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ABSTRACT

The propagation‘characteristics of lightning surges in compressed
SF6 gas insulated power substation was studied using an electromagnetic
transients program. Numerical models were developed to represent the
behaviour of different system components especially under lightning over-

voltage conditioms.

The characteristics of lightning surge propagation in overhead
multi-phase untransposed transmission lines was analysed first. Modal
analysis, :together with’SPecial rotation techniques to fit time domain
solutions were then used to simulate the wave propagation in multi-phase
untransposed line in an electromagnetic transients program. Non-linear
voltage-dependent corona attenuation and distortion phenomena were also
investigated. Available field test results could be duplicated to within

5%.

The characteristics of lightning surge propagation in multi-phase

single-core SF, cables was studied next. A program was developed to obtain

6
the cable parameters for typical cable configurations. The amount of core
current returning through its own sheath and.through the earth were computed

to illustrate the single phase cable representation for wave

propagation in single core SF6 cables.
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INTRODUCTION

Every year, atmospheric lightning discharges cause numerous
disturbances and damages to electric power systems, such as, destroying
transformers and causing black-outs of large areas. This thesis is
devoted to the analysis of lightning‘surge propagation into compressed
SE6 gas-insulated substations. The MICA project of the British Columbia

Hydro and Power Authority was chosen as a test example.

Insulation co-ordination requirements are usually derived from
simulated surge propagation studies. This thesis shows that the present
practice of insulation co-ordination design can be improved with the
numerical models developed in this thesis. The contributions of this
thesis to insulation co-ordination design and related power system studies
includes the following:

1. Determination of wave propagation in untranspoéed lines - Analysis is
used, with a special rotation of modal parameters and transformation
matrices to make the method suitable for time-domain solutions of
wave propagation in multi-phase untransposed line. The suitability
of different simplified transmission line models is clarified by
comparing simulation results with those from an exact multi-phase
representation.

2. Representation of non-linear voltage-dependent corona effects - Corona
distortion and attenuation has been simulated with voltage dependent
velocities and correction factors in the past44’12, or with finite
difference methods. However, these methods are inefficient for
digital computer applications. More efficient computational algorithms,

using compensation methods, are developed in this thesis to



investigate the non-linear voltage dependent corona effects.

3. Determination of wave propagation in multi-phase single core SE6
cables - Published methods for the calculation of cable constants
give inconsistent results. A new cable constants program for multi-

phase single core SF, —cables has been developed by the author, using

6
various converging infinite series. The complete shielding effect

of the externally grounded sheath at frequencies above 1 k Hz has

been confirmed with this program.

The‘problem of transient groundrise caused by internal breakdowns
or by lightning impulses, as studied by Ontario Hydr051, is not included
_in this thesis. These transient potentiadl differences between SF6 bus-
ducts and ground occur mainly at the junction with the overhead line.

AS this thesis shows, the current return in the SF, bus-duct is completely

6
through the sheath at frequencies above 1 kHz, whereas the current return
of the lightning impulse on the overhead line isin the ground. At the
junction, the return current must therefore pass from the sheath into

the ground through the ground leads, which in turn causes the transient
groundrise problem. These transient groundrises are an important factor

in the design of the grounding system, because they can cause damage to ¢u

auxiliary wiring or shocks to personnel.



CHAPTER 1: LIGHTNING CHARACTERISTICS AND STROKES
TO POWER TRANSMISSION LINES

1. Introduction

The first important experiment on lightning was done by Benjamin
Franklin, who used flying kites to :show that lightning is electrical in
‘nature. TFor more than two centuries, lightning has been the subject of
active research. Much of this research has been concerned with the pro-

3

tection of people and property against the effects of lightning stroke.

2. Lightning discharge mechanisms

Lightning strokes are first initiated inside thunder-clouds. A
thunder-cloud usually contains several negative and positive charge centres
distributed in different locations as shown in Figure l.la. As soon as
the electron is jumping over to - neutralize the positive charge,
‘a step leader starts to move down the earth in discrete zig-zag steps of
about 50 meters in length as shown in Figure 1.1b. This downward pilot
stroke is about 1 cm in diameter and is not visually detectable by the

human eye.

As this stepped leader continues to progress downwards, positive
charges are induced and accumulated on the ground surface. Eventually,
these positive charges jump . upwards and form the return stroke to
meet the downward stepped leader as shown in Figure 1l.lc. This highly
luminous return stroke produces most of the thunder which is heard. The
return stroke is about 10 cm in diameter and at a teﬁperature of around

30,000°K. Once all the positive charges transfer to the thunder-cloud as

shown in Figure 1.1d, the discharged charge centre completely becomes
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moving return leader. of return leader to cloud
(charge centre becomes
positive).

Figure 1.1: Charge distribution and propagation during
initial lightning discharge.
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c. Negative charge dart
stroke about to hit

d. Formation of subsequent
return leader from ground
to cloud charge centres.

the ground.

Figure 1.2:

Charge distribution and propagation during sub-
sequent dart leader (multipli-stroke lightning).



1
positive and single stroke lightning discharge is completed.

However, about 507 of all lightning flashes are multi-strokes
and contain 3 or 4 subsequent strokes, typically separated by 30 to 40 ms.
About less than 100 ms after the first stroke, a high potential difference
is again established between the charge centres. Dischargesagain occur and
a dart leader is formed which moves earthwards in the ?revious main stream
as shown in Figure 1.2a to 1.2c¢. Similarly, a return stroke is also formed
and more positive charges transfer to the thunder~clouds as shown in

Figure 1.2d.

The whole process of multi-strokes with relative stroke magnitudes
and time scales is illustrated in Figure 1.3a and. 1.3b. Typical sub-
sequent strokes are %?—of the initial stroke magnitude and are well separated
(about 30 - 40 ms) in time. The initial stroke is the prime factor in the
insulation co-ordination studies, but subsequent strokes must be taken into
accounf aé~arresters must be able to handle repetitive diseharges, and the

dead times of the auto-reclosing switchgear must be set longer.

s

r___.zovom R, / bs
MICROSECONDS I

RETURN
STREAMER

!
1100 MICROSECONDS Wy 10O MICROSECONDS 100
) MICROSECONDS
Q.03 SECOND- Q.03 SECOND

Velocity 100% = 300 m/us

Figure 1.3a: Diagram showing time intervals between initial
and subsquent strokes. (Ref.3)
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~'Fi'gure 1.3b: Current magnitudes of initial and subsequent
strokes in typical lightning flashes.

3. Statistical characteristics of lightning strokes

Due to the different distributions and intensities of charge centres
inside the thunder-cloud, the characteristics of lightning strokes show a

large statistical variation in both magnitude and shape.

a. Magnitude of l&ghtning'strokes

The voltage stress on the power system depends on
the magnitude of the lightning current, which is therefore a critical

. - . . . 4,52
factor in determining insulation requirements. .Recorded measurements ’

are shown in Figure 1.4. It can be seen that 80% of the lightning current

magnitudes are within 10 to 100 kA, and only 5% exceed magnitude of 100 kA.

52
It is suggested that the lightning stroke has to be simulated

as an incident current source to the power line with a maximum current
magnitude of 100 kA for insulation co-ordination studies. However, this
current source will become .an overvoltage wave when propagating down the

power line due to the inherent surge impedance of the line. Thus, for
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equipment test purposes, overvoltage waves are prescribed.

b. Waveshape of lightning stroke

The lightning waveshapes measured by different researchers essen-
tially resemble a double exponential waveshape of different rise time and
decay time. Thé observed spread of rise time is from very short to 10 us.
The observed decay time also spreads from 2 to 100 USS(see Figure 1l.5a).
The electric power industry therefore agreed many years ago to use a
lightning overvoltage wave for equipment insulation testing purpose of a
shape 1.2 x 50 us (explanation.of designation in Figure 1.5b and 1.5¢).
Some testing precriptions also specify that this full wave be chopped with

a spark gap in the tail to expose the equipment to the higher frequencies

which are contained in the voltage collapse.

4. Frequency of lightning strokes to earth

The thunderstorm activity on earth is measured by the isokeraunic
level. This isokeraunic level (IKL) gives the number of days per year that
thunder has been heard. Usually, thunder cannot be heard outside a 7—24:km
radius. An updated world map of isokeraunic level6 is shown in Figure 1.6.

As expected, higher IKL is found within the tropical and sub-tropical

regions close to the equator.

After obtaining the IKL of a given place, the number of strokes

to earth per km2 (N) in a particular location is given by7
2
N = A (IKL) stroke/(km™ - yr)

where

A=0.1 to 0.2
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Figure 1.5: Waveshape of lightning strokes. (Ref.5)
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5. Frequency of lightning strokes to power lines

For estimating the number of lightning strokes to power lines,
we can start,. from the 'electrical shadow' cast on the ground by the tall
tower structure with power lines. The frequency of lightning strokes on
the 'electrical shadow' 1s assumed to be the frequency of strokes to the
power lines. The width (w) of the shadow area estimated by reference 6 is
chosen. For a power line with two ground wires, the width is given by

(see Figure 1.7)

w=24h+D
where h = height of ground wire in m
b = separation between ground wires

Similarly, for a power line with only 1 ground wire, the width is given

by

4h

€
1l

=
1l

where height of ground wire in m

and for power lines without ground wires, the width is given by

w = 4h + b
where h = height of phase wire in m
b = separation between outermost phase wires

Thus, the number of strokes/km - yr to the power line (NL) is

_ W
NL = 0.1 (IKL).lOO0

stroke /km -yr’ (1.1
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For a typical 500 kV tower of the MICA Dam Project, for the line

close to the substation, we have

4 x 37.5 + 18.64
1000

=
1}

(0.1) (30) (1.2)

0.5 strokes /km - yr

GW GW

GW

ground wire
phase wire

2h : b . 2h
¢ = shielding angle
= 23°
h = height of ground wire
=37.5m
b = width between ground wire

= 18.64 m

Figure 1.7: Lightning stroke 'Electrical shadows' of a
typical 500 kV transmission line.

6. Shielding failure phenomenon of lightning strokes

As shown in Figure 1.7, ground wires are designed for shielding of

the phase wire from direct lightning strokes. However, lightning strokes
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could still 'sneak' through the ground wire and hit the phase wire. Such
shielding failures have been recorded in various countries for different

tower configurations.

Maikopar6 derived a shielding failure curve based on observed field
data (see Figure 1.8). However, the graph doés not shows the fact that
shielding failures occur mainly on lower lightning strike currents. At
higher currents, (e.g. >14.2KkA for MICA), the phase.wire is effectively

shielded from lightning strokes.

As seen from Figure 1.1 and 1.2, the pilot downward stepped leader
from the thundercloud is formed and propagates earthward freely regardless
of the structure on earth initially. Later, the return strokes is formed
from a ground object closest to the leader tip, (ground wire, phase wire,
or the ground) :arnd propagates upward to meet the steﬁped leader to complete
“the lightning path. This ground object is the object which will be struck

by the lightning stroke.

Brown8 analysed results from the 120,000 km - yr line in the Path-
finder Project and deduced that the target is not chosenuntil the distance
between the stepped leader tip and the prospective object is shorter than
the striking distance re This striking distance is related only to
the stroke current as

0.75

where

I = current in kA

From this striking distance concept, we can develop the electro-
geometric modelzas shown in Figure 1.9a. The shielding failure of ground-
wire at lower current amplitudes can correctly explained by this more

refined method. The degree of exposure of different conductors is
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Figure 1.8: Probability of Shielding Failure vs. Shield Angle
between Ground Wire and Top Phase Conductor .

represented by drawing exposure arcs of striking distance radius, and
centred at each individual conductors. The initial power frequency
voltage of the phase conductor is ignored as this voltage is comparatively
small to the discharge voltage of the lightning strokes.

