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ABSTRACT 

The propagation c h a r a c t e r i s t i c s of l i g h t n i n g surges i n compressed 

SFg gas insulated power substation was studied using an electromagnetic 

transients program. Numerical models were developed to represent the 

behaviour of d i f f e r e n t system components e s p e c i a l l y under l i g h t n i n g over-

voltage conditions. 

The c h a r a c t e r i s t i c s of l i g h t n i n g surge propagation i n overhead 

multi-phase untransposed transmission l i n e s was analysed f i r s t . Modal 

an a l y s i s , :tpgether with s p e c i a l r o t a t i o n techniques to f i t time domain 

solutions were then used to simulate the wave propagation i n multi-phase 

untransposed l i n e i n an electromagnetic transients program. Non-linear 

voltage-dependent corona attenuation and d i s t o r t i o n phenomena were also 

investigated. Available f i e l d test r e s u l t s could be duplicated to within 

5%. 

The c h a r a c t e r i s t i c s of l i g h t n i n g surge propagation in multi-phase 

single-core SF^ cables was studied next. A program was developed to obtain 

the cable parameters for t y p i c a l cable configurations. The amount of core 

current returning through i t s own sheath and through the earth were computed 

to i l l u s t r a t e the single phase cable representation for wave 

propagation i n si n g l e core SFft cables. 

i i 
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INTRODUCTION 

Every year, atmospheric l i g h t n i n g discharges cause numerous 

disturbances and damages to e l e c t r i c power systems, such as, destroying 

transformers and causing black-outs of large areas. This thesis i s 

devoted to the analysis of l i g h t n i n g surge propagation into compressed 

SFg gas-insulated substations. The MICA project of the B r i t i s h Columbia 

Hydro and Power Authority was chosen as a t e s t example. 

Insulation co-ordination requirements are usually derived from 

simulated surge propagation studies. This thesis shows that the present 

p r a c t i c e of i n s u l a t i o n co-ordination design can be improved with the 

numerical models developed i n t h i s t h e s i s . The contributions of t h i s 

thesis to i n s u l a t i o n co-ordination design and r e l a t e d power system studies 

includes the following: 

1. Determination of wave propagation i n untransposed l i n e s - Analysis i s 

used, with a s p e c i a l r o t a t i o n of modal parameters and transformation 

matrices to make the method sui t a b l e f or time-domain solutions of 

wave propagation i n multi-phase untransposed l i n e . The s u i t a b i l i t y 

of d i f f e r e n t s i m p l i f i e d transmission l i n e models i s c l a r i f i e d by 

comparing simulation r e s u l t s with those from an exact multi-phase 

rep re sentat ion. 

2. Representation of non-linear voltage-dependent corona e f f e c t s - Corona 

d i s t o r t i o n and attenuation has been simulated with voltage dependent 
44 12 

v e l o c i t i e s and c o r r e c t i o n factors i n the past ' , or with f i n i t e 

d ifference methods. However, these methods are i n e f f i c i e n t for 

d i g i t a l computer a p p l i c a t i o n s . More e f f i c i e n t computational algorithms, 

using compensation methods, are developed i n t h i s thesis to 
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investigate the non-linear voltage dependent corona e f f e c t s . 

3. Determination of wave propagation i n multi-phase si n g l e core SF^ 

cables - Published methods for the c a l c u l a t i o n of cable constants 

give inconsistent r e s u l t s . A new cable constants program f o r m u l t i ­

phase single core SF^-cables has been developed by the author, using 

various converging.Mnfinite s e r i e s . The complete s h i e l d i n g e f f e c t 

of the exter n a l l y grounded sheath at frequencies above 1 k Hz has 

been confirmed with t h i s program. 

The problem of transient groundrise caused by i n t e r n a l breakdowns 

or by l i g h t n i n g impulses, as studied by Ontario Hydro"^, i s not included 

i n t h i s t h e s i s . These transient p o t e n t i a l d i f f e r e n c e s between SF^ bus-

ducts and ground occur mainly at the junction with the overhead l i n e . 

As t h i s thesis shows, the current return i n the SF bus-duct i s completely 
o 

through the sheath at frequencies above 1 kHz, whereas the current return 

of the l i g h t n i n g impulse on the overhead l i n e i s i n the ground. At the 

junction, the return current must therefore pass from the sheath into 

the ground through the ground leads, which i n turn causes the transient 

groundrise problem. These transient groundrises are an important factor 

i n the design of the grounding system, because they can cause damage to ru 

a u x i l i a r y wiring or shocks to personnel. 
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CHAPTER 1: LIGHTNING CHARACTERISTICS AND STROKES 
TO POWER TRANSMISSION LINES 

1. Introduction 

The f i r s t important experiment on l i g h t n i n g was done by Benjamin 

F r a n k l i n , who used f l y i n g k i t e s to show that l i g h t n i n g i s e l e c t r i c a l i n 

nature. For more than two centuries, l i g h t n i n g has been the subject of 

acti v e research. Much of t h i s research has been concerned with the pro-

te c t i o n of people and property against the e f f e c t s of l i g h t n i n g stroke. 

2. Lightning discharge mechanisms 

Lightning strokes are f i r s t i n i t i a t e d i n s i d e thunder-clouds. A 

thunder-cloud usually contains several negative and p o s i t i v e charge centres 

d i s t r i b u t e d i n d i f f e r e n t locations as shown i n Figure 1.1a. As soon as 

the e l e c t r o n i s j u m p i n g o v e r t o n e u t r a l i z e the p o s i t i v e charge, 

a step leader s t a r t s to move down the earth i n d i s c r e t e zig-zag steps of 

about 50 meters i n length as shown i n Figure 1.1b. This downward p i l o t 

stroke i s about 1 cm i n diameter and i s not v i s u a l l y detectable by the 

human eye. 

As t h i s stepped leader continues to progress downwards, p o s i t i v e 

charges are induced and accumulated on the ground surface. Eventually, 

these p o s i t i v e charges jump upwards and form the return stroke to 

meet the downward stepped leader as shown i n Figure 1.1c. This highly 

luminous return stroke produces most of the thunder which i s heard. The 

return stroke i s about 10 cm i n diameter and at a temperature of around 

30,000°K. Once a l l the p o s i t i v e charges transfer to the thunder-cloud as 

shown i n Figure l . l d , the discharged charge centre completely becomes 
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a. Charge n e u t r a l i z a t i o n b. Stepped leader moving 
within the cloud. downwards. 

I n i t i a l i z a t i o n of upward d. Complete upward propagation 
moving return leader. of return leader to cloud 

(charge centre becomes 
p o s i t i v e ) . 

Figure 1.1: Charge d i s t r i b u t i o n and propagation during 
i n i t i a l l i g h t n i n g discharge. 
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a. Discharge between 2 b. Negative charge dart 
charge centres. stroke flowing down the 

continuous earth path. 

c. Negative charge dart d. Formation of subsequent 
stroke about to h i t return leader from ground 
the ground. to cloud charge centres. 

Figure 1.2: Charge d i s t r i b u t i o n and propagation during sub­
sequent dart leader '(multipli-stroke l i g h t n i n g ) . 
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1 
p o s i t i v e and s i n g l e stroke l i g h t n i n g discharge i s completed. 

2 3 However, about 50% of a l l l i g h t n i n g flashes are multi-strokes ' 

and contain 3 or 4 subsequent strokes, t y p i c a l l y separated by 30 to 40 ms. 

About les s than 100 ms a f t e r the f i r s t stroke, a high p o t e n t i a l d i f f e r e n c e 

i s again established between the charge centres. Discharges again occur and 

a dart leader i s formed which moves earthwards i n the previous main stream 

as shown i n Figure 1.2a to 1.2c. S i m i l a r l y , a return stroke i s also formed 

and more p o s i t i v e charges trans f e r to the thunder-clouds as shown i n 

Figure 1.2d. 

The whole process of multi-strokes with r e l a t i v e stroke magnitudes 

and time scales i s i l l u s t r a t e d i n Figure 1.3a and- 1.3b. T y p i c a l sub­

sequent strokes are of the i n i t i a l stroke magnitude and are w e l l separated 

(about 30 - 40 ms) i n time. The i n i t i a l stroke i s the prime factor i n the 

i n s u l a t i o n co-ordination studies, but subsequent strokes must be taken into 

account as a r r e s t e r s must be able to handle r e p e t i t i v e discharges, and the 

dead times of the auto-reclosing switchgear must be set longer. 

V e l o c i t y 100% = 300 m/jjs 

Figure 1.3a: Diagram showing time i n t e r v a l s between i n i t i a l 
and subsquent strokes.(Ref.3) 



100|is 

lOQuis 

-35ms- •35ms 

Figure 1.3b: Current magnitudes of i n i t i a l and subsequent 
strokes i n t y p i c a l l i g h t n i n g flashes. 

3. S t a t i s t i c a l c h a r a c t e r i s t i c s of l i g h t n i n g strokes 

Due to the d i f f e r e n t d i s t r i b u t i o n s and i n t e n s i t i e s of charge centres 

ins i d e the thunder-cloud, the c h a r a c t e r i s t i c s of l i g h t n i n g strokes show a 

large s t a t i s t i c a l v a r i a t i o n i n both magnitude and shape. 

a. Magnitude of l i g h t n i n g strokes 

The voltage stress on the power system depends on 

the magnitude of the l i g h t n i n g current, which i s therefore a c r i t i c a l 
4 52 

factor i n determining i n s u l a t i o n requirements. -Recorded measurements .' 

are shown i n Figure 1.4. I t can be seen that 80% of the l i g h t n i n g current 
magnitudes are within 10 to 100 kA, and only 5% exceed magnitude of 100 kA. 

52 

It i s suggested that the l i g h t n i n g stroke has to be simulated 

as an incident current source to the power l i n e with a maximum current 

magnitude of 100 kA for i n s u l a t i o n co-ordination studies. However, t h i s 

current source w i l l become an overvoltage wave when propagating down the 

power l i n e due to the inherent surge impedance of the l i n e . Thus, for 



8 

Figure 1.4: Cumulative P r o b a b i l i t y of Occurrence of the Amplitudes 
of Lightning Currents obtained by summarising r e s u l t s 
from more than 624 measured incidents from 9 countries 
(Ref. 4). 
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equipment te s t purposes, overvoltage waves are prescribed, 

b. Waveshape of l i g h t n i n g stroke 

The l i g h t n i n g waveshapes measured by d i f f e r e n t researchers essen­

t i a l l y resemble a double exponential waveshape of d i f f e r e n t r i s e time and 

decay time. The observed spread of r i s e time i s from very short to 10 us. 
5 

The observed decay time also spreads from 2 to 100 ps (see Figure 1.5a). 

The e l e c t r i c power industry therefore agreed many years ago to use a 

l i g h t n i n g overvoltage wave for equipment i n s u l a t i o n t e s t i n g purpose of a 

shape 1.2 x 50 ys (explanation-of designation i n Figure 1.5b and 1.5c). 

Some te s t i n g p r e c r i p t i o n s also specify that t h i s f u l l wave be chopped with 

a spark gap i n the t a i l to expose the equipment to the higher frequencies 

which are contained i n the voltage collapse. 

4. Frequency of l i g h t n i n g strokes to earth 

The thunderstorm a c t i v i t y on earth i s measured by the isokeraunic 

l e v e l . This isokeraunic l e v e l (IKL) gives the number of days per year that 

thunder has been heard. Usually, thunder cannot be heard outside a 7-24 km 

radius. An updated world map of isokeraunic l e v e l i s shown i n Figure 1.6. 

As expected, higher IKL i s found within the t r o p i c a l and sub-tropical 

regions close to the equator. 

A f t e r obtaining the IKL of a given place, the number of strokes 
2 7 to earth per km (N) i n a p a r t i c u l a r l o c a t i o n i s given by 

N = A (IKL) stroke/(km 2 - yr) 

where 

A = 0.1 to 0.2 
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t^=rise time 
=time to crest 

t2=decay time 
=time to h a l f value 

10 100 T i m e ^ s ) 

a. Wave fronts and t a i l s of l i g h t n i n g surges 

Time 

Double exponential wave V = v^ ( e - * t e r ) 

s wave Time to crest 
t 1 =1.67(X2-X ) . 

=1.2jus 
Time to h a l f value 

t =X.-X 
I 4 o 

=50JJS 

Time 

c. T y p i c a l surge waveform impulse generator 

Figure 1.5: Waveshape of l i g h t n i n g strokes.(Ref.5) 



Figure 1.6: World D i s t r i b u t i o n of Thunderstorm Days (Ref.6) 
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5. Frequency of l i g h t n i n g strokes to power l i n e s 

For estimating the number of l i g h t n i n g strokes to power l i n e s , 

we can start, from the ' e l e c t r i c a l shadow' cast on the ground by the t a l l 

tower structure with power l i n e s . The frequency of l i g h t n i n g strokes on 

the ' e l e c t r i c a l shadow' i s assumed to be the frequency of strokes to the 

power l i n e s . The width (w) of the shadow area estimated by reference 6 i s 

chosen. For a power l i n e with two ground wires, the width i s given by 

(see Figure 1.7) 

w = 4h + b 

where h = height of ground wire i n m 

b = separation between ground wires 

S i m i l a r l y , f o r a power l i n e with only 1 ground wire, the width i s given 

by 

w = 4h 

where h = height of ground wire i n m 

and for power l i n e s without ground wires, the width i s given by 

w = 4h + b 

where h = height of phase wire i n m 

b = separation between outermost phase wires 

Thus, the number of strokes/km - yr to the power l i n e (N ) i s 
Li 

N L = 0.1 (IKL) stroke /km -yr (1.1) 
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For a t y p i c a l 500 kV tower of the MICA Dam Project, for the l i n e 

close to the substation, we have 

AT fr\ i w o r > \ 4 x 37.5 + 18.64 
L = ( O - 1 ^ 3 0 ) loOO ( 1 ' 2 ) 

= 0.5 strokes /km - yr 

GW GW 
GW = ground wire 

M . 

O : 
PW 

PW = phase wire 

2h b 2h 

$ s = s h i e l d i n g angle 

= 23° 

h = height of ground wire 

= 37.5 m 

b = width between ground wire 

= 18.64 m 

Figure 1.7: Lightning stroke ' E l e c t r i c a l shadows' of a 
t y p i c a l 500 kV transmission l i n e . 

6. Shielding f a i l u r e phenomenon of l i g h t n i n g strokes 

As shown i n Figure 1.7, ground wires are designed f o r s h i e l d i n g of 

the phase wire from d i r e c t l i g h t n i n g strokes. However, l i g h t n i n g strokes 
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could s t i l l 'sneak' through the ground wire and h i t the phase wire. Such 

shielding f a i l u r e s have been recorded i n various countries for d i f f e r e n t 

tower conf igurat ions. 

