
Optimum Test Strategy for SoCs

Including wrapper and TAM design and optimization

by

Zahra sadat Ebadi

B.A.Sc, Sharif University of Technology, 2000

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 4, 2002

© Zahra sadat Ebadi, 2002

In presenting this thesis in partial fulfilment of the requirements for an
advanced degree at the University of British Columbia, I agree that the
Library shall make it freely available for reference and study. I further agree
that permission for extensive copying of this thesis for scholarly purposes may
be granted by the head of my department or by his or her representatives.
It is understood that copying or publication of this thesis for financial gain
shall not be allowed without my written permission.

Department of Electrical and Computer Engineering

The University of British Columbia
Vancouver, Canada

D a t f i D e c 6 , Z O Q 2 _

Abstract ii

Abstract

Using the large number of transistors available on a chip, designers have

already managed to put an entire system on a single chip. These are referred

to as System-on-a-Chip (SoC). Being able to rapidly develop, manufacture,

test, debug and verify complex SoCs is crucial for the continued success of

the electronics industry.

In the problem of SoC test integration three issues need to be addressed:

wrapper design, TAM design and test scheduling. In this thesis, a novel wrap

per design method is introduced to minimize the core test time, the number

of test I/O pins and the required ATE memory. While previous methods for

wrapper design only minimize the test time, the proposed method considers

all of these factors in the test cost.

Also a novel TAM based on time domain multiplexing (TDM-TAM) is

introduced. This TAM is P1500 compatible and uses a P1500 wrapper. Its

characteristics are flexibility, scalability, and reconfigurability.

Contents 111

Contents

Abstract i i

Contents i i i

List of Tables vi i

List of Figures ix

Preface x i i

Acknowledgements x i i i

1 Introduction 1

1.1 Motivation 1

1.2 Research Goals 3

1.3 Thesis Organization 4

2 Background and Previous Works 6

2.1 Overview of SoC Testing 6

2.1.1 Wrapper 7

Contents iv

2.1.2 TAM 12

2.2 Wrapper Optimization Methods 16

2.3 TAM Optimization Methods 17

2.4 Focus and Contributions 20

3 Wrapper Design 23

3.1 Wrapper Design Issues 23

3.2 Wrapper Design w.r.t. Test Time 24

3.2.1 TAM Chain Design . . . 24

3.2.2 Ordering of TAM Chain Elements 29

3.2.3 Partitioning of TAM Chain Elements 30

3.3 Wrapper Design w.r.t. Area 42

3.4 Wrapper Design w.r.t. the ATE Memory 45

3.4.1 Wrapper Design Algorithm to Reduce UMA 55

3.4.2 ATE Deployment Procedure to Reduce UMA 60

3.5 Wrapper Design for Flexible Cores 61

3.6 Experiments 67

3.7 Conclusions 75

4 Time Domain Mul t ip lexed T A M 76

4.1 Basics 77

4.2 Timing Model 81

Contents v

4.3 Overhead Area Model 85

4.4 Dynamic Masking 87

4.4.1 Multi-Frequency SoC 88

4.5 Optimization 90

4.6 Case Study 97

4.6.1 Platform Description 97

4.6.2 Results 102

4.7 Conclusions 105

5 Conclusions 107

5.1 Future Work 109

5.2 Contributions of this Work 110

Bibliography 112

A P1500 Wrapper Elements 120

A. l Wrapper Boundary Cells 120

A.2 Wrapper Interface Port (WIP) 122

A.3 Wrapper Instruction Register (WIR) 123

A. 4 Bypass Register 124

B Minimum Makespan Problem 127

B. l Problem Formulation 127

B.l . l Strongly NP-complete Problems 128

Contents vi

B.2 Heuristics for Solving the Problem 128

B.2.1 An Example using the LIST Heuristic 128

B.2.2 An Improvement: The LIST DECREASING Heuristic 130

B.3 Polynomial Approximation Scheme to "Makespan" 135

List of Tables vii

List of Tables

1.1 Manufacturing test cost issues 3

3.1 List Decreasing Algorithm 35

3.2 Using Bin-packing solution to solve MPS 36

3.3 Using First Fit Decreasing to solve MPS 37

3.4 Best Fit Decreasing Algorithm (BFD) 38

3.5 The maximum scan-in/scan-out length of the assignment of

core internal scan chains to TAM chains for core 6 of p93791

of ITC'02 benchmarks 39

3.6 Adding wrapper input/output cells to TAM chains 40

3.7 Adding wrapper input/output cells to minimize UMA 57

3.8 ATE deployment procedure 61

3.9 The result of the wrapper design algorithm for SI 196 of IS-

CAS'89 Benchmarks 67

List of Tables viii

3.10 The result of the wrapper design algorithm and comparisons

with previous works for core 6 of p93791 of the ITC'02 SoC

Test Benchmarks 71

4.1 Area estimates for TDM-TAM controller block 86

4.2 U226 from ITC SoC'02 benchmarks 91

4.3 Test data for the cores in D695 95

4.4 Test data for the cores in D695 96

4.5 Overhead area comparison 104

4.6 Scenarios for assessing TAM performance 105

List of Figures ix

List of Figures

1.1 Example of System-on-Chip (SoC) 1

2.1 SoC test integration steps 7

2.2 Conceptual view of IEEE P1500 wrapper 11

2.3 Conceptual TAM architecture 12

2.4 TAM using bus-based connection 15

2.5 TESTRAIL architecture for TAM [41] 16

2.6 Comparison of result using ILP [14] and GA [19] 19

2.7 Example of result of the system in [19] 20

3.1 Ordering of TAM chain elements 29

3.2 A conceptual view of TAM elements partitioning over TAM

chains 33

3.3 The scan-in length length vs. TAM width 42

3.4 Wrapper design for core 6 in P93791 SoC from ITC'02 for

TAM of width 38 45

3.5 Useless Memory Allocation 48

List of Figures x

3.6 Alternative wrapper design with equal test time 50

3.7 TAM chain design and ATE memory bitmap when S j < s0 . . 52

3.8 TAM chain design and ATE memory bitmap when s,- — sa . . 53

3.9 ATE test vector deployment 55

3.10 Wrapper design for S1196 from ISCAS'89 benchmarks 66

3.11 The final wrapper design for core 6 of p93791 from ITC'02

SoC test benchmarks for TAM width=38 70

3.12 New TAM width for core test vs. given TAM width 72

3.13 Required memory for core test vs. TAM width 73

3.14 Core test time vs. TAM width 74

4.1 Example illustrating the concept of Time Domain Multiplex

ing (TDM) 77

4.2 Conceptual view of the IEEE P1500 wrapper and TAP con

troller 78

4.3 Block diagram for TDM-TAM TAP Controller 79

4.4 Single branch TDM-TAM 80

4.5 Using TDM-TAM for multi-frequency SoC 89

4.6 Optimal configurations for SoC U266 assuming two branches:

(a) total effective TDM-TAM width=2, (b) total effective TDM-

TAM width=3 93

List of Figures xi

4.7 Benchmark U226: Test time (cycles) vs. total effective TDM-

TAM width for two-branch configurations 94

4.8 Benchmark D695: Design for minimum test time, 5 branches,

with mask 32 bits and, total width=65, total test time=9869. 97

4.9 TAM architectures considered in our comparison 100

4.10 Test Time for Serial P1500, NIMA, and TDM-TAM 106

A.l P1500 Wrapper Boundary Cells 121

A.2 P1500 Wrapper Boundary Cell: Cell Example Displaying all

Events 122

A.3 P1500 Wrapper Interface Port (WIP) 123

A.4 P1500 Wrapper Instruction Register Circuitry 124

A.5 P1500 Wrapper Instruction Register: Example Implementation 125

A.6 P1500 Wrapper Bypass Register 126

A.7 P1500 Wrapper Bypass Register: Example Implementation . . 126

Preface xii

Preface

These papers have been published earlier:

1. Z. Ebadi, A. Ivanov, "Design of an optimal test access architecture

using genetic algorithm", Proc. IEEE Asian Test Symposium (ATS),

pp. 205-210, 2001.

2. Z. Ebadi, A. Ivanov, "Design of an Optimal Test Access Architecture

under Power and Place-and-Route Constraints using GA", Proc. IEEE

Latin-American Test Workshop(LATW), pp. 154-159, 2002.

3. Z. Ebadi, A. Ivanov, "Time Domain Multiplexed TAM: Implementation

and Comparison", will apear in Proc. Design Automation and Test in

Europe, March 2003.