For lightning currents of 10 kA and 14.2 kA, the corresponding
exposure of the phase conductor PW is shown. It can be seen that the phase
conauctor exposure to lightning stroke is decreased with increases in
striking current. For current of amplitudes higher than 14.2 kA, for this
tower structure in MICA project, the phase conductor is effectively
shielded by the ground wire and the ground as the exposure arc is

negligible in size (See Figure 1.9a).
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I=14.2kA
Scale 1:1000 _ I=10kA
, no exposed arc

T
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Figure 1.9a: Electrogeometric model with maximum
striking distance of 53.3m.
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- " MICA - . . s max 2(1—sin¢s)
[~ . = e :
g Ts max 23.3m 1 where h=ground wire height
3 i y=phase wire height
e ¢ =shielding angle
= «n B S
4—’"{' .
Z 3 3 i
- 0 & -
o< > N2 |
IE% %»3\ ‘o
\2 8 A\ © %
oo x 2 -
o M 2
fond
Q
Q -
} 5
&
i ‘A [ SU B )
2 50 100

Stroke Current in KA

Figure 1.9b: Frequency Distribution of Shielding Failure
Stroke Currents in case of Shielding Failure
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Brown et al further investigated this situation by taking the
angular distribution of the lightning stroke g(y) into account and
evaluated the phase wire exposed arc for different stroke currents as

S ¢1 ¢2(¢) cos Y

"
i

g(y)dydg (1.3)

2
where: g(y) = %—cos ¥ (1.4)

The detailed analytical results are shown in Figure 1..9b. For our

MICA tower of maximum striking distance of 53.3m (I =14,.2kA), the result

shows that less than 1% of shielding failure lightning currents to the phaée

wire will exceed 1% kA. This agrees well with the geometric interpretation

shown in Figure 1.9a.

Tﬁe lightning stroke usually hit the ground wire or ﬁhé Eg%er;‘in

this case, a voltage will build up r~across the insulator because of the
potentdial rise on the tower crossarms. If the insulator flash over
(' backflashover') to the phase conductors, then lightning overvoltage

surges will appear on the conductors.



18

CHAPTER 2: LIGHTNING SURGE PROPAGATION IN
OVERHEAD TRANSMISSION LINES

1. Introduction

Propagation of lightning sﬁrges due to direct strokes or backflash-
overs in overhead lines influences the choice of insulation © require-

ments. One must know the attenuation and distortion characteristics of the
line in order to find the dvervoltages entering the substation whefe most

of the equipment is concentrated. This section tries to answer the questions
whether it is possible to represent untransposed overhead lines as

equivalent single phase lines for the stricken conductér with accuracy,

and whether self, positive or zero sequence impedances should be used in

such single-phase representations?

At first, field tests results are duplicated by using a Fourier
transformation method.9 This method not only includes the frequency-
dependence of the liné parameters, but it also uses the exact complex,
frequency-dependent transformation matrix which requires recomputation
at each frequency within the frequency rangeitypical of lightning surges
(e.g. 10 k Hz to 1MHZz). This method is recommended for the simulation
of distant strokes where the frequency dependent charactéristics must be

included.

For close-by lightning strokes, the above frequency-domain solution
can be replaced by a simpler time-domain solution method. This method
is based on modal analysis with frequency-independent parameters and real-
valued transformation matrices. The results obtained with the simpler
time-domain simulation ﬁethod agree very well ( < 4% deviation) with

the accurate frequency-domain simulation method.



19

After confirming the correctness in the time-domain simulation
with the exact N - phase representation of the overhead line for close-by
lightning strokgs, the results obtained are thus compared against single-
phase approximate representations as presently used. Furthermore,
additional recommendations are made-on how to remove uncertainties in the

choice of surge impedance values of overhead lines.10 It is also found

that frequency dependence effect of nearby llghtnlng stroke can.be ignored.
Line parameters can be chosen at hlgh frequency e:g. at 1’ M Hz, and line

resistance can be ignored as contradlctory to the previous flndlngs.l1 12

2. Modal analysis for N - phase untransposed line

The well known transmission line equations describe the propagation
of electromagnetic waves on overhead transmission lines. However, contrary
to the single phase case, the solution to the N- phase case cannot be
obtained easily since each of the N overhead conductors is mutually
coupled to the other conductors. The follbwing two sets of simultaneous
second-order partial differential matrix equations describing the change

in voltages and currents along the N - phase line must be solved:

_ _dehase _ [thase] [Iphase] (2 l)
dx axl nxn nxl '
[ ..phase]
_f ar . [thase] [Vphase] (2.2)
dx ol nxn nxl "
L d
where
[thase]nxn = impedance matrix in phase domain
= admittance matrix in phase domain
[thase]nxn dmi ix in ph a .
[Iphase]nxl = phase current vector
[Vphase] = phase voltage vector

nxl
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The N coupled differential equations in equations (2.1) and (2.2)
can‘be transformed into N decoupled equations by feplacing phase quan-

tities with modal quantities, -
ha ’ od
(VPR = [T ] (V"9 (2.3)

mode

[1PP%e) < [1,] (179 (2.4)

and by chéosing [TV] and [Ti] in a certain way, as described later. Applying

equations (2.3) and (2.4) to equations (2.1) and (2.2) gives

' ode '
d -1 h d
Eg* } = (1,17 [2P7%0) [1,] (1700 (2.5)
- [Zmode] [Imode] (2.6)
and
ar™4de| _1  phase mode
-l & | 7l T [V (2.7)
=_[Ym?de] [Vmode] . (2.8)
To find [T ], we first differentiate equation (2.1) with respect to
:Ziphase
x, and replace F with equation (2.2):
2_phase| |
[d z } _ [zphase] [thase] [Vphase] (2.9)
dx
With equatioh (2.3), this can be written in modal quantities as
2 _mode .
{9—§T 1 - r 7 PRy PPy (o) (vl (.10
dx v v

(a1 [v™°%) (2.11)

I
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if [Tv] is the matrix of eigenvectors of [thase] [thase]’ then [A]
becomes a diagonal matrix, with its elements being the eigenvalues of

[thase] [thase].

Similarly, for the current quantities, we have

2 _mode : )
[d—é— } | [Ti]_l [¥PR25e) [ZPP%e) (1] [1m°de; (2.12)
dx

(a1 (1% (2.13)
: : _ . . phase phase .

where [Ti] = matrix of eigenvectors of [Y© 1 [z ], with [A]

being identical to that in equation (2.11).

Taking the transpose of the expression for [A] in equation (2.12)

and comparing it with that for [A] in equation (2.10), while remembering

that [thase] and [thase]'are symmettic; gives:
[A1 = [2,1° [2PPeee) xRy (rr,1H 7
-1 . _phase phase
- (1,17 2P R )
or (71 = (r15H (2.14)

Thus, only one of the matrices [Ti] or [TV] is needed. Using only

mode mode

the [Ti]—matrix, we can obtain the modal parameters of [Z ] and [Y ]
from equation (2.6) as
(2%°%] = [r,1° (2270 (1] . (2.15)
and from equation (2. 8) as
-1 h t. -1
Saatas B CU0 Bl & Gt IQ4 0 ) (2.15a)
mode ., ~1 - t phase ,~1 ‘
Y = .
or [y 7] 7= [Ti] [Y" ] [Ti] (2.16)
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In the computer pngram developed for this modal analysis,lB’14

equation (2.16) is used for these two reasons: it does not require the

thase]fl

inverse of [Ti] and secondly, the program calculates [ first anyhow,

mode

thase] is obtained by inversion. [Y ] is then easily

from which [

obtained by takingthe reciprocal of the diagonal elements of the right-

mode

hand side of equation (2.16). [Z ] is not calculated from equation

(2.15), but in a simpler way from

mode mode ., -1

(279 = [A] [¥"00°] | (2.17)

that is, each component is simply

i Ymo‘ie (2.18)

Zmode _ Ai

This is valid because [A] from.equation (2,11) can be rewritten as

(a1 = [7,17" [2Phe%8) [vPRR%e) o

-1 -1

.0

(1,17 122250 (). (1T PR (o)

mode

[z mode

. H

1. [Y ] (2.19)

3. Rotation of'eigenvectors for zero shunt conductance

It has to be noted that the eigenvectors (columns of [Ti] or [TV])
are only determined to within a multiplicative constant. Each eigenvector
can, therefore, be multiplied with any non-zero complex scalar, and it will

still be the correct eigenvector.

Since we assume zero phase shunt conductances (corona losses will be
discussed later in Chapter 4), the modal coenductances should also be zero.
This can be achieved by multiplying the eigenvectors with a properly chosen

constant. Then equation (2.8), which is defined in the frequency domain,
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can be rewritten in the time domain as follows

9.mode o mod
2t = [Cmode] A
ox ot

In order to obtain zero modal conductances, a rotation scheme is used

which makes the modal admittance matrix [Ympde] purely imaginary,

mode]

Y™ mode]

= [0] + 3[B rotate

rotate
This rotation is equivalent to dividing the i-th eigenvector (i-th column

mode

of [Ti]) by a factor Di' First, find the angle ei of Y1 , as shown

in Figure 2.1.

Then
D, = e (2.20)

With all Di's forming a diagonal matrix [d], the modified matrix of

eigenvectors becomes

[T.]

ilrorate = [Tyl D] (2.21)

Then from equation (2.15a),

- -1
(¥ o= (01 [T 7 PR (g1 1H T () (2.22)

or

(Y% .= [p] (v ] (2..23)

Since all matrices in equation (2.23) are diagonal, equation (2.23) is

mode

simply a totation of Y i by an angle (90° - ei), which according to

. mode . . _
Figure 2.1, makes [Y ]rotate purely imaginary.



After [Ym?deﬂfotate is found from equation (2.23), and [Ti]rotate
" from equation (2.21), [ZmOde]rotate is éalculated from
[Zmode] = [A] [Ymode]'1 (2.24)
rotate rotate

These modal quantities and transformation matrices obtained are
characteristics of the particular design of the untransposed line.
These modal parameters and modal transformation matrices are needed as
input for the representation of untransposed distributed - parameter lines

in the time domain solution, such as in the UBC version of the Electro-

magnetic Transients Program as described in 13’14.
Bf
,mode _ . modellkm1"
i,rotate 0 + JBi,rc‘;tat:e """ Lrode _ ghode .gmode
i i 154

o Vv

Figure 2.1: Complex Y?gde before and after rotation
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4. Confirmation of accuracy of eigenvalue and eigenvector subroutine

Thé UBC Computing Centre library subroutine DCEIGN15 is chosen to
compute the eigenvalues and engenvectors of the [Y]:[Z] matrix.  This
double precision subroutine first reduces the complex matrix to a Hessenburg
matrix H. The subdiagonal elements of H are then forced to converge to
zero by the modified LR methodl.'9 Hence the diagonal elements of H converge

to the eigenvalues. The eigenvectors can then be obtained by backward

substitution.

