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ABSTRACT 

Techniques for modelling of synchronous generators in the 

simulation of electromagnetic transients are described. F i r s t of a l l , 

an adequate mathematical model of the generator is established. It uses 

the conventional set of generator data only, which are readily available, 

but i t i s flexible enough to accommodate additional data, i f and when 

such become available. The resulting d i f f e r e n t i a l equations of the 

generator are then transformed into linear algebraic equations, with a 

time varying coefficient matrix, by using the numerically stable trape­

zoidal rule of integration. These equations can be interfaced with the 

equations of an electromagnetic transients program in one of two ways: 

(a) Solve the equations of the generator simultaneously with the 

equations of a three-phase Thevenin equivalent ci r c u i t of the 

transmission network seen from the generator terminals. 

(b) Replace the generator model with a modified Thevenin equiva­

lent c i r c u i t and solve the network equations with the gener-
red 

ator treated as known voltage sources e ^ (t-At) behind con-
red 

stant resistances [R , ]. After the network solution at each 
pn 

time step, the stator quantities are known and used to solve 

the equations for the rotor windings. 

These two methods cover, i n principle, a l l possible interfacing techni­

ques. They are not tied to the trapezoidal rule of integration, but can 

be used with any other implicit integration technique. The results 

obtained with these two techniques are practically identical. Inter­

facing by method (b), however, is more general since i t does not re­

quire a Thevenin equivalent c i r c u i t of the network seen from the generator 
i i 



terminals. The numerical examples used i n this thesis contain compari­

sons with f i e l d test results in order to verify the adequacy of the 

generator model as well as the correctness of the numerical procedures. 

A short discussion of nonlinear saturation effects i s also 

presented. A method of including these effects into the model of the 

generator i s then proposed. 

Typical applications of the developed numerical procedures 

include dynamic overvoltages, torsional vibrations of the turbine-

generator shaft system, resynchronization of the generator after pole 

slipping and detailed assessment of generator damping terms in transient 

s t a b i l i t y simulations. 

i i i 
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1. INTRODUCTION 

The importance of general-purpose computer programs for the 

simulation of electromagnetic transients i n power systems i s constantly 

increasing. Some of the elements of power systems can now be represented 

with a high degree of sophistication, e.g., overhead lines with frequency 

dependent line parameters [1], Some other elements, however, are not yet 

represented in enough detail, including synchronous generators. Normally, 

sinusoidal voltage sources E" cos (cot + p ) behind impedances R + jwL'1  
6 max y r a J d 

have been used to represent generators in transient studies. In the 

derivation of this approximate model, i t i s assumed that rotor fluxes do 

not change immediately after the disturbance, and that subtransient 

saliency of the generator can be ignored. This simple model is quite 

adequate for certain types of studies during the f i r s t cycle or so after 

the disturbance which initiates the transient phenomena, e.g., switching 

surge studies, transient recovery voltage studies, and other types of 

studies involving fast transients [2]. It i s also adequate i f the gen­

erator impedance i s only a small part of the total impedance between the 

generator and the location of the disturbance. 

Recent interest in electromagnetic transient phenomena which 

persist over longer time spans makes i t worthwhile to implement more 

accurate models for synchronous generators into programs for electro­

magnetic transients [2-4]. Potential applications include studies of 

subsynchronous resonance [4-5], dynamic overvoltages, accurate assessment 

of damping terms in transient s t a b i l i t y studies (due to d.c. offset, 

harmonics, and asymmetries in short-circuit currents), and other studies. 

This thesis discusses the major problems of interfacing gen­

erator models with an electromagnetic transients program and proposes new 
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solution techniques. F i r s t l y , the choice of an appropriate generator 

model and the calculation of i t s parameters are discussed. This discuss­

ion and a description of numerical problems in the simultaneous solution 

of the generator equations and the equations of the connected transmiss­

ion network provide the necessary background for the introduction of 

interfacing techniques - around which the major research effort of the 

thesis was concentrated. The proposed techniques cover in principle a l l 

the possible approaches to interface problems. Numerical examples are 

used to test the validity of the proposed techniques. Some additional 

problems related to the solution of generator equations, e.g., proposed 

treatment of saturation effects, are described in the f i n a l chapter of 

this thesis. 

The contributions of this thesis to power system analysis con­

sist of: 

(a) a c r i t i c a l review of synchronous generator models and selection 

of a model appropriate for the simulation of electromagnetic 

transients, 

(b) a new method for the calculation of synchronous generator para­

meters from test data, 

(c) a new physical interpretation of the discretization error for 

the trapezoidal rule of integration applied to series inductances, 

which shows that the resulting difference equations are exact 

solutions of equivalent lossless stub lines, 

(d) the development of two alternative interfacing techniques for 

solving the generator and network equations simultaneously, with 

one being similar to a technique developed in industry concurrently 
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with the research project of this thesis and the other one being 

a new technique with less restrictions than the f i r s t one, and 

(e) an analysis and proposed treatment of saturation effects in the 

synchronous generator. 



3. 

2. SYNCHRONOUS GENERATOR MODEL 

2.1 General Remarks about Physical Device Modelling 

In general, the derivation of a mathematical model of any phy­

si c a l device consists of the following steps [6]: 

(1) Selection of a model structure based upon observations and phy­

s i c a l knowledge; 

(2) f i t t i n g of parameters of the chosen model to available data; 

(3) verification and testing of the model; 

(4) application of the model to i t s given purpose. 

The basic decisions are made at the f i r s t stage. It i s , for example, 

necessary to decide whether the physical device can be treated as a 

linear system. If so, a linear system of equations (differential or 

algebraic) is used to describe the basic physical phenomena relevant to 

the device. Therefore, this stage involves some necessary simplifications 

of the physical reality. At the next stage, relationships between the 

parameters of the model and the available data have to be established. 

At this stage, therefore, some additional simplifications may have to be 

introduced. The last two stages serve as verification of the developed 

model, and may result in some changes in the model, i f necessary. It 

should, therefore, be remembered that any mathematical model of a physi­

cal device always involves simplifications of physical reality. 

2.2 Model of the Electric Part 

The generator is assumed to be an "ideal synchronous machine" 

in the sense of Park's definition [7]. The basic assumptions for this 

ideal generator can be summarized as follows: 

(1) Saturation effects are neglected. This allows the application 



of the s u p e r p o s i t i o n p r i n c i p l e , because the model i s then 

l i n e a r . N e g l e c t i n g the s a t u r a t i o n e f f e c t s i s a common prac­

t i c e i n the theory of a l t e r n a t i n g - c u r r e n t machines [8-9]. 

Techniques f o r i n c l u d i n g n o n l i n e a r e f f e c t s w i l l be discussed 

l a t e r on. 

The magnetic c i r c u i t and a l l r o t o r windings are assumed to be 

symmetrical both w i t h respect to the d i r e c t a x i s , which l i n e s 

up w i t h the c e n t e r - l i n e through the f i e l d p o l e s , and to the 

quadrature a x i s 90° behind i t (the recommended p o s i t i o n of the 

quadrature a x i s l a g g i n g 90° behind the d i r e c t a x i s i s adopted 

[10 ] ) . 

A current i n any winding i s assumed to set up a magneto-motive 

fo r c e s i n u s o i d a l l y d i s t r i b u t e d i n space around the a i r gap. 

Any magneto-motive f o r c e may be r e s o l v e d i n t o components along 

the two axes ( d i r e c t and quadrature). The s i n u s o i d a l d i s t r i ­

b u t i o n does normally imply that only the fundamental component 

i s considered. In connection w i t h t h i s assumption, i t should 

be n o t i c e d that the e f f e c t s of harmonics i n the f i e l d d i s t r i ­

b u t i o n are s m a l l i n a w e l l designed machine [11], [12], 

I t i s assumed that a magneto-motive forc e a c t i n g along the 

d i r e c t a x i s produces a s i n u s o i d a l l y d i s t r i b u t e d f l u x wave which 

also acts along the d i r e c t a x i s . S i m i l a r i l y , a quadrature a x i s 

magneto-motive forc e produces a s i n u s o i d a l l y d i s t r i b u t e d qua­

drature a x i s f l u x . The f a c t o r s r e l a t i n g magneto-motive forc e 

and f l u x are, however, d i f f e r e n t on the two axes i n a s a l i e n t 

pole machine [11]. 

I t i s assumed that the damper bars can be represented as two 



5. 

concentrated hypothetical windings, one in the direct axis (D) 

and the other in the quadrature axis (Q) [8], Another hypo­

thetical winding (g) in the quadrature axis i s normally added 

for round rotor machines to represent the deep flowing eddy 

currents. Consequently, the machine consist of seven windings: 

three a.c. stator windings, one f i e l d winding for direct axis, 

one hypothetical winding D for direct axis and two hypothetical 

windings g, Q for the quadrature axis. 

This "ideal machine" i s schematically shown in Fig. 1. 

Fig. 1. Schematic representation of a synchronous 
generator (position of windings is shown 
in space). 

A system of seven linear differential equations describes the 

relationship between the voltages and the currents in the seven windings 

of the idealized generator. The voltage equations of the generator, in 
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phase c o o r d i n a t e s * , have the f o l l o w i n g form**: 

where the v e c t o r o f f l u x e s _ i s g i v e n i n g e n e r a l as: 

_ = [ L ] i = 

L 
aa M a b M 

ac M a f M a D U M 
ag 

i 
a 

ab ^ b ^ c \f % % 
M 
ac V L 

cc M c f cD cQ M 
eg 

i 
c 

M a f M . c f L f M f D 0 0 t 

M a D cD M 
fD L D 0 0 

M « aQ % cQ 0 0 
L Q Qg AQ 

M M 
eg 

0 0 
M Q g 

L 
g 

i 
g 

(1) 

(2) 

The m a t r i x [L] i s always s y m m e t r i c a l , i r r e s p e c t i v e o f r o t o r p o s i t i o n 3. 

The s e l f and mutual i n d u c t a n c e s o f the armature c o n t a i n even 

harmonic terms o f r o t o r p o s i t i o n 3 [12], e.g., 

and 

L L 
aa ao 

L L bb bo 

L L 
cc CO C2 ch 

M = M , + M , eos2B„ + M , , cos4g„ + ... ab abo ab2 3 ahh 3 

M = M + M „cos2g + M , cos4g + ... ac aco ac2 2 ac4 2 

^ c " ^ c o + M b c 2 C O s 2 0 l + *W° S 4 61 + 

(3) 

(4) 

* Phase c o o r d i n a t e s r e f e r to a c t u a l c u r r e n t s and v o l t a g e s i n the 3 phases 
a, b , c o f the s t a t o r and to a c t u a l c u r r e n t s and v o l t a g e s i n the r o t o r 
w i n d i n g s . 

** C a p i t a l l e t t e r s i n square b r a c k e t s [ ] i n d i c a t e m a t r i x q u a n t i t i e s ; 
s t r a i g h t l i n e s underneath l e t t e r s i n d i c a t e v e c t o r q u a n t i t i e s . 
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where 
3i = tot + <S + ir/2 

8 2 = Si - 2ir/3 (5) 

6 3 = Bj + 2TT/3 

The s e l f and mutual inductances of the r o t o r L,., L_, L„, L , 
f D Q g 

M£T,, and M„ are constant. The mutual inductances between armature and fD' Qg 
r o t o r c o n t a i n odd harmonic terms, e.g., 

M 
af • M a f l C O s 6 l + M a f 3 C ° s 3 e i + . 

aD = M a D 1cosB 1 + M a D 3 c o s 3 g 1 + . 

aQ • M a Q l S l n 6 l + M a Q 3 S l n 3 e i + . 
M 
ag "

 M a g l S ± n e i + M a g 3 s i n 3 3 1 + . 

(6) 

S i m i l a r r e l a t i o n s h i p s e x i s t f o r the other two phases b and c [12]. 

P r a c t i c a l c o n s i d e r a t i o n s a l l o w a re d u c t i o n of the number of parameters 

appearing i n ( 2 ) - ( 6 ) . For example, a pro p e r l y designed balanced machine 

i m p l i e s f u l l symmetry of the phases a, b, and c, e.g., 

(7) 

L 
ao = L b o = L 

CO 
= L 

s 
La2 \ L b 2 = LC2 = L 

m 
abo = M aco •^bco = M s 
ab2 = M „ ac2 = Mbc2 = M 2 

Other s i m p l i f y i n g assumptions are made to adjust the complexity of the 

model to the amount of data which i s u s u a l l y a v a i l a b l e . Some of these 

can r e s u l t i n n o t i c e a b l e e r r o r s , as demonstrated l a t e r . The f o l l o w i n g 

l i s t summarizes the most common s i m p l i f i c a t i o n s : 

(1) A l l harmonic terms of order higher than 2 are neglected [ 8 ] , 

[12]. This assumption does not seem to cause any n o t i c e a b l e 

e r r o r s [12]. 
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(2) Mutual inductance M^ (field-to-damper) i s assumed to be equal 

to the mutual inductances M c- and M (armature-to-field and 
afl aDl 

armature-to-damper, respectively), when expressed in p.u. [13], 

i.e., 
M = M = M_ = M, afl aDl fD f (8) 

The same assumption is made for the quadrature axis. These 

assumptions can sometimes cause significant errors in the simu­

lation of rotor quantities [14]. 

(3) The second harmonic terms in self and mutual inductances of the 

armature are assumed to be equal, i.e., M2 = L^. This assump­

tion simplifies the model significantly, since i t eliminates 

the coupling among the direct, quadrature, and the zero axes 

[15]. This simplification is practically always made and seems 

to be j u s t i f i e d [12], [16], but i t should, nevertheless, be 

remembered as a possible source of errors. 

Inclusion of the assumptions mentioned above results in the following, 

simplified inductance matrix [L]: 

[L] = 

L 
aa 

Mab M 
ac 

M a f M a f Maq 

ab Lbb ^ c \ f % 
M 
ac "be L 

cc 
M c f M c f cQ M A 

cQ 
M 
af \ f 

M 
cf 

L f M f 0 0 

M af "bf M . cf Mf LD 0 0 

M 
aQ % cQ 0 0 

LQ M 
q 

M 
aQ cQ 0 0 M 

q 
L 
g 

(9) 

where 
L = L + L cos28n aa s m 1 

L,, = L + L cos2B bb s m 2 

L = L + L cos260 cc s m 3 

(10) 
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and 

M , = M + L cos2g„ ab o m 3 
M = M + L cos2g„ ac o m 2 
M, = M + L cos2g. be o m 1 

M . = M.cosg at f 1 

\ f = M fcos6 2 

M . = M.cosg cf f 3 

(ID 

(12) 

M n = M s i n g aQ q l 
% * M q S i n \ 
M . = M si n g cQ q 3 

(13) 

The r e s i s t a n c e m a t r i x [R] i s simply a diagonal m a t r i x , which 

has the f o l l o w i n g form f o r a balanced design: 

[R] = 

R I 

R 
R, 

R. 
R g 

(14) 

The model of a synchronous generator d e r i v e d above i s b e l i e v e d 

to be the b e s t , p r e s e n t l y p o s s i b l e compromise between the a v a i l a b l e 

amount of t e s t data and the d e s i r e d accuracy of s i m u l a t i o n s . R e s u l t s 

obtained w i t h t h i s model agree q u i t e w e l l w i t h f i e l d t e s t s , which v e r i ­

f i e s the adequacy of t h i s model [3 ] . 

The mathematical model of a synchronous generator i n phase-

coordinates i s f u l l y d e fined by (1) and (9) - ( 1 4 ) . I t i s , however, common 



10. 

practice in the power industry to describe the generator in a different 

reference frame, namely in d,q,0-coordinates [7], In this reference 

frame, a l l inductances defined by (9)-(13) are constant. It should be 

emphasized, however, that introduction of higher harmonics or unequal 

second harmonic terms in the armature inductances w i l l result in a time-

varying inductance matrix [L] even in d,q,0-coordinates [15]. 

Before proceeding with transformations to the new reference 

frame, i t i s useful to rewrite (1) into the following form: 

v = -[R]i - [L]^= - ~ ( [ L ] ) i (15) 

The transformation i s defined as follows: 

and similarly: 
ip - [ p]'i 

V = [P]-v ~p — 

where the subscript "p" denotes Park's d,q,0-quantities. 

The transformation matrix [P] has the following general form: 

I 
| w 

[P] = 
0 

where 

0 I I 
L- I J 

[I] = identity matrix of dimension 4 x 4 : 

and the matrix [W] is given as [17]: 

[ W ] = / T 

c o s B j 

smt 

cosB„ 

sin 

cosB. 

sine 

(16) 

(17) 

(18) 

(19) 

Park's original transformation matrix and that of many other authors has 
2 
^ as a factor, and a negative sign in the second row. The latter i s due 
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to the assumption that the quadrature axis i s leading the direct axis by 

90°, rather than lagging behind by 90°. The particular choice of the 

transformation matrix (19) makes the transformation power invariant and 

i t s matrix orthogonal, i.e., 

IP]" 1 = [P] T (20) 

Application of this transformation to (15) yields: 

v. = " [P][L]([P] + ^ ( l P r S _ p ) - [P]^([L])[P] ^ - [R]ip -P 
,-ld . . d_ 

dt^p dt x 

,d = - [L ]j-± - [R]i - [L ' ] i p dt-p —p P ~V (21) 

where 

[L p] = [P][L][P] -1 f M f 0 

2 M f 0 

0 

0 

0 

0 

2 M q 0 

# M q ° 

I M f / I M f ° 

0 

0 

0 L f 

0 Mr 

0 

0 

0 

0 

D 

0 

0 

0 

0 

\ 
M 

0 

0 0 

0 

M 

g J 

(22) 

and 
[ L p ] = ^ ^ [ P l ^ t P l t L U P ] h - [ P ] ^ ( [ P ] _ 1 [ L p ] ) 

= Ui 

L 0 
q 

-L d 0 0 - / f Mf - / f Mf 

-J M / 1 M ' 2 q V 2 q 

0 0 0 0 

0 

0 

0 

0 

(23) 

0 0 
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2.3 Calculation of Parameters for the Model of the Electric Part 

As already explained, any mathematical model of a physical de­

vice is an approximation of physical reality. Some of the simplifications 

made in modelling a synchronous generator were discussed in section 2.2. 

Here, additional simplifications which are often introduced in the calcu­

lation of parameters w i l l be discussed, as well as a technique for avoi­

ding them. 

The functional relationship between measurable parameters, 

e.g., R , X J } X ' X " , T, ', and T, " i n the direct axis, and the desired ° a d d ' d * do do 
set of resistances and self and mutual inductances (or reactances) is 

partly nonlinear [8], [9]. Approximations are normally made to obtain 

linearized relationships which are easy to solve [11], [18]. These 

approximations are based upon the knowledge of machine dimensions, which 

are normally unknown to the system analyst, and were only j u s t i f i e d for 

hand calculations. There is really no reason any more to introduce them, 

i f data conversion i s done by a d i g i t a l computer. 

The model of a synchronous generator was defined in Fig. 1. 

The inductance matrix [1^] ( i n d,q,0-coordinates) was shown in (22) and 

the matrix of resistances in (14). As shown in Appendix 1, the measured 

direct axis machine constants are related to the entries i n the matrices 

[L p] and [R] in the following way 
M,2 

3 2 Lf " LD ~ 2 M f 
V = Ld ~ I Mf 2 • <25> 

L f V M f 

1 L f LD 1 / L f LD 2 M f 2 

(positive sign of root for T (j 0', negative sign for ") 
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The above equations are nonlinear and their solution by hand 

is d i f f i c u l t . Introduction of approximations based on the knowledge of 

machine dimensions leads to a well known, simplified set of equations 

[11], [19]. 