A ckn owledgem en ts xiii

Acknowledgements

I would like to dedicate this thesis to my parents, Seyyed Mohammad and

Seyyedeh Hajar Ebadi, and my dear husband, Alireza Nasiri Avanaki, who

was my mentor during my studies in UBC.

I had the pleasure of being a member of the SoC research group at UBC.

I would like to thank my fellow researchers in this group for their support

and ideas.

This work is supported by Micronet, the Canadian Microelectronics Cor

poration, and the Natural Sciences and Engineering Research Council of

Canada. Their support is greatly appreciated.

I would like to thank Dr. Andre Ivanov for his encouragement and in

valuable advice. Also I would like to thank Dr. Resve Saleh for his helpful

discussions.

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Motivat ion

Spurred by technology which makes millions of gates per chip now available,

system-level integration is evolving as a new paradigm, allowing an entire

system to be built on a single chip, referred to as System-on-a-Chip (SoC;

Figure 1.1). The advantages of an SoC over its conventional multi-chip coun

terpart include higher performance, lower power consumption, higher density

and lower weight.

| i : . \R l

RISC'

ROM

DSP

SRAM

T1MI-R

MPLCi
UI)I.

Sci('

ORAM

• • • • • • • • • • • • • • l l

Figure 1.1: Example of System-on-Chip (SoC).

In SoC design, using complex, pre-designed and pre-verified functional

Chapter 1. Introduction 2

blocks (modules) allows greater on-chip functionality, and leads to shorter

product development cycles. These reusable modules are called Embedded

Cores, while the reuse design style is known as a core-based design. A few

examples of reusable cores include CPUs, DSPs and embedded memories.

Being able to rapidly develop, manufacture, test, debug and verify com

plex SoCs is crucial for the continued success of the electronics industry.

To make production practical and cost effective, however, the International

Technology Roadmap for Semiconductors (ITRS) identifies a number of ma

jor hurdles to be overcome [5]. Among these problems, testing and diagnosis

of SoCs is the most important. Many experts believe that testing SoC chips

will be the bottleneck of future designs if issues of DFT (design for testability)

for SoCs are not addressed [41, 54]).

ITRS introduces "Manufacturing Test Cost" as a difficult challenge (through

2007) to be solved in the short term. The most important issues involved in

manufacturing test costs are shown in Table 1.1.

Table 1.1 makes it obvious that DFT methods that reduce test cost by

minimizing test I/O pin, test time, and equipment reuse, are desired. Also,

since using such DFT methods leads to longer test development time, auto

matic test program generators are required. The research reported in this

thesis focuses on DFT methods for SoCs to reduce test costs and also develop

tools to automate generating test circuitry for SoCs.

Chapter 1. Introduction 3

Table 1.1: Manufacturing test cost issues (from Table 19 in [5]).

Difficult Challenge
through 2007

Summary of Issues

Manufacturing Test Cost

Test cell throughput enhancements are needed
to reduce manufacturing costs.

Device test needs must be managed through
DFT to enable low-cost manufacturing test
solutions; including reduced pin count test,
equipment reuse, and reduced test time.

Automatic test program generators are
needed to reduce test development time.

1.2 Research Goals

For the problem of SoC test integration three issues need to be addressed:

wrapper design, test access mechanism (TAM) design and test scheduling.

The wrapper forms the interface between the embedded core and its system

chip environment, and provides switching capability between the normal op

eration mode and test mode. A TAM is used to deliver test data to the

cores and also to transfer test response from the cores to the sink where it

is evaluated. Test scheduling focuses on determining the start time of the

various core tests, such that no resource conflict occurs with respect to the

test access infrastructure from I/O pins to core terminals, and vice versa [21].

The test cost of an SoC depends on three major factors: (1) test time,

(2) test input/output (I/O) pins, and (3) Automatic Test Equipment (ATE)

machine resources. In an SoC integration problem, it is desirable to minimize

Chapter 1. Introduction 4

test cost by minimizing the test cost factors.

Therefore, the goal here is to design and develop a computer-aided-design

(CAD) tool which facilitates shorter test development time. Using this tool

SoC designers can design the "optimal" test circuitry (with the minimum

test cost).

The first two issues concerning SoC testing and their optimization are

addressed extensively in this thesis, both theoretically and experimentally.

Software has also been developed for optimal SoC testing in two steps: a core

wrapper design for each individual core within the SoC, and a TAM design

for the entire SoC.

In the first step, the wrapper that optimizes the core's test cost (by

minimizing all the important test cost factors), is designed for each core.

In the second step, the optimal TAM configuration for SoC are derived to

optimize test cost (by minimizing test time and test I/O pins).

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides

an overview of basic concepts of SoC testing such as wrapper, TAM, and

so forth. It also describes previous work on wrapper and TAM design and

optimization. This work on TAM optimization [19, 20] is addressed in this

chapter.

Chapter 1. Introduction 5

Chapter 3 describes wrapper design and optimization. In this chapter, a

novel wrapper design method is introduced to minimize the core test time,

the TAM width (translates to test I/O pins) and the required ATE memory.

Superior performance of my method as compared to existing methods is

proved through several experiments.

Chapter 4 proposes a novel TAM based on time domain multiplexing

(TDM-TAM), which can especially handle multi-frequency SoCs. It also

provides TDM-TAM characteristic details and a comparison to the two other

approaches.

The thesis is concluded with a summary, possible directions for future

research, and the contributions this project has made to the SoC test research

community.

Chapter 2. Background and Previous Works 6

Chapter 2

Background and Previous

Works

This chapter presents an overview of basic concepts of SoC testing, along

with a background on wrapper and TAM design and optimization methods.

Also, the focus and contribution of this research project are presented.

2.1 Overview of SoC Testing

In a core-based design, the system integrator is responsible for putting to

gether a test strategy (for all embedded cores, and User Defined Logics

(UDLs) and interconnect wiring) for the entire system chip.

The SoC test integration steps are shown in Figure 2.1. The wrapper

concept and existing wrappers in the literature are discussed in Section 2.1.1.

The definition of TAM and different types of TAM design are reviewed in

Section 2.1.2. For test scheduling, given a set of tests for each core in the SoC

and a set of test resources (e.g., TAM), a test plan for conducting the tests

Chapter 2. Background and Previous Works 7

on the SoC is derived. Test scheduling is the last step of SoC test integration,

however, it is not part of test circuitry design and can usually be done after

tape out; thus, it is not in the scope of this research.

Core i SoC test
data requirements

SoC test
requirements

and constraints
test resource
constraints

Wrapper design for all the cores

Test circuitry design

T A M design —

Finish ")

Figure 2.1: SoC test integration steps.

2.1.1 Wrapper

A wrapper is a shell around the core that integrates it with its surroundings

and provides an isolation mechanism for testing purposes. A wrapper acts

like a switch between normal functional access and test access, providing a

mechanism for core test data access and core test isolation; it allows the tester

to control core inputs and observe core outputs via the TAM, so that the

core's internal test can be re-applied at the SoC level. To avoid any damage

to the SoC, a core has to be isolated when it, or one of its neighboring cores

or UDLs, is tested.

Chapter 2. Background and Previous Works 8

Furthermore, a wrapper should have additional modes so that the isolated

core can interface with available test access paths and assume internal states

necessary for the core's own test execution, as well as testing external in

terconnects and UDLs. Therefore, a well-designed wrapper can handle both

core-internal testing and core-external testing. In order to achieve these ob

jectives, the following capabilities are potentially required at core terminals:

• Input Observation: This capability allows logic values of the core

input terminals (which are supplied by external logic) to be observed

by the wrapper.

• Input Control: This wrapper function allows test data to be applied

to the core input terminals.

• Input Constraint: Allows forcing or limiting core input terminals

to fixed logic values. Input constraint can be useful during testing to

prevent damage to the core, reduce power consumption, and so forth.

• Output Observation: This capability allows for the observation of

logic values of the core output terminals (which are propagated from

internal logic) at the wrapper.

• Output Control: This wrapper function allows test data to be applied

at the core output terminals by the wrapper, such that the test data

can be propagated to the system chip logic external to the core.

Chapter 2. Background and Previous Works 9

• Output Disable: Allows forcing tri-sate core outputs to their inactive

state. This is useful in preventing damage to other tri-state drivers on

the same bus during the test application.

• Output Constraint: This allows constraining appropriate non-tri-

sate core output to fixed logic values in order to prevent damage to the

logic external to the core and reduce its power consumption.

