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ABSTRACT

Techniques for modelling of synchronous generators in the
simulation of electromagnetic transients are described. First of_all;
"an adequate mathematical model of the generator is estabiished. It uses
the conventional set of generator data only, which are readily available,
but it is flexible enough to accommodate additional data, if and when
such become available. The resulting differential equations of the
generator. are then transformed into linear algebraic equations, with a
time varying coefficient matrix, by using the numerically stable trape-
zoidal rule of integration. These equations can be interfaced with the
equations of an electromagnetic transients program in one of two ways:
(a) Solve the equations of the generator simultaneously with the
equations of a three-phase Thevenin.eqqivalent circuit of the
transmission network éeen from thelgenerator terminals,
(b) Replace the generator model with a ﬁodified Thevenin equiva-
~lent circuit and solve the network equations with the gener-
ator treated as known voltage sources E;Ed(t—At) behind con-
sfant resiétances [RrEd

ph]'

time step, the stator quantities are known and used to solve

After the network solution at each

the equations for the rotor windings.
.
These two methods cover, in principle, all possible interfacing techni-
ques. They are not tied to the trapezoidal rule of integration, but can
be used with any other implicit integraﬁion technique. The results
obtained with these two techniques are practically identical. Inter-

facing by method (b), however, is more general since it does not re-

quire a Thevenin equivalent circuit of the network seen from the generator

ii



terminais. The numerical examples used in this thesis contain compari-
sons with field test results in order to verify the adequacy of the
generator model as well as the correctness of the numerical procedures.

A short discussion of nonlinear saturation effects is also
presented. A method of including these effects into the model of the
generator is then proposed.

Typical applications of the developed numerical procedures
include dynamic overvoltages, torsional vibrations of the turbine-
generator éhaft system, resynchronization of the generator after pole
slipping and detailed assessment of generator damping terms in transient

stability simulations.
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1. INTRODUCTION

The importance of general-purpose computer programs for the
simulation of electromagnetic transients in power systems is constantly
increasing. Some of the elements of power systems can now be represented
with a high degree of sophistication, e.g., overhead lines with frequency
dependent line parameters [1]. Some other elements, however, are not yet

represented in enough detail, including synchronous generators. Normally,

sinusoidal voltage sources E;axcos(wt + p) behind impedances Ra + ijd

have been used to represent generators in transient studies. 1In the
derivation of this approximate model, it is assumed that rotor fluxes do
not change immediately after the disturbance, and that subtransient
saliency of the generator can be ignored. This simple model is quite
adequate for certain types of studies during the first cycle or so after
the disturbance which initiates the transient phenomena, e.g., switching
surge studies, transient recovery voltage studies, and other types of
studies involving fast tramsients [2]. It is also adequate if the gen-
erator impedance is only a small part of the total impedance between the
generator‘and the location of the disturbance.

Recent interest in electromagnetic transient phenomena which
persist over longer time spans makes it worthwhile to implement more
accurate models for synchronous generators into programs for electro-
magnetic transients [2-4]. Potential applications include studies of
subsynchronous resonance [4-5], dynamic overvoltages, accurate assessment
.of damping terms in transient stability studies (due to d.c. offset,
harmonics, and asymmetries in short-circuit currents), and other studies.

This thesis discusses the major problems of interfacing gen-

-erator models with an electromagnetic transients program and proposes new



solution techniques. Firstly, the choice of an appropriate generator
model and the calculation of its parameters are discussed. This discuss-
ion and a description of numerical problems in the simultaneous solution
of the generator equations and the equations of the connected transmiss-
ion network provide the necessary background for the introduction of
interfacing techniques - around which the major research effort of the
thesis was concentrated. The proposed techniques cover in principle all
the possible approaches to interface problems. Numerical examples are
used to test the wvalidity of the proposed techniques. Some additional
problems related to the solution of generator equations, e.g., proposed
treatment of saturation effects, are described in the final chapter of
this thesis.

The contributions of this thesis to power system analysis con-
sist of:

(a) a critical review of synchronous .generator models. and selection
of a model appropriate for the simulation of.electroﬁagnetic
transients,

(b) a new method for the calculation of synchronous generator para-
meters from test- data,

(c) a new physical interpretation of the discretization error for
the trapezoidal rule of integration applied to series inductances,
which shows that the resulting difference equations are exact
solutions of equivalent lossless stub lines,

(d) the development of two alternative interfacing techniques for
solving the generator and network equations simultaneously, with

one being similar to a technique developed in industry concurrently



2a.

with the research project of this thesis and the other one being
a new technique with less restrictions than the first one, and
(e) an analysis and proposed treatment of saturation effects in the

synchronous generator.



2, SYNCHRONOUS GENERATOR MODEL

2,1 General Remarks about Physical Device Modelling

In general, the derivation of a mathematical model of any phy-
sical device consists of the following steps [6]:
(1) Selection of a model structure based_upon observations and phy-
sical knowledge; |
(2) fitting of parameters of the chosen model to available data;
(3) wverification and testing of the model;
(4) application of the model to its given purpose.
The basic decisions are made at the first stage. It is, for example,
necessary to decide whether the physical device can be treated as a
linear syétem. If so, a linear system of equations (differential or
algebraic) is used to describe the basic physical phenomena relevant to
the device. Therefore, this stage involves some necessary simplifications
of the physical reality. At the next stage, relationships between the
parameters of the model and the available data have to be established.
At this stage, therefore, some additional simplifications may have to be
introduced. The last two stages serve as verification of the developed
model, and may result in some changes in the model, if necessary. It
should, therefore, be remembered that any mathematical model of a physi-

cal device always involves simplifications of physical reality.

2.2 Model of the Electric Part

The generator is assumed to be an "ideal synchronous machine"
in the sense of Park's definition [7]. The basic assumptions for this
ideal generator can be summarized as follows:

(1) Saturation effects are neglected. This allows the application



(2)

(3)

(4)

(5)

of the superposition principle, because the model is then
linear. Neglecting the saturation effects is a common prac-
tice in the theory of alternating-current machines [8-9].
Techniques for including nonlinear effects will be discussed
later on.

The magnetic circuit and all rotor windings are assumed to be.
symmetrical both with respect to the direct axis, which lines
up with the center-line through the field poles, and to the
quadrature axis 90° behind it (the recommended position of the
quadrature axis lagging 90° behind the direct axis is- adopted
[10]).

A current in any winding is assumed to set up a magneto-motive
force sinusoidally distributed in space around the air gap.

Any magneto-motive force may be resolved into components along
the two axes (direct and quadrature). The sinusoidal distri-
bution does normally imply that only the fundamental component
is considered. In connection with this assumption, it should
be noticed that the effects of harmonics in the field distri-~
bution are small in a well designed machine [il], [12].

It is assumed that a magneto-motive force acting along the
direct axis produces a sinusoidally distributed flux wave which
also acts along the direct axis. Similarily, a quadrature axis '
magneto-motive force pfoduces a sinusoidally distributed qua-
drature axis flux. The factors relating magneto-motive force
and flux are, however, different on the two axes in a salient
pole machine [11].

It is assumed that the damper bars can be represented as two



concentrated hypothetical windings, one in the direct axis (D)
and the other in the quadrature axis (Q) [8]. Another hypo-
thetical winding (g) in the quadrature axis is normally added
for round rotor machines to represent the deep flowing eddy
currents. Consequently, the machine consist of seven windings:
three a.c. stator windings, one field winding for direct axis,
one hypothetical winding D for direct axis and two hypothetical

windings .g, Q for the quadrature axis.

This "ideal machine" is schematically shown in Fig. 1.

ke \,& a

u f
D //* > ref axis
/N | i QHV C
b - quadrature
axis

Fig. 1. Schematic representation of a synchronous
generator (position of windings is shown
in space).
A system of seven linear differential equations describes the

relationship between the voltages and the currents in the seven windings

of the idealized generator. The voltage equations of the generator, in



phase coordinates*, have the following form#*#*:

v = -[RI1i - %,;zb_ ' (1)

where the vector of fluxes y is given in general as:

f; M M M M M w ) fi]

aa ab ac af aD aQ ag a

b b Me Me Mo Mo Yhe Ty

Mac Mbc Lcc Mcf McD McQ Mcg ic

p=Lli=|M . M. M. L. My 0 0|-|i| (2

¥p Mp Yo Yo Ip O 0 Iy

MaQ MbQ 'MCQ 0 0 LQ MQg iQ

_Mag Mg Meg  © 0 Yog g | Lig

, . _J -

The matrix [L] is always symmetrical, irrespective of rotor position B.
The self and mutual inductances of the armature contain even

harmonic terms of rotor position B8 [12], e.g.,

Lo~ Lot La2c03281 + L34C°S481 + ...
Lbb = Lgo + Lb2003282 + LbuCOS482 + ... (3)
L.~ Lco + Lc2c0s263 + Lchcosl&B3 + ...
and
M;b = Mabo + Mab2c05283 + Machos483 + ...
Moo=M o+ Mac2c0s282 + Macuc°8482 + ... (4)

Mbco + Mbc2c05261 + MﬁcuC°S461 + ...

Me

* Phase coordinates refer to actual currents and voltages in the 3 phases
a, b, ¢ of the stator and to actual currents and voltages in the rotor
windings.

*% Capital letters in square brackets [ ] indicate matrix quantities;
straight lines underneath letters indicate vector quantities.



where
B1 = wt + & + n/2
By = By - 27/3 | (5)
B3 = By + 27/3
The self and mutual inductances of the rotor Lf, LD’ LQ’ Lg’
MfD’ and MQg are constant. The mutual inductances between armature and

rotor contain odd harmonic terms, e.g.,

Maf = MaflcosB1 + Maf3c05361 + ...
MaD = MachosB1 + MaD3c03381 + ... )
MaQ = MansinB1 + MastiHBBl + ...
Mag = Maglsins1 + MagBSiHBBl + ...

Similar relationships exist for the other two phases b and c¢ [12].
Practical considerations allow a reduction of the number of parameters
appearing in (2)-(6). For example, a properly designed balanced machine

implies full symmetry of the phases a, b, and c, e.g.,

L = L =L =L
ao bo co s
Lo T hpy Loy =L : (7
M:abo - Maco = MBco = Ms-
M = = M

ab2 Mac2 = Mbcz 2

Other simplifying assumptions afe made to adjust the complexity of the
model to the amount of data which is usually available. Some of these
can result in noticeable errors, as demonstrated later. The following

list summarizes the most common simplifications:
(1) All harmonic terms of order higher than 2 are neglected [8],
[12]. This assumption does not seem to cause ény noticeable

errors [12].



(2)

(3)

Mutual inductance MfD (field-to-damper) is assumed to be equal

to the mutual inductances Mafi and MaDl (armature-to-field and
armature-to-damper, respectively), when expressed in p.u. [13],
i.e.,

M, =M __=M_=M (8)
The same assumption is méde for the quadrature axis. These
aséumptions can sometimes cause significant errors in the simu-
lation of rotor quantities [14].
The second harmonic terms in self and mutual inductances of the
armature are assumed to be equal, i.e., M, = Lm. This assump-
tion simplifies the model significantly, since it eliminates
the coupling among the direct, quadrature, and the zero axes
[15]. This simplification is practically always made and seems

to be justified [12], [16], but it should, nevertheless, be

remembered as a possible source of errors.

Inclusion of the assumptions mentioned above results in the following,

simplified inductance matrix [L]:

where

PL M M M M M M ]
aa ab ac af af aQ aQ

b Tob Mbe M M Mg Mg

M
~ac Mbc Lcc Mcf »Mcf McQ McQ

L] =M, M. M. L. M 0 0 )
Mg Mg Mg Mg Ip 0 0
M M. 0 0 L M
aQ  hQ  TeQ Q. q

M
L aQ MbQ McQ 0 0 Mq Lg

Laa = LS + me03281 .
Ly =L+ me08282 (10)
L =1 + 1 c03283

cc s m



=
I

ab = M0 + meos283

=
il

ac Mo + LmCOSZB2 (11)

Mpe

MO + LmCOSZBl

and

Maf = MfcosB1
be = MfcosB2 (12)
Mcf = MfCOSB3
MaQ = qumB1

= M sinB 13
MbQ q 2 (13)
McQ = qu1nB3

The resistance matrix [R] is simply a diagonal matrix, which

has the following form for a balanced design:

[R] = R (14)

L | J

The model of a synchlironoiis generator derived above is believed
" to be the best, presently possible compromise between the available
amount of test data and the desired accuracy of simulations. Results
obtained with this model agree quite well with field tests, which veri-
fies the adequaéy of this model [3].

The mathematical model of a synchronous generator in phase-~

coordinates is fully defined by (1) and (9)-(14). It is, however, common
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practice in the power industry to describe the generator in a different

reference frame, namely in d,q,0-coordinates [7]. In this reference

frame, all inductances defined by (9)-(13) are constant. It should be

emphasized, however, that introduction of higher harmonics or unequal

second harmonic terms in the armature inductances will result in a time-

varying inductance matrix [L] even in d,q,0-coordinates [15].

Before proceeding with transformations to the new reference

frame, it is useful to rewrite (1) into the following form:

s
v = -[RIL - [LI5 - (LD

The transformation is defined as follows:

i = [P]-1i
e [Pl-1
and similarly:
v_ = [Plv.
5 [Pl-v

where the subscript "p" denotes Park's d,q,0-quantities.

The transformation matrix [P] has the following general form:

W ! 0

Pl = | 1

o I I

I
where

[I] = identity matrix of dimension 4 x 4;

and the matrix [W] is given as [17]:
r _ i

cosB; cosB, cosB3

(W] 2/_% sing, sinB2 sinB3
2 2 2
_ ’ J

(15)

(16)

17

(18)

(19)

Park's original transformation matrix and that of many other authors has

3

2 . .
— as a factor, and a negative sign in the second row. The latter is due
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to the assumption that the quadrature axis is leading the direct axis by
90°, rather than lagging behind by 90°. The particular choice of the
transformation matrix (19) makes the transformation power invariant and
its matrix orthogonal, i.e.,

rp17t = p)” (20)

Application of this transformation to (15) yields:

v, = = [PILICRI "Gt + GIPTOL) - [PIGULDRIT'L - [RIL)
d . . 174
= - [LP]EEP - [R]_zp - [Lp ]5p (21)
where

(. ' \/? 3
‘; Ld 0 0 —Z-Mf/ -Z_M-f 0 0
' /3. /3
0 0 0 2M /=M
q 2 qf2 ¢q
0 L 0 0 0 0

' [Lp] = [P][Lj[P]—l = M. 0 0 L M 0 0 (22)

and

[Lp] =

[
p——
g
| W—
n1o.

ct
7~
g
ed
i
|_|
| §
g
| S—
—
=
[
=
o
e
1
'—l
p =g
[}
Lo
g .
d
nwn.
t
A.
o
| -
1
'.—l
™
-
o
T
g

0
_— (23)
/3 [3
Lg 0 0 /5 M, o/57M O 0
0 0
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2.3 Calculation of Parameters for the Model of the Electric Part

As already explained, any mathematical model of a physical de-
vice is an approximation of physical reality. Some of the simplifications
made in modelling a synchronous generator were discussed in section 2.2.
Here, additional simplifications which are often introduced in the calcu-
lation of parameters will be discussed, as well as a technique for avoi-
ding them.