The equations (24)-(26) may be solved directly as a system of 

nonlinear equations by means of Newton's method. Fi r s t , (24)-(26) are 

rearranged to the following form: 

G(x) = 0 (27) 

where G_ = [ g l f g 2, g 3, g^]^ represents the vectors of functional rela-
T 

tionships, x = [R^, L^, L^, R^] represents the unknown machine para­

meters, assuming in p.u. is found from: 

X d = X, + ».Mf (28) 

Sometimes, the f i e l d resistance R̂  in p.u. is given by the manufacturer. 

In this case, the vector x i s given as: 

x = [Mf, L f, L D, R^ 1 (29) 

The following relationship i s obtained by taking the f i r s t term 

in Taylor's series expansion and equating i t to zero: 

G(x) = G(x*) + [G'(x*)].(x - x*) = 0 (30) 

where x represents the approximate solution point of the newest iteration 

step and x* the approximate solution of the preceding iteration step (or 

the original guess). From (30) i t follows that 

x = x* - [G'(x*)] _ 1-G(x*) (31) 

Eq. (31) i s used iteratively until convergence is reached. The 

i n i t i a l guesses are found with the approximate linear relationships, as 

normally used before. This procedure converges quite fast. Typically, 

only 2 iteration steps are required. 
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A set of equations analogous to (24)-(26) may be obtained for 

the quadrature axis, which are again solved with Newton's method to 

obtain the model parameters from the test data. Quite often, the set of 

data for the quadrature axis is incomplete. In many cases, neither X 1 

nor T^o' are given. It is then necessary to reduce the complexity of 

the model by omitting the g-winding. Equations (24)-(26) are then re­

placed by the following set of equations [11] (for details see Appendix 1): 

M 2 

L " = L - |- -9- (32) 
q 1 Q 

T " = —2- (33) do RQ 

Quite often, the manufacturer's data sheets show that T ' ̂  T ", but 
qo qo 

X^' = Xq» The program would f a i l in this case because the two assump­

tions contradict each other (the f i r s t implies the existence of a g-

winding, whereas the second implies that there is no g-winding). The 

following equation: 
L - M 

L - L * = M (1 - 9-) = 0 (34) 
q q q L 

o 

would then not have a real solution except for = 0, which implies no 

g- and Q-winding. This special case can be solved without program modi­

fications, however, by setting X^' nearly equal to X^, for example, 

X ' = 0.99 X (X ' must always be less than X ). Since measurement 
q q q 3 q 

accuracy is typically ±5%, this assumption i s acceptable. 

To il l u s t r a t e the impact of linearization on the calculation of 

parameters, a 30 MVA machine was considered with the following data 

[11]: 
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0.707 p.u. 

0.1524 p.u. 

(calculated from other data) 

0.3412 s 

314 rad- Is 

(no g-winding) 

The r e s u l t s calculated i n three d i f f e r e n t ways are compared i n Table I. 

Table I. Comparison of data conversion with d i f f e r e n t methods. 

Conversion method X a q (p.u.) X t (p.u.) X f (p.u.) X D (p.u.) X q (p.u.) S„ (p.u.) R Q (p.u.) 

a) approximate conversion 1.3879 0.6520 0.0550 0.1795 0.2298 0.1145 0.01766 0.00715 

b) exact conversion 
(with Newton's method) 

1.3533 0.6173 0.0897 0.1368 0.1133 0.0698 0.01026 0.00641 

c) K i l g o r e ' s method 1.338 0.602 0.105 0.13 0.0678 .0.0515 0.0079 0.0061 

While the differences between parameters found from the exact 

and approximate data conversion methods are not great, the differences 

i n the simulation r e s u l t s of rotor quantities can be s i g n i f i c a n t . The 

simulated f i e l d current i ^ i n case of a sing l e line-to-ground f a u l t f o r 

the generator used i n Table I i s shown i n F i g . 2 f o r approximate and 

exact data conversion. The i n i t i a l conditions f o r this case are given i n 

Chapter 3. As pointed out by others [12-14], the res u l t s with approxi­

mately calculated parameters have s i g n i f i c a n t l y lower amplitudes of o s c i l ­

l a t i o n s of rotor q u a n t i t i e s , but the possible improvements with exact 

parameter conversion has not been recognized. The simulated s t a t o r quantities, 

V 
V 
do 

rn II 
do 

1.443 p.u. 

0.214 p.u. 

0.149 p.u. 

7.8 s 

0.0701 s 

0.00064 p.u. 

X 

X " 
q 

rn II 
qo 



Fig. 2. Comparison of the simulated f i e l d currents i ^ . 

on the other hand, were identical for approximate and exact parameters. 

This agrees with results published by others [13], [14]. Fig. 3 shows 

the simulated current 1^ in the faulted phase for the single line-to-

ground fault with approximate and exact parameters (indistinguishable 

from each other). 
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TIME (s) 

Fig. 3. Identical results for current i c in the faulted phase 
with approximate and accurate parameter conversion. 

2.4 Recent Proposals for Improvements in Parameter Accuracy 

Additional improvements in the model of a synchronous generator 

are not possible without introduction of additional test data. New tes­

ting procedures require, however, a long time to become accepted as new 

standards. Model improvements occur, therefore, very slowly, but the 

data conversion algorithm described above can easily be changed to 

accommodate additional test data i f and when they become available. 

The f i r s t improvement i s made i f unequal mutual inductances 

^ M̂ p k Mp̂  are permitted. This was done by a number of researchers. 

In 1969, Canay [14] explained some of the causes of discrepancies between 
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f i e l d measurements and s i m u l a t i o n r e s u l t s of r o t o r q u a n t i t i e s . He pro­

posed an improved e q u i v a l e n t c i r c u i t of the generator, but he re q u i r e d the 

knowledge of generator dimensions f o r o b t a i n i n g i t s parameters. In 1971, 

Yu and Moussa [20] suggested another improved model of a generator. They 

req u i r e d i n t r o d u c t i o n of an e x t r a t e s t (time constant T^ of damper 

winding) to determine the parameters of t h e i r model. I n 1974, Takeda and 

Adkins [13] suggested to obt a i n a d d i t i o n a l data from the measurement of 

the u n i d i r e c t i o n a l f i e l d c u r rent. In the same year, Shackshaft [21] 

came up w i t h a s i m i l a r , but s l i g h t l y more complicated approach. In a l l 

cases, the a d d i t i o n a l data can e a s i l y be incorp o r a t e d i n t o the data con­

v e r s i o n algorithm, independent of the way i n which i t was obtained. I t 

i s b e l i e v e d that the data conversion a l g o r i t h m w i l l reduce the d i s c r e ­

pancies between s i m u l a t i o n and f i e l d t e s t s even more, s i n c e i t avoids the 

commonly used l i n e a r i z a t i o n of the f u n c t i o n a l r e l a t i o n s h i p s . 

Some researchers have suggested measuring the parameters 

d i r e c t l y i n phase coordinates [15], [22]. Such methods w i l l not com­

p l e t e l y solve the problems, s i n c e some windings are i n a c c e s s i b l e . They 

may, however, be very u s e f u l f o r improving the accuracy of the model. A 

d i f f e r e n t approach has evolved i n the l a s t few years. I t i s based upon 

parameter e s t i m a t i o n e i t h e r i n the time domain [12] or i n the frequency 

domain [23], [24], I t i s t h i s author's opinion that the parameter e s t i ­

mation method w i l l e v e n t u a l l y replace a l l the other approaches. I t may, 

however, be a long time before t h i s happens. I t was, therefore, b e l i e v e d 

to be important to develop a simple method making e f f i c i e n t use of 

the e a s i l y a v a i l a b l e , conventional s et of t e s t data. 
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2.5 Model of the Mechanical Part of the Generator 

It is common practice in transient s t a b i l i t y studies to re­

present the rotating part of the turbine-generator unit (its shaft, gen­

erator and turbine rotors) as one lumped mass. This approach i s , however, 

unacceptable in some studies of transient performance of the generator, 

where the rotational vibrations of different parts of the shaft system 

are important [3], [4]. As in the case of the electrical part of the 

generator, the complexity of the model depends on the amount of availa­

ble data. The actual number of lumped masses may, therefore, vary from 

case to case. The techniques for modelling mechanical systems of rota­

ting lumped masses are relatively well developed. The description of 

the mechanical part w i l l , therefore, be relatively short. It should be 

noted, however, that some of the mechanical parameters are very d i f f i c u l t 

to obtain, not unlike some of the electrical parameters. 

Fig. 4 shows a typical example of a turbine-generator unit with 

seven lumped masses, which is based upon an actual case [3], 

HP IP LP A LPB LPC GEN EXC 

Fig. 4. Torsional model of a turbine-generator unit. (HP - high 
pressure turbine, IP - intermediate pressure, LPA, LPB -
low pressure units, GEN - generator, EXC - exciter). 

The dynamic equations of a rotating mechanical system can be derived from 

Newton's second law [25]. The following general equation can be written 

for each rotating mass: 
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dt^ i 
(35) 

where 

J = moment of inertia 

6 = angle (rotational displacement) 

][ T. = sum of a l l torques acting on the rotating mass 
i 

To illustrate the use of eq. (35), the three-mass system of Fig. 5 w i l l 

be used. Assume that 

r, 

L L 
T-

z 
MASS I 

K 1 2 

MASSH 
K 2 3 MASSm MASS I MASSH 

D 2 3 
MASSm 

J 2 , D 2 2 J 3 , D 3 3 
1 e 2 1% 

Fig. 5. Schematic representation of a three rotating masses system. 

i , i+l 
D. . 
i i 

D i , i + 1 
J. 

l 

T. 
l 

shaft stiffness coefficient (between masses i and i+1); 

viscous self damping coefficient (of the mass i ) ; 

viscous mutual damping-coefficient (between masses i and i+1); 

moment of inertia (of the mass i ) ; 

angle (of the mass i ) ; 

external torque (applied to mass i ) . 
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Starting with mass 1, the following three equations can be written: for 

mass 1, 
d 2e. de, 

(36) J i ~ T - + D n d r + D i 2 f c - ( 0 i - e 2 ) + K i 2 ( e i - e
2 ) = T l 

dt 
for mass 2, 

d \ . _ d 62 . _ d 
J 2 — + D 2 2 ^ " + D12dt: ( e2- ei> + D 2 3 — ( 6 2 - 6

3 ) + K12<e2-91> + = T2 dt" 3dt 

and for mass 3, 
d2e de. 

J3^T + D 3 3 ^ + D2 3t- ( e3- 92) + K23( 93- e2) = T3 

(37) 

(38) 

Equations (36)-(38) assume that the system i s linear, which i s an accept­

able simplification for rotational vibrations of small amplitude. 

A three-mass system has a l l the characteristic features of an 

n-mass system. Therefore, equations (36)-(38) can be generalized to 

obtain the following system of equations for any system of n rotating 

masses: 

[j] -— e + [ D ] — e + [ K ] e = T 

dt 2 ~ d t " ~ ~ 
(39) 

where 

[J] = diagonal matrix of moments of inertia; 

T̂  = vector of external torques applied to the system; 

Q_ = vector of angular displacements; 

[ D ] = matrix of damping coefficients, which has the following form for the 

case of Fig. 5, 

CD] = 

D N + D 1 2 - D 

- D 12 

12 
D 2 2 + D 1 2 + D 2 3 

0 

- D 

- D 23 

23 
D

3 3
+ D 2 3 

(40) 



22. 

[K] = m a t r i x of s t i f f n e s s c o e f f i c i e n t s , which has the f o l l o w i n g form f o r 

the case of F i g . 5, 

K 1 2 " K 1 2 . 
0 

[K] = -K 1 2 K 1 2 + K 2 3 " K 2 3 (41) 

0 " K 2 3 K 2 3 

In the case of turbine-generator u n i t s , the e x t e r n a l torques 

are of two types: 

(1) mechanical i n the t u r b i n e stages; 

(2) electromagnetic i n the generator and e x c i t e r r o t o r s . 

The c a l c u l a t i o n of mechanical torques i n t r a n s i e n t s t a b i l i t y s t u d i e s can 

be simple or very complicated. In the former case, i t i s assumed that 

mechanical torque or power remains constant a f t e r the disturbance. In 

the l a t t e r case, the dynamics of the speed governor and a s s o c i a t e d c o n t r o l 

systems must a l s o be modelled [26], [27]. In electromagnetic t r a n s i e n t 

s t u d i e s , which i s the s u b j e c t of t h i s t h e s i s , the i s s u e i s l e s s compli­

cated due to much shor t e r time spans i n v o l v e d (normally, cases are only 

simulated up to 1 sec. a f t e r the di s t u r b a n c e ) . I t i s then p o s s i b l e to ass 

constant mechanical power input and c a l c u l a t e the torque from the f o l l o w ­

i n g r e l a t i o n s h i p : 

T = (42) 

where 

P = mechanical power p r i o r to disturbance, 

_ m = angular speed of the mechanical system. 

I t has been shown that the assumption of constant mechanical torque pro­

duces s a t i s f a c t o r y r e s u l t s [ 4 ] , but constant mechanical power seems to 

be a more reasonable assumption than constant mechanical torque. 
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The electromagnetic torque developed i n the r o t o r of a syn­

chronous generator i s equal to the a i r gap torque produced by the r o t a ­

t i n g electromagnetic f i e l d [9] and may be described by the f o l l o w i n g 

formulas: 

(a) i n Park's d,q,0-coordinates [ 9 ] : 

T e - < V q " Vd } ' f ( 4 3 > 

(b) i n phase-coordinates [28]: 

T e = =̂ f * a ( 1 b " V + " V + * c ( i a " V ] ( 4 4 ) 

where 

n = number of poles of the generator. 

The torque i n the e x c i t e r ( i f i t i s a d.c. generator d i r e c t l y coupled to 

the turbine-generator s h a f t ; not modelled i n other cases such as motor-

driv e n generators or r e c t i f i e r s ) i s determined by the amount of e l e c t r i c 

energy produced by the generator and i s given as: 

T = ( v , - i . + R i b (45) ex 2 »co f f ex f m 

where 

co = angular speed of the e x c i t e r ; 

v^ = voltage at e x c i t e r t e r m i n a l s ; 

i ^ = e x c i t a t i o n c u r r e n t ; 
R = armature r e s i s t a n c e of the e x c i t e r , ex 

The electromagnetic torque c a r r i e s a s i g n opposite to that of the mechani­

c a l torque, s i n c e i t represents a load to the mechanical system. 

2.6 Conclusions 

An i d e a l i z e d , l i n e a r model of a synchronous generator, which i s 

described by r e l a t i v e l y simple equations, has been presented i n s e c t i o n s 
0 
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2.2 and 2.5. The model of the mechanical p a r t was only i n c l u d e d f o r 

completeness, s i n c e the r e s t of the t h e s i s i s p r i m a r i l y concerned w i t h 

the e l e c t r i c p a r t of the synchronous generator< 

This model of a synchronous generator has been shown to be 

adequate even f o r such complex problems as subsynchronous resonance [ 3 ] , 

[ 4 ] . I t should be understood, however, that the r o t o r q u a n t i t i e s are 

not always reproduced a c c u r a t e l y [13], [14]. The problem l i e s i n o b t a i n ­

i n g enough and s u f f i c i e n t l y accurate data. The numerical c a l c u l a t i o n s , 

on the othgr hand, can be c a r r i e d out w i t h very high accuracy. The com­

p l e x i t y of c a l c u l a t i o n s should, t h e r e f o r e , be r e l a t e d to the accuracy of 

measurements [29], s i n c e there i s not much sense i n c r e a t i n g a very com­

p l e x model f o r ina c c u r a t e data. Lack of r e l i a b l e data o f t e n forces the 

an a l y s t to use s i m p l i f i c a t i o n s . i n the model. 

S a t u r a t i o n e f f e c t s have been neglected i n the development of 

t h i s model. However, as shown l a t e r , i n s e c t i o n 5.5, i t i s p o s s i b l e to 

in c l u d e them without s a c r i f i c i n g the s i m p l i c i t y of the model. 

The e l e c t r i c p a r t of a synchronous generator was described i n 

two systems of coordinates. These two d e s c r i p t i o n s are e q u i v a l e n t f o r 

t h e o r e t i c a l c o n s i d e r a t i o n s . For numerical s o l u t i o n s , however, one system 

of coordinates may o f f e r advantages over the other system. This problem 

w i l l be discussed i n s e c t i o n 3.3. 
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3. NUMERICAL SOLUTION OF THE GENERATOR EQUATIONS 

3.1 Choice of I n t e g r a t i o n Method 

The dynamic behaviour of a synchronous generator i s described 

by two sets of d i f f e r e n t i a l equations, one s e t f o r the e l e c t r i c p a r t , 

and another s et f o r the mechanical p a r t . I t i s important to bear i n mind 

that no d i g i t a l computer s o l u t i o n of d i f f e r e n t i a l equations can give a 

continuous h i s t o r y of the t r a n s i e n t phenomena. I t can only give a 

sequence of "snapshot p i c t u r e s " at d i s c r e t e time i n t e r v a l s At. Such 

d i s c r e t i z a t i o n causes t r u n c a t i o n e r r o r s , which can lead to numerical 

i n s t a b i l i t y [30]. The s t e p s i z e At should, therefore,be s m a l l enough t o 

avoid build-up of t r u n c a t i o n e r r o r s , but not too s m a l l to avoid unnecess­

ary computer time. 

I t i s important to consider the s t r u c t u r a l p r o p e r t i e s of the 

generator equations i n connection w i t h the choice of the s t e p s i z e At. 

The system of equations f o r the e l e c t r i c p a r t of the generator and f o r 

the e l e c t r i c network, to which i t i s connected, i s s t i f f , i . e . the time 

constants of the system are wid e l y separated [31], In t y p i c a l t r a n s i e n t 

s t a b i l i t y s t u d i e s , the r a t i o of the l a r g e s t to the s m a l l e s t time constant 
3 4 

may be i n the order of 10 or 10 [32]. The r a t i o s i n s t u d i e s of e l e c t r o ­

magnetic t r a n s i e n t s , w i t h which t h i s t h e s i s i s concerned, are s i m i l a r . 

Even the time constants of the generator equations alone may, i n t h i s 
rn I 

case, have a r a t i o i n the order of 10^ or 10"*, e.g., °„ = 1.12*10^ f o r 
Tdo 

the generator from s e c t i o n 2.3. In order to avoid numerical i n s t a b i l i t y 

(due to build-up of t r u n c a t i o n e r r o r s ) , most i n t e g r a t i o n methods, e s p e c i ­

a l l y those which are e x p l i c i t , r e q u i r e an i n t e g r a t i o n s t e p s i z e At which 

i s s m a ller than the s m a l l e s t time constant. For i n s t a n c e , fourth-order 
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Runge-Kutta methods require a stepsize which is approximately less 

than 1/5 of the smallest time constant. Such a small stepsize i s re­

quired in spite of the fact that in s t i f f systems the components asso­

ciated with the smallest time constants are normally negligible for most 

of the simulation time span. The overall behaviour of the system, which 

is of primary interest, i s determined by the largest time constants. 

The time span of the simulation i s , therefore, determined by the largest 

time constant. A very small stepsize At i s , therefore, very expensive in 

simulating s t i f f systems. 

Round-off errors create additional problems in the numerical 

solution of di f f e r e n t i a l equations. They may become worse for a solution 

with a very small stepsize At than for a solution with a larger one. 