Maikopar^ derived a shielding f a i l u r e curve based on observed f i e l d 

data (see Figure 1.8). However, the graph does not shows the f a c t that 

shie l d i n g f a i l u r e s occur mainly on lower l i g h t n i n g s t r i k e currents. At 

higher currents, (e.g. >14.2;kA f o r MICA), the phase wire i s e f f e c t i v e l y 

shielded from l i g h t n i n g strokes. 

As seen from Figure 1.1 and 1.2, the p i l o t downward stepped leader 

from the thundercloud i s formed and propagates earthward f r e e l y regardless 

of the structure on earth i n i t i a l l y . Later, the return strokes i s formed 

from a ground object closest to the leader t i p , (ground wire, phase wire, 

or the ground) arid propagates upward to meet the stepped leader to complete 

the l i g h t n i n g path. This ground object i s the object which w i l l be struck 

by the l i g h t n i n g stroke. 

8 

Brown analysed r e s u l t s from the 120,000 km - yr l i n e i n the Path­

finder Project and deduced that the target i s not chosen u n t i l the distance 

between the stepped leader t i p and the prospective object i s shorter than 

the s t r i k i n g distance r . This s t r i k i n g distance i s related only to 

the stroke current as 
7 i T 0 • 7 5 r g = 7.1 I m 

where 
I = current in kA 

From t h i s s t r i k i n g distance concept, we can develop the e l e c t r o -

geometric model, as shown i n Figure 1.9a. The shielding f a i l u r e of ground-

wire at lower current amplitudes can c o r r e c t l y explained by t h i s more 

ref i n e d method. The degree of exposure of d i f f e r e n t conductors i s 
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SHIELD ANGLE - DEGREES 

Figure 1.8: P r o b a b i l i t y of Shielding F a i l u r e vs. Shield Angle 
between Ground Wire and Top Phase Conductor/ 

represented by drawing exposure arcs of s t r i k i n g distance radius, and 

centred at each i n d i v i d u a l conductors. The i n i t i a l power frequency 

voltage of the phase conductor i s ignored as t h i s voltage i s comparatively 

small to the discharge voltage of the l i g h t n i n g strokes. 

For l i g h t n i n g currents of 10 kA and 14.2 kA, the corresponding 

exposure of the phase conductor PW i s shown. It can be seen that the phase 

conductor exposure to l i g h t n i n g stroke i s decreased with increases i n 

s t r i k i n g current. For current of amplitudes higher than 14.2 kA, for t h i s 

tower structure i n MICA project, the phase conductor i s e f f e c t i v e l y 

shielded by the ground wire and the ground as the exposure arc i s 

n e g l i g i b l e i n s i z e (See Figure 1.9a). 
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BC=phase wire exposed arc 
for s h i e l d i n g f a i l u r e 

SI 

Figure 1.9a: Electrogeometric model with maximum 
s t r i k i n g distance of 53.3m. 

Stroke Current in kA 

Figure 1.9b: Frequency D i s t r i b u t i o n of Shielding F a i l u r e 
Stroke Currents in case of Shielding F a i l u r e 
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Brown et a l further investigated t h i s s i t u a t i o n by taking the 

angular d i s t r i b u t i o n of the l i g h t n i n g stroke g(^) into account and 

evaluated the phase wire exposed arc for d i f f e r e n t stroke currents as 

x = r h s i n i i ^ l ^ 

2 2 
where: g(^) = - cos y (1.4) 

our The d e t a i l e d a n a l y t i c a l r e s u l t s are shown in Figure 1.9b. For 

MICA tower of maximum s t r i k i n g distance of 53.3 m (I =14.2kA), the r e s u l t 

shows that l e s s than 1% of sh i e l d i n g f a i l u r e l i g h t n i n g currents to the phase 

wire w i l l exceed 14 kA. This agrees well with the geometric i n t e r p r e t a t i o n 

shown in Figure 1.9a. 

The l i g h t n i n g stroke usually h i t the ground wire or the tower. In 

t h i s case, a voltage w i l l b u i l d up ."across the in s u l a t o r because of the 

po t e n t i a l r i s e on the tower crossarms. If the insula t o r f l a s h over 

(' backflashover') to the phase conductors, then l i g h t n i n g overvoltage 

surges w i l l appear on the conductors. 
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CHAPTER 2 : LIGHTNING SURGE PROPAGATION IN 
OVERHEAD TRANSMISSION LINES 

1. Introduct ion 

Propagation of l i g h t n i n g surges due to d i r e c t strokes, or backflash-

overs i n overhead l i n e s influences the choice of i n s u l a t i o n r e q uire­

ments. One must know the attenuation and d i s t o r t i o n c h a r a c t e r i s t i c s of the 

l i n e i n order to f i n d the overvoltages entering the substation where most 

of the equipment i s concentrated. This section t r i e s to answer the questions 

whether i t i s possible to represent untransposed overhead l i n e s as 

equivalent single phase l i n e s for the s t r i c k e n conductor with accuracy, 

and whether s e l f , p o s i t i v e or zero sequence impedances should be used in 

such single-phase representations? 

At f i r s t , f i e l d t e s t s r e s u l t s are duplicated by using a Fourier 
9 

transformation method. This method not only includes the frequency-

dependence of the l i n e parameters, but i t also uses the exact complex, 

frequency-dependent transformation matrix which requires recomputation 

at each frequency within the frequency range.typical of l i g h t n i n g surges 

(e.g. 10 k Hz to 1MHz). This method i s recommended for the simulation 

of distant strokes where the frequency dependent c h a r a c t e r i s t i c s must be 

included. 

For close-by l i g h t n i n g strokes, the above frequency-domain solution 

can be replaced by a simpler time-domain solution method. This method 

i s based on modal analysis with frequency-independent parameters and r e a l -

valued transformation matrices. The r e s u l t s obtained with the simpler 

time-domain simulation method agree very well ( < 4% deviation) with 

the accurate frequency-domain simulation method. 



After confirming the correctness in the time-domain simulation 

with the exact N - phase representation of the overhead l i n e f o r close-by 

l i g h t n i n g strokes, the r e s u l t s obtained are thus compared against s i n g l e -

phase approximate representations as presently used. Furthermore, 

a d d i t i o n a l recommendations are made on how to remove unce r t a i n t i e s i n the 

choice of surge impedance values of overhead l i n e s . ^ I t i s also found 

that frequency dependence ef f e c t of nearby l i g h t n i n g stroke can be ignored, 

Line parameters can be chosen at high frequency e.g. at 1 M Hz, and l i n e 
11 12 

resistance can be ignored as contradictory to the previous f i n d i n g s . ' 

2. Modal analysis for N - phase untransposed l i n e 

The well known transmission l i n e equations describe the propagation 

of electromagnetic waves on overhead transmission l i n e s . However, contrary 

to the s i n g l e phase case, the solution to the N- phase case cannot be 

obtained e a s i l y since each of the N overhead conductors i s mutually 

coupled to the other conductors. The following two sets of simultaneous 

second-order p a r t i a l d i f f e r e n t i a l matrix equations describing the change 

in voltages and currents along the N - phase l i n e must be solved: 

dVJ 
phase" 

dx n x l 
r phase r phase 

" 1 Jnxn L J n x l (2.1) 

d l 
dx 

phase" 

n x l 
= r Y P h a s e i r v p h a s e i 

L Jnxn L J n x l (2.2) 

where 
[ z p h a s e ] . 

[Yphase-| 

[-,-phase j 

nxn 

nxn 

n x l 
[V phase. J n x l 

impedance matrix in phase domain 

admittance matrix i n phase domain 

phase current vector 

phase voltage vector 
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The N coupled differential equations in equations (2.1) and (2.2) 

can.be transformed into N decoupled equations by replacing phase quan­

t i t i e s with modal quantities, 

[ vphas e ] = [ T ] [ vmod e ] (2.3) 

[ Iphase ] = [ T _ 3 [Imode] (2.4) 

and by choosing [T ] and [T ±] in a certain way, as described later. Applying 

equations (2.3) and (2.4) to equations (2.1) and (2.2) gives 

demode 
dx [ T , ] " 1 [ z P h a S e ] [T . ] [ I m ° d e ] (2.5) 

_ j-̂ modê  |.̂.mode-| (2.6) 

and 

d l 
dx 

mode 
= [ I . ] " 1 [ Y P h a S e ] [T ] [ .V n o d e ] (2.7) 

= j-Ymodê  ̂ o d e ^ (2.8) 

To find 

x , and replace 

T̂ ], we f i r s t differentiate equation (2.1) with respect to 
*" V phase] 

with equation (2.2): d l 1 

dx 

d V h a s e l 
d x 2 

^phase-j j.Yphase^ ^phase^ (2.9) 

With equation (2.3), this can be written in modal quantities as 

2„mode 

dx 
= t y " 1 [ Z p h a s e ] [ Y p h a S e ] [T v] 1^°**] (2.10) 

(2.11) 

http://can.be


I f [T 1 i s the matrix of eigenvectors of I Z p h a S e ] [ y p h a s e ] , then [ A] 
v 

becomes a diagonal matrix, with i t s elements being the eigenvalues of 

j-zphase^ ^ p h a s e ^ 

S i m i l a r l y , f o r the current q u a n t i t i e s , we have 

J2Tmode a L_ 

L dx 2 

= [ T . ] - 1 [ Y P H A S £ ] [ Z p h a S e ] [T.] [ I m ° d e ] (2.12) 

- UJ [ I m ° d e ] (2.13) 

where [T\] = matrix of eigenvectors of [Y*\ ] [7? ], with [A] 

being i d e n t i c a l to that i n equation (2.11). 

Taking the transpose of the expression for [A] i n equation (2.12) 

and comparing i t with that f o r [A] i n equation (2.10), while remembering 

that [ Z p ^ a s e ] and [ y P ^ a s e ] are symmetric, gives: 

[A] = [?±f [ Z p h a S e ] [ Y P H A S £ ] ( [ T . ] ^ " 1 

= I T v ] _ 1 t Z P h a S £ ] [ Y P H A S E ] [ T V ] 

or [T v] = (-[T.] 1")" 1 (2.14) 

Thus, only one of the matrices or [T ] i s needed. Using only 
, rm -i • i . i J i <r rr,niode, . r,,mode, the [T^J-matrix, we can obtain the modal parameters of [Z J and [Y J 

from equation (2.6) as 

[ Z m ° d e ] = [7±f [ Z p h a S e ] [T.] (2.15) 

and from equation (2. 8) as 

[ Y M ° D E ] = [ I . ] - 1 [ Y P h a S e ] ( [ T . ] 1 1 ) - 1 (2.15a) 

r mode,-! _ t r v p h a s e , - l r m , or [ Y ] = [T.] [Y ] [T.] (2.16) 



13 14 In the computer pugram developed for t h i s modal a n a l y s i s , ' 

equation (2.16) i s used f o r these two reasons: i t does not require the 

inverse of [T ] and secondly, the program calculates [Y ] f i r s t anyhow, 

from which [ Y p k a s e ] i s obtained by inversion. [ Y m o d e ] i s then e a s i l y 

obtained by taking the r e c i p r o c a l of the diagonal elements of the r i g h t -

hand side of equation (2.16). [ Z m ° d e ] i s not calculated from equation 

(2.15), but i n a simpler way from 

[ Z m ° d e ] = [A] [ Y m o d e ] - ^ (2.17) 

that i s , each component i s simply 

„mode l 
i Ymode ( 2 < l g ) 

This i s v a l i d because [A] from equation (2.11) can be rewritten as 

IA] = [ T ^ " 1 [ Z P h a s e ] [ Y P h a S e ] [ T J . 

= [ T , ] " 1 [ Z p h a S e ] [T.]. [ T . ] " 1 [ Y P h a S e ] [ T J 

= [ Z m o d e J . [ Y m ° d e ] (2.19) 

3. Rotation of eigenvectors f o r zero shunt conductance 

It has to be noted that the eigenvectors (columns of [T^] or [T y]) 

are only determined to within a m u l t i p l i c a t i v e constant. Each eigenvector 

can, therefore, be m u l t i p l i e d with any non-zero complex s c a l a r , and i t w i l l 

s t i l l be the correct eigenvector. 

Since we assume zero phase shunt conductances (corona losses w i l l be 

discussed l a t e r i n Chapter 4), the modal conductances should also be zero. 

This can be achieved by multiplying the eigenvectors with a properly chosen 

constant. Then equation (2.8), which i s defined i n the frequency domain, 
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can be rewritten i n the time domain as follows 

8.mode 
1 

3x = [ c
m o d e ] 

3 modd v 
9t 

In order tp obtain zero modal conductances, a ro t a t i o n scheme i s used 

which makes the modal admittance matrix [Y m o c^ e] purely imaginary, 

mode = { } j [ B
m ° d e ] ^ 

L J r o t a t e L J J L J r o t a t e 

This r o t a t i o n i s equivalent to d i v i d i n g the i - t h eigenvector ( i - t h column 

of [T ]) by a factor D^. F i r s t , f i n d the angle 6̂  of Y ^ m o d e , as shown 

in Figure 2.1. 

Then 
90° - 0. 

D. = e I 
(2.20) 

With a l l Dj^'s forming a diagonal matrix [d], the modified matrix of 

eigenvectors becomes 

IT.] = [T.] [D] 1 i J r o t a t e • i J L J 
(2.21) 

Then from equation (2.15a), 

[ Y m ° d e ] r o t a t e = [D] [ T . ] " 1 [ Y P h a S e ] ( [ T . ] 1 ) " 1 [D] (2.22) 

or 

[ Y m ° d e ] r o t a t e = [D] [ Y m ° d e ] [D] (2.23) 

Since a l l matrices i n equation (2.23) are diagonal, equation (2.23) i s 

simply a to t a t i o n of Y m ° d e by an angle (90° - 6^, which according to 
„ , , r„mode, , Figure 2.1, makes [Y ^rotate P u r e l y imaginary. 
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After [ Y m ° d e 0 i s found from equation (2.23), and [T.] 
1 rotate H ' 1 i rotate 

from equation (2.21), [ Z m ° d e ] i s calculated from n rotate 

mode [ Ymode - 1 

rotate rotate 

These modal quantities and transformation matrices obtained are 

c h a r a c t e r i s t i c s of the p a r t i c u l a r design of the untransposed l i n e . 

These modal parameters and modal transformation matrices are needed as 

input for the representation of untransposed d i s t r i b u t e d - parameter l i n e s 

in the time domain s o l u t i o n , such as i n the UBC version of the E l e c t r o -
13 14 

magnetic Transients Program as described i n ' 

Figure 2.1: Complex Y m o d e before and a f t e r r o t a t i o n 
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4. Confirmation of accuracy of eigenvalue and eigenvector subroutine 

The UBC Computing Centre l i b r a r y subroutine DCEIGN^^ i s chosen to 

compute the eigenvalues and engenvectors of the [Y]-[Z] matrix. This 

double p r e c i s i o n subroutine f i r s t reduces the complex matrix to a Hessenburg 

matrix H. The subdiagonal elements of H are then forced to converge to 
49 

zero by the modified LR method. Hence the diagonal elements of H converge 

to the eigenvalues. The eigenvectors can then be obtained by backward 

su b s t i t u t i o n . 