] The functional relationship between measurable parameters,
e.g., R, Xd’ Xd', Xd", Td0§ and Tdé'in the direct axis, and the desired
set of resistances and self and mutual inductances (or reactances) is
partly nonlinear [8], [9]. Approximations are normally made ‘to obtain
linearized relationships which are easy to solve [11], [18]. These
approximations are based upon the knowledge of machine dimensions, which
are normally unknown to the system analyst, and were only justified for
hand calculations. There is really no reason any more to introduce them,
if data conversion is done by a digital compﬁter.

The model of a synchronous generator was defined in Fig. 1.

The inductance matrix [Lp] (in d,q,0-coordinates) Qas shown in (22) and
the matrix of resistances in (14). As shown in Appendix 1, the measured

direct axis machine constants are related to the entries in the matrices

[Lp] and [R] in the following way

2
L.'" =1L _Q_Iif_ (24)
d a7 T
£
Lot -éMsz—LD.fZMf (25
d a7 Y% 2
Lelp= Mg
T § )
T AP S N e R I (26
T, 2 Rg Ry "2/ R Ry ReRpy

(positive sign of root for Tdo" negative sign for Ty ")
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The above equations are nonlinear and their solution by hand
is difficult. Introduction of approximations based on the knowledge‘of
machine dimensions leads to a well known, simplified set of equations
[il], [19].

The equations (24)-(26) may be solved directly as a system of
nonlinear equations by means of Newton's method. First, (24)-(26) are
rearranged to the following form:

6(x) =0 (27)

where G = [g;, 8,5, 835 gu]T represents the vectors of functional rela-

tionships, x = [Rf, Lf, LD’ RD]T represents the unknown machine para-

meters, assuming M_ in p.u. is found from:

f

Xd =% + @M (28)

L b3

Sometimes, the field resistance R_. in p.u. is given by the manufacturer.

f

In this case, the vector x is given as:

]

T
- [Mf’ Lfs LD, R-D] ) (29)
The following relationship is obtained by taking the first term

in Taylor's series expansion and equating it to zero:
G(x) = G(x*) + [6"(x*)]-(x - x*) =0 (30)

where X represents the approximate solution point of the newest iteration
step and x* the approximate solution of the preceding iteration step (or

the original guess). From (30) it follows that
x=x* - [6' (x%)] . 6(x%) (31)

Eq. (31) is used iteratively until convergence is reached. The
initial guesses are found with the approximate linear relationships, as
normally used before., This procedure converges quite fast. Typically,

only 2 iteration steps are required.
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A set of equations analogous to (24)-(26) may be obtained for
the quadrature axis, which are again solved with Newton's method to
obtain the model parameters from the test data. Quite often, the set of
data for the quadrature axis is incomplete. In many cases, neither Xq'

' are given. It is then necessary to reduce the complexity of

nor T
qo
the model by omitting the g-winding. Equations (24)-(26) are then re-

placed by the following set of equations [11] (for details see Appendix 1):

2
3 E&l_ (32)
L"=1 -3
2 L
q q Q
L
Q

Quite often, the manufacturer's data sheets show that qu' x qu", but
Xq' = Xq. The program would fail in this case because the two assump~
tions contradict each other (the first implies the existence of a g-

winding, whereas the second implies that there is no g-winding). The

following equation:

L -M
L -L"'=M(1--8—9-=
A (3)

would then not have a real solution except for Mq = 0, which implies no
- g— and Q-winding. This special case can be solved without program modi-

fications, however, by setting Xq'

nearly equal to Xq’ for example,
X '=10.99 Xq (Xq' must always be less than Xq). Since qeasurement
accuracy is typically #5%, this assumption is acceptable.

To illustrate the impact of linearization on the calculation of

parameters, a 30 MVA machine was considered with the following data

[11]:
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Xd = 1,443 p.u. Xq = 0.707 p.u.
Xd' = 0.214 p.u. Xq" = 0,1524 p.u.
Xd" = 0,149 p.u. (calculated from other data)
Ty '=17.85s T " =0.3412 s
o qo
Tdo" = 0,0701 s 0 = 314 rad. /s
Rf = 0.00064 p.u. (no g-winding)

The results calculated in three different ways are compared in Table I.

[y

Table I. Comparison of data conversion with different methods.

Conversion method Xa4 (p.u.) xaq (p.u.) Xy (p.u.) X¢ (p.u.) Xy, (p.u.) Xq (p.u.) Ry (p.u.) RQ (p.u.)
a) approximate conversion 1.3879 0.6520 0.0550 0.1795 0.2298 0.1145 0.01766 0.00715
b) exact conversion 1.3533 0.6173 0.0897 0,1368 0.1133 0.0698 0.01026 0.00641

(with Newton's method)

¢) Kilgore's method 1.338 0.602 0.105 0.13 0.0678 .0.0515 0.0079 0.0061

While the differences between parameters found from the exact
and approximate data conversion methods are not great, the differences
in the simulation results of rotor quantities can be significant. The
simulated field current if in case of a single line-to-ground fault for
the generator used in Table I is shown in Fig. 2 for approximate and
exact data conversion. The initial conditions for this case are given in
Chapter 3. As pointed out by others [12-14], the results with approxi-
mately calculated parameters have significantly lower amplitudes of oscil-

lations of rotor quantities, but the possible improvements with exact

parameter conversion has notbeenrecognized, The simulated stator quantities,
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Fig. 2. Comparison of the simulated field currents if.

on the other hand, were identical for approximate and exact parameters.
This agrees with results published by others [13], [14]. Fig. 3 shows
the simulated current iC in the faulted phase for thé single line-to-
ground fault with approximate and exact parameters (indistinguishable

from each other).
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Fig. 3. TIdentical results for current i, in the faulted phase
with approximate and accurate parameter conversion,

2.4 Recent Proposals for Improvements in Parameter Accuracy

Additional improvementsin the model of a synchronous generator
are not possible without introduction of additional test data. New tes-
ting procedures require, however, a long time to become accepted as new
standards. Model improvementsoccur, therefore, very slowly, but the
data conversion algorithm described above can easily be changed to
accommodate additional test data if and when they become available.

The first improvement is made if unequal mutual inductances
Mfd % MfD X MDd are permitted. This was done by a number of researchers.

In 1969, Canay [14] explained some of the causes of discrepancies between
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field measurements and simulation results of rotor quantities. He pro-
posed an improved equivalent circuit of the generator, but he required the
knowledge of generator dimensions for obtaining its parameters. In 1971,
Yu and Moussa [20] suggested another improved model of a generator. They

required introduction of an extra test (time constant T_ of dampe?

D
winding) to determine the parameters of their model. In 1974, Takeda and
Adkins [13] suggested to obtain édditional data from the measurement of
the unidirectional field current. In the same year, Shackshaft [21]

came up with a similar, but slightly more complicated approach. In all
cases, the additional data cam easily be incorporated into the data con-
version algorithm, independent of the way in which it was obtained. It
is believed that the data conversion algorithm will reduce the discre-
pancies between simulation and field tests even more, since it avoids the
commonly used linearization of the functional relationships.

Some researchers have suggested measuring the parameters
directly in phase coordinates [15]}, [22]. Such methods will not com-
pletely solve the problems, since some windings are inaccessible. They
may, however, be very useful for improving the accuracy of the model. A
different approach has evolved in the last few years. It is based upon
parameter estimation either in the time domain [12] or in the frequency
domain [23], [24]. It is this author's opinion that the parameter esti~-
mation method will eventually replace all the other approaches. It may,
however, be a long time before this happens. It was, therefore, believed

to be important to develop a simple method making efficient use of

the easily available, conventional set of test data.



2.5 Model of the Mechanical Part of the Generator

It is common practice in transient stability studies to re-
present the rotating part of the turbine-generator unit (its shaft, gen-
erator and turbine rotors) as one lumped mass. This approach is, however,
unacceptable in some studies of transient performance of the generator,
where the rotational vibrations of different parts of the shaft system
are important [3], [4]. As in the case of the electrical part of the
generator, the complexity of the model depends on the amount of availa-
ble data. The actual number of lumped masses may, therefore, vary from
case.to case., - The techniques for modelling mechanical systems of rota-
ting lumped masses are relatively well developed. The description of
the mechanical part will, therefore, be relatively short. It should be
noted, however, that some of the mechanical parameters are very difficult
to obtain, not uilike some of the electrical parameters.

Fig. 4 shows a typical example of a turbine-generator unit with

seven lumped masses, which is based upon an actual case [3].

WP 1P LPA LPB LPC GEN EXC

U }F:@ 2 =3 =)= )6 =17

Fig. 4. Torsional model of a turbine-generator unit. (HP - -high
pressure turbine, IP - intermediate pressure, LPA, LPB -
low pressure units, GEN - generator, EXC - exc1ter)

The dynamic equations of a rotating mechanical system can be derived from
Newton's second law [25]. The following general equation can be written

for each rotating mass:
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— = 2 T, () (35)
¢ .

where

J = moment of inertia

@
I

angle (rotational displacement)

sum of all torques acting on the rotating mass

To illustrate the use of eq. (35), the three-mass system of Fig. 5 will

be used. Assume that

7 ¥ - 3

/ [/

MASS I |12 massm |-22| massm

I, Dy 2,82 13,033
o 5, 163

Fig. 5. Schematic representation of a three rotating masses system.

Ki,i+l = shaft stiffness coefficient (between masses i and i+l);
Dii = viscous self damping coefficient (of the mass i);
i,i+1 = viscous mutual damping-coefficient (between masses i and i+l1);
Ji = moment of inertia (of the mass 1i);
ei = angle (of the mass i);
T = external torque (applied to mass 1i).
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Starting with mass 1, the following three equations can be written: for

mass 1,
d261 : de, 4
7 T Pnar * Pragrrf) T K818 = T, (36)

for mass 2,

2

d“e, de, q 4
JZ;:;— + DZZEZ—-+ DIZEE(GZ_GI) + D235;(92—63) + K;,(8,-8;) + K,,(6,-8,) =T,
(37)
and for mass 3,
. dze3 do, q
J3;;§"+ Dyg * DZQEE(93—92) + K, ,(8,-6,) = T, (38)

Equations (36)-(38) assume that the system is linear, which is an accept-
able simplification for rotational vibrations éf small amplitude.

A three-mass system has all the characteristic features of an
n-mass system. Therefore, equations (36)-(38) can be generalized to

obtain the following system of equations for any system of n rotating

masses:
a? d -
[J] — 6+ [D] — 6+ [K] 6 =T (39)
ac? ~ de = -
where

[J] = diagonal matrix of moments of inertia;

]
(]

vector of external torques applied to the system;

|
[}

vector of angular displacements;

[D] = matrix of damping coefficients, which has the following form for the

case of Fig. 5,

E ]

Dyt Dy -Dy, 0

D] = -D Dy,+D;,4D, 5 -D, 4 (40)

12
U -Dy3 D331D, 5
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[K] = matrix of stiffness coefficients, which has the following form for

the case of Fig. 5,

—

-
K2 K2 . 0
[K] = |-K,, K, ,+K, 4 K, 3 (41)
|0 K3 K23

In the case of turbine-generator umits, the external torques

are of two types:

(1) mechanical in the turbine stages;

(2) electromagnetic in the generator and exciter rotors.
The calculation of mechanical torques in transient stability studies can
be simple or very complicated. 1In the former case, it is assumed that
mechanical torque or power remains constant after the disturbance. In
the latter case, the dynamics of the speed governor and associated control
systems must also be modelled [26], [27]. In electromagnetic transient
studies, which is the subject of thié thesis, the issue is less compli-
cated due to much shorter time spans involved (normally, cases are only
simulated up to 1 sec. after the disturbance). It is then possible to assume
constant mechanical power input and calculate the torque from the follow-

ing relationship:

T=--F (42)
m
where
P = mechanical power prior to disturbance,
W, = angular speed of the mechanical system.

It has been shown that the assumption of constant mechanical torque pro-
duces satisfactory results [4], but constant mechanical power seems to.

be a more reasonable assumption than constant mechanical torque.
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The electromagnetic torque developed in the rotor of a syn-
chronous generator is equal to the air gap torque produced by the rota-
ting electromagnetic field [9] and may be described by the following
formulas:

(a) in Park's d,q,0-coordinates [9]:
_ — |
T, = Ggiq = Yoig" 3 43)

(b) in phase-coordinates [28]:

n . . . . . .
Te - E;% Fwa(lb B lc) * 1pb(lc la) * wc(la lb)] (44)
where
n = number of poles of the generator.

The torque in the exciter (if it is a d.c. generator directly coupled to
the turbine-generator shaft; not modelled in other cases such as motor-
driven generators or rectifiers) is determined by the amount of electric

energy produced by the generator and is given as:

n 2
T =— i + i
ex 2. (vf tf Rexlf) (43)
m
where
W, = angular speed of the exciter;
Ve = voltage at exciter terminals;
if = excitation durrent;
Rex = armature resistance of the exciter.

The electromagnetic torque carries a sign opposite to that of the mechani-

cal torque, since it represents a load to the mechanical system.

2.6 Conclusions

An idealized, linear model of a synchronous generator, which is

described by relatively simple equations, has been presented in sections
o
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2,2 and 2.5. The model of the mechanical part was qnly included for
completeness, since the rest of the thesis is-primé;ily concerned with
the electric part of the synchronous generator<.'

This model of a synchronous generator has been shown to be
adequate even for such complex problems as subsynchronous resonance [3],
[4]. It should be understood, however, that the rotor quantities are-
not always reproduced accurately [13], [}4]. The problem lies in obtain-
ing enough and sufficiently accurate data, The numerical calculations,
on the othé&r hand, can be carried out with very high accuracy. The com-
plexity of calculations should, therefore, be related to the accuracy of
measurements [29], since there is not much sense in creating a very com-
plex model for inaccurate data. Lack of reliable data often forces the
analyst to use simplifications.in the model.

Séturation effects have been neglected in the development of
this model, However, as shown later, in section 5.5, it is possible to
include them without sacrificing the simplicity of the model.

The electric part of a synchronous generator was described in
two systems of coordinates. These two descriptions are equivalent for
theoretical considerations. For numerical solutions, however, one system
of coordinates may offer advantages over the other system. This problem

will be discussed in section 3.3.



25.

3. NUMERICAL SOLUTION OF THE GENERATOR EQUATIONS

3.1 Choice of Integration Method

The dynamic behaviour of a synchronous generator is described
by two sets of differential equations, one set for the electric part,
and another set for the mechanical part. It is important to bear in mind
ﬁhat no digital computer solution of differential equations can give a
continuous history of the transient phenomena. It can only give a
sequence of "snapshot pictures" at discrete time intervals At. Such
discretization causes truncation errors, which can lead to numerical
instability [30]. The stepsize At should, therefore,be small enough to
avoid build-up of truncation errors, but not too small to avoid unnecess-
ary computer time.

