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Abstract 

This thesis studies the multivariable averaging level control problem by developing 
and comparing various controller design techniques. Due to obvious safety and economic 
considerations, the level of a surge tank must never be allowed to overflow or become 
empty, while the flow rate constraints must be satisfied. Hence, the main emphasis of the 
thesis is on the study of constrained controller design techniques. 

Multivariable design techniques such as decentralized, decoupled and full multivari
able control are studied. The special structure of the system model allows for a constant 
decoupling matrix over all frequencies. This significantly simplifies the decoupled con
troller design. In full multivariable control, constrained Model Based Predictive Control 
(MPC) is utilized as it is able to naturally incorporate system constraints. Various cost 
function formulations which lead to either Quadratic or Linear Programming optimiza
tions are presented and compared. The drawback of incorporating a terminal constraint 
set in MPC design is also studied. A novel mixed norm MPC algorithm that removes the 
requirement for using a terminal constraint set is proposed. MPC based on QP optimiza
tion is shown to provide the best results. The nonsmooth behaviour of MPC under LP 
optimization is also discussed. Finally, the practicality of some computationally-friendly 
techniques is assessed on a lab scale two-tank apparatus. The control algorithms are 
implemented in real-time using MatLab and dSpace. 
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Chapter 1 

Introduction 

In the process industries, level control of a vessel can be set up to provide flow smoothing 
or tight level control. In some special applications, tight level control is required, such 
as in the level control of a Continuous Stirred Tank Reactor (CSTR), where the reactor 
volume is to be tightly maintained at a set value. However, the majority of tanks in a 
process plant serve as surge vessels where flow filtering is required. A common application 
of a surge vessel is the feed tank to a distillation column. For the proper operation of the 
distillation column, the outlet flow from the feed tank must be kept as smooth as possible. 

Without loss of generality, it is assumed that the outlet flow of the tank is ma
nipulated for level control. In order to maintain tight level control, subject to inlet flow 
disturbances, the tank outlet flow must be aggressively manipulated. Hence, a reduction 
in level variability is achieved at the expense of increasing outlet flow variability. As is 
common to all physical systems, the variation in the system cannot be eliminated but only 
redirected within the system. The optimal use of the available surge capacity of the tank 
to produce maximum flow filtering (or the ability to transfer variability from inlet flow to 
the level) is referred to as averaging level control. 

Due to increased economic and environmental pressures, process plants are de
ploying an increasing number of recycle streams. Recycle streams introduce interactions 
between various unit operations, making the process a multivariable system. When re
cycle streams are closed around processes that contain surge vessels, the averaging level 
control problem becomes a multi-input multi-output (MIMO) control problem. McDon
ald and McAvoy [12] address a single-input single-output (SISO) averaging level control 
problem for a single tank. They stated that the objective of an averaging level controller 
is to minimize the maximum rate of change of the outlet flow rate (MRCO) for a given 
deterministic perturbation, while maintaining the tank within its level constraints. 

As the above problem formulation suggests, the solution being sought does not lead 
to conventional regulatory controller synthesis. The objective of conventional regulatory 
control is to achieve the highest possible closed-loop bandwidth for disturbance rejection. 
Contrary to this, in averaging level control the objective is to obtain the smallest closed-
loop bandwidth while satisfying input and output constraints. As the overflow or emptying 
of tanks can be disastrous, the controller's ability to handle state or output constraints 
is considered paramount. For both SISO and MIMO systems, the averaging level control 
algorithm must possess the following characteristics: 

1 



Chapter 1. Introduction 2 

• For a given flow disturbance, the manipulated flow rate changes are minimum, i.e. 
minimize MRCO. 

• Maximum surge capacity is utilized while maintaining the tank level within its max
imum and minimum level constraints. 

• The manipulated flow rate must be kept within its minimum and maximum con
straints. 

• After attenuating a disturbance, the tank level must be steered back to its setpoint, 
i.e. integral action must be present. 

The remainder of this chapter first proceeds to review the field of averaging level 
control. The industrial system that motivated this thesis is also briefly discussed. In 
order to better understand the problem and to provide a convenient means of accessing 
various controller design techniques, a laboratory two-tank system is presented. The model 
equations are derived and a controllability analysis is presented. 

1.1 Literature Review 

The importance of averaging level control had been realized long ago, as both academic 
and practicing engineers attempted to provide a solution. All of the work so far, with 
one exception, has concentrated on controlling a single tank. In this review, the evolution 
from ad-hoc techniques to optimization-based methods is presented. 

1.1.1 Ad-hoc methods 
In this section, averaging level control methodologies for a single tank system that are 
based on the ad-hoc augmentation of the Proportional-Integral-Derivative (PID) algorithm 
are presented. 

• Nonlinear PI Control presented by Shunta and Fehervari [10] incorporated gain 
scheduling. Using inlet flow rate as the scheduling variable, the PI controller gain 
was varied to accommodate varying load disturbances. Shunta and Fehervari also 
proposed an algorithm where both the PI gain and reset time were adjusted in an 
exponential manner. The switching curve was empirically determined. 

• Another technique similar to [10] called Dual Range Integral/Proportional (DRIP) 
was proposed by Cheung and Luyben [22]. In this technique, the tank level was 
divided into different error bands. Within these error bands, the integral time of the 
PI controller was varied to obtain the desired closed-loop response. 
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• Proportional-Lag (PL) controller introduced by Luyben and Buckley [23] incorpo
rates a basic P level controller with a feedforward controller. Flow into the tank 
is measured and transmitted through a first-order lag, which is then added to the 
output of the P level controller. This strategy provides the advantages of both a 
P controller, and a PI controller. Excellent flow filtering is obtained as with a P 
controller and PI controller characteristics are preserved as the off-set can be elimi
nated. Tuning charts are presented with respect to MRCO and the maximum peak 
height of the outlet flow. 

• Limited Output Change (LOC) was also proposed by Cheung and Luyben [22]. This 
scheme limits the controller output in order to meet the MRCO specifications. This 
technique limits the maximum rate of change of a PI controller. Even though the 
technique guarantees not to exceed the MRCO as defined, the results could be quite 
disastrous. In the presence of a large disturbance, the flow rate may not be allowed 
to change fast enough due to the rate of change constraint, letting the tank overflow 
or run empty. 

In conclusion, ad-hoc techniques do not directly incorporate system constraints in 
the design phase. The designer resorts to rule-based methods to achieve a compromise 
between safety and performance. In addition, as the PI algorithm has been an industrial 
standard for level control, it was only natural to augment the PI algorithm to achieve aver
aging level control. Unfortunately, the PI algorithm has no means of handling constraints 
and, as a result, the maximum surge capacity of the vessel cannot be fully exploited for 
flow smoothing. 

1.1.2 Optimization-based methods 

The focus of averaging level control shifted in the 1980's and it continues to follow the 
direction of optimization-based methods. In optimization-based methods, an optimality 
criterion is specified based on the desirable characteristics of the closed-loop behaviour of 
the system. The control action is then resolved by incorporating some optimization sub
routine that minimizes a specified cost function. For averaging level control, the following 
optimization-based methods have been presented in the literature. 

• McDonald and McAvoy were the first to incorporate MRCO and the system state 
constraints into controller synthesis [12]. As a result, there were two controllers 
proposed; a Ramp Controller (RC) and an Optimal Predictive Controller (OPC). 
The RC controller was based a nonlinear feedback control law that related the level 
in the tank to the outlet flow rate. The optimal solution sets the outlet flow rate 
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trajectory with the smallest MRCO subject to level constraints. As the synthesis 
resulted in a P control law, an integral mode or the PL scheme were augmented to 
eliminate any offset. 

The OPC is a feedforward/feedback controller based on the predictive extension of 
the RC controller. At each sampling instant the flow imbalance is measured, the fu
ture optimal control policy is determined, and the first control move is implemented. 
It is assumed that the inlet flow is measured or inferred, and that there is negligible 
dead time associated with the disturbances path. The OPC controller was modified 
to include proportional and integral modes and thus eliminates the need for using 
the PL controller to eliminate level offsets. The augmentation to eliminate offset 
adversely affects the best achievable MRCO. 

• Campo and Morari [20] recast the work by McDonald and McAvoy [12] in a discrete 
time, MPC framework. By using the formulation, the MPC control law was 
computed using a linear program (LP). They showed that an analytical solution 
exists when input constraints are ignored. In addition, integral action was naturally 
introduced by defining a terminal constraint. It was also shown that, by using the 
plant model, the inlet flow rate could be inferred, eliminating the requirement for 
explicit measurement. 

Khanbaghi et al. [2] showed a successful industrial application of the above strat
egy. It was shown that the algorithm indeed provides excellent flow filtering while 
maintaining the tank within the level constraints. It was also pointed out that the 
inlet flow estimator as outlined in [20] is a deadbeat observer, which is extremely 
sensitive to process noise. As a solution to estimate the inlet flow, a Kalman filter 
was implemented. 

• Utilization of the PI algorithm for averaging level control was reintroduced by 
Kelly [13]. In this formulation, the PI controller parameters were calculated via 
an off-line optimization. The objective of the optimization was to minimize the 
variance of the rate of change of the outlet flow rate for a given variance of the inlet 
disturbance and for the user defined tank level variance. 

Later Foley et al. [18] expanded upon [13] and presented an analytical solution for the 
tuning of the PI controller using a constrained Linear Quadratic (LQ) framework. 
This technique statistically provided a 3<r guarantee that the tank level would stay 
within level constraints (i.e. 99.7% of time). Sidhu et al. [17] successfully applied 
the algorithm to an industrial caustic dilution system. 

It should be noted that both [18] and [13] are unable to explicitly account for process 
constraints. Only statistical guarantees against constraint violation are promised. 
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• To the author's knowledge, Bonhivers et. al. [9] are the first to have considered fully 
interacting multiple tanks in an inventory problem. The objective of their study was 
to reduce the variability in the paper machine wet end and reduce fresh water con
sumption. A multivariable MPC controller based on Quadratic Programming (QP) 
was devised and implemented. The main motivation and contribution of the work 
was to demonstrate the application of constrained MPC for resolving the problem. 
In the study, no other controller design methodologies were considered. 

The latest trend in resolving the averaging level control problem has been to in
corporate optimization methods. MPC, particulary, allows the designer to systematically 
incorporate all system constraints during controller formulation. Much has been done in 
the realm of a single tank. The algorithm by Campo and Morari [20] provides an excellent 
analytical solution. However, in fully coupled multiple tank systems, very little has been 
done. For the proper operation of modern plants, it is essential to better understand the 
MIMO case. 

1.2 The Industrial Process k The Lab-Scale Plant 
Setup 

This chapter presents an industrial system that requires good flow filtering for proper 
operation. This industrial two-tank pressure screening system also motivated this thesis. 
In order to facilitate the study, a lab-scale two-tank rig was constructed that mimics the 
industrial system. The corresponding system model was derived based on the lab-scale 
system. By analyzing the process model a great deal of insight was acquired about the 
MIMO system. 

