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ABSTRACT

Subsynchronous Resonance (SSR) phenomena in a thermal-electric
power system with series-capacitor-compensated transmission lines may cause
damaging torsional oscillations in the shaft of fhe turbine-generator. This
thesis deals with a wide-range multi-mode stabilization of single-machine and
multi-machine SSR systems using output feedback excitation control. Chapter
1 summarizes the SSR counterméasures to date. Chapter 2 presents a unified
electro-mechanical model for SSR studies, illustrates the torsional inter-
action between the electrical and mechénical systems, and demonstrates that
multi-mass representation of the'turbine—geﬁeratdr must be used for SSR
studies, Fof the.control design,'a reduced order model is desirable. For
the model reduction, ﬁodal analysis is applied to idenﬁify the excitable
ﬁorsional modes, and a mass%épringveqﬁivalencing technique to retain only the

-unstable modés is developed in Chapter 3. Using the réduéed order one-i"
méchine models, linear optimal excitation controls aré designed in Chapter 4.
The controis are fufther simplified by examining the gigenvalue sensitivity,
and the results are tested on the linear and nbnlinear full models. In
Chapter 5, the stabilization technique is further extendea and applied to a
two-machine system and a three-maéhine system. The stabilizers still can

" be designed one machine at a time using a one-machine equivalent for each
ﬁachine by retaining only the path with the stfongest interacting current

and the critical electrical resonance frequency as seen by the machine. " To
_coordinate all controllers for the entire system, an iterative proceés_is
developed. The controllers thus designed are tested on linear and nonlinear
full models., From both eigenvalue analysis and nonlineér dynamic perfofmance
tests of the one-machine, two-machine, aﬁd three-machine systems, a conclu_A

sion is drawn iﬁ-Chapter 6 that the excitation controls thus designed by the



‘methods developed in this thesis can effectively stabilize single—machineb

and multi-machine SSR systems over a wide range of capacitor compensation.
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General

A

B

-1

NOMENCLATURE

system matrix

control matrix

control vector

state vector of the system A

symmetric positive semi-definite weighting matrix

symmetric positive definite weighting matrix

Riccati matrix

‘composite matrix as defined in (4.7)

eigenvalue matrix of M
system matrix'of the controlled system

feedback matrix as defined in (4.21)

~ eigenvalue of the system

eigenvectof mafrix of A.c and transpose of AC respeétively
time derivative of.x

partial differential operatér

Laplace tramsform operator

brefix denoting a linearized vériable

subséript denoting initial condition

superécript denoting transpose

superscript denoting inverse

complex operator v-1

~



' Mass-spring

system

M

Qmodé

inertia constant

shaft stiffness constant

‘damping coefficient

rotor angular displacement in radian
rotor speed in per unit

syﬁchronous speed Which is one per unit
base speed or 377 radian/second

modal angular‘displacement E

eigenvector matrix of the mass-spring system

- Synchronous Machine

I inétantaneous value of current

v instantaneous value of voltage

¥ flux-linkage

R resistance

X reactance

$ torque angle

Te electric torque

It terminal current

Vt terminal voltage

Pe + er generator output power

d;é subscript denoting direct- and quadrature-—axis stator -
quantities. '

f sﬁbscript denoting field circuit quantities

kd , kq subscripts denoting direct- and quadrature~a#is dampér
quantities '

a

subscript denoting armature phase quantities

._subscript denoting to which machine the quantity belongs



Transmission line

xti’Rti

XioRp4
XCi

o4

reactance and resistance of the i-th transformer
reactance dnd resistance of the i-th transmission line
reactance of the capacitor in the i-th transmission line

subscript denoting quantities associate with capacitor

Exciter and

AL
Tas

T s
Ei

Vref

Voltage Regulator

-gain of the i~thiregulator

time constant of the i-th regulator
time constant of the i-th exciter

reference voltage

Governor and Steam Turbine System

LPA

LPB

HP

TIP

TLPA’TLPBv

actuator gain

actﬁator time cbnstants
servomotor time constant
actuator signal

power at gate outlet

steam chest time constant

‘reheater time constant

cross-over time constant

high pressure turbine power fraction
medium pressure turbine power ffaction
low pressure turbine A power fraction
low pressure turbine B power fraction-
high pressure turbine torque

medium pressure torque

low pressure turbine torque



1. INTRODUCTION

1.1 Subsynchronous Resonance

~The épplication of seriéé capacitors to increase the ﬁower
‘btransfer capability of the transmiésién system is the best alternative to
cope with the-everfincreasing eiectric power damand, the unavaiﬁility of
generation sites to build thermal electric power plant at hea&y load
centers, and the difficulties in obtaining the right 6f way to build new
transmission lines due to envirnomental and'eéonomical coﬁsiderations.
However, the series-capacitor-compensated fransmission line will céuse
electrical resonaﬁce at cértain frequencies which-ﬁay exéite'the mechan-
fcal méde oscillations 6f the steam turbinevand geﬁerator mass—-spring
system resulting in shaft damage and other detfﬁnental effect to the power
system. The term "Subsfﬁéhroﬁous Resonance (SSR)" has been used to desig-
nate the dscillating phenomenon ofuthe electrical and mechénical vériables
associated with turbine—generators-connected to transmission systems with
series capacitor compehsation. Typical-exémple of the damaging effect due
to SSR is ill#strated in Figure 1.1.; theré were two shaft faiiures at
Mohave generating station in 1970 and 1971 [1 ].

Despite the hazards of SSR, utilities still favor the use of
series‘capacitors to increase the power transfer capabiiity. Iﬁ order to
overcome the problems caused by SSR, extensivé effort'has been made in
analyzing the twd shaft failures. Problems are identified as the induc-
tion generator effect, torsioﬁal interaction, and transient torques [ 2 }].

éSR phenomenon may occur in two different forms : the steady

state SSR which is the result of induction generator effect and torsional



(a)

(b)

Figure 1.1 Photographs of

(a) Damaged collector, Mohave No. 1
(b) Cross section from damaged shaft.

* Pictures are taken from reference [ 3 ].



interaction, and the transient SSR which involves the transient torques
on segments of the turbine-generator shaft caused by fault or switching

operation in the electrical system.

1.2 Countermeasures to SSR

In the past decade, many countermeasures to SSR problems are

proposed. Some significant ones are as follows:

1) Sfatic blocking filter [ 2,4 ]

High quality factor blocking filters are inserted per-phase
in between the high voltage windiﬁg of the step-up transformer and the
neutral to block electrical resonance currents at the critical frequencies
corresponding to thé torsional modes of the turbine-generator ﬁass—spring
system. When perfectly‘tuned, the‘filters wili block the currents at cri-
tical frequencies completely. But the filters may be detuned due to the
change in systém frequency after a disturbance or the change in ambient
temperature which affects the filter's parametric valﬁes. A large space
'is required to install the filters and the basic insulation level of the

step-up transformer must be increased; it is an expensive device,

2) Dynamic filter [ 5 ]

An active device which generates a voltage in series with the
generator to nullify theysubsynchronous voltage generated by any oscillat-
ing motion of the rotor, fhereby preventing self ekxcitation dug to the
forsional interaction. It is unaffected by the system frequency.and the
number of series capacitors in service. But it 1s quite costly because

of the complex control system and the requirement of an isolated power

gource,



3) . Dynamic stabilizer [ 6,7 1

The‘device consists of thyristor contrqlled shunt reactqrs
connected to the synchronous ﬁéchine terminai; Control of SSR is achieved
~ by modulating the thyristor switch firing angles to control thé reactive

power consumed by the reactors..

4)v‘Bypassing the series capacitof

'a) The series capacitor is bypassed with the aid of 5 dual
8ap which flasﬁes_ét a lower current level to limit the transient torque
build-up, and the gap is reset each time to a higher level allowing a
cufrent decéy to the ievel fﬁr successfui reinsertion of tﬂe capacitor..
The dual gap flashing scheme can reduce the traﬁsiegt torque:significant—
1y r2 0. |
| b) In another scheme,'éalled_the NGH-SSR scheme [8,9 ], a
_thyristor ﬁair in Series ﬁith a resistor is inserted across the capacitor.
.By firing the tﬁyristors by some céntrol scheme, the capagitor's charges”
are dissipated through the resistor. However, thisvdevice capnot be used
to stabilize the SSR system over 'a wide range of capacitot_compen-

sation [ 8 }.

5) Supplemental excitation control

By this method, signal obtained from a properly designed coﬁ—
troller is used to modulate the output of the excitation in response to
the toréionai oséillations of the turbine-generator, and hepcé provides
adequate damping to the SSR system.

Although the shaft failure incidents are ten years old, many
ongoing researches are still focused on SSR , indicating that power

engineers are still searching for more effective.and less expensive means
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to overcome the problem. Of all the proposed countermeasures of SSR, the
supplemental excitation control seems to be the least expensive means

which needs further investigation,

1.3 Previous Works of Excitation Control of SSR

Excitéfion control of SSR involves the use of a coﬁtrolisignal.
to modulaté the output of the excitation system to enhance the damping of
_ torsional modes of fhe generator mass—spring system. Many control schemes
v'have been proposed [ 10-18 ], but it 1s very desirable to have a controller
which can stabilize multi-mode SSR oscillations in a multi—macﬁine power
systém over a wide rénge of capacitof compénsation and operating conditions,

The major approaches of the controller design are two:

1) Transfer function approach [ 10-16 ]

Avlinearized model is used for the cdntrolléridesign énd it is
mainly based upon ;he phase coﬁpensation.concept; a traﬁsfer function
representing the controller is assumed and the parameters of the controller
are chosen such that it can stabilize the sjstem. Since the genérator
mass-spring system répresentation plays a very important role in SSR
studies; the control design based on a one lumped-mass generator.model can
6n1y suppress the electrical resonance phenonména [ 10-13 ], and cannot
reduce the torsional interaction between the electrical and mechanical
systems [ 12 ].'

Unified electro-mechanical system model is also used in excit-
ation control design [ 14-16 ], but fhe effectiveness of the controllers
are verified on the linearized model [ 14 ], and neglecting the exciter
voltage ceiling limits [ 15,16 ]. Theré is no evidence that those control-
lers can stabilize the SSR system over a wide range of opérating conditions

and capacitor compensation.



2) Linear Optimal Exéitation Control
For the control design, a unified electriéal and mechanical
model is developed [ 17 ]. A linearized model is used for the control
deéign, based ﬁpon-modern control'laws, and using a linear combination of
feedback signals which collectively ensures proper damping to all tofsional
mqaes of the system [ 17,18 ]. |
Although application of linear optimal excitation control (LOEC)
to power System dynamic stability control is well &ocumented [19~21 ], it
. is relatively new in using tOEC for SSR stabilization. To épply LOEC to
SSR problem, Yu,Wvong,and.Tse had shown as tﬁe fifét step the feasibility>
of linear stabilization of SSR which is nét 0p£imal [ 17 J. The work was .
continued by Yan,Wvong, and Yu [ 18 ] to develop LOEC of SSR. Tﬁe gontral
was tested on both linear and‘nonlinear full models. The resﬁlts indicated
that the LOEC can effectiﬁely stabilize the SSR system over a wide range of
capacitor compensation and operating conditions.,
But thé design still requires improvement, especially in two
- aspects |
1) The order of the model in [ 17,18 ] shall be further feduced for the
controliér‘design and the controller designed must be simplified to
the extent that only a minimum nﬁmber of measurable output feedback
signals are required to implement the controller. Teéﬁniques 6f
further reduction of the model and simplification of the final con-
trol must therefore be developed.
2) The excitation control of SSR must be applicable not opLy to the
one-machine system but also to a multi-machine system. There is
dynamic.interaction between machines in a multi-machine SSR system,

which may be divided into two categories:



a) The dynamic interaction of the low frequenéy oscillations between
machines [ 22 ].
'b) The interaction between the torsional modes of the mass-spring

 system of different machines [ 23 }.

1.4 'Scope of the Thesis -

This ﬁhesis deals with the output feedback linear optimal
excitation‘controi of one-machine and multi-machine SSR systems. Chapter
two recapitulates all the basic equations:of power systeﬁ models for SSR
studies. The torsional interaction effect between the electrical and
mechanical systems is illustréted. In Chapter three, modal analysis is
appliéd to the generator mass-spring systeﬁ and a mass-spring eqpiva— .
lencing techﬁique [ 24 ] for model.reduction is developed. 1In Chapter
four, pr&cedureé of linear op;imal excitation control design are given,
and the designed controller is implemented to the full model for both
eigenvalue analysis and nonlinear dynamic perférmance tests. In Chapter
-five, the multi-machine SSR problem is examined, one machine equivalents
of the multi-machine system are developed, and the excitation controls
designed>for a two-machine and a three-machine power system are imple-
‘ménted on the full models for eigenvalue analysis and nonlinear dynamic.
performance tests, Summary of all the imporﬁant findings is given and

a conclusion is drawn in Chapter six.



2. MODELLING POWER SYSTEMS FOR SSR STUDIES

2.1 Introduction.

To éccuratelf simulate the transient and dynamic Behaviour
of a power system, a proper and adequate model must be chosen. In con-
ventional power system stability studies for which the low frequency
oscillations (.5 - 2 Hz.) is of the main concern, the generator and
turbine shaft stiffness, the amortisseur winding effecf, and the arma-
ture and nétwork transient may be neglected. However,'for SSR studies,
the emphasis in modelling system components is different.‘ In order to
account for the torsional oscillations_of the mechanical mass-spring
system and the torsional interaction between electricai and mechanical
systems,those factors which are not important ih conventional'stability

studies can no longer be neglected.

