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ABSTRACT

Ray-optical methods are used to calculate the coupling
between open-ended parallel-plate waveguides, as well as the
radiation patterns of finite arrays of coupled parallel-
plate waveguides with only the central guide driven. These
methods require extensive ray tracing, particularly for the
‘1arger arrays, to take into account the many possible ray
paths.

The coupling coefficients between both two and three
guides in isolation agreed remarkably well with those
previously derived in the presence of other guides,
groundplanes etc., indicating a general lack of sensitivity
of the coupling coefficients to the details of the
surrounding structure.

The calculated patterns were compared with e#perimental
patterns using an H-plane sectoral horn to simulate the
parallel-plate waveguide array. Radiation patterns of both
three and five element arrays with all waveguide édges in
the aperture plane, as well as that of a three element
staggered array with the outer edges not 1in the aperture
plane agreed well with the experimental patterns. A wide
variety of patterns could be obtained by varying the width,
depth, and number of the outer guides in the array. Ray-
optical methods may thus be useful in the development of

waveguide ‘antennas for a variety of applications.
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Chapter 1

INTRODUCTION AND MOTIVATION

1.1 INTRODUCTION

The calculation of the electromagnetic fields in
coupled open-ended parallel-plate waveguides 1is a basic
probiem whose solution may assist in the design of antenna
arrays with waveguide elements. Waveguide antenna arrays
have been used in a variety of applications, including
phased arrays whose pattern can be changed by altering the
amplitude and phase of the fields in each element, and
parasitic arrays whose pattern 1is fixed by the antenna
dimensions. In both phased and parasitic: arrays, the
coupling between elemerits will excite new fields which will
alter the radiation pattern from that if the coupling were
ignored. The radiation pattern of a parasitic array can be
modified by changing the number, width and depth' of the
parasitic guides surrounding a central driven guide. The
possible range of adjustment is somewhat 1less than for a
phased array , because the energy in the parasitic elements
relative to the driven element 1is fixed by the coupling
between them. For many purposes the range of adjustment
available with a parasitic array is adequate, and thus the
added complexity of feeding each element separately with the
assdciated power dividers and phase shifters is avoided.

One possible application of a coupled waveguide array

is as a feed antenna for a parabolic reflector. For this



case, a sector-shaped radiation pattern 1is usually
desirable, i.e. a pattern which provides a constant pover
level‘ over a given angular range and is‘zero elsewhere
(Fig.1.1). A sector-shaped pattern is nearly optimum (except
for space attenuation) because it illuminates the entire
reflector surface almost uniformly but does not spill over
the sides (Fig.1.2). This provides maximum directivity while
avoiding noise and interference pickup including the thermal
noise from the ground. Thus the gain/noise temperature
ratio, the figure of merit for a satellite earth station
antenna, is maximized.

A parallel-plate waveguide array with a small number of
elements (Fig.1.3) potentially satisfies these requirements
for two-dimensional fields. The aperture field at the open
end of the array may be made to approximate a truncated (sin
x)/x curve by adjusting the array parameters (width, depth
and number of parasitic guides surrounding the central
driven guide). The radiation pattern, which is the Fourier
transform of the aperture field, will then approximate the
required sector shape.

The parameters of this parallel-plate array may be
applied directly to the design of line feeds for parabolic
cylinder reflectors (Fig.l.4). These parameters may also be
used as a guide in achieving the same sector-shaped
radiation pattern with an array of concentric circular’
guides (Fig.1.5). Such an antenna has produced reasonably
good patterns by empirical adjustment of the parameters

[25].



3

Good patterns have also been obtained using an array
where the edges are not all in the same plane, but staggered
slightly [13]) (Fig.1.6). Measurements of various types of
feed antennas [15) has shown that there is little differeﬁce
in the .resulting pattern betweeﬁA an array of staggered
circular gquides (Fig.1.6) and a four-ring corrugated surface
[15] (Fig.l1.7) when both arrays are the same size. The
amount of stagger 1is an additionél parameter which can be
aajusted to optimize the pattern.

The design of waveguide feeds with parasitic elements
has been mainly empirical to date. Thus the analysis of an
array of parallel-plate waveguides may assist in the
development of optimum feeds for reflector antennas, at
least for two dimensional structures. The results of this
analysis could be applied not only to feed design, but to

any coupled waveguide antenna.

1.2 LITERATURE REVIEW

Many different types of open-ended parallel-plate
waveguide structures have been analyzed using a variety of
methods. The structures include infinite arrays of parallel-
plate waveguides, finite arrays in isolation or embedded in
a groundplane or other surface (Figs.1.8-1.17), and closed
region problems inclﬁding bi,tri and N-furcated waveguides
(Fig.1.18).

The fields in coupled open-ended waveguides cannot

always be found rigorously except for certain geometries,
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because the resulting boundary value problem does not have a

known closed form solution. Hence for many cases approximate

methods have been developed to obtain the fields.

When riébrous solutions can be found, the methods used
include both the Wiener-Hopf technigue and mode matching
techniques [37]. These methods can also be used to find
approximate solutions for those cases where the resulting
integral or infinite matrix equations cannot be solved
exactly. Approximate solutions are also obtained using ray-
optical technigues based on the geometrical theory of
diffraction [26], modified residue calculus and function
theoretic technigues [38), and numerical techniques based on
moment methods [21].

The choice of method to be applied to a given problem
depends on the particular geometry. Rigorous methods are
generally limited to very specific geometries, ray-optical
methods are most suitable for structures whose
characteristic dimensions are on the order of a wavelength
or greater, and numerical methods can be wused with any
geometry in principle, but are generally suitable only for
relatively small structures. The literature of parallel-
plate waveguide structures is reviewed below.

A single parallel plate waveguide 1in isolation
(Fig.1.8) has been used as a test geometry for exact,
numerical and ray-optical methods, particularly for several
refinements of ray-optical techniques. The exact solution
for the reflection coefficient was given by Weinstein [45]

and Heins [22) wusing the Wiener-Hopf technique. The
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reflection coefficient was found using moment methods by Wu
and Chow [48] and was improved by Gardiol and Haldemann
[20]. Montgomery and Chang [38] found it using modified
residue calculus. Rudduck and Tsai [40] calculated the
reflection coefficient wusing a ray-optical procedure but
depending also on a reciprocity argument. Yee, Felsen and
Keller [50] found the reflection coefficient by tracing rayé
directly and wusing a ray-to-mode conversion formula. They
improved their solution for 1low frequencies in [18] and
[(49])]. Bowman [8] [9] pointed out that the ray-optical
solution of [50] did not agree with the asymptotic form of
the exact solution. The ray-optical solution was improved by
Boersma '[3] [4] wusing the uniform asymptotic theory of
Ahluwalia et al.[1]. Boersma's results showed much
improvement in the mode transition regions and recovered the
asymptotic form of the exact solution. Lee [30] [31] derived
a modified diffraction coefficient which includes
interactions between the two half-plane edges automatically,
so that these interactions need not be explicitly
calculated. This method recovered the exact solution for the
reflection coefficient. The coupling between two separated
waveguides (Fig.l.9) was calculated using edge diffraction
theory by Dybdal,Rudduck and Tsai [17] and also using
residue calculus by Montgomery and Chang [38].

The exact radiation pattérn of a parallel plate
waveguide was given by Weinstein [45] and Heins [22] using
the Wiener-Hopf technique. Yee and Felsen [19] [49] wused

ray-optical methods to derive a radiation pattern which
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agreed well with the exact solutioh except in thé aperture
plane. Rudduck and Wu [41] improved the pattern in the
aperture plane by using a slope diffraction coefficient. Lee
[30) recovered the exact solution using his method of
modified diffraction coefficient. The aperture fields and
gain were calculated by Jull [24j.

The fields along the shadow boundary vof va parailel-
plate waveguide when a plane wave is normally incident on it
from outside the guide were calculated by Lee and Boersma
[32]) using both the wuniform asymptotic theory and the
modified diffraction coefficient. They also found the fields
for a line source incident on two staggered parallel plates
(Fig.1.10). Boersma [5] also considers a plane wave incident
on a staggered guide. Rahmat-Samii and Mittra [39] wuse a
spectral domain approach for this problem. The radiation
pattern of a staggered guide using wedge diffraction was
found by Ryan and Rudduck [a2].

Parallel plate waveguides embedded 1in a groundplane
and/or surrounded by other .waveguides have also been
analyzed wusing rigorous, numerical and ray-optical methods.
The reflection coefficient from a single waveguide embedded
in an infinite groundplane (Fig.l.1lla) and a flanged
waveguide with arbitrary angle of flange (Fig.l.11lb) was
calculated by Rudduck and Tsai [40) and Yee, Felsen and
Kelier [50] using ray-optical methods and by Lee [30] wusing
his modified diffraction coefficient. The radiation pattern
of the flanged waveguide was calculated by Mittra and Lee

[37] using Weiner-Hopf technigues, by Yee and Felsen [49]
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using ray-optical methods ,by Lee [30] wusing a modified
diffraction coefficient and by Wu and Chow [48] using moment
methods. The coupling between two and three such guides
embedded in a groundplane (Fig.1.12) was calculafed
numerically by Wu [47]. The coupling between adjacent and
separated guides in both a finite (Fig.1l.13) and an infinite
(Fig.1.14) array of parallel plate waveguides has been
calculated by Lee [29]) using the Weiner-Hopf technique and
by Montgomery and Chang [38] wusing mecdified residue
calculus. Radiation patterns were calculated by Mittra and
Lee [37] for an infinite array with all guides excited and
with only one guide excited using both the Weiner-Hopf and
mode-matching techniques. Radiation patterns were also
calculated by Lee [29] for a finite array embedded in a
simulated groundplane (Fig.1.15) with only one guide excited
, by Montgomefy and Chang [38) for a finite array in
isolation (Fig.1.17) and by Burnside et al. [10] for the
same array but with all guides excited. . Luzwick and
Harrington [35] [36] found the radiation pattern for a
finite array with thick walls embedded in a groundplane with
the central guide excited and the outer guides reactively
loaded (Fig.1.16).

The coupling between waveguides in a closed region
(bi,tri and N-furcated wavegquide) (Fig.1.18) has been
calculated by Mittra and Lee [37] using the Weiner-Hopf
technique and by Montgomery and Chang [38] wusing modified

residue calculus.



1.3 APPROACH TO THE PROBLEM

It appears that the small parallel plate waveguide
array in isolation (Fig.l1.3 and 1.6) to be considered here
may be effectively analyzed using ray-optical techniqgues.
Similar waveguide structures have been analyzed successfully
using these methods, and it may be expected that these
previous results will be wuseful for the problem at hand.
There is no exact solution for this geometry, and numerical
methods would reguire very large matrices because of the
relatively large size of the array in terms of wavelengths.

Ray-optical methods using the geometrical theory of
diffraction have as their canonical basis the exact solution
for plane wave diffraction by a perfectly conducting half-
plane. The parallel-plate waveguide arrays of Fig.1.3 and
1.6 consist of several half-plane edges and so ray-optical
methods appear to be a natural choice for their analysis.

Ray-optical methods can be used to solve for
electromagnetic fields in the presence of diffracting edges
provided the characteristic dimensions of the structure are
of the order of a wavelength or more. These methods assume
that the fields travel in straight lines called rays. The
geometrical theory of diffraction (GTD) is an extension of
geometrical optics which accounts for diffraction [26]). It
is postulated that diffracted rays are produced when
incident rays strike the edges of conductors (Fig.1.19). A
diffraction coefficient is introduced based on the

asymptotic form of the exact solution for diffraction of a
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plane wave by a perfectly conducting half-plane [7].
Diffraction is a local effect; the diffraction coefficient
is determined by the edge alone, and is not dependent on
other parts of the structure. The diffracted field appears
to emanate from the diffracting edge which for a straight
edge looks like a line source of rays.

One major flaw in GTD 1is that the diffraction
coefficient 1is not uniformly valid in the asymptotic limit,
and becomes infinite at the boundaries between 1light and
shadow. Various uniform theories have been advocated [1]
[28] to overcome this difficulty, but with some sacrifice in
simplicity of application. |

Ray-optical methods have been extended to allow fields
more general than plane waves to be incident on the half-
plane [50] [6]. These extensions are required 1in the
analysis when a diffracted field is in turn diffracted by
another half-plane edge.

A ray-optical analysis may begin by tracing ray paths
corresponding to the fields. 1Incident fields may be
reflected from a surface, or diffracted from an edge. The
resulting fields may be again reflected or diffracted. The
ray-optical analysis of the parallel-plate waveguide arrays
of Figs. 1.3 and 1.6 require that many ray paths be traced
to represent the fields. Fields excited by the source
transmitter travel down the central waveguide and are
diffracted at the open end. The diffracted fields will
excite fields in the outer parasitic guides surrounding the

central driven guide. The magnitude of these fields may be
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calculated. These fields will travel down the outer guides,
be reflected at the shorted end, and diffracted at the open
end. These diffracted fields will in turn excite more
diffracted fields and the process continues. The radiafion
pattern is the sum of all these diffracted fields.

The analysis thus divides naturally into several parts:
1- coupling between two adjacent parallel-plate waveguides
(Fig.1.20)

2- coupling between two separated guides (Fig.1.9)

3- reflection from the open end of a single guide (Fig.l1.8)
4- radiation pattern of single guide (Fig.l.8)

5- radiation pattern of multi-element waveguide array
(Fig.1.3)

'6- coupling between two adjacent staggered parallel-plate
waveguides (Fig.1.20)

7- reflection from open end of single staggered guide
(Fig.1.10)

8- radiation pattern of single staggered guide (Figzl.lo)

9- radiation pattern of multi-element staggered waveguide
array (Fig.l.6).

Parts 1,2,3 and 4 are needed to solve 5 and similarly parts
6,7, and 8 are needed to solve 9. Parts 2,3,4,7 and 8 have
been considered in the 1literature, howevef, some of the
solutions presented here = (parts 2, 8) constitute

improvements to these earlier results.
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1.4 EXPERIMENTAL ARRANGEMENT

It would be very desirable to confirm the analysis by
comparing the numerical results to those obtained- by
experimental measurement. Measurement of coupling and
reflection coefficients of two dimensional structures is
very difficult to perform accurately, but is possible [17].
However, approximate radiation patterns of a two-dimensional
array of parallel-plate waveguides may be measured if the
third dimension (perpendicular to the page in Figs.l.3 and
1.6) of the guides 1is large enough. 1f a rectangular
waveguide is flared in one dimension to form an H-plane
sectoral  horn (Fig.1.22), a TE,p mode in the guide
approximates a two-dimensional TEM mode in the center of the
antenna aperture. Thus the E-plane radiation pattern of an
H-plane sectoral horn approximétes that of a parallel-plate
waveguide of the same width. Appendages to the horn simulate
the outer parallel-plate guides.

The horn used for the measurements had a total flare
angle of 30° with an aperture of 1.016 x 50 cm, and was fed
with WR-90 waveguide. The outer guides were 1.016 cm wide
and of various depths. Radiation pattern measurements were
performed at X-band on the outdoor antenna range described

in Appendix D.
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1.5 SUMMARY

The calculation of radiation patterns of small arrays
of parallel plate waveguides 1is potentially useful in
designing antennas with waveguide elements. Exact, numerical
and ray-optical methods have been used to analyze various
parallel plate waveguide structures, however the ray-optical
method appears to be well suited to the three and five
element arrays to be considered here. The analysis divides
naturally into several parts which are considered in turn in
the following chapters. The theoretical patterns will be
compared to experimental measurements made with a wide angle
H-plane sectoral horn.

When the analysis is complete and the results verified
by experiment the width, depth, number and amount of stagger
of the elements of the parallel plate waveguide array may be.
adjusted = to optimize the pattern for particular
applications. A wide variety of patterns may be obtained
because of the many parameters available. The results are
expected to be useful for the design of several types of

waveguide antennas.
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Fig. 1.6
staggered array of parallel
plate waveguides
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Fig. 1.7
cross—-section of
concentric circular
waveguide feed



Fig. 1.8
parallel plate waveguide

Fig. 1.10
staggered parallel plate
waveguide
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Fig. 1.9
two separated parallel
plate waveguides

Fig. 1.11

flanged parallel plate waveguides
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Fig. 1.12
two separated flanged
parallel plate waveguides

Fieg. 1.13
finite array of parallel
plate waveguides embedded
in a groundplane

Fig. 1.15 Fig. 1.14
finite array of parallel infinite array of
plate waveguides embedded parallel plate waveguides

in a simulated groundplane
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Fig, 1.18
£ N-furcated waveguide
Fig. 1.16
finite array of parallel
plate waveguides with thick
walls embedded in a groundplane
Fig. 1.20

two adjacent parallel
plate waveguides

Fig. 1.17 Fig. 1.21
finite array of parallel two adjacent staggered
plate waveguides in isolation parallel plate waveguides
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Chapter 2

METHOD OF ANALYSIS

2.1 GENERAL DESCRIPTION

In this chapter the ray-optical analysis procedure used
to calculate coupling coefficients or radiation patterns of
waveguide antennas will be described in general, and some
canonical problems upon which ray-optical methods are based
will be discussed. In later chapters each of the parts of
the analysis mentioned in Chapter 1 will be considered in
turn. The numerical results will be compared with those
obtained by others for similar or related geometries, and in
the case of radiation patterns will be compared to the
experimental results.

The ray-optical analysis of any part of the analysis
begins by following essentially the procedure in [50] for
analysis of the reflection for a single guide. First the
mode in the 1incident driven guide is decomposed into two
plane waves which diffract from the edges of the open end of
the waveguide. At distances kr>>1 from an edge the
diffracted fields appear to emanate from a line source
centred at the edge. These line source fields are in turn
diffracted from other edges, thus exciting additional line
source fields at the edgés. These additional fields are
again diffracted, and in principle the process continues
indefinitely. In practice only a few diffractions are

usually adequate. These same line source fields also excite
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modes in the outer parasitic guides and also radiate into
space. The complex amplitudes of these waveguide modes
relative to the incident mode corresponds to the coupling
coefficient between guides. The sum of ail.the line soﬁrce
fields at the edges as observed at a distant point produces
the radiation pattern of the waveguide array.

The totality of rays associated with all these fields
can be divided into groups, each group corresponding to a
particular seguence of rays, or ray path. To find the
coupling between guides the ray path would start in one
guide and end in another. To find the radiation pattern, the
ray path would start in a guide and end up radiating into
space. The alternate paths possible when a ray strikes an
edge are traced individually. The number of possible ray
paths is infinite, but only .the first few contribute
' significantly to the coupling coefficients or radiation
patterns.

All ray paths to be considered for each of the problems
mentioned above will be traced explicitly and their
contribution to coupling or radiation will be calculated
(Figs. 3.2, 4.2, 5.1, 6.3-6.6, 7.3-7.7, 8.3, 9.2, 10.3-10.5,
and 10.7). To facilitate these computations, the fields
represented by the various combinations of two successive
rays which occur in these ray paths will be calculated
first. The field represented by any ray in a particular
sequence or ray path can thén be found from the field of the
ray preceding it. In this way the field represented by all

rays can be found. From this the total field solution, the
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coupling coefficients and radiation patterns can be derived.
This approach gives rise to a series of diffraction problems
of two succes§ive rays in a sequence, which are solved in
the following sections as they are requifed. The canonical
solutions will then be used to assemble the solutions to
each of the coupled waveguide problems listed at the end of

Chapter 1.

2.2 CANONICAL PROBLEMS

Ray-optical methods have as their canonical basis the
éxact solution for plane wave diffraction by a perfectly
conducting half-plane. This problem was originally solved by
Sommerfeld [43] and was solved more simply by Clemmow [14]
and others. |

Consider the half-plane y=0, 2z>0 and a %% field

oy = e—ikr cos (6-8p) (2.1)
i i

incident on it at an arbitrary angle s, (Fig.2.1), where

0
k = 2n/%» is the free space wavenumber. In this and all

subsequent equations a time factor e Ut g implied and

suppressed, where w = 2nf 1is the angular frequency of the
wave. The total field at all points (x,y,z) in space in the
presence of the half-plane is given by

Ht

X

H
X

= = 3 2 M
e T Y G(r,eo,e), (2.2)
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where c(r,eo,e) - e_i;/A {e-ikr cos(e—ao)F[_/fi; cos(e_io)]
so7ikr cos(8-60) c‘os(e+2o)]}, (2.3)
F(a) = f eixzdx, (2.4)
o1
F(-a) = /&34 peay, (2.5)

and the top(bottom) signs refer to TM(TE) fields. This
result can be evaluated for kr>>1 using the asymptotic form
of the Fresnel integral

.2
, da
ie

o , a >> 1, (2.6)

F(a) ~

to obtain

u, = ug + D(GO,G)E(r) y (2.7)

where u_is the geometrical optics field given by
e-ikr cos (6-8q) R e—ikr cos(6+60)

for 056<n-eo

e—lkr cos(e—eo)

ug = for ﬂ-60<6<n+60
0 for n+60<652n (2.8)
and D(qye)E(r) is the diffracted field given by
e+in/4 8—60 6+9
D(eo’e) = - = {sec( 5 ) * sec(-—i—)} (2.9)
and E(r) = eikr//E;, (2.10)

This asymptotic result shows that the total field is made up
of the incident field and a reflected field which are both

plane waves, and a diffracted field which is a cylindrical
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wave (Fig.2.2). D(84,8) can be interpreted as a diffraction
coefficient giving the magnitude of the cylindrical wave
E(T) emanating from the half-plane edge. The diffracting
edge thus appears like a line source of the diffracted
field.

Unfortunately the asymptotic expression (2.7) 1is not
uniformly wvalid, and becomes infinite along the shadow
boundaries between the 1lit and shadowéd regions at
6 =mz 8, (Fig.2.1). However, (2.7) does characterize the
diffracted field as a line source at the edge and can be
used to predict the diffracted field away from the shadow
boundary.