1.2.1 The Pulp Pressure Screening System 

During the mechanical pulping process, wood chips are broken down into individual fibers 
through the refining process. The aqueous solution, referred to as pulp, has a typical fiber 
consistency of 0.5 % by weight. Before pulp is sent to the paper machine, it is screened to 
remove any unrefined chips and debris. To increase the efficiency of the screening circuit, 
screens are typically arranged in a cascading fashion as illustrated in Figure 1.1. In this 
strategy the accepts of the primary screen are supplied to the paper machine while the 
rejects are passed through the secondary screen. The accepts of the secondary screen are 
re-introduced to the primary screen and the rejects of the secondary screen are sent for 
further refining. As the flow to the pressure screens must be smooth, the two tanks in 
Figure 1.1 serve as surge vessels. 
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Feed 

Rejects 

Figure 1.1: Two tank pressure screening system 

Illustrated in Figure 1.2 is a typical pressure screen. As pulp enters the feed chamber 
it experiences enormous centrifugal forces caused by the hydrofoil. The pulp fibers of 
allowable size are forced through the slotted screen plate while the over-sized fibers and 
debris are passed to the reject outlet. The differential pressure between the feed and the 
accepts streams provides the driving force for the separation process [1]. Also, the reject 
rate is responsible for establishing the operating point of the screen. In a typical control 
strategy of a pressure screen, the reject flow is ratio-controlled with respect to the feed flow 
rate. Furthermore, the screen differential pressure is regulated by manipulating the accepts 
flow. Large disturbances in the feed can cause dramatic shifts in the operating point of 
the pressure screen. This can lead to a decrease in screening efficiency and can even plug 
the screen apertures. For proper operation of a pressure screen, flow disturbances must be 
absorbed by the surge tanks. In the industry production rate changes are common, which 
can be modelled as deterministic steps. If such a step disturbance was allowed to pass 
through the tank (possible with tight level control) and introduced to the screen, the screen 



Figure 1.2: Pressure screening schematic [1] 

operation can be adversely effected. Attenuating such disturbances using averaging level 
control would introduce the same disturbance in steps of considerably smaller magnitude 
over time. This also makes M R C O an excellent measure for assessing disturbance rejection 
capability of a averaging level controller. In the industry it is common to utilize PI 
controllers to independently control the level of each surge tank. As discussed earlier, a 
PI controller is unable to provide adequate averaging level control. 

1.2.2 Laboratory Two Tank System 

In order to conveniently study the pulp screening system, a laboratory-scale experimental 
rig was constructed. From here on the laboratory-scale experimental rig will be referred 
to as the "two-tank system". The fundamental assumption in constructing the two tank 
system was representing the pressure screens by static flow splitters. This assumption is 
valid as the pressure screen has relatively fast dynamics when compared to the tank level 
dynamics. The difference in bandwidth provides a natural decoupling between the screen 
dynamics and the tank level dynamics. As a result, from the level control perspective, 
the pressure screen is a static process. As the densities of both pulp and water are almost 
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Figure 1.3: Laboratory two-tank system 

Tank 1 Tank 2 
Cross-sectional area, Ac 146.0 cm2 146.0 cm2 

Maximum tank height 35.0 cm 35.0 cm 
Maximum outlet flow rate 4.0 L/min 4.0 L/min 

Table 1.1: Two tank system specifications 

identical, due to low pulp consistency, water was used to present pulp in the two-tank 
system. The two-tank system was originally an undergraduate laboratory experimental 
rig which was modified with the appropriate hardware and instrumentation to mimic the 
industrial pressure screening process. The two-tank system is illustrated in Figure 1.3 and 
the system specifications are given in Table 1.1. 

1.2.3 Process Model and Analysis 
The process model based on the two-tank system is used for analysis and controller design. 
The system model can be easily computed based on first principles. Using volumetric 
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balances around each tank, equations (1.1) and (1.2) are obtained. 

Tankl Acl'^-=qi + f2-u2-Ul (1.1) 

Tank 2 Ac2^= q2 + h • U l - u2 (1.2) 

where 

y = Liquid level in the tank, (cm) 

Ac — Cross-sectional area of the tank, (cm2) 

u = Outlet flow rate from the tank, (L/min) 

q = Inlet flow rate perturbation to the tank, (L/min) 

f — Fraction of recycle flow 

By combining equations (1.1) and (1.2) and taking the Laplace transforms, the multivari
able plant model is computed: 

I 

s 

ui(s) 
1 

+ -
Q 

* 1 0 " 

o _ 0 1 
AC2-

(1.3) 

Gd 

where s is the Laplace transform variable. In equation (1.3), the special structure where 
the dynamics can be extracted from the transfer function matrix will later prove to be 
extremely useful. Furthermore, equation (1.3) can be discretized with sampling interval 

~xl(k + 1) 
— 

" l 0" xi(k) 

+ 
_x2(k + l)_ 0 1_ _x2(k)_ 

model. 

T m i 
Ad Aci 

Th T 
AC2 AC2-

Ui(k) 

+ 
_ul{k). 

-v— 
B Dd 

~Vi{k) 1 o " 

p i _ _x2(k)_ 
(1.4) 

c 

where x(k) represents the system state and x G $ln,y G W, andu G 5ftm. As the obser
vation matrix, C, is an identity matrix the system states are in fact the tank levels. Full 
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state measurement is available as both tank levels can be measured. 
System eigenvalues can be easily determined from the diagonal of the A matrix. 

As each tank represents an integrator, the system eigenvalues are on the unit circle, as 
expected. For a given recycle fraction, / < 1, additional system analysis can be carried 
out. The controllability of the system can be computed as, Wc = 
rank 2, suggesting the system is controllable. Also the system is fill 

B AB Wc is of 
y observable as the 

observability matrix, W0 = C CA , has full rank. 
For a multivariable system, computing the relative gain array (RGA) can be ex

tremely useful. The RGA clearly reveals the degree of coupling in the system. In reality, 
the flow fraction, /, would change depending on the operating point of the pressure screen. 
For various values of / , the RGA, is displayed in Table 1.2. The degree of coupling in-

Flow fraction RGA 

h = f2 = 0.0 
1 0 
0 1 

/ i = h = 0-4 
1.19 -0.19 

-0.19 1.19 

fi = h = 0.7 
1.96 -0.96 
-.96 1.96 

h = h = i.o oo 

Table 1.2: RGA analysis 

creases dramatically as the amount of recycle flow to each tank is increased. This can be 
seen clearly in Table 1.2 as the off-diagonal elements become large as recycle fraction is 
increased. When fi = / 2 = 0 the system is naturally decoupled, and the two tanks will 
respond independent of one another. In this SISO level controller on each tank 
is sufficient. As the degree of coupling is increased, the interactions in the system are 
apparent. In the extreme, when f\ — fa = 1, the controllability matrix loses its rank and 
the system is no longer controllable. Essentially, the entire control authority is utilized 
in mitigating the recycle load and any additional disturbance in the system cannot be 
removed. This can clearly render the system unstable. 

Another closely related factor that needs to be examined is the magnitude of the 
load disturbance. If the disturbance path gain becomes greater than the loop gain, then 
the system is also not controllable. The disturbance path gain can increase in cases when 
a disturbance of greater magnitude than the maximum allowable control action is intro
duced. When there is a fixed control authority, there is an upper bound on the maximum 
inlet disturbance magnitude. In the two-tank system when the maximum control author
ity is 2L/min and assuming qi = 0, then equation (1.5) can be used to determine the 



Chapter 1. Introduction 11 

maximum attenuable tank 1 load disturbance. 

q?ax = (1 - fif2)uTx (1.5) 

Furthermore, as the degree of the recycle fraction increases, the control authority available 
for disturbance rejection decreases, as shown in Table 1.3. This, in fact, is a process 

Flow fraction q™* (L/min) 
h = h = o.o 2.00 
h = h = 0-4 1.68 
fi = h = 0.7 1.02 
h = h = i.o 0.00 

Table 1.3: Maximum attenuable tank 1 load disturbance under fixed control authority 

design problem which must be considered at the time of tank, pump and valve selection. 
Analysis of the system model indicates that some form of multivariable control is required 
to account for system interactions. 

RGA analysis has indicated that as the recycle flow fraction increases, the coupling 
in the system becomes stronger. From this analysis, the matter of selecting an appropriate 
control strategy arises. Namely, for a MIMO averaging level control problem, which 
is required: a decentralized controller, a decoupling controller, or a full multivariable 
controller? It was shown in the literature review that MPC based techniques are well 
suited for processes with state and actuator constraints. Then the question that needs to 
be answered is which MPC cost function should be minimized, the quadratic norm (£2), 

or the infinity-norm ( £ 0 0 ) ? 

Answering these questions is the objective of this thesis. Theory and design of 
various algorithms are considered in Chapter 2. Analysis of each algorithm and its pos
sible suitability for averaging level control is discussed. Simulation results for both single 
and multiple tank systems are presented in Chapter 3. The shortcomings of some con
trol algorithms are demonstrated. In order to mitigate a problem with the (£00) norm 
MPC formulation with terminal constraints, a variation of the formulation is presented 
and compared in Chapter 4. After presenting various algorithms and conducting a com
parative simulation study, some algorithms are selected for verification in a real-time 
application. Chapter 5 presents the real time application on a lab-scale two-tank system. 
Finally, Chapter 6 presents conclusions from the work presented in this thesis and makes 
recommendations for future work. 

f 



Chapter 2 

Theory and Design of Multivariable 
Averaging Level Controllers 

As discussed in section 1.1, there are many methodologies for achieving averaging level 
control in the SISO framework. But very little has been discussed in the literature about 
fully interacting multiple tank systems. An attempt is made in this chapter to inves
tigate some algorithms which may be suitable for MIMO averaging level control. This 
chapter first presents the most basic form of multivariable control, which is decentralized 
control. The discussion is followed by presenting the decoupling control design, as this 
represents the next level of complexity in multivariable controller design. Finally full 
multivariable control techniques are considered which optimize specified objective func
tions using appropriate optimization techniques. First the MPC formulation based on £ 2 

norm is considered and followed by the MPC formulation using norm with terminal 
constraints. 

2.1 Decentralized C M A 

Decentralized control can be considered the most rudimentary form of multivariable con
trol. In this formulation no consideration is given to process interactions. The interactions 
are ignored and diagonal controller design is performed. In some situations, where process 
cross coupling is weak, decentralized control can achieve almost the equivalent performance 
of a full interacting multivariable design [7]. Under such circumstances, proven SISO con
troller design techniques can be exploited. Furthermore, decentralized control is simpler 
to implement and understand. The most important aspect of decentralized control is 
the input/output pairing. As originally suggested in [3], the RGA can also be used for 
input/output pairing. It is suggested that the pairing should be performed between vari
ables which have a RGA element close to +1. From the RGA analysis in section 1.2.3 it 
can be seen that for the two-tank system, yi should be controlled using ui and y2 using 
U2- In the case of the two-tank system the pairing is also obvious and intuitive. 

As discussed in the literature review, the algorithm proposed by Campo and Morari [20] 
is extremely powerful. It explicitly minimizes the MRCO while maintaining the tank level 
within the specified level constraints. The single tank model can be obtained using equa
tion (1.1) by setting / 2 = 0 and discretizing using sampling time (T) to obtained; 

12 
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y(k + l) = y{k) + —q(k)--j-
Sic -™c 

T „x T 
u{k) (2.1) 

As outlined in [20] the problem can be formulated as: 

min II W 

subject to 

Vmin — ?/(&) — Vmax (2.2) 

y(k + Nu) = r 

the optimization is performed over U u, where Nu and r are control prediction horizon and 
setpoint, respectively. According to the formulation, in defining a terminal constraint, it 
is required that at the end of the prediction horizon the level must be at its setpoint. 
The above cost function formulation leads to a LP optimization that must be executed 
at each sample time. However, as shown in [20], when flow rate constraints are ignored 
an analytical solution exists. The analytical algorithm can be summarized by performing 
the following calculations at each iteration [2]: 

• Evaluate the flow imbalance 

Using the plant model the load disturbance can be estimated and the requirement 
for inlet flow rate measurement is eliminated. 

• Evaluate k* 

where N { i } is the smallest integer > i. The time it takes to reach the level constraint 
from the current level is computed using the tank model and the estimated flow 
imbalance. 

" = ^W) - y(k -1)] (2.3) 

(2.4) 
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Evaluate 

Nu + 1 ' TNU(NU + 1) 
(2.5) 

= 2fl(i) _ 2 A c [ ^ m - y(fc)] 
U fc* + 1 Tk*{k* + 1) 

(2.6) 

where 

yum = Tank level constraints, ymax or y m i n 

V = Difference operator: Vu(k) = u(k) — u(k — 1) 

The controller produces two control action, Vu°andVu*. In order to ensure that 
level constraints are satisfied the nonlinear Vu* is computed and Vu° ensures zero 
steady state error. Furthermore, yum is chosen to be ymax if the flow imbalance is 
positive and y m i n if the flow imbalance is negative. 