There are several proposed core test wrappers in the literature. A core

test wrapper called TestShell [41] has been proposed by Marinissen, and is

currently being used by Philips. This wrapper supports four basic modes:

(1) normal (functional), (2) core test, (3) interconnect test and, (4) bypass.

In this approach, TAMs are called TestRail. In principle, a TestShell is

connected to the same TestRail at both input and output. Therefore, the

TAM input plug and the TAM output plug of a TestShell normally have the

same width.

Varma and Bhatia of Duet Technologies described a very similar wrapper,

called Test Collar [50]. Aside from the different naming of basically similar

features, the main difference between this wrapper and TestShell is that the

Test Collar does not have a bypass feature.

The IEEE P1500 Standard for an Embedded Core Test (SECT; under

development) [4] consists of two components: a Core Test Language to facil

itate the test knowledge from the core provider to the core user, and a Core

Chapter 2. Background and Previous Works 10

Test Wrapper [44]. The P1500 wrapper (see Figure 2.2), which satisfies all of

the functional requirements mentioned above, is composed of the following:

• Wrapper Boundary Cells: These are associated with the core terminals.

They provide controllability as well as observability. Together, these

cells make the Wrapper Boundary Register.

• Wrapper Instruction Register (WIR): This is used to load instructions

to control the operation of the wrapper.

• Bypass Register. This is the bypass for the Serial Interface Layer (SIL).

• Wrapper Interface Port (WIP): This is for the control of wrapper reg

isters via SIL. It comprises control and data signals for accessing DFT

features of the target core.

A detailed description of P1500 core test wrapper elements is reported in

Appendix A.

The P1500 wrapper connects to one mandatory one-bit wide TAM, Wrap

per Serial Input/Output (WSI/WSO), and zero or more scalable-width TAMs

(TAM-in/TAM-out). A minimal compliant implementation has only the

single-bit TAM plug, through which both test control values for the WIR, as

well as test stimuli and responses are transported. Envisaged typical usage

has one multi-bit TAM next to the mandatory TAM. In this case, access to

the bulk test data is performed along the multi-bit TAM, while the single-

Chapter 2. Background and Previous Works 11

WBR

Inputs

TAM-in

WSI

P1500 Wrapper

W* C o r e

-nf Scan chain 0 f
-4 Scan chain 1 ~Jf-

Bypass

WIR

WRCK WRSTN
Wrapper Control

signals

Wrapper
Boundary

Cell

Outputs

^TAM-out

• WSO

Figure 2.2: Conceptual view of IEEE P1500 wrapper [44].

bit TAM is used to program the WIR, and possibly transport test data in a

silicon debug scenario. TAM-in and TAM-out need not have the same width.

This research on optimal wrapper design (Chapter 3) is based on the

P1500 wrapper standard. The previous works on wrapper design and opti

mization are reported in Section 2.2.

Chapter 2. Background and Previous Works 12

2.1.2 T A M

Since cores in an SoC are not directly accessible via chip inputs and outputs,

special access mechanisms are required to test them at the system level.

Zorian et al. [54] proposed a generic conceptual test access architecture

for embedded cores, with the following components: source, sink, and TAM

(Figure 2.3). A TAM is used to deliver test stimuli from the source (which

generates test stimuli) to cores, and also to deliver responses from cores to

the sink (which evaluates test responses).

Source : Zorian 99

Figure 2.3: Conceptual TAM architecture.

In this architecture (Figure 2.3), both source and sink can be either on-

chip or off-chip. The TAM is not only the physical mechanism that connects

source and sink to the core, but also includes the control signals needed for

this connection.

Chapter 2. Background and Previous Works 13

The IEEE P1500 proponents, accepting the fact that test schemes for

each core cannot be standardized, specifically decided not to standardize the

design for the TAM. Hence, the TAM design is left to the SoC integrator.

Several TAM architectures are suggested. These architectures can be

classified into four categories: (1) multiplexing, (2) serial connection, (3)

indirect access and (4) bus-based connection.

In the first category, multiplexing is uses to access the cores. The simplest

method in this category directly multiplexes the test pins to the primary

inputs/outputs (I/O) [30]. Another method modifies the cores such that

each core has a transparent mode for testing [22]. There are several problems

with the multiplexing TAM methods, such as limited scope of use for future

complex SoCs, large overhead area, long test time, and non-scalability of the

architecture.

TAMs in the serial connection category [40, 49, 52] use the established

IEEE 1149.1 standard. For a few cores on an SoC, it may be possible to

spend time transporting the test vectors serially to the cores. However, as

the number and complexity of the cores increases, a serial solution based on

the IEEE 1149.1 standard, or its variants, proves too costly in terms of test

time.

There are some proposed methods that implement TAM without a direct

path from I/Os to each core. One of these methods is Networked Indirect

Chapter 2. Background and Previous Works 14

and Modular Architecture (NIMA) proposed in [45], where the emphasis is

placed on modularity, generality, and configurability of the architecture. The

basis of NIMA is the establishment of indirect digital communication paths

among cores using packet-switching connections. It is assumed that all test-

related communications destined and/or originated to or from the SoC need

to be communicated by the on-chip network.

Bus-based connection schemes are the most common TAM architecture.

A number of different variations of the scheme are reported in [41, 50, 53].

The idea is to have parallel access to the cores using a shared medium on

which data is broadcasted. Bus access control is usually provided by tri-

state switches (Figure 2.4). In terms of trading-off increased overhead area

to reduce test access time, bus-based architectures are the most efficient TAM

schemes suggested to date.

Marinissen and others [41] suggest a topology (as a bus-based TAM)

where cores are connected in a rail configuration, and buses have different

widths, fan-in, and fan-out. If needed, each core can be bypassed to access

the next one in line, and control is achieved by a serial connection. This

architecture is conceptually illustrated in Figure 2.5 (the control signals for

the bypass elements are not shown). Test data is normally passed through

the bypass elements and the corresponding cores are inhibited in this mode.

When the data has to be applied to a core, the bypass element is inhibited

Chapter 2. Background and Previous Works 15

Control

Test Data BUS 1
t

Core Core Core Core

Control i

Test Data BUS N

t
J\j lfi"

t
tri-

j n
tri-

switch s witch

Core Core Core Core

Figure 2.4: TAM using bus-based connection.

and the corresponding core reads the data. The wrapper configuration used

for each core (not shown in the diagram) closely resembles that of the first

draft of IEEE P1500.

Using the bus width as the varying parameter, TAM architectures based

on a bus provide some degree of adaptability and configurability for the

designer: increased overhead area is traded-off for reduced test access time

to design for the best case. In Section 2.3 previous work on TAM optimization

are reported.

Chapter 2. Background and Previous Works 16

16

• W Core A
16

32
CoreB CoreC

16 16

16

10

CoreD
Core E

CoreF
10

SoC

Figure 2.5: TESTRAIL architecture for TAM [41].

2.2 Wrapper Optimization Methods

The existing wrapper optimization methods are mostly based on the PI500

wrapper standard. The publications on P1500, however, provide only general

guidelines for wrapper design, and details are left to the core user. For exam

ple, a wrapper may provide width adaption in case of a mismatch between

the core I/O width and TAM width (e.g. by serial-parallel and parallel-serial

conversion). Interconnection between the wrapper cells, core-internal scan

chains and TAM plugs effect core test time, required TAM width, and also

required ATE memory.

. Marinissen [42] proved that the unbalanced TAM scan chains (i.e. the

scan chains formed by internal scan chains and the core's inputs/outputs

Chapter 2. Background and Previous Works 17

having unequal lengths; see Section 3.2.1) of the wrapper lead to longer core

test time. He suggested a method to balance the TAM scan chains of the

wrapper, aimed at minimizing core test time [42].

Iyengar [32, 34, 35] not only improved Marinissen's method of reaching

shorter test times, but also considered minimizing TAM width while keeping

the test time at the minimum.

Gonicari [24] addressed useless memory allocation (UMA) as an issue in

wrapper design. To reduce on-chip control when feeding embedded core's

multiple scan chains, the test vectors are augmented with useless data to ac

count for their unequal lengths (Section 3.4). Gonicari proposed a new test

methodology which merges core wrapper design and ATE memory manage

ment problems. His core wrapper design is capable of finding the minimum

number of TAM scan chain partitions, so that for each partition, useless

memory is minimized.

2.3 T A M Optimization Methods

An efficient TAM should reduce test costs by minimizing test application time

and test I/O pins. Since there is no standard for a TAM configuration, each

type of TAM has its own optimization method. Usually for any proposed

TAM, optimization is also addressed as part of the TAM solution. How

ever, sometimes the problem of TAM optimization for a general bus-based

Chapter 2. Background and Previous Works 18

configuration is also addressed.