Round-off and truncation error problems are interrelated and are normally 

considered together as one problem of numerical s t a b i l i t y cf the solution. 

Any practical method of numerical integration should not only 

be numerically stable, but also reasonably accurate and e f f i c i e n t . 

Therefore, the numerical integration method needed in the case of elec­

tromagnetic transients should provide a compromise between: 

(a) numerical s t a b i l i t y ; 

(b) accuracy; 

(c) numerical efficiency. 

The implicit trapezoidal rule of integration seems to be the 

best compromise for these sometimes contradictory requirements [31], [33]. 

This method does not suffer from the smallest time constant barrier, i.e., 

the stepsize At is not controlled by i t . The stepsize At is restricted 
O 

mainly by accuracy of the solution, and not by i t s numerical s t a b i l i t y 

[34]. A fundamental theorem due to Dahlquist [35] states: 



Theorem: Let a method be called A-stable, i f , when i t is applied to 
dy 

the problem -~ = Ay, X < 0, i t is stable for a l l At > 0. 

Then: 

(1) No explicit linear multistep method is A-stable; 

(2) no implicit linear multistep method of order greater 

than two is A-stable; 

(3) the most accurate A-stable linear multistep method 

of order two is the trapezoidal rule: 
y(t+At)-y(t) = ^|{f(t,y(t)) + f(t+At,y(t+At))} (46) 

for an equation = f(t,y) (47) 

The A-stability property was the main reason for the choice of this par­

ticular integration method. 

Some additional, important facts speak in favour of the trape­

zoidal rule. F i r s t of a l l , i t i s very simple to program, and does not 

require past history points except for those of the immediately preceding 

time step. It i s , therefore, self-starting. It i s also important to 

note that the trapezoidal rule with a constant stepsize At creates con­

stant state transition matrices for linear systems with constant coeffic­

ients. This property reduces significantly the amount of calculations 

involved in the solution process. Finally, i t is worth mentioning that 

the use of this integration method assures consistency with the Transient 

Program [34], which uses the same solution method. 

A number of different solution techniques were suggested in the 

literature, but none of them seems to have clear advantages over the 

trapezoidal rule [3], [32], [36-39], 



Two cases were run to compare the t r a p e z o i d a l r u l e w i t h the 

fourth-order Runge-Kutta method f o r generator equations. The generator 

described i n s e c t i o n 2.3 was used i n both cases. F i r s t , a three-phase 

s h o r t - c i r c u i t was simulated as shown i n F i g . 6. The voltage of the i n ­

f i n i t e busbar was 2.0/0° p.u., and the i n i t i a l c o n ditions of the genera­

t o r were 1.734/-5.2° p.u. s t a t o r current and 3.56 p.u. f i e l d c u r r e n t . 

The network parameters were R q = 1.0 p.u. 

F i g . 6. Three phase-to-ground f a u l t at generator t e r m i n a l s . 

The s i m u l a t i o n r e s u l t s f o r a time step of At = 100 us were 

p r a c t i c a l l y i d e n t i c a l f o r the fourth-order Runge-Kutta method and the 

t r a p e z o i d a l r u l e of i n t e g r a t i o n , but some d i f f e r e n c e s were v i s i b l e f o r 

At = 1 ms. F i g . 7 compares the r e s u l t s f o r the f i e l d current i ^ . 

As a second t e s t case, a lin e - t o - g r o u n d f a u l t of an unloaded 

generator was chosen, w i t h the same generator data as f o r the f i r s t case. 

The fourth-order Runge-Kutta method became n u m e r i c a l l y unstable i n t h i s 

case, even f o r At = 100 us. The reason may have been the way i n which 

the e x t e r n a l network was simulated, namely as a very l a r g e r e s i s t a n c e R 
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0.0 

TRAPEZOIDAL 8 RUNGE-KUTTA, At=100ps 

TRAPEZOIDAL RULE WITH At = 1ms 

RUNGE-KUTTA WITH At = 1ms 

0.0 0-02 0.04 0.06 

TIME fs) 

Fig. 7. Comparison of simulation results for the f i e l d 
current in case of a three-phase fault. 

in the two unfaulted phases and zero resistance in the faulted phase. 

The comparison of the results for two different stepsizes At is shown in 

Fig. 8. 

Figs.7 and 8 show that an increase in the stepsize At results 

in decreased accuracy of the solution with the trapezoidal rule, but not 

in numerical in s t a b i l i t y . Stepsizes greater than 1 ms were not considered, 

since the time step for the simulation of r e a l i s t i c cases is dictated by 

the solution of electromagnetic transients in the external network, where 

stepsizes are typically in the order of 50 to 100 us. 
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Fig. 8. Comparison of simulation results for the f i e l d 
current in case of a line-to-ground fault. 

3.2 Physical Interpretation of the Trapezoidal Rule of Integration for  

a Lumped Inductance 

It i s very important to understand the build-up of discretiza­

tion errors when the differential equations of the generator are replaced 

by difference equations*. As shown earlier, the generator model consists 

of lumped inductances and resistances. The resistance part does not 

* The trapezoidal rule of integration applied to v = L^- is identical 
with replacement of the derivative by a central difference quotient. 
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cause discretization errors, since the functional relationship 

v = -Ri (48) 

is solved accurately (except for round-off errors) as a linear algebraic 

equation. Discretization errors must only be considered for the induc­

tance part. To keep the explanation simple, consider a single inductance 

L between two nodes "k" and "m" as shown in Fig. 9: 

V 

m 
Fig. 9. Inductance between nodes k and m. 

Application of the trapezoidal rule to 

yields: 

i(t+At) = i( t ) + ||{v(t+At) + v(t)} (50) 

It w i l l now be shown that replacing the differential equation 

(49) by the difference equation (50) is identical to replacing the 

lumped inductance L by a short-circuited, lossless transmission line of 

travel time x = and characteristic impedance Z = This line, which 

replaces L, has (unavoidable) shunt capacitance C' per unit length which 

goes to zero as At goes to zero, and a series inductance L' per unit 

length which, when multiplied with line length, is equal to the value L 

of the lumped inductance. It is schematically shown in Fig. 10; 

The equations of the lossless line can be solved exactly with Bergeron's 

method* [34]. With this method, the following equation can be derived 

* Method of characteristics in mathematical references. 
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k 

m H I - - -
VS=0 

F i g . 10. Schematic r e p r e s e n t a t i o n of a l o s s l e s s , 
s h o r t - c i r c u i t e d transmission l i n e . 

f o r a f i c t i c i o u s observer t r a v e l l i n g from t e r m i n a l "1" to "2" i f he 

leaves t e r m i n a l "1" at t - A t , 

At, VjCt-At) + Z i ^ t - A t ) = - Z i 2 ( t - ^ ) , 

At and f o r an observer l e a v i n g t e r m i n a l "2" towards "1" at t j , 

Z i 2 ( t - ~ ) = V l ( t ) - Z i ^ t ) 

Summation of (51) and (52) y i e l d s 

v x ( t - A t ) + Z i ^ t - A t ) + v : ( t ) - Z i ^ t ) = 0 

which can be r e w r i t t e n as 

±At) = i j C t - A t ) + ICv̂ t) + v x ( t - A t ) ) 

Equation (54) i s i d e n t i c a l w i t h (50), when 
2L 

where Z i s defined as f o l l o w s : 

Z = 

Z = 

At 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 
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Equation (54) i s an exact s o l u t i o n f o r a l o s s l e s s t r a n s m i s s i o n l i n e [40], 

Therefore, the a p p l i c a t i o n of the t r a p e z o i d a l r u l e to a lumped induc­

tance L i s e q u i v a l e n t to r e p l a c i n g the lumped inductance w i t h a s h o r t -

c i r c u i t e d , l o s s l e s s "stub" l i n e w i t h d i s t r i b u t e d inductance L' = L/length 

and t r a v e l time T = ^ , which i s then solved a c c u r a t e l y . 

The e r r o r committed by t h i s replacement can be evaluated q u i t e 

e a s i l y by c a l c u l a t i n g the input impedance of a s h o r t - c i r c u i t e d l o s s l e s s 

l i n e . The steady-state behaviour of a single-phase t r a n s m i s s i o n l i n e 

can be described by the f o l l o w i n g general equations [41]: 

V : = cosh(Y&)V 2 + s i n h ( Y ^ ) - I 2 Z (57) 

and 
V 2 

I : = sinh(Y^)-2 £ + c o s h ( Y ^ ) ' I 2 (58) 

w i t h V and I being phasor values. 

For a s h o r t - c i r c u i t at t e r m i n a l "2" (V 2 = 0 ) , the input impedance seen 

from "1" can be described as f o l l o w s : 

Z I N = j ± = Z t a n h ( Y J D (59) 

For the l o s s l e s s l i n e , the c h a r a c t e r i s t i c impedance i s : 
z (60) 

and the propagation constant i s 

y = /juL*juC' = ju/L'C* (61) 

This leads to the f o l l o w i n g r e l a t i o n s h i p : 

Z I N = J t o L , A T ^ ' tan(-~T) (62) 

The e r r o r i n the frequency domain can now be assessed by c a l c u l a t i n g the 

r a t i o of the known true value ^2.um-ped ~ ^a)^J t 0 t* i e c o m P u t e d value Z ^ 

given by (62): 
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H(_) lumped At-cu ,At-coN = c = 5 - C O t ( r - ) 
ZIN 2 2 

(63) 

Equation (63) is the ratio of the impedance resulting from the 

application of the trapezoidal rule of integration to the impedance of 

the lumped inductance. It i s probably more i l l u s t r a t i v e to consider the 

relative error 

G(co) = H(_) - 1.0 (64) 

instead of the absolute error H(co) . The relative amplitude error | G ( I O ) | 

is plotted in Fig. 11 as a function of " * ^ » t n e P n a se error argG(to) 

is plotted in Fig. 12 as a function of the same variable. 

0 7T_ 

2 
3jr 

2 
27T 5TT 

2 
3JT 

Fig. 11. Relative amplitude error of the 
trapezoidal rule of integration. 

Figs. 11 and 12 give a simple physical explanation of the error 

for any given stepsize At. Low frequencies are reproduced practically 

without any error, since 

lim (|x-cot x - if). = 0 
x ->• 0 

(65) 
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where 

x = coAt 2 (66) 

org Gfoj) 
degrees 

0 
TC 
2 

Tt 3TC 
2 

2n 57T 
2 

Tt 

Y-180 

Fig. 12. Phase error of the trapezoidal rule of integration. 

The error increases with frequency until an absolute blocking (H = 0) is 

reached for 
(67) 

For At = 100 us, a typical stepsize used in studies of electromagnetic 

transients, the f i r s t blocking frequency is equal to f 1 = 5 kHz. If the 

frequency is increased beyond f^, then the element is seen by the solu­

tion algorithm as i f i t were capacitive up to 2f 1, at which point the 

element is seen as a short-circuit, reversing to inductive afterwards. 

The next blocking point i s reached at 

(68) 

From there on, the situation repeats i t s e l f periodically. 

Similar analysis conducted for a lumped capacitance shows that 

application of the trapezoidal rule to i t s differential equation is equi­

valent to replacing the lumped capacitance by an open-ended lossless line. 
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In t h i s case, the r a t i o becomes: 

H ( w ) = AtT_ t a n ^ > <69) 

I d e n t i c a l r e s u l t s can be achieved w i t h "the t r a n s f e r f u n c t i o n " approach 

[42]. 

The above f a c t s e x p l a i n the sometimes l a r g e l o c a l e r r o r of the 

s o l u t i o n . The o v e r a l l numerical s t a b i l i t y of the s o l u t i o n , however, i s 

unaffected [35], [43]. The t r a p e z o i d a l r u l e of i n t e g r a t i o n can thus be 

regarded as a procedure which changes impedance values d i f f e r e n t l y f o r 

d i f f e r e n t f r e q u e n c i e s , but solves the system a c c u r a t e l y w i t h these modi­

f i e d impedances. The s o l u t i o n i s o b v i o u s l y s t a b l e , but more or l e s s 

i n a c c u r a t e . 

3.3 Choice of Coordinate System 

In studying electromagnetic t r a n s i e n t s i t i s not c l e a r a p r i o r i 

which system of coordinates i s more advantageous f o r i n t e g r a t i n g the 

d i f f e r e n t i a l equations of the e l e c t r i c p a r t . I t i s c l e a r , however, that 

general-purpose computer programs must i n t e r f a c e the r e s u l t i n g d i f f e r e n c e 

equations of the generator w i t h those of the network i n phase coordinates. 

Otherwise the a b i l i t y to simulate any general type of e l e c t r i c network 

would be l o s t , thus e l i m i n a t i n g the g e n e r a l i t y of the program. The i n t e ­

g r a t i o n of the generator equations d i r e c t l y i n phase coordinates would 

seem, t h e r e f o r e , to be the best choice. I t must be r e a l i z e d , however, 

that the t r a p e z o i d a l r u l e w i l l then produce d i s c r e t i z a t i o n e r r o r s even 

f o r balanced steady-state c o n d i t i o n s , s i n c e the f l u x and the currents i n 

the phases change s i n u s o i d a l l y at fundamental frequency. I n t e g r a t i o n i n 

d^q,0-coordinates, on the other hand, would be exact f o r balanced steady-

s t a t e c o n d i t i o n s w i t h the t r a p e z o i d a l r u l e , s i n c e f l u x and currents i n 
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d,q,O-coordinates are constant i n t h i s case. I f the l a t t e r approach i s 

used, then the r e s u l t i n g d i f f e r e n c e equations must be transformed back to 

phase coordinates before they are i n t e r f a c e d w i t h the d i f f e r e n c e equa­

t i o n s of the network. 

For general t r a n s i e n t c o n d i t i o n s , the choice i s not at a l l 

c l e a r . As an example, a s i n g l e l i n e - t o - g r o u n d f a u l t at the generator 

terminals has phase currents v a r y i n g at 60 Hz, i f the harmonics and dc-

o f f s e t are ignored. Currents i n d,q,0-coordinates, on the other hand, 

w i l l vary at 60 Hz and 120 Hz, w i t h the l a t t e r caused by negative se­

quence components. 

The f i n a l choice was made a f t e r c o n s i d e r i n g the numerical e f f i ­

ciency. The amount of c a l c u l a t i o n s i n d,q,0-coordinates i s s i g n i f i c a n t l y 

s m a l l e r , s i n c e the inductance m a t r i x [L ] i s constant i n t h i s case [44]. 
P 

P r e l i m i n a r y experiments showed that i n t e g r a t i o n i n d,q,0-coordinates 

gives very s a t i s f a c t o r y answers, and d,q,0-coordinates were f i n a l l y chosen 

f o r the work i n t h i s t h e s i s . 

As shown i n Appendix 2, the t r a p e z o i d a l r u l e of i n t e g r a t i o n i n 

both systems of coordinates leads to the same form of l i n e a r r e l a t i o n s h i p s 

between voltages and c u r r e n t s , and only the d i s c r e t i z a t i o n e r r o r s are 

d i f f e r e n t . The choice of system of coordinates, t h e r e f o r e , does not 

change the general approach o u t l i n e d i n t h i s t h e s i s . 

I f space harmonics i n the magnetic f i e l d d i s t r i b u t i o n are taken 

i n t o account, then i n t e g r a t i o n i n phase coordinates w i l l probably be more 

advantageous. S e l f and mutual inductances could then be defined d i r e c t l y 

i n phase coordinates. The inductance m a t r i x [L^] i n d,q,0-coordinates 

would no longer be constant, i n t h i s case anyhow, thus d i m i n i s h i n g the 

main advantage of t h i s system of coordinates. 
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3.4 Multiphase E q u i v a l e n t Networks 

The a n a l y s i s of connected subnetworks becomes simpler i f each 

subnetwork has already been reduced to a multiphase e q u i v a l e n t c i r c u i t 

i n which only terminals at the connection p o i n t s are r e t a i n e d and a l l 

other terminals are e l i m i n a t e d . Such a s i t u a t i o n e x i s t s when generators 

are connected to a t r a n s m i s s i o n system. On the generator s i d e , only the 

s t a t o r windings are d i r e c t l y connected to the transmission network, i . e . , 

only three p a i r s of i t s terminals must be r e t a i n e d i f the generator equa­

t i o n s are to be solved simultaneously w i t h the network equations. This 

assumes, of course, that the generator equations can i n f a c t be reduced 

to equations c o n t a i n i n g the r e t a i n e d t e r m i n a l s , only. This i s indeed 

p o s s i b l e , as explained i n chapter 3.5. A l l other p a i r s of t e r m i n a l s on 

the r o t o r are then concealed. The s i t u a t i o n i s s i m i l a r i n the t r a n s ­

m i s s i o n network. Again, only three p a i r s of i t s terminals are connected 

to each generator, thus making a l l the r e s t of them concealed, provided 

that the network can be reduced to the r e t a i n e d terminals only. Since 

the i n t e r f a c e between the electromagnetic t r a n s i e n t s , which solves the 

network, and the generator model i s performed only through the r e t a i n e d 

p a i r s of t e r m i n a l s , i t seems appropriate to discuss i n some d e t a i l the 

i d e a of a multiphase e q u i v a l e n t network. 

Multiphase e q u i v a l e n t networks have not been used f o r a very 

long time. Since a number of good references are a v a i l a b l e [45], [46], 

only a short o u t l i n e w i l l be given here to a i d i n the understanding of 

i n t e r f a c e techniques. The theory w i l l f i r s t be explained f o r steady 

s t a t e , w i t h voltages and currents being phasors, and then extended to the 

s o l u t i o n of electromagnetic t r a n s i e n t s i n s e c t i o n 3.5. This extension 

becomes s t r a i g h t f o r w a r d w i t h the concept of r e s i s t i v e companion models [47]. 
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The generator or the network can either be described by a set 

of independent node equations with an admittance matrix, [Y]̂ V = I_, or 

with an impedance matrix, V = [Z]I_ where [Z] = [Y] ^. Retained terminal 

pairs are generally located across only a few independent node pairs. 

The node impedance or admittance matrix of the reduced network, which 

contains only the retained terminal pairs, can be obtained from the f u l l 

impedance or admittance matrix by elimination of the concealed variables. 

Consider a general network with N independent node pairs and 

with R terminal pairs to be retained. Such a network may be described 

by the following nodal equations with an admittance matrix: 

Y Y _ 
_ RR RE 

"1 
Y Y ER — 

EE _ 

R̂ 

2_ 
(70) 

or by an inverse relationship with an impedance matrix. 

^R ZRR I ZRE 
-t 

ZER I ZEE 
(71) 

where subscript "R" denotes the retained variables, and subscript "E" 

denotes the concealed variables, which are to be eliminated. 

Elimination of the concealed variables results in the following rela­

tionships : 
,-1 -1 

and 

iR= - [ Y R E H Y E E ] ^ [ Y E R ] ) V R + n^m™] - i 

^R= ( [ ZRR ] - r Z R E ] [ Z E E r l [ Z E R ] ) i R + ^ W ^ h 

(72) 

(73) 

Equations (72) and (73) may be interpreted as generalized forms 

of Norton's or Thevenin's theorem. Equation (73) w i l l be considered 

closer. It can be rewritten as follows: 



40. 