The expression (2.7) can be made uniformly valid by
introducing a transition function that precisely cancels the
infinity at & =71 * 6§, [49]). This is in fact equivalent
to rewriting (2.2) for an observation point at r=a from the

edge. Then the total field at r=a is

- E(r)
u, = b(a’GO’e)E(a) (2.11)

which looks like a line source field and is uniformly valid
for all o
To predict the fields when a diffracted field is
diffracted again a second time requires an expression for
the fields when a line source is diffracted by a half-plane.
1t has been shown [7] that for an isotropic line source
Uy = E(r) in the presence of a half-plane (Fig.2.3) the

total field for k(r,+r)>>1 is given by

7 ikR 6-6
u, ’b/;- e in/4 { —=——— F[-2 —-——k_f_"_f_ cos( O)]
/fé(ro+r+R) J TotriR 2
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eikS KrnT 9+60 .
———— - ol 23
: Vk(r 4148) Fl 2,/1;:;:;_°°S( 7)1} (2.12)
0
046
If >y and cos(—; )70  (2.12) becomes
Ut v G(ro,eo,e)E(r) (2.13)

Note that (2.13) is simply the plane wave solution (2.2)
multiplied by E(r) .

(2.12) and (2.13) can be wused to predict multiply
diffracted fields. A field which has already been diffracted
at least once before looks like a 1line source £(8)E(r)
incident on another diffracting edge (if that edge is not on
the shadow boundary of the first edge). If this field is
approximated by an isotropic line source f(¢)E(r) , where

¢ is the direction from the 1line source to the other
diffracting edge, then the doﬁbly diffracted field can be
predicted wusing (2.12). This approximation has been used
successfully by others [24) [50) and gives acceptable
results, except where the second edge lies on the shadow

boundary of the first.

2.3 LIMITATIONS OF THE METHOD

When a diffracted field from an edge is again
diffracted by another edge near the shadow boundary of the
first edge, the resultant field cannot be accurately
calculated using this isotropic line source approximation.
Consider a line séurce field incident on two parallel half-

planes in Fig.2.4, where the observation point and half-
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plane edges are all collinear. The essence of the difficulty
is that the field which is diffracted from the first edge
and incident on the second edge is not a "ray field" [33],

i.e. is not of the form

w ikf (r)
e

A - (2.14)
m=0 (ik)

near the shadow boundary (i.e. within a parabola with focus
at the first edge and axis along the shadow boundary [39]).
The ray methods used here and their uniform extensions are
only valid when the incident field is a ray field. Thus
using the solution for diffraction of an anisotropic line
source by a half-plane [6] 1is not accurate either. This
difficulty along the shadow boundary may be expected to
compromise the accuracy of some of the parts of the analysis
mentioned on page 10.

1f both a singly and doubly diffracted field in any ray
path lie on the shadow boundary, then the doubly d;ffracted
field is not a ray field, and the triply diffracted field
cannot be calculated accurately using the line source
approximation, S0 that all triply and higher order
diffracted fields are potentially inaccurate. However, this
does not appear to be serious because, unless the triply
diffracted field is itself along the shadow boundary, it
contributes very little numerically to the final result.
Thus for the coupling between adjacent guides (parts 1 and
6) and the reflection and radiation from a single guide

(parts 3,4,7,8) this method should yield acceptable results.
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However, for the coupling between two separated guides (part
2) the triply and higher order diffracted fields affect the
shape of the coupling versus guide width curve and make a
- significant contribution to the result; The radiafion
patterns of the multi-element non-staggered arrays (part 5)
is expected to be inaccurate near the aperture plane because
of the many interactions along the shadow boundary. The
errors are cumulative because the diffracted fields are
repeatedly calculated as if the incident fields are ray
fields.

In certain cases this difficulty may be overcome by
expanding the (non-ray) field in a Taylor series with each
term representing a cylindrical wave of the form (2.14), and
then applying the method of [50) on 2 term-by-term basis.
However, when there are three or more half-planes, the
fields in the aperture plane can no longer be neatly
representéd by an infinite sum of n times diffracted fields.
In the two half-plane case, each n times diffracted field
when in turn diffracted produces only one (n+l) times
diffracted field. By contrast, in the three half-plane case,
an n times diffracted field which 1is diffracted from the
central half-plane edge produces two (n+l) times diffracted
fields. To represent all diffracted fields of all orders
incident on a given edge requires a much more complex
summation of the type derived in Appendix B. When there are
only two half-planes, the field u,,, is determined by
applying UAT to W, on a term-by-term basis. The expression

for the field is then compared with an Ansatz and leads to a
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set of recurrence relations which must be solved. This
process may be greatly complicated in the three half-plane
case because there are many fields w, to be considered.
Ignoring the fact that the fields are not ray fields ‘and
mechanically applying the theory to very high orders of
diffraction as was done by Ciarkowski [12] and also in
Appendix B leads in both cases to reflection gnd coupling
versus guide width curves with an apparently random fine
structure which never approaches the known shape of the
exact solution, regardless of the number of terms
considered.

A siﬁilar difficulty occurs if the plates are
staggered. Consider a line source field incideﬁt on two
staggered parallel plates (Fig.2.5). The diffracted field
W, in these figures is not a ray field in the neighborhood
of the second edge, because the edge is on the incident or
reflected shadow boundary. Hence (8.1) is not valid and the
term-by-term approach may be used.

The approximation of [24) [50] is thus not expected to
yield accurate results near a shadow boundary along which
there are three or more half-plane edges, and triple or
higher order diffraction terms contribute significantly to
the numerical result. The accuracy of this approximation is
expected to be acceptable away from the shadow boundaries
and near the shadow boundary if there are only two half-

plane edges on it.



28

2.4 SUMMARY

The ray-optical analysis of any parallel plate
waveguide structure reqguires that many ray paths be traced.
The fields represented by these rays are calculated from the
canonical problems of a plane wave or a line soﬂrce incident
on a half-plane. This method is inaccurate for field
calculations on or near shadow boundaries, which limits its
application to situations where accuracy is not required
along shadow boundaries. The solutions for plane wave and
line source diffraction by a half-plane will be wused in
succeeding chapters to find the fields represented by the
various combinations of two successive rays in a ray path,

and thus the coupling coefficients and radiation patterns.



Fig., 2.1
incident and reflected shadow boundaries

Fig. 2.2
incident, reflected and diffracted fields
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Fig. 2.3

line source incident on a

half-plane
S
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Fig, 2.5
line source incident on
two staggered half-planes

Fig., 2.4
line source incident on
two parallel half-planes
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Chapter 3

COUPLING BETWEEN TWO ADJACENT WAVEGUIDES

3.1 FORMULATION

The first problem to be solved is that of the coupling
between two adjacent parallel plate waveguides (Fig.3.1).
The ray paths from the lower driven guide to the uppef
parasitic guide are determined by inspection and shown in
Fig.3.2 .

Consider two adjacent semi-infinite parallel pléte
waveguides consisting of the three perfectly conducting
parallel half planes in 2z>0 at y=-d, y=0, y=a (Fig.3.1). We
wish to determine the field coupled from the driven guide (-
d<y<0; 2>0) 1into the parasitic guide (0O<y<a; z>0) . An
incident field

g i
X o e-isz cos(E%X) (3.1)

i sin
E
X

in the driven guide will excite fields of the form

X _ > +iknz cos nmy
¢ = nfo 4wn® sinCa ) (3.2)
E 1
X
in the parasitic guide. The coupling coefficient A is

the relative amplitude and phase of the nth mode in the

parasitic guide to the Nth mode in the incident guide at
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z=0. The propagation constants kg.k, are given by

ky = Az (nn/d)? (3.3)
»’kz—(ﬂn/a)2 (3.4)

Here we use the ray-optical method of Yee, Felsen and Keller

k

n

[50] to find Ay

|
Following [50) the incident field (3.1) is decomposed

into two plane waves

H
X _ _ 1 —i(sz-Nﬂy/d) -1(kyztNmy/d)
- i =Y =79 {e + Te } (3.5)
X
traveling in the directions LIER relative to the

half plane guide boundaries, where

sin 8N = Nn/kd , (3.6)
1 TM fields

- .7

q=1{] T fields ° (3.7)

t= g% (3.8)

The first term in (3.5) is a plane wave traveling in the

direction ﬂ-eN which has the value
u =

1 .
i 2q (3.9)

at the edge y=0, z=0 The other term, a plane wave in the

direction n-+6N has the value
N
_(D T (3.10)
Ui 29

at the edge y=-d, 2z=0. These two plane waves are represented
by the incident rays in the lower guide of Fig. 3.1.

The fields excited by diffraction into the parasitic
guide appear to originate from line sources of the form

Uy ~ f(B)E(r) (3.11)
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located at the edges z=0; y=0 or a. In (3.11) r 1is the
distance from the edge and f(8) is the radiation pattern of
the diffracted field. Radiation in the direction 9;=@A
excites the nth waveguide mode in 2z>0; O0O<y<a. The fields
excited in the parasitic guide due to a line source (3.11)

at one of its edges are [50]

C /'" iTT/4 '
HX © qEn me ._in-nyO/a ik_nz cos nTmy. (3 12)
Cu = 1 B £(0)e eHn? 5@ :
E © d n=0 2k a
< 1 n
¢ = {l ifn=20 , (3.13)
n 2 ifn#0

}rO=Qora,
Comparison of (3.12) with (3.2) immediately yields the
coupling cqefficient Ay, e

Throughout this chapter, the following notations are
employed to represent the fields, where the superscript x
refers to the letter of the figure showing the particular
ray path under consideration. '
u. is a plane wave in the driven guide.

u; is a line source field arising from diffraction of the

incident field u, (ie UT is a singly diffracted field).

o is a line source field arising from diffraction of a
m

linesource u;_l (ie u; is anm times multiply diffracted

field).

ANnQﬂis the contribution to A, of (3.2) arising from fields

diffracted j times,
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3.2 SINGLE DIFFRACTION

The coupling contribution due to single diffraction is
calculated from the solution for diffraction of a plane wave
by a half plane. One of the two plane waves comprising the
field in the driven guide is incident on the edge y=0,z=0 at
an angle 8 = 2m - 8 (see Fig.3.2a). At distances kr>>1

from this edge, the diffracted field is given by

1
= =— - .14
u 24 D(2m GN,GD)E(T), (3.14)

where D(g,,6) is given by (2.9). Substituting

sin en = nn/ka (3.15)
we find
. T TaTe
a_ 1 JHin/4 [/ k+iky /k+kkn co) 1
1" 29 5o (e E) -16)

The radiation pattern £(¢) of (3.16) 1is obtained by
comparison with (3.11). Putting this into (3.12), the
contribution to the coupling coefficient of (3.2) for single

diffraction only is

@ _ ien /k+IkN /k+rkn 317)
ANn 4k a k. +k ’ ‘
n N n

3.3 MULTIPLE DIFFRACTION

The contributions to the coupling coefficient for

multiple diffraction are obtained separately for each ray
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path in Fig.3.2. First the individual diffraction problems
of two successive rays in a sequence will be solved, and
then pieced together to find the coupling contributed by the
fields in each ray path and the total coupling. The pairs of
successive rays which will be considered are shown in
Figs.3.3, 3.4 and 3.5.

In Fig.3.3 a plane wave u, is incident on a

1

eN oreO = 2n-eN . The diffracted field

half-plane edge at 6,

TT

2
the edge is, from (2.11)

in the direction €= or 6 = 3% at a point r=a away from

up = ou Tl CI:](a), (3.18)
where
CN(a) = CN(a)/E(a) , ' ' (3.19)
-in/4 /22 —
_ € +iv kT =k
Cyla) = S—— (e NR /2 (kg - VRy]
—1/ k2—k, a Z
+ 1 N ° F[ 5 (/K+kN + vk+k, )]} (3.20)
- N
and

-1 if |6-6q|<n/2

17T { 1 otherwise (3.21)
For ka>>1 (3.18) simplifies to
Lll = Ui Tl CN E(I‘) N A (3‘22)
where
e+i77/4 J/ k v’/ k- TkN
CN = . (3.23)
V27 ky

In Fig.3.4 an isotropic 1line source w,_, =¢£(r)
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located at S, a distance r, from a guide wall is incident on
that edge at 6,~ T/» or 37/2 . The total field in the
directions o =72 or 3r/) is found from (2.12). '

The results for Figs.3.4a and 3.4c are found to be the

same. Consider the two <cases r>r, and r<r,. If r>r,

substitute in (2.12): '~ R=r-d, S=r+d,
6-6 6+80 .
cos ( 20) -1 cos(—5) = 0 to find
ik(r-r.) -irn/4 dik(r-r.)
_e 0 e e 0 T
U < - F[v2kr ] + - E(r+r,.) . 3.24
= = o) 7 BT G20

If r<rgy, R=d-r, S=r+d, and

ik(rg-r) -in/4 ik (rg-r)
u == - £ = F[/2kr] + %-E(r+ro) , (3.25)

m v/IG . /; Vkro

If kry>>1 and kr>>1, and the field from the 1incident 1line

source is subtracted out, both (3.24) and (3.25) become

+in/4

u o=+ 3 E(r+ry) - = E(r,) E(1). (3.26)

227

This field has two components: the field of the image of the
original 1line source reduced in amplitude by half, plus a
field diffracted by the edge. These two 1line sources
originate at different points in space, one at the location
of image of the original line source at distance r, from the
edge, and the other at the edge.

The results for Figs.3.4b and 3.44 also are found to be
the same. Consider the two cases r>r, and r<r,. If r>r,
substitute in (2.12): R=r+d, 'S=r-d,

6-6 8+6 .
cos ( 20) =0, cos(< 20) = =1 to find
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e-iﬂ/4 eik(r—ro)

1
u =2 E(r+r.) + 1 F[vV2kr,.] . (3.27)
m 2 0 . Jor 0
If T<rg R=r+d, S=d-r, and
-in/4 ik(rg-r)
W =3 E(rtrg + 15 g F[/2kr] | (3.28)
m ves Vkro

if kr>>1 and kr>>1 both (3.27) and (3.28) become

1 +in/4
u_ =35 E(r+r0) + 1 8 E(rO)E(r) . (3.29)
m 2v27

This field has two components: the original 1line source
field reduced in amplitude by half, plus a field diffracted
by the edge. These two line sources originate at different
points in space, one at the location of the original line

source at distance r_, from the edge, and the other at the

edge.

In -Fig.3.5a and 3.5b an isotropic 1line source
u 1 = E( located at S, at a distance r, from the edge
is 1incident on that edge at an angle 6, = n/2 or 3n/2

0
This field is diffracted into a waveguide of width a at an

angle ©=6, or2s -8 . From (3.18), the diffracted field

v is, for kr>>1
wsT Cn(rO)E(r), (3.30)
vhere ¢ (ry) is given by (3.20). For kr,>>1 (3.30)

simplifies to

u =71, C E(rO)E(r)_ (3.31)
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3.4 CALCULATION OF THE COUPLING COEFFICIENT

The fields represented by various combinations of two
successive rays ‘as presented above will now be used to
calculate the coupling between two adjacent parallel-plate
waveguides. The ray paths for these calculations, shown in
Fig.3.2, represent all possible combinations of rays up to
and including triple diffraction, and one combination with
quadruple diffraction.

For each sequence of rays in Fig.3.2, the fields u,
associated with the mth ray can be calculated from the
fields w,_,of the (m-1) ray. The amplitude of the modes in
the wupper parasitic guide excited by last ray is calculated
by comparison of (3.11), (3.12) and (3.2).

The doubly diffracted fields are represented by Figures
3.2b and c. In Fig. 3.2b the incident field , given by
(3.9), 1is diffracted at the edge y=z=0. From (3.18), as
observed at y=a,z=0, the diffracted field is a line source

u? - %5 C (&) E(T) (3.32)

located at the diffracting edge. This field 1is again
diffracted at the edge y=a, z=0, and from (3.30) gives a
line source

w = o Ch@)C (DE(r) (3.33)
located at the diffracting edge. In Fig. 3.2c the incident
field , given by (3.10), is diffracted at the edge y=-d,

z=0. From (3.18), as observed at y=2z=0, the diffracted field
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is a line source
N
C 1)
q

o = '—(—;——— CLDE) (3.34)

located at the diffracting edge. This field is again
diffracted at the edge y=2z=0, and from (3.30) gives a line

source

N
o = 2D

= T C&(d)cn(d)n(r) (3.35)

located at the diffracting edge. The total «contribution to
the coupling coefficient Ao from double diffraction is
found by treating (3.33) and (3.35) as line sources and

using (3.11), (3.12) and (3.2). Thus

in/4

(2) _ =Vme'" n., N

. = ———— [(-1) Cl(a)C_(a) + (-1) Cr(d)C _(d)] . (3.36)
AIVn 2/5kna N n N n
The triply diffracted fields are reﬁresented by Figures
3.2d, e and f. In Fig. 3.2d the incident field , given by
(3.10), is diffracted at the edge y=z=0. From (3.18), as
observed at y=-d,z=0, the diffracted field is a line source
J

uS = 5—3 Cy(DE(T) (3.37)

located at the diffracting edge. This field is again
diffracted at the edge y=-d, 2z=0, and from (3.26) the

resultant field is

g " c e+in/4 (3.38)
Uy = g Cr'q(d)E(cHr) + 7q —E- CN(d)E(d)E(r) . :

d . .
u, is made up of two line source fields, one centered at y=-
2d, z=0, the other at y=-d4, 2z=0. This field is again

diffracted at the edge y=z=0, and from (3.30) gives two line
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sources
d 1 _ e+iﬂ/4
=== ¢! , _— \ 3.39
U3 = 7 CN(d)Cn\ZG)E(r) + i CN(d)Cn(d)E(d)E(r) ( )
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located at the diffracting edge. In Fig.3.2e the incident

field is given by (3.9) and the field ul

; is given by

(3.32). This field is again diffracted at y=a, z=0 and from

(3.26) the resultant field is

e T e+iﬂ/4
u, = i C&(a)E(a+r) " iq == C&(a)E(a)E(r), (3.40)

ug is made up of two line source fields, one centered at

y=2a, 2=0, the other at y=a, 2=0. This field is again
diffracted at y=z=0 and from (3.30) the resultant field is
e -1, . e+i'n/4
uy = 4_q CN(a)Cn(Za)E(I‘) + %9 7__-— CI:J(a)Cn(a)E(a)E(r) , (3.41)
2%
In Fig.3.2f the incident field is given by (3.10) and the
£

field v; is given by (3.34). This field is again diffracted
at y=z=0'and from (3.29) the resultant field is

£ _ ‘(—l)N N e+iTT/4
2 4q

T(-1)
4q

u

C&(d)E(d+r) - C&(d)E(d)E(r) . (3.42)

2
u§ is made up of two line source fields, one centered at y=-
d, 2z=0, the other at y=z=0. This field is again diffracted
at y=a, z=0 and from (3.30) the resultant field is

£ lﬁ:llﬁ N +in/4

= 1 ('l) e 1
uy hq  On(DC (dH)E(r) + ~72 = Cy(d)C_(a)E(dIE(r), (3.43)

The total contribution to the coupling coefficient Ay from
triple diffraction is found by treating (3.38), (3.41) and
(3.43) as 1line sources and using (3.11), (3.12) and (3.2).

Thus
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/— +in/4
(3 = L [-C'(d)C (2d) - C'(a)C (2a) + (—l)N+nC'(d)C (d+a) ]
ANn 4/2_k a N n N n N n a
n
.o 1t N+n

ana [CL(DC_(DE) + CL(a)C_(a)E(a) + (-1)7 "Ch(d)C_(a)E(d)]

(3.44)

A quadruply diffracted field is represented in
Fig.3.2g. Here U§ is given by (3.38). Both line source
fields in (3.38).are diffracted independently by the edge
y=0, =2z=0, so that from (3.29), u§ consists of four line
source fields centered at (-24,0),(0,0),(-d4,0) and (0,0)
respectively. Note that one of these fields in U% is

O(k=3*)  which is of the same order as the second term in
the asymptotic expansion of the half plane diffraction
solution. If terms of O(&f”ﬁare to be included in A  ~ then
consistency requires that higher order terms be added to the
Keller diffraction <coefficient (2.9) and also in
(3.23),(3.26),(3.29) and  (3.31). Thus the O(k*?)
contributions due to quadruple and higher order diffraction
are not expected to be meaningful within the ray-optical
theory used here. It turns out that these O(k™*?) terms
contribute very little numerically.

From (3.26) and (3.29) the field amplitudes are reduced
by only half when diffracted along the shadow boundary. The
number of terms arising from quadruple and higher order
diffraction grows rapidly for each successively higher
order, but only the O(«'/*) and 0(k™') terms from higher

order diffraction may be expected to contribute

significantly to the value of the coupling coefficient.
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Contributions to A from higher order diffraction of
O(k"2)  calculated for the special case of TEM-TEM coupling

(t=1, N=0, n=0), are given in Appendix B.

3.5 NUMERICAL RESULTS

Numerical values for the coupling coefficient Ay,
were calculated for various guide widths a and d for both T™™
and TE polarizations. Contributions to A,,. due to single,
double, and tripleldiffraction were included.

The amplitude and phase of A,, ,the coupling from a TEM
mode in the driven guide to a TEM ﬁode in the parasitic
guide, 1is shown in Fig.3.6, 3.7 and 3.8 for guide widths
a=d, a=d/2 and a=2d respectively. Values of Ay (TE,-TE,
coupling) are plotted 1in Fig.3.9. Figs.3.10 and 3.11 show
coupling from the T™ and TE fundamental modes into higher
order modes.

When both driven and parasitic guides are the same
width the single diffraction term provides the average
behaviour of the coupling coefficient. Adding the double
diffraction terms reveals a fine structure with minima near
the cutoff widths of the various modes. The triple
diffraction terms provide some correction to this fine
structure ,especially near the cutoff widths, but do not
alter the basic shape of the curve. 4

When in the TEM case the parasitic guide 1is half the

width of the driven guide (a=d/2) (Fig.3.7) the minima near
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the mode transition widths are reduced in depth. When the
parasitic gquide 1is double the width of the driven guide
(a=2d) (Fig.3.8) minima appear at the mode transition widths
for the parasitic guide at a=n or d=n/2 .(n=1,2,3...). In
both cases adding triple diffraction terms provides a more
substantial correction to the double diffraction result as
compared to the case where a=d.