Chakrabarty [14, 16, 31] addressed several issues in optimal TAM design

with respect to test time, for example, assignment of cores to the test buses,

the distribution of the test width among multiple test buses, and the estima

tion of TAM width required to satisfy an upper bound on testing time. All

of these problems are proved to be NP-complete, and therefore, in [14, 16]

integer linear programming (ILP) is used to solve them.

As an extension of previous work, Chakrabarty [15] proposed a method of

designing the optimum TAM (using ILP) considering system level constraints

on power consumption and place-and-route (arising from the functional inter

connections amongst the cores). All of his work [14-16] required serialization

at all the cores' I/Os.

As part of this research, the TAM optimization problem was. The same is

sues as Chakrabarty (cores assigned to buses, width distribution and required

width estimation) were investigated. However, the necessity of serialization

constraint was removed, which allowed the system to handle serial or parallel

loading of test data for any core; this improves the test time for up to 40%.

The implementation of the proposed method was built around a genetic al

gorithm (GA). In Figure 2.6 this method [19] is compared to Chakrabarty's

[14].

In another work, the proposed method have been improved to handle the

Chapter 2. Background and Previous Works 19

p*- U s i n g GA - a - U s i n g ILP |

5.0E+05 -|

4.5E+05

S 3.5E+05

3.0E+05

2.5E+05 -1 ! 1 1 1 1 . ! 1 1
28 32 36 40 44 48 52 56 60 64

Total width (bits)

Figure 2.6: Comparison of result using ILP [14] and GA [19].

power and place-and-route constraints [20]. In this work the proposed system

was able to find an optimal test architecture with four options: (1) without

any constraint, (2) with a power consumption constraint, (3) with a place-

and-route constraint, and (4) with power consumption and place-and-route

constraints. An example of the results of the proposed system is shown in

Figure 2.7.

In some works the problem of wrapper and TAM optimization are com

bined and solved together [33-36]. For example, in [33], the wrapper design

algorithm (which minimizes test time and TAM width) calculates test time

Chapter 2. Background and Previous Works 20

4.00E+05

2.00E+05 -I , 1 1 1 1 1 , 1 , 1
20 28 32 36 40 44 48 52 56 60 64

Total width (bits)

Figure 2.7: Example of result of the system in [19].

values that are used by a mathematical model for TAM optimization.

2.4 Focus and Contributions

The goal for this research project is to build a tool for designing a test

circuitry for SoC test integration. As it is shown in Figure 2.1, the first step is

wrapper design. In this thesis, a new method for wrapper design regarding all

important test cost factors, including test time, required width, and required

ATE memory is proposed. As reported in Section 2.2, all previous works

consider only one or two of the major factors. The proposed approach not

Chapter 2. Background and Previous Works 21

only considers all the major test cost issues, but also, its performance is

better than the previous methods (e.g., lower test time as compared to the

methods that just minimize test time [32, 42]). Also, the proposed method

is implemented as a tool for optimal wrapper design for a given core. The

details of wrapper design and optimization are discussed in Chapter 3.

In Chapter 4, a novel TAM based on time domain multiplexing (TDM-

TAM) is proposed. This TAM is P1500 compatible, and uses a P1500 wrap

per. TDM-TAM characteristics are flexibility, scalability, and reconfigurabil-

ity. Also, this TAM could be very useful for testing multi-frequency SoCs be

cause with TDM, we can manipulate frequency. The concept of TDM-TAM

is expanded theoretically and experimentally. The optimization method is

tailored specifically for TDM-TAM based on my previous work in TAM op

timization [19, 20]. The efficiency of TDM-TAM is proved by a comparison

with two other TAMs.

The contributions of this thesis are summarized as follows:

1. A novel wrapper design algorithm considering all major components of

test cost.

2. A novel TAM based on time domain multiplexing with the following

special characteristics:

• P1500 standard compatible

Chapter 2. Background and Previous Works 22

• Reconfigurability (even after fabrication)

• Low overhead area and acceptable test time

• Ability to handle multi-frequency SoCs without expensive ATE

and complicated ATE programming

3. Specific optimization algorithms for TDM-TAM based on previous work

on TAM optimization is reported in [19, 20].

Chapter 3. Wrapper Design 23

Chapter 3

Wrapper Design

This chapter introduces the important issues in wrapper design. Next, the

TAM chain design problem is addressed and existing methods for this prob

lem are reviewed. A new method is introduced that improves wrapper design

to minimize area and ATE (Automatic Test Equipment) resources, as well

as core test time. Finally, wrapper design for flexible cores is elaborated.

3.1 Wrapper Design Issues

There are many important factors to consider in the design of wrappers.

Anything that has an impact on the test cost can be a factor. The most

important part of the test cost is known to be determined by the test time.

The silicon area is also a factor of the test cost. Another factor is the number

of I/O pins in the test cost, because the number of I/O pins is limited by

area. That is, as the number of I/O pins increase, we need a larger area

so the test cost increases. The resources of an ATE machine can also be

counted as a factor of the test cost. Since we need more resources from an

Chapter 3. Wrapper Design 24

ATE , such as memory, we have to employ a more expensive ATE, which has

a large impact on the test cost. To summarize, the factors that should be

considered are as follows:

• Test Time

— Core Internal Test Time: core test time

— Core External Test Time: interconnection test time

• Area

— Silicon Area

— I/O Pins

• A T E Resources

— Memory

— I/O Pins

3.2 Wrapper Design w.r.t. Test Time

3.2.1 T A M Chain Design

One of the most important tasks in wrapper design, which has a direct impact

on the core test time, is to make the interconnection between the wrapper

boundary cells, the core internal scan chains, and the TAM lines (plugs). We

Chapter 3. Wrapper Design 25

refer to this task as TAM chain design. Also, we call the elements that make

up a TAM chain (wrapper input cells, core internal scan chains and wrapper

output cells), TAM chain elements. Access to the core for testing is already

guaranteed if all the TAM chain elements are accessible from the TAM plugs.

In this section, it will be shown that the ordering and partitioning of TAM

chain elements has a large impact on the size of the resulting test vectors

set. Also, it is obvious that the size of the test vector set is an important

cost factor in the testing of ICs. When the test vector set is large, not only

the application test time is long, but also, expensive pieces of equipment

with large pin memories to store those vectors are required to test the IC.

Therefore, the reduction of the size of the test vector results in the reduction

of test cost.

Wrappers are used for both core-internal and core-external tests. Design

ing the wrapper to optimize the test vector set for a core-internal test might

lead to a conflict with the test vector set optimizing for a core-external test.

Usually, the core-internal circuitry is much larger than the circuitry used to

interconnect the cores. Therefore, the test data volume involved in core-

internal testing is much larger than the test data volume for core-external

testing. Also, in many cases, the wrapper is designed by the core provider

to whom the circuit environment in which the core is used is unknown, and

data about the core-external test is not available at the wrapper design time.

Chapter 3. Wrapper Design 26

Therefore, we give priority to optimizing the core-internal test vector set,

and the wrapper is designed without considering the core-external test.

The test time T (in clock cycles) of a core is determined [23] by the scan-in

length the scan-out length s0, and the number of test patterns NP:

T = (1 + max(sj, s0)) • NP + min(sj, s0) (3.1)

This equation assumes that the scan-out operation of one pattern is over

lapped with the scan-in of the subsequent test pattern, and that the ac

tual test application costs one clock cycle. In regular scan testing, typically

Si — s0. Since in the wrapped cores, the scan chains also include wrapper

cells for core terminals, and the number of core input terminals might dif

fer from the number of core output terminals [42], then Si and sQ might be

different for these. Note that this formula is valid even for non-scan-testable

cores, for which s, — s0 — 0.

T h e o r e m 3.2.1 For a core with Nr inputs, No outputs, N$ scan chains of

length li, I2, • • •, INs respectively and Np test patterns, the lower bound on the

core test time, T, is given by the following:

Tlower Nplmax ~t~ Np -|- Imax

and the minimum T A M width required to achieve this test time's lower bound

Chapter 3. Wrapper Design 27

is given by Wmin, as follows:

_ RL + max{NI,N0)^
Wmin — | |

*>m.ax

where lmax = maxj=1>... ! jVs U and L = £i l s i l{.

