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Abstract 

This thesis investigates the design and performance of a controller for the maintenance of anesthesia during 

surgery. The controller is designed to be robustly stable for a large population of patients. 

Even though anesthetic drugs are amongst the most dangerous drugs used in today's clinical setting, 

anesthesia procedures are known to be very safe. Hence, the impact of automation in anesthesia in terms of 

patients' safety cannot be clearly established. However, there are a number of significant clinical advantages 

to be gained by closing the loop: 

1. Recent evidences suggest that most patients undergoing anesthesia procedures are overdosed. This is 

one of the main reasons for patients' discomfort and slow recovery. Literature suggests that closed-

loop systems can significantly reduce drug consumption and lessen recovery times, thus improving the 

patient outcome while reducing drug-associated costs and bed occupancy. 

2. Anesthesiologists have access to intravenous agents with fast onset of action and fast metabolism. 

Using a closed-loop controller would allow for an infusion-type titration that provides smoother tran

sitions, thus avoiding the respiratory and hemodynamic depression observed in a bolus-based manual 

regimen. 

3. Closed-loop controllers are also particularly well-suited for solving complex optimization problems. 

The profound synergy that exists between intravenous anesthetics and opioids could then be fully 

exploited. This could be a significant factor contributing to a reduction in drug usage and the 

improvement of patients' comfort. 

This project is particularly challenging. In particular: 

1. There is no accepted measure of depth of anesthesia. Hence, it is necessary to work at the conceptual 

and sensor levels in order to define adequate feedback measures. 

2. Drug effect modeling suffers from many shortcomings. In particular, published studies are often not 

in agreement regarding model parameters. 

3. Uncertainty of dose/response models is daunting. Measuring this uncertainty is necessary in order to 

ensure stability of the control design. 

ii 



ABSTRACT AND THESIS ORGANIZATION i i i 

While the anesthesia closed-loop concept has already been investigated in the past, no breakthrough has 

yet been achieved. We feel it is necessary to investigate the anesthesia system from a control engineering 

perspective. 

This thesis is divided into two distinct parts. Part A contains the first 4 chapters and presents a 

thorough introduction to clinical anesthesia. The main concepts, terminology and issues are covered, 

including anesthesia monitors and basic pharmacology principles. A review of the prior closed-loop control 

attempts is presented in Chapter 4. 

Part B contains the chapters 5 to 8. In these chapters, we investigate a new sensor technology to quantify 

both cortical and autonomic activity. This technology is used to derive drug effect models, from which 

uncertainty bounds are derived. Based on this uncertainty analysis, we derive robustly stable controllers 

achieving clinically adequate performances. 

Finally, we invite the readers to refer to Chapter 9 for a complete synopsis and summary of this thesis. 
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PART A: The Anesthesia Framework 

Chapter 1 introduces the readers to the terminology and concepts in use in the field of clinical anesthesia. A 

section dedicated to the most commonly administered drugs is presented, as well as information regarding 

drug delivery and standard of care in monitoring. 

The second chapter addresses the problem of Depth of Anesthesia (DOA) measurement. This particular 

topic has received significant attention from both the anesthesia and engineering communities. Even as of 

today, there is still no definite consensus as to how this measurement should be performed. While there are 

commercially available monitors of the anesthetic state, current practice does not mandate these monitors 

as a standard of care. These monitors are often criticized by practitioners, and are the source of debates 

and controversies. 

Knowledge of the process is vital in any control design venture. Since online identification of the process 

is not practical for this particular application, it is necessary to establish proper models relating infusion 

rates and observed effects, as well as the uncertainty range. Chapter 3 investigates the pharmacokinetic 

and pharmacodynamic concepts used in the clinical field to model the drug-response relationship. 

Finally, Chapter 4 lays out the foundation for an anesthesia controller. Prior attempts are reviewed. 

Based on the experience gained from these attempts, as well as the concepts presented in the previous 

chapters, we propose a control framework suitable for this particular application. The main requirements 

and challenges are outlined. 

1 



Chapter 1 

Clinical Anesthesia: Terminology, 
Concepts, and Issues 

Industrialized societies have enjoyed the benefits brought by clinical surgery and modern medicine for 

over a century. Undergoing a surgical procedure has become nowadays a rather common event in one's 

life. However, this remarkable progress has only been made possible through the development of modern 

anesthesia practice since its discovery in the mid 19 t h century. 

While the aim of this chapter is not to present a thorough review of the practice of clinical anesthesia, 

we feel that it is necessary to introduce our readers with an overview of the concepts now in use in this 

medical field. The short history presented in the first section will emphasize the tremendous impact that 

the discovery of anesthesia had in medicine, as well as the numerous developments that have taken place 

ever since. The concepts and definition of anesthesia, as well as the different anesthetic and opioid agents 

used in today's practice, will then be discussed. Finally, we will conclude this chapter by briefly reviewing 

the different devices and sensors most commonly found in today's practice. 

1.1 Clinical Anesthesia: A Key Specialty in Critical Care 

Before the advent of anesthesia, surgical procedures demanded extremely fast execution. Early regional 

techniques such as nerve compression or the application of cold were used to provide a slight relief from 

the pain. Decreased cerebral perfusion obtained by compressing the carotid artery was also used to render 

patients unconscious. Quite clearly, the discovery of inhalation gases that could provoke a state of anesthesia, 

and thus make invasive surgeries possible, was a major event in the development of modern medicine. 

Numerous books and textbooks give the historical perspective to clinical anesthesia. We invite interested 

readers to refer to [1], [2], and [3] for a more in depth look at this medical specialty. 

2 
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1.1.1 The Early Days 

While the alteration of the senses using drugs (opium, laudanum, mandragora, etc.) and alcohol was 

well known since antiquity, it's only in 1840 that the idea of using inhalation gases and vapors, otherwise 

reserved to entertain the public in village fairs, was put forward by Hickman. The first recorded anesthesia 

procedure was performed by Crawford Williamson Long using diethyl ether. Having often inhaled ether, 

he realized that this gas had the property of rendering him particularly insensitive to painful knocks and 

bruises. He concluded that this could be applicable to surgery, and tried out his theory in March 1842. 

While he continued using ether for surgeries, he did not publish his results until later. In 1844, Gardner 

Colton and Horace Wells performed the first dental surgery using nitrous oxide as an anesthetic. However, 

they failed in convincing the medical community, and it is only later, in October 1846, that Will iam Morton 

succeeded in demonstrating to his colleagues that ether could be used to deprive patients of their sense 

during surgery. The success of his 'etherization' technique spread quickly throughout the civilized world. 

The term 'anesthesia' (lack of esthesia, i.e. sense) was later proposed to Morton by Oliver Wendell Holmes 

to describe this new phenomenon. 

While ether has been advocated by many in the early days, other agents such as chloroform, nitrous 

oxide, and ethyl chloride were investigated. Nowadays, only nitrous oxide is still in use as a supplement 

to the modern agents developed in the 1960s and 1970s. The development of drugs used for anesthesia 

procedures will receive a more thorough review in Section 1.3. 

Parallel to the development of anesthetic agents, the 19 t h century witnessed the invention of many 

inhalation apparatuses and techniques for the administration of anesthetics. For instance, there was a 

need for an artificial ventilator, since a major side effect of many anesthetics and opioids is ventilatory 

depression. The first ventilator was developed in 1896 by Northrup, who had shown that patients who had 

opium poisoning could be maintained alive through artificial ventilation, using an endotracheal tube and 

bellows. But only in the 1950s, after the introduction of muscle relaxants and polio epidemics, did the use 

of ventilators became common in the operating room. 

Due to the increasing complexity of the administration and management of anesthesia, it became clear 

that anesthesia and surgery were two complementary specialties that demanded their own practitioners. 

But it was only in 1935 that the first diploma of anesthesia was offered, and in 1936 that the American 

Society of Anesthesiologists (ASA) was founded. 

1.1.2 Risks and Outcome in Anesthesia 

1.1.2.1 Mortality rate 

Development of clinical anesthesia since the 19 t h century has resulted mostly from concerns about patients' 

safety. 

The first recorded death attributed directly to anesthesia was that of Hannah Greener in 1848, after 
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inhaling chloroform for the removal of an ingrown toenail. The question whether the patient's death resulted 

from an inadequate anesthesia management or from undesirable side effects due to chloroform was hotly 

debated. Anesthesia and the use of chloroform being rather new, this case received considerable attention 

from both the medical community and the public, and was particularly well-publicized. Chloroform was 

by then a newly introduced drug. Less flammable than ether, chloroform offered an attractive alternative 

to surgeons. But after more deaths were reported throughout the world, the safety of chloroform as an 

anesthetic drug was questioned. Even then, it was only in the 1920s that chloroform was replaced by new, 

more potent, and safer gases. The cause of Hannah Greener's death remains unclear, and 150 years later 

this case still generates interest [4]. B y the late 19 t h century, the incidence of death due to anesthesia was 

less than 0.1% [5]. 

Nowadays, clinical anesthesia is probably one of the safest components of any surgical operation. A 

1986 survey [6] revealed that the overall death rate attributable directly to anesthetic drugs was 1:185,056 

(see Table 1.1). W i t h approximately 28 million patients undergoing anesthesia and surgery in the United 

States [7], it is estimated that about 150 patients die each year in the U.S .A . from complications due to 

anesthesia. This very low mortality rate can be attributed mainly to the following three aspects of the 

clinical practice: 

i . First, anesthesiologists select an appropriate combination of drugs and drug dosage according to the 

patient's age, weight, co-morbid disease, and the type and duration of the operation. In standard 

practice, anesthesiologists often use several drugs in order to reach a state of balanced anesthesia (refer 

to Section 1.2.3), thus limiting the potential lethal side effects of each drug. 

i i . The second aspect concerns the equipment that monitors patients' vital signs and eventually warns 

the practitioner of possible complications. Modern equipment is fairly sophisticated and includes 

standard devices such as mass spectrometers, capnographs, pulse oximeters, heart rate and blood 

pressure monitors, etc. 

i i i . Finally, education has had a key role in making anesthesia a particularly safe and reliable procedure. 

Postgraduate training programs in the specialty of anesthesiology are offered by every major medical 

schools. The content of these programs are usually supervised by a centralized specialty college in 

most countries. Also, this medical specialty benefits from the publication of numerous clinical research 

journals (Anesthesia and Analgesia, Anesthesiology, British Journal of Anaesthesia, e tc . . . ) . 
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S T U D Y D A T E T O T A L M O R T A L I T Y 

C A S E S R A T E 

Beecher 1948-52 599,548 1:1,560 a 

Clifton 1952-62 205,640 1:3,955 a 

Harrison 1967-76 240,483 1:4,537 b 

Hatton 1977 190,389 1:2,885 a 

Lunn 1979 1,147,362 1:6,789 e 

Eichhorn 1976-85 757,000 1:151,400 d 

Eichhorn 1985-88 244,000 0 d 

C E P O D 1986 486,000 1:185,056 e 

C E P O D 1986 486,000 1:1,185 c 

a: All operative cases considered in calculation 
b: Cases included if death occurred in less than 24 hours 
c: Cases included if some contribution by anesthetic 
d: Only ASA physical status I and II patients included 
e: Only deaths directly attributable to anesthetic included 
CEPOD: Confidential Enquiry into Postoperative Deaths 

Table 1.1: Contemporary anesthetic mortality rates (adapted from Brown [5]) 

The method used for estimating the mortality rate depends greatly on the methodology used by each 

researcher. While deaths during surgery were easily attributed to the anesthetic drugs in the early days, such 

cases are now thoroughly investigated and documented. Also, the patient physical status is now accounted 

for. The outcome of any surgery depends indeed whether the patient is healthy (ASA Physical Status I) 

or in critical condition (ASA V ) . The mortality rate is obviously much higher in A S A V patients (about 

10% [5]) who undergo emergency surgery following major trauma than for A S A I or II patients (0.08% and 

0.27% respectively) who undergo elective surgery. The A S A (American Society of Anesthesiology) rating 

was introduced in 1941. 

Human error is probably the most common cause of death (hypoxic gas mixture, airway obstruction, 

errors in drug administration, lapses in vigilance, e t c . . ) [8]. According to a 1987 study [9], 75% of 

anesthetic related deaths are due to the anesthetists' failure to apply life saving knowledge, while only 

1.7% of cases involve equipment failure. Also, where the most common reason cited leading to such events 

used to be overdosing (1960-1969), it is nowadays the inadequate preoperative preparation and patient 

assessment that leads to errors in anesthesia management. Finally the actual trend of increased efficiency 

in the operating room (so called production pressures) is an additional factor of anesthesiologists' fatigue 

that might provoke misjudgement, resulting in reduced patients' safety. 

1.1.2.2 In t raopera t ive awareness 

While patient's safety is still an important issue, new concerns arose from the use of neuromuscular block

ing agents (NMBs) in the early 1940s. These drugs, used to block muscle movement and thus reduce 

muscle tone to facilitate surgery, have the unpleasant consequence of obtunding an important sign of light 
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anesthesia, i.e. movement. It is therefore possible for a patient to remain immobile while being aware of 

his/her surroundings, and experiencing the trauma caused by the surgery [10]. While not necessarily lethal, 

awareness with pain during surgery often results in severe psychological consequences. These cases are 

fortunately extremely rare (about 1 in 10,000 [11]) and result principally from faulty equipment or human 

error. 

However, limited intraoperative awareness without the presence of pain is more common, mostly when 

patients are maintained in a shallower depth of anesthesia or during emergencies. A number of such cases 

have been reported in the literature. Very recently, two extensive studies have been conducted to determine 

the incidence of intra-operative awareness: 

- S A F E 1 Trial: Sandin et al. [12] have undertaken an extensive survey of intra-operative awareness 

cases in Sweden, spanning 2 major hospitals and 2 years of clinical activity (from 1997 to 1999). 

11,785 patients were interviewed on three separate occasions (immediately after the operation, 1 to 3 

days after surgery, and then once again 7 to 14 days after). A total of 18 cases (0.15%) of awareness 

were reported, and 14 of these cases occurred in surgeries involving N M B s . 11 of these 14 paralyzed 

patients experienced either pain, anxiety, or delayed neurotic symptoms, while the 4 non-paralyzed 

patients did not suffer during their period of wakefulness. This study also revealed that patients 

might recall intra-operative events only after some time after the surgery. For instance, this study 

revealed that only 11 cases would have been identified if the patients had only been interviewed once 

immediately following the operation. 

- A I M Trial: A similar study was undertaken in the United States [13]. 19,576 patients over 7 different 

sites have been enrolled so far in this study (the study objective is 50,000). The incidence of intra

operative awareness has so far been found to be 1 to 2 cases per 1000 patients. Considering that there 

are 20 millions of anesthetic procedures carried out each year, it is estimated that about 100 patients 

suffer from intra-operative awareness every weekday worldwide. 

It is estimated that up to 50% of the patients who experience intra-operative awareness will develop 

Post-Traumatic Stress Disorders (PTSD) in the following year. 

1.2 Modern Concepts 

In this section, we will discuss the practice of modern clinical anesthesia by introducing the concepts of the 

anesthesia triad and balanced anesthesia. These concepts play a key role in defining and understanding the 

proposed research project. 

1.2.1 T h e Role of the Anesthesiologist 

In lightly anesthetized patients, surgical stimulation leads to movement, cardiorespiratory changes (i.e., 

rise in blood pressure, heart rate and respiration), and hormonal responses (release of adrenaline, Cortisol, 
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etc.). During "normal" stress situations of course (i.e., no surgery, no anesthesia), these cardiorespiratory 

and hormonal responses act as the body's self-defense system in that they assist the subject to fight or 

flee. During surgery, however, "stress responses" can be dangerous, and even life-threatening, as they can 

provoke strokes and heart attacks in susceptible individuals. Intra-operative awareness is another potential 

risk in under-anesthetized patients. While not fatal, it can provoke postoperative post-traumatic stress 

disorders [14, 15]. 

In order to blunt the effect of surgical stimulation, anesthesiologists use a combination of drugs to block 

sensation. However, the very mechanism of action of these drugs make them particularly dangerous, as 

they deprive the central nervous system from the information necessary to control normal body functions 

(i.e., gag reflex, respiration, cardiac rhythm and blood pressure). A n overdose may then stop a patient's 

breathing and might even provoke a cardiovascular collapse. Overdoses are usually associated with a lack 

of balance between the anesthetic regimen and the patient's pharmacological needs. When there is no 

surgical stimulation, the patients' needs are low and a small amount of drug may be sufficient to make 

them comfortable. However, during noxious stimuli (i.e., stimuli associated with transmission of nerve pain 

signals), drug titration needs to be increased to limit the effect of surgery. As a result, a common side effect 

is the depression of the cardiorespiratory system when surgical stimulation suddenly disappears. 

Therefore, anesthesiologists try to keep a balance between the toxicity of anesthetic drugs and the 

noxious stimulation of surgery. 

1.2.2 Functional Components of Clinical Anesthesia 

Although its scientific definition is still open to debate, anesthesia has been described as a state of "drug-

induced unconsciousness, [where] the patient neither perceives nor recalls noxious stimuli" [16]. This func

tional definition proposed by Prys-Roberts in 1987 limits the term of anesthesia to an absence of both 

conscious awareness and memory formation (i.e., hypnosis and amnesia). 

However, the role of anesthesiologists goes beyond provoking a mere hypnotic state. They also ensure 

that autonomic reflexes involving the sympathetic and parasympathetic nervous system (to provide car

diorespiratory control) are not sensitive to surgical stress. This is achieved by inducing a state of analgesia. 

Opioid drugs are typically used to achieve this endpoint. 

When both the hypnotic and analgesic states are adequately reached, patients do not usually exhibit 

purposeful movement to surgical stress. However, intra-abdominal surgeries require the blockade of reflex 

muscle activity in the abdominal wall in order to permit surgical exposure. To attain such a state of 

paralysis, it is necessary to use neuro-muscular blocking agents (NMBs) . It is important to note that these 

drugs act peripherally at the level of the synaptic link between the nerve and the muscle, and not centrally 

in the brain or the spinal cord. 

To summarize, it is common in the literature to consider that the state of general clinical anesthesia 

results from the combination of three functional components, that is, hypnosis, analgesia and immobility. 
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While this anesthesia triad [17] concept is somewhat simplistic, most engineering oriented authors contribut

ing in this field are setting their work within this functional framework since each individual component 

can be accomplished by separate classes of intravenous drugs [18]. Note, however, that inhaled anesthetics 

have minor analgesic and relaxant properties and large doses of opioids can depress cognitive function. Not 

surprisingly then, anesthetics and opioids enhance or potentiate each other's action in a synergistic fashion. 

Conversely, interactions between N M B s and opioids, or N M B s and intravenous hypnotics are minimal. 

1.2.3 Modern Balanced Anesthesia 

As stated earlier, all anesthetics are by definition hypnotics. They first act at the level of cognition (cortex) 

by rendering patients unconscious. However, with increasing doses of anesthetic drugs, it is possible to go 

beyond hypnosis and blunt further the response to noxious stimuli. This is particularly true for inhalational 

anesthetics. T i l l the 1940s, it was common for anesthetists to use a single agent at high concentration to 

achieve adequate anesthesia. Unfortunately, using higher doses usually results in stronger side effects during 

surgery (ventilation depression, cardiac arrhythmia, etc.) and also during recovery (nausea, vomiting, etc.). 

To alleviate undesirable side effects George Crile advocated in 1911 the use of local analgesics as a 

complement to light general anesthesia. In 1926 the term balanced anesthesia was introduced by John 

Lundy to describe a combination of agents that would achieve adequate anesthesia. This concept can 

be well-understood when considering that analgesia and areflexia can be achieved separately using drugs 

such as opioids and N M B s . These drugs are not hypnotics in the sense that they do not provoke uncon

sciousness. Nowadays, the focus in clinical anesthesia is to achieve an adequate balanced anesthetic state 

using a combination of hypnotics (inhalational/intravenous anesthetics), opioids and N M B s . This tech

nique has the advantage that much lower concentrations of these drugs are then needed as they are used 

concurrently. Hence, side effects, recovery time, and post operative nausea and vomiting are considerably 

reduced. Balanced anesthesia is now the standard in the management and conduct of clinical anesthesia. 

1.3 An Extensive Pharmacopoeia 

A combination of anesthetics and opioids, with or without N M B s , are administered together to create the 

state of general anesthesia. These drugs, even when taken within the same family, have different properties. 

Since they provide the actuators through which the patient's state can be regulated (i.e., allowing the 

control of the anesthetic state), it is necessary to provide control engineers with some knowledge of the 

mechanism of action of the most commonly used drugs. 

1.3.1 Anesthetics (i.e. hypnotics) 

Inhaled Anesthetics W i t h the advent of fluorine technology in the 1940s, new inhaled anesthetics were 

developed. Compared to ether and chloroform, fluorine compounds have lower blood solubility (thus ensur-
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ing rapid induction and recovery), lower toxicity, are less irritating to the airway, and are not flammable. 

Nowadays three agents are commonly used with or without nitrous oxide: isoflurane, desflurane and sevoflu-

rane. A l l these agents provoke a decrease in the mean arterial blood pressure when administered to healthy 

subjects. 

A major advantage of inhaled anesthetics is that the drug uptake in the arterial blood stream can 

be precisely titrated by measuring the difference between the inspired and expired concentrations. This 

measurement is done in real-time using a device such as a mass spectrometer. A t steady state, the expired 

concentration correlates with the brain concentration. As a result, inhaled gases are used extensively to 

maintain a desired depth of anesthesia. 

This discussion would not be complete without mentioning the concept of Minimum Alveolar Concen

tration ( M A C ) . A value of 1 M A C is the minimum alveolar concentration of an inhaled anesthetic that 

prevents purposeful movement in response to a noxious stimuli in 50% of patients. The M A C value is thus 

used to compare dosage between inhaled anesthetics. 

Intravenous Anesthetics Intravenous anesthetics can be classified into 5 families: Barbiturates (thiopen

tal), Benzodiazepines (midazolam, diazepam, lorazepam), Phencyclidines (ketamine), Carboxylated imida

zoles (etomidate), and Isopropylphenols (propofol). Compared with volatile agents, intravenous anesthetics 

(besides ketamine) do not provide analgesic effects - hence, they are defined as hypnotic rather than 

anesthetic drugs. However, opioids and intravenous anesthetics, when used in combination, are strongly 

synergistic, both in terms of hypnosis and analgesia. 

Propofol was introduced in the early 1990s and has become the intravenous drug of choice in anesthesia. 

Two particular characteristic of propofol are its fast redistribution and its metabolism. As a result it can 

be easily used in infusion schemes as it provides very fast emergence, without cumulative effect. 

Inhalational Anesthetics vs. Intravenous Agents Inhalational anesthetics are considered by many 

practitioners as near ideal anesthetics as they have both an hypnotic and an analgesic effect. This explains 

why past closed-loop anesthesia attempts used inhalational anesthetics as the sole actuator. Combined with 

the fact that the lung partial pressures of inhaled anesthetics is closely related to the vapour concentration 

in the brain, the control problem is significantly simplified since additional states are measurable. 

As opposed to inhaled anesthetics, the brain concentration of an intravenous drug cannot be easily 

measured. As a result, the titration of these drugs is more difficult as the anesthesiologist does not have 

any feedback on how much of the administered drug has been metabolized or stored in inactive tissues. 

In the majority of cases, intravenous agents are given as large boluses (large doses given over a very short 

amount of time, e.g., < 1 min) for the induction of anesthesia, while maintenance is accomplished with 

inhaled vapors (but more and more often with intravenous infusions). However, since intravenous agents 

are more specific than inhaled anesthetics, they give more flexibility in separately controlling the functional 

components of anesthesia. 
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1.3.2 Opioids 

Opioids are unique in the sense that they provoke analgesia without loss of touch, temperature sensation 

and consciousness, when administered in small doses. They act as agonists at specific receptors within the 

Central Nervous System (CNS). Their principal effect may be the inhibition of neurotransmitter release, 

resulting in a significant analgesic effect. 

Contrary to most anesthetics, opioids do not directly depress the heart, and are thus particularly 

suitable for cardiac anesthesia. Opioids can produce unconsciousness when used in very large doses. This 

observation has led some authors to believe that opioids should be considered to be anesthetics, as they fit 

Prys-Roberts' definition [19]. However, the state of unconsciousness brought by opioids is not reliable. It 

has been shown for instance that they cannot fully replace inhaled vapours to provoke an adequate state of 

hypnosis. However, their use can reduce the requirements of inhaled anesthetics by up to 50% [20]. Also, 

the sedative effect of opioids is opposed by the presence of acute pain. Hence, even though patients in severe 

pain receive very large amount of opioids, they can remain aware. In current practice, therefore, opioids 

are almost always supplemented by other anesthetics. 

Five opioid compounds are used in clinical anesthesia: morphine, hydromorphone, fentanyl, sufentanil, 

and remifentanil. While they all have similar effects, their kinetic characteristics differ tremendously due 

to large differences in their lipid-solubility. Of particular interest is remifentanil, a new agent introduced 

in the mid 1990s. The potency of remifentanil is twice that of fentanyl and its effect-site equilibration 

time is slightly less than that of alfentanil (about 1.1 min). Remifentanil differs from all other opioids due 

to a unique structure where an ester linkage makes it susceptible to hydrolysis. This property results in 

a rapid degradation to inactive metabolites [21]. The main characteristics of remifentanil then are: rapid 

onset, brevity of action, noncumulative effects in inactive tissues and rapid recovery after termination of the 

infusion. Remifentanil is used mostly to provide the analgesic component of general anesthesia. Its brevity 

of action allows patients to recover rapidly from undesirable opioid-induced side-effects such as ventilatory 

depression. 

1.3.3 Neuromuscular Blocking Agents (NMBs) 

N M B s act locally at the level of the neuromuscular junction by interrupting the transmission of nerve 

impulses. Their principal use is to produce skeletal muscle relaxation to facilitate intubation of the trachea 

and to provide optimal surgical conditions. N M B s do not have any analgesics or hypnotic properties. They 

also do not interact in a clinically significant way with opioids and anesthetics. Succinylcholine is used 

whenever a rapid onset and short duration of action is needed. Cisatracurium, vecuronium, mivacurium 

and rocuronium are used when a longer effect is desired. 
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1.3.4 Drugs: Action, Effect and Interaction 

The development of safer and more potent intravenous agents with faster onset of effect and, in certain 

cases, shorter duration of action, has greatly impacted the practice of anesthesia. Nowadays, small drug 

quantities used in combination can produce a balanced state of anesthesia while minimizing side effects. 

In North America, inhalational gases are used to maintain the background of anesthesia. However, intra

venous agents are increasingly employed for maintenance. The use of intravenous agents is geared towards 

facilitating intubation, compensate for undesirable changes in patients' state and also to anticipate painful 

surgical stimuli. In this realm, the short acting characteristic of intravenous agents such as remifentanil 

and propofol indicates that these drugs should best be used in infusion regimens, since their administration 

as boluses often result in too strong effects for too short periods of time. 

The inability of measuring plasma drug concentration of intravenous agents raises questions. Currently 

this affects the ability of the anesthesiologist to set precise rates of infusion. Infusion regimens published 

in medical journals are prone to error due to model uncertainty. Hence, the resulting titration might not 

correspond to the patients' real needs. 

In the context of closed-loop control, and when using intravenous drug as "actuators", it is necessary 

to account for both patient variability and drug synergism. 

Patient variability results from differences in the way the drug distributes and is eliminated from the 

body which is further influenced by cardiac output, an individual's age, lean body mass, renal and liver 

functions, etc. Genetic differences and enzyme activity might also alter the sensitivity to the drug. For 

example, while some patients might be hyporeactive (e.g., tolerance due to addiction), others may be 

hypersensitive. 

When using different drugs in combination, significant interactions can be observed. A n additive effect 

signifies that a second drug taken concurrently with a first will produce an effect equal to the superposition 

of their effects (e.g. the anesthetic effects of two inhaled anesthetics are additive [22]), whereas a synergistic 

effect means that the resulting effect is greater than what could be expected from superposition. Drug 

synergism often appears when using hypnotics in combination with opioids. In some particular cases, drugs 

can also be antagonistic, in which case they counter-act each other when administered concurrently (e.g., 

an opioid antagonist such as naloxone provokes a complete reversal of the effect of opioids). From a control 

point of view, such drug interactions tend to generate significant cross-coupling in the multivariable system 

that models the patient. Only very few models of such couplings have been discussed in the literature; 

see [23, 24] and [25]. These models are mainly mathematical expressions that describe drug interaction in 

steady state. As such they do capture the static non-linearity of drug interactions, but fail to characterize 

the dynamics associated with state transitions during transitory events. 
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1.4 Conduct of Anesthesia 

In most cases, we can divide the anesthesia procedure into 3 distinct phases: induction, maintenance and 

emergence. 

I n d u c t i o n Changing a patients consciousness from an alert to an anesthetized state involves a transition 

phase called induction. A n intravenous induction of anesthesia is typically used in adults since inhalational 

inductions are slower and can be associated with an intermediate "stage of excitation" with vomiting and/or 

spasm of the vocal cords. During intravenous induction with a hypnotic agent, the intermediate stage of 

excitation is generally not seen and airway, respiratory and cardiovascular reflexes are rapidly depressed 

with the sudden onset of unconsciousness. For example, the tongue relaxes to obstruct the airway and 

spontaneous breathing stops. As a result, the upper airway must be instrumented and ventilation must be, 

at least initially, manually or mechanically controlled. Airway instrumentation methods are invasive (i.e., 

like surgery) and generally determine the initial need for opioids and N M B s , which in turn may further 

depress airway and ventilatory control. There is no clinically useful brain monitor as yet that can assist in 

the initial titration of intravenous anesthetic drug dosage, so cardiorespiratory stability is used to infer an 

absence of consciousness. 

The induction of anesthesia is then a critical phase, as the first priority is to maintain the patient's airway. 

For example, major surgery generally requires the patient's airway to be secured by an endotracheal tube 

- a tube and air-filled cuff that is placed through the vocal cords - which then allows positive pressure 

and mechanical ventilation. A n additional advantage of the endotracheal tube is that its intra-tracheal 

cuff prevents the pulmonary aspiration of gastric contents in the case of either gastric-esophagal reflux or 

gastric vomiting with food ingestion prior to emergency surgery. As discussed earlier, the insertion of the 

endotracheal tube is particularly painful and stimulating (e.g., skin incision) as it passes through the vocal 

cords and thus can provoke strong gagging reflexes. To facilitate the insertion of the tube, it is common 

to first use an opioid such as fentanyl to blunt the pain, followed a few minutes later by a large bolus of 

propofol. The administration of such a bolus will rapidly provoke a deep level of hypnosis. To further blunt 

any motor reflex, a N M B is generally administered. 

A n alternative to the endotracheal tube is the Laryngeal Mask Airway - a tube and air-filled cuff that 

sits above the voice-box. Less invasive than the endotracheal tube, the laryngeal mask airway usually does 

not necessitate the use of N M B s for its insertion since it does not pass through the vocal cords. However, 

it is less secure in case of gastric reflux and does not therefore prevent pulmonary aspiration. As a result, 

laryngeal mask airways are used essentially on healthy patients undergoing minor elective surgery on empty 

stomachs. 

The induction of anesthesia is usually a very short event lasting only a few minutes. 
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M a i n t e n a n c e The effect of the propofol induction dose being very short (due to re-distribution), it usually 

wears off once the tube or the laryngeal mask airway is inserted. Hence, it is necessary to administer more 

anesthetic to maintain an adequate depth of hypnosis. The maintenance of anesthesia is often obtained 

via an inhalational agent set around 1 M A C . Prior to surgical incision or any other stimulating surgical 

event, it is customary to reinforce the analgesic component of anesthesia by administering a small bolus of 

opioid. The inhalational gas being also an analgesic, another alternative is to increase the concentration 

of the inhaled agent to 1.5 M A C . If during the surgery there is a long period of low stimulation, the end 

tidal gas concentration may need to be reduced to lessen the level of cardiac depression. The widespread 

use of inhalational agents for the maintenance of anesthesia is mostly attributed to their ease of use. As 

mentioned earlier, the measurement of the end-expired vapour concentration provides the anesthesiologist 

with a reliable feedback quantity. 

In some cases, an infusion of propofol is given concurrently with an inhaled agent. Usually, the infusion 

is set at a fixed rate and the concentration of the inhaled anesthetic is tuned according to the patient's 

need. This method makes it possible for the anesthesiologist to reduce the concentration of the inhaled 

anesthetic to about 0.5 M A C , as the intravenous anesthetic will deepen the level of hypnosis. This usually 

results in less side-effects, especially post-operative nausea. 

In recent years, Total Intravenous Anesthesia (TIVA) has been strongly advocated by many anesthe

siologists [26], and has gained popularity with the introduction of faster agents with shorter duration of 

effect [27]. In T I V A schemes, no inhalational agent is used. Hypnosis and analgesia are achieved using only 

2 agents: an anesthetic drug (usually propofol) and an opioid (alfentanil or remifentanil in recent years). 

The major difficulty for T IVA schemes is the lack of arterial blood measurement of the concentration of 

each drug. Without this feedback information, precise titration of the quantity of drug necessary to achieve 

a particular endpoint is not possible. Hence, the development of T I V A has been made easier through the 

development of pharmacokinetic model-driven infusion devices. These devices reach a desired plasma con

centration by using a computer-controlled infusion pump driven by the known pharmacokinetic parameters 

of the drug. The first Target Controlled Infusion (TCI) devices were made available in the late 1980s, but 

they have not been yet approved for use in North America. The main advantage of T I V A is that patients 

wake up faster and experience less postoperative nausea, thus shortening their stay in post operative care 

units. 

However, T I V A is still a marginal technique, as the anesthesiologist remains blinded to the true plasma 

concentration. Also, the incidence of intraoperative awareness and movement is higher. Finally, recent 

economic studies have concluded that T I V A usually results in higher costs (up to three times the cost 

of standard practice) [28], [29]. In today's cost sensitive environment, this is a major deterrent to this 

technique. 

Emergence The emergence from anesthesia is simply achieved by turning off the vaporizer as well as any 

infusion device used during the surgery. This is usually done during skin closure so that the patient wakes 
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up faster at the end of surgery. A n additional bolus of a long acting opioid may be given for postoperative 

pain management. If the patient does not breathe spontaneously and still needs artificial ventilation, the 

anesthesiologist may use naloxone to antagonize the effect of opioids. However this practice is rare, as it 

may be associated with pain and nausea. 

1.5 Drug Delivery and Monitoring in Anesthesia 

This introduction of clinical anesthesia would not be complete without introducing unfamiliar readers to 

the different devices that are currently used. Most of the information presented here is from [30] and [2]. 

1.5.1 D r u g D e l i v e r y D e v i c e s 

W i t h the exception of nitrous oxide, all anesthetic agents can be found in liquid form. Their administration 

is therefore ensured by either a vaporizer, an infusion pump, or directly as a bolus (manual injection). 

T h e A n e s t h e s i a M a c h i n e The Anesthesia Machine delivers gaseous drugs and vapors (air, N 2 0) and 

has the ability to control ventilation. Its role is essential to ensure patient safety in terms of adequate 

respiration and blood oxygenation (even for procedures where no inhaled anesthetic is used, patients are 

intubated in order to support their breathing through mechanical ventilation). 

The anesthesia machine comprises four distinct devices: an oxygen and N 2 0 flow meter, a vaporizer, a 

breathing circuit, and a mechanical ventilator. The vaporizer mixes the anesthetic vapor with fresh gas. A 

knob permits the anesthesiologist to set the anesthetic vapour concentration at the outlet of the vaporizer. 

The breathing circuit provides the patient's lungs with the gas mixture via a face mask, the endotracheal 

tube or L M A . Pressure, volume, gas and vapour composition can be monitored and manually controlled 

by the anesthesiologist. Sophisticated breathing circuits can maintain temperature, water content, and 

usually incorporate a C 0 2 absorption cannister to remove the excess carbon dioxide in close circuit systems 

(systems in which the expired gas is recirculated for maximum efficiency in terms of anesthetic gas usage). 

The breathing cycle can be either controlled directly by the patient (spontaneous ventilation) or by a 

ventilator (mechanical ventilation) which maintains the respiration set by the anesthesiologist. 

Patients undergoing general anesthesia and unconscious sedation in the I C U are often connected to a 

mechanical ventilator. However, mechanical ventilation has truly an active role in two cases: 

- w h e n us ing opioids: large doses of opioids can significantly depress the respiration cycle. The 

brainstem mechanism regulating the blood C 0 2 concentration becomes less sensitive, thus inducing 

a slowing down of the respiration rate and a reduction of the inspired volume. In some cases, the 

administration of opioid boluses can be followed by a prolonged apneic state during which proper 

oxygen concentration in the brain could be seriously compromised. The mechanical ventilator then 

assumes the role of the autonomic function by ventilating the patient. 
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- w h e n us ing N M B s : N M B drugs block the transmission of synaptic motor information. Hence, 

even though the autonomic respiratory function sends the appropriate activation signals to the lungs, 

their action is inhibited and no respiratory movement follows. As a result, mechanical ventilation is 

necessary. 

Using the ventilator, the anesthesiologist can decrease the blood CO2 concentration below the threshold 

where the autonomous respiratory function does not drive respiration. This can be helpful when the 

breathing pattern needs to be very regular and thereby avoid the use of N M B s or large opioid doses. 

In terms of anesthesia delivery, the anesthesia machine is mainly used to maintain the anesthetic ade

quacy during the maintenance phase. It is generally not used to induce the patient. 

Infusion P u m p s Most intravenous drugs are administered in the form of boluses to correct for inadequa

cies in the anesthesia regimen (e.g., during period of intense surgical stress). However, to limit hemodynamic 

depression, post-operative nausea and airway irritation, infusion pumps are used to supplement the anes

thetic gas with a continuous infusion of intravenous anesthetic such as Propofol. While opioids can also 

be delivered via an infusion pump, this practice is rare in the OR, and is limited to specific cases (e.g., 

neurosurgery). 

The infusion pump usually comprises a syringe plunger actuated by a high precision stepping motor. 

In newer versions, the anesthesiologist can input the type of drug infused, the syringe caliber, the patient's 

weight, and the desired infusion rate, usually in ug • m i n - 1 • k g 1 or in ng • m i n - 1 • k g 1 . Based on this 

information, the pump automatically controls the rate of descent of the plunger. A n alarm warns the 

practitioner when the plunger reaches the end position. These pumps are also usually fitted with a RS232 

serial port. Using the proper communication protocol, it is possible to remotely control the pump from an 

external device such as a laptop. In some countries, T C I devices can be used. These devices target the 

blood plasma concentration by calculating the infusion profile according to the pharmacokinetic model of 

the infused drug. 

1.5.2 A n e s t h e s i a M o n i t o r s 

Standard of care during anesthesia procedures includes the use of a number of sensors: 

- Pulse Oximeter: a light transducer clamped conveniently on one of the patient's fingers permits the 

calculation of heart rate and oxygen saturation. 

- Capnograph: a small tube connects the endotracheal tube or L M A to the capnograph. A sample of 

the gas expired by the patient is continuously analyzed. The capnograph permits the measurement 

of the end-tidal CO2. 

- Mass Spectrometer: this device is integrated to the breathing circuit. Samples of the inspired and 

expired gas mixture are analyzed by mass spectrometry to determine the inspired and expired con-
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centrations of the anesthetic gas. This is particularly convenient to calculate the quantity of the 

anesthetic agent that enters the patient's arterial blood stream. 

- Hemodynamics Monitors: E C G leads located on the patient's chest record the Electrocardiogram 

( E C G ) . The E C G signal is mainly used to determine the heart rate. However, the very shape of 

the E C G (referred to as QRS complex) can be indicative of cardiovascular difficulties. The E C G is 

displayed continuously. A pressure cuff also allows the measurement of the brachial blood pressure. 

A rise or fall in systolic or diastolic blood pressure also indicates cardiovascular difficulties. This 

measurement is intermittent in order not to block systemic circulation in the instrumented limb. 

The information gathered by these sensors is displayed on a unique screen, usually referred to as the 

Anesthesia Monitor. The anesthesiologist's expertise in interpreting these readings permit the assessment 

of the patient's state and needs. 

1.6 Summary 

Paradoxically, surgeons achieve healing by first inflicting injury. Anesthesiologists use anesthetics and 

opioids to prevent the awareness of pain and attenuate the body's stress response to injury. The uncon

sciousness produced by general anesthesia is accompanied by a depression of the respiratory, cardiovascular 

and endocrine responses to surgery. Since the degree of surgical stimulation changes during surgery, anes

thesiologists must constantly adjust the extent of anesthetic depression to avoid both under- and overdosing. 

Otherwise, excessive activation of the sympathetic nervous system or pharmacological depression could in 

turn lead to injury of critical organs, especially in patients with limited respiratory and cardiovascular 

reserves. 

Unti l the mid-20 t h century, only inhaled anesthetics were available to create the state of general anes

thesia. However, their onset of action was slow and often accompanied by vomiting and signs of respiratory 

irritation. In the 1940s, the introduction of intravenous agents revolutionized the medical specialty of 

anesthesia, and over the past 50 years, further refinements in anesthetic pharmacology, equipment and 

technology have occurred. Nowadays, anesthesiologists have access to agents that can act within a minute 

of their administration and can block specific mechanisms such as cognition, awareness, memory, stress 

response and muscle movement. These agents are further characterized by their fast metabolism and elim

ination. Hence, constant monitoring of their titration is necessary to provide patients with an adequate 

drug regimen during surgery. 



Chapter 2 

Quantifying Depth of Anesthesia: a 
Review 

In today's anesthesia practice, patient monitoring is ensured by a set of transducers to measure cardio

vascular and respiratory parameters. These measurements enable experienced anesthesiologists to assess 

their patients' state and take appropriate actions. For instance, a rise in blood pressure and heart rate is 

usually associated with surgical stress. Conversely, a drop in blood pressure and respiratory rate is often 

associated with unnecessary overdosing. However, these physiological measurements must be interpreted 

only within the surgical context. Movements and other visual cues (lachrimation, grimacing, etc.) are often 

the ultimate warning signs of an inadequate anesthetic regimen. Immediate corrective actions must then 

be taken to avoid intra-operative awareness. 

W i t h the introduction of N M B drugs in the early 1940s, this safety net disappeared. A growing number 

of intra-operative cases associated with the use of N M B s were reported. The search for a Depth of Anesthesia 

(DOA) monitor to quantitatively assess the anesthetic state of the patient became an important focus in 

research. 

In terms of close loop anesthesia, the availability of a feedback measure is a sine que non condition to 

the success of such an endeavor. While we have developed our own solutions (see Chapter 5), this chapter 

presents a review and gives a historical perspective on this very active research field. 

Some notions about the use of surrogate measures are presented in Section 1. We will then take a more 

in-depth look into the techniques that have been developed to measure hypnosis. One of these technique, 

based on bispectral analysis, was first commercialized in 1996 and has received considerable attention from 

the clinical community. The experience gained by anesthesiologists in using this type of monitor sheds some 

light on the eventual advantages of automation in anesthesia. As such, the clinical relevance, interests and 

potentials of this type of monitoring is reviewed in Section 3. Finally, we will conclude this Chapter with a 

short section dedicated to the research in the field of analgesia measurement. This particular topic has not 

received much attention as of yet, which explains the rather limited amount of available information. 

17 
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2.1 The Use of Surrogate Measures 

Hypnosis and analgesia are the result of different pharmacological mechanisms within the CNS. It is not 

possible to measure them directly. However, there are physiological signs that can be sufficiently correlated 

with these two anesthesia endpoints. For instance, it is known that cortical activity mirrors the state of 

hypnosis for a patient. The fact that the brain can or cannot process sensory information can be observed 

in the E E G . Similarly, it is a well known fact that opioids depress the respiratory autonomic response of 

the body in a dose dependent fashion. Monitoring the changes in respiratory rate and blood CO2 can thus 

provide an indirect measurement of the opioid effect. 

The use of surrogate measurements to assess hypnosis and/or analgesia is subject to a limited therapeutic 

window. When using the E E G to determine the effect of anesthetics and opioids, great care has to be taken 

into defining a proper therapeutic window. For instance, in their study of opioids, Bil lard and Shafer [31] 

observed that the E E G could represent adequately the opioid effect, but only for a limited range of doses, 

see Fig . 2.1. Small doses do not have a marked influence on the E E G , while larger doses used for cardiac 

surgery reach a maximum E E G effect. Therefore, the use of the E E G seems to be irrelevant in preoperative 

and postoperative I C U (where often only a shallow analgesic state is provided) and in surgeries where 

cardiac stability is ensured by large opioid amounts. 

E F F E C T SITE ALFENTANIL [ng/ml] 

Figure 2.1: Therapeutic window of the E E G for measuring the opioid effect (from [31]). 

Various authors ([32], [33], [34]) have been trying to define the characteristics of an ideal index of Depth 

Of Anesthesia (DOA) . These authors were referring to either hypnosis or analgesia. They all agree on the 

following characteristics that an ideal index of hypnosis must possess: 

i . vary in a predictable and consistent fashion as the drug concentration increases, 

i i . show similar changes for different agents of the same family (anesthetics, opioids), 

i i i . indicate shallow levels of hypnosis or analgesia, 

iv. have a stable baseline value that varies only minimally, 
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v. characterize the maximal change induced by the drug, and, 

vi . recover to the baseline value on discontinuation of the drug, or upon termination of the effect. 

2 .2 Q u a n t i f y i n g t h e D e p t h o f H y p n o s i s : a R e v i e w 

The Central Nervous System, and in particular the brain (cerebral cortex) are the target organs of anesthetic 

drugs. Since sensory perception and consciousness are processed at this level, it is reasonable to assume 

that electroencephalogram signals (EEG) - which reflect cortical activity - can be used to determine the 

depth of drug-induced unconsciousness. 

The effects of anesthetic drugs on the E E G have been known since the early 40s [35] where neurophys-

iologists observed that the E E G of anesthetized patients contain slower waves with higher amplitudes, see 

Fig. 2.2. Later on, Faulconer and Bickford [36] published a review cataloguing the different patterns of the 

E E G associated with ranging depths of anesthesia for different anesthetic agents. Bickford also showed that 

the E E G measured from the scalp is similar and synchronous to the E E G that can be measured at depth 

in the human brain. A n extensive review published in 1973 by Clark and Rosner [37] concluded that all 

anesthetics have an effect on the E E G . 

But even though all studies have shown that there is a clear correlation between the E E G and the 

anesthetic depth, they have also shown that patterns generated through anesthesia were different according 

to the drug that was used. Some researchers concluded that neuroelectric recordings couldn't provide a 

simple and uniform measure of anesthetic depth. Stanski [33] concluded that in order to use parameters 

derived from the E E G as a measure of the anesthetic depth, one must first study, for each drug, the 

correlation between the plasma concentration, the E E G effect and the resulting clinical anesthetic state of 

the patient. He also stressed out that the pharmacokinetic and pharmacodynamic model of the drug must 

be associated with the parameter to accurately represent and predict the anesthetic depth. 

2.2.1 R e v i e w o f T o o l s a n d T e c h n i q u e s 

There are a number of signal processing tools and techniques available to quantify the E E G in order to 

derive a surrogate measurement of hypnosis. Here is a brief summary of these tools: 

2.2.1.1 Time Domain Methods 

Bickford, Faulconer and Soltero ([38], [39], [40]) quantified the energy of the E E G by rectifying and inte

grating the signal. When the resulting integrated signal reached a pre-specified value, the system generated 

a pulse and reset the integrator. The frequency at which pulses were generated was an indication of the 

hypnotic depth. 

Later on, Bellville [41] developed a method using cyclopropane anesthesia. He observed that increasing 

concentration of cyclopropane was also increasing the E E G amplitude. He thus used the raw amplified 
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Figure 2.2: Simultaneous records from the left and right motor regions, illustrating the changes in frequency during 
cyclopropoane anesthesia and recovery, (a) awake (b) breathing cyclopropane for 2 min. (c) 1 min later (d) immedi
ately on substitution of room air for cyclopropane (e) 3 seconds later (f) 2 min. later (g) 5 min. later (h) complete 
recovery (from [35]). 
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Figure 2.3: Awake and anesthetized E E G and their power spectrum, 

signal directly as a feedback quantity. 

2.2.1.2 Power S p e c t r u m A n a l y s i s 

W i t h the development of microprocessors and signal processing tools, researchers have focused their atten

tion on Fourier analysis of the E E G . Power spectrum analysis is used to obtain a frequency distribution of 

the E E G . Hence, any change in the frequency content of the signal can be visualized. Pichlmayr et al. [42] 

published a thorough review of the effect of the different anesthetic agents on the E E G spectral distribution. 

The E E G spectral distribution is characterized by different modes. It is common practice to distinguish 

between 5 frequency bands: 5 band (0.25 Hz - 3.5 Hz), 0 band (3.5 Hz - 7.5 Hz), a band (7.5 Hz - 12.5 Hz), 

/? band (12.5 Hz - 32 Hz), and 7 band (32 Hz - 70 Hz). For a normal awake patient, the E E G activity is 

principally concentrated in the delta and alpha bands. Wi th increasing level of anesthetics, the activity of 

the alpha band tends to reduce, while the low frequency content of the delta band is increased, see Fig. 2.3. 

To quantify the effect of anesthetics on the E E G , researchers have tried to derive univariate indexes 

based on Fourier analysis that characterizes the spectral distribution. Among the parameters that have 

been thoroughly investigated, we can mainly distinguish between the following two: 

M e d i a n Frequency ( M E F ) The M E F is the frequency that splits the power spectrum distribution into 

two parts of equal power. This descriptor is advocated by Schwilden and co-workers ([43], [44], [45] and 

[46]) who used it for close loop anesthesia. 

S p e c t r a l Edge Frequency ( S E F ) The SEF is the frequency at which 95% of the E E G power is present. 

This descriptor was proposed in 1980 by Rampil et al. [47]. According to its authors, the S E F is highly 

repeatable but presents large inter-subject variations. One advantage of the S E F over the M E F is its high 

sensitivity to deepening hypnotic levels. As a result, this descriptor is still being used today, in research. 
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Levy [48] argued that, since E E G activity exhibits multimodal patterns, no univariate descriptor based on 

the processed E E G can serve as a consistent and adequate representation of the power spectrum. Levy thus 

doubted the reliability of univariate descriptors of D O A based on the E E G power spectrum. 

2.2.1.3 E E G modeling 

The idea of modeling the E E G using auto-regressive techniques dates back to the early 1970s. But its 

application to anesthesia is more recent ([49]). 

As compared to univariate descriptors, auto-regressive (AR) modeling generates a set of parameters that 

can further be correlated to anesthetic depth. In order to derive a single index from the A R parameters, 

a neural network is trained. Sharma et al. [50] showed that this technique can lead to accurate results 

for measuring analgesia in dogs using halothane. However, the size of the proposed network is rather large 

(43 inputs, 43 nodes in the primary hidden layer, 6 nodes in the secondary hidden layer and one output). 

One of these inputs is actually the M A C value. Results are seriously compromised when removing this 

information, thus indicating that the anesthetic depth measured by this technique depends heavily on the 

dose-response characteristic of the inhaled anesthetic. 

2.2.1.4 Bispectral Analysis: The B I S ™ Monitor 

Rampil, a leading researcher in the field of neuro-anesthesia, recently argued that anesthetic agents tend to 

synchronize the generation of postsynaptic potentials [51], thus resulting in slower waves of higher amplitude 

in the E E G . W i t h increasing levels of anesthesia, it is expected that some of the frequency components 

of the E E G will shift in time (change of phase). This phenomenon should be mostly predominant in the 

lighter anesthetic states. This change in latency is not observable by spectral analysis, as phase information 

is usually discarded. 

To illustrate this point, Bowles et al. [52] proposed the following example: let us consider a signal 

composed of 3 sinusoid waveforms. The phases of two of the frequency components are fixed, while the 

phase of the third one is allowed to slowly drift (see Fig. 2.4). As a result, the shape of the signal itself 

changes according to the phase of the third component. Clearly, even though the shape of the signal is 

different, standard power spectral decomposition is not able to capture the phase drift. However, when 

calculating the bicoherence value, a large discrepancy can be noted when the phase of the third component 

is coupled with the phases of the first two components. Hence, bispectral analysis can differentiate between 

these two signals and capture phase drifts. 

Ning et al. [53] applied bispectral analysis to the E E G in order to characterize sleep patterns in rats. 

They realized that there was a strong coupling between the frequencies of 6 and 8 Hz during Rapid-Eye 

Movement ( R E M ) sleep. Sleep patterns being close to patterns obtained during anesthesia procedure, Ning 

assumed that this technique might lead to interesting results in monitoring the depth of anesthesia. Their 
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• Random phase signal: 

Figure 2.4: Changes in latencies in a signal can be tracked by the bicoherence index (from [52]). 

assumption was validated in 1990, when Kearse et al. [54] reported that an index based on bispectral 

analysis was more accurate than the spectral edge frequency for opioid-induced anesthesia (alfentanil and 

sufentanil). These findings were confirmed by Sebel et al. [55] with isoflurane and later on with propofol 

[56]. A study by Muthuswamy and Roy in 1993 on anesthetized dogs (halothane) also led to similar 

conclusions [57]. However, they also noticed that the accuracy of the analysis could probably be improved 

by using bicoherence indexes in association with other parameters such as the M E F , S E F and hemodynamic 

parameters. 

Probably the most compelling result was obtained by a research team from Aspect Medical Systems 

Inc. who derived no less than 33 variables (11 bispectra, 11 bicoherence indexes, 11 power spectral values). 

These variables were combined into a dimensionless index in order to predict somatic responses to surgical 

incision [52] 1. This index, referred to as BIS (Bispectral Index Scale), is a weighted sum of each spectral 

and bispectral variable. In the earliest versions, the weights were tuned using discriminant analysis and 

based on data collected from 170 standard surgical procedures. 

In comparison with other methods (SEF, M E F , etc.), the accuracy of the BIS was significantly higher. 

A major advantage of bispectral analysis over more conventional techniques is its wider therapeutic window 

that allows the differentiation between different levels of sedation [58]. 

Based on these findings, Aspect Medical Systems has developed a monitor of consciousness, referred 

to as the BIS Monitor, which integrates this technology. A single E E G signal is recorded through contact 

1Note once again the confusion between hypnosis and analgesia. 
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Figure 2.5: Bispectral Index Scale and its meaning (from [59]). 

electrodes placed on the patient's forehead. The BIS value and other relevant information are then displayed 

on the monitor screen. To simplify the interpretation, the BIS is scaled between 0 and 100. A value of 

100 represents the awake state. Wi th increasing concentration of anesthetics, the index decreases. General 

anesthesia is obtained for an index between 60 and 40, see Fig. 2.5. Lower values represent deep hypnotic 

states, while values between 90 and 60 generally represent sedation levels. 

2.2.1.5 Quantitative Evoked Potentials: the A - L i n e ™ Monitor 

Somatosensory information provoked by auditory, visual, or tactile stimulation generate transitory oscilla

tory signals within the E E G itself. It has been advocated that such transient signals, if properly analyzed, 

can reveal information concerning a patients' state of consciousness ([32, 60, 61, 62, 63]). For instance, 

midlatency auditory evoked potentials ( M L A E P ) have a very distinct shape whether the subject is awake 

or asleep, see Fig . 2.6. The most remarkable feature beside the change in amplitude of the signal is the 

change in latency of the Pa and P;, waves. A very interesting work by Huang et al. [64] has shown that 

it is possible to measure the hypnotic depth of a dog under anesthesia by using wavelet transform of the 

M L A E P signal and feeding the wavelet coefficients to a properly trained neural network. 

A significant work has been carried out in that particular field. One major disadvantage of using evoked 

potentials is their very low signal to noise ratio, which makes them particularly difficult to acquire, as they 

are embedded inside the E E G signal.. Averaging over a large number of samples is necessary in order to 

filter out the E E G noise from the signal. New techniques such as wavelet de-noising have been successfully 

applied to partially alleviate this problem [65]. 

The latest developments in A E P extraction using A R X modeling have yielded results that allow the 
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Figure 2.6: Midlatency Auditory Evoked Potentials obtained from a responsive (awake) and non-responsive (asleep) 
dog subject to tail clamping. The waveforms have been obtained after averaging of 1000 samples (adapted from [64]). 

estimation of the anesthetic state based on 6 second epochs [66, 67], thus necessitating the averaging of 

only 15 sweeps. This new technology has been embedded in the A-Line Monitor (Alaris Medical Systems, 

California) and is now commercially available. 

2.2.1.6 Other Monitors 

Following the success of the BIS Monitor, medical companies have taken a keen interest in this new market 

segment. New monitors have recently become available: 

- The P S A 4000™ (Physiometrix, Massachusetts): this monitor displays an index of hypnosis calcu

lated on 1.25 s E E G epochs. Numerous quantitative measurements are derived (power gradients, 

absolute power in specific frequency bands, etc.). These measurements are further combined into a 

unique dimensionless index, referred to as the Patient State Index (PSI). The PSI is scaled between 

100 (awake) and 0 (isoelectric E E G ) . Three extensive E E G databases were used for the tuning and 

calibration of the PSI. While the PSI is based on similar principles as the BIS Monitor (i.e. compos

ite index tuned from E E G databases and clinical cases), it differs in that it does not use bispectral 

parameters. Instead, the PSI focuses on the power shift in specific frequency components between 

the frontal cortex and the posterior lobes. This power shift is directly related to the hypnotic depth. 

Paradoxically, the commercial version of the P S A 4000 uses only frontal electrodes. 

- The Narcotrend® Monitor (MonitorTechnik, Bad Bramstedt, Germany): this monitor is based on 

a pattern recognition algorithm that classifies the E E G into 14 different classes using Kugler's clas

sification and denomination [68] (A, B0, B l , B2, CO, C I , C2, DO, D l , D2, E0, E l , F0, F l ) . The 

range D0-E1 indicates an adequate depth of anesthesia for surgery. The range F0-F1 indicates burst 

suppression and isoelectric E E G . The Narcotrend index exhibits step-wise changes during increasing 

or decreasing hypnotic depth. 