It is important to consider the structural properties of the
_ generator equations in connection with the choice of the stepsize At.
The system of equations for the electric part of the generator and for
the electric network, to which it is connected, is stiff, i.e. the time
constants of the system are widely séparated [31]. In typical tranmsient
stability studies, the ratio of the largest to the smallest time constant
may be in the order of 103 or 104 [32]. The ratios in studies of electro-
magnetic transients, with which this thesis is concerned, are similar.
Even the time constants of the generator equations alone may, in this
Tdo'

1"
Tdo

the generator from section 2.3. In order to avoid numerical instability

= 1,12-102 for

case, have a ratio in the order of 102 or 103, e.g.,

(due to build-up of truncation errors), most integration methods, especi-
ally those which are explicit, require an integration stepsize At which

is smaller than the smallest time constant. For instance, fourth-order
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Runge-Kutta methods require a stepsize which is approximately less

than 175 of the smallest time constant. Such a small stepsize is re-
quired in spite of the fact that in stiff systems the components asso-
ciated with the smallest time constants are normally negligible for most
of the simulation time span. The overall behaviour of»the system, which
is of primary interest, is determined by the largest time constants.

The time span of the simulation is, therefore, determined by the largest
time constant. A very small stepsize At is, fherefore, very expensive in
simulating stiff systems.

Round-off errors create additional problems in the numefical
solution of differential equations. They may become worse for a solution
with a very small stepsize At than for a solution with a larger one.
Round-off énd truncation error problems are interrelated and are normally
considered together as one problem of numerical stability cf the solution.

Any practical method of numerical integration should not only
be numerically stable, but also reasonably accurate and efficient.
Therefofe, the numerical integration method needed in the case of elec-
tromagnetic transients should provide a compromise between:

(a) numerical stability;
(b) accuracy;
(¢) numerical effiéiency.

The implicit trapezoidal rule of integration seems to be the
best compromise for these sometimes contradictory requirements [31], [33].
This method does not suffer from the smallest time constant barrier, i.e.,
the stepsize At is not controlled by it. The stepsize At is restricted

3 :
mainly by_accuracy of the solution, and not by its numerical stability

{34]. A fundamental theorem due to Dahlquist [35] states:
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Theorem: Let a method be called A-stable, if, when it is applied to
dy _ it 1
the problem at Ay, A < 0, it is stable for all At > O.
Then:
(1) No expliéit linear multistep method is A-stable;
(2) no implicit linear multistep method of order greater
than two is A-stable;

(3) the most accurate A-stable linear multistep method

of order two is the trapezoidal rule:

y(ttat) - y(t) = %{f(t,y(t))+f(t+At,y(t+At))} (46)

for an equation %%-# f(t,y) (47)

The A-stability property was the main reason for the choice of this par-
ticular integration method.

Some additional, important facts speak in favour of the trape-
zoidal rule. First of.all, it is very simple to program, and does not
require past history points except for those of the immediately preceding
time step. It is, therefore, self-starting. It is also important to
note that the trapezoidal rule with a constant stepsize At creates con-
stant state transition matfices for linear systeﬁs with constant coeffic-
ients. This property reduces significantly the amount of calculations
involved in the solution process., Finally, it is worth mentioning that
the use of this integration method assures consistency with the Transient
Program [34], which uses the same solution method.

A number of different solution techniques were suggested in the
literature, but none of them segﬁs to ha&e clear advantages over the

trapezoidal rule [3], [32] [36-39].
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Two cases were run to compare the trapezoidal rule with the
fourth-order Runge-Kutta method for generator equations. The generator
described in section 2.3 was used in both cases. First, a three-phase
short-circuit was simulated as shown in Fig. 6. The voltage of the in-
finite busbar was 2.0[g° p.u., and the initial conditions of the genera-
tor were 1.734/-5,2° p.u, stator current and 3.56 p.u. field current..

The network parameters were Re =1.0 p.u.

5 5 INFINITE
GEN - Re =1 BUSBAR

c R c

Y

@

CLOSE AT t=o

Fig. 6. Three phase-~to-ground fault at generator terminals.

The simulation results for a time step of At = 100 us were
practically identical for the fourth-order Runge-Kutta method and the
trapezoidal rule of integration, but some differences were visible for
At = 1 ms. Fig. 7 compares the results for the field current if.

As a second test case, a line-to-ground fault of an unloaded
generator was chosen, with the same generator>data as for the first case.
The fourth-order Runge-Kutta method became numerically unstable in this
case, even for At = 100 us. The reason may have been the way in which

the external network was Ssimulated, namely as a very large resistance Re
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Fig. 7. Comparison of simulation results for the field
current in case of a three-phase fault.
in the two unfaulted phases and zero resistance in the faulted phase.
The comparison of the results for two different stepsizes At is shown in
Fig. 8.
Figs.7 and 8 show that an increase in the stepsize At results
in decreased accuracy of the solution with the trapezoidal rule, but not
in numerical instability. Stepsizes greater than 1 ms were not considered,
since the time step for the simulation of realistic cases is dictated by
the solution of electromagnetic transients in the external network, where

stepsizes are typically in the order of 50 to 100 us.
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Fig. 8. Comparison of simulation results for the field
current in case of a line-to-ground fault.

3.2 Physical Interpretation of the Trapezoidal Rule of Integration for

a Lumped Inductance

It is very important to understand the build-up of discretiza-
tion errors when the differential equations of the generator are replaced
by difference equations*. As shown earlier, the generator model consists

of lumped inductances and resistances. The resistance part does not

* The trapezoidal rule of integration applied to v = L%%

with replacement of the derivative by a central difference quotient.

is identical
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cause discretization errors, since the functional relationship
v = =Ri (48)

is solved accurately (except for round-off errors) as a linear algebraic
equation. Discretization errors must only be considered for the induc-
tance part. To keep the explanation simple, consider a single inductance
L between two nodes "k" and "m'" as shown in Fig. 9:
I\

6/77"

Fig. 9. Inductance between nodes k and m.

Application of the trapezoidal rule to

v=1L j—i (49)
yields:
i(tFAt) = i(t) +%E{v(t+At) + v(t)} (50)

It will now be shown that replacing the differential equation
(49) by the difference equation (50) is identical to replacing the
lumped inductance L by a short-circuited, lossless transmission line of
travel time T = é—12:--and characteristic impedance Z = %%u This line, which
replaces L, has (unavoidable) shunt capacitance C' per unit length which
goes to zero as At goes to zero, and a series inductance L' per unit
length which, when multiplied with line length, is equal to the value L
of the lumped inductance. It 1is schematically shown in Fig.*lO;‘

The equations of the lossless line can be solved exactly with Bergeron's

method* [34]. With this method, the following equation can be derived

* Method of characteristics in mathematical references.
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=2

Fig. 10, Schematic representation of a lossless,
short-circuited transmission line.

for a ficticious observer travelling from terminal "1" to "2" if he

leaves terminal "1" at t-At,

. _ . _ At
vl(t—At) + le(t—At) = —212(t 2), (51)
and for an observer leaving terminal "2" towards "1" at t - é%-,
. At, _ . 52
Summation of (51) and (52) yields
vl(t—At) + Zil(t—At) + vl(t) - Zil(t) =0 (53)
which can be rewtitten as
. o _ 1 _
11(t) = 11(t At) + Z(vl(t) + Vl(t At)) (54)
Equation (54) is identical with (50), when
_ 2L
Z =3 (55)
where Z is defined as follows:
1
Z =/ (56)
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Equation (54) is an ex;ct solution for a lossless transmission line [40].
Therefore, the application of the trapezoidal rule to a lumped induc-
tance L is equivalent to replacing the lumped.inductance with a short-
circuited, lossless "stub" line with distributed inductance L' = L/length
and travel time T = é% » which is then solved accurately.

The error committed by this replacement can be evaluated quite
easily by calculating the input impedance of a short-circuited lossless
line. The steady-state behaviour of a sipgle-phase transmission line

can be described by the following general equations [41]:

\

1 cosh(ySL)V2 + sinh(yl)-IZZ (57)

and

il

A
I, sinh(y2)22-+ cosh(y2) -1, (58)

with V and I being phasor values.
For a short-circuit at terminal "2" (V, = 0), the input impedance seen

from "1" can be described as follows:

\

YA =

1 _
IN "I—l- = Z tanh(yR) (59)

For the lossless line, the characteristic impedance is:

Ll
Z=/Gr (60)
and the propagation constant is
vy = /juL'juC' = jw/L'C" (61)
This leads to the following relationship:
. At-w
Zpy. = el feeg ¢ T (62)

The error in the frequency domain can now be assessed by calculating the

ratio of the known true value Z = jwl. to the computed value Z

lumped IN

~given by (62):
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Z .
H(w) = Zlumped - Atzw cot (Atéw) (63)

IN

Equation (63) is the ratio of the impedance resulting from the
application of the trapezoidal rule of integration to the impedance of
the lumped inductance. It is probably more illustrative to comsider the

relative error
G(w) = H(w) - 1.0 (64)

instead of the absolute error H(w). The relative amplitude error IG(w)I

weAt
2

is plotted in Fig. 12 as a function of the same variable.

16 (w)
8l

is plotted in Fig. 11 as a function of , and the phase error argG(w)

e —— e— —

2

Fig. 11. Relative amplitude error of the
trapezoidal rule of integration.

0 JT Jr 3 27T
2

Figs. 11 and 12 give a simple physical explanation of the error
for any given stepsize At. Low frequencies are reproduced practically

without any error, since

lim (|x-cot x - 1f). = 0 (65)

x =+ 0
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where

le
N>
ot

(66)

}arg G(w)

degrees
0
I T 3T 2wl 51 14
2 2 21 |

-—180

Fig. 12. Phase error of the trapezoidal rule of integration.

The error increases with frequency until an absolute blocking (H = 0) is

reached for

f. = (67)

1
1 2At
For At = 100 us, a typical stepsize used in studies of electromagnetic
transients, the first blocking frequency is equal to £, = 5 kHz. 1If the
frequency is increased beyond fl’ then the element is seen by the solu-
tion algorithm as if it were capacitive up to 2f;, at which point the
element is seen as a short-circuit, reversing to inductive afterwards.

The next blocking point is reached at

£, = (68)

3

2 2At
From there .on, the situation repeats itself periodically.
Similar analysis conducted for a lumped capacitance shows that

application of the trapezoidal rule to its differential equation is equi-

valent to replacing the lumped capacitance by an open-ended lossless line,
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In this case, the ratio becomes:

2 wAt
tew tan ( 2 )

H(w) = A (69)

Identical results can be achieved with "the transfer function" approach
[42].

The above facts explain the sometimes large local error of the
solution. The overall numerical stability of the solution, however, is
unaffected [35], [43]. The trapezoidal rule of integration can thus be
regarded as a pfocedure which changes impedance values differently for
different frequencies, but solves the system accurately with these modi-
fied impedances. The solution is obviously stable, but more or less

inaccurate.

3.3 Choice of Coordinate System

In studying electromagnetic transients it is not clear a priori
which system of coordinates is more advantageous for integrating the
differential equations of the electric part. It is clear, however, that
general-purpose computer programs must interface the resulting difference
eduations of the generator with those of the network in phase coordinates.
Otherwise the ability to simulate any general type of electric network
would be lost, thus eliminating the generality of the program. The inte-
gration of the generator equations directly in phase coordinates would
seem, therefore, to be the best choice. It must be realized, however,
that the trapezoidal rule will then produce discretization errors even
for balanced steady-state conditions, since the flux and the currents in
the phases change sinusoidally at fundamental frequency. Integration in
d;q,0-coordinates, on the other hand, would be exact for balanced steady-

state conditions with the trapezoidal rule, since flux and currents in
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d,q,0-coordinates are constant in this case. If the latter approach is
used, then the resulting difference equations must be transformed back to
phase coordinates before they are interfaced with the difference equa-
tions of the network.

For general transient conditions, the choice is not at all
clear. As an example, a single line-to-ground fault at the generator
terminals has phase currents varying at 60 Hz, if the harmonics and dc-
offset are ignored. Currents in d,q,0-coordinates, on the other hand,
will vary at 60 Hz and 120 Hz, with the latter caused by negative se-
quence components.

The final choice was made after considering the numerical effi-
ciency. The amount of calculations in d,q,0-coordinates is significantly
smaller, since the inductance matrix [Lp] is constant in this case [44].
Preliminary experiments showed that integration in d,q,0-coordinates
gives very satisfactory answers, and d,q,0-coordinates were finally chosen
for the work in this thesis.

As shown in Appendix 2, the trapezoidal rule of integration in
both systems of coordinates leads to the same form of linear relationships
between voltages and currents, and only the discretization errors are
different. The choice of system of coordinates, therefore, does not
change the general approach outlined in this thesis.

If space harmonics in the magnetic field distribution are taken
into account, then integration in phase coordinates will probably be more
advantageous., Self and mutual inductances could then be defined directly
in phase coordinates. The inductance matrik [Lp] in d,q,0-coordinates
would no longer be constant, in this case anyhow, thus diminishing the

main advantage of this system of coordinates.
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3.4 Multiphase Equivalent Networks

The analysis of connected subnetworks becomes simpler if each
subnetwork has already been reduced to a multiphase equivalent circuit
in which ohly terminals at the connection points are retained and all
other terminals are eliminated. Such a situation exists when generators
are connected to a transmission system. On the generator side, only the
stator windings are directly connected to the transmission network, i.e.,
only three pairs of its terminals must be retained if the generator equa-
tions are to be solved simultaneouély with the network equations., This
assumes, of course, that the genefator eduations can in fact be reduced
to equations containing the retained terminals, only. This is indeed
possible, as explained in chapter 3.5. All other pairs of terminals on
the rotor are then concealed. The situation is similar in the trans-
mission network. Again, only thrge pairs of its terminals are éonnected
to each generator, thus making all the rest of them concealed, provided
that the network can be reduced to the retained terminals only. Since
the interface between the electromagnetic transients, which solves the
network, and the generator model is performed only through the retained
pairs of terminals, it seems appropriate to discuss in some detail the
idea of a multiphase equivalent network.

Multiphase equivalent networks have not been used for a very
long time. Since a number of good references are available [45], [46],
only a short outline will be given here to aid in the understanding of
interface techniques. The theory will first be explained for steady |
state, with voltages and currents being phasors, and then extended to the
solution of electromagnetic transients in'section'3-5- This extension

becomes straightforward with the concept of resistive companion models [47].
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The generator or the network can either be described by a set
of independent node equations with an admittance matrix, [Y]V = I, or
with an impedance matrix, V = [Z]I where [Z] = [Y]_l. Retained terminal
pairs are generally located across only a few independent node pairs.

The node impedance or admittance matrix of the reduced network, which
contains only the retained terminal pairs, can be obtained from the full
impedance or admittance matrix by elimination of the concealed variables.

Consider a general network with N independent node pairs and
with R terminal pairs to be retained. Such a network may be described

by the following nodal equations with an admittance matrix:

L e Y| |%
=== 7 - -] (70)
IE YER I YEE YE
I

or by an inverse relationship with an impedance matrix.