In the first part of this chapter, a summary of equafions
describing the power system for SSR studies is given. The cpmpleter
model for a one machine system is shown in Figure 2.1, wﬁich consists
of the turbine generatof mass-spring system, the speed governor ;énd
tﬁe turbine torque [25], the generator and excitation [26], and the
capacitor compensated transmission line. In the second bart of this
chapter, the complete system state equations are obtained. It is
applicable to both single machine and multi-machine systems; Towards

the end of this chapter, the effect of torsional interaction between

mechanical and electrical systems is illustrated.
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Figure 2.1 Power system model for SSR studies
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2.2 The Mechanical System

Consider the torques of the steam turbines first, they may be

written as

. F 1
HP '
T = —P - =T (2.1)
HP TCH GV TCH HP
. F 1
' IP
= T - T (2.2)
Ip FHP TRH HP TRH IP :
. F 1
: LPA o
T = e T - =T , , . (2.3)
LPA FIP TCO IP TCO LPA
r_ - LB, o
LPBv T ps LPA : =5 (2.4)
- where
PGV : . power at gate outlet
TCH : steam chest time constant
TRH : reheater time constant:
TCO : cross-over time constant
FHP : high pressure turbine power fraction
FIP : medium pressure turbine power fraction
FL?A : low pressure turbine A power fraction
FLPB : low pressure turbine B power fraction
THP : high pressure turbine torque
TIP : medium pressure turbine torque
TLPA : low pressure turbine A, torque
TLPB : low pressure turbine B torque

Consider the mass-spring system next. Assume that there is
one high pressure turbine (HP), one medium pressure turbine (IP), two low

pressure turbines (LPA,LPB), one genérator (Gen), and one exciter (Ex),all
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on one shaft as shown in Figure 2;1. Althouéh a more accurate mass-spring
model is available by quelling shaft énd'masses in finite sections [ 34 ],
a linear mass—spring'model is recommended by an IEEE committee report for
SSR analysis [ 35 ]. According.to [ 35 1, it is assumed that

(a) There are six lumped masses, each with its inertia constant.

(b)‘The shaft Between any two masses behaves like a linear torsional
Spring.with negligible mass,

(c) There is mechanical damping to each rotating mass, although it is

very difficult to determine [ 36 ].

P

Figure 2,2 illustrates the various torsional forces experienced
by the ith element on the mass-spring system. A positive torsional torque

- Gi) on the right;a negative torque —Ki_l (6, - ei~1) on the

K
,itd

1,i+1 %541

left ; and an external torque Ti,a positive accelerating torque Miwi .

and a negative damping torque -Dw, on the mass itself, A general equation

. Lt .
of motion of the i h rotor is as follows

T _Dw 4 _ - (0. -0, @.5
M,w T. Diwi + Ki,i+1(ei+1 .ei) Kifl,l(el 61—1) ( )

' .th .
inertia constant of the i~ rotational mass

where M :
: . .th . )
Gi : angular displacement of the i~ rotational mass
: ' .th
D iti torsional stiffness constant of the shaft between i
i,i .
., .th .
and i+1 rotational mass
\Yi-1 l N %
N/ N/
\ A
' \ ' \
—— \ i)
| M Kia,i\ M
damping Di

- Figure 2.2 Modelling of the pass-spring system in the
vicinity of the i~ rotational mass



Applying equation (2.5) to the six mass-spring

‘Figure Z.Igﬁtwelve differential equations are obtained :

High pressure ' ° K K D T.,
Cw, = 12 12 1 HP
turbine 1 —=8, -=>—7—60, ~=—w, +—
Ml 2 Ml 1 Ml 1 Ml
_ , 1= epCuy meg)
Medium ' ° _ K K K K
pressure turbine 2 124 _ Giyij;géo 0. + 23 g
M 1 M 2 M 3
2 2 2
6y = (8 — 6y )
 ,Low ?reSSure ‘ o = K23 K23 +K34 KB&
turbine A . 3 -6, - (—) 8, +-—86
M3 2 M3 3 M3 4

Low pressure ° ; K K,, K K
turbine B Y4 T ﬁéé-eB - cig%itfgh 0, + ﬁﬁi 0,
IR : 4 . 4 4
6y = wpC 0y — 0 ) |
Cenerator ; = K45 K45 +K56 K56
2 - (—2 ) § + 0
MS 4 M5 _ MS 6

Exciter * K K

= +
M, 2 M,
?;_@ . Tira
My 30 Mg
?g_w +YTLPB
M, 4 M,
25y - e
M M,

12

system as shown in

(2.6)

(2.7)

' (2.8)

(2.9)

(2.10)

(2.11)

(2.12)

- (2.13)

(2.14)

(2.15)

‘ (2.16)

(2.17)

where 8§ : electrical angular displacement in electrical radian which is

equal to the mechanical radian for & two-pole machine.

.th . .
w,: speed of the i rotor in per unit.
w. : synchronous speed which is one per unit.
w, : base speed or 377 radian/second

6 : mechanical angular displacement in radian.

T : electric torque across the air gap in per unit.
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Consider a speed governor next. The state equations may be

written
. Kg 1
a = —ir-( Woop ) - —- @ : (2.18)
1 1
o " —T—-a - —Er-( PGV - Po ) (2.19)
3 3
ov . S Pey 2 Py
min max -
where

g : actuator gain

- T : actuator time constant

T3 : servomotor time constant
a : actuator signal
w . : generator speed
w_ .: reference speed
ref
Po : initial power reference

2.3 The Electrical System

A transmission system between any two buses is shown in Figure
2.3, whe*.re_R.t is -the transformer resisﬁance, Xt is its reéctance, RL Fhe
“transmission line resistance, XL.the line reactance, and Xc the capacitor
reactance, For a one machine infinite system, Vt denotes thé:generator
terminal-voltage, VO the infinte bus voltage, and Vc the voltage across

- the capacitor.

Figure 2.3 The transmission system
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The general voltage equation becomes

[V, ] SIRICI, D, +lL1Sro 0+l ]

phase t “phase phase ¢ "phase

t

(2.20)
+ 1 Vo ]phase ' _ ‘

In Park's coordinates and for a balanced three-phase operation

the d and q components of the generator terminal voltage become

Xt +,XL , .

v, = ( ™ I, - ( Xt + X ) Iq + (R + R ) I,
+ V., ot V4 o . (2.21)
X, + X . S ' '
Vq = (.__735—— ) Iq + ( X, + xL_) I; + ( R+ Ry ) Iq
+ v + v e . ‘ (2.22)
cq oq .

and the two infinite bus voltage components are

v = V siné
- od o o ,
o (2.23)
\Y = V cos§
o o

oq
where Vo is the magnitude of the infinite bus voltage, and 60 is the angle
between machine terminal and the infinite bus. For a multi-machine system,

VO is not the infinite bus voltage anymore.

The capacitor voltages in the d-q coordinate become

\% d _
€€ = vV +wXI (2.24)
w cq cd :
'Y
Véd' .
S = .V
" : \cd + w Xch (2.25)
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'Equations for exciter and voltage regulator are

- 1 1
= —V, - —E (2.26)
£D T, R - Ty £D ‘ A
VR = ~TZ ( Vref - Vt + UE ) (2.27)’
A = vi+ vq . _ (2.28)
VR < VR < VR
min - max
where
UE is the supplementary control signal
KA is the voltage regulator gain
TA is the voltage regulator time constant
TE is the exciter time constant
: EfD is the exciter output voltage
Ve and Ve " are the regulator ceiling voltage

min max
Previous work [ 18 ] foﬁnd that five winding generator model

with one damper winding on each of the d,q-axis is sufficient. The voltage

equations of synchronous generator are [37,38]

. Wd .
vy, o= —&)—; - wlyq - R I, | (2.29)
] ¥
v = 9% 4+uw, - R I (2.30)
q Wy d a gq
v I : (2 31)
£ w f °f ’
b
¥
_ kd
0 = 5 + gkd Ikd _ _ _ (2.32)
TR | :
0 = _6_3.+ '3kq qu (2.33)
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and the electric torque equation in per unit is

T = ¥, I - ¥ I - | S (2.34)

1 _ Y f )
[vy X3 Xa  *aa s
y X X I
q q g q
¥, - | x Xe X 1, | (2.35)
¥ia X4 Xa *ua Tyd
y ' X X I
k kq / |3 mq kq / \ kq /

2.4 Complete System Equations for Single and Multi-machine Systems

.The original nonlinear equations are used for time domain
simulation ., and the equations are linearized for eigenvalue analysis,
The linearized electrical system equations may be written in the matrix

form as follows

IBIIRL 1= 0CIIX I+ IDII%,]  (2.30)
Hénce .
BRGSO VTR AL 5 O PN R S pYCET)
where . o '
(o, 1=131 1c] | (2.38)
LA = 0B) [D] (2.39)
[ XI,iI ] and " [ XII;I ].represenﬁ the interaction between the mechanical

system and the electrical system which can be combined with the linearized

mechinical system equations to give



X e S S S SRR RS

. = . (2.40)
X11) s T A s A S A R 5 '
where
[)(.[ ] = [AwlsAel’A“)ZSAGZaAw3’_Ae3’Aw’+9Ael+9AwsA6)Aw6:AGG,
B T
Ba, AR ATy AT 5 AT ] (2.41)
’ T
[ Xl = [ BTg,0T 0T8T, 0,0, L8V 4,0V LAV, 0, ] (2.42)
Equation (2.40) may also be written compactly as
[X]1 = [A]0X] : o (2.43)

For a multi-machine system where more than one machine is
involved, the individual machine coordinate (d,q) may be referred to a

common reference frame (D,Q) as follows:

g-axis Q—axis

A d-axis

> D-axis

Figure 2.4 Component of I in dq and DQ coordinates
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where

Linearized,

AID

AIQ

Therefore

1

Inversely,

Linearized

AId

AX
q

Therefore

cosfy

sin 8¢

COSSO

Sineo

cosbBy

-sinBg

cosfg

—Sineo

X,..= [ % .

1T

II1°

cosf

sinb

-Sineo

cosBg

-8inf

cosb

cosh

-sinf

Sineo

cosBg

sinBg

cosby

-sing - I

d
cosb I
q
A;d } —(Id081n00
Lt
A -
Iq' (Idocoseo
AT, (1,518
o +
AIq (Idocoseo
sing - ID
cosf I
' Q
AT, (Irooseo
+
AIQ- —(IDocoseo
AL, (IQOCOSBO
. +
Q

N ,

AT —(IDocoseo

I
qo

cbséo)

Iq031n§0)

I
qo

cosfy)

Iqosineo)

I

I

I

I

Do

Qo

Do

Q

-sinfg)

sinfg)

sinfg)

051n60)
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(2.44)
20 (2.45)
26 (2.4;)
(2.47)
80 (2.48)

28 (2.49)

For the multi-machine formulation, it is convenient to write

l Xpp s Xpp s Xpg s eevenensin,

(2.50)
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where XIi s XIIi are the mechanical and electrical state variables of

machine i, respectively,

2.5 The Torsional Interaction

When an electrical resonance occurs in the electrical system
(including-the generator stator and transmission line) at a subsynthénous
frequency fe’ it will interaét with the rotor and induce a pulsating torque
at the frequency of ( 60 - fé ), which becomes a forcing torque to the-
mass—-spring system. If the frequency of the oscillating torque equals to
a to;sional ﬁodal frequency fm, the electrical resonance and the parti-
cular torsional mpde will be mutually excited, and a voltage will be
induced in stator winding at frequency fe = 60—fm . Thus the torsiqnal

interaction looks like a negative resistance to the electrical system and

negative damping to the torsional system under these conditions.

To illustrate the effect of torsional interaction, the one
machine infinite bus system as shown in Figure 2.1 is tuned so that SSR

will occur.

The variation of electric power which is approximately equal
‘to the electric torque in the per unit system, as shown in Figure 2.5,
roughly consists of two components: a low frequency oscillation in the

range of 1 - 2 Hz.

, and a higher frequency oscillation . In this

particular case, the subsynchronous torque increases with time.

The resulfs of_Figuré 2.5 also can be synthesized as follows :
First let the system be modified by lumping the six torsional masses into
one., The power variations for the same system disturbance are shown as
Figure 2’6ﬂ _Thé responses as shown in Figure 2.5 and 2.6 are the same

within 0.5 second but there is no subsynchronous torque component in
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Figure 2.6 because of the modelling.

A constant negative resistance is then inserted in the trans-
mission line of ;he above modified system. The system response fof the
same disturbance is shbwn in Figure 2.7; Although the mass-spriﬁg system
model has been simplified, the subsynchronous torque component is substan-
tial. The coﬁcept that the torsional system looks iike'a negative resis-
tance to the electrical system is further verified. Of course, a static
negative resistance representation of the torsional interactibn is over-

simplified in the SSR studies.

UPQWERO'(BP U .1) .

0.0

-0.4

-0.8

T T T T T T T T T -
1.0 2.0 3.0 4.0 5.0
TIME (SEC)

Figure. 2.5 Power variation of the one-machine infinite
bus system with the mass- sprlng system
modelled in detail.
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3. MODEL REDUCTION OF A POWER SYSTEM FOR SSR STUDIES

3.1 Introduction

The requirement of including the torsional mass-spring system,
the generator , and transmission system in one single unified model for
SSR studies so thatlthe torsional interaction of the electrical and
mechanical systems will be automatically included inevitably results in a
very high order éystem.. For instanée, the full model of a'. oné—machine
infinite-bus system for SSR studies developed in the last chapter is of
26th order. For some SSR studies, especially for the control design,

a reduced order model is very desirable.

For an excitation control design, the steam turbine torque and
governor equations together with a small time constant of the exciter can

be neglected. The order of the model is reduced from 26th to 20th.

" However, fufther order reduction is sfill necessary. A new
technique of obtaining a reduced order equivalent mass-spring system is
develbped-in this chapter by retaining the unstaﬁle torsional modes alone
without changing their oscillating frequencies. The first step is to
determine the relative instability among the unstable modes using modal'
analysis. The second step is to retain only the unstable torsional modes. -
Finally, the eigenvalues of the original model and the.reduced order V

models are compared.