- The A S / 5 M-Entropy Module (Datex Ohmeda, Helsinski, Finland): Datex Ohmeda is a leading 
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manufacturer of anesthesia machines and monitors. They recently developed an E E G measure based 

on entropy analysis that captures the complexity of the E E G signal [69]. During the awake state, 

the E E G is a highly complex signal, resembling that of noise (no apparent pattern). W i t h increasing 

depth of hypnosis, patterns emerge, thus reducing the complexity of the signal. 

2.2.2 Clinical Relevance, Interest and Potentials of the BIS Monitor 

The BIS Monitor has received considerable attention from the research and clinical communities. Over 1,250 

papers discussing its pros and cons and its clinical relevance have been published since its commercial in

troduction in 1996. The BIS Monitor was the only F D A approved monitor of drug-induced unconsciousness 

until 2002. 

Intra-operative Awareness The most publicized role of the BIS Monitor is the reduction of the in

cidence of intra-operative awareness. However, validating such an assertion is a difficult task due to the 

rather limited occurrence of such cases. It is only very recently that two large studies were able to assess 

the impact of BIS monitoring to prevent intra-operative awareness: 

- SAFE2 Trial: following the S A F E 1 trial (see Section 1.1.2.2), Sandin et al. conducted a prospective 

study where 5,057 patients undergoing surgery requiring general anesthesia including the use of muscle 

relaxants or intubation were monitored with the BIS monitor. Only 2 patients experienced recall of 

intra-operative events, as compared to 14 in the control group (from the S A F E 1 Trial). The authors 

concluded that the BIS monitor can reduce intra-operative cases by up to 80%. Even though the 

study population is still rather limited (only 5,000 cases so far), this result was deemed statistically 

relevant. 

- B-AWARE Trial: the B - A W A R E Trial targets a population of patients at risk undergoing relaxant 

general anaesthesia. A total of 2,503 patients were enrolled in this study. This population was divided 

into 2 groups: control, and BIS monitored. In the BIS group, the index was kept in the 40-60 range. 

The incidence of intra-operative recall was about 0.89% (11 cases) in the control group, and 0.16% (2 

cases) in the BIS group. 

Clearly, the BIS monitor succeeded in reducing intra-operative awareness in a significant manner. 

Drug Usage, Post-operative Acute Care Unit Discharge Times and Outcome Another well-

publicized advantage of a BIS guided titration (i.e., maintaining the BIS value in-between a pre-determined 

range during the maintenance phase) is the reduction of drug usage and discharge time. For instance, 

several studies [70, 71, 72] concluded that an average reduction of 20% to 30% in the total amount of 

anesthetic drugs (inhaled and/or intravenous) could be achieved during the maintenance phase by keeping 

the BIS value in the 40-60 range, while still ensuring the adequacy of the anesthetic state. These studies 



CHAPTER 2. QUANTIFYING DEPTH OF ANESTHESIA: A REVIEW 27 

25 

Figure 2.7: Time of arousal following discontinuation of propofol and remifentanil infusion (from [70]). 

imply that, on average, patients without BIS are overdosed. Processed electroencephalography variables 

such as the BIS can thus offer practitioners a guideline to titrate each patient according to his/her specific 

needs. 

W i t h the reduction of drug usage, it has been shown that patients awake sooner from their surgery and 

are discharged faster than in standard practice [73, 70, 74]. Discharge times in the Post Anesthetic Care 

Unit (PACU) are reduced by up to 50%, see Fig. 2.7. The incidence of post operative nausea and vomiting, 

and patients' comfort are also significantly improved. 

The reduction in drug usage, discharge times and adverse post-anesthetic events (nausea and vomiting) 

have the added advantage of reducing anesthesia-associated costs. In today's cost-sensitive society, this 

could be seen as a major advantage. However, some studies [75] have shown that the savings compensate 

for the cost of the BIS sensors and the maintenance of the monitor only for long surgeries (>4 hours). 

2.2.2.1 Long Term Benefits of BIS Monitoring 

In a recent abstract, Weldon et al. [76] showed an interesting correlation between one year post-operative 

death rates and the average BIS value. The study included 907 patients scheduled for major surgical 

procedures. Logisitc regression modeling showed that increasing age and lower BIS levels were both inde

pendently associated with higher one year post-operative mortality rates. In the elderly population, the 

mortality rate was 16.7% for an average BIS value <40, as compared to 4.2% for an average BIS >60. This 

study implies that maintaining middle-aged.and older patients into very deep anesthetic levels might not 

be advisable. While this result was later confirmed by Lennmarken [77], details from these studies have still 

not been released. One could theorize that patients driven into deep hypnotic states received more inhaled 

anesthetic and perhaps less opioids, and as a result, suffered from cardiovascular instability. 

TIME [mini 
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2.2.2.2 Bad Press 

There are still many controversies concerning the use and reliability of the BIS monitor. One major 

argument fuelling the debate is whether a single index derived from the E E G could reflect the anesthetic 

adequacy in all types of anesthetic procedures. Many argue that in order to validate such monitors one 

would need to study the effect of each anesthetic and opioid drugs (and combination thereof) on the index. 

A second argument is that the BIS is tuned to reflect the anesthesiologist's assessment. As such it is an 

empirical measurement which might not reflect the underlying neurophysiologic mechanism of anesthetics. 

Finally, while many studies have concluded that a BIS guided titration results in lower drug usage and 

improved outcome, some consider that such titration would increase the risk of intra-operative awareness 

[78]. However, this argument seems to have been refuted by the recent B - A W A R E trial. 

Particular cases where the BIS has shown paradoxical behavior were also reported: 

- Low BIS values during recovery: Sleigh and Donovan [79] report that 14 out of 37 patients could 

respond and follow verbal commands during emergence while the BIS value was <75. They observed 

that the BIS value regains its baseline value during emergence only 30 s after patients start reacting 

to verbal commands. They attributed this delay to the update delay of the BIS and its 30 s averaging 

window. A similar observation was later on reported by Lehmann [80]. 

- Effect of E E G amplitude on the BIS: Schnider et al. [81] reported that a consistent BIS value of 

40-50 can be obtained if the amplitude of the E E G is low enough. Muncaster et al. [82] in 2003 also 

reported having a patient with a very low BIS value during emergence due to a low E E G amplitude. 

- N M B s and BIS: The effect of N M B s on the BIS value has also recently been investigated. In one 

study on volunteers, Messner et al. showed that a paralyzed fully conscious subject can have a BIS 

value as low as 9 [83]. If confirmed, this could be a very damaging result for a monitor that is supposed 

to detect episodes of consciousness in paralyzed patients. A similar finding was reported by Vivien 

et al. [84]. In their study of 45 patients in intensive car unit, they measured an average drop of 25% 

in the BIS value after the administration of N M B s . A similar decrease in electromyographic (EMG) 

activity was measured. A conclusion from these studies is that the BIS value is strongly correlated 

to the E M G and should not be used in sedated patients whenever N M B s are used concurrently. Note 

however that N M B s do not affect the BIS value in patients under general anesthesia [85]. This could 

be due to an already very low E M G activity, where the N M B impact remains very l imited 2 . One can 

therefore hypothesize that the BIS value cannot reach levels above 60-70 without some E M G activity. 

As a result, paralyzed patients should not be allowed to be maintained at levels close to 60 since an 

episode of intra-operative awareness might not be picked up by the monitor 3. 

2The contribution of the EMG signal in the EEG remains unaffected by the NMB (however the drug still effectively blocks 

muscle movements). 
3Personal interpretation. 
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Finally, a cornerstone of the mistrust and recurring complaint by clinicians is that the BIS algorithm 

has never been made public, and hence cannot be rigourously evaluated by independent researchers [86]. 

2.2.2.3 Comparison with Other Monitors 

Because of the relative novelty of the other monitors, only a few clinical studies have been published 

comparing the bispectral index with its competitors. So far, results from the P S A 4000 [87] and the 

Narcotrend Monitor [70] seem to show a good correlation between these indexes and the BIS. No clear 

advantages have been found in using one particular technology, and both the P S A 4000 and the NarcoTrend 

monitor reported similar findings in terms of drug usage and P A C U discharge times. 

2.3 Quantifying the Depth of Analgesia 

The measurement of antinociception is part of the critical care given by anesthesiologists in their daily 

practice. Surgical trauma is usually accompanied with strong sympathetic and parasympathetic activity 

(e.g., heart rate and blood pressure changes, sweating, lachrimation, somatic movements, etc.). 

Deriving descriptors of antinociception that can be used as a feedback quantity is a challenge. For 

instance, blood pressure alone is not a reliable measure, as other parameters such as blood loss and the action 

of vasoactive drugs can affect the cardiovascular system. As a result, the analgesia functional component 

hasn't yet received enough attention. In recent years, only a few monitors have been introduced, without 

full disclosure of their scientific base. 

2.3.1 Using Physiological Measures 

2.3.1.1 The E E G as a Measure of Analgesia 

The effect of opioids on the E E G has been thoroughly investigated. In 1984, Smith et al. [88] concluded 

that the E E G probably reflects the depth of anesthesia with high-dose narcotics. Later studies by Scott 

et al. ([89] and [90]) resulted in similar conclusions. The same techniques ( M E F , S E F , BIS) described 

previously can be used for measuring the effect of opioids as well. However, the therapeutic window of these 

techniques is very limited. Also, many agree today that cortical activity, while appropriate for consciousness 

monitoring, cannot be used to assessed the effect of opioids since their site of action is principally localized 

at the level of the spinal cord [91]. 

2.3.1.2 End-tidal C 0 2 

A l l opioids depress ventilation in a dose-dependent fashion. As a result, the amount of carbon dioxide (CO2) 

in the arterial blood during spontaneous ventilation is an indication of the opioid effect. The advantage of 

using the CO2 arterial partial pressure is that it can be easily measured using the capnograph. However, 

the usefulness of this measurement is limited to cases where patients breathe spontaneously (a majority of 
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day care surgeries), thus limiting the therapeutic window of this parameter to doses of opioids that do not 

provoke apnea. 

2.3.1.3 Heart Rate and Blood Pressure 

A rise in heart rate and blood pressure is usually indicative of increased sympathetic activity (i.e. stress). 

Monitoring these parameters can be useful to determine the level of stress. However, heart rate and blood 

pressure baselines are patient-dependent. Also, numerous drugs other than opioids can depress or alter 

these signs. Finally, changes in heart rate and blood pressure are only indicative of strong stimulation and 

do not provide a graded response to increasing stimulation. 

2.3.2 Using Heart Rate Variability 

In healthy subjects, parasympathetic and sympathetic activity are balanced according to stress levels, 

circadian rhythms, position, etc. This balance is regulated by the CNS. In most subjects under stress, 

sympathetic activity dominates. Conversely, relaxation increases parasympathetic activity and depresses 

sympathetic tone. 

While the field of Heart Rate Variability (HRV) is quite prolific, most of the research done t i l l now was 

oriented towards the development of diagnosing tools for awake subjects. In standard analysis of the H R V , 

researchers differentiate between the H F band (0.2 - 0.5 Hz) which reflects parasympathetic activity, and the 

L F band (0.01 - 0.15 Hz) which is believed to reflect both sympathetic and parasympathetic activity (the 

exact mechanism remains unknown). High frequency activity is usually concentrated around the respiratory 

frequency. One explanation could be that the regulation of respiration is mediated by the same center that 

regulates the activation of the vagal nerve. Typically, the H F measurement usually quantifies the activity 

concentrated around ±0.06 Hz around the respiratory frequency. In order to normalize this measurement, 

standard practice usually involves the ratio L F / H F , which is believed to yield a more consistent measurement 

of the sympathetic/parasympathetic balance. 

The effect of anesthesia on the H R V signal has not yet been thoroughly investigated. A standard 

measurement practice for instance has not been adapted, since the respiratory rate in anesthetized patients 

can drop to a point where both the H F and L F activity share the same frequency band. Hence, it seems 

that normalizing one with respect to the other is not indicated. 

2.3.2.1 Existing Technologies 

Two monitors have been advocated as analgesia monitors: the Anemon I, Medical Control System SA, and 

the Fathom, Amtec. There is, however, no published literature reviewing the merits of these technologies. 

The Fathom monitor is still at the prototype stage and is not yet commercially available. This particular 

device analyzes the respiratory pattern fluctuations. These fluctuations are difficult to measure. However, 

they strongly correlate with fluctuations of the cardiac rhythm called sinus arrythmia. Observing the 
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changes of the interval between R-waves of the electrocardiogram and the respiration cycle forms the basis 

for this measurement ([92] and [93]). Clinical trials are currently being conducted in England to validate 

the efficacy of this technique. 

2.4 Summary 

One hundred and fifty years after the discovery of anesthesia, the current standard of care in anesthesia 

management still does not include monitors to assess quantitatively the effect of anesthetic drugs on the 

target organ, i.e., the brain. The current practice still relies uniquely on secondary signs to warn the 

practitioner of either pharmacological toxicity or anesthetic inadequacy. 

It is only in the past 10 years that serious advances have been made. Since 1996, practitioners have 

access to monitors to measure the degree of drug-induced unconsciousness. As of today, monitors, such 

as the BIS, are still considered by many to be nothing more than gadgets. Also, the price of the BIS 

sensor deters many to use the device in their everyday practice. Further, the lack of predictability in 

the BIS behavior during transients (e.g., unconscious patients after induction can have a stable BIS >80 

while a reacting patient after emergence can have a BIS <60) has brought many practitioners to question 

its reliability. However, with the new awareness studies, the use and interest of such monitors might be 

re-evaluated once the economic and social impact of intra-operative awareness are properly studied. 

In terms of analgesia, no real breakthrough has been achieved yet. This can be explained by the fact that 

anesthesiologists can assess this state better than hypnosis, since they monitor cardiorespiratory functions. 



Chapter 3 

Modeling Anesthetic Drugs: the 
Traditional Approach 

In this chapter, we present the drug modeling approach favored in traditional pharmacological studies. In 

this approach, it is usual to first consider how the administered drug distributes within the body. This 

analysis leads to a pharmacokinetic model (PK) which can be used to predict the blood plasma concentration 

of the drug. 

The second step is to relate this concentration to the drug effect itself. This yields a second mathematical 

expression referred to as the pharmacodynamic model (PD). 

The organization of this chapter mirrors this approach. The pharmacokinetic concepts are covered in 

Section 3.1, while pharmacodynamic modeling is discussed in Section 3.2. 

Propofol and remifentanil being the fastest anesthetic and opioid agents available in the current practice, 

we believe that a close loop anesthesia delivery system will benefit the most from these agents. Hence, most 

of the discussion presented here is focused on these two drugs. 

3.1 Pharmacokinetics 

Anesthesiologists act through the administration of drugs. A pharmacokinetic model of a drug is a mathe

matical expression relating the drug blood plasma concentration Cp(t) to the administered dose I(t). The 

aim of this section is thus to define the transfer function 1 PK(s): 

PK(s) = ̂ - (3.1) 

While special emphasis will be given to propofol and remifentanil, most of the concepts presented here 

can be broadened to a wider variety of drugs. For a more in-depth look into these concepts, we invite 

'In contrast with the usual approach in pharmacology, PK(s) is expressed here in the Laplace domain (or frequency domain). 

In linear system theory, the Laplace transform is used extensively to express time-domain differential equations into algebraic 

expressions, which are thus easier to solve. Continuous time domain system analysis and control design are often conducted in 

the Laplace domain. 

32 



CHAPTER 3. MODELING ANESTHETIC DRUGS: THE TRADITIONAL APPROACH 33 

16 8 4 2 

T I M E F R O M INJECTION [min] 

Figure 3.1: Simulation of the time course of the percentage of a. thiopental bolus in the central blood pool, viscera, 
lean tissue and fat as a function of time, assuming no elimination clearance (adapted from [97]). 

interested readers to refer to the textbooks from Stanski and Watkins [94], Prys-Roberts and Hug [95], and 

Fragen [96]. 

3.1.1 Principles and Concepts 

Pharmacokinetics can best be understood when considering the time course of the concentration of any 

given drug within the plasma and other tissues of the human body (see Fig . 3.1). During the absorption 

phase following an intravenous bolus administration, a drug mixes rapidly within the central blood pool, 

resulting in a plasma peak concentration. While at first glance the peak plasma concentration seems to 

occur instantaneously, a small delay elapses between the actual injection of the drug and its mixing within 

the blood pool. Systemic circulation then distributes the drug to a variety of tissues within the body. A 

part of the drug enters these tissues through molecular diffusion, according to the affinity of the tissues for 

the drug, the rate of perfusion and the relative concentration of the drug in the blood and in the tissues. 

Highly perfused, relatively low volume tissues such as the brain equilibrate rapidly with the concentration 

of the central blood pool. Since the site of action of anesthetics and opioids is the central nervous system 

(CNS), this explains the rapid onset of effect of such drugs. Concurrently to this equilibrium, a quantity 

of the drug will also pass from the blood through other tissues such as muscles, viscera, fat and bones, 

hence slowly reducing the drug plasma concentration. As the concentration decreases, a part of the drug 

accumulated inside the highly perfused tissues will then be re-distributed inside the blood, hence decreasing 

the concentration of the drug in these tissues. 

The reversible transfer of the drug from one location to another is referred to as distribution, and 

involves molecular movement across lipid membranes and capillary walls. The distribution kinetics depend 
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then mostly on the lipid solubility characteristic of the drug. Another important aspect that affects the 

distribution phase of the drug is protein binding. While the bound fraction of a drug does not contribute 

to the pharmacologic action of the drug, it acts as a depot: as the free fraction of the drug is removed 

from the body due to metabolism and excretion, protein bindings are broken to reestablish the initial ratio 

between bound and free drug. 

The elimination of a drug is usually achieved through metabolism and excretion. Metabolism transforms 

lipophilic substances (such as most anesthetics and opioids) into hydrophilic substances, hence facilitating 

their excretion through renal mediation. This process, done at the hepatic level, usually leads to the 

inactivation of the drug. There can be a large individual variability in the activity of the enzymes responsible 

for metabolism. This variability can be as great as 40-times which might be the result of genetic differences 

between individuals. Renal and hepatic excretion are responsible for most of the drug elimination within 

the body. 

3.1.2 Model ing 

The phenomenon of drug uptake, distribution and elimination can be expressed mathematically. To that 

end, a number of model architectures have been proposed. 

3.1.2.1 Exponential Models 

For most drugs, the time course of their concentration within the blood plasma after rapid intravenous 

administration and uptake can be fitted to resemble a decaying function, with two distinct modes cor

responding to the distribution and elimination phase respectively, see Fig . 3.2. This behavior can be 

mathematically expressed as: 

Cp(t) = A • e~ a t + B • e-P* [ng/ml] or [Mg/ml] (3.2) 

where Cp(t) is the time course of the drug concentration expressed in nanogram per milliliter (opioids) or 

microgram per milliliter (barbiturates, propofol), a is the rate constant of the distribution phase (slope of 

the tangent at the origin), and (3 is the rate constant of the elimination phase (slope of the curve once the 

distribution phase is completed). In many cases, a tri-exponential model will capture significantly better 

the kinetic of the drug 2: 

Cp(t) = P • e - ' - ' + A • e~ a t + B • e - ^ ' [ng/ml] or [ug/m\] (3.3) 

A major advantage of exponential models is that they can be easily derived using graphical means. 

The identification can be carried out directly by using either bolus data and analyzing the decaying blood 

plasma characteristic (such as shown in Fig . 3.2), or by using infusion data and analyzing how the plasma 

concentration increases over time. 

2 T h e use of /3 being usually reserved to model and represent the slow elimination phase, researchers have introduced the 

notation P and 7r to describe the fast dynamics corresponding to the distribution phase. 
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T T I M E A F T E R I N J E C T I O N 
Bolus 

administration 

Figure 3.2: Time course of plasma concentration with two distinct phases: distribution and elimination (adapted 
from [98]). 

Note that in pharmacology it is usual to replace the rate constants by half-lives which represent the 

amount of time that is necessary to observe a reduction of 50% of the initial dose during a given phase. 

Half-lives are calculated as: 

T f = ^ and r ? = — and i f = ^ [min] (3.4) 
2 7T 2 Oi 2 p 

In terms of control and system engineering, the exponential model (3.3) can be directly expressed in the 

Laplace domain: 

PK(s) = ^ 4 = P - — + A- — + B--^— (3.5) v ;
 I(s) S + TT s + a s + /3 v / 

3.1.2.2 Compartmental Models 

Pharmacologists usually consider exponential models to be counter-intuitive and prefer the use of mamillary 

compartmental models. Since the literature abounds in pharmacokinetic parameters given in the compart

mental framework, it is necessary to introduce these models here as well. Note that mamillary compart

mental models are used extensively in pharmacology, and are not restricted to modeling only anesthetic 

drugs. 

Pharmacokinetically, a compartment represents a tissue group that has similar kinetic characteristic. 

For instance, it is possible to consider that the body can be divided into three compartments: a small 

central compartment that contains the arterial blood and highly perfused tissues such as the brain and 

liver, a larger compartment which contains muscles and viscera, and a third compartment consisting mostly 

of fat and bones, see Fig . 3.3. Following the administration of a bolus, the amount of drug delivered into the 

central compartment is eliminated according to the rate constant fcio (usually expressed in m i n - 1 ) . This 

elimination corresponds to metabolism and hepatic and/or renal excretion. In parallel to the elimination 
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Figure 3.3: 2-compartment pharmacokinetic model. A third compartment is often added for improved accuracy 
(adapted from [99]). 

process, the drug is distributed in the two peripheral compartments at a rate of k\2 and k\^. Following 

the administration of a drug, the concentration C\ of the first compartment decreases rapidly while the 

concentrations C2 and C3 of the second and third compartments rise. Once the concentrations in the central 

compartment and any of the peripheral compartments reach equilibrium, the distributive process reverses 

and the drug stored in the peripheral compartment returns to the central compartment at the rate of k2i 

or & 3 i . Since the blood of the central compartment acts as a carrier for the drug, we can assume that there 

is no direct drug exchange between the two peripheral compartments. For a similar reason, only the drug 

presents in the central compartment can be eliminated. 

The mathematical expressions governing this model can be obtained by writing the mass balance equa

tions (expressed here in a state space representation): 

= 
C 3 (*). 

10 

Cp(t) 1 0 0 

-&12 + 

ki3 

Ci{t) 

C3(t\ 

k2i k31 Ci(«) 

-&21 0 C2V) 

0 -*3l. C 3 ( t ) . 

+ 

l_ 

0 

0 

i(t) 

(3.6) 

where V i is the volume of the central compartment. Note that, by definition, the plasma blood concentration 

equals the drug concentration of the central compartment, i.e., Cp(t) = C\(t). 

V o l u m e o f D i s t r i b u t i o n The volume of distribution Vj is a measurement of the extent of the distributive 

process. It is defined as the ratio between the total amount of the drug in the body versus the drug plasma 

concentration prior to the beginning of the elimination phase. The volume of distribution does not have 

any physiological significance, and it is also referred to as the apparent volume of distribution. 
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The volume of distribution is dependent on the size of the tissues into which the drug distributes, the 

partition coefficient of the drug, and the extent of protein binding. This volume can be extremely large, 

even exceeding the anatomic size of the body, meaning that most of the drug is distributed inside peripheral 

tissues. 

For a 3-compartment model, the volume of distribution is simply the sum of all three compartment 

volumes: 

Vd = V1 + V2 + V3 [1] (3.7) 

where V2 and V 3 are the volumes of the rapidly equilibrating and slowly equilibrating compartments. 

Clearance Another important concept used by pharmacologists is the intercompartmental and total drug 

clearance concept. It has been mentioned earlier that the elimination of a drug from the body is achieved 

through a variety of mechanisms, involving metabolism and excretion. Total drug clearance can thus be 

thought of as the ability of the body to remove a given drug from the blood or plasma. Clearance is usually 

expressed in [ml-h - 1 ] . Using a 2- or 3-compartment model, the total body clearance Cl\ can be calculated 

as: 

C h = Vi • kw [ml-h - 1] (3.8) 

The intercompartmental clearances Cli2, Cl2\, and C/13, CZ31 represent a similar concept. Instead 

of the elimination process, they quantify the ability of each compartment to exchange the drug with one 

another. Intercompartmental clearances are not very useful. However, considering that Cl\2 = Cl2\ = Cl2 

and C Z 1 3 = CI31 = CI3, and that CUj = Vi • kij, we reach the following equalities: 

V2_ku V3_ki3 

Vi " k21 V, ~ *si [ ' 

3.1.2.3 Equiva lence Be tween E x p o n e n t i a l and C o m p a r t m e n t a l M o d e l s 

The models expressed in (3.3) and (3.6) are essentially equivalent as they describe the same input/output 

relationship. Because of this equivalence, a P K parameter set can take different forms: 

- {P, A, B, TJ, Ti, Ti}: standard exponential parameter set, 
2 2 2 

- {Vi,P*, A*,B*,TJ,T?,Tf }: exponential parameter set with normalized partial coefficients (i.e., 
2 2 2 

P* + A* + B* = 1), 

- { V i , kio, kn, fa, ^ 2 1 , fei}: standard compartmental parameter set, 

- { V i , V2, Vs,Cli,Cl2,CI3}: compartmental parameter set expressed as volumes and clearances. 

A l l of these sets are equivalent as they define the same P K relationship. Most of the P K parameter sets 

found in the literature are expressed in either of these forms. 
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In order to simplify the notations, we propose to express the P K model as a SISO transfer function 

PK{s) using both the exponential and compartmental parameters: 

r K [ S ) ~ I(s) " Vi " (s + TT) • (s + a) • (s + /?) (i-W> 

This hybrid notation has the advantage of clearly expressing each one of the system modes, hence allowing 

a trained observer to readily identify the frequency response of the system. 

3.1.3 L i t e r a t u r e R e v i e w 

Medical literature is quite prolific in reviewing drugs and their P K properties. In this section, we present a 

summary of a survey of published P K parameter sets for propofol and remifentanil. The complete survey is 

presented in the Annex B . Each model is summarized under the hybrid form of (3.10) in Table B . l and B.3. 

P r o p o f o l Propofol has received considerable attention over the past 20 years. A large number of phar

macokinetic models have been published by various authors, and under various conditions and methods of 

identification. 

In the mid-1990s, researchers started to use the N O N M E M 3 software ( N O N M E M Project, University 

of California, San Francisco, C A ) to derive the P K models from data sampled across a large population 

of patients. This software package allows the user to identify the most significant covariates and include 

them in the final model. In terms of propofol, the age, weight and Lean Body Mass ( L B M ) of patients were 

found to alter the P K parameters. The sampling site (venous vs. arterial) and the method of administration 

(bolus vs. infusion) were also significant covariates. Schnider et al. [100], and later on Schiittler and Ihmsen 

[101], used this technique in their analysis. 

As of today, Schiittler and Ihmsen P K sets are the most up-to-date. In their study (spanning hundreds 

of patients and thousands of blood samples) the intra-patient variability was found to be less than 20%. 

The mean absolute weighted residual 4 ( M A W R ) was about 25% and the mean weighted residual ( M W R ) 

was -3.4%. The P K parameter set is presented in the Table 3.1 and Table 3.2. 

R e m i f e n t a n i l Remifentanil being a relatively new drug, the derivation of its P K model has directly 

benefitted from the N O N M E M analysis software. As such, the models published by Egan et al. in 1996 

[102], and later on by Minto et al. [103], are consistent and accurate (the M A W R was less than 25% in 

both studies). As a result, no further attempts at modeling this drug has been carried out since then. 

Minto's P K parameter sets (see Table 3.3) have the advantage of accounting for the age and lean 

body mass of the patients. However, they can only be used to predict arterial blood concentration during 

N O N M E M : NON-linear Mixed Effect Models 

4 T h e M A W R is a standard PK accuracy parameter. It is defined as M A W R = X!»=i N 52J=I ..M ™—?P?A> where ctj is 
Cpij 

the j t h measured plasma concentration of the i t h individual, and cpij denotes the corresponding predicted value. N is the total 

number of individuals and M is the number of samples. The M W R is a similar accuracy parameter without the absolute value. 
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P K P A R A M E T E R V A L U E UNITS 

CI i (BW/70)^ if age < 60 [l-min"1] 
01 (BW/70)^ - (age - 60) • 0W if age > 60 P-min"1] 

Cl2 03 (BW/70) 9 s • (1 + ven • t?14) • (1 + bol • 0 1 6) [1-min-1] 
Ch 05 (BW/70) e " • (1 + bol • 618) [1-min-1] 

VL 02 (BW/70) e » • (age/30)e i3 • (1 +bol • 015) [1] 
v 2 04 (BW/70) e 9 • (1 + bol • 0i 7) W 
v 3 06 [1] 

Table 3.1: Propofol P K parameter sets from [101] where BW stands for body weight, ven= 1 for venous sampling, 
ven= 0 for arterial sampling, bol= 1 for bolus administration, and bol= 0 for infusion administration. 

P A R A M E T E R ESTI
MATES 

V A L U E S UNITS S E 

0i 1.44 [1/min] 0.09 
0i 9.3 W 0.9 
03 2.25 [1/min] 0.31 
04 44.2 M 6.1 
05 0.92 P/min] 0.15 
06 266 [1] 43 
07 0.75 0.06 
08 0.62 0.09 
09 0.61 0.11 
010 0.045 0.012 
011 0.55 0.13 
012 0.71 0.26 
013 -0.39 0.15 
014 -0.40 0.10 
015 1.61 0.36 
016 2.02 0.41 
#17 0.73 0.23 
#18 -0.48 0.12 

Table 3.2: Parameter estimates from the N O N M E M analysis ([101]). 
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P K P A R A M E T E R V A L U E UNITS 

Cl2 

Ch 

2.2 - 0.0162 • age + 0.0191 • L B M 
3.25 - 0.0301 • age 
0.121 - 0.00113 • age 

[1-min-1] 
[1-min-1] 
[1-min"1] 

V-2 

V 3 

1.94 - 0.0201 • age + 0.072 • L B M 
7.12 - 0.0811 • age + 0.108 - L B M 
5.42 

[1] 

[1] 

[1] 

Table 3.3: Pharmacokinetic parameters of remifentanil as a function of the age and lean body mass (from [103]). 

remifentanil infusion. This is hardly a limitation since infusion is the method of administration of choice for 

this drug. Also, due to the drug susceptibility to blood esterases, venous blood concentration significantly 

lags the arterial concentration [104]. As such, P K models based on venous blood sampling should not be 

used as a basis to predict drug effect. 

3.1.4 Concluding Remarks 

3.1.4.1 Drug Uptake 

In P K analysis and identification, it is usually assumed that the drug mixes instantaneously within the 

central compartment upon administration. However, this assumption is invalid when considering the kinetics 

of the drug during the uptake phase, i.e., right after administration. Since the uptake phase is extremely 

short, this phenomenon is difficult to measure properly as it would require numerous blood samples taken 

in the first minute after administration. However, some authors [105] consider that a time delay of a few 

seconds should be accounted for in the model to describe the initial drug uptake phase. 

3.1.4.2 Linearity 

Drugs pharmacokinetics are not linear in the sense that the rate of injection of the drug affects the overall 

drug distribution. This aspect of pharmacokinetics is well known by clinicians and practitioners who do 

not titrate anesthetic drugs the same way whether they use boluses or infusions. 

In that respect, most of the recent P K studies make a clear distinction between P K models obtained from 

bolus data and P K models obtained from infusions. Note for example in F ig . 3.4 the two-times difference 

between the propofol impulse response of the infusion vs. bolus models (from Schiittler [101]). As expected, 

this difference occurs mostly within the first few minutes following the administration. 

One of the only study addressing this issue was the one published in 1998 by Schnider et al. [100] for 

propofol. The authors observed that propofol kinetics are linear for an infusion range of 25 to 200 /xg-kg" 1 min 
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T I M E [min] FREQUENCY [rad/s] 

Figure 3.4: Bolus vs. infusion pharmacokinetic of propofol (using [101]). (a) Impulse response (b) Frequency 
response. 

3.1.4.3 Time Variance and Other Factors Affecting PK Models 

There are a number of physiological differences between individuals that can affect pharmacokinetic pa

rameters. Understanding and quantifying these differences can reduce the model uncertainty. 

For instance, most pharmacokinetic parameters are derived for a given age population. Pediatric, adult 

or elderly patients can have very different hepatic and renal extraction ratio, thus affecting the elimination 

of the drug. Also, since the distribution of a lipophilic drug is affected by the presence of adipose tissues, 

obesity in patients should be accounted for, at it increases the elimination half-life of the drug. Hence, 

weight, fat and lean body mass are often cited as covariates of pharmacokinetic parameters. 

Finally, in recent years, it has been shown that cardiac output also affects drugs kinetics ([106], [107]). 

For instance, it has been shown that the initial arterial concentration of propofol, following its rapid infusion 

in sheep, is inversely related to the cardiac output. This issue hasn't yet been widely documented. The 

question whether or not the inclusion of the cardiac output in the pharmacokinetic parameters would reduce 

the uncertainty in the model remains opened. A preliminary study by Adachi et al. [108] tends to indicate 

that pharmacokinetic variability can be reduced when accounting for the cardiac output. However, since 

cardiac output can only be measured by invasive means, this issue hasn't yet received much attention. 

While age, lean body mass, and eventually cardiac output are covariates of pharmacokinetic parameters 

in normal healthy subjects, factors such as renal dysfunction and hepatic diseases will also bear a tremendous 

impact on drugs kinetics, mostly during the elimination phase. We invite interested readers to refer to [98] 

for a more in-depth analysis on how these diseases can affect total drug clearance. 

3.1.4.4 Pharmacokinetic Interactions 

Effect of opioids administration on propofol A limited number of studies have documented the 

pharmacokinetic interactions between propofol and opioids. A first study by Briggs et al. in 1985 [109] 
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concluded that fentanyl significantly increases the level of the propofol blood concentration profile. To reach 

this conclusion, they compared the parameters of a 3-compartment model of propofol pharmacokinetics 

obtained from two different groups of patients. In the first group, patients received a single bolus of 

propofol. In the second group, a bolus of fentanyl was administered as a premedicant before the injection 

of propofol. They observed that the apparent volume of distribution, as well as the central compartment 

volume, were reduced by 45% in the group that received fentanyl. The total drug clearance was also 

significantly reduced. 

A similar study by G i l l et al. in 1990 [110] yielded a very different conclusion. Their experimental 

protocol also involved a patient population divided into two groups (one receiving only propofol, and 

the other receiving both propofol and fentanyl). The authors reported no significant differences in the 

pharmacokinetic profile of propofol between the two groups. 

As of today, the effect of the administration of an opioid on propofol pharmacokinetics remain unclear 

and a subject of debate. 

Effect of propofol administration on opioids Conversely, studies by Gepts et al. [ I l l ] and, more 

recently, Mertens et al. [112] in 2001 reported that the administration of propofol significantly reduces the 

elimination and inter-compartmental clearances of alfentanil. The authors also mentioned that a reason for 

this interaction could be linked to the fact that propofol tends to reduce the mean arterial blood pressure, 

thus affecting opioid distribution and elimination. Further studies are necessary to evaluate the precise 

mechanisms that can cause these interactions [24]. 

3.2 Pharmacodynamics 

The role of pharmacodynamic modeling is to mathematically express the observed effect of a drug as a 

function of its plasma concentration: 

( 3 ' n ) 

where PD(s) is the pharmacodynamic model and E(s) is the drug effect. 

Note that for a given drug there can be a multiplicity of effects. Hence, pharmacodynamic models are 

not unique as they describe only one over the many different possible endpoints of a drug. 

3.2.1 The Dose/Response Relationship: a Steady-State Model 

The characteristic of any given drug can be expressed by dose-response curves, see Fig . 3.5. As expected, 

at low doses, drugs have only a minimal effect. As the dose increases, the effect increases as well. Often, 

dose-response curves exhibit a linear characteristic (constant slope) for a given range of doses. A t higher 

doses, a saturation phenomenon appears, indicating that the full effect of the drug has been reached. The 
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Figure 3.5: Dose-response relationships differ according to the drug potency, efficacy, slope and subjects' variability, 

sigmoid characteristic of the dose/response is usually captured using the Hi l l equation: 

where E is the steady state effect, Cp is the steady state plasma concentration, and EC50 is the concentration 

which yields 50% of the maximal effect, or which yields the maximal effect in 50% of a given population of 

patients. The parameter 7 is a measure of the steepness of the dose-response curve. Finally, Eo and Emax 

are the minimum and maximum effects. 

When considering anesthetics and opioids, it can be difficult to quantify drug effects. Very often, only 

quantal (e.g., response vs. no response) observations can be made. For example, in the case of opioids, 

the absence of reaction (i.e., movement) to intubation, skin incision, and skin closure is often taken as a 

relevant endpoint (see Fig . 3.6). The results obtained from different patients are then pooled in order to 

obtain the sigmoid-like shape which represents the probability of response versus the administered dose or 

the drug plasma concentration. In this case, the dose/response curve can be used to determine the dose or 

plasma concentration which would yield the desired effect (e.g., no response to intubation or skin incision) 

in a given percentage of a population. This type of dose/response curve are the most commonly found in 

the literature preceding the mid-1990s. 

Conversely, it is sometime possible to target an effect which can be quantifiable. The resulting dose/response 

curve would then indicate the dose or plasma concentration which are necessary to obtain a partial effect 

(e.g., the plasma concentration of propofol to reach a certain BIS value). Most of the recent research done 

in pharmacodynamic modeling seems to follow this new trend. 

When a number of effects or observational endpoints can be selected to model a drug, it is important to 

carefully select the effect or endpoint which yields a useable characteristic with respect to the therapeutic 

window of the drug. For instance, effects leading to dose/response characteristics such as in F ig . 3.7.a-b 

are not suitable since they are either on/off or they fail to characterize the whole therapeutic range of the 

drug. A n ideal endpoint for modeling the dose/response characteristic would be an effect leading to the 

linear characteristic of Fig . 3.7.c. This characteristic simply implies that a variation of the effect can be 

E = E0 + E, 'max EClJ+Cl 
(3.12) 
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Figure 3.6: Drug dose-response curves can be obtained by observing whether a patient responds to a particular 
stimulus at a given concentration (from [113]). 

Figure 3.7: Different dose/response characteristics (a) On/Off effect (b) The observed endpoint cannot characterize 
the effect of small doses (c) Ideal characteristic. 
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EFFECT SITE ALFENTANIL [ng/ml] 

Figure 3.8: Dose/response model for Alfentanil and using the probability of maximal E E G response (from [31]). 

achieved by applying a proportional variation in the drug dosing regimen, independently of the operating 

point of the system. To illustrate this discussion, let us consider the use of the E E G in measuring the effect 

of opioid agents, see F ig . 3.8. In this example, the smallest doses used in cardiac surgeries already induce 

a maximal E E G response (pronounced delta waves). Hence, this particular endpoint is useless in cardiac 

surgeries. However, it might be appropriate in non-cardiac cases where the opioid doses are generally much 

lower. 

3.2.2 The keo Parameter: a Measure of the Effect Dynamics 

Drug-response relationships are obtained based on steady state observations. As such, they do not capture 

the dynamic behavior that exists between the drug plasma concentration and the observed effect5. 

The effect of rapid intravenous administration is well known and well documented. When plotting the 

observed effect versus the plasma concentration, a hysteresis-like cycle can be observed (see for instance 

Fig. 3.9) indicating a disequilibrium between the plasma concentration and the effect site concentration 

of the drug. A direct consequence of this disequilibrium is that the effect lags the plasma concentration. 

A n explanation for this disequilibrium is that the drug concentration within the biophase6 lags the drug 

concentration in the blood. Hence, predicting the effect site concentration Ce is relevant in order to 

devise a proper infusion profile. In 1979, Sheiner et al. [114] proposed an addition to the conventional 

pharmacokinetic models in the form of an effect compartment connected to the central compartment. This 

hypothetical effect compartment models the temporal aspect of pharmacodynamics where a rate constant 

keo expresses the dynamics of transfer of the plasma concentration to the biophase. Therefore, it is possible 

to mathematically express the effect site drug concentration C e (s) as a function of the plasma concentration 

Cp(s) as: 

s + ke0 

5Often in the clinical literature, pharmacodynamics models are limited to only the static Hill dose vs. response relationship. 
°The biophase is defined as the physiological milieu targeted by the drug. It usually cannot be accessed for sampling. 
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Figure 3.9: Effect and plasma concentration of fentanyl and alfentanil following rapid intravenous administration 
(adapted from Stanski [89]). 

This equation only captures the effect dynamic. It has to be used in conjunction with the non-linear gain 

of the steady-state model (3.12): 

E(s) = E 0 + Emax • F r 7

C f f r , 7 (3.14) 

This modeling approach to pharmacodynamics has become the mainstream approach followed by phar

macologists since the early 1980s. It will be clear by anyone well-versed in System Engineering that this 

approach suffers from a number of limitations. In particular, the model (3.13) was never rigorously validated 

and tested using proper identification data. For instance, the absence of a time delay in (3.13) may hide the 

inherent latency of the drug effect. In addition, the dynamics of the sensor used to measure the effect is not 

included in the model. Finally, the use of the Hi l l saturation characteristics as the primary modeling tool 

cannot be recommended, as it can falsely characterize linear dynamics as non-linear. These limitations are 

further addressed in Chapter 6, where a new modeling approach based on System Identification know-how 

is proposed. 

3.2.3 Literature Review 

3.2.3.1 Propofol 

Only 6 studies involving quantitative E E G have been published since the mid-1990s. These studies involve 

a limited number of volunteers and/or patients. 

In terms of the equilibration time constant keo, results vary from 0.1 to >0.6 m i n - 1 . This large variation 

can be attributed to differences in the type of identification methodology used in the studies. Also, the fact 
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Figure 3.10: Individual (dashed lines) and mean (solid lines) Hill non-linear characteristics of published pharmaco
dynamic models, (a) Propofol study from Kuizenga et al. [118] (b) Remifentanil study from Egan et al. [102], 

that each study was using a different P K set to calculate the blood plasma concentration, or used their own 

blood measurements, probably resulted in additional variability. 

The EC50 parameter is also significantly different between studies. Using auditory evoked potentials, 

White et al. [115] found that a concentration of 2.17 mg/ml was sufficient to provoke unconsciousness. 

A similar result (about 2 mg/ml) was reported by Schnider at al. [100] for their semilinear canonical 

correlation index. Much higher values (about 6 mg/ml) were reported by Kazama et al. [116] for the 

bispectral index 7. Conversely, Billard et al. [117] and Kuizenga et al. [118] reported intermediate values (3 

to 4 mg/ml) for BIS, which are closer to the usual recommended concentration suitable for surgery. 

Probably the most remarkable limitation of the P D models presented in some of these studies is the rather 

large inter-individual variability which can be observed from the Hi l l non-linear characteristic. For instance, 

Kuizenga et al. published the Hi l l parameters for each one of their subjects, see F ig 3.10.a. According to 

the Hi l l relationship, some of their subjects experienced a complete depression of their cortical activity at 

concentrations that barely had any effects in other subjects. The averaged Hi l l relationship might thus be 

useless in the face of so much variability. 

The only study which reported a reasonable P D variability is the one by Kazama et al. [116]. One of 

the reason for the consistency of their results was that they compensated for the dynamics of the BIS sensor 

and removed the initial time delay between the drug administration and the start of the BIS descent. While 

this technique had the advantage of leading towards a more consistent P D model, the fact that part of the 

system dynamics was removed from the identification data limits the usability of the proposed models. 

However, one very interesting conclusion of the study was that age is a P D covariate. However, conversely 

to many other drugs, they found that the EC50 of propofol tends to increase with age, indicating that older 

'Accordingly, a concentration of 6 mg/ml is necessary to reach a BIS of 50. 
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F E N T A N Y L C O N C E N T R A T I O N [ng/ml] F E N T A N Y L C O N C E N T R A T I O N [ng/ml] 

Figure 3.11: Drug interaction between propofol and fentanyl (adapted from [120]). 

patients are less sensitive to propofol than younger patients. This result, while surprising, was corroborated 

by another study on rats [119]. They also found that the average EC50 in the adult population was about 

6 mg/ml, which is much higher than most of the other studies. 

R e m i f e n t a n i l The effect of remifentanil on the spectral edge frequency has been studied by both Egan 

et al. [102] and Minto et al. [103] in the late 1990s. Both studies also reported a considerable variability 

in the Hi l l parameters (see for instance Fig. 3.10.b). This variability could be due in part to the fact that 

the P D modeling was carried out using spectral edge frequency which is less sensitive to opioids than to 

anesthetics. In some cases, only a marginal decrease in the spectral edge could be observed. 

3.2.4 C o n c l u d i n g R e m a r k s 

3.2.4.1 P h a r m a c o d y n a m i c Interact ions 

Propofol and opioids are known to interact with each other in a synergistic fashion in their anesthetic/analgesic 

effect, but not in their toxicity. This observation constitutes the basic assumption on which the concept of 

balanced anesthesia is based. 

In an interesting set of studies, Smith et al. [120] have measured the reduction of propofol and fentanyl 

effective dose when both drugs were used concomitantly. Their results are displayed in F ig . 3.11. Quite 

clearly, there is an optimal titration that ensures adequate hypnosis and analgesia. For instance, the effect of 

the combined use of propofol and, in this case, fentanyl shows that the effective concentration EC50 needed 

to suppress movement in response to a noxious stimulus in 50% of patients can be drastically reduced. 

Where a concentration of 12 / i g - m l - 1 of propofol (or 6 n g - m l - 1 of fentanyl) was necessary, using both drugs 

simultaneously reduces this requirement to 4 /xg-ml - 1 of propofol combined with 1.5 n g - m l - 1 of fentanyl. 
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60 min infusion 

Figure 3.12: Simulation of propofol and remifentanil pharmacodynamic interactions (adapted from [23]). 

Synergism is also apparent in hypnosis, but to a lesser extent. 

Pharmacodynamic interactions between propofol and remifentanil have also been studied [23]. Surface 

plots were generated to estimate the optimal titration that minimizes the recovery time upon termination of 

the infusion, see Fig. 3.12. The curve in the lower plane represents the EC50 of both propofol and remifen

tanil. At the extremes, a concentration of either 12 yug-ml - 1 of propofol or 12.44 ng-ml""1 of remifentanil is 

required to provide adequate anesthesia (in this case: no movement to painful stimuli). In this simulation 

the infusion rate of both drugs is maintained constant. After 1 hour, the infusion is discontinued, resulting 

in a decrease in both drugs plasma concentrations. The thick line is the isobole that predicts emergence in 

50% of the patients. A minima at EC^0 = 2.5 ^ g - m l - 1 (propofol) and ECl0 = 5 n g - m l - 1 (remifentanil) ex

its, indicating that this combination of drugs would optimize the emergence time, while providing adequate 

titration for the maintenance of anesthesia. 

Of interest, a 2000 study by Minto et al. [25] has extended this concept to 3 drugs (propofol, midazolam 

and alfentanil). 

While surface plots clearly stress out the synergism between drugs, their interest is limited to steady 

state. No dynamic model of pharmacokinetic/pharmacodynamic drug interactions have been published so 

far. This represents a very fertile area for medical research. 

3.2.4.2 Time Variance 

Propofol In a recent study from Kuizenga [118], the time invariance of propofol pharmacodynamic models 

has been seriously questioned. Three propofol infusions were given to 10 patients. Each successive infusion 
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T I M E [min] 

Figure 3.13: Measured and predicted time courses of the BIS following a series of induction sequence administered 
to a volunteer (from [118]). A pharmacodynamic model obtained based on the first repeat was used to predict the 
BIS time course. Note the good agreement between measurement and prediction for the first repeat. Results worsen 
considerably for the two other repeats. 

was started immediately after the patient regained consciousness. A set of pharmacodynamic parameters 

were obtained from the first infusion data. This set was used to predict the effect of the subsequent infusions 

based on the plasma concentration. The results have shown an important discrepancy between the predicted 

effect and the observed effect, see Fig. 3.13. The authors concluded that pharmacodynamic models cannot 

be used accurately over time to predict the effect of propofol. In their study, they analyzed the effect of 

propofol on both the bispectral index and the amplitude of the patients' electroencephalogram in the 11 to 

15 Hz band. A second set of pharmacodynamic parameters were derived based on the observation on the 

two successive infusions. Both sets are presented in the Table B.2. Note the large discrepancy between the 

first and the second set. 

R e m i f e n t a n i l The long term administration of opioids usually results in the development of tolerance to 

analgesia followed by a strong physical dependence to the drug. In the case of remifentanil, a study by Vinik 

and Kissin [121] involving 13 volunteers have shown that tolerance to analgesia is profound and develops 

very rapidly. A constant-rate infusion of 0.1 ^ g k g _ 1 - m i n _ 1 was administered over a period of 4 hours. 

The analgesic effect was evaluated by measuring pain tolerance to thermal (cold water) and mechanical 

(pressure) noxious stimuli. Tolerance to pain was measured as the length of time that the subject was 

able to tolerate the stimulation. A baseline value was recorded before the start of the infusion. Painful 

stimulation was applied every 30 minutes. The study has shown that tolerance to pain is maximum after 

a 60 to 90 min infusion. Once the peak is reached, analgesia begins to decline steadily, see Fig. 3.14. After 
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Figure 3.14: Development of acute tolerance to analgesia during short-term constant-rate infusion of remifentanil 
(adapted from [121]). 

4 hours, the effect of remifentanil was no longer observable. The authors of the study concluded that 

calculations for target-controlled infusion of remifentanil must include corrections for tolerance. However, 

this would require models which have not yet been developed. 

3.3 Summary 

Since its inception in the early 1950s by Dost, the study of pharmacokinetics has received considerable 

attention from the research community. Recent advances in non-linear regression analysis have allowed 

pharmacologists to define P K parameter sets which account for the effect of covariates such as age, weight, 

gender and ethnicity. It is now possible to predict with a fair accuracy the blood plasma concentration 

of most of the anesthetic drugs in use today. In terms of control engineering, there are three important 

aspects in pharmacokinetics, which require some attention: 

- P K parameters are dependent on the infusion rate of the drug. For instance, slow infusions (less 

than 200 ^ g - k g _ 1 - m i n _ 1 ) are linear with respect to the input amplitude, while bolus-type infusions 

(above 2500 /ng-kg - 1 -min - 1 ) have a different initial drug distribution, which results in a different P K 

parameters set. 

- A second aspect is the interaction between drugs, and in particular propofol and remifentanil. While 

the literature is very confused about this issue, most researchers tend to agree that, if any interac

tions occur at the level of pharmacokinetics, these interaction mostly affect the re-distribution and 

elimination of the drugs. 

- Finally, the blood plasma concentration of intravenous drugs cannot be observed nor controlled directly 

since there is no available real-time measure. The pharmacokinetics of intravenous drugs can thus 

only be used to predict the plasma concentration. Accounting for patient variability appears then 

necessary. 
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Patients with hepatic or renal diseases may have a widely different P K characteristic. The P K models 

presented in this section should not be used in these instances. 

Since Schiittler and Ihmsen in 2000, no further studies were conducted to derive the P K model of 

propofol. While each one of the reported studies (see Section 3.1.3) have contributed in improving the 

goodness of the fit (mostly by adding the age, weight and lean body mass as covariates), it was argued 

that no further improvements can be made. The error between the measured plasma concentration and the 

predicted plasma concentration is now about the same when considering population-normed P K models or 

individualized P K models (i.e., P K models derived specifically for one single individual). This indicates 

that further improvements can only be achieved by considering more complex physiological models instead 

of a mamillary compartmental model. 

While dose-response curves have been used intensively in the past to derive dosing guidelines (one of the 

brightest example is the M A C concept for gaseous anesthetics), it is only recently that P D models based on 

quantifiable endpoints such as EEG-based parameters have been researched and published in the literature. 

Unfortunately, these P D models do not seem to be appropriate for use in control-oriented frameworks. For 

instance, and conversely to P K models now used extensively in Target Controlled Infusion (TCI) pumps 

in Europe, P D models have not yet been used successfully in any clinical application. It is likely that the 

large variability observed between patients and the discrepancies between the model parameters published 

in the literature explain the lack of enthusiasm in the anesthesia community for P D models. However, we 

believe that the poor performance of these models stems mostly from a poor choice of the model structure 

rather than an inherent limitation of the system. In Chapter 6, we revisit in details the problem of P D 

modeling and identification. In particular, we propose a new system-oriented approach that yields better 

prediction performance and a more accurate description of the frequency response of the system dynamics. 



Chapter 4 

Closing the Loop in Anesthesia: a 
Review 

In terms of control engineering, the idea of the anesthesiologists striving to keep a balance between the 

pharmacological toxicity of anesthetic drugs and the effect of surgical noxious stimuli is particularly ap

pealing. The anesthetic and opioid titration needs to be constantly adjusted in order to avoid both under-

and overdosing. The idea of an automated system that would regulate drug titration in order to maintain 

the adequacy of the anesthetic regimen is immediate. 

The concept of a closed-loop anesthesia system is thus very close to that of automated flight control. The 

role of the anesthesiologist is similar to that of a pilot: after take-off (induction), the pilot usually maintains 

an adequate flight trajectory (hypnosis, analgesia, paralysis). Nowadays such tasks are performed by flight 

controllers able to plan ahead, optimize fuel consumption and minimize the duration of the flight. Closed-

loop anesthesia is somehow similar in the sense that, by changing the titration of intravenous drugs, the 

anesthesiologist can drive the patient into a deeper or lighter hypnotic ahd/or analgesic state, according to 

the requirements of the surgical procedure. 

Using proper feedback quantities and drug models the possibility to automate the drug titration and to 

allow the practitioner to concentrate on higher level tasks seems viable. In keeping the comparison, closed-

loop anesthesia would not replace the anesthesiologist. On the contrary, the workload of the anesthesiologist 

will be reduced during the maintenance stage, leaving room for full attention in case of an emergency, or 

when the override of the controller is required. 

4.1 Review 

The concept and implementation of closed-loop anesthesia has been investigated for the past half cen

tury via numerous attempts at controlling anesthetic drugs titration through feedback control. A selected 

chronological survey of this prior art is summarized in Table 4.1 and 4.2. For each mentioned attempt, we 

listed the feedback quantity, the drug used, and the control technique employed. In spite of a good number 
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of such attempts, no clinically satisfying results have been obtained so far. This survey is also limited to 

attempts which focused more precisely on the control of hypnosis. Other work focusing on the control of 

heart rate and blood pressure, as well as the control of muscle relaxation in the context of anesthesia has 

not been reported here. 

In recent years, researchers have been using either a simple PID or a lookup table of the drug pharma

codynamic model to set the target plasma concentration of a target controlled infusion devices in order to 

reach and maintain a given hypnotic reference. The successes reported by Struys et al. [122] and Absalom 

et al. [123] can be easily attributed to the fact that their system titrated the drug according to the index 

of consciousness provided by the bispectral monitor, rather than to the performance of the closed-loop 

controller itself. 

The results produced by controllers embedding advanced techniques, as shown in the work by Frei 

et al. [124] and Gentilini et al. [125], emphasize that the problem is far from being solved due to the 

aforementioned challenges posed by the intra- and inter-patient variability. There have also been attempts 

at closing the loop by Linkens et al. ([126], [127], [128], [129]) using a variety of intelligent control techniques 

such as expert systems and fuzzy logic. Linkens et al. were probably among the first to attempt the control of 

distinct anesthesia components simultaneously (analgesia and areflexia) using different agents (atracurium 

and isoflurane). A n in-depth analysis of such cases reveals the need for strong knowledge of the patient 

model. The intra- and inter-patient variability makes the establishment of a priori rules very difficult. 

Stability of fuzzy-based controllers may be impossible to prove. 

From the perspective of interaction between drugs, and of particular interest, is the attempt by Zhang 

et al. in 1998 [130] at controlling an intravenous anesthetic (propofol) together with an opioid (fentanyl). 

This approach was limited to the control of the plasma concentration of propofol and fentanyl in dogs, 

where the setpoints were chosen to minimize the wake up time. 

Probably the most interesting results obtained in recent years were those of Locher et al. and L i u et 

al, see Table 4.2. Not only have they shown that closed-loop control is particularly effective in maintaining 

a proper BIS setpoint during anesthesia, they have also proven that closed-loop control brings further 

clinical advantages in terms of drug consumption and wake up time, as compared to manual titration [142]. 

Closed-loop controllers also react faster to the abrupt changes brought by surgical stimulation [141]. 

4.2 Summary 

We have seen in Chapter 2 that the use of the new monitors of hypnosis, such as the BIS monitor, results 

in faster wake up, fewer side effects, and a reduction in drug usage, while ensuring that patients remain 

unaware during their surgery. For many years, however, the advantage of closed-loop system based on these 

monitors remained unclear. In particular, while closed-loop systems inherit de facto the advantages brought 

by the feedback sensors, doubt still persists whether there is any further clinical advantage to having a fully 

closed-loop system as compared to manually adjusting the titration based on the sensor information [143]. 



STUDY FEEDBACK QUANTTTY(IES) CONTROLLED AGENT(S) CONTROL TECHNIQUE POPULATION COMMENTS AND LIMITATIONS 

Bickford et al, 1950-1960 
[38] 
[39] 
[40] 

EEG energy in D . ., , ,, . , , ° ,, Pentothal or — , , the 4 to 12 Hz _, . On/Off control , , Ether ' band 

Rabbits, cats, monkeys. _ ... ,. , ± , , , , . ™. . , ^ . , -„ Osculations due to the control technique. Clinical trial on 50 w , ... . . . „ 
atients under oin Method sensitive to extraneous interferences, 

pa len s un ergomg ^ Qp^j^g n a V e been administered concurrently, thus 
. various abdominal . , .. . . . ,, . , , . . . , , 

surgeries seriously limiting this technique m today s practice. 

Bellville et al., 1955-1960 
[41] EEG amplitude 

in a denned Cyclopropane Analog control (P or PI?) 
frequency band 

No results have been presented. 
The proposed technique is merely an improvement of 

Not Disclosed Bickford's servo anesthesia. 
The authors mention speed (infusion pump) and position 
(vaporizer) control, however no specific information are 
disclosed. 
Method limited to the control of a unique anesthetic agent. 

