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Abstract

Bluetooth devices are required to form a piconet before exchanging data. Each piconet has a
master unit that controls the channel access and frequency hopping sequence. Other nodes in
the piconet are referred to as the slave units. In a piconet, the master controls the access of all
devices to the channel through a time division duplex master-slave polling scheme. Several
piconets can be interconnected via bridge nodes to create a scatternet. Bridge nodes are
capable of time-sharing between multiple piconets, receiving packets from one piconet and
forwarding them to another. A distributed scatternet scheduling algorithm is necessary: (i) to
facilitate the polling operation from a master to its slaves; and (ii) to coordinate the switching
of the bridge nodes between different piconets.

In this thesis, we propose an Adaptive Scheduling Algorithm (ASA) for Bluetooth
scatternets. ASA is adaptive in which the bandwidth allocated on each link or session is
dynamically adjusted based on the estimated traffic. Moreover, ASA integrates both intra-
piconet and inter-piconet scheduling to improve the aggregate throughput and delay. In
addition, ASA prevents the bridge node conflict and satisfies the max-min fairness criterion.

We compare our proposed ASA with twd other scheduling algorithms via simulations.
Results show that ASA can achieve the max-min fairness under different traffic conditions.
Simulation results also show that under Constant Bit Rate (CBR) or bursty on-off User
Datagram Protocol (UDP) traffic, ASA can maintain a high aggregate throughput and low
delay. In addition, under Transmission Control Protocol (TCP) traffic, results show that ASA

can achieve a small average transfer delay for different file sizes.

il




Table of Contents

ADSITACE. ...ttt sttt et as e il
LISt OF TaDIES ...eeiiieeiiieieee ettt ettt s et e e bt et e et e neesaneeeneeas vii
LSt Of FiGUIES....eieviieiiiiieeee ettt sttt et st e st ne e ente e viii
LSt OF FIGUIES....eieriieieiiee ettt st sttt e e st smne s smeesneeemesemneenns viil
ACKNOWICAZEIMENLS ....eeeneieiiireeieieiieite ettt eetresee e s e st eeesesseeesaeesseesanesssessmseseneesmneesnneenens Xi
Chapter 1 - INtrOQUCTION ...cveiveiiiiieiieeiceer ettt e e nnees 1
1.1 Bluetooth Background............ccoouioiiniiiiiiieeeeeceecer e 1
1.1.1 BIUetooth LNKS ....cocuieiiiiiiiceiiecteee ettt 3
1.1.2 BIUEtoOth MOAES....c.couiiiiiiiiciiiieeetetceceec e e 4

1.2 Bluetooth Scatternet Scheduling ...........cccoooiiiiiiiiiniiiie 5
1.2.1 Intra-piconet Scheduling ISSUES........ccooieriiriiiiieinieeee e 5
1.2.2 Inter-piconet Scheduling Issues............. S AR 6

1.3 Max-Min Fairness CrIteriON .......cocevviereeriieienierienieeieereceiresinesiessesateseesssesaeesesesnessnennes 7
1.4 Motivations and ODJECHIVES .....cccuererririiieirierrerreret ettt 9
1.5 Contributions 0f the ThesiS........cuviviiriiiiiereirieee e 11
1.6 Organization 0f the TRESIS.....c.cvverieeierieriereeeeeerertere e senens 11
Chapter 2 - Related WOrK ......coooiiiiiiiiiiececeee e 13
2.1 Piconet Scheduling .......... T IS 13
2.1.1 Pure Round Robin (PRR) .....ccc.coiiiiiiiieie e 13
2.1.2 Exhaustive Round Robin (ERR)......cccooiiiiiiniiiiii e 13

2.1.3 K-limited Round Robin (K-limited RR).......c..cceccimviiniiniiiiincceeeeee, 14




2.1.4 Limited and Weighted Round Robin (LWRR).......c.ccocieiiiininiiniiniiiiniinen. 14

2.1.5 Deficit Round Robin (DRR).......coociiiiiiiiiiiiiieceiiecicnec e 15
2.1.6 Look Ahead Round Robin (LARR)........cociiiiiiieccececiecc 16
2.1.7 K-Look-Ahead Round Robin (K-Look-Ahead RR)........ccceeriermeruiciniriniiiinienenen. 17
2.1.8 Adaptive Flow-based Polling (AFP) ....cc.ccocerieriiiiiiiiniicinniicecnccicee, 17
2.1.9 Sticky Adaptive Flow-based Polling (Sticky AFP)....cccccccoviiviiniiiiniiniiiiiis 18
2.1.10 HOL Priority Policy (HOL-PP).....ccccccciiiiiiiiiiiiiiiiie 19
2.1.11 HOL K-Fairness Policy (HOL-KFP)......c.cooiiiiiiiiicrecciccee, 20
2.2 Scatternet SCheUIING ......ccvvirverieiiririierir et ssae e 21
2.2.1 Deterministic-based Scatternet Scheduling Algorithms..........cccccoeviieiiinininennn. 21
2.2.1.1 Rendezvous Scheduling...........cccoocieiiniiniiienneineciicicinrir s 21
2.2.1.2 Flexible Scatternet-wide Scheduling Algorithm (FSS).......cocccoviiniinniiins 23
2.2. 1.3 JUMP MOAE ..ot e 26
2.2.1.4 Load Adaptive Algorithm (LAA)....cccocecirviniiieiiiicnrccccec i 29
2.2.1.5 A Fair and Traffic Dependent Scheduling Algorithm..........ccccovenvieicnnnnennn 30
2.2.1.6 A Locally Coordinated Scatternet Scheduling Algorithm (LCS).................... 34
2.2.2 Individual Node Based Scatternet Scheduling Algorithms ..........c.ccocceviiiienenn. 37
2.2.2.1 Credit Based Scheduling (CBS) .....cooivriimriieiieeeeneeececercceeeee e 37
2.2.2.2 Pseudo-Random Coordinated Scatternet Scheduling (PCSS)....c..cccceeveninniin. 39
2.3 SUMMATY .ottt et et sae s srae s eres e sbe s erbs e sabe e bneeneeenseeassaas 41
Chapter 3 — Adaptive Scheduling Algorithm .......ccccceveviviiiiiiiiiiiiie 43
3.1 ASSUIMPLIONS ...vevrrrererieriniereseseereeesenresesessesesteteseseesessesesseresesssatestaseseseesesessesssnensonssessssaces 43
3.2 Adaptive Scheduling AlZOTithm.........ccccoivirinirniiniinicii e 44

v




3.2.1 TraffiC EStIMAtION ..ccoevieeeeeeeeiiiiiire i et et ereetieresseestreasasassssessrsasissesssnnrassssessesrnnnrasnons 46

3.2.2 Intra-piconet SCheduling...........cocueviieiieieniriereieer e 50
3.2.3 Inter-piconet SCheduling..........ccocveviiviiiniiiiiiiniiniii e 53
3.2.4 ReSUME SENA ..ottt s 56
3.3 FAIrness DISCUSSION ...coouiiiiiiiieiiieetieniie ettt st s sne e s b e eane s 58
3.3.1 Fairness around the Master NOde .......cccccoveerierieiieeniecieceeeeeeeee e 58
B34 EXAMPIE ..ot 60
3.5 SUIMIMIATY ceeiuiieieiieeeree ettt setre et e s s e e e st e s e sase e e sseeeeesteesaabetessmeesesasaesesenessabatesranesones 63
Chapter 4 — Performance Evaluation...........ccccooiieiiiiiiiiiiinieeeeeeeeeeeee e 65
4.1 Fairness COMPATISON ..ccveeeueireernrerseeesseesteeseressnesseessmesaseesaseesaseesasessaseesnsessmesessesenseenane 66
4.1.1 Balance Traffic Load.......ccccoooieiiriiiiiiiiiiiniiiirinin s 67
4.1.2 Unbalance Traffic Load around @ Master..........ccoccueeveviiinieiniiceeniicecnccieccnneee, 70
4.1.3 Unbalance Traffic Load around a Bridge ..cooovverriiierieeeieeceeeeeeee e 74
4.2 Comparison with UDP Traffic ......ccccoooiiiiiniiieecree e 78
4.2.1 CBR SCONATIO c...eiiireiieeiiireientte ettt stt et e st esesae st soreessteesreeseneeeneseneesneesnnees 78
4.2.2 Bursty On-Off Traffic SCenario........ccccoovevieiiiniiniiniininiininrceeec e 84
4.3 Comparison With TCP Traffic .......ccccooiiriiniiie e 88
4.4 Repeated EXPETIMENTS ....cceeuiiirierieeienierieeteeiteieet st esteesiee st ete et eneesaeesene e e e enneeneas 92
4.4.1 Single Bridge Node in TWO PiCONELS .......cceevveriinienennieeieeienececesieenreeee e 92
4.4.2 Different Number of S1aves.......ocoeiereeriiiiiniineiiieecrerteceeene e 93
4.4.3 Single Bridge Node Between Three Piconets...........ccoccevieiniiinniiniicnienieenienene 94
4.4.4 Piconet with Two Bridge NOAEs.......ccevvuririieiniiiiierieenieee e 95
4.5 SUMIMATY ..ottt e n e san s sbs e sb e s nae e besenas 97




Chapter 5 — CONCIUSIONS.....eoveeiirieiieecrcie ettt ae s
ST SUIMIMATY ...ttt ettt e et bbb e b ssan e saa s srbassmnssnneesane s 98
S22 FUUIE WOTK ..ottt sns s smae e 99

BIDlIOZIAPIY ..cveeneiieiieiectctec ettt s 101

GLOSSATY OF ACTONYIMS ....ouveeieieeeieierieetee ettt te b et ebt e e ste b et sbenbesee et estesatonesaneneennenne 104

vi




Table 2.1.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 4.5.

Table 4.6.

Table 4.7.

List of Tables

Procedure adopted by the master if slots available for the RP is less than 10 ....... 33
Traffic pattern with fixed rate..........ccoooviieiiiiiniieir e 68
Traffic pattern for testing bandwidth allocation around master ...........c.ccceeueeuneenne 71
Traffic pattern for testing bandwidth allocation around bridge...........c.ccceveenneeen. 75
Traffic pattern for M-S and M-B-M traffic generating .........ccocceveeverviennieneenncnnne. 80
Traffic pattern for S-M-S and S-M-B-M-S traffic ......c.ccocvvveevinnninncnciincenes 82
Traffic Pattern for M-S and M-B-M.......cccocciiiiiiiiiiircecececeec e 88
Traffic Pattern for S-M-S and S-M-B-M-S ... 90

vii




List of Figures

FIUIE 1.1, PICONET.....cviviviicietete ittt s bbbt b b s s es s s st s e enssntessnns 2
Figure 1.2, SCAEIMEL.......ooiiiiiiieieii ettt 2
Figure 1.3 An eSCO link for single-slot packet ..........ccccoeverviniininiininini, 3
Figure 1.4. SCO and ACL CONNECHIONS .....cccueruirriieiiciiiiriieriieireeriene s 4
Figure 1.5, SNIFF MO ......ccouiiiiiiiiieiireenieeteetcrcccneest ettt e s 5
Figure 1.6. Switching of bridge node between two piCONEts.........cocveviivriiiiiniciiiiieiien, 6
Figure 1.7. Topology for testing max-min fairness .......ccccccovcverniiiniiiiciniciecee e, 7
Figure 2.1. Rendezvous scheduling.........ccccceeiiiiinieniiieiiiiiiiienecncic e 22
Figure 2.2. Switch-table for a bridge node connected with 3 masters............ccceevnininnnnne. 23
Figure 2.3. Pseudo random sequence of RWS.......cc.ccooeviiiiiiiiiiiiiicce 27
Figure 2.4. Pseudocode Of LAA .....cociiviiiioiiieieientcec it 29
Figure 2.5. Algorithm for updating the estimation of N and r on slaves.........c..ccccvevvinencne. 31
Figure 3.1. Structure of a switch schedule............cccociiiiii 46
Figure 3.2. Algorithm for traffic rate estimation.........ccccevueeiiniiniciiiniiniiice 47
Figure 3.3. Relation between MUSS and Trigger Value.......cccoooviiiininininiiinni, 48
Figure 3.4. Algorithm for trigger point eStimation.........cccccvveviiriiininiiiiicn 49
Figure 3.5. Algorithm for updating active and waiting list ..........ccccoovvviiiiiiiniiniininn 52
Figure 3.6. The algorithm for obtaining master suggested meeting time...........c.cocevvevrnrene. 54
Figure 3.7. The algorithm for obtaining bridge confirmed meeting time............ccoceevivenninnns 56

Figure 3.8.

The algorithm for updating node Status ............cccceeeiviiciiniiiinice 58




Figure 3.9. Scatternet topology and switch schedule ..........ccccccoviviiininnininn. 61
Figure 4.1. Topology of @ scatternet..........c.ccoovvvieiiiiniiniiininiinieeccecen 66
Figure 4.2. Fairness comparison for ASA in general ..........occeceenininiiiienienennennicnenneene, 69
Figure 4.3. Fairness comparison for FSS in general.........cocooieveninnincinnicniiceninenee 69
Figure 4.4. Fairness comparison for CBS in general..........cccccoconiiniiiiiniinnininniicien. 70
Figure 4.5. Fairness comparison for ASA On MaSLer .........ccoevveveiiiiiineiiiiiiiieeiieine e 72
Figure 4.6. Fairness comparison fof FSS 0n Master......ccocvveroieiriieiinieeeeteneeeee e 72
Figure 4.7. Fairness comparison for CBS on master..........coocerviiriieniieeniieeeceieeeceneeeeeens 73
Figure 4.8. Fairness comparison for ASA on bridge.........cccceceeviiniiiiinniininciniiniciniinienee, 76
Figure 4.9. Fairness comparison for FSS on bridge .........cocovieviiciinnniiiiiiiiiniiniicinen 76
Figure 4.10. Fairness comparison for CBS on bridge .........ccccoeiiviiiniiiniiniinicnininienn, 77
Figure 4.11. Aggregate throughput for M-S and M-B-M traffic.......c..cccccciiniiinniinninnnnn, 81
Figure 4.12. Average delay for M-S and M-B-M traffic.........cccccoccvvvinnininnininninnnn, 81
Figure 4.13. Aggregate throughput for S-M-S and S-M-B-M-S traffic........cccococninniiiins 83
Figure 4.14. Average Delay for S-M-S and S-M-B-M-S traffic .........ccccvvninininiinnnnn &3
Figure 4.15. Aggregate throughput with ON:OFF ratio of 1:1 ..o, 85
Figure 4.16. Average delay with ON:OFF ratio of 1:1 ..o 85
Figure 4.17. Aggregate throughput with ON:OFF ratio of 1:2 .......cocoeviniiniiniininiiicnn. 86
Figure 4.18. Average delay with ON:OFF ratio of 1:2 ......c.coceiivininiiiiinecceee 86
Figure 4.19. Aggregate throughput with ON:OFF ratio of 2:1 ......cccccociviiininiiniiniininien. 87
Figure 4.20. Average delay with ON:OFF ratio of 2:1 ......ccccoconiviiiiiniiiii, 87
Figure 4.21. TCP Traffic between M-S......cccooiiiiiiiieiec et 89
Figure 4.22. TCP Traffic between M-S-M.......cccciiniiiiniiiiinne 89

1X




Figure 4.23.
Figure 4.24.
Figure 4.25.
Figure 4.26.
Figure 4.27.

Figure 4.28.

Figure 4.29.

TCP Traffic between S-M-S ... 91
TCP Traffic between S-M-B-M-S ... 91
Sharing of bandwidth within a piconet ............ccccevvvirviiiiiiniincninniecnes 92
Sharing of bandwidth between bridge nodes and slave node ..........ccccocoeeeneenee. 93
Sharing of bandwidth between bridge node and slave node in piconet I .......... 94
Sharing of bandwidth for all M-B lInKs ........ccccccevvviniiininniniininiiiinnens 95
Sharing of bandwidth between B1 and B2 in piconet Il .............cccociiininien. 96




Acknowledgements

I would like to express my appreciation to my supervisor Dr. Vincent Wong, for his guidance
and suggestions throughout the course of this thesis. This work was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) under grant number
STPGP 257684-02.

Finally, my thanks go to my family and friends, especially Joey Mak, Manman and

Paupau, for their encouragement and support throughout my graduate studies.

xi




Chapter 1 - Introduction

Bluetooth [1] is a low power, low complexity, and low cost short-range wireless
communications technology for electronic devices. Bluetooth operates in the 2.4 GHz
unlicensed Industrial Scientific Medical (ISM) band. The ISM band is divided into 79
frequency sub-bands. A channel in Bluetooth is defined by a pseudo-random frequency
hopping (FH) sequence hopping through the 79 frequency bands at a rate of 1600 hops per
second. The result is a slotted channel with the slot duration equal to 625 ps.

The Bluetooth specification has defined various packet types for both data and control
packets. Data packets with Forward Error Correction (FEC) capability and occupy either one,
three, or five time-slots are called Data-Medium Rate 1 (DM1), Data-Medium Rate 3 (DAM3),
and Data-Medium Rate 5 (DMS) packets, respectively. These DM packets use the (15, 10)
shortened Hamming code for error correction. On the other hand, data packets without FEC

capability and occupy either one, three, or five time-slots are called Data-High Rate 1 (DH1),

~ Data-High Rate 3 (DH3), and Data-High Rate 5 (DHS) packets, respectively.

1.1 Bluetooth Background

Each Bluetooth device has a unique 48-bit Bluetooth device address (BD_ADDR).
Bluetooth devices are required to form a piconet before exchanging data. Each piconet has a
master unit that controls the channel access and frequency hopping sequence. Other nodes in
the piconet are referred to as the slave units. Within a piconet, there is one master and up to

seven active slaves, and all devices share the same wireless channel. The master will assign

3-bit Logical Transport Address (LT _ADDR) to each of the active slave. In order to
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Ficonet \ Scatternet v
Figure 1.1. Piconet Figure 1.2. Scatternet
minimize the interference between different piconets, the frequency hopping sequence is
unique for each piconet.

In a piconet, the master controls the access of all devices to the channel through a
Time Division Duplex (TDD) master-slave polling scheme. For communication between a
master and its slave, the master first sends a data packet to the slave in even-numbered slots
as a polling message. If the master queue for the slave is empty, it can instead send a POLL
packet as a polling message. When the slave receives the polling message, it immediately
replies with a data packet to the master. If the slave queue is empty, it can instead send a
NULL packet as a reply message.