• Select the rate of change, Vw, to be Vu° or Vu* such that it has the greatest mag
nitude, and implement the next flow rate change as uik) = u(k — 1) + Vw 

The computed control action is integrated and applied to the plant. The control 
action of the maximum absolute magnitude is implemented as when level constraints 
are active then Viz* > Vw° and ensures constraint satisfaction and when level con
straints are not active then Vu° > Vu* and steers the level to its setpoint. 

Using Nu as the only tuning knob, the closed-loop response can be specified as 
tight (small Nu) or averaging level control (large Nu). In the study by [20], it is also 
demonstrated that, for a given load step disturbance no other controller will have smaller 
M R C O while satisfying level constraints, provided that Nu satisfies 

1 
Nu> Nl= . 2 10 1 + 

+ 

( | W | - 2 | f 2 | ) 2 

RA 

2-S\[y(t) - r]W 
1 
2 

(2.7) 

where is the critical prediction horizon. The algorithm is able to handle level con
straints by design but lacks the ability to handle flow rate or input constraints. It is 
stated in [20] that numerical optimization is required in order to optimally handle flow 
rate constraints. In fact, it can be shown that input constraints for the SISO case can be 
handled by using the following simple anti-windup strategy, computed as: 
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{ Umax u(k) > Umax u(k) umin < u(k) < 
Umax (2.8) 

Umin tt(fc) < Umin 

From here on Campo & Morari's algorithm augmented with the anti-windup circuit 
will be referred to as CMA. This leads to the following theorem: 

Theorem 2.1. Provided Nu > Nl, equation (2.7), is satisfied then CMA can handle level 
and flow rate constraint while providing a MRCO optimal solution. 

Proof. Let u(k) G U , where U is a closed set of all admissible control actions. For any 
controller to stabilize an unstable system in the face of a load disturbance, q, it is required 
that q G U also holds. In [12], by definition | |Vit m ax||oo < Q is always true. Hence clipping 
the control action has no effect on the MRCO optimality of CMA. • 

The aforementioned proof shows that no numerical optimization is required to satisfy both 
level and flow rate constraints. 

In further analyzing the CMA algorithm, it is interesting to note that equation (2.5) 
constitutes the linear part of the CMA algorithm. This is the minimum change in flow 
rate required to bring the level to setpoint, such that the terminal constraint is enforced 
(refer to equation (2.2)). Whereas equation (2.6) constitutes the nonlinear part of the 
algorithm which is the smallest rate of change to the flow rate required to prevent level 
constraint violation. After simple manipulations, the linear portion of the CMA algorithm 
can be shown to be identical to a PI controller. A general equation for the discrete time 
PI controller is shown in equation (2.9), where z~l is the backward shift operator. 

x Kc[(l + T/Tr)-z-i] 
CPI{Z ) = — (2.9) 

Equation (2.9) can be shown to be equal to equation (2.5) if the PI parameters are selected 
as follows. 

T{NU +1) ' Tr Nu 

This equivalence also provides a very convenient method of tuning a PI controller for level 
control. It was pointed out in [21] that the optimal damping factor for an averaging level 
controller is In Figure 2.1, the system closed-loop poles are illustrated as Nu varies. 
It is interesting to note that the closed loop poles are situated along the ^ damping 
contour. Also it can be seen that by selecting Nu = 1, a deadbeat response is realized as 
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both of the closed-loop poles are placed at the origin of the unit z-plane. As Nu —>• oo 
the closed-loop poles traverse through the complex plane along the ^ damping contour 
towards unity. At unity the closed-loop poles have approached the open loop pole and the 
system is essentially in open-loop. 

Figure 2.1: Closed-loop poles with varying Nu 

The CMA algorithm possesses characteristics which are essential for averaging level 
control. In the decentralized framework, the CMA controller can be used to control each 
tank. For the two-tank system the decentralized controller structure is as follows 

_ \CMAi 0 

0 CMA2 

and the control configuration is illustrated in Figure 2.2. Similarly the PI algorithm 

^ 

• 

CMAi 
• • • 

CMAm_ 

CMAi 
• • • 

CMAm_ 

Figure 2.2: Decentralized CMA control configuration 

can be introduced along the main diagonal to obtain a decentralized PI controller. In this 

file:///CMAi
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framework, no attempt is made to account for the system interactions as the off-diagonal 
elements of the controller are zero. Each controller on the diagonal can be individually 
tuned for the desired response in the corresponding tank. This framework may not lead 
to optimal controller performance, but the controller structure is simple and it provides 
an excellent starting point for multivariable controller design. 

2.2 Decoupled C M A 
In the next level of multivariable control, an attempt is made to account for system 
interactions. Decoupling is a technique which attempts to reduce or eliminate closed-
loop interactions [5]. The objective is to transform the system mathematically to remove 
any interactions. In practice, it is rare that complete decoupling is possible across all 
frequencies. Various methods for decoupling exist depending on the requirements, ranging 
from steady state decoupling to decoupling using state feedback [11]. 

As discussed in section 1.2.3, the multiple tank system has a very unique system 
model. The multiple tank model can be .separated into scalar dynamics multiplied by a 
constant matrix. 

Msl 

Equation (2.10) has the form G(s) = k(s)A where k(s) = ^ represents the scalar dynamics 
and A is the constant matrix. For such models, dynamic decoupling across all frequencies 
is possible using only a scalar transformation [14]. 

Lemma 2.1. The multiple tank system can be dynamically decoupled using the constant 

decoupling matrix defined as W — A~lA,nag. This transformation preserves the original 

plant along the diagonal elements. 

Proof. The proof is straightforward as shown below. 

l 

L 

A 

1 

ui(s) 

(2.10) 

W = A-xAdiag 
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• 
Lemma 2.2. CMA is guaranteed to maintain the tank level within its constraints for a 
step load disturbance. 

Proof. As shown in [20]. • 
Theorem 2.2. For a multiple tank system which is dynamically decoupled by preserv
ing the diagonal elements, and assuming no input constraints are encountered, then the 
Decentralized CMA controller is guaranteed to satisfy tank level constraints. 

Proof. The proof is simple by combining Lemma 2.1 and Lemma 2.2. 

• 

Figure 2.3: Decoupled CMA control configuration 

Using a constant decoupling matrix to decouple the multivariable system across 
all frequencies is extremely useful. By combining the decoupling matrix and using de
centralized control, tank level constraints can be successfully handled. The Decoupled 
CMA control configuration is illustrated in Figure 2.3. In the case of input constraints, 
however, the solution is not trivial. During actuator saturation only partial decoupling 
can be accomplished [7]. Under partial decoupling Theorem 2.2 is no longer satisfied and 
there is no guarantee in handling level constraints. In order to optimally handle all sys
tem constraints, constrained optimization is usually required [15], which is the focus of 
the remainder of this chapter. 

2.3 C2 M P C using QP: MPCQP 
Model based predictive control is the only control methodology that allows the designer 
to account for all process constraints in a systematic manner [15]. In this section, the 
state space formulation of MPC is presented. By working in the state space framework, 
no generality of MPC is lost as polynomial-based techniques such as DMC and GPC can 
all be realized equivalently [8]. 
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In the standard state-space formulation of the constrained MPC control law, the 
following £ 2 norm cost function is minimized: 

N2 Nu-1 

Vvu{k) = \\y(k+*) - r(k+*) ilia) + E ll V u ( f c + * ) 
i=Ni i=0 

subject to: (2.11) 

l/min — 2/(̂ 0 — Umax 

Umin — u(k) < Umax 

where Ni, N2 are the minimum prediction horizon and the maximum prediction horizon, 
respectively. Also, Q(i) is the output weight matrix and R(i) is the input weight matrix. 
As a note, Q and R carry the same interpretation as in LQ controller design. As it can 
be seen in (2.11), the minimization is performed with respect to V« rather than u. It is 
quite convenient to optimize with respect to Vu as the effect of the mean value is removed. 

Consider the linear time-invariant (LTI) state-space model: 

x(k + 1) = Ax(k) + Bu{k) 

y(k) = Cx(k) ( 2 ' 1 2 ) 

In equation (2.12), x(k) G $ln is the system state vector, u(k) G 5Rm is the input control 
vector and y(k) € is the system output vector. In order to introduce V in the cost 
function the state-space model is modified. The augmented state-space model can be 
presented by the state vector 

Vx(fc) 

y(k) 
(2.13) 

where Vx(fc) = x(k) — x(k — 1). From equation (2.12), 

x(k) = Ax(k - 1) + Bu(k - 1) (2.14) 

Now subtracting equation (2.14) from (2.12) gives 

Vx(k + 1) = AVx{k) + BVu(k) (2.15) 
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Also from equation (2.12), the one-step-ahead output vector-is: 

y(k + l) = Cx(k + l) 

= C[Vx(k + l) + x(k)} (2.16) 

= C[AWx(k) + BVu{k)} + y{k) 

Now the state-space augmented system is defined as, 

Vx(k + 1) 
y(k + l) 

y(k) 

A 0 
CA I 

Vx{k) 
y(k) + 

B 
CB 

Vu{k) 

(2.17) 

0 / 
Vx(k) 
y(k) 

Assuming Vu(k + j) = 0 for Nu < j < N2 or the changes in the control action are 
set to zero past the control horizon, and using the above augmented state-space model 
the state trajectory can be predicted as: 

= H{k) + gvu(k) (2.18) 

where VU(k) — [Vu(k), • • • , \7u(k + Nu — 1)] and the matrices T and Q are defined as: 
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A 

A2 

G{k) = 

B 

AB 

0 
B 

0 
0 

B 

As previously stated, the cost function being minimized 

[U^N2-IMJ)]B 

IS 

Nu-1 N2 Nu-1 

Vyu{k) = £ || Ct^{k + j) - r(k + j) \\2

QU) + II V«(* + j ) 

that can be expanded and rewritten as, 

2 

m (2.19) 

vvu(k) = vu(k)T[gTcTQcg + n]vu(k) 
+ 2[[^(k)}TCT - f(kf]QCgX7U{k) + X{k) (2.20) 
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where 

Q = 

Q(N2) 

11 = 

R(l) 

R(NU) 

C = 

C(l) 

C(N2) 

f(k) = [r(k + lf,--- ,r(k + N2)T]T 

The X(k) term can be dropped from the cost function as it has no effect on the op
timal solution. To further reduce equation (2.20), let A = QTCTQCQ + TZ and let 
B = 2[[T(,{k)]TCT - f(k)T]QCg. Then by taking the gradient of V(k) and setting it 
equal to zero the unconstrained M P C solution is computed as 

VLT(fc) = -\A~1BT (2.21) 

The unconstrained M P C control law is linear and unable to handle any system 
constraints. Fortunately it is quite straightforward and simple to define system constraints 
(i.e. state, input, slew rate constraints). This is actually one of the most attractive features 
of M P C . In this formulation, constraints are defined on the input magnitude, the input 
slew rate and on system states. Other constraints such as the terminal constraint set, 
over-shoot constraints and undershoot constraints can also be easily defined [6]. 

• Input Magnitude Constraints: As in all practical applications, actuators have finite 
authority. Therefore, constraints must be defined on the magnitude of the control 
action to prevent integrator windup. The constraints on the input magnitude are 



Chapter 2. Theory and Design of Multivariable Averaging Level Controllers 23 

defined as 

mmin(k) < u(k) < (k) 

(k) (2.22) 

where 

a < U(k) < (3 

and M G ^nNu,m_ foe optimization will be performed with respect to VU rather 
than U, then the constraints must also be defined in terms of VU. This can be 
achieved by using the following modification: 

i-l 
U (k + i - 1) = u(k - 1) + Y V u ( f c + J) 

in matrix notation 

U{k) = AVU{k)+lu(k- 1) 

A = 

Im 0 

Im Im 

Im Im Im Im 

(2.23) 

1 = \I ••• I ]T 

L m» » ±m\ 

Now with the above modification, the magnitude constraints on input can be ex
pressed in terms of VU. 