Schwilden et al, 1985-1995 
[44] 

[45] 

[131] 

[132] 

Methohexital 
Model-Based Adaptive Control 

Median Edge Propofol . ,. , . c ,, p ° ^ Adaptation was done it the 
requency system output was diverging 

too far from its reference 

Alfentanil 

Isoflurane 

13 volunteers (22-29 yr ; Results on volunteers have shown that a constant excitation 
44-85 kg) is necessary the guarantee the reliability of the feedback 

quantity (otherwise the volunteers were drifting from a 
11 volunteers (24-31 yr ; drug-induced unconsciousness into a natural sleep). 
54-87 kg) This technique works also for opioids. 

The controlled drug was used as the only anesthetic agent 
11 patients during the maintenance phase. 

25 female patients (31-47 
yr), ASA I or II 

Kenny et al., 1990-1995 
[133] 
[134] 
[135] 

„ , , Outer PI controller setting the Auditory Evoked n e i c ms-n „ . , Propofol reference to an inner TCI Potentials , device. 

The authors recommended feedback control of anesthesia as a 
27 patients research tool to better identify pharmacodynamic models and 

the interaction between drugs. 

Roy et al, 1995-2000 
[136] 

[64] 

Halothane 
Fuzzy rule-based control 

Auditory Evoked system controlling either the 
Potentials Propofol vaporizer or giving a reference 

to a TCI device 

10 sessions conducted on 
6 mongrel dogs with tail These papers emphasize mostly the hypnosis index derived 
clamping stimulation from midlatency auditory potentials using wavelet analysis. 

. Due to the extensive averaging needed, a value quantifying 
9 sessions conducted on 5 t h e [ e y e l o f h y p n o s i s w a s calculated every 3 minutes, 
mongrel dogs 

Gent.ilini et al, 1995-2000 
[124] 

(125] 
[18] 
[137] 
[138] 

Mean Arterial , . „ ,. , . _ Model Predictive Control Pressure 

Cascade Internal Model 
, a Control. An inner loop Isonurane , - , , , T . controls the end-tidal Bispectral index . .. m, r c concentration. 1 he reference 

of the inner loop is set by an 
outer loop that regulates BIS 
variations 

20 atients The control of inhalational gas such as isonurane has the 
advantage that the drug plasma concentration is closely 
related to the end-tidal expired gas concentration which is 
readily available. This is a clear advantage over intravenous 
agents for which measurement of drug concentration is 
impractical. 
The authors have shown that isonurane can both control the 

patients ( - yr) mean arterial blood pressure (MAP - sensitive to noxious 
stimuli) and the BIS (sensitive to the hypnotic level). The 
authors proposed to investigate a SIMO controller where 
isonurane would be used to control both the MAP and the 
BIS 

I 

o 
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3 

Table 4.1: Prior Art: a Literature Survey (Part I) 



STUDY FEEDBACK QUANTETY(IES) CONTROLLED AGENT(S) CONTROL TECHNIQUE POPULATION COMMENTS AND LIMITATIONS 

S t r u y s et al., 2001 
[122] Bispectral Index Propofol 

A lookup table (Hill model) 
acquired during induction 
serves to calculate the 
required effect site 
concentration changes. A TCI 
device tracks these changes. 

10 female patients 
(12-60 yr) 

A continuous infusion of remifentanil was started 2 min 
before induction, thus the necessity to acquire a Hill curve 
that models propofol effect on the BIS with remifentanil 
acting as a bias. 
The results clearly indicate that the closed-loop control of 
propofol significantly reduces recovery time as compared to 
the standard anesthesia practice. However, this benefit could 
only be the result of titrating the drug according to the BIS. 

Absalom 
[123] 
[139] 

(140] 

ei al., 2002-2003 

Bispectral Index Propofol 

Outer PID controller setting 
the reference to a TCI device. 
There is an additional 
constraint limiting the 
maximum change of the 
infusion rate 

10 patients (67 yr ±11 ; 
79 kg ± 1 1 ) 

The authors present a comprehensive control algorithm based 
on a PID control structure. The way they calculated the 
gains and the time constant of the controller is not clear. 
3 patients out of 10 presented severe oscillations where the 
BIS value was clearly leading the target plasma 
concentration, which is a clear sign of the instability of the 
outer PID controller. The authors also showed in a following 
publication that the same system can be effectively applied 
to sedation. 

Locher ei 
[141] 

al,, 2004 

Bispectral Index Isoflurane 

Modified version of Gentilini's 
cascade controller. The outer 
controller is a standard PID 
controller. The inner 
controller uses the end-tidal 
expired gaz concentration as 
feedback. 

10 patients (+13 control) 
(29-59 yrs old) 

This cascade control system makes use of a feedback measure 
of the end-tidal concentration in its inner loop. The authors 
report significant improvements as compared to the manual 
control of BIS. They also exercised caution when designing 
the outer PID controller to ensure robustness. However, no 
mathematical proof of stability was given. The authors 
reported that the controller reacted promptly during surgical 
disturbances. They also commented on the fact that the wake 
up time in the manually controlled group presented much 
more disparity as compared to the controlled group. 

Liu et al., 
[142] 

2005 

Bispectral Index Propofol 

Outer PID controller setting 
the reference to a TCI device. 
No further information were 
given as to the controller 
parameters. It is likely that 
the TCI pump was age and 
weight adjusted. 

83 patients (closed-loop) ; 
81 patients (manual TCI) 

This study is the largest study involving closed-loop control 
of propofol using BIS. The authors successfully demonstrated 
that the closed-loop system was able to maintain the patients 
within ± 1 0 of the BIS setpoint for 90% of the time, vs. 70% 
of the time during manual control of the TCI pump. In the 
closed-loop group, patients received in average 23% less drug 
and woke up in 30% less time. Note that the controller was 
also used to induce patients. 
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Table 4.2: Prior Art: a Literature Survey (Part II) 
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In other words, is the rigorous maintenance of a BIS setpoint brought by a closed-loop system worth 

the risk of having a machine deciding on the titration profile? 

Only recent evidence in the literature suggest that there are significant clinical advantages to be gained 

when closing the loop. L iu et al, in particular, reported a 30% decrease in wake up time, and a 23% 

decrease in drug usage. Locher et al. have shown that the closed-loop system responds faster to changes in 

the patient's state and results in a more predictable recovery time. 

Closed-loop control in anesthesia remains essentially the domain of clinical researchers from European 

countries. Only the work of Gentilini et al. has been driven by a control engineering perspective. However, 

their work is mainly based on existing anesthesia sensors and drug effect models. 

To ensure the success of closed-loop control for anesthesia, it appears essential to re-investigate the 

anesthesia system from a control engineering oriented point of view. 

Before designing and testing controllers, it is first important to assess the performance and adequacy of 

today's anesthesia monitors for use as feedback sensors. For instance, it is interesting to note that none of 

the cortical monitors currently on the market has been properly identified (i.e., there is no published model 

of their dynamic response to changes in the patient's cortical state). This stems from the fact that their 

behavior is highly non-linear 1. The lack of a sensor model is a limiting issue from a control engineering 

perspective. 

Also, the review of the propofol pharmacodynamic model presented in the Annex B reveals that there is 

a large discrepancy in terms of model parameters between the different published models. While this is, in 

part, due to the large variability that exists between patients, this is also due to a poor model identification 

methodology. This issue must be revisited. 

Finally, the great majority of closed-loop attempts did not account for the uncertainty that stems from 

patient variability, even though some others do mention that their controllers were sufficiently derated to 

ensure robustness. As a result, some of these attempts resulted in instability characterized by an oscillatory 

behavior [123]. Analyzing patient variability in order to quantify the uncertainty that exists in anesthesia 

drug delivery systems is therefore a mandatory aspect of the control design. 

The goal of this thesis is therefore to assess the feasibility of obtaining a control design that can maintain 

the adequacy of anesthesia in a large population of patients, while meeting the minimum requirements set 

forth by anesthesiologists in terms of closed-loop performance during setpoint changes and disturbance 

rejection. One additional condition to a successful design is that the stability of the controller with regard 

to patient variability to drug effect must be mathematically proven. 

lThis issue has recently been brought up by Dr. G. Schneider during the 2005 Advanced Modeling and Control in Anesthesia 

conference (AMCA 2005), where he has shown that the inherent time delay of most cortical monitors depends on the direction 

of change of the patient's state (e.g., when patients loose consciousness, the BIS Monitor delay is in average 15 seconds, while 

the delay is about 30 seconds when patients regain consciousness. 



PART B: Sensing, Modeling and Control 

In the following 4 chapters, we review in details every aspect of the anesthesia system from a control 

engineering point of view. We bring new insights in terms of anesthesia sensors and models, and propose a 

control system design that is robustly stable and achieves the required clinical performance. 

In Chapter 5, the inadequacy of existing monitoring technologies for use in close loop systems has 

prompted us to develop our own solutions, both from the point of view of Hypnosis and Analgesia. Sig

nificant time and efforts were invested into developing new tools and validating them in clinical studies. 

We give a detailed presentation of the derivation of the W A V C N S (hypnosis). We also show how the same 

technique can be applied to the analysis of the Heart Rate Variability (HRV) signal for the quantification 

of analgesia. 

In Chapter 6, we propose a new approach to pharmacodynamic modeling. Conversely to traditional 

P D modeling, this new approach accounts directly for the sensor dynamics. We also thoroughly validate 

the model structure using residual analysis. Forty-four (44) propofol P D models were derived based on 

induction data obtained during the L M A study (see Annex D). This makes of this study the second largest 

published propofol P D study. 

The 44 P K P D patient models established in the previous chapter are then analyzed in order to quantify 

the expected system uncertainty originating from inter- and intra-patient variability. This analysis is carried 

out in Chapter 7. We found that uncertainty is cause for concern. We also investigate different method to 

reduce the uncertainty to a more manageable level. This analysis results in a number of nominal P K P D 

models and uncertainty weights that depend on the operating mode of the system, and the age of the 

patient. These models are fully disclosed in the Annex C. 

In Chapter 8, we design a number of controllers using either a classical P ID loop shaping design, or 

the more sophisticated Hoo weighted mixed-sensitivity design procedure. We show that controllers achiev

ing relevant clinical performance can be derived. We further show that the stability of these controllers 

is guaranteed, even under the very conservative assumptions made in Chapter 7. We conclude that pa

tient variability can be effectively dealt with when proper modeling approach and uncertainty analysis are 

implemented. 
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Chapter 5 

Quantifying Cortical and Autonomic 
Activity Using Wavelets 

Closed-loop control performances rely directly on the availability and reliability of process output measure

ments. The selection of appropriate feedback sensors to perform these measurements is a critical aspect of 

any close loop design. 

In terms of anesthesia, this issue is particularly challenging. As mentioned in Chapter 4, the control of 

anesthesia can only be achieved through the control of both its hypnotic and analgesic components. Hence, 

developing appropriate feedback sensing strategies for both endpoints is a priority. 

Hypnosis and Cortical Activity In terms of hypnosis, most of the efforts pursued in recent years were 

based on the fact that hypnotic drugs exert their effect at the level of the Central Nervous System (CNS). 

Most researchers now agree that quantifying cortical activity provides a surrogate measure of hypnosis. 

One such measure is the BIS monitor (Aspect Medical Systems Inc., M A ) developed in the mid-1990s (see 

Section 2.2.1.4). This device has become the reference in consciousness monitoring, and, as a result, most 

research groups working in control of anesthesia are now using the BIS as a feedback sensor. 

However, its inadequacy for use in a closed-loop framework became apparent in the early stage of our 

work. The BIS algorithms were designed for stand alone monitoring. As a result, they suffer from many 

shortcomings that limit their applicability for use within a closed loop control framework. In particular, the 

BIS inherent non-linearity and time delay, as well as the lack of a closed form transfer function describing 

its dynamic behavior, imply serious closed loop performance limitations. 

Analgesia and Autonomic Activity There is currently no technology that can express the patient's 

analgesic state as a quantified metric. In recent years, however, a renewal of interest in the anesthesia 

research community for developing such technologies has been observed. 

One approach, investigated by a research group in Finland [144, 145], is to quantify the magnitude of 

the noxious stimulation perceived by the patient's body. When considering that surgical stimulation acts 
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as an output disturbance, this technology would then provide a measure of such disturbance. However, 

since it cannot quantify analgesic-based pharmacological depression, this technology cannot be used as an 

analgesia feedback sensor for controlling analgesic drug titration. 

Another approach, which we favor, stems from the fact that the Autonomic Nervous System (ANS) is 

ultimately responsible for managing the response to noxious stimulation. It is also the target of opioids 

and other analgesic drugs. Furthermore, considering that the ability of anesthesiologists to maintain the 

autonomic balance dictates the success of the procedure, we believe that the development of a quantified 

metric of the autonomic activity can provide a surrogate feedback measure of the analgesic state. In 1985, 

it was proposed that Heart Rate Variability (HRV), i.e., the variability between consecutive R-peaks of the 

E C G , be used as a source signal to measure the autonomic balance. A number of patents have been issued, 

but only one intra-operative monitor using that signal (Anemon-I) was commercialized for that particular 

purpose. No clinical studies validating this technology were published. The Anemon-I has been withdrawn 

from the market since the early 2000's. However, recent evidences in the literature suggest that the H R V 

does carry all of the necessary information to derive a meaningful metric [146, 147, 148]. 

Quantifying both the C N S and A N S may therefore provide the necessary feedback sensors to close the 

loop and achieve meaningful clinical performance. In terms of the C N S quantification, the E E G has already 

been identified as a non-invasive signal containing information relative to the patient's hypnotic state. Some 

success has been achieved by commercial stand alone monitors. However, their utility as feedback sensors is 

questionable. In terms of A N S quantification, the H R V signal has emerged as a good candidate to quantify 

autonomic activity. However, it is a difficult signal to analyze and is sensitive to many different confounding 

factors. 

In this chapter, we present a signal processing technique based on wavelet analysis. This technology, 

referred to as Wavelet-based Anesthesia Value ( W A V ) , quantifies the state of a system with respect to its 

two most extreme states (e.g., awake (performing a mental task), and comatose ( E E G electrical quiescence) 

for quantifying cortical activity). As the signal evolves from one state to the next, the changes are quantified 

and expressed into a bounded scale. In this Chapter, we show that this technology can be used to analyze 

and characterize both the C N S and A N S activity. We therefore propose two new anesthesia indices: the 

W A V C N S , which quantifies cortical activity based on E E G analysis, and the W A V A N S , which quantifies 

autonomic activity based on H R V analysis. 

In Section 5.1, we present the wavelet transform, and, in particular, its ability for detecting rapid 

temporal changes in non-stationary signals. We present in details the W A V technology in Section 5.2 

and its application to the quantification of cortical activity based on a single frontal E E G signal. The 

resulting index, referred to as W A V C N S , was implemented in real-time and coupled to an E E G signal 

data acquisition system for use in the operating room. The BIS monitor being a clinical reference for 

consciousness monitoring, this setup allowed us to carry out a clinical study aimed at comparing both 



CHAPTER 5. QUANTIFYING CORTICAL AND AUTONOMIC ACTIVITY USING WAVELETS 61 

Figure 5.1: Dyadic frequency tiling with L = 3. 

sensors. The results of this study are summarized in this section. We then show in Section 3 how the 

W A V technology can be applied to the analysis of the H R V signal. For illustration purposes, we present 

results from 3 clinical cases, where we compared the W A V A N S to the W A V C N S and the anesthesiologist's 

assessment of the patient's analgesic state. We also compared the W A V A N S to the heart rate, blood pressure 

and drug titration recorded during the cases. These preliminary results confirmed the strong potential of 

the W A V A N S for assessing the autonomic balance. Finally, Linear Time Invariant (LTI) transfer functions 

modeling the dynamic behavior of both W A V sensors are presented in Section 4. 

5.1 The Discrete Wavelet Transform 

This section is mainly an overview of wavelets and Wavelet Transform (WT) . It is an opportunity to 

introduce the notations that will be used throughout this Chapter. We also present the rationale behind 

the use of W T to analyze the E E G in order to estimate the hypnotic depth. We invite interested readers 

to refer in particular to [149] and [150] for a thorough review about W T and its applications. 

5.1.1 Standard Wavelet Dyadic Decomposition 

A dyadic wavelet transform w is a transform that decomposes a given signal x into a number of coefficient 

sets. Each of these sets represents the activity of the signal in a particular frequency band: 

cl band: [0, /s /2 L ] 

d£ band: [fs/2L, fs/2L~1} 

w : x 
dj" band: [/s/2'" 1 , fs/21} 

(5.1) 

^ df band: [/s/4,/s/2] 

For instance, a L-level dyadic wavelet decomposition yields L + 1 sets of coefficients corresponding to a 

dyadic tiling of the frequency domain, see Fig. 5.1. 

Furthermore, each set {ct} and {d;}i=1 . jr, is a time series of coefficients describing the time evolution 

of the signal in the corresponding frequency band. Hence, two signals having the same frequency content 

will yield different sets of coefficients if the signal patterns are different (i.e., if the frequency components 

have different phases). 
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Similarly to Fourier analysis, which was made practical by the discovery of the Fast Fourier Transform 

(FFT) algorithm, wavelet analysis remained the apanage of mathematicians untill the mid-1990s when the 

use of filter banks appeared to yield much faster and efficient ways of performing the necessary calculations. 

Before then, wavelet analysis existed only in its continuous form, involving a very large computational 

complexity ill-suited for real-time applications. In a Discrete Wavelet Transform (DWT) framework, the 

wavelet decomposition is obtained through the use of a filter bank and 2 F I R filters, HQ (low pass) and Hi 

(high pass). The characteristic of the coefficient sets {CL} and {di}i=\t...ti, therefore depends on the wavelet 

filters Ho and Hi associated to the transform w. 

5.1.2 Change in Phase and Wavelets 

The coefficients obtained through the Wavelet Transform (WT) capture both the frequency and time 

information of a given signal. Wavelet analysis is therefore particularly well suited to track both time 

and frequency changes in a signal. The analysis of many biological signals have benefited from wavelet 

analysis. 

To illustrate this, let us consider a signal composed of 3 frequency components. The phase of one of the 

component is allowed to drift slowly in time from 0 to TT following the time course shown in Figure 5.2.d. 

Even though the change in the signal pattern is obvious (Figure 5.2.a), the power spectra (Figure 5.2.c) was 

unsuccessful in tracking the changes in the signal latency, while the wavelet decomposition (Figure 5.2.b) 

clearly shows an evolution of the signal over time. 

It is interesting here to make a parallel with the arguments presented by Bowles et al. [52] in favor 

of bispectral analysis (see Figure 2.4). Following Rampil's observation [51] that anesthetic drugs tend to 

synchronize the generation of postsynaptic potentials and thus affect the signal latency, it appears that the 

time-frequency localization property of the W T makes it well suited for capturing the evolution of the E E G 

with increasing anesthetic depth. This is illustrated in Figure 5.2. 

5.2 Estimating the Anesthetic Drug Effect: the W A V C N S 

Note that contributions in the development of the W A V C N S are shared with Ms. T. Zikov [151]. 

5.2.1 Concepts and Derivation 

The brain is the target organ of anesthetic drugs.. The electroencephalogram (EEG) signal being a non

invasive measurement of cortical activity, the effects of anesthetic drugs onto this signal has been thoroughly 

studied. Because of differences in the mechanism of action, the effect of different anesthetics usually results 

in different E E G patterns. However, for most drugs and with increasing blood concentration, the E E G 

signal evolves from a low-amplitude, large-bandwidth, noise-like signal, to a high-amplitude slow-waves 

signal. If large amounts of anesthetic drugs are used, the E E G activity eventually disappears, resulting in 
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Wavelet coefficients Frequency (Hz) Phase (rad) 

(b) (c) (d) 

Figure 5.2: Changes in latencies in a signal can also be tracked by the wavelet coefficients (from [151]). (a) Time 
series signal. Note how the signal pattern changes significantly when changing the phase of one of the frequency 
component, (b) 'Periodogram' of the wavelet coefficients (note how the change in phase is clearly noticeable in the 
wavelet domain), (c) Classical Fourier periodogram. (d) Time profile of the phase change. 
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0 

X 

Figure 5.3: The function h quantifies the state of a system by attributing a unique value to each of the operating 
modes of the system, ff the system evolves in a monotonous fashion from state a to state b, it is required that h is 
also monotonous. 

an isoelectric signal (i.e., complete absence of cortical activity). 

Since this trend can be observed for most anesthetic agents, it is commonly assumed that the E E G 

can be used to estimate the hypnotic state of the patient, and thus provide a measurement of the drug 

effect. In order to avoid complex and time-consuming interpretations of raw E E G signals, a common 

approach is to extract a single univariate value that represents the patient's state. Since there is no gold 

standard for measuring depth of anesthesia, the various analysis techniques used to calculate this value are 

usually derived such that the resulting quantitative value is sufficiently correlated to the anesthesiologist's 

qualitative assessment of the patient's state. 

In order to illustrate our methodology for deriving an index of hypnosis, let us consider the patient to 

be a system which can evolve between two states a and b. Our goal is to derive an index that characterizes 

the operating mode of this system, i.e., finding a function h, which, given an observation x acquired while 

the system operates between a and b, yields a single value i comprised between two finite bounds, e.g., 1 

and 0 (see Fig . 5.3): 

/ i : x € [ a , 6 ] — > i e [ 0 , 1 ] . (5.2) 

In terms of hypnotic depth, the observation x can be a short E E G epoch, long enough to contain the 

necessary information, and short enough to allow frequent updates of i. The states a and b correspond 

to the two extremes of the signal observational window, i.e., the awake and isoelectric E E G . As far as 

anesthetic drugs are concerned, this window is sufficient since it is usually not desired to titrate patients 

beyond the point where cortical activity is totally suppressed. 

In this section, we will first give some very general guidelines on how to define the function h. We will 

then apply these guidelines to the estimation of the anesthetic depth, using data obtained from healthy 

subjects and anesthetized patients. 

5.2.1.1 Main Concept and Approach 

In order to define the function h, we first need to assume that both states a and b correspond to well 

established operating modes from which observation data are available. In the case of E E G analysis, this 
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Figure 5.4: The characteristic of the function h depends on the selection of the feature function / . (a) Both hi 
and h2 are valid functions, whereas h$ and hA cannot be used to represent adequately intermediate states, (b) The 
linearity of a given function h can be assessed by introducing new data sets, (c) Variability is another important 
aspect. Por instance, even though hi is nearly linear, it fails in characterizing properly the intermediate states Ti and 
T-2- The function hi is preferred here since it allows for the proper discrimination between consecutive states. 

assumption is verified since a corresponds to the awake state (e.g., when able to perform a mental task) and 

b corresponds to an isoelectric signal. Since these states are well defined, we can then obtain two reference 

data sets corresponding to observations of the system in the states a and b: 

(5.3) 
Ra — (xa,fc, k = 1,2,... M} (state a), 

Rb = {xb,k, fc=l,2, . . . M } (state b), 

where each observation vector xQjfe and x ^ contains a finite number of samples and represent the kth epoch 

of the data sets Ra and Rf,. 

To characterize the data sets, a chosen feature f is calculated from each epoch. We denote the feature 

function / as: 

/ : x —> /(x) = f (5.4) 

Each epoch of the reference data sets is then associated with a feature or f^j.. This feature can be 

either a scalar (such as average value, Root Mean Square (RMS) amplitude, maximum or minimum value, 

standard deviation, etc.) or a vector (such as histogram, probability density function, etc.) derived in the 

original signal domain or in a transformed signal domain. A particular state can then be characterized 

by averaging the feature sets {ia,k\k=\,...,M and {h,k}k=i,...,M- This results in two references which are the 

averaged features fa and ff,: 

> = • Eifcli fo,fe, and 
(5.5) 

< b = ~M ' ^ f c = i 6 ' f c ' 

Let us now assume that the system operates in the intermediate state c and that an observation x c is 

provided. Using the corresponding feature fc = /(x c), it is then possible to estimate how far the system 

has evolved from the state a towards the state b by comparing the value fc to the references fa and ff,. Two 
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indices ja and jp are defined such that: 

ja = 
< 

life - t i l l 

3P = 
V 

life - f t l l l 

and 
(5.6) 

where the norm || • | | i for a vector v is defined as: 

N 

(5.7) 

The norm || • | | i quantifies the difference between fc and fa (or fj,) by integrating the distance between these 

two vectors. The indexes ja and jp thus measure a distance of the system from either state a or b. Note 

that higher degree norms can be used for this analysis, however, they would emphasize larger differences 

which might be due to outliers, hence leading to noisier indexes. 

In order to maximize the signal-to-noise ratio, the two indexes ja and jp can be combined to yield a 

single descriptor j = jp — ja. It is convenient here to define a function g that, given an observation x, 

associates the resulting index j: 

g : x — g(x) = j = ||/(x) - ffcHi - ||/(x) - fa\\i. (5.8) 

In order to scale the final index i such that i —> 1 (state a) and i —* 0 (state b), the function g is applied 

to the entire reference data sets. This yields two sets j a and j ; , : 

9-Ra—>3a = {ja,k, k = l,2,...M} 

g:Rb—>jb = {jbik, k = l,2,...M} 

The function h is a scaled version of g, and is thus defined as: 

i Ti 

(5.9) 

h : x — > h(x) = i = g(x) 
Ja Jb Ja Jb 

(5.10) 

where: 

Ja and 

(5.11) 

T — X^M
 n 

Jb — ' l^k=\3b,k-

5.2.1.2 Feature F u n c t i o n Selec t ion 

The performance of the index i as a substitute to the qualitative assessment of the patient's state clearly 

depends on the characteristic of the function h over the state continuum [a, b]. This is illustrated in Fig. 5.4.a 

where hi and h2 are adequate as they uniquely define each intermediate state. Conversely, a function such 

as / i 3 should be avoided as there exist different states which yield similar index values, thus leading to 

confusion in the interpretation of the index. As a rule of thumb, any function whose characteristic exhibits 
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a change of sign in its first derivative should be avoided. Similarly, a function such as h4 is not very useful 

since it does not discriminate properly between different states. 

The selection of / is critical in shaping the characteristic of h. For instance, a good discrimination 

between consecutive intermediate states is achieved if a feature function / is determined such that the 

evolution between the states a and b is linear. We define / (resp. h) such a function. 

While linearity is an important aspect, it is not sufficient to guarantee proper discrimination between 

states. Another important aspect is the variability of the index i while the system operates in a stationary 

mode. A large variability may cause a significant overlap between consecutive states, indicating that either 

the observation signal or the feature function are poorly suited for this analysis. 

In order to facilitate the selection of the feature function / , we then introduce two design parameters: 

L (linearity parameter) and V (variability parameter). Both parameters rely on the use of new data sets 

T i , T2, ..., T/v corresponding to intermediate states of operation {e.g., sedation, general anesthesia, deep 

hypnotic state, etc.). For each data set, R or T, we can associate a desired index value i: 

fi: {Ra, Tu..., TN, R b } —- {1, i\,..., iN, 0}. (5.12) 

Note that, by definition of h, ia = 1, ia = 1, if, = 0, and it = 0. 

L i n e a r i t y Linearity can be easily assessed by calculating the corresponding index for each epoch of each 

data set. We thus obtain a set of vectors { i n } of length equal to the number of epochs in the corresponding 

data set: 

h : {Ra,Ti,.. - ,TN, Rb} — • {ia , i i , • • -, i/v, ifc}- (5.13) 

We can assess the characteristic of h by simply comparing the average vector values in = mean(i„) with 

the set of desired values in in (5.12), see Fig. 5.4.b. The parameter L is the normalized root mean square 

error between the characteristics of h and h: 

N s l A ' • ( 5'1 4 ) 

L is bounded between 1 and 0. Note that to normalize L, we divided the root mean square error of (h — h) 

by the maximum possible root mean square error {e.g., the function /14 in Fig . 5.4.a. would typically have 

L = 1). To optimize the linearity of h, it is therefore necessary to minimize L. 

V a r i a b i l i t y The variability of h can be assessed by calculating for each vector i n of (5.13) the standard 

deviation cr(in). If a statistically significant discrimination of each intermediate state T i , T2, . . . , T/v is a 

critical feature of h, it is necessary to ensure that: 

tf(in) + °"(in+l) < l*n ~ (5.15) 

i.e., that the standard deviation intervals of two consecutive states does not overlap, see Fig . 5.4.c. It is, 

however, important to keep in mind that the standard deviation a{i) is strongly influenced by the eventual 



CHAPTER 5. QUANTIFYING CORTICAL AND AUTONOMIC ACTIVITY USING WAVELETS 68 

non-stationarity of the data set T. This is mostly true when T is composed by data acquired from different 

systems or under different recording conditions. This is also true when the data sets are collected based on 

the evaluation of a human operator. 

We define the design parameter V as: 

where a(io) = cr(ia) and <r(ijv+i) = cr(h)- For the same reasons outlined above, it is advised to keep V < 1, 

or as small as possible if the stationarity of each set T cannot be properly guaranteed. 

5.2.1.3 Data Sets 

In the search for a function h that would adequately estimate the anesthetic depth, 5 different observation 

sets corresponding to 5 distinct hypnotic states were recorded, see Fig. 5.5 for representative samples: 

- Ra (awake state): 15 minutes recorded from 5 healthy adult subjects (3 minutes each). Subjects were 

asked to keep their eyes shut and minimize muscle activity while concentrating on a mental task. 

- T i (light R E M sleep): 15 minutes recorded from 3 subjects (5 minutes each). Only epochs without 

ocular artifacts were included in this set. 

- T2 (general anesthesia): 18 minutes recorded from 6 patients (3 minutes each) undergoing minimally 

invasive arthroscopy surgery. 

- T3 (deep hypnotic state): 9 minutes recorded from 5 patients. Delta activity is usually transitory, 

which explains the limited amount of data available. 

- Rb (isoelectric E E G ) : f»5 minutes recorded from 2 patients exhibiting electrical quiescence. 

The data sets T2, T 3 and Rb were collected from surgical audit cases. While a variety of anesthetic 

regimens were used during these cases, only drugs provoking a concentration dependent depression of the 

cortical activity were used (vapour anesthetics (isofiurane, desflurane, sevoflurane, NO2), propofol and 

midazolam). 

While a simple observation of the E E G was sufficient to extract periods of isoelectric activity (Rb), the 

classification of E E G epochs between T2 and T3 was done following the anesthesiologist's assessment for 

each patient. The anesthesiologist was first asked to identify periods of adequate anesthetic depth, i.e., 

when patients were unconscious in the context of surgical anesthesia. The E E G corresponding to these 

periods were then reviewed post hoc to identify periods of deeper hypnosis (apparent delta waves) which 

were then classified as the T 3 set. The remaining E E G data were then included in the T2 set. 

Each E E G signal was recorded from a frontal differential channel ( F p i - A T i (the left outer malar bone) 

and F p z as ground), using the Crystal Monitor Model 1 6 ™ (Cleveland Medical Devices Inc., OH), a 

(5.16) 
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Figure 5.5: Normalized E E G signals at different anesthetic depths. Each 1-second epoch is first detrended and then 
normalized using the RMS amplitude, (a) Awake healthy subject (b) Light R E M sleep (the spikes due to R E M activity 
were manually removed) (c) General anesthesia (d) Deep anesthetic state (5-waves) (e) Isoelectric state (normalized 
by the RMS amplitude of the last non-isoelectric epoch). 

sampling frequency of 480 S/s and a resolution of 16 bits. The signals were then resampled at 256 S/s and 

notch-filtered at 50/60 Hz prior to analysis. 

The E E G signals were further divided into 1-second epochs (256 samples per epoch). Because the signals 

were measured through contact electrodes with a high input impedance amplifier, there are a number of 

factors (e.g., skin conductivity and thickness, electrode impedance and placement) which can affect the 

amplitude of the recorded signal. To minimize the influence of these factors, each epoch is first detrended 

and then normalized by its R M S value prior to analysis: 

(5.17) 
R M S ( x ) ' 

This also compensates for the bias and calibration errors that are expected between different acquisition 

devices. Note that for the isoelectric epochs, the normalization was performed using the R M S value of the 

last E E G epoch preceding the occurrence of isoelectricity. 

Finally, the desired values in terms of the mean index values were defined for each data set to reflect 

the anesthesiologist's assessment: 

^ W A V C N S : {Ra,Ti,T2,T3, Rb} — • {1,0.75,0.5,0.25,0} (5.18) 

5.2.1.4 Feature Function / W A V 

In order to extract information from the E E G signal pertinent to depth of anesthesia, the Probability 

Density Function (PDF) of the wavelet coefficient set df was chosen as the feature function, and we denote 
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it as / W A V C N S : 

/ W A V C N S = * — • / W A V c n s ( X ) = PDF(dj"). (5.19) 

This choice is motivated by a number of facts. 

First, the information regarding the anesthetic depth of a patient lies in both the spectral distribution 

of the E E G and the pattern of the signal itself. The wavelet transform is therefore an appropriate tool to 

extract this time-frequency information. However, the resulting coefficient sets cannot be used right away. 

It is necessary to format the information they contain using statistical tools. The interest in using the P D F 

in this case lies in the fact that the area of a P D F curve is, by definition, always equal to 1. Therefore, the 

indexes ja and jp are naturally bounded between 0 and 2. 

Secondly, even though we have already chosen the particular structure of / , this choice offers design 

flexibility through the selection of the frequency band I and wavelet transform w. Thus, by iterating between 

different wavelet filters and frequency bands, a search algorithm can easily be written to determine the best 

/ and w. 

5.2.1.5 Se lec t ion o f the Frequency B a n d and Wavele t F i l t e r 

Let us denote with W A V C N S the index i defined in (5.10), and corresponding to the feature function 

/ W A V C N S • To select the appropriate frequency band I and wavelet transform w, we assess the linearity and 

variability of the W A V C N S for different frequency bands and wavelet filters using the design parameters L 

and V defined in Section II (5.14) and (5.16). 

The linearity and variability of the W A V C N S were assessed for the three frequency bands df, d™ and 

dg, and for the first 16 Daubechies wavelet filters, see Fig. 5.6. 

In addition to the standard definition of L given in the previous section, we added a sign information to 

this otherwise positive value. A change in the sign of the linearity parameter displayed in Fig . 5.6 indicates a 

change in the dominant curvature of h (a positive value indicates concavity, while a negative value indicates 

convexity). This observation is of interest when considering that, depending on the concavity or convexity 

of the function, the resulting index will either be more sensitive to changes in the lighter hypnotic states 

and less sensitive to changes in the deeper states (convexity), or conversely, more sensitive to changes in 

the deeper hypnotic states and less sensitive to changes in the lighter states (concavity). The selection of 

the frequency band and filter allows for the modification of this characteristic. 

The linearity analysis indicates that, either the 7-band (32-64 Hz) in conjunction with any wavelet filter 

of order >4, or the E M G band (64-128 Hz) and the Daubechies filter #2, yield a nearly linear characteristic. 

These choices also agree with the variability criterion according to which the parameter V should remain 

well below 1. 

Note that these results are in agreement with the recent findings suggesting a fundamental relationship 

between consciousness and 7 activity. It has also been reported by John et al. [152] that loss of consciousness 

after anesthetic administration showed a marked drop in the 7-band activity, along with an increase in slower 
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Figure 5.6: Selection of the frequency band and wavelet filter for the sampling frequency of 256 S/s. (a) Linearity 
parameter L. A positive value indicates a concave characteristic, while a negative value indicates convexity. By 
appropriately choosing the wavelet filter, the characteristic of h can change from concave to convex, (b) Variability 
parameter. 

waveforms, which is in line with our findings. 

It is also interesting to note that the E M G band yields a similar result for the particular wavelet filter 

Db2. However, this is explained by the fact that this low order filter still preserves a significant amount 

of 7-band information. Higher order filters, which extract mostly E M G information, lead to a convex 

characteristic of the index which does not give a good discrimination between deeper states. 

Given these choices, it is advisable to use the 7-band instead of the E M G band. First, the use of the 

7-band decreases computational complexity by allowing to lower the sampling rate to 128 S/s, and thus, 

use the d™ coefficient set instead of d™ via a single convolution operation. Also, the signal corresponding to 

the E M G band is of lower power than that of the 7-band, which makes it more susceptible to environmental 

fu: isoelectric state 

-0.5 0 0.5 
W A V E L E T CO E F F I C I E N T S 

Figure 5.7: Awake and isoelectric reference PDFs based on / ^ A 
W A V C N S ' 
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Figure 5.8: Characteristic of the optimal function ^ W A V C N S ^ o r t ' l e sampling frequency of 256 S/s. (a) Linearity 
characteristic, (b) W A V C N S values for the data sets Ra, T±, T2, T3 and Rb. Note the larger variability in the 
intermediate data sets. 

noise. Furthermore, the use of the E M G band would also require to notch-filter both at 50/60 Hz and 

100/120 Hz to reduce the electrical noise from the mains. Finally, the E M G band is more susceptible to 

neuromuscular blocking agents, which aim at suppressing muscle activity. A n index based on this band 

would therefore be particularly sensitive to this type of drugs. 

For the 7-band, an optimal result is obtained when using the Daubechies wavelet filter #6 (w[Dbe]). 

The optimal feature function / W A V C N S * s t n u s defined as: 

/ w l v C N S = * — / w l v C N S ( x ) = PDF(dr[Dbel), (5.20) 

where the signal x is sampled at 128 S/s. Figure 5.7 illustrates the reference awake and isoelectric P D F s 

based on / ^ A V C N S a v e r a S e ( i o v e r the sets Ra and R/,. For more details on the derivation of the PDFs , see 

Section 5.2.2.2. 

The corresponding characteristic of ^ V V A V C N S ^ s P l ° t t e d m Fig. 5.8.a. Results show a nearly linear 

characteristic where: 

^ W A V C N S : iR°> Tl> T2> T3> R b ) ~ * i 1 0 0 - 7 7> 5 4> 2 0> ° ) (5-21) 

Note that the values in (5.21) are average values obtained from the training data sets. 

For each data set, the corresponding W A V C N S values are plotted in Fig. 5.8.b. The variability in 

the awake and isoelectric states is small as compared to the variability observed from the intermediate 

states. This is due to the fact that the awake and isoelectric states are, by definition, very well identified. 

Conversely, the intermediate states are subject to interpretation. This results in a higher non-stationarity 

of the T data sets. 
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5.2.2 Pract ical Issues and Implementation 

This section addresses practical issues concerning the implementation of the W A V C N S algorithm. 

5.2.2.1 Pre-Processing 

Notch Filtering The E E G signal is a low power signal particularly susceptible to environmental noise. 

For instance, electrical heaters used as warming units in the operating rooms draw large amount of current 

from the main electrical outlets. When these units are in proximity of the E E G acquisition device, strong 

50/60 Hz and 100/120 Hz perturbations may be superimposed to the E E G signal. While appropriate 

shielding can alleviate this problem, it is necessary to use a 50/60 Hz notch filter to remove this noise. 

Resampling The E E G signal needs to be resampled to a rate suitable for the analysis. Since we have 

determined that the 7-band (32-64 Hz) is of interest, a sampling rate of 128 S/s is optimal. Note again that 

an advantage of using this sampling rate is that only one convolution of the filter w[Dbe] with the signal 

is needed to obtain the d™' D b 6' coefficients. When higher sampling rates are used, the wavelet coefficients 

in the band of interest are obtained through a series of filter banks, which adds to the computational 

complexity. 

Artifact Detection and De-noising Ocular Artifacts (OAs) and head movements can make the W A V C N S 

particularly unstable in lighter hypnotic levels (awake and light sedation), when the patient is still conscious. 

This difficulty arises mostly before and during induction. 

One strategy to deal with these artifacts is to systematically reject corrupted epochs from the analysis 

and simply set the index to its previous value. However, this can result in substantial data loss. 

A better approach is to remove the artifact from the raw E E G signal, without perturbing the high 

frequency content of the E E G . This can be easily done for two reasons. First, OAs and head movements 

typically perturb the E E G from 0 Hz up to 16 Hz. Thus, the high frequency information is not affected. 

However, they substantially affect the R M S value of the signal, and thus the entire analysis. Second, this 

type of artifact signal, which is superimposed with the true cortical E E G signal, is of high amplitude com

pared to the relatively small E E G amplitude. Using a redundant wavelet decomposition, which provides 

a good temporal resolution, this signal induces large coefficients that are easily distinguishable from the 

smaller background coefficients of the true E E G . A simple technique such as thresholding of wavelet coef

ficients in the lower frequency bands (up to 16 Hz) is sufficient to remove the perturbing artifacts from the 

source E E G , see Fig . 5.9.a [59]. This technique is particularly effective in removing most of the artifacts 

while keeping the exact amplitude and phase of the high frequency components, see Fig. 5.9.b. 

A difficulty arises during the state transition from awake to anesthetized. This transition is fairly rapid. 

Further, the initial induction bolus usually drives the patient into a deep hypnotic state. As a result, 5-

waves are likely to occur within a few seconds from the loss of consciousness. The 5-waves being particularly 
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Figure 5.9: Effect of ocular artifact de-noising during an awake period, (a) Raw E E G and de-noised EEG. (b) Note 
how the high frequency information remains unaltered by the de-noising technique, both in terms of ampfitude and 
phase. 

similar to OAs (i.e., low frequency, high amplitude), it is necessary to switch off the de-noising technique 

as soon as the patient does not exhibit ocular activity. 

The moment of anesthesia induction, which corresponds to the bolused administration of an intravenous 

anesthetic, is suitable for switching off the de-noising technique as the patient rapidly looses consciousness. 

From the perspective of automation in clinical anesthesia, this solution is viable since the computer is 

allowed to directly command the infusion device. 

5.2.2.2 The W A V C N S Algorithm 

Normalization For the reasons outlined in Section 5.2.1.3, the E E G epochs are first detrended and 

normalized prior to analysis. This normalization is carried out on E E G epochs with R M S amplitudes above 

4 M V R M S -

During electrical quiescence (i.e., when the R M S amplitude of the E E G is less than 4 UVRMS), the nor

malization using R M S values close to zero would lead to the amplification of measurement noise. Therefore, 

we directly assign the feature f*b (see Fig. 5.7) to any isoelectric E E G epoch: 

• ^ W A V C N S ' ^ ^ ^ * s o e ' e c * " c * ft>- (5.22) 

The Redundant Wavelet Transform For the derivation and implementation of the W A V C N S algorithm, 

we use a redundant D W T , so-called Stationary Wavelet Transform (SWT), which provides the same time 

resolution in all frequency bands of decomposition. 

There is a number of reasons for using a redundant transform. First, when choosing an optimal frequency 

band for the analysis, the S W T provides the same number of coefficients in each frequency band (i.e., it 

is equal to the sampling rate for a 1-second long epoch), and therefore enables easier comparison between 

them. (For a non-redundant transform, the number of coefficients decreases by a factor 2 for each level of 

decomposition.) In addition, a greater number of coefficients results in better temporal resolution in the 

decomposition bands, and, therefore, smother reference PDFs . 

Secondly, at the pre-processing stage, the better time resolution of the S W T provides an improved 



CHAPTER 5. QUANTIFYING CORTICAL AND AUTONOMIC ACTIVITY USING WAVELETS 75 

characterization of artifacts, as well as a smoother estimation of the signal of interest (i.e., the true cortical 

E E G ) after thresholding in the wavelet domain [153, 154]. 

However, the utilization of the S W T somewhat increases the computational demand, since the complex

ity of the S W T is 0(N- log2N) for a signal of TV samples, in comparison to O(N) for the D W T . 

Finally, note that caution has to be taken when performing the wavelet decomposition on epochs of short 

length, since boundary effects can significantly perturb the result. Therefore, prior to the decomposition, 

each epoch is extended using a standard procedure such as symmetrization. After applying the S W T , only 

the coefficients that are not affected by boundary effects are kept for further analysis. 

Probability Density Function When calculating the P D F of the wavelet coefficients, special care has to 

be taken when selecting an appropriate number of bins. It has been shown [155] that the optimal histogram 

bin size, which provides the most efficient, unbiased estimation of the probability density function, is 

achieved when: 

Bw = 3.49 • a - . A T 1 / 3 , (5.23) 

where Bw is the width of the histogram bin, a is the standard deviation of the distribution and N is the 

number of available samples. 

However, when it comes to estimating the depth of consciousness, the statistics of the E E G signal can 

significantly vary between the different states. For example, the variance of the wavelet coefficients in the 

7-band for the awake state is much greater than for the anesthetized state. Furthermore, for the isoelectric 

E E G , the variance is almost equal to zero (see Fig. 5.7). 

Hence, an optimal number of bins defined by (5.23) for the proper representation of the awake state 

might actually be too small to adequately represent deeper states, and might cause them to be mistaken 

for the isoelectric state. Similarly, if the number of bins is too large, the P D F waveform might exhibit a 

'comb' effect in the awake and light sedation states, while precisely defining the deeper states. Therefore, 

a compromise needs to be reached when choosing the number of bins for the analysis so that all states 

are represented in a satisfactory manner. Based on the length of an epoch, a number of bins equal to 

the sampling frequency of the signal appears to provide an adequate compromise. In fact, the isoelectric 

reference P D F becomes zero everywhere except at the origin, where it is equal to one. 

5.2.2.3 Post-Processing 

Trending Using an analysis epoch as short as 1 second can lead to a particularly noisy W A V C N S index. 

To overcome this problem, a filtering stage has to be added to the W A V C N S algorithm to extract the most 

significant information. 

There are a number of techniques which can be used. The simplest one is to use an averaging window, 

where the displayed index becomes the mean value of the previous index values over a fixed horizon. For 

example, the BIS monitor uses a window of 30 or 15 seconds, since it yields good results in terms of 
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Figure 5.10: Characteristic of a 30-second averaging filter and a 2 n d order low pass filter (uio = 0.02 Hz and C~l)-

noise reduction. During the acquisition of our clinical data, the BIS monitor used a 30-second averaging 

period. Therefore, we have chosen the same averaging period for our analysis, in order to perform the 

direct comparison between the WAVCNS and the BIS. A property of this filter is that the filtered index only 

depends on the past 30 seconds of data, which makes its interpretation straightforward. 

However, while F IR filters are simple to implement, they introduce a non-minimum phase element which 

is detrimental in applications involving control and identification. In that respect, the use of an IIR filter 

is more suitable. For instance, a simple second order low pass filter characterized by its parameters UJ$ and 

C, such as described in Fig. 5.10, gives a better high frequency noise rejection profile, while being minimum 

phase. We found that an IIR filter with a cutoff frequency of 0.02 Hz and damping factor of 1 is an adequate 

alternative to the 30-second averaging window filter. 

Sca l ing To allow for a better comparison with the BIS Monitor (see Section VI), the W A V C N S was scaled 

between 100 (awake state) and 0 (isoelectric state) by multiplying the right hand side of (5.10) by 100. 

5.2.3 Clinical Results 

To validate the WAVCNS, a clinical study was conducted in 2002 at the University of British Columbia 

Hospital ( U B C H ) . The aim of the study was to compare the real-time W A V C N S to the BIS v.3.4 (Aspect 

Medical Systems, M A ) within a clinical setting. Note that, to allow for a better comparison, the WAVCNS 

IIR trending filter was replaced by a 30 seconds averaging filter similar to that of BIS. The study protocol 

and demographics are summarized in the Annex D . l . 

We present in Fig. 5.11 two cases representative of the time course of both indices. Probably one of the 

most surprising results from this study is the striking overall similarity between the BIS and the WAVCNS • 
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Figure 5.11: Time course of the B I S and W A V C N S for Patient #22 and Patient #8. 

Yet, after closer inspection, differences during periods of large transients become apparent. This observation 

led us to separate steady state behavior from transitory behavior in the comparison of the two indices. Our 

results and conclusions are the subject of the two following subsections. We also observed that periods of 

burst suppression patterns are yielding different time courses. We felt that this result could carry strong 

clinical interest. We therefore present a short discussion concerning the behavior of both BIS and WAVCNS 

at the end of this section. 

5.2.3.1 Steady State Behavior 

The BIS index is derived and tuned specifically to reflect the anesthesiologist assessment of the patients' 

anesthetic depth. The BIS value is nowadays a reference against which other indexes are compared [156, 157, 

158]. However, this statement holds true only in steady state, i.e., when the patient's state of consciousness 

remains constant, since transitory states are affected by the time delay induced by the bispectral analysis 

[159]. 

In order to evaluate the accuracy of the WAVCNS, epochs of steady state behavior were extracted from 

each case using a decision algorithm based on the BIS value. A 1-minute sliding window was used to assess 

the stationarity of the BIS. If the BIS value remained constant within this window (with bounds set at 

± 5 of the average BIS value) the epoch was classified as steady-state. Consecutive steady-state epochs 

were pooled together. The first (or last) 30 seconds corresponding to the beginning (or the end) of each 

steady-state period were removed under the assumption that they are transitory. A total of 13 hours of 

recorded data was identified as stationary (73% of the total recording time), representing more than 45,000 

E E G epochs. 

The WAVCNS VS. BIS correlation density plot is presented in Fig . 5.12. There is a strong correlation 
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Figure 5.12: Correlation during steady-state operation between the BIS (v.3.4) and W A V C N S - A total of 13 hours 
of steady-state data were collected from the arthroscopy study, (a) Correlation density plot (b) Bland-Altman test. 

between the two values in the 30-60 range. The WAVCNS was slightly higher in the light anesthesia/awake 

range (60-100). However, most of the data points from this region were obtained from the emergence phase 

where the BIS value is known to be underestimated [79]. 

5.2.3.2 T rans i to ry Behav io r 

The WAVCNS algorithm was designed to exhibit a smooth transitory behavior. In order to evaluate the 

performance of the WAVCNS during large transients, we observed the time courses of both indexes during 

induction and emergence. 

I n d u c t i o n For this analysis, the study population was separated into two groups depending on the re

action to airway manipulation and L M A insertion. Note that airway management and the insertion of 

the L M A typically occurred 40 to 80 seconds after L O C . Patients exhibiting no reaction or mild extremity 

movements were classified in Group 1 (n = 10). Patients exhibiting airway reaction (biting, coughing, 

swallowing, etc.) or purposeful motor movements were classified in Group 2 (n =9). One case (patient 

#15) was excluded due to the use of a neuro-muscular blocking agent during induction (the presence or 

absence of reaction could not be assessed). 

In Fig . 5.13, the time courses of the BIS and WAVCNS are plotted for both groups. Each individual time 

course is synchronized using the L O C event. In Group I, the induction is fast and profound. The WAVCNS 

typically starts decreasing with the L O C event. As compared to the WAVCNS, the BIS value exhibits a 

more erratic behavior during this transitory phase. 

Conversely to Group 1, the induction titration in Group 2 was not adequate to warrant the absence of 
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Figure 5.13: Time courses of the B I S (v.3.4) and W A V C N S during induction for both patient groups (each case is 
synchronized at the L O C ) . (a) Population showing no reaction to L M A insertion (n=10). (b) Population showing 
some reaction to the L M A insertion (n=9). 

reaction to the insertion of the laryngeal mask. The post-insertion BIS and W A V C N S time courses exhibit 

more variability than those of Group 1. It is interesting to notice that there is no significant difference 

in the BIS time course prior to L M A insertion between the two groups. Conversely, the rate of descent 

and nadir value observed in the W A V C N S shows significant difference between the groups. Thus, it can be 

hypothesized that the W A V C N S time course during the awake-to-anesthetized transition might be capable 

of predicting the reaction to L M A insertion. This finding was further corroborated by Lundqvist et al. 

[160] in a study involving 50 patients. 

In F ig . 5.14.a, the average time courses of the BIS and W A V C N S are plotted together. We observe a 

marked delay between the L O C event and the BIS values indicating loss of consciousness (i.e., < 80). The 

W A V C N S precedes the BIS by an average of 15 seconds in both groups. Note again how the W A V C N S drop 

is well synchronized with the L O C event. 

Emergence Following the clinical protocol, 3 events were recorded during the anesthesia emergence: 

- Pnrt (Patient Not Reacting): the patient was not reacting to the anesthesiologist's touch and/or voice, 

- P r t (Patient Reacting): the patient was reacting (movement, vocalization) to the anesthesiologist's 

touch and/or voice, or to the surgical environment, 

- P r s (Patient Responding): the patient responded to a verbal command. 

The P r s event only indicates a time when the patient was able to follow verbal command. However, it is not 

the earliest time when the patient was able to process cognitive thoughts. This is due to the fact that the 

clinical protocol of this observational study did not make provisions for how frequently the anesthesiologist 

was to assess the patient's cognitive state during emergence. Therefore, the P r s event cannot be used as a 

marker of Return Of Consciousness (ROC). 
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Figure 5.14: Time delay between the BIS and W A V C N S - (a) Induction (both study groups), (b) Emergence. 

Conversely, the P r t event indicates the earliest time when a patient reaction was observed. This reaction 
was triggered either by the anesthesiologist's probing, or by environmental factors. Since the P r t corresponds 
to a well defined point in time, which is easily observable, it can be used to synchronize the WAVCNS and 
BIS time courses during emergence, see Fig. 5.14.b. Similarly to induction, we observed a delay in the BIS 
as compared to the WAVCNS (about 30 seconds in average). 

Another interesting difference between the BIS and WAVCNS is the difference of the index value during 
emergence. In particular, the WAVCNS was 90.6 (±10.2), while the BIS value remained in the range below 80 
(79.0 ±18.8) at the time of the P r s event, i.e., when the patients were responsive. This result is comparable 
to the results reported by Sleigh et al. [79] who found BIS values under 80 while patients were responding 
to verbal command. 

5.2.3.3 Behavior During Burst Suppression 

The WAVCNS was derived based on the methodology and data sets presented in Section 5.2.1. The frequency 
band and wavelet filter were selected to optimize the linearity of the index characteristic, while limiting 
its variability during periods of steady state. When considering the intermediate states T\, T2 and T 3 , the 
results presented in Fig. 5.8 show that the WAVCNS index has a nearly linear characteristic. However, this 
result does not necessarily hold true for other intermediate states. 

In particular, during burst suppression patterns, the EEG alternates between periods of fast, large-
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Figure 5.15: Time course of the BIS (v.3.4) and W A V C N S during an episode of burst suppression (patient #4). The 
corresponding E E G is also plotted for comparison purposes. 

amplitude waves, and periods of electrical quiescence. This non-stationarity of the E E G is a well known 

phenomenon, and has posed a challenge for assessing the patient's cortical state. Questions may therefore 

arise as to how the W A V C N S behaves during such episodes. 

Among the 20 patients of our study, 3 patients exhibited a short period of burst suppression. We present 

in Fig . 5.15 the time courses of the BIS and W A V C N S during such an episode, as well as the corresponding 

E E G . In this particular case, burst suppression with prominent isoelectric patterns occurred following a 

high-dose propofol induction (>5 mg/kg). This E E G pattern lasted 3 to 4 minutes during which the 

W A V C N S dropped to values of about 10. This level is consistent with the W A V C N S scale since this E E G 

signal corresponds to an intermediate state between T 3 and R^. 

As the periods of isoelectric E E G got shorter (possibly due to the elimination of the propofol from the 

blood plasma), the W A V C N S increased up to values of about 20. A gradual increase in 0 and a activity 

5 minutes into this case provoked a further increase in the WAVCNS- Once steady state was reached 

(t > 6mm), both the W A V C N S and BIS time courses converged towards similar levels. 

During periods of burst suppression patterns, the W A V C N S m a Y exhibit an oscillatory behavior cor

responding to intermittent periods of bursts and electrical quiescence. In particular, we can observe an 

increase in W A V C N S during E E G bursts, and a decrease during periods of isoelectricity. This is consistent 

with the implementation of the index described in Section 5.2.2. 

The BIS time course does not seem to follow the changes in the E E G signal during periods of burst 

suppression in the similar way as the WAVCNS- This difference stems from the fact that the BIS monitor 

uses a different signal processing algorithm to deal with the non-stationarity of the E E G in this state. 

Conversely to the BIS, the W A V C N S algorithm is unique across the whole 100-0 scale, i.e., E E G epochs are 

processed similarly whether the patient is awake or experiences periods of bursts. We therefore expect the 

W A V C N S to differ from the BIS during burst suppression. However, note that further studies are needed to 

provide more clinical insight into the behavior of the W A V C N S during this particular state. 



CHAPTER 5. QUANTIFYING CORTICAL AND AUTONOMIC ACTIVITY USING WAVELETS 82 

5.3 Measuring the Autonomic Nervous System (ANS) State: the W A V A N S 

Index 

Anesthesiology is commonly regarded as "the practice of autonomic medicine" [Lawson:2001], where the 

greater part of the anesthesiologist's expertise relies on his or her ability to control autonomic functions 

through the administration of drugs. Yet, there is currently no available monitor of the Autonomic Nervous 

System (ANS). Appropriate therapeutic actions are devised through the observation and interpretation of 

trends in patients' vital signs. The goal of this section is to close this gap by developing a feedback sensor 

for the direct assessment of the A N S state. This measure can then be used as a surrogate measure of the 

analgesia component of anesthesia. 

In particular, it is desired to obtain a bounded dimensionless index which would increase during au

tonomic activation (leading to heart rate and blood pressure increase) and decrease during autonomic 

depression (leading to heart rate and blood pressure decrease). In anesthetized patients, autonomic acti

vation can be obtained through noxious surgical stimulation and the use of anti-cholinergic drugs such as 

atropine. Conversely, the depression of the autonomic system can be achieved through the use of analgesic 

drugs, vapour anesthetics and adrenergic drugs such as /^-blockers. 

To derive this measure, we propose to use the H R V signal, and use the same signal processing technique 

as used previously for the derivation of the W A V C N S -

We present results in the form of 3 case reports obtained from data gathered from clinical audits at the 

University of British Columbia Hospital. 