Rl 1o || R
=) — _1. [ — (71)
XE ER | ZEE !:'E

where subscript "R" denotes the retained variables, and subscript "E"
denotes the concealed variables, which are to be eliminated.
Elimination of the concealed variables results in the following rela-
tionships:

-1

' -1
Ip = (Mgl = [Yppll¥pp] “{Y DV, + (Ypgl[Ypel -1 (72)

[
|

and
-1 -1
Y ([ZRR] - [ZRE][ZEE] [ZER])lR + [Zpp1lZgg] Vg

(73)

Equations (72) and (73) may be interpreted as generalized forms
of Norton's or Thevenin's theorem. Equation (73) will be considered

closer. It can be rewritten as follows:



40.

Ty = 12Ty + Yo 7%
Setting ER = 0 gives the open-circuit terminal voltages as:
Vo = [2pgllzg 17y (75)
The equivalent impedance [ZR] is defined as follows:
(2] = (2] - (2,102,172, ] (76)
R RR RE EE ER

Equation (74) describes, therefore, the multiphase Thevenin equivalent
circuit of a network. It is a reduced network with concealed terminals
eliminated. Analysis is simplified if the impedance matrix [ZR] behind

the voltage sources is constant. The Thevenin equivalent circuit of

Tro

(73) is only useful if the voltages across the concealed node pairs

Ve
are known, and (72) is only useful if the currents IE across the cons
cealed node pairs are known. A three-phase Thevenin equivalent circuit

is shown schematically in Fig, 13.

7 [ 222

YRO @@@

Fig. 13. GSchematic representation of a three-phase
Thevenin equivalent circuit.
The multiphase equivalent circuit was derived from nodal equa-
tions, but it can also be derived from other forms of network description,

e.g., from branch equations or mesh equations.
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The concept of multiphase Thevenin equivalent circuits, which
was derived for steady state above, can also be used for transient con-
ditions. The efficient calculation of a Thevenin equivalent circuit for
the tfansmission network has already been explained in Appendix 3 for
transient conditions. Therefore, only the Thevenin equivalent circuit
of the generator must still be derived for transient coﬁditions, which

is done in the following section..

3.5 Three-Phase Equivalent Circuit of the Generator

After the application of the trapezoidal rule, the nodal volt-
age equations of a generator in d,q,0-coordinates have the following

form (for details see Appendix 2):

comp]i

Xb(t) = [R i,

(t) + gp(t—At) 77)

Equation (77) can be visualized as voltage sources gp(t—At) behind re-

com . . s .
P]. Such equivalent’ resistive networks, which result

sistances [R
from the implicit integration of differential equations, are called
"resistive companion network models" in network theory [47]. They have
been used in power systems analysis for more than 10 years [48]. The
resistive matrix [Rcomp] is constant in d,q,0-coordinates, and the
voltage sources gp(t—At) are calculated from the known "past-history
terms'" of the preceding time step t-At. The ability to create such
"resistive coﬁpanion network models" is not limited to the trapezoidal
. rule of integration only, but works for any implicit integration as
shown in Appendix 4.

Equation (77) represents a system of seven equations. The

first three of them describe the stator windings, and the rest describe

the rotor windings. Therefore, (77) can be rewritten as follows
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"_ 1

(subscript "p'" and superscript 'comp"

dropped to simplify notation):

<
~
g
~
]

[Rss]is(t) + [RSr]iT(t) + gs(t—At) (78a)

<
~
ot
~
Il

[Rrs]is(t) + [Rrr]ir(t) + gr(t—At) (78b)

where subscript "s" denotes stator quantities, and "r'" rotor quantities.

Elimination of rotor currents ir(t) (rotor terminals are concealed)

results in the following relationship:

=1 . .
v () = (R] - [RIR_1TR DL (6) +

e (e-at) + [R IR _J7L.(e (t-8t) = v (£))  (79)
As mentioned in sectibnl3.4, the equivalent circuit of (79) is
really only useful if concealed variables ére known, which is gr(t) here.
Since all dampef windings are permanently short-circuited, the voltages
across these windings are always equal to zero, and therefore known. ' Only
the field winding requires special atténtion. Depending on the type of
study, three approaches can be used:

(a) For many studies tmax is so short that the exciter output does
not change within that time span. The voltage across the field
winding vf(t) is then constant and equal to the pre-disturbance
value,

~(b) For studies over longer time spans, the response of the exci-
tation system may have to be taken into account. Differential
equations are then used to describe relationships between

terminal voltage, voltage output v_ of the exciter, and possibly

f
supplementary variables such as shaft speed, acceleration,

electric power, etc. If implicit integration is applied to

these differential equations (linear or linearized over one
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(c)
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time step), then linear algebraic relationships among these
quantities are obtained. With a typical time constant of 30 ms
for a fast excitation system with rectifiers, it should be
permissible to calculate the excitation system .output at time

t from the known input values at time t-At, and vf(t) would
then again be known in the solution of the generator equations.
This approach was used successfully for practical cases [49].
Standard IEEE excitation system models define the terminal
voltage as an RMS-value. Therefore, the problem arises in
transient studies how to define RMS-values from instantaneous
values under transient conditions. This could, for example,

be done by including a model for the transient behaviour of

the transducer. This issue may require further research.

If fhg time delay of one time step introduced in method (b)
above is unacceptable, then it becomes necessary to retain the
field winding in the equivalent circuit, which leads to a four-
phase equivalent circuit of the generator. The fourth equa-
tion must then be interfaced with the equations which describes
the excitation system dynamics. This will not affect £he
interface procedures described in this thesis (for details see

Appendix 5).

Equation (79) can now be rewritten as follows:

v () = [RES1L (6) + ef%(e-00) (80)
. B
r;ll aj, 0
(RIS = | ay, a,, 0 (81)
0 0 ags
_ J
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where all nonzero elements are constant if At and w are constant (for
. . red . .
details see Appendix 5), and where Es (t-At) is known at time t from
known past history at t-At and vf(t).
Equation (80), after transformation to phase-coordinates, describes the

three-phase equivalent circuit of the generator in those coordinates.

The resulting resistive companion matrix [Rggmp] is time dependent:
by, (1) by, (1) b, 3(t)
comp, _ i
[REP™P] = by, () by, () by () (82)
b3l(t) b32(t) b33(t)

Calculation of the matrix [R::d] according to (79) is numeri-
cally very inefficient and is better done in practice with a Gauss-Jordan

elimination scheme [50], as briefly explained in Appendix 6.
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4. INTERFACING THE GENERATOR MODELS WITH THE TRANSIENTS PROGRAM

4.1 Problem Formulation

The generators and the network to which they are connected,
can in principle be solved as one system of equations. However, it is
then not easy to write general-purpose computer programs which can
handle any network configuration [51]. It is, therefore, necessary to
devise interfacing procedures which preserve the generality of the net-
work representation in the Transients Program.

When electric networks are connected together, then certain
boundary conditions must be satisfied for voltages and currents at the
connection points. The situation for two three-phase networks is shown
in Fig. 14. The conditions, which must be satisfied at ahy time t, are

based upon Kirchhoff's laws, in this case:
vV, =V and

0.

[
+
H

I
o
-
e
+
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o
-
=

w
+
=

]

susneTwork | _2 1 1 s |suBNETWORK
I 3 6.1 I

Fig. 14. Schematic representation of two connected networks.
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These conditions must also be satisfied when two computer pro-
grams are interfaced, when each of them describes the behaviour of one
subnetwork only. Subnetwork I could be the generator, and subnetwork II
the transmission system in a particular case. The generator is connected
to the transmission network through three pairs of terminals, i.e., all
the other pairs of terminals of the ﬁransmission system are, from the
generator's point of view, concealed. Similarly, looking from the trans-
mission system into the generator, only the three stator pairs of gen-
erator terminals are visible, and the rotor windings are concealed.

There are, therefore, two possible ways of interfacing a generator pro-
gram with a network transients program. The first one is based upon the
calculation of a three-phase Thevenin equivalent circuit of the trans-
mission network, as seen from the generator's stator terminals, and
solving it tbgether with the full set of generator equations or with the
reduced set of generator equations, in which only stator terminals are
retained. The final solution in the transmission network is obtained by
superimposing the voltage changes which results from the generator cur-
rents on the solution obtained without generator currents [2]. The
second approach is based upon .the development of a three-phase Thevenin
equivalent circuit for the generator in the form of a voltage source

red

ph ]. The complete solu-

behind a time-invariant, symmetrical matrix [R
tion is then obtained by solving the transmission network with the
red

generator treated as voltage sources behind'[Rph ] in one step. This

approach results in a significantly simpler interface code.
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4.2 Method I - Interface by Means of a Thevenin Equivalent Circuit of

the Transmission Network

The Transients Program was modified to produce a three-phase
Thevenin equivalent circuit of the transmission network seen from the
generator terminals (in its original form it could only produce single-
phase equivalent circuits). The equivalent circuit can be described by
the following equation:

terminal

e (6) = RS 14, (6) + v (0) (83)

where the subscript "N" denotes network quantities, and the subscript
"0" denotes open-circuit quantities.

The.3 x 3 matrix [R;ermlnal

] is precomputed before entering the time
. step loop, and must only be recomputed when the network configuration
changes due to éwitching actions or when the program moves into a new
segment in the piecewise linear representation of nonlinear elements [45].
A practical way of calculating this matrix, as done in the Transients
Program, is briefly described in Appendix 6. The voltage vector XNo(t)
contains the three-phase voltages of the Transients Program solution
without the generator.

The generator is represented by its three-phase equivalent

‘

circuit:

v (6 = [R;ﬁmp]iph.(t) +e (e-0t). (84)

- where the subscript "ph" denotes generator quantities in phase coordin-
p P g q p

ates, and where

¥ (0 = 3 (e)  and _iphct)':—_iN(t) (85)

With (85), equations (83) and (84) can be solved for the unknown voltages



48.

and currents. After subtracting (84) from (83), the following relation-

ship is obtained:

(0 = (RS 4 R  (6) - e (e-08)  (86)

The final network solution is found by superimposing the voltage changes

network

Av(t) = [Ry -1 (1) (87)

on the prévious solution wifhout ;he generator. éz(t) is the vector of
all voltages on nodes without voltage sources in the transmission net-.
work, and [Rgetworkj is a‘precomputed n X 3 matrix from which [Rgerminal]
was extfacted‘for (84).

The final solution of the generator is found by solving for
the concealed variables which were eliminated .in reducing the equations
to a three-phase Thevenin equivalent circuit. After transformation of
the stator currentslto d,q,0-coordinates, the rotor currents are found

as follows:

1.(0) = ~[R_ITR 11 (0 - IR, 17Ny (6) + e (t-0t) (88)

where'the«matrices [Rrr]_l and [Rrr]_l[RrS] were found as by-products of
the reduction process, as explained in Appendix 6.

A flow chart for tﬁis éolution algorifhm, with the mechanical
part of the turbine-generator inclpded, is shown in Fig. 15.

The prediction part of the solution algorithm is only needed
if the mechanical part is included for modelling the relative rotor
oscillations around synchronous speed. Since the interfacing is-done in
phase coordinates, it is necessary to know both the angular position 6

and the speed W of the rotor at the new time step in order to calculate

the matrix [Rcomp

] and the vector e . (t-At). A similar situation exists
ph —ph
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when the interfacing is done in d,q,O-cobrdinates. It is then necessary
to know 6 and W, in order to calculate the matrix [Rcomp] and the three-
phase Thevenin equivalent circuit of the transmissioa éystem in Park's
coordinates. After the generator currents have been calculated, it is
possible to calculate the electromagnetic torque Tog. With this value,
the equations of the mechanical part can be solved to get updated value
~of the speed w . If these values differ too much from the prediected
values, then the solution is repeated until the differences are neg;igi—

ble. This solution algorithm performed satisfactorily [4]. Corrections

are not much of a problem in this solution algorithm, anyhow.

4.3 Limitations of Method I

The solution method descfibed in chapter 4.2 is quite straight-
forward and numericaliy stable if only one generator is connected to the
transmission network. If there are more generators connected to the
network, as is usually the case, then the method works without further
modifications only if the generators are éeparated through distributed-
parameter lines, i.e., if three-phase equivalent cirpuits of the net-
work exist independently for each generator because distributed-parameter
lines disconnect the network [2], [44]. The Transients Program checks
this condition automatically when it calculates three-phase equivalent
circuits at generator terminals. The program could be changed to calcu-
late 6-phase equivalent circuits if two generators are connected to the
network without separation through distributédJParameter lines, or 9-phase
equivalent circuits for three generators, etc. For the general case of
m generatorg, however, the programming would become.too complicated and

A\

the execution time would probably become too big.
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A number of alternative methods are possible to overcéﬁe this
limitation. The generators could be separated by short distributed-
parameter transmission lines. This may, however, require a significant
reduction of the stepsize At in order to keep the length of such arti-
ficial lines short, since At must be less than the travel time [48]. A
slightly different approach has been used_successfully by Southern
California Edison Company, whereby transformer leakage inductances of
step-up transformers are approxiﬁated as stub-lines [44]. If a group of
generators not separated by transmission lines feeds into the same ‘bus-
bar, then the possibility exists of creating one equivalent circuit for
this group of generators, which would be relatively easy. This method
can be extended to gro;fs of generators which feed through unit trans-
formers into the same busbar. In this case, the generator equation
would have to be expanded to include the transformer eqﬁatipns as well,

The limitations mentioned above do not significantly degrade
the practical value of method I. They simply imply that cértain pre-

cautions are needed when special cases are simulated.

4.4 Method II - Interface with a Modified Thevenin Equivalent Circuit

of the Generator

It is common practice in the power industry to represent gener-
\

ators by sinusoidal voltage sources of the form E;axcos(wt+p) behind
subtransient impedances Ra + ijg in quasi—stéady—state fault studies and
in some types of transient studies. In the derivation of this model it
is assumed that flux'chénges in the rotor windings immediately after the

distrubance can be ignored, and that subtransient saliency can also be

ignored, This simple model is quite adequate for the first cycle or so
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after the disturbance which initiates the transient phenomena. Goo&
results have been obtained with this model in switching surge studies,
transient recovery\Qoltage studies, and other types of studies involving
fast transients. The relatively accurate results obtained with this
simple model motivated the research effort described in tﬁis chapter.
The idea was‘to find a way to écéount for the changes in fluxes and to
include thé subtransient saliency without losing the simplicity of the
model.

