Stuck-at-1 (s-a-1) fault is modeled by assigning a constant logic 1

to an interconnection section. Conversely, an interconnection with a constant logic 0

assignment is called a stuck-at-0 (s-a-0) fault. A combinational circuit with a s-a-0 fault,

denoted by X, is shown in Figure 7.

Figure 7. Stuck-at fault

The role of stuck-at faults is to model the defects which cause interconnections not to

toggle irrespective of the inputs of the gates or FF's driving them. A stuck-at fault test

must first activate the fault and then propagate the result to the output. For example, if

fault site X has a s-a-0 fault, the output of AND0 gate should be driven to the opposite

13

logic state of 1 by setting ENi and IN2 to 1. In order for the response at fault site X to be

observable at OUTo and/or O U T i , offpaths INo and IN3 must be set to non-controlling

logic values of 1 and 0 respectively to allow the propagation of output from ANDo to

OUTo and OUT,.

2.2.2 Transition (AC) Fault Model

Another type of fault occurs when a signal attempts to make a logic transition but is very

slow in doing so. This is referred to as a delay fault which is also called an AC fault

since it is dynamic in nature. There are many different delay fault models, namely

transition, gate, line, path, and segment delay fault models [19]. This research focuses on

the transition fault model and it is referred to as the AC fault model in the context of this

thesis. There are two types of AC transition faults for each gate: slow-to-rise (s-t-r) and

slow-to-fall (s-t-f). To initiate a signal transition, two patterns (Pi, P2) are necessary. For

a s-t-f fault, Pi is responsible for configuring the target gate for a s-a-0 fault, thus forcing

the gate output to be 1. Then P2, targeting the gate for s-a-1 fault, is applied to cause a

signal transition to be observed at the PO or PPO after some specific delay. The opposite

is done to detect for s-t-r faults. The purpose of this fault model is to model a defectively

slow switching gate that potentially causes failure of a circuit path to meet specific timing

requirements. AC faults are important to test since they validate that the design meets the

timing specification. With higher and higher speeds, on-chip fault detection may be the

only viable approach since the ATE's are having problems keeping pace with chip

speeds.

14

INo 1 ANDj l->OOuto

IN, 1-M)
IN2 l->0

IN3 0 l-»0 Outi

Figure 8. Transition fault

In Figure 8, the s-t-f fault at AND0 gate can be tested by applying a s-a-0 pattern as Pi.

As a result, the output of the gate is driven to 1 with TN\ and r N 2 set to 1. Then P2,

targeting for the s-a-1 fault at ANDo gate, is applied to initiate a signal transition by

setting IN,, IN2 or both to 0. For the entire duration of above testing, INo and IN3 should

be kept at the non-controlling states of 1 and 0 respectively in order for the transition at

output of ANDo to be observable at OUT0 and/or O U T i .

2 . 3 C o n n e c t i o n b e t w e e n D C a n d A C F a u l t T e s t i n g

From the descriptions in the previous sections, one can see that the fundamental concepts

of DC and AC fault testing are related. As mentioned in Section 2.2.2, during AC fault

testing, all gate outputs are driven to opposite states to stimulate rising and falling signal

transitions. Such transitions are expected to complete within a specific time limit which

is usually dictated by the system clock period of the sequential circuits under test. If any

transition does not complete within the specified amount of time, it is considered as an

AC fault.

15

When a circuit is analyzed for AC faults, a list of all possible AC fault sites is

constructed. These AC fault sites are located at logic gates and each logic gate generates

two faults, namely slow-to-rise (s-t-r) and slow-to-fall (s-t-f). Such a list is called the AC

fault list and a complete AC fault list is usually composed of two times the number of

gates [3]. This AC fault list is used by automatic test pattern generation (ATPG) and

fault simulation tools. The former is responsible for crafting the necessary test patterns to

detect faults specified in a fault list; the latter is responsible for determining the number

of faults within a fault list that a test pattern set capable of detecting. When considering

the AC fault list, each AC fault is composed of two DC faults. Each s-t-r fault is

composed of a s-a-1 followed by a s-a-0 fault at the fault site as explained in Section

2.2.2. Similarly, each s-t-f fault is composed of a s-a-0 and s-a-1 sequence. AC fault

testing is simply a more stringent test, in terms of timing, than its DC fault testing

counterpart. In other words, an AC fault is derived from a pair of DC faults. This

relationship is exploited in this research work. The claim is that patterns targeting for AC

faults also provide a certain degree of DC fault coverage.

ScauOut
t

FF
 B

an
k

1

Combinational
A / Logic 1 y

FF
 B

an
k

2

| ^ (Combinational'

(~ Logic 2 V FF
 B

an
k

3

t
Scan In

Figure 9. A C test patterns for D C fault detection

During AC fault testing of the circuit in Figure 9, a test pattern is shifted into the scan

chain of an IP core as in any scan-based testing. After a desired pattern is shifted into

16

place, the SDFF's in the scan chain are switched to normal mode such that they are ready

to capture the outputs from the combinational blocks. This is followed by two

consecutive at-speed system clock cycles, which is referred to as double-clocking in this

thesis. Then, the scan chain is filled with responses from the combinational circuit

blocks, which are waiting to be shifted out through the scan chain. Correctness of these

responses implies the non-existence of the AC faults that this test particular test pattern is

capable of detecting.

As mentioned earlier, two consecutive at-speed system clock cycles are to be applied to

the IP core. This is due to the necessity to initiate signal transitions through the

combination blocks. Just before the application of the first system clock cycle in normal

mode, outputs from the combinational blocks are waiting at the inputs of the FF's. When

the first system clock in normal mode is applied, these outputs are stored in the FF's.

These new FF contents are likely to be in the opposite states of what the FF's used to

have just before the first system clock hits in normal mode. Such changes in FF contents

are the sources of signal transitions necessary at the inputs of the combination blocks for

AC fault detection. Then the second system clock in normal mode simply captures the

output signal transitions at the combinational blocks within a functional period of the

circuit.

In cases when DC faults exist in the combinational blocks as denoted by X in Figure 9,

their effects are likely to emerge as erroneous responses from the combinational blocks,

which are captured by the first system clock in normal mode. This directly causes inputs

17

to the downstream combinational blocks to be different from the expected values. As a

result, the second set of responses is likely to be incorrect. These mismatches are

captured by the second system clock cycle in normal mode and are shifted out for

examination. In effect, AC test patterns do not immediately report DC faults as they

occur. Instead, AC test patterns rely on the DC fault effects to propagate one more level

downstream before they are captured for examination.

In cases when the DC faults only occur in combinational logic block 2, they prohibit

certain signal transition occurrences at the combinational logic block outputs. This is true

regardless of the combinational logic block 2 input changes caused by the first system

clock cycle in normal mode. Effectively, AC faults in combinational logic block 2 are

captured with the second system clock cycle in normal mode and are shifted out for

examination.

Since two consecutive system clock cycles are supplied in normal mode, it is possible

that one DC fault in the first system cycle in normal mode masks other DC faults in the

second clock cycle in normal mode, or vice versa. This situation sacrifices DC fault

coverage and appears to be a flaw to the approach. However, a similar situation also

appears in the case of multiple stuck-at faults. It is possible that one fault cancels out the

effect of another fault to produce correct outputs. These cases are usually not considered

in practice due to exponential increase in complexity of test pattern generation [3]. A

similar argument can be made for AC vector detection of DC faults.

18

This approach also promotes reduction of total test time since the AC fault test time

targets not only AC faults but also DC faults. Since the first part of the logic BIST

operation involves pseudo-random test patterns, these patterns normally account for most

of the total pattern count. It does not require two separate passes, one for AC faults and

another for DC faults.

2 . 4 F a u l t C o v e r a g e

With the DC and AC fault models established, a useful metric to quantify the test

performance is required. Fault coverage is a measure of the number of tested faults

versus all the possible faults in a circuit. Following the notation in [28], fault coverage is

defined to be:

Detected faults + (Possibly detected faults x Possibly detected credit) X T QQ<̂ ^^
All faults

The Detected fault category is made up of two classes:

• Faults detected by simulation are determined by generating patterns and

simulating to verify that the patterns result in the faults being detected.

• Faults detected by implication do not have to be detected by specific patterns,

because these faults result from shifting scan chains. The faults in this class

usually occur along the scan chain paths and include clock pins and scan-data

inputs and outputs of the scan cells.

The Possibly detected fault category is made up of two classes:

• ATPG possibly detected class contains faults for which the difference between the

good machine and the faulty machine results in a simulated output of X rather

19

than 1 or 0. Analysis proves that the fault cannot be definitely detected under

current ATPG conditions, only possibly detected. For example, with faults on the

enable line of an internal tri-state driver, the off state of the enable can only be

possibly detected because the resulting Z state on the data bus quickly becomes an

X state as it is captured into a scan cell or passes through other internal logic.

• Not analyzed - possibly detected class also contains faults for which the

difference between the good machine and the faulty machine results in a

simulated output of X rather than 1 or 0. However, the analysis to prove that the

fault cannot be definitely detected using current ATPG conditions is not

conclusive. Like the previous class, the simulation cannot tell the expected output

of the faulty machine.

Partial credit is given for possibly detected faults in the test coverage calculation. This

partial credit is by default 50 percent and is variable [28]. This credit is awarded to faults

belonging to the possibly detected category because the ATPG tool cannot definitively

dismiss the possibility of such faults not being detectable in the implemented design on

silicon.

Fault coverage basically is a representation of the test quality of a pattern set in capturing

the faults in the fault list. It also serves as a criterion for deciding whether further test

pattern development is required. Often, certain minimum fault coverage must be

achieved before a design is sent out for fabrication in order to guarantee quality and

robustness of the resulting designs.

20

As described to in Section 2.3, DC fault coverage is achieved with application of AC test

patterns. An experiment has been conducted to investigate such effects. Pseudo-random

patterns are generated and fed to the scan chain of an IP core. Such patterns are double-

clocked by a scheme, also referred to as the broadside method [27], where two

consecutive at-speed system clocks are applied to the IP core in normal mode. Then the

content of the scan chain is shifted out. Such stimuli and responses, along with a DC

fault list containing all possible DC fault sites in the EP core, are used as inputs to a fault

simulation tool for DC fault coverage assessment. In Figure 10, it is shown that a high

DC fault coverage can be obtained in this manner. The DC fault coverage versus AC test

pattern count can reach above 90% for this example. The attempt is to claim that

although the DC fault coverage achievable by AC test patterns varies between IP cores,

some DC fault coverage can be derived from AC fault testing.

21

DC BIST Test Coverage 1
9 5 1 -

0 500 1000 1500 2000 2500
Number of Patterns

Figure 10. D C fault coverage achieved by A C test patterns

2.5 Test Pattern Generation Flow

With the relationship established between A C and DC fault tests, a test pattern generation

flow suitable for a logic BIST implementation must be devised. Since the generation of

an optimal test pattern set is unlikely due to the difficulty of the problem, heuristic

methods and existing fault simulation and test generation tools are used to produce the

test set. The concept is to firstly use pseudo-random test vectors for easily detectable

faults. If the achieved fault coverage is insufficient, then A T P G tools are used to provide

additional top-up patterns which specially target the remaining faults.

22

Since pseudo-random test patterns are easy to generate on-chip, they are used for easily

detectable faults. Such patterns are applied using the double-clocking scheme explained

earlier to achieve AC fault coverage and at the same time provide DC fault coverage as a

side effect. If the AC fault coverage is considered insufficient after the execution of these

pseudo-random test patterns, AC deterministic top-up test patterns can be generated by an

ATPG tool for improved AC fault coverage. Then these AC pseudo-random and AC

deterministic top-up test patterns are evaluated for DC fault coverage. Again, if the

achieved DC fault coverage is deemed unsatisfactory, an ATPG tool can be employed to

generate DC deterministic top-up test patterns for added DC fault coverage level.

This approach attempts to minimize the need for including these deterministic top-up

patterns on-chip in the hope of simplifying the design when implemented as a logic BIST

scheme. To take advantage of the relationship between AC and DC fault testing, all AC

fault tests are conducted before that of DC faults. Such a strategy attempts to maximize

the DC fault coverage as a side effect of AC fault tests. Consequently, all AC fault tests

are detecting not only AC faults, but also DC faults simultaneously.

For this research, Verilog-XL™ by Cadence® is used for logic simulation to collect the

stimuli and responses of the IP cores when pseudo-random logic BIST circuit is in

operation. TetraMAX™ ATPG tool by Synopsys® is used as both the ATPG and fault

simulation tool, although any ATPG and fault simulation tool can be used for this

purpose. TetraMAX™ is able to generate AC test patterns based on the double-clocking

scheme and report fault coverage numbers for the same method. Figure 11 shows that

23

double-clocked pseudo-random test patterns are capable of detecting many AC faults

within the initial test patterns as indicated by the initial steep incline in the fault coverage.

It also shows the test coverage improvement that deterministic top-up test patterns

provides above that of the pseudo-random test patterns. After the test coverage

achievable by the pseudo-random test patterns begins to saturate, deterministic top-up test

patterns can be applied to boost up the test coverage to a desirable level.

AC BIST with TopUp Test Coverage

Deterministic
- Top-up Patterns

Pseudo-
Random Test

Patterns

i i i i i i
0 1 2: 3 4 5 6 7

Number of Patterns
x 10'

Figure 11. Pseudo-random plus deterministic pattern coverage plot

This suggests that pseudo-random test patterns are suitable for the first phase of testing to

detect the easily detectable faults. After the fault coverage saturates, the pseudo-random

test patterns are no longer effective at fault detection. This is where the additional top-up

test patterns become important in boosting up the fault coverage to a desirable level. It is

24

possible to truncate the number of pseudo-random test patterns once they do not provide

significant fault coverage improvement. This effectively eliminates bombardment of the

IP core with more than necessary pseudo-random test patterns. Then, the remaining

faults can be detected by the deterministic top-up test patterns. The point of truncation is

at the IP core designer's discretion based on the target fault coverage and available test

time on ATE's .

A conceptual view of the test pattern generation flow is shown in Figure 12. The

particulars of this flow are explored in Figure 13.

A C fault testing with double-clocked
pseudo-random test patterns

A T P G tool generates deterministic A C test patterns
targeting for the A C faults remaining after application

of the A C pseudo-random test patterns above

A T P G tool generates deterministic D C test patterns
targeting for the D C faults remaining after

application of all the A C test patterns above
(Exploit connection between A C / D C faults)

Figure 12. Conceptual view of A C / D C test pattern generation flow

Figure 13 is the detailed overall flow diagram for the test pattern generation flow. First, a

logic simulation is performed on an IP core with pseudo-random test patterns according

to the double-clocking scheme. The responses are collected and recorded for further

Start

25

processing. These AC pseudo-random test patterns, along with a complete AC fault list

containing all AC fault sites of the IP core, serve as inputs to a fault simulation tool to

evaluate the AC fault coverage of the pseudo-random test patterns. The undetected AC

faults are recorded as a partial AC fault list for later use. If the AC fault coverage is

insufficient at this stage, ATPG on the IP core is performed with the partial AC fault list.

This step generates deterministic top-up test patterns targeted for the remaining AC faults

not detected by the pseudo-random AC patterns.

Next, the AC pseudo-random test patterns and a complete DC fault list containing all DC

fault sites of the EP core, along with the AC deterministic top-up test patterns, if

applicable, are fed into a fault simulation tool for DC fault coverage evaluation. The

undetected DC faults are again recorded as a partial DC fault list. If the DC fault

coverage is unsatisfactory, ATPG is performed on the EP core with the partial DC fault

list obtained earlier. Consequently, DC deterministic top-up test patterns are generated to

detect the remaining DC faults.

For an on-chip approach of this test pattern generation flow, the AC pseudo-random test

patterns must be generated pseudo-randomly on-chip. If applicable, the AC and/or DC

deterministic top-up test patterns must be encoded on-chip somehow to be regenerated

on-chip on demand. This is the subject of Chapter 3.