Input Rate Constraints: It is also quite realistic that actuators have limited rates of 
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change. Rate constraints on the input can be represented as 

lmin(k) < Vtt(fc) < lmax(k) 

mmi/n(k) < VU(k) < M • mmax(k) (2.24) 

State/Output Constraints: In the case of averaging level control, the state or output 
constraints are the most important constraints. State constraints can also be easily 
defined within the M P C framework as 

N • nmin(k) < E(k) < N (k) (2.25) 

where 

7 < Z(k) < 8 

N 

Ln+p 

n+p 

and N G ^N^n+p)'(n+p\ The state constraints also need to be expressed in terms of 

VC7. This can be accomplished by mapping the state constraints as constraints on 

V f / by using the state prediction equation (2.18). 

The constrained M P C formulation can now be stated as follows: 

mmVUTAWU + BVU (2.26) 

subject to the linear inequality constraints: 

VVU < 8 

where 
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(5 - Tu(k - 1) 
-a + lu(k - 1) 

5 - F£{k) 
-i+mk) 

The optimal solution to the problem as formulated is obtained via QP optimization. The 
first term of the calculated control sequence is passed through an integrator and then 
applied to the plant. The optimal control is computed at the next sampling time and the 
control action continues to be applied in a receding horizon fashion. 

The choice of MPCQP as a candidate algorithm for averaging level control is well 
justified. The MPCQP algorithm can naturally incorporate system constraints and, via 
QP optimization, can provide £ 2 optimal control actions. The algorithm is also easy 
to tune as the controller weights Q and R, along with the horizons, may be adjusted 
to achieve the desired closed-loop behavior. Provided that input and output have been 
appropriately scaled, then by setting R to be larger than Q the control actions are heavily 
penalized providing flow smoothing. The algorithm can be significantly detuned as it is 
capable of making more aggressive corrective actions if system constraints are approached. 

2.4 Coo M P C with Terminal Constraints using L P : 
C M N 

An alternative to employing the QP algorithm is to reformulate the MPC cost function and 
cast the problem as a LP optimization. Keeping with the spirit of Campo & Morari [20], 
the constrained MIMO MPC using LP optimization is formulated by minimizing the £ o o 
norm, similar to equation (2.2). From here on this algorithm will be referred to as CMN. 
The requirement of averaging level control is to minimize the maximum rate of change, 
so it is only natural to minimize the largest change in the control action or minimize its 
£ o o norm. Minimization with respect to the £ 1 norm also leads to LP optimization. But 
in the £ 1 formulation, large deviations in control action may be allowed. The formulation 
in [20], which was developed for a truncated impulse response model, is now extended to 
the general MIMO state-space framework. 
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For the M P C formulation the following cost function is defined: 

i=l 

subject to: 
(2.27) 

Umin — V ^ ymax 

Umin ^ U ^ U m a x 

' y(k + Nu) = r(fc) 

In the above formulation ATi = 1, and A^ = Nu and thus the minimization is over $lmNu. 
The cost function can be defined as a Chebyshev approximation problem by defining 

A4 •* = E II
 w us* (2.28) 

t=i 
Then any ji that satisfies 

-1NUH< -riKVU 

-\Nu^<rinVU 

is an upper bound on fi*. In equation (2.29), Ti is defined as 

(2.29) 

H = 

and where 1 is a column vector of ones with the appropriate dimension. The constraints 
can be defined as in equations (2.22), (2.24) and (2.25) for input magnitude, input slew 
rate and states, respectively. Now the problem can be formulated as: 
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where 

mm u 
n vr/ 

subject to 

0 > -lNuu. + WlVU 

0 > -lNuti-HKVU 

S > T£{k) + QVU 

- 7 > -F£(k) - CVU 

0 > -vc/ + ̂  
u > VU 

(3>AVU{k)+lu(k-l) 

-a > -AVU(k)-lu(k-l) 

JCf(k) = !CCT£(k) + KZCQVU 

-K,f(k) = -)CCFZ(k) - KZCQVU 

JC = 

0 
Pip 

is defined to induce terminal constraints with 0 being a matrix of zeros of appropriate 
dimensions. According to the above formulation it is required that the process output be 
at the specified setpoint at the end of the prediction horizon. 

Furthermore, by defining VU 
standard LP framework. 

VU — ip the above formulation can be cast into the 

min cTx 
X 

subject to: 

Aix < b i (2.30) 

A2x = b 2 

x > 0 

where 
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c = x = VU 

Ai = 

- 1 
- 1 -un 

0 Q 

0 Q 

0 i 
0 A 
0 - A 

-Wltp 

8 - f£(k) - Qi> 
b i = I - 7 - H(k) - Gip 

u — ib 
P-Aip- lu{k - 1) 

|_ a = Aip = Xu(k - 1) 

KZr{k) - KCT^{k) 
-KZf{k) + KZCFEik) 

For averaging level control, CMN has the same characteristics as MPCQP such 
that constraints can be easily incorporated into the design phase. Furthermore, the CMN 
algorithm explicitly minimizes the MRCO, which is the fundamental objective of averaging 
level control. 

Various MIMO controller design techniques have been presented in this chapter. 
Now it is natural to compare and contrast the various algorithms and determine the best 
strategy. This is the focus of the next chapter. 

Ao = o iccg 
0 -KCQ 



Chapter 3 

Controller Comparison: Simulation Results 

In the previous chapter, several algorithms for averaging level control were developed. The 
objective of this chapter is to systematically analyze these algorithms and establish their 
suitability for averaging level control. 

This chapter first establishes the differences between tight and averaging level con
trol, and shows why tight level control is not desired when flow smoothing is the primary 
objective. Next, a comparative study of the various algorithms for a single tank system is 
presented, followed by a comparative study for the two-tank system. The effect of various 
cost functions in MPC formulation is also discussed. 

3.1 Tight versus Averaging Level Control 

Averaging level control provides flow smoothing by transferring flow variability to the 
tank level. It is common in industry to utilize a PI controller that is tuned for tight 
level control. The tightly tuned controller transmits flow disturbances through the tank, 
defeating the purpose of a surge vessel. 

A single tank from the two-tank system is discussed in this section (see section 1.2.2). 
The tank level is controlled using a PI controller which manipulates the outlet flow rate 
and a step disturbance is introduced at the inlet. Table 3.1 contains the simulation pa
rameters and the sampling time, T, is 10 seconds. For ease of comparison, the nominal 

setpoint and nominal flow rates are subtracted from the actual values in order to center 
the level and the flow rate around zero. The differences between tight and averaging level 
control for a inlet flow disturbances of 1.2 L/min are illustrated in Figure 3.1. It can 
be seen that the tightly tuned PI controller deploys aggressive control action for quick 
disturbance rejection; this invariably results in a large MRCO. On the other hand, the PI 
controller tuned to provide averaging level control allows the tank level to deviate signifi
cantly from setpoint and absorbs the flow disturbance. The MRCO for tight level control 

Cross-sectional area, Ac 

Nominal level, r 
Inlet disturbance, q 

146.0 cm2 

0.0 cm 
1.2 L/min 

Table 3.1: Simulation parameters 

29 
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and for averaging level control in this example are 3.6 L/min/min and 0.11 L/min/min, 
respectively. In order to achieve averaging level control, manipulations in the flow rate 

151 1 1 1 1 1 1 15 

Time (min) Time (min) 

(a) Tight level control (b) Averaging level control 

Figure 3.1: Tight level control vs. Averaging level control 

must be minimized. In the next section, a detailed comparison of various averaging level 
control algorithms for a single tank are discussed. 

3.2 Single Tank Averaging Level Control 

Initially studying the problem in a single dimension using a SISO tank system can be 
extremely instructive. This can provide excellent insights into the behaviour of various 
control algorithms and pave the way for analysis of the MIMO system. 

Simply minimizing flow rate manipulations is not sufficient to provide acceptable 
averaging level control. The requirements of averaging level control as stated in Chapter 1 
are reiterated here. 

• For a given flow disturbance, the manipulated flow rate changes are minimum, i.e. 
minimize MRCO. 

• Maximum surge capacity should be utilized while maintaining the tank level within 
it maximum and minimum level constraints. 

• The manipulated flow rate must be kept within its minimum and maximum con
straints. 

• After attenuating a disturbance, the tank level must be steered back to its setpoint, 
i.e. integral action must be present. 
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MRCO is used as the primary metric in order to compare various control algorithms. The 
complexity of the solution is taken into consideration as an analytical solution is easier 
to implement in an industrial computer control system than a numerical solution. The 
algorithms of interest in this section are PI, CMA, MPCQP, and CMN. 

3.2.1 Equivalent Controller Tuning 

In order to provide a fair comparison, the algorithms are tuned in the unconstrained 
case to provide equivalent performances. Time domain measures such as maximum devi
ation (Mg) from setpoint, settling time (ta) and sum of squared error (SSE=]T) || e(t)2 ||) 
are used to assess the closeness of equivalent tuning. Where applicable, design parameters 
such as prediction and control horizons are set equal. 

As previously discussed, the PI controller can be tuned based on the CMA algo
rithm. In fact, the linear portion of the CMA algorithm is a linear PI controller where the 
prediction horizon becomes the single tuning parameter. Then it is easy to equivalently 
tune the PI and CMA controllers. In thecase of the MPCQP algorithm, some additional 
tuning knobs are available. In MPCQP, Q the output weighting matrix and R the input 
weighting matrix must be appropriately selected to achieve the desired closed loop perfor
mance. Finally, in the case of the CMN algorithm, only the prediction horizon is used for 
tuning. The CMN algorithm provides identical results as CMA when flow constraints are 
not encountered. Hence, in the unconstrained case, it is also easy to tune CMN by simply 
defining the same prediction horizon as in CMA. The prediction horizon for the PI, CMA 
and CMN were fixed at 21. For the MPCQP JVi = 1 and N2 = Nu = 21 with Q and 
R wights in equal 1 and 90, respectively. With a prediction horizon of 21, the controller 
utilizes the maximum surge capacity in the unconstrained case without over flowing the 
tank for the given disturbance of 1.6 L/min. A prediction horizon of 21 is also slightly 
larger than the critical prediction horizon of 20 as defined by equation (2.7), to optimally 
attenuate the maximum allowable disturbance of 2L/min. The simulation parameters 
are set according to Table 3.1. The time domain measures of performance are listed in 
Table 3.2 and illustrated in Figure 3.2. 

Controller Ms ts 
SSE 

PI 9.7 cm 9.5 min 2387 cm'2 

CMA 9.7 cm 9.5 min 2387 cm2 

MPCQP 9.7 cm 8.5 min 2061 cm2 

CMN 9.7 cm 9.5 min 2387 cm2 

Table 3.2: Unconstrained controller tuning comparison 
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Figure 3.2: Unconstrained controller tuning 

The focus of the next section is to provide a comparative analysis between the 
various algorithms when constraints are defined and evoked using a disturbance magnitude 
that is 90% of the maximum outlet flow rate. 

3.2.2 Case 1: Level Constraints 
In this section, only constraints on the tank level are considered. It is assumed that an 
infinite amount of actuator authority is available. This is not the case in reality as only a 
finite amount of fluid can be removed from a tank due to the limitation provided by the 
pump and valve size. The controllers have been tuned as in the unconstrained case and 
level constraints are introduced. The simulation parameters are as per Table 3.3. 