23

3.2 Torsional Resonance and the Unstable Modes

The preQailing techniques in SSR stability studies are either
the frequency scanning method together with the tbrsional interaction
equations [ 27 ] to determine the stability of the torsional modes one at
a time, or~épply_éither eigenvalue analysis or Nyguist criteria [ 28 ]
to the uﬁifiéé.electré—mechanical power system. Without the analysis,
no one could confidently predict which mode is more vulnerable to tor-
sional oscillations than'others. In this séction, a technique to identify
the excitable tofsional modes, or the mode which is vulnerable to torsional
interaction, and to determine the relative instability of the unstable
modes is presented. The techniqﬁe requires no information abqut the
eleétricai network, and is based on the modal analysis of the torsional

mass-spring system alone,

3.2.1 Natural Frequencies and Mode Shapes of the Mass-—spring System

The natural frequencies and the mode shapes of the turbine.
genérator mass-spring system can be found as follows:

Consider an unforced and undamped mass-spring system as shown
on top of Fiéure 3.1, The system can be described by a set of second order

differential equations in matrix form as follows

—i;[}r][é]+[x][e]=o . (3.1)

where .
{M] = diag [ M, Mp, My, My, Mg, Mg ] (3.2)
18 1-= [ 87, 85, 83, 64, ‘es, o 17 (3.3)



Hp IP LPA LPB Gen Ex
1 : .
mode 1 (15.7 Hz.)
0
C
-1
1 b
mode 2 (20.2 Hz.)
<R s
0 & = — -

1 mode 3 (25.5 Hz})

-1 -

l?x\\\\\\\ji%e

‘\\\*P;__*_+,,—o—”

4 (32.3 Hz.)

0

T~

-1
) mode 5 (47.5 Hz.)
0 \o/r‘—’ﬁ\ —— =0
[
-1

Figure 3.1 Mode Shapes of the six mass-spring system

2%
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r K12 —K12 0 ’ 0 ‘ 0 ’ 0
K32 '(K1 2+ Koy 3) —K23 0 0 } 0
0 -Ka3 (K2 3+ Kay) K3y 0 0 .
K] = v _ (3.4)
0 .0 K3y (K3u+ Kys) -Ky 5 0 .
0 0- Y . Kys (Kys+ Ksg) —Ksg
0 0 0 0 Ksg Ksg

{ : . ‘

where the subscripts 1,2,3,...,6 correspond to HP, IP, LPA, LPB, Gen, Ex

respectively,

Assume that all masses oscillate at a resonant frequency woos
such that

ei = Xi sin( mmt +a ) i= L,Z,...;.,G (3.5)

- Substituting equation ( 3.5) into (3.1) gives

2

(—Z%) (x1 - tu1l(kI{x] - o (3.6)
or .

ERRIESIE SRR ES T N R
where

.Am = wé / Wy ' (3.8)

Therefore Am can be obtained by solving (3.7) and mode frequency w N

can be calculated from
woo= VA w - m=0,1,...,5 ’ (3.9

There is an eigenvector Xm corresponding to each eigenvalue lm , which,
when normalized with fespect to the element with the largest magnitude

gives the mode shape of that particular mode. The mode frequencies and
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the mode shapes of the mass-spring system are given in Figure 3.1. A mode
shape gives‘the relati;e displacement of each spring;maés during'ﬁormal
mode vibraﬁion ( when one particular mode is excited ), but it gives no
information about which mode is more>unstable than the others. An
alternative method will be introduced to overcome this difficulty in.the

subsequent sections.

3.2.2 Damping and the Resonant Peak

Figure 3.2 shows a torsional mass-spring system with an inertia
constant M, a stiffness constant K, a damping coefficient D, and a forcing

function To sinwt

' T sin wt ?
, ° |

=
~
NOANNNN

D ,
P

: Co

/\Figure 3.2 A torsional mass-spring system

The equation of motion of the system is

T = M@ + D8 + K6 ) © (3.10)
For a solution 8 = X sin( wt - ¢ ), we have
T sin wt '
L - = (K -Me?) sin( wt ~ ¢ ) + Dw cos( wt — ¢ ) (3.11)

'

X

In phasor notation

—2 = (K - M%) +3j Dw S (3.12)
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Hence

- T, -
X = 3 (3.13)

(K -M? ) + j Dw

and the phase angle, ¢ is given by

tan ¢ = —2 . | (a4
(K - Mw?) ' _
When the frequency of the forcing function equals : the natural frequency

of the system, the real part of the denominator of (3.,13) vanishes and the

equation becomes )
T0 . _
= Iw , | -(3.15)

During resonance, the amplitude X is directlyAprOportional to
the applied force and inversely proportional to the system damping. There-
- fore, a large applied force together with a small system damping will result

in a large resonant peak,

3.2.3 Resonant Peaks of the Six Mass-spring System

sin wt

HP ja LPA LPBE Gen Ex

?Figure 3.3 A damped six mass-spring system with unity
' sinusoidal forcing torque. ’
Consider a damped mass-spring system with unity sinusoidal forcing
torque sin wt applied on the generator rotor as shown in Figure 3.3. The
matrix equation in per unit describing the dynamical behaviour of the system

becomes

_.i_m 176 ] +-i—~ [D][éA] +[KI[el=10T1 (3.16)

b . . b
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where [ M ] and [ K ] respectively are the inertia constant and stiffness

coefficient matrices as shown in equations (3.2) and (3.4), and

[0 0 0 0 sinwt 01]°

(T]

Let the mechanical angular displacements f[ ® ] be transformed -
into modal angular displacements [ q ] by the eigenvector matrix ['Qﬁode],

from the eigenvalue analysis of the undamped system -
(6] = [Q_Jla] ean

Substituting (3.17) into (3.16) and premultiplying the whole equation by
o _
.»[ Qmode] , we have

'1 .. 1 °
_m';[Mmode][Q]‘L —;;[Dmode][q]+[l<mode][q]
= [ Tmode]" (3.18)
where
' _ T
[ M:mode]- = Qmode] LMl Qmode]
T .
! Kmode] = Qmode] I K1l mode]
’ (3.19
T
! Dmode] = Qmode1 (DI Qmode]
_ T
{,Tmode] —. [ Qmode] (1]

Note that | Tmode] indicates the contribution of the applied force on
each mode of vibration; both { Mmode] and [ Kﬁode] are‘diagonal matrices
hecause [ M ] and [ K ] are symmetrical.

o Neélec?éﬁg‘the off diagonal elements of [ Dmode]’ equation



(3.19) becomes six second order differential equations each of which
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corresponds to (3.10). Applying (3.15), the calculated magnitude of the

resonant peaks for various modes for the unity forcing function sin wt -

of Figure 3.3 are shown in Table 3.1 . Multiplying the modal resonance

peaks by its corresponding mode shapes as shown in Figure 3.1, gives the

relative magnitude of the 'angular displacement' of each mass at the

resonant frequencies. Results are shown in Table 3.2.

Table 3.1

Modal resonance peaks of the mass- E«
" spring system :

mode 1 6.47 |
mode 2 , 1.00 f
!
i
mode 3 0 3.075 §
mode 4 4.56 E
{
mode 5 0.035 i E
|
Table 3.2 - | o

_Mégnitude of the resonant peaks of each mass

using approximate modal analysis ‘ : -;

HP P LPA LPB Gen Ex %
mode 1 4,97 | 3.73 2.20 0.72 | 2.39 6.47 :
mode 2 0.125 | 0.07 0.017 | 0.05 0.04 | 1.00 ;
mode 3 3.075 | 1.04 | 0.70 0.29 0.51 0.77 ?
mode 4 3.9 0.20 2.29 4,56 2.83 1.72
mode 5 "?0;027. 0.035 | .0.004 | 0,0007! 0.0002| 0.00003
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3.2.4 Identification of the Unstable Torsional Modes

Neglecting the off diagonal elements of [ D ] , .- equation

mode

(3.18) becomes six second order differential equations, each corresponds

to one mode of vibration. Excluding mode 0, we shall have

1 e 1 . _ _ .
o, Pmode 91t dmode.qi»+ k'mode.qi ~ Thode, =1,..55 1(3.20)
b i b i i i
when the unity forcing torque . sinwt is applied to the systenm, it is

found that is this particular study .

[ Thogel = 1 0.373, 0.0374, 0.166, 0.6205, 0.0045 ]

.In the mean time

[ 1= 10.22, 0.102, 0.127, 0.253, 0.163 ]

Dmode

When these results are compared with those from eigenvalue analysis as

shown in Table 3.3

Table 3.3
Unstable modes of the SSR System
Mode Frequency Compensation ., Eigenvalue .
0] 1 -2 Hz below 30%
1 15.7 Hz above 70% +1.7178+3102.16
4 | 32.3 Hz at  50%,60% +0.7094%§203 .32
3 25.5 Hz at  40%,50%,60%,70% | +0.5595tj161.00

there is an indication that if

(d ) < 0 | (3.21)

mode ~ ‘mode

the particular- torsional mode is vulnerable to instability in this

. particular study.
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3.2.5 Modal Resonance Peaks and Unstable Modes

The modal resonance peaks in Table B.i indicate the relative
inétability among the torsidnal modes. A large modal resonance peak means
a large amplitude of vibration ,resulting in large negative damping due to
the torsional interaction, and vice versa,

In additional to the six mass-spring system, several_other
systems are investigated using both eigenvalue énalysis of the unified
electr0~meéhanical model and modal resonance peak analysisvof the mass-
spring  system. All results suggested that the modal resonance peaks‘can
be used as an index to determine the relative instability among the un-~
stable modes. In this particular case, ﬁode 1 will be the most unstable

one followed by mode 4 and mode 3 in that order.

3.2.6 Other uses of modal analysis. in SSR Studies

Stability of a SSR system als§ dependé upon the conditions of
the electrical system. However, the modal analysis is a very useful first
step to identify the excitable modes so that the range of freqﬁency scan-
niﬁg cén be narrowed; and the number of equations can be reduced. With
the excitable modes identified, one can also construct equivalent mass;
'spring system by retaining only the unstable modes alone, which will be

presented in the next section.
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3.3 Equivalent Mass--spring systan.

As shown in Table 3.3, there are cnly three torsional modes
in the étudy system. A low order equivalent mass-spring system may be

obtained by retaining only the unstable modes as follow:

1) Mode 2 in Figure 3.6a is roughly équal to the exciter -
mass swings against the rest of the mass-spring system which can be
eliminate& according to the ongoing an;lysis. Combining the generator
(Gen) and the exciter (Ex) masses together, eliminatinglmode,Q, and
keeping all otber natural frequencies by adjusting the étiffness constant
Ky5 between the low pressure turbine B (1PB) and the geﬁerator (Gen) ,

"result in an equivalent five mass-spring system.

2) The same proéedure is applied to the high pressure turbine
(HP) and the medium.pressureiﬁurbine (IP). Combining the two masses and
elimiﬁating ﬁpde‘S by adjusting the stiffness constant Ko3 between tﬁe
medium pressure turbine (IP) and the low pressure turbine A (LPA) result

in an equivalent four mass-spring system.

3) Finally, the procedure is applied to the two low pressure
‘ turbineé (LPA) and (LPB). Combining the two masses and elminating mode 1
by adjusting both stiffness constant K,35 and Kyg but one at a time, result

in an equivalent three mass-spring system.

3.3.1 Mode Frequencies and the Adjustment of the Stiffness Constant

Mode frequencies of the mass-spring system depend upon the
inertia constants and the stiffness constants. To retain other natural
frequencies after.combining the two neighbouring masses irto one, the

stiffness-constants must be varied, which can be found as follows:
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1) The initial eigenvalues are found from the characteristic equation
of the six mass-spring system, e€ach corresponds to a second order equa-

tion, and together they may be written in matrix form as

| Atz1-1M1M k) | =0 WY

where )
[ M] is the inertia constant matrix of appropriate dimension

[ K] is the spring coefficient matrix
[ I ] is the identity matrix

= w2 - -
A w /wb s Wy 377frad/sec.

2) To find a reduced order mass—Spring system, one of the stiffness
constant, say Kij , is treated as an unknown. By substituting the known
-A's already obtained from step (1) one at a time, an average Kij'ié

obtained.