The correctness of the program has been checked by comparing its
output with published results for a double-circuit linel6. Both results
of modal attenuations and modal velocities agree to within three digits

(see Table 2.1). The modal matrices [TV] differ only slightly (see Table

2.2).
Table 2.1
UBC & BPA modal analysis results for a 735 kV linel6.
Modal attenuation neper/mile Modal velocity miles./s
BPA : UBC BPA
.15998E6 . .15998E6 .61227E-1 .612E-1
.18438E6 .18437E6 .19050E-2 .191E-2
.18497E6 .18497E6 .18209E-2 .182E-2
.18606E6 .18605E6 ' .54529E-3 .544E-3
.18615E6 .18614E6 .50169E-3 .502E-2
.18614E6 .18614E6 .47704E-3 .475E-3

5. Real-valued freqﬁency - independent transformation matrix

Time domain solutions with the transformation matrix [Ti] become

difficult in theory since [Ti] is complex as well as frequency~- dependent.



Table 2.2

UBC and BPA modal matrix [TV] results for a 735 kV line16

.3412-7.0022 .5558+3.0 ~.4959-7.0262 .1730-7.0017  .3209+j.0008 .6827+3.0
.3948-3.0157 .3324+§.0230  .5486-3.0 4647-3.0247  .4804+5.0 ~.3550-3.0021
BPA: .4822-3.0 -.3128+§.0248  -.1118+j.0056  .5410-3.0 ~.4145+7 .0304 .0812+5.0061
[T = .3412-3.0022 .5558+1.0 -.4959-3.0262 -.1730+j.0017 -.3209-j.0008 =-.6827+j.0
.3948-3.0157 .3324+j.0230  .5486-3.0 ~.4647+5.0247  -.4804+3.0 .3550+3.0021
| .4822-3.0 ~.3128+§.0248  -.1118+j.0056 -.5410+j.o 4145-7.0304  -.0812-3.0061]
[ .3412-3.0022 .5558+7.0612  -.4959+].0452 .1730-3.0298 .3209+.0208  .6827+j.0737
.3955=3.0157 .3294+3.0594  .5453-37.0784 .4681-3.0598 .4659+1.0285  —.3637-3.0422
UBC: .4832-3.0 ~.3153-9.0095 -.1105+j.0215 .5469-7.0408  -,4064+j.0048 .0869+3 . 0159
[r,] = .3412-3.0022 .5558+3.0612  -.4959+j.0452  -.1730+j.0298 -.3209-j.0208 -.6827+j.0737
.3955-3.0157 .3294+j .0594 .5453-3.0784  —.4681+7.0598  -.4659-37.0285 .3637-3.0422
| .4832-3.0 ~.3153-§.0095 -.1105+j.0215 —.5469+j.0408  .4064-7.0048  -.0869+j.0159

9¢
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However, the imaginary part of the matrix [TiJ is always small (v 5%)
compated with its real part. By taking the real part or the magnitude of
the matrix itself, we obtain modal parameters which-are-still accurate

enough ( n 2% deviation).

Farthermore, the attenuation caused by corona may be much higher
than that céused by the series resistance and for close-by strokes, trans-
mission lines should be represented as lossless. With the approximations,
the frequency dependence of the modal transformation matrix disappears.

It is therefore recommended that the complex matrix be approximated by a
real-valued, frequency-independent matrix. This makes simulation; much
easier for two reasons:

a) A frequency independent modal matrix does not require recompu-

tation of the modal matrix at each frequency considered within

the lightning frequency range, e.g. 10 kHz to 100 kHz.

b) A real-valued modal matrix enables direct transient simulation

to be performed in the time domain.

6. Frequency dependent effects in lightning surge propagation

To include frequency dependent effects in transient overvoltage
ai . . . . 17 .18
studies is a complicated topic by itself. Meyer, Dommel and Marti
have investigated the time domain methods using convolution integrals and
weighting functions. However, the frequency domain solutions can alsc be
obtained by the Fourier Transformation methods.9 Though the frequency
domain method is inadequate to account for the non-linear phenomenon
(e.g. corona discharge) and the time domain phenomena (e.g. insulator

back — flashover or arrester operation), it is sufficient for the purpose
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of studying frequency dependent effects on lightning surge propagation in over-
head lines.
9

As discussed in an earlier work , the frequency domain solutions
includes frequency dependence of line parameters. It also uses the exact
complex frequency dependent transformation matrix to be computed at each
frequency point, and employs the linear interpolation technique in evaluating
the Fourier Transformation integrals. The results from a measured field test

by Ametanilg’zo

of a laboratory generated distant lightning wavefront 83.212
km from the substation was sﬁccessfully duplicated by the author using the
Eourier Transformation method. (See Figure 2.2). Due to the frequency de-
pendent effect of the line parameters, an initial rise time of 2 pus of the
wavefront now {ncreased to about 40 us as the wave travelled down the
line. Thus, the frequency dependent effect must be included for thé

distant lightning stroke case. The lightning waveshape obtained after

the stroke has travelled from the striking point to the substatiom éan

then be interfaced with the time domain solutions as used in an electro-

47
magnetic transients program.

" For close-by lightning strokes, the resulting waveshapes
can again be obtained by the Fourier Transformation integrals, and the
simpler time domain methods. For the time domain method; the multi-phase
untransposed line can be first solved by modal analysis using frequency
independent paramete¥s and real-valued transformation matrix (as described
in previous sections). Then, this multi-phase line is represented by a single
phase line approximation. As shown in Figure 2.3, results obtained by all
these methods agree quite well (< 4% deviation). The single phase line
representation with frequency independent effect is valid in this close-
by stroke case because variations among the modal arrival times at range of

lightning frequencies are not apparent in such short distances (e.g. < 2 km).



1.

t=0
176 km
]
Zisa—"# .
C.
Voltages(p.u)
3¢ with frequency dependence
3¢ without frequency dependence
------- 1¢ without frequency dependence
154“"a“’~~“‘“""

S TeTTTTT——
i IR
-

[T w

=gt A

Al
B
smiza C
. Time
8.5 (us)

Figure 2.3: Close-by lightning stroke case solved by
' frequency and time domain methods.
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t=0
50 ) 83.212 km g
C
Output voltage
(p.u.)
1.0 ~————— field measurements
) T -+ 3¢ with frequency dependence
A
0.8
0.6
0.4
0.2
B
C
0
-0.2
Time

285 305 325 345 365 385 (us)

Figure 2.2: Numerical simulation of over-
voltage taking untransposition
and frequency dependence into
account.(Ref. 9)
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In such a representation, self impedanece - parameters calculated at
higher frequencies (e.g. 1 MHz) should be used to approximate the frequency

dependance characteristics of the line.

However, caution must be taken in choosing line resistance for

the lightning surge studies. The frequency dependence of line parameters
of one phase for a typical 500 kV line is shown in Table 2.3. It is shown
that the attenuation of the wave is negligible (< 5%) up to about 100 kHz
for 1 km. The resistance to reactance ratio is also small especially at
higher frequencies, e.g. 2.8% at 1 M Hz. Furthermore, since the Bergeron's
method.éfcharacteristic in solving the transmission line equation is valid
only for a lossless transmission line, distributed line losses are usually
approximated by lumping the resistance at certain locations.‘ This high N
resistance at 1 M Hz may cause inaccuracy in the simulation. On the other

hand, surge impedances calculated by

zourey /RIJOL (2.25)
juwCr

where R/jwL = 2.8% at 1 M Hz (See Table 2.3)
or z5uree ;QL‘ (2.26)
jwC
are essentially identical for this lossy and lossless cases. Thus, com-
plicated frequency dependent effects for the nearby stroke case can be
ignored, and . frequency independent and lossless representation give

acceptable accuracy(.See Figure 2.9 ).
i

.Therefore,the previous methods of modelling line losses by simple
. . 12 . . 11,21
exponential decay in overvoltages or any resistance lumping scheme

are not acceptable. They should be replaced by detailed weighting function

techniques, or Fourier Transformation methods for distant stroke, or by
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Frequency Resistance Reactance R/X ZSurge Velocity Attenuation
(Hz) R(2/km)  X(/km) % (9)  (@us) e ' /um)
10? 183, 6525. 2.8  20I. 280. .73
105 42, 692. 6. 300. 272. .93
10% 7. 78. 9. 317. 257. .989
10° .9 8.9 10. 340. 240. .999

Table 2.3: Frequency dependence of self quantities of line
parameters for a 3 phase 500 kV line.
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lossless line representation for a nearby stroke as described in above.

7. Determination of the surge impedance of the struck phase of a
transmission line.

An accurate and reliable value of the surge impedance in phase domain

must be obtained as due to the following reasons:

a) The amount of overvoltage wave transmitted from the overhead

line to the underground SF, cable at the cable—line.junction is

6

determined by the surge impedances of different components. The

refraction coefficient:iC_ is

R
cable”
C - .. .-surge
R line cable 2.27)
+ Z :
surge surge -
where
cable _ surge impedance of cable (e.g. 60 Q)
surge
line _ . :
surge = surge impedance of line (e.g. 304 Q)

b) The exact value of the overvoltage wave on the line, resulting

from the lightning stroke (Ik) is directly related to surge

impedance of the line lene
surge

I
5 k line
vV = —
5 Z

surge

(2.28)

This resulting overvoltage wave impressed electrical stress on
external and internal insulation of the system and forms the main

concern in the insulation co-ordination study.
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In spite of the above important ¢riteria, uncertainties in surge

10,11,12 Reference 11

impedance calculations of overhead line do exist.
give relatively lower surge impedance results for the ground wire (352 Q)

. . 12 . .
as compared to Darveniza's computation. Darveniza claims that the equation

for surge impedance in phase domain as is given by:

7298 = 60 pn 22 C o (2.29)
self r

a.,
surge _ 1j
zmutual 60 n bij (2.30)

where h = corductor height

= conductor radius

~H
|

aij = separation between conductors
bij'= separation between conductor and

other conductor image

This is readily derived from the potential coefficient P and the

inductance term L as:

P -2 e (2.31)
self CSelf 2“8@ T .
= U 2h
Lself 2%. n r (2.32)
' surge Loe1s 2h
= —— /————— = — .
and Zoelf c Lee1s Psers = 00 41 (2.33)

self
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where U = permeability
= 47 x 107 H/m
e = permitivity
—1;-x 169 F/m
367

-1
[cl = [p]

(el

potential coefficient matrix,

with diagonal term Pself'

(L]

inductance matrix,

with diagonal term Lself'

e e ——— - . e -

However, the above formulae neglect - Carson's correction terms, -other

conductors, gnﬁEground wires used -for - earth return. A detailed

. . s . phase
calculation for the surge impedance matrix in phase domain [Zsurge]
must be performed to in order to justify this assumption.

If we consider the relationship between the surge impedance

matrix in both phase and moédal domain as

[vPhase] - [z§$§§§][33?hase] (2.34)
and  [V™°%] - [zﬁﬁi§e1[:[T°de] (2.35)
then by substituting eqs.(2.3) & (2.4) into (2.35), we can get
SRt IR Cintndh €0 B By (2.36)
or  [VPMESe] - [TV][z@ﬁfze][Ti]‘ltxphase] (2.37)
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Comparing equations (34) and (37), we thus obtain

phase. _ mode -1
[Zsurge] - [TV][ZSurge][Ti] (2.38)

The above relation in equation (2.38) is identical to that
derived by Wedepohl.22 In his method, the reflection coefficient for

phase current is first obtained. The coefficient is then set to zero to

obtain the expression for [ZgEiZZ] as in equation (2.38).