Cross-sectional area, Ac 146.0 cm 
Nominal level, h 0.0 cm 
Maximum level constraint 10.0 cm 
Minimum level constraint - 10.0 cm 
Inlet disturbance, q 1.8 L/min 

Table 3.3: Simulation parameters: level constraints only 

First, the MRCO optimal solution to the single tank problem is presented. As 



Chapter 3. Controller Comparison: Simulation Results 33 

stated in [12] the optimal control policy is to manipulate the outlet flow rate as a ramp 
of smallest slope and allowing the level to reach its constraint so the maximum surge 
capacity is utilized. The optimal solution is computed by minimizing the norm of the 
outlet flow rate using a infinite horizon controller [12]. The infinite horizon solution can be 
realized by using a finite horizon controller with a large horizon, as beyond a certain point 
an additional increase in prediction horizon has no effect on the optimal solution. This 
can be accomplished by using the C M N algorithm using a prediction horizon of 50. Then 
the optimal M R C O for 1.8L/min load disturbance is 1.24 L/min/min and the result is 
illustrated in Figure 3.3. 
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Figure 3.3: SISO M R C O optimal solution 

For the proposed algorithms, the simulation results are illustrated in Figure 3.4. 
The M R C O values for the simulations are displayed in Table 3.4. 

Controller M R C O (L/min/min) 
PI 1.03 

C M A 1.24 
M P C Q P 1.59 

C M N 1.24 
M R C O Optimal 1.24 

Table 3.4: M R C O : single tank with level constraints only 
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Figure 3.4: Controller comparison: single tank with level constraints only 

The PI controller is clearly not able to maintain the tank level within the specified 
level constraints. This is inherent to the linear PI algorithm as there is no provision for 
constraint handling. This is the fundamental drawback for utilizing a PI controller for 
averaging level control. 

The CMA algorithm, which is specifically designed to handle state constraints, is 
able to maintain the tank level within its limits. The optimal policy is to manipulate the 
outlet flow rate as a ramp of the smallest slope. The slope of the ramp must be such 
that the inlet flow disturbance is exactly matched as the tank level reaches its limit [12]. 
The CMA controller exhibits this optimal ramp behavior along with exerting additional 
control effort to bring the level to setpoint. The tank level is returned to the origin in about 
3.0 • P sample times or approximately 8.75 minutes. Additionally, as the Coo norm on Vi* 
is explicitly minimized, the CMA exhibits the MRCO optimal solution, while satisfying 
level constraints, as seen in Table 3.4. 

MPCQP is also able to handle tank level constraints. As MPCQP minimizes the 
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£ 2 norm on V M , similar to minimizing the averaging control energy, minimum MRCO is 
not guaranteed. But when compared to the optimal MRCO, the MPCQP solution is not 
significantly larger. The drawback of MPCQP in this scenario is that on-line optimization 
via QP is required, whereas CMA has an analytical solution that is MRCO optimal. 

The CMN algorithm produces identical results as CMA in the case when only level 
constraints are defined. The interpretation of results for the CMN algorithm are identical 
to the CMA algorithm. The fundamental difference between the two algorithms is that 
the control action in CMN is produced by solving an on-line LP optimization. The LP 
optimization needlessly increases solution complexity when CMA can produce identical 
results. 

3.2.3 Case 2: Level & Flow Constraints 
In this section, a more realistic scenario is presented. Every actuator has minimum and 
maximum limits. A 'good' control strategy must consider such limitations, or controller 
windup may result. Here, both level and flow rate constraints are defined, and the sim
ulations are set up as per Table 3.3. Flow rate constraints of ±2.0 L/min were defined 
and a disturbance of 1.8 L/min was introduced. The simulation results are illustrated in 
Figure 3.5 and the corresponding MRCO values are listed in Table 3.5. 

Controller MRCO (L/min/min) 
PI 1.03 

CMA 1.24 
MPCQP 1.59 

CMN 3.59 
MRCO Optimal 1.24 

Table 3.5: MRCO: single tank with level and flow rate constraints 

The PI controller can be augmented with an anti-windup circuit, as shown in sec
tion (2.1), to prevent actuator constraint violations. The PI controller is still unable to 
handle level constraints. A PI controller tuned for averaging level control is clearly not the 
best control policy. Regardless of the method chosen for tuning a PI controller, it cannot 
guarantee to maintain the level within the specified constraints. This clearly puts the PI 
algorithm at a disadvantage, therefore, it will not be further discussed in the multivariable 
framework. 

The CMA algorithm is able to handle flow rate constraints. However, unlike the 
PI algorithm, the CMA is also able to handle level constraints. The only difference 
in performance by introducing flow rate constraints is that the settling time is slightly 
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Figure 3.5: Controller comparison: single tank with level and flow constraints 

increased. The MRCO value is still optimal as supported by Theorem 2.1. 
Similarly, the MPCQP algorithm is able to handle both level and flow rate con

straints. Even though both level and flow rate constraints become active during the sim
ulation, the degradation in controller performance is minimal. The settling time increases 
slightly but the MRCO values is not effected, compare Table 3.4 and Table 3.5. 

In the case of CMN, the algorithm is unable to utilize the full surge capacity as the 
outlet flow rate is aggressively manipulated. Such manipulations have the adverse effect 
of inflating the MRCO value by about three times as shown in Table 3.5. Although the 
algorithm is able to maintain both tank level and outlet flow rate within their respective 
constraints, it is not MRCO optimal. This result can be attributed to the use of terminal 
constraints to induce integral action as formulated in equation (2.2). In the CMN formu
lation, it is required that, at the end of the prediction horizon the level must be at its 
desired value. In the presence of a flow rate constraint, such a requirement is not possible 
while allowing the smallest change to the flow rate. Hence, the terminal constraint dom-
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inates the optimization result and defeats the flow filtering objective. In the presence of 
all process and terminal constraints, the solution is still optimal in the £ o o sense but not 
desirable. 

3.3 M I M O Averaging Level Control 

In this section, the case of the interconnected multiple tank system is discussed. It is 
of interest to explore how controller performance is affected as the degree of coupling 
is varied. For the case where recycle fraction is 0%, the two-tank system is inherently 
decoupled. Then using decentralized control is sufficient as discussed in the previous 
section. In this section moderate coupling, 40% recycle fraction, and strong coupling, 
70% recycle fraction, are analyzed. 

The tuning of a MIMO MPC can be a cumbersome task as there are no concrete 
tuning guidelines. The effects and interactions of various tuning knobs are not well un
derstood. In order to alleviate this problem and provide a baseline for comparison, the 
various multivariable controllers have been tuned as in the single tank case. The MRCO 
for the multivariable system is defined as YliLi II ||<x>-

It is important that neither of the two tanks violate their lower and upper con
straints. The level constraints of each tank can be defined independently, but for ease of 
comparison the level constraints on each tank are defined to be identical. The system is 
simulated using parameters as defined in Table 3.6. 

Tank 1 Tank 2 
Cross-sectional area, Ac 146.0 2 

cnr 
146.0 2 

cm Nominal level, h 0.0 cm 0.0 cm 
Maximum level constraint 10.0 cm 10.0 cm 
Minimum level constraint -10.0 cm -10.0 cm 
Inlet disturbance q,fi = f2 = = 40% 1.6 L/min 0.0 L/min 
Inlet disturbance q,fi = f2 = = 70% 0.9 L/min 0.0 L/min 

Table 3.6: MIMO simulation parameters: level constraints only 

Again, prior to presenting the simulation results using the various algorithms the 
optimal MRCO solution is established. As previously, the optimal MRCO solution can be 
realized using the CMN algorithm with a sufficiently large prediction horizon of 50. For 
the 40% and 70% recycle fractions the results are shown in Figure 3.6 and the optimal 
MRCO values are 0.99 L/min/min and 0.56 L/min/'min, respectively. 

This section is arranged such that level constraints are first considered and then fol
lowed by the more complete case where both level and flow rate constraints are addressed. 
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Figure 3.6: MIMO optimal MRCO, Tank 1 (solid) Tank 2 (dash-dot) 

The effect of coupling in the system is discussed within each scenario. 

3.3.1 Case 1: Level Constraints 

The control algorithms of interest in the multiple tank case are Decentralized CMA, De
coupled CMA, MPCQP and CMN. In this section, the PI control algorithm has been 
discarded due to its inability to handle level constraints. As previously mentioned, com
parison of the various controllers is further complicated due to the inherit coupling in the 
system. Figure 3.7 illustrates the closed-loop response with the various control algorithms 
for the 40% recycle case and Figure 3.8 exhibits the close loop response for the 70% recycle 
case. The MRCO values are summarized in Table 3.7. 

MRCO (L/min/min) 
Controller / i = h = 40% h = h = 70% 

Decentralized CMA 2.02 0.82 
Decoupled CMA 1.89 1.79 

MPCQP 1.34 0.69 
CMN 1.51 1.71 

MRCO Optimal 0.99 0.56 

Table 3.7: MRCO: two-tank system with level constraints 

For the given step disturbance in tank 1, Decentralized CMA is unable to handle 
the level constraints. The CMA algorithm is based on the assumption that the step 
disturbance will persist for the entire prediction horizon. But in the multi-tank system, due 
to system coupling, the step disturbance which enters tank 1 becomes a ramp disturbance 
to tank 2 and, furthermore, makes its way back to tank 1 as a ramp disturbance. As the 
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Figure 3.7: Controller comparison: two-tank system with level constraints for fx = f2 = 
40%, Tank 1 (solid) Tank 2 (dash-dot) 

ramp disturbance violates the fundamental disturbance assumption in CMA, the controller 
is unable to maintain the tank level within the specified constraints. Similar behavior is 
observed when the recycle fraction is increased to 70%. 

Level constraints are not violated for the Decoupled CMA algorithm. Assuming a 
perfect plant model is known, the decoupled controller will guarantee that level constraints 
are never violated as stated by Theorem 2.2. The main drawback of this strategy is that 
the total surge capacity in the system cannot be utilized for flow smoothing. As can be 
seen in both Figure 3.7 and Figure 3.8, in order to provide decoupling, the control strategy 
ramps the outlet flow rate of tank 2 at the rate which matches the load disturbance and 
allows no deviation in the level of tank 2. This prevents the surge capacity of the second 
tank from being used for flow smoothing. This leads to the algorithm not being MRCO 
optimal as compared in Table 3.7. However this simple strategy provides reasonable 
results. 
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Figure 3.8: Controller comparison: two-tank system with level constraints for / i 
70%, Tank 1 (solid) Tank 2 (dash-dot) 

= h = 

Illustrated in Figure 3.7(c) and Figure 3.8(c) are the responses of the M P C Q P 
control algorithm under various degrees of system coupling. In addition to effectively 
handling the level constraints, this control algorithm uses almost all the surge capacity. 
Minimal changes are made to the outlet flow rates of both tanks as the load disturbance 
is transferred to the tank levels. M P C Q P is not M R C O optimal but provides the smallest 
M R C O when compared to other algorithms. Furthermore, the closed-loop response be
comes oscillatory and the settling time increases as the amount of coupling in the process 
is increased. 

As in the M P C Q P case, the C M N algorithm was also tuned based on the uncon
strained case. As it can be seen in Figure 3.7, the C M N algorithm also tries to make 
use of the capacity of both tanks in the 40% case. But the sensitivity of C M N to tuning 
is clearly illustrated when the recycle fraction is increased to 70%. The C M N algorithm 
essentially decouples the system and as a result does not utilize maximum available surge 
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capacity. The primary reason for such behavior is the definition of terminal constraints 
and the length of the prediction horizon. The controller becomes short sighted and takes 
much more aggressive actions, making it suboptimal in the MRCO sense. 

3.3.2 Case 2: Level & Flow Constraints 
In this section, the more complete case including both level and flow rate constraints is 
compared. Figure 3.9 and 3.10 show the closed-loop response of the two-tank system for 
recycle fractions of 40% and 70%, respectively and the MRCO values are compared in 
Table 3.8. As before, each actuator is limited to a flow rate of ±2 L/min. 