Exact results for the coupling coefficient Ay, are
not available for comparison, However, ray-optical
expressions for the reflection coefficient Ry,  for a
single guide [50] with the 1low frequency correction [18]
show good agreement with the exact result for guide widths
as small as 0.1 wavelengths for TEM-TEM coupling and 0.6
wavglengths for TE,-TE, coupling. The values of Ay,
presented here may be expected to have accuracy comparable
to [50) and [18] because the same method of calculation has
been used;

The TEM and TE, coupling coefficients for low
frequencies near mode cutoff calculated using the asymptotic
approximation (3.22) are compared with the non-asymptotic
results obtained using (3.18) in Figs.3.12 and 3.13. The
asymptotic results begin to deviate significantly at guide
widths less than 0.3X in the TEM case and 0.7X in the TE;
case. This appears to be consistent with the results of [18)
where a similar comparison was made for the reflection
coefficients. When the asymptotic approximation (3.31) is
used also, the results deviate even more.

Higher order terms of O(k’/!) and O(k™) were calculated
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but they were found to give only small contributions. It has
also been noted that in the calculation of scattering by a
single open-ended parallel plate waveguide the gquadruple and
higher order diffracted fields are likely tb be in errgr,
since they do not agree with the asymptotic expansion of the
exact solution [9].

Note that all the curves of coupling versus guide width
have minima at widths slightly below the mode transition
widths ( nX for T modes and (2n-1)X /2 for TE modes). The
depth of these minima (nulls) iﬁcreases and the null moves
closer to the mode transition width as higher orders of
diffraction are taken into account (Figs.3.6 and 3.9). This
behaviour is similar to that found by Yee et al. [50) for
thg reflection coefficient of a single waveguide. It might
be surmised that taking still more terms would eventually
give a sharp null exactly at the mode transition width.

It turns out that the known exact solution for the
reflection coefficient of a single waveguide [45] has sharp
cusps with discontinuous first derivative at the mode
transition widths. The ray-optical solution [50] however
does not have any cusps, even when very large numbers of
diffraction terms are taken into account. Similarly in the
coupling case, no cusps are found in the ray-optical
solution, even with many terms (see Appendix B). An exact
solution for the coupling case 1is not available for
comparison, however it is reasonable to assume that it also
will contain cusps. It appears that the ray-optical method

used here is unable to provide an accurate solution near the
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mode transition widths where cusps are expected, but is
acceptable elsewhere.

Some consideration has been given to applying the
uniform asymptotic theory (UAT) [1] to this-problem. In the
case of reflection from a single open-ended parallel-plate
waveguide the final expression for the reflection
coefficient 1is similar to that obtained by this ray-optical
method [3, egns.(35),(36)) [4, egns.(8.7),(8.8)] for terms
of O(k™)an@ O(k™'). However this series solution is slowly
convergent; up to 50 terms are reguired to provide
essentially full agreement with the exact values near the
mode transition widths for the guides (though  this
convergence may be accelerated). Each term in the series
represents interaction between edges of the guide and with
two adjacent guides there is a rapid growth in the number of
interactions that have to be included. Since a general
expressioﬁ for all terms of O(k™') was not found even with
the simpler ray-optical method (see Appendix B), a UAT
solution for AwNn providing better numerical accuracy would
appear to be very difficult to find. It is, however, only at
the mode transition widths that the UAT may be expected to
‘provide substantial improvement. Only marginal, if any,
improvement occurs near cutoff of the fundamental mode [3,
Fig. 2] [4, Fig.2]

No other calculations of the coupling between adjacent
guides in 1isolation has been found; however it is
interesting to compare the coupling coefficients obtained

here with those for adjacent guides in the presence of other
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guides. Montgomery and Chang [38] calculated the coupling
between adjacent guides for the closed region geometry in
Fig.1.18 using function theoretic techniques. Lee [29] found
the coupling coefficients for the structure of Fig. 1.15
using Weiner-Hopf techniques. The st}uctures are
sufficiently similar to that wunder consideration that a
reasonable comparison might be expected.

The results for each case, listed in Table I , are
very similar. The coupling coefficient in the presence of
other guides is quite insensitive to which pair of adjacent
guides in the array is considered. it is thus not unexpected
that the coupling coefficient derived here in the absence of
other guides agrees quite well with these other results. The
ray-optical coupling gives the best agreement when the
asymptotic form of the Fresnel integral scattering functions

(3.23),(3.26), (3.29) and (3.31) are used.

3.6 SUMMARY

Coupling between adjacent parallel plate waveguides has
been calculated by first tracing seguences of rays from the
driven guide to the parasitic guide and then adding the
contributions to the amplitude of the mode excited in the
parasitic guide from the final ray in each sequence. The
number of different sequences of rays grows rapidly as the
number of rays in each sequence increases. However, useful
results are obtained even when only three such seqguences of

rays (single and double diffraction) are considered. An
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exact solution for this geometry 1is not available for
comparison, however, the coupling coefficients obtained here
agree remarkably well with those obtained by other methods
when the two gquides are surrounded by other guides or
halfplanes. This agreement indicates a general lack of
sensitivity of ‘the coupling coefficients to the nature of
the surrounding structure, and gives confidence that these
results are applicable in the context of the complete

waveguide array.



Fig. 3.1
ray paths of mode fields in two
adjacent parallel plate waveguides
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ray paths from the driven guide
to the parasitic guide



Fig. 3.3
two successive rays in a ray path
from the driven guide to a guide aperture
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two successive rays in a ray path, both
rays in a guide aperture
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Fig. 3.5
two successive rays in a ray path from
the guide aperture to the parasitic guide
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TABLE X

Coupling Coefficients A_(d,a)
Between Adjacent Parallel Plate Waveguides

a=4d= 0.45 )

this theory using the

this theory using the

*z 223;§23 Montgomery [38] Lee [29] asymptotic form (3.22)| non-asymptotic form (3.17)
fnto 20 loglA] LA 20 log|A] LA 20 log[A] LA 20 log|A| LA
(dB) (degrees) (dB) (degrees) (dB) (degrees) (dB) (degrees)
1+2 & 221 -15.32 +105.2 -15.76 +102.3
3+2 & 3 -15.57 +107.8 -15.78 +106.8 -15.74 +102.3 -15.80 +97.7
2+3 -15.33 +105.3 -15.78 +106.8

LS
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Chapter 4 .

COUPLING BETWEEN SEPARATED GUIDES

4,1 CALCULATION OF THE COUPLING COEFFICIENT

The coupling between two separated gquides (Fig.4.1)
will be found in a manner similar to that for adjacent
guides. First all possible ray paths up to and including
guadruple diffraction are determined by inspection
(Fig.4.2). The fields represented by each ray is calculated
from the fields of the ray preceding it wusing the
expressions derived in Chapter 2. In this way the fields
represented by all rays in Fig.4.2 are found and hence the
coupling coefficient. The results will be compared to those
found  previously by Dybdal et al. [17] wusing edge
diffraction and a reciprocity argument and Montgomery and
Chang [38] using modified residue calculus.

Consider three adjacent semi-infinite parallel-plate
waveguides consisting of four perfectly conducting half-
planes in z>0 at y=-d-b, y=-d, y=0 and y=a, so that the
widths of the three quides are b, d and a respectively
(Fig.4.1). We wish to determine  the field coupled from the
transmitting guide -d—b<y<-é, z>0 into the parasitic gquide
O<y<a, 2z>0. As in Chapter 3 the incident mode in the driven
guide is decomposed into two plane waves, with wvalue given
by (3.9) at the edge y=-d, z=0 and by (3.10) at y=-d-b, z=0.
These plane waves are incident on the half-plane edges at

6, =2m-6,and & =6, respectively where o, is given by (3.6).
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The doubly diffracted fields are represented by
Fig.4.2a. The incident field , given by (3.9) is
diffracted at the edge y=-d, z=0. From (3.18) as observed at

y=2z=0 the diffracted field is a line source

a _ _1 ., 4.1)
utos o3 Cy (DE(x) (

located at "the diffracting edge. This field 1is again
diffracted at the edge y=2=0 and from (3.30) gives a line

source

a 1
u, = ZCN(d)Cn(d)E(r) . (4.2)

The coupling coefficient from double diffraction is found by
treating (4.2) as a line source and using (3.11), (3.12) and
(3.2). Thus '

o +in/4
(2) envn e .
ANn_ = 72_—}::— CN(d)Cn(d) . (4.3)
n

The triply diffracted fields are represented by
Figs.4.2b and c. In Fig.4.2b the incident field u, is given
by (3.9) and the singly diffracted field ulb is given by
(4.1). This field is again diffracted at the edge y=z=0 and

from (3.29) the resultant field is

b 1 T e‘\Li‘n/4
u = — C'(d)E(d+r) + -— C' (QYE(Q)E(x) . (4.4)
2 4g N 4q ors N

b . .
u, is made up of two line sources, one centred at y=-d, z=0,

the other at y=z=0. This field is again diffracted at y=a,

z=0 and from (3.30) the resultant field is
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b - 1 e+i7r/4 .
u,n = ZE-CN(d)Cn(d+a)E(r) T 45 = Cy{@)C (a)E(E(r) . (4.5)

In Fig.4.2c the incident fieldwuw, is given by (3.10).
From (3.18), as observed at y=-d, z=0, the diffracted field
is a line source

c -(—1)N
uy = —é—('l—' CI:I(b)E(r) (4.6)

jocated at the diffracting edge. This field is again
diffracted at the edge y=-d, z=0 and from (3.29) the

resultant field u Cis

2
N .
c _ =(=D" (-1 /4
w, = T GBIEMID - T — G EE®EE . (4.7)

c ., .
u,” is made up of two line sources, one centred at y=-d-b,

z=0, the other at y=-d, z=0. This field is again diffracted

at y=z=0 and from (3.30) the resultant field is

NI Sl -V i/
3 = 4q CN(b)Cn(b+d)E(r) - 1 2q o C&(b)cn(d)g(b)g(r)_
(4.8)
The total contribution to Ao from triple diffraction is

found by treating (4.5) and (4.8) as line sources and using
(3.11), (3.12) and (3.2). Thus

Ny
e /e in/4

(3) n N
= — [-(- ' + - - (b)Y C (b+d
ANin o5 [-(-Dcyac (a+a (-1) "Cy(P)C_ (b+ )]
n
e i1
D --1"ci@)c (@E@ - (-1)cr(b)C_(@ED)],(4.9)
8kna N n N n .

The quadruply diffracted fields are represented in

Figs.4.2d, e, f and g. In Fig.4.2d v, is given by (3.10), u,°

a a
is given by (4.6) and v, is given by (4.7). The fieldvu, |is
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again diffracted at y=z=0 and from (3.29) the resultant

field is
N N +in/4
d - (= -
w2 D iy pearr) - 1 2L e C! (b)E (b+a)E (r)
3 8g N 8q Vovs N

(-l)N e+in/4

C' (b)E(b)E (@ .
8q = y (PYE(D)E (&+r) . (4.10)

Note that the term of O(f3/2) has been deleted for the

reasons mentioned in Chapter 3.13d is made up of three line

sources at y=-d-b, z=0; y=2z=0; and y=-d, 2=0 respectively.
d
This field u is

3 again diffracted at y=a,

z=0 and from
(3.30) the resultant field is

a N 1 . (-l)N +it/4
u = (-1)7 — C'(b)C (b+d+a)E(r) + £ C' {b)E (b+d)C (a)E(x)
4 80 N n 8g Nors N n
N +irn/4
L D oe C! (BYE(b) C_(@+a)E(x) . (4.11)
8g — N n
vam

u, consists of three line sources all centred at y=a, 2z=0.

The contribution to Ay, from this guadruply diffracted field

is found by treating (4.11) as 1line sources and using

(3.11), (3.12) and (3.2). Thus
+in/4
CV/TTe
, (4) n _4yN+n_, +
A = ———— [(-1)" gy (b)C (b+dva))

8v2 k a
n

e it(-1)"
n

—*~E€;;Z———' [C&(b)E(b+d)Cn(a) + C&(b)E(b)Cn(d+a)]‘ (4.12)

In Fig.4.2e u, is given by (3.9) and 1ﬁe is given by

1 is again diffracted at the edge y=z=0,

and from (3.26) the resultant field is

Yy

. - 1 tiT/d
u, = 23 CN(d)E(d+r) - Za = Cﬁ(d)E(d)E(r). (4.13)

e

is made up of two line sources, one at y=d, 2=0, the
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other at y=2z=0. This fieldlbe is again diffracted at the

edge y=-d, z=0, and from (3.26) the resultant field is

. 1 e+in/4
u = =—— C'(d)E(28+4r) - 1 C! (&)E(2d4)E (x)
3 8g N Vo N

+in/4
-1 C!' (d)E(Q)E (d+1) | (4.14)
2z N
u; is made up of three line sources at y=-38, z=0, y=-d,

z=0, and y=-2d4, z=0 respectively. Again the term of O(k-B/%
has been deleted. This field u3eis again diffracted at the
edge y=2=0, and from (3.30), treating each line source

separately, the resultant field is

,1 L tin/a
e _ = - — C'(YE(2a)C (&)E(X)
v, 8q CN(d)Cn(3d)E(r) &g = N( YE (24d) 0
+in/4
- — & C' (A)E(A)C (2d)E(r) . (4.15)
89 'E;; N n
In Fig.4.2f the incident field given by (3.9) s

diffracted at the edge y=-d, z=0. From (3.18), as observed

at y=-d-b, z=0, the diffracted field is a line source

£ _ __T A 4.16
u o= 5 Cn(PVE) ( )

located at the diffracting edge. This field is again
diffracted at the edge y=-d-b, 2=0, and from (3.26) the
resultant field is

f _ _ 1 , _[_ e+iTT/4
U2 4q CN (b) E(b+r) + —45

C! (B)E (B)E(x) | (4.17)
/g N

¥

uzfis made up of two line sources, one at y=-2b-d, z=0, the
other at y=-d-b, z=0. This field is again diffracted at

the edge y=-d, 2z=0, and from (3.29) the resultant field is
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f -1 e
= —= - — '
u3 8q N(b)E(2b+r) 8q — CN(b)E(2b)E(r)
. e+in/4
+ B C' (b)E(b)E (b+r) . (4.18)
9 or N :
f

Y3 is made up of three line sources at y=-2b-d, 2=0, y=-4d,

z=0, and y=-d-b, 2=0 respectively. This field u3f

diffracted at the edge y=z=0, and from (3.30), treating each

is again

line source separately, the resultant field is

f 1 T e+iﬂ/4
u4 = ga Cﬁ(b)cn(2b+d)B(r) - EE = Cé(b)E(2b)Cn(d)E(r)
2T
+irn/4
-_— C' (BYE(DL)C (b+d)E(1) , (4.19)
8g Novs N n
In Fig.4.2g the incident field is given by (3.9),\11g

is given by (4.1), anduzg is given by (4.4). This field u2g
is again diffracted at the edge y=a, 2z=0, and from (3.26)

the resultant field is

1 e_+i'n/4
g _ I~ - —— =—— C' (d)E(d+a)E(x)
Uyt T gq CN(d)E(d+a+r) - N
1 +in/4
+ — 2 C' (Q)E(A)E (a+x) . (4.20)
8g /ETN— N
u3gis made up of three line sources at y=2a+d, z=0, y=a,

z=0, and y=2a, 2=0 respectively. This field u3gis again

diffracted at the edge y=2=0, and from (3.30), treating each

line source separately, the resultant field is

g 1 . e+i'n/4
u4 = - §E—CN(d)Cn(d+2a)E(r) + EE- = CN(d)E(d+a)Cn(a)E(r)
e+in/4
- — — C'(A)E(d)C_(2a)E(r) , (4.21)
ERCEI g

The contributions to Ay from these quadruply
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diffracted fields 1is found by treating (4.15), (4.19) and

(4.21) as line sources and using (3.11), (3.12) and (3.2).

Thus
+in/4
" (2) sn/Ee
n = — [C&(d)cn(3d) - Cy(B)C_(2b+d)
8/2 kx a n
n
- C&(d)cn(d+2a)]
e i1
16kna [- Cﬁ(d)E(Zd)Cn(d) - c&fd)E(d)cn(zd)
- C&(b)E(Zb)Cn(d) + C&(b)B(b)Cn(b+d)
+ Cﬁ(d)E(d+a)Cn(a) - Cﬁ(d)E(d)Cn(za)] (4.22)

The total contribution to A, from quadruple diffraction is

n

4) _ . '(a) " (4)
Byn = A + AL (4.23)

The sum of (4.3), (4.9), (4.12) and (4.22) is the coupling
coefficient A,, between separated waveguides up to and

including quadruple diffraction.

4.2 ANALYTICAL AND NUMERICAL RESULTS

The coupling coefficients are calculated for various
guide widths and separations and compared with the results
of others. The expressions (4.3), (4.9), (4.12) and (4.22)
were compared with those of Dybdal et al. [17]. Their
results were obtained by considering the transmitting guide
as a line source incident on the receiving parasitic guide.
A reciprocity argument was used to obtain the response of

the guide to the line source.
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It turns out that Dybdal's method gives virtually
identical results to those derived here, if only the ray

paths in Figs.4.2a, b, ¢ and d are considered, i.e. in the

TEM case

%; " AOO(Z) * Aoo(3) * A60(4) @.24)
and in the TE, case

%;. N All(2) + All(3) + Ail(4) (4.25)

Dybdal's expressions neglect the interaction between guides
shown in the ray paths of Figs.4.2e,f, and g.

The numerical values for the coupling coefficients Ao
and A, were calculated as a function of the separation
between the gquides, and compared with the results of Dybdal
et al.[17], Montgomery and Chang [38] and Lee [29].

The -amplitude of Ao, for TEM coupling is shown in
Fig.4.3 and 4.4, and for TE, coupling in Fig.4.5 for guide
widths of 0.338%\ and 0.761\ and separation betweén guides
ranging from 0.4} to 2.0\, If interaction between the guides
is neglected, the coupling decreases monotonically as the
separation between guides is increased. Addition of the
interaction terms neglected by Dybdal show an oscillation
with period A /2, which becomes more pronounced as more
interaction terms are added.

The limitations of this ray-optical method are
illustrated in Fig.4.3 in which Montgomery's results are
compared to those obtained here. Montgomery's results in the

TEM case have cusps at guide separations of n\/2,(n=1,2,...),
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but the ray-optical results obtained here show ‘only
approximate agreement., Higher order diffraction terms add an
oscillation to the curve in phase with the cusps. However,
the cusps were not obtained with this ray-optical théory,
even with a large number of terms.

While the addition of the interaction terms gives a
gualitative agreement with Montgomery's results, the
quantitative agreement is less for some values of guide
separation. These interaction terms are all quadruple and
higher order diffraction and cannot be calculated accurately
along the shadow boundary with this ray-optical theory.
Assuming that Montgomery's results are accurate, the ray-
optical theory underestimates the coupling by about 0 =~ 2
dB. This is a measure of the error which may be expected in
the calculation of the fields along the shadow boundary.

The method used here predicts that the singly
diffracted field along the shadow boundary will be one-half
the incident fiéld and the doubly diffracted field .will be
one-quarter the incident field (equations (3.26) or (3.29)
applied twice). These results are incorrect in view of the
analysis of Lee and Boersma [32] and Lee et al. [33]. Lee
and Boersma [32) find the fields on the shadow boundary of
two parallel- plates for two cases: a plane wave normally
incident on two non-staggered parallel plates (Fig.4.11l) and
a line source incident on two staggered parallel plates
(Fig.2.5). In both of these two cases the doubly diffracted
field is somewhat greater than one-quartér of the incident

field. Even though Lee and Boersma do not consider the
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specific case which arises here (line source incident on two
parallel plates, Fig.2.3 or 4.2d), their results ([32],
Fig.(4)) indicate that the analysis used here underestimates
the fields near the shadow boundary. Their results also
indicate that enhanced coupling will occur at d=nA/2
(n=1,2,...), which 1is consistent with the results of
Montgomery and Chang [38]. The application of the method of
[32] to the problem at hand is not trivial, and may be
intractable for the three half-plane case (Fig.4.12) which
arises in later chapters.

The coupling 1is also calculated for the case that all
three guides are of the same width and this width is wvaried
from 0.4A to 2.0A (Figs.4.6-4.10). The results.are‘similar
to those for two guides of the same width (Fig.3.6-3.9), but
with some important differences:

1- the addition of higher order diffraction terms makes more
difference to the shape of the curve especially at the mode
transition widths.

2- the minima are exactly at the mode transition widths and
much deeper when up to five times diffraction is taken into
account. However, if interaction between the guides is
neglected these minima are guite shallow and broad.

These results for the case a=d=b=0.45)\ are compared
with those of Montgomery et al. [38] and Lee [29] in Table
I1 . Both these authors considered five adjacent waveguides
and calculated coupling between each pair of separated
guides. Montgomery's array was in free space (Fig.l1.17) and

Lee's array was embedded in a simulated groundplane
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(Fig.1.15).

As in the case for adjacent guides the coupling
coefficients are insensitive to which pair of separated
guides is considered. The coupling derived here in the
absence of other guides agrees guite well wifh these results
in the presence of other guides.

This similarity of the coupling between two separated
guides in isolation, in the presence of other guides and
embedded in a simulated groundplane indicates a general lack
of sensitivity of the coupling coefficients to the nature of

the surrounding structure.

4.3 SUMMARY

The coupling between two separated parallel plate
waveguideé has been calculated by the same method used for
adjacent waveguides. To obtain an approximately correct
shape of the curve of coupling versus guide width it was
necessary to 1include terms up to at least quadruple
diffraction, as compared to only double diffraction for
adjacent guides.