Results for the surge impedance from equations (2.29) and (2.38)
for both the ground and the phase wires are shown in Table Z4w‘ As can be
seen from the.table, - the surge impedance obtained by Darveniza's formula
which neglects the skin effect of the earth return éomponent introduces
negligible deviation (about 1%). However, the Darveniza's formula should
only be used when the ground wire is treated as another individual phase
(e.g. for the close-by lightning stroke case). If one takes the ground
wire as another component for earth return (e.g. for the distant stroke
case), the formula for self surge impedance must be modified accordingly
by treating voltages on ground wire to be zero. This requires reducing
the impedance and admittance matrices before surge impedances can be
calculated. The surge impedance value obtained in this case is lower than

that obtained by Equation (2.29), as shown in Table 2.4.

8. Single phase representation for close-by strokes on double
circuited line

After the author has verified that single phase representation with
appropriate choice of line parameters is accurate for a three phase line
case without ground wire, a double-circuited overhead transmission line
of the MICA Project of the B.C. Hydro and Power A.uthority23 was used as a

more detailed transmission system with ground wires.
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surge impedances

ground wire phase wire
A 547 Q 342 Q
Bor C 545 Q 338 @
D - 318 @
(A-B)/A*100% 0.4% 1.2%

A = Exact method (2.38) with Carsonﬁs‘Correction
terms for earth return skin effect, ground wire
treated as another phase.

B = Exact method equation (2.38) without Carson's
Correction terms for earth return skin effect.

C = Darveniza approximate equation (2.29).

D = Exact method equation (2.38) with Carson's
Correction terms for earth return skin effect,

ground wire treated as earth return component.

Table 2.4: Self surge impedances for ground and

phase wires for a typical 500 kV linel6’l7
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. This tranmission system is a double-circuited 500 kV line. Each
tower consists of a three phase line with two ground wires (See Figures 2.4
and 2.5). When the lightning stroke ﬁits either one of the ground wires
or one of the phase conductors, different line parameters must be chosen
because of different line design. The corresponding parameters are shown
in Table 2.5. One can see from this table that the self surge impedance of
the ground wire is greater tham that of the phase conductor. The wave

propagation velocity is also lower in the ground wire case.

In Eigures 2.6 and 2.7, one can compare the lightning overvoltage
wave propagation characteristics for the open and short circuit test by
using multi- and single-phase line representation when lightning stroke.
hits the ground wire. Eigure 2.6a shows the result obtained by the multi-
phase solution method using modal analysis. It also shows clearly the
different modal components on the resulting waveform. Figure 2.6b shows
the result for the single phase case and the overall important propagation
charactertistics of multi-phase representation is successfully duplicated
here. Similar results are obtained for the short-circuit test, as shown
in Figures 2.7a and 2.7b. One can obéerve that the current waveforms

obtained from these two different line representations agree very well.

Similarly, the open and short circuit test results are also
successfully duplicated. for surges on the phase coﬁductor‘as in case
of direct strokes or backflashovers ( See Fu;2.8&2.9)Ihus,i¢ is
recommended - to use single phase representation for double-circuited line

with ground wires for studying close-by lightning stroke propagations.
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lightning struck ¢ - wire K34 phase 16 5
surge 3,3 phase wire
phase induced
lightning struck g - wire K, = _surge 4,3 _ <06 = phase wire
, 43 phase -
v .
surge 4,4 ground wire

Figure 2.5: Side view of the MICA 10 ¢ Systems.



Ground conductor Phase conductor

Self surge impedance Zi:i%e 658 304 @

Wave velocity v 245 m/us 293 m/us

Line resistance 0 /m 0 $/m

Length 1609 m 1609 m
where Zi:;?e = 60 2n %?

T
Lself Pself

velocity = / self
Lself
and L . and P . are diagonal elements of
self s

els,

matrix [L] and [P].

Table 2.4: Line parameters of ground and phase conductor
for lossless single phase representation.
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' representation with stroke on ground wire.
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CHAPTER 3: LIGHTNING WAVE PROPAGATION IN
SFg GAS INSULATED UNDERGROUND
TRANSMISSION CABLE SYSTEM.

1. Introduction

The world's first commercial SF, gas -insulated cable rated at

6
345 kV was installed in 1970. Its inherent advantages over conventional
underground oil-filled cables with respect to charging current, dielectric
losses, thermal performance, voltage rating flexibility and power handling
capacity are well-known. It offers additional advantages of reduced
substation size. This compactness in size of SF6—insulated substations
and switchgear brings the equipment closer to the protective lightning
arrester located at the overhead line and underground cable junctionm.

This is of.vital.importance, especially when there is no lightning
arrester at the transformer terminal, as in certain substation

design.

23

In the SF_ -insulated cable at the MICA Dam, which will be used

6
as a test example, each of the 3 phase cables consists of two concentric
aluminum tubes (see Figure 3.la). The inner tube is the conductor core and
/the outer grounded tube is the sheath. The three sheaths are solidly
bonded together and’grounded at many locations. At the high frequencies
encountered in lightﬁing surges, the sheath return current will be equal

in magnitude and 180° out of phase with the core conductor current.

Whether the magnetic field external to the sheaths can be completely
neglected in the frequency range of interest must be investigated,

however. If the magnetic field is negligible, then there would be no
mutual inductive coupling among the phases. There is no electrostatic

capacitive coupling between phases as the solidly-grounded sheaths act

as electrostatic shields yp to 1 Mhz.
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Figure 3.la: Individual cable design

Permittivity'SF6 = €. €857 £,
=%T?x109 F/m

Figure 3.1b: Overall cable layout.
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In order to investigate the sheath current return phenomenon of SF6
cables, and thus to clarify the wave propagation characteristics, the cable
parameter must be calculated accurately. In this research work, cable

. 24,25 | . . .
parameters of multi-core cable is not investigated. Such multi-core
cable systems -certainly have coupling between phases at all frequencies.

Nevertheless, coupling between phases for the single core cable system

in different frequencies needs further investigation.

Commellinj_26 and A.bledu27 used finite elements technique to sub-
divide the main conductors into smaller sub-conductors of cylindrical
shape. The impedance matrix for the main conductors was formed by bundling
up the sub-conductors in the matrix elimination process. However, due to
the thin tubular shape of the conductors involved in the SF6 buses, large
number of sub-conductors is required. This will demand huge computer core

storage space and long computer execution time.

Sunde28 and Pollaczek29 had derived analytical expressions for
the self and mutual impedancé of cables which are constructed overhead,
underground or on ground surface. These analytical expressions contain
Kelvin functions and an infinite integral known as the Carson's Correction
terms. Before the widespread application of digital computers, simplified
assumptions and reétrictions were made to facilitate the computation
process. With the recent popularity -~ and increased application of
digital computers, these infinite integrals can be modified and replaced
by straight forward numerical computations without significant sacrifice

for accuracy.

Wedepohl et al30 and Ametani3l’32 used different approaches to
tackle the analytical expression in the cable parameter calculation.

However, both approaches gave different results (20% from .each other).
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. ,33 )
Bianchi™~ proposed to calculate the earth or sea return impedance by
approximating the return medium as a tube of . infinite outside radius.
These approximation results fell somewhere between those of Wedepohl et al

and Ametani.

Because of the inconsistency in the abowve findings, a detailed
investigation for numerical calculation of cable parameters must be
performed to reveal wave propagation characteristics in SE6 single core
cables. Current return characteristics from core through sheath also
must be investigated to confirm single phase or multi-phase representation

for the cable system involved.

2. Formation of series impedance matrix for SFg cables

The single core SF, cable system configuration is shown in Figure 3.1b.

6

Each phase consists of two conductors, core and sheath. We can build up

a 6 x 6 series impedance matrix Z, describing the cable system as follows:

r dVCl - = - -
" Tax Za11  Zsio | Zmi2 Zmi2 | Zm13z Zmi3 ia
Y1 7 z z Z z z i
dx 821 %522 | “m12  m12 | “m13  “ml3 ts1

av
c2 z z z z z i
ax w12 Zmi2 | Zs11 Zs12 | %12 G2 2
-l av |7 ’
s2 z z z z z 7" i
dx ml2 ml2 s21 s22 ml2 " ml2 s2
dav
c3 z z z z z Z i
dx ml3  “mi13 | “mi2  “ml2 | %11 512 3
av '
53 z z z z Z Z .. i
| Tax | | “m13 ‘m13 | “mi2 “mi2 | W21 %22 | s3]
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"z Z zZ .. ] I
s ml2 ml3 te1
1sl
= | "m2 2s Zn12 | e
' ' : * . 3.1
152
Zm3 Z.12 Zg - i3

< where ZS is.. 'self submatrix : on the diagonal. A1l Zsmatricés»are

equal because they represent identical cable configurations.

It ;5 assumed:  that the mutual impedance between cores, between

sheaths and between corresponding cores and sheaths are all equal. In

or Z . are zassumed
ml3 :

other words, all elements in the sub-matrix Zmlz

ﬁagbé;equalif{SEe‘Sectioﬁ“G‘ﬁor?further'discuSSion)“ SR

- - - R N N . - - .

3. Calculation of self and mutual earth return impedance
for single core cable

The analytical expressions for the self and mutual earth return
29 .
impedance of cables was first derived by Sunde and Pollaczek; and .then

by Wedepohl et afg)Firstly,the Maxwell s electromagnetic equafion can

be selved after neglecting end éffects as:
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VxE=-juug H (3.2)
_ 5D _ .i:wéb' \
VxH=J+go=0 (14 —2) (3.3)

J, as displacement current . can
be neglected.

Taking the curl of equation (3.2) and'substituting into (3 3) give

VxVxE

Tjwuo VxH

or V(V+E) - vE

Il

~jwug ()
Assuming cable s@paration >> cable radius, we have
V'E = jung o(E 40 i 6(x) §(y + h))

Assuming cables are parallel to ground surface and attenuation of

voltage and current is negligible over distances comparable to cable separation,

2 2
we have 3 El 9 El
+ L= 0 s y Z 0 ) (3~4)
ox 3y ‘
o'E, s, 2
+—5 =nE, +tpm i d8x) &y +h),
2
9x oy
y < 0. (3.5)
where m, =¢/jwu
p
] s 1
P~ = earth resistivitys= p
w = angular frequency
B = permeability
§ = Dirac function
El,E2 = electric field above and below ground.

Imposing the restriction of continuity of electric field at y = O

for E1 and E2 as boundary conditions, we can obtain a general expression
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Conductor configurations for earth return formula.
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for the underground electric field E We can then obtain the expression

o
for © the mutual earth-return impedance of underground cables by dividing
EZ(X’hZ) by the current 1 (o;h2> to get

. ki /2. 2y . ® ()2, 2
= 180 ¢>exp§—2 ¢ _+m ) eI qots exp(~2¥a tm X'da

Z
ij - 27 -9 p e
00 IOLI +‘ /a2+m2 9 /uzmz

? exp(—%Va2+m2) do

(3.6)
™ 2/ m®
e S22y L .
- dou pexpdalielomt) Jex g, o J9M (¢ () - (R (mD,))
2w _ ) ) 2w 0~ 1 0+ 72
IQL +vao +m
A Zij + Q(O(le) KO(mDZ)) (3.7)

where KO = Kelvin function of order zero
m = VZE%E:;X = horizontal separation between cables
Dl = Vx2+(hl—h2)2
D, = /i +(h+h)’
hl’hZ = depths of burial of cables
= In - h, |
2= |n, + h2|
Azij = Carson's Correction térm, identical to that for over-

head lines case.
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The above formula is also applicable to self earth return impedance

components. In such cases, the terms for Dl and D2 can be re-defined as

D, = 2h (3.7a) -

where r is radius, h = depth of buried cable.