5.3.1 The Use of Heart Rate Variability 

The H R V signal is derived directly from the E C G signal. The H R V is based on the R - R interval between 

two consecutive beats, see Figure 5.16.a. The last two decades have witnessed the recognition of the H R V 

as a promising quantitative markers of autonomic activity. The apparently easy derivation of this measure 

has popularized its use; from being an independent predictor of mortality following myocardial infarction, 

to detecting autonomic neuropathy in diabetic patients [161]. 

In terms of the quantification of the autonomic state, one particularly interesting aspect of the H R V 

signal is that its high frequency (HF) content is associated with vagal tone. When patients are under acute 

stress, such as surgical noxious stimulation, the vagal tone tends to be depressed, which is characterized by 

a decrease in H F activity. As a patient's body experiences increasing level of pain, beat-to-beat intervals 

tend to become more regular (see for instance Figure 5.16.b for illustration).'Conversely, during periods of 

relaxation, consecutive beat-to-beat intervals are more irregular. 

In addition to the effect of pain and noxious stimulation, there are a number of factors also known to 

affect the H R V high frequency content: 

- Respiration (or Respiratory Sinus Arrhythmia - RSA) : inspiration tends to increase the heart rate 
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Figure 5.16: The HRV signal as a measure of autonomic activity, (a) 3 consecutive QRS complex (the HRV is 
obtained based on the detection of the R-wave and the measurement of the R-R interval between two consecutive 
R-waves). (b) Tachogram of a subject performing a relaxation exercise, and a patient reacting to surgical stimulation. 

while expiration tends to slow it down. As a result, the H R V exhibits an oscillatory behavior following 

the respiration pattern. Hence, changes in the respiratory pattern strongly influence the H F content 

of H R V and must be accounted for. 

- Opioids and inhalation agents: these agents are known analgesics. As such, they reduce the generation 

and transmission of pain signals and increase the H F of H R V . 

- /?-blocking drugs: these drugs are essentially used to depress the sympathetic system in order to 

prevent hypertension and tachycardia. However, evidence from the literature also support that the 

administration of (3-blocking drugs is associated with an in-crease in the H F content of the H R V [162]. 

- Anti-cholinergic drugs: drugs such as atropine antagonize the action of acetylcholine. This results in 

vagal blockade and the disappearing of H F in the H R V . 

The effect of pain, analgesic drugs, /?-adrenergic and anti-cholinergic agents all follow the same trend: 

pain and stress decreases the H F (associated with a rise in blood pressure and heart rate). Conversely, 

analgesics and /?-blockers increase the H F (associated with a decrease in blood pressure and heart rate). 

Therefore, the quantification of the H F activity of the H R V should provide a reliable metric of the effect of 

pain and analgesic/adrenergic drugs on the autonomic system. 

The fact that H R V analysis can yield a usable 'depth of anesthesia' index was already known in 1985. 

Unfortunately, the very nature of the H R V signal makes it particularly difficult to obtain a usable index while 

achieving real-time operation. There are a number of difficulties related to the acquisition and processing 

of the H R V signal: 

- E C G temporal resolution: the variability in terms of the R - R interval during periods of surgical stress 

can be as low as few milliseconds. As a result, the H R V should be derived based on an E C G signal 
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sampled at a high sampling rate (>500 samples per second) in order to gain good temporal resolution 

of the R-peak [161]. 

- Detection of the R-peak: the task of detecting the R-peak of the QRS complex is especially difficult 

during periods of artifactual activity. Electrosurgical Units (ESU) are the most significant source 

of interference in the operating room and completely obliterate the E C G [163]. This poses a severe 

obstacle for real-time intra-operative monitoring, since there is usually significant data loss during 

long periods of time. 

- Slow signal: probably the most damaging aspect of the H R V signal is the slow update rate linked to 

the heart beat. Any real-time analysis must be optimized in order to provide measurements which 

minimally lag relevant physiological events. In today's current state of the art, existing methods of 

'short-time' H R V analysis usually require at least 5 minutes recordings to provide reliable information 

[161]. This type of performance is not suitable for a real-time application such as the one envisaged 

here. A part of the problem lies in the fact that neither time nor spectral analyses are suitable for 

non-stationary signals such as H R V . We believe that this difficulty can be overcome by using Wavelet 

Transform. 

5.3.2 The W A V A N S 

Similarly to the W A V C N S index, the goal is to analyze the H R V signal in order to derive a metric, referred 

to as W A V A N S i representative of the patient autonomic state. This metric should represent the autonomic 

state of the patient, and be bounded between 2 extreme states: relaxed (i.e., no pain and comfortable) and 

extreme stress (i.e., high level of pain triggering a significant autonomous reaction). 

The W A V ANS index is obtained by applying to the H R V signal a methodology similar to that of the 

W A V C N S - A feature extracted from the H R V signal is compared to 2 reference features corresponding to 

the 2 extreme autonomic states. The W A V A N S is then the combination of the likelihood of the patient 

being relaxed, and the likelihood of the patient being under large surgical stress. 

To find the wavelet filter and frequency band which would carry information relative to the patient's 

autonomic state, we obtained 5 H R V data sets correspond-ing to different levels of stress, see Figure 5. 

The sets Ti and T 3 were obtained from 2 clinical patients during periods of surgical stress (T 2) and intense 

surgical stress leading to a significant autonomic response (T3). The sets Ra and T\ were obtained from 

a volunteer performing a breathing relaxation exercise (Ra, see Figure 5) and during a cold pressure test 

(i.e., moderate pain, T2). Finally, the set R^ is a simple constant value representing the absence of vagal 

activity. In all cases, patients and subjects were breathing at 8 breaths per minute (a metronome was used 

to guide the breathing pattern of the volunteer). 

A preliminary analysis based on these data revealed that the wavelet filter Daubechies #2 and the 

frequency band 0.2-0.4 Hz are optimal to discriminate between these 5 H R V signals (this correspond the d™ 
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Figure 5.17: Application of the WAV technology to the quantification of autonomic activity using the HRV signal, 
(a) Representative data sets of HRV signals for different stress levels: Ra: relaxed subject (y-scale: 0.2 s/div), T i : cold 
pressure test on volunteer (y-scale: 0.2 s/div), T^: clinical patient undergoing surgical stimulation (y-scale: 0.1 s/div), 
T 3 : clinical patient reacting to surgical stress (y-scale: 0.1 s/div). Rf. no vagal tone (i.e., no heart rate variability -
theoretical state). (b) Result of the best wavelet and frequency band selection. Note that no post-processing filtering 
is required due to a long analysis epoch. 

high frequency band). The resulting W A V A N S metrics is expressed in the 0 - 1 0 0 % scale, where 0 % represents 

deep relaxation, and 1 0 0 % represents the total lack of parasympathetic activity. 

5.3.3 Implementation Issues 

Even though the W A V A N S is based on similar principles than the W A V C N S J the nature of the H R V differs 

considerably to that of the E E G . As a result, the implementation of the W A V A N S needs to account for the 

various specificities of the H R V signal. 

HRV Signal Acquisition New H R V samples are only available at each heart beat. The R-peak of 

the E C G is used as a triggering event to measure the beat-to-beat interval. The temporal resolution of 

the R-peak is therefore particularly important to guarantee an adequate H R V resolution. In the current 

implementation, we use an E C G sampling rate of 960 S/s, which results in a temporal resolution close to 

1 ms. 

A spike detection algorithm detects the peak of the R-wave. Artifacts are detected by analyzing the 

E C G signal between two consecutive R-peaks. If the beat-to-beat waveform differs considerably from a 

reference waveform, or if the beat-to-beat interval is much smaller or larger than previous measurements, 

an artifact flag indicating that the current R - R interval may be corrupted is activated. This flag is used in 

the processing algorithm to limit the effect of corrupted H R V samples on the W A V A N S -
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D a t a flow In the current implementation, the H R V is sampled at the same sampling frequency than the 

E C G signal. A zero-order-hold is used to hold the R - R interval value between each heart beat. The signal is 

then resampled at a rate of 0.8 samples per second using a resampling filter bank. This choice of sampling 

frequency is motivated by the results found in Section 5.3.2. 

As compared to the W A V C N S implementation, the W A V A N S is updated at every new H R V sample. This 

results in an update rate of 1.25 second. Also, the S W T decomposition is calculated based on the last 

2-minute of H R V data (96 samples) in order to have enough wavelet coefficients to derive a meaningful 

P D F . 

Note that, due to the large size of the analysis window (2 minutes), there is no need for further post

processing filtering. 

A r t i f a c t s Dealing with corrupting artifacts is also challenging. 

For E E G analysis, epochs containing samples corrupted by artifacts can be rejected without impairing 

significantly the availability and reliability of the W A V C N S - A similar strategy is not applicable for H R V 

analysis. It would indeed result in a large amount of data loss during, e.g., periods of electrocautery 

activity 1 , as it would be necessary to wait at least a complete H R V period (in this case 2 minutes) to obtain 

the next artifact-free H R V epoch. As a result, even H R V epochs containing corrupted samples are used in 

the W A V A N S calculation. 

It is therefore necessary to limit the effect of artifactual H R V samples on the W A V A N S calculation. 

In order to do so, wavelet coefficients obtained from corrupted samples must be removed from the P D F 

calculation. Because of the convolution operation, each corrupted H R V sample results in the removal 

of / wavelet coefficients, where I is the length of the high-pass wavelet filter. It is therefore particularly 

interesting to use low order wavelet filters to limit the effect of corrupted samples due to the convolution 

operation. In the current implementation, we use a 4 t h order F IR wavelet filter (Daubechies #2). Note 

that, if there are less than 32 valid wavelet coefficients left to carry out the P D F calculation, the H R V epoch 

is discarded. The W A V A N S value is then hold t i l l the next cycle. If more than 12 cycles (corresponding to 

15 seconds) have elapsed since the last W A V A N S update, the monitor sends a warning message to the user 

and stop displaying the index. 

5.3.4 Case Repor ts 

Three female patients undergoing hysterectomy procedures were induced with a combination of propofol 

and remifentanil (Case #1), or propofol and fentanyl (Case #2 and #3). After securing the airway, 

maintenance was insured by a background inhalational anesthetic supplemented by opioid boluses. In all 

cases, the patients were maintained in a hypocapneic state by mechanical ventilation (8 breaths/minute). 

Aside from the W A V A N S , all the data presented here were obtained on-line. The W A V C N S was obtained 

'interferences due to electrosurgical units have been identified as the most perturbing operating room noise for ECG 

acquisition devices [163]. 
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directly from a 2-channel frontal electroencephalographic montage. The W A V A N S was calculated off-line 

based on a 3-lead E C G signal. Intra-operative events and the anesthesiologist's assessment of the patients' 

state were logged in by an independent observer. In Case #2 and #3, the observer also recorded manually 

the heart rate, blood pressure (each time this measurement became available), the M A C value and the 

anesthetic titration. 

Case #1 (see Figure 5.18) Following the initial propofol/remifentanil induction bolus, the patient's 

A N S state reached a low 'relaxed' level. Upon the start of surgery (multiple skin incisions), the patient's 

heart rate and blood pressure in-creased significantly. This increase was mirrored by a significant increase 

in the W A V A N S index. At 0h35, the patient was deemed 'light' by the anesthesiologist. Similarly, the 

W A V A N S reached a high value (>60). A t 0h45, a large bolus of fentanyl was administered, provoking a 

marked drop in the W A V A N S index. In 2 other instances, the anesthesiologist estimated that the patient 

was light (increase in heart rate and blood pressure). In these 2 instances, the W A V A N S also reached 

higher levels. From this case, it appears that a W A V A N S level of 70 (and above) is associated with a higher 

incidence of significant autonomic reaction to surgical stimulation. The large drop during emergence (2h35) 

can be due to a change in respiration pattern, as neuro-muscular blockade was reversed to allow extubation 

(the patient was spontaneously breathing at 2h30). Note that the W A V C N S reached a very low level (<30) 

during most of the procedure, thus indicating a rather deep hypnotic state. Following the indication of both 

C N S and A N S monitors, it appears that the sedation vs. analgesia balance was tilted towards the sedation 

endpoint. Ad hoc analysis of this case indicates that increasing the analgesia titration while decreasing 

hypnotic dosage would have been beneficial to this patient. The benefit of dual CNS and A N S monitoring 

is evident in this case. 

Case #2 (see Figure 5.19) The W A V A N S peaked 5 times during this case. The first 2 peaks (0h30 

and 0h35) correspond to the most stimulating part of the surgery involving large skin incisions. Blood 

pressure and heart rate increased in response to the stimulation which prompted the anesthesiologist to 

give a fentanyl top-up dose. The next 3 W A V A N S peaks (0h55, lh lO, lh20) were also characterized by an 

increase in heart rate and were correlated to short episodes of electrocautery activity. In all instances, the 

duration of autonomic activation was very short (2-3 minutes) and may not have been captured by the 

blood pressure measurement (updated only every 5 minutes). Finally, at the time of 'adequate anesthesia' 

(as per the anesthesiologist's assessment), the W A V A N S was less than 50. 

Case #3 (see Figure 5.20) As compared to the previous 2 cases, the W A V A N S was, in average, less 

than 50 during most of the surgery. Similarly, there was no indication of a 'light' analgesic state during the 

whole procedure. Both the heart rate and blood pressure were stable. The absence of peak in the W A V A N S , 

or sudden increase in heart rate and blood pressure can be explained by the fact that this surgery is not 

as invasive as in the previous cases (limited skin incisions). Interestingly, the increase in W A V A N S towards 
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Figure 5.18: Case report #1 - Female patient, 55 years old, undergoing an hysterectomy procedure. The large gaps in 
W A V A N S index correspond to periods of time heavily corrupted by electrocautery artifacts (the H R V signal could not 
be obtained from the E C G signal). Electrocautery also affected the EEG signal and created data loss in the W A V C N S 
(indicated by vertical bars in the hypnosis index). The 'patient light' events correspond to the anesthesiologist's 
assessment of the patient during the surgery. Periods of intense electrocautery activity are indicated (it is assumed 
that they coincide with surgical noxious stimulation). 

the end of the case mirrors the decrease in M A C value. This is consistent with the fact that M A C is a 

measure of the analgesic potency of the administered vapour. Upon emergence, the patient reacted to the 

anesthesiologist's voice, but was not able to respond to verbal commands. 

These 3 cases illustrate how surgical stimulation triggers abrupt changes in heart rate and blood pressure. 

These abrupt changes are used by anesthesiologists to identify the presence of excessive autonomic acti

vation, and then to proceed to take appropriate pharmacological action. Conversely, the W A V A N S is a 

bounded and population-normed metric. As such, it can be used as a predictor of autonomic activation. 

For instance, in Case #1, the trend of the index shows that the patient's state is getting increasingly lighter 

(from 0h50 to lh40), up to the point where the patient did actually react to the surgical act. Also, the 

index was quite high during the second half of the surgery, indicating the need to deepen the analgesic 

state. Conversely, in Case #3, the index was quite low and steady throughout most of the surgery. This is 

consistent with the rather aggressive sevoflurane titration (MAC>1.0) in a surgery involving only minor skin 

incisions and moderate stimulation. This may also explain the prolonged emergence. Finally in Case #2, 

the number of W A V A N S 'spikes' and their rather short duration may indicate an overall shallow analgesic 

state that resulted in strong and acute autonomic activation whenever surgical stimulation was present. 

These preliminary results are very encouraging. It appears that the W A V A N S has the potential to 
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Figure 5.19: Case report #2 - Female patient, 39 years old, undergoing a hysterectomy procedure. The heart, rate 
(top graph) was calculated ad hoc based on the E K G . The blood pressure from the cuff sensor was recorded manually 
each time this measurement was updated by the anesthesia monitor. 
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Figure 5.20: Case report #3 - Female patient, 38 years old, undergoing a laparotomy procedure. Due to the nature 
of the surgery, skin incision was kept to a minimum. 

provide a guide for analgesic titration and guarantee patients' safety from a hemodynamic standpoint. It 
is important to point out, however, that this study suffers from a number of limitations: 

- First, the W A V A N S was calculated off-line. Artifactual periods were visually reviewed in order to 
facilitate the detection of the R-peak and limit the amount of data loss. Unfortunately, the limitation 
of the front end amplifier in attenuating the ESU interference resulted in large gaps in the H R V signal, 
which precluded the calculation of the W A V A N S for long periods of time during the most important 
part of the surgery. 

- Also, the 3 patients were mechanically ventilated, i.e., the effect of a change in the respiration pattern 
cannot be inferred from this data. The analysis algorithm was specifically tuned for 8 breaths a 
minute, so a different respiratory rate may have resulted in different W A V A N S levels {e.g., the abrupt 
W A V A N S drop at the end of Case #1 can be attributed to an erratic and rapid breathing pattern). 

- Finally, this audit was simply an observational study, i.e., the administration of opioids and change 
in gas concentration often coincided with surgical stimulation. It is therefore difficult to identify the 
contribution of noxious stimuli from the effect of opioids from the analysis of the W A V A N S -

It is evident that more clinical data obtained under precisely defined clinical protocols are needed in order to 
further develop the proposed W A V A N S index and assess its robustness in a clinical setting. In particular, it 
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will be important to clearly demonstrate the existence of a dose/response relationship between the W A V A N S 

and drug dosage. 

5.4 Dynamic Behavior 

We conclude this Chapter by deriving deriving transfer functions for both indices in order to model their 

dynamic behavior in response to changes in the patient's state. 

W A V C N S Transfer F u n c t i o n The elements dictating the W A V C N S dynamic behavior are the second 

order IIR low pass filter used to extract the main index trend (characterized by a cutoff frequency wo and a 

damping factor C), and the 1-second update rate (zero-order-hold element). As a result, the sensor dynamics 

can be represented by the following LTI transfer function: 

Hcm(s) = , 0 / ° — j • — — (5.24) 
s z + 2 • C • wo • s + OJQ S 

W i t h the current W A V C N S implementation, £ = 1 and UJQ = 0.02 Hz: 

" C N S ( S ) = (8^W • ̂  (5'25) 

If we assume no a priori knowledge about the W A V C N S sensor dynamics, an identification procedure can 

be carried out using a database of various E E G signals corresponding to known sensor values. To illustrate 

this procedure, we consider the 5 data sets used for the derivation of the W A V C N S in Section 5.2.1.3. Each 

of these data sets corresponds to a stationary hypnotic depth: 

W A V C N S : {Ra, Tu T2, T3, Rb} -+ {98,78, 56,19,0} [%] (5.26) 

A composite E E G signal is first obtained by arbitrarily selecting E E G epochs from each of the 5 data sets, 

see Fig . 5.21. A n identification input signal is then obtained by attributing to each of the E E G epoch the 

corresponding W A V C N S value according to (5.26). Finally, the composite E E G signal is processed by the 

sensor algorithm to yield an output identification signal. The sensor dynamic ffcNs(s) is further identified 

by a least square estimation algorithm. In this case, the identification procedure resulted in a second order 

transfer function plus delay: 

^ w = a»- .+*-Ur ' .+ !)••"• ( 5 2 7 ) 

The difference between the identified (5.27) and the analytic (5.25) functions is negligible in the low fre

quency range, see Fig. 5.22. Differences are more apparent for higher frequencies. This discrepancy results 

from the limited input identification signal bandwidth (<1 r a d s - 1 in this case) and the identification 

method whose accuracy can not be guaranteed near the 1 Hz sampling frequency. Since it is unlikely that 

the controller cross-over frequency be placed in this frequency range, no further refinements are necessary. 
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Figure 5.21: Experiment design for identifying the sensor dynamics. The E E G signal is composed based on E E G 
epochs arbitrarily chosen from a database of signals. The input identification signal corresponds to the simulated 
patient's instantaneous state (direct correspondence with the source E E G signal), while the output identification 
signal is the W A V C N S -
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Figure 5.23: Accuracy of H C N S and -HANS for predicting the W A V C N S and W A V A N S time courses calculated for 
various step changes, (a) The -ffcNS is able to predict accurately the W A V C N S time course, (b) The -HANS is an 
approximation of the index dynamics. As such, some discrepancies between measured and predicted outputs exist. 
Also, there is a noticeable index variation in T 3 . This can be the result of the fact that the patient state was not as 
stable as in the other states.) 

W A V A N S Transfer Function Following the proposed implementation, the W A V A N S dynamic is equiv
alent to a 2 minutes moving average due to the selected length of the H R V period upon which the analysis 
is carried out. Considering that the index is updated every 1.25 seconds, the W A V A N S transfer function 
can be expressed as: 

1 95 

y» g-i-25-, # A N S ( S ) 
1 

96 
.1 - e -1.25s 

(5.28) 
fc=0 

The moving average filter can further be approximated as a first order transfer function whose time constant 
is one half the moving average window: 

HANS(S) 
1 

(60 • s + 1) 
1 -e ' -1.25-s 

(5.29) 

The performance of H C N S and . H A N S was assessed by comparing the time course of the indexes vs. their 
predicted time courses, see Figure 5.23. This test was done based on source signals (EEG or R R ) obtained 
from a combination of the initial data sets. 

The HCNS was found to be remarkably accurate in predicting the W A V C N S time course. Conversely, 
the transfer function H A N S is only a coarse approximation of the W A V A N S dynamics. This result can 
be improved by reducing the W A V A N S analysis window and adding a post processing I IR trending filter. 
However, this would reduce the number of wavelet coefficients, which might in turn decrease the resolution of 
the PDF waveform and increase the measurement noise, while making the index more sensitive to artifacts. 
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5.5 Summary 

The search for anesthesia feedback sensors has motivated the development of a methodology to analyze 

and characterize non-stationary physiological signals. This methodology, referred to as W A V , uses wavelet 

decomposition to capture rapid signal changes in both time and frequency. The statistical representation 

of the wavelet coefficients using probability density functions allowed us to derive bounded metrics, thus 

quantifying the signal into a pre-defined scale. The flexibility of wavelets can be used as an advantage to 

tune the static characteristic of the index in order to reflect the anesthesiologist's assessment. 

We applied this methodology to the analysis of E E G signals in an attempt to quantify patients' cortical 

activity. The resulting index, the W A V C N S , has demonstrated superior dynamic performance as compared 

to today's leading monitoring technology. Also, to our knowledge, the W A V C N S is the only index of cortical 

activity whose dynamics are linear and can be expressed as an LTI transfer function. As such, it is an 

attractive solution for use as a feedback sensor for advisory and close loop systems, and to identify the 

pharmacodynamic models of anesthetic drugs. 

The W A V methodology has also demonstrated strong potential for use in the analysis and characteriza

tion of the H R V signal. The case reports presented here show that the W A V A N S was representative of the 

anesthesiologist's assessment of the patient's analgesic state. In particular, all intra-operative events leading 

to a significant change in heart rate and blood pressure were well correlated with an elevated W A V A N S value 

(for instance, a W A V A N S level of 7 0 was associated with a higher incidence of significant blood pressure 

and heart rate change). In addition, the administration of opioids (fentanyl, hydromorphone) was followed 

by a decrease in the W A V A N S index. Similarly, changes in M A C value seemed to be well correlated with 

changes in W A V A N S -

It is likely that other applications can benefit from the W A V technology, e.g. automatic sleep scoring, 

depression and Alzheimer's decease diagnosing, etc... As of today, our Group has invested considerable 

time and efforts into the development and validation of the W A V C N S - The intellectual property is now 

protected [164], and a commercial device integrating this technology should become available in mid-2006 

(NeuroSENSE™ Monitor, Cleveland Medical Devices Inc., OH). 



Chapter 6 

A System Oriented Approach to 
Pharmacodynamic modeling 

We exposed in details in Chapter 3 the approach to pharmacokinetic (PK) and pharmacodynamic (PD) 

modeling favored by pharmacologists. In terms of pharmacokinetics, the models proposed in the literature 

are consistent. The use of the N O N M E M analysis software has enabled clinicians to improve the fit of 

P K models by including patients' biometric data (weight, lean body mass, age, etc.). The inclusion of P K 

models within commercial T C I systems are a testimony to their reliability and acceptance from the clinical 

community. 

In terms of pharmacodynamics, the situation is different. The latest P D studies carried out for intra

venous anesthetic drugs have yielded contradictory results and large inter-individual variability in some 

of the parameters. Furthermore, P D models in the literature were derived specifically for use with one 

particular sensor, and thus, cannot be readily used to predict the time course of an effect measured by 

different sensor. It is our belief that the traditional modeling approach deserves to be revisited from a 

system engineering perspective. 

In this chapter, we propose a system oriented approach to P D modeling. This approach is detailed in 

the first section following a discussion of the limitation of the traditional approach. The new approach is 

then applied to the modeling of propofol vs. W A V C N S using the induction data from 44 patients undergoing 

various ambulatory surgeries. The traditional approach is also carried out for comparison purposes. 

We show that the system oriented P D approach yields better fit and predictive performance. Further

more, the resulting P D model is independent of the sensing technology used to observe the effect. Finally, 

we also show that the traditional approach can lead to strongly colored residuals, which, in turn, affects 

the accuracy of the static dose vs. response characteristic of the drug. 

6.1 A New System Oriented Approach to PD Modeling 

This section presents in detail a P D modeling approach based on standard system engineering know-how. 

95 
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Figure 6.1: Traditional PD model block diagram. 

To better grasp the fundamental differences between this system-oriented approach and the traditional 

pharmacological approach (also referred in the following to as Sheiner's approach), we first bring a critical 

look to the traditional approach previously discussed in Chapter 3. 

6.1.1 Sheiner's Approach 

The approach described in Chapter 3 can be summarized under the form of the block diagram of Fig. 6.1 

where the P D model expresses the relationship between a quantified effect Eq and the plasma concen

tration Cp of a given drug. This relationship is thus expressed as a Wiener type model, where a Linear 

Time Invariant (LTI) function is followed by a non-linear element to capture the static dose vs. response 

relationship. 

In this approach, PD(s) is a first order transfer function with a unity gain. It expresses the drug 

concentration Ce within the target organ as a function of the plasma concentration. The transfer function 

PD(s) is uniquely defined by the effect site rate constant keo, which is the rate at which the effect-site 

concentration equilibrates with the plasma concentration, see (3.13). The addition of this function to the 

classical dose/response curves was proposed by Sheiner et al. [114] in 1979 in an attempt to collapse the 

'hysteresis' loop observed when plotting the effect vs. the plasma concentration during rapid administration 

of the drug, see Fig . 3.9.b. 

The non-linear function which relates the quantified effect to the effect site concentration is handled 

by a Hi l l equation in order to capture the sigmoid characteristic of the saturation of the dose vs. response 

curve. This saturation can be particularly severe when considering an effect that can only be measured 

over a limited portion of the drug therapeutic window. For slowly varying plasma concentrations, PD(s) 

can be neglected, in which case the P D model can be simplified to the classical dose vs. response curve 

expressed by the Hi l l equation. 

While Sheiner's approach has been the standard in P D studies since 1979, P D models are known to suffer 

from a limited accuracy, large patient variability and strong non-linearity. In particular, the traditional P D 

approach suffers from three major limitations, which might explain its overall poor performance: 

1. use of a measured input signal even though this signal is not readily available, 

2. use of a limited L T I model order that fails to capture all of the system dynamics, and, 

3. inherent assumption that sensor dynamics are negligible. 
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These limitations are discussed in more detail below. 

For illustration purposes, we consider the 6 published P D studies reported in Table B.2 which involve the 

effect of propofol on electroencephalographic variables. These studies are recent (1997-2002) and originate 

from different research centers (USA, U K , Japan and The Netherlands). As such we believe that they are 

a good representation of the current state-of-the-art in P D modeling practices. 

P r e d i c t e d vs . M e a s u r e d P l a s m a Concen t r a t i on In most studies, the plasma concentration Cp is 

measured through blood sampling. There are different scenarios as for the use of these blood samples. 

Some authors (e.g., Schnider et ai, White et ai, and Ludbrook et al.) first derive their own P K model in 

order to predict the time course of the plasma concentration, which they further use with the corresponding 

measured effect to identify the P D parameter set. This method is referred to as the parameteric method. 

Others (Schnider et ai, White et ai, and Kuizenga et al.) use a connect-the-dots method to extract the 

time course of Cp and adjust the keo value to collapse the hysteresis loop, and further, identify the dose 

vs. response curve. In particular, Kuizenga uses linear interpolation between two consecutive measured 

samples during increases in blood concentration, as well as a logarithmic interpolation between measured 

concentrations during decreases in concentrations. This method is usually referred to as the non-parametric 

method. 

While both methods seem appropriate, the blood plasma concentration of the drug is usually not 

available in real time. Hence, the advantage of the parametric method lies in the fact that a P K model 

is given in order to predict the plasma concentration time course. The method can be used to implement 

on-line algorithms for drug effect prediction. However, questions can arise as to the validity of P K models 

derived on a very limited number of patients, as compared to dedicated P K models derived in studies 

involving hundreds of subjects and using the latest identification methods. 

As for the P D models developed by the non-parametric method (i.e., where the input identification 

data are measured instead of predicted), one can reasonably argue that these models are probably closer to 

expressing the true pharmacodynamics of the drug. However, their usefulness remains limited as long as 

no direct real-time plasma concentration measurement is available. 

In a minority of P D studies, authors use third party P K models to predict the plasma concentration 

time course. For instance, Kazama et al. have used the Gepts et al. propofol P K model (see Table B . l ) . 

The blood samples were then used to validate the P K model output. Cases which strayed too far from 

the predicted plasma concentrations were rejected from the analysis, thus yielding a more consistent P D 

parameter set. 

It appears that the parametric approach is the only approach yielding direct applications (providing 

the P K parameter set is disclosed by the authors). However, the limited amount of data used to derive the 

P K models can be a significant factor limiting the reliability of the overall P K P D model. In that respect, 

the effect of the P K model in P D studies has been discussed in a 2003 study by Minto et al. [165]. The 

authors concluded that substituting the P K set used to predict the plasma concentration in the P D study 
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with another P K set will yield significantly different results, mostly during transient phases. 

Inadequate L T I M o d e l S t ruc tu re The effect vs. plasma concentration 'hysteresis' phenomenon has 

received considerable attention since the original work of Sheiner. The idea of collapsing the hysteresis 

loop 1 using an additional fictitious P K effect-site compartment can be particularly attractive to clinicians 

and pharmacologists, as it provides a physical meaningful explanation for the effect lag, and a way to 

mathematically express it in the well-known framework of compartmental mamillary models. 

In Sheiner's approach, one would try to collapse the 'hysteresis' loop through a first order transfer 

function with unity gain (3.13). We can see in Figure 6.2.c-e how the selection of the model time constant 

keo affects the width of the loop. As keo decreases, the loop collapses and then inverts. When keo equals the 

system time constant, we obtain a perfect equilibration between the measured and predicted time courses. 

However, as with any identification procedure, the goodness of the fit between measured and predicted 

time courses depends both on the quality of the identification data, and the selection of the model order 

and structure. In the case presented in Figure 6.2, the model has a similar structure to that of the system, 

which explains the success of this approach. However, when the system dynamics are more involved than 

that of the model, the traditional approach can easily yield poor results. In particular, a mis-modelled time 

delay can result in a smaller time constant keo, since this constant now captures both the system first-order 

and time delay dynamics. This is illustrated in Figure 6.3. 

Another important implication is that the residuals (i.e., the error between the measured and predicted 

time courses) may be strongly biased. This can result in a stronger non-linear characteristic if a Hi l l non

linear saturation is derived to further minimize these residuals. For instance, in the example of Figure 6.3, a 

non-linear H i l l saturation was added to improve the goodness of the fit between the measured and predicted 

outputs. Even though the system is linear, the model now includes a non-linear element, which is a direct 

consequence of not including all of the linear dynamics in the LTI part of the model. 

A n important consequence of this result is that P D models derived based on Sheiner's approach may 

only provide an adequate fit for input signals similar to those used during the identification procedure. If 

a different input signal is presented to the system, the model will fail in predicting adequately the system 

output. For instance, it is clear in the example presented in Figure 6.3 that the system output will not be 

accurately predicted for a slow varying low amplitude input signal due to the Hi l l saturation. 

It appears therefore particularly important that a thorough analysis of input/output data be performed 

^ote that the term 'hysteresis' is used here inadequately since the width of the loop depends on the rate of administration 

of the drug. For instance, the loop is much wider for bolus administration than for a constant drug infusion. It will then be clear 

to anyone well-versed in system modeling and identification that the 'hysteresis' phenomenon results mostly from unaccounted 

dynamics between the plasma concentration and the effect, rather than from a true non-linear hysteresis in the system. This 

can be easily illustrated in the example presented in Figure 6.2, where we consider a simple first order system. This system 

is subject to a given input signal. Using a measurement of the output, it is possible to derive an input vs. output plot which 

shows the disequilibrium generated by the system first order dynamic, see Figure 6.2.b. Even though this plot resembles to 

that of an hysteresis, there is no such element in the system, which is actually perfectly linear. 
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Figure 6.2: Example of the 'hysteresis' phenomenon observed between the drug plasma concentration and the 
corresponding effect, (a) In this example, an output signal is obtained from a first order system, (b) Plotting the 
output vs. input relationship yields the 'hysteresis' curve described by pharmacologists. By tuning appropriately the 
rate constant fceo of a first order model, one can collapse the loop, (c) Under-compensation: the rate constant is too 
large, (d) Perfect equilibration. Note that the measured vs. predicted characteristic is linear (i.e., in this case, a Hill 
saturation would not improve further the fit), (e) Over-compensation: the rate constant is too small, which results 
in an inverted loop. 
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Figure 6.3: Effect of a pure time delay, (a) A pure 10 seconds time delay was added to the true system of Figure 6.2. 
(b) Plotting the output us. input relationship yields a 'hysteresis' curve similar to that of the previous example 
(i.e., there is no discriminating feature which can stress out the presence of a delay), (c) Under-compensation. (d) 
Equilibration. Note, however, that the rate constant is now about 6 times smaller than the true time constant of 
the system. The first order model therefore mostly captures the time delay dynamics. The model is just a coarse 
approximation of the true system. Even though the 'hysteresis' loop is reduced, the error between the predicted 
output and the measured output becomes quite large, (e) Over-compensation. 



CHAPTER 6. A SYSTEM ORIENTED APPROACH TO PHARMACODYNAMIC MODELING 101 

PR's) 
\ 

PD(s) 
\ \ 

H(s) 
\ 

Scaling Junction 

—+  E l 
Quantified effect 

Pharmacokinetic Model Pharmacodynamic Model Sensor 

Figure 6.4: Block diagram of the proposed system oriented approach to PD modeling. 

to determine the optimal L T I model structure. The non-linear saturation should only be added once all of 

the system linear dynamics are accounted for by the LTI part of the model, that is, once the residuals are 

white and show no correlation to the input signal. 

While the example of Figure 6.3 illustrated the effect of a time delay unaccounted in the model structure, 

similar results are obtained when considering higher order systems. Note that Sheiner et al. in their original 

1979 paper reported that a limitation of their technique is that "its kinetic simplicity may cause it to be 

inadequate to describe complex pharmacodynamics". 

Sensor D y n a m i c s A major part of the drug effect dynamics can be directly related to the sensor dynamic 

whose output filter extracts the main trend out of the raw data. Sensors typically introduce delays, low 

pass filtering, and sampling dynamics. They might also be responsible in part for the non-linearity of the 

dose vs. response relationship. In Sheiner's approach, these dynamics are implicitly included in the P D 

model. As a result, a P D model is limited to the feedback sensor used for its identification. Hence, each 

time a new sensor is introduced, the P D identification procedure must be repeated. Also, any change in 

the signal processing algorithm of the sensor will make the corresponding P D model obsolete. 

Out of the 6 P D studies, 4 used the BIS index, 1 used auditory evoked potentials and 1 used the 

semilinear correlation index. Differences between the P D parameter sets can be explained by differences in 

these feedback quantities. Hence, only the 4 studies involving BIS can be reasonably compared. 

This aspect of pharmacodynamics was already alluded to by Kazama et al. who tried to remove the 

influence of the BIS averaging filter by shifting in time the BIS data in order to synchronize them with the 

plasma concentration time course predicted by the T C I pump. Even though the resulting P D model does 

not exactly predict the BIS time course, it is more consistent than P D models obtained in other studies 

(lesser patient variability). 

6.1.2 Proposed Methodo logy 

To alleviate these limitations, we propose to revisit pharmacodynamic modeling from a more systematic 

system engineering point of view. As a guide for this discussion, we consider again the example of the effect 

of an anesthetic drug onto the brain. 

While the exact mechanism of action of anesthetic drugs is still debated, it has been shown that drugs 
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such as barbiturates, benzodiazepines and propofol exert their pharmacological action at the level of the 

7-aminobutyric acid ( G A B A ) receptors. The G A B A is one of the major inhibitory neurotransmitter in 

the brain. Its role is to counterbalance the influence of excitatory neurotransmitter. B y mimicking its 

structure, anesthetic drugs bind themselves to the cell receptors, thus sending false information and shifting 

the excitatory balance towards relaxation. Hence, the effect of anesthetic drugs can be well understood 

when considering the percentage of bound G A B A receptors of each individual cell in the brain. Depending 

on the proximity of blood vessels, and thus the bio-availability of the drug, this percentage is going to evolve 

in time. 

Unfortunately, the effect at the cellular level cannot be readily measured. However, the combination 

of each individual cellular effect will result in a number of macroscopic effects which can be observed and 

quantified. For example, as an increasing number of receptors is occupied by the drug, loss of consciousness 

and memory formation can be observed. The depression of the C N S will result in a drop in heart rate 

and blood pressure. Similarly, changes in the E E G patterns can be observed. These E E G changes can be 

further quantified into a unique value {e.g., the W A V C N S ) through the signal processing technique described 

in Chapter 5. 

Hence, when considering the pharmacodynamics of anesthetic drugs, one can consider the effect of a 

given drug concentration in the blood perfusing the brain onto the E E G signal itself. We can take here the 

assumption that this relationship can be adequately described by a LTI transfer function followed by a non

linear function. The LTI element captures the dynamics between the percentage of bound G A B A receptors 

and the plasma concentration. The non-linear function, in turn, models the saturation phenomenon proper 

to E E G changes: a low number of bound G A B A receptors will have no quantifiable effects on the E E G , 

while no increase in the number of bound receptors will provoke any further change in the E E G when the 

complete suppression of cortical activity is reached. 

The patient system can thus be modelled using the block diagram of Fig . 6.4. As compared to the 

traditional approach, the plasma concentration Cp(s) is obtained using a well defined P K model derived for 

arterial blood concentration. Furthermore, the pharmacodynamics are now limited to the effect of the drug 

onto an observable physiological signal (and not its quantified correspondent). In this scheme, the sensor 

dynamic is thus a separate entity all together. Also, no a priori decision is made as to the structure of 

PD(s), which can be any reorder plus delay transfer function: 

p D ( s ) = E 1 { s ) ^ e ^ . s b m - s m + b m . 1 - s ^ + . . . + b 1 - s + ao^ 1 
w Cp(s) s n + o „ _ i • s""1 + . . . + ax • s + an 2 • E C 5 0 ' ~  y ' J  

Residual analysis should be performed to validate the selected model structure. 

In this approach, the pharmacodynamic model establishes the relationship between the observable effect 

E0bs and the plasma concentration. E0bs is bounded between 0 (no effect) and 1 (maximal effect which 

can be observed in the E E G signal). The term EC50 represents here the steady-state plasma concentration 

necessary to obtain 50% of the measurable effect. Conversely to the traditional approach, the non-linear 

element does not express the dose vs. response relationship. It only models the saturation of the effect 
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with respect to the dose. This saturation can be expressed using the Hi l l relationship, which is essentially 

a non-linear function that can be represented as a variable steady state gain in the frequency domain, see 

Section 6.3.4 and Section 7.2.1.2: 

El 
Eobs = o 5 7 + E i =* 0<Eobs<l (6.2) 

Note that the non-linear element is defined here entirely by the steepness coefficient 7. 

Finally, the quantified effect Eq is obtained through filtering and scaling. The sensor filter H(s) is 

essentially a unity gain element, while the scaling function is an affine function defined by two scaling 

parameters: Emax and EQ as follows: 

Eq = {Emax — Eo) • E0bs + EQ (6.3) 

It is interesting to note that, as compared to Sheiner's approach, the static dose vs. response curve is 

obtained by considering the non-linear function (6.2), the static gain of PD(s) and the scaling function of 

the sensor: 
C 7 

Eq,ss = {Emax ~ EQ) • Y ' 7 b Eo (6.4) 

where CPiSS is the steady state blood plasma concentration of the drug. 

Similarities between the traditional approach and the new system oriented approach are obvious. The 

traditional approach can be viewed as a simplification of the proposed approach, where the non-linear 

function has become an output non-linearity, and where the traditional PD(s) now captures both the effect 

and the sensor dynamics. However, it is clear that this is an over-simplification, which results in significantly 

degraded modeling performances. 

6.2 Application to Propofol and W A V C N S Index 

In this section, we derive a P D model for Propofol following both the traditional P D approach, and the 

new system-oriented methodology presented in Section 6.1.2. The models derived here aim at predicting 

the time course of the W A V C N S following intravenous propofol administration. 

6.2.1 C l i n i c a l D a t a 

To identify the pharmacodynamic model of propofol, we are using here the induction data collected during 

the L M A study (see Annex D.2). In this study, the W A V time course during propofol induction was 

observed in 76 patients. The L M A insertion can provoke a strong reaction but is not as stimulating 

as the endotracheal intubation. The L M A study has revealed that patients that do react to the L M A 

insertion (jaw tone, coughing, swallowing, grimacing, etc.), had also a significantly different W A V time 

course. Furthermore, most of the reaction cases elicited an E M G activation, which resulted in an elevation 

of the W A V during the insertion itself. Hence, the L M A insertion can be considered to be a typical output 
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disturbance. Among the 76 patients of the study, 51 patients aged 18 to 60 years did not elicit any strong 

airway reaction to the insertion. To avoid having the L M A reaction acting as a disturbance in the output 

identification signal, only these 51 cases were considered for this analysis. 

In the L M A study, the start and end of the propofol injection were recorded as well as the L M A 

insertion time. Even though gaseous anesthetic drugs were given once the patient's airway was instrumented, 

it is usually assumed that these drug have only a marginal effect in the first 2 minutes following their 

administration. Hence, the identification window was chosen to start at the propofol injection, and to stop 

90 seconds after the L M A insertion. Three cases had insufficient data to cover the whole identification 

window. These cases were withdrawn from the analysis. 

In order to keep consistent results, it was further decided to eliminate all cases whose W A V during 

induction reached values lower than 10. It is indeed possible that a saturation phenomenon can affect the 

W A V time course in the lower W A V values, which in turn would result in a significantly different dynamics. 

Two cases were excluded based on this criteria. 

Finally, two more cases were withdrawn from the study due to a large E M G activation observed after 

the L M A insertion. These cases were characterized by strong extremity movements, but no airway reaction. 

A total of 44 cases were thus compiled for the identification procedure. As compared to other published 

P D studies, this is the second largest study in terms of patient population. These cases were further 

subdivided into 4 age groups (18-29 yrs; 30-39 yrs; 40-49 yrs and 50-60 yrs) to assess if age represents a 

covariate factor in the P D models. 

Note that a potential limitation of this study is the co-administration of a fentanyl bolus as part of 

the induction sequence (usually about 1 minute prior to the propofol administration). In this analysis, we 

neglected the effect of this fentanyl dose. Even though some synergism might have occurred, it is a well 

documented fact that the propofol/opioid synergism is not very acute in terms of hypnosis. 

6.2.2 P D Identification - Traditional Approach 

The identification procedure for the traditional P D approach can be divided into three stages. A n illustrative 

example is given in Fig . 6.5.a. 

Stage #1: Plasma Concentration Profile To identify the pharmacodynamic parameters, it is neces

sary to first calculate the time course of the propofol plasma concentration based on the infusion profile. 

To achieve this, a number of P K models can be used. We select here the parameter set from Schiittler 

and Ihmsen (see Section 3.1.3) since it is derived based on a large adult population (20 to 60 years) and 

incorporates both the age and weight as covariates. Also, one advantage of Schiittler's P K set is that the 

parameters can be adapted for a bolus-type administration, which is necessary when using induction data. 

Stage #2: Effect Dynamic Identification Once both the input Cp and output W A V C N S data are 

defined, the effect dynamic PD(s) is identified based on a least square optimization algorithm, where the 
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Figure 6.5: PD identification illustrative example (patient #52). (a) Traditional approach (b) System oriented 
approach 

square of the error between the measured and predicted effects is minimized. This yields the effect rate 

constant keo. This method is essentially identical to that of the 'hysteresis' collapse method. 

Once keo is identified, PD(s) is defined such as in (3.13) and used to estimate the effect-site concentration 

Ce. 

Stage # 3 : H i l l Pa ramete rs Ident i f ica t ion The Hi l l parameter set {EC50,7} is finally identified using 

Ce and the measured W A V C N S values. A search algorithm compares the predicted vs. measured W A V C N S 

and selects the Hi l l parameters to minimize the root mean square (RMS) of the residuals. 

During the identification analysis, the R M S of the residuals is used as a minimization criterion to 

optimize the fit between the predicted vs. measured effect. Other criteria, such as the performance indexes 

presented in Section 6.3.2, can also be used. 

6.2.3 P D I d e n t i f i c a t i o n - N e w A p p r o a c h 

The identification procedure for the system oriented approach is more convoluted as it involves knowledge 

of the sensor dynamics and the identification of a time delay. A n illustrative example is given in Fig . 6.5.b. 

Stage # 1 : P l a s m a C o n c e n t r a t i o n Prof i le Similarly to the traditional approach, Schiittler's P K 

models are used to predict the time course of the propofol plasma concentration. 
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Figure 6.6: Block diagram used in stage #3: the non-linear element is omitted and the sensor filter is used as an 
input filter. 

Stage # 2 : W A V C N S Dynamics Conversely to the traditional approach, the sensor dynamics are now a 

separate subsystem, which can be expressed as a transfer function i?cNs( s ) a n d a scaling function. In that 

respect, a major advantage of the W A V technology is that it allows us to express the W A V C N S dynamics 

as a linear time invariant transfer function. In particular, we found in Section 5.4 that: 

H c M = / ° • (6.5) 

where UJQ = 0.02 Hz and C — 1 (current implementation). 

Stage #3 : Effect Dynamic Identification Once the sensor filter i?cNs(s) is defined, the block diagram 

of Fig . 6.4 is rewritten as in Fig. 6.6, where the non-linear saturation function is omitted. The only unknown 

element is the transfer function PD(s) whose output Eq<u can be directly obtained from the W A V C N S values 

by applying the inverse of the scaling function. In this block diagram, we use the property of linear time 

invariant systems to bring the sensor filter as an input element. The transfer function i ? c N s ( s ) is then used 

to obtain a filtered version Cp of the plasma concentration. 

Using both C / and Eq%u as input and output identification signals respectively, the parameters of PD(s) 

can be estimated using a classical least square identification method. 

One difficulty arises in the determination of the order of PD(s). W i t h data such as the L M A data, it 

would be difficult to identify a high order function because of the limited input excitation. In this case, we 

choose PD(s) to be a first order plus delay function: 

PD(s)= E r ^ =e-TdS-— - (6 6) 
r i J [ S ) Cp(s) s + kd 2-EC50

 [ b - b ) 

where kd is the effect dynamics and EC50 is the effect site concentration that yields 50% of the maximum 

observable effect. 

This choice is further discussed in Section 6.2.6. 

Stage #4 : Hi l l Parameters Identification Once the PD(s) function is identified, the system block 

diagram is returned to its original form of Fig. 6.4. At this point, only the non-linear element parameters 

are unknown. Similarly as in the traditional approach, a search algorithm determines the Hi l l parameters 

that minimize the R M S of the residuals. 
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6.2.4 Adequacy of the Identification Data 

When identifying the model parameters of a given system, it is usually recommended to design an experiment 

which will excite all the modes of the system in order to yield unbiased and rapidly converging parameter 

estimates. A large amplitude white noise is considered to be the ideal identification input signal, since it 

contains many different frequency components susceptible to stress all of the system dynamics. However, it 

is not always possible to subject a system to inputs such as Pseudo-Random Binary Sequences (PRBS) or 

filtered Gaussian signals. In the particular case of pharmacodynamics, the needs of the anesthesia procedure 

and surgery always supersede the needs of the identification itself. It is therefore important to assess a priori 

the adequacy of the input signal for estimating the LTI parameters of the models. 

In the induction data provided by the L M A study, the propofol is given as a single bolus over a given 

period of time. Using Sheiner's approach, the identification uses Cp(t) as an input signal to determine 

the time constant keo. This time course can usually be divided into two distinct parts: an initial large 

amplitude fast transient following the drug uptake, and a slower decreasing waveform corresponding to 

the initial distribution of the drug. The initial fast transient excites the system in a bandwidth roughly 

equivalent to 4 times the propofol administration time. This corresponds to a bandwidth of about 0.04 to 

0.15 rad-s - 1 across the whole study population. In the proposed approach, we are using a filtered version 

of the plasma concentration to identify the gain, the time constant and the delay of PD(s) as defined in 

(6.6). This also roughly corresponds to an excitation bandwidth of 0.04 to 0.15 rad-s - 1 . Note that the 

second part of the input transient mostly reveals the steady state characteristic of the system. However, 

the identification window was too short for the system to settle. Therefore, a larger error in the dc gain is 

expected. 

The identification data provided by the L M A study appears therefore suitable to identify this system, 

providing that the P D dynamics are close or within the excitation bandwidth. Dynamics lower than the 

identification bandwidth may not be identified precisely due to the limited amount of excitation in that 

band. 

6.2.5 Identification Results 

P D models were derived for each patient following the identification methods described previously. The 

results are summarized for each age group in Table 6.1. 

In the traditional P D approach, the models are fully defined by the three parameters {keo,ECso,-y} 

(for simplification, we assumed that EmaX=0 and Eo=100). As for the proposed P D approach, the models 

are defined by the parameter set {T</, kj,,EC^o,^} and the sensor dynamic H C N S ( S ) - In both cases, these 

models must be used in conjunction with Schuttler's pharmacokinetics. 

Note that, following the discussion in Section 6.2.1, the keo and kj, values are well contained within the 

identification bandwidth of the input signal. 
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T R A D I T I O N A L P D A P P R O A C H P R O P O S E D P D A P P R O A C H 

P A T I E N T # 
L T I 

fce0 E C 5 0 

H i l l 

7 Td 

L T I 

kd E C 5 0 

H i l l 

7 
[ s -^ lO" 3 ] lM6/ml] M [ s - 1 -10- 3 ] 

G l : >18 - <30 years 
007 10.0 1.8 2.9 22 133.5 3.2 4.7 
008 13.8 2.7 3.2 4 44.4 3.1 2.5 
010 0.8 0.4 3.3 44 25.0 2.4 1.9 
015 1.9 1.1 1.8 45 51.5 3.8 1.2 
016 4.2 1.7 1.9 39 85.7 3.8 2.3 
023 10.7 3.1 2.8 18 82.5 3.9 2.1 
030 5.6 1.8 3.1 32 44.4 2.9 2.8 
035 8.4 1.9 3.8 12 26.7 1.9 2.3 
038 11.8 3.0 2.6 7 35.2 3.4 1.9 
046 9.9 2.4 3.9 9 32.8 2.8 2.8 
048 8.6 2.2 3.3 17 46.4 2.8 2.3 
053 9.9 2.1 3.4 4 26.2 2.4 2.5 
058 ' 10.6 1.9 3.0 9 50.4 2.5 2.6 
066 12.9 2.4 2.4 18 160.5 3.6 3.9 
071 8.1 1.8 2.7 20 75.0 2.5 1.9 

M e a n 8 . 5 2 . 0 2 . 9 2 0 . 0 6 1 . 4 3 .0 2 . 5 
S D 3 .8 0 . 7 0 . 6 1 3 . 9 4 0 . 1 0 . 6 0 . 8 

G2: >30 - <40 years 
006 2.4 1.1 4.6 44 54.8 3.2 2.7 
009 5.9 2.2 2.6 29 83.1 4.0 2.3 
029 6.3 2.6 3.2 18 34.4 3.7 2.1 
036 10.9 2.9 1.5 1 29.6 3.3 1.2 
047 11.9 3.0 2.2 1 24.9 3.1 1.5 
049 8.7 3.0 2.5 12 35.2 3.9 1.8 
051 9.5 2.5 2.9 4 24.8 . 2.7 2.0 
061 6.1 1.8 2.9 12 28.7 2.8 2.2 
063 8.2 2.1 2.5 5 27.0 2.8 2.1 
065 17.0 3.3 2.5 4 67.2 3.6 2.0 
068 7.3 2.4 2.5 12 29.3 3.1 1.8 
074 5.1 2.1 2.1 13 29.1 3.7 1.8 

M e a n 8 . 3 2 . 4 2 . 7 1 2 . 9 3 9 . 0 3 . 3 2 . 0 
S D 3 . 8 0 . 6 0 . 7 1 2 . 6 1 9 . 0 0 . 4 0 . 4 

G3: >40 - <50 years 
004 2.1 0.9 2.6 35 38.0 3.3 1.8 
025 9.5 4.4 1.9 11 36.6 6.1 1.3 
027 15.3 4.7 2.2 2 32.6 4.7 1.3 

040 10.8 4.1 2.4 12 35.0 4.5 1.4 

042 7.2 2.8 2.5 10 28.7 3.9 2.0 
043 7.7 2.8 2.5 12 34.8 3.9 1.8 
052 11.7 3.2 3.1 9 36.6 3.2 1.9 
069 9.8 2.7 2.9 8 35.6 3.4 2.3 

072 5.4 1.7 2.5 13 30.0 3.0 1.9 
M e a n 8 . 8 3 . 0 2 . 5 1 2 . 4 3 4 . 2 4 . 0 1 .7 
S D 3 .8 1.2 0 . 4 9 .1 3 .1 1.0 0 . 3 

G4: >50 - <60 years 

018 11.9 3.1 3.1 3 31.5 3.5 2.3 

033 4.4 2.3 1.8 29 42.0 4.4 2.2 
041 8.3 3.7 1.6 2 21.8 4.7 1.4 

057 5.4 2.2 1.6 16 28.8 3.7 1.1 
060 7.0 2.7 2.6 10 26.4 4.0 1.9 
064 12.7 3.9 1.3 6 58.0 5.0 1.5 
070 8.7 3.1 2.1 6 32.2 4.2 1.5 

075 5.2 1.8 2.4 12 24.3 3.1 1.8 
M e a n 8 . 0 2 . 9 2 .1 1 0 . 5 3 3 . 1 4 .1 1 .7 
S D 3.1 0 . 7 0 . 6 8 . 8 1 1 . 8 0 . 7 0 . 4 

Table 6.1: P D models obtained from the proposed approach with E m a x = 0 and EQ=100. 
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Figure 6.7: LTI part of the models, (a) In the traditional approach, the Hill equation is replaced by its static gain, 
(b) In the system-oriented approach, the sensor dynamics is to be explicitly included. 

6.2.6 Model Validation 

Any identification procedure involving a priori model structures, such as the one proposed by Sheiner et al. 

or the one defined in (6.6), should be followed by a discussion on the adequacy of the model for representing 

the system. Otherwise, the model may not represents accurately the system when subjected to inputs 

different than the ones used for estimating the model parameters. 

Model validation can be carried out in a number of ways. It is usually recommended to test the model 

using a combination of tools. To give confidence in the models derived in this chapter, we present here 

validation results using some of these tools. 

D i r e c t R e s i d u a l A n a l y s i s In pharmacodynamic modeling, the analysis of the residuals should be carried 

out only on the linear part of the model. In the traditional approach, the LTI part of the model is limited to 

a first order element and the static gain K E C 5 0 °f the Hi l l dose vs. response relationship (see Section 6.3.4). 

In the proposed approach, the LTI part of the model includes both PD(s), as defined in (6.6), and the 

sensor dynamics, see Figure 6.7. 

To illustrate this discussion, we consider here the pharmacodynamic models obtained for Patient #65. 

In this particular case, no anesthetic gas was delivered to the patient after the insertion of the L M A 

due to a mechanical failure. As a result, the patient progressively regained consciousness as the propofol 

concentration decreased in the blood plasma. About 7 minutes into this case, arousal was observed and the 

situation was promptly corrected. 

In terms of identification data, this case provides us with both a fast and large amplitude transient 

following propofol administration, and a slower transient during the distribution and elimination of the 

propofol, see Figure 6.8. The model outputs were calculated following the parameters calculated in Table 6.1. 

The residuals are usually calculated as the difference between the measured and predicted outputs, see 

Figure 6.9.a. Using the proposed system-oriented model, it can be noted that the peak amplitude of the 

residuals during the fast and large input transient is similar to the amplitude obtained during the slower 

transient. Considering that the system noise characteristic remains identical over the whole time window, 

we can reasonably infer that most of the linear dynamics have been accounted for. Conversely, the residuals 

obtained from the traditional approach are substantially larger during the first input transient. Direct 

inspection of the residuals tend therefore to stress out the inadequacy of the traditional LTI model. 
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Figure 6.8: Propofol plasma concentration (bottom plot) and W A V C N S time course (top plot) compared to the 
outputs obtained from the PD linear models (Patient #65). 
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Figure 6.9: Measured vs. predicted W A V C N S time courses for both models (Patient #65). (a) Standard residuals, 
(b) Prediction errors (assuming an autoregressive model). 
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P r e d i c t i o n E r r o r A n a l y s i s A better way of expressing this is to consider the prediction error ep. 

Considering that the system can be modelled by an autoregressive A R X model, we have: 

A ( q ) - W A V c m ( k - T s ) = B(q)-Cp(k-Ts-Td)+e(k-Ts), (6.7) 

where e is a white noise, A and B are polynomials of the delay operator q - 1, and Ts is the sampling time. 