Proof Since in best case, each TAM chain element is on one TAM line, so

Si and s0 cannot be less than lmax- In the best case the longest internal

scan chain is on a private TAM chain making S j = s0 — lmax- Substitution

of these values into Equation (3.1) gives the lower bound for the test time

Nplmax + Np + lmax- Also, the minimum width required to achieve this lower

bound is in the case where S j = s0 = lmax for all the TAM chains. As well,

we know that S j > , and s0 > L~W

W°, giving us the following:

> L + Nj _ L + Nr L + NT

&i _ rxr i — '"max '* 'mai _ T x r " _ 5 ~ t - m u x ' "itLux :— • • .— ^

max

L + Np _ L + Np . W > L + N0

So — JJT 5 So — bjriax * '-max _ T T 7 ? _
max

Therefore, W > L+ma*iN''No). However, can only take integer values, so
'•max

}y > rJ-+max(JVj,JV0)i I
lmax

Theorem 3.2.2 For a core A7/ inputs, No outputs, Ns scan chains of

length li, I2, • • • ,INs respectively, and Np test patterns, the upper bound on

* [.] denotes rounding to the closest larger integer.

Chapter 3. Wrapper Design 28

the core test time, T, is given by the following:

TuPPer = (1 + L + max(/V/, N0))NP + L + min(/Yj, iV0)

where L — J2fJi h-

Proof The worst case for test time is when only a one-bit wide line is used for

TAM. In this case all the scan chains and inputs and outputs are on one TAM

line, so Si = L + Ni and s0 = L + No- By substituting in Equation (3.1), the

upper bound of the test time is (1 + L + max(./V/, N0))NP + L + mm(Nr, No)-

I

In our test architecture design approach, we distinguish two types of cores:

• Cores with fixed-length scan chains: cores for which the numbers and

the lengths of the internal scan chains are fixed. Examples of such cores

are hard cores and firm cores after scan insertion. When designing an

SoC-level test architecture, we have to cope with the fixed scan chain

parameters.

• Cores with flexible-length scan chains: cores for which the numbers and

lengths of the internal scan chains are determined during test architec

ture design. Examples of such cores are soft cores and firm cores before

scan insertion. Such cores provide better opportunities to minimize test

time, as we can tune their scan chain parameters to fit the overall SoC.

Chapter 3. Wrapper Design 29

In all the sections of this chapter, except Section 3.5, we assumed all the

cores have fixed-length scan chains.

3.2.2 Ordering of T A M Chain Elements

From the set of all TAM chain elements, two non-disjoint subsets are involved

in the loading and unloading of test patterns. The wrapper input cells and the

core-internal scan chains (we refer to these as the input elements) participate

in loading of test patterns, while the wrapper output cells and core-internal

scan chains (we refer to these as the output elements) participate in the

unloading of test patterns. In order to reduce and so, it is best to order

the items in any TAM chain such that the input elements are at the head, and

the output elements are at the tail of the TAM chain. However, considering

that core-internal scan chains are in both sets, the elements should be ordered

in the following way: (1) wrapper input cells, (2) core-internal scan chains,

and (3) wrapper output cells.

input wrapper cells

input elements

output elements

scan chains
output wrapper cells

— E t scan chain 1 scan chain Ns

scan chain bypass

•Bypass;reg
wrapper bypass

•Bypass;reg

Figure 3.1: Ordering of TAM chain elements (optional items are dashed).

Chapter 3. Wrapper Design 30

In Figure 3.1, the generic template for a single TAM chain is shown. As

another option, we can provide a bypass for the core-internal scan chains, and

at the cost of a multiplexer and an additional control wire, we can reduce

the length of the access chain by bypassing them during the core-external

test. We can also provide a bypass for the entire TAM chain in this wrapper.

Such a bypass is practically useful when multiple cores are concatenated into

a single TAM, such as the case in the Daisy-chain architecture described in

[8]. Cores which are not being tested can be bypassed in order to reduce the

access length to cores which are being tested. As multiple cores are daisy

chained into one TAM, this might lead to long TAM wires, and hence to long

propagation delays.

3.2.3 Partitioning of T A M Chain Elements

Usually the TAM width is limited because of limited IC pins, silicon area,

and so forth. Therefore, in many cases, the total number of TAM elements

is much larger than the width of the TAM (the number of TAM lines). In

these cases, it is required to partition the set of TAM elements into a number

of subsets equal to the number of available TAM chains.

The partitioning of TAM elements over TAM wires has a direct impact

on scan-in time, S j , and scan-out time s0. Partitioning determines core test

time; hence, we look for a partitioning of the TAM elements which yields to

Chapter 3. Wrapper Design 31

the minimum test time.

For cores with fixed-length scan chains, the TAM element partitioning is

challenging. Suppose that we have the core and the following information:

Nj functional inputs, No functional outputs and N$ scan chains with lengths

li, I2, • • •, INS. We want to design a wrapper for this core with TAM width

(TAM plugs) W to minimize the core test time.

The partitioning problem can be formulated as finding an assignment of

all TAM elements to one of the available TAM chains such that the core test

time, Equation 3.1, is minimized. This problem can be formalized as follows

[42]:

Problem 1 Partitioning of TAM Chain Elements (PTE)

Assume a set of W identical TAM chains and a set WT — {Ii, I2, - • •, IN,} of

wrapper input cells, where each wrapper input cell has a length 1, 1(1 j) — 1.

Given a set of <S = {si, s2, • • •, Sjvs} of core-internal scan chains, where scan

chain Sj has length lj, 1(SJ) = lj. Given a set of WO = {Oi, 02, • • •, 0NO}

of wrapper output cells with length of 1, 1(0j) = 1. We define, the group

of TAM elements as: TS = VVl U S U WO, with \TS\ — NT + Ns + N0- A

TAM partition V = {P\, P2, - • •, P\v} of TS is such that it divides TS into

W disjoint sets, one for each TAM chain. For each TAM chain j, 1 < j < W

we define a set of input elements INj = Pj — WO and a set of output

elements OUTj — Pj - Wl. Thus, the scan-in length of TAM chain j,

/

Chapter 3. Wrapper Design 32

becomes i(sj-) = l(INj), which is actually the length of the wrapper input

cells (or the number of wrapper input cells) and the sum of the lengths

of the scan chains in TAM i. Also, the scan-out length of TAM chain j

becomes l(s0j) = l(OUTj). Hence, the scan-in and scan-out length for the

whole core with this partitioning becomes Si(V) = maxjlf (SJ.) and s0(V) —

m&x^zY(s0j), respectively. Thus, the core test time for this partitioning

would be T(V) = {1 + max(si(V), s0{V))} • NP + min{si(V), sQ{V)). From

the latter definitions, the PTE problem can be stated as follows:

Find an optimal TAM partition V*, which satisfies TCP*) < T(V), for all

partitions V of TE.

To solve the PTE problem, we use a three-step approach.

1. First, we assign the core-internal scan chains in S to W TAM chains,

such that the maximum sum of scan lengths assigned to a TAM chain

is minimized. The resulting partition is named Vs-

2. Second, we assign the wrapper input cells in W I to TAM chains on

top of Vs, such that the maximum scan-in time of all TAM chains is

minimized.

3. Third, we assign the wrapper output cells in WO to TAM chains on

top of Vs, such that the maximum scan-out time of all TAM chains in

minimized.

Chapter 3. Wrapper Design 33

w

scan chain 1 scan chain y1 H o . °*
, Bypass reg

scan chain
y1+1 scan chain y2

Bypass reg

i. H i, h
scan chain

yjAu
— scan chain Ns iSv- i O , h»-Ho.

Bypass reg

Figure 3.2: A conceptual view of TAM elements partitioning over TAM
chains.

Note that wrapper input and output cells have lengths of one. Therefore,

Steps 2 and 3 can yield an optimal solution in linear processing time, once

Step 1 is completed. The first step is to solving the problem of partitioning

scan chains over TAM chains, which can be formulated as follows.

Problem 2 Partitioning of Scan Chains (PSC)

Assume a set of <S = {s\, s2, • • •, SJVs} of core-internal scan chains, where

scan chain has length /j, i.e. l(si) = U, and a set of W identical TAM

chains. A scan partition is a partition VS = {Psi, Ps2, • • •, Psw} of <S

into W disjoint sets, one for each TAM chain. TAM chain i, 1 < i < W,

Chapter 3. Wrapper Design 34

contains all scan chains in Ps,. The scan length of scan partition V is given

s{V) = max|=jv(/(Psi)), where for any X C S, l(X) = £ a e A r (Z(s)) . F i n d a n

optimal scan partition V*, which satisfies s(V*) < s(V), for all partitions V

of S into W subset.