However, the above formula is unsuitable for straight forward calculations.

Before digital computers are widely used, approximate results were obtained
. e s 28

only after certain limiting conditions were accommodated. Then,

Wedepohl et al used Cauchy's integration for the Carson's correction

terms and derived approximate formula for the equation given in equation

(3.7) as

jou- mD2 1 2
Zij = o { QH(Y—Z'—) +'2— - §m2 } (3.8)

for |mD | < 0.25

and Y = Fuler:'s constant

= 0.5772157.

However, the above formula gives results which are about 207
higher when compared with the direct numerical computation using the original
equation as in Ametarii's case. The infinite integral for the underground
cable is the same as the Carson's correction terms for overhead lines.

We can define a new parameter a as

= 4n V5 lO_4 D/é? | (3.9)
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where D and p are in MKS units

2h. for self earth return impedance
i

and D= {Dz for mutual earth return impedance

This correction term integral can be represented by the following

infinite converging series:
1. For a <5

4{2

AR' = bwe10~ 8

—bla-cos¢
2 2 .
+b2[(c2—lna)a cos2¢+¢a  sin2¢]

+b3a3cos3¢

4
—d4a cosh¢

5
—b5a cos5¢

+b6[(c6—lna)a6cos6¢+¢a6sin6¢]

+b7a7cos7¢

8
—d8a cos8¢

- ..

AX! = 4w-10—4{%(0.6159315—1na)
+b1a-cos¢

2
—d2a cos2¢

+b3a3cos3¢

—b4[(c4—lna)aacos4¢+¢a43in4¢]

+b5a5c055¢

6
—d6a cosbo

+b7a7cos7¢

-b8[(c8—lna)a8c058¢+¢a85in8¢]

+ ...}
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Notice that each 4 successive terms form a repetitive pattern. The co-

efficients bi’ c, and di are obtained from the recursive formulas:

bl = —%—for odd subscripts,
_ sign . .
bi = bi-2 10i42) with the starting value L
b2 = ig-for even subscripts,
¢.=c., ., +%+——iwith the starti 1 - 1.3659315
i ) R e starting value ¢, = 1. s
=T,
i =% " Py

with sign = *1 changing after each 4 successive terms (sign = #1 for i =

1,2,3,4; sign = -1 for i = 5,6,7,8 etc.).

2. TFor a > 5

AR' = cos¢ /E—cos297+ cos3¢ , 3cos5¢ 45cos7¢ lmo-lO_4
- B 2 3 5 " 7 )
a a a a a /2_
(3.11)
AXY = ( cos¢ _ cos3¢ + 3cos5¢ + 45co0s7¢ ) . 4w'10_4
8 a3 ad a7 /7

It should be noted that the correction terms will become zero when

the parameter a is very big, ie. when frequency or cable distance from

ground is very large or when earth resistivity is very small.

The Kelvin functions can also be calculated by another infinite
36.
converging series as can be obtained from availabe source., . "It can also

be calculated by a special subroutine CBESK35 available from the UBC

Computing Centre.

After establishing the numerical formula for cable earth return

impedance, the discrepancies between the results of Wedepohl et al and
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those of Ametani can then be clarified.

The author has confirmed that accurate cable earth return impedance
-can - be calculated by using direct computation of infinite series sub-
stitutdion for infinite integral and Kelvin function.40 Cable mutual
impedance from Ametani;computation is acceptable though different infinite
series is used for the Carson's correction terms. Identical results are
obtained at least to 4 significant figures for frequencies up to 100 k Hz
(See Figure 3.2). The approximate formula given by equation (3.8) on the

other hand, gives results about 29% consistently higher.

The author has also confirmed that the earth return impedance for
underground cable can be approximated by the equivalent earth return
impedance for overhead lines. The expression for earth return impedance

for overhead line is

D
= JYH 2z
23 = 0p b, 825 > (3.12)

for mutual earth return impedance

s 2h
_ Juu _
and Z;s = lﬁ n G+ Azij , (3.13)

for self earth return impedance

. . .th . .th .
where D, is distance between i~ and image of j conductor;
. .th
Dl is distance between 1th and Jt conductor;

* h is height of conductor above ground;

GMR is geometric mean radius= radius.of conductor at high fregq.

AZ is Carson's correction term.

Identical results up to 3 or 4 figures are obtained for earth

resistivity of 1 to 100 Q-m up to the frequency of 100 K Hz. The
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consistency between these two results is due to the fact that the Kelvin

functions
KO(/j" x) = ker(x) + j kei(%):

can be evaluated by the following convevwing serie836 for 0 < x < 8:

~ ker z=—1In (}2) ber :z:—i—%ﬂqr bei :c;—.57721 566 !
—50.05819 744(z/8)*+171.36272 133(z/8)* .
—60.60977 451(/8)24-5.65539 121(z/8)"
—.19636 347(z/8)®+.00309 699 (x/8)*
—.00002 458(2/8)%+¢ (3.14)

lej<<1 X108

kei 2= —In(3z)bei z—3x ber 2+46.76454 936(z/8)*
| —142.91827 687(2/8)°+124.23569 650(x/8)"°
—21.30060 904(x/8)*+1.17509 064 (x/8)*
— 02605 875(x/8)2+.00029 532(z/8)™ +e (3.15)

le|<<3X107°

where

ber z=1—64(z/8)*+113.77777 774(2/8)*
| —32.36345 652(z/8)2+2.64191 397(2/8)"
—.08349 600(2/8)®+.00122 552(z/8)*

—.00000 901(z/8)®+e (3.16) -
le]<<1X10°
. - "
bei z=16(2/8)2—113.77777 T74(z/8)" \
+72.81777 742(2/8)°—10.56765 779(z/8)"
18__ ] 22 !
+.52185 615(2/8)"*—.01103 667(2/8)” | (3.17)

400011 346(z/8)%4-¢ |
le]<<6X10~°
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Reactance (jwLuf/m)

107t

10°

10

10~

Wedepohl et al /
Zml3:(.997E-3+j.739E—2)Q/m ~ay/

Ametani, Lee
Zml3=(.977E—3+j.600E—2)Q/m

log frequency

10 100 1k 10k 100k (Hz)

Figure 3.2: 'Mutual impedance between outermost cables
' by different computation methods.
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and x = 'y D, (3.18)
U= 41 x lO_7 H/m
w = frequency
D = distance D OF D

o
1

earth resistivity

For frequencies up to about 1 M Hz and earth resistivity of about
100 Q@-m,and cable separation or cable depth of about 1 m, the term x is

relatively small as
x =+ 0
Then, one can rewrite equations (3.14) to (3.17) for x > 0 as

ber = 1

bei 0

e Kk (V3®)

ker x + j kei x

- fn % x - 0.57721 -j % (3.19)

Thus, for the earth return impedance as shown in equation (7),

we have
= Jwu _
Zij ; Azij + 5 (Ko(le) Ko(sz))
juu le ﬂ
=Azij-'-.“2-’n'_(( —Q,n"z—— .57721—32) -
sz m
(- n —=- .57721 - j7))
. D2
=az,, + 22 o= x>0
ij 27 Dl
A 7
Carson's correction term self-term

which is the same as in equations (3.12) and (3.13).
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The numerical results for the self-term component of the self
and mutual earth return impedance for the underground cable)obtained by
the different formulae developed earlier are shown in Table 3.1. As
can be seen from Table 3.1, the results obtained by these different
formulae are very consistent. The final results fof mutual impedance
from these methods are also shown in Figure 3.3 for frequencies up to
1 M Hz. Because of the observed consistencies, the overhead line
formula approximation is therefore recommended for underground cable

for all frequencies up to 1 M Hz and earth resistivities above 1 Q-m.

4, Calculation of self impedance matrix for single core cable

After the self and mutual impedance for earth return of under=
ground cables,is obtained, the self impedance of individual cables can
be calculated and the obtained results for different current loops can
then be transformed to the required form for the impedance diagonal

submatrix z, as shown in equation (3.1).

At first, one can consider the current in each of the individual
cables flow in two adjacent 'loops as shown in Figure 3.4. Loop 1 is
formed by the current flowing through the core and returning through
the outside sheath. Loop 2 is formed by the current flowing through the
sheath and returning through the outside earth. These two loops can

be described by equation (3.21) as

™ dv " N C ]
& | Z11 212 I
dx
- = L}
»évz (3.21)
dx %21 %22 )
- - _ - -
where 221 = le by symmetry.
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Separation in meter - underground overhead
D
2
Dl D2 KO (le) - KO (mDZ) Q,n'DT
(1,3) .889 2,189 .901+3j.000 (60Hz) .901
.895-7.020 (I00Hz) .901
(1,2) 1.778 2.676 .408+3.000 (60HZ) .408
.403-3.018 (100Hz) .408
(self) .254 2.0 2.064+j.000 (60Hz) 2.064
2.057-3.022 (100Hz) 2,064
where

Hh
I

. : =7
60 Hz, m=/LF =/J6O = 2“1204“ x10___ o022 /5

h
Il

. . -7
100 Hz, m = Al%ﬂ =‘/JflOO X Zﬂlgo4ﬁ x 10 .= .089 V3

underground cable (exact)

= —j—(ﬂl— -—
15 oo ®y@dy) - Ko(mD,)) + 4z,

overhead cable (approximation to above)

| . -. -
= dww 2 _ Sup
537 2w b Ty, x7 /oD 0

Table 3.1: Mutual and self earth return impedance terms as given by under-
ground and overhead cable formula.
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Inductance (uH/m)

1.6

1.0

0.8

0.6

0.4

Sunde's formulae for underground
cables

— — — C(Carson's formula for overhead
lines

p = 100 Q-m
depth orlheight = 1m

x=/2Dr0
op

log frequency

100 1k 10k 100k 1M (Hz)

Figure 3.3: Approximations of mutual impedances between
underground cables by Carson's formulae.



Figure 3.4:

sheath

core

Current loops inside SF, cable
for self impedance calculation.
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The matrix elements of equation (3.21) can be obtained by considering

the individual current loop components making up the corresponding loops

1l and 2 as
= +

le . Zcore—outside : Zcore/sheath insulation * Zsheath—inside (3.22)

Z22 - zsheath—outside + Zearth—inside (3.23)

Z.,=2,, = -4 ' . . . ‘ .

12 21 . sheath-mutual (minus sign since i, and i2 in
different direction). (3.24)

(N.B. le is negligible when sheath thickness >> skin depth). '

where the individual elements are

(z1) 7z

. internal impedance of core with return
core—outside

through outside (sheath).

(22) ZCOre/sheath insulation = impedance of SF6 insulation due to the
time varying magnetic field.

(23) zsheath-—inside = internal impedance of sheath with return
through inside (core).

(z4) Zsheath—outside = internal impedance of sheath with return
through outside (earth).