Several piconets can be interconnected via bridge nodes to create a scatternet. Bridge
nodes are capable of time-sharing between multiple piconets, receiving packets from one
piconet and forwarding them to another. A bridge node can be a master in one piconet and
act as slave in other piconets. This is called a master-slave bridge. Alternatively, a bridge
node can act as a slave in all the piconets it is connected to. This is called a slave-slave
bridge. Figure 1.1 shows a piconet in which master node M1 is connected to slave nodes S1,

S2, S3 and S4. Figure 1.2 shows a scatternet in which both master nodes M2 and M3 are

connected to bridge node B1. In addition, master node M2 is connected to slave nodes S5, S6
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Tesco

Master Node M SCo SCo

Slave Node S1 SCO S¢0

= D

Wesco

Figure 1.3 An eSCO link for single-slot packet

and S7. Mastqr node M3 is connected to slave node S8.

1.1.1 Bluetooth Links

Bluetooth supports different traffic types between two Bluetooth devices. For voice traffic,
the master maintains a Synchronous Connection-Oriented (SCO) link to a specific slave by
reserving time-slots at regular Tsco intervals. In the Bluetooth specification, the Tsco interval
can be equal to either two, four, or six time-slots. A SCO link does not support packet
retransmission.

On the other hand, the Extended Synchronous Connection-Oriented (eSCO) link
supports limited retransmission of packets. The master maintains an eSCO link to a specific
slave by using reserved slots at regular Te.sco intervals. The Tesco interval is negotiated
between the master and the slave during link setup. The range of the T.sco interval is between
4 and 256 slots. Besides, the master also maintains an additional W,sco slots after the
reserved slots as a retransmission window. The range for W,sco is from 0 to 256 slots. Figure
1.3 shows an eSCO link for single-slot packets between master M and slave node S1.

For data traffic, the master can establish an Asynchronous Connection-oriented Link

(ACL) to any slaves in TDD slots not reserved for SCO links. Therefore, if a SCO link is
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Tsco
< %
Mast_er Node M SCO ACL SCO ACL SCO
Slave Node S1 SC0 SCo SCo
Slave Node S2 ACL ACL

Figure 1.4. SCO and ACL connections

present, there will be either two or four time-slots available for all the ACL connections. As a
" result, data traffic using ACL is a best-effort service. Figure 1.4 shows the slots used by a

SCO link and the slots available for an ACL connection.

1.1.2 Bluetooth Modes

There are four modes defined in the Bluetooth specification, namely: active, sniff, hold, and
park modes. Nodes in active mode listen to their master all the time. On the other hand,
nodes in sniff mode wake up at each sniff slot to start communicating with their master. The
interval between two successive sniff slots is called T,z Beginning from the sniff slot, the
sniff node starts listening to the master for Nguig amempr slots until a packet with matching
LT_ADDR with the sniff node is received. With each received matching LT ADDR packet,
the sniff node will continue to listen for Ny rimeous Slots or the remaining of Ny astemps Slots
whichever is larger. Once the sniff node has finished listening to the master, it will go back to
the sleep state and wait for the next snift slot. Figure 1.5 shows the sniff mode model.

For hold mode, the master first negotiates the holding period with the slave node. The

slave node will then switch into the hold mode. During the holding period, the node is not

required to listen to the master. When the timer of the holding period expires, the hold node




Chapter 1. Introduction 5

Tsniff

< %

Nsniff_attempt Nsniff _timeout Nsniff_attempt Nsniff timeout

< X > < D4 >
possible sleep o possible sleep

RN RE.
BEREEERRRRRREERRER R
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switches to the active node.
Nodes in park mode do not take part in the piconet and they have to give up their
LT ADDR before entering park mode. The parked node will then wake up at regular interval.
The Bluetooth specification [1] recommends that the masters use either the hold mode

or sniff mode to allow a bridge node to switch between different piconets.

1.2 Bluetooth Scatternet Scheduling

Scheduling in Bluetooth scatternets can be divided into two tasks, namely: intra-piconet
scheduling and inter-piconet scheduling. Intra-piconet scheduling focuses on the scheduling
of packets transmission within a piconet. Since a slave node cannot transmit a packet without
first being polled by its master, intra-piconet scheduling is controlled by the master. On the
other hand, inter-piconet scheduling focuses on when a bridge node can switch between
different piconets and how a bridge node communicates with the masters ‘in different
piconeté. In both types of scheduling, there exist some constraints that must be considered

when designing an efficient scheduling algorithm.

1.2.1 Intra-piconet Scheduling Issues

An efficient intra-piconet scheduling algorithm should minimize the number of wasted slots.

Since each master-slave polling operation includes the transmission from the master to its
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Figure 1.6. Switching of bridge node between two piconets

slave and a reply from the slave to its master, an empty queue in either side will result in a
wasted slot. Moreover, since each node may generate traffic in different rate, the bandwidth
requirement on each link may be different. Therefore, for efficient bandwidth utilization, the
polling period for each slave may be different. In addition, it is also required to maintain

bandwidth fairness among different slaves within the piconet.

1.2.2 Inter-piconet Scheduling Issues

The first issue on inter-piconet scheduling is the switching of bridge node between piconets.
Because each Bluetooth device only has one transceiver, a bridge node can only participate
in one piconet at a time. Therefore, a bridge node has to switch between connected piconets
in order to transmit data from one piconet to another. As each master uses its own clock, a
bridge node has to re-synchronize with the new master when it switches to a new piconet.
The switch between two piconets may result as a maximum of two slots lost. As shown in
Figure 1.6, a slave-slave bridge node first synchronizes with master M1. When the bridge
node switches to master M2, it has to wait for the polling message from M2 at the even-

numbered slot. Therefore, there will be a gap of half a slot. Later, when the bridge node

switches back to M1, it has to wait for the polling message at even-numbered slot again. This
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> (1/3)

Figure 1.7. Topology for testing max-min fairness

time, there will be a gap of one and a half slots. As a result, there will be a maximum of two
slots lost.

Besides the issue on slot wastage, another issue arises when two masters try to access
the bridge node simultaneously. This is referred to as the bridge node conflict. Since a bridge
node can only listen to one master at a time, the other master will not be able to communicate
with the bridge node and will waste slots for the polling operation. Lastly, an efficient inter-
piconet scheduling scheme also needs to dynamically allocate bandwidth on each link and

maintain fairness among all nodes.

1.3 Max-Min Fairness Criterion

Definition 1: Let L be the set contains all links in a network, and let C be the total capacity

of L. A rate allocation is feasible if the sum of rate on all links in L is smaller than or equal to

C.

link without decreasing the rate (r;) on another link with ;< r; (i, j € L) and it is feasible.

According to the definition of max-min fairness [15], a bandwidth allocation on links is

referred to as max-min fair if the bandwidth allocated to a link cannot be improved without
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decreasing that of any other links which demand an equal or less bandwidth. The
fundamental idea of achieving max-min fairness is to first allocated equal bandwidth to each
link around a node. If the link cannot utilize the assigned bandwidth since it only demands
for a lower bandwidth, the residual bandwidth will be equally distributed to other links.

We use the topology in Figure 1.7 to show how to allocate bandwidth for each link in
order to achieve the max-min fairness. In the topology, the traffic rates for links 1 to 7 are
(1/4, 1/5, 172, 2/3, 1/4, 1/2, 1/3), respectively. Since master node M1 is connected with four
nodes, it will assign 1/4 of bandwidth to each of the connected links. On the other hand, since
master node M2 is connected with three nodes, it will assign 1/3 of bandwidth to each of the
connected links. Lastly, since bridge node B1 is connected with two nodes, it will assign 1/2
of bandwidth to each of the connected links.

We first consider the bandwidth allocation around M1. Since the traffic rate on link 1
is 1/4, which is equal to the assigned bandwidth, link 1 can fully utilize the assigned
bandwidth. However, since the traffic rate on link 2 is 1/5, which is less than the assigned
bandwidth, the bandwidth assignment on link 2 will become 1/5. Thus, the remaining
bandwidth (1/4 — 1/5 = 1/20) should be reallocated to other links. As link 1 cannot utilize any
extra bandwidth, the remaining bandwidth will be equally distributed to link 3 and link 4.
Since link 3 generates traffic at a rate of 1/2, it can utilize the extra bandwidth. Therefore, the
new bandwidth allocation on link 3 is 1/4 + (1/20 x 1/2) = 11/40. In order to determine
whether link 4 can utilize the remaining extra bandwidth (1/20 x 1/2 = 1/40), we have to
determine what amount of bandwidth is assigned to link 4 from B1.

However, we need to check the bandwidth allocation around M2 in order to

determine the bandwidth allocation around B1. Since the traffic rate on link 7 is 1/3, link 7
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can fully utilize the assigned bandwidth. However, since the traffic rate on link 5 is 1/4, the
bandwidth assignment on link 5 will become 1/4. Thus, the remaining bandwidth (1/3 — 1/4 =
1/12) should be reallocated to other links. As the traffic rate on link 6 is 1/2, it can utilize the
extra bandwidth. Therefore, the new bandwidth allocation on link 6 is 1/3 + 1/12 = 5/12.
Lastly, we determine the bandwidth allocation around B1. Since link 5 can only
utilize 1/4 of the bandwidth, the remaining bandwidth (1/2 — 1/4 = 1/4) can be reallocated to
link 4. Therefore, according to B1, it is possible to assign 1/2 + 1/4 = 3/4 of bandwidth to
link 4. On the other hand, according to M1, it is possible to assign 1/4 + 1/40 = 11/40 of
bandwidth to link 4. Therefore, since M1 cannot allocate more than 11/40 of the bandwidth
to link 4, the maximum possible bandwidth allocating to link 4 is 11/40. Lastly, as the traffic
rate on link 4 is 2/3, the new bandwidth allocation on link 4 will become 11/40. As a result,
the final max-min fairness bandwidth allocation for links 1 to 7 is (1/4, 1/5, 11/40, 11/40, 1/4,

5/12, 1/3).

1.4 Motivations and Objectives

The scheduling of a single piconet is well-studied. A number of algorithms has been
reported in the literature. On the other hand, the research on scatternet scheduling is still an
ongoing task. Some of the design criteria for scatternet scheduling are stated below:
1. Since a bridge node can only participate in one piconet at a time, it is necessary to
organize the time for the bridge node to switch between different piconets.

2. When two masters in different piconets try to communicate with a bridge node

simultaneously, only one master will succeed. As a result, it leads to a conflict at the
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bridge node. Therefore, it is necessary to avoid the chance of bridge node conflict in
order to reduce the number of packet loss.

3. For ACL connections with bursty traffic, it is necessary to allocate bandwidth
dynamically to each ACL connection based on the traffic conditions. This will lead to
better bandwidth utilization.

4. Within a scatternet, all nodes should receive a fair share amount of bandwidth for
data transmission. Therefore, a master and a bridge node should fairly share the
bandwidth for its connected links based on the traffic conditions. This prevents the
possibility of starvation in some nodes.

5. Rather than proposing intra-piconet and inter-piconet scheduling algorithms
independently, there may be benefits to design a scatternet scheduling algorithm

which can handle both intra-piconet and inter-piconet scheduling.

The previous research work on scatternet scheduling, such as [9][12], focused on
issues 1 and 2. In addition to issues 1 and 2, other work such as [20][18] considered issue 3
as well. Besides, the work in [10] considered issues 1, 2, 3 and 5. The work in [13]
considered issues 1, 3, 4 and 5. The work in [16] considered issues 1, 3 and 5. Lastly, the
recent work in [19] attempted to resolve all the above issues. A detailed discussion of these
schemes will be given in Chapter 2.

The goal of our work is to develop a scatternet scheduling algorithm which can
satisfy all the design issues described above. Our work aims to improve the throughput and

delay performance of ACL connections, maintain the max-min fairness for all the nodes,

prevent bridge node conflict, and allocate bandwidth dynamically based on traffic usage.
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1.5 Contributions of the Thesis

In this thesis, we propose an Adaptive Scheduling Algorithm (ASA) for Bluetooth scatternets.
Our proposed ASA has the following features:

1. Adapt to traffic change;

2. Maintain max-min fairness for all nodes;

3. Prevent the bridge node conflict;

4. Integrate both intra-piconet and inter-piconet scheduling in a single algorithm.

In order to monitor the traffic usage on each node, there is a traffic estimator on each
node to estimate the packet arrival rate. By monitoring the size of the queue and some other
values, the proposed ASA can use those information to adjust the bandwidth allocation on

each link.

In ASA, each master node uses an active list and a waiting list to organize a fair
serving order for all of its connected nodes. Moreover, in order to maintain fairness between
different piconets, all masters and bridge nodes use a dynamic sWitch schedule to organize a
fair serving order on their inter-piconet links. To avoid more than one master accessing a
bridge node simultaneously, all masters and bridge nodes determine their next meeting time
and duration dynamically. Lastly, the intra-piconet scheduling scheme in ASA uses the

switch schedules information in order to improve the performance in throughput and delay.

1.6 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, we describe the related work on scheduling

schemes for Bluetooth piconets and scatternets. In Chapter 3, we propose an Adaptive
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Scheduling Algorithm (ASA) for Bluetooth scatternets. We then present the performance
comparison on fairness, throughput, and delay with two other scheduling schemes through

simulations in Chapter 4. Finally, Chapter 5 concludes the thesis with a summary of work

presented and some suggestions for future work.




Chapter 2 - Related Work

Several intra-piconet and inter-piconet scheduling algorithms for Bluetooth ad hoc networks
- have been proposed in the literature. In this chapter, we summarize these algorithms and

point out the strengths and weaknesses of each method.

2.1 Piconet Scheduling

In this section, we summarize various intra-piconet scheduling algorithms proposed recently.
Most of these algorithms aim to provide a high throughput, a low average delay, and to

maintain fairness among all the slave nodes.

2.1.1 Pure Round Robin (PRR)

The original and default piconet scheduling scheme in Bluetooth is PRR [2]. In this scheme,
the master polls each slave in a fixed cyclic order. All slaves take turn to transmit data. The
advantage of this scheme is that it maintains fairness by allowing each slave has a chance to
transmit in each polling period. Moreover, it is simple to implement. However, if both master
and slave nodes have no data packets to send, the master will still need to send a POLL
packet to the slave and the slave will reply with a NULL packet. This POLL-NULL event

results in a decrease in average throughput and an increase in delay of data transmission.

2.1.2 Exhaustive Round Robin (ERR)

In ERR in [2], a master polls a slave exhaustively and does not switch to the next slave until

both master queue and slave queue are empty. However, in order for the master to determine

whether or not the slave queue is empty, the slave is required to piggyback the status of its
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queue when it sends a packet to the master. The advantage of this scheme is that it can
increase the throughput by reducing the number of wasted slots spending in POLL-NULL
events. Since the master polls its slaves exhaustively, the average cycle time of ERR is
longer than the average cycle time of PRR. Therefore, if there exists one master-slave pair
with empty queues, both the master using PRR and the master using ERR will encounter a
POLL-NULL case in a cycle. Since the average cycle time of PRR is shorter than that of
ERR, the master in PRR will encounter for more POLL-NULL events than the master in
ERR. However, as the master continues to poll the same slave until this master-slave pair has
no data to send, it may cause starvation to other slaves in the piconet. Thus ERR does not

provide fairness to all the nodes.

2.1.3 K-limited Round Robin (K-limited RR)

In the K-limited RR algorithm [2], the master polls a slave exhaustively but is limited to K
times per cycle. Therefore, even though either the master or the slave may still have packets
in the queue, once the master has finished K transmissions on the current master-slave pair, it
will move on to serve the next slave. The advantage of K-limited RR is that it can retain the

fairness generated by PRR. However, it has a lower throughput when compared with ERR.

2.1.4 Limited and Weighted Round Robin (LWRR)

The LWRR scheme proposed in [2] aims to reduce the number of POLL-NULL events. In
this scheme, each slave has its own weight and is initially set to Maximum Priority (MP),
which is a predefined value. In LWRR, if a POLL-NULL event happens on a master-slave

pair, the master will decrement the weight of the slave by one. The lowest weight a slave can

have is equal to one. As a result, the master will skip polling the slave for "MP minus
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weight" cycles. Once a data transmission exists on the master-slave pair, the weight of the
slave will be reset to MP. The advantage of this scheme is that it can predict the queue state
on a master-slave pair and prevent the master to poll a slave with empty queue. However, this
" scheme may not react quickly to bursty data traffic when a slave is having its punishment

during the skipping cycles.

2.1.5 Deficit Round Robin (DRR)

Another scheme called DRR [4] also aims to maintain fairness between all master-slave pairs.
In this scheme, each master-slave pair maintains a state variable called credit. Each slot of
data transmission consumes one credit. The scheme works as follows: each round before a
master tries to poll a slave, a value of quantum is added to the master-slave pair credit
account. Then the master checks whether the accumulated credits are large enough for the
head-of-line (HOL) packets pair, which are the packets at the front of both master and slave
queues. In the first case, if the accumulated credits are large enough for the size of the HOL
packet pair, the master will poll the slave, deduct the total size of the transmitted packets
from the accumulated credit, and check the size again. The process will repeat if the
remaining credits are still large enough for the next HOL packet pair. If not, the master-slave
pair will keep the credits and move on to the next slave. In the second case, if the
accumulated credits are not enough for the size of the HOL packet pair after a quantum of
credit is added to the pair, the current master-slave pair will keep the accumulated credits.
The master will then move on to serve the next slave. Lastly, if both master and slave queues

are empty, the master will reset the credit to zero and move on to the next slave. Since the

master has to know the size of HOL packet in the slave’s queue, a slave has to piggyback the
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size of the next HOL packet in its queue when it sends a packet to the master.

The advantage of this scheme is that it can balance throughput and fairness among all
master-slave pairs by assigning equal number of credits to each pairs. However, the current
DRR scheme used in bluehoc [4] is just a simple modification of the scheme in [5]. In
bluehoc, the DRR scheme only modifies the credits on master but not on slave. Therefore, it
does not consider master and slave as a whole. As the original DRR scheme in [5] is for
high-speed routers, its use in Bluetooth may require some modifications. Moreover, further
work is required to investigate the value of quantum size in order to maintain fairness among

all the slaves.