The correctness of the program has been checked by comparing i t s 

output with published r e s u l t s f o r a doub l e - c i r c u i t line"*"^. Both r e s u l t s 

of modal attenuations and modal v e l o c i t i e s agree to within three d i g i t s 

(see Table 2.1). The modal matrices [T ] d i f f e r only s l i g h t l y (see Table 

2.2) . 

Table 2.1 

UBC & BPA modal analysis r e s u l t s for a 735 kV l i n e 16 

Modal attenuation 

.15998E6 

.18438E6 

.18497E6 

.18606E6 

.18615E6 

.18614E6 

neper/mile 

BPA 

.15998E6 

.18437E6 

.18497E6 

.18605E6 

.18614E6 

.18614E6 

Modal v e l o c i t y 

UBC 

.61227E-1 

.19050E-2 

.18209E-2 

.54529E-3 

.50169E-3 

.47704E-3 

miles c/s 

BPA 

.612E-1 

.191E-2 

.182 E-2 

.544E-3 

.502E-2 

.475E-3 

5. Real-valued frequency - independent transformation matrix 

Time domain solutions with the transformation matrix [T_^] become 

d i f f i c u l t i n theory since [T^] i s complex as well as frequency- dependent. 



Table 2.2 

UBC and BPA modal matrix [T ] r e s u l t s for a 735 kV l i n e 

. 3412-j.0022 

.3948-j.0157 
,4822-j.0 
. 3412-j.0022 
.3948-j.0157 
.4822-j.0 

. 3412-j.0022 

.3955-J.0157 

.4832-j.0 

.3412-j.0022 

.3955-j.0157 

.4832-j.0 

.5558+j.0 
•3324+j.0230 

-.3128+J.0248 
.5558+j.0 
.3324+j.0230 

-.3128+J.0248 

•5558+j.0612 
.3294+J.0594 

-.3153-j.0095 
•5558+j.0612 
.3294+j.0594 

-.3153-j.0095 

-.4959-j.0262 
.5486-j.0 

-.1118+J.0056 
-.4959-j.0262 
.5486-j.0 

-.1118+j.0056 

-.4959+j.0452 
.5453-j.0784 

-.1105+j.0215 
-.4959+j.0452 
.5453-j.0784 

-.1105+j.0215 

.1730-j.0017 

.4647-j.0247 

.5410-j.0 
-.1730+J.0017 
-. 4647+j.0247 
-,5410+j.0 

.1730-j.0298 

.4681-J.0598 

.5469-j.0408 
-.1730+J.0298 
-.4681+j.0598 
-.5469+j.0408 

.3209+j.0008 

.4804+j.O 
-.4145+j.0304 
-.3209-j.0008 
-,4804+j.0 
.4145-J.0304 

.3209+j.0208 

.4659+j.0285 
-.4064+J.0048 
-.3209-j.0208 
-.4659-j.0285 
.4064-j.0048 

.6827+j.0 
-.3550-j.0021 
•0812+j.0061 

-.6827+j.0 
.3550+j.0021 

-.0812-j.0061 

.6827+j.0737 
-.3637-j.0422 
.0869+j.0159 

-.6827+j.0737 
•3637-j.0422 

-.0869+j.0159 
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However, the imaginary part of the matrix [T ] i s always small 5%) 

compared with i t s r e a l part. By taking the r e a l part or the magnitude of 

the matrix i t s e l f , we obtain modal parameters which-are • s t i l l accurate 

enough ( ^ 2% deviation). 

Furthermore, the attenuation caused by corona may be much higher 

than that caused by the series resistance and for close-by strokes, trans­

mission l i n e s should be represented as l o s s l e s s . With the approximations, 

the frequency dependence of the modal transformation matrix disappears. 

It i s therefore recommended that the complex matrix be approximated by a 

real-valued, frequency-independent matrix. This makes simulations much 

easier f o r two reasons: 

a) A frequency independent modal matrix does not require recompu-

ta t i o n of the modal matrix at each frequency considered within 

the l i g h t n i n g frequency range, e.g. 10 kHz to 100 kHz. 

b) A real-valued modal matrix enables d i r e c t transient simulation 

to be performed i n the time domain. 

6. Frequency dependent e f f e c t s i n l i g h t n i n g surge propagation 

To include frequency dependent effects i n transient overvoltage 
17 18 

studies i s a complicated topic by i t s e l f . Meyer, Dommel and Marti 

have investigated the t ime domain methods using convolution i n t e g r a l s and 

weighting functions. However, the frequency domain solutions can also be 
Q 

obtained by the Fourier Transformation methods. Though the frequency 

domain method i s inadequate to account for the non-linear phenomenon 

(e.g. corona discharge) and the time domain phenomena (e.g. i n s u l a t o r 

back — flashover or a r r e s t e r operation), i t i s s u f f i c i e n t for the purpose 
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of studying frequency dependent e f f e c t s on l i g h t n i n g surge propagation i n over­

head l i n e s . 

9 

As discussed i n an e a r l i e r work , the frequency domain solutions 

includes frequency dependence of l i n e parameters. It also uses the exact 

complex frequency dependent transformation matrix to be computed at each 

frequency point, and employs the l i n e a r i n t e r p o l a t i o n technique i n evaluating 

the Fourier Transformation i n t e g r a l s . The r e s u l t s from a measured f i e l d test 
19 20 

by Ametani ' of a laboratory generated distant l i g h t n i n g wavefront 83.212 

km from the substation was s u c c e s s f u l l y duplicated by the author using the 

Fourier Transformation method. (See Figure 2.2). Due to the frequency de­

pendent e f f e c t of the l i n e parameters, an i n i t i a l r i s e time of 2 ys of the 

wavefront now increased to about 40 ys as the wave t r a v e l l e d down the 

l i n e . Thus, the frequency dependent e f f e c t must be included for th§ 

distant l i g h t n i n g stroke case. The l i g h t n i n g waveshape obtained a f t e r 

the stroke has t r a v e l l e d from the s t r i k i n g point to the substation can 

then be interfaced with the time domain solutions as used i n an e l e c t r o -
47 

magnetic transients program. 

For close-by l i g h t n i n g strokes, the r e s u l t i n g waveshapes 

can again be obtained by the Fourier Transformation integrals, and the 

simpler time domain methods. For the time domain method,- the multi-phase 

untransposed l i n e can be f i r s t solved by modal analysis using frequency 

independent parameters and real-valued transformation matrix (as described 

in previous s e c t i o n s ) . Then, t h i s multi-phase l i n e i s represented by a single 

phase l i n e approximation. As shown in Figure 2.3, r e s u l t s obtained by a l l 

these methods agree quite well (< 4% deviation). The single phase l i n e 

representation with frequency independent e f f e c t i s v a l i d i n t h i s c l o s e -

by stroke case because v a r i a t i o n s among the modal a r r i v a l times at range of 

l i g h t n i n g frequencies are not apparent i n such short distances (e.g. < 2 km). 



Voltages(p.u) 

3<|> with frequency dependence 
3<j> without frequency dependence 

without frequency dependence 

ime 

Figure 2.3: Close-by l i g h t n i n g stroke case solved by 
frequency and time domain methods. 
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t=0 83.212 km A 
B 

• C 

Output voltage 
(p.u.) 

1.0 

0.8 

0.6 

•0.4 

0.2 

-0.2 

f i e l d measurements 
3<j> with frequency dependence 

Figure 2.2: Numerical simulation of over­
voltage taking untransposition 
and frequency dependence into 
account.(Ref. 9) 
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In such a representation, s e l f impedance - parameters calculated at 

higher frequencies (e.g. 1 MHz) should be used to approximate the frequency 

dependance c h a r a c t e r i s t i c s of the l i n e . 

However, caution must be taken in choosing l i n e r esistance for 

the l i g h t n i n g surge studies. The frequency dependence of l i n e parameters 

of one phase for a t y p i c a l 500 kV l i n e i s shown i n Table 2.3. I t i s shown 

that the attenuation of the wave i s n e g l i g i b l e (< 5%) up to about 100 kHz 

for 1 km. The resistance to reactance r a t i o i s also small e s p e c i a l l y at 

higher frequencies, e.g. 2.8% at 1 M Hz. Furthermore, since the Bergeron's 

method of c h a r a c t e r i s t i c i n solving the transmission l i n e equation i s v a l i d 

only for a l o s s l e s s transmission l i n e , d i s t r i b u t e d l i n e losses are usually 

approximated by lumping the resistance at c e r t a i n l o c a t i o n s . This high 

resistance at 1 M Hz may cause inaccuracy i n the simulation. On the other 

hand, surge impedances calculated by 

zsurge = A + J^L ( 2 > 2 5 ) 

where R/jwL = 2.8% at 1 M Hz (See Table 2.3) 

zsurge = fcjL ( 2 > 2 6 ) 

/ JUJC 

are e s s e n t i a l l y i d e n t i c a l for t h i s lossy and l o s s l e s s cases. Thus, com­

p l i c a t e d frequency dependent e f f e c t s for the nearby stroke case can be 

ignored, and . frequency independent and l o s s l e s s representation give 

acceptable accuracy(.,,See Figure 2.9 ). 
./ 

. Therefore,.the previous methods of modelling l i n e losses by simple 

• -i j • 1 2 • i 11,21 exponential decay i n overvoltages or any resistance lumping scheme 

are not acceptable. They should be replaced by d e t a i l e d weighting function 

techniques, or Fourier Transformation methods for distant stroke, or by 
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Frequency Resistance Reactance R/X 
(Hz) R(fi/km) X(ft/km) % 

zsurge v e l o c i t y Attenuation 

( a ) (m/ys) e" Y^( /km) 

i n 6 183. 6525. 2.8 291. 280. .73 

i o 5 42. 692. 6. 300. 272. .93 

i o 4 7. 78. 9. 317. 257. .989 

i o 3 .9 8.9 10. 340. 240. .999 

Table 2.3: Frequency dependence of s e l f quantities of l i n e 
parameters for a 3 phase 500 kV l i n e . 
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l o s s l e s s l i n e representation f o r a nearby stroke as described i n above, 

7. Determination of the surge impedance of the struck phase of a  
transmission l i n e . 

An accurate and r e l i a b l e value of the surge impedance in phase domain 

must be obtained as due to the following reasons: 

a) The amount of overvoltage wave transmitted from the overhead 

l i n e to the underground SF^ cable at the c a b l e - l i n e junction i s 

determined by the surge impedances of d i f f e r e n t components. The 

r e f r a c t i o n c o e f f i c i e n t t C _ i s 
R 
cable" 

C R , 2 Zsurge 7 )  

zl:i.ne + ^cable 
surge surge 

where 
^cable _ g u e i m p e d a n c e of cable (e.g. 60 ft) 
surge 

z l i n e _ g u r impedance of l i n e (e.g. 304 ft) 
surge 

b) The exact value of the overvoltage wave on the li n e , resulting 

from the l i g h t n i n g stroke (1^) i s d i r e c t l y r e l a t e d to surge 
-i . r,line impedance of the lxne Z as r surge 

v = ^ . z
l i n e (2.28) 

2 surge 

This r e s u l t i n g overvoltage wave impresses e l e c t r i c a l stress on 

external and i n t e r n a l i n s u l a t i o n of the system and forms the main 

concern i n the i n s u l a t i o n co-ordination study. 
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im 

In s p i t e of the above important c r i t e r i a , u n c e r t a i n t i e s i n surge 

pedance ca l c u l a t i o n s of overhead l i n e do e x i s t . ̂ ' ^ ' ^ Reference 11 

give r e l a t i v e l y lower surge impedance r e s u l t s f o r the ground wire (352 ft) 
12 

as compared to Darveniza's computation. Darveniza claims that the equation 

for surge impedance i n phase domain as i s given by: 

Z S U * f = 60 In ^ " (2.29) s e l f r 

Z S U r g € \ = 60 In ^- (2.30) mutual b.. 

where h = conductor height 

; r = conductor radius 

a. .. = separation between conductors 
i j 

b. . = separation between conductor and 
i j 

other conductor image 

This i s r e a d i l y derived from the p o t e n t i a l c o e f f i c i e n t P and the 

inductance term L as: 

5 s e i f • h r r ^ r - " l n T < 2- 3 I> J s e l f 

L 1 = Ho- to ^h ( 2 - 3 2 ) 

s e l f 2TT r 

and Z ^ f = / ^ - - - A _ _ P = 60 £ n ^ (2.33) s e l f / C ... s e l f s e l f ~ s e l f 
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where u = permeability 
° -7 

= 4TT x 10 H/m 
e = permit i v i t y 
° 1 -9 = x 10 F/m 36TT 

[C] = [ P ] _ 1 

[P] = p o t e n t i a l c o e f f i c i e n t matrix, 
with diagonal term P 

s e l f 
[L] = inductance matrix, 

with diagonal term L 
° s e l f 

However, the above formulae neglect • Carson's correction terms, other 

conductors, and ground wires used f o r earth return. A d e t a i l e d 

c a l c u l a t i o n for the surge impedance matrix i n phase domain [Z ] 
& r v surge 

must be performed to in order to j u s t i f y t h i s assumption. 

If we consider the r e l a t i o n s h i p between the surge impedance 

matrix in both phase and modal domain as 

[ y p h a s e ] = [ z p h a s e ] [ ; I p h a s e ] ( 2 _ 3 4 ) 

and [ V m ° d e ] = [ Z m ° d e ][ I m ° d e ] (2.35) 
surge 

then by s u b s t i t u t i n g eqs.(2.3) & (2.4) into (2.35), we can get 

[T TV1**36] = [ Z m ° d e ][T ] _ 1 [ l p h a S e ] (2.36) v surge I 

or [ V p h a S e ] = [T ] [ Z m ° d e ] [ T . ] - 1 [ l p h a S e ] (2.37) 
v surge I 
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Comparing equations (34) and (37) , we thus obtain 

[Z phase surge ] = [T ][Z .mode 'surge J[T.] 
-1 (2.38) 

The above r e l a t i o n i n equation (2.38) i s i d e n t i c a l to that 

derived by Wedepohl. 22 In h i s method, the r e f l e c t i o n c o e f f i c i e n t f o r 

phase current i s f i r s t obtained. The c o e f f i c i e n t i s then set to zero to 

obtain the expression f o r [ Z P ^ a s e ] as in equation (2.38). 

surge M 

Results for the surge impedance from equations (2.29) and (2.38) 

for both the ground and the phase wires are shown in Table 2.4. As can be 

seen from the table , the surge impedance obtained by Darveniza's formula 

which neglects the skin e f f e c t of the earth return component introduces 

n e g l i g i b l e deviation (about 1%). However, the Darveniza's formula should 

only be used when the ground wire i s treated as another i n d i v i d u a l phase 

(e.g. for the close-by l i g h t n i n g stroke case). If one takes the ground 

wire as another component for earth return (e.g. for the distant stroke 

case), the formula for s e l f surge impedance must be modified accordingly 

by t r e a t i n g voltages on ground wire to be zero. This requires reducing 

the impedance and admittance matrices before surge impedances can be 

calculated. The surge impedance value obtained i n t h i s case i s lower than 

that obtained by Equation (2.29), as shown in Table 2.4. 