3) " The average Kij value is substitute@ iﬁté equation (3.2?) of the
requcec order system, and eigenvalues are recalculated. Thevvalue is
thén adjusted according to the sensitivity coefficient, ;awi/(éKij) s
until the least square error of the natural frequencies of the -equivalent

reduced order system is the minimum. The least square error

2

n .
e = ) (w, - w ) (3.23)

) i . i .
i=1 desired retained

versus the variation of K;s5 of the equivalent five mass-spring system -

and K,3 of the four mass-spring system are shown in Figure 3.4 and 3.5

respectively,
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3.3.2 Mode Shapes of the Original and Equivalent Systems

The eigenvalues of a system are unique, but the éigenvectors‘
are not and can be normalized or multiplied by any non-zero scalar. Al-
though an equivalent reduced order mass—spring system retains all the
dominant eigen§alues of the original system, the validity remains to be
proveng a reduced order model of the equivalent system shall have ;imost
the same dominant eigenvector of the original systém; In addition, the

modal displacement of M shall be close to that of the original system

Gen v
so that the torsional interaction between the electrical and mechanical_'
system can be accurately accounted for. |

In thic section, the normalized eigenvectors of the original
and reduced,ordef mass-spring systems are compared. Excluding mode O,

" by which all the masses swing in unison, the eigenvectors of the original

system before normalization. are

[ -1.0428  -1.5584 -2.2820 +0.5914  -0,6161
-0.7833  -0.9168 -0.4041  -0.0299 +0.7825

-0.4595 -0.2128 +0.2713 -0.3442 -C.0886
’ (3.24)

+0.1499  +0.5601  +0.1127  +0.6847 +0.0165
+0.5007 +0.5297  ~0.1960 . —0.4248  -0.0350
+1.3420 -14.182 +0.2982  +0.2579  +0.0007
After normalization, they become
[ 0.7770  +0.1099 1 +0.864  -0.7870 )
-0.5840  +0.0650  +0.3420 ~0.0640 1
0.34620  +0.015C  -0.229G  -0.5030 ~0.1130 (3.25

+0.1120  -0.0400  —-0.0950 1 +0.0210
+0.3730  -0.0370 +0.1660 ~-0.6210 —-0.0045

1 1 -0.2530 +0.3770  +0.0009
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After eliminating mode 2, the eigervectors cf the reduced order five mass

equivalent system by retaining mode frequencies 15,94 Hz., 25.46 Hz.,

32.28 Hz., and 47.46 Hz.,

[ +1.0642
+0.7916
+0.4532

-0.171¢

| -0.5087

+0.9543
+0.3310
~0.2135
-0.1009

+0.1467

+0.6536
-0.0332
~0.3805
+0.7573

-0.4414

+0.6161

-0.7825

+0,0887

+0.0034

btefore normalization are

N

Scaling the modal eigenvectors with respect to the original system before

normalization ( e.g.,

column 3, 1 x column &4 ) gives

[ -1.0428
-0.7757
-0;4441
+0.1684

| +0.4985

-1.0428

m X. column 1,

~1,1810
~0.4096
+0.2642
+0.1249

-0.181¢€

Normalized with respect to the

([ -0.7770
-0.5780
-0.3310

+0.125¢C

| +0.3710

1

+0.3470

-0.2340

-0.1060

+0.1540

+0.5914

-0,0300
-0.3443
+0.6852

-0.399%

original system yields

+0.8630

~0.0400

~0.5020
1 .

-0.5830

-1,1810
0.9543

+0.6161
-0.7825
+0,0887
-0.0166

+0.,0034

-0.7870
1

-0.1130

+0.0210 -

-0.0045

X column 2

N

0.5914 _
* 0.6536

(3.27)

(3.28)

After eliminating mode 5, by retaining the mode frequencies

15.82 Hz., 25.49 Hz., and 32,47 Hz., the eigenvectors of the four mass

equivalent system before normalization are



([ ~0.9534
-0.4477

+0,1785

+0.5174

 -0.8973

+0.3383

+0.1617

-0.2231

+C.3436
-0.4378
+G.758GC

-0.4340

\
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(3.29)

Scaling the eigenvectors with respect to the original system before

0.6847

. . 0.4595
normalization ( e.g., 04477

————-x column 3 ) we have

0.7580

[ -0.9785
~0.459

+0.1832

| +0.5269
Normalization'yields

‘[ -0.7290

+o.1360

+0.3930

Usinrg the results in (3.

~0,7196

+0.2713

+0,1297

- -0.1869

+0.6090
-G.2360
-0.1090

+0.1970

X column 1,

+0.3103
-0.3955
+0.6847

-0.3920

+0.4530

-0.5780
1

-6.5730

0.2713
0.3383

x column 2,

4

(3.30)

- (3.31)

25), (3.28), and (3.31), the mede

shapes of the original, the five mass equivalent, and the four mass

equivalent systems are shown in Figure 3.6a, 3.6b, and 3.6c respectively.

Note that the mode shapes of the equivalent systems are close to those

. of the original system.
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3.3.3 Eigenvalues of the original and reduced order models

After reducing the order of the original system model from
26th to 26 by neglecting turbine torque and governor equations; etc.,
the order ié further reduced using mass-spring eqﬁivalencing'technique
deVeloped>in 3.3, resulting:in a 16th or a l4th order model. - The 14th
order model, however, is valid up to 70% c;pacitor compenéation because
mode 1 is not considered in the modei. Eigenvalues of the 26th, 16th,
and l4th order models over a Qide range of capacitor‘compensatiqn are
' examined. Typical values are shown in Table 3.4 to 3,6, The 16th order

model refains all the dominant eigenvalues over a wide capacitor range,
and the l4th ordér model also retains most of the domiﬁant propérties

except for very high compensation.
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Eigenvalues of various order SSR model at 307 capacitor compensation

for Pe = 0,9 p.u. at 0.9 power factor lagging and Vt =1.0 p.u.
26th order reduced 16th reduced l4th
model order model order model

-0.1818+3298.18

-0.4938+3203.59 -0.,4046x3j204 .71 -0,2723+£3200.37

. - j - j - +31°5
Mechanical 0.2513+j160.64 0.2069+j160,05 0.4052_3157.16
modes -0.6705%£3127 .02 :
© -0.2810:3j99.136 -0,2289+399.826

-0.0031+38.4105 -0,0399+38.4284 -0.0229+38.,4469

-0.1418
Turbine -4 ,5826
and _
Governor -3.1056 : :

-4 .,6721+30.5722
Stator —7.0419+§542 .94 -7 .044423542 .93 -7 .0440+3542.93
and . _ . _ s
Network -5.5469+3210.33 | -5.6283t3210.34 5.6596¢§210.69

-8.6469 -8.5228 -8.5180
Machine

-31.876 -32.611 -32.627
rotor

-2.0220 -2.2563 -2,2569
Exciter and -499.,97
voltage -101.9 ~101.57 ~101.56

regulator




Eigenvalues of various order SSR model at 50% coépcitbr compen- ,
sation for Pe = 0.9 p.u. at 0.9 power factor lagging and V£=1.0 p.u. .

Table 3.5
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26th order
‘model

reduced 16th
order model»

reduced l4th
order model

~0.1818%3298.18
+0.1237+3202.88

+0.1033%3204.01

4+0.0167+3j200.32

echanical | +0-2603%3161.38 +0.2341%3161.72 +1.0147£3160,11
modes -0.6829%3127.06
~0.3524%399.345 -0.3053%3100.05
~0.2327+39.4692 _0.2566+19.4905 ~0.2408+19.5172
~0.1418
Turbine -3.8415
and -3.5122
governor
4 :8239%50.2945
Stator 7.0969+3591.27 -7.0987+3591.27 —7.0986+7591.27
gzgwork ~6.1493§161.74 _6.0584%35161,72 -6.9236£3159.65
- -8.2324 -8.3289 -8.2283
fii:;ne 32.776 ~32.776 _33.475
~1.9458 _1.9458 ~2.1670
Exciter and 499,97
voltage _101.76 _101.76 _101.44

regulator
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Eigenvalues of various order SSR model at 807 capacitor compensation

for Pe = 0.9 p:u. at 0.9 power factor lagging and Vt = 1.0 p.u.
'26th order reduced 16th reduced 1l4th
model ' order model order model

-0.1818+3298.18

| +0.0134£35202.91 +0.0125¢3204.04 | -0.0409+3200.33-

Mechanical | -0.0967+3j160,52 -0.0496+3159.93 4+0.2981+3156.59
modes ~0.5998+7126.95

4+1.7178+3102.17 +2.1999£j102.78

-0.7619t311.662 -0.7669+3j11,682 -0.7572%3411.737
Turbine -0.1419 _
and ~3.4784+30.5960
governor o

-4 ,9841%30.0792
Stator -7.1710+3648.08 -7.1523+3648.08 -7.1523+3j648.08
and . . .
Notwork -6.7654+3103.02 —7.1328r3;93.06 -5.0848+3106.26

-7.6295 -7.5898 -7.5873
Machine -35.049 35,59 -35.613
rotor

-1.7807 -1.9481 -1.9489
Exciter and| -499.97
voltage ~101.43 " 101.15 ~101.15

regulator
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4, EXCITATION CONTROL DESIGN

4.1 Introduction

The main objective of the controller design is to stabilize
all unstable modes over a wide range of power and capacitor compensation

with minimum number of feedback signals.

For the.multifmode stabilization of torsional oscillations, the
phase compensation power system stabilizer with single signal input is in-
adequate for the narrow frequency band sengitivity. It may also have detri;
mental effects on other torsional modes [ 17A]. Multiple loop lead-lag
compensation excitation control has also been designed [ 14 ], but remains

~ to be improved.

In fhis chaptér; the state regulator problém of control theory
is.applied, and the linear optimal excitation control is designed for the
multiple torsional mode stabilization. It is a linear combination of many
system feedback signals. Instead of the phase compensafion,'the linear
combination of feedback‘sigﬁals according to the control law collectively

ensures proper damping for all torsional modes.

In engineering practice, it is alsévdesirable to have the mini-
mum number of feedback signals which can be easily measuréd. Due to the
complexity of the SSR problem, the order of the system model is usually>§ery
high and the lineaf optimal control designed usually requires a large number
of feedback signals [17,18]. Suboptimal control alqorithms are avaiable

in the control literature [ 29,30 ], but heavy computation is involved.

In this chapter, a different suboptimal excitation control design

technique is presented. The linear optimal excitation control of SSR is
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designed in the usual way, but the controller is simplified by rejecting
some feedback signals which have the least effect on the system‘démping,
dgtermined from. an eigenvglue sensitivity analysis. Formulaﬁion willlbe
given, éuboptimal_excitation’control will be designed; and the results of
both eigenvalue analysis and t ime domain.simulation of the SSR control of

a power system will be presented.

4.2  Linear Optimal Control

For the linear optimal excitation control design, let the
state equation be,

[x)=01A10x]+[B]lu] | e

and a cost index be chosen as

3= 0 Ctx1T Q=1+ [w1TIR 1w dde - (4.2)

where [ x ] is the state variable vector, [ u ] the control vector, [ A ]

the system matrix, [ B ] .a control matrix, [ Q 1 a positive semi-

definite weighting matrix, and [ R'] a positive definite weighting matrix.
A Hamiltonian is formed by appending (4.1) to (4.2)

1

H= (x170Q)Ix] + []TIR] W+ BITC [A)IxI+[B][u] ) (4.3)

N

where - [p] is the costate vector or Lagrange multipliers, and the optimal

control can be found from 8H/3u , resulting in

-1 T b |
lul=-IR][BI0p] ’ (4.4)
Let Ipl=1k1lx1 o 4 .5)
and assume a time-invariant system, [ K ] must satify the following matrix»i

Riccati equation

®ia s K- kB RTETK s Rl =0 4.6
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From the state equation of [x] -and the co-state equation of [p], a

composite system matrix [ M ] becomes

[A] ~l ®k17E BT

4.7

It

[ M] _ ,

T

-RI -]
There are 2n eigenvalues of matrix [ M ] for an n-th order system, and the
eigenvalues are symmetrically distributed on the right and the left parts

of the complex plane, ILet the eigenvalue matrix be

_ AI : : .
[al=] o N A R . 4.8)
II '
'and the corresponding eigenvector matrix be
X X1 '
[X1]-= (4.9)
X1 Xv
The Riccati matrix | K ] may be computed from
[(k1=10x10%x 17" a - (4.10)
Xl 0% - :

where [ AI ] constitutes the n eigenvalues of [ M ] on the left hand side
of the complex plane, which are the eigenvalues of the closed loop system

matrix [ AC ], as the closed loop state equations may be written

[x1=1A10x]1+(B1lu]l

¢ 1) - BRI BITK] ) Ix] (4.11)

]

(A 10 x]
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4.3 Eigenvalue Sensitivity [ 31,32 ]

" - Consider the controlled system matrix AC . For the i-th

eigenvalue Ai and eigenvector Xi ,» we have
AC X, = X, A\, ' : (4.12)

For the i-th eigenvalue Ai and the eigenvector Vi of the transposed AC s
we have

Alv, = v 2, _ (4.13)

Taking the partial derivative of both sides of equation (4.12)
with respect to a system parameter a gives

BAC BXi BXi : axi
BT T S R S PR TR (.19

. Premultiplying both sides of equation (4.14) by Vg results in

34 X 92X, 3

-7 c T i, T i O
Vi Cgn ) XpF VA G ) = Vi Ay (gt ) G ) Vg X (4.15)
But
via = via. | : (4.16)
3 e i3 | |

Therefore equation (4.15) becomes

A A,

T v o iy T '
Vilae 2% = (550 ¥ X (4.17)
or
A
o, vi (%) %,
—5(1—1 = a - (4.18)

where ( Xi , Vi ) equals to V? . X, according to (4.12) and (4.16)
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v§ X. < | (4.19)

4.4 Reduced Order Controller via Eigen?alue Sensitivity Analysis [24]

1

‘Let the feedback matrix [ BR B'K ] of (4.11) be simply

written as [ F ], and let AVR fo the voltage regulator be the last state

variable, The closed loop system matrix becomes

[(al=[A-F] " R T (4.20)
where ' y | ‘ -
| 101 _ |
[Fl= | , 4 - (4.2D)

fnl,......,fnk_,....,fnn

- Therefore, the eigenvalue shift of the controlled system‘is due to the

change in the last row of [ F]. Since not all the feedback elements R fni’

i=1’2"‘,k""n

, contribute substantial damping to the system, those which

have relatively small contribution may be neglected, which will not affect

the overall performance of the controlled system.

Since

34 Lo ]. ' '

Franii - .22)
n 0000001, uiue.. 0

therefore (4.18) becomes

Bl - x?'. v? _
- = e— (4.23)

of 1 (xi , vi) |

k. . ‘ N .
where Xi is the k-th element of the eigenvector Xi , and Vi is the n-th

element of the eigenvector Vi .
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When deleting a feedback element f Af = -f , therefore
nk ° nk nk
x? . V3 S .
BT AN AR e

By examining Axi , i=1,2,....,n , one can decide which feedback elements of

[ F] in (4.21) can be deleted.

The total effect of deleting some feedback elements can be cal-~

culated from

X<, V0
AX . o z _r L ¢ . (4.25)

fotal d X5,V nd

where fnd's are those feedback control elements being eliminated.