26

AC Test
Bench

Pseudo-random
Patterns
(Stimuli)

AC Logic
Simulation1

AC Logic
Simulation1

AC Fault
Simulation1

r

Complete DC
Fault List

Pseudo-random
Patterns

(Responses)̂

1
NO .

r f

DC ATPG1

f

DC Top-up
Patterns3

•(Done)
1 Requires gate-level netlist of IP core
2Contains only undetected faults
3Contains stimuli and responses, must be regenerated on-chip

Figure 13. Detailed view of A C / D C test pattern generation flow

27

2.6 Fault Coverage Results

In order to evaluate the performance of the test pattern generation flow, fault coverage

results of a number of IP cores are collected and analyzed. Each core is taken through the

procedure outlined in Figure 13 to determine the fault coverage achievable by the test

pattern generation flow. For comparison purposes, fault coverage results are collected

assuming that all Pi's and PO's are directly accessible by the ATE with no restriction.

This situation implies the ATPG tool is allowed to generate the best suitable test patterns

to attain the highest fault coverage results with least amount of test patterns. These are

labeled as the "ATPG unconstrained" entries. These entries represent the best attainable

fault coverage results under ideal test conditions.

However, real-time toggling of Pi's and PO's on EP cores may be difficult to realize in a

logic BIST scheme. Therefore, all Pi's of each EP core are initially assumed to connect to

the logic state 0 during test to simplify the Pi's signaling. For the same reasons, all PO's

of each EP core are not strobed during test. Consequently, each EP core is subjected to

fault coverage analysis by the ATPG tool under the above stated conditions. This

resembles the situation in which EP core is buried in the SoC design such that direct

controls and examinations of each PI and PO ports are cumbersome, if not impossible.

These results serve as reference points for the performance of the logic BIST test flow

proposed in Section 2.5 since each EP core is tested under the similar external test

conditions. These results are displayed as the "ATPG constrained" entries for each EP

core.

28

Furthermore, all IP cores are initially tested with 65535 A C pseudo-random test patterns

to provide preliminary A C fault coverage assessments while keeping the A C logic

simulation time within reasonable ranges. In practice, the number of A C pseudo-random

test patterns can be truncated once they are analyzed to provide limited A C fault coverage

improvements. Moreover, the A C pseudo-random test pattern count, in combination with

the scan chain length of an IP core, contributes to the duration that the IP core spends on

an ATE. This consideration must be taken into account when determining the number

A C pseudo-random test patterns to deliver to an IP core for A C fault testing. Table 1

summarizes the definition of each label entry used throughout this section.

Table 1. Label entry descriptions

L a b e l E n t r y Descript ion

A C A T P G unconstrained Targets A C fault coverage. Pi's and PO's are controllable and
observable by A T P G tool respectively. Shows the highest fault
coverage achievable by A T P G tool under ideal test conditions.

A C A T P G constrained Targets A C fault coverage. During testing, Pi's are connected to
constant logic state 0; PO's are not strobed. Serves as a reference point
when IP core is solely tested by A T P G tool generated test patterns.

A C pseudo-random Targets A C fault coverage. During testing, Pi's are connected to
constant logic state 0; PO's are not strobed. Test patterns are generated
pseudo-randomly by the logic BIST circuitry.

A C pseudo-random + Det. Targets A C fault coverage. Test conditions are similar to that of A C
pseudo-random. Top-up test patterns are generated by A T P G tool
according to test pattern generation flow in Section 2.5.

D C A T P G unconstrained Targets D C fault coverage. Pi's and PO's are controllable and
observable by A T P G tool respectively. Shows the highest fault
coverage achievable by A T P G tool under ideal test conditions.

D C A T P G constrained Targets D C fault coverage. During testing, Pi's are connected to
constant logic state 0; PO's are not strobed. Serves as a reference point
when IP core is solely tested by A T P G tool generated test patterns.

D C pseudo-random Targets D C fault coverage. During testing, Pi's are connected to
constant logic state 0; PO's are not strobed. A C test patterns are
employed according to Section 2.5.

D C pseudo-random + Det. Targets D C fault coverage. Test conditions are similar to that of D C
pseudo-random. Top-up test patterns are generated by A T P G tool
according to test pattern generation flow in Section 2.5.

Fault coverage results were all obtained using the TetraMAX A T P G and fault

simulation tool by Synopsys®. The following plots provide bar chart comparisons of the

29

fault coverage results obtained from the test pattern generation flow introduced in Section

2.5. Detailed numerical fault coverage results are given in Appendix A while the

graphical plots of the results are included from Figure 14 to Figure 17. The DC and AC

fault coverage results were obtained from TetraMAX™. It should be noted that each tool

has some limitations in algorithms and implementation. Therefore, different results may

be observed with different ATPG and fault simulation tools.

30

ITC'99 b01

100.00

90.00

80.00

70.00

60.00

50.00

40.00
•o
3 30.00
Q.
% 20.00
o

10.00

0.00

100.00

90.00

80.00

70.00

g 60.00
50.00

40.00

30.00

o 20.00
o

10.00

0.00

100.00

90.00

[80.00

g> 70.00

g 60.00

50.00
3
™ 40.00

•o

3 30.00
Q.
% 20.00
o

10.00

0.00

•o
<r> c T3
co CD

c
CO CO
c ~̂
o CO
o c
c o 3 o
(3 <3
a. Q.

< <
o O < <

aS
a
+

E E
o o "D T3
C C

ro 2
6 6 T3 -o
CD CD
CO CO
C L a.
o O < <

cj
CD
C I_J
CO c
CO
c
o CO
o c c o 3 o

O O
Q_ Q.
H H
< < O O
Q a

a> Q
+

E E
o o
n •o C c CO 5
6 6
•o "D 3 3
CU CD
CO CO
C L C L

o o Q Q

ITC'99 b02

100.00

90.00

£ 80.00

§ 70.00

60.00

50.00

40.00
•a
3 30.00
Q.
1 20.00
o

10.00

0.00

ITC'99 b03

Q
+

E E
o o TJ TD
c C CO CO

6 6
•o -o 3 3
CD <D
CO CO
C L C L

o O < <

u
CD
c KJ
CO CD

c
CO CO
c ~̂
o CO
o c
c o 3 o

O o 0 . a.
h- H
< <
o o Q Q

CD
a
+

E E
o o "D -a
C c CO CO

6 6 "D •a
3 3
CD CD
CO CO
Q. a.
O O
O Q

0.00

ITC'99 b05

T3
CD
C
CO CD

*CO co
c
o CO
o c c o 3 o

O O
a. a.
H i -
< <
o o < <

a
+

E E
o o "D -o C c
CO CO

6 6 •D T3
3 3
CD CD
CO CO
C L Q .

o o < <

a
+

E E
o 0

T3 T3
C C CO CO

6 6 • 0
3 3
CD CD
CO CO
C L C L

O O
Q O

100.00

90.00

80.00

70.00

60.00

50.00
3
S. 40.00
•a
3 30.00
Q.

cs 20.00

10.00

0.00

13
Q
+

E E
0 0

- 0 T3
c C

ro CO

6 O
T3 TJ 3 3
CD CD
CO CO
C L C L

O O
< <

c-»
CD
C u
CO CD
k_ c
CO 'CO
c 0 CO
0 C

c O 3 O
<5 C5
a. a.
H h-
< < O O
Q a

+
E E
0 0

• 0 • 0
£= e CO CO

6 6
• 0 T3
3 3
CD CD
CO CO
C L C L

O O
O 0

ITC'99 b04

ITC'99 b06

CD
a
+

E E
0 0

T3 • 0
C c CO 2
6 6 "D • 0
3 3
CD CD
CO CO
C L a.
O O
a Q

Figure 14. Fault coverage result plots 1

31

ITC99 b07
100.00

90.00

? 80.00

| 70.00

g 60.00
o
±; 50.00

£ 40.00
g 30.00

20.00

10.00

0.00

100.00

90.00

80.00

70.00

60.00

50.00

40.00
3
o> 30.00
Q.
=5 20.00
o

10.00

0.00

CD
Q
+

E E
o o TD TD
C C
CO CO

6 6
TD TD
3 3
CD CD
CO CO
Q . Q .

O O
Q D

ITC99 b08
100.00

90.00

? 80.00

| 70.00

| 60.00
o
ra u.

S 30.00
Q.
=5 20.00
o

10.00

0.00

50.00

40.00

ITC'99 b09
100.00

90.00

£ 80.00

j? 70.00

| 60.00

u
~ 50.00

™ 40.00 g 30.00

1 20.00
o

10.00

0.00

ITC'99 b11

Q
+

E E
o o TD TD
C C

2 CO

6 6 TD TD
3 3
CD CD
CO CQ
Q . Q .

O O
< <

CD
Q
+

E E
o o TD TD
C c
CO co

6 6 T3 •o 3 3
CD CD
CO CO
QL Q .

o O
Q Q

100.00

90.00

80.00

j? 70.00

S
o
o

60.00

50.00
3
£ 40.00
9
« 30.00
Q.
% 20.00
o

10.00

0.00

OD
Q
+

E E
o o TD T3
C c
CS CO

6 6
TD • D
3 3
CD CD
CO CO
C L Q .

O O
< <

CD

a
+

E E
o o TD TD
C C
CO CO

6 6 TD TD
3 3
CD CD
CO CO
Q . a .

O O
a a

ITC'99 b10

CD

a
+

E E
o o TD TD
C C
CO CO
k_ k_

6 6
•o •o 3 3
CD CD
CO CO
C L C L

o o
< <

a
+

E E
o o TD TD
C C
CO CO
t~

6 6 • a T>
3 3
CD CD
CO CO
C L Q .

O O
a a

ITC'99 b12

CD

o
+

E E
o o TD • a
C c
CO CO

6 6
TD "D
3 3
CD CD
CO CO
C L C L

O o
< <

Figure 15. Fault coverage result plots 2

32

ITC'99 b13

100.00

90.00

1 80.00

70.00 at

| 60.00

50.00

40.00
TJ
S 30.00
CL
CO

20.00

10.00

0.00

100.00

90.00

80.00

70.00
0) o> E
| 60.00

50.00

40.00

o
3
(0

LL

"S
g 30.00
C0
^ 20.00 u

10.00

0.00

100.00

90.00

£ 80.00

| 70.00

| 60.00

o
a 50.00
3
™ 40.00
•a
8 30.00
Q.
^ 20.00
o

10.00

0.00

ne
d

TJ
's in

e

w
c o CO
o c
c o 3 o
O o
D. Q.
H H

< <
O O

< <

Q
+

E E
o o TJ TJ c c cd 2
6 6 TJ TJ 3
CD CD
CO CO
Q. Q.

O O

< <

15
o
+

E E
o o
TJ TJ c c
2 2
6 6 TJ TJ 3 3
CD CD
CO CO
Q. a .

O O
Q a

rrc'99 b u

100.00

90.00

80.00

70.00

60.00

50.00
3

LL 40.00
TJ
8 30.00 a.
^ 20.00

o
10.00

0.00
ITC'99 b14_1

TJ
CD
c TJ
2 in

e

CO CO
c
o CO
o c c o 3 cj

C3 O
0- CL
I- I-

< < O o
< <

a>
Q
+

E E
o o TJ TJ C c
CO CO

6 6 TJ TJ 3 3
CD CD
CO CO
Q. Q.

O O
a Q

100.00

90.00

2 80.00

jj 70.00

g 60.00

u
~ 50.00
3

LL 40.00
TJ 2 30.00 a.
=5 20.00
O

10.00

0.00

ITC'99 b15_1

ID
a
+

E E
o o
TJ TJ C c
2 CO

6 6 TJ TJ 3 3
CD CD
CO CO
a . CL

O O
< <

CD

a
+

E E
o o TJ TJ C c
2 2
6 6 TJ TJ 3 3
CD CD
CO CO
CL CL

O O
a a

100.00

90.00

? 80.00

jjj> 70.00

60.00

50.00

40.00
TJ
$ 30.00 a. ro

20.00

10.00

0.00

is Q
+

E E
o o
TJ TJ c c CO 2
6 6 TJ TJ 3 3
CD CD
CO CO
D. a .

O O

< <

a
+

E E
o o

TJ TJ C c
2 2
6 6 TJ TJ 3 3
CD CD
CO CO
Q . C L

O O
a a

ITC'99 b15

ne
d

TJ
'co CD

c "co CO
c is
o CO
o c c o
3 o
O o
L L a.
I— H

< < o
< <

HC11

Figure 16. Fault coverage result plots 3

33

Post Processor

100.00

90.00

E 80.00

g> 70.00

g 60.00
u
- 50.00
3
£ 40.00
TJ

3 30.00
Q.
=5 20.00
o

10.00

0.00

g 60.00
o
•s 50.00
3

£ 40.00

3 30.00
Q.
1 20.00
o

10.00
0.00

TJ TJ
0)
C TJ
CO CD

c CO CO
c
o CO
o c
c o

o
O C3
Q. O.
H 1-

< < O
< <

Classifier

100.00

90.00

? 80.00

| 70.00 -I

tw
g 60.00
o
a 50.00
3
i2 40.00
•a

3 30.00

% 20.00
o

10.00

0.00

o
a.
!< o o o

"1 ca

O

a

Pre Processor

Figure 17. Fault coverage result plots 4

In general, the proposed test pattern generation flow achieves comparable performance to

that of the "ATPG constrained" entries. Namely, fault coverage results of the "pseudo

random + Det." entries were equal to, or even exceed, that of the "ATPG constrained"

entries. This supports the effectiveness of the proposed logic BIST test flow with

reduced ATE test data volume. Such a claim is apparent with dramatic decreases in

deterministic test pattern count between the "ATPG constrained" and "pseudo-random +

Det." entries in each IP core. Consequently, interactions between ATE and chip are

34

decreased to reduce the ATE memory and speed burdens. These reduced ATE

requirements would translate into the immediate benefit of lowering the costs of

manufacturing tests.

2.7 AC Fault Coverage Improvement

As illustrated in the fault coverage results of Section 2.6, some IP cores such as ITC'99

b04, suffer from low AC fault coverage. This can be observed by large differences in AC

fault coverage between the "AC unconstrained" and "AC constrained" results. The cause

can be traced back to the constraints that all Pi's are tied to logic 0 when the IP cores are

being tested by the logic BIST circuitry as explained in Section 2.6. This inevitably

limits the capability of the IP cores to initiate transitions to the inputs. This has negative

effects on AC fault coverage. To compensate for this effect, an extra circuit can be built

at each input port of the IP cores to allow input signal transition activities and is

illustrated in Figure 18. Note that all IP cores are registered at the inputs and outputs

according to Section 4.1.

Before After

IP Core
IP Core

0

'H SDFF

A C T E S T

Figure 18. A C fault coverage improvement circuitry

35

With the addition of a SDFF and a MUX, input transitions are facilitated when the

ACTEST pin is set to logic 1 throughout AC fault testing. Opposite values in the SDFF's

imply transitions to the downstream combination blocks. This signal is set to logic 0

throughout DC fault testing to allow DC fault detection in the functional paths; it also

should be kept at logic 0 when the IP core is in functional mode. This technique can be

employed whenever AC fault coverage suffers significantly from constrained inputs.

Analyses have been conducted on rTC'99 b04 IP core implemented with these extra

circuits. Significant AC fault coverage improvements are observed as depicted in Figure

19 and numerical values are given in Appendix A. This addresses any perceived

limitations of the approach described in this chapter.

100.00

90.00

£ 80.00 -|

if 70.00
0)
g 60.00
o
§ 50.00
n
£ 40.00
0)

a 30.00 H ra

g 20.00

10.00 H

0.00

ITC'99 b04 Improved

Figure 19. Improved fault coverage plot

36

CHAPTER 3 LOGIC BIST HARDWARE DESIGN

With the arrival of SoC design era, IP cores are often purchased from third party vendors.

It is desirable to have each IP core equipped with a self-contained test methodology

capable of being integrated seamlessly into any TAM. Such a requirement encourages an

on-chip circuitry which automatically tests the IP and returns with a pass or fail result, or

perhaps diagnostic information about any faults encountered. Typically, the on-chip

solution takes the form of a built-in self-test (BIST) logic circuit. The concept of BIST is

widely recognized and used in memory testing due to the structural regularity of memory.

However, the utilization of BIST in logic circuits has not drawn much interest due to the

inherent complexity of logic circuits, especially sequential circuits with large number of

Pi's and PPI's [16]. These circuits often require specially-crafted deterministic test

patterns which are difficult to generate on-chip.