2.1.6 Look Ahead Round Robin (LARR)

The algorithms discussed in the previous sub-sections only consider ACL links. The LARR
algorithm in [3] considered both SCO and ACL links. In this scheme, it first serves all slaves
in RR fixed order and tries to examine the HOL packets in both the master and slave queues.
If the current HOL packet pair fits into the current ACL frame, the master will serve the
master-slave pair. Otherwise, the master will look ahead for the next master-slave pair whose
HOL packet pair can fit into the current ACL frame by following the RR fashion. If the
master cannot find any HOL packet pair that can fit into the current ACL frame, it will wait
until the start of next ACL frame and give the turn to the first examined master-slave pair.
The advantage of this scheme is that it can maximize the ACL frame usage and reduce the

chance of packet loss. If a pair sends packets that do not fit into the ACL frame, it will result

in a packet loss. If only ACL link is present, then LARR is equivalent to the RR scheme.
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2.1.7 K-Look-Ahead Round Robin (K-Look-Ahead RR)

In order to maintain a stable time for the look-ahead process, K-Look-Ahead RR [3] scheme
is used to maintain a fixed number of examinations of the HOL packets. In this scheme, if the
current HOL packet pair does not fit into the current time frame for ACL, which is referred
as ACL frame, the master will only look ahead for the next K pairs. If the master cannot find
a HOL packet pair that can fit into the current ACL frame within the next K pairs, it will wait
until the start of next ACL frame and give the turn to the first examined master-slave pair.
The advantage of this scheme is that since it only searches for the next K HOL packet pairs,
it can ensure that the process is running in linear time and uses fixed space. If LARR is used
instead, the number of search in each round will not be stable because it searches all the
remaining pairs in a piconet. However, the K-Look-Ahead RR wastes more slots in an ACL
frame than LARR because many times the HOL packet pair that can fit into the current ACL
frame may exist after K pairs. Therefore, if K-Look-Ahead RR gives up the turn after

examining K pairs, it will waste all the remaining slots in the ACL frame.

2.1.8 Adaptive Flow-based Polling (AFP)

The AFP [6] scheme uses the status of queues to modify the polling interval for each master-
slave pairs. In this scheme, it makes use of the flow bit in the payload header field of the
packet to indicate the status of the queue. The flow bit is set to 1 when the number of packets
in the queue exceeds a threshold value, which is defined as buf thresh. AFP also uses
another parameter called flow to represent the traffic status. If the flow bit is set to 1 in the
packet transmitting in either uplink or downlink, AFP will set flow to 1. In AFP, all slaves

initially have the same polling interval, which is defined as P. Each time when a POLL-
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NULL event occurs on a master-slave link, the master will double the current polling interval
for the slave. The master stops doubling the polling interval when polling interval is greater
than or equal to a threshold value. The master resets the polling interval back to P if the flow
is set to 1 and the HOL packet in the master to slave queue is a data packet.

The advantage of this scheme is that it can reduce wasted slots spending on POLL-
NULL events by increasing the polling interval. In addition, when the master detects a high
flow rate for the slave, it serves the slave more frequently by setting the polling interval back
to the original value. Although AFP looks similar to LWRR, their conditions on setting the
polling interval (polling cycle for LWRR) back to the original value on a slave are different.
For LWRR, it resets the polling cycle on the master-slave pair when a data transmission
exists. Different from LWRR, AFP only resets the polling interval on master-slave pair when
it detects a high flow rate on the pair. The disadvantage of this scheme is that the master-
slave pairs with low data rate have to suffer for a long delay until they receive bursty traffic

or accumulate enough packets in the queue.

2.1.9 Sticky Adaptive Flow-based Polling (Sticky AFP)

Sticky AFP [6] is similar to AFP. The modification on Sticky AFP is that if the flow is set to
1 and the HOL packet in the master to slave queue is a data packet, the master will not only
set the current polling interval back to the original value, but will also allow a maximum of
num_sticky packets data transmission between the master-slave pair. The advantage of this
scheme is that it can reduce the queue size quickly by transmitting multiple packets

consecutively; therefore, it can prevent overflow of queue. However, since some master-

slave pairs may transmit up to num_sticky packets, the cycle time will be longer and the
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average delay on individual slave will also be longer.

2.1.10 HOL Priority Policy (HOL-PP)

In HOL-PP [6][7], it distinguishes different master-slave pairs based on the state of HOL
packets in both master and slave queues. Since HOL-PP scheme considers both ACL links
and SCO links, it only allows packets occupying either 1 slot or 3 slots. If there is no packet
in the queue, HOL-PP uses “0” to represent the status of the queue. If there is a HOL packet
with size 1, then “1” is used to represent the status of the queue. If there is a HOL packet
with size 3, then “3” is used to represent the status of the queue. Because a master needs to
know the status of the slave queues, the free bits in the Bluetooth payload header are used to
communicate the status of slave queues to the master. When a 4-slot ACL link is used for
data transmission, then the master-slave pairs with either 1-1, 3-1, or 1-3 state, which utilize
100% of the 4 slots, have class 1 priority with priority value P1. Master-slave pairs with
ei;cher 3-0 or 0-3 state, which utilize 75% of the 4 slots, have class 2 priority with priority
value P2. Master-slave pairs with either 1-0 and 0-1 state, which utilize 50% of the 4 slots,
have class 3 priority with priority value P3. Lastly, master-slave pairs with 0-0 will not be
scheduled. In addition, the value of P1 has the highest priority while the value of P3 indicates
the lowest priority.

The policy of HOL-PP is that a master first polls all slaves in RR fashion. If the
master-slave pair has priority value P1, it will serve the master-slave pair P1 times; it applies
the same policy on master-slave pairs with a lower priority class as well. However, if the

master-slave pair changes priority class while in service, the master will stop serving the

current slave and move on to the next slave.
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The advantage of this scheme is that it reduces the wasted slots spending on node
with empty queue by yielding data transmissions to master-slave pairs with higher priority
class; therefore, it can increase the system throughput. However, in this scheme, it does not
mention how the master-slave pair with 0-0 status returns to be scheduled by the master. If
the pair has to wait until the master has data to send, then a bursty traffic on a slave may
overflow the slave's buffer. Moreover, the HOL-PP algorithm did not mention how to deal

with the master-slave pair with 3-3 status since there are only 4 slots available for ACL link.

2.1.11 HOL K-Fairness Policy (HOL-KFP)

The HOL-KFP [6][7] scheme uses the same method as HOL-PP to assign priority status to
all master-slave pairs. In addition, HOL-KFP keeps a coﬁnter for each master-slave pair. The
counter on each pair will only be changed in two cases. The counter will be decremented on
the pair who sacrifices its service to another pair. The counter will be incremented on the pair
who receives the sacrificed service from another pair. HOL-KFP also uses the variable Qpax
to keep track of the total number of service on the pair who receives the maximum number of
excess service from other pairs and uses the variable Q.. to keep track of the total number of
service on the pair who sacrifices the maximum number of service to other pairs. In HOL-
KFP, the master serves all slaves in RR fashion. However, class 2 pairs will sacri‘ﬁce service
to class 1 pairs. Class 3 pairs will sacrifice service to class 1 pairs first and then to class 2
pairs. In addition, the transfer of service is only allowed if "Quax — Omin" is smaller than K
where K is defined as a fixed number. Therefore, if a master-slave pair is not allowed to

transfer service to pairs with higher class, it will be serviced according to its priority class.

The advantage of this scheme is that it can guarantee a strict fairness bound by using the
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number K. The number K represents the maximum unfairness existing between any two
backlogged master-slave pairs. However, the issues of 0-0 status and 3-3 status in HOL-PP
remain un-resolved in HOL-KFP. Moreover, once the fairness bound exceeds K, no pair can
sacrifice service to others and no pair can gain service from others. When that situation

occurs, HOL-PP scheme is equivalent to the RR scheme.

2.2 Scatternet Scheduling

In this section, we summarize various scatternet scheduling algorithms proposed recently.

These algorithms can be divided into two groups: deterministic and random based.

2.2.1 Deterministic-based Scatternet Scheduling Algorithms

The scheduling schemes to be described in this sub-section focus on when the bridge node
should be present in each connected piconet and how the master should communicate with
the bridge node. Both the bridge node and the master node know the scheduled time for them

to communicate with each other.

2.2.1.1 Rendezvous Scheduling

The rendezvous scheduling algorithm [8][9] focuses on inter-piconet scheduling. Two terms
are introduced in this algorithm. The first term is the rendezvous point (RP). RP is the time
slot at which the master agrees to poll the bridge node and the bridge node agrees to listen to
the master. The second term is the rendezvous window (RW). RW is the period of time that
the master and the bridge node spend to communicate with each other. This algorithm

assumes that the bridge node can only be a slave-slave node. Because the bridge node

switches between different piconets at each RP, RW is actually the distance between two RPs.
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Figure 2.1. Rendezvous scheduling

Figure 2.1 shows the relationship between RP and RW. As each piconet has limited RW to
communicate with a bridge node, the interval of RW should be maximized. Therefore, the
Maximum Distance Rendezvous Point (MDRP) algorithm in [9] aims to maximize the
distance between the RPs. In MDRP, it defines a periodic superframe that is a time period for
all the nodes involving in the bridge node schedﬁling.

When a new piconet joins the bridge node, the RP between the new piconet and the
targeted bridge node will be chosen from the middle slot of the largest interval between two
different successive RPs. For instance, in Figure 2.1, if RW1 is larger than RW2, then RP3
will be added in the middle of RW1. Thus, the original interval of RW1 will be halved and
the interval of RW3 will be equal to the new va]uve of RWI.

In order to implement RP and RW, MDRP makes use of the Bluetooth sniff mode.
Because a bridge node in sniff mode will only listen to the master for Ny arremp: Slots, it can
then stop listening to the master after Nug anempr Slots and join another piconet. At the
beginning of next T, period, the bridge node will listen to the master for Ninitf attempt SlOts

again. Since the RW in rendezvous scheduling is fixed, Ty rimeou 18 set to 0. Therefore, each

RP will map to the beginning of a Ts,yperiod between the master and the bridge node, and




Chapter 2. Related Work 23

Time Frame
-

MO | M1 | M2 | MO | M1 | M2 | MO | M1 | M2 | MO [ MI | M2

- >
-t L

Schedule Cycle

Figure 2.2. Switch-table for a bridge node connected with 3 masters

each RW will map to the N,z asremp: variable.

The advantage of Rendezvous Scheduling scheme is that it is simple to implement
and can maintain a stable performance by having a fixed schedule. However, it does not
coﬁsider short-term traffic changes. Since the size of each RW is the distance between two
successive RPs, the number of master-bridge pairs limits the time slots allocated for each
RW. When bursty traffic exists in one of the master-bridge pairs, the MDRP cannot flexibly
change the RW for that pair. Moreover, the MDRP scheme does not maintain fairness for all
the nodes within the scatternet. Therefore, MDRP may assign more bandwidth to a link than

it should be received.

2.2.1.2 Flexible Scatternet-wide Scheduling Algorithm (FSS)

The FSS [10] scheme provides inter-piconet scheduling by placing a switch table in each
bridge node. Each switch table specifies the starting time and ending time for the
communication between the bridge node and master in each connected piconets. Initially,
each connected piconet obtains the same number of time frame to communicate with the
bridge node. The size of the time frame can be either 2, 6, or 10 Bluetooth time slots.
However, all time frames in the switch table must have the same size. If there are three
piconets connected with the bridge node and the switch table contains four consecutive

scheduling sequences for all of them, then the sequence will repeat its cycle after three time

frames and the switch table will repeat its cycle after 12 time frames. Figure 2.2 shows the
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switch table for the bridge node described above.

The switch table is constructed at the time when the scatternet is formed. FSS
assumes using centralized protocol such as the Bluetooth Topology Construction Protocol
(BTCP) [11] to construct the topology so that the leader has the full knowledge of the
scatternet. Once the switch table is formed, it will be saved at the bridge node and will be
propagated to all masters in the connected piconets. As a result, the master knows when it
should poll the bridge node and the bridge node knows when it should listen to the master.

In order to co-ordinate with the switch tables, FSS also maintains a flexible traffic
scheduling algorithm for intra-piconet scheduling. In this algorithm, the master polls all the
slaves following the weighted round robin fashion in each schedule cycle in the switch table.
In FSS, the polling weight of each slave is represented by a tuple (P, R). The parameter P
denotes the slave will be polled by the master every P schedule cycles, and the parameter R
denotes the slave can receive maximum R times of polling in a schedule cycle. To provide
flexibility for scheduling, FSS dynamically changes the weight on each slave depending on
the traffic load observed from the master to slave queue. When there are traffic changes, FSS
will first change the parameter P, and then it will change the parameter R. Each time when
two consecutive polling slots are wasted, the parameter P for that slave will be increased by 1
until it reaches the maximum threshold value. On the other hand, if the slave does not waste
the polling slots in a cycle, then P will be decreased by 1 until it reaches 1. However, if the
current value of P is 1, FSS will start changing the parameter R. Each time a slave wastes
polling slots, the parameter R for that slave will be decreased by 1 until it reaches 1. If the

polling slots are not wasted, the parameter R of that slave will be increased by 1 until it

reaches the maximum threshold value. Lastly, once the parameter of R reaches 1, FSS will
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start modifying the parameter P again.

FSS gives higher priority to bridge node than pure slaves. At the beginning of each
frame in a scheduling cycle, FSS checks to see if there is any SCO link reserving the time
frame. If there is a SCO link, FSS will let the master poll the slave that is connected with the
SCO link. Otherwise, FSS will start searching for a bridge node that has been polled the least
within the scheduling cycle and can be polled by the master according to the switch table. If
FSS is able to find a bridge node satisfying the requirements, it will allow the master to poll
the bridge node. If FSS cannot find any bridge node satisfying the requirements, it will then
search for each slave in a weighted round robin fashion. If FSS finds a slave that satisfies the
(P, R) requirement on the schedule cycle, it will allow the master to poll the slave. Otherwise,
the master will become idle for this time frame. At the end of the time frame, the master
modifies the (P, R) parameters of a slave which has been polled in the current scheduling
cycle according to the slave's status. |

FSS modifies the bandwidth allocation for a master-bridge link by monitoring both
the outgoing queue length and the incoming queue length of a bridge node. Each time when a
master sends a packet to a bridge node, it updates its current queue length as well. When tl:IC
total queue length in a master-bridge link exceeds a threshold value, the bridge node tries to
find a lender to the link from all connected masters. The candidate lender will be the master-
bridge link with the shortest queue length and has been assigned for more than one time
frame in the switch table. If the bridge node is able to find a lender and the lender agrees to
lend one of its time frames, then the switch table will be updated; a time frame from the

lender will become the time frame for the borrower.

This scheme can guarantee that there is no conflict existing at the bridge node. Since
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all masters and the bridge node know when they should communicate with each other, no
two masters will poll the bridge node at the same time. Moreover, it also creates flexibility to
bridge node traffic because a bridge node assigns different number of time frames to each
master based on traffic change. However, the modification of a switch table involves many
messages exchange between different masters and a bridge node. Therefore, a bridge node
should not modify the switch table frequently. In addition, since this scheme gives higher
priority to master-bridge links than master-slave links, it does not maintain fairness among

the nodes in a scatternet.

2.2.1.3 Jump Mode

In order to improve the efficiency of inter-piconet scheduling, a new mode called the jump
mode is proposed in [12] for bridge nodes in a scatternet. When a bridge node is in jump
mode, it acts as a jumping node and is considered to be absent in the piconet. In this scheme,
a bridge node can either be a master-slave node or a slave-slave node. The jumping node
timeline is divided into time window called rendezvous window (RW) [8][9] with pseudo
random length. The beginning of each RW is called the rendezvous point (RP) [8]{9]. The
master polls the jumping node at each of the RPs. If the jumping node wants to be present in
a piconet, it has to signal the master in the piconets at one of the RPs. The jumping node will
spend one or more RWs in a piconet before switching to another piconet. Once the jumping
node is connected to the piconet, it follows the piconet scheduling scheme to communicate
with the master.

In order for a jumping node and its respected master nodes to create the same pseudo

random sequence of RWs, both the jumping node and all connected masters use the same

size of time period, (which is defined as Nsf'), and the same seed number, (which is defined
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Figure 2.3. Pseudo random sequence of RWs

as the BD_ADDR of the jumping node), to implement the sequence. At the beginning, a
timeline is divided into periods of Nsf frames, which contain a fixed number of Bluetooth
time slots. Then in each Nsf period, the jumping node and all connected masters will pseudo
randomly choose one slot to be the RP. Since all nodes use the same seed number to generate
the pseudo random sequence for each period, the jumping node and all connected masters
will generate the same pseudo random sequence. Lastly, the time window between the RP in
current period to the RP in the next period becomes the RW. Figure 2.3 shows the process of
generating pseudo random sequence of RWs.

The scheduling of the bridge node is described as follows. Since all connected
masters know all the RPs at the bridge node, they will poll the jumping slave at each of the
RPs. If the bridge node responds to the master, the master knows that the bridge node will be
present in its piconet until the next RP. Therefore, the job of the jumping node is to choose
the RP for each connected master and to respond to each of the master's polling messages
respectively. Furthermore, in order to reduce the number of polling for each connected
master, this scheme also provides a mixed long-term schedule option. In this option, the
jumping node maintains a bitmap, which specifies if the jumping node will be present, absent,

or undefined in the following certain number of RWs, for each of the connected master.

Therefore, the master will only poll the jumping bridge node at the specified RPs in the
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bitmap. On the other hand, if the jumping node is a master, then the jumping master node
will set up a periodic schedule. The periodic schedule specifies the RWs allocated to all
| connected piconets. With the information in the periodic schedule, a slave, which connects to
the jumping master node, can choose to adapt the schedule or not.

The advantage of this scheme is that the master can still communicate with other
slaves while the bridge node is connected to the piconet. In other schemes, such as MDRP [9]
and FSS [10], when the bridge node switches to a piconet, the master can only exchange data
with the bridge node, but not with other slave nodes. However, in jump mode scheme, when
the bridge node switches to a piconet, it just acts as a normal slave. It follows the piconet
scheduling scheme to schedule the time for it to communicate with the master. Therefore, it
can save time slots if there is no data transmission between the master and the bridge node.
Moreover, it allows two bridge nodes to exist in a single piconet at the same time so that it
can reduce the delay for data transmission passing through two or more piconets. In addition,
by using the pseudo random sequence, it can reduce the chance for a master to poll two
bridge nodes at the same time. Since a master uses different pseudo random sequence with
different bridge nodes, it can guarantee that systematic conflicts do not exist. Moreover, by
using the jump mode, it can eliminate the bridge node conflict issue as well. Since the bridge
node is responsible for choosing the RPs for each of the connected masters, no two masters
can access the bridge node at the same time.