S e t t i n g I,, = 0. gives the o p e n - c i r c u i t t e r m i n a l voltages as: 

\ = [ Z R E ] t Z E E ] ~ \ 

(74) 

(75) 

The e q u i v a l e n t impedance [Z ] i s defined as f o l l o w s : 

= t ZRR ] - ^ R E ^ E E 1 " 1 ^ (76) 

Equation (74) d e s c r i b e s , t h e r e f o r e , the multiphase Thevenin equivalent 

c i r c u i t of a network. I t i s a reduced network w i t h concealed terminals 

e l i m i n a t e d . A n a l y s i s i s s i m p l i f i e d i f the impedance matri x [Z ] behind 
R 

the voltage sources i s constant. The Thevenin e q u i v a l e n t c i r c u i t of 
RU 

(73) i s only u s e f u l i f the voltages V,, across the concealed node p a i r s 

are known, and (72) i s only u s e f u l i f the currents 1̂ , across the cone 

cealed node p a i r s are known. A three-phase Thevenin equivalent c i r c u i t 

i s shown s c h e m a t i c a l l y i n F i g . 13. 

z 
R 

F i g . 13. Schematic r e p r e s e n t a t i o n of a three-phase 
Thevenin equivalent c i r c u i t . 

The multiphase e q u i v a l e n t c i r c u i t was derived from nodal equa­

t i o n s , but i t can also be derived from other forms of network d e s c r i p t i o n , 

e.g., from branch equations or mesh equations. 



The concept of multiphase Thevenin equivalent c i r c u i t s , which 

was derived f o r steady s t a t e above, can a l s o be used f o r t r a n s i e n t con­

d i t i o n s . The e f f i c i e n t c a l c u l a t i o n of a Thevenin eq u i v a l e n t c i r c u i t f o r 

the transmission network has already been explained i n Appendix 3 f o r 

t r a n s i e n t c o n d i t i o n s . Therefore, only the Thevenin eq u i v a l e n t c i r c u i t 

of the generator must s t i l l be derived f o r t r a n s i e n t c o n d i t i o n s , which 

i s done i n the f o l l o w i n g s e c t i o n . . 

3.5 Three-Phase Eq u i v a l e n t C i r c u i t of the Generator 

A f t e r the a p p l i c a t i o n of the t r a p e z o i d a l r u l e , the nodal v o l t ­

age equations of a generator i n d,q,0-coordinates have the f o l l o w i n g 

form ( f o r d e t a i l s see Appendix 2 ) : 

v ( t ) = [ R C O m p ] i ( t ) + e (t-At) (77) —-p —p —p 

Equation (77) can be v i s u a l i z e d as v o l t a g e sources e^t-At) behind r e ­

s i s t a n c e s [ R C O m ^ ] . Such e q u i v a l e n t ' r e s i s t i v e networks, which r e s u l t 

from the i m p l i c i t i n t e g r a t i o n of d i f f e r e n t i a l equations, are c a l l e d 

" r e s i s t i v e companion network models" i n network theory [47]. They have 

been used i n power systems a n a l y s i s f o r more than 10 years [48]. The 

r e s i s t i v e m a t r i x [ R C O m p ] i s constant i n d,q,0-coordinates, and the 

v o l tage sources e^(t-At) are c a l c u l a t e d from the known " p a s t - h i s t o r y 

terms" of the preceding time step t-At. The a b i l i t y to create such 

" r e s i s t i v e companion network models" i s not l i m i t e d to the t r a p e z o i d a l 

r u l e of i n t e g r a t i o n only, but works f o r any i m p l i c i t i n t e g r a t i o n as 

shown i n Appendix 4. 

Equation (77) represents a system of seven equations. The 

f i r s t three of them describe the s t a t o r windings, and the r e s t describe 

the r o t o r windings. Therefore, (77) can be r e w r i t t e n as f o l l o w s 
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( s u b s c r i p t "p" and s u p e r s c r i p t "comp" dropped to s i m p l i f y n o t a t i o n ) : 

v (t) = [R ] i (t) + [R ] i (t) + e (t-A t ) (78a) —s ss —s s r — r —s 

v (t) = [R ] i (t) + [R ] i (t) + e (t-At) (78b) — r r s —s r r — r — r 

where s u b s c r i p t " s " denotes s t a t o r q u a n t i t i e s , and " r " r o t o r q u a n t i t i e s . 

E l i m i n a t i o n of r o t o r currents ^ ( t ) ( r o t o r terminals are concealed) 

r e s u l t s i n the f o l l o w i n g r e l a t i o n s h i p : 

v ^ t ) = ( [ R s s ] - [ R g r ] [ y 1 [ R „ ] ) i B ( t ) + ' 

e^(t-At) + [ R s r ] [ R r r ] " 1 . ( e r ( t - A t ) - v ^ t ) ) (79) 

As mentioned i n s e c t i o n 3.4, the eq u i v a l e n t c i r c u i t of (79) i s 

r e a l l y only u s e f u l i f concealed v a r i a b l e s are known, which i s v^_(t) here. 

Since a l l damper windings are permanently s h o r t - c i r c u i t e d , the voltages 

across these windings are always equal to zero, and the r e f o r e known. Only 

the f i e l d winding r e q u i r e s s p e c i a l a t t e n t i o n . Depending on the type of 

study, three approaches can be used: 

(a) For many st u d i e s t i s so short that the e x c i t e r output does 
J max 

not change w i t h i n t h a t time span. The voltage across the f i e l d 

winding v ^ ( t ) i s then constant and equal to the pre-disturbance 

value . 

(b) For st u d i e s over longer time spans, the response of the e x c i ­

t a t i o n system may have to be taken i n t o account. D i f f e r e n t i a l 

equations are then used to describe r e l a t i o n s h i p s between 

t e r m i n a l v o l t a g e , v o l t a g e output v^ of the e x c i t e r , and p o s s i b l y 

supplementary v a r i a b l e s such as s h a f t speed, a c c e l e r a t i o n , 

e l e c t r i c power, e t c . I f i m p l i c i t i n t e g r a t i o n i s a p p l i e d to 

these d i f f e r e n t i a l equations ( l i n e a r or l i n e a r i z e d over one 
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time s t e p ) , then l i n e a r a l g e b r a i c r e l a t i o n s h i p s among these 

q u a n t i t i e s are obtained. With a t y p i c a l time constant of 30 ms 

f o r a f a s t e x c i t a t i o n system w i t h r e c t i f i e r s , i t should be 

p e r m i s s i b l e to c a l c u l a t e the e x c i t a t i o n system output at time 

t from the known input values at time t - A t , and v ^ ( t ) would 

then again be known i n the s o l u t i o n of the generator equations. 

This approach was used s u c c e s s f u l l y f o r p r a c t i c a l cases [49]. 

Standard IEEE e x c i t a t i o n system models define the t e r m i n a l 

v o l t a g e as an RMS-value. Therefore, the problem a r i s e s i n 

t r a n s i e n t s t u d i e s how to d e f i n e RMS-values from instantaneous 

values under t r a n s i e n t c o n d i t i o n s . This could, f o r example, 

be done by i n c l u d i n g a model f o r the t r a n s i e n t behaviour of 

the transducer. This i s s u e may r e q u i r e f u r t h e r research, 

(c) I f the time delay of one time step introduced i n method (b) 

above i s unacceptable, then i t becomes necessary to r e t a i n the 

f i e l d winding i n the e q u i v a l e n t c i r c u i t , which leads to a f o u r -

phase e q u i v a l e n t c i r c u i t of the generator. The f o u r t h equa­

t i o n must then be i n t e r f a c e d w i t h the equations which describes 

the e x c i t a t i o n system dynamics. This w i l l not a f f e c t the 

i n t e r f a c e procedures described i n t h i s t h e s i s ( f o r d e t a i l s see 

Appendix 5 ) . 

Equation (79) can now be r e w r i t t e n as f o l l o w s : 

v ( t ) = [ R r e d ] i (t) + e r e d ( t - A t ) —s ss —s —s (80) 

w i t h 

[ R r 6 d ] = ss 

a l l A 1 2 
0 

A 2 1 A 2 2 
0 

0 0 A 3 3 

(81) 
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where a l l nonzero elements are constant i f At and co are constant ( f o r 
red d e t a i l s see Appendix 5 ) , and where e (t-At) i s known at time t from s 

known past h i s t o r y at t-At and v ^ ( t ) . 

Equation (80), a f t e r transformation to phase-coordinates, describes the 

three-phase e q u i v a l e n t c i r c u i t of the generator i n those coordinates. 

The r e s u l t i n g r e s i s t i v e companion m a t r i x [R^™^] i s time dependent: 

b n ( t ) b 1 2 ( t ) b 1 3 ( t ) 
[ R c o m P ] = b 2 1 < t ) b 2 2 ( t ) (82) 

b 3 1 ( t ) b 3 2 ( t ) b 3 3 ( t ) 

C a l c u l a t i o n of the m a t r i x [R ] according to (79) i s numeri-
ss 

c a l l y very i n e f f i c i e n t and i s b e t t e r done i n p r a c t i c e w i t h a Gauss-Jordan 

e l i m i n a t i o n scheme [50], as b r i e f l y explained i n Appendix 6. 



4. INTERFACING THE GENERATOR MODELS WITH THE TRANSIENTS PROGRAM 

4.1 Problem Formulation 

The generators and the network to which they are connected, 

can in principle be. solved as one system of equations. However, i t is 

then not easy to write general-purpose computer programs which can 

handle any network configuration [51]. It i s , therefore, necessary to 

devise interfacing procedures which preserve the generality of the net­

work representation in the Transients Program. 

When elect r i c networks are connected together, then certain 

boundary conditions must be satisfied for voltages and currents at the 

connection points. The situation for two three-phase networks i s shown 

in Fig. 14. The conditions, which must be satisfied at any time t, are 

based upon Kirchhoff's laws, in this case: 

V l = V V2 = V V3 = \ a n d 

*•! + \ = °» 12 + i5 = °» "̂3 + 16 = °' 

{SUBNETWORK 
I 

'4 

>2 '5 SUBNETWORK 

'3 >6 n 

Vl 
V 5 V 6 

/ / / ) / / 

Fig. 14. Schematic representation of two connected networks. 
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These conditions must also be satisfied when two computer pro­

grams are interfaced, when each of them describes the behaviour of one 

subnetwork only. Subnetwork I could be the generator, and subnetwork II 

the transmission system in a particular case. The generator i s connected 

to the transmission network through three pairs of terminals, i.e., a l l 

the other pairs of terminals of the transmission system are, from the 

generator's point of view, concealed. Similarly, looking from the trans­

mission system into the generator, only the three stator pairs of gen­

erator terminals are visible, and the rotor windings are concealed. 

There are, therefore, two possible ways of interfacing a generator pro­

gram with a network transients program. The f i r s t one is based upon the 

calculation of a three-phase Thevenin equivalent circuit of the trans­

mission network, as seen from the generator's stator terminals, and 

solving i t together with the f u l l set of generator equations or with the 

reduced set of generator equations, in which only stator terminals are 

retained. The f i n a l solution in the transmission network is obtained by 

superimposing the voltage changes which results from the generator cur­

rents on the solution obtained without generator currents [2]. The 

second approach is based upon the development of a three-phase Thevenin 

equivalent circuit for the generator in the form of a voltage source 
red 

behind a time-invariant, symmetrical matrix [Rp^ ]• Th e complete solu­

tion i s then obtained by solving the transmission network with the 
red 

generator treated as voltage sources behind ] i n o n e step. This 

approach results in a significantly simpler interface code. 
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4.2 Method I - Interface by Means of a Thevenin Equivalent Circuit of  

the Transmission Network 

The Transients Program was modified to produce a three-phase 

Thevenin equivalent circuit of the transmission network seen from the 

generator terminals (in i t s original form i t could only produce single-

phase equivalent circuits). The equivalent circuit can be described by 

the following equation: 

VO = [ ^ e r m ± n a ± ] ^ t ) + % Q ( t ) (83) 

where the subscript "N" denotes network quantities, and the subscript 

" 0 " denotes open-circuit quantities. 

The.3 x 3 matrix r R ^ e r m ^ n a ^ ] , i s precomputed before entering the time 

step loop, and must only be recomputed when the network configuration 

changes due to switching actions or when the program moves into a new 

segment in the piecewise linear representation of nonlinear elements [45] 

A practical way of calculating this matrix, as done in the Transients 

Program, is briefly described in Appendix 6. The voltage vector y^nCt) 

contains the three-phase voltages of the Transients Program solution 

without the generator. 

The generator is represented by i t s three-phase equivalent 

c i r c u i t : 

v ^ C t ) = i R j ^ V t ) + % h ( t " A t ) ( 8 4 ) 

where the subscript "ph" denotes generator quantities in phase coordin­

ates, and where 

V t ) B ^ ( t ) a n d V 0 " " ^ 0 0 ( 8 5 ) 

With (85), equations (83) and (84) can be solved for the unknown voltages 
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and c u r r e n t s . A f t e r s u b t r a c t i n g (84) from (83), the f o l l o w i n g r e l a t i o n ­

s h i p i s obtained: 

The f i n a l network s o l u t i o n i s found by superimposing the v o l t a g e changes 

Av(t) - [ l ^ e t W O r k ] - V t > C87) 

on the previous s o l u t i o n without the generator. Ay(t) i s the v e c t o r of 

a l l v oltages on nodes without voltage sources i n the t r a n s m i s s i o n net­

work, and [ j ^ e t w o r k ] ^ g a p r e C 0 m p u t e d n x 3 m a t r i x from which [ R ^ e r m ^ " n a ^ ] 

was e x t r a c t e d f o r (84). 

The f i n a l s o l u t i o n of the generator i s found by s o l v i n g f o r 

the concealed v a r i a b l e s which were e l i m i n a t e d i n reducing the equations 

to a three-phase Thevenin eq u i v a l e n t c i r c u i t . A f t e r transformation of 

the s t a t o r currents to d,q,0-coordinates, the r o t o r currents are found 

as f o l l o w s : 

i (t) = -[R ] _ 1[R ] i (t) - [R. ] _ 1 ( v (t) + e ( t - A t ) (88) — r r r 1 r s —s r r J v — r — r 

-1 -1 where'the matrices [R ] and [R 1 [R ] were found as by-products of r r r r r s 
the r e d u c t i o n process, as explained i n Appendix 6. 

A flow chart f o r t h i s s o l u t i o n a l g o r i t h m , w i t h the mechanical 

p a r t of the turbine-generator i n c l u d e d , i s shown i n F i g . 15. 

The p r e d i c t i o n p a r t of the s o l u t i o n a l g o r i t h m i s only needed 

i f the mechanical p a r t i s i n c l u d e d f o r modelling the r e l a t i v e r o t o r 

o s c i l l a t i o n s around synchronous speed. Since the i n t e r f a c i n g i s done i n 

phase coordinates, i t i s necessary to know both the angular p o s i t i o n 0 

and the speed u of the r o t o r at the new time step i n order to c a l c u l a t e m 
the m a t r i x [R C° m p] and the v e c t o r e , ( t - A t ) . A s i m i l a r s i t u a t i o n e x i s t s pn —ph 
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Fig. 15. Flow chart of solution with method I. 
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when the i n t e r f a c i n g i s done i n d,q,0-coordinates. I t i s then necessary 

to know 6 and OJ i n order to c a l c u l a t e the m a t r i x [ R C O m p ] and the three-m p 
phase Thevenin equivalent c i r c u i t of the t r a n s m i s s i o n system i n Park's 

coordinates. A f t e r the generator currents have been c a l c u l a t e d , i t i s 

p o s s i b l e to c a l c u l a t e the electromagnetic torque T£^. With t h i s v a lue, 

the equations of the mechanical p a r t can be solved to get updated value 

of the speed t o ^ . I f these values d i f f e r too much from the p r e d i c t e d 

v a l u e s , then the s o l u t i o n i s repeated u n t i l the d i f f e r e n c e s are n e g l i g i ­

b l e . This s o l u t i o n a l g o r i t h m performed s a t i s f a c t o r i l y [4]. C o r r e c t i o n s 

are not much of a problem i n t h i s s o l u t i o n a l g o r i t h m , anyhow. 

4.3 L i m i t a t i o n s of Method I 

The s o l u t i o n method described i n chapter 4.2 i s q u i t e s t r a i g h t ­

forward and n u m e r i c a l l y s t a b l e i f only one generator i s connected to the 

t r a n s m i s s i o n network. I f there are more generators connected to the 

network, as i s u s u a l l y the case, then the method works without f u r t h e r 

m o d i f i c a t i o n s only i f the generators are separated through d i s t r i b u t e d -

parameter l i n e s , i . e . , i f three-phase e q u i v a l e n t c i r c u i t s of the net­

work e x i s t independently f o r each generator because distributed-parameter 

l i n e s disconnect the network [ 2 ] , [44]. The Transients Program checks 

t h i s c o n d i t i o n a u t o m a t i c a l l y when i t c a l c u l a t e s three-phase e q u i v a l e n t 

c i r c u i t s at generator t e r m i n a l s . The program could be changed to c a l c u ­

l a t e 6-phase equ i v a l e n t c i r c u i t s i f two generators are connected to the 

network without separation through distributed-parameter l i n e s , or 9-phase 

eq u i v a l e n t c i r c u i t s f o r three generators, e t c . For the general case of 

m generators, however, the programming would become.too complicated and 

the execution time would probably become too b i g . 
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A number of alternative methods are possible to overcome this 

limitation. The generators could be separated by short distributed-

parameter transmission lines. This may, however, require a significant 

reduction of the stepsize At in order to keep the length of such a r t i ­

f i c i a l lines short, since At must be less than the travel time [ 4 8 ] , A 

slightly different approach has been used successfully by Southern 

California Edison Company, whereby transformer leakage inductances of 

step-up transformers are approximated as stub-lines [ 4 4 ] . If a group of 

generators not separated by transmission lines feeds into the same bus­

bar, then the possibility exists of creating one equivalent ci r c u i t for 

this group of generators, which would be relatively easy. This method 

can be extended to groups of generators which feed through unit trans­

formers into the same busbar. In this case, the generator equation 

would have to be expanded to include the transformer equations as well. 

The limitations mentioned above do not significantly degrade 

the practical value of method I. They simply imply that certain pre­

cautions are needed when special cases are simulated. 

4 . 4 Method II - Interface with a Modified Thevenin Equivalent Circuit 

of the Generator 

It i s common practice in the power industry to represent gener-

ators by sinusoidal voltage sources of the form E" cos (o)t+p) behind 
max " 

subtransient impedances R Q + jooL^| in quasi-steady-state fault studies and 

in some types of transient studies. In the derivation of this model i t 

is assumed that flux changes in the rotor windings immediately after the 

distrubance can be ignored, and that subtransient saliency can also be 

ignored. This simple model i s quite adequate for the f i r s t cycle or so 
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a f t e r the disturbance which i n i t i a t e s the t r a n s i e n t phenomena. Good 

r e s u l t s have been obtained w i t h t h i s model i n s w i t c h i n g surge s t u d i e s , 

t r a n s i e n t recovery v o l t a g e s t u d i e s , and other types of s t u d i e s i n v o l v i n g 

f a s t t r a n s i e n t s . The r e l a t i v e l y accurate r e s u l t s obtained w i t h t h i s 

simple model motivated the research e f f o r t described i n t h i s chapter. 

The i d e a was to f i n d a way to account f o r the changes i n f l u x e s and to 

i n c l u d e the s u b t r a n s i e n t s a l i e n c y without l o s i n g the s i m p l i c i t y of the 

model. 