The goal of this research is to implement a logic BIST approach that automatically

generates and applies the AC and DC test patterns from Section 2.5. The standard BIST

approach is to use a pseudo-random pattern generator. However, the approach in this

research also requires a set of deterministic top-up test patterns. This chapter explains the

logic BIST circuit components that are responsible for pseudo-random pattern generation,

response compaction, control, and deterministic pattern generation. A novel approach to

deterministic pattern generator is described. The area overhead incurred by these logic

BIST circuitry are presented. The area measurements are collected from the Design

Compiler™ logic synthesis tool by Synopsys®.

37

These results are collected using standard benchmarks from ITC'99 IP cores as

mentioned in Chapter 2. Further, IP cores designed in-house at UBC for the development

of a simple network processor have also been used for this purpose. Each of these IP

cores has a single scan chain and is registered at the input and output ports for the reasons

outlined later in Section 4.1.

3 . 1 Pseudo-Random Pattern Generation

In order to simplify the logic BIST hardware design, a linear feedback shift register

(LFSR) is implemented to produce the pseudo-random bit patterns. Figure 20 shows a

canonical form of the type 1 LFSR with exclusive OR (XOR) feedback connections;

exclusive NOR (XNOR) feedbacks can also be used for implementation.

ho 0

• • <—

h, 6

DFF
X 0

DFF
Xi

DFF
X 0

DFF
Xi

hn-3<x> hn-2Q hn-iQ

DFF
Xn.2

DFF
Xn-i

DFF
Xn.2 w

DFF
Xn-i

Figure 20. Canonical form of n-bit type 1 LFSR

The feedback tap locations, indicated by the ho to h„.i coefficients, are strategically

selected and represents a primitive polynomial that causes the n-bit LFSR to traverse all

2n-l possible states. The one particular missing state is either the all-zero or all-one state,

depending on whether XOR or XNOR is used in the feedback taps, to prevent a lock-up

situation. Such a sequence through 2n-l states is called a maximum-length sequence [8].

38

For mathematical analysis, an LFSR of this type can be conveniently represented and

manipulated by matrix algebra with modulus-2 addition. If XOR gates were used to

implement the LFSR, addition operations must comply with the XOR logic. Since there

are no carry or borrow operations in XORing arithmetic, the results are 0+0=0, 0+1=1,

1+0=1, 1+1=0. Conversely, if XNOR gates were used for the LFSR implementation,

addition must comply with the XNOR operation. Again, with no carries or borrows,

0+0=1, 0+1=0,1+0=0, 1+1=1. Assuming the current LFSR state is represented by:

X(t) = [x 0(0,X 1(0,-,'XB_ 2(0,X I I_ 1(r)] (2)

then, the next LFSR state can be calculated as a product of the matrix multiplication:

X(t + l) = X(t)Tc (3)

where the transition matrix, T c, is an nxn binary matrix and is defined as:

l 0 0 0

h 0 1 0 0

K-3 0 0 1 0

K-l 0 0 0 1
0 0 0 0

(4)

The variables ho to hn.i in the T c matrix specify the feedback tap connections. When

there is a connection to the feedback network, the variable corresponding to the feedback

connection is assigned a binary value of 1. On the other hand, the variable is assigned a

binary value of 0 if the corresponding feedback connection does not exist. Each

39

multiplication of the LFSR with T c corresponds to a right shift of the LFSR. As a result,

the operation of the LFSR can be fully predicted by such matrix algebra.

Bits produced at the Xn.i position are fed into the scan chain of the IP core as scan

patterns. The implemented LFSR for pseudo-random pattern generation consists of 32

bits and employs XNOR gate with the feedback taps located at:

X31+X21+Xl+1 " (5)

In other words, there are 4 feedback tap locations and they are located at h3i, h2\, hi and

ho. The choice of implementing a 32-bit LFSR for pseudo-random test pattern generation

is based on its capability of traversing 232-l states before it revisits any one of the

previous states. This ensures the LFSR does not wrap around and produces the same

pseudo-random patterns before completion of the logic BIST circuitry operation. In

order for a 32-bit LFSR to traverse all 232-l states, the aforesaid feedback tap

configuration is only one of the many possible feedback tap configurations.

3.2 Response Compaction

When an IP core is being tested, the results being shifted out from the IP core scan chain

must be collected for verification against the correct results. However, it is impractical to

store all the response bits for later inspection nor is it acceptable to send the response bits

off-chip for verification in the context of a logic BIST implementation. Both of these

methods require either large amount of storage or high ATE bandwidth. Therefore, a

circuit is implemented to compact the response bits into a signature which is compared, at

40

the end of logic BIST operation, against that obtained from logic simulation. This circuit

is also known as a Single-Input Signature Recognizer (SISR) when it accepts a single

response stream from the IP core under test. Similarly, it is known as a Multiple-Input

Signature Recognizer (MISR) when it accepts multiple response streams from multiple

scan chains.

iii^ h ^

• • •

DFF
X 0

r DFF
x ,

DFF
X 0

DFF
x ,

n3 hn.i<J>

• • • DFF
X n - 2

1 r DFF
X n - i

DFF
X n - 2

D W
DFF
X n - i

Figure 21. Canonical form of n-bit type 2 LFSR

Another type of LFSR serves as the basis of the compaction circuit. Figure 21 shows the

canonical form of the circuit generally known as a type 2 LFSR. Similar to the type 1

LFSR, matrix algebra can also applied to this type of LFSR. The nxn transition matrix,

T c, for type 2 LFSR is defined as:

T. -

0 l 0 0 0
0 0 1 0 0

0 0 0 1 0
0 0 0 0 1
K hx K •

(6)

A cyclic redundancy check (CRC) is implemented for the compaction task. This scheme

is widely used in the field of telecommunications for error detection [8]. The

implementation is a CRC-32 design based on the type 2 LFSR with feedback tap

41

locations selected according to cyclic code theory in telecommunications. The

characteristic polynomial selected for the feedback tap location is:

X32 + X26 + X 23 + X 22 + X16 + X12 + Xn + X10 + Xs + X1 + Xs + X* + X2 + Xx +1
(7)

In other words, the LFSR consists of 32 bits and has 14 feedback tap locations. These

feedback taps are located at h26, h23, h22, h i6 , h i 2 , hn, h i o , hg , h7, h s , lu, h2, h i , and ho. The

response bits from the IP core scan chain undergo an XOR operation with Xn_i before

being fed into the Xo DFF as shown in Figure 22.

- I I I
O h0 O hi O h2 O

• • •

c
O

DFF
Xo

r DFF
x,

DFF
Xo if w

DFF
x,

h 20 h

•CD • • • • —

n3 K-^

DFF
Xn-2

1 r DFF
Xn_i

DFF
Xn-2 if w

DFF
Xn_i

Figure 22. Response compaction circuit design

This CRC circuit simply performs polynomial modulus-2 division. The characteristic

polynomial, implemented as the feedback tap locations, acts as the divisor while the bits

received from the IP scan chain compose the dividend. In each clock cycle, this CRC

circuit divides the characteristic polynomial into the IP response bits and stores the

remainder in the LFSR state. This remainder serves as the signature of the test and is

compared against the signature derived from simulation to determine the IP core

integrity. This circuit is able to calculate the signature in a real-time fashion; it is capable

of performing the division using the serial bit stream from the IP scan chain. In effect, as

42

the last bit from the IP core enters the CRC circuit, the signature already resides in the

current LFSR state and thus results of the IP core test is available immediately after the

last response pattern is scanned out from IP core.

3.3 Controller

The logic BIST controller is responsible for coordinating the operation between the IP,

pattern generation block and response compaction block. Figure 23 provides a

conceptual relationship of these four blocks.

LBIST

Pattern Generator

Clock •
Done-
Pass-

Scan Patterns.

Enable
Controller

Gated Clock

nable

Response Compactor

Scan Enable

IP Response

IP Core with Scan
Chain

Figure 23. Overview of logic BIST design

The controller is an FSM and is responsible for gating the system clock to the IP during

test. It is also responsible for keeping count of number of bits and number of patterns

being shifted into the IP. This is necessary for proper sequencing of the scan enable

signal to switch the IP between normal and test modes as required by any scan design.

Further, it controls the enabling of the pattern generation and response compaction

43

blocks. The controller has a minor difference in operation when it is targeting for DC

versus AC faults.

3.3.1 Controller for DC Faults

When the controller is used for DC fault detection, it only supplies one system clock

cycle to the IP core during normal mode, after shifting the test patterns into the scan

chain. This conforms with the clocking for DC fault detection with scan designs. Figure

24 shows the timing diagram of the controller when detecting DC faults.

Clock

Gated Clock _] | _ J |_

Scan Enable

Shift Normal
Clock

Shift

Figure 24. D C fault timing diagram

Since there is only a single system clock cycle applied to the IP core during normal

mode, the outputs at one level of FF's are propagated through only one block of

combinational logic as illustrated in Figure 25. Then the responses are captured and

ready for shifting out of the scan chain in order to be analyzed.

44

One level propagation
Pr

im
ar

y
In

pu
ts

FF
 B

an
k

1
Combinational j

Logic 1

FF
 B

an
k

2

•—\(f Combinational A K
Logic 2

FF
 B

an
k

3

Pr
im

ar
y

O
ut

pu
ts

One level propagation

Figure 25. D C pattern propagation

3.3.2 Controller for AC Faults

When the controller is used for AC fault detection, it applies two consecutive at-speed

system clock cycles to the IP core during normal mode surrounded by test modes

[27][20] [3]. They are called double-clocked AC test patterns in this research. Figure 26

shows a timing diagram of the controller when detecting AC faults.

Clock

Gated Clock _ | LJ l_ F L T L
Scan Enable

Shift Normal
Clock

"sliff7

Figure 26. A C fault timing diagram

Since there are two consecutive at-speed system clock cycles applied to the IP core

during normal mode, the outputs at one level of FF's are propagated two levels

downstream through two blocks of combinational logic as shown in Figure 27. This is

45

often called the broadside method [27], although it is referred to as the double-clocking

method in this thesis.

First level propagation Second level propagation

Figure 27. A C pattern propagation

As mentioned in Chapter 2, an AC fault requires two patterns to initiate a desired signal

transition. Before the first system clock hits in normal mode, FF bank 2 has certain bit

pattern created by the scan chain shifting and serves as the first vector for combinational

block 2. After the first system clock in normal mode, FF bank 2 captures outputs from

combinational block 1 and serves as the second pattern for combinational block 2. When

the second system clock cycle in normal mode hits, combinational block 2 outputs are

captured in FF bank 3 and ready for shifting out for examination. This scheme relies on

the circuit's combinational logic, namely combinational block 1, to produce the second

pattern as required for AC fault testing. Therefore, the logic BIST circuit generates

pseudo-random vectors that will be double-clocked to serve as the AC test.

46

3.4 Deterministic Pattern Generation

As an integral part of the test pattern generation flow proposed in Section 2.5,

deterministic pattern generators are required to produce the deterministic top-up test

pattern to boost the fault coverage up from that achieved by the pseudo-random test

pattern set. This section investigates the generation of deterministic test patterns on-chip.

This has always been a difficult issue and often hinders the widespread acceptance of

logic BIST. In this chapter, possible approaches for on-chip test vector generation are

investigated. Furthermore, a method based on using LFSR's and matrix algebra is

proposed to overcome the shortcomings which exist in the other approaches.

3.4.1 On-Chip Deterministic Test Pattern Generation Approaches

There are several methods that can be used when generating deterministic test patterns

on-chip. All of these methods have a common goal of reproducing a pre-defined set of

test patterns. They mainly vary in how test pattern bits are stored and represented.

Memory storage, compaction, and compression are discussed.

3.4.1.1 Memory

This is probably the most intuitive and simple method to generate deterministic test

patterns on-chip. The pattern bits are simply stored in read-only memory (ROM) which

is designed and implemented at design time. During operation, a controller with address

decoding capability simply fetches the test pattern bits by performing memory reads and

feeds the bits to the IP core under test. Test responses are collected from the IP core and

47

compacted by a response compaction block. Figure 28 shows logic BIST with use of

memory.

Deterministic Pattern Generator

Address

Memory
(ROM)

Dat;
Controller with

Address Decoding
Capability

Response
Compactor

Scan Patternŝ
Gated Clock
Scan Enable

IP Response

IP Core with
Scan Chain

Figure 28. Memory-based deterministic pattern generator

The advantage of this approach is the simplicity in implementation. Designers are

required to decide on the test patterns and design a ROM block to store these test pattern

bits. Then the entire design can be sent for fabrication.

With this method, it minimizes the coupling between the ATE and the IP testing since

only minimal interaction is required; thus reduction on ATE requirements for testing high

performance chips can be achieved. However, there are several disadvantages. One

obvious drawback is the correctness of ROM contents after fabrication. It is quite

possible that defective ROM invalidates the entire deterministic test vector generation

process and causes misleading results. A failure reported by logic BIST may be caused

by incorrect test patterns due to defective ROM contents. As a result, a memory BIST

and bit error correction for the ROM may be necessary to ensure the ROM integrity.

48

Therefore, memory testing, diagnosis and repair would be required in a ROM

implementation.

3.4.1.2 Compaction

This method involves generating non-exact test patterns on-chip which achieve fault

coverage comparable to that of the exact test patterns. It attempts to simplify the

hardware involved by sacrificing the correct generation of some bits in test vectors.

These non-exact bits are the don't care bits, usually represented by X, which exist in most

of the test patterns generated by ATPG tools.

One implementation is the bit-flipping algorithm [35] [18] [17]. It relies on an LFSR to

produce a stream of bit patterns. This bit stream is then compared against the test pattern

bits generated by the ATPG tool to determine bits with opposite values. These bits,

identified by the pattern and bit counts, are the ones which must be forced to the opposite

logic values (flipped). The don't care bits generated by the ATPG tool are ignored and

do not require flipping to the opposite values. In order to flip the LFSR generated bits

appropriately, a combinational logic block is required to generate a signal based on the

pattern and bit counter. This signal represents whether current bit requires to be flipped.

Figure 29 depicts the overall structure of this method.

49

Deterministic Pattern Generator

LFSR

Controller Scan Enable

Gated Clock

Bit Counter

Pattern Counter

Bit Flipping
Combination

Logic

Response Compactor JP Response

-H >

Scan
Pattern

IP Core with
Scan Chain

Figure 29. Bit-flipping deterministic pattern generator

The advantage of this method is the simplicity of implementation. It merely requires a

comparison between the LFSR generated bit sequence and that of the test patterns. Then

the bit-flipping combinational logic can be automatically generated based on the pattern

and bit counts. A probabilistic analysis claims that the output of LFSR which feeds an IP

core scan chain has to be modified only at a few bit positions in order to transform the

pseudo-random patterns into a complete test set [35] [18].

Nevertheless, the robustness of this algorithm may be compromised when half of the

LFSR generated bits mismatch the ATPG tool generated deterministic test pattern bits.

In this case, the XOR gate in Figure 29 can simply be replaced by an XNOR gate to

reduce logic. Furthermore, size of the bit-flipping combinational logic expands as the

number of bits flips increases. As a result, this method may not be as robust as claimed

in [35][18].

50

3.4.1.3 Compression

This method attempts to minimize the volume of test data from the ATE to the chip. By

sending compressed test data to each IP core and providing hardware to decompress the

test data, the ATE bandwidth requirement is expected to be reduced [34]. Such a method

involves implementation of a decompressor to decode the test data. Figure 30 shows an

overview of the design.

ATE

SoC Chip

Compressed
Test Data

Controller

J ^ ^ ^ Decompressor

Response Compactor

IP Core with
Scan Chain

•

[Compressed
Test Data

Controller

Decompressor

Response Compactor

IP Core with
Scan Chain

Figure 30. Compression-based deterministic pattern

The coupling between the ATE and the core still exists to some extent although the test

data volume is reduced. It is possible to store the exact, compressed test data in an on-

chip ROM to minimize the involvement of ATE. By introducing the use of a ROM, the

drawbacks of using memory mentioned in Section 3.4.1.1 are encountered. Furthermore,

51

the degree of compression possible is always limited for a variety of reasons. If only

minimal compression can be achieved, the main purpose and advantages of this method

are defeated.