The disadvantage of this scheme is that it does not specify how the bridge node
schedules the order for serving each of the connected masters; therefore, a further analysis on

the RP scheduling at the bridge node is necessary. Moreover, because the master has to poll

the jumping node at each RP, it will interrupt the intra-piconet scheduling scheme for all the
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if (time in piconet A > MTS) or (TC expired and (queue size to piconet B > MQS or 1S))
set TC = min (£ * queue size to piconet B, MTYS)
switch to piconet B

Figure 2.4. Pseudocode of LAA

pure slaves. A further investigation on the coordination between the jump mode scheme and
the intra-piconet scheduling scheme is necessary. Lastly, although a jumping node can

maintain a bitmap for each of the connected masters, the message overhead is very high.

2.2.1.4 Load Adaptive Algorithm (LAA)

LAA [20] is an inter-piconet scheduling scheme targeted for small-scale scatternets. A
scatternet is defined as a small-scale scatternet when there are only two piconets connected
by a bridge node. LAA assumes the use of slave-slave bridge as a master-slave bridge may
cause poor bandwidth utilization [17]. In LAA, a bridge node can use either hold mode or
sniff mode to switch between piconets.

In LAA, the bridge node uses five parameters to determine the time for it to switch
between two masters. The first parameter is Idle state (IS). If the queue of bridge node to a
master is empty and the bridge node receives a POLL packet from the master, it will then
enter IS. Once a bridge node enters IS, it will try to switch to another piconet. The second
parameter is Max queue size (MQS), which has a predefined value. If the queue size of a
bridge node to a master reaches MQS, the bridge node will try to switch to another piconet.
The third parameter is Time commitment (TC), which defines the minimal communication
time between a bridge node and a niaster. The value of TC depends on the queue size of
bridge node to master. The fourth parameter is the predictability factor (), which has a
predefined value. It is used to estimate the future queue size of a bridge to a master in order

to calculate the value of TC. The last parameter is Max time-share (MTS), which is used to
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limit the communication time between a bridge node and a master node. By using the above
parameters, the bridge node can decide the time to switch between two piconets. Figure 2.4
shows the pseudocode of LAA [20]. Once a master connects to a bridge node, it serves the
bridge node by using an exhaustive rule in order to empty the queue of the bridge node.

The advantage of this scheme is that it can dynamically allocate bandwidth between
two masters and a bridge node based on different values of load. It is also simple to
implement. However, since the scheme is only applied in small-scale scatternet, it does not
prevent bridge node conflict. Moreover, since a ma;ster exhaustively polls a bridge node until

the bridge node’s queue is empty, it does not maintain fairness among nodes in a scatternet.

2.2.1.5 A Fair and Traffic Dependent Scheduling Algorithm

The algorithm proposed in [19] aims to dynamically allocate bandwidth to each link within a
scatternet and maintain fairness among nodes. This scheme assumes the use of slave-slave
bridge nodes since a master-slave bridge may cause poor bandwidth utilization [17]. The
scheme integrates both intra-piconet scheduling and inter-piconet scheduling.

In the intra-piconet scheduling module, the master uses the PRR scheme to poll each
connected node. However, it also maintains an active list, in which a slave node will move in
and out based on traffic estimation. If a slave node is not present in the active list, the master
will skip polling the siave in the current round. As a result, this scheme can dynamically
allocate bandwidth to all the connected slaves when there is traffic change. In order to
estimate the traffic, the master node keeps track of two variables. The first variable is 7,
which is the estimated rate of traffic on the slave node. The second variable is &, which is the

estimated queue length of the slave node. The scheme updates the estimated values of N and

r by monitoring the data exchange between the master and the slave following the algorithm
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For the slave just polled:
N=N+rr—x
r=ar+ (1 —a) (x/T) when (x <M)
r=ar+ (1l —a) (x/T) + § when (x = M)
For other slaves:
N=N+rt

Figure 2.5. Algorithm for updating the estimation of N and r on slaves

showed in Figure 2.5. In the algorithm, M denotes the maximum amount of data allowed to
be exchanged; x denotes the amount of data exchanged; 7 denotes the time difference
between the current time and last update time; 7 denotes the time difference between the
current time and the time for the last poll of the slave; a, which has a predefined value, is
used for maintaining a stable rate estimation; 8, which also has a predefined value, is used for
assigning more bandwidth to a slave when it can fully utilize the bandwidth.

Therefore, if the updated N value of a slave is less than a predefined “threshold” value,
it will be removed from the active list. Otherwise, the master will add the slave back to the
active list. The scheme chooses the size of three DHS packets as the threshold value, and
limits the maximum skipping cycles on a slave to 5 cycles. In addition, when considering a
bi-directional traffic flow, x denotes the average of data exchanged between two nodes, r
denotes the average of the estimated traffic rate between the two nodes, and N denotes the
average of the estimated queue length for the two nodes.

In the inter-piconet scheduling module, it re-uses the term Rendezvous Point (RP) [8]
to describe the Bluetooth slot at which a master meets with a bridge node. This scheme uses
the hold mode to implement the RPs between a master and a bridge node. Before a bridge
node switches to another piconet, the master negotiates the next RP with the bridge node, and

then puts the bridge node into hold mode until the time for the next RP. Moreover, after
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finishing the communication with the bridge node, the master node continues polling the
slave nodes until the arrival of next RP. In order to determine the next RP, both the bridge
node and the master node perform local estimation for the next possible RP between them.

In order to determine a possible RP for each round, a bridge node keeps track of the
estimated value of N and r for each connected piconets, which is similar to the traffic
estimation at a master node. However, instead of updating the value regarding to a slave, it
updates the value regarding to a connected master. The bridge node monitors the data
exchange between itself and the master and uses the algorithm showed in Figure 2.5 to
update the values of N and r. Therefore, at each RP, the bridge node first determines how
many Bluetooth slots, Nyesn, are available until the value of N for the current connected
master node to reach the threshold value. In order to prevent a long waiting time for the next
RP, the value of Ny is less than 400 Bluetooth slots. After calculating the value of Nyyesn,
the bridge node then sends Nyy.sn together with all its RPs with other masters to the current
connected master node.

On the other hand, the master tries to find a possible RP for each round with which it
can also maintain fairness for all connected slave nodes. In order to find the next RP, the
master uses a counter called num_slots. At each RP, the master checks the connected slaves
in a cyclic order. It begins from the slave after the current connected bridge node to the slave
before the current connected bridge node. The master first sets num_slots to 0. It then checks
whether the value of N for the slave exceeds the threshold after num_slots Bluetooth slots. If
it is true, the master will increase num_slots by the value of threshold times two. Moreover, if

any RP has the same value as num_slots, the master will again increase num_slots by the

value of threshold times two. The process continues until it reaches the last slave node in the
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Slots left for RP | Maximum length of packet sent | Maximum length of packet sent
by master by slave
2 1 1
4 1 1
6 3 3
8 3 3

Table 2.1. Procedure adopted by the master if slots available for the RP is less than 10

cycle. By checking and reserving all possible polling time for each connected slave nodes, it
can maintain fairness for all connected slave nodes. Again, in order to prevent a long waiting
time for the next RP, the value of num_slots is bounded to be less than 400 Bluetooth slots.
After calculating the value of num_slots, the master then sends num_slots together with all its
RPs with other bridge nodes to the current connected bridge node.

After exchanging the information, both bridge node and master node can now finalize
their next RP. Both of them first pick the largest of Nuesn and num_slots as the initial
negotiated RP. If the value of negotiated RP is the same as an RP in either master node or
bridge node, the value of the negotiated RP will be increased by the value of threshold times
two. Thé process continues until the value of negotiated RP is not the same as any RP in
either the master node or bridge node. Both master and bridge node then set the final
negotiated RP as their next RP.

Sometimes the Bluetooth slots available before the beginning of an RP may not be
enough for the size of packets going to exchange between the master node and the slave node.
An additional rule is implemented to deal with this situation. As the maximum size of
Bluetooth packet is DHS, which uses five Bluetooth time slots, the rule will only be triggered

when the Bluetooth slots available for an RP is less than 10. Table 2.1 shows the procedure

[19] adopted by the master to handle the situation. For example, if 6 Bluetooth slots are
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available before an RP, the master will be allowed to send a maximum size of 3-slot packet
and the polled slave will also be allowed to reply a maximum size of 3-slot packet. The
reason for setting the same maximum length packet size on both sides is to maintain fairness
between master node and slave node.

The advantage of this scheme is that it can maintain bandwidth fairness among nodes
within the scatternet. At the same time, it can also adapt to traffic changes.

However, the traffic estimation algorithm for this scheme is suitable for stable traffic
rate, but may not be suitable for bursty real-time traffic. In a dynamic environment, it is
difficult to predict accurately the future traffic. Therefore, a traffic estimation error will affect
the performance. Moreover, when considering bi-directional traffic, this scheme may lead to
a long waiting time if one side has a high traffic rate and the other side has a low traffic rate.
As a result, it increases the packet delay on the node with a higher traffic rate. Lastly, this
scheme sets a limit to the maximum packet size sending between two nodes when the
Bluetooth slots available before an RP is less than 10. However, scheduling occurs after the
L2CAP layer has segmented the packet. Therefore, forcing the node once again to reduce the
packet size does not strictly adhere to the current Bluetooth specification. In addition, the
scheme did not discuss how to deal with the second half of the packet when the original

packet has segmented to fit the size specified in Table 2.1.

2.2.1.6 A Locally Coordinated Scatternet Scheduling Algorithm (LCS)

The LCS algorithm [18] aims to optimize the throughput, delay, and energy. In addition, it
also aims to adapt to the dynamic traffic conditions. In this scheme, each master node first
meets with a child node (which can either be a slave node or a bridge node) and exchanges

packets with the child node during the meeting time. It then negotiates the start time and the
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minimum duration of the next meeting time with the child node. Afterwards, the master polls
the child node again at their confirmed next meeting time. In order to negotiate the start time
and the minimum duration of the next meeting time between the master and the child node,
both nodes maintain local traffic information to make the decision.

In order to update the traffic change, both master node and child node monitor four
variables during the meeting time. The first variable is #x, which stores the number of slots
used for exchanging packets during the meeting time. The second variable is gsz, which
stores the combined queue size for both nodes. The third variable is , which stores the value
of recess interval. The recess interval is the time difference between the start time of the
current meeting and the finish time of the previous meeting. Lastly, the fourth variable is # =
tx/d, which stores the link utilization. The value of d is equal to the duration of the current
meeting time. By monitoring #x and gsz, it can update the average value of avg_#x and
avg gsz in an exponentially weighted moving fashion. Moreover, by monitoring r and u, it
can update the average value of avg r and avg_u based on the past Nr values of » and u,
where Nr has a predefined value.

Based on the values of avg tx and avg gsz, both master and child nodes determine
the minimum duration for the next meeting, &*’. Since the values of avg tx and avg gsz re
influenced by traffic changes, LCS can vary the value of & ! to adapt the change. In order to
maintain a stable condition, &*' is upper-bounded by D,,.. and lower-bounded by D,,».. Both
Do and D, have predefined values. At the beginning, d*'is set to the l\arger value of

avg tx and avg_gsz. Then, if the queue is not empty at the time when the node updates the

value of &*/, LCS will increase &' by K,.xgsz slots. K, has a predefined value and is set

to 0.5. By increasing the value of d*!, it can reduce the negotiation overhead. Lastly, if the
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current value of gsz is larger than the current &/, @/ will then be set to gsz.

On the other hand, based on the values of avg tx, avg r and avg u, both master and
child nodes determine the recess interval before the next meeting begins, #*’, and the start
time of next meeting, s'*/. By evaluating the values of avg tx, avg r and avg u, it can
determine whether the data rate is increasing, decreasing or stable. LCS uses a, which is
defined as a multiplying factor, to modify the value of #*/. If the data rate is increasing, LCS
will decrease the value of "/ by a. The link will receive more bandwidth. However, if the

data rate is decreasing, LCS will increase the value of pH

by a. The link will receive less
bandwidth. At the special case, when LCS updates the value of #*! after a long period of idle
time, it will immediately set #*' to R;.;. Lastly, if the data rate is stable, LCS will adjust the
value of #*' so that avg u will be close to far_u, which has a predefined value. In order to

t+]

maintain a stable condition, # s upper-bounded by R, Finally, the value of s will then

*I 4 the current clock value.

be equal to ~

After determining the values of s/ and &/, the master and child nodes are ready to
negotiate for the next meeting time. In order to minimize the gap between two meeting time
from different links, LCS modifies s'* of a link to the time right after the finishing time of
the closest meeting of another link with similar data rate. With the finalized value of s
LCS chooses Nieer number of vacant intervals after s/, Each vacant interval ( vy, v/)
represents the free time interval between two meeting periods of the node. At the beginning
of the negotiation process, the master node sends N, vacant periods, d*! and gsz to the

child node. With the gsz value from the master node, the child node calculates its own d *

Then the child node just picks the larger of the two as the finalized 4. Since the child node

also has its own N,..., vacant periods, it picks the earliest time interval, which falls within the
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“vacant period for both the master node and the child node and also has value greater than d H,
as the next meeting time. Finally, the child node replies the next meeting time to the master.

The advantage of this scheme is that it can dynamically allocate bandwidth based on
traffic change. By dynamically allocating bandwidth, it can also reduce wasted slots. As a
result, it can improve the efficiency of throughput and latency. Furthermore, the scheme can
reduce energy usage since the node could go to the sleep state when there is no scheduled
meeting time. Moreover, since each master-child link has distinct meeting time, it can
prevent bridge node conflict.

However this scheme does not maintain bandwidth fairness among nodes within the
scatternet. When LCS decides the meeting time between the master and child nodes, it does
not consider any method to maintain fairness for other connected nodes. Although the
scheme suggested the future work of employing DRR [5] to maintain max-min fairness [15],
simply applying DRR on Bluetooth scatternet may not guarantee the max-min fairness. Since
scatternet scheduling has to consider the time for the bridge node to switch between piconets
and the time division shared by two connected nodes, LCS needs to implement a modified

version of DRR in order to achieve the max-min fairness.

2.2.2 Individual Node Based Scatternet Scheduling Algorithms

The individual node based scatternet scheduling algorithms do not have a deterministic
switching piconet schedule for the bridge node. Instead, a flexible scatternet scheduling

scheme is maintained by each node within a scatternet.

2.2.2.1 Credit Based Scheduling (CBS)

The CBS scheme [13][14] applies a priority scheme to master nodes and bridge nodes in
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order to decidé when the master should poll a connected node and when the bridge node
should listen to a master node. At the beginning, CBS puts all nodes connected to the master
into the sniff mode. A master node is required to manage a number of sniff slot events
respected to each of the connected nodes. Since a bridge node is connected to more than one
master, a bridge node is also required to manage a number of sniff slot events respected to
each of the connected masters. Thus, based on the link’s priority, a master will decide
whether to poll a node at its sniff slot and a bridge node will decide to which master node it
should listen. In order to derive a priority scheme, each node maintains a credit account for
each of its link. A link with more credits in its account has a higher priority class among all
other credit links. Initially, all links from a master node and a bridge node are assigned with
zero credit. If a link uses a Bluetooth slot for transmitting or listening data, one credit will be
deducted from the link's credit account. In order to maintain a fixed number of total credits
for all credit links from a master node and a bridge node, when one credit is deducted from a
credit link, one credit is added to a temporary account. If the credit in the temporary account
reaches »n, which is the number of credit links connected to the node, then the temporary
account will be reset to zero, and the credit in each credit link is increased by one. With CBS,
an ongoing sniff event will yield its turn to another link's upcoming sniff slot if the credit in
the upcoming link is higher than the credit in the ongoing link. CBS also defines a parameter
called Ty, to set an upper bound to the time between two consecutive sniff events. If a link
does not get a chance to transmit or listen for 7,,,; Bluetooth slots, an ongoing sniff event will
yield its turn to the link. In order to reduce the number of piconet switch, CBS also defines a

parameter called Nywich i to lengthen the ongoing sniff events. Therefore, an ongoing sniff

event will only yield its turn to a link's upcoming sniff slot if the upcoming link's credits
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exceed the ongoing link's credits by Ngwireh s

Besides, CBS also re-distributes the credits among all credit links from a node in
order to satisfy the max-min fairness [15]. If a POLL-NULL event exists on a credit link and
the link has a positive credit number in its account, some of its credits will be equally
distributed to other links. As a result, the re-distributed link has about the same number of
credits as the link with the minimum credits.

Lastly, in order to reduce the wasted slots spending on unsuccessful sniff slots and
POLL-NULL events, CBS uses the Adaptive Presence Point Density (APPD) scheme to
change the T,interval according to the traffic load. At each link's sniff slot that does not
have data transmission, T of the link is doubled. When the value of 7, reaches the upper
threshold, it will stop increasing.

The advantage of this scheme is that it can maintain a max-min link level fairness
among all credit links by using the credit account, redistribution of credits, Nywitch > Tpon, and
APPD. Moreover, each node only has to manage its own traffic and does not have to
exchange information with other nodes. Therefore, it can reduce the message overhead.

However, one of the problems of the CBS scheme is that it does not consider bridge
node conflict. In CBS scheme, it is possible for two masters to poll the same bridge node at
the same sniff slot; therefore, it wastes a number of time slots due to the conflict. In addition,
the packet loss event also degrades the performance of TCP traffic. Moreover, the ADDP
method of doubling the T,y interval may not be fast enough to react the traffic change. A

further analysis on how to modify the T,y value is necessary.

2.2.2.2 Pseudo-Random Coordinated Scatternet Scheduling (PCSS)

PCSS [16] is another scheme that does not have a fixed switching piconet schedule for a
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bridge node. Each node in the scatternet maintains its own schedule. In this scheme, it
defines checkpoint as the meeting point for two connected nodes to exchange data, and it
defines checking interval, Tepect, as the period of time that contains exactly one checkpoint. It
also defines checking intensity as the inverse of checking interval. In PCSS, a pair of nodes
starts communicating with each other at a checkpoint; however, the communication ends
when one of them leaves to attend a checkpoint for another node. In PCSS, each master-slave
pair creates its own pseudo random sequence of checkpoints. As the pseudo random
sequence is unique for each master-slave pair, it can prevent systematic conflict of
checkpoints on different links to a bridge node. In PCSS, a master-slave pair uses the current
master clock, the MAC address of slave, and the current T, to generate pseudo random
sequence of checkpoints.