The coupling coefficients obtained here agree very well
with those <calculated by Dybdal et al.[17] if interaction
between the guides is negiected. Including those
interactiqns..shows only approximate agreement with the
results of Montgomery and Ch;ng [38). Thus the inaccuracy of
. the ray-optical method when there are four edges along a

shadow boundary is apparent. However, the results obtained
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here are similar to those for guides in the presence of
other guides or a groundplane. Thus the coupling
coefficients between separated guides may be wused 1in the
calculations involving the array of Fig.1.3 without

considering the details of the other gquides in the array.
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Fig. 4.11
plane wave normally incident
on two non-staggered parallel
plates
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TABLE II

Coupling Coefficients Am(b,d,a)
Between Separated Parallel Plate Waveguides
a=d=b=0.45 )

this theory using the this theory using the
*z 2231;:: Montgomery [38] Lee [29] Dybdal [17] asymptotic form (3.17) non-asymptotic form (3.22)
ot 20 loglA| LA 20 loglA] L 20 log[A] LA 20 log[A] LA 20 loglal LA
(dB) (degrees) (dB) (degrees) (dB) (degrees) {(dB) (degrees) (dB) (degrees)
3+1 & 3+5 -20.69 ~74.8 -21.,27 -77.7
1-3 -20.69 ~74.9 -21.27 -77.17 -21.34 -74.6 -22.26 -75.8 -22.64 -84.6
2+4 -20.83 -72.4 -21.24 -73.8

08
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Chapter 5

RADIATION PATTERN OF A SINGLE GUIDE

5.1 INTRODUCTION

The radiation pattern of a single open-ended parallel-
plate waveguide is found by ray-optical methods similar to
those employed for the coupling analysis. This radiation
pattern was previously obtained by Yee and Felsen [49].
Because many parts of this analysis will be reqguired to find
the radiation pattern of the multi-element waveguide array,
it 1is repeated here for convenience. The analysis will be
restricted to the TEM case.

The fields radiated from the waveguide are made up of
fields diffracted from the waveguide edges. These diffracted
fields are calculated by tracing ray paths from the mode in
the guide to the edge under consideration (Fig.5.1). The
fields represented by successive rays in a ray path are
calculated in turn. The final ray in each ray path
represents fields radiated into space. Several different ray
paths can be traced from the mode in the guide to a
particular edge. The total radiation pattern is made up of
the sum of the fields represented by all ray paths leading

to both edges of the waveguide.

5.2 CANONICAL PROBLEMS
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The fields represented- by some of the various
combinations of two successive rays 1in the réy paths of
Fig.5.1 have been calculated in Chapter 3. Thus the fields
represented by any ray in a sequence can be found from the
fields of the ray immediately preceding it. Other needed
combinations (Fig.5.2 and 5.3) were not included and are
presented here.

In Fig.5.2a a plane wave u = 1/2 is 1incident on a
waveguide edge y=2=0 at 6,=0. From (2.7), the diffracted

field in the direction 6 1is given by
e+in/4

ul = ui D(0,8)E(yr) = —ui sec()E(x) , (5.1)

=
/27 2

In Fig 5.2b a plane wave v, =172 is incident on the edge
y=a,z=0 at ®; =27 _ From (2.7), the diffracted field in the
direction 6 1is given by

41
e in/4

ul. = ui D(2%,6)E(r) = +ui sec(gﬂE(r) . (5.2)

V2

In Fig ©5.3a an 1isotropic 1line source u = E(r)
located a distance r, from a guide wall is incident on that
edge at an angle 6, = 37/2, From (2.12), the diffracted (not

the total) field in the direction ¢ 1is given by

U = G OE(), (5.3)

where sfor 0 < 6 < 1/2

e-in/4 +ikrosine 5 6
G(ro.e) = - {+e F[VRrO {cos 3" sin 5)}

i}
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~-ikr _sin6

0 8 .8
+e F[‘kro (cos 5 + sin 2)]} y (5.4a)
for n/2 < 6 < 3n/2
-in/4 +ikr sin®
G(r_,8) = = {-e © Flvkr_ (-cos £, sin gﬁ]
0 I 0 2 2
—ikrosin6 5 0
+e F[Vkro {cos 5+ sin Eﬁ]} (5.4b)
and for 3n1/2 < 6 < 27
e-iﬂ/4 +ikr sin® 6 6
Glr_, 6) = - f - 2 in =
(rO ) = {-e F[»kro (-cos = + sin 2)]

-ikr siné 6 o

-e F[Vkro (-cos o sin 50]} , (5.4¢)
f k
or ro >> 1
+in/4
e cos (6/2)
G v _—l,

(xye8) ~ - Elry) —oss (5.5)
In Fig 5.3b an isotropic line source u = E(r) located a

distance , from a guide wall is incident on that edge at an

angle 8, = n/2 ., From (2.12), the diffracted (not the total)

field in the direction 6 1is given by
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u = -
m+1 Glr, ,8)E(r) , (5.6)
5.3 CALCULATION OF RADIATION PATTERN
The total radiation pattern Ib(d) of a parallel-

plate waveguide of width d is calculated here. Consider a
semi-infinite parallel-plate waveguide consisting of the two
perfectly conducting parallel half-planes in z>0 at y=-48/2
and y=+d/2. We wish to determine the fields radiated 1into
the space outside the guide.

As before, the incident field

-ikz
u . =
i € (5.7)

in the guide is decomposed into two plane waves incident on
the top and bottom edges at 9= 0 or 27 respectively, whose

value is

(5.8)

at both edges.

The singly diffracted fields are shown in Fig 5.la and
e. In Fig.5.1la the incident field (5.8) is diffracted by the
edge y=+d/2, z=0. From (5.2) the diffracted field is

a

- 1
u,” = 3 D@m,E)E() . (5.9)

In Fig.5.1b the incident field (5.8) is diffracted by

the edge y=-d/2, 2z=0. From (3.18), as observed at y=+d/2,
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b
2=0 the diffracted field v, is a line source

w? = -%c (d)E (1) (5.10)

0

located at the diffracting edge, where from (3.19)—and

(3.20)
c'(a) = e-i-"/4 ZF(V/k_d) .
0 /; E(4d) (5.11)
I1f kd>>1,
+in/4
Cé(d) N (5.12)

ki

This line source is again diffracted at the edge y=+d/2, z=0

and from (5.3) gives a field

'
b Cold)
2

u =

2 G(d,8)E(T) . (5.13)

In Fig.5.1c the incident field (5.8) is diffracted by
the edge y=+d/2, 2=0. From (3.18), as observed at y=+d/2,

z=0 the diffracted field ulcis a line source

-C' (d)

- 5.14
1 5 E(r) ( )

jocated at the diffracting edge. This field is again

diffracted at the edge y=-d/2, 2=0 and from (3.26) the

resultant field is

c -Cé(d) +in/4
u, = 2 E(d+r) + Cé(d)E(d)E(r), (5.15)
4“5;

uzcis made up of two line sources, one at y=-3d/2, z=0, the
other at y=-d/2, z=0. This field is again diffracted at the

edge y=+d/2, 2=0 and from (5.3) the resultant field is
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u,” = : G(24,8)E(r) + Co(AE(A)G(4,8)E(r) (5.16)
a2

which looks like two line sources at the diffracting edge.
In Fig 5.1d the incident field u, is given by (5.8) and

the field w® is given by (5.10). This field is again

diffracted at the edge y=+d/2, z=0 and from (3.26) the
resultant field is

a =C' (d) e+i'n/4
u = E(d+r) + CL{(A)E(DE(x) . (5.17)
, .
’ aizm O

u2d is made up of two line sources, one at y=+3d/2, 2=0, the
other at y=+d/2, 2z=0. This field is again diffracted at the

edge y=-d/2, z=0 and from (3.26) the resultant field is
-C!(d) +if/4

a 0
3 = 8 E(2d8+r) +

u

€ (DE(24)E (x)
8/2m

+i
e in/4

C(E(QE(d+r) | (5.18)
8v2m

u3dis made up of three line sources at y=-5d4/2, y=-d/2 and

y=-3d/2, z=0 respectively. This field is again diffracted at
the edge y=+d/2, z=0 and from (5.3) the resultant field is
a -C! (Q) +im/4

= G(3d,6)E(r) + S—— C'(a)E(24)G(d,0)E (r)
4 ) — '
8v2m 0

u

+in/4

C' (A)E(d)G(24,8)E(x) (5.19)
8/2m

which looks like three line sources at the diffracting edge.

The total fields 7Py diffracted from the edge y=+d/2,
z=0 up to quadruple diffraction afe given by the sum of
(5.9), (5.13), (5.16) and (5.19). These fields appear like
line sources at the edge. The field Py diffracted from
the edge y=-d/2, z=0 and radiated into space is calculated
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similarly using the ray paths in Fig.5.le,f,g,h, and is

given by

e

O =

= -p! ‘ :
0" (5.20)

The radiation pattern formed by these apparent line

sources at the two edges of the waveguide is given by

-ikd . +ikd .
5 sin® > sing

P = P' e + P" e 5.21)
0 0 0 (

in the second guadrant (n/2 < 6 < ) , where the exponential
terms are the array factors which adjust for the different
path lengths from the edges to a distant observation point.
In the first quadrant (0 <6 < n/2), one of the edges is

shadowed and

e . (5.22)

The pattern is symmetrical about 6 = m so that

P (d,2‘ﬂ-e) = P d,ﬁ
0 0%:® (5.23)
. L e8] . . .
The radiation pattern Py for single diffraction
may be written
+i3n/4
(1) _ e g, . kda .
PO = —'————/2_ﬂ sec(;)s;m(T sinB)E(r) . (5.24)
Note that at 6 =7 the value of pél) is finite and is
given by
(l) e+i3TT/4
P =T = ——
O (dre T) }/_2_; kd E(r) ’ (5.25)

so that the maximum radiation is proportional to the guide

width., For O < 6 < /2
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. -ikd .
o) 1M cec o 2 sinf
o 2 = Je . (5.26)
At 6 =1n/2 there is a discontinuity in the single

diffraction radiation pattern, because ule is shadowed for

& <m/2, This discontinuity can be reduced by taking higher
order diffraction into account. The addition of double
diffraction term \5b eliminates this discontinuity because

it can been shown that (Fig.5.4a)

+ikd . -ikd -1
e(_n_+ 5 sing b T+ > sing — l};d sin8
u:L > Ye + u2 (5 e = u2 (5 e (5.27)

if the asymptotic form of (5.12)is used. The discontinuity in

the double diffraction radiation pattern at 6 = n/2 is given

by the ik remaining double diffraction term
1
in6
o i@y e which is about half of
2 2 kg _._.[49] , . |
0 Iy a 2 Sin% The addition of triple diffraction term
102

ui; eliminates the discontinuity in the double diffraction
radiation pattern at 6 = 7/2 because similarly it can be

shown that (Fig.5.4b)

+ikd , -ikd , -ikad
b T+ 2 sind c T+ 2 sin® c - 12 sing

u, (2 Ye + u, (2— Ye = u. (= e . (5.28)

The discontinuity in the triple diffraction radiation

- . +ikd sind . .
pattern at 6 = n/2 is given by [ 9 (I7) o 2 which 1is
. 2 ’
about half of £ - +l};dsine [49] . Thus by taking
u (=) e
. 2 2 . .
successively higher order diffraction terms, the

discontinuity at 8 = /2 may be reduced. Similar reasoning

applies to the discontinuity at © = 3n/2,
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5.4 NUMERICAL AND EXPERIMENTAL RESULTS

The radiation pattern of a single parallel-plate
waveguide calculated by ray-optical methods is compared with
the known exact pattern[Weinstein, 1969] and the measured E-
plane pattern of the H-plane sectoral horn (section 1.4).
These patterns are shown for various guide widths in Fig.5.5
an@ 5.6. The radiation patterns are calculated for

0 <& <2¢ in radian measure, but are plotted for
_180° < e'< 180°% (o' '= ©-T)

The radiation patterns of a parallel plate waveguide
consist of only a single lobe. As might be expected, the
gain increases and the peamwidth decreases as the width of
the guide is increased. The phase is essentially constant in
the forward direction (-90°<I@§90°).

The maximum error between the ray-optical and the exact
pattern is never more then 1 dB and is less then 0.5 dB in
the forward direction (Fig. 5.5a). The discontinuity at
8 =n/2 is less then 1 dB when quadruple diffraction is taken
into account. The ray - optical pattern is more accurate at
the shadow boundary when the asymptotic form of (5.12) is
used throughout (Fig. 5.5b). The discontinuity at 6 = 7n/2
is also much smaller since the continuity relations (5.27)
and (5.28) are true only for the asymptotic form, and may be
reduced to an arbitrarily small value by considering still
higher order terms. Each successive interaction reduces the
discontinuity by approximately one-half.

The experimental pattern is also within 1 8B of the

exact pattern for guide widths from 0.339X to 0.441x (£=10-
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13 GHz) and over the entire angular range, except for
}

© >1507 where the patterns could not be measured accurately

because of blockage by the antenna mounting arrangement

(Figs.5.6a,b,c,d).

5.5 SUMMARY

The radiation pattern of a single non-staggered
parallel plate waveguide is found by ray-optical methods and
compared to experimental patterns obtained with an H-plane
sectoral horn. The discontinuity expected along the shadow
boundary in the aperture plane is less then 1 4B when terms
up to gquadruple diffraction are taken into account and can
be reduced stiIi further by taking the asymptotic form of
the expression and/or adding higher order diffraction terms.

The good agreement between the exact and experimental
results confirms that the E-plane pattern of the H-plane
sectoral horn simulates that of a parallel-plate waveguide
quite well, and gives an estimate of the accuracy of this
approximation. The good agreement between exact, ray-optical
énd experimental patterns suggests that both the ray-optical
and experimental methods may be extended with confidence to
more complex structures to be considered in the following

chapters.



Fig. 5.1

ray paths in a parallel plate waveguide
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Fig. 5.2
ray path (see text)
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Fig. 5.3
ray path (see text)
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Fig. 5.4
continuity of fields across shadow boundary
see eqgqns. (5.27) and (5.28).
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Chapter 6

RADIATION PATTERN OF THREE ELEMENT WAVEGUIDE ARRAY

6.1 INTRODUCTION

In this chapter the radiation pattern of a multi-
element waveguide array (Fig.6.1) 1is found by methods
similar to those wused for a single waveguide, and will be
compared to experimental results using the H-plane sectoral
horn.

Calculation of the radiation pattern of the parallel-
plate waveguide array begins by first calculating the
pattern for the case when all three guides are of infinite
depth (Fig.6.2). All edges of the resulting array of
parallei—plate waveguides are excited by the central driven
guide. The fields diffracted by these edges are calculated
to yield the radiation pattern.

I1f the parasitic guides are of finite depth, the fields
coupled 1into them also contribute to the total radiation
pattern. For this case, the coupling coefficient between the
central driven guide and the parasitic guide on either side
must be calculated. The coupled fields are reflected between
open and closed ends of the parasitic guide and eventually
radiated from the open end. The total radiation pattern of
the waveguide array 1is calculated by adding the fields
radiated from the edges excited by the central driven guide
and the fields radiated from the outer guides.

In the TE, case the coupling between adjacent guides is
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very weak, and not enough power is coupled into the
parasitic guide for its radiation to significantly affect
the pattern. For this reason the analysis is restricted to

the TEM case where the coupling is much stfonger.

6.2 RAY-OPTICAL FORMULATION

Consider three adjacent semi-infinite parallel-plate
waveguides consisting of four perfectly conducting
infinitely thin half-planes in 2z>0 at y=-d/2-a, y=-4d4/2,
y=d/2, y=d/2+a (Fig.6.2). As in Chapter 5 the incident TEM
mode in the central driven guide -d/2<y<d/2, z>0, given by
(5.7) is decomposed into two plane waves incident on the top
and bottom edges at 0 =0 or 2 respectively. These plane

waves both have the value

i T 3 (6.1)

at the edge y=d/2, 2z=0, and y=-d/2, z=0, and are représented
by the incident rays in the central guide of Fig.6.2.

These plane waves are diffraéted by the waveguide
edges. The resulting diffracted fields may be radiated or
may be diffracted again by another waveguide edge. Thus all
four waveguide edges are excited by the fields in the
central driven guide and contribute to the radiation
pattern. Seguences of rays called ray‘paths trace the fields
as they are diffracted from various edges and eventually
radiated into space.

Fig.6.1 shows some of the ray paths which must be
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considered to calculate the radiation pattern of the central
driven guide in the absence of the outer guides. Fig.6.3 and
6.4 shows some of the ray paths which must be considered to
calculate the additional diffraction from the waveguide
edges excited by the central driven guide when the

wavequides of infinite depth are added.

6.3 RADIATION PATTERN WITH GUIDES OF INFINITE DEPTH

The total radiation pattern P, of the array of three
parallel plate waveguides with only the center guide driven
is calculated. The field P is made up of the sum of the
fields scattered from all the edges. P (d) represents the
field scattered from the open end of the central guide; and

P (n=1,2,3}4) represents the total field scattered from
the nth edge (as labelled in Fig.6.2) not already included
in P+

The total radiation pattern P, for the array of Fig.6.2

t
is given by the sum of the fields from all the edges. In the
rear halfspace all but the outermost edges are shadowed, so
that for angles 0 < 6 < n/2 only the edge at y=(d+2a)/2, z=0

is visible, and
a+

-ik{( éa)sine

{6.2)

For angles 7/2 < & < m all edges are visible and

d+
ga)sine

-ik(
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sinb

o

+ik g sinf

4 (6.3)

The pattern is symmetrical about & = 7.

The field P, was calculated in Chapter 5 using the ray
paths in Fig.5.1. The field P, 1is calculated using the ray
paths in Fig.6.3. The field P, is calculated using the ray
paths in Fig.6.4. The ray paths used to calculate P, and P,
are the image about the z-axis of those shown in Figs.6.3
and 6.4. .

The solution for the fields represented by two
successivé rays in the ray paths of Figs.6.3 and 6.4 can now
be used to calculate all the fields associated with a ray
path and thus the contributions P, (n=1,2,3,4) from the
waveguide edges. Note that there are several different ray
paths (labelled a,b,c,etc. in Figs. 6.3 and 6.4) which
contribute to any P, . The following notations are employed
to represent the fields, where the superscript x refers to
the letter of the figure showing the particular ray path

under consideration.

u, = an incident field in the central driven guide

X

u = a field in a ray path contributing to P which

has been diffracted m times.
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The field P, has been calculated in Chapter 5.

To calculate contributions to P, , consider the ray
diagrams in Fig.6.4. In Fig.6.4a the incident field v, ,
given by (6.1), is diffracted at the edge y=d/2, 2z=0. From
(3.18), as observed at y=d/2+a, 2=0 the diffracted fieldxgi

is a line source

C! (a)
u31 = 5 E(r) ‘ (6.4)

located at the diffracting edge. This field 1is again
diffracted at the edge y=d/2+a, 2z=0, and from (5.3) the
resultant field is

Cé(a)

u = G(a,G)E(r) (6.5)

32

from the edge.
In Fig.6.4b the incident field v, given by (6.1), is
diffracted at the edge y=-d/2, z=0. From (3.18) as observed

at y=+d/2, z=0 the diffracted field u 1is a line source

-Cé(d)
u = 5 E(r) (6.6)

at the edge. This line source is again diffracted at the
edge y=d/2, 2z=0 and from (3.29) the resultant doubly
diffracted field is

-C!' (d) in/4
0P - L E@n - C; (QE@E ) . (6.7)
32 4/2n

u3§ is made up of two line source fields, one centred at y=-
d/2, z=0, the other at y=d/2, z=0. The field (6.7) is again
diffracfed at y=(d+2a)/2, z=0, and from (5.3) the resultant

field is
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~-C! {(d) in/4
L 0 G(d+a,0)E(r) - Cc!'(d)E(d)G(a,B8)E(x), (6.8)
33 4 i 4v2T 0

In Fig.6.4c the incident field u, is given by (6.1) and
the field u3i is given by (6.4). This field 1is again
diffracted at the edge y=+d/2+a, 2=0 and from (3.26) the

resultant field is

c' (a) it /4
0 S = 22— gty - = C' (a)E(a)E (r) . (6.9)
32 4 4J§; o]

C
Y32

y=+d/2+2a, z=0 and y=+d/2+a, z=0 respectively. This field is

is made up of two line source fields centred at

again diffracted at y=+d/2, 2z=0 and from (3.26) the

resultant field is

c ;
“3§ = O;a) E(2atr) - e/’ C'(a)E(2a)E(x)
8/an O
ei'n/lo
- e Co(a)E(a)E(a+r). (6.10)

u3§is made up of three line source fields centred at y=+d/2-
2a, y=+d/2 and y=+d/2-a, z=0 respectively. This field is
again diffracted at the edge y=+d/2+a, 2z=0 and from (5.3)

the resultant field is

C' (a) in/4
u c _ 08 G(3a,8)E(r) -

34 8v/2m

Cé(a)E(Za)G(a,e)E(r)

in/4
C' (a)E(a)G(2a,8)E(x) {6.11)

821 ,
which appears as three 1line sources all centred at the
diffracting edge. The sum of (6.5), (6.8), and (6.11)
represents the total field P3 from the edge y=+d/2+a, z=0

up to and including quadruple diffraction.
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To calculate contributions to F; consider the ray
diagrams in Fig.6.3. In Fig.6.3a the incident field vu; |is
given by (6.1), the singly diffracted field uliis given by
(6.4) andxﬁ; is‘given by (6.9). This field is diffracted at

the edge y=+d/2, z=0, and from (5.3) the resultant field is

2 "o o (a)G(a,8)E(r) (6.12)
= G(2a,B)E(r) + C'(a)E(a)G(a,B)E(r). .12
13 4 Wi ©

In Fig.6.3b the incident field u; is given by (6.1), the

b
11

field is again diffracted at the edge y=+d/2+a, 2=0 and from

field u "is given by (6.6) and u . is given by (6.7). This

(3.26) the resultant field is

- e
U; 4 8 E(d+a+r) +

C'(d)E(d+a)E(r)
8/2m 0

eiﬂ/4
- —— C'(d)E(d)E(a+r). (6.13)
821 0
ulg consists of three line source fields at y=+3d/2+2a,

y=+d/2+a and y=+d/2+2a, 2z=0 respectively. This field is
again diffracted at the edge y=+d/2, z=0 and from (5.3) the

resultant field is

c'(d) in/4
b 0 e

= 5 +2 -
uly 5 G(d+2a,8)E(r)

Cé(d)E(d+a)G(a,e)E(r)
. 8/21

in/4
+ £ Cé(d)E(d)G(Za,e)E(r). (6.14)
SJE;

In Fig.6.3c the incident field given by (6.1) is
diffracted at the edge y=-d/2, z=0. From (3.18), as observed
at the edge y=-d/2-a, z=0 the fieldtﬁi'is given by a line

source
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C!(a)
ui = 02 E (1) (6.15)

located at the diffracting edge. This field 1is again

diffracted at the edge y=-d/2-a, z=0 and from (3.26) the

resultant field is

. Cé(a) eiﬂ/4
u = E(a+r) - C'(a)E(a)E(r) , (6.16)
12 4 v 0

ufzconsists of two line source fields at y=-d/2-2a, z=0 and
y=-d/2-a, z=0 respectively. This field is again diffracted

at the edge y=-d/2, z=0 and from (3.29) the resultant field

is
Cé(a) eiﬂ/A
u.S = E(2a+r) + C! (a)E(2a)E(r)
13 8\,-2—77 0
in/4
- Cé(a)E(a)E(a+r)_ (6.17)
8/;;

ulg consists of three line source fields at y=-d/2-2a, y=-d/2
and y=-d/2-a, z=0 respectively. This field 1is again
diffracted at the edge y=+d/2, 2=0 and from (5.3) the
resultant field is

Cé(a) in/é

¢ - 2a+d,6)E +
Uiy 8 G(2a+d,8)E(r)

C'(a)E(2a)G(d,8)E(r)
8&?? 0

in/4
- £ C'(a)E(a)G(a+d,8)E(x) . (6.18)
8/55 0

The sum of (6.12), (6.14) and (6.18) represents the field

T

F, from the edge y=d/2, z=0 up to and including quadruple

diffraction.