Of course, one has to check whether
Re (A, + M, ) <0 di=1,2,....,n (4.26)
e ‘ total

in order to have a stable system, where Ai , i=1,2,...,n , are the eigen-

value of the controlled system without deleting any feedback signals.

4.5 Examples of the Controller Design

Two examples of the SSR contrcl design are given in this sec-
tion using the reduced order one-machine infinite-bus models developed in

Chapter 3. For the l4th order model, the state variables are

Y L TT.L N SIS S PR

, . T (4.27)
kg2 Vea 8V 2R ]

[x1=14

AT

For the excitation control design, [ B'] become'a vector with

only one non-zero element KA/TA associated with AVR .
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From earlier experience [ 18 ], the weighting matrices are chosen as

[Q ] = diag[ 5000,50,55000,50,3000,25;1000,1000,

- 0,5,5,1,1,0 ] (4.28)

i
et

[rR]

After design, the control is substituted into the original

26th order full model whose state variables are

[x1=1 Aml,Ael,Amz,Aez,Aw3,Ae3,Awu,Aeq,Ama,Ae,AwG,Aes,Aa,APGV,

ATHP,ATIP,ATIPA;AId,AIq,AIffAIkd,A 428>

V,, E

ItV

(4.29)

R’ Tfd ]

which corresponds to -equations (2.41) and (2.42). Eigenvalue sensitivity

technique is then applied. Typical eigenvalue shift due to individual

state feedback is shownAin Table 4.1,

Table 4.1

Typical value of the eigenvalue shift due to
individual state feedback

Mechanical modes of the full Net eigenvalue shift due to
order controlled system the deletion of f25,9
-0.1836 £ j298.18 _ 0.0
~0.6618 + §203.32 +0.1182 T j0.0641
~0.1949 + j160.68 ~0.1222 § j0.1891
--0.6980 + j127.08 : | -0.0033 ¥ j0.0334
-0.2649 + j98.889 -0.1053 ¥ j0.2758
-3.1529 *+ j4.8785 -0.5931 ¥ j0.2181
It is found that the state feedback of AmIP , AGIP , AeLPA , dw o, Aqu ,
AVCd s AVCq do not have siénificant effect‘on the eigenvalues and hence

may he deleted, resulting in a 7th order contrdller as follows
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UE = 918.63AwLPB - 46,159A8 + 214.58A1d - 23.06A]’.q

—-200.67AIf - 198.67A1, , - 0.0558AVR ‘ . (4.30)

kd

With similiar procedures, an excitation control is also
designed using the 16th order model, The state variables of the model
are

[x 1= 1[4 A8 A8 Aw,AS;

WrpBOyp s8> 8Oy ppr B ppstoypps

AId,AIq,AIf,Alkd,Aqu,Ade,Ach,AVR 1, (4.31)

the weighting matrices are chosen as

‘diag [ 500,0,10,1,600000,10,500,10;800,500,

ftaQl

0,0.5,0.5,1,1,0 ] _ (4.32)

]
o

[R]
and the control UE is found to be

UE = 54.896A6LPA + 788..26AwL - 11.187A6LPB + 188.79AId

PB

—9.725AIq —‘175.93AIf + 8.4749A1 - O.O404AVR : (4.33)

kd
The operating conditions for which the above controllers:

are designed are

I}

electrical power 0.9 per unit

i

power factor 0.9 lagging

terminal voltage 1.0 per unit

capacitor compensation .= 60%
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The Output Feedback Control

- Although the state variables Aw

the mass-spring system can be
I 33 ], electrical variables

must be expressed in terms of
It is found that

Aqu

and

Aqu

Since X /X is close to 1 .
mq kg .

, A8 , and Aw of

LPB LPA

processed by the torsional stress analyzer
AId, AIq, A?kd- can not be measured, and
measurable variables.

Aqu is relétively small

(4.34)

for this particular case, the dynamic

responses of AIq and Aqu as shown in Figure 4.1 are almost identical
@
D o
=8
a_‘QT 1
s-lc‘! B
2o
(-]
a“
<
!
Wwo
o , ,
<2 .
T T T T T T T T T 1
l0.0 1.0 2.0 3.0 4.0 5.0
- TIME (SEC)
O-._
'uo
2
WW
t
i T T L T 1 T B T T !
0.8 1.0 2.0 3.0 4.0 _5.0
| TIME (SEC)
Figure 4.1 - Dynamic responses of Al and AI_ -

kq
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Other equations are

d
I

Y.I -VY1I

e d q qd
Q. = 'WdId - Wqu ' - (4.35)
2o 1+ 1 \
which are linearized for the SSR studies. Therefore AL AT AT

d 3 q b kd b

AIf can be expressed in terms of the output variables APe s AQe s AT

AT .according to the following relation

£
x2 ‘
3 _ _ - » At r’ M 3
(APe - (xq Xd)IqO ((x X, g )I fdo) Iqoxmd Iqoxmd 3
- X2
- R L5
8Q (Bpqo-2%y14,) (2xq qu)];qo L Xy L%, BT
AT, o 1 AT
’ . ’ . T
\AItJ | Ido/Ito Iqo/"to ‘LAIde
(4.36)

Applying (4.36), the simplified.controller of the l4th order

" model design of (4.30) becomes

‘ UE = 918.63AwLPB - 46.1)9A§ - 145.46APe - 68.665AQe

+ 160.88AIt - 1.9982A1f - O.OSSSAV12 (4.37)

which has seven measurable feedback signals, and that of the 16th order

model design of (4.33) becomes

| Up = 5489600, + 788.280u by - 11.18740; - 118.850P

—64,489&Qe + 137.89AIt - 1.0512AIf - 0.0404AVR (4.38)

which has eight measurable feedback signals.
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4.7 Eigenvalue Analysis of the Simplified Controllers

The'excitation.controls of the 16th.order model and 14th
order model design are sub;tituted into the linearized 26th order full"
model for eigenvalue analysis, for arwide range compensation of XC/XL
from 107 to 80%, and for three operating conditions of Pe equal - to 0.5,
0.9, and 1.25 per unit. The system with either one of these two controls
under all conditioné are stable, Typical results are given in Tables 4.2,
4.3, and.4.4 . Note that the control designed for the l4th order model
not only stabilizes mode 3 and mode 4, but‘also;provides damping to

mode 1 which is not included in the model for the design.

4.8 Dynamic Performance Test using Nonlinear Model

The simplified controllers are also substituted into the
nonlinear 26th order full model derived in Chépter 2 for dynamic perform-
" ance test. A pulsed torque disturbance of 20” for 0.2 second is assumed

for the system at various compensation and operating conditions. Typical

res?onses of the system without and with control of thg 1l4th ordér.model
design, ét 0.9 per unit generator load and 50% capacitor compensation,‘are
"shown in Figures 4.2 and 4.3 respectively..

Although some responses of the system without control are
unstable, responses of the system with control are éll stable. Note that
all responses are in per unit exéept the torque angle which is in degree.

The. speed response is the deviation from its steady state value.



Typical mechanical modes of the
normal load ( Pe = 0,9 p.u., Qe

Table 4.2

system with and without control at
= 0.4359 p.u., V

=1,0 p.u. )

54

Compensation

Without the
excitation
control

With a control
designed for
the 16th order

With a control
designed for
the l4th order

-0.1818+j298 .18
~0.4938+4203 .60
-0.2513+3160, 64
-0.6705t3127 , 02
~0.2811+399.136

—0.0031ij8.4105

~0.1819+3298,18
~1.2264+5201.18
~0.3396+3160.39
-0.7310t3§127..15
-0.7864%3599.290
-1.3534%§5.1525

-0.1818+7298,18
-0.8842+3§201.52
-0.2672t3160.45
-0.6927+3127.09
-0.4608%£399.295
-1.3517+36.3035

507

-0.,1818+7298.18
+0.1237+3202 .87
+0.2603+§161.38

_0.6828+3127.05

~0.3528+399.345
~0.2327+39.4692

-0.1819+3298,18
-0.4237£3203.56
~0.6495£3160,11
-0.7958+§127.23
-1.0005%399.479
~1.7884%36.0755

-0.1818+4298.18
-0.4554£3203 .44
-0.4192+§160.36
-0.7322+3127.16
~0.5894%3§99,490
-1.6931+37.1144

60%

~0.1818+3298.18
+0.,0612%3202 .88
+0.0908%3160.45
~0.6947£4127 .23
0.4162£399.567
-0.3773%310.099

-0,1819+3298.18

~0.4547+3203.32
~0.5202+j161.06
~0.8516+3127.37
~1.1792%§99.678
-2.0708%j6,5702

20.1818%§298.18
-0.4526%7203 .22
~0.3562%3j160.72
~0.7674%3127 .25
~0.6892%§99 674
~1.9159%37.5326

80%

~0.1818%3298.18
~0.0134%j202.89
-0.0967%3160.52
~0.5998%3126.94
+1.7178%3102 .17
~0.7619%j11.662

-0.1819%3298.19
~0.5034%35203.17
-0.3236%3160,68
-0.2165%j127.36

~1,1561%3101,12"

-2.8558+37.5796

-0.1818%3298.18
~0.4788%4203 .09
~0.2693%*3160.58
~0.2864+7127 .16
-0.6186+3100.85

-2.5196%78,2862




Table 4.3

Typical méchanical modes of the system with and without control at

light load ( Pe

= 0.5 p.u., Qe = 0.4359 p.u.? v

. .

1.0 p.u. )

55

e

Compensation

Without the
Excitation
control

With a control
designed for
the l6th order

With a control
designed for
the l4th order

30%

~0.1818+298.18
~0.1624+3203.39
~0.2079+3160. 64
~0.6629+§127 .02
~0.2178+499.147
~0.4313+48.,4705

~0.1819£3298.18
~0.6431+§203.39
-0.2565+j160.45
~0.7198+5127.11
~0.6132+599.198
~1.4887+75.8854

~0.1819+§298.18
-0.40973201 .66
~0.2110£3160.50
-0.6883+§127 .07
-0,3883+399,227

-1.3734£§6.4130

~0.1818+3298.18
+0.0503+3202 .88
+0.3037+3160.06
~0.6665127 .05
~0.2474+999.356
-0.6297+39.4819

-0,1819+3298,18
-0.5279+3203.59
-0.3573+1160.11
-0.7922+3127.16
~0,7957+399.309
-1.9004+36.6909

~0,1819£3j298.18
~0.5680+§203 .47
~0.1995:3160.34
~0.7302+§127 .12
~0.4974+599 381
-1.7489+37.1128

607

~0.1818+3298.18"

+0,0138+3202,88
~0,0050+3160,42
-0.6586+j127 .11
~-0.2655+799,553
-0.7548+310,082

~0,1819+3298,18
-0.4872+3203.39
-0.7074£3160,90
~0.8700+3127 .28
-0.9639+799.425
~2.1637+37.,1201

-0.1819+3298,18
-0.4972+3203.38
-0.4829+37160.56
-0,7748£3127 .20
-0.5871+399,520
~1.9926£19.4656

80%

~0.1818+4298,18
-0.0135£5202.91
~0.1284+9160.52
~0.6624+5126 .94
+1.7579+§101.46
-1.0877+311.568

~0.1818+3298,18
-0.4812+§203.26
-0.3631+3160, 61
-0.2603+3127 .42
~1.3391+3100.52
~2.9051+37.9656

-0.1819+3298,18
,-0.4728+3203,17
-0.3139+3160,59
-0.3162+3127.,19
-0.6494+3100.47
-2.6895+38,0386
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Table 4.4

Typical mechanical modes of the system with and without control at
heavy load ( Pe-= 1.25 p.u.,Qe = 0.4359 p.u., Vt

1.0 p.u. )

56

Compensation

Without the
excitation
control

With a control
designed for

the 16th order

With a control
designed for
the 14th order

- 30%

©-0.1818+3298.18

-0.8632+3203,72
-0.2907+3160, 63
-0.6774+3127 .02
~0.3384£399,104
+0,4213+ 38,1027

-0.1819+§298,18
~1.5884% 4201 .03
-0.3915+3160.33
-0.7369+3127 .17
-0.8755£399.329
~1.4984% 4 7420

-0.1819+§298 .18
-1.1821+3201 .42
~0.3036:7160.42
~0.6952+§127.11
~0.4942+799,318
-1.5920¢36,4917

507

-0.1818+9298.18
+0.1881+3202.89
+0,2020+ 5161 . 68

-0.6981+3127.06

~0.4477+399.318
+0,1360£19.,2235

~0.1819+3298,18
-0.3394£3203 .55
-0,8504t3160.10
-0.7978+3127.26
~1.1084%399.570
-1.8497+35.9294

-0,1819+3298.19
-0.3682+§203 .44
-0.5762¢ 160,37
~0.7343£3127 .17
-0.6348%+799,541

-1.8564%47.5255

607

-0.1818+3j298.,18
+0.1031+£j202.89
+0,1726+3160.49

-0.7293+4127.13

-0.5537£399,546
~0.0402£39,8917

-0.1819¢7298.18
~0.4175+9203.29
-0.4076+j161.16
-0.8409+127 .41
~1.2920¢399.823
~2.1070%36.5627

-0.1819+3298,18.

-0.4098+3203.19
-0.2738%3160.83
-0.7656£3127 .28
-0.7407£399.753
-2.0503+38.0835

80%

-0.1818%3298.,18
+0,0373%3202 .91
~0.0687£3160.52
~0.5800+7126.95
+1,6687£5102 .81
-0.4977+411.552

-0.1819+3298.18
-0.5021%£3203.12
-0.2926+3160.67
~0.1939£3127.33
-0.9919+3101.47
~2.8669+j7.9327

-0.1819+3298,18
-0.4692+3203,05
-0.2361%3160,58
-0.2693£j127 .14
-0.5752+3101.08
~2,.6189+39.2738
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4.9 The Control Signal

The control signgl UE of the 14th order model design and
its frequecy spectrum from Fourier analysis are shown in Fighres 4.4
and 4.5 respectively. There are four significant peaks at 1.15 Hz |
15.7 Hz , 25.6 Hz , and 32;3.Hz in the spectrum, which correspond to

‘mode 0, mode 1, mode 3, and mode 4 of the generatbr mass—épring system

respectively. The stabilizing effects on all mode of oscillations of

this design are well coordinated.