In order to avoid slots wastage, PCSS changes the checkpoint intensity according to
data traffic. Each node in PCSS maintains its own traffic measurement and independently
changes the checkpoint intensity according to the traffic measurement. Therefore, the
generated checking interval for each of the two connected nodes may be different. In order to
synchronize the checkpoint positions between two connected nodes, the pseudo random
checkpoint positions for the node with lower checking intensity must be a subset of the
pseudo random checkpoint positions for the node with higher checking intensity. PCSS uses
the utilization of checkpoints on each link and the total utilization on the node to determine
whether to increase or decrease the checking intensity on a link. A checkpoint is considered
to be utilized if both the master and the slave use the checkpoint and at least one data packet
has been sending out from either the master or the slave. In PCSS, each node takes Nympte min

sample of measurements before deciding to change the checking intensity. If the utilization
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of checkpoints on a link drops below the lower checkpoint utilization threshold, PCSS will
decrease the checking intensity by doubling the checking interval. However, if the utilization
of checkpoints on a link rises above the upper checkpoint utilization threshold and the total
utilization on the node is still lower than the upper node utilization threshold, PCSS will
increase the checkpoint intensity by halving the current checking interval. The checking of
total utilization on a node is used to set a maximum limit for the checking intensity.

The advantage of this scheme is that the scheduling is localized on each node;
therefore, it is easy to apply the PCSS scheme to the scatternet. Moreover, the uniqueness of
pseudo random sequence of checkpoint positions on each link can reduce the chance of
having bridge node conflict. Furthermore, the ability of changing checking intensity can also
reduce wasted slots spending on low traffic link. Although there are many advantages from
the PCSS scheme, there are also some weaknesses on this scheme. Sometimes if a checkpoint
on a link is very close to a checkpoint on another link, the master may need to switch to the
latter link while there is still a packet transmitting on the current link. Therefore, a maximum
of six slots, including a 5-slot data packet and 1-slot polling packet, will be wasted. In
addition, since the serving time for each node is bounded by the time between the current
checkpoint for the serving node and the next checkpoint for another node, it does not provide
a deterministic serving time for each node. PCSS does not maintain faimess for all nodes

within the scatternet.

2.3 Summary

In this chapter, we summarized various intra-piconet and inter-piconet scheduling algorithms

proposed in the literature. For each algorithm, we identified both the advantages and
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limitations. For intra-piconet scheduling, most of the previous work focused on improving
performance on throughput and delay, as well as maintaining the fairness for all the nodes.
For inter-piconet scheduling (or scatternet scheduling), most of the previous work focused on
one (or more) of the following issues: determine the meeting time between master and bridge
node, prevent the bridge node conflict, maintain faimess. for all nodes in a scatternet, and

allocate bandwidth to each links based on traffic change. Our scatternet scheduling

algorithm (to be described in Chapter 3) aims to satisfy all the above requirements.




Chapter 3 — Adaptive Scheduling Algorithm

In this chapter, we propose an adaptive scheduling algorithm (ASA) for Bluetooth scatternets.
The ASA aims to achieve the max-min fairness by dynamically allocating bandwidth to each
link based on real-time traffic. Moreover, it also aims to prevent the bridge node conflict in
order to reduce wasted slots. Lastly, the ASA integrates both intra-piconet scheduling and
inter-piconet scheduling.

The rest of this chapter is organized as follows: A list of assumptions are stated and
explained in Section 3.1. The traffic estimator, intra-piconet and inter-piconet scheduling
algorithms are described in Sections 3.2. A discussion of how ASA can achieve the max-min
fairness is given is Section 3.3. An example of the operation of ASA in a sample scatternet

topology is described in Section 3.4

3.1 Assumptions

In our work, we make the following assumptions:
e A bridge node is a slave-slave node;
e Only ACL connections are present in the scatternet;

e All nodes are time-synchronized with each other within the scatternet

The rationale for the above assumptions are as follows: Results in [17] show that a
slave-slave bridge node can achieve a lower transfer delay. When a master is also acting as a
bridge node, it decreases the bandwidth utilization within a piconet. For performance point of
view, a lot of previous research work (including this one) assumes the use of a slave-slave

bridge node.

43
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Our scheme does not consider the support of SCO links within the scatternet. When
there is a SCO link in a piconet, there will only be four slots available for ACL connections.
Therefore, a node can no longer use a 5-slot packet for data transmission. In addition, if there
are two SCO links in a piconet, a node will only be able to use 1-slot packet for data
transmission. Thus, supporting SCO link will decrease the throughput and delay for other
ACL links. Besides, if the concerned SCO link is a master-bridge link, then there will be a
problem on the inter-piconet scheduling. Since the switching of the bridge node between
piconets can result in a maximum of two slots lost, there will only be two slots available for
the bridge node to reach another piconet. With only 2-slots available, a bridge node is not
able to connect with more than two piconets. Therefore, there are proposals regarding the use
of an ACL link to handle SCO like traffic. The work in [21] proposed a method of replacing
SCO traffic with a QoS-constrainted ACL traffic. The work in [22] showed that ACL traffic
is capable for supporting voice connections.

We assume that time slots for all the nodes are perfectly aligned. The reason for
assuming all nodes are time-synchronized with each other is to simplify the discussion in this
chapter. Our scheme can also handle the case where there is time-slot loss for a bridge node

to switch between different piconets.

3.2 Adaptive Scheduling Algorithm

In order to maintain fairness for all nodes within the scatternet, ASA defines the maximum
usable serving slots (MUSS) to limit the serving time between two nodes. The size of MUSS

depends on the types of Bluetooth packet supported by the scatternet. Moreover, the size of

MUSS must be large enough for both nodes to exchange packets. Therefore, if the scatternet




Chapter 3. Proposed Scheme 45

supports 1-slot, 3-slots and 5-slots packets, then the size of MUSS must be larger than or
equal to ten Bluetooth time slots. If the scatternet only supports 1-slot and 3-slots packets,
then the size of MUSS must be larger than or equal to six Bluetooth time slots. Lastly, if the
scatternet only supports 1-slot packet, then the size of MUSS must be larger than or equal to
two Bluetooth time slots.

In order to prevent bridge node conflict and at the same time to provide the max-min
- fairness for all the links within the scatternet, each master node or bridge node maintains a
- dynamic switch schedule to organize the time for it to communicate with each connected
node. Figure 3.1 shows the structure of a switch schedule. A switch schedule divides the
timeline into fixed size switch schedule slots (SS_Slots). A master reserves the serving time
for a bridge node by assigning an SS_Slot to the bridge node. A master reserves the serving
time for a slave node by using an empty SS_Slot. On the other hand, a bridge node reserves
the serving time for a master node by assigning an SS_Slot to the master. Since ASA uses the
switch schedule to reserve serving time between two nodes, the size of SS_Slot is equal to
MUSS.

In ASA, when a master or a bridge node encounters an SS_Slot which has been
assigned to a link, it spends a maximum of MUSS on the link. However, when a master or a
bridge node encounters an SS_Slot which has not been assigned to any links, the master and
the bridge node handle it differently. The master will use the time duration of the SS_Slot to
communicate with its slaves following the intra-piconet scheduling. On the other hand, the
bridge node will become idle during the entire SS_Slot. The switch schedule will be updated

every time when the master node meets with the bridge node. Other than maintaining a

switch schedule, a master node also maintains active and waiting lists to schedule the serving
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Figure 3.1. Structure of a switch schedule

time for each slave node. Furthermore, an estimator is placed on each node to monitor the

traffic condition.

3.2.1 Traffic Estimation

In order to monitor the traffic change, each node is responsible to update the traffic
rate either when it receives a packet from the application layer or when it bypasses a packet
to another node. The process continues until the node leaves the scatternet. In ASA, it uses
the time-sliding window (TSW) [23][24] for traffic estimation. We also modify the time to
re-start the estimétion in case of a long idle period. The reason for using TSW is that it
maintains a time-based history for the estimation and decays the past history information
over time, but not over packet arrivals. Therefore, a high traffic stream or a low traffic stream
has the same weight on updating the estimated traffic rate. For example, if a node encounters
bursty traffic, the estimated packet arrival rate will not be equal to the packet arrival rate for
the bursty traffic. Since TSW monitors a window size of history, it considers all the packets

arrived during the window length. As a result, it can smooth out the traffic estimation under

bursty traffic. Our scheme does not focus on improving the traffic estimation scheme since
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avg_inferval: time window over which history is kept (constant)

avg_rate: measured arrival rate of traffic in unit of slot

restart_ratio: ratio difference which triggers the restart of estimation (constant)
stage. indicate the stage of traffic estimation and is initially set to 0

previous_t: store the arrival time of previous arriving packet

inter_arrival_t: current packet inter-arrival time

packet_slots: number of slots for current arriving packet

slots_in_win: number of slots in time window

new_slots: combined size of slots for current packet and slots_in_win

packet arrived from_upper_layer( ) {
if (start equals 2)
if ( inter_arrival t x restart_ratio < ( current time — previous_t))
reset start to 0;

if (start equals 0)
previous_t = current time;
set start to 1,

else if (start equals 1)
inter_arrival t = current time — previous_t;
avg_rate = packet_slots | inter_arrival_t;
previous_t = current time;
set start to 2;

else if (srart equals 2)
inter_arrival t = current time — previous_t,
slots_in_win = avg rate x avg_interval,
new_slots = slots_in_win + packet _slots;
avg rate = new_slots [ (inter_arrival _t+ avg interval );
previous_t = current time;

Figure 3.2. Algorithm for traffic rate estimation

our main concern is to obtain the estimated traffic information for creating the switch
schedules and active lists.

Figure 3.2 shows the algorithm for the traffic estimation. In this algorithm, it takes the
first two packets to calculate the initial packet arrival rate. It then updates the estimated
packet arrival rate by using the TSW scheme. As the prediction of packet arrival rate is based
on the reason that the future packet arrival time should be related to the current packet arrival

time, a packet arrives after a long idle period will break this kind of relationship. Therefore,

the traffic estimator restarts the estimation when the new packet inter-arrival time is larger
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than the previous packet inter-arrival time by a multiple of restart ratio which has a
predefined value. The value of restart_ratio in ASA is set to 5.

Besides estimating the packet arrival rate, each node also determines the time for it to
accumulate enough packets to request for data transmission. As mentioned in the previous
section, a master only serves a connected node for no more than MUSS. Therefore, in order
to allow both nodes to receive equal bandwidth for data transmission, ASA sets the trigger
point for requesting data transmission to be half the size of MUSS. Figure 3.3 shows the
relationship between MUSS and the trigger point. In ASA, the actual time for a node to reach
the trigger point is defined as the transmission request arrival time (TRAT).

Figure 3.4 shows the algorithm for how each node updates the estimated TRAT
before it transmits a packet. If a node already has enough packets in the queue, it will set
TRAT to 0 in order to indicate that no waiting time is needed. Otherwise, it will use the
estimated packet arrival rate to predict the value of TRAT. As a result, if a node already has
enough packets in the queue, ASA does not require the traffic estimation information to
determine the status of the node. Consequently, ASA does not always depend on traffic
estimation.

If a node’s queue is empty for a long period of time, which is referred as an idle

period, the estimated packet arrival rate may not give enough information to predict the

TRAT. As a result, the node may request for data transmission while it does not have any
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avg rate: measured arrival rate of traffic from the estimator in unit of Bluetooth slot
slots_in_queue: number of packet slots in the queue

slot_need: required accumulated number of slots to reach the trigger point (constant)
max_waiting_interval: the maximum waiting period in unit of second (constant)

pre_empty q: indicate whether the queue is empty for previous round and is initially set to false
est req t: estimated duration time for the node to reach the trigger point in unit of second
est_trat: estimated TRAT in unit of second

skipping_time: keep track the multiplying factor for est_req_t and is initially set to 1

Note: If est req t and est_trat are set to 0, it indicates that the node had already
accumulated enough packets to reach the trigger point

require_to_send_data () {
if ( the queue is empty and pre_empty gq is true )
if (current time > est trat)
skipping time++;
est_req_t = slot_need | avg_rate;
if (est_req t x skipping_time > max_waiting_interval)
est_req t= max_waiting_interval,
else
est req t=est _req t x skipping time;
est_trat = est_trat + est_req_{t,
else if ( the queue is empty)
set pre_empty g to true;
est_req t=slot need/ avg rate;
est_trat = current time + est_req t;
else if (slots_in_queue < slot_need)
est_req t=(slot_need —slots_in_queue )/ avg_rate;
est_trat = current time + est_req _t;
else
reset skipping_time to 1;
est_req t=0;
est_trat=0;
include the value of est_trat in the header of the packet

Figure 3.4. Algorithm for trigger point estimation

packet to send. Therefore, some time slots will be wasted during the idle period. In order to
reduce the number of wasted slots in the above situation, ASA maintains a multiplying factor
referred as the skipping time to modify the waiting time. For each consecutive occurrence of

an empty queue, if the current time has already passed the estimated TRAT of the node, the

node will increase the value of the skipping time by one. Besides, in order to avoid a master
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skips polling a node for a long period of time, ASA defines the maximum waiting interval to
limit the waiting time for the node to request for data transmission. Therefore, if the value of
skipping_time multiplies the original estimated duration time required for the node to reach
 the trigger point is smaller than the maximum waiting interval for the node, it will be set as
the next duration time for the node to reach TRAT. Otherwise, the maximum waiting interval
will be set as the next duration time for the node to reach TRAT. Once the node accumulates
enough packets to reach the trigger point, ASA re-sets the value of skipping time to 1. In
ASA, the value of the maximum waiting interval is set to be the time duration for 100
Bluetooth slots.

Since it is the responsibility for the master to update the nodes’ status in the active
and waiting lists, a slave node needs to include the actual TRAT in the header of the packet
sending to the master. If we utilize a 64-slot wrap around switch schedule to indicate the
TRAT, it will use 6 bits in the header for the information. Furthermore, since it is the
responsibility for the bridge node to decide a confirmed meeting time on the inter-piconet
link, a master needs to include the actual TRAT in the header of the packet sending to the
bridge node. This information is important for maintaining fairness for nodes in a scatternet

and allocating bandwidth to each link based on traffic change.

3.2.2 Intra-piconet Scheduling

In ASA, each master node maintains an active list and a waiting list to schedule the serving
order for all connected slave nodes. An active list contains all the slave nodes that have
accumulated enough packets to reach the trigger point. A waiting list contains all the slave

nodes that do not have enough packets in the queue. The master follows the order of nodes in
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its active list and serves the nodes in a round robin fashion. Furthermore, a master node starts
to serve the next slave node either when it has finished serving the slave node for MUSS or
when there is no data to send between the two nodes. As mentioned in Section 3.2, a master
uses the dynamic switch schedule to reserve an SS_Slot, which is equal to the size of MUSS,
for the communication between two nodes. However, sometimes two nodes may spend less
than MUSS for data transmission. In that case, there will be some slots available before the
master encounters an SS_Slot assigned to a bridge node. The master will continue to serve
next node in the active list until the time for the master to communicate with a bridge node
occurs. The master then 'switches to serve the bridge node. Besides, before the master serves
another node, it will update the status of the slave node in the active list.

The algorithm for how each master node updates the active and waiting lists is shown
in Figure 3.5. At the time when the master encounters an empty SS_Slot, it begins to serve
the slave node in the active list. Each time when a slave node replies the packet to the master,
it indicates its estimated TRAT in the packet’s header. However, the master will only use the
information to update the active list when it switches to serve another node. Therefore, at that
time, if either a master or a slave node indicates that it has already accumulated enough
packets to reach the trigger point, the master will keep the slave node in active list. However,
if both nodes indicate that they do not have enough packets, the master will move the slave
node to the waiting list. Simultaneously, the master also stores the estimated time for it to
poll the slave node again. The estimated polling time is chosen from the smaller time
between the estimated TRAT for the master and the estimated TRAT for the slave node. If

the master reaches the end of the active list, it will select a slave node which has the smallest

estimated polling time and has not been polled for this round in the waiting list for a test.
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active list: a list contains all the nodes which are ready for polling
waiting_list: a list contains all the nodes which are not ready for polling
est s trat: estimated TRAT for the current serving slave

est_m_trat: estimated TRAT for the master on the current serving slave
est_poll t[7]: estimated time for the master to poll each slave node
pointer: it indicates the current serving node in the active list

Note: when est_s_trat equals 0, it indicates that the current slave node has already
accumulated enough packets to reach the trigger point
when est_m_trat equals 0, it indicates that the master has already accumulated
enough packets to reach the trigger point for the current slave node

update list( ) {
if ( either est_s trator est_ m_tratis0)
keep the current node on the active list;
move the pointer to the next node in the active list;
else
remove the node from active list;
add the node to waiting list;
if (est_m_trat <est_s_trat)
est_poll_t[current node] = est_m_tratt;
move the pointer to the next node in the active list;
else
est_poll_t{current node] = est_s_trat;
move the pointer to the next node in the active list;

if (it is the end of active list )
select the node = with smallest est_poll_tf{current node] in waiting list and
has not been polled for this round;

if (est_poll t[current node] for the node < current time )
remove the node from waiting list;
add the node to the end of active list;

else
move the pointer to the front of active list;

Figure 3.5. Algorithm for updating active and waiting list

If the current time has already passed the estimated polling time for the chosen slave
node, the master will remove the node from the waiting list and add it back to the end of the
active list. The master then serves the new slave node in the active list. The process continues

until the master cannot find a node in the waiting list that is capable of moving to the active

list. The master will then move to the next round and serve the first slave node in the updated
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active list.

3.2.3 Inter-piconet Scheduling

A switch schedule is maintained between a master and a bridge node to organize the time for
them to communicate with each other. Each time when a master meets with a bridge node,
they negotiate their next meeting time and update their switch schedules. In ASA, a master
uses the hold mode to allow the bridge node to switch between piconets. In hold mode, a
master puts a connected node into sleep state in which the node does not require to listen to
the master for a period of time. When the time expires, the connected node turns back into an
active mode and actively listens to the master. Therefore, after determining the new meeting
time, a master node knows how long it should put a bridge node into the hold mode. In ASA,
the master initializes the negotiation process.

Figure 3.6 shows the algorithm for how the master node determines the suggested
next meeting time. The master node first finds an empty SS_Slot as the initial estimated
meeting time. Then for each slave node in the active list, the master reserves an empty
SS_Slot for it to indicate that the SS_Slot is not eligible for scheduling with a master-bridge
meeting time. Moreover, the master will skip the SS_Slot that has already been assigned to a
link. The process continues until the master reaches the end of the active list.