Before proceeding w i t h the d i s c u s s i o n , i t may be u s e f u l to 

r e c a l l some of the r e s u l t s of s e c t i o n 3.5, where the r e t a i n e d s t a t o r 

v a r i a b l e s of the generator were described i n d,q,0-coordinates by the 

equation 

v ( t ) = [ R ^ d ] i ( t ) + e ! e d ( t - A t ) (89) —s ss —s . —s 

red 
and where the m a t r i x [ R o o ] was given as f o l l o w s : 

a l l a12 0 

ss a22 0 (90) 

0 0 a33 

As mentioned i n s e c t i o n 3.5, the m a t r i x [ R ^ " ] becomes time-
s s 

dependent when i t i s transformed d i r e c t l y to phase-coordinates. While 

nodal network s o l u t i o n s , such as i n [34], can i n p r i n c i p l e be m o d i f i e d 

to accept time-dependent r e s i s t a n c e s , program execution would be slowed 

down s i g n i f i c a n t l y i f the network conductance m a t r i x had to be r e t r i a n -

g u l a r i z e d i n each time step. A l s o , the conductance matr i x becomes asym­

m e t r i c i n t h i s case, which means that the upper as w e l l as the lower 

t r i a n g u l a r matrices would have to be s t o r e d . This would increase s t o r ­

age requirements as w e l l as computation time compared w i t h the present 
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method based upon symmetry where only the upper t r i a n g u l a r m a t r i x i s 

s t o r e d . 

A number of ways were t r i e d out to approximate (89) i n such a 

way that the r e s i s t a n c e m a t r i x becomes constant and symmetric i n phase 

coordinates. The f o l l o w i n g scheme seemed to work b e s t : 
red (1) S p l i t the m a t r i x [R ] i n t o the sum of two terms, s s 

[ R r e d ] = [ R r e d 1 + [ R r e d ] ss const var (91) 

red where the m a t r i x [R ] i s given as 
const ° 

[ R r e d J -const 

r- a +a 
11 22 

2 
0 

0 

a +a 
11 22 

2 
0 33 

(92) 

w i t h c o e f f i c i e n t s a ^ as defined i n Appendix 5. 
red (2) Transform the m a t r i x [R 1 to phase coordinates. The const 

27 fid 
r e s u l t i s a constant symmetric m a t r i x [ R ^ ] of the f o l l o w i n g 
form: 

,red. 

b 

a 

b 

b 

b (93) 

The elements of the m a t r i x [R J' C U] are normally much sm a l l e r than those 
var J 

of [ R ^ ; s t ] , and t h e i r i n f l u e n c e i n (89) can be accounted f o r by m u l t i p l y ­

i n g them w i t h the p r e d i c t e d values of s t a t o r c u r rents r a t h e r than w i t h 

a c t u a l , y e t unknown, values and adding these terms to the v o l t a g e sources. 

Therefore, the f o l l o w i n g r e l a t i o n s h i p i n d,q,0-coordinates i s obtained: 

v ( t) = [ R r e d J i ( t ) + { e r e d ( t - A t ) + [ R r e d ] i p r e d ( t ) } —s const —s —s var —s v (94) 
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where i ^ r e d ( t ) i s the v e c t o r of the p r e d i c t e d d,q,0-stator currents at 

time t . 

Transformation of (94) to phase-coordinates y i e l d s the d e s i r e d 

Thevenin e q u i v a l e n t c i r c u i t of the generator: 

' _p h<t) = [ * p f ] i C t ) + e j ; d ( t ^ t ) (95) 

red 

Since the m a t r i x [Rp^ 1 i s symmetric and time-independent, the genera­

t o r can be represented i n the Transients Program simply as a s e t of 
voltage sources e ^ ^ d ( t - A t ) behind r e s i s t a n c e s [ R p j ^ ] . i n v e r s e of 

red 

[Rpk ] enters i n t o the nodal conductance m a t r i x of the t r a n s m i s s i o n 

network as any other r e s i s t i v e branch, as described i n [48], 

A f t e r the network s o l u t i o n has been found i n the new time step 

at time t , the s t a t o r q u a n t i t i e s w i l l be known, and the r o t o r currents 

can then be found from (88). Therefore, the s o l u t i o n of the transmission 

network together w i t h the generators proceeds at each time step as f o l l o w s ; 

(1) Solve the network equations together w i t h the Thevenin equiva­

l e n t c i r c u i t s of the generators reduced to the s t a t o r windings 

as given by (95); 

(2) Solve equation (88) of r o t o r windings, using the s t a t o r currr 

r e n t s found i n the previous step. 

There i s a need to p r e d i c t the angular p o s i t i o n 9 and the speed 

to of the r o t o r , j u s t as i n method I . The problem of i t e r a t i v e c o r r e c -

t i o n s i s , more complex i n t h i s case, however, since i t e r a t i o n s w i t h the 

complete network s o l u t i o n would be q u i t e c o s t l y . F o r t u n a t e l y , i t has 

already been shown that the angular p o s i t i o n 6 can be p r e d i c t e d a c c u r a t e l y 

enough without need f o r c o r r e c t i o n s [ 4 ] , [32]. A reasonably accurate 

p r e d i c t i o n f o r the angular speed _ can probably be obtained from the 
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i n t e g r a t i o n of the'mechanical equations, w i t h l i n e a r e x t r a p o l a t i o n of 

the e l e c t r i c a l torque because of the r e l a t i v e l y s m a l l s t e p s i z e At used 

i n i n t e g r a t i o n of the e l e c t r i c p a r t i n comparison w i t h the r e l a t i v e l y 

b i g time constants of the mechanical p a r t . Furthermore, the terms con-

t a i n i n g the angular speed co are only a s m a l l p a r t of e , (t- A t ) i n (95) 
m —ph 

I t i s , t h e r e f o r e , reasonable to expect 1 that c o m can be p r e d i c t e d w i t h 

s u f f i c i e n t accuracy. I t i s al s o p o s s i b l e to introduce some s o r t of 

i t e r a t i o n loop to improve the s o l u t i o n such as the one shown i n F i g . 16. 

p r e d i c t 6 and co 
m 

No 

Solve the network 
together w i t h the 

generators 

C a l c u l a t e r o t o r 
currents and 

e l e c t r o m a g n e t i c a l 
torques 

C a l c u l a t e c o m and 
9 w i t h the new data 

F i g . 16. Flow chart of the i t e r a t i o n scheme. 
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No s e r i o u s problems are expected. Experience gained by the 

General E l e c t r i c Company seems to prove t h i s statement [ 3 ] . A computer 

program developed by t h i s company and the r e s u l t s obtained w i t h i t seem 

to i n d i c a t e that no s i g n i f i c a n t e r r o r s are introduced when using the pre­

d i c t e d values of the angular speed to . 
m 

4.5 Remarks about Method I I 

As already mentioned, the elements of the r e s i s t a n c e m a t r i x 
red red [R ] are normally much sm a l l e r than the elements of the m a t r i x [R 1. var 3 const 

This i s true of t y p i c a l generators where s u b t r a n s i e n t s a l i e n c y i s very 

s m a l l . I f d i f f e r s s i g n i f i c a n t l y from X'"j, the elements of the m a t r i x 

[ R v a r ] may become l a r g e . This would increase the r e l a t i v e weight of the 

i n a c c u r a c i e s r e s u l t i n g from the p r e d i c t i o n of the s t a t o r c u r r e n t s , which 

i n t u rn could r e s u l t i n i n a c c u r a t e s o l u t i o n s . Although such a case seems 

to be h i g h l y improbable f o r any p r a c t i c a l generator equipped w i t h damper 

windings, i t should, n e v e r t h e l e s s , be mentioned as a p o s s i b l e problem. 

Experience has shown t h a t f o r s t e p s i z e s At i n the order of 
-4 

10 s, method I I works remarkably w e l l . I t does not s u f f e r from the 

l i m i t a t i o n s t y p i c a l of method I , s i n c e the generators are simply modelled 

as voltage sources behind r e s i s t a n c e s . In the network s o l u t i o n i t i s 

p o s s i b l e , t h e r e f o r e , to have any number of generators connected to the 

network, e i t h e r at the same busbar or at d i f f e r e n t busbars, without l o s s 

of g e n e r a l i t y . 
The p r e d i c t i o n of the d,q,Q-?stator currents i ^ r e d ( t ) does 

s 
i n f l u e n c e the accuracy, of course, and can be performed i n a number of 

ways: 

(1) Assume that the voltages at the generator terminals are cons­

tant over the next time step, and use the new currents found 



from (89) as p r e d i c t e d values. 

(2) Use s t r a i g h t - l i n e e x t r a p o l a t i o n of the c u r r e n t s . Information 

f o r two preceding time steps at t-2At and t-At must then be 

s t o r e d . 

(3) Use p a r a b o l i c e x t r a p o l a t i o n of the c u r r e n t s . Information f o r 

three preceding time steps must then be s t o r e d . 

(4) Use any combination of the three previous methods, e.g., 

s t r a i g h t - l i n e e x t r a p o l a t i o n of the voltages combined w i t h 

approach 1. 

In a l l the t e s t s conducted f o r t h i s t h e s i s , there were no v i s i b l e d i f f e r 

ences between the r e s u l t s obtained w i t h d i f f e r e n t p r e d i c t i o n methods as 

long as some type of p r e d i c t i o n of the s t a t o r currents was used. Simply 

s e t t i n g i | \ r e d ( t ) = 0_ i s too i n a c c u r a t e . F i g . 17 compares the f i e l d cur­

rent from the example of s e c t i o n 2.3, c a l c u l a t e d i n three d i f f e r e n t ways 

(a) The p r e d i c t e d currents are obtained by assuming that the v o l ­

tages at the generator terminals are constant over the next 

time step, w i t h s t e p s i z e At = 100 us. 

(b) The currents from the previous time step are used as p r e d i c t e d 

v a l u e s , i . e . , i p r e d ( t ) = i ( t - A t ) , (At = 100 ys) . 
s s 

(c) The i n f l u e n c e of the term [R ] i ( t ) i s neglected, i . e . , 
var —s 

i p r e d ( t ) = 0 (At = 100 y s ) . This amounts to n e g l e c t i n g the —s 
sub t r a n s i e n t s a l i e n c y and speed terms i n the generator model. 

The d i f f e r e n c e s are l a r g e r f o r the s t a t o r c u r r e n t s , as shown i n F i g . 18 

f o r one of the u n f a u l t e d phases (phase a) . ' 

Using current values from the previous time step t-At can only be j u s t i ­

f i e d f o r a s m a l l s t e p s i z e At. With i n c r e a s i n g At, the e r r o r introduced 

by t h i s simple p r e d i c t i o n may become i n t o l e r a b l e , and p o s s i b l y l e a d to 

numerical i n s t a b i l i t y . 
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14.0 r 

0.0\ , , , , , 
0.02 0.04 0.06 

TIME fs) 

Fig. 17. Comparison of f i e l d current with various prediction techniques. 

The low sensitivity to the accuracy of prediction of the stator 

currents may serve as an indication of the behaviour of the solution for 

inaccurately predicted angular speed _ . It is possible to interpret the 

error in prediction of w as an additional error in the predicted stator 

currents. It i s , therefore, believed that no serious problems w i l l arise 

with the introduction of the mechanical part of the generator. 
red 

The elements of the matrix 1 c a n ^ e P r e c a l c u l a t e ( i before 

entering the time step loop. Simple matrix multiplication (transforma­

tion from one coordinate system to another) and basic algebra show that: 
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Fig. 18. Comparison of stator current in phase "a" with 
various prediction techniques. 

a + a + a 
a = - i i ? 2 33 ( 9 6 ) 

and 
2 a 3 3 " a i l " a22 

b M ^1 22 ( 9 ? ) 

const 
where a and b are elements of the matrix [R , ] defined in (93). These 

Ph 

elements remain constant as long as the stepsize At does not change 

and as long as nonlinear saturation effects are ignored. 

It i s worth mentioning that neither method I nor method II 

are tied to the trapezoidal rule of integration. The a b i l i t y to create 
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resistive companion network models, and to develop reduced three-phase 

equivalent circuits from them, i s a general property of any implicit 

integration scheme, as shown in Appendix 4. The trapezoidal rule of 

integration, however, makes the numerical procedure simple. This fact, 

and the s t a b i l i t y properties of this particular integration as discussed 

in section 3.1 f u l l y justify i t s use. 

4.6 Numerical Examples 

It i s very easy to set up hypothetical generator and network 

cases for testing the simulation methods of this thesis. While this is 

satisfactory for comparing various approaches, i t does not answer the 

question of how closely such simulations agree with f i e l d tests. Every 

effort was, therefore, made to duplicate published f i e l d test results, 

even though not too many such cases could be found. In this connection, 

i t should be remembered that the generator model alone does basically 

not need verification, since this was already done by others [ 4 ] , [11-14]. 

The test examples are, therefore, mainly used to verify the various 

numerical procedures and interfacing techniques. This was done in stages: 

(1) Preliminary Tests 

In the preliminary testing of the methods, the interface with 

the general-purpose Transients Program was replaced by a simple three-

phase Thevenin equivalent circuit (voltage source behind external resis­

tance and inductance). This simplification made i t easier to test the 

simulation techniques before interfacing the generator subroutine with 

the large Transients Program. The program performance was checked for 

a number of examples. A simulation program using a fourth-order Runge- , 

Kutta integration routine was also run in parallel as a check on the 



61. 

s o l u t i o n w i t h the t r a p e z o i d a l r u l e . Some of these r e s u l t s were already 

presented i n s e c t i o n 3.1 ( F i g . 7 and F i g . 8). 

(2) Example 1 f o r Test i n g Method I 

The r e s u l t s of the p r e l i m i n a r y t e s t s were compared w i t h the 

r e s u l t s obtained w i t h method I . This provided a check on both the c a l c u ­

l a t i o n of the three-phase Thevenin equivalent of the transmission network 

and on method I i t s e l f . Only one example w i l l be shown, s i n c e there were 

no v i s i b l e d i f f e r e n c e s . The generator described i n s e c t i o n 2.3 was used 

w i t h a line-to-ground f a u l t a p p l i e d to one of i t s t e r m i n a l s . The system 

was simulated as shown i n F i g . 19. The network parameters were R g = 1.0 p 

R + R = R , and R =0.01 p.u. The voltage of the i n f i n i t e busbar 
ei ez e el •> 

was 2.0/0° p.u., and the i n i t i a l c o n d i t i o n s of the generator were 

1.7341-5.2° p.u. s t a t o r current and 3.56 p.u. f i e l d c u rrent. Both the 

s t a t o r currents and the r o t o r currents were i d e n t i c a l f o r the two d i f ­

f e r e n t s o l u t i o n s (without and w i t h the c a l c u l a t i o n of the Thevenin equi­

v a l e n t c i r c u i t ) . The s t a t o r current i n the unfau l t e d phase "b" i s shown 

i n F i g . 20. 

INFINITE 
BUSBAR 

F i g . 19. Line-to-ground f a u l t at generator t e r m i n a l . 
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F i g . 20. Simulated current 1^ i n the unfa u l t e d phase "b". 

The simulated f i e l d current was already shown i n F i g . 2 and the f a u l t 

current I was already shown i n F i g . 3. 

(3) Example 2 f o r Method I 

This i s a t e s t case w i t h an e x t e r n a l network f o r which f i e l d 

t e s t r e s u l t s were a v a i l a b l e , and which could no longer be solved w i t h 

the program used f o r the p r e l i m i n a r y t e s t s . The generator had the f o l l o w ­

i n g data (based on 150 MVA and 13.8 kV, RMS, l i n e - t o - l i n e ) [53]: 

X. 

V 
V 
X., 

V 

1.85 p.u. 

0.2575 p.u. 

0.18 p.u. 

0.175 p.u. 

0.85 s 

0.385 s 

X 

X " 
q 

r n II 

q 
x 

1.76 p.u. 

0.29 p.u. (assumed according to [53]) 

0.04 s (assumed according to [53]) 

0.198 p.u. 

(no g-winding) 
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The data conversion to [R] and [L p] was done with the formulas published 

in [11]. The generator was connected to a transmission system, as shown 

in Fig. 21. 

13.8/130-8 k VA . SINGL E PHA SE 

a 

CLOSE AT t = o 

CLOSE AT -i LLl 

h = 10ms TTT 

Fig. 21. System diagram. 

The system was i n i t i a l l y unloaded and the voltage at i t s ter­

minals was 13.8 kV 7-10° kV (RMS, line-to-line). A three-phase fault 

on the high side of the delta/wye connected step-up transformer was 

studied, with the closing sequence as shown in Fig. 21. The simulated 

stator currents are compared with the f i e l d test results, as given in 

[54], in Fig. 22. The f i e l d current was unavailable for comparison. 

The differences in the i n i t i a l values of the currents result 

from uncertainty in the generator data, e.g., the values for X^" and T^" 

were assumed rather than measured and may be unrealistic, and lack of 

sufficient information about the i n i t i a l conditions, e.g., about the 

instant at which the fault was applied. Because of the latter reason, 

the i n i t i a l conditions had to be varied until the results came reasonably 
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(c) 

Fig. 22. Comparison of stator currents between simulation and f i e l d test 
for a three-phase fault, (a) = phase "a", (b) = phase "b", 
(c) = phase "c", — f i e l d test, — simulation. 
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c l o s e to those of the f i e l d t e s t s . I t should a l s o be remembered t h a t 

s a t u r a t i o n e f f e c t s were ignored. In view of a l l these l i m i t a t i o n s the 

agreement i s reasonably good. 

(4) Example 3 f o r Tes t i n g Method I 

I t was found by a number of researchers t h a t the c o r r e c t r e ­

production of s t a t o r currents i s not much of a problem [13], [14]. I t 

i s o f t e n d i f f i c u l t , however, to reproduce r o t o r q u a n t i t i e s c o r r e c t l y . 

To i l l u s t r a t e the accuracy of the s i m u l a t i o n of the f i e l d c u r r e n t , an 

attempt was made to d u p l i c a t e a f i e l d t e s t [54], In t h i s t e s t , the 

generator described i n example 2 was connected to a system as shown i n 

F i g . 23, and a three-phase f a u l t was a p p l i e d to the hig h s i d e of the 

step-up transformer. The network was simulated as coupled inductances 

w i t h the f o l l o w i n g parameters given i n [54]: 

zero sequence inductance L Q = 0.22 H, 

p o s i t i v e sequence inductance = 0.096 H. 

The i n i t i a l v o l t a g e at the generator terminals was 13.8/-30 0 kV (RMS, 

l i n e - t o - l i n e ) , and the i n i t i a l f i e l d c urrent was 620 A. The s w i t c h i n g 

sequence was as f o l l o w s [54]: 

Phase "b" at t = 0 s, phase "c" at t = 6 ms, and phase "a" at t = 20 ms. 

The simulated f i e l d current i s compared w i t h the measured f i e l d c urrent 

i n F i g . 24. (a - f i e l d t e s t , b — s i m u l a t i o n ) 

Examples 2 and 3 v e r i f y t h a t the generator model as w e l l as the 

numerical approach of method I give reasonably accurate r e s u l t s . I t i s , 

t h e r e f o r e , p o s s i b l e to proceed to a comparison of method I I w i t h method I . 
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3 SINGLE PHASE 
UNITS 

13.8/130.8 kV 

L =63.2mH 

INFINITE 
BUSBAR 

TRANSMISSION 
NETWORK 

L0 = 0.22H 

\ L1 = 0. 096 H 

FAULTED BUSBAR 

F i g . 23. System diagram. 

b- 10 
a 
b 

TIME fs) 

0 0.1 0.2 

F i g . 24. Comparison of the simulated and measured f i e l d c u rrent. 

(5) Example 4 f o r T e s t i n g Method I I 

In t h i s example, a s i n g l e l i n e - t o - g r o u n d f a u l t was s t u d i e d . 