Although the output feedback excitation control of SSR proves
very effective for a single machine system, its effectiveness on multi-
machine system is still unknown. The ihvestigation of SSR éoqtrol of
multi-machine system with excitation control will be cﬁntinued in the

subsequent chapter.
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5 MULTI-MACHINE SSR STUDIES

5.1 Introduction

The SSR literatures so far are dealing with the torsional
oscillations and counter measures of single generatingvunit possibly for
two reasons: one, it Has teen considered as a local problem, two, it
is difficult to deal with a very high order multi-machine system.

In this chabtgr, the multi-machine SSR problem will be ex-.
~amined, and excitation contrcl of SSR will be developed. Two working
examples will be given: a two-machine system and a three—machiné system.
Two factors make SSR studies in a multi-machine system different from that
of a single machine system. First, more than one electrical resonance
.frequency may-exisf for the'series—capacitor—compensated multiple transmis-
sion lines. Second, the torsional interaction of the mass—sﬁring systems
and the dynamic interaction of the low frequency oscillaticens hetween mac-
hines may exist. Therefore,‘the strategy of controller design depends very
much upon the degree of interaction between machines.

‘The procedures of the multi-machine SSR studies are as follows:
first, the system 1is given an eigenvalue analysis to find the effect of
other capacitor-compensated lines mnot directly connected to a particular
' maéhine on the torsional modes of that maéhine. Secdnd; the torsional
~interacting effects of other machines on the individual systems are examined.
Third, excjtation controls of SSR are designed, using the techniques deve-
loped in the previous chapters, for the machines with unstable torsional
modes. Finally, the system with controller is evaluated using eigenvalue-

analysis and computer simulation test using the nonlinear pouwer system model.
y . T g P .
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5.2 A Two-machine System and a Three-machine System

A two-machine system for the SSR studies is shown in Figure 5.1
with components listed in Table 5.1 and déta éiven in Appendix IX. As for
the operating conditions, the conditions of machine 1 are fixed ( i.e.

Pe1 = 0.9 p.u., , P.F. = 0.9 lagging , V

2 vary with the compensation level ( 10% - 80% ). The operating conditions

el = 1.0 p.u. ) and these of machine

of all buses other than the terminal bus of machine 1 are calculated for

various compensation levels.

Machine 1 o - o . :
< :) ! P—w I 2 Vv i _ Infinite bus
line 1
line 3 l ‘

Machine 2

 Figure 5.1 A two-machine power system.
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Table 5.1

Summary of the components and number of state in the two

machine system : '

system component o No. of state
six mass—spr;;;—system _ 12
Machine 1 five-winding .generator model 5
second order excitation system 2 ‘
five mass-spring system 10
‘Machine 2 five-winding gé;;;ator model 5
second order excitation system 2
__Line No. capacitor compensated
Transmission 1 : -yes 6
system 2 yes
3 and 4 : no
Total No. of state 42

A three-machine system for SSR studies is shown in Figure 5.2

with components listed in Table 5.2 and data given in Apprendix III. Three

base cases are studied:

1) 50% compensation
2) 60% compensation
3) The compensation

is 70%, and that

In addition
is also varied one at a

Operating conditions of

for all lines, except no compensation for line 7.
for all lines, ekcept no compensation for line 7.
of line 1 and 5 is 40%, that of lines 3,4,6,and &

of line 9 is 35%. No compensation for line 7.

to the three base case studies, line compensation
time in the range of 307 to 707 for further studies.

the three base case studies are given in Table 5.3 .



@_

Infinite hus

Machine 1

Machine 2

VY'Y
line 6
line 8 line 3 line 1
—i \ line 2
| line 4 _, /
= Line 7
line 5
line 9 :
Machine 3
Figure 5.2 A three-machine power system.
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Table 5.2
Summary of the components and number of state in the three-machine system
system component No. of state
six mass-spring syétem ' 12
Machine 1 five-winding generator model 5
second order ekcitation system 2
five mass-spring system 10
Machine 2 ' fiye—winding generator model -5
second order excitation system 2
four mass-spring systém 8
Machine 3 five-winding generator model ' 5
- second order excitation system 2
Line No. éapacitor compensated
L 1 to 6 o yes _ 28
Transmission :
system 7 : no
8 to 9 yes
Total No. of state | 79
Table 5.3
Various machine operating conditions in the three-machine system
 Machine 1 Machiﬁe 2 MéchineAj
Pe 0.9 0.9068 0.5
Ezzzl Q, 0.3350 | 0.3408 0.2744
v, 1.0 [-3.12° | 1.0 [0° 1.0 [13,6°
P 0.9 0.9056 0.5 '
dase 1 e, 0.3071 0.3196 0.2602
—vt 1.0 [2.38° | 1.0/0° 1.0 f11.48°
Pe 0.9 0.9086 0.5
32223 q, | . 0.3076 0.3799 0.2627
v, 1.0 [4.56° | 1.0 [o° 1.0 /-11.32°
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5.3 Preliméry Study of the two-machine System

'Froh.full model eigenvalue analysis of the two-machine system
over a wide range of capacitor compensation, five unstable modes of the
system are identified and given in Table 5.4. ; Typical mechanical modes
of the system are shown in Table 5.5 . The effect of capacitor compensa-
tion on thé torsjional modes of the machine not directly connected to that
transmission line is also investigated. Typical results as manifésted by
the variation of real pafﬁs of the eigenvalues of particular torsional
modes are shown in Figures 5.3 through 5.6 . The natural frequencies
also change slightly. Therefore, for a muiti—machine system with multiple

capacitor-compensated-lines, more than one condition at which SSR may occur.

Table 5.4

Unstable modes of the two-machine syétem

» mode 3 (25.5 Hz.)
Machine 1
mode 4 (32.3 Hz.)

mode 0 ( 1-2 Hz.)
Machine 2 mode 2 (24.0 Hz.)

mode 3 (30.2 Hz.)

Interaction between machines' torsional modes is 6bviously an
impor;ant factor to be considered in the SSR controller design. If the
interaction between machines is significant it must be considered, other-
wise, the controller can be designed one machine at ﬁ time,

The torsional interaction between machines are investigated

~as follows:

D Find the eigenvalues from the full ﬁodel oflthe system.
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2) Find the eigenvalues of the reduced order models that the mass-
spring system of one machine is represented in‘detail and the mass-spring
system of the other is lumped into one mass.

3) Compare the results of steps 1) and 2). Any significant change
in the torsional modes indicates fhe‘existence of interaction. Otherwise,

the interaction between machines is insignificant.

Typical resﬁlts for the two-machine systeﬁ are shown in Table
5.6 . Although there are slight changes iﬁ the torsional modes between
steps 1) and 2) especially. when two mode frequencies are clbse,bthese
interactions are not strong enough.to make the unstable modes stable or
vicelﬁersa. Therefore, the interaction. between the two machines’ tor-

sional modes is insignificant.



Table 5.5

Typical mechanical modes of the two-machine system

Line compensation

Machine 1

" Machine 2

Line 1 =~ 70%

Line 2 70%

-1.2096+7298 .18

+0.1503+3203.02

-0.2213+3160.46
~0.715243127 .08
~0.63024§99.416
~0.9949£510.242

~0.1215%§276.41
+0.0862%7189,96

+0.,3546x3151,55

~0.2503+5102 .42
~0.1677%76.8353

Line 1 70%

Line 2 3C%

~1.2224+7298 .18
+0.1073+5202 .87
+0,1379+7160.88
-0.7183+3127.08
~0.6550+799.429

 -0.62394310.422

-0.1215+4276.41

+0.1396+§189.81

-0.2186%§151 .65
~0.2048+3102.26
4+0.3318+56.6557

Line 1 50%

Line 2 50%

-1.2066%3298.18
+0.0610+§202 .91

-0.5470%j160.75

~0.7039+§99.204
~0.6625%59.3108

-0.1215%j276.41
+0.1352+5189,97
~0.1927#§151.52
-0.0119%§6.5236

Line 1 50%

Line 2 70%

-1.1997£5292 .18
~0.0383%§203 .38
~0.4321%j160.95
~0.7027 +§127 .04
~0.5727 %§99.211
~0.9671%49.3253

~0.1215%5276.41
-0.0467 %5189, 98
~0.0619%j151 .68
~0.2159%j102.27
~C.1467 £ 6.6456

74
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Table 5.6

75

Typical mechanical modes of the two-machine system using different
-models for the investigation of torsional interaction between machines

Ml : detail
‘M2 . detail

Ml : detail

M2 : one mass

-1.2143%3298.18

~1.2143+4298 .18

Ml : one mass

M2

: detail -

+0,1296:3202.87 | +0.1303%3202.87
, -0.5487+£3161,02 | -0.5472+3160.01
Machine 1}, 9096+1127.05 | —0.7095¢5127.05
Line 1 () -0.6088£399,282 | -0,6179£399.299 -
60% ~0.6064+59.7300 | -0.6064+39.730 |-0.5022t39,7802
-0;1215£4276.41 -0.1215+4276.41
Line 2 ~0.0295¢9189.95 ~0.0296£§189,95
4oz | Machine 2 | -0,1843:3151.52 -0.1850*j151.52
(M2) -0.1887+35102.18 -0.1797+3102.16
-0.0831+36.4809 | ~0.0799£j6.5063 |-0.0623%16.4929
~1.2194+3298.18 | -1,2914%3298.18
+0.0714%3202.87 | +0,0718+3202 .87
Machine 1 | +0-132623160.77 +0.1228%7160.78
Line 1 (1) ~0.7167£§127.08 | -0,7167%3127.07
707 -0.6448£99,411 | -0.6612%799.438 o ‘
-0.6822+310.288 | -0.6944%310.313 | -0.5805%310.351
—0.1215%§276.41 -0.1215+3276.41
Line 2 -0.06509+7189.95 ~0.0509+5189.96
4oy | Mackime 2 | -0.1115%j151.62 ~0.1058+3151.96
(M2) -0.1970%3102.25 -0.1807%j102.23

.1094%36.7660

-0.1065%£36.7949

~0.0885t76.7772
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5.4 Preliminary Study of the Three-machine System

bAgain'from the full»model eigenvalue analysis of the three-
machine system over a wide rahge of capacitor compensation, six unstable
modes of the system are identified, and they are given in Table 5.7 .
Typical mechanical modes of the system are given in Table-S.S .

The interacting effect of torsional modes for the system is
also investigated using the same procedures as described in section 5.3 .
The resultsvére'shown in Table 5.9 , which also suggest thaf interactioﬁ

between machine's torsional modes is insignificant,

Table 5.7

Unstable modes of the three-machine system

Machine 1 mode‘l (15.7 Hz.)

mode 4 (32.3 Hz.)

mode 0 ( 1-2 Hz.)
mode 1 (16.2 Hz.)
Machine 2

mode 2 (24.0 Hz.)

mode 3 (30.2 Hz.)

Machine 3 . none




Table 5.8

Typical mechanical modes of the three-machine system

Line
compensation

Machine 1

Machine 2

Machine 3

Line 1 = 60%
Line 2 707

Line 3-9 607
(except 7)

~0.1818tj298.18
+0.2653%§203.29
-0.2753+3160.70
-0.6612+7127.04
-0.2455+799.456
~1.7915+510.363

-0.1214%3276.41
-0.0644% 189,99
+0.0832+3151.81
+0.2785£5102.65
+1.3101#310.175

-0.1336*§353.25
-0.1336+j190,17
~0.7337£3167,73
-3.2331+317.474

Line 1-8 597
(except 7)

Line 9 = 30%

~0.1818+3298.18

-0.2359£3203.20

-0.2283%3160.66
-0.677323127.,02
-0.2707+499.224
~1.1930+39.8449

-0.1215%3276.41
+0.1086+£37189.99
~0.0544+3151 .58
-0.3096%3102.66
+0.6526%48 .8284

~0.1344%31353 .24
-0.2284%3190.11

0.7334%9167.73

-3.1623%§17.262

Line 1-3 50%
Lire & 30

Line 5-¢ 50%
(except 7)

-0.1818+j298.18

+0.0608%5203 .34
-0.3752+7160.63
-0.6427%3126.99
+0.1309+399.502
-0.9892+310.472

-0.1214%4276.41
-0.0549t7189.84
+0.1253%3151.93

-0.4555%§102.56

+0.2684+58.7070

-0.1334%4353.24
~0.17763190,28
-0.7326+3167.73
-3.3444%317 589

Lire 1,5 40%
Line 9 35%
Line 2-4,6,8

707

-0.1818+4298.18
+0.2653%3203.29
~0.2753+3160.70
-0.6612+3127 .04
-0.2455+399.456
~1.7915%510.363

-0.1214%3276.41
-0.0644%3189,99
+0.0832+3151.81
+0,2785+4102.,65
+1.3101£j10.175

-0.1336%3353.24
-0.1631%3190.17
-0.7337%3167.73
~3.2331%§17 474




Table 5.9

Typical mechanical modes of the three-machine system using different
models for the investigation of torsional interaction between machines

~0.245£599,46 -0.412+3599.45 | -0.245¢§99.46 | . —0.411£599.45
-1.792£§10.36 | -1.818£310.41 | -1,805:310.40 | -1.792£§10.36 | -1.834:§10.45 | -1.8184#510.41 | -1.805310.40