3.4.2 LFSR-Based Deterministic Pattern Generation Principles

This section describes an LFSR-based deterministic pattern generation method which

utilizes matrix algebra to determine the feedback tap locations of a LFSR. This algorithm

is based on the work in references [29] [7]. With properly specified feedback tap

locations, the desirable patterns can be regenerated in consecutive clock cycles. The

algorithm initially assumes an n-bit type 2 LFSR illustrated in Figure 21.

Recall that the next state of type 2 LFSR can be calculated by matrix algebra according to

Equation 3: X(t+1) = X(t)Tc. Consider a transformation of X(t) to X'(t) with an arbitrary,

invertible nxn matrix A according to the relationship:

X'(t) = X(t)A (8)

then:

X\t + l) X(t + l)A (9)

X'(t + 1) X(t)TcA according to (3)

X'(t + l) X\t)A~lTcA according to (8)

X'(t + 1) X'(t)Ts (10)

52

By observation, Equation 3 and Equation 10 have similar forms. This implies the next

state of the LFSR, X'(t+1), can be controlled if the LFSR feedback connections are

implemented according to that specified by T s. Further, note that nxn matrix A is

arbitrary and can be chosen such that its rows correspond to the desired deterministic

patterns.

The LFSR feedback connections can be read off from the T s matrix. The input of j * FF is

calculated by exclusive-or (XOR) operation of the i t h FF outputs if the corresponding ty

entries in T s matrix equal to 1. Input of the j t h FF is connected to ground if all entries in

the j * column of T s matrix equal to 0. Figure 31 illustrates the feedback tap connections

of a 4-bit LFSR implied by a 4x4 T s matrix.

0 1 0 1
0 1 1 0
0 1 0 0
1 1 0 1

X 2 H X 3 M

Figure 31. Deterministic LFSR implementation

If Equation 10 were modified such that X'(t) = A, then Equation 10 becomes:

X'(t +1) = X'(t)T5 = AA~lTcA = ITCA = TCA (11)

53

where I is an nxn identity matrix with all entries set to 0 except along the diagonal.

Considering the definition of the nxn T c matrix and principles of matrix algebra, the

quantity X'(t+1) merely represents a transformed version of A with all rows shifted up by

one row. This is precisely the desired behavior which the LFSR in one clock cycle later

should produce: the next desirable deterministic pattern corresponding to the next row in

the nxn matrix A.

One of the issues of this approach is that the implementation of such a pattern generator

may require a large number of FF's. Analysis was performed on this algorithm to

observe its behaviour when the number of bits and number of test patterns increase.

Figure 32 is a 2-D plot of a slice of the worst-case cost function, in terms of number of

FF's, against the number of patterns or the number of bits in a pattern. The 3-D plot of

simultaneous variations in the number of patterns and the number of bits in a pattern is

given in Figure 33. It is observed that the number of FF's required for the LFSR

implementation is linear with the number of test patterns when the number of bits per

pattern is fixed. A similar observation is seen with variation in the number of bits per

pattern while the number of patterns is kept constant. This suggests that the cost,

measured by the number of required FF's, for implementing an LFSR-based deterministic

pattern generator is directly proportional to the variations in the number of patterns and

the number of bits per pattern. As a result, the number of deterministic patterns to be

generated should be kept small in an effort to minimize the amount of hardware involved

in the deterministic pattern generator.

54

300
Deterministic Pattern Encoding Cost:

260' -

260 -

240 -

& 220
c
1

Q.

I 200
©'

j a
| 180

Z

-

160

140 -

120 -•

,100 i i i i i i i i i ,100
20 40 60 80 100 120 140

Number of Bits or Number of Vectors
160 180 .200

Figure 32. 2-D Cost function of LFSR-based deterministic pattern generation

Deterministic Pattern Encoding Cost

Figure 33. 3-D Cost function of LFSR-based deterministic pattern generation

55

3.4.3 LFSR-Based Deterministic Pattern Generation Pitfalls

With the algorithm introduced in Section 3.4.2, the LFSR feedback tap locations capable

of generating deterministic patterns can be calculated conveniently. However, further

consideration of this algorithm reveals a serious flaw. The deterministic test patterns are

fed into the IP core scan chain with hundreds of scan elements which corresponds to the

length of each test pattern. This length, n, is represented by the width of the A matrix.

According to the algorithm, the LFSR length is at least as long as the width, n, of the A

matrix. This implies the LFSR length is as long as, if not longer than, the IP scan chain

length. Such a property is undesirable because it potentially leads to large area overhead.

Further, the algorithm requires the A matrix to be a square matrix which implies the

number of rows, m, equals the number of columns, n. Since rows in matrix A represent

deterministic test patterns, the above requirement implies the patterns must be appended

with dummy bits when pattern count, m, mismatches the scan chain length, n. Because

these deterministic patterns are assembled by ATPG tools, designers have limited control

over the pattern count given a target fault coverage. As a result, the above requirement

produces an inefficient implementation of the LFSR-based deterministic pattern

generator. The length of such LFSR thus becomes at least max(m, n) if the algorithm

were to be strictly followed.

There is a possible argument that the aforementioned issues can be alleviated, to some

extent, by implementation of multiple scan chains in the IP core. Such inclusion of

multiple scan chains affects vertical splitting of matrix A into multiple matrices. Figure

56

34 shows an example of splitting the A matrix up into three matrices a, b, and c

n bits

m A
vectors

n/3 bits n/3 bits n/3 bits

m a b c
vectors

corresponding to IP core implemented with three scan chains of length n/3 each.

Figure 34. Vertical test pattern split

There are situations where the number of scan cells is approximately three times as many

as the number of patterns. In terms of the A matrix, n ~ 3m. As a result of having

multiple scan chains, the three resultant matrices have dimensions of n/3, which

approximates m. This satisfies the requirement of having square matrices for

deterministic patterns.

Unfortunately, this solution has the cost of having to implement one LFSR for each scan

chain. Further, the EP synthesis flow is disrupted as a consequence. Designers must

estimate the number of patterns, m, ahead of synthesis in order to decide on the number

of scan chains to be inserted for the design. Unfortunately, such estimation is not always

easy as it is often difficult to guess without gate-level synthesis of the EP core. As a

result, this approach can potentially cause unnecessary iterations on the design flow and

57

may have negative consequences on the design schedule. Moreover, it is usually not a

good approach to over-constrain the design based on the test strategy used; otherwise, the

reusability of the IP cores can be compromised.

In cases where the number of patterns, m, exceeds the scan chain length, n, it is possible

to partition the number of patterns, m, such that each partition resembles the length of the

scan chain. Figure 35 shows an example of dividing the matrix A into three sections of a,

b, and c. Similar to earlier example, the resultant matrices a, b, and c are divided such

that square matrices are produced with n ~ m/3.

n bits
n bits

m
vectors

m/3
vectors

m/3
vectors

m/3
vectors

Figure 35. Horizontal test pattern split

This approach treats the three matrices a, b, and c as separate matrices and each requires

an independent LFSR implementation. Each LFSR is responsible for generating the

deterministic patterns specified in each matrix. This approach does not require

unnecessary iterations to the design flow since the deterministic patterns are divided in

accordance to the scan chain length n. Therefore, a priori estimation of the deterministic

pattern count is unnecessary. As a result, the scan chain design of IP core is not

58

constrained by the test strategy. However, if the bits per pattern n should become too

large due to lengthy scan chain, this scheme suffers from implementation of long LFSR

length. Again, this is due to the fact that LFSR length is at least as long as the larger of

the pattern matrix length and width dimensions.

In order to address the above mentioned issues, a deterministic pattern partitioning

scheme is introduced in Section 3.4.4. This approach combines the above two methods

discussed in this section to eliminate their pitfalls.

3.4.4 Improved LFSR-Based Deterministic Pattern Generation

In order to facilitate robust application of the algorithm introduced in Section 3.4.2 for

calculating the feedback taps, a scheme is proposed to partition the deterministic patterns

represented in matrix A. Such a scheme eliminates the issues mentioned in Section 3.4.3;

it also guarantees robustness regardless of the scan chain length n and pattern count m of

the deterministic pattern set. Moreover, the length of the resultant LFSR only ranges

from \ 4n] to 2\ 4n 1 inclusive. The schemes in Section 3.4.3 require the LFSR length to

range between n to 2n-2— in the first scheme; the second scheme requires the LFSR
m

m
length to range between m to 2m -2—.

n

In the proposed scheme, each row in matrix A representing a single pattern is considered

as a matrix. Therefore, m matrices are formed from a deterministic pattern set of m

59

patterns. Each of the m patterns is divided into segments of length [yfn ~|. Figure 36

depicts the partitioning of a deterministic pattern set in a generalized notation.

Figure 36. Deterministic pattern set segmentation

Figure 37 shows a numerical example of partitioning a 4-pattern deterministic set for an

IP core with a scan chain length of 9. Four 3x3 matrices are formed as a result.

60

So "1 0 0 1 1 1 1 0 1

Si 1 1 1
1

~
1 0 0 1 0 1

s2 1 1 1
0

. 1
0 1

1

0
J

1 0 0

s3 1 0 0 0 1 0
_
1 1 0

1 0 0

1 1 1

1 0 1

1 1 1"

1 0 0 =5,
1 0 1

1 1 0"

0 1 0 = s2

1 0 0

1 0 0"

0 1 0 = s3

1 1 0

Figure 37. Deterministic pattern set segmentation example

Each of the matrices is treated independently with the LFSR feedback taps calculated by

the algorithm outlined in Section 3.4.2. Figure 38 shows how the feedback taps for the So

matrix is calculated.

S =
0

1 o o

I I I
1 o 1

Matrix Inversion :

1 0 0 1 0 0 RowO
1 1 1 0 1 0 Rowl
1 0 1 0 0 1 Row2

1 0 0 1 0 0 RowO
0 1 1 1 1 0 Rowl© RowO
0 0 1 1 0 1 Row! © RowO

1 0 0 1 0 0 RowO

0 1 0 0 1 1 Rowl © Row2
0 0 1 1 0 1 Row2

1 0 0

0 1 1

1 0 1

Ts
0 c 0

1 0 0 0 1 0 1 0 0

Ts = 0 1 1 0 0 1 1 1 1

1 0 1 0 0 0 1 0 1

0 1 0 1 0 0 1 1 1

Ts = 0 0 1 1 1 1 = 1 0 1

0 1 0 1 0 1 1 1 1

Figure 38. Transition matrix calculation

61

The LFSR feedback taps would be implemented as depicted in Figure 31, according to

the T s matrix in Figure 38. Each subsequent matrix is calculated in a similar fashion,

yielding one feedback tap configuration each. Consequently, there is a total of 3

feedback tap settings. Setting So corresponds to feedback tap configuration for pattern 0

and similar for the latter. When setting So is selected, segments for pattern 0 are

produced in the LFSR with each clock cycle. Therefore, the contents of the LFSR must

be serially shifted into the IP core scan chain before the LFSR is clocked again for the

next segment. Figure 39 shows a block diagram of the resulting LFSR for a set of

deterministic patterns.

Select

Mode
Select

Feedback,—M Feedback Network

LFSR T̂o Scan
Chain

Figure 39. Block diagram of LFSR

In order to provide smooth transition from one pattern to the next, each matrix is

appended with the first segment of the next pattern. The reason for having such a

structure is to ensure the LFSR content is initialized to first segment of next pattern after

all segments of current pattern are shifted into the IP scan chain. When the next feedback

tap setting is selected, the first segment corresponding to next pattern already resides as

the content of the LFSR. As a result, the segment length is determined according to the

condition exemplified by the pseudo code:

62

if (n>

segmentLength = [Vn~|+1
else

segmentLength =

This condition ensures that the resultant matrices are as square as possible with the

capability to hold one extra segment after accommodating all the bits in a single pattern.

Figure 40 shows the overall structure of the deterministic pattern generator. The pattern

count serves as the selection control for feedback tap settings. There is a mode selection

on the shift register to select whether to serially shift contents to the IP core scan chain or

take the outputs of the feedback block to produce the next segment.

Bit Counter

Deterministic Pattern Generator
Scan Enable

Gated Clock

Controller K=> Pattern Counter

Mode fl

Linear Feedback Network

3 Shift Register
Scan

PatterrLJ

Response Compactor
IP Response

— — — _ _ — _ _ _ _ _ _ _ _ _ _ . - . _ . - _ _ . . _ _ _ _ _ _ _ _ _ _ _ j

IP Core with
Scan Chain

Figure 40. Proposed LFSR-based deterministic pattern generator

The reason that LFSR ranges up to 2[4n 1 is due to the matrix inversion process.

Invertible matrices must be square, and linearly independent for all rows. Linear

63

dependency implies a row can be formed by linear combination of any other rows in the

matrix [2]. Unfortunately, it is impractical to force the segments to be linearly

independent from one another since they represent deterministic test pattern bits specified

by the ATPG tool. When linear dependency exists, a new column is appended to the

right side of the matrix to eliminate the linear dependency. Figure 41 serves as an

example for such a process.

A =

Lineal

"1 0 0"
0 1 0
1 1 0

"ly depend

\ -
R 2

ent Linea

"l 0 0 j 0"
0 1 0 i 0
1 1 0 i 1 i
0 0 1 0

rly independe

Ro
Ri
R2

R3

nt

Figure 41. Matrix linear dependency elimination example

As seen in the figure, R2 of matrix A is a linear combination of Ro and Ri (modulus-2

addition). In order to break the linear dependency, a new column is added with a 1 in R2

to make it linearly independent from Ro and Ri. Since the matrix must be square in order

for inversion, a new row R3 is added with a 1 in the third column to again ensure linear

independency with other rows. Such a matrix is now invertible with the addition of one

extra column which translates into expansion of LFSR length by one. In the worst case,

all rows in the matrix are linear combinations of the first two rows. Consequently, the

LFSR length ranges up to (T 4n 1+1) + (T 4n 1+1) - 2 = l\ yjn 1.

64

3.5 Pattern Generator Hardware and Area Overhead

In order to facilitate the calculation for T s matrices according to the algorithm described

in Section 3.4.4, a computer program was implemented. This program takes the

deterministic pattern set as input and then segments the pattern set as described. It

produces the RTL (Verilog and/or VHDL) code that specifies the LFSR with all the

calculated feedback settings. Since the controller design only requires minor parametric

modifications according to the deterministic pattern set specifications, it is simply

attached to the LFSR. Finally, these blocks are synthesized together to produce gate-

level netlist. Therefore, the LFSR calculation and coding process are completely

automated once the deterministic pattern set is available from the ATPG tool.

Furthermore, such deterministic pattern generator can be easily integrated with the logic

BIST circuitry to execute the test flow outlined in Section 2.5.

The advantages of this scheme are its simplicity in implementation and capability of

being automated. Also, the required number of FF's only ranges from [-<Jn~\ to 2[yfn 1.

However, this scheme also has some disadvantages. One major concern is the amount of

hardware involved in the implementation of the feedback tap configurations; one

configuration is required by each pattern. This is partially justifiable. As the number of

patterns m increases, the total number of bits to be reproduced (mxn) increases

accordingly. It is unreasonable to demand the hardware implementing such generator to

remain fixed while the number of bits to be reproduced increases. Thus, the hardware

growth induced by the increase in the total number of bits in the deterministic pattern set

is deemed necessary and reasonable.

65

The area overhead contributed by the pseudo-random and deterministic pattern

generation circuitry were determined with report_area command in the Design

Compiler™ synthesis tool by Synopsys®. Detailed area measurements are given in

numerical format in Appendix B.

The graphical plots of the area measurements are displayed from Figure 42 to Figure 45.

The plots provide area comparisons between the IP cores and the corresponding pattern

generators. The area of the pattern generators are shown as bar charts to illustrate their

respective contributions to the total test circuitry area. Also, the number of test patterns

encoded by each pattern generator is shown in the legend of each plot.

66

16000.0

14000.0

12000.0

S 10000.0

£ 8000.0 H

i= 6000.0

4000.0

2000.0

0.0

ITC'99 b01 (9 Scan Cells)

B DC Det. Pattern
Generator (0 pat.)

• A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern]
Generator (65535 pat.)