(25) Zearth—inside = gelf earth return impedance, this can
be calculated by equations (3.7) & (3.7a),
or can also be obtained by equation (3.25)
with the approximatioﬁ -of dinfinite
outside radius3

(z6) Z

sheath-mutual = muytual impedance of tubular sheath between
loop 1 in inner surface and loop 2 in outer

surface of sheath.
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The individual self and mutual impedance terms can be again obtained

by solving the Maxwell's equations for the coaxial conductors as similar

to equations €3.2)&(3.3),

Schkelku.noff37 and Sundez_8 as

Ztube—inside

ztube—outside =

- 2—‘1}% (I,(ng) K, (mr) + K (ma) I, (ar))

mP (1,(mr) K, (mg) + K, (mr) I, (mq))

: Zﬂrp

Ztube—mutual =

b

. 2mqrp

with P

where W

N
(.

2]
Il

m =

IO’Ii

and KO.",tKl =

After obtaining

Il(mr) K, (mq) - I,(mq) K, (mr)

angular frequency = 27f

: permeability = MoHgs My = 1 for Al

outside radius of tubular conductor
inside radius of tubular conductor
/Zégi s p = d.c. resistivity

Bessel functions '

Kelvin functions

They are a function of frequency as derived by

(3.25)

(3.26)

(3.27)

(3.28)

the individual terms of the loop equation matrix

as shown in equation (3.21), we can then obtain the diagonal sub-matrix

elements by applying the following circuit conditions:

Vl =

V2 =

Vv -V
c . s
v
]
i
c
i +1i
c s

(3.30)

(3.31)

(3.32)
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The individual loop equations of equation (3.21) then becomes

v av

el el CARL I APO BE S A (3.33)
v

and T ax - G T2y it 2y, i (3.34)

Adding equation (3.33) to (3.34) gives

av
C .
-_ ——— + + : .
T (B T 22y 2y 1 ¥ (g H Ly i B239)
Thus, we can rewrite the self sub-matrix ZS as
fav ][ 1 ;]
cl =S %1 Y22 T Eyy 2y Tl e
dx
- = . (3.36)
av_ |
S . .
dx Z.. + 2 z i
| 12 T %22 22 |s]

5. .Sheath current return characteristics for: usual earth

As current flows along the core of the buried SF6 bus, a return
path is formed on its own sheath and possibly also on the surrounding
soil and adjacent sheaths. Whether all the currents will return through
its own sheath depends solely on the frequencies involved. Due to the
skin effect in sheath material (Aluminum), all core current will return

through its own sheath for frequencies above 1 k Hz.

In reality, the SF, cable is laid on the ground surface (e.g. inside

6
the lead shaft) or is constructed above ground and grounded at certain

intervals (e.g. inside the substation). This cable location even. favor
more current returning through the sheath than the ground as compared to

buried‘cable case. One can thus investigate the limiting case with

the cable buried underground. This cable location will favour least
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core current returning through its own sheath.

In order to investigate the sheath current return characteristics
and therefore the mutual coupling between cables, one has to use the
series impedance matrix. One can consider cases in which adjacent sheaths

are either included or excluded.

a. Sheath current return characteristics for single cable system

For this case, one only has to consider the self diagonal submatrix

of the series impedance matrix as

[av B 7] ]
- —‘J Za11 %a12 1
dx
= : (3.37)
av
R
ded _Zle Z522_ _ls_

Since the sheaths of the three individual SE6 cables are solidly
grounded at short joint infervals or laid on earth surface, or buried
inside..the earth, the sheath voltages can be considered to be zero for
all practical purposes. Then Equation (3.37) becomes

0 = Zle T te * Zs22 "t
7 At high frequencies as sheath
or i = - sl12 i =i mutual impedance is negligiblq3.38)
g 2322 c ¢ | when sheath thickness greater

than skin depth( See Appendix A’).

Thus, neglecting the other two sheaths, the current return

characteristics of the SF, cable through its own sheath from the core

6
can be calculated as in Equation (3.38). The .obtained results are
shown in Figure 3.4... For this case, essentially all the current through

the core will return through its own sheath above the frequency of 10 Hz.
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VA >
sheath-mutual
1sheath - 1core

1earth=O

s

single-cable system ' cr o

three-cable system:
-current in one core
-current in three cores

O=i,/i,
C>= 1s2/1c2
@ - 153/ 1c3

p = 100Q-m
depth = 0 or .254m

log frequency

10 100 1k 10k

(Hz)

Figure 3.4: Ratio of core current return through own sheath
for single-and three-cable system.
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In other words, the sheath acts as a perfect magnetic shield above the
frequency of 10 Hz. Because of this consideration, all SF6 cables are
decoupled from one another and can be represented as 3 single phase

systems. It is also found that a change in depth (1 m to .254 m) of

cable does not change the current return characteristics noticeably.

b. Sheath return characteristics for 3-cable system

~Since all the 3 sheaths of the SF, bus are solidly grounded, the

6
current will return through all the three sheaths at lower frequencies
(< 60 Hz). At higher frequencies, however, all the core current will

return through its own sheath because of the skin effect on the sheath.

Here, again, one can conclude that the three SF_ cables are decoupled

6
from one another.

For this case of 3-cable  system, one can also consider the sheath
voltages to be zero. One can substitute this condition into equation (3.1)

and obtain

ﬁdvc ﬂ rz oz z Z z zZ ] —i |

= 211 Ze12 Zmiz Pmiz Zms Zmis cl

0 Za2  Zs2 Zmiz Zmaz Zma3z Zm13 Ta1
av .
c2 zZ_ Z. zZ ..z z Z i

= P2 Pz Zan a2 Pmiz P2 . 2| 3 30

0 Zi2  Zmo2 Za2 Zeo Zmiz Zmi2 152
av . .

df Zas  Zms  Zm2 Zm2 a1 Zel2] i3

0 Zm3 fms fmz Zme Fei2 Ze22) [Me3

(N.B. ZﬁlZ = Zm‘23 as symmetrical arrangement of cables as

in Figure 3.1b)



Equating the zero sheath voltages for the 3 cables, we have

0=2 .. i . +2 .. i.+2Z._ (@

s12 T o1 T lagp Lo t 2y T i) H 2,50 1

i+ 2z i + Z

Thg) F Ly ittt 2,E

= 20y 12

If we assume phase B is energized, i.e., we assupe

i = i

cl c3
lsl - lS3
161 = ic3 = 0

Then, substitute equations (3.43) to (3.45) into (3.40), we obtain

0=2 + Z i + Z

522 Y1 Y 2y oo T2 o T lnn 1

= (23 T 250) 1y * 2y T Y2y, 1y
Zisz T 2s0 1o e
or 7 T + 1 = =1
ml2 c2 c2

Also substitute equations (3.43) t0 (3.45) into (3.41), we obtain

0=22 45 31 ¥ 259 1o * %512 T

iy a1, Fe22 ter
2312 to Za2 e

71

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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By solving equations (3.46) and (3.47), we get

Zm13 ¥ Zsp2 .
212
2 Zm’lZ : -1
. Z
Y2 _ 12 ) (203 ¥ 240902610 = 22010 " Lo (3.48)
i, 22 5 oo =7 o (Do ot Z ) )
(o) ml2 '"ml12 822 ml3 . Ts22
Z13 T 20 L
2012
2219 2522
Zs12 2512
and
-1 1
-1 2522
. Z ’ :
ts1 s12 _ %12 " Zmip *Zspp  Zmio (3.49)
1o 22012 Zmio T Ze20 iz Y Z22)
Za3 t Zs22 L
Z 12
22119 222
2512 2412

The ratio of currents in sheath to core of phase B is calculated
and plotted as a function of frequency in Figure3;4. The '~ result ghows that
at frequencies above 1 kHz as in lightning surges, all current through the
core will return through its own sheath. Thus, one can conclude that the

earth return current component  is not important and therefore the mutual
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coupling between cables can be ignored.

c. Sheath current return characteristics for 3 cable
system with current in all 3 cores

Tor a case when currents flow “in all the vthree _cores of

the three S8F2 cables, the return current through sheath will change

6

accordingly. This suggests that such situations must also be investigated

to deduce the mutual coupling effect among cables. Using the same equations

as derived in Equations (3.40) to (3.42), one can now put in currents in the
'J\ e 0y »

3 cores by assuming

i, = 1.0 /0 (3.50)
ic3 = 1.0 /12 ° (3.51)
and iCl = 1.0 /-120° - (3.52)

Rewriting equations (3.40) to (3.42) as

Zeoy a1 T Zuio too Y Zmis Ye3 = “Zer2 Ter T Zmz Loz T Zmiz e T A B33
Za1z Le1 * Zez2 Lep ¥ Zmiz o3 T Pmip tar T Za12 Lo 7 Zaaz tez T A G439
Zo13 Ye1 T Zmio Teo t Zoon Te3 = “Zmiz fer T Zpiz Lo T Ze12 ez T A3 (3:39)
Defining the determinant T as
Zsoo Zm12 Zmi3
Z ..z z 3 2 2 2
T =| ml2 522 m12 = 2522 + 2zm12 zInl3 - ZSZZ(Zml3 + zzmlz) (3.56)
Z113 ‘mi2 %s22




We can then obtain the current through the three individual sheaths as

2 2 ‘ 2
i = MPe22 ¥ M3%miz * BoPmio®mi3 T A3%e22%m3 T A2%m1a%02 T M1%mo
T
(3.57)
AzZ% + Az VA +AZ .. Z -az? AZ .. Z AZ .. Z
i, = 27522 ° "17ml2 “ml3 © "3"m12%m13 | 2°m13 T "3"m127s22 T "17m127s22
, =
(3.58)
i =AZ% +AzZ. .2 +AZ 2 -AZ 7 - AZ .7 Az 2
83 3“522 2°m12%ml13 1°m12 1“m13 “s22 2%m12%s22 3%m12
T
(3.59)
After substituting the conditions. for the 3 phase currents from

.equations (3.50) to (3.52) into eguations (3.57) to (3.59), one can obtain
the return currents through all individual sheaths. The magnitudes of the
sheath currents are also shown in Figure 3.4.It is again confirmed here
that at frequency above 60 Hz, all current flowing from core will return
through its own sheath. Each core is completely shielded from the adjacent

cores. . Thus, the three SF, buses are completely decoupled from one another

6

and should therefore be represented by single phases as in the case of

lightning overvoltage propagation.

6. Sheath current return characteristics for substation earth with
grounding grid network

In reality in the substation, the cable sheaths are grounded inside
the substation with a grounding network grid consisting of copper bars
which are connected across the whole substation. These grounding copper
bars serve to reduce significantly the inside» earth resistivity of the
substation. This suggests that the sheath current return characteristics

of this reduced earth resistivity should also be investigated as a reduction
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in earth resistivity will favor more current returning through the earth.

The result for the sheath return current as a function of earth
resistivity is shown in Eigure 3.5. This figure shows that the sheath
return current increases as the earth resistivity increases. This agrees
with the manufacturers and utility companies of SE6 substations who claim
that current returning through sheath inside the substation is less than

75%. Based upon this criteria, a nominal earth resistivity of 0.3 x lO_SQm

is chosen.

After choosing a nominal value for earth resistivity, the sheath
current return characteristic. is then evaluated a; a function of frequencies
and depth, as shown in Eigureéiﬁ. Eluctuations in overall sheath current
results are shown in Figure 3.6. At about 1 K Hz, the sheath current is
even found to be larger than the core current. This can be explained
by the phasor diagram as shown in Figure 3.7. In Figure3.7,only multi-
cable systems with current in centre core are shown, but mutli-cable
system with currents in all 3 cores would walso »- give identical
results. The present study again confirmed that all cores are decoupled
from one another above 2 k Hz even for the adverse case of significantly

reduced earth resistivity inside the substation.