8. Single phase representation for close-by strokes on double 
c i r c u i t e d l i n e 

A f t e r the author has v e r i f i e d that s i n g l e phase representation with 

appropriate choice of l i n e parameters i s accurate for a three phase l i n e 

case without ground wire r a double-circuited overhead transmission l i n e 
23 

of the MICA Project of the B.C. Hydro and Power Authority was used as a 

more de t a i l e d transmission system with ground wires. 
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surge Impedances 

ground wire phase wire 

A 547 ft 342 ft 

B or C 545 ft 338 ft 

D - 318 ft 

(A-B)/A*100% 0.4% 1.2% 

A = Exact method (2.38) with Carson.':s Correction 

terms for earth return skin e f f e c t , ground wire 

treated as another phase. 

B = Exact method equation (2.38) without Carson's 

Correction terms f o r earth return skin e f f e c t . 

C = Darveniza approximate equation (2.29). 

D = Exact method equation (2.38) with Carson's 

Correction terms for earth return skin e f f e c t , 

ground wire treated as earth return component. 

Table 2.4: Self surge impedances for ground and ^ 7 

phase wires f o r a t y p i c a l 500 kV l i n e ' 
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This tranmission system i s a double-circuited 500 kV l i n e . Each 

tower consists of a three phase l i n e with two ground wires (See Figures 2 .4 

and 2.5). When the l i g h t n i n g stroke h i t s e i t h e r one of the ground wires 

or one of the phase conductors, d i f f e r e n t l i n e parameters must be chosen 

because of d i f f e r e n t l i n e design. The corresponding parameters are shown 

in Table 2.5. One can see from t h i s table that the s e l f surge impedance of 

the ground wire i s greater than that of the phase conductor. The wave 

propagation v e l o c i t y i s also lower i n the ground wire case. 

In Figures 2.6 and 2.7, one can compare the l i g h t n i n g overvoltage 

wave propagation c h a r a c t e r i s t i c s f or the open and short c i r c u i t t e s t by 

using m u l t i - and single-phase l i n e representation when l i g h t n i n g stroke, 

h i t s the ground wire. Figure 2.6a shows the r e s u l t obtained by the m u l t i ­

phase s o l u t i o n method using modal a n a l y s i s . I t also shows c l e a r l y the 

d i f f e r e n t modal components on the r e s u l t i n g waveform. Figure 2.6b shows 

the r e s u l t f o r the si n g l e phase case and the o v e r a l l important propagation 

c h a r a c t e r t i s t i c s of multi-phase representation i s s u c c e s s f u l l y duplicated 

here. Similar r e s u l t s are obtained for the s h o r t - c i r c u i t t e s t , as shown 

i n Figures 2.7a and 2.7b. One can observe that the current waveforms 

obtained from these two d i f f e r e n t l i n e representations agree very w e l l . 

S i m i l a r l y , the open and short c i r c u i t t e s t r e s u l t s are also 

s u c c e s s f u l l y duplicated for surges on the phase conductor as i n c a s e 

of d i r e c t s t r o k e s or b a c k f l a s h o v e r s ( See Fig.2.8&2.9) Thus, i t i s 

recommended to use si n g l e phase representation for double-circuited l i n e 

with ground wires for studying close-by l i g h t n i n g stroke propagations. 



23 unit 5-3/4x10" shielding ground 
tower insulator //wires extending 

strings / / 1.6km beyond substn 

3 phase 
conduc 

tors 

tower 

Ty p i c a l l i g h t n i n g arrester c h a r a c t e r i s t i c s : 
nominal rating (reseal voltage), 
switching sparkover 
Min 60 Hz sparkover 
lightning sparkover 

3 phase 
underground 
SF- cables 

6 -

l i g h t n i n g a r r e s t e r 
Jat transformer 

^jO^L-^ cable junction 

.transformer to 
be protected 
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555 kV 
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60 Hz 
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SF, cable Transformer 
6 

800 kV 745 kV 
1550 kV 1675 kV 

Figure 2.4: Layout of SFg substation protection scheme showing 
one of the double c i r c u i t systems. 
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10 — 9 4 1 5 

8 7 6 1 2 3 

Conductors 1-3, 6-8 phase wires 

4,5, 9,10 ground wires 

Coupling f a c t o r : 

l i g h t n i n g struck <j) - wire K 34 

^phase 
surge 3,4 

^phase 
surge 3,3 

•16 
y induced 
ground wire 

V phase wire 

l i g h t n i n g struck g - wire K 
^phase 

_ surge 4,3 _ 
43 phase 

Jsurge 4,4 
•06 

induced 
phase wire 

V ground wire 

Figure 2.5: Side view of the MICA 10 <j> Systems. 



Ground conductor Phase conductor 

Self surge impedance Z ^ | e 658 ft 304 ft 

Wave v e l o c i t y v 245 ™/\is 293 m / y s 

Line resistance 0 /̂m 0 /̂m 

Length 1609 m 1609 m 

where Z S ^ f = 60 In ^ s e l f r 

= /L P 77 s e l f s e l f 

v e l o c i t y = s e l f  
L s e l f 

and L . , _. and P . , , are diagonal elements of 
s e l f S 21 

matrix [L] and [P]. 

Table 2.4: Line parameters of ground and phase conductor 
for l o s s l e s s single phase representation. 
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Dif f e r e n t modal a r r i v a l times 

Single phase a r r i v a l 

In 1<|> case: V T 2 p 3 = (Coupling factor) 

surge 
= 3 ' 4 V 

surge T2G4 
Z4,4 

Figure 2.6: Open c i r c u i t t e s t on s i n g l e and multi-phase 
representation with stroke on ground wire. 



4 3 

i 

D i f f e r e n t modal 
a r r i v a l times 

Figure 2.7: Short c i r c u i t t e s t on s i n g l e and m u l t i ­
phase representation with stroke on 
ground wire. 



Figure 2.8: Open c i r c u i t t e s t on sin g l e and 
multi-phase representation with 
stroke on phase conductors. 
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Small d i f f e r e n c e i n 
d i f f e r e n t modal a r r i v a l times 

_3 
i

T 2 p 3 ( 1 0 P-u.) 

t-0- \. 304« TP3 T2P3 

1+ 
4 

2 
2 p.u. (S 

T2P3 
Time 

t} ii,.or 4 f 8 12- 16 (ys) 

Single phase a r r i v a l 

Figure 2.9: Short c i r c u i t t e s t on si n g l e and 
multi-phase representation with 
stroke on phase conductors. 
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CHAPTER 3: LIGHTNING WAVE PROPAGATION IN 
SF 6 GAS INSULATED UNDERGROUND 
TRANSMISSION CABLE SYSTEM. 

1. Introduction 

The world's f i r s t commercial SF, gas - i n s u l a t e d cable rated at 
6 

345 kV was i n s t a l l e d i n 1970. I t s inherent advantages over conventional 

underground o i l - f i l l e d cables with respect to charging current, d i e l e c t r i c 

losses, thermal performance, voltage r a t i n g f l e x i b i l i t y and power handling 

capacity are well-known. It o f f e r s a d d i t i o n a l advantages of reduced 

substation s i z e . This compactness i n si z e of SF^-insulated substations 

and switchgear brings the equipment closer to the protective l i g h t n i n g 

arrester located at the overhead l i n e and underground cable junction. 

This i s of.vital-importance, e s p e c i a l l y when there i s no l i g h t n i n g 

a rrester at the transformer terminal, as in c e r t a i n substation 

design. 
23 In the SF,-insulated cable at the MICA Dam, which w i l l be used o 

as a test example, each of the 3 phase cables consists of two concentric 

aluminum tubes (see Figure 3.1a). The inner tube i s the conductor core and 

the outer grounded tube i s the sheath. The three sheaths are s o l i d l y 

bonded together and grounded at many lo c a t i o n s . At the high frequencies 

encountered i n l i g h t n i n g surges, the sheath return current w i l l be equal 

i n magnitude and 180° out of phase with the core conductor current. 

Whether the magnetic f i e l d external to the sheaths can be completely 

neglected in the frequency range of in t e r e s t must be investigated, 

however. I f the magnetic f i e l d i s n e g l i g i b l e , then there would be no 

mutual inductive coupling among the phases. There i s no e l e c t r o s t a t i c 

c apacitive coupling between phases as the solidly-grounded sheaths act 

as e l e c t r o s t a t i c shields U p to 1 Mhz. 
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Skin depth o f A l , 
•t * \-1/2 8.1 

= ( . T T f a u ) = cm 

=1.0 cm at 60Hz 

Scale--= 1:2.54 

r = 

r„ = 

3" = 7.62 cm 

3.5" = 8.89 cm 

9.75" = 24.765 cm 

r. = 10" = 25.4 cm 4 
sheath thickness=.635 cm 

Permeability A l = y u, = u-
r 0 0 

= 4TT .x 10 -7 H/ 
m 

Figure 3.1a: Individual cable design 

P e r m i t t i v i t y SF & = £ r £ Q = eQ 

1 x 10 9 F/m 
36TT 

Figure 3.1b: Overall cable layout. 
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In order to investigate the sheath current return phenomenon of SF, 
b 

cables, and thus to c l a r i f y the wave propagation c h a r a c t e r i s t i c s , the cable 

parameter must be calculated accurately. In t h i s research work, cable 
24 25 

parameters of multi-core cable ' i s not investigated. Such multi-core 

cable systems c e r t a i n l y have coupling between phases at a l l frequencies. 

Nevertheless, coupling between phases for the s i n g l e core cable system 

i n d i f f e r e n t frequencies needs further i n v e s t i g a t i o n . 

26 27 

Commellini and Abledu used f i n i t e elements technique to sub­

divide the main conductors into smaller sub-conductors of c y l i n d r i c a l 

shape. The impedance matrix f o r the main conductors was formed by bundling 

up the sub-conductors i n the matrix elimination process. However, due to 

the t h i n tubular shape of the conductors involved i n the SF^ buses, large 

number of sub-conductors i s required. This w i l l demand huge computer core 

storage space and long computer execution time. 
28 29 Sunde and Pollaczek had derived a n a l y t i c a l expressions for 

the s e l f and mutual impedance of cables which are constructed overhead, 

underground or on ground surface. These a n a l y t i c a l expressions contain 

Kelvin functions and an i n f i n i t e i n t e g r a l known as the Carson's Correction 

terms. Before the widespread a p p l i c a t i o n of d i g i t a l computers, s i m p l i f i e d 

assumptions and r e s t r i c t i o n s were made to f a c i l i t a t e the computation 

process. With the recent popularity and increased a p p l i c a t i o n of 

d i g i t a l computers, these i n f i n i t e i n t e g r a l s can be modified and replaced 

by s t r a i g h t forward numerical computations without s i g n i f i c a n t s a c r i f i c e 

for accuracy. 
30 31 32 Wedepohl et a l and Ametani ' used d i f f e r e n t approaches to 

tackle the a n a l y t i c a l expression i n the cable parameter c a l c u l a t i o n . 

However, both approaches gave d i f f e r e n t r e s u l t s (20% from each other). 



Bianchi proposed to ca l c u l a t e the earth or sea return impedance by 

approximating the return medium as a tube of i n f i n i t e outside radius. 

These approximation r e s u l t s f e l l somewhere between those of Wedepohl et a l 

and Ametani. 

Because of the inconsistency i n the above f i n d i n g s , a d e t a i l e d 

i n v e s t i g a t i o n f o r numerical c a l c u l a t i o n of cable parameters must be 

performed to reveal wave propagation c h a r a c t e r i s t i c s i n SF^ sing l e core 

cables. Current return c h a r a c t e r i s t i c s from core through sheath also 

must be investigated to confirm s i n g l e phase or multi-phase representation 

for the cable system involved. 

2. Formation of series impedance matrix f o r SFfi cables 

The s i n g l e core SF^ cable system configuration i s shown in Figure 3. 

Each phase consists of two conductors, core and sheath. We can b u i l d up 

a 6 x 6 series impedance matrix Z, describing the cable system as follows: 

d V c l n 

dx z i i s l l Z 19 
sl2 

Zml2 Zml2 Zml3 Zml3 " ^ l " 
dV . s i 
dx Z 01 

s21 
Zs22 Zml2 Zml2 Zml3 Zml3 ^ 1 

d V c 2 
dx Zml2 Zml2 z i i s l l Z s l 2 3nl2 Zml2 ^ 2 

dV 
s2 

dx 
Zml2 Zml2 Zs21 Zs22 Zml2 Zml2^ 

• 

^ 2 

dV _ c3 
dx 

dV _ c3 
dx Zml3 Zml3 Zml2 Zml2 Z s l l Z s l 2 ^ 3 

dV _ s3 
dx _ Zml3 Zml3 Zml2 Zml2 Zs21 Zs22 _ . ^ 3 . 
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z 
s 

Zml2 Z, " 
ml3 

^ 1 

Zml2 Z 
s Zml2 \l 

^ 2 

(3.1) 

Zml3' 
T 

Zml2 Z 
s ^3 

s where Z is... 'self submatrix on the diagonal. A l l Z matrices are s ° s 
equal because they represent i d e n t i c a l cable configurations. 

I t i s assumed: that the mutual impedance between cores, between 

sheaths and between corresponding cores and sheaths are a l l equal. In 

other words, a l l elements i n the sub-matrix Z , „ or Z. are ^assumed 
ml2 ml3 

to,; be equall:J:-(Bee Section 6 f o r "further discuss ion) • — 

3. C a l c u l a t i o n of s e l f and mutual earth return impedance  
f o r s i n g l e core cable 

The a n a l y t i c a l expressions f o r the s e l f and mutual earth return 
29 

impedance of cables was f i r s t derived by Sunde and Pollaczek^ and then 

by Wedepohl et a£? F i r s t l y , t h e Maxwell's electromagnetic equation can 

be solved a f t e r neglecting end e f f e c t s as: 
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V x E = -ja>y0 H (3.2) 

V x H = J + |2. = j ( i + (3.3) 
3t a 

= J , as displacement current , can 
be neglected. 