Ml : detail Ml : one mass | Ml : detail Ml : detail Ml : one mass | Ml : one mass | Ml : detail
M2 : detail M2 : detail M2 : one mass M2 : detail M2 : one mass M2 : detail M2 : one mass
M3 : detail M3 : detail M3 : detail M3 : one mass M3 detail M3 : one mass M3 : one mass
-0.182+3298.2 -0.182+3298,2 | -0,182+3298.2 L ' -0.182+4298.2
gg +0.265+5203.3 +0,253%3203.3 .| +0.266x35202.,3 +0.253+%3203.3
| =0.275£3160.7 -0.270+3160.7 —0.2751j160.7 -0.270+j160.7
g —O.661ij127.0 -0.661%x3127.0 -0.661x3127.0 _ -0.661+§127.0
o
O
LU

Machine 2 (M2)

(r3)

Machine 3

£

Ry

-0.121%3j276.4 | -0.121£§27¢

A -0.121%3276.4 S -0,121+3276,4
-0.064+3189.9 | -0.067+3189.9 -0.013£3190,0 | ~0.014£35190.0
+0,083£5151.8 | +0,080£j151.8 +0.083%3j151.8 - | +0.081£3151.8
+0.278+3102.6 | +0.414£3102. +0.278£3102.6 +0.413£3102.6

6
+1.310£310.18 | +1,327£310.20 | +1.331£310.25 | +1,310+310.18 | +1.350%£j10,27 | +1.327£310,20 | +1.332£310.25

-0.134%3353.2 | -0.134%3353.2 | -0.134£§353.2 ‘ ~0.134£3353 .2

-0.163%3j190.2 | -0.161%j190.2 | -0.216+3190.1 - -0.216£3190.1
-0,734%3167.7 | -0.734:3167.7 | -0.734£j167,7 ' ~0.734%3167.7

-3.233%£317 .47 | -3,233%23j17.47 | -3,234%j17,48 | -3,248%£317,51 -3.235+§17 .47 | -3.248%+317 .51 | -3.249+317,51

8



83

5.5 Controller Design Considerations of Multi-machine SSR System

Althéugh the controller design using the full model, which
accounts for all nétural frequencies in the electrical system and torsional
interaction between machines, could be the best, it‘often results in a
high order controller. .Since the torsional inﬁefaction between machines
aCCOrQing to the foregoing studies is dinsignificant, . an aitefnative
method using a reduced order model for the design is developed. The ori- -
ginal system is divided into several one-machine éystems, and the controller

is designed one at a time. Two general steps are as follows:

1) Choose an approﬁriate one-machine systém model by refaining one of
the transmission lines directly connected to the machine, which has the
largest steady current and hence the strongest tofsional interacting effect
between the electrical and mechanical systems.

2) Modify the line by adding some impeaance so that the critical electri--
cal frequency for the line with compensation as viewed‘from the machine will

not change.

When the multi—machine system' is divided into several one-
machine systems, the dynamic interaction between machines has been neglected.
But these interactions depend very much upon the tie lines between machines.
For a strong tie line ; strong interaction may exist. Therefore, the con-
trollers aesigned for individual oné—machine systems must be coordinated.

An iterative scheme as shown in Figure 5.7 may be applied to adapt the
designed controllers so that all dampings of the mechanical modes in the

system are coordinated,
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Design control for Machine 1

with a one-machine model

1

Désign control for Machine 2

using a one-machine model

Test the controllers on the

original system ’ :>}00p

Sensitivity studies

of the weighting Whole system

A

tri :
matyix Q ' : N9 stable ?

e ———— — e ey
“
{Eontinue to the other machine;

L with the similar process ¢

D S G- — — S ——— — —— i ewatn ey w— cws =l

Figure 5.7 Iterative scheme for adapting controller
"into the original system.

one
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5.6 Controllers Design and Test of the Two-Machine System

The two-machine system is divided into two one-machine
infinitembus system modéls for the controller design as follows:

1) The natural frequencies of either one of the two transmission lines
for a wide range of capacitor compensation are determined by setting the
capacitor compensétion of the other line fo‘zero.

2) The rest of the system is replaced by an equi&alent impedance, Xﬁl
or XE2 as shown in Figure 5.8(a) or (b) rgsPectively, such that each system

will have the same electrical natural frequencies as determined in step 1).

1me1 lmeZ X

achine 1 ’ ' - Machine 2

@ )

Figure 5.8 Two subsystems resulted from the two-machine system.

. For machine 1 of Figure S.8(a),vXE1,is found to ﬁe 0.1 p.u. .
Since the operating conditions, the.machine’and transmission line para-
meters of the.sfstem given in Appendix II "are aimost the same as that of
Ethe one-machine system studied in the prévious chapters, the same qontrol—
ler in Equation (4.37) will be applied without change.
For machine 2 of Figure 5.8(b), XEZ is O.1l p.u. ; and thé

average operating conditions are

= . = 7 =
Pe2 0.8 p.us Qe2 0.4 p.u. , \t2 0.9 p.u.

Applying the mass-spring equivalencing tecbnique developed in Chapter 3,

the mass-spring system of machine 2 is reduced to a three-mass equivalent
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retaining only modes 2 and 3. The mode shapes of the original and the
equivalent system are shown in Figure 5.9. Including the electrical sys-

tem, a reduced 1l4th order model is obtained. The state variables are
[ )] = T 801pys8087pp5001pp7,881 pposBaen2 s88gena»2Ta2 >0 g2
Al ep B lian BTy g2 8 car 8V g2 VRo 1 o (5.1)
Using the l4th order model, an excitation control is designed

using the linear optimal control laws and eigenvalue sensitivity'technique

developed in Chapter 4, resulting an 8th order controller.

The weighting matrices are

(rR]=1

[ Q ] = diag[ 5000,50,50000,50,100,25;100,100,

0,50,50,1,1,0 ] (5.2)

The state feedback control after the eigenvalue sensitivity analysis

. results in

Upp = 633.8280; 50, + 35.55988 oo, — 56.80488, . + 56.63AI,

+ 12 .453AT1 - 56.089AIf - 52,01AT

9 Kd2 " 0.214AVRZ (5.3)

q2
Applying (4.37), the state feedback control of (5.3), in terms of output

variables, becomes

Upy = 633.830w ppy + 35.55940; by ~ 56.804085,,, - 17.4810P

-27.287AQe2 - 4.07928T, + 29.981AT , - 0.2140V,, (5.4)
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5.6.1 . Testing of Controllers Using Eigenvalue Analysis

After the controller design, eigenvalues of the two-machine

system are analyzed in the sequence as shown in Table 5.10 .

Table 5.10

Testing sequence for the two-machine system

Machine 1 Machine 2
1 ~ with control . without control
2 without control with control
3 with control ~ with control

The first two tests are used to examine the effect of the
.controller designed for one machine on the ofher machine, typical results
are shown in columﬁs 2 and 3 of Table 5.11 . 1t wastound tﬁat the damping
provided by the controller to the torsional modes of the ogher machine is
‘insignificant. ~However, the effect of the controller on mode 0 of the
other machine is noticable., It may give positive or negative damping to
the other machine, depending‘onvthe operating conditions. |
With both controllers applied to machines 1 and 2, allyun-
-stable modes are stabilized over the entire range of capacitor compen-
sation. Typical results are shown in columnIAAof Table 5.11 . Note that
the controllers provide substantial amount of damping to mode 1 of both
machines é&én though they are not considered in the controller design;
Althougzh the.effect of controller on mode 0 of the other
machine is noticable, it is not significant due to the weak tie lines
ﬁetween the machines. Therefore, each control can be separately designed

and the iterative scheme presented in Figure 5.7 is not necessary.



Table 5.11

Typical mechanical modes of the two-machine system
without and with control

89

Ml without
M2 without

Ml with
M2 without

Ml without
M2 with

Ml with
M2 with

~1.2128+3§298.18

-1.2129+3j298,18

-1.2128+3298 .18

-1.2129%3§298,18

éi +6.4186£3202.99] -0.9341%3j203,25|+0,3826£3203.00| -0,9107+3203.19
§§ ~ | =0,5580t3160.73|-0.5254£1160,51|-0.5551¥§160.73|~0,5249¢ 160,51
| 8]-0.7047£3127.03|-0.7329¢5127.10[-0.7047£§127.03| -0.7328*127.10
- '§ ~0.5844+799.199| ~0.7476£399.349 ~0.5813+199.203| ~0.7429%399.351
= 1.0.4836£79.2996] -1.9182+47.9942 | -0.5765+59.4304 | ~2.2889t 18,5922
[
A 9 |-0.1214£3276.41|-0.121421276 41| -0,1223%§276 .41 -0.1223%3276.41
— :: ~0.0318+3190.02|~0.0621%5190.02|-0.4476+§189,17|-0.3403*§189.15
E g |-0.1690£5151 .46/ -0.16€5¢5151 .46 ~0.1992+5151.06| -0.2045¢§151 .07
= % ~0,1711#3102.11|-0.1700+102.11|~0.6437%3102.06| -0.6434+§102.23
2 -0.0261£§6.3218|-0.2053§5,7251 | -2.4631j5.8497 | -2.4649% 54 7145
~|-1.2096%3298.18|-1.2056+1298.18 | -1.2096+1298.18 | -1.2098%3298,18
- Z |40.1503+5203.02|-0.4857%3203 .03 +0.1422%3203,01 | -0.4790%3203.C1
= | —~ |-0.2213£5160.46|-0.4882£3160.52|-0.2893%§160.53|-0.5114%1160.52
o~ £ |-0.7152%1127,08|-0.76993127 .19{-0.7116+3127 11| -0.7673%3127 .21
& g ~0.6302¢599.416| -0.8320£99.550| -0.6115%j99.439| -0.8113%99.565
2 1-0.9949+310.246(-3.0374%59.0538|-0.9926¢510.613 -2.7396%39.5798|
s _
= | o ]-0.121545276.41|-0.1215%§276.41-0,1221+3276.41 | -0.1221%3276.41
—~ | < 14+0.0862+7189,96(+0.0779%5189,95(-1.2334+189,43|-1.1587+189 43
E © |+0.35463151.51|+0.2397+3151.80 ~0.8976%§151.13|-1.0465%§150.77
. :§ ~0.2503+3102.42|-0.2336%3102.41|-1,0867%j102,52 ] ~1 0463t3102,55
8 |-0.167736.8352|~0.007%%16.0831 | -2.3147%16.8506|~2.2604%35.4212
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5.6.2 Dynamic Performance Test of the Two-machine System

<:::}4—Q\—Mw—*————40¥——Nv——4F—————— Infinite bus ﬁ

fhe controiler designs in (4.38) and (5.4) are substituted
into the nonlinear two-machine system model for dynamic performance test,
A three-phase fault for 0.075 second is assumed at the load bus -as shown
iﬁ Figure 5.10. Typical responses of the system with 507 compensation
for both lines 1 and 2 without control are shéwn in Figures 5.11 and 5.12,
and those with control in Figures 5.13 and 5.14 respectively. |

For the system without control, most responses of the machines

are either oscillatory or unstable. However, all responses of the system

with excitation control are stable and all oscillations are damped out

within 5 seconds.

Machine 1 - ——_—n—an {:5;) u
P —AN——
— close t=0
I / N - - open t=0.075 sec.

Machine 2

Figure 5.10 The two-machine system subjected to disturbance.
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5.7 Controller Design and Test of the ThreeQmachine System

Since all the mechanical modes of machine 3 are stable,'the
controller design will be focused on machines 1 and 2. Two one-machine
models for machines 1 and 2, by retaining the strongest torsional inter-
action path and the critical electrical frequenCy'for each model are |

chosen as follows:

1 Among the three transmission lines 1, 3, and 6 connected to machine

1, only line 6 is retained because it has the largest per unit current

>
indicating the strongest interaction path. ' The rest of the system can be
replaced by an equivalent reactance XE1 of 0.07 p.u. .

2) For machine 2, only line 2 is retained and the rest of the system

is replaced by an equivalent reactance XEZ of 0.1 p.u. .

Again,vthe séme controller of (4.37) is used for machine 1,
because the operating conditions, the machine énd transmission line para-
meters for machineé 1 are almost the same as those of the system previously
studied,

The operating conditions for machine 2 are

Pe2 = 0,906 p.u., Qe2 = 0,341 p.u., Vt2 =1.0 p.u.

Using the l4th order model of (5.1) together with the techniques develpoéd
in Chapter 4, an 8th order excitation control for SSR is designed by
choosing the same weighting matrices és shown inv(5.2).

When both controllers are applied.to the three-machine system,
all unstable torsional modes in the system are stabilizéd over the entire
range of the prescribed operating conditions. However, mode 0 of machine 2

remains unstable due to the inadequacy of the one-machine model by which
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the dynamic interaction between machines is neglected. But either one of
the two controllers can be adapted also to stabilize mode 0 using the

iterative scheme as shown in Figure 5.7 .

5.7.1 Sensitivity Studies and Choice of Weighting Elements in [Q]

Dynamic interaction between machines is transmitted through
the electfical network by the line current, Therefore, proper choice
of weighting elements in conjunction with current is important to enhance
the mode 0 dambing in a multi-machine system.. |

For the three-machine system, the controller for machine 2,
originally based‘on a‘one—machiné model, is adapted by studying thé
sensitivity of mechanical damping with respec; to.the weighting eléments
of AIkAZ’ AquZ’ AIdz, A;q2'. AIde and AquZ are included because
they affecf the self damping of machine 2 which in turn affect the dynamic
interaction between maéﬁines. Keeping other weighting elements of [Q] in
(5.2) constant, the effect of the weighting elements of AIde and Aquz

on the mechanical modes of maéhine 2 is shown in Figure 5.15: and that of

AIdZ and Aqu in Figure 5.16.

Two observations are as follows:

1) As the weighting elements Q and Q increase ( more penalty

1kd2 Ikq2

on the deviation of damper winding currents are imposed ), mode 0 damping
of machine 2 increases and that of maéhine 1 decreases. Damping of machine
2's torsional modes also decrease, but at a much slower rate.