This model expresses the fact that the output is a weighted sum of past Cp, W A V C N S , and e values. The 

residuals e are calculated as: 

e(k • Ts) = W A V c m ( k • Ts) - • Cp(k • Ts - Td) - -^e(k • Ts), (6.8) 

In case the model perfectly describes the system, the residuals can be expressed as: 

e(k-Ts) = -^-ye(k-Ts), (6.9) 

Consequently, the prediction error e p defined as ep(k • Ts) = A(q) • e(k • Ts) should ideally have the char

acteristics of a white noise. If not, the model did n ° t capture all of the system dynamics. The 

prediction error obtained from the residuals calculated from both models are presented in Figure 6.9.b. As 

can be observed from this plot, both prediction errors behave like white noise during the slowest part of 

the input transient. However, during the initial large input transient, the prediction error obtained from 

the traditional model is clearly biased as it shows a large oscillation. 

W h i t e n e s s Test To further test the whiteness of the prediction error, it is usually recommended to 

calculate the autocorrelation of e p: 

ReJr) = E L i e P ( f c - r s ) - e p ( f e - T s - r ) 
£ L i e p ( * - r - ) 2 

where N is the number of samples in ep. Note that (6.10) is here normalized (i.e., Rep(Q) = 1) by the 

autocorrelation coefficient at lag 0 (equivalent to the mean of e2). A n easy way of assessing whether 

ep is white is then to check whether the signal yields autocorrelation coefficients contained within the 

99% confidence interval of a Gaussian distribution A/ r(0,1). The corresponding bounds for the normalized 

autocorrelation function can be calculated as: 

SD. = ^ 8 - (6.11) 
ep VN 

A large number of coefficients outside these bounds means that the residuals can be predicted by considering 

their past values. This is usually a sign that the model order is insufficient. 

We plotted the result of this analysis in Figure 6.10.a. It clearly appears that the model order in the 

traditional approach is not adapted to propofol pharmacodynamics. This result suggests that the order of 

the A polynomial in the traditional approach is insufficient. In that respect, the proposed system-oriented 

approach provides much improved results. 



CHAPTER 6. A SYSTEM ORIENTED APPROACH TO PHARMACODYNAMIC MODELING 112 

Independence Be tween P r e d i c t i o n E r r o r and Input Another useful test is to calculate the cross-

correlation between the prediction error ep and the input signal Cp: 

Similarly to (6.10), the cross-correlation is normalized by considering both the autocorrelation of the pre

diction error at lag 0, and the autocorrelation of the input Cp at lag 0. Ideally, this should also have the 

characteristics of a white noise, otherwise not all of the input contributions to the output are accounted 

for by the model. Similarly, this test can be checked easily by using the 99% confidence intervals for the 

cross-correlation function: 

The results of this analysis are presented in Figure 6.10.b. It appears that both models have captured 

appropriately all the contributions of the input signal. This indicates that the order of the B polynomial 

in the traditional approach may already be sufficient. Note, however, that the delay in this particular case 

is rather small (4 seconds only). A traditional model derived on a case involving a larger delay (such as for 

patient #15) can fail this test. 

M o d e l V a l i d i t y Both the visual inspection of the residuals and the analysis of the prediction error tend 

to warn against the use of the traditional model for close loop control. A t best, traditional models can 

be used to predict the time course of the drug effect, but only for inputs similar to those used in the 

identification process. 

Conversely, the proposed system-oriented model structure, which incorporates both a first order plus 

delay and the sensor dynamics, yields adequate results, and accurately models the frequency response of 

the system. Note, however, that there is no guarantee that this model structure validated for the data 

collected on the patient #65 will also yield satisfactory results in other cases. Ideally, this analysis should 

be carried out for each individual cases. However, is is our experience that all cases presented in Table 6.1 

are consistent with the example of patient #65. 

6.2.7 N o m i n a l Propofo l P D Mode l s 

The models presented in Table 6.1 were obtained specifically for each patient. In order to expand on this 

result, we derive population-normed nominal models that can be used to predict the W A V C N S time course 

for any surgical patient. 

A usual approach would be to calculate the nominal model parameters by averaging the P D parameters 

over the whole study population. However, a particularly interesting result is the age dependency of some of 

the P D parameters. For instance, in Sheiner's approach, both the EC$o and the 7 parameters were shown 

to be statistically different between the 18-39 yrs and 40-60 yrs age groups (p < 0.05). 

Sfc=i  e

P(k • Ts) • Cp(k - Ts — T) (6.12) 

(6.13) 
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Figure 6.10: Standard residual analysis for model validation, (a) Whiteness test (note that the autocorrelation 
coefficient at lag 0 is not supposed to be contained within the confidence intervals). Note that the traditional PD 
model fails this test, indicating the need for a higher degree model, (b) Independence of the residuals with respect to 
the input signal Cp. 
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PD P A R A M E T E R S E T C O V A R I A T E S I G N I F I C A N C E 

Traditional PD 
feeO = 8.4 No covariate 

EC no ECX = 1.4 + 0.029 • age p < 0.05 between G1+G2 and G3+G4 
7 7 = 3.5 - 0.023 • age p < 0.05 between G1+G2 and G3+G4 

System oriented PD 
Td 

ka 
EC50 

7 

Td = 26 - 0.3 • age 
kd = 81 - 0.99 • age 
ECso = 1-94 + 0.043 • age 
7 = 3.0 - 0.027 • age 

p < 0.05 between G l and G2+G3+G4 
p < 0.05 between G1+G2 and G3+G4 
p < 0.001 between G1+G2 and G3+G4 
p < 0.005 between G1+G2 and G3+G4 

Table 6.2: Population-normed PD models with age as a linear covariate. 

Similarly, all of the parameters obtained from the system-oriented approach have shown a similar de

pendence. In particular the EC$o parameter was shown to increase significantly with age, see F ig . 6.11 2. 

Conversely to age, neither weight nor gender could be found to be PD covariates. 

Using a basic linear fit, population-normed PD parameters were derived for both approaches with age 

as a covariate. These models are summarized in the Table 6.2. 

6.3 Discussion 

In this section, we discuss the results of the results of the two identification procedures carried out to model 

the effect of propofol administration onto the W A V C N S -

6.3.1 Clinical Adequacy of the Identification Data 

We already discussed in Section 6.2.4 the adequacy of the data in terms of their suitability for the identifi

cation procedure. In this section, we discuss their suitability for deriving relevant and meaningful clinical 

models for propofol pharmacodynamics. 

As compared to other published PD studies, it will be clear to anyone well versed in pharmacology that 

the identification data used here suffer from serious limitations. First, they are limited to a single bolus of 

propofol given within a very short period of time and in an uncontrolled manner (i.e., the rate of injection 

was assumed constant but may have varied). As a result, the Cp(t) time course may only be a rough 

estimate of the actual time course of the plasma propofol concentration (in a dedicated PD study, blood 

samples would have been obtained to check the adequacy of the PK model to capture the time course). 

Also, a small dose of a fast acting opioid was administered concomitantly, which might have interacted 

2This result may be surprising. In Schnider et al. [166], the authors concluded that the propofol dose required to provoke 

unconsciousness decreases with age. As compared to Schnider's study, we are here calculating the average propofol dose which 

provokes a suitable anesthetic depth ( W A V C N S ) - We found that older patients actually require more propofol than younger 

patients, which is consistent with the results published by Kazama et al. 
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Figure 6.12: Comparison between the identified PD parameters from the traditional approach, and the parameters 
from literature. 

synergetically with the initial propofol bolus. 
It is therefore reasonable to question the reliability of the PD results presented in this chapter. In 

Fig. 6.12, we compare the PD parameters obtained from the traditional approach with other published 
parameter sets involving the bispectral index as an observed effect. The keo time constant is faster than 
most studies, but this could be due to the fact that W A V C N S has a faster dynamic response than BIS during 
induction. 

The E C 5 0 of our study was in the same range than Kuizenga et al. [118] and Billard et al. [117] studies. 
However, the values were significantly less than the values reported by Kazama et al. [116]. However, 
this can be explained by the difference between the PK parameter set used here, and the PK set used by 
Kazama. 

Finally, the steepness of the Hill characteristic is also reasonably similar to that of other studies. The 
stronger steepness reported by Kuizenga and Billard can be due to the switching characteristic of the BIS 
monitor as well as the inherent time delay of BIS (note that Kazama's study did not report such a large 7 
value, probably because they compensated for the BIS and the PK delay). 
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In conclusion, even though the identification data were not obtained specifically for a P D analysis, the 

consistency of our results with other studies tends to indicate that they are appropriate. It is, however, 

reasonable to expect a better fit and less parameter variability when using data where propofol is the sole 

agent and where the rate of administration is controlled. 

6.3.2 System Oriented vs. Traditional Approach 

To compare the proposed approach to the traditional approach, we define a number of performance indexes. 

These indexes can be classified into three categories: 

i . Performance Error (PE) based indexes For each patient i, PE{ is defined as the error between the 

measured effect and the predicted effect: 

PEi = {PEij = Wij - Wij}j=it2,...,Ni (6.14) 

where Wij is the jth measured W A V Q N S sample and w% is the corresponding predicted W A V C N S - Note 

that the total number of samples Ni is different for each patient. The mean value of the performance 

error represents the bias between measured and predicted effect: 

1 N i 

Has(PEi) = — -J2PEij (6.15) 
1 3=1 

The accuracy of the model can be assessed by calculating the root mean square of the residuals: 

RMS(PEi) = 
K . 1 

3=1 

Note that the P D parameter sets in Table 6.1 have been derived by minimizing for each patient the 

R M S ( P £ i ) value. 

Some clinicians also use the Mean Absolute Residual ( M A R ) value as an indicator of model accuracy: 

1 Ni 

MAR(PEi) = — -J2\PEij\ (6.17) 
1 3=1 

The M A R indicate the expected average error between the measured effect and the model output, 

i i . Correlation coefficient The correlation coefficient r? is defined for each individual i as: 

r- = 1 3 r~o (6.18) 

Ejii ( ^ • - ^ • £ , = 1 ^ 3 ) 

r? is a measure of the correlation between the measured and predicted W A V C N S time courses. Both 

time courses are identical when rf = 1. Note that this value can be negative. 
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Figure 6.13: Error in peak effect (time and value). 

In clinical studies, the median of rf over the study population is considered to be representative 

of the performance of a given model. This parameter is a meaningful performance index whenever 

the identification data cover a large range of plasma concentration and effect. This measure is thus 

particularly suitable in this analysis. 

i i i . Peak Effect The peak effect corresponds to the time tp and value wp of the maximum W A V C N S depth 

immediately following propofol administration and before airway management, see F ig . 6.13. Note 

that to reduce sensor noise, tp and wp correspond to the time and W A V C N S value when the index first 

comes within 2% of its maximum peak value. 

The time to peak effect has been recently used by Minto et al. [165] as a clinically relevant endpoint 

for assessing the performance of P K P D models. 

For each patients, we define two measurements: 

£i,t„ = (ti,P - U,P), and eiiWp = (witP - w"i;P) (6.19) 

Patient-specific models The performance of the P D models of Table 6.1 has been assessed using the 

performance indexes defined previously. The results of this analysis are summarized in the Table 6.3 for 

the traditional models and Table 6.4 for the system-oriented models. 

As compared to the traditional P D approach, the root mean square of the residuals are reduced by about 

50%. Also, the overall accuracy of the fit is significantly improved with a median r 2 of 0.968 as compared 

to 0.879. Of particular interest, 4 cases in the traditional approach scored a correlation coefficient inferior 

to 0.7 which tends to indicate that the identification procedure failed in obtaining a proper model for these 

cases. Probably the most dramatic improvement is the reduction of the prediction error of the time to 

peak effect. The system oriented P D approach also seems to yield more consistent results as shown by the 

reduced standard deviation in all performance indexes. 

Population-normed models A similar performance evaluation was performed for the population-normed 

models presented in Table 6.5 and Table 6.6. 
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P E R F O R M A N C E E R R O R C O R R E L A T I O N P E A K E F F E C T 

bias R M S M A R CT(MAR) Median Best Worst 

N 

ei,tp 

W [%] 
°{F-i,u,p) 

[%] 

>18 - <30 yrs 0.9 10.6 8.7 6.0 0.859 0.964 0.689 -54.5 25.3 -4.1 5.3 

>30 - <40 yrs 0.8 9.4 7.8 5.2 0.895 0.952 0.779 -46.7 16.2 -3.8 4.3 

>40 - <50 yrs 0.5 8.8 7.3 4.8 0.889 0.934 0.838 -40.0 18.5 -5.5 4.6 

>50 - <60 yrs 0.1 9.5 8.0 5.1 0.834 0.947 0.530 -43.8 15.7 -6.6 7.3 

A l l groups 0.7 9.7 8.0 5.4 0.879 0.964 0.530 -47.4 20.3 -4.8 5.2 

Table 6.3: Goodness of fit of patient-specific models obtained from the traditional PD approach. 

P E R F O R M A N C E E R R O R C O R R E L A T I O N P E A K E F F E C T 

bias R M S M A R a (MAR) Median Best Worst £i,tp 

M 

'P 

M 
tp) 

[%] 

Wp 
CT(£i,»P) 

[%] 

>18 - <30 yrs -0.2 4.8 3.7 3.1 0.985 0.991 0.897 -10.1 8.3 -3.0 4.5 

>30 - <40 yrs -0.3 5.1 4.2 3.0 0.974 0.995 0.833 -9.3 7.2 -3.8 2.5 

>40 - <50 yrs -0.3 5 4.1 2.8 0.964 0.993 0.923 -7.8 7.8 -5.1 2.6 

>50 - <60 yrs -0.7 6.1 5.1 3.4 0.910 0.993 0.799 -11.6 4.8 -4.5 4.2 

A l l groups -0.4 5.2 4.2 3.0 0.968 0.995 0.799 -9.8 7.2 -3.9 3.6 

Table 6.4: Goodness of fit of patient-specific models obtained from the system-oriented PD approach. 
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P E R F O R M A N C E E R R O R C O R R E L A T I O N P E A K E F F E C T 

bias R M S M A R <r(MAR) Median Best Worst 

ei,tp 

W N 

Zi^p a - ( E I I U , P ) 

{%} [%] 

>18 - <30 yrs 3.2 14.8 11.5 9.2 0.727 0.951 -0.127 -47.9 13.0 -2.1 7.3 

>30 - <40 yrs 3.7 12.9 10.2 7.7 0.797 0.911 0.511 -39.4 13.3 -1.9 5.8 

>40 - <50 yrs 3.9 13.2 10.9 7.4 0.783 0.900 -0.188 -35.4 13.8 -3.2 10.7 

>50 - <60 yrs 0.1 12.8 10.9 6.6 0.712 0.934 0.258 -37.5 9.9 -6.7 9.0 

A l l groups 2.9 13.6 10.9 7.9 0.772 0.951 -0.188 -41.1 13.3 -3.1 8.0 

Table 6.5: Goodness of fit of population-normed models obtained from the traditional PD approach. 

P E R F O R M A N C E E R R O R C O R R E L A T I O N P E A K E F F E C T 

bias R M S M A R CT(MAR) Median Best Worst £i,tp 

M 

tp 

*(£i,tp) 
Is] [%] 

Up 
CT(£i,l»p) 
[%1 

>18 - <30 yrs 0.6 12.7 9.7 8.2 0.865 0.983 0.105 -6.0 13.9 -1.3 6.8 

>30 - <40 yrs -0.5 10.4 8.2 6.3 0.891 0.952 0.538 -6.2 13.6 -2.6 5.1 

>40 - <50 yrs -0.4 9.9 8.2 5.6 0.886 0.964 0.364 -7.2 13.7 -4.8 8.9 

>50 - <60 yrs -4.0 11.1 9.3 5.9 0.756 0.989 0.310 -14.1 10.9 -9.2 8.8 

A l l groups -0.7 11.2 8.9 6.7 0.867 0.989 0.105 -7.8 13.2 -3.8 7.6 

Table 6.6: Goodness of fit of population-normed models obtained from the system-oriented PD approach. 
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The improvement of the new P D approach in terms of predictive performance is not as significant as 

with the patient-specific models. As compared to in the traditional approach, an overall improvement of 

just about 18% in the Performance Error indexes is obtained. And while the median correlation coefficient 

is also higher (0.867 instead of 0.772), 10 cases in the new P D modeling approach score a correlation 

coefficient inferior to 0.7. When reviewing these cases, it appeared than the main source for error is the 

under or over-estimation of the time delay. On a more positive note, the performances in terms of peak 

effect were maintained. 

6.3.3 Dose vs. Response Characterist ics 

The static dose vs. response characteristics of propofol are presented for both approaches in F ig . 6.14. 

These characteristics should be equivalent since they were obtained based on the same identification data. 

However, they are clearly different. For instance, let us consider the propofol dose vs. response for a 

20 years old patient. In the traditional approach, we find that a W A V C N S of 40 can be obtained with a 

plasma concentration of 2.2 /xg-ml - 1 . According to the system oriented dose vs. response, the same effect 

is obtained for a concentration of 3.3 /^g-ml - 1 . This is a significant difference considering that a C P j S S of 

2.2 /xg-ml - 1 would yield a W A V C N S of 68 according to the new P D approach. 

This inconsistency between the two static models can be explained by considering that un-modelled 

dynamics in the traditional approach yield colored residuals, which, in turn, influence the derivation of the 

Hi l l parameters (see the example in Figure 6.3). This problem is particularly acute when identification data 

contain mostly transitory signals. Any study using the traditional approach and transitory identification 

data will suffer from similar limitations. A cautionary note relative to the accuracy of the dose vs. response 

relationship should be brought to the attention of the readers in this case. Wi th the traditional approach, a 

better identification method would be to use only steady state data, where the plasma concentration is fixed 

and the effect reaches steady state. This is, however, very difficult to obtain in a clinical setting. First, no 

other drug should be used concomitantly in order to limit potential synergism. Further, no surgical stress 

or excitation is allowed in order to maintain the effect in steady state. Finally, even with the use of a T C I 

pump to reach a steady state plasma concentration, each experiment would take considerable time in order 

to bypass the transient response. 

The only study achieving this is the one conducted by Kazama et al. in 1999. In this study, the authors 

induced patients using a T C I pump programmed to reach and maintain a fixed plasma concentration. 

Once steady state was achieved, an incremental concentration step was programmed. Even though the 

identification data did contain some transitory signals, the input and output signals contained large epochs 

of steady state data. When comparing Kazama's dose vs. response relationships to the ones presented in 

Fig . 6.14.b, a number of similarities become apparent. For instance, Kazama et al. were the only authors 

who established that propofol requirements increase with age, for effects compatible with an anesthetic 

depth suitable for surgeries. They also showed that this characteristic is inverted (i.e., older patients 
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Figure 6.14: Identified W A V C N S to, Propofol dose-response relationships, (a) Traditional approach (b) New ap
proach. Note that the thick lines represent averages over the corresponding age group. 

become more sensitive to propofol) when only a light effect is sought. Kazama et al. also reported low 7 

values, from 2.3 to 2.0 , which is consistent with our findings (from 2.5 to 1.7). Conversely, all other studies 

have reported much higher values (from 4 .2 to 5.7) . Finally, they also reported larger EC50 values than 

most studies. However, this is mainly due to the pharmacokinetic set used to drive the T C I pump. This 

pharmacokinetic set (from Gepts et al. [Ill]) may have over-estimated the propofol plasma concentration 

since it was designed for infusions (it is possible that the high rate of infusion following a step change in 

the pump setpoint should have been considered a bolus instead of an infusion). 

6 .3 .4 Frequency Response Characteristic 

This discussion would not be complete without presenting the frequency response of the models derived in 

Section 6.2 .5 and represented as block diagrams in Figure 6.15. 

First, we need to linearize the non-linear Hi l l static dose vs. response relationship. Let us denote by 

f(x) the Hi l l function. For both approaches, f{x) can be written as: 

x'< 
(6 .20) 

where X0 = 0 .5 (proposed approach) and X0 = EC^o (traditional approach). To linearize / ( x ) , we consider 

small input variations x around a given operating point x. Considering further that / is a function, 

and assuming small enough variations x, we can approximate f(x) as an afflne function: 

f(x) as f{x) + KT-x, 

where: 
—7-1 

7 • x' 

(6 .21 ) 

(6 .22) 
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Figure 6.15: P K P D block diagrams, (a) Traditional approach. Note that the Hill saturation is characterized by both 
the steepness coefficient y and the EC50 parameter, (b) System-oriented approach. Conversely to the traditional 
approach, the Hill saturation is defined uniquely by its steepness coefficient 7. 
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Figure 6.16: Linearized P K P D block diagrams. Note that the scaling function was removed since it does not affect 
the dynamic response of the system, (a) Traditional approach, (b) System-oriented approach. 

The pharmacodynamic gain depends therefore directly on the operating mode x of the system. For very 

small (x —> 0) or very large (x —> 00) doses of propofol, the gain is close to 0, indicating that variations of 

the propofol dose will not translate into significant changes in the observed effect. Conversely, if the system 

already operates in a range suitable for general anesthesia (i.e., 4 0 < W A V C N S <60), the P D gain is close to 

its maximum. 

Considering a nominal operating point set at W A V C N S — 50, the system then operates at a steady state 

plasma concentration of EC50. As a result, the overall pharmacodynamic gain of the system is expressed 

as: 

K e c » = i~kr0

 (6-23) 

Equation (6.23) holds true for both traditional and system oriented models. The linearized block diagrams 

can then be represented as in Fig. 6.16. 
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Figure 6.17: Frequency response of the PD models derived in Section 6.2.5. (a) Traditional approach (b) System-
oriented approach (frequency response also models the sensor dynamics for consistency with the traditional approach). 

The frequency response of the pharmacodynamic models are presented in Figure 6.17. The sensor 

dynamics were added to the system-oriented models for consistency with the traditional models (these 

models inherently contain the sensor dynamics). In both cases, age only resulted in marked steady gain 

differences (this was already observed in the dose vs. response relationships). Otherwise, age did not result 

in any significant differences in terms of the frequency responses. 

To further compare the dynamics of the traditional vs. system-oriented models, we calculated the 

averaged frequency responses across all ages and plotted them in Figure 6.18. Beside providing a better 

temporal fit between measured and predicted time courses, the system oriented approach yields P D models 

with slightly larger bandwidth for control purposes. 

This comparison also reveals that the phase margin of the system-oriented approach model drops sharply 

due to the time delay. Using traditional P D models for designing the controller frequency response may 

therefore lead to unforeseen instability if the design is too aggressive. The phase characteristic of the system-

oriented model clearly motivates control designers to exercise caution when tuning the cutoff frequency of 

the open loop system. 

6.4 Summary 

Paradoxically, pharmacodynamics have been traditionally handled through static dose vs. response curves. 

However, with the advent of fast-onset short-acting drugs, a lag between effect and plasma concentration 

was observed and could not be accounted by a static characteristic. A model of the drug effect dynamics 

was required. 
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Figure 6.18: Comparison of traditional vs. system-oriented frequency response models (all cases averaged). 

In an attempt to compensate for this lag, an addition to the mamillary pharmacokinetic compartmental 

model was proposed by Sheiner et al. It was shown that it was possible to collapse the effect vs. plasma 

concentration 'hysteresis' by introducing a new rate constant ke0. This actually resulted in the addition 

of a single order unity gain transfer function to the static dose vs. response relationship. This approach 

rapidly became the standard in P D studies, and has now been in use for the last 25 years. 

In this chapter, we have revisited pharmacodynamic modeling using an approach based on system 

identification know-how. In this approach, the plasma concentration is obtained using a well defined P K 

model and does not necessitate blood samples. Further, the pharmacodynamic LTI function - which captures 

the effect dynamic - is modified in order to account for the time delay that exists between the administration 

of the drug and the onset of effect. Finally, the sensor dynamics is now a distinct part of the model, which 

allows other sensing technologies to be used in conjunction with the P D models identified using the proposed 

approach. 

The system-oriented model yields an improved fit and more consistent performances than traditional P D 

models. Another advantage of the proposed approach is that the accuracy of the static dose vs. response 

relationship benefits significantly from the fact that all of the effect dynamics are now modelled through 

the LTI function PD(s) and the sensor dynamics. As a result, even short transitory identification data 

(e.g., induction data) can be used to identify the static dose vs. response relationship, thus simplifying the 

identification procedure in terms of clinical protocols and data acquisition (the traditional approach often 

requires volunteer-based studies). For instance, we show in Figure 6.19 a comparison between the static 

dose vs. response model derived in this study, and the static models derived for propofol and BIS (v.3.12) by 

Kazama et al. (note that we use here the fact that W A V C N S and BIS are roughly equivalent in steady state 

- this equivalence was already established in Figure 5.12). The similarity between the two relationships 
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Figure 6 .19: Comparison of the static dose vs. response relationships obtained for propofol. In their study, Kazama 
et al. used Gepts PK parameter set (see Table B. l ) . This set was originally derived for infusion administration. As 
a result, the EC 5o found in their study are significantly different than the ones we originally found. However, this 
difference originates mostly from the choice of the P K set. In order to limit the influence of the P K set, we therefore 
re-processed all the cases using Gepts P K parameter set. We also added EQ as an identified parameter. We found 
that EQ is comprised between 0.02 (GI) and 0.06 (G4). When scaling the effect using the W A V C N S scale, the Eo 
values translate in a baseline W A V C N S of 98 (GI) to 94 (G4). These slight differences in the overall awake baseline 
values were found to be also a function of age. 

is remarkable, mostly when considering that Kazama's study involved for each patient an identification 
window of more than 9 0 minutes during which a TCI pump was used to target and maintain step-wise 
plasma concentrations (the surgery was not allowed to start during the recording of the identification data). 
In comparison, our method uses very limited data (2-4 minutes) which are readily available from any surgery 
involving limited amount of opioids and the placement of an LMA 3 . 

Another advantage of the proposed modeling approach concerns the reduction of system uncertainty. 
In particular, we will see in the next chapter (see Section 7 .2 .2) that the uncertainty related to the use of 
Sheiner's PKPD approach is higher than that of the proposed approach in the low frequency band. This 
implies limitation in terms of achievable performance when designing robust controllers based on quantified 
uncertainty. 

Probably the most compelling advantage of the proposed approach is that the model structure yields 
non-colored residuals, indicating that it effectively models all of the system's linear dynamics. Considering 
the relatively poor prediction performance of population-normed models to predict the effect time course, 
it is likely that PD models will best be used within a close loop control framework rather than an open loop 
framework. Having a precise description of the frequency response of the system will then be invaluable. 

3 As compared to an endotracheal tube, the LMA limits the stimulation related to the airway management. 



Chapter 7 

Managing PKPD Uncertainty 

Patient variability is probably the most challenging aspect in closing the loop in anesthesia. Quantifying 

this variability and expressing it as a system uncertainty is a necessity in order to prove stability when 

closing the loop. 

The goal of this chapter is to express patient variability as a quantified uncertainty structure suitable 

for use with control design tools. Quantifying uncertainty allows us to assess more precisely the importance 

of the different sources of uncertainty in P K P D models. This can ultimately help us decide which control 

strategy should be implemented to reduce uncertainty and provide improved performance. 

To carry out this task, a quantification and analysis method for system uncertainty is proposed and 

described in detail in Section 7.1. This method is based on the classical representation of uncertainty as a 

Nyquist disk whose radius encompasses the original uncertainty region defined by the frequency response 

plot of the system. This method, while conservative, appears to be the most suitable for this particular 

application. 

In Section 7.2, we apply the proposed method to the propofol P K P D models identified in the previous 

chapter. In particular, we show how serious patient variability can be in terms of close loop control. 

Finally, in Section 7.3, we propose a number of approaches to reduce the uncertainty to more manageable 

levels. Some of these approaches are rather simple and straightforward, while others require more efforts. 

Using the uncertainty quantification and analysis tool described in Section 7.1, we compare all methods 

with respect to their efficacy in reducing uncertainty vs. their cost in terms of design effort and practicality 

in a clinical setting. 

7.1 Quantifying Uncertainty 

When considering system uncertainty, two approaches can be envisaged: 

- Parametric (structured) uncertainty: uncertainty can be defined by considering bounded real 

perturbations in some (or all) of the system parameters (gains and time constants). In this framework, 

it is usual to describe any given parameter T as T = TQ • (l + u- As), where ro is the nominal value of r , 

126 
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and A s € l , | A s | < 1. The quantity u = (TMAX — T~MIN ) / (T~MAX + TMIN ) is usually less than 1, and 
expresses how much the parameter can drift from its nominal value. In this framework, it is assumed 
that each parameter can take any value in their uncertainty range. Linear fractional transformations 
are used to represent the system under a form more suitable for robustness analysis. 

- Unstructured uncertainty: in this framework, only the overall uncertainty in terms of the gain 
and phase of the system is defined. The unstructured framework is usually selected when the model 
structure itself is poorly denned, or when the uncertainty cannot be expressed as parametric uncer
tainty. Note that parametric uncertainty can also be lumped into an unstructured framework. This 
can lead to a more conservative design since the unstructured framework contains a large number of 
plants that do not belong to the original set defined by the parametric uncertainty. 

When considering the PK parameters defined in Table 3.1 and expressed as in (3.10), it is possible to 
define for each parameter of the hybrid set {Vi ,7r, a,P,k2\, k3i} the corresponding parametric uncertainty 
bounds. This can be done using the standard error values defined Table 3.2. For instance, the PK parameters 
of a 30 yrs old 70 kg individual can be defined as: 

7T = 9.4 lO" 3 (1+0.40 A s ) Is"1] hi = 9.9 • 10" 4 • (1+0.51 Ag 2 1) [s"1 

a = 4.8 10~4 (1+0.46 A?) [s"1] hi = 7.1 • 10" 5 • (1+0.59 Ag 3 1) [s-1 

P = 4.0 10~5 (1 + 0.51 A?) [s-1] Vi = 9.3 • (1-r - 0.19 • A^ 1) [1] 

These values were calculated considering a two-times standard error. According to this parameter set, the 
maximum steady state gain1 of the PK model is 7.5 • 106 while the minimum gain is only 8.1 • 104. Even 
though we are considering a very limited and well defined adult patient population, note that this represents 
nearly a possible hundred-times difference in the steady state level of propofol plasma concentration. 

This result is clearly erroneous. Parametric uncertainty assumes, indeed, that each parameter of the 
model can take any value from the corresponding uncertainty range. This may lead to a combination of 
parameters that is not possible depending on how parametric uncertainty is originally defined. For instance, 
the hybrid PK parameters are all function of the same 6 coefficients defined in Table 3.2. Therefore, 
we cannot choose their values independently (i.e., it is not possible to have for the same patient the 
minimum k2i and ksi values, while having at the same time the maximum TT, a, (3 and V i values). This 
dependency between parameters makes here a significant difference in terms of uncertainty. For instance, 
when calculating all possible PK models according to the parametric uncertainty defined by Shiittler et al, 
we find that the ratio between the maximum and minimum steady state gains is only 4.6. 

In terms of the PD parameters presented in Table 6.1, parametric uncertainty may indeed be considered 
for kd and EC50 (a student t-test reveals that these two quantities are independent). However, unless the 
time delay dynamics are expressed as rational LTI transfer functions (e.g., using Pade approximation), the 
uncertainty related to the time delay cannot be directly expressed as parametric uncertainty. 

'Steady state gain is (k2\ • fc3i)/(Vi • n • a • /?). 
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Figure 7.1: Unstructured uncertainty expressed in a multiplicative framework. 

When considering P K P D uncertainty, the unstructured framework appears therefore more suitable and 

straightforward. We present here the multiplicative unstructured system uncertainty approach, which we 

will be following throughout this chapter. This approach is discussed in details in Skogestad et al. [167]. 

7.1.1 The Relative Uncertainty Framework 

Let us consider a system G(s) for which some uncertainty bounds exist. A common approach is to model 

the uncertainty using a structure such as the one of Fig . 7.1, and which can be expressed as: 

G(jw) = Go • G0[ju) • (1 + w(ju) • A„( jw)) , (7.2) 

where | | A u ( j w ) | | < 1, Go(jw) is the normalized nominal model of the system, and Go = \\G$(jw = 0)|| is the 

steady state gain of the system. The weight function w(jiv) quantifies the magnitude of the unstructured 

uncertainty, while Au(JUJ) expresses this uncertainty as a unity disk in the Nyquist plot. The multiplicative 

uncertainty gain w(ju) is also referred to as relative uncertainty. 

To better understand this concept, let us consider the example of Fig . 7.2.a-b. We assume that the 

uncertainty bounds of G(JCJ) are defined in the frequency domain and that a nominal model G$(jw) exists. 

If we map the frequency domain information into the complex Nyquist plane, the uncertainty at each 

frequency UJ can be represented as the section of a ring centered at the origin. The outer and inner radii of 

the ring are defined by the uncertainty magnitudes G M I N = G M I N / G O and G M A X = G M A X / G O , while the 

section is defined by the uncertainty angles <£>MIN and ipuAX-

To quantify the uncertainty according to the framework of (7.2), we define the disk V centered on 

Go(jw) and of radius Z(w). This circle is the smallest circle centered on Gnfj'w) and which contains all of 

the original uncertainty surface. Following (7.2), the multiplicative weighting function W(JCJ) is defined as: 

11 IIGoO)|| 

7.1.2 Selection of a Near Optimal Nominal Model 

(7.3) 

It is important to note that the uncertainty quantified by (7.2) considers a larger uncertainty surface than 

the one originally defined from the frequency domain. A limitation of the method is therefore that its 

representation of the frequency domain uncertainty can be very conservative, mostly if the center of the 

disk Go(jw) is located close to the edges of the ring section. A control design based on the uncertainty 

defined by the disk T>(1(LJ),GO(JU)) may thus be unnecessarily conservative. 



CHAPTER 7. MANAGING PKPD UNCERTAINTY 1.29 

Uncertainty bounds o f G(s) Unstructured uncertainty 
bounds 

<DfyH S0(jo>)) 

Uncertainty bounds of G(s) 

(b) 

Figure 7.2: Quantifying uncertainty, (a) Uncertainty expressed in the frequency domain via Bode plots, (b) Nyquist 
mapping of the uncertainty at the given frequency w. 

A simple way to reducing the uncertainty is then to minimize by selecting the best location for 
the center of the uncertainty disk. In other words, this leads to the optimization of the nominal model 
Go, see Figure 7.3. Note that this would still be a conservative characterization of the frequency domain 
uncertainty. 

A first step towards the optimization of the nominal model is to determine the optimal Nyquist path 
for Go(jw). We define the 4 following relevant coordinates: 

Ci 

G 3 = 

* i = GMAX • COS(<£>MIN) 

2/I = GUAX • sin((^MiN) 

X3 = G M I N • C0S(<£MAX) 

2/3 = G M I N • sin(<y5MAx) 

Co 
X 2 = GMAX • C0S(</?MAX) 

2/2 = G M A X • s in^MAx) 

Xi = GMIN • COS(<^MIN) 

2/4 = G M I N • sin(v?MiN) 

(7.4) 

The coordinates C\, C2, G3, and C4 mark the four corners of the ring. Depending on the phase uncertainty, 
we can distinguish between the three following cases: 

- (^MAX(W) — </?MIN(<*>)) < TT: in this case, it is possible to find a circle C that circumscribes the ring 
section (see Figure 7.3.a). The origin Ccir of C is located at the intersection of the perpendicular 
bisectors of the line segments {C\, C2} and {C2, G3} (or { G 4 , C i } ) . This can be analytically expressed 

as: 

Ccir 

b" - b' 

a — a" 

b" - V 

(7.5) 
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Figure 7.3: Effect of the nominal model Nyquist path with respect to the uncertainty radius: note that nominal 
models which are close to the uncertainty edges can significantly increase the unstructured uncertainty radius. 

where: 
x2 - x i 

2/1 -2 /2 

1 v\ ~vl-A 

2/1 - 2/2 

and 

X2 ~ X 3 

J/3 " J / 2 

1 y \ - y \ - x \ + x 
2 J /3 -2 /2 

(7.6) 

In most cases, the circumscribing circle minimizes the uncertainty radius l(ui). However, if the phase 

uncertainty covers a larger span than the gain uncertainty (i.e., the ring section is 'thin'), the center 

point of the line segment {C\, C 2 } may yield a smaller uncertainty circle (see Figure 7.3.b). In general, 

we find that the optimal center is defined as: 

O, opt 

c, opt 

^opt — %cir 

Vopt — Vcir 
«4 * d r + Vcir < 2 ' \ / ( ^ l + X 2 ) 2 + ( j / l + J / 2 ) 2 

Xopt = ( X l + X 2 ) / 2 

Vopt = (j/1 + J/2)/2 

(7.7) 

if: yf: Xlir + Vcir > o • V ( Z l + Z 2 ) 2 + (2/l+2/2) 2 

^ < (<PMAX(W) — (T ,MIN(W)) < 27r: when the phase uncertainty reaches 180 degrees, (7.5) yields the 

center of the circle that circumscribes the complimentary ring section (see Figure 7.3.c). The center 

of the minimizing circle is opposite to Ccir and located on the inner radius of the ring: 

opt 

Lopt 

Vopt 

\lxlir + yt 
2 
cir 

GMIN 

.2 
'cir <jlr 

•2/c 

(7.8) 
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Figure 7.4: Relocation of the nominal model G 0 to the location G°PT to reduce the uncertainty radius, (a) 
(VMAX(W ) — V M I N ( ^ ) ) < T (large gain uncertainty relative to phase): in this case the circumscribing circle minimizes 
the uncertainty disc, (b) (<PMAX(^) — VMIN(W)) < 7r (small gain uncertainty relative to phase): in this case, the mini
mizing uncertainty disc center is located on the center-point of the {Ci , C2} segment, (c) (V>MAX(W) — <PMIN(V)) > TT: 
in this case, the minimizing uncertainty disc center is located on the inner radius of the ring section, directly opposite 
to the center of the circle which circumscribes the complementary ring section. 

- (lPuAx{i*>) — <^MIN(W)) > 2TT: in this trivial case, the ring section becomes a complete ring. As such, 
the center of the circle can be located anywhere on the inner edge of the ring. For convenience sake, 
we adopt the following convention: 

Copt — 
Xopt = GuiN • c Os ( (¥?MIN + VMIN)/2) 

yopt = G M I N • s in((<£MiN + VMIN)/2) 
(7.9) 

Note that this analysis is carried out for each frequency w of interest. This results in the definition of an 
optimal Nyquist path Copt(juj). 

Finding the Nyquist path describing the optimal nominal model is a first step. For control purposes, it 
is then necessary to express this path into a LTI transfer function which can be used in the design process. 
In most cases, it is not possible to find a rational LTI function that exactly describes the selected Nyquist 
path. Instead, a frequency domain identification can be carried out to determine a near optimal solution. 

The realization of the near optimal nominal model Gopt(ju) can be done in a number of ways: 

- Nominal parameters tuning: this tuning aims at minimizing the difference between the nominal 
Nyquist path and the optimal path by selecting the most appropriate model parameters. This yields 
a realization of the same order than the original nominal model. 

- Weight function: a LTI function wnom(ju)) is tuned in order for G°Q

pt{JLo) = wncm(ju>)-Go(juj) to be 
as close as possible from the optimal Nyquist path. This approach yields a nominal model G°G

pt(juj) 

whose order is greater than that of the initial nominal model. 
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- H y b r i d t un ing : a hybrid realization, where a combination of both methods are used, can also be 

investigated. However, this already requires much more efforts in terms of the identification procedure. 

Due to the large numbers of parameters in the initial P K P D nominal model, the tuning of a weight function 

wnom(jcj) appears to be a more attractive method to optimize the nominal Nyquist path. 

A general approach to identifying wnom(juj) is to minimize the difference between G°0

pt(jui) and Copt(ju>) 

directly in the Nyquist complex plane by minimizing the cost function JNYQ '• 

J|cw*r»|| 
NYQ 

JO 

\wnom{juj)\\ -cosA</?(w) • du, (7.10) 
l | G o f » 

where A(p(u>) = arg(G 0(jw)) - &rg(Copt(juj)) + aig(wncm(ju)). The parameter A n o m ( w ) is a frequency 

dependent weight which can be used to improve the agreement between | |Go p t(jo;) | | and Copt(ju>) in the 

frequency band of interest (for instance, a good agreement in the controller bandwidth is more important 

than in the high frequency range). In practice, A n o m ( w ) = 1 in the lower frequency range and \nom(oj) = 0 

for frequencies for which the system nominal phase reaches values below — 27r, or well beyond the expected 

controller cutoff frequency. 

In systems presenting a large time delay uncertainty, and whose nominal model is already of order 

>2, minimizing the Nyquist cost function JNYQ may be computationally demanding as the number of 

parameters of wnom(juj) may be large. A more effective method is to carry out the identification by 

first minimizing the gain difference between G°Q

pt(juj) and C o p t ( j w ) by tuning only the poles and zeros of 

wnom(juj). This can be done by minimizing the cost function Jn0m'-

2 
nom f 

Jo 
Anom(^) *(^)U- • duj. (7.11) 

G 0 f » 

In order to obtain also a close agreement in terms of the phase, we add to wnom(juj) a time delay e ' ^ ' " 

calculated to minimize the phase difference. This simplified approach can only be done if the phase of 

e j T o p t u j s predominant to the phase of wnom(juj). 

7.1.2.1 R e a l i z a t i o n o f the U n c e r t a i n t y Weigh t 

Once the near optimal nominal model is identified, the new uncertainty radius l(u>) can be easily calculated 

as: 

where: 

= \j(zoPtM - zi(w))2 + (j/opt(w) - yi(w))2 if: V M A X ( W ) - ^MIN(W) < 2?r 

l(ui) = G M I N ( W ) + G M A X ( W ) if: ^ M A X ( W ) - ^ M I N ( W ) > 2TT 

xrH = | | G f ( W ) | | - cx» (arg (GfH) ) 

(7.12) 

(7.13) 
[yfiw) = \\Gf{w)\\ .sin(arg(G?*H)) 

The resulting uncertainty weight magnitude || is directly calculated as the ratio between l(io) and 

the new nominal model GgP*(jw). 
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Once Hw^ju;)!! is determined, an identification procedure is carried out to express w(juj) as a rational 

linear transfer function W(JUJ). This transfer function will be used in the design process to optimize the 

stability of the controller. The parameters of w(ju) are estimated by minimizing the criteria Jw: 

e(u>)2dw, 

where e(uj) — \ \w(jw) XW » 1, and: 

(7.14) 

(7.15) 
sign(e(w)) = 0 if e(w) < 0 

[sign(e(w)) = 1 if e(w) > 0 

Equation (7.14) represents essentially a least square minimization criterion. Note that the phase of w(jw) 

does not bear any relevance. 

The parameter Xw(UJ) simply adds a penalty weight on the realizations w(juj) whose magnitude at some 

frequency UJ is less than ||u>(ju;)||. Note that it is sometime necessary to have Xw(UJ) as a function of UJ 

when the uncertainty in the higher frequency range is large. In this case, we would choose Xw(UJ) and JW 

such that: 

V = 
JO 

1 + A • sign(e(w)) e(u)2duj, where: < 
Xw(UJ) — 0 if UJ < 0.1 • uic 

(7.16) 
XW{UJ) » 1 if UJ G [0.1 • UJC; 10 • UJC] 

where UJC is the cutoff frequency of the controller. This choice essentially guarantees that the realization 

w(juj) captures adequately the system uncertainty within the controller bandwidth. Assuming a large phase 

margin in the low frequency region, the uncertainty is less of an issue for UJ < 0.1 -UJC. Finally, high frequency 

uncertainty is also not an issue since the cutoff frequency UJC of the controller guarantees a low gain in this 

frequency range. 

7.1.2.2 Comparing Uncertainty Between Systems 

Note that any system presenting a relative uncertainty gain above 1 cannot be tightly controlled since the 

uncertainty disk contains the Nyquist origin. Therefore, there exists a particular plant for which the open 

loop gain can be 0, meaning that no control action can have any effect on the output. 

More generally, it can be shown that Robust Stability (RS) and Robust Performance (RP) are guaranteed 

if: 

(7.17) 
(RS)^\\w(juj)-T(juj)\\<l 

(RP) \\vjp(juj) • S(JUJ)\\ + \\w(juj) • T(jw)\\ < 1 

where WP(JUJ) is the performance weight, and S and T are the sensitivity and complimentary sensitivity 

functions of the close loop system. Clearly, low ||«;(jw)| | values will benefit to the overall performance of 

• the system. Hence, we can compare the effect of system uncertainty between two systems SI and S2 by 

comparing directly their relative uncertainty weight: a system SI presents less uncertainty than a system 

S2 in a frequency bandwidth B W if ||wsi(iw)|| < ||tt*52(jw)||, for w G B W . 
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7.2 Application to Propofol PKPD Models 

In this section, we calculate the relative uncertainty of the propofol P K P D models derived in the previous 

chapter. As a first step, it is necessary to clearly identify the sources of P K P D uncertainty to adequately 

account for them in our calculations and analysis. 

7.2.1 Origins of P K P D Uncertainty 

In P K P D modeling, it is customary to distinguish between two different types of uncertainty: the uncertainty 

caused by inter-patient variability (i.e., the variability observed between different individuals), and the 

uncertainty originating from intra-patient variability (i.e., the variability observed within one particular 

individual). 

7.2.1.1 Inter-patient Variability 

Inter-patient variability was already discussed in Chapter 3. It affects both the pharmacokinetics and 

pharmacodynamics of any given drug. For instance, it has been shown that age as well as weight, lean body 

mass, ethnicity, etc., are all factors of P K P D variability in humans. Co-existing illnesses involving either 

the liver and/or kidneys may also significantly alter the way drugs are metabolized and eliminated from 

the body. 

In general, 2 patients with similar physiological characteristics (age, weight, lean body mass, A S A ) may 

have largely different P K P D parameters. For instance, patient #15 in Table 6.1 (female, 21 yrs old, 53 kg, 

157 cm, A S A I) and patient #53 (female, 21 yrs old, 67 kg, 163 cm, A S A I) have significantly different P K 

time delay (45 sec vs. 4 sec), EC50 parameter (3.8 ug/ml vs. 2.3 ug/m\), and saturation characteristics 

(Hill steepness of 1.2 vs. 2.5). 

Inter-patient variability can be easily characterized by considering the differences between P K P D models 

obtained over a large population of patients. In particular, Table 6.1 provides a good representative sample 

of an adult population with respect to the response to propofol administration. The parametric variability 

observed between the different P K P D models presented in this table is summarized in Table 7.1. 

Inter-patient variability clearly plays a prominent role in the overall system uncertainty. For instance, 

there is a significant difference in the P K time delay and P D time constant between patients. Also, while 

the EC50 variability is more limited, there is still a 6-times difference in terms of the overall P K P D steady 

state gain 2 . 

7.2.1.2 Intra-patient Variability 

Intra-patient variability expresses the variability observed in the drug response within one particular subject. 

This variability originates from different factors. 

2The overall PKPD gain regroups both PK and PD steady state gains, as well as the linearized Hill gain (operating point: 

W A V C N S = 5 0 ) . 
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Table 7.1: Propofol PKPD Inter-patient Variability 

E C 5 0 7 

M I N M A X Td o u 
M W [8]" [%] 

M I N M A X K D 0 u 
[s-1] Is"1] Is"'1] [%] 

M I N M A X E C 5 0 , o u 
[Mg/ml] [MS/ml] [/.g/ml] (%] 

M I N M A X 70 u 
[1] 11] [1] [%] 

A G E G R O U P 

G l 
G 2 
G 3 
G 4 

4 45 24.5 83.7 
1 44 22.5 95.6 
2 35 18.5 89.1 
2 29 15.5 87.1 

25.0 160.5 92.7 73.0 
24.8 83.1 53.9 54.0 
28.7 38.0 33.3 13.9 
21.8 58.0 39.9 45.4 

1.9 3.8 2.8 33.3 
2.8 4.0 3.4 17.6 
3.0 6.0 4.5 33.3 
3.1 5.1 4.1 24.4 

1.9 4.7 3.3 42.4 
1.2 2.7 1.9 38.5 
1.3 2.3 1.8 27.8 
1.1 2.3 1.7 35.3 

P O P U L A T I O N 1 45 23 95.6 21.8 160.5 91.1 76.1 1.9 6.0 4.0 51.9 1.1 4.7 2.9 62.0 

D r u g a d m i n i s t r a t i o n It is a well-documented fact that the pharmacokinetics of intravenous agents 
differ depending on the method of administration of the drug. Even though bolus and infusion PK models 
have the same steady state gain, the initial peak plasma concentration following a bolus administration is 
significantly over-predicted by the corresponding infusion model (see for instance Figure 3.4). 

During steady state (and for small setpoint changes and/or disturbances), it is likely that the controller 
will administer propofol at an infusion rate inferior to 0.5 mgmin _ 1 kg _ 1 . In this range, it is expected 
that the propofol pharmacokinetics will be accurately described by the infusion model. However, during 
large transients, the controller may have to output infusion rates above 1 mg-min_1-kg_1, in which case 
the propofol uptake and distribution may follow the behavior observed for bolus regimen. If the controller 
output is not constrained to infusion rates inferior to 0.5 mg-min _ 1kg _ 1, the controller design must therefore 
account for the difference in dynamics between the bolus and infusion PK models. This difference in models 
can be expressed as system uncertainty by associating to each case presented in Table 6.1 the two possible 
PK frequency responses. 

C o n t r o l l e r Setpoint In Section 6.3.4, we commented on the fact that the Hill saturation may be viewed 
as a gain that is dependent on the operating point of the system. In terms of the close loop application, 
it is desired to maintain control over a wide range of W A V C N S values (e.g., from 80 to 20). As a result, 
for each PD model in Table 6.1, we can reduce the Hill equation as a gain K bounded between two values 
Kmax and Kmin (see Figure 7.5), and defined as: 

Kmax = n iax jA^ , x m j n < x < Xmax} and Kmin — min-fl^-, Xmin < X < x m a x } , (7.18) 

where: 
1 ~ / Emin i 1 yl Tjraax 

• — 7 M M and ^ — 7 (7 1Q\ •^mm — 0 \ 1 j - , « u i u Jsmax — o A ; 1 E 1 ' . J -c ; 
Z V 1 — him.in. £ V 1 — tLimnx. 
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Figure 7.5: Linearization of the Hill equation. 

and where Emin = 0.2 ( W A V C N S = 8 0 % ) corresponds to the smallest desired effect (shallow sedation), and 

Emax = 0.8 ( W A V C N S = 2 0 % ) corresponds to the strongest desired control setpoint 3. 

The Hi l l saturation being simplified as a gain K e [Kmin', Kmax], we can therefore associate for each 

case in Table 6.1 two frequency responses corresponding to the minimum and maximum Hi l l gains. 

P h y s i o l o g i c a l T i m e Var iance Physiological processes evolve in time (e.g., circadian rhythms, hemo

dynamic changes, hormonal fluctuations, etc.). Alterations in these processes can affect drug distribution, 

elimination, and effect, which in turn can result in large intra-patient P K P D parameter variability. 

In an attempt to quantify intra- vs. inter-patient parametric variability, we carried out in 2002 a clinical 

study involving 5 patients receiving electro-convulsive shock therapy ( E C T ) 4 . These patients received a 

total of 6 treatments given over a couple of months. Each treatment consisted in the administration of a 

single thiopental induction dose to provoke a rapid loss of consciousness before the application of the electric 

shock. Similarly to the L M A data, the W A V C N S induction time courses were used to derive the P D model 

for thiopental. The P K part of the model was derived based on a published thiopental P K parameter set. 

The model parameters derived during these multiple repeats are presented in Table D.6 and Table D.7, and 

expressed as parametric uncertainty in Table 7.2. 

Results from this E C T study show that intra-patient variability is limited as compared to inter-patient 

variability. For instance, when plotting the time courses of the W A V C N S for each patient, we can clearly see 

that the P K time delay is consistent for each individual patient, but can vary significantly between different 

patients. (A representative example is plotted in Figure 7.6.a.) In this study, we found that intra-patient 

parametric uncertainty reaches 30% at most for the P K time delay, while inter-patient uncertainty can be 

as high as 70%. Similar results were found for the overall P K P D gain. These results are summarized in 

the Figure 7.6.b. While expected, these results also show that the W A V C N S can be used to discriminate 

3Such a deep effect may be desired prior (and during) extremely stimulating surgical acts. 
4The protocol of this study and the identification procedure are presented in more details in the Appendix D.3. 
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Figure 7.6: Intra- and inter-patient variability during thiopental induction, (a) W A V C N S time courses for 2 patients. 
Each repeat is synchronized with the end of thiopental injection, (b) Identified P K P D gains and PK time delays. 

Table 7.2: E C T Intra- and Inter-patient Variability 

Td E C o 7 

M I N M A X Td o u 

N N H IK! 
M I N M A X K d 0 u 
[ s - i ] [ s - i ] [ s - i ] [%] 

M I N M A X E C 5 0 o u 

[Mg/ml] [^g/ml] [ M g /ml ] [%] 
M I N M A X 7 0 u 

[1] [1] HI [%] 
P A T I E N T 

# 1 

# 2 

# 3 

# 4 

# 5 

2 3 2 9 2 6 . 0 1 1 . 6 

1 5 2 3 2 0 . 5 1 2 . 2 

8 1 7 1 3 . 5 2 5 . 9 

2 5 4 5 3 5 . 0 2 8 . 6 

2 5 4 2 3 3 . 5 2 5 . 4 

1 7 . 4 6 7 . 9 4 2 . 7 5 9 . 2 

3 0 . 5 4 6 . 2 3 8 . 4 2 0 . 5 

4 8 . 5 8 1 . 5 6 5 . 0 2 5 . 4 

2 6 . 0 3 9 . 8 3 2 . 9 2 0 . 1 

3 7 . 1 2 1 4 . 0 1 2 5 . 5 7 0 . 5 

1 7 . 2 2 2 . 1 1 9 . 7 1 2 . 5 

1 4 . 5 1 5 . 9 1 5 . 2 4 . 6 

1 5 . 3 2 1 . 5 1 8 . 4 1 3 . 8 

1 6 . 4 2 1 . 4 1 8 . 9 1 3 . 2 

2 0 . 2 2 8 . 2 1 0 . 2 1 6 . 5 

1.4 1.6 1.5 6 . 7 

1.5 1.8 1.7 9 . 1 

1 .3 1.6 1.5 1 0 . 3 

1.6 2 . 1 1.8 1 3 . 5 

1.2 1.5 1.4 7 .1 

P O P U L A T I O N 8 4 5 2 6 . 5 6 9 . 8 1 7 . 1 2 1 4 . 0 1 1 5 . 5 8 5 . 2 1 4 . 5 2 8 . 2 2 1 . 4 3 2 . 1 1.2 2 .1 1.6 2 7 . 3 
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Figure 7 .7: Normalized Propofol P K P D uncertainty bounds expressed in the frequency domain. The P K part of 
the models was derived based on the published P K parameter sets of Schiittler et al. (a) Based on Traditional PD 
models (b) Based on system-oriented PD models (does not include the sensor dynamics). 

between the need of each individual in terms of drug administration. 
In terms of propofol and the LMA study, intra-patient variability due to physiological time variance 

cannot be directly inferred from the data of Table 6 .1 . However, it is likely that the large number of patients 
considered in the propofol study captures most of the potential intra-patient parametric uncertainty due 
to physiological time variance (note, for instance, that the population parametric uncertainty of the LMA 
study is larger than that of the ECT study). 

7.2.2 Propofo l P K P D Uncer ta in ty Results 

In order to apply the methodology presented in Section 7.1 for the characterization of propofol P K P D 

uncertainty, it is first necessary to derive the uncertainty bounds in the frequency domain. To do so, we 
consider the P D models of Table 6.1 . For each case, we derive four frequency responses corresponding to 
both infusion and bolus P K models, and the two Hill gains K M I N and KMAX- The propofol P K P D frequency 
bounds for the whole study population are presented in Figure 7.7. For comparison, we also included the 
uncertainty bounds obtained based on the P D models obtained from the traditional modeling approach. 
Note also that the bounds were normalized based on the steady state gain of the nominal P K P D model5. 

A direct observation is that the traditional modeling approach yields significantly more uncertainty in 
the lower frequency range. In particular, the uncertainty in terms of the phase is considerably larger. One 
explanation is that the P D model bandwidth intersects with part of the P K bandwidth (the fast distribution 

5In this case, the nominal PKPD model was obtained by averaging the PKPD parameters over the study population. 
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and redistribution time constants TT and k2\ are in the same order than the P D time constant ke0). As 

a result, both P K and P D uncertainties add up and result in the large phase uncertainty observed in the 

[4 • 1 0 - 4 , 1 • 10 - 2 ] rad-s - 1 frequency bandwidth. Conversely, most of the P D dynamics of the proposed 

system-oriented approach is accounted for by the sensor dynamics which does not carry uncertainty. As 

a result, the identification procedure yielded a higher frequency band P D dynamic 6 . The P K and P D 

uncertainty do not overlap, which explains the reduced uncertainty observed in the lower frequency band. 

Another observation is that the steady state gain uncertainty is also larger in Sheiner's approach. This can 

be explained by considering the fact that the un-modelled time delay results in steeper Hi l l relationship in 

the traditional models, which in turn results in a larger K M A X / . K " M I N ratio. 

The relative uncertainty weights derived from the frequency response bounds are presented in Figure 7.8 

for both modeling approaches. 

Figure 7.8.a presents the weights obtained directly using the population-averaged P K P D nominal model 

Go(jw). In both cases, the weights are significantly higher than the threshold, indicating that even in the 

low frequency region, the complementary sensitivity function (i.e., the close loop transfer function) cannot 

be equal to one and has to be reduced to less than 0.5 (new approach) and 0.14 (traditional approach). This 

eventually would result in a 50% steady state error (resp. 86% error in the traditional model). This result 

clearly shows the need to improve on the selection of the nominal model in order to reduce the conservatism 

introduced by the methodology. 

Figure 7.8.b presents the uncertainty weights in case the nominal model of the system follows the 

optimum Nyquist path, as defined in Section 7.1.2. These weights are significantly reduced, and actually 

show that the system can be robustly stabilized while guaranteing no steady state error. In this case, the 

controller cutoff frequency can be as high as 2 • 1 0 - 2 rad-s - 1 . 

Figure 7.8.c presents the uncertainty weights obtained with the near optimal nominal model G^dui). 