The Decentralized CMA is able to handle flow rate constraints but cannot handle 
level constraints. Again, the disturbance assumption for CMA is violated and, as a result, 
CMA is unable to handle level constraints. It is interesting to note that even though the 
controller is unable to guarantee level constraint handling, the controller is still aware of 
the constraints and tries to be pre-emptive. The controller does attempt to compensate 
for the underestimation of the flow disturbance, but obviously the strategy is not MRCO 
optimal as shown in Table 3.8. 

MRCO (L/min/min) 
Controller h = h = 40% fi = h = 70% 

Decentralized CMA 2.02 0.82 
Decoupled CMA 1.89 1.91 

MPCQP 1.34 0.69 
CMN 3.69 3.65 

MRCO Optimal 0.99 0.56 

Table 3.8: MRCO: two-tank system with level and flow rate constraints 

In the case of the Decoupled CMA, somewhat different results are obtained when 
flow rate constraints are introduced. Since one of the requirements of Theorem 2.2 is 
violated, the Decoupled CMA is no longer guaranteed to handle level constraints. The 
requirement that sufficient control authority is available for decoupling and control is 
violated. Since there is only a finite control authority the system is not fully decoupled [7]. 
This can be seen in Figure 3.9 and, to a greater extent, in Figure 3.10; when the tank 1 
flow rate saturates, the tank 2 level is no longer perfectly decoupled. The partial coupling 
in the system also implies that the disturbance assumption in CMA is violated. The CMA 
controller in the partially decoupled space experiences ramp type disturbances which lead 
to level constraint violations as clearly seen in Figure 3.10(b). 

The MPCQP algorithm is able to handle all system constraints. The level and 
flow rate constraints are handled quite easily without much degradation in the closed-
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Figure 3.9: Controller comparison: two-tank system with level constraints for f \ = /2 = 
40%, Tank 1 (solid) Tank 2 (dash-dot) 

loop performance. The controller attempts to utilize the maximum surge capacity to 
attenuate inlet flow disturbances. Furthermore, there is no change in the MRCO value 
when flow rate constraints are introduced, suggesting that the algorithm is not sensitive to 
tuning. Actually, by introducing flow rate constraints, the closed-loop response becomes 
less oscillatory. This can be attributed to the fact that the control authority is limited 
hence large overshoot on the control action are prevented. Even though MPCQP is not 
MRCO optimal, it is able to provide the smallest MRCO value as shown in Table 3.8. 

Again, the CMN algorithm is unable to provide MRCO optimal control. The 
controller becomes extremely aggressive when flow rate constraints are introduced. From 
Figure 3.10 it can be observed that the flow filtering objective is clearly defeated but the 
terminal constraint requirements are satisfied. From the closed-loop simulations in the 
SISO and MIMO cases, it can also be observed that the response is effected by flow rate 
constraints, terminal constraints, load disturbance magnitude and process coupling. For 
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Figure 3.10: Controller comparison: two-tank system with level and flow constraints for 
f1 = f2 = 70%, Tank 1 (solid) Tank 2 (dash-dot) 

the CMA algorithm, equation (2.7) shows that prediction horizon must be greater than 
the critical horizon in order to remove the effect of terminal constraint and achieve MRCO 
optimality. Likewise, a similar condition may exist for the MIMO CMN, which leads to 
the following conjecture. 

Conjecture 3.1. For the MIMO CMN algorithm there exists a control horizon, larger 
than that computed in the SISO case, which is a function of level constraints, flow rate 
constraints, load disturbance and system interaction that would provide MRCO optimal 
control. 

The above conjecture is directly supported by the MRCO optimal solution where a 
prediction horizon of 50 was found to be optimal. This suggests that the C M N algorithm 
is very sensitive to tuning. 
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3.4 C h a p t e r R e f l e c t i o n s 

This chapter has been dedicated to providing a rigorous comparison between various 
control algorithms designed for averaging level control. For the single tank system, it was 
demonstrated that the CMA algorithm is sufficient to guarantee both level and flow rate 
constraints. The results are summarized in Table 3.9. 

Controller Level Constraint Level & Flow Rate Constraint Features 
X X • Handles constraints 

PI / / • M R C O optimal 
Analytical Analytical • Solution Complexity 

/ / • Handles constraints 
C M A / / • M R C O optimal 

Analytical Analytical • Solution Complexity 
/ / • Handles constraints 

M P C Q P X , • x • M R C O optimal 
Numerical Numerical • Solution Complexity 

/ / • Handles constraints 
C M N / X • M R C O optimal 

Numerical Numerical Solution Complexity 

Table 3.9: SISO simulation comparison results 

The situation is much more complicated for the multiple tank system. It was shown that 
the approach of applying decentralized CMA controllers results in level constraint viola
tion. The Decoupled CMA and MPCQP provided the best results for the two-tank system. 
The Decoupled CMA algorithm guarantees level constraint handling provided no flow rate 

Controller Level Constraint Level & Flow Rate Constraint Features 
X X • Handles constraints 

Decentralized C M A X X • M R C O optimal 
Analytical Analytical • Solution Complexity 

/ X • Handles constraints 
Decoupled C M A X X • M R C O optimal 

Analytical Analytical • Solution Complexity 
/ / • Handles constraints 

M P C Q P X X • M R C O optimal 
Numerical Numerical • Solution Complexity 

/ / • Handles constraints 
C M N X X • M R C O optimal 

Numerical Numerical • Solution Complexity 

Table 3.10: MIMO simulation comparison results 

constraints are encountered. When one of the actuators does saturate, the decoupling is 
no longer perfect and level constraint violation may result. When ample computational 
resources are available, implementing the MPCQP algorithm would serve as the best strat-
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egy for the MIMO case. The MPCQP algorithm has excellent characteristics as it is able 
to maintain the system within specified constraints and, most importantly, provides the 
lowest MRCO for the chosen simulation scenario. It was also demonstrated that the CMN 
algorithm has some severe drawbacks when flow rate constraints are introduced, making 
the controller near-sighted. This occurs in both the SISO and MIMO cases. It was con
jectured that this problem might be overcome by increasing the prediction horizon, but 
there is no guarantee that the same problem will not occur under a different scenario. The 
simulation results for the MIMO case are summarized in Table 3.10. 

However, the MPC formulation that explicitly minimizes the MRCO is still very 
attractive. Thus, the objective of the next chapter is to mitigate the problem with the 
CMN algorithm by proposing a novel mixed norm algorithm. 



Chapter 4 

Ci/Coo MPC: Mixed Norm Formulation 

It was shown in Chapter 3 that the MPC formulation using the norm with termi
nal constraints, CMN, had some undesirable properties when flow rate constraints were 
introduced. It was observed that the integral action via terminal constraints became a 
competing objective with minimizing the MRCO. On the other hand, the MPC formula
tion using the £ 2 norm, MPCQP was quite insensitive to flow rate constraints and actually 
provided the better result. The objective of this chapter is to present a variation of the 
CMN algorithm, called £ i / £ o o MPC, that mitigates some of the drawbacks in the original 
formulation. In addition, utilizing LP optimization for constrained MPC is analyzed and 
compared with the QP algorithm. 

4.1 £ i / £ o o M P C Theory and Design 
The requirement that the tank level must be at its setpoint at the end of the prediction 
horizon can be problematic. MPC is a receding horizon control strategy in which only 
the first of the computed control actions is implemented and the problem is re-evaluated 
at the next sample time. A more realistic requirement is that as time goes on, the level 
deviation from setpoint due to a disturbance or the control error should approach zero. 
In the £ i / £ o o MPC, the terminal constraint is removed by penalizing the sum of absolute 
deviations from setpoint. This can be accomplished by penalizing the L\ norm of the 
error. But in order to explicitly minimize the MRCO, it is still desirable to penalize the 
V M in the £ o o norm sense. By combining £1 and £ o o norms, both objectives can be met 
and the problem can be solved using LP optimization. The following gives the details for 
constructing the mixed norm algorithm. 

The cost function to be minimized is defined as 

j(k) = £ I v(k+j) - r(k+j) b+Ell V 0 i ||f 
j=N2 i=l 

subject to: (4.1) 

Vmin — y{k) 5; Vmax 

Umin — w(fc) U m a x 

where the minimization is defined over $lmNu. The cost function is formulated as to 

46 
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penalize the control errors at the end of the prediction horizon. Within this framework 
the algorithm gives greater precedence to minimizing the MRCO rather than minimizing 
the control error. This setup is also favourable as the largest magnitude of the control 
actions are computed in the first few elements of each prediction. 

The augmentation of the state-space model along with setting up the prediction 
matrices is analogous to that defined in section 2.3. Similarly, the constraints on the input 
magnitudes, input slew rates and on the states can be defined as before. 

In order to formulate L\jMPC as a LP optimization, the following change of 
variables is performed. 

For series of n > 0 and fx > 0, redefine the cost function as 

-V < 
-P < 
0 < 

y(k + j) - r(k + j) < V 

VU(k + j - l ) < \x 

MQru + WZfii < TT 
(4.2) 

where A4 is defined as 

0 0 
M = 

Then n becomes the upper bound for the original cost function. The problem can now be 
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cast in the LP optimization framework. 

min TT 
TT /i r) VU 

subject to: 

V > CF£{k) + cgvu -
V > -CT^(k)-CgVU + f(k) 

8 > H(k) + gvu 
- 7 > -F£(h) - gVU 

P > VU 

P > -VU 

LO > VU 

0 > -VU + Tp 

> AVU(k)+lu(k- 1) 

—a > -AVU(k) - lu(k - 1 ) 

TX > MQni + URrn 

The above optimization problem can then be rearranged into the standard LP form by 
defining W = VU - tp: 
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min cTx 

subject to 

Ax < b 

x > 0 

(4.3) 

where 

c = 
0 
0 

V 1 / 

x = v 

7T \ / 

A = 

V 

CQ - I 0 0 
-CQ - I 0 0 

Q 0 0 0 

-Q 0 0 0 
I 0 - I 0 

- I 0 - I 0 
I 0 0 0 

A 0 0 0 
- A 0 0 0 

0 Q R -1 

b = 

( -Cgr/>-CFZ(k)+r(k) \ 
CQip + CTct{k)-r{k) 

8-Qip- Tt\{k) 
1-Qip- F£(k) 

-4> 
UJ 

U! — (j) 
P-A<f>- lu(k - 1) 

-a + Acj) + Xu(k - 1) 
0 

This formulation removes the restrictive end point constraint while ensuring control 
error minimization. In addition, the algorithm explicitly minimizes the £ o o norm on Vv7, 
which is desirable for averaging level control. 

4.2 Controller Comparison: Simulation Results 

It is now interesting to compare LyjMPC with some of the controllers from the pre
vious chapter. It was shown that the behaviour of the C M N algorithm was undesirable 
when tank level and flow rate constraints were introduced. The degradation in perfor
mance was apparent in the SISO case and even more so in the M I M O case. The C\/ 
M P C aims to alleviate this problem while continuing to use L P optimization. As in the 
previous chapter, first the C\jMPC is equivalently tuned in the unconstrained SISO 
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case. The comparative simulation was set up according to Table 3.1. In tuning the C\/ 
MPC, the prediction and control horizons were chosen to be 21 samples as before, while 
the weights were set as Q = 1 and R = 160. The tuning results are displayed in Figure 4.1 
and time domain metrics are stated in Table 4.1. 

0 5 10 15 20 25 30 

Time (min) 

Figure 4.1: Unconstrained controller comparison 

Controller Ms ts 
SSE 

CMA 9.7 cm 9.5 min 2387 cm2 

MPCQP 9.7 cm 8.5 min 2061 cm'2 

CMN 9.7 cm 9.5 min 2387 cm2 

£ i / £ o o MPC 9.6 cm 9.0 min 2249 cm2 

Table 4.1: Unconstrained controller tuning comparison 

In this section, comparisons are made when both level and flow rate constraints are 
defined. For the single.tank case, the simulation again was set up according to Table 3.3. 
The results are illustrated in Figure 4.2 where the closed-loop performances with CMA, 
MPCQP, CMN and £ i / £ o o MPC are illustrated. 