It should be noted that the mutual impedance between cores, between

sheaths and between corresponding cores and sheaths are all assumed to be

equal by Wedepohl and Ametani. The shielding effect of the sheath is neglected.

The validity of this assumption in cable parameter computations could be the
topic of further research. It is of little concern for the purpose of this
thesis. At the high frequencies encountered in lightning surge studies,

core current always return completely through. the sheath. In that ease,

the magnetic field becomes zero outside the sheath anyﬁow.
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7. Formation of shunt admittance matrix for SFg cables

79

For a usual 3-phase single core underground cable system, one can

build a 6 x 6 shunt admittance matrix [Y] to describe the cable system as

) = 1
dx

fai ;1 [ _ 7]
e 1 1 0 0 0 0
X .

digy {=y, vty, | O 0 0 0

- 1odx

dic, 0 0 |y -y | O 0

dx
i.e =

dig,| | o 0 -y, Yyty, | O 0
dx

di 4 0 0 0 0 v -y,
dx

digg 0 0 0 0 v, v,
dx -

-

cl

sl

c2

s2

c3

s3

(3.60)

Notice that the off-diagonal submatrix of [Y] are all zero due

to the fact that the grounded sheaths in between acts as electrostatic

shield between cables.

the diagonal submatrix

71

where v1 is

y2 is

For the SF6 cable system as shown in Figure 3.1,

elements are

jwe, =

jwe

admittance due to internal SF

admittance due to external sheath insulation.

jw 2ﬂ80 .

jw ZHEO .

6

gas insulation, and

(N.B.".The external insulation is non-existent for the SFg cable.)
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As has been confirmed by the author in previous finding for sheath
current return characteristics, the core should be represented as single
phase. Then, the admittance equation shown in Equation (3.60) should be

reduced to

di
-— =7 Vc
dx
_ 1
= v 2me r Vc (3.61)
3
in T
2
= Yge1r " Vo (3.62)

8. Confirmation of numerical accuracy for cable parameter calculation
and current return ratios

The numerical accuracy of the computation was confirmed when
the cable parameters obtained by the developed cable constants program,
and by the BPA cable constant program32 agree consistently to more than

three significant figures.

Then, a 500 kV submarine cable38 was chosen as another test example.
In this case, the cable parameters for the submarine cable was first cal-
culated. The amount of core current returning through the sheath, armour
and the sea was obtained by taking into account of zero potentials on the
grounded sheath and the grounded armour. The ratios of magnitudes of
core current returning through the sheath ,the armour, and the sea at 60 Hz
were obtained as 14%, 87.8% and 5.6% respectively. These agreed to more

' 48
than two figures to the results of other findings.

9. Single phase representation parameters for multi-phase SFg_cables

Since all phases of the SF, cables are decoupled from one another,

6

single phase Cable representation for studying lightning overvoltage wave

v
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propagation in SF6 cable is recommended. The self admittance element (y lf)
: se

can be calculated from the simple formula as shown in equations (3.61) and

(3.62), whereas the self impedance matrix element can be calculated from

equation (3.1) as

av . . . . . .
- ?Eféé Zo11 Ten FZg1p Tan AUy T i) T 255 1) (3.63)
and 0= + Z i +

Zoo1 te1 F Zg00 to1 T Zp1a(icy T igp) * Zp5( g F i (3. 64)

Subtracting Equation (3.64) from (3.63), we get

av , ) . )
_ el (Zsll" ZSZl) it (Zle ‘ Zszz) ts1
dx
i i
sl sl .
= (o1 7 2o - T 7 2T ) g (3.65)
, cl cl

Zself ’ 1cl

A

where the sheath to core current ratio can be obtained from equation (3.49)

or equations (3.57) to (3.59).

Because all core current returns through the sheath at high

frequencies, one has in such condition

1sl

=-1, and Z ., =%
1 S
cl

12 s22 .

Substituting this into equation (3.65) or (3.37), one obtains

dv ,
- —-_9- = (Zsll - 2522) lc (3.66)

dx
After having obtained the self series impedance for single phase

cable as shown in Figure 3.1, one can then represent the cable by the surge

rge

. su . . .
impedance Z , and the wave propagation velocity v, as given by
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surge Zself ’
7508 = /2822 - 61,4 @ (3.67)
Vo Yself -

= w//(z L = 300 m/yus (3.68)
o self « Yself

1

<
|

One should realize that the metallic sheath of the SF6 cable always

form a very good earth return path to the cable core. The series vesistance
is negligible compared to the reactance (SeéVFig}3;8)Thus, the SF, cable
can be taken to be lossless. It should also be noted that for such a simple

go-return circuit for a coaxial cable, the inductance can be given by the

simple formula15 as

u r i
L= 52 in 3 (3.69)
- m r
2 .
= 0.205 uH/m

Consistent results for the inductance are obtained by equation (3.65)
and (3.69) for frequencies above 10 Hz. Thus, the simple formula is in
equation (3.69) is recommended for inductance calculation of SF6 cable in

the study of surge propagation characteristics. The surge impedance and’

the wave propagation velocity can be then obtained as

Y01 T3
= —— . ——2— . /Q/n r—
€o 4 2
T3
= 60 n —/ (3.70)

where g and r, are radius of sheath and core respectively.
o
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T
and v= /2. /2 _1 L o2 (3.70)
-/ LC . u r 2Te T
o 3
Sl,n;:— :
2

w

= 300 m/us
oo ’

velocity of light in vacuum

10. Wave propagation in SFg cables

Wave propagation characteristics in single core SF6 cable  can now
be modelled by the surge impedance of 6l.4 Q,(typically about 60 to 75 Q),
and wave propagation velocity, (typically 300 m/us). A numerical simula-

tion of overvoltage wave-shape .in the receiving end of a SF6 cable joining

to a overhead transmission line is simulated.

The resulting voltage in the open-circuited SF, cable receiving end

6
rises in a staircase fashion of diminishing amplitude, to a value of 2 p.u.
(See Figure 3.9). This can be explained by using the reflection (C@) and
refraction coefficient (CR) of the system at the line-cable junction and

the open-circuited cable end respectively.39 For the line-cable junction

at A, one has

Z, =312, Z. = 60@
2 LA Zy =21 312 - 60
(Wave incident from cable) C 2= Zl ¥ 22 =312 760 - .63 (3.71)
(Wave incident from line)
Zy = 60, z, = 312 @
2 x Z
_ 2 2 x 60 _
and CR = 7+ 7 — 312 + 60 — .32 (3.72)

1 2
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For the open end of the cable, we have

© - Zy "2 » _ 60 _ L
L + T e =
Lz, g, + 60
°o_2x>
and CR = ot 60 - 2
(Wave incident from cable, Z, = 60, Z,6 = =)

1

Thus, thediscrete rise in voltage wave shape can be expressed as

2
v=2zx .32 UJ+C£+C£ + .. .)

where each step addition accurs at discrete time intervals of 2

travel times.

On the other hand, this overall rise in overvoltages wave. shape
also agrees with the general exponential rise wave shape in charging of
a capacitor. This is due to the inherent large self capacitance of cables.
The overall rise in wave shape can '~  be sketched by modelling the
SF6 cable as a lumped capacitor equivalent to the total capacitance for

the length of cable, and ignoring the surge impedance of the cable (See

Figure 3.9).
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CHAPTER 4: CORONA ATTENUATION AND DISTORTION CHARACTERISTICS OF
' LIGHINING OVERVOLTAGE IN OVERHEAD TRANSMISSION LINES.

1l. Introduction

As the lightning voltage wave travels down the overhead transmission
line, a high electric field is produced on the line conductor surface. When
the electric field intensity exceeds the breakdown strength ofaij(&30 kvﬁgm),
ionization of surrounding air molecules takes place. This phenomenon will

dissipate the unwanted surge energy away from the system and thus reduces

the magnitude and initial rate of rise of the lightning overvoltage.

In transient lightning overvoltage studies, several numerical methods
44 .
have been employed to account for corona effects. Brown applied the concept
of corona radius to account for the corona envelope produced on the conductor
surface. The coronated line capacitances at higher voltages are also obtained
to
. .12 - -
by extrapolation. Darveniza also used lower wave propagation velocities
higher voltages and different corona correction factor for different conduc-
tor configuration. However, both methods are not straightforward and are
\ . . . 43

not totally successful in duplicating field rest results. Umoto and Hara
also transformed the transmission line equation for coronated lines into
difference algebraic equations. However, this numerical approach is not
efficient enough. Thus, an efficient and accurate numerical model for corona

must be developed to predict the corona attenuation and distortion character-

istics on lightning overvoltage propagations in overhead lines.

2. Physical properties of corona attenuation and distortion characteristics

The physical aspects and laws governing the behaviour of corona dis-
charge have been investigated since the beginning of this century. However,
most of the investigations and applications have been limited to power

frequency steady state or at most to switching transient conditions. From
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the published field measurements for lightning surges, it can be observed
that the attenuation resulting from corona effects is much larger than that
resulting from transmission line series resistance losses. The non-linear

characteristics of the corona discharge can be considered as (see Figure 4.1):

a) Corona attenuation loss - From the quadratic law of corona loss pro-
posed by Peek4l, the loss (v ik) per unit length is proportional to the

square of the voltage above the critical corona voltage vco' i.e.

. . 2
vip = kR‘ (v -v ) (4.1)
- T =11 mho
where kR = 0g >h ¥ 10. /m
r , h = radius and height of conductor respectively

Q
It

G Corona loss constant determined experimentally

This corona attenuation loss can be modelled with a resistive curregt loss iR
through the corona resistive branch to ground as

2
(v - Vco)

iR = kR ) v . (4.2)

b) Increase in shunt capacitance - the retardation of the wave front by
. . . . cqqa U2
corona can be explained by an increase in shunt capacitance. Skilling

4 . . . .
and Umoto 3 suggested that the increase in shunt capacitance is

proportional to the voltage above the critical voltage vco,‘i.e.
Vco
= - — 4.3
corona ch(l v e ( )
/t -11 F
where k =o¢ X x 10 . /m
c c 2h
oc = corona loss constant ddetermined experimentally
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Figure 4.1: Nonlinear corona losses model.
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This increase in capacitance can be modelled by :a capacitance

branch to ground with the capactive current loss iC

Vco av
1= 2k = (-7 5 (4.4)

Corona discharge only occur if the voltage is greater or equal to
L

the critical corona voltage, and if the voltage increase with time,'i;e.

vV 2V and 22_> o
co’ at . :

This is due to the fact that, when the voltage begins to decrease, the
space charge consisting of heavy ions in the ionization region remains
practically constant in magnitude and position during a short period of
timé. This slow diffusion of ions results in little energy loss in the
case of decreasing voltage conditions even when v > v__.

co

3. Transmission line equations for coronated lines.

The corona phenomena can now be described by the modified
line equations. With the introduction of digital computers, these

phenomena can be studied acgurately by solving the equations describing

the electromagnetic wave propagations , taking corona _ into account as
follows:
ov o1
- —=L— 4.5
9x L ot ' ( )
v v
9i EAY co, 9V co.2
- = —— . - —) — 4 —_ ———— . 4.
9xX ¢ at * ch (1 A ot kR(l v’ v (4.6)
extra shunt Extra shunt
capacitance conductance
due to due to

corona corona
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Umoto:an Inode45 solved the above equations by the difference
method. The line equations (4.5) and (4.6).are transformed into algebraic
equations of small increments of distance, Ax, and time, At. However,
this method is not efficient to implement into the digital computer as

the method requires Ax to be as small as 7 ms when  using At = .01 us.