These weights are significantly larger than the optimal weights. This is due to the fact that the G Q P ' ( J C J ) 

realization only approximates the optimal Nyquist path (see Figure 7.9). Also, note that the realization 

w(joj) brings additional conservatism. In case of the traditional P K P D modelling approach, it is doubtful 

that a robust controller presenting no steady state error can be derived. 

The nominal P K P D model Go(jw), the weight wnom(jw) and the uncertainty weight W(JUJ) are summa

rized as transfer functions in the Table C . l and Table C.4 (model #1). Note that a 4th order realization 

was necessary for both wnom(jw) and w(ju>) in order to obtain satisfactory results (the need for such a 

high order realization is motivated by considering the large frequency spread of the different P K P D time 

constants). 

6Note that the time constant ks is one order of magnitude higher than fce0. 
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Figure 7.8: Propofol P K P D uncertainty weights for the complete adult population (drug administration: infusion 
and bolus ; age group: 18-60 yrs old ; W A V C N S range: 80 to 20). (a) Uncertainty weights calculated based on the 
initial Go(ju}) nominal model, (b) Uncertainty weights based on an optimized Nyquist path, (c) Near optimum 
uncertainty weights ||io(jiw)|| (and its realization ||w(jo;)||) obtained based on the near optimal realization GQP<'{jw) 
of the nominal model. 
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Figure 7.9: Nominal model selection in the frequency domain. Note that the rapid gain drop in the high frequency 
range could not be captured adequately by wnom(juj). Also, some small phase differences between the optimal model 

. ' „u—t ... _ 1 m-3 
gain. 
and the realization GQ P* at about w = 1 • 10 3 rad-s 1 results in 'bumps' which significantly increase the uncertainty 

7.3 Reducing Uncertainty 

System uncertainty usually leads to conservative control designs in order to guarantee stability. This usually 

translates in limited close-loop performances. In particular, the results presented in Figure 7.8 emphasize 

the need to investigate methods to reduce uncertainty to more manageable levels. 

In that respect, we present here 2 simple methods which can bring immediate benefits without adding 

significant complexity to the control design. The first method (see Section 7.3.1) aims at reducing un

certainty by simply limiting the validity of the models to a particular population subset, or operating 

conditions. Conversely, the second method aims at eliminating inter-patient variability by directly identi

fying the patient model during the initial induction phase. This self tuning can be either total or partial, 

in which case some inter-patient uncertainty may remain in the model. We see in Section 7.3.2 that even 

partial identification can provide a significant reduction in uncertainty. 

Note that these methods can be combined together for optimum results. 

7.3.1 Passive Methods 

B y 'passive methods', we refer to techniques which do not require further modeling nor identification efforts. 

These methods aim at reducing uncertainty by simply limiting the validity of the models to a smaller subset 

of population and/or operating conditions. 
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Figure 7.10: Effect of age consideration on P K P D relative uncertainty. 

7.3.1.1 Using Covariates 

A very simple way of minimizing inter-patient variability is to consider covariates. In particular, age has 

been shown to be both a P K and P D covariate. As such, considering a limited age bracket should reduce 

patient variability, and thus, system uncertainty. 

We present in Figure 7.10 the uncertainty weights derived from the four different age groups. Each of 

these weights does indeed present a lower magnitude than that of the weight obtained from the whole adult 

population. Hence, by simply considering the age of the patient, a specific nominal model can be chosen 

(models #2 to #5 in Table C . l and Table C.4) and used to derive a controller that is specific for that age 

group. 

However, the uncertainty reduction is not significant. For instance, the uncertainty weight magnitude is 

reduced by only 5% in the frequency range of interest (18-29 yrs old age group). Better results were obtained 

for the 30-39 yrs old age group, however, it is possible that the population sample is not large enough to 

capture the whole inter-patient variability in this age group. This result comes as a surprise since age is 

usually considered to be the strongest covariate in P K P D model. Hence, this may indicate that including 

covariates may only have a marginal effect in reducing inter-patient variability. This very issue was raised 

by S.L. Shafer during the 2005 Advanced Modeling and Control in Anesthesia ( A M C A , Switzerland) during 

his talk on P K covariates. He commented on the fact that the reduction in P K inter-patient variability by 

accounting for all covariates (age, weight and lean body mass) is only in the order of 5 to 10%, which is 

consistent with our finding. 

In this analysis we selected a 10 years age bracket. It is expected that further reduction of this bracket 

will provide reduction in uncertainty. However, it would be necessary to acquire more cases in order to 

obtain more precise uncertainty bounds. 
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Figure 7.11: Effect of drug administration consideration on P K P D relative uncertainty. Note that the uncertainty 
weight for bolus administration presents only an academic interest since it is unlikely that a controller be designed to 
work uniquely in this mode. 

7.3.1.2 Infusion vs. Bolus Administration 

In the uncertainty defined in the frequency bounds of Figure 7.7, we included both bolus and infusion-type 

administrations. Considering a rather conservative (robustly stable) control design, it is expected that the 

control action will remain bounded in a lower range of infusion rates. The controller may therefore not be 

able to deliver boluses. It is also expected that additional controller constraints will limit the ability of the 

controller to deliver such large doses without human supervision. 

Consequently, we may be able to limit the intra-patient variability by considering only infusion-type 

pharmacokinetics. Such a limitation of the P K P D model directly results in a smaller uncertainty weight, 

see Figure 7.11. In particular, the uncertainty 'bump' observed in the lower frequency range and due to 

differences in the drug distribution and redistribution dynamics is now eliminated. 

Another advantage of limiting the drug administration to either an infusion or a bolus-based scheme 

is that wNOM(JLL>) can be reduced to a second order LTI without impacting significantly the results. The 

corresponding P K P D nominal models, as well as the uncertainty weights, are summarized in the Table C . l 

and Table C.4 (models #6 and #7). 

7.3.1.3 Limiting the Control Range 

Another effective way of minimizing intra-patient variability (and thus uncertainty) is to consider a limited 

operating range. In particular, the results presented in Figure 7.8.c were derived assuming the controller 

may target any W A V C N S level from 80 to 20 (light sedation to deep anesthesia). It is likely that controllers 

tuned specifically for sedation (WAVCNS range: 80-50), general anesthesia (WAVCNS range: 60-30), and 

deep anesthesia (WAVCNS range: 40-20) may have to account for less uncertainty than a general purpose 

controller. 
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Figure 7.12: Effect of operating WAVCNS range reduction on uncertainty. 

This assumption is evaluated in Figure 7.12, where we present the uncertainty weights associated to 

each W A V C N S range. In particular, it is interesting to notice that the uncertainty is significantly reduced 

when considering the 80-50 sedation range. This stems form the fact that the slope of the Hi l l saturation is 

quasi-constant within this range. Conversely, as the effect nears the end of the observable range, the slope 

of the saturation reduces considerably, which yields a large K M A X / ^ M I N ratio, a major component in gain 

uncertainty. 

The corresponding P K P D nominal models, as well as the uncertainty weights, are summarized in the 

Table C.2 and Table C.5 (models #8 to #10). 

7.3.2 Total and Partial Self Tuning 

Another recourse when faced with large system uncertainty is the online adaptation of the model parameters. 

This allows the controller to adapt the model parameters to the specificities of the process, while reducing 

significantly the uncertainty bounds. However, the difficulty of guaranteeing a proper model identification, 

and the high computational complexity associated to the self-tuning procedure itself, are usually considered 

important obstacles when implementing on-line adaptive schemes. 

On-line self-tuning may therefore not be an option for this application. However, we have shown in 

the previous chapter that even limited induction data can be used to identify the P D parameters. Since 

induction is a procedure common to all anesthetic acts, sufficient identification data may always be available 

to identify the patient's dynamic response to the initial induction bolus. It is then likely that the information 

obtained during induction may be helpful to reduce some of the inter-patient variability, as it would allow 

the controller to focus more precisely onto the patient's P D characteristics. 

This approach may substantially reduce the model uncertainty. However, as mentioned earlier, intra-

patient variability originates from the inherent non-linearity of the P K P D model (infusion vs. bolus P K , 

Hi l l saturation), and from changes in some of the physiological processes. Therefore, even if the patient's 
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P K P D model is identified during induction, some uncertainty would still need to be accounted for. This 

section aims at quantifying the minimum intra-patient uncertainty which needs to be accounted for after 

self-tuning during induction. 

7.3.2.1 Studying Intra-Patient Variability: the E C T Framework 

The L M A data cannot be used to study the intra-patient variability which originates from changes in 

physiological processes. Therefore, quantifying the uncertainty due to intra-patient variability and the 

potential benefits of self-tuning during induction cannot be investigated based on these data. 

In 2002, we carried out a clinical study aimed at providing some data on intra-patient variability. This 

study was principally aimed at comparing the time course of the W A V C N S index during induction and 

following a thiopental bolus. The clinical framework which was selected to conduct this study was that 

of the Electro-shock Convulsive Therapy (ECT) . Patients undergoing this therapy typically receive a large 

sedation bolus of thiopental just before the application of the electroshock. In some situations, the patients 

receive the treatment every couple of days for a total of 12 repeats. In other cases, the patients receive the 

treatment every week for as long as their condition warrants it. As a result, the E C T procedure provides 

a framework in which a patient will be induced multiple times in the same conditions (same drugs, dosage, 

time of the day, etc.). 

The E C T study protocol, and the thiopental P K P D identification procedure, are summarized in the 

Annex D.3. 

Study Hypothesis After ethic board review and approval, 5 patients were consented for a total of 

6 repeats. After review of the induction data, this study provided 4 to 5 P K P D models for each single 

patient. These models were obtained within similar conditions (same drugs/dosage and anesthesia protocol) 

and over a 1 to 3 months period. 

We hypothesize that the variability observed in the models derived from each patient is representative of 

the variability which can occur during the course of a specific surgery. This hypothesis is backed up by the 

daily clinical observation that the reaction of a patient during the induction period is a good indicator of 

the intra-operative requirements of that particular patient. 

Study Limitations As compared to the propofol modeling study, the quality of the identification data 

was rather poor: 

- The quality of the W A V C N S induction time courses was compromised in many cases by the co

administration of succinylcholine. This N M B agent generated muscle tone (fasciculation) in some 

patients soon after the loss of consciousness. The corresponding increase in E M G activity elevated 

the W A V C N S - Cases with significant fasciculation-related W A V C N S increases were removed from the 

identification procedure. 
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- The data time-window was also much shorter than in the L M A study (90 to 120 seconds vs. 120 to 240 

seconds). This short window and the use of the very fast acting thiopental drug required the use of a 

faster W A V C N S trending filter. As a result, the induction time courses presented more measurement 

noise than in the L M A study. Also, in some cases, the W A V C N S did not settle before the application 

of the E C T shock. These cases were removed from the analysis. 

- Reliable bolus P K models for thiopental have not been published. Consequently, the infusion P K 

models published by Stanski et al. [168] in 1990 are used here to predict the drug plasma concentration 

time course. Consequently, it is expected that the P D time constant kd does - in part - compensate 

for the P K modeling error introduced when using infusion P K models. 

- The thiopental induction dose was mainly titrated to provoke a rapid loss of consciousness followed 

by a deep sedation. As a result, the W A V C N S did not describe the whole 100-0 therapeutic range. 

The models derived here are, therefore, limited to describe effect dynamics in the sedation range. 

- Finally, due to the nature of the illness for which the E C T was administered, it is likely that these 

patients may have also received a pharmacological therapy directly affecting the C N S , in which case 

some interaction with thiopental could have occurred. 

These limitations may explain the fact that the E C T study yielded more inter-patient parametric variability 

than the L M A study (see Table 7.2 and Table 7.1). 

While it is doubtful that the P K P D models derived in this study bear much clinical interest (co

administration of succinylcholine, lack of proper thiopental bolus P K model, limited therapeutic window), 

they give good grounds to compare the uncertainty originating from inter-patient variability vs. the uncer

tainty caused specifically by intra-patient variability. 

7.3.2.2 Inter- vs. Intra-Patient Uncertainty 

A protocol similar to the one outlined in Section 7.2.2 for propofol was implemented to derive the frequency 

domain uncertainty bounds for the whole study population (the drug administration was limited to infusion-

type regimen, and the Hi l l saturation was linearized in the 80 to 50 W A V C N S range). The resulting 

bounds were then used to calculate the uncertainty weight. A similar analysis was then carried out for 

each individual patient using the 4 (or 5) available P K P D models in order to quantify the intra-patient 

uncertainty. 

A significant reduction in uncertainty can be observed (a least a 60% reduction in the lower frequency 

range, and a 3-times reduction in the higher frequency range), see Figure 7.13. Another direct advantage 

of working with patient-specific models is that the controller cutoff frequency can also be increased by 

about half a decade (the uncertainty weight crosses the '1 ' threshold at least half a decade higher than the 

population-normed uncertainty). 
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Figure 7.13: Inter- vs. intra-patient uncertainty (thiopental PKPD models). The patient-specific nominal P K P D 
models used to calculate the uncertainty weights were derived based on the 4 (or 5) P K P D models derived to calculated 
the uncertainty bounds. In this case, prior knowledge of each patient P K P D characteristics was necessary. 

Working with patient-specific PKPD uncertainty is, however, hardly practical since it assumes that 

the frequency domain uncertainty bounds are already well defined (these bounds are used to calculate the 

nominal model and the uncertainty weight). This situation is clearly not common, since, in most cases, no 

PKPD information is available when patients first arrive in the operating room. 

7.3.2.3 P K P D Ident i f ica t ion d u r i n g Anes thes i a I n d u c t i o n 

Since intra-patient uncertainty is significantly reduced as compared to population-normed uncertainty, it is 

reasonable to assume that information obtained during induction can be helpful to reduce the uncertainty. 

F u l l P K P D Pa rame te r Ident i f icat ion For instance, a simple approach which may yield immediate 

benefits is to first identify the PKPD model using induction data, and then replace the parameters of the 

generic nominal model with the newly identified PKPD parameters. 

If we follow this approach for each E C T patient, we obtain the uncertainty weights plotted in Figure 7.14. 

These weights can be used to derive an intra-patient upper uncertainty bound. This bound corresponds to 

the largest uncertainty obtained when applying this method to each patient and each PKPD model. 

A direct application of this analysis is that, considering an 'unknown' patient for whom a unique PKPD 
model is obtained during induction, the uncertainty weight that needs to be considered to guarantee a 

stable design should be at least equal to the intra-patient upper uncertainty bound. 

As compared to the uncertainty weight obtained for the whole study population, the intra-patient 

upper uncertainty bound is smaller across the whole frequency range (this is to be expected since the 

identification adds information concerning the patient). Note, however, that the uncertainty reduction in 
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Figure 7.14: Intra-patient upper uncertainty bounds. This bound (in thick dash line) represents the minimum 
uncertainty weight which must be considered to guarantee stability if a P K P D model can be identified from the 
induction data (this model is then substituted to the generic nominal model to calculate the controller parameters). 

the lower frequency band is moderate (only about 10%). The interest of this technique lies mostly in the 

higher frequency range where the uncertainty reduction is significant enough to allow for a wider control 

bandwidth (about half a decade larger). 

Partial P K P D Parameter Identification Even though the new system-oriented modeling approach 

makes it possible to use induction data for P K P D identification, the procedure remains difficult since 

external factors may perturb the estimation of the model parameters. For instance, only about 50% of all 

E C T cases could be successfully modelled (many cases had to be discarded due to strong succinylcholine-

induced fasciculation). Similarly, about 30% of the 74 L M A cases had to be discarded from the P D analysis 

due to increase in E M G during L M A insertion. It is also likely that the co-administration of other drugs 

may influence the P D steady state gain. 

The method presented in the previous paragraph is still not very practical. In a normal clinical setting, 

we expect that only a limited number of cases will be suitable for such an analysis. 

However, a parameter such as the P K time delay can be much easier to identify as compared to any other 

P K P D parameter. For instance, if the initial induction bolus is delivered through the infusion pump, the 

controller has access to the exact time at which the drug administration begins. After detecting a significant 

change in the W A V C N S time course, the controller can then estimate the time which elapsed since the start 

of the syringe push. This time will not be affected by any stimulation which may occur during the L M A 

insertion or intubation. Also, the co-administration of other drugs should not affect significantly the P K 

time delay, as it is a reflection of the patient's arm-to-brain travel time. 
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Figure 7.15: Limiting the PD identification to the sole estimation of the PK time delay can significantly reduce the 
uncertainty weight in the high frequency region. As expected, there is no reduction in the low frequency band. (Note 
that the increase in the uncertainty magnitude observed in the [2 • 10 - 4 ; 2 • 10 - 3] rad-s - 1 frequency range may be the 
result of slight differences in the way the optimization function that calculates the realization of the optimal nominal 
model was set.) 

In Figure 7.15, we show the intra-patient upper uncertainty bounds when updating the generic nominal 

model with only the P K time delay identified during induction. As expected, there is no reduction of 

uncertainty in the low frequency range (the time delay does not affect the low frequency response of the 

P K P D models). The advantage of using the identified P K time delay lies once again in the high frequency 

range where the intra-patient upper uncertainty bounds is significantly smaller than the population-based 

uncertainty weight. A 3 to 5-times increase of the controller bandwidth can then achieved, provided that 

information on the patient's P K time delay is available. Note that another advantage of obtaining the P K 

time delay is that this information can also be used in the controller to compensate for the time delay and 

improve close loop performance (e.g., using a Smith Predictor). 

Note that only the identification of the P K P D steady state gain can bring improvements in the low 

frequency region. 

7.4 Summary 

In this chapter, we have investigated in details the P K P D uncertainty. This uncertainty stems from both 

inter- and intra-patient variability in drug disposition and effect. 

Inter-patient variability can be easily understood as the variability originating from natural physiological 

differences between individuals. Intra-patient variability, on the other hand, has mainly two very different 

origins: 
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- Changes i n phys io log ica l processes: all physiological processes do evolve in time. As a result, the 

model parameters may fluctuate in time. However, we found that the variability due to these changes 

is limited as compared to the inter-patient variability. 

- L i n e a r i z a t i o n o f the P K P D model : another source of variability comes from the fact that the 

P K P D model is inherently non-linear. Linearizing the model non-linearity introduces a variable gain, 

which is responsible for a large part of the steady state gain uncertainty. 

The approach chosen for quantifying uncertainty was based on the relative uncertainty methodology, 

where knowledge of the plant variability is expressed as uncertainty bounds in the frequency domain. These 

bounds are used to define Nyquist uncertainty disks that contain all possible plants. The ratio between the 

disks radii and the magnitude of the nominal plant define the relative uncertainty weight, which, in turn, 

imposes limitations in terms of the close loop characteristic of the control system 7. 

This analysis has revealed that the variability observed in P K P D models is cause for concern. When 

considering a generic P K P D model, the uncertainty weight in the low frequency region already reaches 

0.95 and crosses the '1 ' threshold at a frequency of 1 .510 - 4 rad-s - 1 . A sharp increase in the uncertainty 

weight can be further observed for frequencies >1.0-10 - 2 rad-s - 1 , thus effectively limiting the controller 

cutoff frequency to the [1 • 1 0 - 3 ; 1 • 10 - 2 ] rad-s - 1 range. 

When faced with performance limitations due to uncertainty, it is recommended to investigate methods 

to reduce the magnitude of the uncertainty weight. 

- We have shown that the inter-patient variability can be simply reduced by considering the age of the 

patient. When dividing the study population into 10 yrs brackets, we found that the uncertainty 

magnitude can be reduced by 5 to 10%. This moderate improvement can be surprising at first since 

age is recognized as the most prominent covariate in P K and P D models. However, this result is 

similar to what has been reported in the P K literature, where models accounting for all P K covariates 

exhibit a 10% reduction in prediction error as compared to generic P K models. While reducing the 

age bracket further may improve on this result, a much larger sample size would then be needed. 

- P K dynamics are also particularly non-linear with respect to the infusion rate. When expressing this 

non-linearity as system uncertainty, we observed a 10 to 15% increase in the uncertainty weight in the 

[1 • 1 0 - 4 ; 1 • 10 - 2 ] rad-s - 1 range (which corresponds to the P K dynamic range). However, it is doubtful 

that controllers will be given the possibility of administrating boluses without human supervision. 

Hence, constraining the control action to infusion rates <1 m g m i n - 1 k g - 1 is a safety measure that 

also guarantees that the patient's pharmacokinetics follows the dynamic behavior of infusion-based 

regimen. This decrease in uncertainty can be achieved by constraining the controller action. 

7In general, tight control is not possible for frequencies where the uncertainty weight is > 1. Also, the inverse of the 

uncertainty weight represents the largest magnitude of the complementary sensitivity function T. If T is above this limit for 

any frequency ui, there exists a set of plants for which the control design will be unstable. 
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- We have also shown that it is possible to further reduce the uncertainty by limiting the operating 

range of the controller. Indeed, a large part of the uncertainty originates from the linearized Hi l l 

saturation, which can be considered as a non-linear gain. This gain is typically bounded. However, 

the bounds may be quite large when considering that the system can operate within a wide output 

range. Limiting this range automatically limits the steady state gain uncertainty, which in turn, limits 

the overall system uncertainty. 

Limiting the P K P D models to a certain age bracket and constraining the control action to infusion-

type administrations reduce the uncertainty while not adding complexity to the controller design, see 

Figure 7.16.a. This should therefore be considered as part of the uncertainty strategy when dealing with 

the control of general anesthesia. Limiting the operating range of the controller can also be envisaged if a 

gain scheduling scheme (i.e., where a specific controller is chosen according to the current W A V C N S operating 

point of the system) is implemented. However, the added complexity does not justify the increased design 

cost of this solution, mostly when considering close loop controllers designed for general anesthesia and/or 

deep anesthesia (in these cases, the improvement when compared to the general purpose controller is only 

about 5%). Note, however, that the situation is quite different when considering the control of sedation in 

the I C U . Since targeted setpoints below 50 are not expected, a unique sedation-specific controller may be 

designed based on the relative uncertainty weight obtained for the 80 to 50 W A V C N S range. In this case, 

the uncertainty is significantly reduced, see Figure 7.16.b. This observation leads us to conclude that the 

close-loop control of sedation in the I C U may be easier to achieve and will lead to better performances 

than the control of general anesthesia. Another implication of this result is that a stable controller designed 

specifically for sedation in the I C U may be unstable in the OR. 

The three methods discussed above simply limit the validity of the model to a particular population of 

patients and/or operating conditions. A more active method is discussed in Section 7.3.2. This method 

makes use of the fact that the system-oriented approach to P D modelling requires limited amount of data 

for identification purposes. In many cases, the induction time course of the W A V C N S can therefore provide 

useful information concerning the patient's specific dynamic behavior to the administration of an anesthetic 

drug. We have indeed shown that the magnitude of the uncertainty weight can be reduced by about 10% in 

the low frequency region by using the identified induction P D model. More importantly, we have shown that 

the control bandwidth can be increased by about half a decade, as the uncertainty in the high frequency 

region is significantly reduced. 

P D identification during induction, however, may not be practical due to a large number of factors that 

can affect the W A V C N S time course. Self-tuning of the model parameters during induction may thus be 

limited to specific situations that require trained human operators to assess the validity of the identification 

data and the derived P D parameters. A n alternative to a full identification procedure is to only identify 

specific P K P D parameters. In particular, the sole identification of the P K time delay provides substantial 

improvements in terms of uncertainty reduction in the high frequency range. Note that the identification 
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Figure 7.16: Selected uncertainty strategy. The corresponding P K P D nominal models, as well as the uncertainty 
weights, are summarized in the Table C.2 and Table C.5 (models #11 to #14), and Table C.3 and Table C.6 (models 
#15 to #18). (a) Application: general anesthesia in the peri-operative environment (the controller takes into account 
the age of the patient and limit the drug administration to infusions only), (b) Application: sedation in the ICU (in 
addition to accounting for the patient's age and limiting the drug administration to infusions only, the controller is 
also limited to maintain a sedation level in the 80 to 50 W A V C N S range). 
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Figure 7.17: The frequency uncertainty bounds are represented as ring sections in the Nyquist plot. In the classical 
uncertainty analysis method followed in this chapter, the ring sections represent the system uncertainty. However, 
when plotting each individual P K P D model, we can notice that the Nyquist uncertainty disk can be significantly 
reduced. This approach introduces therefore less conservatism than the classical approach. Note that the absence of 
models in the outer left and right corners of the ring section may reflect the fact that P K P D models are essentially 
positive systems. 

of this time delay is rather straightforward and can be carried out even if the patient reacts to L M A 

insertion, intubation, or the administration of a depolarizing N M B drug. Also, since this time delay is 

mostly representative of the arm-to-brain travel time, it is reasonable to assume that the co-administration 

of opioids during the induction procedure may not affect this parameter. If the thiopental results from the 

E C T study hold true for propofol, we found that identifying the PK time delay can potentially yield a 3 to 

5-times increase of the controller cutoff frequency. 

A t this point it is important to note the strong conservatism introduced by the uncertainty methodology 

followed in this chapter. While this approach is usually recommended in the literature for uncertainty which 

cannot be expressed as parametric uncertainty, it may not be suitable for systems that present very large 

model variability. In this particular case, it was necessary to optimize the PKPD nominal model in order 

to obtain manageable uncertainty weights. The fact that such an optimization was necessary can already 

be construed as a warning that the method may be inadequate. 

A less conservative method is to consider the Nyquist path of each individual PKPD model instead 

of their frequency response. A t each frequency w, it is then possible to define an uncertainty disk that 

contains all of the possible models, see Figure 7.17. Note that the radius of this new uncertainty circle is 
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Figure 7.18: Comparison between the uncertainty weight obtained from the classical method (where the uncertainty 
is first expressed as frequency domain bounds), and the new approach where all the models are directly expressed 
into the complex domain. 

much reduced as compared to the circumscribing circle that contains the uncertainty ring section defined 

from the frequency domain analysis. B y iterating this analysis over the whole frequency range, we can 

define a new optimal nominal Nyquist path. This path can be used to estimate G o p t, which, in turn, leads 

to a new uncertainty weight. When compared with the weight obtained from the classical method, we can 

observe a reduction of up to 35% in the low frequency region, and about 15% in the high frequency region, 

see Figure 7.18. Note that the uncertainty in both cases increases sharply after 1 • 10~ 2 rad-s - 1 , indicating 

that even the less conservative approach does not not necessarily yield an improved cutoff frequency. 

Since this new approach is less conservative, it is recommended to obtain a population sample large 

enough to guarantee that the uncertainty bounds contain all possible patients' dynamics. In case of small 

population samples, such as in the L M A and E C T studies, the additional conservatism introduced by the 

approach followed in this chapter may be necessary. 



Chapter 8 

SISO Control Design 

In this chapter, we design and assess the performance of a single-input single-output controller for the control 

of the W A V C N S index (see Chapter 5), using propofol as the actuating drug. The control performances are 

assessed through simulation, using the 44 patient models derived in Chapter 6 (see Table 6.1). 

In Section 8.1, we discuss the Matlab-Simulink (MathWorks, Natick, M A ) P K P D patient simulator. In 

particular, and to guarantee the accuracy of the simulator output, we identify both the measurement noise 

and modeling error in order to simulate their combined effects on the system output. 

In Section 8.2, we use basic loop shaping techniques to design a P I D controller. We show that, without 

accounting for P K P D uncertainty, the controller can easily lead to instability. Only a design based on 

complementary sensitivity loop shaping guarantees stability, at the cost of degraded control performance. 

In this section, we also identify three patient models which present very different dynamic characteristics. 

These three patient models are used throughout this chapter for illustration purposes. 

A more efficient way of designing robust controllers is to consider an Hoo design procedure, which makes 

direct use of the uncertainty weights derived in Chapter 7. This procedure is discussed in Section 8.3. 

The application to the design of a Propofol controller for W A V C N S control is shown to yield slightly better 

results to those obtained from the stable PID loop shaping design, at the cost of an increased complexity 

in terms of the controller structure. 

Furthermore, in Section 8.4, we show that uncertainty reduction obtained when considering the age group 

of the patients, and when identifying the P K time delay, directly translates into significant improvements 

in terms of control performance. We show that the proposed age-targeted control design can yield clinically 

relevant performance. We also show that the on-line identification of the P K time delay does result in minor 

performance improvements. 

When interviewing clinicians on the issue of control performance, it appeared that faster settling times 

were desired. However, clinicians were ready to relax the overshoot requirements, therefore looking for a 

more aggressive design. In Section 8.5, we revisit the control design in order to improve the performances. In 

particular, we investigate the effect of increasing the controller gain and using a Smith Predictor structure. 

We show that large surgical disturbances can be rejected in about 3 min 30 sec in the majority of cases. 

155 
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Figure 8.1: Patient Simulator block diagram. 

A larger sensitivity peak and sensitivity to measurement noise are the trade-offs for these more aggressive 

designs. 

Note that, in all cases, special care is taken for designing controllers that can handle constraints in terms 

of minimum and maximum infusion rates. In particular, we limit the maximum infusion rate to 0.8 m g s - 1 

to ensure that the controller does not administer boluses for safety reasons. 

8.1 Patient Simulator 

Matlab-Simulink is one of the most well-known simulation platform used to test and validate control laws 

before implementation. In this section, we briefly present an overview of our PKPD patient simulator. We 

also identify the measurement and modeling noises in order to guarantee an accurate simulation of the 

patients' response to propofol administration when using the W A V C N S sensor. 

8.1.1 Simulator Structure 

To simulate a patient's reaction to varying doses of propofol, a Matlab-Simulink simulator was constructed 

based on the PKPD model structure discussed in Chapter 6, see Figure 8.1. The inputs of the Pa t i en t 

Simula tor block are the infusion rate (expressed in m g s - 1 ) , the patient's PK parameters (both for infusion 

and bolus administration), the patient's PD parameters, and the measurement/modeling noise level. The 

outputs are the plasma concentration and the unfiltered hypnosis index (dimensionless value between 0 (no 

drug effect) and 1 (maximum drug effect)). 

The Pa t i en t Simulator block contains three distinct subsystems, see Figure 8.2. The first subsystem 

calculates the plasma concentration based on the model PK parameters. The plasma concentration is then 

used by the second subsystem to calculate the drug effect. The third subsystem simulates the measurement 

and modeling noise by using a random sequence whose amplitude is user selectable (see Section 8.1.2). The 

simulated noise is directly added to the drug effect. 

The Pharmacokinetics block can simulate both infusion and bolus concentration profiles, see Figure 8.3. 
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Infusion PK 

Figure 8.3: Patient Simulator - Pharmacokinetics block diagram. Depending on the infusion rate, the simulator will 
either output the plasma concentration corresponding to the bolus or infusion P K models. 

The PK time delay is modelled through the transport delay block. A look up table is used to determine 

whether the infusion rate should be considered as infusion or bolus (in this simulation, an infusion rate 

above 1 mg-s - 1 is considered to be a bolus). 

The Pharmacodynamics block calculates the propofol effect based on the calculated plasma concentra

tion, see Figure 8.4. The measurement noise is added after the Hi l l saturation element. As a result, the 

output of the patient simulator may take values higher than 1 or lower than 0 due to the noise. 

The WAV Sensor subsystem models the W A V C N S second order IIR trending filter (see Eq . (5.25)) and 

the affine scaling function, see Figure 8.5. A zero-order-hold is added to model the update rate of the 

sensor. The WAV Sensor block outputs both the W A V C N S index (scaled from 100 to 0) and the trended 

drug effect (scaled from 0 to 1), which will be used as the feedback quantity for the controller. 

Note that the surgical disturbance is added to the unfiltered hypnosis index. If a non-linear sensor such 

as BIS was to be used, (in which case the sensor output can display large abrupt changes), it would then 
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Figure 8.5: Patient Simulator - WAV Sensor block diagram. 

be advisable to add the surgical disturbance just after the sensor output. 

8.1.2 Noise M o d e l i n g 

P K P D models present 2 distinct sources of noise: the measurement noise, i.e., the high frequency variations 

observed in the W A V C N S index (not representative of a drug or surgery-related change in the patient's state), 

and the modeling noise, which results from modeling errors. 

M e a s u r e m e n t No i se To quantify the measurement noise, we used the clinical E E G data obtained during 

the arthroscopy study. A subset of 12 arthroscopy cases presenting limited amount of electrocautery was 

first obtained 1. Each case was processed using the W A V C N S algorithm. The trending filter was disabled. As 

a result, only the un-trended W A V C N S index was obtained. A wavelet-based denoising algorithm was then 

applied to extract the main trend from the raw W A V C N S data. Patterns longer than sal min were considered 

to be the result of surgical stimulation and/or drug administration. Patterns shorter than fal min were 

associated to measurement noise, see Figure 8.6. 

The difference between the W A V C N S trend and the raw index was analyzed in the frequency domain. 

The frequency characteristics obtained in each case were combined and averaged, see Figure 8.7. 

M o d e l i n g E r r o r The modeling error can be assessed by using the residuals of the P D identification 

carried out in Chapter 6 based on the L M A data. Similarly to the previous noise characterization, we first 

processed each L M A case using the W A V C N S algorithm without the post-processing IIR trending filter. We 

'The use of the electrosurgical knife can create discontinuities in the W A V C N S index which can falsely increase the mea

surement noise level. 
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Figure 8.6: W A V C N S noise measurement based on the raw index. 
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Figure 8.7: Measurement noise frequency characteristic. 
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Figure 8.9: Identification of the noise characteristics. Two IIR filters were derived to capture the spectral nature of 
the measurement and modeling noises. 

then subtracted the raw W A V C N S from the predicted W A V C N S time course obtained from the models. The 
power spectra obtained from the residuals were further combined and averaged, see Figure 8.7. Note that 
this noise frequency characteristic combines both modeling and measurement noises. 

Simulating Measurement and Modeling Noises When plotted together, the frequency characteristics 
of Figure 8.7 and 8.8 reveal that both noises have very similar frequency content in the high frequency 
region, see Figure 8.9. It appears therefore that modeling errors add noise mainly in the lower frequency 
region. This increase in noise - as characterized by the power spectra - is significant. However, note that 
the modeling noise characterization was done using data from the the induction phase, were most of the 
modeling errors are expected. During smaller transients, it is likely that modeling errors will add less noise 
as compared to what is suggested in Figure 8.9. 
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Figure 8.10: Patient Simulator - Noise Simulator block diagram. The drug effect E calculated in the 
Pharmacodynamics block is used to determine which noise profile that needs to be applied. 

To simulate the measurement and modeling noises, a digital white noise generator followed by an IIR 

filter is used, see Figure 8.10. The IIR filter is tuned to yield a similar frequency characteristic to that of 

the noise. In particular, we derive here two filters, T* o i s e , which models only the measurement noise, and 

T 2

o i s e , which models both measurement and modeling noises: 

, A 

s + 5 • IO" 4 

(8.1) 

s + 0.2 

The frequency characteristics of these two filters are plotted in Figure 8.9. Note the good agreement between 

the measured noise profiles and the filter frequency responses. 

During large amplitude transients (e.g., when the W A V C N S index varies more than 3 units per second), 

the aggressive noise filter T%oiBe is selected. Conversely, the noise filter T ^ o i s e is active whenever the W A V C N S 

is slowly evolving in time. 

8.1.3 Patient Simulator Output 

To illustrate the output of the patient simulator, we simulated the response of patient #065 to the propofol 

dose given during the anesthesia induction. We then compared the simulator output to the W A V C N S time 

course obtained during the case, see Figure 8.11. 

Results show a very good agreement between measured and predicted time courses. The noise levels 

were also consistent with those initially measured. 

8.1.4 Tests Setup and Performance Requirements 

To test the proposed controllers, we propose to target a W A V C N S level of 50 and analyze the time course of 

the index during changes in the targeted setpoint and during surgical disturbances, see Figure 8.12. Note 

that the level of 50 corresponds to an operating mode where the linearized Hi l l gain nears its maximum. 

As such, unstable designs will most likely exhibit an oscillatory behavior in this range. 
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Figure 8.11: Measured vs. predicted W A V C N S time courses (LMA patient #065). The noise filter T 2

o i s e was switched 
from 90 s to 170 s. The noise filter T^oiee was used during the rest of the time. Note that only 5 min 20 sec of data 
were collected in this case. As a result of a human operator error, no inhalational anesthetic was provided to the 
patient after the L M A was placed. The anesthesia record mentions that the patient woke up 7 min 35 seconds after 
the start of the surgery. The predicted W A V C N S time course does indeed indicate that the patient was above 80 by 
that time. 

A setpoint change and disturbance amplitude of ± 20 W A V C N S units is chosen. It has been our expe

rience that the W A V C N S rarely deepens or lightens for more than 20 units within a time span of a minute 

during surgery (besides for during induction and emergence, where the controller is not designed to have 

an active role). 

To ensure the controller reaches steady state, the duration of each setpoint change and disturbance is 

set to 1 hour. 

The controller performances are expressed in terms of the settling time, overshoot and maximum steady 

state error. The settling time is defined as the time it takes for the close loop system to settle to within ± 5 

W A V C N S units of the targeted setpoint. The steady state error is defined as the absolute difference between 

the targeted setpoint and the system's output 1 hour after either a step change in setpoint, or a step change 

in the surgical disturbance. Since the controllers are designed to work for a given population of patients, 

the performance requirements for the settling time and overshoot are defined by the performance obtained 

in 50% and 95% of the patient population. In order to be able to characterize the controllers performances, 

the measurement and modeling noises are not added during the simulations. 

The control performance requirements are presented in Table 8.1. These requirements were derived 

based on my own interpretation of the anesthesiologists' needs. As such, they represent the point of view of 

a control engineer, rather than that of a clinician (the clinician's point of view on performance requirements 

is discussed in Section 8.5). Note that the settling time is our foremost priority and performance indicator. 

It is also desired that the controller design be more aggressive for disturbance rejection than for setpoint 

tracking 2 . 

2We are hypothesizing that, since surgical disturbances cannot be anticipated by the anesthesiologists, the controller should 
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Figure 8.12: Controller test protocol. 

S E T P O I N T T R A C K I N G 

_ . , M a x . 
D e s i r e d 

a l l o w e d 

D I S T U R B A N C E R E J E C T I O N 

„ . , M a x . 
D e s i r e d 

a l l o w e d 

S E T T L I N G T I M E 1 

5 0 percentile2 < 8 min < 1 5 min < 5 min < 1 0 min 
9 5 percentile < 1 5 min < 2 0 min < 1 5 min < 2 0 min 

O V E R S H O O T 3 

5 0 percentile < 2 . 5 < 5 . 0 < 5 . 0 . < 1 0 

9 5 percentile < 5 . 0 < 7 . 5 < 7 . 5 < 1 0 

S S E 4 < 5 . 0 

1 Settling time: time for the W A V C N S to reach ± 5 units of its target setpoint. 
2 Maximum settling time obtained in 5 0 % of the adult population. 
3 Expressed in W A V C N S units. 
4 Maximum absolute steady state error allowed. 

Table 8.1: Control Performance Requirements. 
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Figure 8.13: Close loop system with anti-windup and pre-filter. 

8.2 PID Loop Shaping Design 

In this section, we select the structure of a simple PID controller, where the derivative action is compensated 

through the use of a second order low pass filter to provide sufficient roll-off in the high frequency region: 

K(s) = KPID 
Tp • S + 1 Tj, • S + 1 

2 • (8.2) 

In the control of anesthesia, P ID controllers have often been chosen by clinical researchers [123], [142] for 

their simplicity, good performance, and ease of design and implementation when applied to SISO linear 

systems. 

8.2.1 F i r s t Des ign 

In this first design, the time constants r p and r j , and the controller gain were tuned in order to obtain a 

satisfactory phase and gain margin (see Table 8.2). Since the controller is constrained to administer only 

infusion rates, the P K P D nominal model #6 (see Table C . l ) is used to tune the parameters. 

Note that the output of the controller is constrained between 0 and 0.8 m g s - 1 . In addition, an anti-

windup scheme resets the integrator whenever either constraint is reached. A low pass pre-filter was also 

added to filter setpoint changes and limit abrupt control actions whenever such a change is initiated by 

the user. The pre-filter was slightly stronger than the W A V C N S trending filter. As a result, we expect less 

overshoot during step changes in setpoint than during output disturbances. As a trade off, the settling time 

will be longer for setpoint tracking. The complete close loop system is presented in Figure 8.13. 

compensate for them more rapidly than when a new setpoint is programmed. As a trade-off, the overshoot requirements for 

setpoint tracking are more stringent. 
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C O N T R O L L E R P H A S E M A R G I N 

[cleg] 

G A I N M A R G I N 

[dB] 

C U T O F F 

F R E Q U E N C Y 

[ lO-^rad-s" 1 ] 

Population: 18-60 yrs 
First design 62.8 7.7 14.21 
Second design 67.9 15.5 7.47 
Third design 64.8 18.6 4.58 

Table 8.2: PID Controller Characteristics. 

0 1 2 3 4 5 6 7 8 
T I M E [hrs] 

Figure 8.14: Infusion rates and W A V C N S time courses in the 3 test patients using the classical PID. loop shaping 
design method (first design). Note that patients presenting an aggressive dynamic behavior are unstable. 

To further illustrate the closed-loop system output, we select 3 particular patient models presenting 

very different dynamic behaviors: 

- Aggressive behavior ( L M A case #006): the high gain and large phase lag of this model yields 

a poorly damped dynamic behavior which results in large overshoot, and even instability in control 

designs that are too aggressive. 

- Sluggish behavior ( L M A case #057): the low dc gain of this model makes it very sluggish to changes 

in infusion rates. 

- Ideal behavior ( L M A case #065): this case is a typical example of a well-behaved system (high gain 

and small phase lag) for which excellent results can be achieved. 

The W A V C N S time courses for these 3 patient models are plotted in Figure 8.14. 

Out of the 44 patient models, 4 cases were unstable (#006, #007, #033, and #068) and 2 other 

cases (#004, and #015) exhibited a poorly damped oscillatory behavior during step changes in the output 

disturbance. 



CHAPTER 8. SISO CONTROL DESIGN 166 

70 

60 

50 

40 

30 

T I M E [hrs] 

Figure 8.15: Infusion rates and W A V C N S time courses in the 3 test patients using the classical PID loop shaping 
design method (second design). Note the poorly damped oscillations in the high gain patient. This controller is shown 
to be mathematically unstable. 

8.2.2 Second Design 

In the second design, the controller cutoff frequency was reduced by half, see Table 8.2. The resulting gain 

and phase margins would now be considered conservative for most designs. 

After simulating the study population, all cases were found to be stable. However, 2 cases (#006, and 

#033) displayed poorly damped oscillations during step changes in the output disturbance. 

The time course of the W A V C N S index for the 3 test patients are plotted in Figure 8.15. The aggressive 

behavior of the first case resulted in poorly damped oscillations. Conversely, the sluggish case exhibits poor 

performances, mostly when the system tries to recover to the setpoint when surgical stimulation disappears. 

The controller performances are further summarized in Table 8.3. While all performance requirements 

are met, the overshoot in one case was close to the maximum allowed of 10 W A V C N S unit. 

Even though all cases were stable, further investigation of the complementary sensitivity function reveals 

that the close loop system is potentially unstable, see Figure 8.16. This analysis is based on the augmented 

nominal model G°0

pt(juj) = wncm{jui) • G 0 ( jw) defined in Table C . l and Table C.4 (model #6) 3 . The 

instability of this design is apparent as the complementary sensitivity function crosses over the inverse of 

the uncertainty weight, thereby violating the Robust Stability (RS) condition (7.17). 

8.2.3 Third Design 

A further reduction in the frequency cutoff frequency was necessary to obtain a stable close loop system. The 

P I D parameters of the second design were de-tuned such that the RS condition is met, see Figure 8.16. The 

3Note that the uncertainty weight w(juj) was derived based on the optimized nominal model GQPt(joj). As such, it should 

only be used in conjunction with this nominal model. 
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S E T P O I N T T R A C K I N G D I S T U R B A N C E R E J E C T I O N 

Second Design 
S E T T L I N G T I M E 

50 percentile 
95 percentile 
Worst case1 

5 min 49 s 
10 min 54s 
13 min 26s 

3 min 57 s 

9 min 43 s 
10 min 40 s 

O V E R S H O O T 

50 percentile 
95 percentile 
Worst case 

0.43 
1.68 
3.68 

0.85 
4.07 
9.57 

Maximum S S E 0.72 

Third Design 
S E T T L I N G T I M E 

50 percentile 
95 percentile 
Worst case1 

10 min 00 s 
20 min 28s 
27 min 09s 

7 min 27 s 
18 min 22 s 
24 min 49 s 

O V E R S H O O T 

50 percentile 
95 percentile 
Worst case 

0.98 
2.53 
2.83 

1.49 
2.61 
3.16 

Maximum S S E 2.58 

Excluding saturating cases where the infusion rate remains 0 for more than 5 minutes. 

Table 8.3: Control Performance - PID Loop Shaping Design. 

10-5 10-4 io-3 to-2 to-1 10° to-5 io-4 io-3 to-2 10-1 10° 
F R E Q U E N C Y [rad/s] F R E Q U E N C Y [rad/s] 

Figure 8.16: Close loop sensitivity analysis using the augmented nominal model GgP'(ju;). The second design is 
unstable since there exists a frequency range where the complementary sensitivity is greater than the inverse of the 
uncertainty weight. 
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Figure 8 .17: Infusion rates and W A V C N S time courses in the 3 test patients using the classical PID loop shaping 
design method (third design). Performances are strongly reduced, in particular for patients presenting a low PKPD 
gain. 

cutoff frequency is now 4.58-10 - 3 rad-s - 1 , which results in strongly degraded performances, see Figure 8 .17 
and Table 8.3. This design does not comply with the requirements of Table 8.1 . 

8.3 Hoo Control Design 

In recent years, a number of optimization tools for deriving controllers based on closed-loop sensitivity 
parametrization have been derived and are now directly available through computing platforms such as 
Matlab. In particular, the Hoo design procedure has become increasingly used for designing closed-loop 
systems presenting large amount of uncertainty, as the optimization procedure directly accounts for the 
uncertainty weight. 

8.3.1 H o o Des ign P r inc ip l e 

The basic principle of a signal-based Hoo design approach is summarized in the Figure 8.18, where we are 
considering the control of a P K P D system. The objective of the control design is to tune the parameters of 
the controller K(s) in order to minimize the outputs z(s). These outputs are the weighted sensitivity, and 
complementary sensitivity of the closed-loop system, as well as the weighted control action. 

Performance Weight The performance weight wp(s) weights the error signal e(s). This weight is usually 
large in the low frequency range, thereby forcing the Hoo optimization to find a controller that reduces static 
and low frequency control errors. Conversely, high frequency errors that cannot be properly controlled are 
given a low impact on the cost function by having a much reduced performance weight. It is therefore usual 
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Figure 8.18: Mixed-sensitivity minimization. 

to choose the performance weight as a first or second order function: 

, 2 

wp(s) (8.3) 

The dc gain of this function is given by the parameter 1/A. Choosing A — 0 typically enforces the use of 

an integrator. However, numerical errors usually do not allow this choice. The parameter M on the other 

hand sets the high frequency weight of wp(s). 

The main performance parameter remains the cutoff frequency wg. Increasing OJB usually translates in 

a more aggressive design. 

U n c e r t a i n t y W e i g h t In systems presenting large uncertainty, it is particularly important to ensure that 

the robust stability condition is respected. This implies that the complementary sensitivity of the closed-

loop system should not be larger than the inverse of the uncertainty weight. This condition can be added 

to the Hoo optimization by weighting the system output by the uncertainty weight w(s) (note that the 

relationship between the system output and the setpoint is directly given by the complementary sensitivity 

function). 

C o n t r o l A c t i o n W e i g h t In most designs, a weighted sensitivity and complementary sensitivity are 

sufficient to obtain the required closed-loop behavior. However, if we were to fix the complementary 

sensitivity weight to be equal to the uncertainty weight, it can then be useful to introduce the additional 

weight wu to penalize large control action and guarantee sufficient roll-off in the high frequency region. For 

simplicity, wu is often chosen as a constant. 
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Figure 8.19: Hoo controller implementation with anti-windup. 

8.3.2 Implementation 

The HQO design typically yields a controller whose order is equal to that of the open loop system, including 

the performance, uncertainty and control action weights. For this application, the open loop transfer 

function is a 8 t h order system followed by a time delay modelled using a 1 s t order Pade approximation. The 

uncertainty and performance weights are both 2 n d order transfer functions, and the control action weight is 

of order 0. As a result, the HQO controller is a 13 t h order transfer function. While the Matlab simulator can 

easily handle this function, any practical implementation would have to use some order reduction technique. 

HQO controllers usually do not have pure integrators. However, they usually have a very low frequency 

pole if the value of A is chosen close to 0. This low frequency pole can be used to add an anti-windup 

capability to the controller, see Figure 8.19. The controller K(s) obtained from the HQO design procedure 

is first separated into its low frequency and high frequency components: K(s) — K~(s) • K+(s). K~(s) is 

a proper and monic function that contains only the lowest frequency pole. Conversely, K+(s) is a semi-

proper function that contains all remaining dynamics. The anti-windup capability can easily be added to 

the controller by resetting the integrator of the K~(s) function whenever the saturation bounds are reached. 

In this case, the integrator is reset whenever the controller output is lower than 0 mg-s - 1 , of higher than 

0.8 mg-s" 1 . 

8.3.3 Application to Anesthesia Control 

In this design, we first derive a performance weight based on the sensitivity function obtained from the 

third P ID design. This provides us with a first performance weight. 

The parameter A is chosen equal to 0.01, thereby indicating that a steady state error of 1 W A V C N S unit 

is acceptable. We also choose to limit the sensitivity peak by having M = 1.1. The cutoff frequency U>B 

was found to be 0.0015 rad-s - 1 : 

The uncertainty weight was set to be equal to the function corresponding to the model #6 in the Table C.4: 

(8.4) 

(8.5) 
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Figure 8.20: Initial and optimized Hoo designs, (a) Closed-loop complementary sensitivity, (b) Control action profile 
in response to a setpoint change of 1 WAVCNS unit. 

C O N T R O L L E R P H A S E M A R G I N G A I N M A R G I N 
C U T O F F 

F R E Q U E N C Y 

[deg] [dB] [ lO-S -rad-s- 1 ] 

Adult population 72.6 17.0 5.30 

Average values (each controller is specifically designed for a given P K time delay. 
As such, their frequency responses are all slightly different). 

Table 8.4: Hoo Controller Characteristics. 

Finally, the control action weight was fixed to 1. 

Using this set of weights, the Hoo design yielded a first controller. While the complementary sensitivity 

remained below the inverse of the uncertainty weight, the control action to a setpoint change presented a 

large overshoot (P»100%), indicating high sensitivity to high frequency signals, see Figure 8.20. This design, 

while stable, would therefore behave badly in the presence of high frequency measurement noise. 

To compensate for the shortcomings of the first design, we then increased the control action weight wu 

to 3 and increased the uig parameter such that the complementary sensitivity is as close as possible to 

the instability bound defined by the uncertainty weight. This design resulted in a much improved control 

action profile, see Figure 8.20, while optimizing the performance with respect to the system uncertainty. 

This new design presents a cutoff frequency of 5 .3010 _ 3 r ad - s _ 1 and a large gain margin, see Table 8.4. As 

compared to the stable PID design, it also presents a larger complementary sensitivity bandwidth and a 

smaller sensitivity peak, see Figure 8.21. 

The results obtained from the 3 test patients are plotted in Figure 8.22. Patients presenting low P K P D 

gain are expected to perform poorly. The controller performances are further summarized in Table 8.5. 
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Figure 8.21: Close loop sensitivity analysis. 

S E T P O I N T T R A C K I N G D I S T U R B A N C E R E J E C T I O N 

S E T T L I N G T I M E 

50 percentile 9 min 52 s 7 min 15 s 
95 percentile 20 min 17s 19 min 52 s 
Worst case1 28 min 46s 26 min 40 s 

O V E R S H O O T 

50 percentile 0.77 0.65 
95 percentile 2.42 2.60 
Worst case 3.07 3.04 

Maximum SSE 3.04 

1 Excluding saturating cases where the infusion rate remains 0 for more than 5 minutes. 

Table 8.5: Control Performance - Hoo Control Design. 

This controller does not meet the minimum requirements. 

As compared to the stable P ID design, this controller does perform slightly better, but at the expense 

of an increased complexity (13 t h order controller vs. 3 r d order for the PID) . The frequency responses of 

the HQO and the PID designs are compared in Figure 8.23. Both controllers show remarkable similarity. 

It is likely that the HQO controller can be reduced to a PID structure without significant loss in terms of 

closed-loop stability and/or performance. 

8.4 Reducing the Uncertainty 

In the previous designs, the controllers bandwidth are significantly limited by the uncertainty weight. In 

Section 7.3, we studied and derived methods to reduce this uncertainty. Two methods, in particular, were 

found to be very promising: targeting the patient's specific age group, and identifying the P K time delay 

in order to characterize more precisely the P K P D dynamics in the high frequency range. This section 
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Figure 8.22: Infusion rates and W A V C N S time courses in the 3 test patients. The Hoo design robustified significantly 
the system which is now stable for the whole adult population. As a result, patients presenting low gains are not well 
compensated. 

Figure 8 .23: Frequency response of the Hoo and PID controllers. Note that the PID has a faster roll-off in high 
frequencies, as well as a higher gain in low frequencies due to its integrator. 
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C O N T R O L L E R P H A S E M A R G I N G A I N M A R G I N 
C U T O F F 

F R E Q U E N C Y 

[cleg] [dB] [10~ 3-rad-s- 1] 

Age targeted design 
G l 72.1 15.5 6.18 
G2 73.3 15.4 6.28 
G3 73.9 15.5 5.97 
G4 74.2 16.0 6.50 

Age + Time delay identification1 

G l 62.6 14.6 7.64 
G2 67.1 14.1 6.87 
G3 65.1 13.4 6.86 
G4 62.0 13.2 7.76 

Average values (each controller is specifically designed for a given P K time delay. 
As such, their frequency responses are all slightly different). 

Table 8.6: Hoc Controller Characteristics, 

investigates the benefits brought by these two techniques towards the improvement of control performance. 

8.4.1 Accounting for age 

Even though the uncertainty weight reduction was moderate at best in the low frequency range, the uncer

tainty weight bandwidth was found to be significantly larger (by about 60%) when considering close loop 

infusion administration in each age group, instead of a combined type administration that targets the whole 

adult population (refer to Figure 7.16 and Figure 7.11). Hence, by separating the study population into 

the 4 age groups defined in Table 6.1, new Hoo controllers can be derived. These controllers correspond to 

the P K P D models #11, #12, #13 and #14 (see Annex C) . 

The results obtained on the 3 test patients revealed a significant improvement in terms of settling time 

and steady state error, see Figure 8.24. 

Applied to the 44 patient models, this control strategy results in the control performance summarized 

in Table 8.7. A l l requirements are now met. 

8.4.2 Identifying the P K time delay 

Another possible uncertainty improvement may be obtained by identifying the P K time delay during induc

tion. For instance, we observed in Section 7.3.2.3 a significant increase in the bandwidth of the uncertainty 

weight when this parameter is identified. The E C T data and analysis carried out in Section 7.3.2.3 suggest 

that the poles and zeros of the uncertainty weights defined in Tables C.4, C.5, and C.6 can be multiplied 

up to factor 3 to 5. Assuming that the P K time delay is known, we can thus recalculate the controllers 

parameters. We then obtain for each patient an Hoo controller tailored specifically to his/her P K time delay. 

This yields a slightly higher control bandwidth, which does result in some improvements, see Figure 8.25 

and Table 8.7. 
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S E T P O I N T T R A C K I N G D I S T U R B A N C E R E J E C T I O N 

Age targeted design 
S E T T L I N G T I M E 

50 percentile 7 min 04 s 4 min 30 s 
95 percentile 12 min 39s 10 min 53 s 
Worst case1 16 min 17s 13 min 27 s 

O V E R S H O O T 

50 percentile 0.60 0.74 

95 percentile 2.03 2.25 
Worst case 3.14 3.63 

Maximum SSE 1.69 

Age targeted design + PK ident. 
S E T T L I N G T I M E 

50 percentile 
95 percentile 
Worst case1 

6 min 21 s 
10 min 37s 
13 min 58s 

4 min 08 s 
8 min 42 s 
11 min 02 s 

O V E R S H O O T 
50 percentile 
95 percentile 
Worst case 

1.20 

4.10 

5.30 

Maximum SSE 

Excluding saturating cases where the infusion rate remains 0 for more than 5 minutes. 

Table 8.7: Control Performance - H,*, Control Design based on Age. 
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Figure 8.25: Infusion rates and W A V C N S time courses in the 3 test patients. The on-line identification of the PK 
time delay reduces the system uncertainty and allows for a larger control bandwidth. Performances are improved at 
the expense of an increased complexity in the controller design. 

In this design, the system's own dynamics become the limiting factor. Uncertainty is less of an issue. 

8.5 The Clinicians' Point of View 

For an anesthesia controller to meet the approval of the anesthesia community, it is important that its per

formances match the expectations of the clinicians. In that respect, the performance criteria of Section 8.1.4 

were established based on a control engineering point of view, where overshoot is usually not desired. These 

criteria may therefore be skewed and should be revisited based on proper clinical feedback. 

We have therefore asked 3 clinicians, Drs. Craig R. Ries (Vancouver General Hospital, Vancouver, B C ) , 

Mark Ansermino (British Columbia Children's Hospital, Vancouver, B C ) and Don M . Voltz (University 

Hospital Health Services, Cleveland, OH), to share their expectations, see Table 8.8. They were asked to 

fill out a survey (see Annex E) indicating their preferences in terms of control performances. 

The clinicians' control performance specifications were found to be rather different than those of Ta

ble 8.1. In particular, their expectations in terms of settling times are much more stringent, while the 

overshoot requirements are more relaxed. Their specifications are close to the performance they would be 

able to achieve in their practice. For instance, when a new setpoint is desired, or when a surgical stimula

tion has occurred, they generally respond by administrating a propofol bolus. This type of titration results 

indeed in a much faster reaction (within a minute), but at the expense of a large over- or undershoot. Under 

these circumstances, anesthesiologists would also permit a larger SSE. 