The system was simulated as shown i n F i g . 23. However, some changes were 

introduced. The i n f i n i t e busbar v o l t a g e was increased to 137.23/-20 kV 

(RMS, l i n e - t o - l i n e ) and the parameter X^" was changed from 0.29 p.u. to 

0.18 p.u., which i s a more r e a l i s t i c value f o r a generator w i t h damper 

windings, than the previous one given i n [53]. The r e s u l t s were obtained 

i n three d i f f e r e n t ways: 

(a) S i m p l i f i e d generator model (voltage source E^^cos(tbt4p ) behind 



an impedance + J O J L ^ " ) ; 

(b) D e t a i l e d generator model i n t e r f a c e d w i t h method I (simultane­

ous s o l u t i o n ) ; 

(c) D e t a i l e d generator model i n t e r f a c e d w i t h method I I (new tech­

nique) . 

F i g . 25 compares the simulated current i n the f a u l t e d phase 

"a", and F i g . 26 compares the simulated f i e l d c u r r e n t . 

25.0r 

-25.0\ 1 . 1 i i i 
0.0 0.04 0-08 0.12 

TIME (s) 

F i g . 25. Comparison of the simulated current i n the f a u l t e d phase "a". 

Figures 25 and 26 imply t h a t the s i m p l i f i e d g e n e r a t o r model i s r e a s o n a b l y 

a c c u r a t e f o r s h o r t time s t u d i e s , but no I n f o r m a t i o n can be o b t a i n e d on 



6 8 . 

f l • • 1 , , , 

0 0-04 0-08 0.12 

TIME (s) 

F i g . 26. I d e n t i c a l r e s u l t s f o r f i e l d c u rrent. 

r o t o r c i r c u i t q u a n t i t i e s . The r e s u l t s obtained w i t h method I I are 

i n d i s t i n g u i s h a b l e from the r e s u l t s obtained w i t h model I . 

(6) Example 5 f o r Testing Method I I 

This example should provide a more severe t e s t f o r method I I , 

because i t a l s o includes t r a v e l l i n g wave e f f e c t s . The generator from 

example 4 was connected to a system, as shown i n F i g . 27. 

The transmission l i n e had the f o l l o w i n g parameters ("0" = zero 

sequence, "1" = p o s i t i v e sequence): 
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R = 0.2026 n/km , L =2.749 mH/km , C = 6.326 uF/km 

R = 0.0886 fi/km , L = 1.005 mH/km., C l = 11.408 yF/km 

and a length of 96.72 km. The length of the l i n e was chosen i n such a 

way as to match the p o s i t i v e sequence inductance of the transmission 

network from example 4. 

, 13.8/130.8 kV 
(3 single phase units ^-faulted busbar 

A<t . /TRANSMISSION 
LINE 

1=4.83 JL-1 3.6° k A 

L=63.2mH infinite busbar-^ 
/seen from 
I side 

high) V=137.231^20° kV 
' (line to line) 

F i g . 27. System diagram. 

Once more a single line-to-ground fault on the high side of 

the step-up transformer was studied. Fig. 28 compares the generator 

current in the faulted phase "a", calculated in three different ways: 

(a) Simplified generator model; 

(b) Detailed generator model interfaced with method I (simultane­

ous solution); 

(c) Detailed generator model interfaced with method II (new 

technique). 

Again, the results from methods I and II are practically indistinguish­

able . 

Fig. 28 may lead to the conclusion that the simple generator 

model i s as good as the detailed model. This i s only true, however, for 
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SIMPLIFIED MODEL 

25.0, 

12.5 

•ic 

Uj 
Q: 

- 72.5 U 

-25.0 

SIMULTANEOUS SOLUTION 
NEW TECHNIQUE 

8.0 12.0 16.0 20.0 240 

TIME (ms) 

Fig. 28. Comparison of the simulated current for faulted phase "a". 

some studies conducted over a very short time span where the flux decay 

does not play an important role. Fig. 29 compares the three-phase i n ­

stantaneous power at the generator terminals for the same case and shows 

that the simple model is much less adequate when power is measured. 

Finally, Fig. 30 shows the f i e l d current calculated with the 

two different interface techniques. As for the stator current, methods 

I and II give again results which are practically identical. 

The last two examples prove that the results obtained with 

method II agree to a high degree with results obtained with method I. 

This in turn proves the adequacy of method II. 
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SIMPLIFIED MODEL 
SIMULTANEOUS SOLUTION 
NEW TECHNIQUE 

TIME (ms) 

Fig. 29. Comparison of the simulated three-phase instantaneous power. 
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600r 

u } - — 1 1 1 1 1 i i i 
0 0.009 0.018 0-027 0.036 

TIME (s) 

Fig. 30. Identical results for f i e l d current. 

The set of numerical examples would not be complete without a 

presentation of a case with a multi-mass mechanical system. A benchmark 

test case for such a system became available after completion of the thesis. 

It i s , therefore, not included in the main body of the text, but is added 

as Appendix 8. 
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5. INITIAL CONDITIONS, DATA SCALING AND SATURATION 

5.1 Calculation of the I n i t i a l Conditions for a Synchronous Generator 

The state of a synchronous generator is f u l l y described by the 

following variables: 

(1) a l l currents and voltages; 

(2) a l l angular displacements and speeds of the shaft system. 

The stator currents and voltages are normally obtained from a phasor 

solution of the entire system in which the generator i s represented as 

sinusoidal voltage or current sources. This solution usually considers 

the fundamental frequency only. The rotor circuit variables have to be 

found from the generator equations, which is straightforward for the case 

of balanced steady-state operation, but more complicated for the un­

balanced case. In the latter case, harmonics exist not only in the 

rotor circuits but also in the stator circuits [8], [9], which leads to 

contradictions i f the total system was solved at fundamental frequency 

only. It is common practice, therefore, to assume a balanced steady-

state operation for the generator. In this case, the damper currents 

are zero and the f i e l d current is constant. The currents and voltages 

w i l l vary sinusoidally in phase coordinates, but are constant in d,q,0-

coordinates. It i s , therefore, easier to use d,q,0-coordinates for the 

calculation of the i n i t i a l conditions. 

The general voltage equations of the generator were defined in 

section 2.1 (eq. 21). They are shown again to aid understanding: 

v = -[L ]4— i - [R]i - [L']i (96) p dt —p —p p —p 

For the special case of balanced, steady-state conditions, where 1 = 0 , 



74. 

they can be r e w r i t t e n as f o l l o w s : 

v = - [ R ] i - [ L * ] i ~p -p p -p (96a) 

With damper currents and zero sequence voltage and current being zero, 

(96a) can be reduced to the f o l l o w i n g s e t of three voltage equations: 

v, = -R i , - coL i d a d q q (97) 

and 

v = -R i + toL.i, + u)/-£ M i q a q d d v / 2 f f 

Vf. = "Vf 

(98) 

(99) 

The c o e f f i c i e n t i n f r o n t of M^ i n (98) r e s u l t s from the normalized 

form of Park's transformation m a t r i x [P] as shown i n (19). To f i n d the 

current i ^ and the r o t o r angular p o s i t i o n 3(0) or 6 ( 0 ) , i t i s necessary 

to r e l a t e (97-99) i n d,q,0-coordinates to the phasor diagram of the 

machine shown i n F i g . 31. 

DIRECT AXIS 

QUADRATURE AXIS 

R E F E R E N C E 

AXIS FOR 

NETWORK 

PHASOR 

SOLUTION 

F i g . 31. Phasor diagram of a synchronous generator f o r balanced, 
steady-state o peration (R and X X not to s c a l e ) . 

ct Q. CJ 
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From (97) and (98) i t follows that: 

V q + ^ d " - R a ( ± q + ^ " J X q ( ± q + ^ + ( X d " V *d + 6 q a ° 0 ) 

where 
\ - 5/l M f h 

For a balanced steady-state operation, d,q,0-coordinates are related to 

phasor values by: 

and 

i + j i d = v/J'I e j < S (102a) 

v q + j v d = /3 V e~3S (102b) 

where I and V are RMS positive sequence phasors. 

From (102a) and (102b) i t follows that (100) can be transformed to the re­

ference frame for the network phasor solution, 

e e j 6 + (X , - X. ) i , e j 6 = V + R l + j X l (103) q d q d a J q 

where the phasors e e ^ and (X, - X )i, , e ^ l i e on the quadrature axis. 
q d q d 

Equation (103) allows, therefore, the determination of the angle 6(0), i f 

the phasors V and I are known. The l e f t hand side of (103) is not impor­

tant in i t s value, but i t s position is that of the quadrature axis. 

The rest of the ele c t r i c a l variables can then easily be calcu­

lated from the following relationships: 

i d = /3 |7|'sin(Y* - 6) (104a) 

i = /3 |I| . C O S ( Y ' - 6) (104b) 

and 

v d = /3 |v| sin(a' - 6) (104c) 

v q - /3 |v| cos(a' - 6) (104d) 
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F i n a l l y , the f i e l d current i ^ can be found from (98): 

v + R i - X,i, 
± = _3 aq d d (105) 

l3 7 2 M f 

The i n i t i a l conditions of the e l e c t r i c part of the generator are then 

f u l l y defined. I t remains, therefore, to determine the i n i t i a l conditions 

for the mechanical variables of the generator. 

The mechanical equations of the generator were defined i n 

section 2.5 ((35)-(39)). However, the equation f o r mass i i s shown 

again to aid understanding: 

d2e. de , , 
J . - — \ + D . . — — + D . , .—(e. - e. .) + D. (e. - e.,.) + 

1 dt 1 1 d t * l d t 1 1 _ ^ " " d t 1 1 + 1 

K i - i > i < e i - 8 ± + i > + K i , i + i ( 9 i " e i + i > " T i ( 1 0 6 ) 

For steady-state conditions (106) can be s i m p l i f i e d as follows: 

de. 
D. . — - + K. .(6. - 6. ) + K. (6. - 9 ) = T. (106a) n d t I i - l ' i , i + l I i + l y I V ' 

dek 

The angular speed i s equal f o r a l l r o t a t i n g masses and can be found 

from the following r e l a t i o n s h i p : 
d 6 k 2 — — = u = u . £. for k = 1, ... N (107) dt m n ' 

where "subscript "m" denotes mechanical v a r i a b l e s , where n i s the number 

of poles i n the generator, and where CJ i s the angular frequency of the 

network. 

The i n i t i a l angular p o s i t i o n of the generator rotor can be 

cal c u l a t e d from the angle 5(0) as follows: 

6 r = (6(0) + f)« f (108) 



where subscript " r " denotes generator rotor variables. 

Finally, the angle 6̂  can be found from the angle 0̂ : 

i-1 i-1 
I T m3 " I D co 

m 

K i " l , i 

In a similar way, the angle can be found from: 

(109) 

N N 
I Tmj - I D a , 

K i , i + 1 

(110) 

The sum of the applied mechanical torques Tmj must, of course, equal the 

sum of el e c t r i c a l and speed self-damping torques, so that there is zero 

accelerating torque i n i t i a l l y : 

N N N 
y T . = y Tej + y D..U> mi) 
,L-. mi >, J . L , i i m J=l J j-1 J=l J J 

where subscript "e" denotes electromechanical torque. 

Calculation of the i n i t i a l angular displacement of the masses in the 

shaft system ends the process of i n i t i a l i z a t i o n of the generator variables, 

5.2 Consistent Per Unit (p.u.) System and Conversion to Physical Units 

The choice of a consistent and simple p.u. system i s , in 

general, relatively easy. For rotating machinery, however, the situa­

tion gets complicated i f more than one reference frame is used. A 

transformation from one reference frame to another may limit the freedom 

in the choice of base variables, i f symmetry of matrices is to be pre­

served. This is precisely the case for a synchronous generator when 

unnormalized transformation matrices are used. 
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It i s common practice in the power industry to describe the 

generator in Park's d,q,0-coordinates, as explained in section 2.2. The 

conventional unnormalized transformation does not preserve the symmetry 

of the inductance matrix [L] of the generator [17]. The resulting 

asymmetrical matrix [L ] can be forced back to symmetry with a specific 
3 

p.u. system in which base power for rotor quantities is ̂ - times base 

power for stator quantities [17], [55], A simpler approach, which does 

not require complicated scaling procedures to restore the symmetry, is 

presented in this chapter. As mentioned in section 2.2, the normalized 

transformation defined in (18) and (19) preserves the symmetry of the 

inductance matrix [L], i.e., the resulting matrix [L p] is symmetrical no 

matter which base values are chosen for stator and rotor circuits [17]. 

Then the conversion to p.u. values is a simple scaling problem with com­

plete freedom in the choice of base values for yeach cir c u i t . 

Any linear electric network in steady-state operation can be 

described by one of the following nodal equations: 

or 
[Z . M . = V , (113) phys -̂ phys -̂ -phys 

where the subscript "phys" denotes physical values, and 
\ 

t Zphys ] = ^Phys 3" 1 ( 1 1 4 ) 

and where V , and I , are vectors of nodal voltages and currents —phys -phys 
injected into the nodes, in V and A respectively. The nodal impedance 

matrix [Z ^ ] is given in i t s own physical units, fi. 

In general, a system has more than one voltage level, with coupling 

through transformers. Therefore, different base voltages are normally 
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chosen for the node voltages, while base power i s normally the same f o r 

a l l nodes. I t can e a s i l y be shown that the following r e l a t i o n s h i p 

holds between the p h y s i c a l and the p.u. values [56]: 

[ Z P . U . ] "
 [ v b r l r W [ V " X ] <115> 

or 

where: 

[Z . ] = [V. ][Z ][V. ]• [S, ] 1 (116) phys b p.u. b b v 7 

[V^] = diagonal matrix of base voltages, 

[S^] = diagonal matrix of base powers. 

Equations (115) and (116) are v a l i d f o r any set of base voltages and 

powers. However, symmetry of the matrix [Zp^yg] w i l l he preserved only 

i f there i s only one base power, which i s the normal p r a c t i c e i n power 

system analysis anyhow. 

I t i s customary to define the data of a synchronous generator 

i n a p.u. system based on i t s nameplate ratings. For general network 

studies, where each element has i t s own nameplate r a t i n g , a l l values 

must e i t h e r be converted to the same bases, or to p h y s i c a l q u a n t i t i e s . 

Per unit values o f f e r advantages i f a problem i s studied on a network 

analyzer, or on a d i g i t a l computer with fixed-point arithmetic, because 

i n both cases a l l values must be of a c e r t a i n order of magnitude.• This 

problem does not e x i s t i n computers with f l o a t i n g - p o i n t arithmetic, 

which i s the r u l e nowadays. Scaling (conversion from p.u. to p h y s i c a l 

values or v i c e versa) has no influence on the s o l u t i o n process, except 

f o r possible differences i n the accumulation of round-off e r r o r s . As 

a consequence, p r a c t i c a l l y i d e n t i c a l solutions (except f o r s l i g h t . d i f ­

ferences i n round-off errors) w i l l be obtained with p h y s i c a l quantities 



80. 

and with p.u. quantities. The influence of scaling on round-off errors 

i s not easy to assess [57]. For a system of linear equations, however, 

the following statement can be proved [58]: "If scaling is done in such 

a way that only the exponent changes in floating-point numbers and i f 

the order of elimination is not changed, then the scaled (p.u.) equa­

tions w i l l produce precisely the same significants in a l l answers and 

in a l l intermediate numbers". After careful examination of a l l advan­

tages and disadvantages i t was decided to convert the machine data to 

physical units. Physical quantities are least confusing and assure con­

sistency with the Transients Program. Conversion to physical units is 

done as follows: 

(a) Calculate a l l the required generator parameters in p.u. from 

the p.u. data based on nameplate ratings as provided by the 

manufacturer; 

(b) Multiply a l l elements of the matrices [L ] and [R] by 
p p.u. p.u. J 

the base impedance of the stator windings, which can be found 

from the following relationship: 
V 2 

zsb = s?r <117> 
bb 

where: 
= base impedance of the stator; 

^three-phase rated power of the stator in MVA, 

SSb "< 
i f the stator is onnected in wye. 

single-phase rated power of the stator in 

MVA, i f the stator is connected in delta. 

= line-to-line rated voltage of the stator in KV 

(RMS) for both wye and delta connections. 



81. 

This operation transforms a l l the stator data to their o r i ­

ginal physical values. Rotor parameters, as found in step b 

w i l l be in physical values referred to the stator side of the 

generator. 

(c) Multiply a l l the parameters related to the rotor circuits 
2 

which l i e on the diagonal of the matrices [ Lpl a n d [R] by n » 

and those on the off-diagonal of [L^] by n, where: 
n = transformer ratio between the stator and the f i e l d . This 

number can be calculated in one of two ways: 

(1) from the physical value of the f i e l d resistance R̂ , i f 

such i s known from measurements [22]: 

or: 

(2) from the open-circuit characteristic, as schematically 

shown in Fig. 32. 

P 

(118) 

A I R - G A P L I N E 

1.0 

Fig. 32. Typical open-circuit characteristic. 



From the generator equations derived in chapter 2.2, i t follows that the 

physical value of the field-to-stator mutual coupling is given by: 

n f J/f-Hj (119); 

where V = RMS value of line-to-line voltage found on the open-circuit 
Lib 

characteristic. 

From (119), the transformer ratio n can be defined as follows: 
M 

n = - (120) 
fp.u. Sb 

The procedure outlined above assumes that the original p.u. 

data was a l l based on the same base power, which is normally true for 

manufacturer's data. Then, the matrix [S^] is simply a unit matrix 

premultiplied by a scalar Sg^ defined in (117) . This procedure also 

assumes that there are only two base voltages, one for the stator, and 

the other for the f i e l d and damper windings. The latter assumption can 

be j u s t i f i e d as follows: 

Since the damper windings are hypothetical windings, for an inter­

connected arrangement of many damper bars, any transformer ratio 

to them can be assumed. It i s , therefore, possible to use the 

same ratio as that from the stator to the f i e l d without loss of 

generality. 

This specific conversion procedure is very simple to use and requires 

only the available standard data. A similar approach based upon d i f ­

ferent reasoning has been suggested in [59]. 



83. 

5.3N S a t u r a t i o n i n the Steady-State Operation of a Synchronous Generator 

S a t u r a t i o n may have an impact (sometimes a s i g n i f i c a n t one) 

on power system t r a n s i e n t s t a b i l i t y and steady-state s t a b i l i t y c a l c u l a ­

t i o n s , as w e l l as on r e a l and r e a c t i v e power flow c a l c u l a t i o n s [29], 

[60]. As i s w e l l known i n p r a c t i c e , i t also i n f l u e n c e s the c a l c u l a t i o n s 

of electromagnetic t r a n s i e n t s i n power systems [61]. On the other hand, 

a n o n l i n e a r r e l a t i o n between f l u x and current w i l l , i f t r e a t e d r i g o r ­

o u s l y , complicate the s o l u t i o n process s i g n i f i c a n t l y . The s o l u t i o n of 

l a r g e n o n l i n e a r systems becomes then very expensive and time consuming. 

An approximate treatment of s a t u r a t i o n e f f e c t s i s , t h e r e f o r e , commonly 

accepted. The treatment of s a t u r a t i o n e f f e c t s i n steady-state operation 

d i f f e r s from the approach needed f o r t r a n s i e n t s i m u l a t i o n s . Before 

t r e a t i n g the l a t t e r case i n s e c t i o n 5.4, i t seems appropriate to present 

a short review of the e x i s t i n g approaches used i n s t a b i l i t y s t u d i e s , 

which f a l l i n t o the category of steady-state phasor s o l u t i o n s . 