Similar <calculations for the fields P2 scattered from

the edge y=-4/2, z=0 and P4 from y=-d/2-a, show that
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P = ~P (6.19)

[a]
—

4 3 - (6.20)

The results for P are substituted in (6.2) and (6.3)
to give the total radiation pattern of the array of Fig.6.2

with parasitic guides of infinite depth.

6.4 RADIATION WITH OUTER GUIDES SHORTED

Consider the array of Fig.6.1, which is equivalent to
‘the array of Fig.6.2 except that the outer guides are now of
finite depth. The fields coupled into these guides will be
reflected from the far end and reradiated. Adjusting the
depth of the guides will change the relative phase of their
radiation and thus alter the radiation pattern.

The ;oupling coefficient AOOULa) between the central
driven guide of width d and the adjacent parasitic guide of
width a has been calculated in Chapter 3. The coupled fields
travel down the outer guide and are reflected at the shorted
end. The fields then travel towards the open end ,where part
is reflected back and part is radiated.

The value A of the fields in the outer guides at the
aperture plane z=0 relative to those from the central driven

guide is the sum of a geometric series

, A eist
i2ks ibks 2 i6ks oot
= + A R e + ... ;
A= Agg® * AgoRoo® 0000 1_Rooe12k5
(6.21)
whereROOis the reflection coefficient at the open end of the

parallel plate waveguide [45] [50], and S is the depth of
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the outer guide.

The total radiation pattern of the array of Fig.6.1 1is
calculated by adding the radiation field caused by.the
finite depth of the outer guides to the fields radiated from
the array of Fig.6.2. The additional fields consist of
fields radiated directly from the outer guides (Fig.5.1),
and fields from other edges excited by fields in a shorted
guide (Figs.6.5 and 6.6). Since all fields in the outer
guides have been diffracted at least once, the ray paths in
Figs.6.5 and 6.6 represent fields including gquadruple
diffraction.

Radiation from the outer guides shown 1in Fig.5.1 is
simply the pattern P (a) in (5.21) and (5.22) of a parallel-
plate waveguide multiplied by A of (6.21). Scattering from
other edges due to radiation from the outer-guides is
calculated by considering the ray paths in Figs.6.5 and 6.6.

In Fig.6.5a the field from the edge y=d/2, z=0 is

1
) Co(d)
Yin2 )

G(d,8)E(r) . (6.22)

In Fig.6.5b the field from the same edge is

Ujrg = Tz 6(2d,0)E(r) - =—— C(d)E(d)G(d,8)E(r). (6.23)

4V2m

In Fig.6.5c the field from the same edge is

c -Cé(a) ( ) eiﬂ/4
U,y s = G(d+a,6)E(r) - C.(a)E(a)G(d,6)E(x) . 6.24
1'3 4 arze O a (r) ( )

In Fig.6.6 the field from the edge y=(d+2a)/2, 2=0 is

Cé(d) ein/4
Ujiy T T G(d+a,8)E(r) +
427

Cé(d)E(d)G(a,G)E(r)_ (6.25)
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The fizlds (6.22), (6.23) and (6.24) must be added to

give the field P

from

the edge y=d/2, z=0 excited by

radiation from the outer guides. Similarly (6.25) gives the

\
P3

of the fields Pé from the

field from the edge

d/2-a, z=0 show that

v~ _p!
Pp =1
v P!
Py = P3.
The ray . paths wused to

about the z-axis of those
The radiation caused

guides 1is the array

sum

y=d/2+a, 2z=0. Similar calculations
edge y=-d/2, z=0, and P, from y=-

(6.26)
(6.27)

calculate P} and P, are the image
shown in Fig.6.5 and 6.6.

by the finite depth of the outer

of P

0 and P; multiplied by the

coupling coefficient A. This radiation must be added to P

in

P ota1 for the array of Fig.6.

In the first quadrant for 0 < 6 < 1/2 all

(6.2) and (6.3) to obtain the complete radiation pattern

l.

edges except

that at y=d/2+a, z=0 are shadowed and do not contribute to
the radiated fields, so that
+
—ik(d éa)siné
= P. + AP! e
Ptotal k 3

+
-ik (&) sins

+ APO e

In the

second quadrant for

(6.28)

m/2 < 6§ < 7
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d+ia)sine

-ik(
=P + AP! e
total t 3

_ik(ggi)sine

e
+ APU(a)

-ik % sin®d

+ APi e

+ik % sinb
+ APé e

d+a

+ik(2

+ APO(a) e

)sing

+ik(d+§a)5ine (6.29)
\]
+ AP4 e
This pattern is symmetrical about 6 = m so that

P al(2n-e) =P (8).

tot total

6.5 NUMERICAL AND EXPERIMENTAL RESULTS

The radiation pattern of a three element array of
parallel plate waveguides calculated by ray-optical methods
is compared to measured E-plane patterns of an’  H-plane
sectoral horn withi appendages added to simulate the outer
guides (Fig. 1.2). The patterns are plotted for
-180° < B8' < 180° (B' = 6-7).

When the outer guides are of infinite depth (Fig.6.2),
the radiation pattern P, given by (6.2) and (6.3), has a
somewhat narrower beamwidth then a single guide.

The addition of the outer guides altered the radiation
pattern of the -central driven guide in different ways
depending on their depth. Adjustment of the dep£h of the

outer guides varies the phase of A in (6.21).

The pattern of the three-element array with outer
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guides shorted shows a pronounced reduction of the beamwidth
compared to that of a single guide when the radiation from
all three guides is in phase (arg A = 0) (Fig.6.8).
Adjustment of the frequency such that this-phase differénce
is near 180° produces a pattern with a null on the beam axis
and two main 1lobes to either side (Figs.6.9,6.13) These
pattern shapes with varying A are Qhat would be expected
from a Fourier transform of the aperture fields [27]. For
another value of this phase the pattern amplitude was
essentially constant over an angular sector of about=z 60°
(Fig.6.10). In all cases the phase of the pattern is
relatively constant in the forward direction and the back
radiation is substantially reduced compared to that of a
single guide. Thus this.parallgl—plate waveguide can produce
a variety of patterns by adjustment of the depth of the
outer guides or the frequency.

The calculated patterns are expected to be least
accurate at about 6= 90° off the beam axis near the shadow
boundary in the aperture plane for the reasons mentioned in
Chapter 2. At angles slightly greater then 90° only the
outermost edge contributes to the radiation (6.28), whereas
at angles 1less then 90° all edges contribute (6.29), and
consequently a discontinuity in the pattern is féund at
8= 90°. This discontinuity may be reduced by including more
ray paths along the shadow boundary. Terms up to quadruple
diffraction appear to be sufficient, since more terms do not
reduce the discontinuity significantly, and the number of

terms grows very rapidly for higher orders of diffraction.
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The discontinuity at 6= 90 varies between -4dB and +4dB

depending on the depth of the outer guides and the
frequency. The problems on the shadow boundaries were
discussed in more detail in Chapter 2. |

To effect a significant improvement in the ©pattern
accuracy using ray-optical techniques may require that the
method of Lee and Boersma [32)] be applied to find the fields
near the shadow boundary. A solution for the diffraction
problem of a line source incident on two non-staggered half-
planes 1is needed, where the source, observation point and
half-plane edges are all collinear. Such a ray-optical
solution, which would be used to evaluate the fields in
Figs.6.3b, 6.3c, 6.4b, 6.5¢c and 6.6, is not presently
available. _

The experimental patterns were generally within 1 dB of
the calculated results up to §=260°, and within 3dB up to
6'=%150°. Any pattern asymmetry and the small oscillations
are caused by site reflections. The patterns near 9;1800
could not be measured accurately because of blockage by the

antenna mounting arrangement.

6.6 SUMMARY

Radiation from a finite, rather than an infinite
aperiodic array of open-ended parallel plate waveguides has
been analyzed by ray-optical methods. Only small arrays are
tractable however for the numbers of ray required for

reasonable accuracy rapidly increases with the number of
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diffracting edges. Here a three-element array has been
analyzed with triple diffraction by the four edges included.

The calculated results contain a discontinuity at 90°
off the beam axis because most of the diffracting edges are
shadowed in the backward direction. This discontinuity can
be reduced by taking more ray paths into account, but cannot
be eliminated for all values of d,a and s , even with a
larger number of rays.

The ray-optical analysis 1is only valid for waveguide
dimensions of moderate and large width. Inaccuracies are
expe;ted when the dimensions are reduced to A/3 or less,
particularly in the calculation of the fields in the
aperture plane along the shadow boundary.

The experimental patterns generally agree with those
calculated ones, so that the H-plane sectoral horn with
appendages appears to simulate a parallel-plate waveguide
array in the TEM mode reasonably well. The outer guides
increased or decreased the beamwidth depending on the
dimensions of the guides and the freguency. Thus the pattern
of this waveguide antenna array may be adjusted to suit the

application.
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Chapter 7

RADIATION PATTERN OF FIVE ELEMENT WAVEGUIDE ARRAY

7.1 RAY-OPTICAL FORMULATION

The radiation pattern of a five element parallel plate
waveguide array (Fig.7.1,7.2) may be found by extending the
results for the three element array considered in Chapter 6.
The additional outer guides in the five element array allow
the formation of many more ray paths which must be taken
into account. The patterns will be calculated for outer
guides of both infinite (Fig.7.2) and finite (Fig.7.1) depth
and will be compared with results found by other methods
[29] [38] and experimental results respectively.

Consider five aajacent semijinfinite parallel plate
waveguides consisting of six perfectly conducting half-
planes in 2z>0 at y=-d/2-2a, y=-&/2-a, y=-d/2, y=+d/2,
d=+d/2+a and y=4/2+2a (Fig.7.2). As in Chapter 6 the
incident mode in the central guide -d/2<y<+d/2, 2>0 , given
by (5.7), is decomposed into two plane waves each with

amplitude

u. =

i (7.1)

N =

at the edges y=-d/2, 2z=0 and y=+d/2, 2=0. These two plane
waves are represented by the incident rays in the «central
guide of Fig.7.2. Many of the ray péths which must be
considered to calculate the radiation pattern are shown in

Chapter 6. The additional ray paths which occur in the five
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element array but not in the three element array are shown

in Figs.7.3-7.7.

7.2 RADIATION PATTERN WITH OUTER GUIDES OF INFINITE DEPTH

The total radiation pattern P, for the array of

Fig.7.2 is given by the sum of the fields from all edges. In
the first quadrant all but the outermost edges are shadowed
so that for 0<e<mw/2 only the edge y=d/2+2a, 2=0 is visible

and

d+§a)sin6

=ik{ (7.2)

In the second gquadrant ( 7/2<é<m ) all edges are visible

and
d+4a

-ik
ik ( 5

P = P_ e

)sing

d+

-ik(

;a)sins
+ P_ d

-ik g-sinS

+ik g-sine

d+2a

+ik( 5 )sing

+ik(d+4a

Ysin®
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where P is a field radiated from edge #n. The pattern is
symmetrical about © =T so that P, (2m-6) = P (6).

The fields Py and P, calculated in Chapter 6 must‘now
be modified to take into account addifional ray paths
created by the presence of the new outer guides (Fig.7.3).
The fields P and P, need not be modified because there are
no additional ray paths up to gquadruple diffraction. The
fields P, and P_ are new and must be calculated wusing the
ray paths in Fig.7.4.

To calculate the additional contribution to Py consider
the ray diagram of Fig.7.3. The incident field u, given by
(7.1) is diffracted at the edge y=+d/2, z=0. From (3.18) as
observed at y=d/2+a, z=0 the diffracted field is a line

source

Cé(a)

u = > E(xr) (7.4)

located at the diffracting edge. This field 1is again

diffracted at y=d/2+a, z=0 and from (3.29) the resultant

field is
] lTT/4 .
a0 e s c! (DE(@IE(X) . (7.5)
Uy T2 a/2m :

a . .
u,, 18 made up of two line sources, one centred at y=+d/2,

z=0, the other at y=+d/2+a, 2=0. This field is again

diffracted at y=+d/2+2a, z=0 and from (3.26) the resultant

field is
Cé(a) in/4 -
a _ - C' (a)E(a+b)E(x
u33 = 5 E(a+b+x) 8“5; 0
in/4
+ = C: (@) E(a)E (b+x) . (7.6)

8/2n
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This field is again diffracted at y=+d/2+a, 2=0 and from

(5.3) the resultant field is

-C' (a) : in/4

= +2b, E +
Uay 8 G(a BYE(x) o

1]

C'(a)E(a+b)G(b,B8) E(YX)
r2_'n 0

%

in/4
- & (c'(a)E(a)G(2b,8)E(x) , (7.7)
821

uBZ must be added to P, in Chapter 6 to give the field Py in
(7.3) which represents the field from the edge y=d/2+a,z=0
up to and including qQuadruple diffraction,

To calculate the field P consider the ray diagrams of

Fig.7.4. In Fig.7.4a the 1incident field %Y is given by

uw @
51

field is again diffracted at y=+d/2+a, z=0 and from (5.3)

’ a
(7.1), is given by (7.4) and Y%, is given by (7.5). This
the resultant field is

C! (a) *in/4
53 ° T g8 G(a+b,B8)E(r) +

C' (a)E(a)G(b,8)E (1), (7.8)
8/2n ©

In Fig.7.4b the incident field u, given by (7.1) is
diffracted at the edge y=-d/2,z=0. From (3.18) as observed

at y=+d/2,2z=0 the diffracted field is a line source

-c'(d)

uo = — 5 - (7.9)

b
located at the diffracting edge. This field VY;; is again
diffracted at y=+d/2, z=0 and from (3.29) the resultant

field is

-C' (d) oin/4
w? = L2 —Ep@n - Cl(QE(QE(x) . (7.10)
>2 4 a2m
w? is made up of two 1line sources, one centred at y=-

52
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d/2,2=0, the other at y=+d/2, z=0. This field 1is again
diffracted at y=+d/2+a, z=0 and from (3.29) the resultant

field is

-C' (@) in/4
5 O E{d+a+r) -

Cé(d)E(d+a)E(r)
8)/.:2—17—

in/4

Cl(DE(Q)E(a*r) (7.11)
8v/2m

“23 is made up of three line sources at y=-d/2, y=+d/2+a and
y=+d/2 respectively. This field 1is again diffracted at

y=+d/2+2a, z=0 and from (5.3) the resultant field is

b (3( ) - ' l/ + ( 8)E(r)
= +a+ C! (d)E(d a)G (b, E(rx
u = G(d+a b,e)E(r) ‘ 0

in/4 .
- 2 C! (A)E(d)G(a+b,B)E(D)  (7.12)
8%5;

The sum of (7.8) and (7.12) represents the field Ps from

the edge y=d4/2+2a,z=0 up to and including guadruple
diffraction.'
Similar calculations for P, and the additional

contributions to P4 show that

. (7.13)
Py 7 3

- - (7.14)
Fe Fs .

The ray paths used to calculate PFPg and the additional
contributions to P, are the image about the z-axis of those
in Figs.7.3 and 7.4.

The results for P, are substituted in (7.2) and (7.3)
to give the‘total radiation pattern of the array of Fig.7.2

with parasitic guides of infinite depth.
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7.3 RADIATION WITH OUTER GUIDES SHORTED

Consider the array of Fig.7.1 which 1is eguivalent to
Fig.7.2 except that the outer guides are now of finite
depth. The fields coupled into these guides will now be
reflected from the shorted end and reradiated. The TEM
coupling coefficient Ay (dsa) between adjacent guides of
width @ and a and BoouLa,b) between guides of width b and a
separated by distance d were calculated in Chapters 3 and 4
respectively. These coupling coefficients are wused to
determine the values », and A, of the'fields in the outer
guides at the aperture plane relative to the fields from the
central driven guide.

The value A, of the fields in the first outer guide

+d/2<y<+d/2+a is, from (6.21) given by

i2ksl
A__(d,a) e i
A = 20 7.15
1 i2ks, ’ (7.15)
l-ROO(a) e

where R (a) is the reflection coefficient at the open end of
the guide of width a, and s, is the depth of the first
outer guide. To determine the value 2, of the fields in the
second outer guide +d/2+a<y<+d/2+a+b, the coupling from both
the driven guide and the first outer guide into the second
outer guide must be taken into account. The energy coupled

into the second outer guide is given by

d b + .
BOO( 12,b) AlAOO(a,b) (7.16)
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The value of the field A, at the aperture plane is the sum

of a geometric series

iks2
- ,b (7.17)
A, [Boo(d,a,b) + AlAOO(a ) le . A

iks2
e

1—R00(b)

where S, is the depth of the second outer guide.

The total radiation pattern of the array of Fig.7.1 s
calculated by adding the radiation field caused by the
finite depth of the outer guides to the fields radiated from
the array of Fig.7.2. The additional fields consist of
fields radiated directly from the outer guides (Fig.5.1),
and fields from other edges excited by fields in a shorted
guide (Fig.7.5-7.7) Radiation from the outer guides shown in
Fig.5.1 is simply the pattern IPO in (5.21) and (5.22) of a
parallel plate waveguide multiplied by?2, or &, Scattering
from other edges due to radiation from the outer guides is
calculated by considering the ray paths in Fig.7.5-7.7.

In Fig.7.5a the fieldu,,>

from the edge y=+d/2+a+b,z=0
is given by

Cé(b)
2

(7.18)
oo G(b,8)E(r) .

In Fig.7.5b the fieldtgna from the edge y=+d/2+a+b,z=0 |is

3
given by
-C' (a) in/4
u b G(a+b,8)E(x) - C!' (a)E(a)G(b,E)E(r), (7.19)
5"3 , 477 °
The fields US"; and u5"§ are added to give the field
pé‘ from the edge y=+d/2+a+b,2=0 excited Dby

radiation from the first outer guide. In Fig.7.6a the field
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a

Y3v3 from the «ige y=+d/2+a,z=0 is given by

-c' (b) in/4
0 2 = 2 Gg@b,6)EMX + C' (b)E (b) G(b,8)E(r) . (7.20)
3" sz °

In Fig.7.6b the field u3"§ from the edge y=+d/2+a,z=0 is
given by

C! (a) in/4
u, b 04 G(2a,8)E(r) -

C(')(a)E(a)G(a,e)E(r) . (7.21)
4}/’2-7-;

u3"§ is the field py  from the edge y=+d/2+a,z=0 excited by

radiation from the first outer guide in the presence of the

second outer guide, and would not be present if the second

b
3"3

same edge excited by radiation from the second outer guide.

outer guide was missing. u is the field Py, from the

a

In Fig.7.7a the field u;.,

from the edge y=+d/2,2=0 is

given by

-C' (a)

S & — Gla,5)E(r) . (7.22)

In Fig.7.7b the field urg from the edge y=+d/2,2=0 is given

by
b Cé(b) in/4
., = G(a+b,8)E(r) + C'(b)E(b)YG(a,B)E(TY) . (7.23)
1"3 4 4\6;: 0

In Fig.7.7c the fieldtﬁﬁz from the edge y=+d/2,z2=0 is given

by
C' (a) RE7Z
" G(a+d,8)E(r) + C'(a)E(a)G(d,B8)E(x) . (7.24)
1"3 4 ui O

The fields (7.22), (7.23) and (7.24) are added to give the
field Pl from the edge y=+d/2,z=0 excited by radiation
from the second outer guide which would not be present with

only one outer guide.
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Similar calculations from the fields P for the edge
y=-d/2,2=0, Py and Py, from the edge y=-d/2-a,z=0 and
Pe from the edge y=-d/2-a-b show that '

" = _p" - (7.25)
P2 Pl .
Par T Pa (7.26)
" = -D" 7.27
Fa2 a2 .27
., (7.28)
Pe = P
Pll’ P" , P" "
The ray paths used to calculate > Ya17 Fyo and Pe

are the image about the z-axis of those shown in
Figs.7.5,7.6 and 7.7. The radiation caused by the finite

depth of the outer guides is the array sum of P (a) P (b)

r

and P multiplied by the appropriate coefficient A or
%, . This radiation must be added to P of (7.2) and (7.3)
to obtain‘the complete radiation pattern P__. ., of the array

of Fig.7.1.
In the first quadrant g < e < r/2 all edges except that
at y=+d/2+a+b are shadowed and do not contribute to the

radiated field so that

—ik (d+2§+2b) sind
= P + A_P' e
Pto'tal tl 15
-ik(gigéigosine »o
P (b) e . (7.
+ A2 O( )

In the second quadrant for r/2 < 2 <

_ik(éiégiié)sing

= P + A.P" e
Ptotal t 15
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-ik(giziig)sinﬁ
+ AP (B) e

d+2a)sine

-ik( 5
1] (1} ”
+ [APL + AP+ APl le ,
ik (22) sing
+ AlPO(a) e
-ik % sind
' 4+ AP
+ [AlPl 5 l]e
. +ik g-sinS
+ [AlP2 + A2P2]e
+ik(g§§05in8
+ AlPO(a) e
+ik (28 sine
1 " Pll
+ [A1P4 + A1P4l + A2 42]e
+ix (&22¥0) g
+ AP (b) e 2
270
+ik(gi2%i2§05ine
" . (7.30)
+ APle '
where P! are given 1in Chapter 6. The pattern is

. -8) = 6
symmetrical about 6 = 7 so that Fiotal (2m-8) = Pyiean ®),

7.4 NUMERICAL AND EXPERIMENTAL RESULTS

The radiation patterns of a five element waveguide
array are compared with other theoretical results and the
measured E-plane patterns of an H-plane sectoral horn with

appendages to simulate the outer guides (e'=6-vn).
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When the outer guides are of infinite depth the ﬁattern
consists of a single 1lobe (Fig.7.8,7.9). The fields are
essentially constant over an angular rangé of about 90-120°
degrees depending on the frequency. There 1is a small
discontinuity (<14B) at 6 = 90° off the beam axis in the
aperture plane along the shadow boundary.