I I
IP Core Pattern Generator

ITC'99 b03 (38 Scan Cells)
1 6 0 0 0 . 0

1 4 0 0 0 . 0

1 2 0 0 0 . 0

f1 0 0 0 0 . 0

~ 8 0 0 0 . 0

. - 6 0 0 0 . 0

o
4 0 0 0 . 0

2 0 0 0 . 0

0 . 0

• DC Det. Pattern
Generator (0 pat.)

• A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern|
Generator (65535 pat.

IP Core Pattern Generator

50000.0

45000.0

40000.0 ^

35000.0

S 30000.0

•125000.0
_ 20000.0
o

15000.0
10000.0
5000.0

0.0

ITC'99 b05 (71 Scan Cells)

H DC Det. Pattern
Generator (1 pat.)

0 A C Det. Pattern
Generator (6 pat)

• Pseudo-random Pattern]
Generator (65535 pat.)

IP Core Pattern Generator

25000.0

20000.0

115000.0

110000.0

u
5000.0

ITC'99 b02 (6 Scan Cells)

0.0

S DC Det. Pattern
Generator (1 pat.)

• A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern|
Generator (65535 pat.)

IP Core Pattern Generator

35000.0

30000.0

25000.0

. |20000 .0

'315000.0

° 10000.0

5000.0

0.0

ITC'99 b04 (85 Scan Cells)

H DC Det. Pattern
Generator (2 pat.)

0 A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern
Generator (65535 pat.)

IP Core Pattern Generator

16000.0

14000.0

12000.0

110000.0
._ 8000.0

£ 6000.0

4000.0

2000.0 H

0.0

ITC'99 b06 (17 Scan Cells)

S DC Det. Pattern
Generator (0 pat.)

• A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern
Generator (65535 pat)

IP Core Pattern Generator

Figure 42. Test circuitry area measurement plots 1

67

ITC'99 b07 (58 Scan Cells)

118 DC Det. Pattern
Generator (0 pat.)

0 A C Det. Pattern
Generator (16 pat.) .

• Pseudo-random Pattern|
Generator (65535 pat.)

Pattern Generator

ITC'99 b09 (30 Scan Cells)

S DC Dat. Pattern
Generator (0 pat.)

0 A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern
Generator (65535 pat.)

Pattern Generator

ITC'99 t>11 (44 Scan Cells)

H DC Det. Pattern
Generator (0 pat.)

0 A C Dat. Pattern
Generator (3 pat)

• Pseudo-random Pattern|
Generator (65535 pat.)

010000.0

5000.0

0.0

IP Core Pattern Generator

ITC'99 b08 (34 Scan Cells)

j DC Det. Pattern
, Generator (0 pat.)
l E A C D e t . Pattern

Generator (0 pat)
|n Pseudo-random Pattern

Generator (65535 pat.)

Pattern Generator

ITC'99 b10 (34 Scan Cells)

• DC Det. Pattern
Generator (1 pat.)

0 A C Det. Pattern
Generator (0 pat)

• Pseudo-random Pattern
Generator (65535 pat.)

Pattern Generator

ITC'99 b12 (132 Scan Cells)

j |ts DC Det. Pattern
Generator (5 pat.)

j | 0 A C D e t . Pattern
Generator (30 pat.)

| |D Pseudo-random Pattern]
Generator (65535 pat.)

° 30000.0

20000.0

10000.0

0.0

IP Core Pattern Generator

Figure 43. Test circuitry area measurement plots 2

68

40000.0

35000.0

30000.0 -I

§25000.0
<
••|20000.0
u

515000.0

10000.0

5000.0

0.0

ITC'99 b13 (73 Scan Cells)

S DC Det. Pattern
Generator (0 pat.)

0 A C Det. Pattern
Generator (14 pat.)

• Pseudo-random Pattern]
Generator (65535 pat.)

IP Core Pattern Generator

ITC'99 b14_1 (331 Scan Cells)
800000.0

700000.0

600000.0

"500000.0
<

.e 400000.0

5300000.0 -I

200000.0 -)

100000.0

0.0

H DC Det. Pattern
Generator (416 pat.)

_ A C Det. Pattern
Generator (32 pat.)

• Pseudo-random Pattern
Generator (65535 pat.)

IP Core Pattern Generator

ITC'99 b15_1 (554 Scan Cells)
1800000.0

1600000.0

1400000.0

<a1200000.0 H
0)

< 1000000.0

o 800000.0
5 600000.0

400000.0

200000.0

0.0

B DC Det. Pattern
Generator (127 pat.)

0 A C Det. Pattern
Generator (490 pat.)

• Pseudo-random Ffcttern|
Generator (65535 pat.)

IP Core Pattern Generator

ITC'99 b14 (331 Scan Cells)
1200000.0

1000000.0

n 800000.0 -|

- 600000.0 -j

§

O 400000.0

200000.0

0.0

S DC Det. Pattern
Generator (581 pat.)

• A C Det. Pattern
Generator (58 pat.)

• Pseudo-random Pattern|
Generator (65535 pat.)

IP Core Pattern Generator

ITC'99 b15 (554 Scan Cells)
2500000.0

2000000.0

|> 1500000.0

21000000.0
b

500000.0

0.0

H DC Det. Pattern
Generator (251 pat.)

0 A C Det. Pattern
Generator (511 pat.)

• Pseudo-random Pattern]
Generator (65535 pat.)

I 1
IP Core Pattern Generator

200000.0

180000.0

160000.0 -

140000.0 -

2 120000.0

.« 100000.0

HC11 (181 Scan Cells)

o
80000.0 -j

60000.0

40000.0

20000.0

0.0

H DC Det. Pattern
Generator (26 pat.)

• A C Det. Pattern
Generator (95 pat.)

• Pseudo-random Pattern|
Generator (65535 pat.)

IP Core Pattern Generator

Figure 44. Test circuitry area measurement plots 3

69

Post Processor (326 Scan Cells)
600000.0

500000.0

o 400000.0
to
<
.* 300000.0
o

"200000.0

100000.0

0.0

H DC Det. Pattern
Generator (169 pat.)

B A C Det. Pattern
Generator (91 pat.)

• Pseudo-random Pattern|
Generator (65535 pat.)

IP Core Pattern Generator

Pre Processor (642 Scan Cells)
800000.0

700000.0

600000.0 -\

S 500000.0
<
.•e 400000.0
3
O

5 300000.0

200000.0 H

100000.0

0.0

• DC Det. Pattern
Generator (96 pat.)

0 A C Det. Pattern
Generator (77 pat.)

• Pseudo-random Pattern|
Generator (65535 pat.)

IP Core Pattern Generator

450000.0

400000.0

350000.0

eg300000.0

<250000.0

3200000.0

0150000.0 -I

100000.0

50000.0

0.0

Classifier (518 Scan Cells)

S DC Det. Pattern
Generator (0 pat.)

0 A C Det. Pattern
Generator (126 pat.)

• Pseudo-random Pattern|
Generator (65535 pat.

IP Core Pattern Generator

Figure 45. Test circuitry area measurement plots 4

As seen in the above plots, the area overhead required by the test circuitry are high. For

the deterministic pattern generators, the area overhead measurements vary from 53.3%

(HC11) to 1180.3% (ITC'99 b02). From the plots, the area overhead measurements

appear to be more significant with smaller IP cores with short scan chain lengths such as

ITC'99 b02. This observation is sensible because each deterministic pattern generator

includes certain basic components, such as controller and response compactor, which

occupy certain silicon area irrespective to size of the IP core under test. As a result, the

deterministic pattern generation circuitry must occupy certain amount of area which may

deem large relative to the IP core under test. Further, the number of deterministic test

70

patterns has a direct effect on the deterministic pattern generator area. This is apparent as

more deterministic test patterns translate into more deterministic test bits. In order to

generate more deterministic test bits, it is reasonable to employ more hardware and

demand more silicon estate. This is analogous to using more RAM cells to store more

data bits.

The AC pseudo-random pattern generation circuitry area overhead measurements suggest

the AC pseudo-random pattern generation circuitry area overhead vary relative to the size

of the IP core under test. They range from 9.1% (ITC'99 bl5) to 1786.0% (ITC'99 b02).

In general, AC pseudo-random pattern generators incur higher area overhead on smaller

D? cores with shorter scan chain length. This observation is justified because each AC

pseudo-random pattern generator requires certain minimum amount of silicon area for

basic components such as controller, pattern generator, and response compactor. This is

supported by the fact that AC pseudo-random pattern generators occupy relatively

constant amount of area irrespective to the IP core under test.

From the above analysis, the test pattern generation flow implemented as logic BIST

solution is more suitable for large IP cores in order to alleviate the impact of test circuitry

area overhead to acceptable levels. Also, the number of deterministic top-up test patterns

plays major role in the area overhead contributions. Therefore, it is desirable to minimize

the number of deterministic top-up test patterns. This can be achieved by increasing the

number of pseudo-random test patterns in the logic BIST circuitry in the hope of

detecting more faults before involvement of the ATPG tool. With less remaining faults

71

in the fault list as input to the ATPG tool, the number of deterministic top-up patterns

generated should theoretically be reduced.

Also, the deterministic pattern generator area can be reduced by taking advantage of the

don't care test bits in the ATPG generated top-up test patterns. Thus, during

manipulation of the deterministic pattern generator, greater degree of freedom can be

exploited to produce a possibly simpler design with less complex LFSR feedback

network connections. Such a reduction in complexity equates to reduction in the overall

area of the resulting deterministic pattern generator.

Ultimately, as attempts are made to reduce the role of the off-chip ATE, the amount of

silicon area devoted to on-chip test infrastructure will increase. With ITRS predictions of

memory dominating the chip area [12], it is possible to claim some of this area for test

purposes. In parallel, techniques to further reduce the area of on-chip deterministic

pattern generators can be investigated.

72

CHAPTER 4 SOC TEST STRATEGY

One of the most challenging issues in SoC design is to establish the top-level test strategy

for the fabricated design. In the SoC design paradigm, an IC is developed by integrating

individual IP cores onto a single chip. Since SoC design promotes reuse of IP cores, they

are often deployed in various design applications. As a result, IP cores must be designed

to support various test access mechanisms (TAM) due to different test strategies. In

order to enhance IP core development and test efforts, standards that encourage a

common platform for testing are essential. Such a platform is then leveraged to devise a

TAM which facilitates top-level testing.

Figure 46 shows an overview of a possible SoC test strategy with the concept of SI P

introduced in Section 1.1. Depicted this way, the IP cores are a small part of the SoC

integration process. The key point is that there is a substantial amount of work needed to

design the general infrastructure for a chip, and in particular the test SI2P.

From Source
User-Defined Parallel T A M

PI U ITPO PI -TJ- t f P O
To Sink

Functional
Inputs^

Serial T A M

Functional Functional
Outputs^ Inputs ^

SI

Wrapper Controls
I

User-Defined Test Controller

A
Figure 46. SoC test strategy with SI P

73

This chapter focuses on the design-for-test (DFT) infrastructure needed for SoC design.

It first explains the importance of input/output (I/O) registers on individual IP cores.

Then it examines the operation of the PI500 wrapper which acts as the test harness

around all IP cores. As an illustration, an HC11 core is designed and fabricated with a

DC logic BIST circuitry, AC logic BIST circuitry, and PI500 wrapper. Lastly, the

chapter describes the supportive logic, which enables the seamless interface between the

PI500 wrappers and a particular TAM implementation known as NTMA [21].

4.1 Input/Output Registers

Placing registers at the inputs and outputs (i.e., I/O buffering) for IP cores is a strongly

recommended practice for the SoC design style [15]. As the size and speed of design

increase, signals are given shorter time window to propagate from one point to another on

the silicon. Due to aggressive design goals and complexities, signals must propagate

through increasingly more stages of system logic within a given time frame. Therefore,

the increase in risks of designs not capable of fulfilling timing constraints becomes

inevitable. I/O buffering offers synchronous inputs and outputs to/from an D? core by

placing FF's at all signals around the core except some special signals such as the system

clock and reset. Each input signal is connected to the system logic through a FF.

Similarly, each output signal leaves the system logic by connecting to a FF which in turn

drives the signal from the IP core. Figure 47 illustrates the concept of I/O buffering.

74

IP Core

Figure 47. I/O buffering

The addition of I/O buffers enables localized timing on each IP core such that timing

budgets can be analyzed and estimated on a core-to-core basis. As a result, specific setup

and hold times may be established for all inputs and outputs. This is essential for IP core

development because they are often designed as standalone modules which may interact

with any other modules not known at design time. Furthermore, it is important for each

core to achieve timing closure independently. Since they are often reused in many

designs, their ability to meet and guarantee their own specified timing requirements are

imperative to overall functionality of the final integrated SoC. These I/O registers act as

a boundary for an IP core such that any timing error within the IP core can be intercepted

and isolated from the rest of the system. Consequently, timing delays occurring in one IP

core does not affect the timing of another. This makes the SoC design style manageable

and predictable because timing related issues can be identified at early stages with a

bottom-up design style.

75

From the point of view of DFT and scan deign, I/O buffering required for timing can be

exploited for testing on IP cores. Since the Pi's and PO's of individual cores are buried

deep in the SoC architecture, they often cause accessibility problems with respect to

external ATE's. With I/O registration, the I/O buffers are included as part of the scan

chain. As a result, the Pi's and PO's are indirectly controlled through the scan chain.

Since scan design is the most widely accepted and efficient method thus far to test

sequential circuits, at least one scan chain must exist in an IP core. Thus, the efforts

involved in including the I/O buffers in a scan chain are minimal. However, the gains in

controllability on the IP core inputs and observability on the IP core outputs are

enormous when these inputs and outputs may not even be accessible at all if I/O registers

were not deployed.

4.2 P1500 Core Wrapper

To serve as a standard platform for testing IP cores in the SoC environment, the PI500

standard is being drafted by IEEE to specifically target embedded core testing [31]. Its

main role is to define a uniform interface that allows all P1500-compliant EP cores to

precisely exchange test-related signals with any test access mechanism (TAM) designed

according to the PI500 standard. As a result, EP cores can be simply viewed as plug-and-

play modules which can be replaced by one another with minimal compatibility concerns

on test harnesses.

The PI500 standard is modeled after the EEEE JTAG 1149.1 standard for board-level

testing, also known as boundary scan [31][26][23]. P1500 can be considered as a scaled

76

version of the JTAG standard; IP cores are viewed as individual IC chips while the entire

SoC is viewed as the system board. Despite the similarity in concept between the two

standards, there are notable distinctions between them. These variations provide more

flexibility to PI500 compliant IP cores without sacrificing the robustness offered in the

JTAG standard. One of the most prominent differences between the two standards is the

absence of the test access port (TAP) controller from the P1500 standard. This controller

is a FSM and is an integral part of the JTAG standard to enforce strict signal sequencing

when communicating with the test harnesses. With the absence of such a controller, the

P1500 standard relies on the TAM designer to provide the proper signal sequences for

test information correspondence. Another notable difference is the addition of parallel

test port. The JTAG standard stipulates only one pair of test data input (TDI) and test

data output (TDO), which limits test data throughput. On the other hand, the P1500

standard allows possibility for increased throughput with a variable number of test data

inputs and outputs. This allows the opportunity for realizing parallelism in test data

movement when speedy transportation of test data is demanded.

The PI500 standard is realized by a wrapper design around an IP core. The wrapper

contains six mandatory control inputs, one serial data input and one serial data output.

Optionally, the wrapper can include variable numbers of inputs and outputs for parallel

test data movement. Figure 48 presents an overview of the PI500 wrapper [24].