Before proceeding with the discussion, it may be useful to
recall some of the results of séction 3.5 where the retained stator

variables of the generator were described in d,q,0-coordinates by the

equation

red].

i (o) +Ig;ed(t-At)' (89)

' zs(t) = [R

and where the matrix [R::d] was given as follows:

a1 232 0
red, _ _
[RZZ°] = | &, a,, 0 (90)
0 0 ajq

As mentioned in section 3.5, the matrix [R;:d] becomes time-
dependent when it is transformed directly tobphase—coordinates. While
nodal network solutions, such as in [34], can in principle be modified
to accept time-dependent resistances, program execution would be slowed
down significantly if the network conductance matrix had to be retrian--
gularized in each time sﬁep. Also, the conductance matrix becomes asym-
metric in.this case, which means that the upper as well as the lower
triangular matrices would have to be stored. This would increase stor-

age requirements as well as computation time compared with the present
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method based upon symmetry where only the upper triangular matrix is

stored.,

A number of ways were tried out to approximate (89) in such.a
way that the resistance matrix becomes constant and symmetric in phase
coordinates. The following scheme seemed to work best:

(1) Split the matrix [Rzzd] into the sum of two terms,

red, _ [ red red
[Rss ] —'[Rconst] + [Rvar‘ ' O

red

where the matrix [R
const

] is given as:

— a +a

112 22 0 o |
red . _ a, +a
[Rconst] - 0 —l%zééé 0 ' ' 92)
L 0 0 833

with coefficients a;, as defined in Appendix 5.

2) Transfprm the matrix [stgst] to phase coordinates. The
result is a constant symmetric matrix [Rred] of the following
form:

—; b bhﬂ
(R rﬁd] =|b a b (93)
b b a

- The elements of the matrix [R ] are normally much smaller than those

zsgst]’ and their influence in (89) can be accounted for\by multiply-

f [R
ing them with the predicted values of stator currents rather than with

actual, yet unknown, values and adding these terms to the voltage sources.

Therefore, the following relationship in d,q,0-coordinates is obtained:

v €0) = [REeS 11 (8) + el (t-an) + [RI2911P™*d(y)) (94)
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where izred(t) is the vector of the predicted d,q,0-stator currents at
time t.
Transformation of (94) to phase-coordinates yields the desired

Thevenin equivalent circuit of the generator:

RGOS [R;Ed},_i_(t) +g;§d(t-At) (95)

~

. : . red . , . .
Since the matrix [Rph ] is symmetric and time-independent, the genera-
tor can be represented in the Transients Program simply as a set of

red] ,
ph 1

red . ' . .
[Rph ] enters into the nodal conductance matrix of the transmission

voltage sources E;Ed(t—At) behind resistances [R The inverse of
network as any other resistive'brangh, as described in [48].
After the network solution has been found in the new time step
at time t, the stator quantities will be known, and the rotor currents
can then be found from (88). Therefore, the solution of the transmission
network. together with the generators proceeds at each time step as follows:
(1) Solve the network equations together with the Thevenin equiva-
lent circuits of the generators reduced to the stator windings
as given by (95);
(2) Solve equation (88) of rotor windings, using the stator cur=
rents found in the previous sﬁep.
There is a need to predict the angular position 6 and the speed
W of thé rotor, just as in method I. The problem of iterative correc-
tions is, more complex in this case, however, since iterations with the
complete network solution would be quite costly. Fortunately, it has
already been shown that the angular position 6 can be predicted accurately
enough without need for corrections [4], [32]. A reasonably accurate

prediction for the angular speed w can probably be obtained from the
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integration of the ‘mechanical equations, with linear extrapolation of
the electrical torque because of the relatively small stepsize At used
in integration of the electric part in comparison with the relatively
big time constants of the mechanical part. Furthermore, the terms con-
taining the angular speea w are only a small part of géﬁd(t-At) in (95).
It is, therefore, reasonable to expect"that w can be predicted with
sufficient accuracy. It is also possible to introduce some sort of

iteration loop to improve the solution such as the one shown in Fig. 16.

\
predict 6 and W

.Solve the network
together with the
generators
Calculate rotor

-currents and

v } electromagnetical
torques

Calculate wy and
6 with the new data

Continue

Fig. 16. Flow chart of the iteration scheme.
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’

No serious problems are éxpected. Experience gained by the
General Electric Company seems to prove this statement [3]. A computer
program developed by this company and the results obtained with it seem
to indicate that no significant errors are introduced when using the pre-

dicted values of the angular speed w e

4.5 Remarks about Method II

As already mentioned, the elements of the resistance matrix

1.

[RrEd] are-normally much smaller than the elements of the matrix [Rred
var : const

This ‘is true of typical generators where subtransient saliency is very

small., If x"

4 differs significantly from Xg, the elements of the matrix

[Rizi] may become large. This would increase the relative weight‘of the
inaccuracies resulting from the prediction of the stator currents, which
in turn could result in inaccurate solutions. Although such a case seems
to be highly improbable fér any practical generator equipped with damper
windings, it should, nevertheless, be mentioned as a possible problem.

Experience.has‘shown that for stepsizes At in the order of
10_45, method IT works remarkably well. It does not suffer from the
limitations typical of method I, since the generators are simply modelled
as voltage sources beﬂind resistances. In the network solution it is
possible, therefore, to have any number of generators connected to the
network, eifher at the same busbar or at different busbars, without loss
of generality.

The prediction of the d,q,Qesfator currents izred(t) does
influence the accuracy, of co;rse, and can be performed in a number of
ways:

(1) Assume that the voltages at the generator terminals are cons-

tant over the next time step, and use the new currents found
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from (89) as predicted values.

(2) Use straight-line extrapolation of the currents. Information
for two ﬁreceding time steps at t-2At and t-At must then be
stored.

(3) Use parabolic extrapolation of the currenté. Information for
three preceding time steps must then be stored.

(4) Use any combination of the three previous methods, e.g.,
straight-line extrapolation of the voltages combined with
approach 1.

In all the tests conducted for this thesis, theré were no visible differ-
ences between the results obtained with different prediction methods as

long as some type of prediction of the stator currents was used. Simply
setting izred(t) = 0 is too inaccurate. Fig. 17 compares the field cur-
rent from the example of section 2.3, calculated in three different ways:

(a) The predicted currents are obtained by assuming that the vol-
tages at the generator terminals are constant over the next
time step, with stepsize At = 100 us.

(b) The currents from the previous time step are used as predicted
values? i.e., izred(t) = is(t-At), (At = 100 us).

(c) The influence of the term tRzzg]is(t) is neglected, i.e.,

.pred s .
i (£) = 0, (At = 100 us). This amounts to neglecting the
subtransient saliency and speed terms in the generator model.
The differences are larger for the stator currents, as shown in Fig. 18
for one of the unfaulted phases (phase a). /
Using current values from the previous time step t-At can only be justi-
fied for a small stepsize At. With increasing At, the error introduced

by this simple prediction may become intolerable, and possibly lead to

numerical instability.
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Fig. 17. Comparison of field current with various prediction techniques.

The low sensitivity to the accuracy of prediction of the stator
currents may serve as an indication of the behaviour of the solution for
inaccurately predicted angular speed W - It is possible to interpret the
error in prediction of w as an additional error in the predicted stator
currents. It is, therefore, believed that no serious problems will arise
with the introduction of the mechanical part of the generator.

red
The elements of the matrix [Rph 1 can be precalculated before
entering the time step loop. Simple matrix multiplication (transforma-

tion from one coordinate system to another) and basic algebra show that:
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Fig. 18. Comparison of stator current in phase "a" with
various prediction techniques.

a + a 4+ a

Qo A1 22 33 (96)
3
2a - a - a
b = 33 611 22 (97)

where a and b are elements of the matrix [RgﬁnSt] defined in (93). These

elements remain constant as long as the stepsize At does not change

and as long as nonlinear saturation effects are ignored.

It is worth mentioning that neither method I nor method II

are tied to the trapezoidal rule of integration. The ability to create
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resistive companion network models, and to develop reduced three-phase
equivalent circuits from them, is-a general property of any implicit
integration scheme, as shown in Appendix 4. The trapezoidal rule of
integration, however, makes the numerical procedure simple. This fact,
and ‘the stability properties of this particular integration as discussed

in section 3.1 fully justify its use.

- 4.6 Numerical Examples

It is very easy to set up hypothetical generator and network'
cases for testing the simulation methods of this thesis. While this is
satisfgctory for comparing various approaches, it does not answer the
question of how closely such simulationsAagree with field tests. Every
effort was, therefore, made tolduplicaté published field test results,
even though not too many such cases could be found. In this connection,
it should be remembered that the generator model alone does basically
not need verification, sinée this was already done by others [4],'[11—14].
The test examples are, therefore, mainly used to verify the various
numerical procedures and interfacing techniques. This was done in stages:

(1) Preliminary Tests

In the preliminary testing of the methods, the interface with
the general-purpose Transients Program was replaced by a simple three-
phase Thevenin equiyaleﬂt‘circuit (voltage source behind external resis-
tance and inductance). This simplification made it easier to test the
simulation techniques before interfacing the éeneratof subroutine with
the large Transients Program. The program performance was checked for
a number of examples. A simulation program using a fourth-order Runge-

Kutta integration routine was also run in parallel as a check on the

\ i
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solution with the trapezoidal rule. Some of these results were already

presented in section 3.1 (Fig. 7 and Fig. 8).

(2) Example 1 for Testing Method I

The results of the preliminary tests were compared with the
results obtained with method I. This provided a check on both the calcu-
lation of the three-phase Thevenin equivalent of the transmission network
and on method I itself. Only one example will be shown, since there were
no visible differences. The generator described in section 2.3 was used
with a line-to-ground fault applied to one of its terminals. The system
was simulated as shown in Fig. 19. The network parameters were Re =1.0 p.u.,

el + Re2 = Re, and Rel = 0.01 p.u. The voltage of the infinite busbar
was 2.0[Qi p.u., and the initial conditions of the generator were
1.734/=5.2° p.u. stator current and 3.56 p.u. field current. Both the
stator currents and the rotor currents were identical for the two dif-
ferent solutions (without and with the calculation'df the Thevenin equi-

valent circuit). The stator current in the unfaulted phase "b" is shown

in Fig. 20,

_ a
Re O

| b VINFINITE
Re |— , o BUSBAR

R67 ] REZ

Fig. 19. Line-=to~ground fault at generator terminal.
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Fig. 20. Simulated current I in the unfaulted phasé "b".

The simidlated field current was already shown in Fig. 2 and the fault

current Ic was already shown in Fig. 3.

(3) Example 2 for Method I

This is a test case with an external network for which field
test results were available, and which could no longer be solved with
the program used for the preliminary tests. The generator had the follow-

ing data (based on 150 MVA and 13.8 kV, RMS, line-to-line) [53]:

Xd = 1.85 p.u. Xq = 1,76 p.u.

Xd' = 0.2575 p.u. Xq" = 0.29 p.u. (assumed according to [53])
Xd" = 0.18 p.u. Tq" = 0.04 s (assumed according to [53])
XQ = 0.175 p.u. Xo = 0.198 p.u.

Td' = 0.85 s (no g-winding)

T." = 0.385 s
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The data conversion to [R] and [Lp] was done with the formulas published

in [11]. The generator was connected to a transmission system, as shown

in Fig. 21.

13.8/130.8 kV SINGLE PHASE
/ AL _OnT

b e

CLOSE AT t=0

+ € o
At
——W\ CLOSE AT
| t=10ms T

Fig. 21. System diagram.

The system was initially unloaded and the voltage at its ter-
minals was 13.8 kV [:;gj kv (RMS, line-to-line). A three—phase fault
on the high side of the delta/wye connected step~up transformer was
studied, with the closing sequence as shown in Fig. 21. The simulated
stator currents are compared with the field test results, as given in
[54], in Fig. 22. The field current was unavailable for comparison.

The differences in the initial values of the currents result
from uncertainty in the generator data, e.g., the values for Xd" and Tq"
were assumed rather than measured and may be unrealistic, and lack of
sufficient information about the initial conditions, e.g., about the
instant at which the fault was applied. Because of the latter reason,

the initial conditions had to be varied until the results came reasonably
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Fig. 22. Comparison of stator currents between simulation and field test
for a three-phase fault. (a) = phase "a", (b) = phase "b",
(¢) = phase "¢", — field test, -— simulation,
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close to those of the field tests. It should also be remembered that
saturation effects were ignored. 1In view of all these limitations the
agreement is reasonably good.

(4) Example 3 for Testing Method I

It was found by a number of researchers that the correct re-
production of stator currents is not much df a problem [13], [14]. It
is often difficult, however, to reproduce rotor quantities correctly.
To illustrate the accuracy of the simulation of the fiéld current, an-
attempt was made to duplicate a field test [54]. In this test, the
generator described in example 2 was connected to a system as shown in
Fig. 23, and a three-phase fault was appiied to the high side of the
step-up transformer. The network was simulated as coupled inductances

with the following parameters given in [54]:

]

zero sequence inductance L 0.22 H,

(¢}

0.096 H.

positive sequence inductance Ll

The initial voltage at the generator terminals was 13.8/-30° kv (RMS,
line-to-line), and the initial field current was 620 A, The switching
sequence was as follows [54]:

Phase "b" at t = 0 s, phase "e" at t = 6 ms, and phase "a" at t = 20 ms.

The simulated field current is compared with the measured field current
in Fig. 24. (a - field test, b-— simulation)

Examples 2 and 3 verify that the generator model as well as the
numerical approach of method I give reasonably accurate results. It is,

therefore, possible to proceed to a comparison of method II with method I.
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Fig. 23. System diagram. -
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Fig. 24. Comparison of the simulated and measured field current.

S

(5) Example 4 for Testing Method IT

In this example, a single line-to-ground fault was studied.
The system was simulated as shown in Fig. 23.. However, some changes were
introduced. The infinite busbar voltage was increased to 137.23[:gg kv
(RMS, line-to-line) and the parameter Xq" was changed from 0.29 p.u. to
0.18 p.u., which is a more realistic value for a generator with damper
windings, than the previous one given in [53]. The results were obtained
in three different ways:

(a) Simplified generator model (voltage source E;axcos(mt+p) behind
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an impedance R, + ijd");
(b) Detailed generator model interfaced with method I (simultane-

ous solution);

(c) Detailed generator model interfaced with method II (new tech-

nigue).
Fig. 25 compares the simulated current in the faulted phase

"a", and Fig. 26 compares the simulated field current.

25.0¢

0.0

—25~0 ! I 1 1
0.0 004 0.08 0.12

TIME (s)

B3

~

Fig. 25. Comparison of the simulated current in the faulted phase "a".

Figures 25 and 26 imply that the simplified generator model is reasonably

accurate for short time studies, but no information can be obtained on
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Fig. 26, Tdentical results for field current.

rotor circuit quantities., The results obtained with method II are

indistinguishable from the results obtained with model I.

(6) Example 5 for Testing Method II

This example should provide a more severe test for method II,
because it also includes travelling wave effects. The generator from
example 4 was connected to a system, as shown in Fig. 27.

The transmission line had the following parameters ("0" = zero

sequence, "1" = positive sequence):
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6.326 uF/km

0.2026 Q/km , L, = 2,749 mi/km , CO

0.0886 Q/km , L. = 1.005 mH/km., C. = 11.408 uF/km

1 1

and a length of 96.72 km. The length of the line was chosen in such a
way as to match the positive sequence inductance of the transmission

network from example 4,

13.8 /130.8 kV
(3 single phase units) _faulted busbar

Al 'ﬁANSM/SS/ON

[=4.83/-13.6°k A

L =63.2mH - Infinite busbar
(seen from high ) V=13723/-20°kV
side (line to line) -

Fig. 27. System diagram.