Controller MRCO (L/min/min) 
CMA 1.24 

MPCQP 1.59 
CMN 3.59 

£ i / £ o o MPC 1.24 
MRCO Optimal 1.24 

Table 4.2: MRCO: single tank with level and flow rate constraints 
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Figure 4.2: Controller comparison: Single tank with level and flow rate constraints 

The Ci/Coo MPC algorithm is able to maintain both the tank level and the flow rate within 
its limits. Furthermore, the controller is able to effectively utilize the surge capacity to 
attenuate the flow disturbance. The outlet flow in Figure 4.2(d) increases in the optimal 
ramp. This result shows a significant improvement over the CMN algorithm when flow 
rate constraints are active. This further concludes that the original CMN formulation was 
sensitive to tuning, refer to Conjecture 3.1. The MRCO values for each controller are listed 
in Table 4.2. The C\jCoo MPC algorithm is able to produce the optimal MRCO value, 
similar to the CMA algorithm. This is not surprising as both algorithms are explicitly 
minimizing the MRCO as their optimization objectives. In conclusion, for the single tank 
system, Ci/Coo MPC is able to provide excellent results in the presence of both level and 
flow rate constraints. 

Next the multivariable case is studied. Again, the two-tank system is used for 
comparison and the simulations are set up according to parameters listed in Table 3.6 
with actuator constraints of ±2 L/min. Figure 4.3 and Figure 4.4 show the multivariable 
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results for recycle fractions of 40% and 70%, respectively. Even though both tanks are 
utilized for flow filtering, the solution is not MRCO optimal as listed in Table 4.3. It is a 
significant improvement, but the MPCQP still outperforms both LP-based controllers. 

MRCO (L/min/min) 
Controller / i = / 2 = 40% fi = h = 70% 
MPCQP 1.34 0.69 

CMN 3.69 3.65 
d/Coo MPC 1.80 1.41 

MRCO Optimal 0.99 0.56 

Table 4.3: MRCO: Two tank system with level and flow rate constraints 

It is interesting to note that MPCQP is able to provide the lowest MRCO and 
provides smooth control actions. On the other hand, the CI/CQO MPC algorithm steers the 
tank levels using very nonsmooth control actions. The explanation behind such behaviour 
is explored in the next section in an attempt to better understand MPCQP and £ i / £ 0 0 

MPC algorithms . 
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Figure 4.3: Controller comparison: two-tank system with level and flow rate constraints 
for fi = f2 = 40%, Tank 1 (solid) Tank 2 (dash-dot) 
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Figure 4.4: Controller comparison: two-tank system with level and flow rate constraints 
for h = h = 70%, Tank 1 (solid) Tank-2 (dash-dot) 
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4.3 L P v s . Q P O p t i m i z a t i o n f o r M P C 

In section 4.1, a novel formulation for M P C using L P was devised. Despite removing the 
restrictive terminal constraints, C\jMPC exhibited some very nonsmooth closed-loop 
dynamics. The reason for such behaviour is not solely associated with defining the M P C 
cost function; it is also associated with using L P optimization [4]. It is well known that the 
solution to an L P problem always lies at an intersection of constraints. Therefore, even in 
the unconstrained case, the M P C solution using L P is on the constraint boundary that is 
defined by the control objective and system constraints. Furthermore, the cost function 
defined using the Cp norm, where p = 1 or oo, is nonsmooth with a discontinuity at the 
origin [4]. This discontinuity generally does not allow an analytical solution even in the 
unconstrained case, whereas minimization with respect to the £ 2 norm, using M P C Q P 
formulation, has an analytical solution in the unconstrained case, and when the active 
constraints are known [15]. 

In the receding horizon implementation of M P C , the optimization is performed at 
each sampling time. As can be seen in equation (4.3), the constraint set is a function 
of state feedback and previous control actions. The constraint set is not static but dy
namically updated via feedback. Hence the optimal control policy can shift in an erratic 
manner as the constraint set shifts. This observation can be seen in both Figure 4.3 and 
Figure 4.4. It can be seen that the control actions are in ramp fashion which suggests that 
the VU values are identical from one iteration to the next for the duration of each ramp. 
It can be postulated that there exists a polyhedron or a feasible set on the constraints that 
serves as the optimal set, resulting in identical VU, until the constraint set is shifted by 
feedback and another optimal set becomes active. Then the new value of VU continues 
to be optimal until the constraint set shifts again resulting in a ramp control action of a 
different slope. This indeed is the case in L P optimization [19], [16]. As the right-hand 
side of equation (4.3) is perturbed in the neighborhood of b, the solution continues to be 
in the same feasible set or polyhedron with a given basis. However, when b is perturbed 
beyond a threshold value, the feasible set shifts giving rise to a new basis. The new basis 
can be far from the previous one, resulting in an abrupt change in the optimal solution. 
However, the QP optimization does not exhibit such behaviour. 

The aforementioned description can be illustrated using Figure 4.5. In this simple 
example, the L P and QP optimization contours, along with their constraint sets which 
define the feasible region, are shown. In Figure 4.5, the optimal solution for L P exists at 
point A , the intersection of constraints which has the smallest cost. The optimal solution 
to the QP problem is in the centre of the ellipses and away from constraints. For ease 
of explanation, assume that in the receding horizon implementation using feedback, the 
constraint set is rotated clockwise. In the L P case, the optimal solution will continue to be 
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(a) LP (b) QP 

Figure 4.5: Cost contours and binding constraints 

at point A as the rotation progresses at each sample time. This occurs until the moment 
when the cost associated with point D becomes lower than the cost associated with point 
A, where the solution will jump from A to D and the basis for the optimal solution 
will change. This type of nonsmoothness in the control action leads to the closed-loop 
behaviour observed in the LP formulation of MPC. In the QP case, the origin will continue 
to be the optimal solution until line segment 2 starts to cut across the origin. During such 
a situation the optimal solution would ride smoothly along the active constraint without 
jumping to another constraint or a constraint intersection. 



Chapter 5 

Real Time Implementation 

In Chapter 3 it was shown through simulation studies that the CMA algorithm was very 
well suited for a single tank system. In the MIMO case, it was demonstrated that the 
MPCQP algorithm gave excellent results in minimizing the MRCO and handling system 
constraints. A major drawback of the numerical algorithms is the high computational 
demand for real-time applications. It was also demonstrated in Chapter 3 that the De
coupled CMA algorithm provided excellent results. 

In this chapter the CMA algorithm for the single tank and Decoupled CMA for the 
two-tank system are presented are validated on the two-tank system. 

5.1 Instrumentation & Control System Setup 

The general setup of the two-tank system was discussed in section 1.2.2. In this section, 
the instrumentation and control system setup are described. 

The outlet flow rate of each tank is measured using an Omega FTB2000 series flow 
sensor, capable of measuring up to 5 L/min. The square wave frequency output of the 
flow sensor was converted to 0 — 10 volts using an Omega iDRN signal conditioner. Water 
is removed from each tank using a constant speed 360 PROVEN pump with a maximum 
flow rate of 4 L/min and the outlet flow rate is controlled using a Honeywell Q7230 electric 
actuated control valve. The level is measured using a Flowline level sensor. Figure 5.1 
shows the calibration of the flow and level sensors. 

The computer control system was set up to utilize a dSpace real-time digital signal 
processing (DSP) board for data acquisition and controller implementation. The control 
algorithms were implemented in Matlab using Real-Time Workshop, along with dSpace 
hardware and software. The level control strategy was implemented in a cascade con
figuration. A local flow controller, executed every half second, served as the inner loop. 
The outer loop consisted of a level controller executed every four seconds. Under this 
configuration, the supervisory level controller dictates the flow rate setpoint for the lower 
level flow controller. The flow controller accommodates the valve/flow nonlinearities and 
linearizes the system for the level controller. The inner loop, flow controller, is executed 
every 0.5 seconds while the outer loop level controller is executed every 4 seconds. 
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Figure 5.1: Flow sensor and level sensor calibrations 

5.2 Controller Implementation 

The control algorithm complexity is of great concern in all real-time applications. The host 
computer must compute the control action within the allocated time. Even though the 
MPCQP algorithm provided the best compromise between constraint handling and flow 
smoothing, the MPCQP solution could not be implemented due to a lack of computational 
power and hardware setup. This illustrates the major disadvantage of MPC based on QP 
optimization. Likewise, using LP for optimization was too demanding within MatLab. 

5.2.1 Single Tank System 

The CMA algorithm has an analytical solution and therefore a very low computational 
demand. The results of the CMA implementation are compared with the PI algorithm. 
The controllers were tuned as per described in section 3.2.1 in the unconstrained case. 
The implementation parameters were set up according to Table 5.1. 

The implementation results are displayed in Figure 5.2. For the given load distur
bance, the PI controller was not able to maintain the tank level within constraints. In 
fact, the level increased until it overflowed the tank. Fortunately, the tank was equipped 

Nominal Level 
Minimum level constraint 
Maximum level constraint 
Minimum flow rate constraint 
Maximum flow rate constraint 

15.0 cm 
5.0 cm 

25.0 cm 
0.0 L/min 
4.0 L/min 

Table 5.1: Single tank implementation parameters 
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with an overflow drain pipe which prevented water from spilling onto the laboratory floor. 
The PI controller makes very small changes to the outlet flow rates which are not ade
quate to maintain the level within constraints. The CMA algorithm, however, is aware 

0 5 10 15 20 0 5 10 15 20 25 

(a) PI (b) C M A 

Figure 5.2: Controller comparison: single tank real time implementation 

of level constraints and, thus, manipulates the outlet flow rate appropriately. The second 
load disturbance for the CMA controller was of lower magnitude and, as a result, a much 
more linear control action is observed. Also, during the second load disturbance, the rate 
of change of the manipulated variable was smaller than the first, again indicating that 
the controller is aware of level constraints. The real-time implementation of CMA agrees 
with the simulation results as the level is brought back to setpoint in about 3 .0^ or 9 
minutes. This demonstrates that the CMA algorithm is extremely powerful and can be 
easily implemented. 

5.2.2 Two Tank System 
In the MIMO case, the Decoupled CMA algorithm was implemented on the two-tank 
system. Figure 5.3 shows the implementation results. In the laboratory two-tank system, 
the recycle flow fractions were functions of the outlet flow rates. As the outlet flow rate 
from each tank is manipulated for level control, the recycle flow fraction, assumed to be 
fixed in simulation, varies significantly. As the recycle flow fraction changes, the two-
tank system model also changes. The flow fraction from each tank was calculated off-line 
and implemented in real-time using the corresponding outlet flow rate as the scheduling 
variable. 

The control objectives for each tank were as stated in Table 5.1. A load disturbance 
was introduced into Tank 1, similar to the MIMO simulations. During the first load 
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disturbance, the inlet flow rate to Tank 1 is cut back. This forces the Tank 1 level to 

drop, but due to the decoupling strategy the Tank 2 level is not significantly effected. The 

small deviations observed are a result of an imperfect decoupling matrix due to recycle 

fraction changes and plant /model mismatch. Bo th tank levels and outlet flow rates are 

maintained wi th in their l imits. A second load disturbance was introduced into to Tank 1 

at about 18 minutes. In that scenario, the recycle fraction was higher. Also, due to the lack 
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Figure 5.3: Decoupled C M A : two-tank system real time implementation, Tank 1 (solid) 
Tank 2 (dash-dot) 

of perfect decoupling, the deviations in the Tank 2 level were greater. It can also be seen 

that the outlet flow rate of Tank 1 saturated for about 8 minutes. Dur ing saturation, only 

partial decoupling can be achieved resulting in level constraint violation. The observation 

in simulations that increasing the recycle fraction also increases closed-loop settling times 

was confirmed. Even under the circumstances of not having a perfect decoupling matr ix 

and l imited control authority, the Decoupled C M A algorithm performed quite well. 