The patterns calculated here are compared to that found
by residue calculus methods [38] in Fig.7.10. The patterns
agree to within a fraction of a dB at all angles in the
forward direction except near 8= 90° in the aperture plane.
Taking higher order diffraction terms reduces but does not
eliminate this discrepancy on the shadow boundary.

In Fig.7.11 the ray-optical pattern is compared to that
calculated for the case that the five element array is
embedded in a simulated groundplane [29]. Over an angular
range of ' 45° in the forward direction the two patterns
agree remarkably well, despite the presence of the simulated
groundplane. As expected, agreement is not so good for
larger angles, because the groundplane requires the field to
be zero at 9;f90°.

When the guides are of finite depth it is possible to
control the phase of the aperture field in the parasitic
guides relative to that in the driven guide. Hence the
radiation pattern may be adjusted to suit a particular
application (Figs.7.12-7.18). More control of the pattern is
possible for the five element array considered here as

compared to the three element array, because there are more

parameters which may be adjusted. In general the five
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element patterns have a smaller beamwidth and steeper slopes
then thé three element patterns. The five element patterns
may be adjusted'to produce two adjacent nulls about the beam
axis, whereas the three eiement patterns can produce only a
single null at the beam axis. The phase of the five element
patterns is generally more constant in the forward direction
and the back radiation 1is 1less then the three element
patterns.

As in the three element case, the patterns are least
accurate at 90° off the beam axis along the shadow boundary.
The discontinuity in the patterns is reduced by taking more
ray paths into account; however no significant improvement
is noted beyond ,quadruple diffraction. The discontinuity
varies between +3dB and -3dB depending on the array
parameters, which is larger then for the 1infinite depth
case. The shadow boundary difficulties were discussed in
more detail in Chapter 2. Because of the larger number of
edges in a five element array, these difficulties may be
expected to be greater here then for the three element array
discussed in the preceding chapter.

The experimental patterns for the five element array
(Figs.7.12-7.15) generally agree with the calculated ones to
within an accuracy not quite as good as the three element
patterns ( 1 dB up to.9'=60o and 3dB up to 6;=150°), but
still comparable. Thus the acéuracy of the ray-optical
pattern calculation appears to be degraded slightly when the
array is made larger.

Additional calculations are performed for arrays for
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which the guide depth was chosen to make the aperture fields
in the parasitic guides exactly in phase or exactly out of
phase with the driven guide. The aperture fields and the
corresponding radiation patterns are shown in Figs.7.16-
7.18). Relevant parameters of these patterns are tabulated
in Table III.

Note that the pattern has the narrowest 3dB beamwidth
when all aperture fields are in phase (Fig.7.17), asA might
be expected. However, the beam is not very flat across the
top. When the aperture fields in the parasitic guide are out
of phase (Fig.7.16) there is a deep null on the beam axis
and two lobes at 6=t38°. When the aperture field is
alternating in sign (Fig. 7.18) the pattern is a good
approximation to a sector shape, considering the small size
of the array. This is not surprising because the aperture
fields for this case are a crude approximation of a
truncated (sin x)/x curve (Fig.l1.3), whose radiation pattern
is expected to approximate a sector shape.

Note that the amplitude and phase of the aperture field
are determined by the array dimensions and cannot be
adjusted independently. A further improvement in the
patterns would require that each element be excited as in a

phased array.

7.5 SUMMARY

The radiation from a five element finite array of

parallel plate waveguides has been analyzed the same ray-
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optical methods used for the three element array in Chapter
6. The radiation pattern calculation 1is more complex
however, because there are more diffracting edges and hence
more ray paths to be taken into account.

When the outer guides are of infinite depth the
agreement between the ray-optical result and that calculated
by the residue calculus method is quite good, which gives
confidence that the ray-optical method can give acceptable
results for this size of array. The pattern also agrees
guite well with that calculated bydf§iener—ﬂopf technique.
for the array embedded in a simulated groundplane, which
indicates a general lack of sensitivity of the pattern in
the forward direction to the type of surrounding structure.

When the outer guides are of finite depth the
calculated and experimental patterns do not agree quitg as
well as for the three element array, indicating a slight
degradation of accuracy of the ray-optical method as the
complexity of the structure increases. The five element
array can produce a wider variety of patterns then the three
element by adjustment of the parameters, including a good
approximation to a sector shaped pattern for such a small

array.
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Fig. 7.3
ray path (see text)

b
Fig. 7.4
ray paths(see text)

Fig. 7.5
ray paths(see text)
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Fig. 7.6
ray paths (see text)

b

Fig. 7.7
ray paths (see text)
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Radiation Pattern Parameters

TABLE III

Flgure | A A, | null(dB) ?iEEWidfgdédegfigjé radigizgn(da)
7.8a 0 0 0 39 | s4 76 -25
7.13a | +0.131 | +0.073 0 12 | 21 64 -28
7.13 | -0.215 | -0.090 | -9 50 | 59 78 -26
7.13c +0.045 0 31| 43 67 -32

-0.131

LPT
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Chapter 8-

COUPLING BETWEEN STAGGERED GUIDES

The coupling coefficient for adjacent staggered
waveguides (Fig.8.1) will be found in a manner similar to
that for reflection and coupling of non-staggered guides.
First all possible ray paths up to and including triple
diffraction are determined by inspection. The fielad
represented by each ray is calculated from the field of the
ray preceding it. The diffraction problems of two successive
rays which occur in these ray paths will be solved first to
establish the notation used here. The analysis is restricted

to the TEM case.

8.1 CANONICAL PROBLEM

In Fig.B8.2a an isotropic line source u o= E(r)located at
a distance *; from an edge is incident on that edge at an

angle ¢, . The diffracted (not the total) field observed at

® such that 2%, is given by
cos ( 5 ) ¥ 0
- (8.1)
vl Gd(ro,GO,G)E(r)

at the diffracting edge, where



149

e-in/4 -ikr0 cos(e-eo) , 6-80
G . (r ,6_,8) = {-e F[V2kr . cos( )]
d 0 0 Jr 0 2
-ikr0 cos(8+eo) , e+60
-e F[¢2kr0 cos ( 3 )]}) (8.2 )

F(a) a >0
F'(a) = A (8.2a)
-F(-a) a <0

F(a) is given by (2.4) and E(r) is given by (2.10)
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In each case the diffracted field is a line source centred
at the diffracting edge.
-ikr cos(6-6 )
In Fig.8.2b a plane wave u, = e . is incident
on a half-plane edge at angle by An expression for the

diffracted field which is uniformly valid for all angles §©

may, from (2.2), be written as

u, = Gé(a,eo,e)E(r), (8.3)
where
G, (a,B ,8)
: _ Jafrto .
Gd(a,eo,e) T (o) (8.4)

and a is the distance from the edge to the observation

point. If ka>>1,

. Lo e (8.5)
Gd(a'eo,e) D(uoivl ,

where D(¢ .8 is given by (2.9).

8.2 CALCULATION OF THE COUPLING COEFFICIENT

Consider two adjacent semi-infinite parallei-plate
waveguides consisting of the three perfectly conducting
half-planes y=a,z>l, y=0,z>0 and y=-d,2z=0, where ¥ > 0 is the
angle of stagger of the top guide and l=a tanly . We wish to
determine the fields coupled from the driven guide (-d<y<0,
z>0) into the staggered guide (0O<y<a, 2z>0). As before the

incident field _s
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in the guide is decomposed into two plane waves incident on
the half-plane edges y=-d,z=0 and y=z=0 at angles 6 =0 and

2r respectively. Both plane waves have value
(8.7)

at the edges.

The singly diffracted field is shown in Fig.8.3a. The
incident field u, given by (8.7) is diffracted at the edge
y=2z=0. From (2.7) the diffracted field is given by a line

source

N .
u, = E-D(ZV,O)E(r) (8.8)

located at the diffracting edge. The contribution to the
coupling for single diffraction is found by treating (8.8)

as a line source and using (3.11), (3.12) and (3.2). Thus

J itn/4
As(l) = T =—— (2,0, (8.9)

2V2 ka N
which is identical to (3.17) in the TEM case.

The doubly diffracted fields are shown in Figs.8.5b and
c. In Fig.8.3b Fhe incident field u, given by (8.7), |is
diffracted at the edge y=z=0. From (8.3), as observed at the

edge y=a,z=1 the diffracted field is a line source

b 1. Ty (8.10)
ul = 3 Gd(c,2n,2 ¥)E(r)
. . 2 .
located at the diffracting edge, where ¢ = V& +al is

the distance between the two edges. This field 1is again
diffracted at the edge y=a,z=1 and from (8.1) gives a line

source
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b 1 _, Ul
u = Gd(Cr2TT,2

2 P "\y)Gd(Clﬂ' —“}112TT)E(I) . (8.11)

2

Fig.8.3c shows a ray path which is identical to that shown
in Fig.3.2c for a non-staggered guide. Here u; is given by
(8.7), ui is given by (3.34) and u; is given by (3.35)., The

contribution to the coupling coefficient 2, from double

diffraction is given by

in/4 .
; -ike
A (2) = ﬁr__e‘——" [G'(c,z-n,L -‘y>Gd(cl3—72Y- -¥,2m)e *

2
S 2/2 ka d

+ Cé‘d)co(d” ) (8.12)

1f y=0, (8.12) is equivalent to (3.36) in the TEM case.
The triply diffracted fields are shown in Figs.8.5d and
e. Fig.8.3d shows a ray path which 1is identical to that
shown 1in Fig.3.26 for a non-staggered guide. Here v, is
given by (8.7), uf is given by (3.37),u§ is given by (3.38)
and ui is given by (3.39) specialized for the TEM case. In

Fig.8.3e u, is given by (8.7), uwC is given by (8.10) and uz

1
is given by (8.11) with the final 27 replaced by é% -y .
This field is again diffracted at y=z=0 and from (8.1) gives

a line source

e 1 m 37 3r T
= = — -y — -y,— -y)G_(c,— -¥,0)E(rx) {8.13)
U, 3 Gy(e.2m, 5 NG (e, = =¥, = ~¥)G,(C.3

at the edge.
In Fig.8.3f the incident field uw, given by (8.7) Iis
diffracted at the edge y=-d,z=0. From (8.3) as observed at

y=z=0 the diffracted field uf is a line source

1
f 1 m
- : il (8.14)
Uy 5 Gd(d,O,z)E(r)
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located at the diffracting edge. This field 1is again

diffracted at y=z=0 and from (8.1) gives a line source

f 1, T
= - - d,
u Gd(d'o'2)Gd(

3n T
5 > YYE (r) . {8.15)

2'2

located at the diffracting edge. This field is again

diffracted at y=z=0 and from (8.1) gives a line source

f - l ] _TT_ ET_T__T{_ -l 3_“ -
u, = 3 Gd(d’o'2)Gd(d' 55 ‘r)Gd(c, > ¥,25)E(x) . (8.16)
In Fig.8.3g the incident field v, is given by (8.7), ug is

given by (8.10) and ug is given by (8.11) with the final 27
replaced by 3n/2 . This field is reflected at y=0,z=1 and

looks like a line source

g . 1 Ty 3T Ly, 30 (8.17)
wy o= 3 G"i(c,2ﬂ,2 .)Gd(C. > v, 2) (r)

at the image point y=-a,z=1, where the notation U§ denotes
a field in the figure labelled x that has been diffracted m
times and also reflected. This field is again diffracted at
y=a,z=1 and from (8.1) gives a line source

EL}
2

1
ug = 3 Gc'l(c , 27,

T

37 3n
5 -W,-50G6(2a,—5,2n)E(r) (8.18)

—‘}’)Gd(c,

at the edge. The total contribution to the coupling
coefficient from triple diffraction 1is found by treating
(3.39), (8.13), (8.16) and (8.18) as line sources and using

(3.11), (3.12) and (3.2). Thus

3 o in/4
AS( oo e I% c: (d)c, (24)
2/5 ka 0

. T 37 3n kij
<+ — — - —— — —_— -
Gyler2m,5 -¥)G, (e, =5 -¥, = ¥1Gy(e,5 -¥,0)
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m

, m 3n 37 =ik
+ = =— ==
Gd(d'o’2)Gd(d' ) W)Gd(c, > ¥,2m)e

3
2

g 3Ty (o 3T o, -iKLL
\{'l 2)Gd(2a, ,27\')8 ]

1
+ ' - -
Gd(dlznlz ‘%’)Gd(c, 5

i

+ — 1
8ka [CO

(@ (DE@)] (£.19)

The total coupling coefficient A (d,a) up to and including
triple diffraction is given by the sum of (8.9), (8.12) and
(8.19). Note that (8.19) is not  valid for V¥ =0 (non-
staggered guides) because of the restrictions which apply to
(8.1). If Yy -0, A;a) is given by (3.44).

Note that if the coupled field in the staggered guide
is along a shadow boundary the ray-to-mode conversion (3.12)
is no longer valid because the coupled field is not a ray
field. This difficulty arises when the modal angle On is
the complement of the stagger angle VY (i.e. &,=T/2-V,
Fig.8.4).‘1t does not occur in the TEM case here where 6,=0,

but would arise if other waveguide modes were considered.

8.3 NUMERICAL RESULTS

Numerical values for the coupling coefficient A_(d,a)
calculated as a function of the guide widths a and d and for
various angles vy are shown in Fig.8.4. As for the non-
staggered guides, the single diffraction provides the
average behaviour of the coupling coefficient. Addition of
the double diffraction terms reveals a fine structure which

becomes less pronounced as Y is increased.
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Exact results for the coupling coefficients are not
available for comparison. However, on comparing curves with
and without triple diffraction, it appears there is some

deterioration in accuracy as the stagger increases.

8.4 SUMMARY

The coupling coefficient between adjacent staggered
parallel plate waveguides was found by ray-optical methods.
The.numerical results show a moderate and gradual change
from the non-staggered results as the angle of stagger is
increased. These calculations will be useful for

calculations involving an array of staggered waveguides.
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Chapter 9

RADIATION FROM A STAGGERED PARALLEL-PLATE WAVEGUIDE

9.1 FORMULATION

The fadiation pattern of a staggered parallel-plate
waveguide (Fig.9.1) in the TEM mode is found by ray-optical
methods similar to those for a non-stéggered guide (Chapter
5). This pattern was found previously by Ryan and Rudduck
[42] using edge diffraction theory 1including terms
equivalent to double diffraction only. The ray paths
representing the fields considered here are shown in Fig.9.2
up to and including triple diffraction. Note that the
staggered guide has many more ray paths for a given order of
diffraction then a ﬁon-staggered one. The total  radiation
pattern is made up of the sum of the fields represented by
all the ray paths, taking into account that some fields are
shadowed and do not contribute in some angular directions.
In the following section the fields represented by each ray
path will be calculated, and then the total radiation
pattern will be found for all angles.

Consider a semi-infinite parallel-plate waveguide of
width a consisting of two perfectly conducting half-planes
y=-a/2,2>0 and y=+a/2,z=1, where Y >0 1is the angle of
stagger and 1l=a tan Y . We wish to determine the fields
radiated into the space outside the guide.

As before the incident field (8.6) 1in the guide is

decomposed into two plane waves incident on the half-plane
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edges. The wave incident on the bottom edge y=-a/2,z=0 at
6,=0 has value (8.7) at that edge. The wave incident on the

top edge y=+a/2,z=1 at 6,=2T has value

-ikg
€ (9.1)

i 2

at that edge.

9.2 CALCULATION OF RADIATION PATTERN

The singly diffracted fields are shown in Figs.9.2a and
b. In Fig.9.2a the incident field u, given by (9.1) s
diffracted at the edge y=+a/2,z=1. From (2.7) the diffracted

field is a line source

-ikg .
ui = = —— D(27,8)E(r) (9.2)

at the edge. In Fig.8.2b the incident field u, given by
(8.7) is diffracted at the edge y=-a/2,z=0. From (2.7) the
diffracted field is a line source

ui = -% D(0,8)E(x)

(9.3)

at the edge. In Fig.9.2c the incident field v, given by
(8.7) is diffracted at the edge y=+a/2,z=1. From (2.7) the

diffracted field is a line source

-ik?Q
u’ =
1 2

D(27,27-8)E(x) (9.4)

located at the diffracting edge. This field is reflected
from the lower guide at y=-a/2,z=1-a tanV¥ . The reflected

field u% is a line source (9.4) located at the image point
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y=-3a/2,z=1. The radiation pattern from single diffraction
is formed by the three line sources (9.2), (9.3) and (9.4)
located at the two guide edges and the image point
respectively.

The déubly diffracted fields are shown in Figs.%.2d-h.
In Fig.9.2d v, is given by (8.7) and 1€ is found from (8.3)
This field is again diffracted at y=+a/2,z=1 and from (8.1)

gives a line source

4d 1, T o_v 3n " 5
= = - =y ,~— -¥,8)E(x) (9.5)
u, 5 Gd(c,O,2 )Gd(c >

located at the diffracting edge. In Fig.9.2e the incident
field u, given by (9.1) 1is diffracted at the edge

y=+a/2,z=1, From (8.1) the diffracted field is a line source

-ik{

e : 3T
u, = > Gd(2d,2ﬂ, 2)E(r) (9.6)

located at the diffracting edge. This field is reflected at
the 1lower half-plane at y=-a/2,z=1 and, as observed at
y=+a/2,z=1, u% looks like a line source (9.6) located at
the image point y=-3a/2,z=1., This field is again diffracted
at y=+a/2,z=1 and from (8.1) gives a line source

-ik2
e e 37 3T (9.7)
p— ] ——— — E .
u, = > Gd§2d,2n, 2)Gd(2d, 2,9) (x)

located at the diffracting edge. In Fig.9.2f wu, is given by
(9.1) and ul is found from (8.3). This field is diffracted at

y=-a/2,2z=0 and from (8.1) gives a line source

-ik{
£ e 3 . T _y 8)E(Y) (9.8)
G'd(c,2'n, > \’)Gd(clz Y, )

u2 = 2

located at the diffracting edge. In Fig.9.2g u, is given by



166

(8.7) and UT is found from (8.3)., This field is diffracted at

y=+a/2,z=1 and from (8.1) gives a line source

1 L 37
= — ] —_— =Y y— - '2 -8)E . 9.9)
uJ > Gd(c,O,2 .)Gd(c > ¥,27-6)E (x) (

located at the diffracting edge. This field is reflected at
the lower half-plane at y=-a/2,z=1-a tan 6 . The reflected
field 1% looks like a line source (S9.9) located at the image
point y=-3a/2,z=1. In Fig.9.2h u;, is given by (9.1) and u?
by (9.6). This field is diffracted at y=+a/2,2z=1 and from

(8.1) gives a line source

' = —’,2 -G)E(r)
= > Gy (24,27, 5)Gq (28,750 T

(9.10)

h =
)

located at the diffracting edge. This field is reflected at
the 1lower half-plane at y=-a/2,z=1-a tan ¢ The reflected
field ug looks like a line source (9.10) located at the
image point y=-3a/2,z=1.

The btriply diffracted radiated fields are represented
by the ray diagrams in Figs.8.2i-p. Using methods similar to
those above, the expressions for the fields can be
determined by inspection. In Fig.9.2i the radiated field is

a line source

-ik§%
i £ ' 3y T ¢ T _y)6. (2T -¥,8)E(x) (9.11)
v, = > Gd(c,.?'rr,2 \r)Gd(c,z ‘},2 V) a 5

located at y=+a/2,z=1. In Fig.9.2j the radiated field 1is a

line source

Ty 3 ¢ 3Ty I -y,0)E(x) (9.12)
""\:])Gd(cl \11 2 ')Gd(c'z )

i . 1
u = Gd(C1012 2

3 2

located at y=-a/2,z=0. In Fig.9.2k the radiated field is a
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line source

-ik
k e ELI I 3T _y,2m-8)E(x) (9.13)
uy = > G (c,2m,~— > W)G (c, w,z W)Gd(c, 5 y,21=-8)E(

located at y=-3a/2,z=1. In Fig.9.21 the radiated field is a

line source

-ikg®
L e 37 37 L 4
= -y G 3 ¥,B8)E (1) (9.14)
u3 = 2 G(‘i(Za,Z'n, )G (2ar 2 2 ) (C

located at y=-a/2,z=1l. In Fig.9.2m the radiated field is a

line source

m _ 1. T oy 3T -—-G 2a,2L,8)E (1) (9.15)
u3 = > Gd(C,O,2 \}’)Gd(C, 2 ‘yl ) ( ’ I )

located at y=+a/2,z=1. In Fig.9.2n the radiated field 1is a

line source

un = 1-G'(c O, W)G (c,

= 21-8)E (9.16)
3 5 G303 2‘*’, )G(2a,2ﬂ)(r)

located at y=-3a/2,z=1.