Once more a single line-to-ground fault on the high side of
the step-up transformer was studied. Fig. 28 compares the generator
current in the faulted phase "a", calculated in three different ways:

(a) Simplified genmerator model;
(b) Detailed generator model interfaced with method I (simultane~
ous solution);
(c) Detailed generator model interfaced with method II (new
technique).
Again, the results from methods I and II are practically indistinguish-
able.

Fig. 28 may lead to the conclusion that the simple generator

model is as good as the detailed model. This is only true, however, for
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Fig. 28. Comparison of the simulated current for faulted phase "a".

some studies conducted over a very short time span where the flux decay
does not play an important role. Fig. 29 compares the three-phase in-
stantaneous power at the generator terminals for the same case and shows
that the simple model is much less adequate when power is measured.

Finally, Fig. 30 shows the fiéld current calculated with the
two different interface techniques. As for the stator current, methods
I and II give again results which are practically identical.

The last two examples prove that the results obtained with
method IT agree to a high degree with results obtained with method I.

This in turn proves the adequacy of method II.
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Fig. 29. Comparison of the simulated three-phase instantaneous power.
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Fig. 30. Identical results for field current.

The set of numerical examples would not be complete without a
presentation of a case with a multi-mass mechanical system. A benchmark:
test case for such a system became available after completion of the thesis.

It is, therefore, not included in the main body of the text, but is added

as Appendix 8.
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5. INITIAL CONDITIONS, DATA SCALING AND SATURATION

5.1 Calculation of the Initial Conditions for a Synchronous Generator

The state of a synchronous generator is fully described by the

following variables:
(1) all currents and voltages;
(2). all angular displacements and speeds of the shaft system.

The stator currénts and voltages are normally obtained from a phasor
solution of the entire system in which the generator is represented as-
sinusoidal voltage or current sources, This solution usually considers
the fundamental frequency only. The rotor circﬁit variables have to be
found from the generator equations, which is straightforward for the case
of balanced steady-state operation, but more complicated for the un-
balanced case. In the latter case, hérmonics exist not only in the
rotor circuits but also in the stator circuits [8], [9], which leads to
contradictions if the total system was solved at fundamental frequency
only. It is common practice, therefore, to assume a balanced steady-
state operation for the generator. In this case, the damper currents
are zero and the field current is constant. The currents and voltages
will vary sinusoidally in phase coordinates, but are constant in d,q,0-
coordinates., It is, thereforg,Easier.to use d,q,0~coordinates for the
calculation of the initial conditions.

The géneral voltage equations of the generator were defined in

section 2.1 (eq. 21). They are shown again to aid understanding:

d .
v =-[L ]J5—i - [R]i - [L']i (96)
-P [Pdt-P []“P [P]_P

For the special case of balanced, steady-state conditions, Wheré>g;-i’ =0,

dt =p —
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they can be rewritten as follows:

v = -[R]_ip - [L;]EP (96a)

With damper currents and zero sequence voltage and current being zero,

(96a) can be reduced to the following set of three voltage equations:

vy = —Rald - qulq o7
v =~-Ri +uL i . +w §-M i (98)
q agq dd 2 f°f
and
Ve = —Rfif (99)

The coefficient\/gfin front of Mf in (98) results from the normalized
form of Park's transformation matrix [P] as shown in (19). To find the
current if and the rotor angular position B(0) or §(0), it is necessary
to relate (97-99) in d,q,0-coordinates to the phasor diagram of the

machine shown in Fig. 31.

DIRECT AXIS

REFERENCE
AXIS FOR
NET%/ORK

- PHASOR
LXa  SoiuTion

IR
Fig. 31. Phasor diagram of a synchronous generator for balanced,

steady-state operation (Ra and Xﬁ, Xa not to scale).
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From (97) and (98) it follows that:
vq + jvy = —Ra(lq + Jld) - JXq(lq + Jld) + (Xd - Xq)ld + eq (100)

where 3
eq = w E‘Mflf . (101)

For a balanced steady-state operation, d,q,0-coordinates are related to
phasor wvalues by:

i+ ji, = /3.0 36 (102a)
q d
and

/37 e 39 (102b)

. vq + 3vy

where I and V are RMS positive sequence phasors.

From (102a) and (102b) it follows that (100) can be-t;ansformed to the re-

ference frame for the network phasor solution,

js

_ . 38 -
e + &y qu)lde

=V + RaI + jXqI | (103)

38 and (Xd - Xq)idej(S lie on the quadrature axis.

where the phasors eqe
Equation (103) allows, therefore, the determination of the angle §(0), if
the phasors V and Esare'known. The left hand side of (103) is not impor-
tant in its value, but its position is that of the quadrature axis.

The rest of the electrical variables can then easily be calcu-

lated from the following relationships:

iy = /3 [I]-sinGy' - &) (104a)

1= /3 |I] cos(y' = 6) (104b)
and

vy = V3 [V] sin(a’ - §) | (104c)

v =3 |V cos(a'.— 8) | (1044d)
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Finally, the field current i_ can be found from (98):

f

i = .. d4d (105)

£ [~
3
We 'Z_'Mf

The initial conditions of the électric part of the generator are then

v +Ri - X1
q agqg

fully defined. It remains, therefore, to determine the initial conditiomns-
for the méchanical variables of the generatof.

The mechanical equations of the generator were defined in
sectioﬁ 2.5 ((35)—(39)). However, the equation for mass i is shown
again to aid understanding:

d2e, de

i i d ’ d
-+ — - ——m -
T2t Py Di1,1ge P17 85m1) F Dy g 105 7 8gq) *
iy, 1003 7054)) #8540 Oy =054 = Ty (106)
For steady-state conditions (106) can be simpiified as follows:
de ‘
Pia FKeg,1 000 7 8 ) PRy 8y m 8D = Ty (1062)

ds
The angular speed Eﬁi is equal for all rotating masses and can be found

from the following relationship:

8
< _ _ 2 _
dc " Yp T w3 for k=1, ... N (107)

where "subscript "m" denotes mechanical variables, where n is the number
of poles in the generator, and where w is the angular frequency of the
network.

The initial angular position of the generator rotor can be

calculated from the angle §(0) as follows:

6 = (5(0) + go.-é- (108)



77.
where subscript "r" denotes generator rotor variables. N

Finally, the angle ei_l can be found from the angle'ei:

’

i-1 i-1
Tmj - D,.w
L
ei—l 8, + (109)
Ki-l,l
In a similar way, the angle ei+1 can be found from:
N N
) Tmj - ) D sty
ei+1 - ei +. j=i+1 j=i+l (110) -
Ri 141

The sum of the applied mechanicél torques Tmj must, of course, equal the
/
sum of electrical and speed self-damping torques, so that there is zero

accelerating torque initially:

N N
T .= ) Tej+ ) D..uw (111)

Il 112

where subscript "e" denotes electromechanical torque.

Calculation of the initial angular displacement of the masses in the

shaft system ends the process of initialization of the generator variables.

5.2 Consistent Per Unit (p.u.) System and Conversion to Physical Units

The choice of a consisfent and simple p.u. system is, in
general, relatively easy. For rotating machinery, however, the situa-
tion gets complicated if more than one refereﬁce frame is used. A
transformation from one reference frame to another may limit the freedom
in the choice of base variables, if symmetry of matrices is to be pre-
served. This is precisely the case for a synchronous generator when

unnormalized transformation matrices are used.
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It is common practice in the power industry to describe the
generator in Park's d,q,0-coordinates, as explained in section 2.2. The
conventional unnormalized transformation does not preserve the symmetry
of the inductance matrix [L] of the generator [17]. The resulting
asymmetrical matrix [Lp] can be forced back to symmetry with a specific
p.u. system in which base power for rbtor quantities is %-times base-
power for stator quantities [17], [55]. A simpler approach, which does
not require complicated scaling procedures to restore the symmetry, is
presented in this chapter.. As mentioned in section 2.2, the normalized
transformation defined in (18) and (19) preserves the symmetry of the
inductance matrix [L], i.e., the resulting matrix [Lp] is symmetrical no
matter which base values are chosen for stator and rotor circuits [17]. -
Then the conversion to p.u, values is a simple scaling problem with com-
plete freedom in the choice of base values for’each circuit.

Any linear electric network in steady-state operation can be

described by one of the following nodal equations:

[thys]°yphys - l-phys (112)
or

[thys].lphys B thys (113)

" where the subscript "phys'" denotes physical values, and
N
(z, 1=1¢, 17 (114)
phys phys

and where V and I are vectors of nodal voltages and currents

—phys —phys

injected into the nodes, in V and A reépectively. The nodal impedance
matrix [thys] is given in its own physical units, Q.
Ii general, a system has more than one voltage level, with coupling

through transformers. - Therefore, different base voltages are normally
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chosen for the node voltages, while base power is normally the same for
all nodes. It can easily be shown that the following relationship
holds between the physical and the p.u. values [56]:

-1

[z !

10V, 1771, ] (115)

~

N

=)
]

[V

p.u. b] phys

or

—
|

-1
= W10z, | 1010 1,) (116)

4, ]

where:

=
I

diagonal matrix of base voltages,

diagonal matrix of base powers.

Equations (115) and (116) are valid for any set of base voltages and

powers. However, symmetry of the matrix [thys] will be preserved only . _ °

if there is only one base power, which is the normal practice in power
system analysis anyhow.

It is customary to define the data of a synchronous generator
in a p.u. system based on its nameplate.ratings. For general network
studies, where each element has its own nameplate rating, all values
must either be converted to the same bases, or to physical quantities.
fer unit values offer advantages'if a problem is studied on a network
analyzer, or on a digital computer with fixed-point arithmetic, because
in both cases all values must be of a certain order of magnitude.  This
problem does not exist in computers with floating-point arithmetic,
which is the rule nowadays. Scaling (con?ersion from p.u. to physical
values or ¥ice versa) has no influence on the solution process, except
for possible differences in the accumulation of round-off errors. As
a consequence, pracfically identical solutions (except for slight dif-

ferences in round-off errors) will be obtained with physical quantities
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and with p.u. quantities.- The influence of scaling on round-off errors

is not easy to assess [57]. TFor a system of linear equations, however,

the following statement can be proved [58]: "If scaling is done in such

a way that only the exponent changes in floating-point numbers and if

the order of elimination is not changed, then the scaled (p.u.) equa-

tions will produce precisely the same significanté in all answers and

in all intermediate numbers'. After careful examination of all advan-

tages and disadvantages it was decided to convert the machine data to

physical units. Physical quantities are least confusing and assure con-

sistency with the Transients Program. Conversion to physical units is

done as follows:

(a)

(b)

Calculate all the required generator parameters in p.u. from
the p.u. data based on nameplate ratings as provided by the
manufacturer;

Multiply all elements of the matrices [LP]Pou- and [R]p.u. by

the base impedance of the stator windings, which can be found

from the following relationship:
2
_ Jsb

Sb SSb

Z (117)

where:

0N
il

Sb base impedance of the stator;

(
. three-phase rated power of the stator in MVA,

if the stator is onnected in wye.

s=<
Sb single~phase = rated power 6f the stator in

KMVA, if the stator is connected in delta.

VSb =-line~to~line rated voltage of the stator in KV

(RMS) for both wye and delta connections.
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This operation transforms all the stator data to their ori-
ginal physical values. Rotor parameters, as found in step b
will be in physical values referred to the stator side of the
generator.

Multiply all the parameters related to the rotor circuits
which lie on the diagonal of the matrices [Lp] and [R] by n2,
and those on the off-diagonal of [Lp] by n, where:

n = transformer ratio between the stator and the fiéld. This
number can be calculated in.one of two ways:

(1 from the physical value of the field resistance Rf, if

such is known from measurements [22]:

=n (118)

or:
(2) from the open-circuit characteristic, as schematically

shown in Fig. 32.

(pu)
s | "
AIR-GAP LINE

].0}-

Iy s

Fig. 32. Typical open-circuit characteristic.
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From the generator equations derived in chapter 2.2, it follows that the

physical value of the field-to-stator mutual coupling Mf is given by:

=
=V
3 'LL .
Mf T (119)
f1
where VLL = RMS value of line-to-line voltage found on the open-circuit

characteristic.
From (119), the transformer ratio n can be defined as follows:
M
n=—t (120)

pr.u..ZSb

The procedure outlined above assumes that the original p.u.
data was all based on the same base power, which is normally true for
manufacturer's data. Then, the matrix [Sb] is simply a unit matrix

premultiplied by a scalar S defined in (117). This procedure also

Sb
assumes that there are only two base voltages, one for the stator, and
the other for the field ;nd damper windings. The latter assumption can
be justified as follows:
Since the damper windings are hypothetical windings, for an inter-
connected arrangement of many damper bars, any transformer ratio
to them can be assumed. It is, therefore, possible to use the
same ratio as that from the stator to the field without loss of
generality.
This specific conversion procedure is very simple to. use and requirés

only the available standard data. A similar approach based upon dif-

ferent reasoning has been suggested in [59].
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5.3 Saturation in the Steady-State Operation of a Synchronous Generator

Saturation may have an impact (sometimes a significant one)
on power system.transient stability and steady-state stability calcula-
tions, as well as on real and reactive power flow calculations [29],
[60]. As is well known in practice, it also influences the calculations
of electromagnetic transients in power systems [61l]. On the other hand,
a nonlinear relation between flux and current will, if treated rigor-
ously, complicate the solution process significantly. The solution of
large nonlinear systems becomes then very expensive and time consuming.
An approximate treatment of saturation effects is, therefore, commonly
accepted. The treatment of saturation effects in steady-state operation
differs from the approach needed for transient simulations. Before
treating the latter case in section 5.4, it seems appropriate to present
a short review of the existing approaches used in stability studies,
which fall into the category of steady-state phasor solutionms.

One of the earliest approaches towards saturation is to be
found in [18], [62], where on an empirical basis, it was suggested to
calculate the values of the saturated reactances by multiplying the
unsaturated values by a constant FSt = 0.88. This simple approach is
clearly not accurate enough, since the saturation effects vary with the
type of generator and its loading conditions [63]. More recent approaches
can be divided into the following basic groups:

(1) The degree of saturation is a function of the total flux

Y = /¢3 + wi . Thegé is, therefore, only one saturation

coefficient for the total flux [64-66]; ‘

(2) The degree of saturation in each axis is propoftional to the

components of the voltage source behind Potier (or leakage)
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reactance. There are, therefore, two separate saturation

coefficients, one for each axis [24], [67].