One of the e a r l i e s t approaches towards s a t u r a t i o n i s t o be 

found i n [18], [62], where on an e m p i r i c a l b a s i s , i t was suggested to 

c a l c u l a t e the values of the s a t u r a t e d reactances by m u l t i p l y i n g the 

unsaturated values by a constant F = 0.88. This simple approach i s 

c l e a r l y not accurate enough, s i n c e the s a t u r a t i o n e f f e c t s vary w i t h the 

type of generator and i t s l o a d i n g c o n d i t i o n s [63]. More recent' approaches 

can be d i v i d e d i n t o the f o l l o w i n g b a s i c groups: 

(1) The degree of s a t u r a t i o n i s a f u n c t i o n of the t o t a l f l u x 
f~2 2 

ty = / ij;^ + ij; . There i s , t h e r e f o r e , only one s a t u r a t i o n 

c o e f f i c i e n t f o r the t o t a l f l u x [64-66]; 

(2) The degree of s a t u r a t i o n i n each a x i s i s p r o p o r t i o n a l to the 

components of the v o l t a g e source behind P o t i e r (or leakage) 
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reactance. There are, t h e r e f o r e , two separate s a t u r a t i o n 

c o e f f i c i e n t s , one f o r each a x i s [24], [67], 

A number of authors use f l u x p l o t s to determine the s a t u r a ­

t i o n e f f e c t s [60], [68], The r e s u l t s published i n [68] seem to favour 

approach 1. I t i s also worth mentioning that s a t u r a t i o n data f o r a 

medium-sized generator published i n [69] are clos e to the value of the 

e m p i r i c a l c o e f f i c i e n t F suggested i n [18]. Other authors, however, 

suggest d i f f e r e n t s a t u r a t i o n c h a r a c t e r i s t i c s f o r the d- and q-axes. To 

sum i t up, i t i s not yet known which procedure i s more accurate. The 

main problem l i e s i n the u n a v a i l a b i l i t y of accurate data [29]. A p o s s i ­

b l e s o l u t i o n of t h i s problem could come from measuring the s a t u r a t i o n 

e f f e c t s d i r e c t l y i n phase coordinates [12], [22], but more research i s 

needed [60]. 

The n o n l i n e a r f l u x - c u r r e n t c h a r a c t e r i s t i c caused by s a t u r a ­

t i o n i m p l i e s t h a t i t i s no longer p o s s i b l e to use, i n a s t r a i g h t f o r w a r d 

way, phasor s o l u t i o n s i n the c a l c u l a t i o n of the steady-state c o n d i t i o n s . 

To get around t h i s problem, an "eq u i v a l e n t l i n e a r machine", which i s 

e x a c t l y v a l i d i n one p a r t i c u l a r operating p o i n t and approximately v a l i d 

i n the neighbourhood of that p o i n t , i s introduced [70]. The o b j e c t i v e 

i s to l i n e a r i z e the problem by parameter m o d i f i c a t i o n . This i s achieved 

by r e p l a c i n g the n o n l i n e a r c h a r a c t e r i s t i c by a l i n e a r curve through the 

ope r a t i n g p o i n t and the o r i g i n , as shown i n F i g . 33. This approxima­

t i o n i s , of course, v a l i d only i n the immediate v i c i n i t y of the opera­

t i n g p o i n t . 

The f o l l o w i n g procedure was developed f o r the i n c l u s i o n of 

s a t u r a t i o n e f f e c t s i n t o the c a l c u l a t i o n of the i n i t i a l c o n d i t i o n s of a 

generator: 
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F i g . 33. L i n e a r i z a t i o n through the o r i g i n . 

(1) C a l c u l a t e the i n i t i a l c o n d i t i o n s assuming that the generator 

i s unsaturated, as e x p l a i n e d i n s e c t i o n 5.1. 

(2) I f the generator operates i n the s a t u r a t e d r e g i o n , the c a l c u ­

l a t i o n s are repeated w i t h the unsaturated parameters replaced 

by t h e i r s a t u r a t e d equivalent values. These values can be 

found from the slope of the approximate s t r a i g h t l i n e shown 

i n F i g . 33. The process i s repeated u n t i l i t converges. 

The steady-state conditions of the network found w i t h phasor s o l u t i o n 

techniques do not contain harmonics. By s i m u l a t i n g the problem i n 

steady-state (no f a u l t applied) as a t r a n s i e n t case f o r a p e r i o d of a 

few c y c l e s , s t a r t i n g from the i n i t i a l c o n d i t i o n s w i t h the l i n e a r i z e d 

generator, a new steady-state w i t h harmonics should be reached i f 

s a t u r a t i o n i n generators and transformers i s modelled i n the Transients 

Program [45]. This approach worked q u i t e w e l l i n a case where the 

transformer s a t u r a t i o n generated harmonics [71], but i t has not yet been 

t e s t e d f o r generator s a t u r a t i o n . A s i m i l a r approach could be used f o r 
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unbalanced cases, s i n c e the i n i t i a l conditions are c a l c u l a t e d f o r p o s i ­

t i v e sequence currents o n l y , as explained i n s e c t i o n 5.1. 

5.4 D e f i n i t i o n s of S a t u r a t i o n i n the Simulation of Electromagnetic  

Transients 

The a n a l y s i s of t r a n s i e n t performance of synchronous generators 

w i t h constant inductances may l e a d to s e r i o u s e r r o r s both i n form and 

magnitude of currents and voltages [61], Even the use of the term 

"inductance" may be m i s l e a d i n g , s i n c e i t i s based upon the assumption of 

l i n e a r i t y , i . e . , i t i s no longer true that ty = L*MMF. I t should, r a t h e r , 

be s a i d that ty i s a n o n l i n e a r f u n c t i o n of MMF. For example, [22] i n t r o ­

duces two types of inductances: 

(a) secant inductance, defined by t o t a l f l u x per u n i t c u r r e n t . 

(b) incremental inductance, defined by the r a t e of the change of 

f l u x l i n k a g e w i t h respect to current. 

I t i s proposed to base the a n a l y s i s of s a t u r a t i o n e f f e c t s 

upon the f o l l o w i n g assumptions: 

(1) In any reference frame, the generator f l u x e s can be represented 

as f o l l o w s : 
1 = i L + (121) 

where: 

3^= v e c t o r of f l u x e s r e l a t e d to leakage inductances, 

uneffected by s a t u r a t i o n ; 

v e c t o r of f l u x e s r e l a t e d to mutual inductances, 

subjects to s a t u r a t i o n e f f e c t s . 

Only the l a t t e r f l u x e s w i l l be considered i n the f o l l o w i n g 

a n a l y s i s . 

(2) The degree of s a t u r a t i o n i s a f u n c t i o n of the MMF, which i n 



turn is a function of the total unsaturated flux ty calculated 
u 

along the airgap line. 

(3) The saturation effects are equal on both.axes, i.e., there is 

only one saturation coefficient. 

(4) The distortion of any airgap flux waves does not effect the 

unsaturated inductance values or destroy the sinusoidal varia­

tions assumed for rotor and stator inductances. 

(5) Hysteresis and eddy current losses are neglected, as is usual 

in power transformer modelling where i t has normally l i t t l e 

influence on the results [72], 

Assumption 2 implies the knowledge of the dependence between the instan­

taneous flux and the excitation current. The only available data, how­

ever, consists of the open circuit characteristic (terminal voltage as 

a function of the excitation current) shown schematically in Fig. 32. 

The converted curve (flux versus current) has the same form as the o r i ­

ginal curve. A short proof is given in Appendix [7], 

e.g., straight-line segments, exponential or quadratic curves. It was 

decided to adopt a two straight-lines approximation, due to i t s simpli­

city, but the actual number of segments does not change the method of 

analysis. It can be increased, i f so required by the shape of the 

flux-current curve. The total (mutual) flux of the machine may, there­

fore, be described as follows (subscript "u" denotes an unsaturated 

value, subscript "m" dropped to simplify notation): 

The resulting curve can be approximated in a number of ways, 

unsaturated region 
(122) 

m ty + a 
T i t 

saturated region 
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where: 

a and m = constants resulting from the two straight-lines 

approximation of the saturation curve, or from an 

approximation with more than two linear segments. 

The total unsaturated airgap flux, on the other hand, may be described 

by the following equation: 
' ty - /ty] + ty2 (123) 

u du qu 

where subscripts "d" and "q" denote the direct and quadrature axis 

values, respectively. 

Equations (122) and (123) imply that there is one saturation effect for 

the total flux, rather than two separate effects, one for each axis. 

This situation is show schematically in Fig. 34. 

du 
UJ Uj 
rds rdu 

Fig. 34. Schematic representation of saturation effects. 

From Fig. 34 and equations (122) and (123) follows that the fluxes in 

the saturated region can be described as follows (subscript "s" denotes 

saturated values): 

i i , = n i ' i l i , + a cos 3 (124) rds du 



ij; = m«ij; + a sin qs qu 
where: 

and 
cos 3 = 

Kdu 

sin 
ty 

= -3S. 

(125) 

(126) 

(127) 

As already mentioned, the constants m and a result from the 

straight-line approximation of the flux-current characteristic. This 

situation is illustrated schematically in Fig. 35. 

Fig. 35. Straight-line approximation of the 
flux-current characteristic. 

From basic analytic geometry follows that 

m = m, (128) 

The constant a can be found from the conditions in the "knee-point" 

( i j ; , i £ ) . In this point both fluxes (saturated and unsaturated) must be 

equal, i.e., 
m i = m i + a 
1 c 2 c (129) 
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From ( 1 2 9 ) follows that: 

a = (m: - m 2 ) i c ( 1 3 0 ) 

Equations ( 1 2 4 ) - ( 1 3 0 ) describe f u l l y the saturated fluxes in a synchron­

ous generator. They can be easily modified to accommodate additional 

data, i f such i s available. It i s , for example, possible to create two 

sets of constants m and a, one for each axis. This would allow each 

axis to have i t s own saturation coefficient. 

5.5 Implementation in the Transients Program 

The generator equations in d,q,0-coordinates can be rewritten 

into the following form (details were given in section 2 . 2 ) : 

( 1 3 1 ) 

where the matrix [A] is defined as follows: 

0 CO 0 1 

-CO 0 o 1 
1 

0 ( 1 3 2 ) 

0 0 
1 

0 
_ _|_ 

_ 0 1 0 

[A] = [P]~[P] 1 

Only the two last terms of ( 1 3 1 ) are subject to saturation influence. 

Their different physical nature results in two different implementation 

procedures, one for each of them. Both procedures, however, are based 

upon the following common assumption: 

The generator does not change i t s saturation status during one 

time-step, i.e., i f the generator was saturated at the beginning 

of a time-step, i t remains saturated at i t s end. 

The saturable transformer voltages are described by the 

following equation: 
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v = " 4r JL (133) —pm dt -̂-pm 

Equation (133) i m p l i e s that p h y s i c a l l y only the incremental f l u x e s are 

of importance. Since the generators equations are solved w i t h the 

t r a p e z o i d a l r u l e of i n t e g r a t i o n , (133) i s then transformed to the 

f o l l o w i n g form ( s u b s c r i p t "p" dropped to s i m p l i f y n o t a t i o n ) : 

i L ( t ) = j ; ( t - A t ) - ~ ( v ( t ) + v ( t - A t ) ) (134) 
" T i l 2. m m 

S u b s t i t u t i o n of (122) i n t o (134) y i e l d s the f o l l o w i n g expression f o r 

the i t h component of the v e c t o r ^ ( t ) ( s u b s c r i p t "m" dropped to s i m p l i f y 

n o t a t i o n ) : 

m ty. (t) + a = m ty. ( t - A t ) + a - - ^ ( v . ( t ) + v. ( t - A t ) ) (135) 
I U i u 2 l l 

Simple rearrangements y i e l d the f o l l o w i n g r e s u l t : 

v i ( t ) = ^ i r ^ i u ^ _ * i u
( t - A t ) ) - v i ( t _ A t ) < 1 3 6> 

Equation (136) provides the means f o r i n c l u d i n g the s a t u r a t i o n e f f e c t s 

i n the transformer voltages of a generator. I t i s simply enough to 

m u l t i p l y a l l the mutual inductances by the constant m. I f the parameters 

of r o t o r c i r c u i t s of the generator are not r e f e r r e d to the s t a t o r s i d e , 

i t i s necessary to introduce the transformer r a t i o i n t o the constant m. 

The sa t u r a b l e terms r e l a t e d to the speed voltages appear 

only i n the f o l l o w i n g two equations: 

and 

v, = -co ty (137) dm rqm v ' 

v = +co ty. (138) qm Tdm v ' 

where s u b s c r i p t s "d" and "q" denote the d i r e c t and quadrature a x i s , 

r e s p e c t i v e l y , and s u b s c r i p t "m" denotes terms r e l a t e d to mutual induc­

tances. Equations (137) and (138) imply that i t i s necessary to con­

s i d e r the e n t i r e f l u x e s ty, and ty , since (137) and (138) represent 
dm qm 



a l g e b r a i c r e l a t i o n s h i p s , r a t h e r than d i f f e r e n t i a l r e l a t i o n s h i p s . I f 

a l l r o t o r c i r c u i t s are converted to the s t a t o r s i d e , the f o l l o w i n g 

r e l a t i o n s h i p s can be obtained f o r the saturate d f l u x e s ( s u b s c r i p t "m" 

dropped to s i m p l i f y n o t a t i o n ) : 

ty, = m M , ( i , + i £ + i ) + a cos 6 (139) ds r d r D 
and 

ty = m M ( i + i + i . ) + a s i n 0 (140) qs q q g Q 

I t i s , t h e r e f o r e , enough to s u b s t i t u t e (139) and (140) f o r the f l u x e s 

r e l a t e d to the sa t u r a b l e inductances. 

The procedure o u t l i n e d above i s very f l e x i b l e and can e a s i l y accommodate 

a d d i t i o n a l data, as i t becomes a v a i l a b l e . I t i s not t i e d e n t i r e l y t o 

the theory o u t l i n e d i n the previous chapter, and i t can be adapted to 

accept any a v a i l a b l e r e p r e s e n t a t i o n of s a t u r a t i o n e f f e c t s . 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

A range of problems related to interfacing generator models 

with an Electromagnetic Transients Program has been described. The main 

topics covered in this thesis were: 

(a) creation of an adequate generator model 

(b) development of two alternative interfacing techniques 

(c) modelling of saturation effects in the generator. 

The validity of the generator model has been verified in a number of 

test studies, which also included comparisons with f i e l d test results. 

Good agreement was achieved, and the results obtained with the two 

interfacing methods gave practically identical answers which proves 

their v a l i d i t y . 

The discussion of saturation effects presents only a f i r s t 

attempt i n this area. The suggested solution methods should be tested 

in practice to establish their validity. Similarly, the proposed 

method II of interfacing generator models with the Transients Program 

should undergo further tests before completely replacing method I with 

i t . Further possible areas of additional investigations could include 

such topics as: 

(a) inclusion of space harmonics in the f i e l d distribution 

(b) improvements in the calculation of i n i t i a l conditions to allow 

the i n i t i a l i z a t i o n from unbalanced conditions. 

This work should, therefore, be understood as a f i r s t step, only, in the 

modelling of synchronous generators for electromagnetic transient 

phenomena. 
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APPENDIX 1 

DEFINITIONS OF L' L" T' , T" AND L', L", T» , AND T" d' d' do' do q' q' qo' go 

Only the definitions of direct axis quantities w i l l be derived. 

The quadrature axis quantities can be obtained from the definitions of 

the direct axis by replacing the subscripts "d", " f " , and "D" with "q", 

"g", and "Q", and by replacing the voltage v^ with 0, i.e., v^ = 0, 

since the g-winding is permanently short-circuited. 

The quantities L^, 1/j, T ^ q and are equivalent parameters 

which are only defined for transient conditions following a disturbance. 

According to the IEEE (ANSI) standards [73] in the U.S.A. and similar 

standards elsewhere, a simultaneous three-phase short-circuit i s used to 

measure these quantities. It can be simulated with (21)-(23) by apply­

ing voltages to the generator terminals which are equal in magnitude and 

of opposite sign to those existing in the balanced steady-state atrrated 

speed prior to the fault. 

1. Subtransient Inductance and Open-Circuit Time Constants 

Immediately after the disturbance ( f i r s t few cycles), there 

w i l l be currents flowing i n the damper windings. The following assump­

tions can be made during that short period: 

(a) no voltage regulator action yet, i.e., 

v^ = const (1-1) 

(b) constant flux linkages in the rotor circuits, i.e., 

\pf = const (1-2) 

ijjjj = const (1-3) 

The last assumption i s equivalent to neglecting the resistances 

in the f i e l d and damper windings, which cause a slow decay in 
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the fluxes. Immediately after the disturbance, this decay is 

negligible. 

Equations(22) can be used to express the currents i ^ and i ^ 

as functions of these constant flux linkages: 

-M, 

D 
L f L D " M f 

* f - f ¥ d 

*D-2Vd 
(1-4) 

Substitution of the above expressions into the equation for the flux in 

the d-axis yields: 

(1-5) 3 2 L f + LD " 2 M f ^ = (I, " 4 - i 2 T ± ) i d + K ^ f + K ^ D "d ^"d 2 " f M2 
f D - M f 

where 

K l = 
/ f M f ( L D - Mf) 

L f V 4 

(1-6) 

and 

K =' 
2 

2 Mf(Lf - V 
L fV 4 

(1-7) 

The sub transient inductance L" relates stator flux \b, to stator currents 
d d 

i ^ . It i s , therefore, defined as follows: 

T II L 3 „2 f D 2 M f 
L d " L d - 2 M f — -T 

f D " " f 
d-8) 

The open-circuit time constants define the decay of the rotor 

fluxes after the disturbance. They can be found from the two differential 

equations for rotor fluxes. From (21) follows that 

dt 

% 
_dt J 

R, 0 
• + 

" V f 

i 0 D 

(1-9) 
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Substitution of (1-4) into (1̂ -9) with i d = 0 (open-circuit) yields: 

di|>f 

d t -

dt 
L f L D - 4 

R f L D " R f M f *f - v f 
• + 

0 

(1-10) 

The open-circuit time constants are the reciprocals of the eigenvalues 

of the matrix in (1-10) and they can be found from the following 

equation: 

where 

a T M a T J a 

a = L f L D - Mf 

Solving (1-11) for T yields the following result: 

Tdo 

rptt 

do 

1 , L f . \ , 1 I S V 2 . , « J 

2 / VR, 

(1-11) 

(1-12) 

(1-13) 

with the positive sign of the root for T
d o » and the negative sign for 

r p l l 

do' 

2. Transient Inductance L' d 

After elapse of a few cycles, i t can be assumed that the damper 

winding current has already died out, i.e., 

1 D = 0 (1-14) 

Therefore, only the f i e l d winding with an unchanged flux \\> has to be 

considered. From (22) i t follows that under these conditions the f i e l d 

current i s given as: 

2 " f 
f r f L, (1-15) 
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Substitution of (1-15) into the flux equation for the direct axis yields: 
2 

M p— 

*d= < L d " f ^ *<! V* Mf *f ( 1 _ 1 6 ) 

The transient inductance i s , therefore, defined as follows: 

M2 

L d = L d " I if t1"17) 
The quadrature axis quantities are defined in an analogous way with the 

necessary changes in subscripts mentioned earlier. 