After reserving SS_Slots for the active nodes, the master also checks the nodes in the
waiting list. Thus, starting from the node with the earliest estimated polling time in the
waiting list, if the start time for current estimated meeting SS_Slots is larger than the node’s

estimated polling time, the master will reserve an empty SS_Slot for the node. The process

will not end until the master finishes checking all the nodes in the waiting list. As a result, the
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current_m_slot: the current master SS_Slot in unit of Bluetooth slot

current_m_slot_t: the start time of current master SS_Slot in unit of second
suggested_m_slot: the suggested master meeting SS_Slot in unit of SS_Slot
suggested_m_slot_t: the start time of suggested master meeting SS_Slot in unit of second

SS Slot_time: the time duration of one SS_Slot in unit of second (constant)

est_poll t[7]: the estimated time for the master node to poll the slave node in unit of second

obtain_next meeting_slot( ) {
suggested m_slot = current_m_slot +one SS_Slot;
suggested m_slot_t = current_m_slot t+ SS Slot_time;
while ( suggested m_slot is already assigned )
suggested m_slot = suggested m_slot + one SS_Slot;
suggested_m_slot _t = suggested_m_slot_t+ SS Slot time;
for ( each node in the active list )
suggested m_slot = suggested m_slot + one SS_Slot;
suggested m_slot_t = suggested m_slot t+ SS_Slot_time;
while ( suggested m_slot is already assigned )
suggested_m_slot = suggested _m_slot + one SS_Slot;
suggested m_slot t = suggested m_slot t + 8S Slot_time;
for ( each node in waiting list with ascending order of est_poll _t/current node]) {
if (est_poll t{current node] of a node < suggested m_slot t) {
suggested m_slot = suggested m_slot + one SS_Slot;
suggested_m_slot_t = suggested m_slot_t+ SS_Slot_time;
while ( suggested_m_slot is already assigned )
suggested m_slot = suggested_m_slot + one SS_Slot;
suggested_m_slot_t = suggested m_slot_t + SS_Slot_time;

Figure 3.6. The algorithm for obtaining master suggested meeting time

master can determine the final suggested meeting time with the bridge node, which is located
at the start time of the estimated meeting SS_Slot. By the whole process, the master can
ensure that it reserves enough serving time between the current meeting time and the next
meeting time for other slave nodes and bridge nodes within the piconet.

Thus, each time when a master node encounters an SS_Slot which is assigned to an
inter-piconet link, the master will obtain the next suggested meeting SS_Slot with the bridge
node by using the algorithm shown in Figure 3.6. Moreover, it will also obtain the TRAT by

using the algorithm shown in Figure 3.4. Lastly, it will determine all the following SS_Slots

which have already been assigned to other bridge nodes. The master will then include all the
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above information in header of the packet sending to the targeted bridge node in order to
negotiate for the next meeting time. In addition, the master will switch to serve another node
either when it has finished serving the bridge node for MUSS or when there is no data to
send between the two nodes. If we assume that a master can connect up to three bridge nodes
and a master utilizes a 64-slot wrap around switch schedule, it will use 18 bits for including
the suggested SS_Slot and the occupied SS_Slots in the packet.

Once the bridge node has received the information from the master, it uses the
information together with its local estimated values to determine the confirmed meeting time.
Figure 3.7 shows the algorithm for the process. At the beginning, the bridge node finds the
time for the nodes to fulfill the trigger point requirement. Thus, if both nodes have already
reached the trigger point, the bridge node will indicate that no waiting time is needed.
However, if both nodes indicate that they do not have enough packets to reach the trigger
point, the bridge node will select the smaller estimated TRAT between the master and the
bridge node as the final estimated TRAT. Afterwards, the bridge node finds the closest
SS Slot with a start time exceeding both the final estimated TRAT and the start time of
meeting SS_Slot suggested by the master. If the SS_Slot has already been assigned to a link,
the bridge node will find the next closest empty SS_Slot. Lastly, the bridge node assigns the
empty SS_Slot to the master node, and selects the start time of the SS_Slot as the confirmed
meeting time. The bridge node then includes the confirmed meeting SS_Slot in header of the

packet replying to the master. The master then assigns the confirmed meeting SS_Slot to the

bridge node.
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current_b_slot: the current bridge SS_Slot in unit of Bluetooth slot

current_b_slot t: the start time of current bridge SS_Slot in unit of second
suggested_m_slot: the suggested master meeting SS_Slot in unit of SS_Slot
suggested_m_slot t: the start time of suggested master meeting SS_Slot in unit of second
confirm_b_slot: the confirm bridge meeting SS_Slot in unit of SS_Slot

confirm_b_slot t: the start time of confirm bridge meeting SS_Slot in unit of second
SS_Slot_time: the time duration of one SS_Slot in unit of second (constant)

est_b_trat: estimated TRAT for the bridge node

est_m_trat: estimated TRAT for the master

est_poll t: estimated time for master to poll the bridge node

Note: when est_poll_tis set to 0, it indicates that no waiting time is need to request
Jfor data transmission

obtain_confirm_meeting_slot( ) {
if (est_b_trat equals O or est_m_trat equals Q)
est_poll t=0;
else if (est b _trat <est m_trat)
est_poll t=est b trat;
else
est_poll_t=est_m_trat;

confirm_b_slot = current_b_slot + one SS_Slot;

confirm_b_slot_t = current_b_slot_t + SS_Slot_time;

while (confirm_b_slot t < suggested m_slot_t or confirm_b_slot_t < est poll t)
confirm_b_slot = confirm_b_slot + one SS_Slot;
confirm_b_slot t= confirm_b_slot_t+ SS_Slot_time;

while (confirm_b_slot is already assigned either in master or bridge)
confirm_b_slot = confirm_b_slot + one SS_Slot;
confirm_b_slot t= confirm_b_slot_t+ SS_Slot_time;

Figure 3.7. The algorithm for obtaining bridge confirmed meeting time

3.2.4 Resume Send

Since a master node only spends an MUSS on a connected node, sometimes the Bluetooth
slots left between the two nodes may not be enough for the size of packet exchange on the
current serving link. Moreover, as the master must start serving a bridge node when the
scheduled meeting time has arrived, sometimes the Bluetooth slots left before a master
switching to serve a bridge node may also not be enough for size of packet exchange on the

current serving link.
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Our scheme implements the resume send mode in order to handle this situation. In
ASA, the master updates the connected node (i.e., slave) with the remaining time-slots
avdilable by including the value in the unused 4-bit header field of the packet to the node. On
the other hand, the slave updates the master with the size of packet waiting in its queue by
including the value in the 1-bit header field of the packet to the master.

Figure 3.8 shows the algorithm of how the master node and the connected node
maintain the status between two nodes. In the algorithm, each time before a master sends a
packet, it first checks whether the connected node has asked for a resume send in the
previous turn. If the connected node has already activated the resume send mode, the master
will give the turn to the connected node by sending a POLL packet. The master will de-
activate the resume send mode after it receives the data packet from the connected node. As a
result, it can maintain an equal chance for both nodes to utilize the bandwidth. If the resume

send mode is off, the master will then check whether the Bluetooth slots available are large

-enough for the size of packet in the queue. If the remaining slots are not enough for the

packet transmission in its queue, but are enough for packet transmission in the connected
node’s queue, the master again will give the turn to the connected node by sending a POLL
pécket. Therefore, it can reduce the number of wasted slots. Lastly, if the remaining slots are
not enough for both nodes, the master will switch to serve the next node. Alternatively, if the
connected node notices that the remaining slots are not enough for packet transmissions in its
queue, it will indicate the activation of resume send mode in a NULL packet and send the

packet to the master.
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current_m_packet _slot: number of slots for the current packet in master’s queue
current_n_packet_slot: number of slots for the current packet in node’s queue
expect_s_packet slot: number of slots for the next packet in slave’s queue
slot_left: number of slots left for transaction

is_resume: indicate whether the resume send mode is on or off

master_send_check( ) {

if (is_resumeis on) :
update slot_left and indicate in the packet;
send POLL packet;

else if ( current_m_packet _slot <slot_left )
update slot_left and indicate in the packet;
normal send;

else if ( expect s _packet_slot < slot_left and current_m_packet_slot > slot_left )
update slot_left and indicate in the packet;
send POLL packet;

else
give the turn to the next possible node;

}

node_send_check( ) {

if (current_n_packet slot < slot_left )
indicate the size of next packet waiting in the queue in the data packet;
normal send;

else
activate resume send mode and indicate in the NULL packet;
indicate the size of next packet waiting in the queue in the NULL packet;
send NULL packet;

Figure 3.8. The algorithm for updating node status

3.3 Fairness Discussion

In this section, we describe how ASA can achieve the max-min fairness for all nodes in a

scatternet.

3.3.1 Fairness around the Master Node

ASA can maintain the max-min fairness at the master node based on the following reasons.

Once a link between a slave and the master has accumulated enough packets to reach the

trigger point, the slave node is guaranteed to be in the active list in the current round and to
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be served by the master with MUSS once in a around. In addition, in each round, the
maximum number of links served by a master is equal to the total number of links connected
to the master. Therefore, if a link generates traffic at a rate lower than or equal to the equal
shared bandwidth, the link will not demand for more than one MUSS in a round. As a result,
the link will always be satisfied. In addition, links with the same traffic rate will be added to
the active list with the same number of times. As a result, they will receive the same amount
of bandwidth.

If a link does not accumulate enough packets to reach the trigger point, it will be
removed from the active list. Therefore, it will reduce the number of nodes in the active list
and the duration time for each round will be shorter. As a result, the master will serve other
links more frequently.

When links with higher rate and links with lower rate are present in the active list,
they will receive the same amount of serving time from the master. Only when links with
lower rate are removed from the active list, the links with higher rate will be able to use the

residual bandwidth.

3.3.2 Fairness Around the Bridge Node

ASA achieves max-min fairness around a bridge node for the following reasons. By not
serving the bridge node until the start time of confirmed meeting SS_Slot, it is analogous to
placing the bridge node in the waiting list when it is not ready to receive service. The residual
bandwidth will be re-allocated to other links around a bridge node by allowing them to

reserve an SS_Slot before the confirmed meeting SS_Slot. Since a master serves a bridge

node for MUSS at their confirmed meeting SS_Slot, it is similar to serving the node with
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equal bandwidth when the node is added back to the active list. In addition, when a master
éuggests a meeting time, it maintains fairness around itself by reserving SS_Slots for nodes
in the piconet. When a bridge node confirms the meeting time with the master, it maintains
fairness around itself by ensuring the link will accumulate enough packets to reach the trigger
point at the meeting time. Lastly, by skipping SS_Slot that has already been assigned to a

link, ASA can prevent bridge node conflict within a scatternet.

3.4 Example

In order to demonstrate how the process works, we consider the topology shown in Figure
3.9. In this example, we assume that there are bi-directional traffic between the master node
and the connected node. Moreover, all nodes are saturated senders (i.e., the nodes always
have packet to send). In Figure 3.9, it also shows a switch schedule in which each slot
represent én SS_Slot. Furthermore, in this example, M1 first meets with B1 at SS_Slot 1, M4
first meets with B1 at SS_Slot 2, and M2 first meets with B1 at SS_Slot 3. On the other hand,
M3 first meets with B2 at SS_Slot 1, and M2 first meets with B2 at SS_Slot 2. Thus, we
consider how the master node and bridge node update their first switch schedule. At SS_Slot
1, M1 meets with B1. Since there are two slave nodes connected to M1, M1 reserves the next
two SS Slots for intra-piconet scheduling. It then indicates that SS_Slot 4 is the next
available slot to B1. Since SS_Slot 4 is also available for B1; therefore, Bl and M1 assign
SS_Slot 4 as their next meeting time. On the other hand, at SS_Slot 1, M3 also meets with
B2. Since there is one slave node connects to M3, M3 reserves the next SS_Slot for intra-

piconet scheduling. It then indicates that SS_Slot 3 is the next available slot to B2. Since

SS_Slot 3 is also available for B2; therefore, B2 and M3 assign SS Slot 3 as their next
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Figure 3.9. Scatternet topology and switch schedule

meeting time. At SS_Slot 2, M4 meets with B1. Since M4 does not connect with any slave
node, it indicates that SS_Slot 3 is the next available slot to B1. However, since Bl has
assigned SS_Slot 3 to link 4 (which is connected to M2), and SS_Slot 4 to link 3 (which is
connected to M1), it then chooses SS_Slot 5 as the next meeting time. M4 and B2 then assign
link 10 to SS_Slot 5. At SS_Slot 2, M2 meets with B2. As SS_Slot 3 has already been
assigned to link 4, M2 cannot suggest it as the next meeting time.

Moreover, since there are two slave nodes connected to M2, M2 requires to reserve
two SS_Slots for intra-piconet scheduling. Thus, M2 indicates that SS_Slot 6 is the next
available slot to B2. Since SS_Slot 6 is also available for B2; therefore, B2 and M2 assign
SS_Slot 6 as their next meeting time. Lastly, at SS Slot 3, M2 meets with B1. Since there are
two slave nodes connected to M2, M2 reserves the next two SS_Slots for intra-piconet
scheduling. In addition, as SS_Slot 6 has already been assigned to link 7, it then indicates

that SS_Slot 7 is the next available slot to B1. As SS_Slot 7 is also available to B1, Bl and
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M2 then assign SS_Slot 7 as their next meeting time. Since all master nodes finish creating
their first period of switch schedule, they can now setup hold mode with all its connected
bridge nodes based on the switch schedule. After developing the first period of switch
schedule, all master nodes and bridge nodes are able to update each period of switch schedule.
Figure 3.9 shows the combined switch schedule for all master and bridge nodes until SS_Slot
25.

In order to determine the serving rate of each bridge node on the connected master
nodes, we need to identify the switch schedule cycle by searching for the repeatable pattern
in each bridge node. When considering the serving rate on B1, we identify that the repeatable
pattern starts from SS_Slot 1 to SS Slot 12 with three 4s, four 3s, and five 10s. The cycle
length will then be 12 SS_Slots. Therefore, B1 serves M1 with 1/3 cycle, M2 with 1/4 cycle,
and M4 with 5/12 cycle. On the other hand, when considering the serving rate on B2, we
identify that the stable repeatable pattern starts from SS Slot 1 to SS_Slot 4 with the
sequence of one 7, and two 8s. The cycle length will then be 4 SS_Slots. Therefore, B2
serves M2 with 1/4 cycle, and M3 with 1/2 cycle. The reason for 1/4 cycle is not being used
is that during the remaining 1/4 cycle, both M2 and M3 are busy serving on their pure slave
nodes within their piconet. Therefore, by using the switch schedule on the master nodes and
bridge nodes, it prevents the bridge node conflict and maintains the max-min fairness for all
the links around a bridge node. |

We can use the same method to find the serving rate of each master on its connected
nodes. When considering the serving rate on M1, we identify that the repeatable pattern starts

from SS_Slot 1 to SS_Slot 12 with four 3s, and eight empty SS_Slots. The cycle length will

then be 12 SS_Slots. Therefore, M1 serves B1 with 1/3 cycle. Since the empty SS_Slots are
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shared by two slaves nodes, M1 serves each slave with 1/3 cycle. When considering the
serving rate on M2, we identify that the repeatable pattern starts from SS_Slot 2 to SS_Slot 5
with one 7, one 4, and two empty SS_Slots. The cycle length will then be 4 SS_Slots.
Therefore, M2 serves B2 with 1/4 cycle, Bl with 1/4 cycle. Again, since there are two slave
nodes sharing the empty SS_Slots, M2 serves each slave with 1/4 cycle. When considering
the serving rate on M3, we identify that the repeatable pattern starts from SS Slot 1 to
SS_Slot 2 with one 8 and one empty SS_Slot. Therefore, M3 serves B2 with 1/2 cycle and
slave with 1/2 cycle. Lastly, when considering the serving rate on M4, we identify that the
repeatable pattern starts from SS Slot 1 to SS_Slot 12 with five 10s and seven empty
SS Slots. Therefore, M4 serves B1 with 5/12 cycle. Thus, by reserving SS_Slots for intra-
piconet scheduling and by updating the switch schedule at the master, it can maintain max-

min fairness for all the links around a master node as well.

3.5 Summary

In this chapter, we proposed an adaptive scatternet scheduling scheme which is able to
allocate bandwidth to each link based on traffic change, maintain fairness for all nodes in a
scatternet, prevent bridge node conflict, and combine both inter-piconet and intra-piconet
scheduling as a single design unit. By placing a traffic estimator and checking the size of
queue on each node, ASA can estimate the current traffic condition. The master can utilize
the traffic information to arrange the nodes in both active and waiting lists in order to fairly
allocate bandwidth to all connected nodes. Moreover, as the master adds nodes to the active

list according to their TRAT, it can reduce the average packet delay in the piconet. Besides, a

master and the connected bridge nodes use the dynamic switch schedules to organize the time
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for them to meet with each other. The master and the connected bridge node will update their
switch schedules at the beginning of their meeting time. In the update process, the master
maintains fairness for nodes within a piconet by reserving serving time for intra-piconet
scheduling before it deéides the suggested meeting time. On the other hand, the bridge node
not only maintains faimbess for nodes around itself by checking .the TRAT for each connected
link but also avoids the bridge node conflict by checking the reserved meeting time with

other piconets before it decides the confirmed meeting time. Our proposed ASA integrates

both intra-piconet and inter-piconet scheduling.




Chapter 4 — Performance Evaluation

In tﬁis chapter, we compare the performance of our proposed Adaptive Scheduling
Algorithm (ASA) with Flexible Scatternet-wide Scheduling (FSS) [10] and Credit Based
Scheduling (CBS) [13][14] through simulations. These two schemes are chosen because
there are several features which are common to ASA, FSS, and CBS. Similar to FSS and
CBS, ASA organizes the time for the master to meet with its bridge nodes, allocates
- bandwidth to each link based on the traffic conditions, and integrates both intra-piconet and
inter-piconet scheduling. However, FSS does not maintain fairness for nodes in the scatternet
and CBS cannot prevent the bridge node conflict. Different from these two schemes, ASA
also includes these two issues as design requirements. In the last part of the chapter, we
repeat some of the experiments in the paper of Fair and Traffic Dependent Scheduling
Algorithm [19] on ASA for performance comparison.