A number of authors use flux plots to determine the satura-
tion effects f60], [68]. The results published in [68] seem to favour
approach 1. 1It is also worth mentioning‘that saturation data for a
medium-sized generator published in [69] are close to the value of éhe
empirical coefficient Fst suggesteq in [18]. Other authors, however,
suggest different saturation characteristics for the d- and g-axes. To
sum it up, it is not yet known which procedure is more accurate. The
main problem lies in the unavailability of acéurate data t29]. A possi-
ble solution of this problem could come from measuring the saturation
~effects directly in phase coordinates [12], [22], but more research is
needed [60]. |

The nonlinear flux-current characteristic caused by satura-
tion implies that it is no 1ohger possible to use, in a straightforward
way, phasor solutiops in the calculation of the steady-state conditions.
To get around this problem, an "equivalent linear machine'", which is
exactly valid in one particular operating point and approximately wvalid
in the neighbourhood of that point, is introduced [70]. The objective
is to linearize the problem by parameter modification. This is achieved
by replacing thé nonlinear characteristic by a linear curve through the
operating point and the origin, as shown in Fig. 33. This approxima-
tion is, of course, valid only in the immediate vicinity of the opera-
ting point. |

The following procedure was developed for the inclusion of

saturation effects into the calculation of the initial conditions of a

generator:
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Fig. 33. Linearization through the origin.

(1) Calculate the initial conditions assuming that the generator
is unsaturated, as explained in section 5.1.

(2) 1If the genmerator operates in the saturated region, the calcu-
lations are repeated with the unsaturated parameters replaced
by their saturatéd equivalent values. These values can be
found from the slope of the approximate straight line shown
in Fig. 33. The process is repeated until it converges.

The steady—staﬁe conditions of the network found with phasor solution
techniques do not contain harmonics. By simulating the problem in
steady-state (no fault applied) as a transient case for a period of a
few cycles, starting from the initial conditions with the linearized
generator, a new steady-state with harmonics should be reached if
saturation in generators and transformers is modelled in the Transients
Program [45]. This approach worked quite well in a case where the
transformer saturation generated harmonics [71], but it has not yet been

tested for generator saturation. A similar approach could be used for
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unbalanced cases, since the initial conditions are calculated for posi-

tive sequence currents only, as explained in section 5.1,

5.4 Definitions of Saturation in the Simulation of Electromagnetic

Transients
The analysis of transient performance of synchronous generators
with constant inductances may lead to serious errors both in form and
magnitude of currents and voltages [6l1]. Even the use of the term
"inductance" may be misleading, since it is based upon the assﬁmption of
linearity, i.e., it is no longer true that ¢ = L*MMF. It should, rather,
be said that ¢ is a nonlinear function of MMF. For example, [22] intro-
duces two types of inductances:
(a) secant inductance, defined by total flux per unit current.
(b) dincremental inductance, defined by the rate of the change of
flux linkage with respect to current.
It is proposed to base the analysis of saturation effecté
upon the following assumptions:
(1) In any reference frame, the generator fluxes can be represented
as follows:

Y = 11 + _@m (121)

where:
gl= vector of fluxes related to leakage inductances,

uneffected by saturation;
ymé vector of fluxes related to mutual inductances,
subjects to saturation effects.
Only the latter fluxes will be considered in the following
analysis.

(2) The degree of saturation is a function of the MMF, which in
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turn is a function of the total unsaturated flux wu calculated
along the.airgap line.
(3) The saturation effects are equal on both axes, i.e., there is
only one saturation coefficient,
(4) The distortion of any airgap flux waves does not effect the
unsaturated inductance values or destroy the sinusoidal varia-
tions assumed for rotor and stator inductances.
(5) Hysteresis and éddy current losses are néglected, as is usual
in power transformer modelling where it has normally little
influence on the results [72].
Assumption 2 implies the knowledge of the dependence between the instan--
taneous flux and the exéitation.current. The only available data, how-
ever, consists of the open circuit characteristic (terminal voltage as
a function of the excitation current) shown schematically in Fig. 32.
The converted curve (flux versus current) has the same form as the ori-
ginal curve. A short proof is given in Appendix [71.

The resulting curve can be approximated in a numbef of ways,
e.g., straight-line segments, exponential dr quadratic curves. It was
decided to adopt a two straight-lines approximation, due to its simpli-
city, but the actual number of segments does not change the method of
analysis. It can be increased, if so required by the shape of the
flux—-current curve. The total (mutual) flux of thé machine may, there-

fore, be described as follows (subscript "u" denotes an unsaturated

value, subscript "m'" dropped to simplify notation):

u unsaturated region
Y = (122)
m wu + a saturated region
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where:

a and m = constants resulting from the two straight-lines
approximation of the saturation curve, or from an
approximation with more than two linear segments.

The total unsaturated airgap flux, on the other hand, may be described

= A+ P (123)

u du qu

by the following equation:

where subscripts "d" and "q" denote the direct and quadrature axis

values, respectively.

Equations (122) and (123) imply that there is one saturation effect for
the total flux, rather than two separate effects, one for each axis.

This situation is show schematically in Fig. 34.

[
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Fig. 34. Schematic representation of saturation effects.

From Fig. 34 and equations (122) and (123) follows that the fluxes in
the saturated region can be described as follows (subscript "s" denotes

saturated values):

wds = m-wdu + a cos R (124)

[e'<}]
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qu = m-wqu + a sin B ‘ (125)
where:
lpdu
cos B = ﬁr.- (126)
and e
v u
sin B = —4= (127)
lPu

As already mentioned, the constants m and a result from the
straight-line approximation of the flux-current characteristic. This

situation is illustrated schematically in Fig. 35.

c le.

Fig. 35. Straight-line approximation of the
flux-current characteristic.

From basic analytic geometry follows that

E!'E
N

(128)
1

The constant a can be found from the conditions in the "knee-point"
(wc, ic). In this point both fluxes (saturated and unsaturated) must be

equal, i.e.,

mi =mi + a (129)
c 2" ¢
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N\
From (129) follows that:

a= (m1 - m2)ic (130)

Equations.(124)—(l30) describe fully the saturated fluxes in a synchron-
ous generator. They can be easily modified to accommodate additional
data, if such is available. It is, for examplg, possible to create two
sets 'of constants m and a, one for each axis. This would allow each

axis to have its own saturation coefficient.

5.5 Implementation in the Transients Program

The generator equations in d,q,0-coordinates can be rewritten

into the following form (details were given in section 2.2):

v, .= —[R];P "%E - [A]-_xyp ' (131)

where the matrix [A] is defined as follows:

r_~0 w 0 | h
l
4.1 | o olo (132)
[A] = [P]g¢[P] ~ = |
dt
0 0 0
N
o 0 | 9]

Only the two last termS'of (131) are subject to saturation influence.
Their different physical nafure results in two different implementation
procedures, one for each of them. Both procedures, however, are based
upon the following common assumption:

The genefator does not change its saturation status during one

time-step, i.e., if the generator was saturated at the beginning

of a time-step, it remains saturated at its end.

d

The saturable trgnsformer voltages a b, are described by the

following equation:
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- a
om = T 2t Lom ' (133)

Equation (133) implies that physically only the incremental fluxes are
of importance. Since the generators equations are solved with the
trapezoidal rule of integration, (133) is then transformed to the

following form (subscript "p'" dropped tb simplify notation)?{
(0) =y (t-2t) - 2y () + v (t-at)) (134)
l-—pm ym 2m —m

Substitution of (122) into (134) yields the following expression for
the ith component of the vector ym(t) (subscript "m" dropped to simplify
notation) :

At '
m wiu(t) +.a =m wiu(t—At) + a - —E{Vi(t) + vi(t—At)) (135)
Simple rearrangements yield the following result:

v (0) = B2y, (©) -, (t-8) - v, (£-at) (136)

Equation (136) provides the means for including the saturation effects
in the transformer voltages of a generator. It is simply enough to
multiply all the mutual inductances by the constant m. If the parameters
of rotor circuits of the generator are not referred to the stator side,
it is necessary to introduce the transformer ratio into the constant m.

The saéurable terms related to the speed voltages [A]yp éﬁpear
only in the following two equations:

v, = - Y (137)

dm qm

and

v

qm +w wdm (138)

where subscripts "d" and "q'" denote the direct and quadrature axis,
respectively, and subscript "m" denotes terms related to mutual induc-

tances. Equations (137) and (138) imply that it is necessary to con-

sider the entire fluxes wdm and wqm, since (137) and (138) represent

/
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algebraic relationships, rather than:ﬁifferential relationships. If:

all rotor circuits are converted to the stator side, the following

relationships can be obtained for the saturated fluxes (subscript "m"

dropped to simplify notation):

L7}

L= Mf(id + i+ iD) + a cos B (139)

f

and
) + a sin B (140)

v

mM({d +4i +4
gs 9 q g

Q

It is, therefore, enough to substitute (139) and (140) for the fluxes

related to the saturable inductances.

The procedure outlined above is very flexible and can easily accommodate

A“additional data, as it becomes available. It is not tied entirely to
‘.theftheqry outlined in the previous chapter, and it can be adapted to

accept any available representation of saturation effects.

p)
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

A range of problems related to interfacing generator models
with an Electromagnetic Transients Program has been described. The main
topics covered in this thesis were:

(a) creation of an adequateigenerator model

(b) development of two alternative interfacing techniques

(c) modelling of saturation effects in the generator.
The validity of the generator model has been verified in a number of
test studies, which also included comparisons with field test results.
Good agreement was achieved, and the resulte obtained with the two
interfacing methods gave practically ideneical answers which proves
their validity.

The discussien of saturation effects presents only a first
attempt in this area. The suggested solution methods should be tested
in practice to establish their validity. Similarly, the proposed
method IT of interfacing generator models with the Transients Program
should undergo further tests before completely replacing method I with
it. Further possible_areas of ;aditional investigations could include
such topics as:

(a) inclusioe of space harmonics in the field distribution’
(b) improvements in the calculation of initial conditions to allow
the initialization from unbalanced conditions.
This work should, therefore, be understood as a first step, only, in the

modelling of synchronous generators for electromagnetic transient

phenomena.
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APPENDIX 1
) n L 1" 1 1) ' "
DEFINITIONS OF L}, LY, T} , T} AND Lq,. Lys Tior AND T
Only the definitions of direct axis quantities will be derived.
The quadrature axis quantities can be obtained from the definitions of

the direct axis by replacing the subscripts '"d", "f", and "D" with "q",

g'", and "Q", and by replacing the voltage v, with 0, i.e., vg = 0,

f
since the g-winding is permanently short-circuited.

The qﬁantities L', Lg, Téo and Tgo are equivalent parameters
which are only defined for transient conditions following a disturbance.
According to the IEEE (ANSI) standards [73] in the U.S.A. and similar
standards elsewhere, a siﬁultaneous three-phase short-circuit is used to
‘measure these quantities. It can be simulated with (21)-(23) by apply-
ing voltages to the generator terminais which are equal in magnitude and

of opposite sign to those existing in the balanced steady-state at-rated

speed prior to the fault.

l. Subtransient Inductance and Open-Circuit Time Constants

Immediately after the disturbance (first few cycles), there
will be currents flowing in the damper windings. The following assump-
tions can be made during that short period:

(a) no voltage regulator action yet, i.e.,

Ve = const (1-1)

(b) constant flux linkages in the rotor circuits, i.e.,
wf = const (1-2)
wD = const (1-3)
The last assumption is equivalent to neglecting the resistances

in the field and damper windings, which cause a slow decay in
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the fluxes. Immediately after the disturbance, this decay is
negligible.

Equationn(22) can be used to express the currents i, and i

£ D

as functions of these constant flux linkages:

$ . (1-4)
) L.L - M /’é .
) £D f M Lel [¥p /2 Mgy

Substitution of the above expressions into the equation for the flux in

the d-axis yields: .
L.+ L, - 2M

_ _ 3.2 f D f N
by = (T4 2MfLL 2 ) 14+ Kb + Ky (1-5)
f D - f -
where 3
J —-Mf(LD - Mf)
Lelp- Mg
and 3 i
: ,/—-M (L. - M)
K2 - f*  f : f (1-7)
Lelp= Mg

d

id. It is, therefore, defined as follows:

The subtransient inductance L' relates stator flux wd to stator currents

3 L. + LD - 2Mf

"wo_ = 2 °f
L. =1L Mf

d d 2
LfLD'Mi:

(1-8)

The open-circuit time constants define the decay of the rotor
fluxes after the disturbance. They can be found from the two differential

equations for rotor fluxes. From (21) follows that

dt Re 0 s Ve
- = . + (1-9)
dy
D
| at _0 RD_ __1D _Od
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Substitution of (1-4) into (1-9) with i, = 0 (open-circuit) yields:

d
dng
dat L Relp  ReMe (el |7V
S I . + (1-10)
by, Lelp - M%
(& “Rpfe  Rple|(Yn ] L0

The open-circuit time constants are the reciprocals of the eigenvalues

of the matrix in (1-10) and they can be found from the following

equation:

¢ 2
EEEQ - l)(RDLf - l) - Efﬁggg =0 (1-11)
a T a T a

(

where

a=LL - Mﬁ (1-12)

Tl
do 2
=l£f_ E.]Z+l: (L_f_i).)2+4_}i__ (1-13)

| o 2 R RD 2/ R Ry ReRp

/ do
with the positive sign of the root for Téo’ and the negative sign for

"

Tdo

2. Transient Inductance Lé

After elapse of a few cycles, it can be assumed that the damper

winding current has already died out, i.e.,
| | iD =0 (1-14)
Therefore, only the field winding with an unchanged flux wf has to be

considered. From (22) it_folloﬁs that under these conditions the field

current is given as:

g =¥ -1 , (1-15)
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Substitution of (1-15) into the flux equation for the direct axis yields:

2
3 Me 3
Ya= a7 L)t Y 7Y U (1-16)
The transient inductance Lé is, therefore, defined as follows:
3 M%
' = —— — — -
Ld Ld > . (1-17)

The quadrature axis quantities are defined in an analogous way with the

necessary changes in subscripts mentioned earlier.

3. Special Case of One Damper Winding on the Q-Axis

The definitions have to be chénged in this case. The absence
of the g-winding can be expressed by assuming that:

R =20 ’ 1-18
g ( )
and

L =o 1-19
o (1-19)

Substitution of (1-18) and (1-19) into (1-11) yields the following

rgsult: L

™ =4 (1-20)

R
q0 Q

The substransient inductance L; ‘then becomes:

M2

"o _3q _
Lq = Lq 5 LQ | (1-21)

No transient quantities can be defined in this case.

i
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APPENDIX 2

TRANSFORMATION OF THE EQUATIONS OF THE ELECTRIC PART

The voltage equations of a synchronous generator in d,q,0-

coordinates have the following, well known form:
v = -[RIi- [L'11 - [L 191 (2-1)
P S PP p-dt —p

Application of the trapezoidal rule of integration yields:

2. N R | T R, I _
e 400 = It L0600 - (1,17, (0= LRI () - (117 1 (014, ()

-1 _ ~1ooq. S _
[Lp] xp(t—At)- [LP] [Rlip(t—At)-[Lp] [Lp(t At)]ip(t At)  (2-2)

Simple rearrangements allow rewriting of (2-2) into the foliowing form:
comp, . .

v (t) = [R 14 (t) + hist (t-At 2-3)

~p( ) = [ ]_p( ) ( ) (
where the companion resistance matrix is:

comp, _ . 2° » ' : -

[R 1=~ [F [Lp] + [R] + [Lp(t)]] (2=4)

and the past-history terms are:

; - -2 | - - [L'(t- . - -
hist (t-At) = [77 [Lp] [R] [Lp(t At) 1] iﬂt)-yp(t at) (2 S)

Equation (2-3) has the form of a resistive companion model. This form
is preserved if the equations are transformed from Park's coordinates to
phase coordinates. The resulting equations can be written in the follow-

ing way [2]: . :
v(t) = [R§°§Pc]i(t) + hist(t-At) (2-6)

13

where the subscript "a,b,c" denotes phase a,b,c-coordinates.

comp

The matrices [Rcomp] and [R
a,b,c

] are not constant, and they have to be

recalculated at each time step. The amount of calculations is, however,

comp ]
?

significantly smaller for the matrix [Rcomp] than for the matrix [Ra b.o
. b H
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if the matrix [Lp] is constant. This affects the numerical efficiency
of the solution. Because of this, d,q,0-coordinates were chosen for

the final algorithm.
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APPENDIX 3

MULTIPHASE THEVENIN EQUIVALENT CIRCUIT OF A TRANSMISSION NETWORK

It is assumed that all network parameters are linear. This is
the only assumption necessary to permit the calculation of the Thevenin

equivalent circuit of a system shown schematically in Fig. 3.1.