The difference between our initial expectations and those of the clinicians may be due to: 

- Differences in our respective scientific cultures. In control engineering, overshoots in industrial 
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S E T P O I N T T R A C K I N G 

• J Max. Desired 
allowed 

D I S T U R B A N C E R E J E C T I O N 

. Max. Desired allowed 

Dr. Craig R. Ries (VGH) 
S E T T L I N G T I M E 

5 0 percentile 
9 5 percentile 

O V E R S H O O T 

5 0 percentile 
9 5 percentile 

S S E 4 

< 2 min < 3 min 
< 3 min < 4 min 

< 5 . 0 < 1 0 . 0 

< 1 0 . 0 < 1 5 . 0 

< 5 . 0 < 1 0 . 0 

< 1 min < 2 min 
< 2 min < 3 min 

< 1 0 . 0 < 1 5 . 0 

< 1 5 . 0 < 2 0 . 0 

< 1 0 . 0 < 2 0 . 0 

Dr. Mark Ansermino (BCCH) 
S E T T L I N G T I M E 

5 0 percentile 
9 5 percentile 

O V E R S H O O T 

5 0 percentile 
9 5 percentile 

S S E 4 

< 3 min < 5 min 
< 5 min < 8 min 

< 5 . 0 < 1 2 . 0 

< 8 . 0 < 1 5 . 0 

< 5 . 0 < 8 . 0 

< 3 min < 5 min 
< 5 min < 8 min 

< 5 . 0 < 1 2 . 0 

< 8 . 0 < 1 5 . 0 

< 5 . 0 < 8 . 0 

Dr. Don M. Voltz (UHHS) 
S E T T L I N G T I M E 

5 0 percentile 
9 5 percentile 

O V E R S H O O T 

5 0 percentile 
9 5 percentile 

S S E 4 

< 3 min < 4 min 3 0 sec 
n.d. n.d. 

< 1 2 . 5 < 2 0 . 0 

n.d. n.d. 

< 8 . 0 

< 3 min 3 0 sec < 5 min 3 0 sec 
n.d. n.d. 

< 1 2 . 5 < 2 0 . 0 

n.d. n.d. 

< 8 . 0 

SUMMARY 
S E T T L I N G T I M E 

5 0 percentile 
9 5 percentile 

O V E R S H O O T 

5 0 percentile 
9 5 percentile 

S S E 4 

< 2 min 3 0 sec < 5 min 
< 4 min < 6 min 

< 7 . 5 < 1 5 . 0 

< 1 0 . 0 < 1 5 . 0 

< 8 . 0 

< 2 min < 4 min 
< 3 min < 6 min 

< 1 0 . 0 < 1 5 . 0 

< 1 2 . 5 < 2 0 . 0 

< 8 . 0 

Table 8.8: Control Performance Requirements - Clinicians' Point of View. 
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Figure 8.26: Settling time definition. In the standard definition, the settling time is defined as the time when the 
system settles within 5% of the setpoint. In cases with overshoot higher than 5%, this may result in much longer 
settling time values. For instance, in this example, one system has a significantly longer settling time. Therefore, if 
the overshoot is less of a concern, it may be indicated to use the setpoint crossing as settling time, in which case the 
two responses plotted are almost equivalent. 

processes are usually associated with waste in terms of material and energy expenditure. Avoiding 
those is usually a priority. Conversely to control engineering, prompt action is usually recommended 
in a clinical situation. 

- Misinterpretation of the control specifications. Our initial survey may not appropriately de
scribe the settling time concept. After further discussion with Dr. Voltz, his interpretation of 'settling 
time' term was the time it takes for the controller to realize that a large error is present, and react to 
that error. This is very different to the engineering interpretation of the 'settling time' term, which 
is usually used to describe the time taken by the close loop system to be within 5% of the setpoint 
after the beginning of the disturbance (i.e., by that time, the disturbance is already mostly rejected). 

- Inadequate performance specifications. It is also possible that the performance specification 
usually followed in control engineering may not reflect adequately the concerns of anesthesiologists. 
For instance, since the overshoot is not a significant issue to clinicians, we may define the settling 
time as the time at which the close loop output crosses the setpoint. This would avoid situations with 
large settling times due to a larger-than-expected overshoot, see Figure 8.26. 

Since a larger overshoot is permissible, there exist simple techniques that can be used to lower the settling 
time at the expense of the overshoot. 

8.5.1 Increased Controller Gain 

The most straightforward technique is to simply increase the controller gain, thereby increasing the cutoff 
frequency. This obviously translates into lower phase and gain margins, which herald larger overshoots and 
more oscillations. 

To assess how this technique may perform, we revisited the age targeted designs of the previous section. 
For each age group, we selected the most aggressive patient model and increased the controller gain such 
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CONTROLLER PHASE MARGIN 

[deg] 

GAIN MARGIN 

[dB] 

CUTOFF 
FREQUENCY 

[ 1 0 - 3 - r a d - s - 1 ] 

A g e t a r g e t e d d e s i g n w i t h i n c r e a s e d g a i n 

G I 6 5 . 6 1 1 . 4 9 . 8 9 

G 2 7 1 . 1 1 3 . 8 7 . 5 4 

G 3 6 7 . 6 1 2 . 5 8 . 3 6 

G 4 6 6 . 6 1 2 . 5 9 . 7 4 

A g e t a r g e t e d d e s i g n + S P 

G I 7 0 . 3 1 8 . 5 9 . 2 5 

G 2 7 7 . 0 2 1 . 1 7 . 5 3 

G 3 5 7 . 5 1 2 . 2 7 . 9 3 

G 4 5 9 . 5 1 2 . 8 8 . 2 1 

A g e t a r g e t e d + T i m e d e l a y i d e n t . + S P 

G I 6 8 . 5 1 9 . 2 1 0 . 1 

G 2 6 0 . 2 1 4 . 3 8 . 5 0 

G 3 5 6 . 9 1 2 . 8 8 . 3 6 

G 4 5 9 . 2 1 3 . 1 8 . 4 2 

Table 8.9: Hoo Controller Characteristics with Increased Gain. 

that the overshoot reached sa5 W A V C N S units at most. The increase in gain was about 30 to 50%. Visual 

inspection of the close loop sensitivity functions was performed to ensure that the RS condition was not 

violated. 

The controllers characteristics are presented in Table 8.9. As expected, the cutoff frequencies are 

increased at the expense of the gain margin. Note, however, that the phase margins remained well above 

60 degrees. 

In terms of performances, these controllers do perform better than in the previous design, see Table 8.10. 

The settling times are reduced by about 1 minute, while the overshoot remains well below the minimum 

requirements. The performance of the controller during setpoint changes can be further improved by 

removing the pre-filter. In this case, any change in setpoint is immediately detected by the controller which 

takes immediate tracking action. The settling time for setpoint tracking is significantly reduced and is 

equivalent to that of disturbance rejection. This obviously resulted in stronger overshoot, but is now closer 

to the clinicians' requirements. 

8.5.2 Use of a Smith Predictor Structure 

In systems with large delays, performance can also be improved by using a Smith Predictor structure that 

compensates for the nominal time delay. This time delay compensation allows an increase in the controller 

bandwidth, which results in improved performance. 

The Smith Predictor (SP) makes use of the nominal model of the system in order to compensate for 

the delay, see Figure 8.27. The zero-delay nominal model is simulated based on the same infusion rate 

that is input to the system. As such, the model output represents the predicted delay-free response of the 

system. This response is then compared to the response with delay. The result of this comparison is a 
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S E T P O I N T T R A C K I N G 
D I S T U R B A N C E 

S E T P O I N T T R A C K I N G S E T P O I N T T R A C K I N G 2 

R E J E C T I O N 

Increased gain 
S E T T L I N G T I M E 

50 percentile 6 min 09 s 3 min 20 s 3 min 56 s 
95 percentile 10 min 52s 4 min 51s 9 min 06 s 
Worst case 1 17 min 33s 10 min 41s 14 min 21 s 

O V E R S H O O T 

50 percentile 0.52 1.47 0.98 
95 percentile 1.98 3.38 2.79 
Worst case 2.77 5.25 5.12 

Maximum S S E 3.10 1.282 

Smith Predictor 
S E T T L I N G T I M E 

50 percentile 6 min 08 s 3 min 24 s 3 min 46 s 
95 percentile 9 min 53s 7 min 10s 8 min 20 s 
Worst case 1 14 min 56s 11 min 51s 12 min 13 s 

O V E R S H O O T 

50 percentile 0.83 1.47 1.38 
95 percentile 2.58 3.38 3.40 
Worst case 3.60 5.25 4.65 

Maximum S S E 2.05 2.182 

Smith Predictor + PK time delay ident. 
S E T T L I N G T I M E 

50 percentile 5 min 45 s 3 min 20 s 3 min 37 s 
95 percentile 9 min 17s 6 min 34s 8 min 09 s 
Worst case 1 11 min 50s 8 min 24s 8 min 34 s 

O V E R S H O O T 

50 percentile 0.79 1.89 1.70 
95 percentile 2.96 4.19 3.99 

Worst case 3.65 5.57 5.51 

Maximum S S E 3.25 3.57 2 

1 Excluding saturating cases where the infusion rate remains 0 for more than 5 minutes. 
2 Without pre-filter. 

Table 8.10: Control Performance - Improved Hoo Control Designs. 
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Figure 8.27: Smith Predictor control structure. 

signal that represents the future system response to the control action. This signal is then added to the 

feedback signal. As a result, the controller can be designed based on a delay-free model, which results in 

added stability in the control loop that can be further used to increase the controller bandwidth. While 

the inherent limitation of a delayed system is still present, the increased control bandwidth usually results 

in increased performances. 

However, in systems presenting large gain uncertainty, this technique potentially results in larger over-

and undershoot. For instance, if the gain of the nominal model is an order of magnitude different than 

that of the real system, the SP structure may either result in under- or over-compensation, which is not 

desired. Because of the large uncertainty in this system, the use of a Smith Predictor would not be advised. 

However, the larger permissible overshoot requirements makes the use of a SP a possibility. 

Age Targeted Design A SP structure was first added to the age targeted HQO designs of Section 8.4. 

The HQO control designs were re-iterated for each age group based on the delay-free nominal model. Visual 

inspection of the close loop sensitivity functions was performed to ensure that the RS condition is satisfied. 

To achieve optimal results, the most aggressive case in each age group was simulated. The control action 

weight wu(s) and the time delay of the performance weight were tuned in order to obtain a maximum 

under/overshoot of about 5 W A V C N S units. The results obtained from the 3 test patients are presented in 

Figure 8.28. 

The controller performances are summarized in Table 8.10. We are also presenting the performance 

obtained without pre-filter. Results are very similar to those obtained in the age targeted design with 

increased gain. 

Age Targeted Design with PK Time Delay Identification One advantage of the SP structure in 

case the P K time delay is known, is that there is no longer a need for a distinct controller for each patient. 

The Hoo control design is carried out based on the premises that there is no time delay, and that the 

uncertainty weight is shifted by half a decade towards higher frequencies. As far as the implementation of 
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Figure 8.28: Infusion rates and W A V C N S time courses in the 3 test patients. The use of a Smith Predictor allows for 
a faster settling time at the expense of a larger overshoot. Note that, in this simulation, the pre-filter was removed 
to reduce the settling time during setpoint change. 

the SP is concerned, the nominal time delay is now replaced by the identified time delay. 

Similarly than in the previous case, the model yielding the most aggressive response to setpoint changes 

and output disturbances in each age group is used to tune the performance weight such that to avoid 

obtaining an under- or overshoot of more than « 5 W A V C N S units. As per usual, visual inspection is used 

to ensure that the RS condition is satisfied. 

The controller performances are summarized in Table 8.10. As expected, the performance improvement 

does not justify the increased costs and risks involved for identifying the time delay. 

8.5.3 Faster Sensing Dynamics 

One of the main limiting factor of the designs presented in Section 8.5.1 and 8.5.2 is the W A V C N S trending 

filter, whose cutoff frequency is 0.125 rad-s - 1 . Shifting the pole of the IIR trending filter towards higher 

frequencies would then allow for a larger phase margin, which, in turn, would allow for a larger control 

bandwidth. However, this would also result in additional measurement and modeling noise, directly located 

in the bandpass of the closed-loop system. The use of a faster sensing dynamics should then be accompanied 

by the development of a new sensor design presenting reduced measurement noise characteristics4. 

4We recently investigated using the WAVCNS index derived from both left and right hemispheres. Averaging the measurement 

from both hemispheres allowed a noise reduction of 8%. This improvement was not enough to allow for a significant increase 

of the filter pole. 
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Figure 8.29: Sensitivity peaks of the initial Hoo age targeted design, and the design involving an increased controller 
gain. 

8.5.4 Improved Performance: Important Trade-offs 

The improved performances obtained in this section do, however, present two important trade-offs: a higher 

sensitivity peak, and a higher sensitivity to measurement noise. These issues are briefly commented here. 

Higher Sensitivity Peak While increasing the cutoff frequencies of the controllers have resulted in 

improved performances, attention must be brought to the fact that the sensitivity peaks are also increased, 

see for instance Figure 8.29. The age targeted design with increased gain presents a sensitivity peak close 

to 1.5 in the [0.01,0.08] rad-s - 1 frequency range. In comparison, the more conservative design peaks up at 

1.25. 

This essentially indicates that any surgical disturbance in this particular frequency range will be ampli

fied instead of compensated. While periodic surgical stimulation is not expected, this may result (in some 

rare cases) in poor control performance. 

Measurement Noise Interpreted as Disturbance Due to the larger controller cutoff frequency, a 

large quantity of the measurement/modeling noises is now interpreted by the controller as a potential 

output disturbance. As a result, the controller will try to compensate for this noise by constantly adjusting 

the propofol infusion rate. 

While this is of no consequence in terms of close loop stability, the controller sensitivity in the mea

surement noise frequency range can slow down the close loop response when the controller saturates to its 

lowest or highest constraint. A typical example is to consider the response of a 'sluggish' patient to the 

disappearance of surgical stimulation, see Figure 8.30.a. The fact that the measurement noise is constantly 

activating the controller prevents it from stopping the drug delivery altogether. As a result, the patient is 

constantly given more drug and takes more time to settle back to the setpoint. 

One possible solution to avoid this situation is to have the low frequency pole integrator reset to a 
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Figure 8.30: Effect of measurement/modeling noise on the closed-loop system response during saturation, (a) The 
age targeted design with increased gain keeps on administrating propofol, which delays the system response, (b) 
Using a modified anti-windup scheme where the low frequency pole integrator resets for negative values instead of 0 
can be a solution. 

negative value instead of 0, see Figure 8.30.b. However, this does limit the anti-windup capability of the 

controller, which can overshoot in high gain patients. 

Having the controller act on measurement noise also implies that it becomes increasingly difficult for the 

anesthesiologist to gauge the validity of the controller output, since it can significantly change over short 

periods of time. 

8.6 Summary 

In this chapter, we have derived a number of controllers using both the classical P I D loop shaping and Hoc 

design methods. The controllers are summarized in the Figure 8.31. 

Without considering the system uncertainty, the first P ID design results in instability in about 10% 

of our study population. A standard approach is then to derate the controller sufficiently to gain more 

stability. A conservative design which presents a large gain and phase margin does indeed result in a stable 

result for the whole study population. However, the mathematical analysis of the complimentary sensitivity 

of the close loop system reveals that the system remains unstable. Designing a controller without accounting 

for uncertainty can thus lead to instability, even when adopting a conservative approach. While stable, the 

third P I D design proposed in Section 8.2 has poor control performance, and does not meet the minimum 

requirements set forth in the first section. 

The HQO design based on a mixed-sensitivity approach has the advantage of automatically accounting for 

the uncertainty weights defined in the Chapter 7. A l l controllers designed with this approach have shown 
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remarkable stability (fast decay ratio in cases presenting oscillatory transients, and limited overshoot). 

However, the general purpose HQO controller designed for the whole adult population did not meet our 

performance requirements. 

Significant improvements could only be obtained by designing controllers specific to a certain age group. 

We found that large surgical disturbances can be compensated within 5 minutes in the majority of cases, 

while exhibiting low overshoot. The intra-patient variability study pursued in Chapter 7 suggested that the 

on-line identification of the P K time delay could bring improvements in terms of the controller bandwidth. 

While correct, we found that the improvement does not justify the added costs and risks of performing an 

on-line identification. 

When asked about control performance requirements, the 3 clinicians we interviewed unanimously 

wished for a system responding faster to disturbances and setpoint changes, even if it meant larger over

shoots and steady state error. We therefore revisited our designs to improve the performance by increasing 

the controllers static gain, and using a Smith Predictor structure. The results show that these solutions 

meet the clinicians' minimum requirements. 

As we are nearing the physical limitations of the P K P D system, it becomes increasingly clear that the 

optimal solution will involve both a human operator and the closed-loop system. Large disturbances or 

setpoint changes will be dealt with by the anesthesiologist who can use bolus adminstration to fasten the 

response of the system. The closed-loop controller, on the other hand, will meticulously re-actualize the 

infusion rate to ensure limited overshoot and a low steady state error. It is therefore possible that the more 

conservative designs of Section 8.4 may be more favorable than the designs proposed in Section 8.5, as they 

would make optimal use of the synergy between the anesthesiologist and the closed-loop system to better 

control the patients' response to propofol administration and surgical stimulation. 
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Figure 8.31: Summary of the controllers performance in terms of settling time and overshoot. 



Chapter 9 

Conclusion, Contributions and 
Recommendations 

This concluding chapter reviews the work done under this Ph.D. program, emphasizing in particular the 

significance and contributions of this thesis. We also propose new research directions to further this work 

towards the development of a closed-loop system suitable for the everyday practice of clinical anesthesia in 

the O R and I C U . 

9.1 Significance 

The idea of automating anesthesia drug delivery dates back to the early 1950s. The visionary work of 

Bickford et al. already hinted at the tremendous potential of closed-loop systems for anesthesia, although, 

fifty years later, anesthetic drugs are still delivered manually in most of North American hospitals and 

clinical institutions. 

Yet, the practice of anesthesia has made in recent years significant progress towards the automatization 

of drug delivery systems: 

i . S m a r t pumps: infusion pumps driven by pharmacokinetic models have found their way into Euro

pean ORs and ICUs, and are now used daily. These pumps, referred to as T C I (Target Controller 

Infusion), are able to calculate and constantly adjust the infusion profile needed to maintain a desired 

plasma concentration. While the Food and Drug Administration (FDA) has not yet approved the 

use of T C I for anesthesia procedures in the United States, new clinical evidence of the efficacy of 

these systems may reverse the F D A decision in the near future. Yet, in the absence of a real time 

feedback measure of the drug plasma concentration, T C I pumps simply remain open loop systems. 

Their success in achieving clinically relevant performance can only be explained by the reasonable pre

dictive capability of population-normed pharmacokinetic models, and the inherent stability of P K P D 

systems. 

187 
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i i . N e w sensors: the development of sensors that can quantify drug effect has been (and still is!) one 

of the major challenge in the anesthesia field. In 1996, the commercial availability of the BIS monitor 

to quantify hypnosis has generated a new momentum in the research community. Since then, similar 

monitors using different technologies have been introduced. 

i i i . Faster drugs: after the development of intravenous drugs presenting fast onset and short duration 

of action, drug companies are now investigating drugs with ultra-short duration of action. The fast 

pharmacokinetic capabilities of these drugs will make it increasingly difficult for the anesthesiologists 

to provide an adequate titration, as it will require dedicated and unswerving attention. The use 

of boluses will not be recommended as they would result in too deep and too short of an effect. 

Conversely, the fast dynamics and large bandwidth of these new compounds will make it increasingly 

easy for a closed-loop controller to achieve clinically relevant results. 

iv. C l o s i n g the loop: finally, since the late 1990s, there has been a profound renewal of interest in the 

anesthesia field for automated drug delivery. In Europe, research groups from Gent (Belgium), Bern 

(Switzerland), Paris (France) and Glasgow (United Kingdom) have developed closed-loop systems 

that are used daily in their clinical facilities. For instance, Dr. L iu , an anesthesiologist from Hospital 

Foch (Paris, France), has already successfully closed the loop on more than 500 patients. 

It is likely that closed-loop systems will find their way out of research labs, and into daily practice. The 

widespread use of T C I systems (actuators) and cortical monitors (sensors) are paving the way towards the 

anesthesiologists' acceptance of fully automated drug delivery systems. In addition, the development of 

new ultra-short acting compounds will motivate drug companies to investigate better ways of administrat

ing drugs. Finally, as more clinical evidence appear in the literature as to the feasibility and efficacy of 

closed-loop systems, it appears likely that anesthesiologists will start wanting to benefit from these new 

technologies, as they will become more reliable and available. 

To provide optimal control performance, it appears essential that every aspect of the anesthesia closed-

loop system be investigated from a control engineering point of view. This thesis work is therefore set at a 

time when clinical researchers are seeking control engineering know-how to design and implement closed-loop 

applications. 

9.2 Synopsis and Contributions 

The main issue addressed in this thesis is the feasibility of designing a closed-loop control system providing 

clinically acceptable performance, while guaranteing stability in a large population of patients (18-60 yrs 

old, 50-110 kg). Due to the specificities of this application, it is further required that the control design be 

simple to implement, operate and monitor, thus ruling out any self-tuning, on-line identification, or other 

gain scheduling schemes. 
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9.2.1 Synopsis 

It is essential for control engineers to become familiar with their application field before attempting to 

close the loop. In that respect, we first started this work by thoroughly reviewing the anesthesia field and 

understanding its specificities and needs. As such, the first 4 chapters were an introduction to clinical 

anesthesia targeting an engineering audience. The concepts described in Chapter 1, while simplistic from a 

clinician's point of view, presents an accurate picture of this field. In Chapter 2, the current state-of-the-art 

in anesthesia monitoring were reviewed. Special emphasis was made on the advantages of the new cortical 

monitors, and their technological limitations. The basic pharmacology principles concerning drug uptake, 

distribution and effect were reviewed in Chapter 3. Finally, we briefly reviewed the prior art in terms of 

closed-loop control in Chapter 4. 

The performance of any closed-loop system is intimately related to that of the feedback sensor. We 

found that available anesthesia monitors, such as the BIS monitor, were not suitable for this application, as 

they use decisional schemes that can change the dynamic behavior of the index depending on the patient's 

state. We therefore investigated in Chapter 5 the use of the wavelet transform to rapidly characterize 

changes in the patient's state, and avoid the limitations of existing technologies. This investigation resulted 

in the development of the Wavelet-based Anesthesia Value (WAV) technology, which was first applied to 

the quantification of cortical activity ( W A V C N S ) > and autonomic activity ( W A V A N S ) -

Following this work, we used the W A V C N S to derive the pharmacodynamic (PD) model of propofol in 

Chapter 6. This investigation first established that the traditional approach used by pharmacologists to 

derive P D models is severely flawed. We therefore proposed a new approach, which makes use of our new 

cortical sensor. We derived the P D model of 44 patients spanning the whole adult population (18-60 yrs 

old, 50-110 kg). These models were validated using standard system identification validation tools. Generic 

nominal models were further established from the 44 individual models. 

The physiological response of patients to the administration of drugs is known to present a very large 

variability. Deriving controllers based on population-normed models may therefore lead to instability in 

some cases. Due this potential limitation, any closed-loop system would have to be thoroughly tested before 

being released. Considering the F D A decision concerning T C I pumps, it is doubtful that any amount of 

clinical tests will be able to convince this regulatory board of the safety of this type of system. It appears 

therefore essential to quantify inter- and intra-individual variability as system uncertainty in order to 

mathematically prove robust stability. This analysis is carried out in Chapter 7 using the 44 individual 

P D models derived in Chapter 6. We found that uncertainty is a major limiting factor of any closed-loop 

design. However, we also found several different ways to limit this uncertainty to more manageable levels. 

Depending on the operating condition of the closed-loop system, a number of nominal P K P D models have 

been derived. Each model was further associated with an uncertainty weight to quantify patients' variability. 

These models are fully disclosed in the Appendix C. 

Using the preceding results, we derived in Chapter 8 a number of controllers that are mathematically 
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stable, using an H^, design procedure. We came to the conclusion that a stable general purpose controller 
designed for the whole adult population does not yield adequate performances. However, using the insight 
gained in Chapter 7, we found that targeting the age group of the patient, and constraining the drug 
administration to the 0-0.8 mg-s"1 infusion range, were sufficient to significantly limit the uncertainty. Under 
the assumption that the patients' age group is known and that the controller is sufficiently constrained, 
we found that the closed-loop system yields clinically relevant performance. In the majority of cases, large 
disturbance and setpoint changes can be dealt with in under 5 minutes, and under 5% overshoot. 

In this thesis, we concluded that population-normed controllers can be derived and used effectively to 

track setpoint changes and reject disturbances. In addition, these controllers are shown to be mathematically 

stable, even when using a conservative measure of system uncertainty. 

9.2.2 Contributions and Implications 

The main contributions and implications of this thesis are summarized below: 

i. The Wavelet-based Anesthesia Value (WAV): the development of the WAV technology was 
spurred by the need for an anesthesia sensor dedicated to closed-loop control. It was particularly 
important to develop a sensing technology which do not rely on any decisional scheme in order to 
avoid the pitfall of other technologies. To that end, we have used the time-frequency localization 
property of wavelets to rapidly characterize changes in electrophysiological signals. 

Applied to the electroencephalogram (EEG), we have shown that this method yields remarkable 
results when compared to the BIS monitor. The advantage of our approach is that the EEG signal is 
processed the same way whether the patient is awake or comatose. As a result, the W A V C N S sensor 
is the only index of cortical activity that is fully characterized by an LTI transfer function across its 
whole operating range. 

As of today, we have collected data from more than 2 0 0 anesthesia procedures and 3 0 volunteers 
during sleep studies. These data are used to further our understanding of the effect of anesthetic drugs 
onto cortical activity, and develop a commercial application that integrates the WAV technology. This 
development and commercialization effort is being spearheaded since 2 0 0 3 by Ms. Zikov, a co-inventor 
of the WAV technology. 

We have also shown that the same technology can be applied to the quantification of the autonomic 
activity, through the analysis of the heart-rate variability (HRV) signal. If our preliminary results 
hold true, the W A V A N S may very well become the first 'analgesia' index. 

The WAV technology may therefore play an important role in the near future, both from a standard 
monitoring and feedback sensor point of views. 

The W A V C N S technology has been patented and should be made commercially available in 2006 . 
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We would like to bring to the readers' attention that the contributions for the WAVCNS a r e shared 

with Ms. Tatjana Zikov. Contributions for the WAVANS> however, are original. 

i i . System-oriented Pharmacodynamic Model: the traditional pharmacological approach to phar

macodynamic (PD) modeling is seriously flawed. We therefore proposed a new modeling approach 

based on basic system identification know-how. In particular, this new approach incorporates a dis

tinct model for the sensor dynamics. In addition, the LTI part of the P D model now includes a time 

delay to characterize the travel time of the drug. 

The identification procedure carried out in Chapter 6 yielded white residuals when using the new 

system-oriented modeling approach, thereby indicating that the model is a good representation of the 

system dynamic behavior. We also found that the fit between measured and predicted W A V C N S time 

courses was significantly improved with the new approach when compared to the traditional approach. 

Furthermore, we found that the new system-oriented models present less intrinsic uncertainty than 

the traditional models. This reduction in uncertainty is mainly the result of a weaker non-linear 

characteristic, as more of the system dynamics is now expressed in the L T I element of the model. 

The third, and probably most compelling, advantage of this new modeling approach is that very 

limited amount of data is necessary for identifying properly the parameters of the P D model. We 

have shown that it is possible to use the induction data (2-3 minutes data window) to identify the P D 

model of propofol, and obtain similar results in terms of the dose vs. response relationships to those 

derived based on a much longer identification window (about 90 minutes). This effectively empowers 

anesthesiologists to identify pharmacodynamic and interaction models by using only data obtained 

during routine anesthesia procedures. Conversely, the traditional approach usually necessitates the 

enrollment of volunteers, which implies many ethical hurdles. 

i i i . Intra- and Inter-individual Variability Analysis - Implication for Control: patient variability 

has always been cause for concern in pharmacology. This has been, and still is, one of the main 

argument brought forth by opponents of automation in anesthesia. 

Proven systems like T C I pumps have still not be approved by the F D A regulatory committee based 

on the fact that these open loop systems may not yield the expected setpoint targeted by the user. 

One would therefore expect that a closed-loop system may be easier to approve, providing that it 

remains well behaved for any patient fitting a certain profile. 

However, obtaining regulatory approval will necessitate very large multi-center trials. As cases of 

instability are reported, the controller(s) will have to be re-designed and re-tested. This potentially 

involves a very long and expensive process. 

A better approach is to quantify P K P D patient-variability as system uncertainty. This characteri

zation can then be directly used in the design process to ensure stability. Risks of having unstable 
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cases are therefore significantly diminished, while giving the regulatory board a mathematical proof 
for asserting stability claims. 

In parallel, the efficacy of uncertainty reduction methods can also be directly quantified. This gives 
valuable information to control designers as to which uncertainty reduction technique should be em
ployed. 

To my knowledge, this thesis is the first publication presenting such PKPD uncertainty analysis. 

iv. Robust Control Design: to my knowledge, the issue of robust stability for anesthesia control has 
not yet been thoroughly discussed in the literature. Even though we have not yet closed the loop in the 
OR, our control design by itself merits consideration, as we have proven its stability and performance 
under very conservative assumptions. 

9.3 Future Work 

We propose here some directions for future research and development work. 

i. Improved W A V C N S Sensor: the success of closed-loop systems heavily depends on the feedback 
sensors. Improving their reliability, accuracy and dynamic response is therefore a priority. 

In terms of the W A V C N S > the following aspects should be investigated: 

(a) 'Automatic' W A V C N S : one inherent limitation of the W A V C N S is that the index strongly reacts 
to the presence of ocular artifacts (OAs). Awake patients who are blinking and/or moving their 
eyes can have a W A V C N S as low as 20. In order to solve this issue, we have developed and 
patented an artifact denoising algorithm to remove OAs patterns from the EEG. The so-called 
denoised EEG can then be used to quantify the cortical state of awake patients. 

However, during anesthesia induction, the anesthesiologist must turn off the denoising process in 
order to preserve the EEG information. Failure to do so results in an elevated W A V C N S index, 
which does not reflect the patient's cortical state. In that respect, all competing technologies 
have an automatic detection of the loss of consciousness event. In order to use the W A V C N S as 
an anesthesia monitor to gain clinical credibility, it is then necessary to design an algorithm that 
can automatize the denoising switch1. 

While this may not appear as a critical issue for a closed-loop control system dedicated for the 
maintenance of anesthesia, this automatization issue must be resolved in order for the W A V C N S 

to be used as a stand alone monitor, and be accepted by the clinical community. 

(b) Increasing the sensor bandwidth: the W A V C N S HH trending filter is less than a decade above 
the fastest PKPD dynamics. Improving the dynamic response of the index will therefore result 

'This issue has recently been resolved satisfactorily. 
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in improved control performance. Unfortunately, measurement noise is also quite significant. 
Any increase in the filter dynamic response will also increase the closed-loop noise, and make 
it increasingly difficult for the anesthesiologists to monitor the controller output. Hence, new 
methods for reducing the measurement noise should be investigated. Only by then, an increase 
in the sensor bandwidth may be envisaged. 

It is important at this point to notice that the measurement noise may very well represent true 
cortical changes. 

(c) Improved hardware for use in the OR: the OR is a particularly difficult environment for EEG 
acquisition devices. Electro-Surgical Units (ESU) create large amplitude widespread interfer
ences. These interferences cause the saturation of the pre-amplifier stage of the EEG acquisition 
module. In most cases, the EEG signal cannot be retrieved, which results in discontinuities in 
the WAV sensor output. During periods of intense electrocautery activity, a closed-loop system 
may loose its feedback measure. Limiting ESU interference should therefore be given the priority 
in any hardware design dedicated for OR use and closed-loop control. 

The W A V C N S development efforts led by Ms. Zikov have already shown that a proper hardware 
design including a pre-amplifier notch filter centered on the ESU frequency could significantly 
lower the impact of ESU onto the amplifier. While total rejection of the ESU has not yet been 
achieved, encouraging results were already obtained. 

(d) Clinical endorsement: it is imperative for the success of any closed-loop system to use feedback 
sensors that have been thoroughly validated and tested by the clinical community. Only trust in 
the sensors will enable trust in the control system. Clinical endorsement can only be obtained 
by conducting large scale studies where the W A V C N S is used as a controlled endpoint. 

The full disclosure of the W A V C N S algorithm is also encouraged. It is important for clinicians 
to understand the main concepts used in the algorithm, and also understand its main role (i.e., 

quantifying cortical activity). Any 'black box' solution will always be regarded with mistrust. 

ii. W A V A N S Development: in terms of the analgesia index, significant progress still need to be 
achieved. 

The main difficulty is the design and conduct of a research protocol that allows the observation of the 
effect of opioids and /3-blockers, as well as the effect of surgical stimulation, onto the W A V A N S • This 
protocol should provide the clinical data needed to derive more precisely the W A V A N S , and prove 
its clinical significance. In addition, the W A V A N S project will also benefit significantly from ECG 
hardware that includes ESU protection. 

Furthermore, one of the main hurdle when using the HRV signal is the very low time resolution of 
the signal itself. This may be improved by considering the HRV signal derived based on the T peak, 
as well as the R peak (in which case the time resolution may be increased by up to a factor 2). 
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Finally, the effect of respiration on the H R V signal should be thoroughly studied. We are indeed 

expecting that a change in the respiration pattern may induce a change in the H R V , which might 

then be misinterpreted as a change in the autonomic activity due to surgical stimulation or drug 

administration. 

i i i . New P D Models: we have shown in Chapter 6 that our new modeling approach allows the use of 

induction data for P D identification. These-data can be obtained from virtually any elective surgery 

involving the use of the minimally invasive L M A . While the P D study carried out in Chapter 6 is 

already the second largest propofol P D study 2, it would be advised to increase the number of cases 

in the 40-49 and 50-60 yrs age groups in order to reach a more statistically representative result. 

In parallel, a clinical study aimed at deriving a W A V C N S interaction model between propofol and 

remifentanil should also be carried out. This study would involve a group of patients receiving a 

mixed propofol and remifentanil induction bolus. The P D interaction model derived from this study 

will be helpful to design a MISO controller (see below). It would also be the first dynamic model 

capturing the synergy between propofol and remifentanil. 

iv. Positive Systems: one aspect of P K P D models which has not been discussed in Chapter 7 is 

that P K models are essentially describing a positive system (i.e., a system whose states cannot take 

negative values). A potentially very interesting property of such systems is that the unstructured 

complex uncertainty can be reduced to a real bounded uncertainty gain. This may describe more 

appropriately the P K P D uncertainty and remove most of the conservatism introduced by the method 

used in Chapter 6. 

v. Clinical Survey of Adequate Control Performance : the initial survey carried out in Section 8.5 

has shown the large discrepancy between control engineering and clinical expectations in terms of close 

loop system performance. Before further designing, testing, and implementing new control laws, it will 

be necessary to clearly evaluate the needs of clinicians with regard to setpoint changes and surgical 

disturbance rejection. This may involve the definition of new control performance specifications and 

new testing procedures. 

vi . Patient Simulator for Control Validation: another important project concerns the development 

of a Patient Simulator (PS) that can be used as a test bed for validating control laws and testing the 

end-user interface. This simulator should be able to synthesize E E G and E C G signals that can be 

used to calculate the W A V C N S a n d W A V A N S indexes. 

A virtual embedded P K P D model calculates the patient's cortical and autonomic state, and generates 

appropriate E E G and E C G signals. The PS should also be able to simulate disturbances initiated by 

the user. A flow transducer attached to the infusion pump cannula can further be used to determine 

2 K a z a m a et al.'s study involved 47 patients 
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the infusion rate and bolus administration delivered manually by the user. This information can be 

input to the PS that will then re-calculate the appropriate patient response. 

A variety of faults and clinical situations can thus be easily simulated. This system can also be used to 

test control laws, the synergy between the human operator and the close loop controller, the feedback 

sensors and the infusion pumps. This setup may be a necessary first step towards the validation of a 

control law, and its implementation and trial on human subjects. 

vi i . Closed-loop Drug Delivery for I C U : we have established in Chapter 7 that uncertainty is sig

nificantly limited when considering the W A V C N S range of 50-80. This range typically corresponds to 

the light to deep sedation, which is commonly targeted in the I C U . Controllers designed specifically 

to maintain the index within this range should yield very good performance while being particu

larly robust to inter-patient variability. In addition, disturbances from surgical stimulation, or the 

co-administration of other anesthesia drugs, should be minimum. The I C U may therefore be the 

optimal test bed to test and validate closed-loop systems, and obtain valuable feedback information 

from anesthesiologists and other end-users of this system. 

vii i . M I S O / M I M O Control Designs: the sole control of hypnosis (or analgesia) will not provide anes

thesiologists with the full benefits of automatization. Following what has been presented in the 

Chapter 1, controlling anesthesia implies the control of the three endpoints that are hypnosis, anal

gesia and paralysis. While paralysis can be viewed as a separate issue, the control of hypnosis and 

analgesia must be approached within a multivariate framework to account for the opioid/anesthetic 

drug interaction. While the sole control of hypnosis was the goal of most of the 1990s research, the 

dual control of hypnosis and analgesia is now considered by many [91, 143, 169] to be next paradigm 

in research. 

We expect that the remifentanil P K P D bandwidth (with respect to the W A V C N S ) may be significantly 

higher than that of propofol. A MISO controller designed for the control of the W A V C N S , and based 

on the co-administration of both propofol and remifentanil, may therefore provide faster tracking 

and disturbance rejection, while minimizing drug dosage. During setpoint changes (or output dis

turbances), the controller will first use remifentanil to compensate for the high frequency transients, 

while propofol will only be used to compensate for the lower frequency transients, as well as dc shifts. 

Since remifentanil is also used to provide analgesia, it will be important to ensure that the remifentanil 

infusion rate settles back to the anesthesiologist's setpoint once the disturbance is compensated. The 

remifentanil control action will also have to be constrained. 

Upon completion of the W A V A N S development, a M I M O control law targeting both W A V indexes 

may be derived, thus achieving full closed-loop Total Intra Venous Anesthesia (TIVA). 

ix. Anesthesia Display: before clinical trust in a closed-loop system can be earned, it is necessary to 

provide the anesthesiologists with an intuitive display to help them monitor the controller actions. 
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This display can be used as an advisory system that will help them set up a proper titration strategy. 
This display can also be used to predict the time needed to reach a particular setpoint. 
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Appendix A 

Pharmacopoeia 

A . l Vapour Anesthetics 

Sevoflurane This drug was initially evaluated in the 1970s, but it's only in the 1980s that its low blood 

solubility and lack of pungency were recognized and appreciated. The fact that this agent provides the 

least degree of airway irritation, makes it acceptable for the induction of anesthesia. However, it is more 

vulnerable to metabolism. The compound resulting from the degradation of the drug is toxic, but present 

only in very small quantity. Due to its slight toxicity, sevoflurane has been approved for use in the U.S. 

only in 1995 [170]. 

Isoflurane Introduced in 1981 for patient use, this drug rapidly became the most commonly administered 

inhalational anesthetics [2]. The advantage of isoflurane is that it is less susceptible to metabolism, hence 

less toxic. However, this drug is pungent and slightly irritable for the airways. 

Desf lurane This drug is characterized by a very low solubility, which provokes a rapid onset followed 

by a fast recovery (particularly useful for day-surgeries). This drug is more pungent than sevoflurane and 

requires special pressurized vaporizers for its administration. 

A . 2 Intravenous Anesthetics 

B a r b i t u r a t e s Barbiturates were the first chemical compounds developed for clinical anesthesia (e.g. 

thiopental, hexobarbitone). Derived from barbituric acid, they have a high lipid solubility which con

tributes to a rapid onset and shorter duration of action. Barbiturates such as thiopental are thus used for 

rapid intravenous induction of anesthesia. However, their particularly long context-sensitive half time and 

prolonged recovery period limit their usefulness. As such, they are seldom used in infusion. 
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Benzodiazepines Benzodiazepines such as midazolam, diazepam or lorazepam were introduced in the 

1970s. They are known to be powerful sedatives and amnesics. However, the long acting characteristic of 

diazepam and lorazepam limit their use. Midazolam is metabolized by the liver and hence is shorter acting. 

However the time to peak effect is rather long, also limiting its use. These drugs are thus mainly used as 

premedicant. 

Phencyclidine Derivatives of phencyclidine such as ketamine differ from all other anesthetics in that 

their mechanism of action within the brain is different. They produce a dissociative effect resembling that 

of a cataleptic state where the patient is noncommunicative. Amnesia is present, as well as intense analgesia. 

Introduced in 1965 in the U.S .A. , ketamine is still widely used as an analgesic. However, the drug tends to 

also increase heart rate, blood pressure and muscle tone. 

Carboxylated imidazole Etomidate produces a rapid onset of unconsciousness. Developed in the early 

1970s, it was shown that it does not depress the circulation, thus being safer than barbiturates. However, it 

is also characterized by its excitatory effect on the brain. As a result, the patient may exhibit spontaneous 

movement in up to 50% of cases. 

Isopropylphenol Propofol was introduced in 1977. Since then, it has become the intravenous drug of 

choice in the anesthesia practice. One particular characteristic of propofol is its fast redistribution and 

metabolism. As a result it can be easily used in infusion schemes, as it provides very fast emergence (no 

cumulative effect). Another interesting property is that propofol suppresses laryngeal reflexes, which makes 

it particularly attractive for induction. 

A.3 Opioids 

Morphine Morphine is the compound against which all other opioids are compared. Beside its analgesic 

effect, morphine also causes euphoria, sedation, and a decreased ability to concentrate. While the onset 

of effect occurs soon after intravenous administration, its peak effect is delayed by 15 to 30 min. This 

difference between onset and peak effect is mainly the result of the slow equilibration between the blood 

and brain concentration (so-called effect-site equilibration time). 

Another distinguishing feature of morphine is its tendency of releasing histamine, thus provoking va

sodilation, hypotension, tachycardia and cutaneous flushing. 

Fentanyl Fentanyl is a synthetic opioid that was first synthesized by Janssen in 1962. Much more potent 

than morphine, fentanyl has also a more rapid onset and shorter duration of action. However, there is still a 

marked delay of 6 to 7 min between the peak plasma concentration and the peak effect. The short duration 

of action is the result of the rapid redistribution of the drug in inactive tissues. However, a saturation of 

these tissues can occur, mostly when using multiple boluses or long term infusions. As a result, the plasma 
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Figure A . l : Context sensitive half times of fentanyl, sufentanil, alfentanil and remifentanil (from [21]). 

concentration of fentanyl reduces only slowly, which prolongs the duration of effect. This characteristic is 
well captured by the context-sensitive half-time curve of fentanyl, see Fig. A . l . As a result, a potential 
complication is the lingering effect of fentanyl, which might provoke a recurrent depression of ventilation in 
the post operative care unit. 

As compared to morphine, the administration of synthetic opioids do not provoke histamine release. 
Conversely, the concurrent administration of other intravenous of inhalational anesthetics can seriously 
alter hemodynamic stability as they greatly potentiate the effects of these drugs. 

Alfentanil Alfentanil is an analogue compound to fentanyl, with the differences that it is less potent 
and has a reduced duration of action. Its major advantage is its fast onset of action after intravenous 
administration. It takes about 1.4 min for the concentration at the effect site to equilibrate with the plasma 
concentration. This is particularly useful to rapidly blunt strong and brief noxious stimuli such as tracheal 
intubation. The elimination of alfentanil is done through hepatic metabolism. It has been shown that there 
can be a 10-times inter-patient variability in the systemic clearance of the drug due to large differences in 
enzyme activity between individuals. 

Sufentanil Synthesized in 1979, sufentanil is also an analogue to fentanyl, but with a 7 times higher 
potency. As compared to fentanyl, the context-sensitive half-time is much lower and more constant for 
longer duration of infusion, see Fig. A . l . Depression of ventilation may also be more profound than with 
fentanyl. When used in large doses, this drug may also produces muscle rigidity which makes ventilation of 
the lungs more difficult. Because of its context-sensitive half-time characteristic, sufentanil is used almost 
uniquely for long surgeries. 

Remifentanil Remifentanil is a new agent introduced in the practice in the mid 1990s. Its potency 
is twice that of fentanyl and its effect-site equilibration time is slightly less to that of alfentanil (about 
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1.1 min). A major difference with other opioids lies in its molecular structure. Its ester linkage renders 
this compound susceptible to hydrolysis by non-specific blood and tissue esterases. This property results in 
its rapid degradation in essentially inactive metabolites [21]. The main characteristics of remifentanil are: 
brevity of action, rapid onset, noncumulative effects in inactive tissues, and rapid recovery after termination 
of the infusion. As a result, its context-sensitive half-time is independent of the duration of the infusion, 
see Fig. A . l . Also, the risk for post-operative rebound of effect, while common with other opioids, is 
significantly reduced. 

Remifentanil is used mostly to supplement the analgesic component of general anesthesia. It gives to 
anesthesiologists the ability to help their patients to recover rapidly from undesirable opioid-induced side-
effects such as the depression of ventilation. Because of its brevity of action, it is usually recommended 
that longer acting opioids are administered at the end of the surgery to reduce post-operative pain. 



Appendix B 

Propofol and Remifentanil PKPD 

This Annex presents a thorough review of the pharmacokinetic and pharmacodynamic studies carried out 

for propofol and remifentanil for the past 20 years. This review is presented under the form of tables 

containing the P K and P D parameters. A short description of each study complements the tables. 

B . l Propofol 

B . l . l P h a r m a c o k i n e t i c s 

Cockshott and Gepts, 1985 In 1985, a preliminary survey by Cockshott [171] reported a set of param

eters obtained from three independent studies ([178], [179] and [180]). While these studies were based on a 

very limited number of healthy adult patients (ASA I or II) undergoing elective surgery, their results are 

fairly consistent as far as half-lives are concerned. 

Cockshott, 1987 Following his preliminary review of propofol pharmacokinetics, Cosckshott published 

another set of parameters [172] obtained on 6 female patients and derived from single bolus data. His results 

were also consistent to those previously reported, with the exception of the central compartment volume 

which is larger. However, this discrepancy might be explained by the poor number of patients. For that 

particular parameter, Cockshott also reported a wide variability between patients. 

Kirkpatrick et a l . , 1988 In 1988, a study by Kirkpatrick et al. [173] comparing the propofol kinetics 

between two different age groups (12 young adults and 12 elderly patients) revealed that age is a strong 

covariate and must be accounted for in pharmacokinetic parameters. As compared to the younger age group, 

older patients experience a reduced metabolism resulting in a slower elimination phase. This observation 

indicates that infusion rates should be reduced to account for the increased elimination half-life. 

Gepts et a l . , 1988 Gepts et al. initiated this study to evaluate the effect of opioid administration on 

propofol kinetics. They first set a constant alfentanil concentration and followed the evolution of the plasma 
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STUDY Vi 
[1] 

[1/kgP 

7T 

Is"1] 

POLES 
a 

Is"1] 

P 

Is"1] 

ZEROS 
fc21 &31 

[s- 1] [s- 1] 

Cockshott et al., 1985 [171] 
Schiittler et al. 
Kay et al. 

28.9 
39.2 

5.5e~ 3 

5.0e" 3 

3.0e- 4 

2.3e" 4 

3.0e~ 5 

4.0e" 5 

3.3e- 3 

3.3e~ 3 

5.8e~ 5 

5.8e~ 5 

Cockshott et aJ.,1987 [172] 41.3 4.0e~ 3 2.6e"> 4.1e~ 5 3.3e- 3 5.8e~ 5 

Kirkpatrick et al, 1988 [173] 
Young 
Elderly 

0.42* 
0.31* 

6.7e~ 3 

8.3e- 3 

2.9e"4 

2.3e- 4 

2.0e- 5 

2.1e~ 5 

l . O e - 3 

0.6e~ 3 

3.2e~ 5 

3.2e~ 5 

Gepts et al, 1988 [111] 16.9 5.0e~ 3 5.0e~ 4 4.0e" 5 0.9e- 3 5.5e~ 5 

Tackley et al, 1989 [174] 0.32* 4.1e~ 3 4.6e"* 4.4e~ 5 l . l e " 3 5.7e~ 5 

Gill et al, 1990 [110] 23.7 3.7e- 3 2.7e~ 4 2.2e"5 3.3e" 3 5.8e~ 6 

Marsh et al., 1991 [175] 
Adult 
Children 

0.23* 
0.34* 

5.1e~ 3 

3.7e- 3 

4.1e- 4 

3.1e~ 4 

3.7e- 5 

4.5e~ s 

7.0e~3 

0.6e- 3 

5.5e~ 6 

5.5e~ 5 

Kataria et al, 1994 [176] 
Children 

N O N M E M method 
2-stage method 
Pooled method 

0.44* 
0.32* 
0.52* 

5.8e~ 3 

5.9e" 3 

4.4e~ 3 

6.7e~4 

4.3e~ 4 

4.5e~ 4 

4.4e~ 5 

3.5e" 5 

2.9e- 5 

1.5e~3 

0.8e"3 

l .Oe" 3 

7.8e- 5 

5.5e~ 5 

5.3e" 5 

Short et al., 1994 [177] 
Chinese children 0.43* 5.7e~ 3 7.4e- 4 5.7e~ 5 1.8e"3 8.2e~ 5 

Schnider et al, 1998 [100] 
Adult , 30 yr, 50 kg, 1.70 m 
Adult, 30 yr, 70 kg, 1.70 m 
Adult , 30 yr, 110 kg, 1.70 m 
Elderly, 70 yr, 70 kg, 1.70 m 

21.5 
30.1 
47.3 
30.1 

16.0e~3 

16.5e™ 3 

20.0e"3 

12.3e- 3 

14.0e~4 

15.0e- 4 

19.0e~4 

20.0e- 4 

4.9e- 5 

4.9e" 5 

5.3e"5 

4.9e- 5 

3.3e~ 3 

3.3e" 3 

3.3e~ 3 

3.3e~ 3 

5.8e- 5 

5.8e" 5 

5.8e- 5 

5.8e~ 5 

Schiittler et al., 2000 [101] 
Adult , 30 yr, 50 kg 
Adult , 30 yr, 70 kg 
Adult, 30 yr, 110 kg 

7.3 
9.3 

12.8 

8.9e"3 

8.7e~ 3 

8.5e" 3 

4.2e~ 4 

4.3e~ 4 

4.4e~ 4 

2.8e~ 5 

3.4e" 5 

4.5e- 5 

0.8e"3 

0.8e- 3 

0.8e"3 

4.8e~ 5 

5.8e~ 5 

7.4e~5 

Table B . l : Propofol P K parameter sets (hybrid form). 
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concentration of propofol during an infusion of 6 mg/kg/hour. They obtained a first set of P K parameters 

which they further compared to parameters obtained without alfentanil. They concluded that propofol 

kinetics were not affected by the co-administration of alfentanil. 

Tackley et al., 1989 In 1989, Tackley et al. [174] used a T C I device to reach a desired propofol 

plasma concentration using the 3-compartment parameters from Cockshott. After using the T C I device on 

8 patients, they proposed an optimization of Cockshott's parameters in order to reach the reference sooner. 

While their modified parameters indeed improved the settling time of the plasma concentration, it also 

resulted in a strong steady state error of about 20%. 

Gill et al., 1990 A 9-patient single-bolus injection study by G i l l et al. [110] resulted in a rather 

long distribution half-life (3.1 min). However, they also obtained a large variability (±2.03 min) on this 

parameter. This result could be due to the method of administration of the drug and the difficulty of 

properly identifying the decaying rate of the distribution phase as only 5 blood samples were taken during 

this phase. 

Marsh et al., 1991 The first study involving children was published by Marsh et al. [175] in 1991 

using a T C I device. It was found that pediatric patients usually have larger infusion rate requirements than 

adults, as their central compartment volume is much larger. Marsh and co-workers also adapted the adult 

pharmacokinetic parameters from Gepts [181] according to their own observations. 

Kataria et al., 1994 Later on, an extensive and well-documented study by Kataria et al. [176] on 53 

unpremedicated children proposed three sets of parameters obtained by three different statistical approaches. 

The authors recommend the use of the N O N M E M software ( N O N M E M Project, University of California, 

San Francisco, C A ) for the analysis of pharmacokinetic data. This software allows multiple nonlinear 

regression analysis of population data simultaneously. In this study, they observed that, among children, 

weight is a strong covariate that account for one fourth of the inter-individual variability. While accounting 

for age as well improves the model, the actual improvement of the fit is rather small. 

Short et al., 1994 A study involving Chinese children was carried out by Short et al. [177] who used 

as a starting point the parameters published in Marsh's study. They found out that the fit could be 

improved by fine tuning the parameters, resulting in a slightly different set of coefficients and a larger 

central compartment volume. 

Schnider et al., 1998 The propofol P K during infusion regimen was then investigated by Schnider et 

al. [100] in 1998. The aim of their study was to estimate the covariates of propofol P K , and in particular, 

estimate the. effect of the method of administration (bolus vs. infusion) on the P K parameters. They 

analyzed the blood samples of 24 volunteers from 25 to 81 years old using the N O N M E M method. They 
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published a set of equations that allows the calculation of the P K parameters as a function of the age, 

weight and lean body mass. 

Schiittler and Ihmsen, 2000 Finally, by far the most extensive study in this survey - covering 270 

individuals and 4,112 blood samples - was carried out by Schiittler and Ihmsen in 2000 [101]. Echoing the 

earlier work by Kataria, Schiittler and Ihmsen also used the N O N M E M software, which allowed them to 

quantify the influence of covariates such as age, lean body mass and gender. In short, the results they 

obtained were close to those of Kataria and Shafer. As compared to the earlier studies of Cosckshott, Kirk-

patrick and G i l l , there is a large discrepancy in half-lives and compartmental volumes. This discrepancy can 

be attributed to the analysis method employed in recent studies which benefit from advances in statistical 

analysis. However, Schiittler and Ihmsen's results concerning the elderly age population group have been 

seriously criticized by Vuyk et al. [182], who argued that the proposed model under-predicts the initial 

plasma blood concentration, thus leading to higher infusion rates and possibly overdosing. 

B . l . 2 P h a r m a c o d y n a m i c s 

Note that this review is limited to only P D studies involving quantitative E E G . 

Billard et a l . , 1997 The first set was published by Billard et al. in 1997 [117]. Propofol P D models 

were derived for the bispectral index, the S E F and the delta power (0.5 to 4 Hz) for three major anesthetic 

drugs (alfentanil, propofol and midazolam). Among other, they found that the Hi l l equation could not cope 

satisfactorily with the biphasic effect of propofol observed mostly in S E F and the delta power measures. 

They also noticed that the biphasic effect of propofol was less present in the bispectral measure. They 

concluded that BIS can be used as a measure of the E E G effects of anesthetic drugs. A limitation of this 

study is that the authors are using direct blood plasma measurements for Cp(t) and do not provide the 

corresponding pharmacokinetic set. 

Schnider et a l . , 1999 Two years later, Schnider et al. [166] completed their pharmacokinetic study 

with a pharmacodynamic analysis of the effect of propofol on a proprietary E E G index based on semilinear 

canonical correlation. A particularity of this study is that they identified the biphasic characteristic of 

propofol using a combination of two Hi l l equations (one for the activation phase and one for the depression 

phase). The principal aim of their study was the assessment of the effect of age on the P D parameters. They 

found that the'ECso (corresponding to the concentration required to provoke a loss of consciousness in 50% 

of their study population) decreases with age. This result indicates that older patients are more sensitive 

to propofol. However, note that the maximal effect observed in this study was the loss of consciousness and 

not a state of un-responsiveness suitable for surgery. 
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STUDY PROPOFOL P K POP. 

Is"1] 
7 E C 5 0 

[^gml- 1 ] 
Eo Emax 

Billard et al, 1997 [117] n.d. 
Bispectral Index 12 3.3e~ 3 5 . 3 ± 2 . 1 3.40 0 % 100% 
Spectral Edge Freq. 12 3.5e~ 3 5 . 3 ± 2 . 1 4.50 0 % 100% 
Delta Power 12 4.5e~ 3 5 . 3 ± 2 . 1 4.60 0 % 100% 

Schnider et al, 1999 [166] Schnider et al. [100] 
Semilinear Canonical 

Correlation 24 4.3e~ 3 n.a. 2.1-0.014-Age n.a. n.a. 

Kazama et al., 1999 [116] Getps et al. [181] 
Bispectral Index 

Group 1 (20-39 yr) 11 (5.0±0.1)e--3 2.39 5 . 6 0 ± 0 . 4 8 0 100 
Group 2 (40-59 yr) 12 ( 5 . 0 ± 0 . 1 ) e " -3 2.08 6 . 7 6 ± 0 . 5 1 0 100 
Group 3 (60-69 yr) 12 ( 5 . 0 ± 0 . 2 ) e " -3 2.03 8 . 2 1 ± 0 . 6 4 0 100 
Group 4 (70-85 yr) 12 ( 5 . 0 ± 0 . 2 ) e " -3 2.10 7 . 6 7 ± 0 . 5 8 0 100 

White et al., 1999 [115] Authors derived their 
Auditory Evoked Po

tentials 
oum ^-compartment 
PK model 

15 3.7e" 3 2.17 1.76 0% 100% 

Kuizenga et al, 2001 [118] Authors performed 
Bispectral Index their own blood 

Initial infusion plasma concentration 8 (3.4±1.9)e" -3 4 . 2 0 ± 3 . 0 2 . 4 4 ± 1 . 3 7 n.d. n.d. 

Sequential infusions 
measurements - no 
PK model was 
published 

8 
(10.5 ± 
2.2)e~3 

5 . 6 7 ± 4 . 6 3 . 4 4 ± 2 . 4 6 n.d. n.d. 