In Figs 9.1m and n (8.1) is not wvalid and the
contribution from these ray paths is calculated separately.
In Fig.9.20 u, is given by (9.1) and “S
The reflected field u% which appears like a line source at

is given by (9.6).

y=-3a/2,z=1 is diffracted at the edge y=+a/2,z=1 and from

(3.26) the resultant field is

o e-ikﬂ 3r. 1 eiTr/4

u2 = 3 Gé(Za,2n,—3)[5 E(2a+r) - E(2a)E(r)] . (9.17)
2/2n

The field ug is made up of two line sources, one centered

at y=+5a/2,z=1, the other at y=+a/2,z=1. The reflected field

ug which is made up of two line sources at y=-7a/2,2=1 and

y=-3a/2,z=1 is again diffracted at y=+a/2,2=1 and from (8.1)
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- the resultant field is

u

o e'ikl
u3 = 4 G (2312.”, 2)G (4a, 'e)E(r)
-ik?{ 1w/4
- & c' (2a,27,20) & E (2a)G, (2a, T 8)E(r) . (9.18)
4 V2n
P

In Fig.9.2p u , given by (9.8) with 8 replaced by

3
2n-¢ , is reflected at the lower half-plane at y=-a/2,z=1l-a

tan 6 , The reflected field ug looks like a line source

-1ik%
p _ € . 3m
3 2 Gd(2a,2r, )G (da,— Y ,21=8)E(x)
e—ikﬁ 3T eiﬁ/4
- 2 Gé(Za,2ﬂ,—Eﬂ (2a)G (2a, G)E(r) (9.19)
vam

lqcated at the image point y=-3a/2,z=1,

The total fields 55 diffracted from the upper
edge y—+a/2 z=1 up to trlple dlffractlon are given by the
sum of (9 2), (9.5), (9.7), (9.11), (9.15) and (9.18). These
fields appear as line sources at the edge. The total fields

S5 diffracted from the lower edge y=-a/2,z=0 up to
triple diffraction are given by the sum of (9.3),
(9.8), (9.12) and (9.14). These fields appear as line
sources at the edge. The total fields S5 , given by the
sum of (9.4), (9.9), (9.10), (9.13), (9.16) and (9.19),
appear as line sources at y=-3a/2,z=1, which is the image of
the upper edge.

The radiation pattern formed by these apparent line

kil Ll . .
sources for 5 < 6 <Z+ % 1is given by

~-ik %-sine -ikfcost
e e
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+ik — sinb
" 2
+ s§" e
(o]

+ik % sinf -ikfcost

"
+ SO' e e '

(9.20)
where the exponential terms are the array factors which
adjust for the differing path lengths from the line sources
to a distant observation point. In other angular ranges,
some of the apparent line sources are shadowed and do not
contribute to the pattern. There are four shadow boundaries

dividing the radiation pattern into five regions which must

be considered separately (Fig.9.3). For 0 < ® <m@/2 -y

., d .
~ik 3 sin6 -ikfcosH
SO = SO e e (9.21)
For%-\v<e<% and —;—+\P<e<-3—;—-\y
oo dr o, . ., d
-ik 3 sing€ -~ikfcost +ik 5 sing
S = 1] n
o SO e e + sO e (9.22)
For '3—;—1 - V¥ < e < 2T§
+ik d sin®
S = 5" e 2 (9.23)
0 0
The pattern is clearly not symmetrical about 6=T7,
At the shadow boundaries 6 = %-WU %,%~+W and

1%- ¥ there are discontinuities in the radiation @pattern,
which may be reduced by taking higher order diffraction
terms into account. For example the single diffraction
radiation pattern given by (9.2), (9.3) and (9.4) has a

discontinuity at 6 = n/2 -Y because uf is shadowed for

. . . d ..
8 < %-ﬁw The addition of double dlffractlonxb eliminates

this discontinuity because it can be shown that (Fig.9.4a)
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-ik g-sine ~ikfcos’

d
+ik = sinf +
2 s oug [e=G 0] e e

- +
u. [g=(z -y ] e

a -ik a sinf ~ikfcos® (5. 24)
il - S.

= uy le=g o) Te y

if the asymptotic form (8.5) 1is wused. Similarly the

discontinuity at ® = 7/2 caused by shadowing of uf for ¢ < 7/2

can be eliminated by adding uz because (Fig.9.4b)

+ +ik 3d sin6 =-ikfcost + -ik d sing -ikfcosb
c Ll e 2
uy (6= ey ] e e + o [e= ] e e

(NTE

- -ik g-sine -ikfcos®t
] e e ) (9.25)

YR

= u; [6:
Similarly the discontinuity ate=-%+Wcaused by shadowing of

c . . t
u, for 6> %-+w' can be eliminated by adding u, because

(Fig.9.4c)

c . _ tik 3d sint€ -ikfcost £ 'r" _ +ik % sing
= (= +V = (7 4y
u) [8 (2 +¥) ] e e + o [8 (2 ¥) 1 e

g - + +ik —g— siné
= v, {e=(§-+¥) ] e . (9.26)

Similarly the discontinuity ats = é%-vcaused by shadowing of

. . f
ui for e:>§%-—w can be eliminated by adding u, because
(Fig.9.44d)

- . -
-ik = sinf -ikfcost +ik — sin®
2= Z-nTle 2 e +oulte=onTre
Y TR € 2 T2
d
-
£ 3m o+ +ik 5 sinf
= u [e=(—3 -¥) J e . (9.27)

However the addition of these double diffraction terms does
not completely eliminate discontinuities in the radiation
pattern, because the added terms are themselves shadowed in

some regions and have discontinuities at the shadow
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boundaries. However, the discontinuities in the double
diffraction terms is much 1less then those in the single
diffraction terms, so that the overall effect of adding the
double diffraction terms is to reduce the discontinuities in
the radiation pattern.

Similarly, by adding certain triple diffraction terms,
the discontinuities in the double diffraction terms can each
be eliminated. Again, the discontinuities which remain in
the triple diffraction terms are much less then those in the
double diffraction terms. In summary, higher order
diffraction terms can be added to reduce the discontinuities
at shadow boundaries.

The radiation pattern S for the staggered guide of
Fig.9.5 1is calculated in exactly the same way as S, . It is

found that

So(e) = SO(2Tr-6)

The ray paths which must be considered to find 58 are the

mirror image about the z-axis of those shown in Fig.9.2.

9.3 NUMERICAL AND EXPERIMENTAL RESULTS

The radiation pattern of a single staggered parallel-
plate waveguide calculated by ray-optical methods is
compared with the measured E-plane patterns of the H-plane
sectoral horn for a stagger angle of ¥ =45°, The patterns
consist of a singie asymmetrical lobe with maximum amplitude

\ (e'=e-T)
at about ©=40° off the guide axis (Figs.9.6a-d). The
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discontinuities which might be expected on the four shadow

(=]

boundaries at 9;—135°, -90°, -45°, and +45°‘(Fig.9.3) are
very small when the asymptotic form (8.5) is used. If (8.5)
is not used there is a discontinuity of about 3dB at 6§ =+45°
but all other discontinuities remain small. The phase varies
considerably in the forward direction ([81<90°) in contrast
to a non-staggered guide where the phase 1is essentially
constant over this range. The experimental patterns
generally agreed with the ray-optical theory to within 1 dB
except at large angles.

The patterns calculated by Ryan and Rudduck [42] are
very similar to those obtained here if only the ray paths
9.1la-h are considered.

Radiation patterns calculated using only single and
double diffraction are shown in Fig.%9.7. The single
diffraction pattern has pronounced discontinuities at the
shadow boﬁndaries, but the double diffraction pattern has
remarkably small discontinuities and is very similar to the
triple diffraction pattern.

The radiation patterns for stagger angles from 0° to
75° at a fixed guide width are shown in Fig.9.8. The pattern
changes gradually from that of a non-staggered guide as

is increased and becomes more asymmetrical.

9.4 SUMMARY

The radiation pattern of a single staggered parallel

plate waveguide 1is calculated by ray-optical methods. The
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discontinuities expected along the four shadow boundaries
are very small, even when terms up to and including only
double diffraction are considered. The good agreement
between this theory and the experimental results gives
confidence that both may be applied to moré complex

geometries.
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Chapter 10

- RADIATION FROM MULTI-ELEMENT STAGGERED WAVEGUIDE ARRAY

10.1 INTRODUCTION

The radiation pattern of a multi-element waveguide
array (Fig.10.1) with staggered waveguides 1is found by
methods similar to those used for the array of Chapter 6.
The main difference between the two arrays is that in the
non-staggered array all edges are in the aperture plane,
whereas in the staggered array the outer waveguide edges are
behind the aperture plane.

The stagger does change the radiation pattern
calculation significantly,however. As before the pattern for
the case when all guides are of infinite depth is calculated
first. The additional fields radiated when the outer guides
are shorted are calculated later. The analysis is restricted
to the TEM case.

Consider three adjacent semi-infinite parallel-plate
waveguides consisting of four perfectly conducting
infinitely thin half-planes at y=-d/2-a,z>l, y=-d4/2,z>0,
y=+d/2,2>0 and y=d/2+a,z>1 (Fig.10.2). The incident field
(8.6) in the central driven guide -d/2<y<d/2 1is decomposed
into two plane waves each with value (8.7) at the edges y=-
d/2,z=0 and y=+3/2,2z=0. These two plane waves are
represented by the incident rays in the central guide of

Fig.10.2.
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10.2 RADIATION WITH OUTER GUIDES OF INFINITE DEPTH

The total radiation pattern S; of thé array of tﬁree
parallel plate waveguides with only the center guide driven
is calculated. The field S 1is made up of the sum of the
fields scattered from all the edges and their images. Pow)
represents the field scattered from the open end of the
central gquide of width 4, s, (n=1,2,3,4) represents the
total field scattered from the nth edge (as labelled in
Fig.10.2) not already included in Pohﬂ (Fig.10.3,10.4), and

s;hw3,4)represents the fields scattered from the nth edge and
then reflected from the outer surface of the central guide
(Fig.10.5). The fields S- appear to emanate from the image
of the nth edge . The total radiation pattern must be
found separately for each of seven different angular regions
(Fig.10.6), because not all edges and images are visible at
all angles. The pattern need only be calculated for 0 <8 <

because the pattern is symmetrical about €& = 7,

0 <@ < %-&' all edges except edge 1 are shadowed and

—ik(d+2a)sine -ikfcos®
S = S_ e 2 e (10.1)
t 3
For 2 -v <6 < %
.. ,4d+2 . .
-1k ( 2a)51n8 -ikfcosH
St = S3 e e
-ik %—sine
+ Sl e

+ Po(d) . (10.2)
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For 3 <& <7 *¥
—ik(d+§a)sine -ikfcos8
St = 53 e e
-ik -‘21 sinb
+ s e
+ d
PO()
—ik(d-éa)sine -ikicos8
+ - e
s5 e
+ik % sing :
+ s, e ] (10.3)

For g—+W < g <

-ik(d+§a)sine -ikfcosh
St = S3 e e

-ik % sinB

<+ Sl e

+ d

PO()

+ik %-sine

+ S2 e
+ik(d+§a)sin6 -ik2cos6

v s, e e ‘ (10.4)

The fields P, were calculated in Chapter 5. The fields s,

are calculated using the ray paths in Fig.10.3. The fields
S, are calculated using the ray paths in Fig.10.4. The
fields s3 are calculated using the ray patﬁs in Fig.10.5.
The ray paths used to calculate S, and s, are the image
about the z-axis of those shown in Figs.10.3 and 10.4. The
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solutions for the fields represented by all these ray paths
are found in a manner similar to that in Chapter 8 and 9.
To calculate S, consider the ray diagram in Fig.10.3.

Here the radiated field is a line source

1 37 :
- 1 XU - L _v,6)E (10.5)
v, T3 Gd(c 2ﬂ, W)G (c, 2 Y, > W)G (c 2 ¥,6) (r)’
where c¢ = /224~a2 . To calculate S5 consider the ray
diagram in Fig.10.4. In Fig.10.4a the radiated field u32 is
a line source

a _ 1 T ‘y 8 E (10-6)
uy; < % d(c 2n,2 -¥)G, (c, 2 YE(T)
In Fig.10.4b the radiated field u3§ is a line source

b ) v
U33 = E Gd(C,Zn “})G (C =Y )G (2 s zse)E( ) (10'7)
In Fig.10.4c the radiated field u3§ is a line source

c _ 1 3TE _y 3T _y
ug; = 5 G(d,0, )Gd(d, 5ig ~¥)Gy(e, =5 =¥, 8)E(r) (10.8)

To calculate Sz consider the ray diagram in Fig.10.5. 1In

3

Fig.10.5a the radiated field is a line source

a 1 LA -8 (10.9)
u52 = —2— Gd(C 2TT \‘}’)Gd(cy 2 Wszﬂ e)E(l’),
In Fig.10.5b the radiated field ~ is a line source

Lo 2 (c,2 -¥)G, -y, 2L 2 27-8 10.1
U33 - 2 d ) ﬂ’z C: ’ )G ( a, 2, - )E(r) ( 0. O)
In Fig.10.5c the radiated field is a line source

c 1 37 7

- = e ! - - E 10.11)
U3, 2 Gd(d 0, )Gd(d, ) &)G (c ¥,2n-6)E(T) . (

Similar calculations for the fields s scattered from the

2
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edge y=-d/2,2=0 and S, from y=-d/2-a,z=1 show that

s, = -5, (10.12)

= - ‘ 10.13

S, S, , (10.13)
These results for S and Sz are now substituted into

(10.1), (10.2), (10.3) and (10.4) to give the total

radiation pattern of the array of Fig.10.2.

10.3 RADIATION WITH OUTER GUIDES SHORTED

Consider the array of Fig.10.1, which is equivalent to
the array of Fig.10.2 except that the outer guides are now
of finite depth. The fields coupled into these guides will
be reflected from the far end and reradiated. Adjusting the
depth of the guides will change the relativé phase of their
radiation and thus alter the radiation pattern.

The coupling coefficient Asﬁha) between the central
driven guide of width d and the adjacent staggered outer
guide of width a has been calculated in Chapter 8. The
coupled fields travel down the outer guide and are reflected
at the shorted end. The fields then travel towards the open
end ,where part is reflected back and part is radiated.

The value A' of the fields in the outer guides at the
aperture plane z=0 relative to those from the central driven

guide is the sum of a geometric series

A_(d,2) o12ks
AY = - ’
l—Rs(a) e12ks

(10.14)
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whereR _(a) is the reflection coefficient at the open end of
the staggered parallel-plate waveguide of width a [40], and
S is the depth of the outer guide measured from ;he
aperture plane.

The total radiation pattern of the array of Fig.1l0.1l is
calculated by adding the radiation field caused by the
finite depth of the outer guides to the fields radiated from
the array of Fig.10.2. The additional fields consist of
fields radiated directly from the outer guides, and fields
from other edges excited by fields in a shorted guide
(Fig.10.7).

Radiation from the outer guides is simply the pattern
5o (9.19-9.22) of a staggered parallel-plate waveguide
multiplied by A’ of (10.14). Scattering from other edges
due to radiation from the outer guides 1is calculated by
considering the ray paths in Fig.10.7. In Fig.10.7a the

field from the edge y=+d/2,z=0 can be written

ul,; = ; G} (d,2n )c (d, 2,e)E( r) . (10.15)

In Fig.10.7b the field from the edge y=+d/2,z=0 can be

written
b 1 in/4
Ui, = G'(d,0,2 )G (2a,21,6) - ¢'(@,0,3 )E(d)G (d,3Z,6).
1'3 4 d 2 4o d 2
(10.16)
In Fig.10.7c the field from the edge y=+d/2,2z=0 is
. o iK2 . an
Ujey = > Gd(c,O,—-+v)cd(c, ¥ )G (d,—z,e) (10.17)

In Fig.10.7d the field from the edge y=+d/2+a,z=1 is


http://Fig.10.7d
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ki nT :
Y113 = 5 G3(d,2m,9)G, (4,55, -\U)Gd(c,ﬂ -v,8) (10.18)
In Fig.10.7e the field from the edge y=+d/2-a,z=1 is

e - 2g! z S 3Ty, 2n-9 (10.19)
.U’i'3 - 2 Gd(d,2ﬂ’2)cd(d, 2'2 W)Gd(cs 2 ’ ),

The fields (10.15), (10.16) and (10.17) are added to give
the field S5 from the edge y=d4/2,2z=0 excited by radiation
from the outer guides. Similarly (10.18) gives the field

S5 from the edge y=+d/2+a,z=1, and (10.19) gives the
field Sé from the 1image point y=+d/2-a,z=1. Similar
calculations of the fields Sé from the edge y=-d/2,z=0 and

S, from y=-d/2-a,z=1 show that

_g!' (10.20
] )

1t

52
1 — (] (10-21)

5, = -S;.

The additional radiation caused by the finite depth of the

outer guides is the array sum of S sé and sé multiplied

0’ SO’
by the coefficient A' of (10.14). This radiation is added to
S, in (10.1)-(10.4) to obtain the complete radiation

pattern S for the array of Fig.10.1.

otal

For 0 < 6 < z -¥
2

-ik{( ysin® -ikfcosb

d+2a
2
= s + A'Sé e €

—ik(égi)sine
+ A'S e . (10.22)
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m
For %'-W < 8§ <=

=.S +
stotal t
+
+
For — < 6 < — 4y
2
Stotal

-ik{
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d+2a
2

ysin® -ikfcosb

(10.23)

}ysinB -ikfcosg
A'Sé e e

-ik (9;—‘3) sind
A'S e

-ik = sin$

4a-

-ik( §a)sine -ikfcosB
A'S§ e e

+ik g-sine
A'S! e
2

_ +ik(d—;ai) sind (10.24)
AS e



192

For §-+W <0 <

.. d+2 , Ly
-ik( 2a)51n€ -ikfcosH
S = S + A'Sé e e

-1k (28) sing

2
+ A'S
o e
-ik % sin®
+ A'S! e
+ik g-sine
+ A'S! e

+ik(§§éosine

+
+ik & ia)sinﬁ -ikicos®

4 € e . (10.25)

10.4 NUMERICAL AND EXPERIMENTAL RESULTS

The radiation pattern of a three element staggered
waveguide array calculated by ray-optical methods is
compared with measured E-plane patterns of an H-plane
sectoral horn with appendages added to simulate the outer
guides. Radiation patterns when the outer guides are of
infinite depth are shown in Fig.10.8 for wvarious stagger

angles iy . As ¥ changes from 0° to 90° the shape of the
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pattern changes gradually from that of a three element non-
staggered array to that of a single guide, as might be
expected. The general effect of increasing Y is to broaden
the pattern. |

When the outer guides are of finite depth the patterns
are generally similar to those for the three element non-
staggered array. The patterns have 3 dB beamwidths ranging
from *t20° to 80 depending on the frequency (Fig.10.9-
10.13). The discontinuities expected along the shadow
boundaries at 6= w/2 and 0= T/2+ Y were generally smaller
then in the non-staggered case: less then 2 dB at 6 =7/2
and less then 1 dB at G=="/2+yﬂ This is because there are
only two edges along any shadow boundary in the staggered
array as compared to four or six edges in the non-staggered
arrays of Chapters 6 and 7.

The experimental patterns generally agree with the
calculated ones to within 1 dB up to 6;=160° and within 3 dB
up to ©=t150°. The patterns at 6=180" could not be
measured accurately because of blockage by the antenna
mounting arrangement (&'-=6-T),

The effect of increasing Yy from 0° to 60° for a fixed
guide depth is shown in Fig.10.14. The patterns change
gradually from the non-staggered pattern for that guide
depth, which has a null on the beam axis, to a pattern with
a single lobe with beamwidth considerably narrower then that

of a single guide.
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10.5 SUMMARY

The radiation pattern of an array of staggered parallel
plate waveguides was calculated by ray—optical methods and
compared with experimental results obtained using an H-plane
sectoral horn with appendages. The calculation 1is more
complex then the non-staggered case because there are more
shadow boundaries and more ray paths to be considered. On
the other hand, the calculation is simpler because not all
edges are in the same plane, thus avoiding the difficulties
of multiple edges along a shadow boundary.

The discontinuities observed at the shadow boundaries
are generally much smaller then those observed in the non-
staggered case. This is not unexpected because only one edge
is shadowed at a time when traversing shadow boundaries in
the staggered array, as compared to three or five which may
be shadowed in the non-staggered array.

The patterns are genefally broader then for the non-
staggered case, especially for large 1y . The parameters can
be adjusted to give a significant reduction in beamwidth as

compared to a single guide, however.
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Chapter 11

GENERAL CONCLUSIONS AND DISCUSSION

11.1 DISCUSSION

Ray-optical methods based on the geometrical theory of
diffraction have been used to analyze the fields in coupled
parallel plate waveguides. Coupling coefficients between
both adjacent and separated waveguides were calculated.
Radiation patterns for small arrays, both staggered and non-
staggered, were calculated and also measured using an H-
pléne sectoral horn to simulate the two-dimensional
structures.

Ray-optical methods were <chosen for this analysis
largely because of the good results obtained by others for
variéus simple structures involving half-planes and parallel
plate waveguides. The structures considered here, even
though considerably more complex, consist of various
combinations of parallel plate waveguides. Thus it was
anticipated that ray-optical methods might be extended to
these more complex structures. The generally good agreement
of the ray-optical results obtained here with experimental
and other theoretical results where available, indicates
that this extension can be successful if the number of
diffracting edges is small,

Specifically, the coupling coefficients obtained here
agreed quiie well with those calculated by other methods in

the presence of other guides and/or a simulated groundplane
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[29] [38). Other results for coupling between two adjacent
guides in isolation (Fig.3.1) were not available for
comparison. Results for coupling between two separated
guides in isolation (Fig.4.1) agreed with» those obtaiﬁed
using wedge diffraction techniques [17] if the interaction
between guides was ignored. The inclusion of this
interaction yielded an oscillation in the coupling versus
separation curve which was qualitatively similar to that
obtained recently in [38] using modified residue calculus,
but not in good qguantitative agreement. A general lack of
sensitivity of the coupling coefficients to the details of
the surrounding structure was observed, which gives
confidence that these results may be applied directly to
more complex structures.

The radiation patterns obtained here for arrays with
guides of infinite depth (Fig.7.2) agreed well with those
calculatea by other methods [29] [38] for the same array in
isolation or embedded in a simulated groundplane. The
patterns for arrays with outer guides shorted
(Figs.6.1,7.1,10.1) showed good agreement with experimental
patterns using an H-plane sectoral horn in all cases. Other
calculated patterns for these arrays were not available for
comparison.

The basic difficulty in applying ray-optical methods to
these geometries is that fields diffracted along shadow
boundaries are combinations of fields of the same order of k
as the incident field and higher order diffracted fields.