77

Wrapper j
Controls

SELECTWIR-
CAPTUREWR-

SHTETWR-
L UPDATEWR-

TAM-In
(Optional)

WRCK-
WRSTN-

wsi-

P1500 Wrapper
BDR

LBIST
Scan in Scan out

Control
Logic

MISR h

Bypass

CDR's

WIR

_\ TAM-Out
"̂ (Optional)

•WSO

Figure 48. PI500 wrapper

The WRCK and WRSTN pins are the wrapper clock and reset respectively to provide the

corresponding signals to wrapper logic. The wrapper serial input (WSI) is responsible for

transporting instructions and serial data into the wrapper. The SELECTWIR input

determines whether the signal on the WSI input is serially shifted to the wrapper

instruction register (WIR) or other destinations inside the wrapper. Based on the content

in WIR and the four control inputs, various internal control signals are generated to

control other components within the wrapper. The ring of registers around the wrapper

comprises the boundary data register (BDR) which isolates the core from its functional

connections in the SoC during test. Before and during the exercise of full-scan test or

78

operation of logic BIST circuitry on the core, the BDR is set to a known state in order to

provide a predictable test environment. During full-scan core test, test patterns are

serially shifted into the WSI pin while the scan responses are serially shifted out of the

WSO pin. The scanned-out bits of the full-scan test can also be compacted at the

multiple-input signature recognizer (MISR) for a signature which is captured by a core

data register (CDR) to be serially shifted out from the WSO output. WSO acts as the sole

output from which core and wrapper responses are exported. In an attempt to model the

JTAG standard, the WSO pin changes state at the falling edge of WRCK while all other

wrapper logic are triggered on the rising edge. As a result, a negative-edge triggered FF

is implemented to buffer the WSO output. The CDR's are designer definable and are

instantiated as many times as deemed necessary. One major function of the CDR is to

provide and capture the BIST or MISR signature after its operation. The bypass register

is responsible for transporting the signal from WSI input to WSO output verbatim.

The architecture of each BDR cell is not strictly specified in the PI500 standard and can

be varied upon different requirements. The implementation used in this research consists

of two FF's and two MUX's as illustrated in Figure 49.

79

Shift port to next wrapper cell

Cell input port-
Wrapper Cell

Shift/ Update
-> Capture - • FF

/ FF

-4v
'Cell output port

Shift port from previous wrapper cell

Figure 49. Wrapper cell structure

The structure is similar to that specified in the JTAG standard [22]. The update FF keeps

the data connected to the functional output port stable while shifting occurs between the

shift/capture FF's in adjacent cells. The content of shift/capture FF is sent to the update

FF only after shifting in the BDR completes. This ensures signals conceived by the IP

core inputs are unaltered while the desired contents are being shifted into the BDR. This

is a precaution against adverse effects on the core while BDR shifting. During BDR shift

operations, the MUX in front of the shift/capture FF selects the shift out port from the

previous BDR cell to form a shift register chain. During BDR capture operation, the

MUX is configured to capture the cell functional input such that the value is stored and

then exported by later shift operation. Depending on WIR content and the control inputs,

the MUX at the cell functional output selects either functional input or update FF. BDR

becomes non-invasive when each cell is bypassed by connection of the functional input

to functional output through this MUX.

80

4.3 Fabrication of Core Level SfP Solution

In order to demonstrate the use of the aforementioned concepts, an IP core is designed

and fabricated. The implemented IP core is a microcontroller modeled after the

functionalities of an HC11 microcontroller by Motorola®. It is equipped with DC and

AC pseudo-random pattern generation circuitry to provide a feasibility test for

incorporating the double-clocking scheme of Section 3.3.2 in silicon. The IP core and the

two logic BIST circuitry are wrapped by a P1500 wrapper as described in Section 4.2.

This design was taken through the physical design flow for 0.18/im CMOS and was sent

for fabrication.

Figure 50 is an overview of the fabricated design. The HC11 core is implemented with

two logic BIST circuitry blocks. One logic BIST circuitry is responsible for generating

pseudo-random test patterns targeted for DC faults while the other is targeted for AC

faults. The HC11 core and logic BIST circuitry blocks are wrapped according to the

P1500 standard. The HC11 core area is approximately equivalent to 7542 gates (The

area of a 2-input NAND gate in this library is 11.53jLtm and is used as a reference for

gate count measurements). The DC logic BIST circuitry block occupies an area of about

1518 gates while its AC counterpart occupies an area of about 1526 gates. Each equates

to approximately 20% of the HC11 core area. The PI500 wrapper accounts for

additional 4350 gates and is equivalent to 58% of the HC11 core area. The area taken up

by the SI2P components are large relative to the size of the HC11 core. However, given

the size of the HC11 core is small by itself, the area overhead incurred by the SI P

components are magnified as a result. Figure 51 is a die photo of the fabricated design

81

and testing of this is still in progress. A logic simulation of the test sequence is available

on the gate-level netlist of the design. Stimuli and responses of the design are collected

and converted to external test patterns to be applied from the ATE.

Functional
Inputs

P1500[

PI 500 Wrapper

!•

i n

Controls [

HC11 Core

PI500 Controller

•
•
•

LO.

J ^Functional
L _ J Outputs

DC AC
BIST BIST

^ 1 5 0 0
Outputs

Figure 50. Overview of the fabricated HC11 with core level SI P solution

Figure 51. Die photo of the fabricated HC11 with core level SI2P solution

82

4.4 Application of P1500 Core Wrapper

The next stage of the SI P design is the chip level integration of the PI500-wrapped IP

cores with a packet-switched test network known as NIMA [21][10]. Additional SI2P

components are required as adaptors for interfacing with NTMA test network.

The NIMA test network is deployed in a network processor designed in-house at UBC. It

is fabricated and included as part of another research project at UBC [9]. A paper is also

published describing the deployment and performance of this NIMA test network [10].

The in-depth implementation details are given in Appendix C.

83

CHAPTER 5 CONCLUSIONS

Intellectual property (IP) cores, which are the building blocks for System-on-a-Chip

(SoC) design, are often purchased from third-party vendors and integrated together by

system architects to construct the final SoC design. EP cores released with certain self-

test mechanisms are highly recommended to relieve the test development burden from the

system architects who may not have enough internal knowledge of the EP cores to

effectively devise suitable test methodologies. For this purpose, logic built-in self-test

(logic BIST) is an attractive solution. The logic BIST concept is realized by inclusion of

an extra circuitry which tests an EP core and reports the result.

The first part of this research investigates the relationship between the stuck-at (DC) and

transition (AC) faults. These commonalities are then justified and analyzed to support

the proposal of a heuristic test pattern generation flow which exploits this relationship to

reduce the test efforts. It utilizes the AC test pattern to detect not only the AC faults, but

also the DC faults. Therefore, the number of test patterns which strictly target DC faults

can be reduced. Also in the proposed test flow, pseudo-random test patterns, sequenced

according to the double-clocking method, are applied to the EP core under test first to

detect the easy-to-catch AC and DC faults. The remaining AC faults are then detected

with the AC deterministic test patterns generated by an ATPG tool. After the AC

pseudo-random and AC deterministic test patterns are applied to test for the DC faults, an

ATPG tool is again employed to assemble additional DC deterministic patterns which

target the remaining DC faults. This scheme effectively cuts down the number of both

AC and DC deterministic test patterns necessary to test an EP core. Analysis shows that

84

the proposed test flow achieves comparable, in many instances better, fault coverage

results to that which simply relies on the ATPG tool to generate deterministic test

patterns. The DC and AC fault coverage results were obtained from TetraMAX™. It

should be noted that each tool has some limitations in algorithms and implementation.

Therefore, different results may be observed with different ATPG and fault simulation

tools.

The second part of this research focuses on deployment of the test pattern generation flow

as a logic BIST scheme. It involves on-chip generation of pseudo-random test patterns

and ATPG tool specified AC and DC deterministic test patterns. For deterministic test

pattern generation, a scheme based on a type 2 linear feedback shift register (LFSR) is

proposed. The LFSR feedback tap locations are systematically identifiable with matrix

manipulations. The deterministic patterns are partitioned into segments which are

reorganized into matrices. These matrices are then manipulated to identify the feedback

tap locations which are capable of generating the specified segments when the LFSR is

sequenced correctly. Due to the regularities of these operations, a computer program is

written to facilitate the matrix manipulation efforts. The RTL code, Verilog or VHDL,

for the LFSR can be generated according to a given set of deterministic test patterns.

Area overhead measurements of the deterministic pattern generators are analyzed to

conclude that the area overhead results are more significant for smaller IP cores. This is

due to the fact that at least certain minimum amount of area must be occupied by some

basic components necessary for the deterministic pattern generation. Furthermore, it is

observed that the number of deterministic test patterns to be generated greatly affect the

85

area overhead measurements. More deterministic test patterns translate into greater area

overhead. Therefore, it is advisable to apply the logic BIST test flow to large EP cores to

absorb the minimum area requirements of the test circuitry. Moreover, the deterministic

test pattern count should be kept at a minimum to aid in area requirement reduction.

The third part of the research involves the realization of Semiconductor Infrastructure EP

(SI2P) in a SoC environment. This includes the implementation of test harnesses around

EP cores to interface with a packet switched test access mechanism (TAM) known as

NEMA. As a result, EP cores are encapsulated by wrappers which are implemented

according to the PI500 standard. The implementation serves as a feasibility test for the

emerging PI500 standard. In order to control each PI500 wrapper with ease, a state

machine which resembles the TAP controller from the EEEE 1149.1 JTAG standard is

designed to properly sequence the P1500 wrapper control signals. For the purposes of

communication with the packet switched NEMA network, the NEMA interface and NEMA

serializer are implemented as adapters to bridge the NIMA network and the EP cores. All

of these components are implemented as reusable modules that can be replicated in

different SoC designs. They are imperative to the concept of SoC design since they offer

modularity and reusability. Without them, SoC testing becomes a difficult and

unmanageable task which possibly impedes the progress of the SoC design paradigm.

5.1 Future Work

The future work involves testing of a fabricated design of the HC11 EP core with AC and

DC logic BIST circuitry. Test vectors and waveforms are readily available for the task.

86

The LFSR responsible for generating on-chip deterministic test patterns can be optimized

by exploiting the don't care bits in the deterministic test pattern set generated by the

ATPG tool. In the hope of providing greater degree of freedom during matrix

manipulations, the LFSR feedback network can be simplified to occupy less valuable

silicon area.

The area overhead of the total test circuitry can be reduced by sharing common

components, such as counters and response compactors, amongst pseudo-random and

deterministic pattern generators. Further, controllers of the AC and DC deterministic

pattern generators can potentially be merged to minimize hardware resources. Finally,

the test circuitry and harnesses can be upgraded with minimal modifications to support

multiple scan chains in an IP core when one scan chain is deemed inadequate.

5.2 Contributions

This section summarizes the contributions of this research:

1. Identified relationship between DC and AC faults to propose a heuristic test

pattern generation flow which potentially reduces the total number of test patterns

required to test an IP core. The test flow is applicable for AC and DC fault

detection and takes advantage of pseudo-random test pattern generation to reduce

the deterministic test pattern count.

2. Conducted fault coverage analyses on the test pattern generation flow with the

TetraMAX™ ATPG tool from Synopsys® to demonstrate that high fault

coverage can be obtained.

87

3. Devised an LFSR-based scheme for on-chip deterministic test pattern generation.

4. Facilitated the design of hardware for deterministic test pattern generation by

writing a computer program to automatically generate the RTL code for the LFSR

given a deterministic test pattern set.

5. Implemented test harnesses for interface between IP cores and a packet-switched

test access mechanism (TAM) known as NTMA to strengthen the concept of SI P.

88

REFERENCES

[I] "AMBA Specification Rev 2.0." ARM Ltd., 1999 <http://www.arm.com>.

[2] R.F.V. Anderson, Introduction to Linear Algebra, Holt, Rinehart and Winston of
Canada, New York, 1986.

[3] M.L. Bushwell and V.D. Agrawal, Essential of Electronic Testing for Digital,
Memory & Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, Boston, 2000.

[4] R. Chandramouli and S.Pateras, "Testing Systems on a Chip", IEEE Spectrum,
1996, pp. 42-47.

[5] "CoreConnect Bus Architecture." International Business Machines Corporation,
1999 <http://www.chips.ibm.com/products/coreconnect>.

[6] A.L. Crouch, Design-for-Test for Digital ICs and Embedded Core Systems, Prentice
Hall, New Jersey, 1999.

[7] C. Dufaza and G. Cambon, "LFSR based Deterministic and Pseudo-random Test
Pattern Generator Structures", 2nd European Test Conference, 1991, pp. 27-34.

[8] S. Haykin, Communication Systems Third Edition, John Wiley & Sons, Inc., New
York, 1994.

[9] L. Hong, "System-on-a-Chip (SoC) Design and Test - A Case Study", M.A.Sc.
Thesis, University of British Columbia, August 2002.

[10] L. Hong, M. Nahvi, R. Fung, A. Ivanov, and R. Saleh, "Novel Test Methodologies
for SoC/IP Design", IEEE International Workshop on System-on-Chip for Real-
Time Applications, 2002, pp20-30.

[II] A. Ivanov, "UBC System-On-Chip Annual Review", University of British
Columbia, 2002.

[12] The International Technology Roadmap for Semiconductors: Design Chapter,
International Sematech, Texas, 2001, <http://public.itrs.net>.

[13] The International Technology Roadmap for Semiconductors: Test and Test
Equipment Chapter, International Sematech, Texas, 2001, <http://public.itrs.net>.

[14] S.M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and
Design, Second Edition, McGraw-Hill, Boston, 1999.

89

http://www.arm.com
http://www.chips.ibm.com/products/coreconnect
http://public.itrs.net
http://public.itrs.net

[15] M. Keating and P. Bricaud, Reuse Methodology Manual, Second Edition, Kluwer
Academic Publishers, Boston, 1999.

[16] G. Keifer, H. Vranken, E.J. Marinissen, and H-J Wunderlich, "Application of
Deterministic Logic BIST on Industrial Circuits", International Test Conference,
2000, pp. 105-114.

[17] G. Kiefer and H-J Wunderlich, "Deterministic BIST with Multiple Scan Chains",
International Test Conference, 1998, pp. 1057-1064.

[18] G. Kiefer, and H-J Wunderlich, "Using BIST Control for Pattern Generation",
International Test Conference, 1997, pp. 347-355.

[19] A. Krstic and T. Cheng, Delay Fault Testing for VLSI Circuits, Kluwer Academic
Publishers, Boston, 1998.

[20] N. Mukherjee, T.J. Chakraborty, and S. Bhawmik, "A BIST Scheme for the
Detection of Path-Delay Faults", International Test Conference, 1998, pp. 422-431.

[21] M. Nahvi and A. Ivanov, "A Packet-Switching Communication-Based Test Access
Mechanism for System Chips", IEEE European Test Workshop, 2001.

[22] K.P. Parker, The Boundary-Scan Handbook: Analog and Digital, Second Edition,
Kluwer Academic Publishers, Boston, 1998.

[23] J.M. Rabaey, Digital Integrated Circuits: A design Perspective, Prentice Hall, New
Jersey, 1996.

[24] M. Richhetti, "Overview of Proposed IEEE P1500 Scalable Architecture for Testing
Embedded Cores", Slides of the presentation at Design Automation Conference,
June 20, 2001, pp. 1-26.

[25] R. Saleh. Notes, ms. University of British Columbia, August 2002.

[26] M.J.S. Smith, Application-Specific Integrated Circuits, Addison-Wesley, Boston,
1997.

[27] N. Tendolkar, R. Woltenberg, R. Raina, X. Lin, B.Swanson, and G. Aldrich, "Scan-
Based At-Speed Testing for the Fastest Chips", Mentor Graphics Corporation
Technical publications, June 2001 <http://www.mentor.com/dft>.

[28] "TetraMAX ATPG User Guide: Chapter 8", Synopsys Inc., 2001, pp. 2-10.

[29] B. Vasudevan, D.E. Ross, M. Gala, and K.L. Watson, "LFSR Based Deterministic
Hardware for At-Speed BIST", VLSI Test Symposium, 1993, pp. 201-207.

90

http://www.mentor.com/dft

[30] Website, <http://www.cad.polito.it/tools/itc99.html>.

[31] Website, <http://grouper.ieee.org/groups/1500>.

[32] Website, <http://www.intel.com/research/silicon/mooreslaw.htm>.

[33] MJ.Y. Williams and J.B. Angell, "Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and Additional Logic", EEEE Transaction on Computers,
Vol. C-22, no. 1, January 1973, pp. 46-60.

[34] F. Wolff and C. Papachristou, "Multiscan Based Test Compression and
Decompression Using LZ77", International Test Conference, 2002, pp. 331-339.