3. Special Case of One Damper Winding on the Q-Axis 

The definitions have to be changed in this case. The absence 

of the g-winding can be expressed by assuming that: 

R = 0 (1-18) g 
and 

L = 0 0 (1-19) g 

Substitution of (1-18) and (1-19) into (1-11) yields the following 

result: 
T" = ^2. (1-20) qo RQ 

The substransient inductance L" then becomes: 
q 

,M 2 

W ^ v a"21) 

No transient quantities can be defined in this case. 
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APPENDIX 2 

TRANSFORMATION OF THE EQUATIONS OF THE ELECTRIC PART 

The voltage equations of a synchronous generator in d,q,0-

coordinates have the following, well known form: 

v = -[R]i - [L']i - [L ]±- i (2-1) -p — p -p p dt -p 

Application of the trapezoidal rule of integration yields: 

r | i (t) = 7 ^ i (t-At) - [L ] _ 1 v ( t ) - [ L n ] _ 1 [ R ] i ( t ) - [L ]_1[L«(t)]i (t) -
A t —p A t —p p —p p —p p p —p 

' [ L p ] ~ 1 v p ( t - A t ) - [ L p ] " 1 [ R ] i p ( t - A t ) - [ L p ] " 1 [ L p ( t - A t ) ] i p ( t - A t ) (2-2) 

Simple rearrangements allow rewriting of (2-2) into the following form: 

v (t) = [ R c o m p ] i (t) + hist (t-At) (2-3) -p -p p 

where the companion resistance matrix i s : 

[ Rcom P ] = _ f_2_• j + [ R ] + [ L ^ ( t ) ] ] ( 2 _ 4 ) 

and the past-history terms are: 

hist p(t-At) = [L ] - [R] - [L p(t-At)]]-i(t) - V p ( t - A t ) (2-5) 

Equation (2-3) has the form of a resistive companion model. This form 

i s preserved i f the equations are transformed from Park's coordinates to 

phase coordinates. The resulting equations can be written in the follow­

ing way [2 ]: 
v(t) = [ R C O m p ]i(t) + hist(t-At) (2-6) — a,b,c 

where the subscript "a,b,c" denotes phase a,b,c-coordinates. 

The matrices [ R C O m p ] and [ R C O m p ] are not constant, and they have to be 
3. f D y C 

recalculated at each time step. The amount of calculations i s , however, 

significantly smaller for the matrix [ R C O m p ] than for the matrix [R^° m P
c], 



104. 

i f the m a t r i x [L^] i s constant. This a f f e c t s the numerical e f f i c i e n c y 

of the s o l u t i o n . Because of t h i s , d,q,0-coordinates were chosen f o r 

the f i n a l a lgorithm. 
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APPENDIX 3 

MULTIPHASE THEVENIN EQUIVALENT CIRCUIT OF A TRANSMISSION NETWORK 

I t i s assumed that a l l network parameters are l i n e a r . This i s 

the only assumption necessary to permit the c a l c u l a t i o n of the Thevenin 

equivalent c i r c u i t of a system shown s c h e m a t i c a l l y i n F i g . 3.1. 

N E T W O R K 

F i g . 3.1. Schematic r e p r e s e n t a t i o n of the network. 

The object i s to c a l c u l a t e the Thevenin e q u i v a l e n t c i r c u i t of the net­

work seen from the terminals l a - 2 a , lb-2b, 1N-2N. 

The network i s described by the f o l l o w i n g nodal equation: 

[ G ] - v = i (3.1) 

where [G] i s a conductance m a t r i x created by a p p l i c a t i o n of the trap e ­

z o i d a l r u l e of i n t e g r a t i o n to d i f f e r e n t i a l equations of the network. 

The Thevenin equivalent c i r c u i t can be obtained as f o l l o w s : 

(1) S h o r t - c i r c u i t a l l voltage sources and cancel a l l current 

sources i n the network, 

(2) Connect a current source of +1.0 p.u. to t e r m i n a l l i and of 

-1.0 p.u. t o t e r m i n a l 2 i , and sol v e Eq. (3.1) f o r v. This 

1a lb 

2a 

IN 

2b 

2N 
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produces a column vector v which i s , in effect, the d i f f e r ­

ence of the l i - t h and 2i-th columns of [G] \ i.e. 

+1.0 in l i - t h component 
[G]v = £ except (3.2) 

-1.0 in 2-i-th component 

produces a vector: 

^ T i = ^ l i - ^ 2 i ( 3 ' 3 ) 

The vector v m. i s the i-th column of the Thevenin resistive — T i 
• r_terminal, , _ matrix [R^ ] in Eq. (83). 

(3) Repeat step 2 for a l l other terminal pairs of interest, 

i = 2, ... N. This ends the calculation of the Thevenin re­

sistive matrix [R^ e r n"" n a''"]. The open circuit voltages y^ 0(t) 

are calculated by the Transients Program as described in [45], 
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APPENDIX 4 

RESISTIVE COMPANION MODEL 

The general property of i m p l i c i t i n t e g r a t i o n methods to create 

r e s i s t i v e companion models w i l l be demonstrated f o r the e l e c t r i c part of 

a synchronous generator. The procedure f o r other network components i s 

very s i m i l a r . 

The d i f f e r e n t i a l equations of a generator i n d,q,0-coordinates 

can be rewritten into the general form of: 

where: 

and 

[ C J = - [ L p ] 1 ( [ R p ] + [I/]) (4-2) 

[C ] = - [L p] 1 . (4-3) 

As i s w e l l known, the exact s o l u t i o n of (4-1) has the following general 

form [74]: 

i (t) = [ e [ C l ] A t ] - i (t-At) + f [ e [ C l ] ( t " T ) ] [ C ]v (T) dx (4-4) -P -P £ _ A t 2 -p 

Af t e r a p p l i c a t i o n of any i m p l i c i t i n t e g r a t i o n technique, (4-1) can be 

rewritten i n t o the following form: 

i (t) = [C l i (t-At) + [C ]v (t) + u (4-5) -P 3 ~~P h P — 

where _u represents the remaining part of the i n t e g r a l from (4-4) which 

contains only known "past h i s t o r y " values at t-At, t-2At, et c . The 

d e f i n i t i o n of the matrix [C 3] depends on the type of i m p l i c i t i n t e g r a ­

t i o n technique used i n the so l u t i o n of (4-1). For the trape z o i d a l r u l e 

of i n t e g r a t i o n , i t i s given as follows: 

[C 3] = ([I] - [C^r^ai] + ̂| [ C J ) (4-6) 
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Simple rearrangements of (4-5) r e s u l t i n the f o l l o w i n g r e l a t i o n s h i p : 

v (t) = [C ] _ 1 i (t)' - [C r V ]i ( t - A t ) - [C ] _ 1 . u (4-7) 

—p it —p it 3 —p it — 

or i n a s h o r t e r form: 

V p ( t ) = [ C 5 ] i p ( t ) + h i s t ( t - A t ) (4-8) 

Equation (4-8) has the d e s i r e d form of a r e s i s t i v e companion 

model and i t has been obtained without s p e c i f y i n g the type of i m p l i c i t 

i n t e g r a t i o n method. Therefore, the r e s i s t i v e companion model can be 

c a l c u l a t e d f o r any system of equations of the form of (4-1) independent 

of the type of i m p l i c i t i n t e g r a t i o n technique used i n the s o l u t i o n of 

(4-1). The c a l c u l a t i o n of the m a t r i x [C 5] and the vec t o r h i s t ( t - A t ) i s 

very simple when the t r a p e z o i d a l r u l e of i n t e g r a t i o n i s a p p l i e d . 



APPENDIX 5 

REDUCTION OF THE GENERATOR EQUATIONS 

,red-| 

[ R r e d ] = [R ] - [R ][.R ] _ 1 [ R ] ss ss s r r r rs 

red The reduced r e s i s t i v e m a t r i x [R ] i s defined as f o l l o w s : ss 

(5-1) 

where-matrix [R ] has the f o l l o w i n g , w e l l known form ( i n d,q,0-s s 
coordinates) [ 8 ] , [ 9 ] : 

ss 

*33 

a l l a 1 2 0 

a 2 1 a 2 2 
0 

0 0 a 3 3 

are fun c t i o n s of the 

(5-2) 

The elements a 1 ; L , a 2 2 , ar 

The elements a 1 2 and a 2 1 are f u n c t i o n s of both co and At, w i t h a l i n e a r 

dependence on co. 

Proof 

The m a t r i x [ R
r r ] has the f o l l o w i n g form: 

[R ] = r r 
>1 I 

0 I B, 
(5-3) 

where a l l the nonzero elements are funct i o n s of At only. The i n v e r s e 

m a t r i x [ R
r r ] ^ i s simply [75] 

[R ] r r 
-1 

-1 

I B -1 
(5-4) 

The matrices [R ] and [R ] are defined as f o l l o w s : rs s r 

[R 1 = r s 

0 0 

a 5 1 0 0 

0 
a 6 2 

0 

0 
a 7 2 

0 

(5-5) 



with a l l the nonzero elements being functions of At only; 

[R ] = sr 

a ! 5 a i 6 a ! 7 

a„, a„ a a 
lh 25 26 2 7 

0 0 0 0 
X5-6) 

with the elements a 1 1 +, a 1 5 , ,a 2 g, and a 2 7 being functions of At only and 

the elements a 1 6» a
1 7> a2h' a n d a 2 5 being functions of both co and At 

with linear dependence on co. 

Simple matrix multiplication yields: 

b. 

[R ] 1tR 1 = rr rs 

11 

12 

32 

hi 

(5-7) 

where a l l the nonzero elements are obviously functions of At only. 

Finally, the product [R ][R ] _ 1[R ] i s given as: 
SIT ITIT ITS 

[R ][R ] 1[R ] = sr rr rs > 

aik b l l + a ! 5 b 1 2 

a 2 4 b l l + a 2 5 b 1 2 

a i 6 b 3 2 + a ! 7 \ 2 

a b + a b 
. 26 32 27 hi 

C l l c 1 2 0 
— 

= 
C 2 1 C 2 2 

0 (5-8) 
0 0 o_ 

elements a i r , 
i 6 

a i 7 ' a i h ' and a 2 5 depend (linearly) on co, 

the elements c 1 2 and c 2 1 in the resulting matrix w i l l have the same type 

of dependence. 

Substitution of (5-8) into (5-1) yields the desired result: 

ss 

which has the form of (81). 

l l l 

21 

l 1 2 

22 

33 

(5-9) 
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ire d ' 
The m a t r i x [ R

g s ] n a s t o be c a l c u l a t e d only once as the cons­
tant of a s i m u l a t i o n run i f At does not change and i f s a t u r a t i o n i s not 
considered. The elements d^ 2 and d 2 1 depend l i n e a r l y on co , and t h e i r 
updating f o r changes i n co i s then obviously q u i t e simple. 

S i m i l a r procedures can be used f o r the four-phase e q u i v a l e n t 

c i r c u i t of the generator mentioned i n chapter 3.5. The r e s i s t i v e m a t r i x 
red 

[ R g g ] w i l l then be given as: 

[ R r e d ] -ss 

e l l 612 0 

e21 e22 0 

0 0 e33 

e 0 0 

•lk 

•21+ 

kk 

(5-10) 

where the elements e 1 1 9 e l l f, e 2 2 , e 3 3 , e ^ , and e ^ are f u n c t i o n s of At 

only. The elements e 1 2 , e 2 1 , and e 2 l t are f u n c t i o n s of both co and At 

w i t h l i n e a r dependence on co. I t can-also be shown that the f o l l o w i n g 

e n t r i e s of (5-10) are equal to the corresponding e n t r i e s of (5-9): 

(5-11) 

(5-12) 

(5-13) 

e i 2 = d12 

e = d 
22 22 

e = d 
33 33 



112. 

APPENDIX 6 

PRACTICAL CALCULATION OF THE MATRIX [R r e d] 
ss 

The Gauss-Jordan elimination process, which has been chosen, 

as the most efficient method, produces not only the reduced matrix 

[ R r e d ] , but also the distribution factor matrices [ D l = [R ]•[R 1 1 

ss 1 2 sr rr 
and [D 1 = -[R ] - 1[R ]. The matrix [D; ] is needed for the calcula-

2 1 rr rs 1 2 

tion of the right-hand side of (80), and the matrix [I>21] i s necessary 

in the solution of the equations of the concealed terminals, once the 

retained variables have been found. A short description of the algorithm 

is followed by a flowchart of a computer program based on this algorithm. 

Consider a system of linear algebraic equations: 

[C]x = b (6-1) 

where: 

[C] = n x n matrix of coefficients, 

and x, b_ = vectors with n components. 

The objective is to arrive at a reduced system of equations for subset 1 

in (6-2): 

(6-2) 

where [CJJ] and [ C 2 2 ] are matrices of order m x m and (n-m) x (n-m), 

respectively, and x^, b^ are vectors with m components andix^, b_2 

vectors with (n-m) components. 

Elimination of variables x_2 from subset 1 results in the following 

system of equation: 
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red ' c c _ 1 

| ^ 1 2 ^ 2 2 
2 l 1*1 

-C^C 
2 2 2 1 

b 
— 2 

X 
- 2 

— 

(6-3) 

Equation (6-3) has the d e s i r e d form a l l o w i n g the c a l c u l a t i o n of v a r i a b l e s 

^ without' the need t o c a l c u l a t e the v a r i a b l e s x 2 , provided b 2 i s known. 

The transformation of the ma t r i x of (6-2) i n t o the matrix of (6-3) i s 

c a r r i e d out by exchanging - one at a time - the v a r i a b l e s x., b. f o r 
3 3 

m+1 <̂  j j< n. This i s the Gauss-Jordan e l i m i n a t i o n process. For example, 

i f the v a r i a b l e s x., b. are to be exchanged ( v a r i a b l e s x.,,, b.,. , e t c . 
3 3 J+l J+l 

have already been exchanged) and the c o e f f i c i e n t s from the l a s t exchange 

are C £ ^ ^ » then the j - t h row of (6-2) may be w r i t t e n down as f o l l o w s : 

C ( ° l d ) X + C ( ° l d ) X + 4- r ( ° l d K + r h + 
c • n x T c x • + .. . + c. . x. + c.,. . N b .,, + 
31 1 J 2 2 J J j j ( j + D J+l 

Exchange of x^, b^ y i e l d s : 

c 
- J 

(old) (old) (old) 

c. 1 C. 1 - 1 C. 1 C. 1 + 1 
3 J J j J 

(old) c. = c. . 
3 33 

where 

I f (6-5) i s r e w r i t t e n v i t h the c o e f f i c i e n t s ; 

+ c. b = b . 
j n n j 

(6-4) 

,(old) 
" . i n • 

c. 
3 

b - x. 
n 3 

(6-5) 

(new) _ (new) , (new), , , (new), f r c. x + ... c... '.x. + c.. 'b. + ... + c. 'b = x. (6-6) J l 1 j ( j - l ) 3-1 33 3 n J 

then i t i s obvious that the f o l l o w i n g r e l a t i o n s h i p s h o l d f o r the e l i m i n ­

ated row: , „ 
(old) 

f o r j \ k (6-7a) (new) _ C j k 
"jk .(old) 

'33 

and 
(new) 

' j j ,(old) otherwise (6-7b) 
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Insertion of (6-6) into the remaining equations results in the following 

relationships: 
c(old) 

(new) = (old) _ (old) _jk • ^ _ g a ) 

lk ik i j (old) v J 

and c(old) 
(new) i j ^, o i _ \ c.. = — T ^ r r r otherwise (6-8b) 13 Aold) 

33 

A flow chart of a computer program executing the algorithm described 

above is presented on the next page. 
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START 

STOP 

A = 1.0/CU.J) 
K - 1 

:i(K) = C(K,J) 
K = K + 1 

= -C(J,K) x A 

DO 3 I = ], N 
3 C(I,K) = C(l,K) + B x C1(I) 

DO 15 K 
15 C(K,J) = 

= 1, N 
C1(K) x A 

C(J,J) 
J = .. 

= A 
-1 

F i g . 6-1. Flow chart of computer program f o r matrix r e d u c t i o n . 



APPENDIX 7 

CONVERSION OF THE OPEN CIRCUIT CHARACTERISTIC TO 

A FLUX-CURRENT CHARACTERISTIC 

The open-circuit characteristic V^j^g) = f ( i f ) 1 3 measured 

under balanced no-load conditions, i.e., 

i = i , = i = i _ = i _ = i = 0 (7-1) a b c D Q g 

The voltage equations (in phase coordinates) for these conditions are 

as follows: 
v = co Mj. sin (3 i , . (7-2) a r 1 r 

v b = co Mf sin 6 2 i f (7-3) 

v = lo M, sin B_ i £ (7-4) c f 3 r 

from which follows that sinusoidal changes i n flux are followed by sin­

usoidal changes in voltages, since 

i f hysteresis and eddy current losses are neglected, as per assumption 

5, chapter 5.4. Therefore, the RMS value of voltage difference between 

any two phases i s given as follows: 

co-M^-i. /3 
V, , i_f_=«J± (7_6) 

(rms) 2̂ /2 

From (7-6) follows that the conversion of V^^g^ values to the instan­

taneous flux values becomes a simple rescaling: 

= v ^ ! (7_7) 
CO 

The excitation current i ^ does not have to be converted. 

Consider the voltage equation for v , the only nonzero voltage under 

balanced no-load conditions: 
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V q = u;/2 M f # 1 f = * *d (7-8) 

Equation (7-8) can be visualized a system of coils placed in a rotating 

f i e l d create.d by a permanent magnet. This situation i s shown schemati­

cally in Fig. 7-1. 

O 

Fig. 7-1. Schematic representation of an unloaded generator. 

The decrease in the value of (due to saturation) results in a de^ 

creased value of the flux linkage ty^, and therefore in a decreased vol­

tage v . However, since no a.c.-components are present, there are no 

harmonics generated in the f i e l d distribution, i.e., the voltage v^ is 

s t i l l described by a linear equation of the form of (7-8). Therefore, 

the converted open circuit characteristicbhas the same form, as the 

original curve. 



APPENDIX 8 

EXAMPLE FOR A MULTI-MASS SYSTEM 

The case presented here is a standard IEEE benchmark test case 

for the simulation of subsynchronous resonance phenomena [5]. The 

effects of a simultaneous three-phase short-circuit in a system as shown 

in Fig. 8.1 and 8.2 are simulated. 

GEN 

Rj =02 B 

R 0 - . 5 

X, =i-14 Xj=j.5 Xc=:-j.371 

INFINITE 
BUS 

X0=j-06 

[Xf =j.04 

Fig. 8.1. System diagram. 

Df RECTI'ON 

OF 
ROTATION 

Fig. 8.2. Model of the shaft system. 

The three-phase fault was applied at bus B at time t = 0 and then removed 

after time 0.075 sec, as soon as the current in each phase crossed zero. 
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The r e s u l t s presented here were obtained w i t h method I w i t h a time step of 

100 usee. F i g . 8.3 shows the simulated electromagnetic torque of the 

generator, F i g . 8.4 shows the simulated mechanical speed of the generator 

r o t o r , and F i g . 8.5 shows the torque on the s h a f t between the generator 

r o t o r and the e x c i t e r . The i n c r e a s i n g o s c i l l a t i o n s of t h i s torque point 

out the reason f o r shaft damage which occurred i n a r e a l case from which 

the data of F i g . 8.1 and 8.2 were derived. 

- 4 . 0 

F i g . 8.3. Simulated electromagnetic torque of the generator. 

002 

TIME (s) 

F i g . 8.4. Simulated mechanical speed of the generator r o t o r . 

F i g . 8.5. 

TIME(s) 

Simulated torque on the s h a f t between 
the generator r o t o r and the e x c i t e r . 
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The results presented here are practically indistinguishable from those 

in [5], which were obtained with a program developed in industry. 