Taking the c u r l of equation (3.2) and su b s t i t u t i n g into (3 3) give 

V x V x E = -jwy 0 V x H 

or V ( V E ) - V 2E = - j u y Q ( J ) 

Assuming cable separation >> cable radius, we have 
V 2E = jtoy 0 a(E +p i 6(x) <5(y + h)) 

Assuming cables are p a r a l l e l to ground surface and attenuation of 

voltage and current i s n e g l i g i b l e over distances comparable to cable separation, 
2 2 we have 3 E n 3 E, 

+ —T- = 0 » y > o. ( 3 - 4 > 2 2 
3x 3y 

2 2 3 E„ 3 E 
—j- + Y = m 2E 2 +p m2 i 6(x) 6(y + h) , 
3x 3y 

y < 0. (3.5) 

where m:
; = J j cjy 

P 
. . . 1 

P •• = earth r e s x s t i v x t y = — 

oj = angular frequency 

y = permeability 

6 = Difac function 

E^,E 2 = e l e c t r i c f i e l d above and below ground. 

Imposing the r e s t r i c t i o n of continuity of e l e c t r i c f i e l d at y = 0 

for E^ and as boundary conditions, we can obtain a general expression 
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y 

7 T T 

Figure 3.2: Conductor configurations for earth return formula. 
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for the underground e l e c t r i c f i e l d . We can then obtain the expression 

for the mutual earth-return impedance of underground cables by d i v i d i n g 

E 2(x,h 2) by the current i (O.h^) t o 8 e t 

Z. . = i j 2IT 

0 0 / 2" 2* 0 0 '/2 2~\ exp(-£/ a +m ) & j ax ^ + j exp;(-l//a +m ) da -
1 1 ' n~~2 
a + Va +m 

0/2.2 2/a +m 

exp( -£Va 2+m 2) 

2v42+m2 

da (3.6) 

exp,(= v^/a2-rm2: lax 
2^.00 1 

a I +/a2+ra2 

da + (K n(mDj - (K 0(mD 0)) 2 77
 s ( T 1 0: 2' 

= A Z 4 J + 4 ^ fe-JuDj - K„(mD„)) 
J i j 1

 2 7 7 ^ o ^ l CT 2y (3.7) 

where = Kelvin function of order zero 

m 

D, = 

= y ^ ^ " j x = h o r i z o n t a l separation between cables 

/x 

/2 2 D 2 = /x + ( ^ 4 - ^ ) 

h^,h 2 = depths of b u r i a l of cables 

a = 

l = |h 1 + h I 

AZ.. = Carson's Correction term, i d e n t i c a l to that f o r over-

head l i n e s case. 



The above formula i s also applicable to s e l f earth return impedance 

components. In such cases, the terms f o r and can be re-defined as 

D 1 = r 

D 2 = 2h (3.7a) • 

where r i s radius, h = depth of buried cable. 

However, the above formula i s unsuitable f o r st r a i g h t forward c a l c u l a t i o n s . 

Before d i g i t a l computers are widely used, approximate r e s u l t s were obtained 
28 

only a f t e r c e r t a i n l i m i t i n g conditions were accommodated. Then, 

Wedepohl et a l used Cauchy's integration for the Carson's correction 

terms and derived approximate formula f o r the equation given i n equation 

(3.7) as 

mD „ 
Z. . = ^ { £n(Y-±-) + i - f mA } (3.8) 

i j • 2 ir 2 2 i 
for |mD | < 0.25 

and Y = Euler;'s constant 

= 0.5772157. 

However, the above formula gives r e s u l t s which are about 20% 

higher when compared with the d i r e c t numerical computation using the o r i g i n a l 

equation as i n Ametarii's case. The i n f i n i t e i n t e g r a l for the underground 

cable i s the same as the Carson's correction terms for overhead l i n e s . 

We can define a new parameter a as 

a = / ^ D 

= 4TT /5 10 4 D / | - (3.9) 
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where D and p are in MKS units 

2h. for s e l f earth return impedance 
^ ~ for mutual earth return impedance 

This correction term i n t e g r a l can be represented by the following 
. .„ . . 3 4 
i n f i n i t e converging s e r i e s : 

1. For a < 5 

AR' = 4o)-10~4{^-o 

-b^a* cost)) 
2 2 +b^[ (c2~lna)a cos2<{)+(j)a sin2cj)] 

3 

+b^a cos3<}> 

-d^a4cos4cf> 

-b^a^cos5<j> 
6 6 +b^ [ (c^-lna)a cos6<j)+cba sin6c))] 

+b^a^cos7<j> 
g 

-d Qa cos8<f> o 

- ...} 

AX' = 4to-10 4{|<0.6159315-lna) 

+b^a*cos<j> 
2 

-d^a cos2cf> 
3 

+b^a cos3<j> 4 4 -b^[(c^-lna)a cos4cf>+(j>a sin4cf>] 

+b^a^cos5cj) 

-d^a^cos6tj) 

+b^a cos7<j> 
8 8 -b Q[ ( c Q - l n a ) a cos8<J>+c(>a sin8c()] o o 

+ ...} 
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Notice that each 4 successive terms form a r e p e t i t i v e pattern. The co­
e f f i c i e n t s b., c. and d. are obtained from the recursive formulas: 

1 1 l 

/2 
^ b^ = — - r f o r odd subs c r i p t s , 

b. = b. „ . ẑfoN with the s t a r t i n g value -\ l i-2 i(i+2) 1 

^•b„ = f ° r even subscripts, 2 I D 

c = c. „ + + -rrr with the s t a r t i n g value c„ = 1.3659315, l i-2 l i+2 - 2 

A 7 1 U 
d. = j- • b., 

l 4 l 

with sign = ±1 changing a f t e r each 4 successive terms (sign = ±1 for i 

1,2,3,4; sign = -1 for i = 5,6,7,8 e t c . ) . 

2. For a > 5 

, _ ' cos((> /2 cos2<)) cos3<}> 3cos5<j) 45cos7(j) 
- ( 2 3 5 " 7 ) 

4a)-10 4 

/I 

Q3.ll) 
-4 

AX1 - ( C O S 1 ^ _ cos3<l> + 3cos5<{> + 45cos7(}> ^ # 4ai* 10 
3 5 7 >=-a a a a v2 

It should be noted that the correction terms w i l l become zero when 

the parameter a i s very b i g , i e . when frequency or cable distance from 

g.round i s very large or when earth r e s i s t i v i t y i s very small. 

The Kelvin functions can also be calculated by another i n f i n i t e 
36 

converging series as can be obtained from availabe source. , ''-It can also 
35 

be calculated by a s p e c i a l subroutine CBESK ava i l a b l e from the UBC 

Computing Centre. 

A f t e r e s t a b l i s h i n g the numerical formula for cable earth return 

impedance, the discrepancies between the r e s u l t s of Wedepohl et a l and 

http://Q3.ll


those of Ametani can then be c l a r i f i e d . 

The author has confirmed that accurate cable earth return impedance 

•can be calculated by using d i r e c t computation of i n f i n i t e series sub-
40 

s t i t u t i o n f o r i n f i n i t e i n t e g r a l and Kelvin function. Cable mutual 

impedance from Ametanis computation i s acceptable though d i f f e r e n t i n f i n i t e 

s e r i e s i s used for the Carson's correction terms. I d e n t i c a l r e s u l t s are 

obtained at l e a s t to 4 s i g n i f i c a n t figures for frequencies up to 100 k Hz 

(See Figure 3.2). The approximate formula given by equation (3.8) on the 

other hand, gives r e s u l t s about 20% c o n s i s t e n t l y higher. 

The author has also confirmed that the earth return impedance for 

underground cable can be approximated by the equivalent earth return 

impedance for overhead l i n e s . The expression for earth return impedance 

for overhead l i n e i s 
D 

Z.. = to -==- + AZ.. , .„ i j 2TT DJ^ I J ' (3.12) 

for mutual earth return impedance 

2h 
and Z. . = to — + AZ. . , (3.13) 

xj 2 It GMR xj 

for s e l f earth return impedance 

where i s distance between i * " * 1 and image of j 1 " ^ conductor; 

i s distance between i * " * 1 and j t ' 1 conductor; 

• h i s height of conductor above ground; 

GMR i s geometric mean radius= radius of conductor at high f r 

AZ i s Carson's correction term. 

I d e n t i c a l r e s u l t s up to 3 or 4 figures are obtained for earth 

r e s i s t i v i t y of 1 to 100 Q-m up to the frequency of 100 K Hz. The 
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consistency between these two r e s u l t s i s due to the fact that the Kelvin 

functions 

K (/j" x) = ker(x) + j kei(x).; 

36 
can be evaluated by the following convev^ing series for 0 < x < 8: 

ker x = — In ( i r ) berz+Jxbei x—.57721 566 1 

-59.05819 744(jf/8)*+171.36272 133(x/8)8
 : 

-60.60977 451(z/8)12+5.65539 121 (x/8)'8 

-.19636 347(x/8)20+.00309 699(:r/8)24 

-.00002 458(2-/8)28+« (3.14) 

H<ixio- 8 

kei*=-ln($x)beia;-fir ber a,+6.76454 936(z/8)* 
-142.91827 687(i/8)6+124.23569 Q50(z/8y° 

-21.30060 904(ar/8)14+l. 17509 064(r/8)18 

-.02695 875(ar/8)22+.00029 532(x/8)29+« _(3.15) 

|€|<3X10-» 

where 

ber x=1 -64(as/8)4+113.77777 774(*/8)8 

-32.36345 652(z/8)12+2.64191 397(a;/8)16 

-.08349 609(*/8)M+.00122 552(x/8)24 

-.00000 90l(x/8)28+e 
|«|<ixio-» 

(3.16) 

bei x=16(a;/8)2-113.77777 774(x/8)* 
+ 72.81777 742(a/8)l0~ 10.56765 779(x/8)u 

+ .52185 615(z/8)l8-.01l03 667(ay8)22 

+.00011 346(z/8)29+e 
M<8X10-» 



Figure 3.2: Mutual impedance between outermost cables 
by d i f f e r e n t computation methods. 
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and x = ^f- D, (3.18) 

u = 4TT x 10 ^ ^m 

oi = frequency 

D = distance Di o r D 
L 2 

P = earth r e s i s t i v i t y 

For frequencies up to about 1 M Hz and earth r e s i s t i v i t y of about 

100 ft-m,and cable separation or cable depth of about 1 m, the term x i s 

r e l a t i v e l y small as 

x -> 0 

Then, one can rewrite equations (3.14) to (3.17) for x 0 as 

ber = 1 

b e i = 0 

• • K Q(/fx) = ker x + j k e i x 

= - £n |- x - 0.57721 - j J (3.19) 

Thus, for the earth return impedance as shown i n equation (7), 

we have 

Z. . = AZ. . + ™ (K (mD.) - K (mD.)) xj xj 2 IT o 1 o 2 

mDn 

- 4 Z« + if « - «• -r - - jj) -
mD 

( - in -f - - .57721 - jJ-)) 

= AZ . + ^ • in ̂  , x * 0 
y 1 J 2 l T j , °1 

Carson's correction term self-term 

which i s the same as i n equations (3.12) and (3.13). 



61 

The numerical r e s u l t s f or the self-term component of the s e l f 

and mutual earth return impedance for the underground cable obtained by 

the d i f f e r e n t formulae developed e a r l i e r are shown in Table 3.1. As 

can be seen from Table 3.1, the r e s u l t s obtained by these d i f f e r e n t 

formulae are very consistent. The f i n a l r e s u l t s f or mutual impedance 

from these methods are also shown i n Figure 3.3 for frequencies up to 

1 M Hz. Because of the observed consistencies, the overhead l i n e 

formula approximation i s therefore recommended f o r underground cable 

for a l l frequencies up to 1 M Hz and earth r e s i s t i v i t i e s above 1 ft-m. 

4. Calculation of s e l f impedance matrix for single core cable 

After the s e l f and mutual impedance for earth return of under^. 

ground cables,.is obtained, the s e l f impedance of i n d i v i d u a l cables can 

be calculated and the obtained r e s u l t s f or d i f f e r e n t current loops can 

then be transformed to the required form for the impedance diagonal 

submatrix Z as shown i n equation (3.1). s 

At f i r s t , one can consider the current in each of the i n d i v i d u a l 

cables flow i n two adjacent loops as shown in Figure 3.4. Loop 1 i s 

formed by the current flowing through the core and returning through 

the outside sheath. Loop 2 i s formed by the current flowing through the 

sheath and returning through the outside earth. These two loops can 

be described by equation (3.21) as 

d v l 

dx 
Z l l Z12 

4 

1 1 

d v 2 
dx _ Z21 Z22 _ i 2 _ 

where Z = Z by symmetry. 
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Separation i n meter 

D l D2 

(1,3) .889 2.189 .901+j.OOO (60Hz) .901 

.895-J.020 (100Hz.) .901 

(1,2) 1.778 2.676 .408+j.OOO (60Hz) .408 

.403-J.018 (100Hz) .408 

(s e l f ) .254 2.0 2.064+j.OOO (60Hz) 2.064 

2.057-J.022 (100Hz) 2.064 

where 

f = 60 Hz, m = / j 6 ° X 2 \ l Q ^ X 1 0" 7-= .0022 /J 

i TT /icoy /jlOO x 2TT x 4TT X 10 ^ A Q n rr f = 100 Hz, m = / ^ = / J JOO -089 / j 

underground cable (exact) 

Z i j = T r f ( V m V ' K 0 ( m D 2 » + A Z i j 

overhead cable (approximation to above) 

hi " ^ *> 57 +
 * Z 13 • - - » * 0 

Table 3.1: Mutual and s e l f earth return impedance terms as given by under­
ground and overhead cable formula. 

underground overhead 



Figure 3.3: Approximations of mutual impedances between 
underground cables by Carson's formulae. 