[35] H-J Wunderlich and G. Kiefer, "Bit-Flipping BIST", Digest of Technical Papers in
International Conference on Computer-Aided Design, 1996, pp. 337-343.

91

http://www.cad.polito.it/tools/itc99.html
http://grouper.ieee.org/groups/1500
http://www.intel.com/research/silicon/mooreslaw.htm

APPENDIX A NUMERICAL FAULT COVERAGE RESULTS

The appendix presents the numerical fault coverage results corresponding to the fault

coverage plots of the IP cores in Section 2.6.

Table 2. Numerical fault coverage results

Pat te rn C o u n t F a u l t Coverage (%) Pat te rn C o u n t
Co l lapsed Uncol lapsed

I T C ' 9 9 b O l (9 scan cells)
A C A T P G unconstrained 16 88.36 90.14
A C A T P G constrained 14 73.71 72.79
A C pseudo-random 65535 74.57 73.47
A C pseudo-random + Det. 65535 + 0 74.57 73.47
D C A T P G unconstrained 13 95.07 95.92
D C A T P G constrained 12 93.10 93.88
D C pseudo-random 65535 94.09 94.56
D C pseudo-random + Det. 65535 + 0 94.09 94.56
I T C ' 9 9 b02 (6 scan cells)
A C A T P G unconstrained 13 85.21 86.78
A C A T P G constrained 10 73.94 74.71
A C pseudo-random 65535 73.94 74.71
A C pseudo-random + Det. 65535 + 0 73.94 74.71
D C A T P G unconstrained 11 94.44 94.83
D C A T P G constrained 10 93.65 93.68
D C pseudo-random 65535 92.86 93.10
D C pseudo-random + Det. 65535 + 1 93.65 93.68
I T C ' 9 9 b03 (38 scan cells)
A C A T P G unconstrained 25 86.04 87.25

1 A C A T P G constrained 25 83.48 83.96
1 A C pseudo-random 65535 84.62 84.97
1 A C pseudo-random + Det. 65535 + 0 84.62 84.97

D C A T P G unconstrained 22 93.67 94.32
D C A T P G constrained 21 91.87 92.30
D C pseudo-random 65535 92.77 93.06
D C pseudo-random + Det. 65535 + 0 92.77 93.06
I T C ' 9 9 b04 (85 scan cells)
A C A T P G unconstrained 57 84.37 85.91
A C A T P G constrained 6 47.57 45.87
A C pseudo-random 65535 52.79 51.64
A C pseudo-random + Det. 65535 + 0 52.79 51.64
D C A T P G unconstrained 54 94.80 95.57
D C A T P G constrained 61 93.62 94.31
D C pseudo-random 65535 94.29 94.73
D C pseudo-random + Det. 65535 + 2 94.39 94.88
I T C ' 9 9 b05 (71 scan cells)
A C A T P G unconstrained 94 69.78 70.65
A C A T P G constrained 94 66.95 68.22
A C pseudo-random 65535 69.04 70.04

92

A C pseudo-random + Det. 65535 + 6 69.34 70.28
D C A T P G unconstrained 46 80.02 81.76
D C A T P G constrained 44 77.58 80.21
D C pseudo-random 65541 79.99 81.72
D C pseudo-random + Det. 65541+ 1 80.02 81.74
I T C ' 9 9 b06 (17 scan cells)

A C A T P G unconstrained 14 81.52 83.17
A C A T P G constrained 7 63.04 64.18
A C pseudo-random 65535 66.03 66.83
A C pseudo-random + Det. 65535 + 0 66.03 66.83

| D C A T P G unconstrained 15 93.87 94.71
D C A T P G constrained 15 90.18 91.35
D C pseudo-random 65535 93.25 93.75
D C pseudo-random + Det. 65535 + 0 93.25 93.75
I T C ' 9 9 b07 (58 scan cells)
A C A T P G unconstrained 54 81.13 82.61
A C A T P G constrained 51 77.54 79.15
A C pseudo-random 65535 75.93 76.87
A C pseudo-random + Det. 65535 + 16 79.33 80.71
D C A T P G unconstrained 41 94.80 95.82
D C A T P G constrained 40 93.70 94.93
D C pseudo-random 65551 94.73 95.71
D C pseudo-random + Det. 65551 +0 94.73 95.71
I T C ' 9 9 b08 (34 scan cells)
A C A T P G unconstrained 41 76.35 77.10
A C A T P G constrained 40 71.31 70.65
A C pseudo-random 65535 73.30 72.39
A C pseudo-random + Det. 65535 + 0 73.30 72.39
D C A T P G unconstrained 37 93.97 94.68
D C A T P G constrained 38 91.78 92.13
D C pseudo-random 65535 92.74 92.94
D C pseudo-random + Det. 65535 + 0 92.74 92.94
I T C ' 9 9 b09 (30 scan cells)
A C A T P G unconstrained 25 82.60 84.78
A C A T P G constrained 25 81.08 82.90
A C pseudo-random 65535 81.63 83.49
A C pseudo-random + Det. 65535 + 0 81.63 83.49
D C A T P G unconstrained 25 94.64 95.78
D C A T P G constrained 23 94.48 95.55
D C pseudo-random 65535 94.48 95.55
D C pseudo-random + Det. 65535 + 0 94.48 95.55
I T C ' 9 9 b l O (34 scan cells)
A C A T P G unconstrained 41 79.72 81.32
A C A T P G constrained 22 55.99 54.84
A C pseudo-random 65535 57.83 56.42
A C pseudo-random + Det. 65535 + 0 57.83 56.42
D C A T P G unconstrained 40 94.63 95.75
D C A T P G constrained 39 91.81 92.59
D C pseudo-random 65535 92.62 93.18
D C pseudo-random + Det. 65535 + 1 93.15 93.58
I T C ' 9 9 b l l (44 scan cells)

A C A T P G unconstrained 65 77.89 78.79

93

A C A T P G constrained 65 76.25 76.78
A C pseudo-random 65535 78.63 78.88
A C pseudo-random + Det. 65535 + 3 79.02 79.25
D C A T P G unconstrained 58 94.04 93.04
D C A T P G constrained 58 92.84 91.92
D C pseudo-random 65538 93.54 92.38
D C pseudo-random + Det. 65538 + 0 93.54 92.38
ITC'99 bl2 (132 scan cells)
A C A T P G unconstrained 260 83.71 84.71
A C A T P G constrained 254 79.63 80.02
A C pseudo-random 65535 77.61 77.63
A C pseudo-random + Det. 65535 + 30 80.53 80.75
D C A T P G unconstrained 112 96.09 96.90
D C A T P G constrained 108 95.70 96.53
D C pseudo-random 65565 95.83 96.60
D C pseudo-random + Det. 65565 + 5 95.96 96.71
ITC'99 bl3 (73 scan cells)
A C A T P G unconstrained 33 73.34 73.98
A C A T P G constrained 33 69.43 69.03
A C pseudo-random 65535 69.89 69.03
A C pseudo-random + Det. 65535 + 14 71.35 70.68
D C A T P G unconstrained 28 93.50 93.75
D C A T P G constrained 24 91.46 91.59
D C pseudo-random 65549 92.77 92.61
D C pseudo-random + Det. 65549 + 0 92.77 92.61
ITC'99 bl4 (331 scan cells)
A C A T P G unconstrained 1068 90.55 91.99
A C A T P G constrained 273 65.18 65.43
A C pseudo-random 65535 74.49 74.43
A C pseudo-random + Det. 65535 + 58 75.99 76.01
D C A T P G unconstrained 1000 97.12 98.21
D C A T P G constrained 1014 96.53 97.79
D C pseudo-random 65593 88.99 87.80
D C pseudo-random + Det. 65593 + 581 96.98 98.05
ITC'99 b l4_ l (331 scan cells)
A C A T P G unconstrained 847 78.50 79.47
A C A T P G constrained 194 59.17 58.95
A C pseudo-random 65535 65.19 64.85
A C pseudo-random + Det. 65535 + 32 66.48 66.18
D C A T P G unconstrained 724 85.74 84.85
D C A T P G constrained 708 85.12 84.41
D C pseudo-random 65567 79.54 76.71
D C pseudo-random + Det. 65567 + 416 85.60 84.69
ITC'99 bl5 (554 scan cells)
A C A T P G unconstrained 907 77.88 77.91
A C A T P G constrained 858 72.18 72.68
A C pseudo-random 65535 55.88 56.16
A C pseudo-random + Det. 65535 + 511 72.83 72.94
D C A T P G unconstrained 723 95.94 95.89
D C A T P G constrained 725 95.37 95.46
D C pseudo-random 66046 93.30 92.80
D C pseudo-random + Det. 66046 + 251 95.87 95.81

94

I T C ' 9 9 b ! 5 _ l (554 scan cells)
A C A T P G unconstrained 909 80.81 82.31
A C A T P G constrained 832 74.38 76.43
A C pseudo-random 65535 61.50 63.99
A C pseudo-random + Det. 65535 + 490 76.15 77.96
D C A T P G unconstrained 648 96.60 97.16
D C A T P G constrained 653 96.02 96.69
D C pseudo-random 66025 94.86 95.58
D C pseudo-random + Det. 66025 + 127 96.53 97.06
H C 1 1 (181 scan cells)
A C A T P G unconstrained 679 81.36 82.14
A C A T P G constrained 346 51.99 53.99
A C pseudo-random 65535 55.81 57.41
A C pseudo-random + Det. 65535 + 95 57.53 59.23
D C A T P G unconstrained 436 96.61 97.37
D C A T P G constrained 431 94.79 95.67
D C pseudo-random 65630 94.74 95.45
D C pseudo-random + Det. 65630 + 26 95.27 96.01
Post Processor (326 scan cells)
A C A T P G unconstrained 251 74.70 75.54
A C A T P G constrained 115 55.25 52.41
A C pseudo-random 65535 44.63 39.84
A C pseudo-random + Det. 65535 + 91 56.31 52.76
D C A T P G unconstrained 209 94.24 95.74
D C A T P G constrained 213 87.01 88.36

| D C pseudo-random 65626 78.33 73.07
D C pseudo-random + Det. 65626 + 169 89.42 90.05
Class i f ie r (518 scan cells)
A C A T P G unconstrained 317 84.23 85.09
A C A T P G constrained 242 77.35 78.05
A C pseudo-random 65535 72.10 73.01
A C pseudo-random + Det. 65535 + 126 79.59 80.08
D C A T P G unconstrained 141 95.08 95.54
D C A T P G constrained 136 93.90 94.24
D C pseudo-random 65661 94.67 94.87
D C pseudo-random + Det. 65661 + 0 94.67 94.87
P r e Processor (642 scan cells)
A C A T P G unconstrained 289 70.19 69.09
A C A T P G constrained 128 58.50 57.24
A C pseudo-random 65535 59.00 56.45
A C pseudo-random + Det. 65535 + 77 62.33 60.60
D C A T P G unconstrained 319 94.76 95.35
D C A T P G constrained 322 93.57 94.30
D C pseudo-random 65612 93.33 92.97
D C pseudo-random + Det. 65612 + 96 94.68 95.23

95

Table 3. Improved numerical fault coverage results

Pattern Count Fault Coverage (%) Pattern Count
Collapsed | Uncollapsed

ITC'99 b04 (96 scan cells)
A C A T P G unconstrained 56 82.99 84.57
A C A T P G constrained 52 79.85 81.38
A C pseudo-random 65535 82.22 83.56
A C pseudo-random + Det. 65535 + 0 82.22 83.56
D C A T P G unconstrained 57 93.28 94.34
D C A T P G constrained 62 90.62 91.92
D C pseudo-random 65535 92.22 93.53
D C pseudo-random + Det. 65535 +1 92.36 93.64

96

APPENDIX B NUMERICAL AREA MEASUREMENT RESULTS

The appendix presents the area measurements in detailed numerical format. These results

correspond to the area measurement plots of the IP cores and pattern generators given in

Section 3.5.

Table 4. Deterministic pattern generation circuitry area measurements

I P C o r e I P C o r e
S c a n

C h a i n
L e n g t h

I P C o r e
C e l l

A r e a

A C Determin ist ic Pa t te rn
Genera to r

D C Determin is t ic P a t t e r n
Genera to r

I P C o r e I P C o r e
S c a n

C h a i n
L e n g t h

I P C o r e
C e l l

A r e a Pat te rn
C o u n t

C e l l A r e a % Pat te rn
C o u n t

C e l l
A r e a

%

ITC'99 bOl 9 1288.8 0 0.0 0.0 0 0.0 0.0
ITC'99 b02 6 784.7 0 0.0 0.0 1 9261.4 1180.3
ITC'99 b03 38 4769.0 0 0.0 0.0 0 0.0 0.0
ITC'99 b04 85 13375.8 0 0.0 0.0 2 13949.1 104.3
ITC'99 b05 71 16880.4 6 16900.7 100.1 1 11993.5 71.1
ITC'99 b06 17 2004.3 0 0.0 0.0 0 0.0 0.0
ITC'99 b07 58 9070.4 16 20677.6 228.0 0 0.0 0.0
ITC'99 b08 34 4874.6 0 0.0 0.0 0 0.0 0.0
ITC'99 b09 30 4411.2 0 0.0 0.0 0 0.0 0.0
ITC'99 b 10 34 4809.6 0 0.0 0.0 1 11188.5 232.6
ITC'99 b l l 44 9041.9 3 13140.0 145.3 0 0.0 0.0
ITC'99 bl2 132 24222.9 30 42119.7 173.9 5 18726.2 77.3
ITC'99 bl3 73 9729.0 14 21742.8 223.5 0 0.0 0.0
ITC'99 bl4 331 130314.9 58 132197.3 101.4 581 828859.4 636.0
ITC'99 b l4_ l 331 125180.0 32 90411.0 72.2 416 630437.8 503.6
ITC'99 bl5 554 171954.5 511 1274621.8 741.3 251 691185.7 402.0
ITC'99 b l5_ l 554 162717.2 490 1231612.3 756.9 127 425490.6 261.5
HC11 181 93232.2 95 114682.5 123.0 26 49665.4 53.3
Post Processor 326 47559.4 91 189709.5 398.9 169 302875.8 636.8
Classifier 518 73721.7 126 374821.0 508.4 0 0.0 0.0
Pre Processor 642 94513.1 77 327297.9 346.3 96 394291.1 417.2

Table 5. Pseudo-random pattern generator and total test circuitry area measurements

I P C o r e I P C o r e C e l l A C P s e u d o - R a n d o m Pat te rn To ta l Test C i r c u i t r y 1
A r e a Genera to r

C e l l A r e a % C e l l A r e a %

ITC'99 bOl 1288.8 14128.0 1096.2 14128.0 1096.2
ITC'99 b02 784.7 14014.1 1786.0 23275.6 2966.3
ITC'99 b03 4769.0 15050.9 315.6 15050.9 315.6
ITC'99 b04 13375.8 15168.8 113.4 29117.9 217.7
ITC'99 b05 16880.4 15254.2 90.4 44148.4 261.5
ITC'99 b06 2004.3 14282.5 712.6 14282.5 712.6
ITC'99 b07 9070.4 15022.4 165.6 35700.1 393.6

97

ITC'99 b08 4874.6 15042.7 308.6 15042.7 308.6
ITC'99 b09 4411.2 14880.1 337.3 14880.1 337.3
ITC'99 blO 4809.6 15042.7 312.8 26231.3 545.4
ITC'99 b l l 9041.9 15059.0 166.5 28199.0 311.9
ITC'99 bl2 24222.9 15400.5 63.6 76246.3 314.8
ITC'99 bl3 9729.0 15176.9 156.0 36919.7 379.5
ITC'99 b 14 130314.9 15620.1 12.0 976676.8 749.5
ITC'99 b l4_ l 125180.0 15620.1 12.5 736468.8 588.3
ITC'99 bl5 171954.5 15721.7 9.1 1981529.1 1152.4
ITC'99 b l5_ l 162717.2 15721.7 9.7 1672824.6 1028.1
HC11 93232.2 18827.7 20.2 183175.6 196.5
Post Processor 47559.4 15571.3 32.7 508156.5 1068.5
Classifier 73721.7 15725.8 21.3 390546.7 529.8
Pre Processor 94513.1 15644.5 16.6 737233.4 780.0

98

APPENDIX C IMPLEMENTATION OF SI2P COMPONENTS

This appendix contains in-depth implementation details on how the PI500 wrapper

would be integrated at the chip level when using the NIMA packet-switching test

network as the TAM design [21][10]. NTMA is a packet-switched test network which is

constructed in a tree configuration. All IP cores in the SoC are located at the leaves of

the tree. The internal nodes represent routers which are responsible for forwarding test

packets towards the leaves. In order for seamless communication, supportive logic

blocks are inserted between each P1500 wrapper and NTMA test network. A P1500

wrapper connects to the test network, in sequence, through a wrapper controller, a NIMA

interface, and a NIMA serializer. This appendix focuses on the design of these three

components.