The Bluetooth simulation model is developed from the network simulator (ns-2) [25].
The simulation model maps the traftic model from ns-2 with the customized medium access
control models, which implement ASA, FSS, and CBS. For performance comparisons, we
use the topology shown in Figure 4.1 and the time for all simulation runs is 60s. This
scatternet topology has two slave-slave bridge nodes, five master nodes, and twenty pure
slave nodes. This topology allows us to investigate how the masters and the bridge nodes
fairly share the bandwidth on their connected links under different traffic conditions.

We first compare the fairness of all three schemes. Afterwards, we compare their
relative performance of throughput and delay with User Datagram Protocol (UDP) traffic.

The UDP packets are generated according to either Constant Bit Rate (CBR) or bursty on-off

65
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Figure 4.1. Topology of a scatternet

traffic models. Lastly, we compare the average end-to-end delay for transmitting a file from

one node to another node with Transmission Control Protocol (TCP) traffic.

4.1 Fairness Comparison

In this section, we investigate whether or not each of the three schemes can achieve this max-
min fairness for all the nodes within the scatternet. Three test cases are used to compare the
performance between all three schemes. Throughout the test cases, we assume that there is
only bi-directional traffic between two nodes and no traffic runs across a bridge node.
Moreover, all traffic streams generate CBR UDP traffic and DH1 packets are used. In the
first test case, we focus on a balance traffic load within a piconet. In the second test case, we
focus on an unbalance traffic load around a master node. In the last case, we focus on an
unbalance traffic load around a bridge node. In all test cases, we consider both situations in
which there is packet loss due to interference and there is no packet loss in the ideal perfect
environment. For simplicity, in ASA, we assume that when a packet loss occurs, the master

and the bridge node still receive the information to schedule the next meeting time.

For all test cases, we use the same parameters stated in [10] for FSS. The parameters
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a =10, f = 5%, and len_gme = 800. Each frame in the switch table is set to two Bluetooth
slots. In [10], it does not mention the values for P, and R.... However, since we can
duplicate the simulation results on [10] by setting P = 35 and R,q = 6, we use these two
values for the simulation on FSS. For CBS, Ngyircr s is set to 0. Since for value larger than 0,
the chance of a master to meet with a bridge node will decrease and will lead to a very low
throughput on all the inter-piconet links. The T, value for links around M1, M4, M3, and
M5 is set to 10, and the T, value for links around M2 is set to 12. Lastly, 7, 1s set to 100.
For ASA, §S Slot and MUSS are set to two Bluetooth slots. The values of avg interval and
restart_ratio in traffic estimator are set to 15s and 5 respectively. Lastly, the value of

waiting _interval for trigger point estimation is set to the time duration for 100 Bluetooth slots.

4.1.1 Balance Traffic Load

In this experiment, all nodes within the piconet generate packets with the same traffic rate;
thus, all links within the same piconet should receive the same amount of bandwidth. Table
4.1 shows the traffic pattern for the simulation. When we ignore the packet collisions due to
interference from neighboring piconets, the maximum aggregated throughput in each piconet
(MATP) is 27x8/625x10° kbps = 345.6 kbps. In Figure 4.1, since masters M1, M3, M4 and
M5 have five links each, the ideal max-min bandwidth sharing for each link is 1/5x345.6
kbps = 69.12 kbps. Since master M2 has six links, the ideal max-min bandwidth sharing for
each link is 1/6x345.6 kbps = 57.6 kbps. The simulation results from each scheme are
compared with the ideal max-min fairness bandwidth allocation.

Figure 4.2 shows that ASA achieves the same result as with the ideal values when we

do not consider packet loss. When there is packet loss due to interference, ASA achieves
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Link Flow Traffic Rate| Traffic Rate/ | Ideal Max-Min Ideal Shared
(kbps) MATP Shared Ratio | Bandwidth (kbps)
0 | M1<->S1 69.12 0.20 0.20 69.12
1 M1<->82 69.12 0.20 0.20 69.12
2 M1<->83 69.12 0.20 0.20 69.12
3 M1<->84 69.12 0.20 0.20 69.12
4 | M4<->S13 69.12 0.20 0.20 69.12
5 | M4<->S14 69.12 0.20 0.20 69.12
6 | M4<->S15 69.12 0.20 0.20 69.12
7 | M4<->S16 69.12 0.20 0.20 69.12
8 M3<->§S9 69.12 0.20 0.20 69.12
9 | M3<->S10 69.12 0.20 0.20 69.12
10 | M3<->S11 69.12 0.20 0.20 69.12
11 | M3<->S12 69.12 0.20 0.20 69.12
12 | M5<->S17 69.12 0.20 0.20 69.12
13 | M5<->S18 69.12 0.20 0.20 69.12
14 | M5<->S19 69.12 0.20 0.20 69.12
15 | M5<->820 69.12 0.20 0.20 69.12
16 | M2<->85 57.6 0.166 0.166 57.6
17 | M2<->86 57.6 0.166 0.166 57.6
18 | M2<->87 57.6 0.166 0.166 57.6
19 | M2<->S8 57.6 0.166 0.166 57.6
20 | MI<->BlI 69.12 0.20 0.20 69.12
21 | M4<->BlI 69.12 0.20 0.20 69.12
22 | M3<->B2 69.12 0.20 0.20 69.12
23 | M5<->B2 69.12 0.20 0.20 69.12
24 | M2<->Bl1 57.6 0.166 0.166 57.6
25 | M2<->B2 57.6 0.166 0.166 57.6

Table 4.1. Traffic pattern with fixed rate

bandwidth slightly lower than the ideal values. On the other hand, in Figure 4.3, it shows that
the FSS scheme can achieve close result as the ideal value on master-bridge links but not on

master-slave links. Since FSS pre-empts on master-bridge traffic, it does not allocate fair

amount of bandwidth to master- slave links.
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Figure 4.4. Fairness comparison for CBS in general

Lastly, in Figure 4.4, it shows that the CBS scheme can achieve the close result as the
ideal value on master-slave links but not on master-bridge links. Since CBS does not prevent

bridge node conflict, it leads to a lower bandwidth allocation on the master-bridge links.

4.1.2 Unbalance Traffic Load around a Master

In this experiment, we decrease the traffic rate on one link, and increase the rate on other
links within a piconet. We investigate how each scheme re-allocates the bandwidth around
the master node according to the max-min fairness criterion. Table 4.2 shows the traffic
pattern. In the piconets of M1, M3, M4, and M5, each piconet has 3 links generating traffic at

a rate of 0.225xMATP, the other 2 links are generating traffic at rate of 0.4xMATP and
0.1xMATP, respectively. Since one link only utilizes 0.IxMATP of bandwidth, which is

lower than the equal bandwidth sharing, according to max-min fairness the remaining
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Link Flow Traffic Rate| Traffic Rate/ | Ideal Max-Min Ideal Shared
(kbps) MATP Shared Ratio |Bandwidth (kbps)
0 | M1<->S1 77.76 0.225 0.225 _ 77.76
1 M1<->S2 77.76 0.225 0.225 77.76
2 | MI<->S3 77.76 0.225 0.225 77.76
3 M1<->S4 34.56 0.1 0.1 34.56
4 | M4<->S13 77.76 0.225 0.225 77.76
5 | M4<->S14 77.76 0.225 0.225 77.76
6 | M4<->S15 77.76 0.225 0.225 77.76
7 | M4<->S16 34.56 0.1 0.1 34.56
8 | M3<->S9 77.76 0.225 0.225 77.76
9 | M3<->S10 77.76 0.225 0.225 77.76
10 | M3<->S11 77.76 0.225 0.225 77.76
11 | M3<->S12 34.56 0.1 0.1 34.56
12 | M5<->S17 77.76 0.225 0.225 77.76
13 | M5<->S18 77.76 0.225 0.225 77.76
14 | M5<->S19 77.76 0.225 0.225 77.76
15 | M5<->S20 34.56 0.1 0.1 34.56
16 | M2<->S5 57.6 0.166 0.166 57.6
17 | M2<->86 57.6 0.166 0.166 57.6
18 | M2<->87 57.6 0.166 0.166 57.6
19 | M2<->88 57.6 0.166 0.166 57.6
20 | M1<->B1 138.24 0.4 0.225 77.76
21 | M4<->Bl1 138.24 0.4 0.225 77.76
22 | M3<->B2 138.24 0.4 0.225 77.76
23 | M5<->B2 138.24 0.4 0.225 77.76
24 | M2<->BlI 57.6 0.166 0.166 57.6
25 | M2<->B2 57.6 0.166 0.166 57.6

Table 4.2. Traffic pattern for testing bandwidth allocation around master

bandwidth should be distributed to other links. The ideal sharing bandwidth for the link will
then be 0.1xXMATP = 34.56 kbps. Since all other links generate traffic at a rate higher than

the equal sharing bandwidth, the remaining bandwidth will be evenly redistributed to them.

The ideal sharing bandwidth for each link will then be [0.2+(0.1/4)]xMATP = 0.225xMATP

= 77.76 kbps. The traffic rate for all the links in piconet of M2 stays the same.
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Figure 4.7. Fairness comparison for CBS on master

The simulation results from each scheme are compared with the ideal max-min
fairness bandwidth allocation. Figure 4.5 shows the comparison for ASA with the ideal
bandwidth distribution. Without packet loss or collision, ASA achieves the same results as
the ideal bandwidth allocation either on master-slave or master-bridge links. When there is
packet loss, ASA achieves a bandwidth slightly lower than the ideal values. Results in Figure
4.6 show that bandwidth allocation by FSS is similar to the ideal case only on the link with
the lowest traffic rate. For all other master-slave links, FSS allocates a lower bandwidth to
them. In addition, FSS allocates a higher bandwidth to most of the master-bridge links. Since
FSS gives a higher priority to master-bridge links, the master-bridge links receive more
bandwidth than the master-slave links. Results in Figure 4.7 show that bandwidth allocation
by CBS is similar to the ideal value on master-slave links but not on master-bridge links.

Since CBS does not prevent bridge node conflict, it leads to a lower bandwidth allocation on
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the master-bridge links.

4.1.3 Unbalance Traffic Load around a Bridge

In this experiment, we investigate how each scheme can re-allocate the bandwidth around the
bridge node according to the max-min fairness criterion. Table 4.3 shows the traffic pattern.
We reduce the traffic rate for all master-slave links in piconets of M1, M3, M4, and M5 to
0.1xMATP. Therefore, the remaining bandwidth should be reallocated to the master-bridge
links. As link 24 in piconet of M2 generates traffic at a rate of 0.166xMATP, 0.834xMATP
of bandwidth can be equally shared between links 20 and 21. Similarly, as link 25 in piconet
of M2 generates traffic at a rate of 0.166xMATP, 0.834xMATP of bandwidth can be equally
shared between links 22 and 23. Although the traffic rate for links 20, 21, 22, and 23 each
generates traffic at a rate of 0.6xMATP, the ideal sharing bandwidth for them will only be
(0.834/2) xMATP = O.417><MATP = 144.115 kbps.

The simulation results from each scheme are compared with the ideal max-min fair
bandwidth allocation. Figure 4.8 shows the comparison for the ASA schemé with the ideal
bandwidth disfribution. ASA achieves similar results as the ideal bandwidth allocation except
for links 20 to 23. The reason for not fully utilizing the remaining bandwidth on links 20 to
23 is that in order to avoid conflict between all the connected master-bridge links, sometimes
a bridge node may need to delay the meeting time with a master node since the ideal meeting

time has already reserved for another master. Therefore, the bridge node has to sacrifice

some time slots to prevent bridge node conflict.
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Link Flow Traffic Rate| Traffic Rate /| Ideal Max-Min Ideal Shared
(kbps) MATP Shared Ratio | Bandwidth (kbps)
0 | MI<->SI 34.56 0.1 0.1 34.56
1 M1<->82 34.56 0.1 0.1 34.56
2 | M1<->S83 34.56 0.1 0.1 34.56
3 M1<->S4 34.56 0.1 0.1 34.56
4 | M4<->S13 34.56 0.1 0.1 34.56
5 | M4<->S14 34.56 0.1 0.1 34.56
6 | M4<->S15 34.56 0.1 0.1 34.56
7 | M4<->S16 34.56 0.1 0.1 34.56
8 | M3<->89 34.56 0.1 0.1 34.56
9 | M3<->S10 34.56 0.1 0.1 34.56
10 | M3<->S11 34.56 0.1 0.1 34.56
11 | M3<->S12 34.56 0.1 0.1 34.56
12 | M5<->S17 34.56 0.1 0.1 34.56
13 | M5<->S18 34.56 0.1 0.1 34.56
14 | M5<->S19 34.56 0.1 0.1 34.56
15 | M5<->S20 34.56 0.1 0.1 34.56
16 | M2<->S5 57.6 0.166 0.166 57.6
17 | M2<->S6 57.6 0.166 0.166 57.6
18 | M2<->87 57.6 0.166 0.166 57.6
19 | M2<->S8§ 57.6 0.166 0.166 57.6
20 | M1<->Bl1 207.36 0.6 0.417 144.115
21 | M4<->Bl1 207.36 0.6 0.417 144.115
22 | M3<->B2 207.36 0.6 0.417 144.115
23 | M5<->B2 207.36 0.6 0.417 144.115
24 | M2<->Bl 57.6 0.166 0.166 57.6
25 | M2<->B2 57.6 0.166 0.166 57.6

Table 4.3. Traffic pattern for testing bandwidth allocation around bridge
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Figure 4.10. Fairness comparison for CBS on bridge

On the other hand, in Figure 4.9, it shows that FSS achieves similar results as our
scheme when there is no packet loss. Again, in order to prevent bridge node conflict, FSS
cannot fully utilize the allocated bandwidth on links 20 to 23. However, since the traffic rate
on all master-slave links are relatively low, FSS can achieve the ideal bandwidth on all
master-slave links. When there is packet loss, FSS does not allocate bandwidth in a fair
manner between inter-piconet links. Since some time frames in switch table for links 24 and
25 are borrowed to link 20 to 23, FSS allocates a higher than expected bandwidth to links 20
to 23 and a lower than expected bandwidth to links 24 to 25. Lastly, in Figure 4.10, it shows
that CBS cannot achieve the ideal bandwidth allocation on links 20 to 23 because of bridge

node conflicts.
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4.2 Comparison with UDP Traffic

In this section, we focus on how all three schemes perform under UDP traffic. In the first
case, we focus on CBR UDP traffic. In the second case, we focus on bursty on-off UDP
traffic. In both cases, DH1 packets are used.

For all test cases, the parameters for FSS are set as follows: a =10, = 5%, len_qunax
= 800, Pu= 35, and R, = 6. Each frame in the switch table is set to two Bluetooth slots.
For CBS, Nywiich_m 15 set to 0. The Ty, value for links around M1, M4, M3, and M5 is set to
10, and the T, value for links around M2 is set to 12. T,y is set to 100. For ASA, SS_Slot
and MUSS are set to two Bluetooth slots. The values of avg interval and restart ratio in
traffic estimator are set to 15s and 5 respectively. The value of max_waiting interval for

© trigger point estimation is set to the time duration for 100 Bluetooth slots.

4.2.1 CBR Scenario

We compare the system throughput and delay for all three schemes on CBR UDP bi-
directional traffic between a master and a slave, which is specified as M-S traffic, and CBR
UDP bi-directional traffic between a master and another master through a bridge node, which
is specified as M-B-M traffic. In this experiment, a bridge node will not be either a sender or
receiver, but is only responsible for bypassing packets to another connected master. Table 4.4
shows the traffic pattern for the simulation.

We set the traffic rate on each node according to the assumption that each link within
a piconet demands for the same amount of shared bandwidth. Therefore, each link in piconet

of M1, M3, M4, and M5 has a shared bandwidth of 1/5xMATP = 69.12 kbps; each node

involving in M-S traffic generates traffic at a rate of 69.12 kbps/2 = 34.56 kbpsxf. In the first
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set of simulation, P is set to 1. B is a multiplying factor which is used to vary the traffic rate
on each node. Since M1, M3, M4, and M5 each has two M-S-M traffic flows on a link, each
of them generates traffic at a rate of 34.56 kbps/2 = 17.28 kbpsxf to individual M-S-M
traffic flow. On the other hand, since each link in the piconet of M2 has a shared bandwidth
of 1/6xMATP = 57.6 kbps, each node involving in M-S traffic generates traffic at a rate of
57.6 kbps/2 = 28.8 kbpsxf. Again, since M2 has two M-S-M traffic flows on a link, it
generates traffic at a rate of 28.8 kbps/2 = 14.4 kbpsxf} to individual M-S-M traffic flow.
Lastly, we vary the value of B from 0 to 1.2 to observe the performance change. In Figure
4.11 and Figure 4.12, results show that ASA achieves the highest aggregate throughput and
the lowest average delay when compared to FSS and CBS. As shown in Section 4.1.1, CBS
has a better performance on master-slave links than master-bridge links; since there is more
traffic involving slave nodes than bridge nodes in the simulation, CBS has a close
performance with our scheme.