Figure 3.4: Current loops inside SF^ cable 
f o r s e l f impedance c a l c u l a t i o n . 
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The matrix elements of equation (3.21) can be obtained by considering 

the i n d i v i d u a l current loop components making up the corresponding loops 

1 and 2 as 

Z = Z + Z + Z 11 core-outside core/sheath i n s u l a t i o n sheath-inside (3.22) 

Z = Z + Z 22 sheath-outside earth-inside (3.23) 

z = z = —z 
12 21 sheath-mutual (minus sign since i and ± i n 

d i f f e r e n t d i r e c t i o n ) . 
(N.B. Z ^ i s n e g l i g i b l e when sheath thickness » skin depth) 

where the i n d i v i d u a l elements are 

(3.24) 

(Zl) Z core-outside 

(Z2) Z core/sheath i n s u l a t i o n 

(Z3) Z sheath-inside 

(Z4) Z sheath-outside 

(Z5) Z earth-inside 

i n t e r n a l impedance of core with return 

through outside (sheath). 

impedance of SF, i n s u l a t i o n due to the o 
time varying magnetic f i e l d . 

i n t e r n a l impedance of sheath with return 

through ins i d e (core). 

i n t e r n a l impedance of sheath with return 

through outside (earth). 

s e l f earth return impedance, t h i s can 

be calculated by equations (3.7) & (3.7a), 

or can also be obtained by equation (3.25) 

with the approximation of i n f i n i t e 
33 

outside radius 

(Z6) Z sheath-mutual = mutual impedance of tubular sheath between 

loop 1 i n inner surface and loop 2 i n outer 

surface of sheath. 
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The i n d i v i d u a l s e l f and mutual impedance terms can be again obtained 

by solving the Maxwell's equations for the coaxial conductors as s i m i l a r 

to equations "£3.2)&(3 .3) # They are a function of frequency as derived by 
37 28 Schkelkunoff and Sunde as 

. . , = (I n(mq) K, (mr) + K„(mq) I.,(mr)) tube-inside 2iTqp 0 1 0 1 (3.25) 

tube-outside = 2 ~ - (I Q(mr) KL(mq) + K Q(mr) I^mq)) (3.26) 

Jtube-mutual 

with 

2Trqrp 

p = I 1(mr) ^(mq) - I (mq) K (mr) 

(3.27) 

(3.28) 

where 

and 

y 

q 

r 

m 

= angular frequency = 2i:f 

permeability = P ^ Q J y r
 = 1 for A l 

outside radius of tubular conductor 

inside radius of tubular conductor 

p = d.c. r e s i s t i v i t y 

V r i 

K0''K1 

p 

Bessel functions 

Kelvin functions 

A f t e r obtaining the i n d i v i d u a l terms of the loop equation matrix 

as shown in equation (3.21), we can then obtain the diagonal sub-matrix 

elements by applying the following c i r c u i t conditions: 

V = V - v 
1 c s 

V = V 
2 s 

(3.30) 

1 = 1 1 c (3.31) 

i» = i + i 2 c s (3.32) 



The i n d i v i d u a l loop equations of equation (3 21) then becomes 

dV dV 
-T9" + -J^ = ( Z n + z i , ) i + Z i o 1 dx dx 11 12 c 12 s 

dV 
and — = (Z + Z,_) i + Z„„ i dx 12 22 c 22 s 

(3.33) 

(3.34) 

Adding equation (3.33) to (3.34) gives 

dV 

dx 
( Z11 + 2 Z12 + Z22> \ + ( Z12 + Z22) is ' ( 3 " 3 5 ) 

Thus, we can rewrite the s e l f sub-matrix Z as ' s 

Z 1 1 + 2 Z 1 2 + Z 2 2 Z 1 2 + Z 2 2 
dV 

c 
dx 

dV" 
s 

dx Z12 + Z22 J22 

(3.36) 

5. /ffheath current refragn c h a r a c t e r i s t i c s for, usual earth 

As current flows along the core of the buried SF^ bus, a return 

path i s formed on i t s own sheath and possibly also on the surrounding 

s o i l and adjacent sheaths. Whether a l l the currents w i l l return through 

i t s own sheath depends s o l e l y on the frequencies involved. Due to the 

skin e f f e c t i n sheath material (Aluminum), a l l core current w i l l return 

through i t s own sheath for frequencies above 1 k Hz. 

In r e a l i t y , the SF^ cable i s l a i d on the ground surface (e.g. inside 

the lead shaft) or i s constructed above ground and grounded at c e r t a i n 

i n t e r v a l s (e.g. inside the substation). This cable l o c a t i o n even favor 

more current returning through the sheath than the ground as compared to 

buried'cable case. One can thus in v e s t i g a t e the l i m i t i n g case with 

the cable buried underground. This cable l o c a t i o n w i l l favour l e a s t 
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core current returning through i t s own sheath. 

In order to investigate the sheath current return c h a r a c t e r i s t i c s 

and therefore the mutual coupling between cables, one has to use the 

seri e s impedance matrix. One can consider cases i n which adjacent sheaths 

are e i t h e r included or excluded. 

a. Sheath current return c h a r a c t e r i s t i c s for single cable system 

For t h i s case, one only has to consider the s e l f diagonal submatrix 

of the series impedance matrix as 

dV 
dx 

dV 
dx 

J s l l 

J s l 2 

J s l 2 

Js22 

(3.37) 

Since the sheaths of the three i n d i v i d u a l SF^ cables are s o l i d l y 

grounded at short j o i n t i n t e r v a l s or l a i d on earth surface, or buried 

inside .the earth, the sheath voltages can be considered to be zero for 

a l l p r a c t i c a l purposes. Then Equation (3.37) becomes 

0 J s l 2 
Z 

or 
s!2 
's22 

i + Z c s22 

I -c 

At high frequencies as sheath 
mutual impedance i s n e g l i g i b l e ^ 3 3 ) 
when sheath thickness greater 
\ t h a n skin depth( See Appendix A.). 

Thus, neglecting the other two sheaths, the current return 

c h a r a c t e r i s t i c s of the SF,, cable through i t s own sheath from the core 
o 

can be calculated as i n Equation (3.38). The obtained r e s u l t s are 

shown i n Figure 3.4 .. For t h i s case, e s s e n t i a l l y a l l the current through 

the core w i l l return through i t s own sheath above the frequency of 10 Hz. 

file:///than
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"?"sheath 

core 

z 0 sheath-mutual 

'''sheath """core 

earth _ 

single-cable system 

three-cable system: 
-current i n one core • ' 
-current i n three cores 

® - i B l / i c l 

® " i s 2 / l c 2 
® " 1 s 3 / l c 3 

p = lOOft-m 
depth = 0 or .254m 

log frequency 
1 — 

10 100 l k 10k (Hz) 

Figure 3.4: Ratio of core current return through own sheath 
for single-and three-cable system. 
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In other words, the sheath acts as a perfect magnetic s h i e l d above the 

frequency of 10 Hz. Because of t h i s consideration, a l l SF^ cables are 

decoupled from one another and can be represented as 3 s i n g l e phase 

systems. I t i s also found that a change i n depth (1 m to .254 m) of 

cable does not change the current return c h a r a c t e r i s t i c s noticeably. 

b. Sheath return c h a r a c t e r i s t i c s f o r 3-cable system 

Since a l l the 3 sheaths of the SF^ bus are s o l i d l y grounded, the 

current w i l l return through a l l the three sheaths at lower frequencies 

(< 60 Hz). At higher frequencies, however, a l l the core current w i l l 

return through i t s own sheath because of the skin e f f e c t on the sheath. 

Here, again, one can conclude that the three SF^ cables are decoupled 

from one another. 

For t h i s case of 3-cable system, one can also consider the sheath 

voltages to be zero. One can substitute t h i s condition into equation (3.1) 

and obtain 

dV " c l 
dx 

-dV " c l 
dx 5 s i i Z s l 2 Zml2 Zml2 Zml3 Zml3 ^ 1 

0 Z s l 2 Zs22 Zml2 Zml2 Zml3 Zml3 ^ 1 

d V c 2 
dx 

Zml2 Zml2 Z s l l Z s l 2 Zml2 Zml2 \2 

0 Zml2 Zml2 Z s l 2 Zs22 Zml2 Zml2 is2 

d V c 3 
dx 

Z'ml3 Zml3 Zml2 Zml2 Z n s l l Z s l 2 c3 

0 Zml3 Zml3 Zml2 Zml2 Z s l 2 Zs22 s3 

(3.39) 

(N.B. Z',„ = Z as symmetrical arrangement of cables as ml2 mz 3 
i n Figure ,3.1b) 



Equating the zero sheath voltages f or the 3 cables, we have 

0 = Z c 1 0 i . + Z „ i , + Z. . . ( i + i ) + Z (1 + i ) (3.40) 
sl2 c l s22 s i ml 2 c2 s2 ml 3 c3 s3 

0 = Z 1 0 ( i . - . + i ) + Z i . + Z i + Z 1 0 ( 1 . + i ) (3.41) 
ml 2 c l s i s l 2 c2 s22 s2 ml2 c 3 s3 

0 = Z , 0 ( i - + i n) + Z. , 0 ( i „ + i 0) + Z _ i _ + Z 0 „ i _ ,~ / 0 . ml3 c l s i ml 2 c2 s2 s l 2 c 3 s22 s3 (3.42) 

If we assume phase B i s energized, i . e . , we assume 

± c l = i c 3 (3.43) 

^ 1 = S 3 ( 3 - 4 4 ) 

i t l = i c 3 = 0 (3.45) 

Then, substitute equations (3.43) to (3.45) into (3.40), we obtain 

0 = Z c 0 0 i + Z i + Z i + Z i 
S 2 2 s i ml2 s2 ml3 s i m!2 c2 

= (Z. ,n_ + Z ) i + Z. i + Z i - ml 3 s22 s i ml2 c2 ml2 s 2 

Znil3 + Zs22 X s l , 1s2 , / 0 or + = -1 (3.46 

ml2 1 c 2 1 c 2 

Also substitute equations (3.43) tO (3.45) into (3.41), we obtain 

0 " 2 Zml2 \l + Zs22 \2 + Z s l 2 

! ! i ^ . i 5 l + ! 5 2 2 ^ = _ ± (3.47) 
Z s l 2 Xc2 Z s l 2 1 c 2 
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By solving equations (3.46) and (3.47), we get 

Zml3 + Zs22 
^ml2 

2Z ml2 
J s l 2 

Zml3 + Zs22 
Jml2 

2Z ai2 
'sl2 

-1 

-1 
(Z ... + Z 0 0 ) Z - 2Z ml3 s22 sl2 ml2 Jml2 

Js22 
Z s l 2 

2 Zml2' Zmi2 Z
B 2 2 ( Zml3 + " Z

s22 ) 

(3.48) 

-1 

-1 

Zml3 + Zs22 
ml2 

2Z nil2 
J s l 2 

Js22 
Jsl2 -Z sl2 

Js22 
J s l 2 

2Z m!2 

Zml2 + Zs22 Jml2 
Zml2 Zs22 ( Zml3 + Z s 2 2 ) 

(3.49) 

The r a t i o of currents i n sheath to core of phase B i s calculated 

and plotted as a function of frequency i n Figure3.4. The r e s u l t shows that 

at frequencies above 1 kHz as i n l i g h t n i n g surges, a l l current through the 

core w i l l return through i t s own sheath. Thus, one can conclude that the 

earth return current component i s not important and therefore the mutual 
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c o u p l i n g between cables can be i g n o r e d . 

c. Sheath current return c h a r a c t e r i s t i c s f o r 3 cable  
system with current i n a l l 3 cores 

For a case when currents flox^ i n a l l the three cores of 

the three SFg cables, the return current through sheath w i l l change 

accordingly. This suggests that such s i t u a t i o n s must also be investigated 

to deduce the mutual coupling e f f e c t among cables. Using the same equations 

as derived i n Equations (3.40) to (3.42), one can now put in currents i n the 

3 cores by assuming 

and 

i c 2 - i . o IR 

i c 3 = 1.0 /120° 

i = 1.0 /-120' c l ' 

(3.50) 

(3.51) 

• (3.52) 

Rewriting equations (3.40) to (3.42) as 

Z S 2 2 \l + Zml2 ^ 2 + Zml3 ^ 3 = ' Z s l 2 \l " Zml2 ^ 2 " Zml3 ^ 3 = h <3-53)  

Zml2 \l + Zs22 S 2 + V ? ^ 3 " " Z,12 S i " Z s l 2 ±c2 " Zml2 S 3 = A2 ( 3 " 5 4 )  

Zml3 S i + Zml2 S 2

 + Zs22 S 3 = " Zml3 S i " Zml2 S 2 ~ Z s l 2 S 3

 = A3 ( 3 ' 5 5 ) 

Defining the determinant T as 

Zs22 Zml2 Zml3 

Zml2 Zs22 Zml2 

Zml3 Zml2 Zs22 

Zs232 + 2 Zml2 ' Zml3 " Zs22 ( Zml3 + 2 Z
m 1 2 > 

(3.56) 
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We can then obtain the current through the three i n d i v i d u a l sheaths as' 

2 2 2 
i s l = A l Z s 2 2 t A3 Zml2 + A 2 Z

m 1 2 Z m l 3 " A3 Zs22 Zml3 ~ A2 Zml2 Z
s22 " A l Z m l 2 

T 
(3.57) 

2 2 
i 2 = A2 Zs22 + A l Z m l 2 Zml3 + A3 Zml2 Zml3 ~ A2 Zml3 ~ A3 Zml2 Zs22 " A l Z m l 2 Z s 2 2 

T -

(3.58) 

2 2 2 
1S3 " A3 Zs22 + A2 Zrql2 Zral3 + A l Z r a l 2 " A l Z m l 3 Zs22 " A2 Zml2 Zs22 " A3 Zml2 

T 
(3.59) 

After s u b s t i t u t i n g the conditions, for the 3 phase currents from 

equations (3.50) to (3.52) into equations (3.57) to (3.59), one can obtain 

the return currents through a l l i n d i v i d u a l sheaths. The magnitudes of the 

sheath currents are also shown i n Figure 3.4.it i s again confirmed here 

that at frequency above 60 Hz, a l l current flowing from core w i l l return 

through i t s own sheath. Each core i s completely shielded from the adjacent 

cores. Thus, the three SF^ buses are completely decoupled from one another 

and should therefore be represented by si n g l e phases as i n the case of 

l i g h t n i n g overvoltage propagation. 

6. Sheath current return c h a r a c t e r i s t i c s f or substation earth with  
grounding g r i d network 

In r e a l i t y i n the substation, the cable sheaths are grounded inside 

the substation with a grounding network g r i d c o n s i s t i n g of copper bars 

which are connected across the whole substation. These grounding copper 

bars serve to reduce s i g n i f i c a n t l y the i n s i d e earth r e s i s t i v i t y of the 

substation. This suggests that the sheath current return c h a r a c t e r i s t i c s 

of t h i s reduced earth r e s i s t i v i t y should also be investigated as a reduction 
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i n earth r e s i s t i v i t y w i l l favor more current returning through the earth. 

The r e s u l t f or the sheath return current as a function of earth 

r e s i s t i v i t y i s shown i n Figure 3.5. This f i g u r e shows that the sheath 

return current increases as the earth r e s i s t i v i t y increases. This agrees 

with the manufacturers and u t i l i t y companies of SFg substations who claim 

that current returning through sheath inside the substation i s l e s s than 

75%. Based upon t h i s c r i t e r i a , a nominal earth r e s i s t i v i t y of 0.3 x 10 ^ftm 

i s chosen. 

A f t e r choosing a nominal value for earth r e s i s t i v i t y , the sheath 

current return c h a r a c t e r i s t i c i s then evaluated as a function of frequencies 

and depth, as shown in Figure-3.6. Fluctuations in o v e r a l l sheath current 

r e s u l t s are shown i n Figure 3.6. At about 1 K Hz, the sheath current i s 

even found to be larger than the core current. This can be explained 

by the phasor diagram as shown i n Figure 3.7. In Figure 3.7,only m u l t i -

cable systems with current i n centre core are shown, but mutli-cable 

system with currents i n a l l 3 cores would Kralso give i d e n t i c a l 

r e s u l t s . The present study again confirmed that a l l cores are decoupled 

from one another above 2 k Hz even for the adverse case of s i g n i f i c a n t l y 

reduced earth r e s i s t i v i t y inside the substation. 