’/'°7N
la h
I
NETWORK
. SEE—
2a 2b
S~IoN

Fig. 3.1. Schematic representation of the network.

The object is to calculate the Thevenin equivalent circuit of the net-
work seen from the terminals la-2a, 1b-2b, ..., 1N-2N,
The network is described by the following nodal equation:
[6lv =4 | (3.1)
where [G] is a conductance matrix created by application of the trape-
zoidal rule of integration to differential equations of the network.
The Thevenin equivalent circuit can be obtained as follows:
(1) Short-circuit all voltage sources and cancel all current
sources in the network,
(2) Connect a current source of +1.0 p.u. to terminal 1i and of

~=1.0 p.u. to terminal 2i, and solve Eq. (3.1) for v. This
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produces a column vector Yot which is, in effect, the differ-
ence of the li-th and 2i-th columms of [G]_l, i.e.

+1.0 in 1li-th component
[Glv = 0 except (3.2)

-1.0 in 2i-th component
produces a vector:

Tri T F1i T Dod (3.3)

The vector Vo is the i-th column of the Thevenin resistive

terminal

matrix [RN ] in Eq. (83).

(3) Repeat step 2 for all other terminal pairs of interest,
i=2, ... N. This ends the calculation of the Thevenin re-

terminal

sistive matrix [ }. The open circuit voltages v (t)
8¢S no

are calculated by the Transients Program as described in [45].
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 APPENDIX 4

RESISTIVE COMPANION MODEL

The general property of implicit integration methods to create-
resistive companion models will be demonstrated for the electric part of
a synchronous generator. The procedure for other network components is

very similar.

The differential equations of a generator in d,q,0-coordinates

can be rewritten into the general form of:

d -
e S (IO ESE (R T (4-1)
where:
. _ -1 ' _
[e,] = - L1 (R] + LD %)
and
[c1=-[L]" C(4-3)
2 P

As is well known, the exact solution of (4-1) has the following general

form [74]:

t
Cilat., . C -
i) = [elO108 g eone) + [ e D10 1y (0 ar 4-4)

After application of any implicit integration technique, (4-1) can be
rewritten into the following form:

ip(t) = [C3]_ip(t-At) + [quyp(t) +u (4-5)
~ where u represents the remaining part of the integral from (4-4) which
contains only known 'past history" values at t-At, t-2At, etc. The
definition of the matrix [C3] depends on the type of implicit integra-
tion technique used in the solution of (4-1). For the trapezoidal rule

of integration, it is given as follows:

At -1 X :
e,] = (111 - 25 e »7h a1 + 2 1o D (4-6)
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Simple rearrangements of (4-5) result in the following relationship:

_ ;-1 ' -1 . -1
T (®) = (6,174 (6) = [C,17IC, L (e-08) - (€1 wu  (4-7)
or in a shorter form:
zp(t) = [05]1p(t) + hist(t-At) (4-8)

Equation (4-8) has the desired form of a resistive companion
model and it has been obtained without specifying the type of implicit
integration method. Therefore, the resistive companion model can be
calculated for any systeﬁ of equations of the form bf (4-1) independent
of the type of implicit integfation technique used in the solution of
(4-1). The calculation of the matrix [C5] and the vector hist(t-At) is

very simple when the trapezoidal rule of integration is applied.



109.

APPENDIX 5

REDUCTION OF THE GENERATOR EQUATIONS

red

The reduced resistive matrix [RSS ] is defined as follows:

RIS = (R 1 - [R__IIR_ITR__] (5-1)
wherehmétrix [RSS] has the following, well known form (in d,q,0-
coordinates) [8], [9]:
a5 a1, 0 |
[Rss] = a,, a,, 0 (5-2)
L0 0 azg

The elements 811 35, and a5q

The elements a and a,

12 1

~

dependence on .

Proof

The matrix [R__] has
rr

R ]

rr

where all the nonzero elements

matrix [Rrr]_l is simply [75]:

[R_ 17t

rr

are functions of the stepsize At only.

are functions of both w and At, with a linear

the following form:
|

B, , O
-_—_ - -

0 : B2

(5-3)

are functions of At only. The inverse

The matrices [Rrs] and [Rsr]\are defined as follows:

[Rrs

-1
B, | O
=] e —_ - | _ (5_4)
0 | B, T
i
-
Gn 0
as, 0 0
‘ (5-5)
0 a, 0
Lp a72 94




with all the nonzero elements being functions of At only;

with the elements a
the elements a

with linear dependence

.
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-
2y 85 46 a4

[Rep] = | a,, a5 26 89y (5-6)
0 0 0 0

140

16> 2170

on w.

Simple matrix multiplication yields:

815y By0s and a,, being functions of At only and

a,,» and a,c being functions of both w and At

B )
by, 0
b 0
-1 12
[Rr 1 7[R __1= (5-7)
r rs o 0
32
L0 b, 0
where all the nonzero elements are obviously functions of At only.
. , | )
Flgally, the product [Rsr][Rrr] [Rrs] is given as:
— | -
|2 P T 25 By, 31 Pgy t 2 0
_1 |
R MR IR L = a2y, By + 8y by, 85 D3y T 2 0
0 0 0
~
11 €12 0
T %21 €22 0 (5-8)
L0 0 0

Since only the elements 8165 8199 35, and a, depend (linearly) on w,

1 5

and c

the elements c 21

12 in the resulting matrix will have the same type

of dependence.

Substitution of (5-8) into (5-1) yields the desired result:

dp; 4, 0
red, _ A
R 1 =14y, d, 0 (5-9)
0 0 d33

which has the form of (81).
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The matrix [R::d] has to be calculated only once as the cons- ‘
tant of a simﬁiafion run if At does not change and if saturation is not
considered. .Tﬁe‘elements dlz and d21 depend linearly on w, and their
updating for changes in w is then obviously quite simple.
Similar procedures can be used for the four-phase equivalent

circuit of the generator mentioned in chapter 3.5. The resistive matrix

red

[RSS ] will then be given as:
B
e 1 e, 0 ey
red €1 €92 0 . €2u
[R. 7] = ' (5-10)
S8 0 0 e 0
33
e 0 0 e
= by |

where the elements €115 €145 €995 €335 €47, and e”q.are functions of At

and e, are functions of both w and At

only. The elements e P

12° G210

with linear dependence on w. It can.also be shown that the following

'

entries of (5-10) are equal to the corresponding entries of (5-9):

e, = d12 (5-11)
e, = d22 (5-12)
e =d__ . . (5-13)

33 33
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APPENDIX 6

PRACTICAL CALCULATION OF THE MATRIX [Rz:d]

The Gauss-Jordan elimination process, which has been chosen,

as the most efficient method, produces not only the reduced matrix

red . . . : . _ -1
[RSS ], but glso the distribution factor matrices [D12] = [Rsr] [Rrr]

- -1 . _ , : _

and [DZL] = —[Rrr] [Rrs]' The matrix [Dlz] is needed for the calcula

tion of the right-hand side of (80), and the matrix [D21] is necessary
in the solution of the equations of the concealed terminals, once the
retained variables have been found. A short description of the'algorithm
is followed by a flowchart‘of a computer program based on this algorithm.

Consider a system of linear algebraic equations:

[Clx =D (6-1)
where:
[C] = n x n matrix of coefficients,
and X, b = vectors with n components.

The objective is to arrive at a reduced system of equations for subset 1

in (6-2):
|
C11 | C12 E1
- —y — = = |- (6-2)
€1 1 Gy 5,

where [Cll] and [C22] are matrices of order m x m and (n-m) x (n=m),

respectively, and x;, b; are vectors with . m components and:zz, EQ

vectors with (n-m) components. .

"Elimination of variables X, from subset 1 results in the following

system of equation:
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—Cred ' a1 [L] [ ]
11 1 C12C22 | [ b,
- - = == - (6-3)
-1, -1
TC22%1 | 22 | |22 %

Equation (6—3)Has the desired form allowing the calculation of variables
X without the need to calculate the variables x,, provided bé is known.
The transformation of the matrix of (6-2) into the matrix of (6-3) is
carried out by exchanging - one at a time - the variables xj, bj for
mtl < j < n. This is the Gauss-Jordan elimination process. For example,

b,

3410 etc.

if the variables Xj’ bj are to be exchanged (variables xj+1,

have already been exchanged) and the coefficients from the last exchange

are ci;ld)’ then the j-th row of (6-2) may be written down as follows:
(old)_ (old) (old) - o =
cjl X, + cj2 X, ... F cjj xj Cj(j+1)bj¥1‘+ ..u + Cjnbn' ’bj
(6-4)
Exchange of Xj’ bj yields:
(o0ld) (old) (old) (old)
c, c... c., .. c.
S D S S el U A 2§ O 1 N
c. 1 e c, j-1 e, 3 c. 2 S n
J : J J J J
(6-5)
where c, = cg?ld)
J 3
If (6—5) is rewrittenvwith the coefficients;
c(new)x + ﬂ‘c(new) X + C(new)b. + ...+ c(new)b = x, (6-6)

B e (6 R D B e T F A R L W
then it is obvious that the following relationships hold for the elimin-

ated row:

c€°1d)
C§Eew) - ZJ(%I‘W for j %k (6-7a)
33 ‘
and
c§?ew) = —;%EEE) btherwise (6-7b)

i3
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Insertion of (6-6) into the remaining equations results in the following

relationships:
é(old)
(new) _ (old) (0ld) "jk ' . _
Ci Cix " Sy ;TEIET for k ¥ j (6-8a)
i3
and c(old)
(new) _ ij . _
cij = d(old) otherwise (6-8b)

iJ
A flow chart of a computer program executing the algorithm described

above is presented on the next page.



Fig. 6-1.

START

K =

A= 1.0/c(2,)
=1

— |

K=K+1

1K) = CK,D)

]

31 =1,
3 C(I,K) = C(1,K) + B x C1(D)

N

DO 1S K =1, N
15 C(K,J) = C1{K) x A

Flow chart of compﬁtér program for matrix

reduction.

115.
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APPENDIX 7
CONVERSION OF THE OPEN CIRCUIT CHARACTERISTIC TO

A FLUX-CURRENT CHARACTERISTIC

The open—circuit'characteristic v = f(if) is measured

(RMS)

under balanced no-load conditions, i.e.,

i=1i =1 =i =41i =31 =20 (7-1)

The voltage equations (in phase coordinates) for these conditions are

as follows:

Vo= Mf sin 81 if (7-2)
vy =W Mf sin 62 if (7-3)
vC =W Mf sin 83 1f (7-4)

from which follows that sinusoidal changes in flux are followed by sin-

usoidal changes in voltages, since

dy

T dt (7-5)

X:

if hysteresis and eddy current losses are neglected, as per assumption
5, chapter 5.4. Therefore, the RMS value of voltage difference between

any two phases is given as follows:

’ w'Mf‘lf V3 0o '
v = = (7-6)
(rms) /7 /5
From (7-6) follows that the conversion of V(ﬁMS) values to the instan-
taneous flux values becomes a simple rescaling:
\Y 2
_ _(RMS)

v (7-7)

W

The excitation current if does not have to be converted.

Consider the voltage equation for vq, the only nonzero voltage under

balanced no-load conditions:
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= ...3.. o =
vq = /2 Mf ip=o0 wd (7-8)

Equation (7-8) can be visualized a system of coils placed in a rotating
field created by a permanent magnet. This situation is shown schemati-

cally in Fig. 7-1.

Fig. 7-1. Schematic representation of an unloaded generator.

The decrease in the value of Mf (due to saturation) results in a de<
creased value of the flux linkage wd, and therefore in a decreased vol-
tage vq. However, since no a.c.-components are present, there are no
harmonics generated in the field distribution, i.e., the voltage vq is
still described by a linear equation of the form of (7-8). Therefore,
the converted open circuit characteristichhas the same form, as the

original curve.
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APPENDIX 8

EXAMPIE FOR A MULTI-MASS SYSTEM

The case presented here is a standard IEEE benchmark test case
for the simulation of subsynchronous resonance phenomena [5]. The
effects of a simultaneous three-phase short-circuit in a system as shown

in Fig. 8.1 and 8.2 are simulated.

R,=02 B  INFINITE

AL 0T BUS
© MG o i N W oy
GEn | X; 14 Xp=i5  Xe==i371|X; =].06 i !
. ' Xb=j15 \r—_—Xb;ﬁOE
%Xf =j.04 |
S

Fig. 8.1, System diagram.

DIRECTION
0F
ROTATION

GERODOEHDODE

Fig. 8.2. Model of the shaft system.

The three-phase fault was applied at bus B at time t = 0 and then removed

after time 0.075 sec, as soon as the current in each phase crossed zero.
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results presented here were obtained with method I with a time step of

usec. Fig. 8.3 shows the simulated electromagnetic torque of the

generator, Fig. 8.4 shows the simulated mechanical speed of the generator

rotor, and Fig. 8.5 shows the torque on the shaft between the generator

rotor and the exciter. The increasing oscillations of this torque point

out

the

TOROUE (p.u.)

the reason for shaft damage which occurred in a real case from which

data of Fig. 8.1 and 8.2 were derived.

_4.0

AN f\/\/\/’\/\/\/\/\/

0.5

L _4.0 T/ME{s)

Fig. 8.3. Simulated electromagnetic torque of the generator.

_0.02

& - | |

‘ E: //’\\TE\_////’\?\\~J////F\\‘\v///f_\‘\\;\~__‘\J//’~\ t //\\1

| §0 | 0.1 0.2 \Q/ \/
wt-002.  mme(s)

Fig. 8.4. Simulated mechanical speed of the generator rotor.

20

TORQUE (p.u)
(%)
S
C
O
LN}
| <
N}
<
<
(]
Ln

--20 C nme(s)

Fig. 8.5. Simulated torque on the shaft between
the generator rotor and the exciter.



120.

The results presented here are practically indistinguishable from those

in [5], which were obtained with a program developed in industry.