Theorem 3.2.3 The PSC problem is NP hard.

Proof The PSC problem [39] is equivalent to the well known problem of

minimum makespan problem, described in Appendix B. To show that PSC

is NP hard, we consider the decision problem version of PSC: given Ns scan

chains with length {l\, l2, • • •, INS} and W TAM chains, is there any partition

(of Ns scan chains into W subset, Pj) such that, X êPjGj) < VP,? This

problem is exactly equivalent to the multiprocessor scheduling version min

imum makespan problem. The multiprocessor scheduling (MPS) problem is

stated as follows [47]:

Instance: There is a finite set A of "tasks", a "process time" t(a) for each

a £ A, a number m > 0 of "processors", and a "deadline", D > 0.

Question: Is there a schedule of A into m disjoint subsets, i.e. A =

Ax U A2 U • • • U Am, such that max{£ a e4 t(a); 1 < i < m} < D?

This problem is known to be strongly NP-complete[47].

The equivalence between a decision version of PSC and a minimum makespan

problem can be easily established by noting the correspondence between pro

cessors (m) and TAM chains (W), and between tasks and scan chains. The

Chapter 3. Wrapper Design 35

Table 3.1: List Decreasing Algorithm.

Algorithm 1 [LP]
(assume W < Ns)
Sort S such that l(si) > l(s2) > • • • > 1{sNS)',
for i :— 1 to W

Pi — S j ,

for i := W + 1 to Ns

select k € {j\l{Pj) = mm^^w l(Px)};

Pk :=PfcU{5i};
return maxi<x<w/ l(Px)',

deadline D corresponds to /C. Therefore, the decision version of PSC problem

is NP-complete. Also, when a decision version of a combinatorial optimiza

tion problem is proven to belong to the class of NP-complete problems, then

the optimization version is NP-hard [6]. So PSC problem is NP-hard. |

In the literature, various polynomial-time algorithms have been proposed

for MPS [9, 18, 28, 47] that achieve near-optimal schedules. These methods

are reviewed in the following.

Graham [25] proposed the List Decreasing (LD) algorithm (See Table

3.1), that first sorts the tasks in order of decreasing processing time. Then it

assigns the task at the top to the minimally loaded processor. LD has a time

complexity of 0(NslogNs + Ns\ogW), in which W is the number of the

processors (the width of TAM) and Ns is the number of tasks (scan chains).

In Appendix B it is proved that the worst case performance ratio is | — 3̂ 7-

Chapter 3. Wrapper Design 36

Bin-packing and MPS problems are dual problems[27]. In the MPS prob

lem, the goal is to pack several objects of given sizes into a given number

of bins, and to minimize the maximum necessary capacity of the bins. The

original formulation of MPS was scheduling jobs of different lengths to run

on a given number of machines so that the whole system finishes as early as

possible (these formulations are equivalent). In the bin-packing problem, the

number of bins is variable, but their capacities are constant. The two prob

lems are the duals of each other: both are known to be strongly NP-hard.

Suppose we have a super-optimal solution to the bin packing problem, an

instance that is known to use at most as many bins as the optimal, but may

"overhang" a bit, by a factor of e, making it infeasible. This solution then

can be used to approximate the corresponding makespan problem in Table

3.2

Table 3.2: Using Bin-packing solution to solve MPS.

Let L = max{maxj Sj, ̂ s,}.
Guess a median d £ [L, 2L}.
Find an e-dual approximation for packing W bins of size d.
If less than W bins were used, search the smaller half of the interval.
If W bins proved to be too few, search the larger half of the interval.
Repeat until length of the interval is less than 1.

The algorithm shown in Table 3.2 is very general. For example there is

a method (Table 3.4) in which the First Fit Decreasing (FFD) algorithm is

used for bin-packing [11, 38, 46]. 'Also, for upper bounds of the interval, the

Chapter 3. Wrapper Design 37

List Decreasing algorithm is used.

Table 3.3: Using First Fit Decreasing to solve MPS.

Algor i thm 2 (Using First F i t Decreasing)
Sort S such that l(si) > l(s2) > • • • > KSNS)

MinCost := ^ S i ;
C v := LD;

CL - L m a x (T T 3 r , h, MinCost)\;
3 3W

d := CL;

while d < Cu A FFD(d) > W do
d := d+ 1;

return "P;
First F i t Decreasing : FFD(d)

Assume initially Pj = 0 for all j
Sort »S such that l(si) > l(s2) > • • • > 1{SNS)

for i := 1 to A r

s

J := 1
while l(Pj) + k > d do

J := J + 1
Pj :== Pj U 5j;

return max{j| Pj ^ 0};

As we mentioned above, MPS and bin-packing are equivalent, so from

a standard algorithm providing a bin-packing solution we can extrapolate

to solve MPS. There are some standard algorithms for bin-packing, such as

FFD, Last Fit Decreasing, Worst Fit Decreasing, and Best Fit Decreasing

(BFD) [11, 38, 46]. BFD is the best algorithm for our purposes because it

looks for the best possible assignment (of scan chain to TAM chains) with

the minimum cost (minimum makespan). Algorithm shown in Table 3.4 uses

the BFD to solve PSC.

Example Consider core 6, the largest logic core from p93791 from the

Chapter 3. Wrapper Design 38

Table 3.4: Best Fit Decreasing Algorithm (BFD).

Algorithm 3 (BFD)
Assume initially Pj — 0 for all j
Sort S such that /(si) > l(s2) > ••• > 1{SNS)
for i := 1 to Ns

find Pmax with current maximum length
find Pmin with current minimum length
assign to TAM chain P, such that |/(Pm a x) — {l(P) + Ksi)}\ ^s minimum
if there is no such TAM chain (P) then assign S j to P m „

return P;

ITC'02 SoC Benchmarks [7]. Core 6 has 417 functional inputs, 324 func

tional outputs, 72 bidirectional I/Os, and 46 internal scan chains. Seven

scan chains have length of 500 bits, thirty have length of 520 bits, and nine

scan chains have length of 521 bits. LD, the one that used FFD to solve

MPS (Table 3.3) and BFD have been used to assign core internal scan chains

to the TAM chains. The result is shown in Table 3.5.

From Table 3.5, the three algorithms, LD and BFD perform the same,

but Algorithm 2 performs better. Here, LD and BFD perfomarance is the

same baceause in both algorithm all the scan chains are sorted first, so best

assignmnet (BFD) is the same as the assignmnet to the TAM chain with

minimum length (LD). Algorithm 2 performance is better, for example, for

W = 9, both LD and BFD output has a cost of 3081, but the Algorithm

2 solution has a cost of (makespan) 3000, which means saving 81 cycles for

each pattern, considerable for a large number of test patterns.

The same result (better performance of Algorithm 2) has been derived

Chapter 3. Wrapper Design 39

Table 3.5: The maximum scan-in/scan-out length of the assignment of core
internal scan chains to TAM chains for core 6 of p93791 of ITC'02
benchmarks.

makespan: max(l(P))
T A M Width Algorithm 1 Algorithm 2 Algorithm 3

(LD) (using bin-packing) (BFD)
1 23789 23789 23789
2 11904 11904 11904
3 8263 8263 8263
4 6202 6202 6202
5 5142 5142 5142
6 4141 4140 4141
7 3621 3620 3621
8 3101 3100 3101
9 3081 3000 3081
10 2581 2580 2581
11 2561 2560 2561
12 2080 2080 2080
13 2061 2060 2061
14 2060 2060 2060
15 2041 2000 2041

16-19 1560 1560 1560
20-21 1540 1540 1540

22 1521 1500 1521
23 1041 1041 1041

24-38 1040 1040 1040
39-42 1020 1020 1020
43-45 1000 1000 1000
46-oo 521 521 521

Chapter 3. Wrapper Design 40

Table 3.6: Adding wrapper input/output cells to TAM chains.

Algor i thm 4: Add ing wrapper input/output cells to T A M chains
i := AT/ or N0;
Whi le i > 0, do

find Pmax with current maximum scan-in/scan-out length
find Pmin with current minimum scan-in/scan-out length
i f I(Pmax) < l(Pmin) then

Add l(Pmax) ~ I (Pmin) wrapper input/output Cells to P m i n

i- i-(l(Pmax) I (Pmin))
i f I (Pmax) = KPmin) then

Add L£J to all Ps;
i f i%w ^ 0 then

Add 1 wrapper input/output cell to i%w Ps;
return V (which we call it after that Vs',

for differenet cores. Therefore, Algorithm 2, the one using a bin-packing

solution, is chosen for the first step of wrapper design, the assignment of core

internal scan chains to the TAM chains.