Ludbrook et al, 2002 
[183] 

Bispectral Index 

Authors derived their 
Ludbrook et al, 2002 
[183] 

Bispectral Index own 2-compartment 
PK model 

7 1.8e~3 n.d. n.d. n.d. n.d. 

Table B.2: Propofol effect site half-life and pharmacodynamic parametric constants. 
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Kazama et al., 1999 Echoing Schnider's study, Kazama et al. [116] also attempted to determine 
whether age is a covariate of the effect half-life i f e 0 . To do so, they analyzed the effect of propofol infusion 

2 

on the bispectral index and blood pressure of 45 patients divided into 4 age groups and undergoing elective 
surgery. As far as BIS is concerned, they concluded that age is not a covariate of Tf e 0. However, they found 

2 

that the effective plasma concentration EC50 tends to increase with age, indicating that older patients may 
require a higher plasma concentration of propofol to achieve the same effect than a lower concentration in 
younger patients. This result goes directly against Schnider's. However, the authors refer to a study of 
propofol effect in rats [119] which reported that younger animals are more sensitive to propofol than old 
animals due to a higher propofol concentration in the the brain. 

White et al., 1999 In this study, White et al. are using Auditory Evoked Potentials (AEP) to quantify 
the effect of propofol onto the brain. The technique used for the derivation of the AEP is similar to that 
used by the A-Line Monitor (Alaris Medical Systems). The authors recruited 22 patients. However they 
could only successfully collapse the hysteresis loop and get a meaningful T± e° in 15 of these. The EC50 

2 

reported in this study is 2.17 ^ g m l - 1 which is similar to the value reported by Schnider et al. [166]. The 
authors could not explain satisfactorily this rather low value. They concluded that the AEP index might 
be more sensitive to propofol than other electroencephalographs indexes. 

Kuizenga et al., 2001 A second set of parameters describing also the effect of propofol on the bispectral 
index has been proposed by Kuizenga et al. [118]. Their study was designed to assess the predictability of 
PD models. Their results are further discussed in Section 3.2.4.2. 

Ludbrook et al., 2002 The most recent propofol PD study was conducted by Ludbrook et al. [183] on 7 

patients. Two arterial lines allowed the authors to estimate the brain propofol concentration by calculating 
the amount of propofol retained by the brain. They reported a much slower equilibrium between the blood 
and the brain as compared to other studies. They attributed this difference mainly to the method of 
administration (as compared to other studies, they administered propofol at a lower infusion rate, which 
may have limited the depression of the circulatory system, and thus, the drop in cardiac output). 

During the study, propofol was infused at a rate of 110 mg/min for 5 minutes, and then 10 mg/min 
for another 20 minutes. This regimen created a large plasma concentration (>20 /xg-ml-1) which in turns 
produced a marked electroencephalographic depression (significant burst suppression and periods of iso
electric EEG). The authors reported that burst suppression started in some patients at a concentration of 
5.5 /tg-ml -1, while most patients experienced a total EEG depression at concentrations above 15 /xg-ml-1. 
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P O L E S Z E R O S 
S T U D Y Vi 

111 
7T a P 

[1/kg]* Is"1] Is"1] Is"1] Is"1] Is"1] 

Egan et al., 1993 [21] 

N O N M E M method 7.1 12.8e- 3 1.3e- 3 24.0e~ 5 2.4e~ 3 2.6e—1 

2-stage method 7.0 14.4e~3 1.4e~3 0.7e- 4 2.9e"3 7.3e~4 

Pooled method 7.7 12.8e~3 1.4e~3 2.2e~ 4 2.6e"3 2 .3e"» 

Kapila et al., 1995 [184] 0.12* 13.le" 3 1.5e- 3 n.a. 3.2e" 3 n.a. 

Egan et al., 1996 [102] 7.1 12.8e~3 1.3e~3 24.0e- 5 2.4e~ 3 2.6e~ 4 

Minto et al., 1997 [103] 
Adult , 30 yr, 50 kg, 1.70 m 4.5 20.6e- 3 2.0e- 3 2.6e- 4 4.1e~ 3 2.7e~ 4 

Adult, 30 yr, 70 kg, 1.70 m 5.3 18.2e"3 1.8e~3 2.6e- 4 3.7e- 3 2.7e" 4 

Adult, 30 yr, 110 kg, 1.70 m 6.2 16.3e~ 3 1.7e~3 2.6e- 4 3.3e- 3 2.7e~ 4 

Elderly, 80 yr, 70 kg, 1.70 m 4.1 12.0e- 3 1.4e"3 0.9e"4 2.2e"3 0.9e" 4 

Table B.3: Remifentanil P K parameter sets (hybrid form). 

B . 2 R e m i f e n t a n i l 

B . 2.1 P h a r m a c o k i n e t i c s 

Glass et a l . , 1993 A n initial study was published in 1993 by Glass et al. [185] who revealed the ultra

short acting property of remifentanil. The pharmacokinetic parameters were derived based on arterial blood 

samples obtained from 30 male volunteers following the administration of increasing doses of remifentanil. 

In their study, a two-compartment model was deemed satisfactory. Unfortunately, the P K parameter set 

was not published in its entirety. 

Egan et a l . , 1993 Following this initial report, a study by Egan et al. [21] on 10 adult volunteers 

receiving an infusion of remifentanil over 20 min at various rates (1 to 8 /^g-kg - 1 -min - 1 ) confirmed the 

promising clinical potential of this new opioid in anesthesiology. The pharmacokinetic parameters were 

obtained using three different statistical approaches, however, no significant improvement could be observed 

when using the complex N O N M E M analysis or standard nonlinear regression analysis (i.e. the pooled 

method). Actually, the nonlinear regression analysis technique yielded a more accurate result for long term 

predictions. 

Westmoreland et a l . , 1993 Significant differences in pharmacokinetic parameters were obtained in the 

study by Westmoreland et al. [186]. Their N O N M E M analysis was carried out on 24 patients divided into 

4 groups, each group receiving a different dose of remifentanil. As compared to Egan's study, the resulting 

half-lives are fairly different. However, the central compartment volume is consistent with results obtained 

in other studies. What is remarkable, however, is that it seems to be a significant difference in the drug 

kinetics according to the administered dose. As the dose increases, it appears that the distribution and 
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elimination half-lives are increasing as well. The linearity of the pharmacokinetics of remifentanil should 

therefore be questioned. However, this issue was not discussed by the authors of this paper. The P K sets 

were incomplete and could not be translated into the hybrid form. 

Kapila et al., 1995 A study by Kapi la et al. [184] in 1995 confirmed the earlier results from Egan 

et al. This study was carried out on 22 patients and involved a 3 hours infusion in order to measure the 

context-sensitive half-time of remifentanil. Their measures echoed the simulated results obtained by Egan. 

Egan et al., 1996 Before remifentanil, alfentanil was the opioid of choice in terms brevity of action and 

rapidity of onset. To assess the P K and P D difference between the two drugs, Egan et al. [102] recruited 

10 volunteers to receive an infusion at various rates of the two drugs on two separate days. The N O N M E M 

software was used to 

Minto et al., 1997 In 1997, Minto et al. [103] presented an extensive study to determine the covariates of 

remifentanil pharmacokinetics based on blood samples from 65 healthy adult patients receiving remifentanil 

under constant infusion rate (1 to 8 / i g - k g - 1 - m i n - 1 ) . Their observations led them to conclude that age, 

weight and lean body mass are all factors affecting the pharmacokinetic parameters. Their analysis yielded 

a set of equations linking the compartmental volumes and clearances with the patient's age and lean body 

mass. 

Glass et al., 1999 Finally, a recent review by Glass et al. [187] comments on the differences in elim

ination half-life reported in the literature. He attributed these differences to the method of investigation 

used by the authors of these studies. In general, large elimination half-lives were observed for high infusion 

rates. For studies using smaller doses of remifentanil, the concentration of the drug in the blood might have 

been below the measurable threshold, resulting in a poor estimation of T f . 
2 

B.2.2 Pharmacodynamics 

Egan et al., 1996 Egan et al. [102] used the spectral edge frequency to model the P D of remifentanil. 

They reported a large inter-individual variability, mostly in terms of the Hi l l parameters. 

Minto et al., 1997 Along with the pharmacokinetic study, Minto et al. [103] included the pharmaco

dynamic parameters corresponding to the effect of remifentanil on the spectral edge frequency. They also 

studied the influence of age on these parameters. Conversely to propofol, the effect half-life of remifentanil 

and the sensitivity to the drug increase with age. 
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STUDY REMIFENTANIL P K POP. fceO 7 B C 6 0 

[ng-ml- 1) 
Eo Em-ax 

Egan et at., 1996 [102] 
Egan et al., 1996 
[102] 

Spectral Edge Freq. 

Egan et al., 1996 
[102] 

10 19.0e~ 3 4.3 19.9 19 13.8 

Minto et al., 1997 [103] 
Minto et al., 1997 
[103] 

Spectral Edge Freq. 
20 yr 
40 yr 
60 yr 
80 yr 

Minto et al., 1997 
[103] 

30 
12.3e"3 

lO .Oe- 3 

7.6e- 3 

5.3e~ 3 

2.4 
2.4 
2.4 
2.4 

16.1 
13.1 
10.1 
7.2 

20 
20 
20 
20 

5.5 
5.5 
5.5 
5.5 

Table B.4: Remifentanil effect site half-life and pharmacodynamic parametric constants. 



Appendix C 

Propofol PKPD Nominal and 
Uncertainty Models 

This annex summarizes the results of the P K P D uncertainty work carried out in Chapter 7 for propofol. 

This work was based on the 44 P K P D models presented in Table 6.1 and derived from the induction data 

obtained during the L M A study (see Annex D.2). 

Table C . l , C.2, and C.3 present the propofol P K P D nominal models (separated in both their P K and 

P D parts). Each model is based on a particular subset of the study population (age group), or based on a 

particular study condition (e.g., the W A V C N S range, infusion and/or bolus administration). The nominal 

model parameters were obtained by averaging the models over the study population corresponding to the 

conditions described in the first column of the tables (drug administration, age group and W A V C N S range). 

Table C.4, C.5, and C.6 present the weights w n o m ( s ) (nominal model optimization weight) and w(s) (rel

ative uncertainty weight). Both weights are 4th order LTI transfer functions when the drug administration 

covers a rate of 0 up to 10 m g - m i n - 1 - k g _ 1 . If the drug administration is limited to 0 to 0.5 m g m i n _ 1 k g _ 1 

(infusion) or 2 to 10 m g m i n _ 1 k g _ 1 (bolus), the weights order can be reduced to 2 without significant 

differences in the overall results. 
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M O D E L M O D E L C H A R A C T E R I S T I C S P H A R M A C O K I N E T I C M O D E L 
P H A R M A C O D Y N A M I C 

M O D E L 

#1 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV C N S range: 80 - 20 

1 (s + 1.16 • 10~ 3)(s +4.71 • 10~ 5) 
C-14.«., 5 - N 

#1 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV C N S range: 80 - 20 
15.90 (s + 8.34 • 10- 3 )(s + 3.56 • 10- 4 )(s + 3.03 • 1 0 - 5 ) (s + 44.6- 10~ 3) 

#2 

Administration: infusion + bolus 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 20 

1 (s + 1.16 • 10~ 3)(s + 4.52 • IO" 5 ) 
c -20.0. s

 1 0 ' 6 3 

#2 

Administration: infusion + bolus 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 20 
17.97 (s + 7.15 • 10- 3 )(s + 3.49 • 10- 4 )(s + 2.89 • 10" 5) (s + 61.3 • IO" 3 ) 

#3 

Administration: infusion + bolus 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 20 

1 (s + 1.17 • 10 _ 3 ) ( s + 4.69 • 1 0 - 5 ) 
C - 1 2 . 9 . » 4 7 9 

#3 

Administration: infusion + bolus 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 20 
15.78 (s + 8.38 • 10- 3 )(s + 3.56 • 10- 4 )(s + 3.02 • 10~ 5) (s + 39.0 • 10- 3 ) 

#4 

Administration: infusion + bolus 

Age group: 40-49 yrs old 

WAV CNS range: 80 - 20 

1 (s + 1.17 • 10~ 3)(s + 4.88 • 10~ 5) 
c -12.4s 3.39 

#4 

Administration: infusion + bolus 

Age group: 40-49 yrs old 

WAV CNS range: 80 - 20 
15.15 (s + 9.09 • 10- 3 )(s + 3.61 • 10- 4 )(s + 3.15 • 10~ 5) (s + 34.2- IO" 3 ) 

#5 

Administration: infusion + bolus 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 20 

1 (s + 1.17 • 10 _ 3 ) ( s + 4.92 • 1 0 - 5 ) 
c _,o .5 . , 3.14 

#5 

Administration: infusion + bolus 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 20 
14.12 (s + 9.09 • 10" 3)(s + 3.61 • 10~ 4)(s + 3.15 • l O ^ 5 ) (s + 33.1 • 10- 3 ) 

#6 

Administration: infusion 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 20 

1 (s + 0.85 • 10~ 3)(s + 6.20 • 1 0 - 5 ) 
C-14.8.. 5 7 1 

#6 

Administration: infusion 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 20 
9.44 (s + 9.16 • 10- 3 )(s + 4.29 • 10~ 4)(s + 3.69 • IO" 5 ) (s + 44.6 • 10" 3) 

#7 

Administration: bolus 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 20 

1 (s + 1.48 • 10- 3 )(s + 3.22 • 10~ 5) 
C-14.8.. 5 - 7 1 

#7 

Administration: bolus 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 20 
24.71 (s + 7.51 • 10- 3 )(s + 2.83 • 10" 4)(s + 2.37 • IO" 5 ) (s + 44.6 - IO" 3 ) 
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M O D E L M O D E L C H A R A C T E R I S T I C S P H A R M A C O K I N E T I C M O D E L 
P H A R M A C O D Y N A M I C 

M O D E L 

#8 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 50 

1 (s + 1.16 • 10~ 3)(s +4.71 • IO" 5 ) 
c - 1 4 . 8 . . 7 - 9 8 

#8 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 80 - 50 
15.90 (s + 8.34 • 10- 3 )(s + 3.56 • 10- 4 )(s + 3.03 • IO" 5 ) (s + 44.6 • 10" 3) 

#9 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 60 - 30 

1 (s +1.16 • 10~ 3)(s +4.71 • 10™ 5 ) 
C - 1 4 . 8 . S

 5 - 9 8 

#9 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 60 - 30 
15.90 (s + 8.34 • 10- 3 )(s + 3.56 • 10" 4)(s + 3.03 • IO" 6 ) (s + 44.6 • IO" 3 ) 

#10 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 40 - 20 

1 (s +1.16 - 10~ 3)(s +4.71 - 10~ 5) 
c _ l 4 . s . s

 3 - 8 8 

#10 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV CNS range: 40 - 20 
15.90 (s + 8.34 • 10- 3 )(s + 3.56 • 10" 4)(s + 3.03 • IO" 5 ) (s + 44.6 - IO" 3 ) 

# U 

Administration: infusion 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 20 

1 (s + 0.85 • 1 0 _ 3 ) ( « + 5.94 • 1 0 - 5 ) ••no., 10-63 
# U 

Administration: infusion 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 20 
10.69 (s + 7.78 • 10- 3 )(s + 4.24 • 10- 4 )(s + 3.52 • 10" 6) (s + 61.3-10" 3) 

#12 

Administration: infusion 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 20 

1 (a+ 0.85 • 10" 3)(s + 6.17 • 10~ 5) 
C-12.9.. 4 7 9 

#12 

Administration: infusion 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 20 
9.38 (s + 9.21 • 10- 3 )(s + 4.29 • 10" 4)(s + 3.67 • IO""5) (s + 39.0 - IO" 3 ) 

#13 

Administration: infusion 

Age group: 40-49 yrs old 

WAV CNS range: 80 - 20 

1 (s + 0.85 • 10" 3)(s +6.42 • 10~ 5) 
c - 1 2 . 4 - s 3.39 

#13 

Administration: infusion 

Age group: 40-49 yrs old 

WAV CNS range: 80 - 20 
9.00 (s + 10.0 • 10- 3 )(s + 4.33 • 10- 4 )(s + 3.84 • I O - 5 ) (s + 34.2-10- 3 ) 

#14 

Administration: infusion 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 20 

1 (s + 0.85 • 10~ 3)(s + 6.47 • 1 0 - 5 ) 
C-10.5.. 3.14 

#14 

Administration: infusion 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 20 
8.39 (s + 10.7 • 10- 3 )(s + 4.34 • 10->)(s + 3.88 • 10~ 5) (s + 33.1 • IO" 3 ) 
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MODEL MODEL CHARACTERISTICS PHARMACOKINETIC MODEL PHARMACODYNAMIC 
MODEL 

#15 

Administration: infusion 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 50 

1 (s + 0.85 • 10 - 3 ) ( s + 5.94 • 1 0 - 5 ) 
C-20.o.s ".66 #15 

Administration: infusion 

Age group: 18-29 yrs old 

WAV CNS range: 80 - 50 
10.69 (s + 7.78 • 10~ 3)(s + 4.24 • 10- 4 )(s + 3.52 • 10~ 5) (s 4-61.3- IO" 3 ) 

#16 

Administration: infusion 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 50 

1 (s + 0.85 • 10- 3 )(s +6.17-IO" 5 ) 
C-12.9.. 6 - 7 7 

#16 

Administration: infusion 

Age group: 30-39 yrs old 

WAV CNS range: 80 - 50 
9.38 (s + 9.21 • 10- 3 )(s + 4.29 • 10"4)(s + 3.67 • IO" 5 ) (s + 39.0 • 10" 3) 

#17 

Administration: infusion 

Age group: 40-49 yrs old 

WAV C N S range: 80 - 50 

1 (s + 0.85 • 10~ 3)(s +6.42 - 10~ 5) 
C-12.4.. 4 - 7 7 

#17 

Administration: infusion 

Age group: 40-49 yrs old 

WAV C N S range: 80 - 50 
9.00 (s + 10.0 • 10" 3)(s + 4.33 • 10" 4)(s + 3.84 • 10~ 5) (s + 34.2 - 10- 3 ) 

#18 

Administration: infusion 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 50 

1 (s + 0.85 • 10 _ 3 ) ( s + 6.47 • 1 0 - 5 ) 
C-10.5.S 4.40 

#18 

Administration: infusion 

Age group: 50-60 yrs old 

WAV CNS range: 80 - 50 
8.39 (s + 10.7 • 10- 3 )(s + 4.34 • 10"4)(s + 3.88 • IO" 5 ) (s + 33.1 - IO™ 3) 
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MODEL CHARACTERISTICS .00 

Administration: 

Age group: 

WAV C N S range: 

infusion + bolus 

18-60 yrs old 

80 - 20 

(s + 51.0)(s + 6.60 • 10"4)(s + 1.27 • 10"'*)(s + 7.10 • IO - 5 ) 
(s + 8.90 • 10~1)(s + 0.97 • 10~3)(s + 0.95 • 10~4)(s + 9.50 • 10~5) 

/ (J +3.9 
' V(7+TT 

90 • 10 _ 2 )(s + 1.60 • 10 
6 • 10-»)(s + 1.70 • 10 

Ad ministration: 

Age group: 

W A V C N S range: 

infusion + bolus 

18-29 yrs old 

80 - 20 

(s + 1.34)(s + 7.10 • 10—*)(s + 1.45 • 10"»)(s + 7.50 • 10~5) 
(s + 0.45 • 10-')(s + 1.10 • 10~3)(s + 1.10 • 10-")(s + 9 . g 0 . 10~5) 

(s +3.10 • 10" 2)(s + 1.40 • IO -'') 
(s + 2.75 • l O - ' X s + 1.50 • 10—*) 

Administration: 

Age group: 

WAV C N S range: 

infusion + bolus 

30-39 yrs old 

80 - 20 

_ 3 (s + 20.8)(s + 7.10 • 10—')(s + 1.30 • 10_ 4)(s + 7.10 • 10 ) 
(s + 9.90 • 10-!)(s + 1.10 • 10~3)(s +0.99 • 10—<)(s + 9.30 • 10~5) 

(s + 3.40 • 10" 2)(s + 0.86 • I O - 4 ) 
(s +0.78 • l O - ' X s + 0.92 • 10- 4) 

Administration: 

Age group: 

W A V C N S range: 

infusion + bolu 

40-49 yrs old 

80 - 20 

_ 3 (s + 18.7)(s + 6.60 • IO"'*)(s + 1.34 • 10~4)(s + 7.30 • 10"5) 
(s + 8.90 • 10"')(s + 0.99 • 10~3)(s +0.99 • 10~4)(s + 9.90 • 10~5) 

(s + 4.90 • 10 _ 2)(s + 1.70 • I O - 4 ) 
(s + 1.02 • 10-!)(s + 1.80 • 10- 4) 

Administration: 

Age group: 

W A V C N S range: 

infusion + bolus 

50-60 yrs old 

80 - 20 

- 4 s • 68.1 • 10-
Cs + 31.1)(s + 7.10 • IO - ' ')(s + 1.33 • 10—')(s + 7.50 • 10~5) 

(s + 9.90 • 10-')(s + 1.10 • 10- 3)(s + 1.10 • 10- 4)(s + 9.10 • 10~5) 
(s + 3.70 • 10 _ 2 )(s + 0.95 • IO -'') 
(s +0.76 • 10- 1)(s + 1.00 • 10—") 

Administration: 

Age group: 

W A V C N S range: 

infusion 

18-60 yrs old 

80 - 20 

(s + 2.59)(s +4.50 • 10 - 2 ) 
(s + 7.90 • 10~2)(s + 5.90 • 10- 2) 

(s + 2.40 • 10 ) 
(s + 1.67 • IO"1) 

Administration: 

Age group: 

WAV C N S range: 

bolus 

18-60 yrs old 

80 - 20 

(s + 1.60)(s +4.50 • 10 - 2 ) 
(s + 7.90 • 10-2)(s + 5.90 • 10~2) 

(s +4.10 • 10" 2)\ ' 
(s + 1.55 • 10"1) J 

Table C.4: P K P D Propofol uncertainty weights - part I 



MODEL MODEL CHARACTERISTICS <Unom(s) uj(s) 

#8 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV C N S range: 80 - 50 

, (s + 12.S)(s 4- 6.70 • 10 - 4)(s 4- 1-24 - 10 - 4)(s 4- 7.10 • 10— 5) 
_ — l n 7 1 10 _ 

( (s 4-3.60 • 10 _ 2)(s 4- 0.85 • 1 0 _ 4 ) \ 2 

#8 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

WAV C N S range: 80 - 50 
(s 4- 8.90 • l O - 1 ) ^ + 0.94 • 10~3)(s 4- 0.95 • 10—>)(s 4- 9.30 • 10~5) \ (s 4-1.11 • 10-!)(s 4-0.95 • 10—»)_/ 

#9 

Administration: infusion -f- bolus 

Age group: 18-60 yrs old 

WAV C N S range: 60 - 30 

, „ ( 5 4- 25.5)(s 4- 6.80 • 10 - 4)(s 4- 1.31 • 10 _ 4)(s 4- 7.30 • 10 - 5 ) c— 7-3 " 10~ ( (s 4- 3.60 • 10~2)(s 4- 1.20 • 10"4) \ 2 

#9 

Administration: infusion -f- bolus 

Age group: 18-60 yrs old 

WAV C N S range: 60 - 30 
(a + 8.90 • l O - ' X s 4- 0.99 • 10~3)(s 4- 0.99 • 10—*)(s 4- 9.70 • 10~5) \ (s 4- 1.10 • 10-l)(s 4- 1.30 • 10- 4) j 

#10 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

W A V C N S range: 40 - 20 

- 7 « «o ^ , „ - 3 (s 4- 43.0)(s + 7.10 • 10 - 4)(s 4- 1.26 • 10 - 4)(s 4- 7.30 • 10 - 5 ) /"(. + 3.40 • 10"2)(s + 1.60 • lO" 4 )^ 2 

#10 

Administration: infusion + bolus 

Age group: 18-60 yrs old 

W A V C N S range: 40 - 20 (s 4- 9.90 • 10~1)(s 4- 1.10 • 10~3)(s 4- 0.97 • 10—>)(s 4- 9.50 • 10~5) 
\ (s + 1.03 • 10-!)(s + 1.70 • 10—')) 

#11 

Administration: infusion 

Age group: 18-29 yrs old 

WAV C N S range: 80 - 20 

, , (s 4- 19.5)(s 4- 3.70 • 10 - 2 ) 
(s 4- 9.90 • 10-!)(s 4- 5.90 • 10~2) 

4.75. ( ( 5 + 2 8 0 W~2)Y 
\(s + 6.40 • 10~2) j 

#12 

Administration: infusion 

Age group: 30-39 yrs old 

W A V C N S range: 80 - 20 

s „ ,- (s 4- 15.3)(s 4- 3.30 • 10 - 2 ) 
e-8 ' • 135.1 • 10 • - —— 

(s 4-9.90 • lO-iJCs 4-5.90 • 10- 2) 
/ ( s + 4 .20.10~ 2 n 2 

V (s 4- 8.06 • IO"2) j 

#13 

Administration: infusion 

Age group: 40-49 yrs o!d 

W A V C N S range: 80 - 20 

, „ , (s 4-2.23)(s 4-4.50 • 10~2) 
e"5" • 130.1 • 10~3 • — 

(s 4- 1.90 • lO-iJfs + 5.90 • IO"2) 
1 (s + 5.10 • 10~ 2)\ 2 

8.25 - ^ — -
\ (s + 1.56 • 10- 1) j 

#14 

Administration: infusion 

Age group: 50-60 yrs old 

WAV C N S range: 80 - 20 

, . „ (s 4-5.43)(s 4-4.10 • 10~2) 
e ~ 3 s • 105.6 • 10 • ii—^ ^--

(s 4- 2.90 • 10-!)(s 4- 5.90 • IO"2) 
1 (a 4- 6.20 • 10~ 2)\ 2 

6.14 • i 
\ (s 4- 1.61 • 10- 1) j 

Table C.5: P K P D Propofol uncertainty weights - part II 



#15 

MODEL CHARACTERISTICS 

Administration: infusion 

Age group: 18-29 yrs old 
W A V C N S range: 80 - 50 

(s + 0.35)(s +4.10 • 10 ) 
(s + 0.75 • lO- 'Xs + 5.90 • 10~2) 

(s + 2.50 • 10~2) 
(s + 1.12 • 10-1) 
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Administration: infusion 

#16 ' | Age group: 30-39 yrs old 

WAV C N S range: 80 - 50 

• 402.2 • I O - 3 
(s+ 1.17)(s +3.70 • 10 - 2) 

(s + 3.10 • lO- 'Xs + 5.50 • 10~2) 
(s + 3.30 • 10 )^ " 
(s + 1.02 • 10-1) 

#17 

Administration: 

Age group: 

W A V C N S range: 

infusion 

40-49 yrs old 

80 - 50 

" 5 s • 420.0 • I O - 3 • 
(s + 0.34)(s + 4.10 • 10 ) 

(s + 0.99 • 10-!)(s + 5.90 • IO" 2) 
(s +3.40 • 10~2) 
(s +0.98- 10-1) 

Administration: infusion 

Age group: 50-60 yrs old 

WAV C N S range: 80 - 50 

e~is • 317.0 • lQ-
fs + 0.48)(s + 4.10 • IO - 2 ) 

(s + 0.89 • lO- 'Xs + 5.90 • 10~2) 
(s +3.30 • 10~2) 
(« + 1.13 • IO" 1) 

Table C.6: P K P D Propofol uncertainty weights - part III 
O 
to 
to 
to 
CO 

to 
CO 



Appendix D 

Clinical Studies 

In the course of this Ph .D. work, 3 major clinical studies were conducted at the U B C site of the Vancouver 

General Hospital. Each study was conducted after being approved by the Ethic Review Board, and after 

obtaining patients' consent. This appendix presents the protocol specificities, population demographics, 

and results of each study. 

D . l Arthroscopy Observational Study-

initial Motivation: Validation and improvement of the W A V C N S algorithm. 

Clinical Question: Is the W A V C N S a clinical alternative to BIS? 

Timeline: March 2002 to Apr i l 2002 

D . l . l Protocol 

W i t h institutional ethics board approval and patient consent, 25 patients were studied during general anes

thesia for various ambulatory knee surgeries (arthroscopies, menisectomies and anterior cruciate ligament 

repair). 

The raw E E G signal was acquired at a sampling rate of 128 S/s using the BIS A-1050 monitor with 

the updated software v.3.4, and standard BIS sensors. Processed variables such as the BIS, M E F , SEF , 

E M G , and impedance information were recorded using the monitor's serial interface. (These variables are 

calculated by the BIS Monitor using proprietary algorithms.) A l l BIS data were stored onto a portable 

computer. 

The W A V C N S was calculated online based on the raw E E G data obtained from the A-1050, and based 

on the implementation outlined in Section 5.2.2. The awake P D F reference was obtained from a 10-minute 

awake E E G signal acquired from 5 adult volunteers, and using the same A-1050 monitor (this was done 

to account for differences in frequency characteristics between the A-1050 and the Crystal Monitor). The 
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artifact de-noising algorithm was de-activated after the initial induction bolus. The post-processing IIR 

trending filter was replaced by a 30-second averaging filter in order to allow for better comparison with the 

BIS. Both the BIS and W A V C N S were displayed in real time on the computer screen. 

In all cases, induction was initiated by a propofol bolus (3.6±1.15 / zg -kg - 1 ) . Maintenance of anesthesia 

was sustained by anesthetic vapour (sevoflurane or desffurane) and supplemented with nitrous oxide or an 

infusion of propofol. Note that only anesthetic drugs provoking a concentration dependent change in the 

E E G such as described in F ig . 5.5 were used. Opioid boluses were given when necessary. The anesthetic 

regimen was left entirely to the anesthesiologist's discretion, who remained blinded to both the BIS and 

W A V C N S - Note that muscle relaxants were not administered and airway control was ensured via laryngeal 

masks in all cases. A n overview of the patients' data and titration are presented in Table D . l . 

A l l relevant surgical and anesthetic events were logged by an anesthesia resident. During the induction 

phase, patients were asked to count down from 100. The loss of count event was logged once patients 

stopped counting. In the setting of general anesthesia, this event is usually taken as an indicator of Loss Of 

Consciousness (LOC) . Motor movements and airway reactions during the L M A insertion were also recorded. 

Finally, during the emergence, the anesthesiologist stimulated the patient to provoke a reaction. Once a 

reaction was observed, the ability to respond to a verbal command was assessed by calling each patient by 

name. 

Five cases were rejected from the analysis (3 cases for incomplete data, 1 case for poor signal quality 

and 1 case for inaccuracies in the events log). 

D . l . 2 Results 

The results of this study are presented in Section 5.2.3. 

D . l . 3 Comments and Unexpected Results 

One particularly interesting result concerns the difference between the Movers and Non-Movers groups 

at induction, see Figure D . l . While the averaged BIS time course is similar in both cases, the W A V C N S 

behavior during induction is clearly different between the two groups. This could indicate that the W A V C N S 

can actually predict whether a patient is going to react to the L M A insertion. This could mean that the 

W A V C N S is sensitive enough during induction to give the anesthesiologist an advance warning if the patient 

is not in an adequate hypnotic depth suitable for airway manipulation. This observation was at the core of 

the L M A Study presented in Annex D.2, and the propofol P D modeling work discussed in Chapter 6. 

D . 2 L a r y n g e a l M a s k A i r w a y S t u d y 

Initial Motivation: Confirmation of the arthroscopy study result. 

Clinical Question: Can the W A V C N S predict reaction to L M A insertion? 



APPENDIX D. CLINICAL STUDIES 231 

C A S E P A T I E N T T I T R A T I O N 

GenderAge Weight ASA Premed. Induction Maintenance 

4 F 25 71 I Suf. 12.5 Prop. 400 Prop, infusion ; Des. (0.7 MAC) + N 2 0 ; bolus 
of morphine 

5 M 31 90 I Suf. 12.5 Prop. 500 Prop, infusion ; Des. (0.9 MAC) + N 2 0 ; bolus 
of morphine 

6 M 43 68 I Suf. 7.5 Prop. 400 Des. (0.8 MAC) ; bolus of Suf. 
8 M 28 87 II Midaz. 2 Prop. 250 Prop, infusion ; Des. (0.8 MAC) ; bolus of Fent. 

9 M 21 99 I Fent. 100 Prop. 300 Prop, infusion ; Des. (1.2 MAC) + N 2 0 ; bolus 
of Fent. 

10 F 30 55 I 
Midaz. 1 + 
Fent. 75 

Prop. 250 Prop, infusion ; Des. (0.9 MAC) 

11 F 34 66 I Fent. 100 Prop. 250 Prop, infusion ; Des. (0.8 MAC) ; bolus of Suf. 
12 M 34 103 I Fent. 100 Prop. 300 Prop, bolus/infusion ; Des. (1.4 MAC) + N 2 0 

13 F 25 77 I Midaz. 1.5 
+ Suf. 15 Prop. 250 

Prop, bolus/infusion ; Sevo. (0.7 MAC) ; bolus 
of Suf. 

14 M 19 80 1 

Midaz. 2 + 
Suf. 7.5 Prop. 280 Prop, infusion ; Sevo. (0.8 MAC) ; bolus of Suf. 

; Naloxone 

15 M 57 80 1 Midaz. 2 Prop. 200 + 
Remif. 150 

Prop, infusion ; Des. (0.7 MAC) ; bolus of Fent. 

16 M 45 85 I Midaz. 2 Prop. 250 + 
Remif. 150 

Prop, bolus/infusion ; Des. ; bolus of Fent. 

17 F 24 60 II 
Midaz. 1 + 
Fent. 50 Prop. 170 Prop, bolus/infusion ; Thio. bolus ; Sevo. (0.8 

MAC) ; bolus of Fent. 

18 M 57 85 I 
Midaz. 1.5 
+ Fent. 50 

Prop. 250 Prop, infusion ; Sevo. (0.8 MAC) 

19 M 47 108 I Fent. 75 Prop. 290 Sevo. (1.5 MAC) ; bolus of Fent. ; Naloxone 
20 M 55 88 I Fent. 75 Prop. 280 Prop, bolus ; Sevo. 
22 M 64 104 I Suf. 10 Prop. 270 Prop, bolus ; Sevo. (1.2 MAC) 
23 M 56 113 II Suf. 5 Prop. 270 Prop, bolus ; Sevo. (1.5 MAC) 

24 F 33 50 
Midaz. 1.5 Prop. 200 + Prop, bolus/infusion ; Sevo. (1.2 MAC) ; bolus 

24 33 50 
+ Suf. 2.5 Remif. 150 of Suf. 

25 M 39 100 1 none Prop. 300 Prop, bolus/infusion ; Sevo. (0.8 MAC) 

Suf.: Sufentanil; Midaz.: Midazolam; Prop.: Propofol; Fent.: Fentanyl; Remif.: Remifentanil 
Sevo.: Sevoflurane; Des.:Desflurane; Thio.: Thiopental 
Values in parenthesis indicate the mean MAC value during maintenance. 

Table D . l : Patients' data and titration. Doses are expressed in fj,g (sufentanil, fentanyl, remifentanil) or mg (propo
fol). 
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Figure D . l : Comparison between the Movers and Non-Movers groups. 

Timeline: October 2003 to Apr i l 2004 

D.2.1 Protocol 

Following the arthroscopy study, it was hypothesized that the W A V C N S time course could be an early 

indicator of reaction to the airway management. The use of an L M A instead of a endotracheal tube allows 

the observation of patient movements during the L M A placement, and therefore provides an accurate 

observable endpoint. 

Wi th ethic board approval, and after obtaining patient consent, 76 patients (18-65 yrs old, A S A I-III) 

were enrolled to study the W A V C N S time course during induction, and the incidence of reaction to airway 

management. Table D.2 and Table D.3 present the study population demographics. 

Prior to induction, a 2-channel E E G recording was initiated using a Crystal Monitor 16 (CleveMed, 

Cleveland, OH) . The electrode positions were F p l - A T l 1 (channel 1) and Fp2-AT2 (channel 2). Fpz was 

used as the referential electrode for the two bipolar montages. The 2 signals were acquired at a sampling 

rate of 480 S/s and resolution of 16 bits. 

Each patient first received a bolus of fentanyl (0.5-1.5 ug/kg) followed by a bolus of propofol (2-3 mg/kg). 

The exact drug dosages were left to the anesthesiologist discretion 2. Both the start and end of the propofol 

syringe push were recorded by the study monitor. During propofol administration, each patient was asked 

to count upward from 1 until loss of consciousness (LOC) occurred. The time to L O C was recorded by the 

study monitor. 

AT: Anterior Temporal (BIS eye level electrode position). 
2This study was not a controlled study 
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Demographics Dosage 
Patient # ASA Weight Height Age Gender Fentanyl Propofol Grade Comments 

[kg] [cm] [«?] [mg] 

001 Bad signal quality 
002 n.c. 80 175 21 Male 120 200 3 
003 n.c. 78 175 30 Male 100 200 1 
004 n.c. 80 177 49 Male 75 200 1 
005 n.c. 68 165 53 Female 75 150 4 
006 n.c. 73 180 34 Male 75 200 1 
007 n.c. 100 178 21 Male 75 200 1 
008 n.c. 59 168 28 Female 75 180 1 
009 n.c. 71 178 34 Male 100 200 1 
010 1 90 190 26 Male 100 200 2 
O i l 1 64 n.c. 27 Female 5 Multiple attempts 
012 1 89 176 36 Male 150 200 3 
013 1 70 170 19 Female 75 150 3 
014 1 83 180 22 Male 80 200 3 
015 1 53 157 21 Female 75 150 2 
016 1 90 185 19 Male 75 200 2 

017 1 66 170 25 Female 50 150 4 
Time of insertion outside pro
tocol range 

018 1 63 165 60 Female 50 180 2 

019 1 138 196 20 Male 125 300 2 
Time of insertion outside pro
tocol range 

020 1 92 187 28 Male 50 200 4 Medical student 
021 1 68 173 20 Male 75 300 3 Dose outside protocol range 
022 1 85 181 32 Male 100 200 3 
023 1 60 162 28 Female 75 200 1 Dose outside protocol range 
024 1 56 162 27 Female 75 200 4 Dose outside protocol range 

025 2 66 168 46 Female 75 200 1 
Time of insertion outside pro
tocol range 

026 1 82 182 38 Male 50 200 2 
027 1 99 182 45 Male 100 300 2 Medical student 
028 1 86 173 30 Female 50 200 4 Medical student 
029 1 91 189 35 Male 100 300 1 Medical student 
030 1 78- 170 24 Male 100 200 1 Medical student 
031 1 77 173 67 Male 50 150 2 Medical student 
032 1 70 170 38 Male 50 180 3 Medical student 
033 1 91 185 52 Male .100 220 3 Medical student 
034 2 68 160 46 Female 100 150 3 

035 1 68 164 19 Female 50 200 2 
Time of insertion outside pro
tocol range 

036 1 85 180 38 Male 100 250 1 

037 1 88 165 27 Male 100 250 3 
Time of insertion outside pro
tocol range 

038 1 70 170 25 Male 75 220 2 Dose outside protocol range 

039 2 69 163 38 Female 75 210 3 
Time of insertion outside pro
tocol range 

040 1 77 173 48 Male 100 250 1 Dose outside protocol range 

041 2 100 182 52 Male 125 300 2 
Time of insertion outside pro
tocol range 

042 2 98 189 47 Male 125 280 1 
043 1 79 172 46 Male 100 220 1 
044 3 108 193 59 Male 150 300 1 
045 1 70 176 20 Male 100 210 1 
046 1 81 180 23 Male 125 240 1 
047 1 86 168 33 Female 125 250 1 
048 1 83 178 18 Male 150 250 1 
049 1 75 176 38 Male 100 220 2 

Table D.2: L M A Study population (patients #001 to #049). 
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Demographics Dosage 
Patient # ASA Weight Height Age Gender Fentanyl Propofol Grade Comments 

[kg] [cm] [«5i M 

050 Bad signal quality 
051 1 91 178 39 Male 50 250 1 
052 1 96 193 40 Male 50 270 1 
053 1 67 163 21 Female 50 200 2 
054 1 86 180 53 Male 50 250 2 
055 1 90 177 21 Male 75 270 1 * 
056 1 84 183 39 Male 75 250 3 
057 1 97 176 52 Male 125 200 1 
058 1 88 183 22 Male 125 200 1 
059 1 88 180 38 Male 125 200 3 
060 1 95 183 50 Male 140 250 1 
061 1 78 178 34 Male 50 200 1 
062 1 83 186 48 Male 100 200 3 
063 1 65 163 36 Female 90 180 1 
064 2 56 173 52 Female 50 150 1 
065 1 58 157 34 Female 50 165 1 
066 1 59 162 21 Male 50 150 1 
067 1 72 175 36 Male 50 220 2 
068 1 77 180 33 Male 50 220 2 
069 1 77 176 40 Male 50 220 2 
070 2 100 180 54 Male 75 250 1 
071 1 72 176 19 Male 75 180 1 
072 1 97 190 48 Male 100 200 1 
073 1 64 170 56 Female 50 150 3 
074 1 105 185 39 Male 100 300 2 
075 3 95 176 60 Male 75 190 2 
076 1 75 170 23 Female 75 170 1 

Table D.3: L M A Study population (patients #050 to #076). 
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G R O U P N R G R O U P N R P 
(n=37) (n=13) 

Age [yrs] 36 36 «0.5 
Weight [kg] 80 77 >0.2 
Fentanyl htg/kg] 1.08 1.16 >0.2 
Propofol [mg/kg] 2.68 2.35 <0.0002 

Table D.4: L M A study population - demographics and dosage summary. 

Forty (40) seconds after L O C , jaw tone was assessed by the attending anesthesiologist and the L M A 

was inserted. Comments about jaw tone were logged in by the study monitor. During the L M A insertion, 

any observed movement from the patient was also logged in. 

The E E G recording was discontinued after the start of the surgery. The E E G data were analyzed post 

hoc to derive the W A V C N S • 

Among the 76 recorded cases, 26 cases had to be removed from the study population (2 cases were 

cancelled due to computer malfunction, 3 cases presented large E E G artifacts during induction, 6 cases did 

not fit the dosage protocol, 6 cases were removed due to delayed L M A insertion, and 9 cases were removed 

due to the use of a Proseal L M A instead of the classic L M A model 3). After review of the intra-operative 

events, the remaining 50 cases were classified into two groups (Non-Reactors NR; Reactors R) depending 

on jaw tone, and the severity and type of movement. Patients with facial activity and moderate jaw tone 

during L M A insertion were classified into the R group (n=13). Patients with mild jaw tone and some 

extremity movements were classified into the N R group (n=37). About one third of the study population 

reacted to the L M A insertion. This figure is consistent with clinical observations. The study demographics 

and anesthetic dosing regimen are summarized in Table D.4. 

D.2.2 L M A Results 

There were no patient demographic differences (age, weight, gender) between the groups. However, the 

propofol induction dose was significantly larger in Group N R (2.68±0.31 mg/kg) than in Group R (2.35±0.23 

mg/kg). 

The slope of the W A V C N S descent was found to be an early predictor of L M A reaction. The bottom 

plot in Figure D.2 shows the average slope of the W A V for both groups. A t LOC+20 seconds, a gradient 

steeper than -2 s _ 1 is characteristic of Group N R but not of Group R. Using this parameter to predict 

reaction to L M A insertion, we obtain an accuracy of 84% (77% sensitivity; 86% specificity). 

A conclusion of this study is that the W A V C N S is the first non-evoked E E G variable to be shown to predict 

motor response to L M A insertion during induction of general anesthesia [188]. The dynamic response of the 

W A V C N S may therefore allow clinicians to assess the degree of the hypnotic effect of propofol at induction 

of anesthesia, and the likelihood of reaction. 

3The Proseal LMA model is more stimulating than the classic LMA model. 
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Figure D.2: Average time courses of W A V C N S and A W A V C N S for both groups. A W A V C N S is the rate of change of 
the W A V C N S index. Note the significant difference between the two groups before the L M A insertion. 

This result is, however, surprising. The time course of the index seems to predict whether patients are 

going to react to the insertion, even though the stimulation has not yet started. Also, the W A V C N S is a 

depth of hypnosis index and not an analgesic index. In this respect, it is counter-intuitive to expect the 

index to react, yet alone predict, a reaction to an external stimulation. 

One explanation for this is that the propofol dosage of the two study groups are significantly different. 

The reactor group received less propofol than the non-reactor group. This may provides an explanation 

for the fact that the patients in this group reacted, and that the time course of the W A V C N S was not as 

deep as in the non-reactor group. Hence, even though the average propofol dose difference between the two 

groups is only 0.33 mg/kg, the W A V C N S seems to capture adequately this difference in the propofol dosing 

regimen. The relationship between the induction propofol dose and the W A V C N S value 40 seconds after 

L O C is presented in Figure D.3. 

This result encouraged us to use the induction time course of the W A V C N S for propofol P D modeling. 

D.3 Electro-Convulsive Shock Therapy Study 

I n i t i a l M o t i v a t i o n : Assessment the intra- and inter-patient variability of hypnotic depth indexes such 

as BIS X P and W A V C N S during induction. 

C l i n i c a l Ques t ion : Can the BIS X P be useful in predicting E C T seizure duration? 

T i m e l i n e : January 2002 to November 2002 



APPENDIX D. CLINICAL STUDIES 237 

100 

80 

?r 60 

6* 40 

20 

W A V C N S at L O C + 4 0 second s 

i 
® 

i 

fan ~" 
<S'® ( 

1.5 2.0 2.5 
PROPOFOL [mg/kg] 

3.0 3.5 

Figure D.3: Correlation between W A V C N S value 40 seconds after LOC and the administered propofol dose (note 
that the study population was extended to patients receiving propofol doses outside the protocol range). 

The E C T procedure provides a unique opportunity to study intra- and inter-patient variability in terms 

of the anesthetic dose vs. response relationship. Although the study population was limited, the identified 

P K P D time delays and gains were shown to be fairly consistent.for each patient. This result corresponds 

to daily clinical observations and substantiates the fact that the W A V C N S is an adequate endpoint for 

automatic or manual titration, in that it differentiates between patients' responses to anesthetic drugs, 

hence capturing each patient individual pharmacological needs. 

D.3.0.1 E C T Study 

The E C T treatment is proposed to patients suffering from depression and other bipolar illnesses. Each 

treatment consists in a single electro-shock to induce a localized seizure. It is believed that the E C T seizure 

can restore the chemical balance in the central nervous system. The therapy usually involves a series of 

repeats administered over a few weeks span. 

The anesthetic regimen consists in a single bolus of thiopental for sedation followed by a bolus of 

succinylcholine to prevent injury during the seizure. While patients receive an induction dose calculated 

according to their particular physionomy and medical history, the dose is usually fixed during the therapy 

(small variations of the total dose have occurred for patients #1 and #2 after re-evaluation of these patients 

by attending anesthesiologists). This procedure is thus unique in providing a framework to study both intra-

and inter-patient variability. 

Study Population After the study protocol was reviewed by the U B C H ethic board, 5 patients scheduled 

to receive at least 6 E C T treatments were consented. The patients' data are summarized in Table D.5. 

Each patient was monitored using the BIS X P Monitor (Aspect Medical Systems Inc.). A proprietary 



APPENDIX D. CLINICAL STUDIES 238 

Table D.5: E C T Study Population 

P A T I E N T *1 
#2 #3 #4 #5 

Gender M P F M F 
Age [yr] 55 41 66 74 73 
Weight [kg] 96 97 76 76 41 
Height [cm] 160 172 155 178 152 

Thiopental 
[mg] 

repeat #1 350 250 150 200 100 
repeat #2 350 225 150 200 100 
repeat #3 300 225 150 200 100 
repeat #4 275 225 150 200 100 
repeat #5 275 225 150 200 100 
repeat #6 275 225 150 na 1 100 

Patient withdrew from treatment before completion of study 

interface software was used to download onto a laptop computer the raw E E G signal and other processed 

parameters. During the procedure, we logged in the time corresponding to the end of thiopental injection 

and the time corresponding to the application of the E C T shock. 

The raw E E G signal acquired during the procedure was processed off-line to calculate the W A V C N S -

The W A V C N S algorithm provides a measurement of the patient state every second. The raw index was 

trended using a 2nd order low pass filter with a cutoff frequency of 0.037 Hz to extract the overall trend (a 

filter based on a 15 s averaging window yields similar results in terms of the inherent latency introduced by 

the filter between the input and the output signals). 

Identification The dose/response relationship of thiopental can be expressed by the P K P D model pre

sented in Fig . 6.15.b. Due to the limited identification window and fast onset of action of thiopental, the 

W A V C N S trending filter was replaced by a faster dynamics: 

* ° - " > - (4.35.1 + 1)' ^ < a i > 

The identification can only be carried out from the start of injection up to the application of the E C T shock. 

This usually corresponds to a window of 1 to 2 minutes during which the W A V C N S follows an induction-type 

time course, see Fig. D.4.a-b. Cases where the W A V C N S does not reach a valley value before the E C T is 

applied were eliminated from the analysis, see Fig. D.4.c. Similarly, cases exhibiting a strong E M G activity 

due to succinylcholine-induced fasciculation were eliminated from the analysis, see Fig.D.4.d. 

Due to the scarcity of the data, only an attempt to identify the parameter set {Td, kj, EC50,7} can be 

made. To do so, the pharmacokinetic part of the model was replaced using the P K models proposed by 
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Figure D . 4 : Identification procedure for 4 different cases. The thiopental blood plasma concentration Cp is estimated 
through the 3-compartment PK model proposed by Stanski et al. This model is weight and age dependent, (a) 
Successful identification, (b) Successful identification despite limited fasciculation. (c) Identification unsuccessful due 
incomplete data (the index does not reach its peak value), (d) Unsuccessful identification due to a large fasciculation 
disturbance. 

Stanski et al. [168]. These models are age and weight dependent and were derived based on infusion data. 
As such, their applicability is limited to infusion-based titrations. Using these models to estimate the blood 
plasma concentration following an induction bolus is bound to yield some modeling error. However, it has 
been shown that this error will eventually be compensated by the identified P D dynamics [165]. As a result, 
the overall integrated P K P D model will appropriately describe the dose/response dynamics. 

Results In Fig. 7.6, the individual time courses of the W A V C N S for two patients are overlayed and 
synchronized at the end of thiopental injection. The averaged W A V C N S time courses are also represented. 
We observe that the W A V C N S is remarkably consistent from repeat to repeat. Fig. 7.6 also emphasizes the 
large difference between these two patients in terms of the pharmacokinetic time delay. One patient reacts 
quickly to the injected anesthetic, while there is a large delay in the other patient. Similar observations 
were made for the 3 other patients. 

In order to better quantify intra- and inter-patient variability, the identification procedure discussed in 
the previous section was carried out. The results are presented in Table D . 7 . While the identification also 
stresses the large difference between patients in terms of the pharmacokinetic time delay, a similar result 
concerning the overall P K P D gain is revealed. This gain can vary by as much as 5 5 % from a median value 
of 13 .3 , while the maximum variation observed within one patient is only of 2 7 % . 

The results concerning the identified time constant r are more difficult to interpret since this parameter 
partially models the true pharmacodynamic equilibration time constant, but also compensates for the 
modeling error introduced by the use of infusion-based P K models. As a result, it has been asserted that 
it does not bear any physical meaning. 

The observed time delay and gain variations can be explained by considering that each patient reacts 
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Table D.6: Thiopental pharmacokinetic models 

P H A R M A C O K I N E T I C P K M O D E L S 

(models are normalized, i.e. static gain is 1) 
P K G A I N 

Patient 1 
6.48 • 10~ 4 • s 2 + 8.92 • 10""7 • s + 5.51 • 10" 1 1 

s 3 + 1.09 • 10~ 2 • s 2 + 3.77 • 1 0 - 6 • s + 5.51 • 1 0 - 1 1 
3.39 

Patient 2 
6.48 • I O " 4 • s 2 + 8.92 • 1 0 - 7 • s + 5.51 • 1 0 - n 

s 3 + 1.15 • I O " 2 • s 2 + 3.82 • I O " 5 • s + 5.51 • 1 0 - 1 1 
3.36 

Patient 3 
6.48 • 10~ 4 • s2

 + 8.92 • I O " 7 • s + 5.51 • I O - 1 1 

s 3 + 1.03 • 10~ 2 • s 2 +3.74 • IO""6 • s + 5.51 • 1 0 - 1 1 
4.29 

Patient 4 
6.48 • 10~ 4 • s2

 + 8.92 • 10~ 7 • s + 5.51 • 1 0 - 1 1 

s 3 + 9.94 • I O " 3 • s2
 + 3.71 • I O " 6 • s + 5.51 • 1 0 - 1 1 

4.46 

Patient 5 
6.48 • I O " 4 • s 2 + 8.92 • 10~ 7 • s + 5.51 • I O " 1 1 

s 3 + 9.98 • I O " 3 • s 2 + 3.72 • 1 0 - 6 • s + 5.51 • I O - 1 1 
7.94 

The model input is expressed in [mg/min] while the output is expressed in [/jg/ml]. 

differently to the anesthetic drug. For instance, Patient #5 was an older and lighter patient. As a result, 
a reduced cardiac output may have resulted in an increased arm-to-brain travel time. Furthermore, the 
patient's small weight explains the rather limited amount of thiopental used for induction, which in turn 
explains the large PKPD gain. In general, differences in PKPD characteristics can be attributed to differ
ences in age, lean body mass, genetic factors, disease state, drug tolerance and sensitivity, and eventually, 
drug addictions. 

A major limitation of this study is the limited number of patients. We expect that a study targeting a 
specific population in terms of age and weight will yield similar results in terms of intra-patient variability, 
but would also show a reduced inter-patient variability. 
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Table D.7: Thiopental identified pharmacodynamic models 

P H A R M A C O D Y N A M I C P D M O D E L S 

R E P E A T #1 #2 #3 #4 #5 #6 

Td H 23 28 27 29 28 na 

kd [ s^ -10- 3 no? 17.4 26.1 36.6 67.9 na 
Patient 1 E C 5 0 [fS/ml] no? 17.2 19.5 20.4 22.1 na 

7 [1] 
o 

t i a -
1.6 1.6 1.6 1.4 na1 

Eo [1] 98.0 95.8 94.8 95.3 96.0 na1 

Td M 23 19 18 21 20 15 

kd 
30.5 41.7 na2 2 

na' 46.2 34.4 
Patient 2 ECso 15.4 15.9 2 

na' 
2 

na' 15.3 14.5 

7 [1] 1.5 1.6 na' 2 

na' 1.8 1.5 

Bo [1] 100.0 100.0 100.0 100.0 92.4 94.0 

Td M 13 10 17 8 10 11 
kd [ s - i - l O - 3 2 na1 48.5 59.9 48.9 81.5 

Patient 3 E C 5 0 

2 

na* na1 15.3 21.5 16.9 19.7 

7 [1] 
2 na1 1.6 1.5 1.3 1.5 

Eo [1] 99.6 100.2 99.8 98.5 98.9 98.7 

Td H 29 25 26 32 45 na3 

kd 
[ s - i - l O " 3 30.5 26.0 30.9 39.8 n a 2 na3 

Patient 4 E C 5 0 (Mg/ml] 20.7 16.4 21.4 17.5 n o 2 na3 

7 [1] 1.6 1.7 1.9 2.1 n a 2 na3 

Eo [1] 95.5 97.1 98.1 99.9 99.7 na3 

Td W 42 38 25 23 39 33 

kd 
[ s - l -10 - 3 214.0 111.5 37.1 na? 79.5 68.5 

Patient 5 E C 5 0 [^g/ml] 28.2 22.8 20.2 na? 22.8 23.3 

7 [1] 1.3 1.5 1.3 2 

na' 1.3 1.2 

Eo [1] 92.7 100.3 99.1 99.0 94.5 97.8 

The time delay Td and time constant Kd are expressed in seconds. 
1 W A V C N S did not settle before E C T shock 
2 Strong fasciculation during induction 
3 Patient withdrew from treatment before completion of study 
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Survey 

To assess whether the controller performances are adequate from a clinical point of view, the following 
survey was sent to Dr. Craig Ries (Vancouver General Hospital, Vancouver, BC), Dr. Mark Ansermino 
(BC Children Hospital, Vancouver, BC), and Dr. Don Voltz (University Hospitals of Cleveland, Cleveland, 
Ohio). 

242 
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I am in the final stages of designing a controller that adjusts a propofol titration to maintain a desired W A V 
setpoint. I will simulate the controller response on the 44 patient models that were derived during the L M A 
study. 

To test the controller performance, I will subject the system to the following test: 
- once the system has reached a W A V of 50,1 will first make a series of setpoint changes that will 

instruct the controller to target different W A V level (50 to 30, then 30 to 50, then 50 to 70 and finally 70 to 50). 
Each change will last 1 hour. Ideally, we would like the W A V to follow the exact trajectory plotted in the 
following figure. 

-1 will then subject the system to a series of surgical disturbance. These disturbances are modelled as a 
sudden change in the W A V index: 

8 

5 > § 

3 

20 

-20 

3 4 5 6 
T I M E [hrs] 

10 

In this case, the surgical disturbance will first have the W A V to decrease by 20 units (corresponding to a lack of 
surgical stimulation) for 1 hour. Surgical stimulation will then follow, which will make the W A V jump by 20 
units, etc.... Ideally, the controller will see the surgical disturbance and adapt the propofol infusion 
consequently. Eventually, we would like the W A V output to quickly regain the setpoint of 50. 

The controllers that will be designed in the Chapter 8 will be designed for a given population of patients (they 
will not be specific to each individual). They will yield performances that can be expressed in terms of the 
settling time, overshoot and steady state error. These terms are defined below: 

Settling time: time taken by the controller to settle within 5 units of the targeted W A V . 

Overshoot: the amount the system output response proceeds beyond the desired response. 

Steady state error: the system output 1 hour after a setpoint step change or a surgical disturbance. 

In order for me to conclude whether the controller performances are suitable for clinical use, I would appreciate 
i f you could fill in the following table. 

Figure E . l : Survey I. 