Consequently, the order of each subsequent diffracted field
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is not diminished. Thus one immediate resuit of extending
ray-optical methods to more complex structures is that the
number of possible ray paths up to a given. order of
diffraction which must be considered grows rapidly as more
half-plane edges are introduced 1into the structure from
which the rays may diffract. A parallel plate waveguide
containing only two edges will reguire only 2 ray paths to
be considered to find the contribution to the feflection
coefficient from terms representing n times diffréction. By
contrast, two adjacent guides will reqﬁire many ray paths
(depending on n, see Appendix B). Thus ray-optical
calculations for simple geometries which require terms
including high orders of diffraction become intractable for
more complex geometries.

This difficulty is part of the reason why it may be
very difficult to use the uniform asymptotic theory (UAT) to
accurately calculate the coupling between adjacent
waveguides. The UAT 1is very successful in obtaining
excellent agreement with the known exact solution for the
reflection coefficient of a parallel plate waveguide.
Excellent agreement is obtained even at the mode transition
widths, where the exact curve of coupling versus guide width
has a cusp with discontinuous first derivative. However,
this excellent agreement 1is only obtained if terms up to
n=50 times diffraction are included. The wuse of UAT with
only a few orders of diffraction does not give significant
improvement in the reflection case at the mode transition

~widths over the simpler ray-optical method used here, and
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thus would not be expected to significantly improve the
coupling coefficient either. |

Another resul£ of extending ray-optical methods to more
complex structures is that the discohtinﬁities which oecur
at the shadow boundaries become 1larger. For a single
parallel plate waveguide this discontinuity in the aperture
plane is less the 0.5 dB, even when only 6 ray paths up to
triple diffraction are taken into account, and may be
reduced to an arbitrarily small value by considering more
ray paths. For a three element array of non-staggered guides
this discontinuity can be up to 3 dB depending on the array
parameters, even when 20 ray paths up to quadruple
diffraction are considered. It was not possible to reduce
this discéntinuity further by taking more terms with the
method used here. Thus near the shadow boundaries, the
accuracy of the ray-optical method decreases as the
complexity of the structure increases.

The accuracy away from the shadow boundaries 1is only
slightly affected by the array size, as indicated by the
agreement between ray-optical and experimental results,
which is about equally good for both simple and more complex
arrays.

The basic reason for this difficulty at the shadow
boundaries is that the method used to calculate the fields
along shadow boundaries 1is not accurate. If a field
represented by a ray in the aperture plane is diffracted,
then the resultant field in the aperture plane is not a ray

field. Thus when this field is in turn diffracted in the
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aperture plane, the ray method used here does not yield an
accurate value. This applies to all triply and higher order
diffracted fields in non-staggered open-ended parallel plate
waveguides calculations by the ray-optical method.

For a single guide this inaccuracy, as measured by the
size of the discontinuity in the pattern and comparison with
the exact result is quite small. For the waveguide arrays,
however, the errors are cumulative, because diffracted
fields are repeatedly calculated as if the incident fields
are ray fields.

The method used here predicts that the singly
‘"diffracted field along the shadow boundary will look 1like
one-half the incident field and the doubly diffracted field
will look like one-guarter the 1incident field. Lee and
Boersma [32] showed this to be inaccurate for the case of a
plane wave incident on two non-staggered parallel plates and
a line source incident on two staggered plates. Thus it may
be expected to be inaccurate for the case of a lipe source
incident on two non-staggered plates which arises repeately
in the arrays of Chapters 6 and 7.

1f a solution for this double half-plane diffraction
problem was évailable, the discontinuities in the radiation
patterns in the aperture plane might have been reduced
somewhat. However, for better accuracy a solution to the
triple half-plane diffraction problem (Fig.4.12) would have
been needed also.

When the ray-optical methods used here are extended to

more complex parallel plate waveguide structures, the
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combination of the large number of ray paths needed and the
inaccuracy of the method along the shadow boundaries leads
to discontinuities up to *3 dB in the non-staggered case 1in
the calculated radiation pattern, which cannot be eliminated
in a simple manner. However, the radiation patterns away
from the shadow boundary in the aperture plane agree Qquite
well with the experimental results so that the ray-optical
methods employed here can be useful for predicting the
patterns in the angular regions of greatest interest for
most applications. Thus ray-optical methods can, within
these limits, successfully predict the radiation from
coupled éarallel plate waveguides.

The radiation patterns of small arrays of parallel
plate waveguides are potentially suitable for‘a variety of
applications. A remarkably good sector-shaped pattern with a
-10 4B beamwidth of 134° and steep skirts was obtained with
a five element array, considering that the aperture size is
only slightly more then two wavelengths. A pattern whose
amplitude was constant within 0.5 4B over a 120° angular
range was obtained with a three element non-staggered array.
Other patterns were obtained with nulls on the beam axis.

These results could be applied directly to the design
of H-plane sectoral horns with appendages to produce a fan
beam with wide angle coverage in the E-plane and a narrow
beam in the H-plane. The sector-shaped pattern could be
applied directly as a line feed for a parabolic cylinder'
reflector. If the depth of the parasitic guides could be

- varied dynamically, e.g. by the reactive loading described
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in [35], some beam steering should be possible.

11.2 SUGGESTIONS FOR FURTHER WORK

There are a number of guestions which arise from this
work that warrant further investigation. An attempt may be
made to improve the accuracy of the calculation of the
fields along the shadow boundaries of the non-staggered
array by using the uniform methods of Lee and Boersma [32],
thus avoiding the assumption'used here that all fields are
ray fields. The problem of a line source normally incident
on two parallel plates may be investigated first. The far
field may be obtained by a reciprocity argdment using the
solution for a plane wave on two parallel plates in [32],
but the field at all points along the shadow boundary is
needed here. The solution for a 1line source incident on
three parallel plates would also be required for both the
three and five element non-staggered arrays. However, as the
number of edges along the shadow boundary increases, the
problem becomes much more difficult, because the number of
ray paths to be considered to obtain the desired accuracy
grows rapidly. Ray-optical methods may cease to be practical
when more then two edges are considered if better accuracy
is required than was obtained with the methods used here.
Similarly, the coupling coefficient calculations may be
improved usihg uniform methods, particularly near the mode
transition regions where cusps are expected, but again the

number of ray paths which must 'be considered for better
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accuracy is very large.

Other methods may be used to improve the coupling and
radiation pattern results. For coupling between two
separated guides, the modified residue calculus method [38]
produced the expected cusps at the mode transition widths,
and is more accurate than the ray-optical approach used
here. This coupling coefficient may be substituted in place
of the ray-optical one to improve the radiation pattern
calculation of the 5 element array. However, the resulting
improvement may not be large, because the coupling
coefficient is only about 0.1 (-20 dB), and the field
diffracted from the outer edge which is not reradiated from
the outer guide is about 0.25 (-123B) compared to the field
in the central guide. Radiation patterns for arrays with
outer guides of infinite depth have also been calculated
using modified residue calculus, and this method may be
extended to the case of shorted outer guides. However, this
method becomes more difficult to use for large structures
where there are many propagating modes. The reflection
coefficient from a single waveguide was calculated with good
accuracy using a moment method [48], and this approach may
be extended to find coupling coefficients and radiation
patterns. Another moment method [35] [36] which has been
applied to reactively loaded parallel plate waveguide arrays
with walls of finite thickness in a groundplane may also be
useful in this context. A combination of ray-optical and
moment methods [11] [44] may help to overcome some of the

difficulties near shadow boundaries if the moment method is
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used near the aperture plane and the ray-optical method away
from it.

The results obtained here may also be used as a guide
to designing an array of concentric circular waveguides
(Fig.1.5). These are known to produce reasonably ‘good
patterns by empirical adjustment of the parameters. The
TE,, -TEM coupling coefficient between open-ended coaxial
circular waveguides would be required to predict the
radiation pattern. The present work may be considered a
first step towards the analysis and optimization of such an

array.

11.3 CONCLUSIONS IN BRIEF

Ray-optical methods have been applied to parallel plate
waveguide structures with up to six half-plane edges.
Theoretical and experimental radiation patterns agree guite
well except near shadow boundaries, where discontinuities
are observed. - The method is not accurate near mode
transition regions and shadow boundaries, even when many
orders of diffraction are taken into account. Consequently,
the accuracy is reduced as the number of half-plane edges
along a shadow boundary is increased. However, the regions
of greatest interest are most often away from the mode
transition regions and shadow boundaries, and here the
errors are acceptably small, provided the spacing between
edges 1is at least one-third of a wavelength. Improving the

results by using uniform methods is difficult because of the
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large number of edge interactions which must be considered.
Larger and more complex arrays require higher orders of
diffraction than smaller and simpler arrays. A wide variety
of patterns 1is available with a three and five element
waveguide array with only the central guide driven by
adjusting the width and depth of the outer parasitic gquides,
including some which could be used to efficiently illuminate

a parabolic cylinder reflector,
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APPENDIX A

SCATTERED FIELDS ALONG A SHADOW BOUNDARY

The results (3.26) and (3.29) may be checked by using a symmetry
relation for scattered fields

u (21-8) = -7 u (8) : (a.1)
S S

which is exact for diffraction by a plane screen [3]. The scattered field
by definition includes reflected and diffracted fields, but not the incident
field, (3.26) and (3.29) as written do not satisfy (A.l). However, if (3.29)
is derived by finding the field at a small angle § off the shadow boundary

(Fig. A.l) and then taking § -+ 0, then (3.29) may be written

e1k(r+ro) e1k(r+r0) e+i"/4 elkro eikr
um = + - + T (A.2)
Vk(r+ro) 2Vk(r+r0) 2vV2T Vkr0 vkr

If the first term, which is the incident field at the observation point is
subtracted out, then the remaining terms representing the scattered field

us(gﬁ satisfies’ (A.1l), where us(égo is given by (3.26), as is shown below.

Consider a line source E(r) incident on a half plane at eo=3n/2

(Fig. A.l), the total field observed at 6 = g—+6 is given, from (2.12) by
2 -in/4 o1KR krgr g
ut = ;-e —— F|-2 /= sin 3
v +r+ +r+R
k(rO r+R) ro r
iks kr r
+T = F|+2 AN cos ) (A.3)

Vk(ro+r+s) r +r+S 2
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ikR , ikR kr r
= 6———‘3————— +.v/—2?-elﬂ/4 - ———F|+2 —-—-Q—-sin%
vk (r _+r+R) Yk (xr +r+R) r +r+R
0 O L O -
iks [ kr r 1
e 0
+ T —————F|+2 /= cOs T (A.4)
Vk(ro+r+s) ro+r+S

where R,S,r,ro,e and 60 are defined in Fig. 2.3. let § - 0, then R > r+r0,

s - r—ro, and

ik(r+r0) ik(r+ro) ~it/4  ik(r-r.)
_ e e e 0 Joke
w, o= T - T———— 4+ T = e F[ 2kro]
Vk(r+r0) 2Vk(r+r0) e

(A.5)

If kr >>l  (A.5) = (A.2) QED.

8y

Fig. A.1l
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APPENDIX B

HIGHER ORDER DIFFRACTION TERMS FOR COUPLING
BETWEEN ADJACENT PARALLEL PLATE WAVEGUIDES IN THE TEM MODE

A general expression for TEM-TEM coupling of O(k-%) between adja-
cent waveguides is derived for all orders of diffraction. First the equations
(3.18), (3.26), (3.29) and (3.30) are specialized to the TEM case and used to
calculate the contribution to the coupling for a generalized ray path. All
possible ray paths from the driven guide to the parasitic guide are traced
systematically and their contributions are added to give the coupling coeffi-

cient.
From (3.18) the incident field u£=%-in the driven guide excites a

diffracted field

1 1
ul = 5—12 Co(rl)E(r) (B.1)

as observed at a point in the aperture plane a distance r, away from the

diffracting edge, where

-1 if Ie—eol /2
T = (B.2)
3n/2 .

*1 if |e-8 |

This field travels along the shadow boundary and is again diffracted at an-

other edge a distance r, away in the aperture plane. The resultant doubly

1

-1/2

diffracted field of O(k ) is from (3.26) or (3.29)

T

. 2 .
u2 = —Z-Co(rl)E(rl+r) . (B.3)

When the line source u in the aperture plane is diffracted from another

-1
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edge the resultant field is

T

u = 2 C'(r )E(rl+...+r

m m 01 ) : ®-4)

m-1

where ro-1 is the distance from the line source to the diffracting edge. The

field u may be diffracted into the parasitic guide at 6=0 or 27 and from

(3.30) the resultant field is

= '
um+l T2T3 Co(rl)co(rl+...+rm)E(r) (B.5)

where r is the distance from the incident line source to the diffracting edge

and N is given by (B.2)

The field u contributes to the amplitude A00 of the mode in the

+1

parasitic guide from {(m+l) diffraction

in/4 T,.T
+ /r et
Oo(m Lo fre 22 Cl (x))Cy (x +.ubr) (B.6)
Y2 ka 2
=1/2 . . .
The 0(k ) contributions to AOO for the fields of any ray path are thus
m+1
dependent only on the signs of T, and Ty and on the total path length r, = z

n=1
in the aperture plane.

All possible ray paths from the driven to the parasitic guide are
now traced and the wvalues of 12, T3 and rt are evaluated for each ray path.
Each ray path in the aperture plane starting and ending at the central edge
y=2=0 follows a simple pattern which may be uniguely represented by a binary
number (0,1,00,01,10,11,000,001,etc.) where 1 represents a ray going down to
y=-d, z=0 and back to centre and O represents a ray going up to y=a, z=0 and

back to centre. The paths length rt=s of any ray path starting and ending at

the central edge y=2z=0 may be written

n
s = jzl [2a(1-1mkj) +2d i

mkj] (B.7)
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where
imkj = a binary digit in a binary number representing a ray path,
m = number of digits in binary number,
k = decimal value of binary number,
j = digit number in binary number counting from left to right.

All possible ray paths including at least quadruply diffracted
fields contain within them a path starting and ending at the central edge
y = z = 0 for which the path length is given by S. The ray paths divide
naturally into four groups depending on from which edge in the driven guide
(y = 0 or =d) the incident field is first diffracted and from which edge the
penultimate ray is diffracted into the parasitic quide (y = 0 or a). The

four groups shown in Table B.l.

TABLE B.1l Groups of Ray Paths

Group # .Incident Ray Pgnultimate Ray Rath Length
Diffracted at y= Diffracted at y= re
1 0 0 s
2 0 a S + a
3 -d 0 s +d
4 -d a S+d+a

The product 1213 is determined by inspection of the ray paths in
each group. The gquadruple and higher order diffraction contributions to the
coupling coefficient are given by terms of the form (B.6). The complete ex-

pression is, using the asymptotic form (5.12):

m R .
(4-=) _ i : f Cp(S) kit olem L

(-1)
00 /2 ka m=2 k=1 2°°
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® 2 C _(s+a) i + 1
M 2 z 32m+1) (-1) e
m=1 k=1 2
m
®© 2 C_(s+d) i
+ 11 ?2m+1) (-1 ™
m=1 k=1 2
E fm CO(S+d+a)
+ —_——— (B.8)
mel k=1 2 (%*2)

A general expression for terms of O(k—l) was not found. The contribution of
these terms beyond six orders of diffraction was not significant, however.

Note that the number of ray paths for each order of diffraction n

2 -1
/ for n even and E-Z(n )/2

> for n odd and n#l. By comparison

is given by 2"
there are only two ray paths for each order of diffraction in the calculation

of the reflection coefficient.

In the special case of TEM-TEM coupling between guides of equal

widths (a=d) the expression (B.8) reduces to

(4-=) i 5 S
oo - ) n/2 (8.9)
2/2 ka n=4 2
n even

For ka >> 1, using (3.31) and (3.23)

(4me) Li37/4 © _ikna
A e N (8.10)
00 o/3m (ka)3/? n=a 2™/2 n1/?
n even

Numerical values for the complete coupling coefficient A using the results

00
of Chapter 3 up to and including triple diffraction and (B.10) for higher
orders of diffraction are given in Fig. B.l. Note that the solution is not

significantly ihproved over the triple diffraction results of Chapter 3. The

cusps which are expected at the mode transition widths are not obtained.
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A comparison of expressions for the O(k—%) reflection coefficient

obtained by Yee et al. [50] and Boersma [3] shows that the UAT solution of [3]
3/2

may be obtained from the ray-optical solution of [50] by substituting n for

2n-l nl/2 in the dencminator of the infinite sum ([3], egns. (8.3) and (8.9)).
It was conjectured that the same substitution might yield an improved expression

for the coupling coefficient. Performing this substitution on (B.10) yields

(4-) 2 e13'n/4 © 2n/2 e1kna
oo Y= 32 372 (B.11)
2v2m (ka) n=4 2 n
n even
which may be rewritten, using n=2m
A (4-w) % e131r/4 0 om e1k2ma (5.12)
00 2/27 (ka)>/? m=2 2 2372 p¥/2

In the reflection case, this substitution works very well, and the numerical
results converge slowly to show a cusp at the mode transition widths, as ex-

>
pected, for n &~ 50. However, in the coupling case, this substitution does not

work at all, because a ratio test shows that the series (B.1l2) does not con-

verge.
01
;
= .
A2
T8 -251
<
o
°
(@]
~
_50 v T T T |
10 20
d/A
Fig. B.1

coupling coefficient A00
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APPENDIX C

CONTINUITY OF FIELDS ACROSS SHADOW BOUNDARIES

The expression (9.24), which shows how a discontinuity in the single

diffraction radiation pattern of a staggered parallel plate waveguide is elimi-

nated by adding a double diffraction term, is derived here using (8.2) and the

asymptotic form (8.5). It will be shown that (Fig. 9.3a) for 6 = %-—W that as
§ -0
ood o, o d .
+ik = sinb -ik — sin® -ikflcosH

b 2 d 2

u, (6+68) e + u_ (6+6) e e

1 2

oo d ., .
a -ik 5 sin® -ikfcosH
= u2 (6=-8) e e ’ (C.1)

Note from Fig. 9.1 22+d2 = c2; cos(g-—W) = %7 sin(g-—w) = 57 A, A', a", a™

and B are defined by reference to the previous equation.

+ik § sin(X -y+6)

1 Ll
> D(O,2 -¥+§)E(r)e

oo d ﬂ . m
ik > sin (2 Y+3§) J.kILcos(2 -¥Y+48)

1 L 3" 0T
+ 5 D(O,2 W)Gd(c, 5 —W,Z -Y+8)E(r)e e
R Y | . s
1 . - i -ik 5-51n(§'-w-6) -lleOS(E'-W‘G) (C.2)
= 3 D(O,E-—W)Gd(c,—g'—W,E'-W-é)E(r)e e

+ikdsin (-g— -y+8) +ikicos (% -¥+5)

A'e e + A"Gd(c,gl

™
5 -Y,— -¥+§)

- A"'%(C,B—zﬂ‘ _\y,.ﬂ_ _\{1_5) (C-3)
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+ikd sin (% —y+8) +ik2,cos(12r- —y+8)

A'e e
-in/4 . .
+ A" E— {—e+lkc cosd F[/2kc sin (%)] 4 e ikc cos (2¥ 6)F[»/E-k—c- cos (Y- %)]}
Ve ,_
e-i /4 ~-ikc cosd 8 -ikc cos(2¥+3) §
= A" — { +e F[ vY2kc sin(- 50] + e F[V2kc cos (¥+ Ep] }
/T
(C.4)
let § >~ 0, then A' = A" = A" = A, and
. -im/4 . .
e+J.kc + a e " { _e+1kc rlo] + e ikc cos 2¥ Fl ;—-—-ch cos¥] }
Vr
-in/4 . ‘ . '
= A Se—— { 4o iKe rlo] + e ike cos 2¥ F[/2kc cos¥] } (C.5)
e
A e+1kc _ % e+1kc + B = %_e+1kc + B QED. (C.6)

The expressions (9.24) - (9.26) are derived in a precisely analogous manner.
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APPENDIX D

National Research Council of Canada
Division of Electrical Engineering
Antenna Pattern Range

TRANSMITTER

A standard 1 mW signal generator output was fed
through a coaxial coupler to a travelling wave tube amplifier with
a gain of 30 db. A sample from the coupler was used to monitor fre-
quency, using a digital counter. A low-pass filter was inserted at
the output of the amplifier as a safeguard against any harmonics.
The signal was then fed through low-loss semi-rigid coax up to the
roof. The antenna used to flood the horn under test was a standard
X-~-band horn.

RECEIVER

The other end of the link basically consists of a
large turntable on the roof, which is rotatable through 3600, and ap-
propriate receiving instrumentation. Antennas under test are mounted
on this turntable, whose angle of rotation is linked by a synchro system
to a lab recorder chart drive.

After reception by the horn under test, the R.F. signal
was converted to an I.F. of 65 MHz by a waveguide crystal mixer attached
to the horn flange. Frequency selective tees within the Scientific
Atlanta Series 1600 Wideband receiver, permit the use of a single RG214/U
coaxial cable to transfer the L.O. signal from receiver to mixer, and,
after harmonic mixing takes place, the I.F. signal from the mixer back
down to the receiver. Directly below the turntable, above the lab
ceiling, an R.F. rotating joint with mercury contacts, facilitates rotation.

After the CW signal reaches the receiver, and has passed
through a series of different conversions,l KHz modulation is added.
This modulation is then detected by a bolometer detector and the output
fed to a Scientific Atlanta Rectangular-Polar Pattern Recorder, Series 1580
for plotting.

PATH LENGTH

Transmission path length from the turntable centre of ro-
tation to the adjacent vertical 4"x4" support was 27 feet, 4 inches.
Actual aperture to aperture separation was about 12 inches less.



230

IRy YWY TYN - WWIIYIT 31207

ksl 53103S YUYYINID
¥ 3{y023 Y WIS >
~YFLLYd , oM
Y79y L23Y
|otwr 1ty 2AUNDIIS)
A Ya13rgilY
Y2UNNCD LM
003/ sIY3Is ‘H3v1 g H v
wINTO3Y
Qg 3 M yILnd
lumyrty o.._u.: NS Ssyg -0 1
; R 5
_AN1or 4 0 e/
ONI_LYLOY
S ELIAY _ Y
39 IAYM
r—-—=-r—-——7—"7"77 i “.-IllllJvlauA
_ | _
! | | V‘
! _
| LSTFL _
| Y0 pyor | WooH Imcoord
I LN L . YaIMe L XL
S YENEY \\\.\}\M\,\m\W\K\