It should be noted that the mutual impedance between cores, between 

sheaths and between corresponding cores and sheaths are a l l assumed to be 

equal by Wedepohl and Ametani. The s h i e l d i n g e f f e c t of the sheath i s neglected. 

The v a l i d i t y of t h i s assumption i n cable parameter computations could be the 

topi c of further research. I t i s of l i t t l e concern for the purpose of t h i s 

t h e s i s . At the high frequencies encountered i n l i g h t n i n g surge studies, 

core current always return completely through the sheath. In that case, 

the magnetic f i e l d becomes zero outside the sheath anyhow. 
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Figure 3.5: Ratio of core,current return through sheath 
at 60 Hz for d i f f e r e n t earth r e s i s t i v i t i e s . 
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Figure 3.6: Ratio of core current return through own sheath 
for s i n g l e - and three- cable system at reduced 
earth r e s i s t i v i t y of 3 yft-m i n s i d e substation. 
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.1 Hz 
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i core 

"""so i i 
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i core 
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than s o i l 
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"""sheath " c c o r e 

•"•core """sheath + """soil 

Figure 3.7: Phasor diagram of current return 
through sheath and earth. 



7 • Formation of shunt admittance matrix for SFfi cables 
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For a usual 3-phase sing l e core underground cable system, one can 

b u i l d a 6 x 6 shunt admittance matrix [Y ] to describe the cable system as 

i . e . 

Ldx J 
[Y] [V] 

rdid~ 
y l - y l 0 0 0 0 dx 
y l - y l 0 0 0 0 

s i " y l y l + y 2 0 0 0 0 
• dx " y l y l + y 2 

d i c 2 0 0 y l 0 0 
dx 

y l I 

d l s 2 0 0 - y l y l + y 2 0 0 
dx - y l y l + y 2 

d i _ c3 0 0 0 0 y l - y l dx 
y l - y l 

d i . s3 0 0 0 0 - y l y l + y 2 dx - y l y l + y 2 

c l 

s i 

c2 

V s2 

c3 

s3 

(3.60) 

Notice that the off-diagonal submatrix of [Y] are a l l zero due 

to the fact that the grounded sheaths in between acts as e l e c t r o s t a t i c 

s h i e l d between cables. For the SF^ cable system as shown i n Figure 3.1, 

the diagonal submatrix elements are 

i 
y.. = iwc, = io) 2T T £ '1 J 1 J o 

Jin 
r3 

y2 = ^ w c2 = 2 7 r e
0 * 

Jin 

where y^ i s admittance due to i n t e r n a l SF^ gas i n s u l a t i o n , and 

i s admittance due to external sheath i n s u l a t i o n . 

(N.B. ',Th e external i n s u l a t i o n i s non-existent for the SFg cable.) 
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As has been confirmed by the author i n previous f i n d i n g f or sheath 

current return c h a r a c t e r i s t i c s , the core should be represented as si n g l e 

phase. Then, the admittance equation shown i n Equation (3.60) should be 

reduced to 

d i 
C y V = J'l C dx 

In — 
r2 

y s e l f * V c (3.62) 

8. Confirmation of numerical accuracy for cable parameter c a l c u l a t i o n  
and current return r a t i o s 

The numerical accuracy of the computation was confirmed when 

the cable parameters obtained by the developed cable constants program, 
32 

and by the BPA cable constant program agree co n s i s t e n t l y to more than 

three s i g n i f i c a n t f i g u r e s . 

38 

Then, a 500 kV submarine cable was chosen as another t e s t example. 

In t h i s case, the cable parameters for the submarine cable was f i r s t c a l ­

culated. The amount of core current returning through the sheath, armour 

and the sea was obtained by taking into account of zero p o t e n t i a l s on the 

grounded sheath and the grounded armour. The r a t i o s of magnitudes of 

core current returning through the sheath ,the armour, and the sea at 60 Hz 

were obtained as 14%, 87.8% and 5.6% r e s p e c t i v e l y . These agreed to more 
48 

than two figures to the r e s u l t s of other fi n d i n g s . 
9. Single phase representation parameters for multi-phase SF6 cables 

Since a l l phases of the SF^ cables are decoupled from one another, 

single phase c a b l e representation for studying l i g h t n i n g overvoltage wave 
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propagation i n SF, cable i s recommended. The s e l f admittance element (y ) 
" s e l f 

can be calculated from the simple formula as shown i n equations (3.61) and 

(3.62), whereas the s e l f impedance matrix element can be calculated from 

equation (3.1) as 

d V c l Z i + Z i + Z 1 0 ( i „ + i „) + Z . , ( i . + i J (3.63) — == s l l c l sl2 s i ml2 c2 s2 ml3 c3 s3 dx 

and 0 = Z s 2 1 i c l + Z s 2 2 i s l + Z m l 2 ( i c 2 + i ^ ) + Z m l 3 ( i c 3 + { y ^ 

Subtracting Equation (3.64) from (3.63), we get 

( Z s l l " Zs21> S i + ( Z s l 2 * Z s 2 2 ) S i 
dx 

= ( z s i i " W 1 - TT> " W r r " S i > < 3 - 6 5 > 
c l c l 

= s e l f c l 

where the sheath to core current r a t i o can be obtained from equation (3.49) 

or equations (3.57) to (3.59). 

Because a l l core current returns through the sheath at high 

frequencies, one has i n such condition 

S i 
= -1, and Z = Z i , ' sl2 s22 . . 

c l 

Substituting t h i s into equation (3.65) or (3.37), one obtains 

dV 

dx 
( Z s l l " Zs22> S ( 3 ' 6 6 ) 

After having obtained the s e l f s e r i e s impedance for s i n g l e phase 

cable as shown i n Figure 3...1, one can then represent the cable by the surge 
surge 

impedance Z , and the wave propagation v e l o c i t y v, as given by 
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zsurge / ! s e l f = ^ fl ( 3 > 6 ? ) 

/ y s e l f 

v = oi / - — = 300 m/ys (3.68) 
/ s e l f • y s e l f 

One should r e a l i z e that the m e t a l l i c sheath of the SF^ cable always 

form a very good earth return path to the cable core. The seri e s r e s i s t a n c e 

i s n e g l i g i b l e compared tp the reactance (See Fig.3,8),Thus, the SF^ cable 

can be taken to be l o s s l e s s . I t should also be noted that f or such a simple 

go-return c i r c u i t f o r a co a x i a l cable, the inductance can be given by the 

simple f o r m u l a ^ as 

y r 
L = •—- in — (3.69) 

- • 2TT r 2 

= 0.205 VH/m 

Consistent r e s u l t s f o r the inductance are obtained by equation (3.65) 

and (3.69) for frequencies above 10 Hz. Thus, the simple formula i s i n 

equation (3.69) i s recommended for inductance c a l c u l a t i o n of SF^ cable i n 

the study of surge propagation c h a r a c t e r i s t i c s . The surge impedance and 7 

the wave propagation v e l o c i t y can be then obtained as 

surge = /1 = A ° .. £ n I 3 . _1_ . £ n I 3 

C y - 2TT r 2 2 T T E o r 2 

° 1 „ 3 
e , 2 r„ o 4TT 2 

r
3 

= 60 £n — (3.70) 
r2 

where r^ and r 2 are radius of sheath and core respectively. 
10 



Figure 3.8: Self series inductance, resistance and 
resistance to reactance r a t i o for SF, cable. 
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and v = /f^ = / — J i n — (3.70) 
•' T r / y r„ 2T T E r„ 

r2 

y £ o o 
= 300 m / y s 

v e l o c i t y of l i g h t i n vacuum 

10. Wave propagation i n SF6 cables 

Wave propagation c h a r a c t e r i s t i c s i n sing l e core SF^ cable can now 

be modelled by the surge impedance of 61.4 ft,(typically about 60 to 75 ft), 

and wave propagation v e l o c i t y , ( t y p i c a l l y 300 m / y s ) . A numerical simula­

ti o n of overvoltage wave-shape .in the receiving end of a SF^ cable j o i n i n g 

to a overhead transmission l i n e i s simulated. 

The r e s u l t i n g voltage i n the open-circuited SF^ cable receiving end 

r i s e s i n a s t a i r c a s e fashion of diminishing amplitude, to a value of 2 p.u. 

(See Figure 3.9). This can be explained by using the r e f l e c t i o n (C.) and 

re f r a c t i o n c o e f f i c i e n t (C ) of the system at the li n e - c a b l e junction and 
is. 

39 

the open-circuited cable end re s p e c t i v e l y . For the l i n e - c a b l e junction 

at A, one has 
Z 2 = 312, Z1 = 60ft Z - Z 

(Wave incident from cable) c ^ = z + 7^ = 312 '+" 60 = ( 3 - 7 ± ) 

(Wave incident from l i n e ) 
Z 2 = 60, Z = 312 ft 
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Figure'3.9: Overvoltage waveshapes at both ends of SF^ cable 
j o i n i n g from overhead transmission l i n e . 
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For the open end of the cable, we have 

2 
1 °° - 60 

°° + 60 = 1 

and C ,o R 
2 x °° 
+ 60 2 

(Wave incident from cable, Z = 60, Z = ») 

Thus, the discr e t e r i s e i n voltage wave shape can be expressed as 

v = 2 x .32 (1 + C.+ C. 2 + . . .) 

where each step a d d i t i o n accurs at di s c r e t e time i n t e r v a l s of 2 

t r a v e l times. 

On the other hand, t h i s o v e r a l l r i s e i n overvoltages wave shape 

also agrees with the general exponential r i s e wave shape i n charging of 

a capacitor. This i s due to the inherent large s e l f capacitance of cables. 

The o v e r a l l r i s e i n wave shape can : be sketched by modelling the 

SFg cable as a lumped capacitor equivalent to the t o t a l capacitance for 

the length of cable, and ignoring the surge impedance of the cable (See 

Figure 3.9). 
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CHAPTER 4: CORONA ATTENUATION AND DISTORTION CHARACTERISTICS OF 

LIGHTNING OVERVOLTAGE IN OVERHEAD TRANSMISSION LINES. 

1. Introduction 

As the l i g h t n i n g voltage wave t r a v e l s down the overhead transmission 

l i n e , a high e l e c t r i c f i e l d i s produced on the l i n e conductor surface. When 
kV 

the e l e c t r i c f i e l d i n t e n s i t y exceeds the breakdown strength of a i r (^30 /em), 

i o n i z a t i o n of surrounding a i r molecules takes place. This phenomenon w i l l 

d i s s i p a t e the unwanted surge energy away from the system and thus reduces 

the magnitude and i n i t i a l rate of r i s e o? t h e l i g h t n i n g overvoltage. 
In transient l i g h t n i n g overvoltage studies, several numerical methods 

44 

have been employed to account for corona e f f e c t s . Brown applied the concept 

of corona radius to account for the corona envelope produced on the conductor 

surface. The coronated l i n e capacitances at higher voltages are also obtained 
'• o 

12 

by extrapolation. Darveniza also used lower wave propagation v e l o c i t i e s 

higher voltages and d i f f e r e n t corona correction factor for d i f f e r e n t conduc­

tor configuration. However, both methods are not straightforward and are 
43 

not t o t a l l y successful i n d u p l i c a t i n g f i e l d rest r e s u l t s . Umoto and Hara 

also transformed the transmission l i n e equation for coronated l i n e s into 

difference algebraic equations. However, t h i s numerical approach i s not 

e f f i c i e n t enough. Thus, an e f f i c i e n t and accurate numerical model for corona 

must be developed to predict the corona attenuation and d i s t o r t i o n character­

i s t i c s on l i g h t n i n g overvoltage propagations i n overhead l i n e s . 
2. Physical properties of corona attenuation and d i s t o r t i o n c h a r a c t e r i s t i c s 

The p h y s i c a l aspects and laws governing the behaviour of corona d i s ­

charge have been investigated since the beginning of t h i s century. However, 

most of the investigations and a p p l i c a t i o n s have been l i m i t e d to power 

frequency steady state or at most to switching transient conditions. From 
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the published f i e l d measurements f o r l i g h t n i n g surges, i t can be observed 

that the attenuation r e s u l t i n g from corona e f f e c t s i s much larger than that 

r e s u l t i n g from transmission l i n e s e r i e s resistance losses. The non-linear 

c h a r a c t e r i s t i c s of the corona discharge can be considered as (see Figure 4.1): 

a) Corona attenuation loss - From the quadratic law of corona loss pro-
41 

posed by Peek , the loss (v i^) per un i t length i s proportional to the 

square of the voltage above the c r i t i c a l corona voltage v i . e . 

where k = a • /-^r x 10 /m 

r , h = radius and height of conductor r e s p e c t i v e l y 

a = Corona loss constant determined experimentally 

This corona attenuation l o s s can be modelled with a r e s i s t i v e current l o s s i ^ 

through the corona r e s i s t i v e branch to ground as 

b) Increase i n shunt capacitance - the retardation of the wave front by 
42 

corona can be explained by an increase i n shunt capacitance. S k i l l i n g 

43 

and Umoto suggested that the increase i n shunt capacitance i s 

proportional to the voltage above the c r i t i c a l voltage V c q , i . e . 

V 
C = 2k (1 - (4.3) corona c V where k = a x 10 h c c v 2h 

a = corona los s constant^determined experimentally c 
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V - V R - v c transmission 
l i n e 

Corona shunt capacitance 
V / 

C = 2k (1 „ corona c V. 

1 + K c R 

G =kn--~f 
corona R V 

rrfn rmr 

Figure 4.1: Nonlinear corona losses model. 
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This increase i n capacitance can be modelled by : a capacitance 

branch to ground with the capactive current los s i„ 

Corona discharge only occur i f the voltage i s greater or equal to 

the c r i t i c a l corona voltage, and i f the voltage increase with time, i . e . 

j 3v v £ v , and — > o. co 3t 

This i s due to the fact that, when the voltage begins to decrease, the 

space charge c o n s i s t i n g of heavy ions i n the i o n i z a t i o n region remains 

p r a c t i c a l l y constant i n magnitude and p o s i t i o n during a short period of 

time. This slow d i f f u s i o n of ions r e s u l t s i n l i t t l e energy loss i n the 

case of decreasing voltage conditions even when v > V C Q . 

3. Transmission l i n e equations f o r coronated l i n e s . 

The corona phenomena can now be described by the modified 

l i n e equations. With the introduction of d i g i t a l computers, these 

phenomena can be studied accurately by solving the equations describing 

the electromagnetic wave propagations taking corona into account as 

follows: 

= £ + ( i - ^ S + v1-'^2-' <4-6> 
extra shunt Extra shunt 
capacitance conductance 

due to due to 
corona corona 
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Umoto and Inoue solved the above equations by the d i f f e r e n c e 

method. The l i n e equations (4.5) and (4.6) are transformed into algebraic 

equations of small increments of distance, Ax, and time, At. However, 

t h i s method i s not e f f i c i e n t to implement into the d i g i t a l computer as 

the method requires Ax to be as small as 7 m r when using At = .01 ys. 