In the next experiment, we compare the system throughput and delay for all three
schemes on CBR UDP bi-directional traffic between a slave and another slave through a
master, which is specified as S-M-S traffic, and CBR UDP bi-directional traffic between a
slave and another slave through two masters and a bridge node, which is specified as S-M-B-
M-S traffic. In this experiment, both masters and bridge nodes will not be senders or

receivers. They are only responsible for bypassing packets. Table 4.5 shows the traffic

pattern for the simulation.
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Flow M; Si Flow M; M.
M;<->§; (kbps) (kbps) M;<-B;->My (kbps) (kbps)
MI1<->S1 | 3456 * B | 34.56*p | MI<-BI->M2 | 17.28*B | 144*B
MI1<->S2 | 34.56 * B | 34.56*p | M4<-BI1->MI | 17.28 *B | 17.28* B
MI1<->83 | 34.56* B | 34.56*p | M2<-B1->M4 | 144*B | 17.28*B
M1<->S4 | 3456 * B | 34.56*B | M3<-B2->M2 | 17.28*B | 14.4*B

M4<->S13| 34.56 * B | 34.56*B | M5<-B2->M3 | 17.28* B | 17.28 * B
M4<->S14| 34.56 * B | 34.56* B | M2<-B2->M5 | 144*pB | 17.28*B
M4<->S15| 34.56* B | 34.56 * B
M4<->S16| 34.56 * B | 34.56 * B
M3<->89 | 34.56 * B | 34.56* B
[M3<->S10| 34.56 *B | 34.56* B
M3<->S11| 34.56 * B | 34.56* B
M3<->S12| 34.56 * B | 34.56* B
M5<->817| 34.56 * B | 34.56 * B
M5<->S18| 34.56 * B | 34.56 * B
M5<->S19| 34.56 * B | 34.56 * B
M5<->820| 34.56 * B | 34.56 * B
M2<->S5 | 28.8*pB | 28.8*p
M2<->S6 | 288*pB | 28.8*p
M2<->S7 | 288*pB | 28.8*p
M2<->S8 | 288*B | 28.8*p

Table 4.4. Traffic pattern for M-S and M-B-M traffic generating
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Flow Si Sk Flow Si Sm
Si<-M;->S, (kbps) | (kbps) | Si<-M;-B,-M;->S,, | (kbps) | (kbps)
S1<-M1->82 34.56 * 3134.56 * BIS12<-M3-B2-M5->520/34.56 * 3{34.56 * B
S17<-M5->S18  |34.56 * B|34.56 * B|| S19<-M5-B2-M2->58|34.56 * B| 28.8 * B
S13<-M4->S14  |34.56 * B[34.56 * B|S15<-M4-B1-M2->S6 |34.56 * B| 28.8 * B
S9<-M3->510 34.56 * 3|34.56 * B|| S3<-M1-B1-M2->85 |34.56 * | 28.8 * 3
S4<-M1-B1-M4->S16|34.56 * B[34.56 *
S11<-M3-B2-M2->S7|34.56 * B| 28.8 * B

Table 4.5. Traffic pattern for S-M-S and S-M-B-M-S traffic

In the simulation, all slave nodes have the same traffic rate defined in the previously.
Therefore, slave nodes in piconet M1, M3, M4, and MS5 generate packet at a rate of 34.56xf3,
and siave nodes in piconet of M2 generate packets at a rate of 28.8x3 kbps. Lastly, we vary
the value of B from 0 to 1 to observe the performance change. In Figure 4.13 and Figure 4.14,
results show that ASA still achieves the highest aggregate throughput and the lowest average
delay when compares to CBS and FSS. However, in this simulation, there are more traffic
flows involving bridge nodes than slave nodes. Thus, as FSS has better performance on
master-bridge links than master-slave links, it has a close aggregate throughput performance
with our scheme. Nevertheless, as shown in Section 4.1.2, FSS allocates more than the ideal
amount of bandwidth to master-bridge links around a master; therefore, when all nodes are
generating traffic af the saturated rate, FSS allocates more bandwidth to master-bridge links

than master-slave links. Since the path for S-M-B-M-S traffic is longer than S-M-S traffic,

FSS achieves a higher average delay when compared to our scheme.
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4.2.2 Bursty On-Off Traffic Scenario

In this experiment, we compare the system throughput and delay under bursty on-off UDP
traffic. We use the same traffic pattern as shown in Table 4.4. Again, we assume that a bridge
does not generate packets, and is only responsible for forwarding packets to another
connected master.

For all the test cases, the parameters for FSS are set as a =10, = 5%, len_gmua = 800,
Pax=35 and Ryqx = 6. For CBS, Nyyiren m is set to 0. The T, value for links around M1, M4,
M3, and MS5 is set to 10, and the T, value for links around M2 is set to 12. T),oy is set to 100.
For ASA, SS Slot and MUSS are set to two Bluetooth slots. The avg interval and
restért_ratio in traffic estimator are set to 15s and 5 respectively. The max_waiting_interval
for trigger point estimation is set to the time duration for 100 Bluetooth slots.

We assume that both on and off periods follow the exponential distributions. In this
first experiment, we set the on and off periods with. an average duration of Is and lIs,
respectively. We vary the value of B from O to 2 to observe the performance change. The
results are shown in Figure 4.15 and Figure 4.16. In the second experiment, we set the on and
off periods with an average duration of 1s and 2s, respectively. We vary the value of § from 0
to 3 to observe the performance change. The results are shown in Figure 4.17 and Figure 4.18.
In the last experiment, we set the on and off periods with an average duration of 2s and 1s,
respectively. We vary the value of § from 0 to 1.8 to observe the performance change. The
results are shown in Figure 4.19 and Figure 4.20. For all cases, results show that ASA

achieves the highest aggregate throughput and lowest average delay for all different on-off

periods when compared with FSS and CBS.
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Flow Flow Flow Flow Flow
M1->S1 M3->89 M5->817 M4->S13 M2->85
M1->S2 M3->S10 M5->S18 M4->S14 M2->86
M1->S3 M3->S11 M5->S19 M4->§815 M2->87
M1->84 M3->§S12 M5->820 M4->516 M2->S8

M1->B1->M2 [ M3->B2->M2 | M5->B2->M2 | M4->B1->M2

88

Table 4.6. Traffic Pattern for M-S and M-B-M

4.3 Comparison with TCP Traffic

In this section, we compare the average end-to-end transfer delay for sending a file from one
node to another node using TCP between all three schemes.

In the first part, the parameters for FSS are set as a =10, = 5%, len_qmax = 800, Ppux
= 35, and R, = 6. Each frame in the switch table is set to 10 Bluetooth slots. For CBS,
Niwitch_ih 18 éet to 0. The T,y value for links around M1, M4, M3, and M5 is set to 50, and the
Tsnigr value for links around M2 is set to 60. Ty, is set to 1200. For ASA, SSSlot and MUSS
are set to 10 Bluetooth slots. The avg interval and restart_ratio in traffic estimator are set to
15s and 5, respectively. The value of max_waiting interval for trigger point estimation is set
to the time duration for 100 Bluetooth slots.

In the first test case, we assume that only masters transmit data. Table 4.6 shows the
traffic pattern for the simulation. Each master sends a file to its slaves. The file message will
be segmented into either DH1, DH2 or DH3 packets according to the Bluetooth specification
for packet segmentation. We refer this as the M-S traffic. Moreover, masters M0, M1, M3,
and M4 each sends the same size file through a bridge node to M2. We refer this as M-B-M

traffic. We vary the file size from 0.1 MB to 0.5 MB to observe the performance change. The

simulation results are shown in Figure 4.21 and Figure 4.22.
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Flow Flow ’ Flow Flow

S1->M1->82 S9->M3->510 S13->M4->S14 S17->MS5->S18

S3->M1-B1-M2->S5(S11->M3-B2-M2->S7[S15->M4-B1-M2->S6[ S19->M5-B2-M2->588

Table 4.7. Traffic Pattern for S-M-S and S-M-B-M-S

Figure 4.21 shows that ASA has the lowest average transfer delay on M-S traffic and
FSS has the highest deléy. Figure 4.22 shows that ASA and CBS have similar performance
for the average transfer delay on M-B-M traffic, while FSS has a better performance. This is
due to the fact that FSS gives a higher priority on master-bridge link.

In the second simulation, the parameters for FSS are set as a =10, = 5%, len Gma =
800, Ppax= 35, and R, = 6. Each frame in the switch table is set to 10 Bluetooth slots. For
CBS, Nswirch_ 1s set to 0. The Ty, value for links around M1, M4, M3, and M35 is set to 40,
and the T, value for links élround M2 is set to 60. Tpon 1s set to 1200. For ASA, SS_Slot and
MUSS are set to 10 Bluetooth slots. The avg interval and restart ratio in traffic estimator
are set to 15s and 5 respectively. The value of max waiting interval for trigger point
estimation is set to the time duration for 100 Bluetooth slots.

In this test case, we assume that only slave nodes transmit data. Table 4.7 shows the
traffic pattern for the simulation. We set up a one-way TCP traffic flow from one slave to
another slave through a bridge node. We refer this as the S-M-S traffic. We also set up
another one-way TCP traffic flow from one slave to another slave through two masters and a
bridge node. We refer this as the S-M-B-M-S traffic. We again vary the file size from 0.1 MB
to 0.5 MB to observe the performance change. The results are shown in Figuré 4.23 and
‘Figure 4.24. The figures show that ASA has the lowest average end-to-end delay when

considered both S-M-S and S-M-B-M-S traffic.
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4.4 Repeated Experiments

In this section, we run some of the experiments in the paper of Fair and Traffic Dependent

Scheduling Algorithm on ASA in order to compare the two schemes. All experiments focus

on CBR UDP traffic and DH1 packets are used.

4.4.1 Single Bridge Node in Two Piconets

In the first experiment, there are two piconets with number I and II joined by a bridge node.
The master in each piconet is connected with a slave node and the traffic rate on the master-
slave (M-S) link is equal to MATP. On the other hand, both master-bridge (M-B) links
generate traffic with the same rate. We then vary the traffic rate from 0.1 x MATP to MATP

on both M-B links to observe the performance change. Figure 4.25 shows the results for one
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Figure 4.26. Sharing of bandwidth between bridge nodes and slave node

of the piconet. In Figure 4.25, it shows that the results for ASA and Fair and Traffic
Dependent Scheduling Algorithm are very close.

In the second experiment, we use the same topology. However, the traffic rate on
each M-S link is equal to 0.3 x MATP. The traffic rate on the M-B link in piconet I is equal
to 0.2 x MATP. We then vary the traffic rate from 0.1 x MATP to MATP on the M-B link in
piconet II to observe the change. Figure 4.26 shows the results for the bandwidth shared
between the two M-B links in each piconet and the M-S link in piconet II. The results show
that both ASA and Fair and Traffic Dependent Scheduling Algorithm can fairly share the

bandwidth between bridge nodes and slave node.

4.4.2 Different Number of Slaves

In this experiment, there are two piconets with numbered I and II joined by a bridge node.
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Figure 4.27. Sharing of bandwidth between bridge node and slave node in piconet II

The master in piconet I has 3 slaves. We vary the number of slave nodes connected to the
master in piconet II from 1 to 6 to observe the performance change. The traffic rate on each
M-S link is equal to 0.2 x MATP. On the other hand, the traffic rate on M-B link in piconet I
is equal to 0.3 x MATP and the traffic rate on M-B link in piconet II is equal to 0.8 x MATP.
Figure 4.27 shows the results for the bandwidth shared between the M-B link and the M-S
link in piconet II. In Figure 4.27, it shows that both ASA and the Fair and Traffic Dependent
Scheduling Algorithm can fairly share the bandwidth for the nodes. Sometimes, ASA
performs better than Fair and Traffic Dependent Scheduling Algorithm, and sometimes the

Fair and Traffic Dependent Scheduling Algorithm performs better than ASA.

4.4.3 Single Bridge Node Between Three Piconets

In this experiment, a bridge node is connected with three piconets with number I, II and III.
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Figure 4.28. Sharing of bandwidth for all M-B links

The master in piconet I has 5 slaves, the master in piconet I has 1 slave, and the master in
piconet III has 4 slaves. All M-S links generate traffic at a rate of 0.2 x MATP. On the other
hand, the M-B link in piconet I has a traffic rate of 0.2 x MATP, the M-B link in piconet III
has a traffic rate of 0.3 x MATP. We then vary the traffic rate on the M-B link in piconet II
from 0.1 x MATP to 0.8 x MATP to observe the performance change. Figure 4.28 shows the
bandwidth shared between all three M-B links. The results show that ASA achieves the same

results as the Fair and Traffic Dependent Scheduling Algorithm.

4.4.4 Piconet with Two Bridge Nodes

In this experiment, bridge node B1 is connected between piconet I and II. On the other hand,
bridge node B2 is connected between piconet II and III. Furthermore, the master in piconet I

has 6 slaves, the master in piconet II has 2 slaves, and the master in piconet III has 4 slaves.
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Figure 4.29. Sharing of bandwidth between B1 and B2 in piconet 11

All M-S links generate traffic at a rate of 0.2 x MATP. The traffic rate on the link between
B1 and piconet I is 0.2 x MATP, the traffic rate on the link between B1 and piconet II is 0.5
x MATP. In addition, the traffic rate on the link between B2 and piconet III is 0.2 x MATP.
Lastly, we vary the traffic rate on the link between B2 and piconet II from 0.1 x MATP to 0.7

x MATP to observe the performance change. Figure 4.29 shows the sharing of bandwidth

between B1 and B2 in piconet II. The results show that both ASA and the Fair and Traffic

Dependent Scheduling Algorithm achieve similar results.
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4.5 Summary

In this chapter, we compare the performance of ASA on fairness, throughput, and delay with
FSS and CBS. From the simulations on faimess corﬁparison, results show that ASA can
achieve the max-min fairness under different traffic conditions. Other than fairness
comparison, we also compare the performance of all three schemes with UDP and TCP
traffic. We first determined how each scheme performs when traffic is CBR. From the
simulations, results show that ASA achieves the highest aggregate throughput and lowest
average delay on M-S, M-B-M, S-M-S, S-M-B-M-S traffic when compared to FSS and CBS.
We then determine how each scheme performs under bursty on-off traffic. Simulation results
show that ASA also achieves the highest aggregate throughput and lowest average delay
under different combinations of on-off periods when compared to FSS and CBS. Lastly, we
compare the average end-to-end transfer delay for sending a file from one node to another
node using TCP. Simulation results show that ASA achieves the lowest average transfer
delay on M-S, S-M-S, and S-M-B-M-S traffic. FSSI achieves better average transfer delay on
M-S-M traffic since it gives higher priority to master-bridge links than master-slave links.
| However, FSS achieves the highest average transfer delay on M-S and S-M-B-M-S traffic.
Therefore, when we consider all types of traffic, ASA still has the best performance for file
transfer using TCP. At the end of the chapter, we redo some of the experiments in the paper
of the Fair and Traffic Dependent Scheduling Algorithm by using ASA. From the
simulations, results show that ASA achieves similar results with the Fair and Traffic

Dependent Scheduling Algorithm. Since both schemes focus on max-min fairness, they will

allocate bandwidth to each link in a similar manner.




Chapter 5 — Conclusions

We conclude the thesis with a summary of our work and areas for future work.

5.1 Summary

Our work began with a study of piconet scheduling algorithms and scatternet scheduling

algorithms in Bluetooth networks. From the study, we found that it is necessary to develop a

scatternet scheduling scheme which can maintain fairness for all nodes in a scatternet, avoid

bridge node conflict, allocate bandwidth to each link based on traffic condition, and integrate

both intra-piconet and inter-piconet scheduling.

In Chapter 3, we proposed the Adaptive Scheduling Algorithm (ASA) for
Bluetooth scatternets. In order to determine the traffic change, a traffic estimator
is placed on each node to estimate the packet arrival rate. By checking with the
estimated packet arrival rate and the size of the queue, a master maintains an
active and waiting lists to organize the serving order of slave nodes within a
piconet. Since the master adds the node to the active list according to bandwidth
demand, ASA can allocate bandwidth on each link based on traffic condition.
Moreover, since the master serves each node in the active list with the same
amount of time, ASA can maintain fairness to all nodes within a piconet. In order
to organize the meeting time between a master and a bridge node, both master and
bridge nodes use the dynamic switch schedule to arrange for a meeting time.
Since the master and bridge nodes consider the fairness on their connected links

before setting the meeting time, ASA integrates both intra-piconet and inter-

98
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piconet scheduling as a single design module. In addition, ASA can also maintain
fairness for all nodes within a scatternet. Lastly, as the switch schedule does not
allow a node to schedule for a conflict time, ASA can also prevent the bridge
node conflict in a scatternet.

In Chapter 4, we compared between ASA, FSS, and CBS. Through the
simulations, results show that ASA can achieve the max-min fairness under
different traffic conditions. Moreover, ASA can maintain a high aggregate
throughput and low delay on either CBR or bursty on-off UDP traffic when
compared with FSS and CBS. Moreover, the simulations also show that ASA can
maintain a small average transfer delay for TCP traffic when compared with FSS
and CBS. At the end of the chapter, we compared ASA with the Fair and Traffic
Dependent Scheduling Algorithm. The simulations show that both scheme

allocate similar amount of bandwidth to each links based on max-min fairness.

5.2 Future Work

In the course of the investigations reported in this thesis, a number of interesting problems

have been discovered which merit further research.

Packet Collisions Condition: In our scheme, it uses the hold mode to allow a
bridge node to switch between different piconets. Therefore, every time when a
master meets with a bridge node, they will negotiate for the next meeting time in
order to understand the next holding period. However, if there is a packet loss due

to collision, a master may not be able to negotiate for the next meeting time with

the bridge node. Therefore, an enhancement of the scheme is to investigate how
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the master and the bridge node schedule for the next meeting time in this
condition.

e Low-power Mode: In our scheme, there are some situations that a node is able to
go into low-power mode. When a slave node moves to a waiting list, it can save
power by turning into low-power mode. Moreover, when a master or bridge node
is not scheduled to serve a connected node, it is also possible for the node to turn
into low-power mode. Therefore, another enhancement of the scheme is to take
low-power mode as a design factor as well.

o Interference: Besides the interference between different piconets, the

interference between Bluetooth network and IEEE 802.11 WAN will also be a

future design issue for developing a scatternet scheduling scheme.
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CBS

DRR
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HOL-PP
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K-Look-Ahead RR

LAA

Glossary of Acronyms

Asynchronous Connection-Less
Adaptive Scheduling Algorithm
Adaptive Flow-based Polling

Bridge Node

Bluetooth Topology Construction Protocol

Constant Bit Rate

Credit Based Scheduling
Deficit Round Robin
Exhaustive Round Robin
Forward Error Correction
Frequency Hopping

Flexible Scatternet-wide Scheduling
Head-of-Line

HOL K-Fairness Policy
HOL Priority Policy

Idle State

Industrial Scientific Medical
K-limited Round Robin
K-Look-Ahead Round Robin

Load Adaptive Algorithm
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LARR
LCS
LWRR
M
MATP
MDRP
MP
MQS
MTS
MUSS
PCSS

PRR

3

S

SCO

SS Slot
Sticky-AFP
TC

TCP

TDD

Look Ahead Round Robin

Locally Coordinated Scatternet Scheduling Algorithm

Limited and Weighted Round Robin

Master Node

Maximum Aggregated Throughput in each Piconet
Maximum Distance Rendezvous Point

Maximum Priority

Max Queue Size

Max Time-share

Maximum Usable Serving Slots

Pseudo-Random Coordinated Scatternet Scheduling
Pure Round Robin

Rendezvous Point

Round Robin

Rendezvous Window

Slave Node

Synchronous Connection-Oriented

Switch Schedule Slot

Sticky Adaptive Flow-based Polling

Time Commitment

Transmission Control Protocol

Time Division Duplex
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TRAT
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Transmission Request Arrival Time
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