2) As the weighting elements QId2 and QIq2 decreage ( peqalty on
the deviation of stator currents is reduced ), mode O damping of machine 2
increases and that of machine 1 decreaées. Damping of the torsional mddes

of machine 2 remains fairly constant.
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Since the weighting elements of the damper winding currents
_afféct the damping of machine 2's torsional modes, they must be chosen
such that all mechanical modes in the three-machine system have reason-
able positive dgmpingﬁ‘ In this case QId2 and QIq2 of (5.2) are adapted

to 50 adapted to 100, The resulting weighting matrice

s Qqyap 204 Qppgn

are

1

Il

[R]
[Q1l

1

diag [ 5000,50,50000,50,100,25;50,50,0 (5.3)

100,100,1,1,0 ]

and the designed state feedback control after simplification from eigen-

value sensitivity analysis becomes

U, = 549.26Aw,__., + 67.118A0 -~ 80.1724A¢8 + 47.76AId

E2 ~LPB2 LPB2
+12,289AT - 48.478A1f - 41 527A1

2

Gen2 ‘
(5.4)

- 0.249AV

q2 2 kd2 R2

Applying (4.36), the control of (5.4) in terms of output variables becomes

U,, = 549.26Aw + 67.118A8 - 80.172A8

E2 LPB2 1PB2

—12.19§AQe2 - 6.95AIf2 + 99.296/_\.1t

Gen? 14.04;APe2

9 = O.249AVR2 (5.5)

With controller of (4.37) on machine 1 and (5.5) on machine 2
. of the three-machine system, all unstable modes in the system are stabi-.
"lized over the entire range of the prescribed operating conditions.

Typical results are shown in Table 5.12
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Typical mechanical modes of the three-machine with control

Line 2-4,6,8
70%

.6738£3127 .17
.5616%§99.859
.9833+911.218

~0.2140%j102.85
-1.5807%35.6033

complgrj;g:tion Machine 1 Machine 2 Machine 3
~0.1820£298.18 | -0.1222+3276.41 | -0.1334%§353.24
Line 1 ®0% | _1.0612#j202.58 | -0.6101#j189.31 | -0.2016+1190.16
Line 2 70% | —0.3141%j160.49 | -0.3091%3j151.04 | -0.7333%j167.73
Line 3.9 07 | ~-0-7058%i127.16 | -0.6588j103.29 | -3.3618%j17.607
(except 7) ~0.5637£399.549 | -1.362135.4707
~1.9871%310.923
~0.1820+3298.18 | -0.1221%j276.41 | -0.1337%3353.24
-0.6224%7202.15 | -0.4904t3189.45 | -0.2366*3190.09
%:2?6;587) >0% ~0.2893+3160.48 ~0.2752¢3151.12 -0.7334iji67.73
~0.7071%3127.15 | -0.9266+3102.71 | -3.1780%§17.277
Line 9 302 | 4 5635¢999.507 | -1.080545.2511
~2.1187+59.8608
. ~0.1820%§298.18 | -0.1221$3276.41 | -0.1335%3353.24
Line 1-3°50% 4 6799+4202.25 | -0.3588+9189.41 | -0.1876%9190.05
Line & 30% | —0.3017+3160.31 | -0.3372%§151.36 | -0.7313%§167.73
Line 5.9 50z | ~0.6629%j127.14 | -0.9538+j102.42 | -3.2170%j17.439
(except 7) . ~0.5368%399.606 | -1.1479%35.2261
' ~2.1820+79.8276
| ~0.1820%§298.18 | -0.1221%j276.41 | -0.1336%j353.24
Line 1,5 407 | 1 512244202.49 | -0.5766*189.39 | -0.2310%§190.14
Line 9 35% ~0.3139+§160.46 | ~0.3147+j151.17 | -0.7336%j167.73

-3.2409%§17 .489
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5.7.2 Dynamic Performance Test of the Three-machine System

The dynaﬁic performance of the three-machine system without
and with excitation control is tested using the nonlinear system‘modél.
A resistive load is switched into the system at bus 8 for 0,075 second
as shown in Figure 5.17 , so that the bus voltage will drop 20% . Typi-
cal responsés of the system without control are shoﬁn in‘Figuresf5118
through 5,20, and those with éontrol in Figures,S.Zlbthrough.$.23're—
spectively, The line compensation of the system is 507 for all lines,
except for line 7 and.line 2 which has no compensa;ion and 70% cempen-
sation reépectively.-_

For tﬁe system‘without contrql,.some responses of machines
1, 2, aﬁd 3 are unstable, but the responses of all machines are ét#ble

for the system with the excitation control., ..

Machine 1

bus 8

‘Machine 2

5

close —i
: t=0 —
| 1
(~)—{ open i | »
t=0.075 =

Infinite bus L

-
e L
Machine 3 ﬂ i ’

Figure 5.17 The three-machine system subjected to disturbance,
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5.8 Concluding Remarks for Multi-machine SSR Studies

From the foregoing SSR studies of the two-machine and three-

machine systems, general conclusions are as follows:

‘1) In a multi-machine system with multiple capacitor—compensated trans-
mission lines, there is more than one condition at which SSR may
occur,

2) Interaction between torsional modes of different machiunes has no
significant effect on SSR stabili;y.

3) To abply the simblified output feedback excitation control design
technique'developed for the one—maéhine system to a multi-machine
‘system, a one—maéhine cquivalent including the strongest transmission
tie and the critical electrical resonance frequency must be derived
for each machine in -the multi—ﬁachine system. When the contrbllers
thus designed are applied to the multi—ﬁachine system, some adéptation
may be required; which can be achieved ﬁsing an iterative process,

4) Both eigenvalue analysis and dynamic performance test using nonlinear
full models prove that the excitation“control designed according to
the procedures ﬁresented in this chapter is very effective for multi-

machine multi-mode stabilization of the SSR.
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6. CONCLUSION

Several useful model reductipn, equivalencing, and control
simplification techniques have been developed and many interesting results
are found in this thesis study.

Aftér presenting a unified electrical and mechanical model for
the SSR studies in Chapter 2, it is shown in section 2.5 that, although
the negative resistance concept is ﬁseful to explain the torsional inter-
action between the electrical and mechanical systems, the lumped mass re-
preéentation of the turbine-generator is not sufficient, and the multi-
mass-spring system must be used for SSR studies. |

For the SSR controi~design, the excitable torsional modes are
identified from modai analysis in Chapter 3. A mass-spring equivaiencing
technique is thenvdeveloped for order reducfionAby retaiﬁing only the
unstable torsional modes at certain frequéncies, resulting in a lower
order mass-spring system.

Based on the linear optimal conﬁrol laws and with the reduced
14th and 16th order models of the original 26th order system, linear
optimal excita;ion controllers are designed iﬁ Chapter 4. The coﬁtrollers
are further simplified from a sensitivity analysis by deleting some less
sensitivity feedback signals, and the final controllérs éﬁployvﬁhe éystemi
outpuf signals as_the feedback. Both eigenvalue analysis of the linearized
full model and the computer simulated dynamicvperformance teét using non-
" linear full model indicate that the linear optimal excitation control thus
designed is effective in providing damping to all torsional moaes of the
system over a wide range of capacitor éompensation and‘Operating conditions,

The stabilization technique is further extended and appliéd to

a two-machine and a three-machine SSR systems in Chapter 5. It is found
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that the SSR stabilizers still can be designed for one machiné at a time
but coordination may be requi?ed after all controllers are implemented.
For the individual machine SSR controller design, however, it is neces-
sary to derive a one-machine equivalent for each iﬁdividual machine by
retaining the strongest tie of the machine,bwhich has the largest cur-
rent, to the remaining system, an equivalent reactance is adapted so
that the electrical resonance frequency Which affects the vulnerable
torsional mode of the machine is retained. For the coordination of the
damping providéd by all controllers for the entire system, an iterative
process is developed. Fxtensive eigenvalue analysis and nonlinear com-
puter simulation tests again indicate that linéar optimal excitation
controls.thus designed are very.effective for the SSR control.

The linear optimal excitétion developed in the thesis
probably provides the most effeétive»and least expensive means to

stabilize the SSR of one-machine as well as multi-machine systems,
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APPENDIX I
SYSTEM DATA FOR THE ONE MACHINE SYSTEM

All the data are in per unit based on 500KV and 900 MVA except the

time constant which is in second.

Synchronous Machine Parameters

X = 1,79 : X = 1.6999 R

1 . . . = 0.00105
de .=" 1.66 Xkd = 1,6657 de = 0.00371
X = 1,71 X = 1,6531 E = 0.00491
q kq Fiq
X = 1,58 : R = 0.0015
mq , a
Mass-spring System
Mep = 0.185794
K12 = 19,303
:MIP = 0.311178
K23 = 34,929
? = 1,717340
o2 K,, = 52.038 p,, = 0.1
_ 34 : ‘ ii
MLPB = 1.768430
‘ K45 = 70.858 : ' i=1,2,...,6
MGen = 1.736990
Kgg = 2.8220
ME = 0.068433
X
Turbine and Governing System
Kg = 25 T1 = 0.2 T2 = 0.0
‘ T3 = 0.3 TCH = 0.3 . TRH = 7.0
TCO =‘ 0.2 FHP = 0.3 . FIP .= 0.26
FLPA = 0.22 FLPB = 0.22 PGV = 10,1
Exciter and Voltage Regulator
- [ = o T = ' 2
KA 50 TA _ 0.01 _ Te 0.00
Exciter voltage ceiling limits = %7.0
Tiansmission line Parameters
Xt = 0.14 Rt = 0.01 : XL = 0,56

RL = 0.02 XC varied from .0.056 - 0.448(10% - 80%)
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APPENDIX II
SYSTEM DATA FOR THE TWO MACHINE SYSTEM

A2 .1 Machine 1

Synchronous Machine Parameters

Similiar to that of the machine in Appendix I

Mass-spring System

Similiar to that of the machine in Appendix I

Turbine Torque Distribution

' FHPl = 0.3 | FIPl = Q.26‘ - -FLPA1= 0.22
FLPBI% 0.22
Exciter and Voltage Regulator
KAll = 50 TA1 = 0.01 . TE1 = 0,002
Exciter voltage ceiling limits = +7.0 |
A2.2 Machine 2
Synchronous Machine Parameters
= = 2 = 0.00
Xd2 1.82 sz 1.92 sz 0.0067
dez = 1,65 Xde = 1,76 de2 = . 0.0043
= )\ = ! = . 8
qu 1.73 quz 2.05 qu2 0.0089
X = 1.59 R = 00,0015



A2.3

Mass-spring System

= 0.248 »
"he2 K, = 21.8
MIP° = 0.464 _
- ' K.23 = 484
> = 2.31
a2 Ky, = 74.6
Mpp2 = 2:38
S K45 = 62.3
MCenZ = 1,71
Turbine Torque Distribution
FHPZI = 0.3 | FIPZ = 0.26
Frppz = 0-22
Exciter and Voltage Regulator
KA2 = 50 _ TAZ = 0.01

Exciter voltage ceiling limits = +7.0

- Transmission System

Transformer
th = 0.14 A Rt1 = Ole
th = 0,1 th = Q.Ol'
Transmission Line
Line 1 XL1 = 0,42 R.L1 = 0,02
Xcl varied from 0.042 to 0.336 (10%Z - 80%)
Line 2 XL2 = 0.4 RL2 = 0.01.
XC2 varied from 0.04 to 0.32 (107 - 80%)
Line 3 X, 4 = 0.2 R, = 0.0
Liné 4 X, = 0.28 R, = 0.05
Load Rload= 0.9

ii

TPA2

F2
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0.1

. i=1:29.-':5

= 0.22

0.005
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SYSTEM DATA FOR THE THREE MACHINE SYSTEM -

All parameters are similiar to those given in A2.1 of Appendix II.

All parameters are similiar to those given in

A3.1 Machine 1
A3.2 Machine 2
A3.3 Machine 3

Synchronous Machine Parameters

Xd3 = 1,78
de3 = 1.6845
Xq3 = 1,7067
qu3 = 1.6063
Mass—spring System
MHPB = .0.262
MIP3 = Q.525
MGen3= 1.85
MEXB = 0.0595

Turbine Torque Distribution’

r
“HP3

0.4

Xf3

X1 d3

X3

Ra3

K
12 -

23

K4

IP3

Exciter and Voltage Regulator

50

Tas

1.7781
1.7368
1.6409

0.00357

47.48

61.85

4.51

0.6

0.02

Exciter voltage ceiling limits = +£7.0

of Appendix II

R, = 0.00109
Rq3 = 0.0117
"Lg3 =»_0.0151
D,, = 0.1

11

i=1,2...,4
T =

Tes 0.002



A3.4

Transmission System

Transformer

X
t3

X

Xeo

0.14
0.14

0.14

Transmission Line

Line

Line

Line

Line

Line

Line

Line

Line

1

XLl = . 0.47
Xcl‘ varied
XL2 = 0.4

Xéz varied
XL3 = 0.14
XC3 .variéd
XL4 = 0.39
XC4 varied
XL5 = 0.34
XC5 varied
XL6 = 0,51
-Xc6 varied
XL? = 0.11

from

from

from

from

from

from

tl

t2

t3

307

30%

307

307%

‘RL6'=.

30%

= 0,01

= 0,01

= 0.01

Rip =

to 707

Rip =

to 707

Rz =
to 70%
I%A =
to 70%

Ris =

to 707

to 70%

Ry =

No capacitor compensation

X = 0.3

L8

FLS =

X varied from 30% to 707

c8

X =

1.9 0.32

Rpg =

0.035

compensation

0.02

compensat ion
0.01
compensat ion
0.03
éompensation
0.025
compensation

0.04

compensation

0.01

0.02
compensat ion

0.024
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