C . 1 P 1 5 0 0 W r a p p e r C o n t r o l l e r

To control the P1500 wrapper with ease, a controller which resembles that of the IEEE

1149.1 JTAG standard is adopted [22]. The wrapper controller is a Moore FSM with

sixteen states that sequences the four PI500 control inputs, namely SELECTWIR,

CAPTUREWR, SHTETWR and UPDATEWR. Figure 52 shows interface of wrapper

controller to a PI500 wrapper.

99

T C K -

T M S "

TRSTN-

TDI-

Wrapper
Controller

SELECTWIR
CAPTUREWR

SHIFTWR
UPDATE WR

WRCK

P1500
Wrapper

HWRSTN

Iwsi

Figure 52. PI500 wrapper controller

The wrapper controller operates in accordance with the JTAG TAP controller. Its state

changes are controller by a single test mode select (TMS) input triggered on the rising

edge of the test clock (TCK). The state diagram of a P1500 wrapper controller is given in

Figure 53. It is also the basis of the NIMA interface since it is designed to translate the

packets from the NIMA test network to generate control signals understandable to the

wrapper controller.

100

Test-Logic-
Reset
1000

0

Run-
Test/Idle

1000

Select-LR-
Scan
1000 I 0

Capture-DR \ 1
0100

Shift-DR
0010

Exitl-DR
0000

Pause-DR
0000

Exit2-DR
0000

Shift-IR
1010

Exitl-LR
1000

Pause-IR
1000

Exit2-IR
1000

K Update-DR
0001 S

Update-IR
1001

State output bit order: SELECTWIR C A P T U R E W R SHIFTWR U P D A T E W R

Capture-IR
1100

X)

Figure 53. P1500 wrapper controller state diagram

C.2 NIMA Interface

The NIMA interface is implemented as a Mealy FSM that controls the PI500 wrapper

controller by accepting and interpreting serial bit streams from the NIMA test network.

Since NTMA is a packet-switched test network, incoming serial bit streams represent

packets encoded with flag and payload. The responsibility of NIMA interface is to

101

identify the flag in each packet and sequence the downstream PI500 wrapper controller

accordingly. Figure 54 shows a block view of the NTMA interface.

T C K

-• TRSTB N I M A
T M S

Interface
ready

TDI
-> channel

P i n T y p e D e s c r i p t i o n

T C K Input Clock input to the block

TRSTB Input Active low synchronous reset

ready Input Flag indicating the validity of the
channel pin

channel Input Serial bit data from the NIMA
network interface

T M S Output Test mode select signal to P1500
wrapper controller

TDI Output Test data input to P1500 wrapper
controller

Figure 54. NIMA interface block diagram

TCK and TRSTB inputs are the system clock and reset to NIMA interface respectively.

Since this block and the PI500 wrapper controller operate in accordance, they share these

two system inputs. The ready and channel inputs are the NIMA interface signals and are

responsible for accepting packets of serial data from the NTMA test network. The NEMA

test network provides the ready signal when a valid packet is available. It notifies the

NEMA interface to accept the first bit of a packet from the channel pin. The ready signal

is asserted shortly after a rising edge of the clock, which is at the same time as the bit at

the channel input becomes valid. The ready signal is deasserted shortly after the rising

clock edge of the last valid data bit at the channel input. Figure 55 shows a timing

diagram of the interface.

102

TCK

ready

channel invalid X valid X invalid

Figure 55. NIMA test network interface timing diagram

TMS and TDI inputs are responsible for controlling the PI500 wrapper controller and

traversing it through the proper states. TMS pin is responsible for state changes in the

P1500 wrapper controller state diagram in Figure 53. TDI is responsible for serially

shifting out bits at the rising edge of the clock during the Shift-ER or Shift-DR states.

TDI starts shifting at the first rising edge following the PI500 wrapper controller enters

the shift state; and the last shift occurs as the P1500 wrapper controller leaves the shift

and enters the exitl state. Figure 56 shows the corresponding timing diagram.

First Shift Last Shift

TCK

Wrapper —
controllercapture
state — X Shift X Exitl

Figure 56. P1500 wrapper controller interface timing diagram

As described earlier, NIMA interface is implemented as a Mealy FSM and designed to

manipulate the PI500 wrapper controller. They share a very similar state transition

diagram with absence of several states, given the characteristics of a packet-switched

103

network such as NTMA. Figure 57 exhibits the state transition diagram of the NTMA

interface.

(X Test-Logic-
Reset

(X Run-
Test/Idle

Select-DR-
Scan

Select-IR-
Scan

Capture-DR

l^""3^^ Shift-PR ^

Exitl-PR

Pause-PR

Pause 1-PR

I
Exit2-PR

Capture-LR

Shift-LR X)
Exitl-IR

Update-LR

Update-PR

Figure 57. NIMA interface state diagram

Each packet arriving the NTMA interface is divided into two parts, flag and data. The

flag specifies the type of information contained in the data portion of the packet; it also

specifies the path to take in the PI500 wrapper controller state machine. There are two

104

main sets of flags. One set is mainly associated with instructing the machine to travel

through the instruction branch of the PI500 wrapper controller; the other set is mainly

associated with traveling solely along the data branch of the PI500 wrapper controller.

All instruction flags have 3 bits with a value of 0 in the most significant bit (MSB) in the

form of OXX; on the other hand, all data flags only have 2 bits with a value of 1 in the

MSB in the form of IX. Table 6 lists the flags with corresponding definitions.

Table 6. NIMA interface packet flags

Flag

RESET

000

Value

000

Description

Resets the N I M A interface by bringing the state machine to the

Test-Logic-Reset state with a maximum of 5 clock cycles

regardless of its currently state.

INSTR O N L Y 001

001 instr

Specifies the data portion of the packet contains instruction to be

sent to the P1500 WIR. There should be just enough number of

data bits to fill the P1500 WIR.

INSTR C O M P D A T A 010

010 mstr data

Specifies the data portion of the packet contains instruction to be

sent to the P1500 WIR, as well as at least one bit to be sent to the

PI500 wrapper data register. There should be enough number of

bits to fill both the P1500 WIR and at least one bit to completely

fill the PI500 data register.

INSTR_INCOMP_DATA 011

011 instr data

Similar to INSTR_COMP_DATA flag. The data portion

contains incomplete data that can be continued with subsequent

packets having D A T A _ C O N T I N U E or D A T A _ E N D flags.

D A T A C O N T I N U E 10

10 data

Specifies the data portion only contains incomplete data to be

sent to the data register of the P1500 wrapper. The incomplete

data can be continued with subsequent packets having

D A T A _ C O N T I N U E or D A T A _ E N D flags.

D A T A E N D 11

11 data

Specifies the data portion only contains data to be sent to the data

register of the PI500 wrapper. Data packets with this flag are the

105

last packets that complete the data transmission to the data

register.

When the INSTR_ONLY flag is received, the state machine traverses along the

instruction branch, shifts in the instruction bits in the Shift-IR state, then returns and stays

idle in the Run-Test/Idle state. At the Run-Test/Idle state, it waits for the next packet to

come in from the NTMA test network.

Run-Test/Idle Select-DR-Scan —• Select-tR-Scan -> Capture-IR -> Shift-IR

J i
Update-LR Exitl-IR Update-LR Exitl-IR

Figure 58. States traversed by INSTR_ONLY flag

When the INSTR_COMP_DATA flag is received, the state machine behaves similarly to

the INSTR_ONLY flag except that it does not return to the Run-Test/Idle state

immediately after the instruction bits have been shifted in. Instead, after shifting of the

instruction bits, it moves to the Select-DR-Scan state and progresses to the Shift-DR state

to shift in the data bits before moving back to the Run-Test/Idle state.

Run-Test/Idle Select-DR-Scan Select-LR-Scan Capture-IR ->
I

Capture-DR Select-DR-Scan 4- Update-IR <-

Shift-DR Exitl-DR Update-DR

Figure 59. States traversed by INSTR_COMP_DATA flag

106

When the INSTR_INCOMP_DATA flag is received, the state machine behaves similarly

to receiving the INSTR_COMP_DATA flag except that it does not return to the Run-

Test/Idle state after the data have been shifted in. Instead, after shifting of the data bits, it

moves to the Pause-DR state where it waits for the next data packet to come in.

Run-Test/Idle fe Select-DR-Scan fe Select-IR-Scan fe Capture-IR Shift-IR Run-Test/Idle Select-DR-Scan
W

Select-IR-Scan
W

Capture-IR Shift-IR

Capture-DR Select-DR-Scan Update-IR Exitl-IR

Shift-DR fe Exitl-DR fe Pause-DR Shift-DR
W

Exitl-DR
W

Pause-DR p

Figure 60. States traversed by INSTR_INCOMP_DATA flag

The first bit of the DATA_CONTINUE flag can start arriving at the NTMA interface

when the state machine is in either Run-Test/Idle or Pause-DR state. This flag specifies

that the data portion of the packet contains data bits that are to be shifted in during the

Shift-DR state. After the data bits have been shifted in, the state machine moves to the

Pause-DR state and waits for the next data packet to arrive.

Run-Test/Idle fe Select-DR-Scan fe Capture-DR Run-Test/Idle
W

Select-DR-Scan
W

Capture-DR Shift-DR fe Exitl-DR Shift-DR
W

Exitl-DR

Pause-DR

Pause-DR fe Pausel-DR fe Exit2-DR fe Shift-DR fe Exitl-DR Pause-DR
w

Pausel-DR
w

Exit2-DR
W

Shift-DR Exitl-DR

Pause-DR

Figure 61. States traversed by D A T A _ C O N T I N U E flag

The DATA_END flag is basically identical to the DATA_CONTFNUE flag except that

after the data bits have been shifted in, the state machine moves to the Run-Test/Idle

107

instead of moving to the Pause-DR state. It is at the Run-Test/Idle state that the NIMA

interface waits for the next packet to arrive.

Run-Test/Idle Select-DR-Scan Capture-DR Shift-DR >w Exitl -DR Run-Test/Idle
w

Select-DR-Scan
W

Capture-DR
W

Shift-DR
W

j t
Update-DR

t
Update-DR

Pause-DR Pausel-DR Exit2-DR >v Shift-DR Exitl -DR Pause-DR
W

Pausel-DR
w

Exit2-DR
w

Shift-DR
w

i

Update-DR Update-DR

Figure 62. States traversed by D A T A _ E N D flag

There are circumstances where a soft reset is triggered. This is implemented to ensure

the NTMA interface, as well as the PI500 wrapper controller, gracefully handles packets

that do not comply with the protocol. When a soft reset is triggered, the state machine

traverses through the state diagram and returns to the reset state. There are several ways

to engage the soft reset mode. One way to engage a soft reset to the NTMA interface is to

issue a packet with a RESET flag. When the NIMA interface sees this flag, it engages a

soft reset and proceeds as described earlier. A soft reset is also engaged if the

LNSTR_ONLY packets do not contain enough data bits to fill the PI500 WIR. For

example, if the PI500 WIR is four bits wide, the data portion of the packet must be at

least 4 bits long; otherwise, a soft reset is engaged.

A soft reset is initiated with inappropriately formatted INSTR_COMP_DATA or

INSTR_INCOMP_DATA packets. There must be not only enough bits to fill the P1500

WIR, but also at least one bit to fill the P1500 wrapper data register. For example, given

a four-bit-wide PI500 WIR, the data portion of the packet must be at least 5 bits long.

108

Packets received at inappropriate states can also trigger a soft reset. The start of data

packets, DATA_CONTINUE and DATA_END, can only be received when the NTMA

interface is in either Run-Test/Idle or Pause-DR state. If instruction packets are received

when the NTMA interface is in the Pause-DR state, a soft reset is triggered because during

that state, the state machine expects bits to be shifted into the TAP controller data register

only.

Since the bits from the NIMA test network arrive continuously and serially, these

incoming bits must be buffered in order to properly pass the incoming bits to the output

TDI pin. To accomplish this task, a multi-buffer selection system is implemented.

Figure 63 shows a conceptual view of the buffer pool.

channel

Hag Buffer
(3 bits)

/N

Instr-Data Buffer
(1 bit)

Data Buffer
(4 bits)

TDI

Figure 63. Buffering in NIMA interface

The flag buffer is responsible for storing the flag portion of the packets. Once the

appropriate number of bits, 2 or 3 depending on the flag type, are shifted into the flag

buffer, the flag buffer is disabled to retain the flag values for later reference.

The instruction-data buffer provides a one-cycle delay for bits to be shifted out during the

Shift-IR and Shift-DR states. This is necessary due to the fact that the last shift operation

109

occurs as the state machine changes from Shift to Exit state. If the channel were

connected directly to TDI, the PI500 wrapper controller would shift in one extra bit as it

enters the Exit state.

The data buffer is simply a concatenation of the one-bit instruction-data buffer and 4

more shift registers. These 5 shift registers provide sufficient delay for

INSTR_COMP_DATA and ENSTRJNCOMP_DATA as the state machine works its

way from the Shift-IR state to the Shift-DR state. This is necessary because these two

types of packets have the PI500 WIR instruction bits immediately followed by the PI500

wrapper data bits in the data part of the packets.

During the design of the NIMA interface, efforts have been made to maximize the

robustness of the block. However, to ensure the proper state transitions, it is required to

have a gap of at least 8 clock cycles between payloads of the packets. Each payload

contains a flag portion and a data portion understandable to the NTMA interface. Each

header holds the routing information on which the corresponding payload relies to

navigate the NIMA network. This should be easily complied because the number of bits

required in the header of each packet usually exceeds the stated requirement. Thus the bit

stream appears as depicted in Figure 64.

Header (> 8 bits) Payload Header (> 8 bits) Payload

Figure 64. NIMA packet spacing requirement

110

C.3 NIMA Serializer

Since NEMA test network is a packet-switched network, test packets must be able to

arrive the designated cores at a higher rate in order to spare the network for other cores.

If this were not achieved, the NEMA test network would become a circuit-switched

network rather than a packet switching network.

There are several ways to accomplish the goal of having the NEMA network operating

faster than the cores. The most obvious method is to have the NEMA network running at

a higher clock speed than that of the cores. However different clock domains in the test

network would be introduced as a result. This is undesirable because interfacing across

different clock domains is quite error prone and requires extra design precautions. The

second method is to widen the NEMA test network bus and introduce buffering in each

NIMA router such that they all behave like the ones used for the Internet connections.

The third method is to again widen the NEMA test network bus and introduce First-In-

First-Out (FIFO) control at each core whose incoming traffic rate is larger than the

outgoing traffic rate. In order to achieve this method, a NTMA serializer is required to

temporarily store the incoming test packets and feed the cores with those packets at a

slower rate by having the incoming bus width (M) strictly larger than the outgoing bus

width (N). In other words, M > N. When M = N, then there is no need for the existence

of the NTMA serializer.

I l l

The NIMA serializer is an essential component for enabling the packet-switching

capability of the NTMA test network. It is simply a FIFO controller with the input data

bus width larger than that of the output data bus. In order to implement the NTMA

serializer, dual port memory, either implemented as banks of flip-flops or RAM, is

required. At the read side of the dual port memory, a shift register is employed to control

the number of parallel bits available to the serializer output. Figure 65 depicts the NEMA

serializer structural overview.

M

Control
Signals

FIFO Depth

1 1
1 1 r
1 1 M

• Dual Port Memory ll
1 1

Shift Register

Control
^Signals

NTMA Serializer Control

Control
Signals

N

Control
Signals

Figure 65. NIMA serializer structural overview

112