The second step is adding the wrapper input cells to the TAM chains,

and the third step is to add wrapper output cells. These two steps are equal

and both can be solved optimally in linear processing time. Algorithm 4 t in

Table 3.6 is proposed for steps 2 and 3.

The result of wrapper design for core 6 of p93791 is shown in Figure 3.3.

For this wrapper design we used Algorithm 2 to assign core internal scan

chains to the TAM chains, and Algorithm 4 to add wrapper input/output

cells. In Figure 3.3, the max{sj, s0} vs. TAM width is plotted (for this core

since A 7/ > No, so max{s,,s0} = s»). We observe that as W increases, the

t in Algorithm 4 i%w is the remainder of i divided by w.

Chapter 3. Wrapper Design 41

scan-in length decreases in a series of distinct steps. This is because as W

increases, the core internal scan chains are distributed among a larger number

of TAM chains. Thus the scan-in length decreases only when the increases

in W are sufficient to remove an internal scan chain from the longest TAM

chain. For example, when the internal scan chains of core 6 are distributed

among 24 TAM chains, is 1040 bits long. The value of remains at 1040

until W reaches 39. We will use this trend to save in test I/O pins (for

example, we can reach the same test time using 24 TAM lines instead of

38 TAM lines, saving 14 TAM lines for just one core). Another observation

is that beyond a TAM width of 47, the test time does not decrease. This

observation corresponds to Theorem 3.2.1: the lower bound on the test time

based on the theorem is this (for this example lmax = 521 and number of test

patterns NP = 218):

T > lmax • NP + lmax + NP = 521 x 218 + 521 + 218 = 114317

and the minimum TAM width required to achieve this test time lower bound

IS Wmin

_ rL + max(NI,N0)1

min — I , [
'max

7 x 500 + 30 x 520 + 9 x 521 + max(417 + 72, 324 + 72)
' 521 '
23789 + 489 _ 24278

' 521 ' ~ ' 521 '

Chapter 3. Wrapper Design 42

47

Therefore, any increase after 47 bits in the TAM width does not affect the

test time.

Max of scan-in/scan-out length

.Q 15000

£ 10000

l
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Width (bits)

Figure 3.3: The scan-in length for core 6 in P93791 SoC from SoC bench
marks ITC'02.

3.3 Wrapper Design w.r.t. Area

As we mentioned in the previous section, sometimes a decrease in TAM width

does not affect the core test time. For example, for core 6 of SoC p93791,

the test time for widths 38 and 24 are the same, so we can save 14 bits on

Chapter 3. Wrapper Design 43

TAM width. Therefore, our wrapper design strategy is to first minimize test

time, and second, to identify the maximum number, W, of TAM chains that

actually need to be created to minimize test time, when W TAM lines are

provided to the wrapper. The set of values of W corresponding to the values

of 1 < W < co is known as the set of pareto-optimal points [1] for the graph.

"Pw, the two-priority wrapper optimization problem, addressed in this

section, can now be formally stated as follows:

• Vw- Given a core with Nj functional input, No functional output and

Ns scan chains of lengths l\, l2, • • ., INS, a n d TAM width W, assign the

W + NS + N0 TAM chain elements to W < W TAM chains, such that

(i) core test time in Equation 3.1 is minimized and (ii) W is minimum

subject to priority (i).

The second priority is based on the earlier observation that test time can

be minimized even when the number of designed TAM chains is less than

W. This reduces the width of a TAM required to connect to the wrapper.

Therefore, Vw is analogous to the problem of MPS (minimizing the makespan

of scheduling) with the secondary priority of bin-packing (minimizing the

number of bins). When W is fixed at the value of W, this problem is equal

to the partitioning of TAM chain elements (PTE), which has been proved to

be NP-hard (Theorem 3.2.3). Therefore, the Vw problem is also NP-hard.

To solve Vw an algorithm with three steps is developed:

Chapter 3. Wrapper Design 44

1. Calculate the possible minimum test time (T(W)) using TAM width

W. For this step we can use the previous algorithm of wrapper design.

2. Calculate the possible minimum W', for which W < W and T(W) =

T{W'). For this step we can use a standard algorithm for bin-packing,

such as First Fit Decreasing (FFD). Therefore, W = FFD(T(W)).

3. Now, we know the minimum test time and the minimum obtainable

width. The last step is wrapper design (assignment of TAM scan chain

elements, i.e., internal scan chains, inputs and outputs) for a TAM

width of W' using wrapper design algorithms is discussed in the Section

3.2.3.

For example, for the core 6 of SoC p93791, when W = 38, our wrapper

design algorithm works as follows. First, the possible minimum test time for

the TAM width 38 should be calculated. Using the wrapper design algorithm

(Algorithm 2), the scan-in and scan-out times are s, = s0 — 1040 and the

total test time (NP = 218) is T(38) = 227978.

In the second step, we calculate the possible minimum W. For this step

we can use the first fit decreasing procedure (mentioned in Section 3.2.3).

The result becomes W = FFD(1040) = 24.

The last step is wrapper design for W' = 24, as shown in Figure 3.4. For

this step we can use Algorithm 2 (for internal scan chain assignment) and

then Algorithm 4 (for adding wrapper input/output cells).

Chapter 3. Wrapper Design 45

=so= =1040 1 SI=S0=1040 —

TAM chain 1 520 520 ~] TAM chain 1 520 520 I
TAM chain 2 521 500 | • •

• • •
• • ^ TAM chain 15 520 520 , I

• I rV TAM chain 16 521 | 500 I
TAM chain 8 521 500] 1 y : •
TAM chain 9 521 r •
TAM chain 10 521 TAM chain 22 521 | 500 I
TAM chain 11 520 TAM chain 23 521 • • • TAM chain 24 | 489 1 521 l39Kil

• •
TAM chain 37 520
TAM chain 381 489 1 520 !3»B0!|

(a) wrapper design for W=38 (b) wrapper design for W=24

Figure 3.4: Wrapper design for core 6 in P93791 SoC from ITC'02 for TAM
of width 38.

As we can see in Figure 3.4, even with a 14-bit decrease in width, the

scan-in/scan-out lengths and so the core test time has not been changed.

With this algorithm we can save in the TAM width of each core, which

decreases the total TAM lines required to test the whole SoC. This translates

to silicon area and test I/O pins savings.

So far, the wrapper design optimizing both test time and area (silicon

area and I/O pins) has been addressed. The remaining important factor in

wrapper design, ATE memory, is addressed in the next section.

3.4 Wrapper Design w.r.t. the A T E

Memory

In this section we discuss wrapper design optimization considering ATE re

sources. One of the important ATE resources which has a large impact on

Chapter 3. Wrapper Design 46

ATE cost is memory. Therefore, the goal is to minimize the memory require

ment for testing by eliminating useless test data memory for SoC testing.

First, useless test data memory is analyzed. Next, the core wrapper design

algorithm is combined with a new test vector deployment procedure stored in

the ATE. To reduce memory requirements, the proposed core wrapper design

finds the minimum number of TAM chain element partitions, minimizing the

useless memory allocation in each partition, which facilitates efficient usage

of ATE capabilities. Furthermore, the new test vector deployment procedure

provides seamless integration with the ATE [24].

Since modern SoCs may consist of highly complex cores, the memory

requirements to.test these cores tend to increase. Therefore, careful manage

ment of memory requirements is of importance. Although tester accuracy

has improved by 12% annually, IC performance increases 30% per year [12].

This forces semiconductor manufactures to step down from functional testing

paths and adopt design-for-test (DFT) solutions for SoC. These new solu

tions, however, come with different requirements for the ATEs. Hence, the

features of these new DFT-ATEs differ significantly from the conventional

ATEs [10]. For example, one of the features of these new testers manages

memory as a reconfigurable pool, that is, by using the right memory man

agement, the DFT makes a larger number of transfers on some pins, while

others remain unchanged [10]. Here, we show how core wrapper design and

Chapter 3. Wrapper Design 47

a simple ATE deployment procedure (which also accounts for memory man

agement) can be combined to exploit this feature of DFT-ATE, leading to

reduced ATE memory requirements.

Two factors influence ATE memory requirements: TAM design and core

wrapper design. The previously described approaches to designing core wrap

pers indirectly influence ATE memory requirements. A potential straight

forward solution to the ATE memory problem is a built-in self-test (BIST).