4. Solution of l i n e equation by compensation method with trapezoidal rules 

The l i n e equations (4.5) and (4.6) with corona losses can be 

solved by the compensation method. In t h i s method, the l i n e equations 

are f i r s t solved without the extra corona terms. The Bergeron's method 

using t r a v e l l i n g wave technique together with modal ahalysis(See Chapter 2) 

i s a p p l i e d . Then, the corona losses can be treated as non-linear 

shunt branches connected to ground,. .< The trapezoidal r u l e can then 

applied to obtain the t o t a l current los s of the corona phenomena. 

By applying the trapezoidal rule of l i n e a r i n t e r p o l a t i o n to the 

corona r e s i s t i v e branch to ground, we have j as shown i n Figure 4.2, 

± - e - v t + A t
= i W + ( v t " i V 

where d = + — (4.7) v — v t + At t 

as d = slope of graph at time t . 

Also, d can be obtained by considering the equation (4.2) 
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Current i ( v ) 
( 

Voltage v 

Figure 4.2: Linear i n t e r p o l a t i o n for resistance corona branch. 

8v/9t=v 

voltage v or 
current i 

Figure 4.3: Linear i n t e r p o l a t i o n f or capacitive corona branch. 
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( v - v )' 
t CO 

t R v. 

or 

co k^ v t + k„ — - 2k„ v R v ~"R co 

d i 
d = dv 

v 2 
K. kR v 2 (4.8) 

Thus, we eventually have 

1 . , ,v - 1 i v 
V t . + At " d \ + At + ( fc d ° (4.9) 

\ ' i t + At + V o (4.10) 

where v = v - v i , ( known from past h i s t o r y at time t) o t d t 

and ^R = a" (known from past h i s t o r y at time t) 

S i m i l a r l y , since the corona capacitive branch current loss i s 

given by 

2 k a c , , 9v 
x = (v - v ) — 

v co 3t 

or 
9v v i 
3t 2k (v - v ) c CO 

f ( v , i ) 

Applying l i n e a r i n t e r p o l a t i o n of the 2 variables ( i . e . from f i r s t 

term of Taylors' s e r i e s ) , we have as shown i n Figure 4.3 

f ( v , i ) = f ( v , i ) 
t+At 

+ 3v (v t+At 
\ , 3f ' 

Vt> + 31 ^t+At " ± t ) 

(4.11) 
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3f 
3v 

i (v v ) - v 
2k t c C O 

- X , V 
C O 

2 k c <vt - v c o ) 2 
(4.12) 

and 3f 
3i 2kj;v - v ) t * co 

2H\ - \o> 
(4.13) 

Thus, we obtain 

f ( v , i ) 
t+At 

3v 
3t t+At 

v — v t+At t 

" A t 

v. 
2k(v - v ) v t+At / t ^ t co / 

Re-arranging equation (4.14) w i l l give the l i n e a r i z e d equation as 

Vt+At = R c S+At + V l (4.15) 

where R = 
1 + v i * . . 

co t At 
2k (v - v )2 

C t C O 

* v 
At t (known from past 2k (v - v ) , . „ . c t co hxstory) 

and 
1 + v K' A«-co t At 

2k (v - v )2 c t co 

. . V X V 

At co t t 
( V t + 2k (v - v )2> from 

c t co past hxstory) 



Combining equations (4.10) and (4.15) for the voltages and currents 

in both corona r e s i s t i v e and ca p a c i t i v e branches by taking into account 

v = v_. = v c R 

and i = i + i„ c R 

we can obtain 

( ^ + ^ ) v - ( i c + i R ) + ( ^ + ^ ) 

of or v = R ' i + k' (4.17) 

R c *R where R' 

and k* = 

R c + R k 

*R V l + R c Vo 
R 

Having the corona loss branches represented by a l i n e a r model as 

described in equation (4.17), the compensation method can then be applied 

to solve the transmission l i n e equations including corona losses. 

In the compensation method, the transmission l i n e i s f i r s t reduced 

to a Thevinin equivalent (See Figure 4.4) and i s described by 

vv= V Q + A2±, (4.18) 

where i s a negative number. 

Then, t h i s equation i s solved simultaneously with the l i n e a r i z e d 

equation for corona l o s s , as in equation (4.17). Thus, the r e s u l t i n g 

corona voltage and discharge current can be obtained as 



A 

m 
(m i s ground) 

A : Thevinin equivalent network for transmission l i n e 
without corona losses 

B : Nonlinear corona losses model 
v = R' i + k' 

Voltage v. 

v corona «• 

v =v +A i 
• » v k m o 2 

Current i km 
i corona 

Figure 4.4: Compensation method f o r non-linear corona model 



1corona - R' - A. (4.19) 

R'v - A-k* 
A o 2 and v corona • R1 - A. (4.20) 

5. Influence on corona by adjacent sub-conductors i n the same bundle 

Extra-high voltage phase conductors are designed to consist of 

several sub-conductors bundled together in order to reduce corona losses. 

The e l e c t r i c f i e l d on a sub-conductor surface i s affected appreciably by 

the adjacent sub-conductors i n the same bundles. The corona phenomenon i s 

consequently influenced. 

The e l e c t r i c f i e l d on the sub-conductor surface due to the sub-
46 

conductor i t s e l f i s given by 

max 2 IT e r o 
, Qr-= charge/length 

cv 
2 IT e r o (4.21) 

where c = e f f e c t i v e capacitance/length 

v = voltage of conductor 

r = radius of sub-conductor 

However, for a bundled conductor with 4 i n d i v i d u a l sub-conductors, 

the maximum e l e c t r i c f i e l d i s given by^(See Figure 4.5) 

max 
Q1 ,- 1 

2TT e 
+ s72 + 2 -• s i n 45

u) 

-21 •- -2-TT e r o 
(4.22) 
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\ a x - -2̂ tT ( 1 + vfs } 

C V „, e f f e c t i v e where Q = ^ 
Figure 4.5: C r i t i c a l voltage c a l c u l a t i o n by evaluation of 

maximum e l e c t r i c f i e l d on a 4-conductor bundle. 



A f t e r the maximum e l e c t r i c f i e l d on the conductor surface i s 

obtained, the c r i t i c a l voltage for corona discharge can be computed by 
6 

equating the maximum e l e c t r i c f i e l d to 30 kV/cm or 3 x 10 v/m, . the 

e l e c t r i c breakdown strength i n a i r . A t y p i c a l c r i t i c a l voltage f o r a single 

conductor has been found to be 277 kV, and that for a 4-conductor bundle to 

be 558 kV. 

6. Influence on corona by adjacent phase conductors 

Since the conductors i n each phase are mutually coupled to one another, 

voltages are always induced i n the adjacent conductors. Thus the maximum 

e l e c t r i c f i e l d on the conductor surface i s affected. However, due to the 

design of transmission l i n e s for extra high voltage l e v e l s , separating 

between phase conductors are u s u a l l y large compared with radius of i n d i v i d u a l 

conductors. This e f f e c t u sually change the o v e r a l l c r i t i c a l overvoltages 

by l e s s than 10%. But t h i s change i n c r i t i c a l voltage produces n e g l i g i b l e 

e f f e c t s on the o v e r a l l corona attenuation and d i s t o r t i o n c h a r a c t e r i s t i c s on 

overvoltage wave (See Figure 4.6). 

7. Optimal lumping locations and number of corona branch legs 

The equations with corona phenomenon i s now solved by the 

dbmbensation method with the corona l o s s legs lumped at a few places 

along the transmission•-• l i n e . However, the optimal locations and optimal 

number of lumped elements has to be determined. 

At f i r s t , 20 corona loss branches 70 m apart from one another 

were lumped between f i v e transmission towers. Then, a separation of 

350 m between the corona loss branches was used. This increase i n separa­

ti o n increased the deviation of the predicted wave shape from f i e l d measure­

ments' appreciably (See Figure 4.7), from about 5 to 10%. This suggests that 



f i e l d measurements 
v ± t ± c a i = 303-kV (include e f f e c t of. 
c r i xca adjacent phase conductors)) 

v . . 277 kV (neglect e f f e c t of 
c r x t i c a l adjacent phase conductors) 

Figure 4.6: E f f e c t of adjacent phase conductors on corona losses. 



Figure 4.7: E f f e c t of lumping distances on corona. 
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the optimal separation should be about 70 m. 

The f i e l d measurement for a 4-conductor bundled was then simulated. 

In using the corona loss constants (for case of 1-conductor bundle) 

a = 30 c 

a- = 10 x 10 6 

s l i g h t l y higher overvoltages were obtained. Then, a new set of corona 

constants (for case of 4-conductors bundle) 

a = 30 c 

a = 20 x 10 6 

was used to give r e s u l t s consistent with those from f i e l d measurements 

(See Figure 4.8). 

F i n a l l y , the negative impulse overvoltage was also simulated f o r 

the 4-conductor bundle case. The corona loss i n t h i s case was found to be 

much less than the p o s i t i v e Impulse case. The corona los s constants were 

determined to be 

a = 15 c 

a = 10 x 10 6 

With these sets of corona constants, the f i e l d t e s t measurement 

was again r e p l i c a t e d c l o s e l y (See Figure 4.9). 

8. Overall numerical modelling f o r corona e f f e c t s 

The f i e l d t e s t r e s u l t s of corona attenuation and d i s t o r t i o n 

c h a r a c t e r i s t i c s on a 500 kV te s t l i n e were r e p l i c a t e d by the method 



Overvoltages(kV) 

Figure 4.8: P o s i t i v e impulse on 4- conductor bundle." 



Overvoltages(kV) 

2000 
FDUR-CONDUCTOR BUNDLE 

1 2 3 4 5 6 

f i e l d measurements 
a =15, a =10xl0 6 

c G r 
a =15, a =5x10 
c G 

Figure 4.9: Negative impulse on 4T conductor bundle. 
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developed e a r l i e r . This method examined corona c h a r a c t e r i s t i c s i n both 

single and bundled conductor l i n e s . From the performed study, one can 

conclude that the e f f e c t s of bundling of conductors i s e f f i c i e n t i n increas­

ing c r i t i c a l corona voltage. Furthermore, influence of adjacent phase 

conductors i s n e g l i g i b l e on corona e f f e c t s . Thus, i t i s concluded that 

s i n g l e phase l i n e representation i s s u f f i c i e n t f o r corona studies. F i n a l l y , 

i t i s determined that separation between the corona los s leg can be lumped 

at 70 m without s a c r i f i c i n g a loss of accuracy on the predicted coronated 

waveform. A. reduction i n distance between corona legs w i l l not improve the 

accuracy of the simulated r e s u l t s . 

It should be noted that l i g h t n i n g strokes w i l l r a r e l y h i t more than 

one conductor at one time; thus corona phenomena have only been included 

for one conductor i n t h i s t h e s i s , rather than for a l l three phases 

simultaneously. 



CHAPTER 5: CONCLUSIONS 
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The attentuation and d i s t o r t i o n of l i g h t n i n g overvoltage waves 

on multi-phase transmission l i n e s and multi-phase single core SF^ cables 

i n compressed SF^ gas-insulated substations was studied. Corona e f f e c t s 

of l i g h t n i n g overvoltages on overhead l i n e s were also investigated. 

Available f i e l d t e s t r e s u l t s for corona e f f e c t s were duplicated to within 

5% accuracy. 

Results obtained with the techniques developed by the author are 
21 

useful f or l i g h t n i n g i n s u l a t i o n co-ordination studies and other re l a t e d 
,. 13,14,40 ^ , i t J studies . xhe l i g h t n i n g surge wave front can be calculated at any 

l o c a t i o n inside the substation, eg., inside the SF^ bus or at the trans-
o 

former terminal. Based on the studies described i n the thesis the following 

recommendations are made for future i n s u l a t i o n co-ordination design studies: 

1. Multi-phase untransposed l i n e s can be represented by single-phase l i n e 

models using s e l f parameters calculated at a high frequency of 

approximately 1 M Hz (See Table 2.4). Series resistance should be 

ignored. Frequency dependent e f f e c t s are not important f o r propa­

gation over distances l e s s than 2 km. 

2. Corona e f f e c t s are important i n reducing the magnitude and rate of 

r i s e of the incoming l i g h t n i n g overvoltage surge. E f f i c i e n t s o l u t i o n 

techniques using compensation methods are developed to solve the non­

l i n e a r corona attenuation and d i s t o r t i o n phenomenon. 

3. Multi-phase SF^ si n g l e core cables can be represented by s i n g l e phase 

cable models. Series resistance can be ignored. Cable parameter can be 

obtained with the simple formula for a go-return c i r c u i t f o r a coaxial 

cable with s u f f i c i e n t accuracy. 
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APPENDIX A: SKIN DEPTH ATTENUATION IN CONDUCTING MEDIUM 
WITH FINITE CONDUCTIVITY. 

This section shows that the core current return c h a r a c t e r i s t i c s 

through the sheath for the SF^ cable could be obtained by a d i f f e r e n t 

approach. From the Maxwell's equations i n a conducting medium, we h a v e ^ 

V x E = -jwu H (A.l) 

V x H = jtoeE + aE 

= aE, for good conductors (A.2) 

where a i s conductivity of medium. 

From equations (A.l) and (A.2), we can get 

2 2 

V x V x E = V ( V « E ) - V E = - V E (for homogeneous medium) 

= -joiyV x H 

= -jwyaE 

= -m2E 

where m = /jtoya 

= ^ ^ • /u>ya 

This equation i s i d e n t i c a l to the d i f f u s i o n equation with 

solutions 

— = E = E e - m Z , (A.3) 
a x o 

= E e-V"2~ Z • e - V ~ T Z (A.4) o 

= E e - j Z / 6 • e " j Z / 6 (A.5) o 
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where 6 = ~-. = - 1 7= skin depth 

Thus, the tangential e l e c t r i c f i e l d E or the tangential current 

density J x w i l l be attenuated by ̂  = -368 when the depth of penetration Z 

equals to the skin depth. For aluminum, we have the skin depth 6 as 

<5 = 7 = = (A.6) 

/irf (4ITX10-7) (3-8x10/) 

8-1 
,— cm 

Therefore, for frequency above 1 kHz, the e l e c t r i c f i e l d i s e s s e n t i a l l y 

attenuated and n e g l i g i b l e f l u x outside the sheath. Thus, since character­

i s t i c frequencies of l i g h t n i n g strokes exceeds 1 kHz, the above r e s u l t s 

i n d i c a t e that each phase of the cable i s decoupled from other phases as was 

shown previously i n Chapter 3. 

A f t e r the tangential current density f o r one medium i s obtained 

by equations (A.3) to (A.5), the tangential current density for another 

medium on the boundary to the f i r s t medium can be obtained by 

E l t = E 2 t 

°1 
J l t = ~ 2

 J 2 t 

Thusm the t o t a l current flowing i n d i f f e r e n t components of the 

cable system can be obtained by 

I = /JdA 
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