4, Solution of line equation by compensation method with trapezoidal rules

The line equations (4.5) and (4.6) with corona losses can be
solved by the compensation method.47 In this method, the line equations
are first solved without the extra corona terms. The Beggeroh'é method -
using traVelling wave technique tqgethé:kwith ﬁodal‘analysis(See Chapter 2)
is app];ied., Then, the corona losses can be treated as nonflinear

shunt branches connected to ground., . The trapezoidal rule'can then

applied to obtain the total current loss of the corona phenomena.

By applying the trapezoidal rule of linear interpolation to the

corona resistive branch to ground, we have j as shown in Figure 4.2,

RV M0 t+At'vtj)-
. 1, 1,
ieee Viae™ 7 Yegae T (Yt- 3 )
B topar I
where d = - g (4.7)
t + At t

as ' d = slope of graph at time t.

Also, d can be obtained by considering the equation (4.2)
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Figure 4.2: Linear interpolation for resistance corona branch.
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Figure 4.3: Linear interpolation for capacitive corona branch.

92

t



93

2
(v. -v_ )
i =k t co
t R v
t
2
g co
kR A + kR~——— 2kR v
iy ve3
ot i S X -8
t t
Thus, we eventually have
T v, -11
Verpse S @it +ae T OE g (4.9)
=Rl At Y (4.10)
1. . ,
where vo = v, -3 i ( known from past history at time t)
1 . s
and Re =3 (known from past history at time t)

Similarly, since the corona capacitive branch current loss is

given by
2k
i=—<(v-v ) v
co’ ot
or v _v 1 4 f(v, 1)

8t~ 2k (v - v_)

Applying linear interpolation of the 2 variables (i.e. from first
term of Taylors' series), we have as shown in Figure 4.3
af |-

Verar = Ve) T 31 . §1t+At - 1)

£(v, 1) = f(v, 1) l + L
' t

(
AL SRR

(4.11)
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T R
L] * . - - Z
v ¢ 2k (v Vco) .
Tt Veo ,
2k _ 2 4.12)
c (v = ve)
and of _ v
i ‘ 2k v - vco) ¢
v
t
= = (4.13)
2k§vt vco)
Thus, we obtain
. v V.
£(v, 1) I - %% ’ tfézt t
t+At t+At
v i
_ co 't 1 v) +

_ Ve t _ . (v _
2k9§y€ - VCO) 2kC (Vt - Vco) tht t

Vt . .
2k{v, - v ) Qerne :/xégl (4.14)

Re-arranging equation (4.14) will give the linearized equation as

Vernt ~ Re Terae T V1 (4.15)
Y .
where R = L . At t (known from past
¢ 1+ v i ch(vt - Vco) history)
co t At
- 2
ZkC(vt Vco)
Y i v
and v, = 1 (v + At’ co t t2)(known from
1 . . t 2k (v. = v ) .
1+ v i- ¢t co past history)
co t At

- 2
2kc(vt VCO)
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Combining equations (4.10) and (4.15) for the voltages and currents

in both corona resistive and capacitive branches by taking into account

and i=1 + 1

we can obtain

Vl ,,Vo
(i 4_- iR) + ( f———) (4.16)

l = —_—
Rc RR ¢ Rc RR

—~
l
+
U
<
1

of or v=R"'i+ k' (4.17)

e R
’ Rc + Rk
RR Vl f Rc Vo

Bt R

where R'

and k' =

Having the corona loss branches represented by a linear model as
described in equation (4.17), the compensation method can then be applied

to solve the transmission line equations including corona losses.
In the compensation method, the transmission line is first reduced

to a Thevinin equivalent (See Figure 4.4) and is desctibed by

Vs Vo + A21, (4.18)

where A2 is a negative number.
Then, this equation is solved simultaneously with the linearized

equation for corona loss, as in equation (4.17). Thus, the resulting

corona voltage and discharge current can be obtained as
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(m is ground)
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Nonlinear corona losses model
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Compensation method for non-linear corona model
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(4.19)

(4.20)

Extra-high voltage phase conductors are designed to consist of

several sub-conductors bundled together in order to reduce corona losses.

The electric field on a sub-conductor surface is affected appreciably by

the adjacent sub-conductors in the same bundles.

consequently influenced.

The electric field

conductor itself is given
E
max
where J
v
r

The corona phenomenon is

on the sub-conductor surface due to the sub-

by

46

Q , Q= charge/length

2m e T

[o]

cv

2T e T
o

effective capacitance/length
voltage of conductor

radius of sub-conductor

(4.21)

However, for a bundled conductor with 4 individual sub-conductors,

the maximum electric field is given by7(See Figure 4.5)

E
max

T 2re Vv SV2
(o]

' R
Q' 1, 2

_ Q' . 6r
“ 2 eor 1 f SvV2 )

+ 2 —g sin 45°)

(4.22)
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Emax 1,2,3,4 sub-conductors of radius r
= __qQ 6r
Emax 2ne0r (1 +/§§ )
, ' 'CeffectiVeV
where Q' = Z

Figure 4.5: Critical voltage calculation by evaluation of
‘ maximum electric field on a 4-conductor bundle.



99

After the maximum electric field on the conductor surface is
obtained, the critical voltage for corona discharge can be computed by
equating the maximum electric field to 30 kV/em or 3 x 106 v/m, g the

electric breakddwn strength in air. A typical critical voltage for a single
1

conductor has been found to be 277 kV, and that for a 4-conductor bundle to

be 558 kV.

6. Influence on corona by adjacent phase conductors

Since the conductors in each phase are mutually coupled to one another,
voltages aré always induced in the adjacent conductors. This the maximum
electric field on the conductor surface is affected. However, due to the
design of transmission lines for extra high voltage levels, separating
between phase conductors are usually large compared with radius of individual
condictors. This effect usually change the overall critical overvoltages
by less than 10%. But this change in critical voltage produces negligible
effects on the overall corona attenuation ahd distortion characteristics on

overvoltage wave (See Figure 4.6).

7. ‘Optimal lumping locations and number of corona branch legs

s

-The equations with corona phenomenon is now solved by the.
comvensation method with the corona loss legs lumped at a few places
along the transmission~ line. However, +the optimal locations and optimal

number of lumped elements has to be determined. -

At first, 20 corona loss branches 70 m apart from one another
were lumped between five transmissioh towers. Then, a separétion of
350 m between the corona loss branches was used. This increase in separa-
tion increased the deviétion of the predicted wave shape from field measure-

ments’ appreciably (See Figure 4.7), from about 5 to 10%. This suggests that
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the optimal separation should be about 70 m.
The field measurement for a 4—copductor bundled was then simulated.
In using the corona loss constants (for case of l-conductor bundle)
c = 30

10 x lO6

Q
I

slightly higher overvoltages were obtained. Then, a new set of corona

constants (for case of 4-conductors bundle)

g = 30

o} 20 x lO6

G

was used to give results consistent with those from field measurements

(See Figure 4.8).

Finally, the negative impulse overvoltage was also simulated for
the 4-conductor bundle case. The corona loss in this case was found to be
much less than the positive impulse case. The corona loss constants were

determined to be

o =15

10 x lO6

Q
il

With these sets of corona constants, the field test measurement

was again replicated closely (See Figure 4.9).

8. Overall numerical modelling for corona effects

The field test results of corona attenuation and distortion

characteristics on a 500 kV test line were replicated by the method
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developed earlier. This méthod examined corona characteristics in both
single and bundled conductor lines. Erom the performed study, one can
conclude that the effects of bundling of conductors is efficient in increas-.
ing critical corona voltage. Eurthermore, influence of adjacent phase
conductors is negligible on corona effects. Thus, it is concluded that
single phase line representation is sufficient for corona studies. Finally,
it ié determined that separation between the corona loss leg can be lumped
at 70 m without sacrificing a loss of accuracy on the predicted coronated
waveform. A reduction in distance between corona legs will not improve the
accuracy of the simulated results. -

It should be noted that lightning strokes will rarely hit more than
one conductor at one time; thus corona phepomena have only been included
for one conductor in this thesis, rather than for all three phases

simultaneously.
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CHAPTER 5: CONCLUSIONS

/ . . . . .
The attentuation and distortion of lightning overvoltage waves

on multi-phase transmission lines and multi-phase single core SF, cables

6
in compressed SF6 gas—-insulated substations was studied. Corona effects
of lightning overvoltages on overhead lines were also investigated.

Available field test results for corona effects were duplicated to within

5% accuracy.

Results obtained with the techniques developed by the author are
useful for lightning insulation co-ordination studies21 and other related

13,14 ,40

studies « The lightning surge wave front can be calculated at any

location inside the substation, eg., inside the SF6 bus or at the trans-

former terminal. Based on the studies described in the thesis the following

recommendations are made for future insulation co-ordination design studies:

1. Multi-phase untransposed lines can be represented by single-phase line
models using self parameters calculated af a high frequency of
approximately 1 M Hz (See Table 2.4). Series resistance should be
ignored. Frequency dependent effects are not important for propa-
gation over distances less than 2 km.

2. Corona effects are important in reducing the magnitude and rate of
rise of the incoming lightning overvoltage surge. Efficient solution
techniques using compensation methods are developed to solve the non-
linear corona attenuation and distortion phenomenon.

3. Multi-phase SF, single core cables can be represented by single phase

6
cable models. Series resistance can be ignored. Cable parameter can be

obtained with the simple formula for a go-return circuit for a coaxial

cable with sufficient accuracy.
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APPENDIX A: SKIN DEPTH ATTENUATION IN CONDUCTING MEDIUM
WITH FINITE CONDUCTIVITY.

This section shows that the core current return characteristics
through the sheath for the SF6 cable could be obtained by a different

approach. From the Maxwell's equations in a conducting medium, we have50

VxE-= —jquH (A.1)
Vv x H = jwueE + 0E
= gE, for good conductors (A.2)

where ¢ is conductivity of medium.
From equations (A.l) and (A.2), we can get

2 2

VxVxXE=VYVY(V « E) - VE = -VE (for homogeneous medium)

= -jopV x H

= ~jwuoE

= —mZE

where
m = Yjwuo

_lti L s
7z

This equation is identical to the diffusion equation with

solutions
J -
"X _ g =g e "2 (A.3)
o X o
T . Jwuo
=E e/ 2 e e (A.4)
E e_JZ/G . e—JZ/(S (A.5)
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where § = = = skin depth

Ve R
Thus, the tangential electric field EX or the tangential current
density JX will be attenuated by é-= »368 when the depth of penetration Z

equals to the skin depth. For aluminum, we have the skin depth § as

s = 1

1
Y (4mx10-7) (3-8x107)

o]

-1
e

Therefore, for frequency above 1 kHz, the electric field is essentially
attenuated and negligible flux outside the sheath. Thus, since character-
istic frequencies of lightning strokes exceeds 1 kHz, the above results
indicate that each phase of the cable is decoupled from other phases as was

shown previously in Chapter 3.

After the tangential current density for one medium is obtained
by equations (A.3) to (A.5), the tangential current demsity for another

medium on the boundary to the first medium can be obtained by

Ee ™ Eoy
g
1
or e T 7, Joe

Thusm the total current flowing in different components of the
cable system can be obtained by

I = fJdA
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