Chapter 6 

Conclusions and Future Work 

The objective of this thesis was to investigate the multivariable averaging level control 
problem. A n industrial pulp pressure screening system served as a motivation for the 
thesis. In order to conveniently study the problem, a two-tank system that mimicked the 
industrial system was constructed. System model equations were derived based on the 
laboratory two-tank system. 

From the controllability analysis, it was determined that the system is controllable 
provided the recycle flow fraction is less than unity. R G A analysis indicated that as the 
recycle fractions increase, the off-diagonal elements of the R G A increase significantly. This 
indicates that the process is highly coupled and multivariable controller design is required. 

In the SISO system (zero recycle fraction), various controller design techniques 
were considered. The PI control algorithm was discarded due to its inability to handle 
level constraints. It was concluded that the C M A algorithm with an anti-windup circuit 
provides M R C O optimal results. A theorem was developed that proves C M A is the optimal 
control policy in the SISO case. Therefore, strategies based on numerical optimization are 
not needed in this case. 

In the multivariable case, the fundamental disturbance assumption of the C M A 
algorithm was violated due to coupling in the process. As a result, the Decentralized 
C M A controller was unable to handle level constraints. Therefore, decentralized control 
is not sufficient for the M IMO averaging level control problem. 

It was shown that the multiple tank system possesses a special structure that al
lows the multivariable model to be split into dynamic and static components. This led 
to the construction of a constant decoupling matrix that decouples the system across all 
frequencies. A theorem was developed stating that the Decoupled C M A is guaranteed to 
handle level constraints provided flow rate constraints are not encountered. In this case, 
decoupled control provides excellent results, and furthermore the analytical solution is 
practically attractive. However, one drawback is that not all the available surge capacity 
is used for flow filtering. Therefore, Decoupled C M A can never be M R C O optimal. Fur
thermore, when limited control authority is available, the Decentralized C M A is no longer 
able to perfectly decouple the system and hence violation of level constraints may result. 
Therefore, decoupled control only works well in the situation where control authority is 
not a limiting factor. 

In order to ensure that both level and flow rate constraints are satisfied, full mul-

6 1 
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tivariable control is required. The ability to handle all process constraints comes with an 
increased computational demand as a numerical solution must be implemented. It was 
shown that the M P C cost function can be set up to penalize either the £ 2 or norm of 
the control actions. The minimization with respect to the £oo norm of Vw provides the 
potential for M R C O optimal control as M R C O is explicitly minimized. While penalizing 
the £ 2 norm of Vu can never achieve the optimal minimum M R C O , the algorithm has 
other desirable properties. 

The C M N algorithm was able to handle both level and flow rate constraints. How
ever, the algorithm is sensitive to tuning. It was shown through simulations that the C M N 
controller became short-sighted, causing the terminal constraints to compete with the flow 
smoothing objective. It was conjectured that the prediction horizon that achieves M R C O 
optimal control is a function of constraints, process coupling and disturbance magnitude. 
In industry, the disturbance magnitude is usually unknown, and the process operating 
point and constraints can be changed by the operator depending on the demands in the 
plant. Hence, tuning a controller that requires such precise information about the plant 
can be extremely difficult and impractical. The C M N can be tuned to provide M R C O 
optimal control provided the prediction horizon is increased. A very long prediction hori
zon can be problematic as the controller will take much longer to bring the tank level 
back to setpoint. If the level is far from setpoint for an extended period of time, another 
disturbance in the same direction can lead to disastrous results. 

In order to alleviate the problem of short-sightedness due to terminal constraints, 
a novel mixed-norm M P C formulation was presented. A n attractive feature of the £ i /£oo 
M P C is that the terminal constraints are removed and integral action is achieved by 
minimizing the absolute value of the control error. In addition, the M R C O continues to be 
explicitly minimized, and the strategy still utilizes L P optimization. This was compared 
to a more conventional M P C implementation based on minimizing a quadratic index 
and QP optimization (MPCQP) . C\/MPC provided a significant improvement over 
C M N algorithm and both £ i /£oo M P C and M P C Q P proved to be insensitive to tuning. 
But for the given simulation scenario, M P C Q P provided the lowest M R C O . Although, 
theoretically, £ i /£oo M P C formulation should ultimately provide the minimum M R C O in 
the general case, practically speaking there is very little to choose between the algorithms. 
The final choice would likely depend on implementation issues such as; computational 
complexity, storage requirements and the ability to customize the optimization algorithms. 

It was observed that when M P C was formulated to utilize L P instead of QP opti
mization, the control increments were piece-wise constant. This nonsmooth behaviour was 
determined to be associated with the change in basis of the L P solution, as the constraint 
set is modified during the receding horizon M P C implementation. The solution can shift 
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from one basis to another abruptly, leading to nonsmooth control actions. A M P C for
mulation that uses QP can have a solution away from the constraints and does not switch 
abruptly when constraints become active, thus leading to smoother control actions. 

The PI and C M A algorithms were implemented in real-time on a single tank and the 
simulation results were validated. In the MIMO case, the M P C Q P was computationally 
too demanding for the computer system to be implemented in real-time. The Decoupled 
C M A algorithm, having an analytical solution, was implemented. Again the real-time 
results agreed with simulation studies. On the two-tank system it was found that the flow 
fraction was a function of the outlet flow rate. The flow rate was used as the scheduling 
variable to update the decoupling matrix in real-time, which further showed the versatility 
of the Decoupled C M A . 

This thesis leads to some interesting questions which could be explored in the future. 
In the multivariable framework, the existence of an analytical solution similar to C M A 
could be sought. This would greatly decrease the computational demand as no on-line 
optimization would be required. The condition that determines the critical prediction 
horizon length in the C M N could also be investigated. In the Decoupled C M A strategy, 
the saturation of one actuator results in partial decoupling. In such a situation there is still 
one degree of freedom available, namely the second actuator. The control action applied 
to the second actuator should be recalculated to improve process decoupling. This can be 
achieved by developing and utilizing an appropriate simultaneous correction algorithm. 



Nomenclature 

f Future setpoint vector, WN2,1, equation (2.21) 

A Augmented state transition matrix, sftn+P'n+P; equation (2.17) 

B Augmented input matrix, 3£ n + p ' m , equation (2.17) 

C Augmented observation matrix, W'n+P, equation (2.17) 

M Input constraint stacking matrix, equation (2.22) 

N State constraint stacking matrix, equation (2.25) 

A MPC reduced equation matrix: constant, equation (2.21) 

B MPC reduced equation matrix: varying, equation (2.21) 

C Augmented prediction observation matrix, WN2'pN'1, equation (2.21) 

V Constraint set matrix for MPCQP: fixed, equation (2.27) 

£ Constraint set matrix for MPCQP: varying, equation (2.27) 

T Augmented free response prediction matrix, 5ft(n+p)jV2,n+P) equation (2.18) 

Q Augmented forced response prediction matrix, sftfa+p)^"1^ equation (2.18) 

Ti Summing matrix, equation (2.29) 

J Past input matrix, equation (2.23) 

JC Terminal constraint forcing matrix in CMN, see page 27 

M. Enforces Nf1 error minimization, equation (4.2) 

Q Augmented output weight matrix, s f tP ^ p - W ^ equation (2.21) 

Tl Augmented input weight matrix, sRmNu,™Nu^ equation (2.21) 

U Close set of all admissible controls, page 15 

X Independent cost function term, equation (2.20) 

N Ceiling operator, see equation (2.4) 

A Constraint matrix in LP optimization: Constant 
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b Right hand side matrix in L P : Varying 

c L P cost function matrix 

x L P optimization vector 

A Constant spatial matrix, equation (2.10) 

A State transition matrix, 9ftn,n , equation (1.4) 

AC Tank cross-sectional area (cm), equation (1.1) 

B Input matrix, 3? n 'm , equation (1.4) 

C Observation matrix, W'n , equation (1.4) 

Dd State disturbance matrix, 3ftn'm , equation (1.4) 

/ Recycle flow fraction, equation (1.1) 

Gc Controller transfer function, see page 16 

Gd Disturbance transfer function, equation (1.3) 

Gpi PI controller, equation (2.9) 

Gp Process transfer function, equation (1.3) 

I Identity matrix 

k(s) Process dynamics, equation (2.10) 

A;* Number of samples for level constraint to become active, see equation (2.4) 

Kc PI controller gain, equation (2.9) • 

Imax Maximum input slew rate constraint, equation (2.24) 

Imin Minimum input slew rate constraint, equation (2.24) 

m Number of inputs 

Ms Maximum deviation from setpoint 

m m i Maximum input constraint, equation (2.22) 

m m i n Minimum input constraint, equation (2.22) 

n Number of states 
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Initial prediction horizon, equation (2.11) 

N2 Final prediction horizon, equation (2.11) 

Maximum state constraint, equation (2.25) 

Minimum state constraint, equation (2.25) 

Nu Control prediction horizon, see equation (2.5) 

Art 
u 

Critical prediction horizon, see equation (2.7) 

p Number of outputs 

Q Output weight, equation (2.11) 

q Outlet flow rate (L/min), equation (1.1) 

R Input weight, equation (2.11) 

r Tank level setpoint (cm), page 14 

s Laplace Transform variable, equation (1.3) 

T Sampling time, see page 1.2.3 

Tr PI controller reset time, equation (2.9) 

ts Settling time 

u Future control actions, 3?m i V u ' 1, see page 20 

u Outlet flow rate ( L/min), equation (1.1) 

u° Unconstrained solution of CMA, see equation (2.5) 

u* Constrained solution of CMA, see equation (2.6) 

Umax Maximum flow rate constraint (L/min), equation (2.2) 

Umin Minimum flow rate constraint (L/min), equation (2.2) 

Cost function: minimization with respect to Vu, equation (2.11) 

W Decoupling matrix, see page 17 

wc Controllability matrix, see page 10 

w0 Observability matrix, see page 10 



x System state variable, equation (1.4) 

y Tank level, equation (1.1) 

yum Tank level constraint, hmax or hmin, (cm), page 14 

Maximum tank level constraint (cm), page 14 

ymin Minimum tank level constraint (cm), page 14 

z~x Z-transform variable, equation (2.9) 

Greek Letters 

a Minimum input constraint matrix, equation (2.22) 

(3 Maximum input constraint matrix, equation (2.22) 

5 Maximum sate constraint matrix, equation (2.25) 

7 Minimum state constraint matrix, equation (2.25) 

A Integration matrix, equation (2.23) 

(j, Chebyshev approximation variable in CMN, equation (2.29) 

Q Flow imbalance, see equation (2.3) 

LO Maximum input slew rate constraint matrix, equation (2.24) 

ip Minimum input slew rate constraint matrix, equation (2.24) 

E Augmented state prediction, S R ^ + P ) ^ - 1 , equation (2.18) 

f Augmented state vector, $ln+Pi1, equation (2.13) 

Vector Norms 

Ci Sum-norm: || x \\i=\ Xi \ -\ h | xn | 

Ci Euclidean norm: || x \i= \f%i^ r- x\ 

Coo Chebychev norm: || x ||oo — niaxj | X j | 

Mathematical Symbols 

V Difference operator, see equation (2.5) 

9? Euclidean space of all reals 



0 Matrix of zeros 

1 Column vector of ones, see equation (2.29) 

Abbreviations 

CMA Campo & Morari's Analytical solution 

CMN Campo & Morari's Numerical algorithm 

CSTR Continuous stirred tank reactor 

DRIP Dual range integral/proportional 

LOC Limited output change 

LP Linear programming 

LQ Linear quadratic 

MIMO Multi-input multi-output 

MPC Model based predictive control 

MRCO Maximum rate of change of the outlet flow rate 

OPC Optimal predictive controller 

PID Proportional-Integral-Derivative 

PL Proportional-lab 

QP Quadratic programming 

RC Ramp controller 

RGA Relative gain array 

SISO Single-input single output 

SSE Sum of squared error 
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