However, to make existing cores BIST-ready, considerable redesign effort is

required and performance penalties are incurred. An alternative solution to

the ATE memory problem is test data compression [17, 37]. While test data

compression reduces useful data, our goal here is to reduce useless data (in

multiple scan chain embedded cores). The useless data can be explained as

follows. The test vectors should be augmented with useless data (to account

for the unequal lengths of multiple scan chains) to reduce on-chip control.

For example, for three scan chains of lengths 2, 5 and 3, the test tools pad

the scan patterns with "don't cares" (X) to make them all of equal lengths.

This is illustrated in Figure 3.5, where the padded values (shown as X) are

part of the test vector. Hence, they have to be stored explicitly in the ATE

memory, even though they do not represent any valuable test information.

This extra memory is defined as useless memory allocation, hereafter referred

to as UMA [24].

Chapter 3. Wrapper Design 48

first bit last bit

S1 X X 0 1

S2 1 0 1 0 0

S3 X X 1 0 1

Figure 3.5: Useless Memory Allocation.

Here, the core wrapper design and the ATE memory management prob

lems have been merged. The core wrapper design algorithm should be capa

ble of finding the minimum number of TAM chain elements partitions such

that for each partition the UMA is minimized. The ATE deployment pro

cedure (proposed in [24]) provides memory management for the ATE, since

it exploits the features of the core wrapper and deploys test data on each

TAM chain partition as required. That is, the ATE deployment procedure

uses the reconfigurable memory pool (RMP) feature of DFT-ATEs.

To recognize the feasibility of this method, one should note that the ATE

supports sequencing-per-pin, which replicates a sequence of events in the

same manner as an IC timing/logic simulator [51]. The only requirement of

the ATE is to allow the memory management module to transfer test data on

some ATE channels, while the remaining ATE channels remain unchanged.

Recently [48], the sequencing-per-pin ATEs have been used in a similar man

ner where separate groups of ATE channels run at different frequencies, with

Chapter 3. Wrapper Design 49

each group having different memory requirements.

From Equation 3.1 we know that core test time is a function of max(sj, SQ)

because the last term of the equation, min(si,s0), has a small influence on

the overall test time. It should also be noted that each TAM line is assumed

to be assigned to one ATE channel. Having explained the and s0, the

following two examples clarify their relation to UMA.

Example Figure 3.6 shows two core wrappers with 4 inputs, 4 outputs, 4

internal scan chains of length 5, 8, 11 and 12, and a TAM with width of

4. The two designs are equivalent from the test time point of view since

the longest scan-in/out have an equal length (for both designs = s0 = 12).

The TAM chains representation and the corresponding ATE memory bitmap

(AMB) for both designs are shown. Because the inputs are loaded last, they

are shown at the end of the memory bitmap. Considering that the ATE

can control the load of each group of TAM chains of different lengths, the

UMA in both cases can be reduced. However, the control overhead implied

in this situation should be considered. The main difference between AMB

for design 1 and design 2 is that the latter has a smaller number of ATE

channels partitions (e.g. AMB1 has 4 partitions, the maximum possible

number of partition in which each TAM chain is one partition, while AMB2

has just two partitions: pi ={TAM chains 1 & 2}, p2 = {TAM chains 3 &

4}). The advantage of this (having less partition) is explained as follows.

Chapter 3. Wrapper Design 50

Design 1 Design 2

I I I I I 5 F F o\o c | o | I | I | I | 5FF 0 ' |O |O ' j
8FF 8FF

| 11FF
12FF 12FF

TAM Chain Elements Partition (Designl) TAM Chain Elements Partition (Design 2)

5FF I I I I
8FF

11FF
12FF

5FF | I | I | I
8FF

11FF | I
12FF

ATE Memory Bitmap for Designl

(a)

ATE Memory Bitmap for Design 2

(b)

Figure 3.6: Alternative wrapper designs with equal test time.

Chapter 3. Wrapper Design 51

Assuming a DFT-ATE with RMP, the control overhead implied by the first

solution is larger because a larger number of partitions have to be controlled.

Furthermore, as the number of TAM chains differ from core to core and the

number of partitions obtained can vary for different cores, different number

of parameters are required for the memory management of each core. On the

contrary, AMB2 is shaped such that it can be easily split into two partitions

(TSl and TS2). This reduces the control, and having only two partitions,

the memory management becomes very simple (Section 3.4.2). The same

reasoning is applicable for sequencing-per-pin ATEs. It should be noted that

the amount of test control for the first solution is clearly larger than for the

second solution. This is why the first solution is considered to have useless

memory as illustrated in Figure 3.6. Since the proposed ATE deployment

procedure can handle maximum two partitions, for the case with more than

two partitions, there will be UMA (this is one resource for UMA).

All the TAM chains are loaded in parallel using the same clock. Also, in

the explanation of Equation 3.1, we note that the scan-out operation overlaps

the scan-in. Hence, in a case where the number of inputs is larger than the

number of outputs, the ATE memory has to account only for the UMA caused

by the input scan chain, as in the previous example.

The second source of UMA is caused by the difference in TAM chain

lengths when s$ < s0. Since the scan-out operation of one pattern overlaps

Chapter 3. Wrapper Design 52

with the scan-in of the subsequent test pattern, in a case where s* < s0, we

need to scan-in more data, causing useless data in ATE memory. We will

show that the UMA caused by a difference of s, and s0 cannot be eliminated

completely.

Example Consider the core in the Figure 3.7(a) with Nr — 4, No = 6 and

four scan chains of lengths 12, 11, 8 and 5. An optimum TAM chain design

with respect to test time leads to S j = s0 — 12. The ATE memory bitmap

(AMB) of this design is shown in Figure 3.7(b) and (c).

8 F F 8 F F

1 I .1 5 F F o o o i o O O M 5 F F 1 1 1 1
11FF 11FF

12FF 12FF

TAM Chain Elements Partition (Designl)

(a)

8FF

5 F F I I I I

11FF

12FF

UMA=8

ATE Memory Bitmap for Designl

(b)

OR

(C)

TS1

T S 2

8 F F

5 F F f||| 111 I i l l
11FF

12FF

UMA=5

Figure 3.7: TAM chain design and ATE memory bitmap when s, < s0.

While the UMA for this design (even if we use the ATE feature) is 5,

we can get a UMA of only 2 by simply rearranging the inputs and outputs

in TAM chains. The design 2, shown in Figure 3.8(a), has the minimum

possible UMA that we can reach for this core ,i.e., 2. The AMB for this

Chapter 3. Wrapper Design 53

I I I 5 F F o o o 01
8 F F P..

1 11FF 0

12FF

TS1

T S 2

H 5 F F I I I

8 F F

I 11FF

12FF

TAM Chain Elements Partitions (Design 2)

(a)

A T E Memory Bitmap for Design 2

(b)

Figure 3.8: TAM chain design and ATE memory bitmap when s, = s0.

design is shown in Figure 3.8(b).

Theorem 3.4.1 For a core with Nj inputs, No outputs and Ns scan chains

of lengths l\, l2, • • •, INs> and Ni < No, the lower bound on UMA is given by

N0 - Nj.

Proof In the case of Ni < No, S j is smaller than s0. Certainly then, there

is a source for the UMA in the difference between and sQ, even if we could

prevent other UMA sources. Therefore,

i=W i=W i=W
UMA > £ (s0 - Si) > £ s0 - ^ = (L + No) ~(L + Nx)

2 = 1 2=1 2=1
UMA > N 0 - Nr

where k is the length of scan chain i and L = Si=i U- I

There are two steps to follow in order to reduce UMA. First, a new core

wrapper design algorithm is needed. Second, the ATE has to exploit the

features of new wrappers. Since the test set is divided into two, the ATE

Chapter 3. Wrapper Design 54

has to deploy the test vectors for the two sets at different intervals. Consider

the example of Figure 3.6. The intervals at which the ATE deploys the

test vectors are shown in Figure 3.9. Three parameters for ATE test vector

deployment are introduced: MAXTc, Diff and sp. MAXTC is the length of

the maximum partition, Diff is the difference between the lengths of the two

partitions, and sp (split point) is the number of TAM chains that AMB fits

to the first partition (their data should be sent as the first test set). So, for

example in Figure 3.9, MAXTc = 12, Diff — 4 and sp = 2. Since the core

wrapper design is an intermediate step in a SoC test, the proposed approach

does not incur any extra overhead. Hence, the ATE modifications are the

only changes. For both DFT-ATEs with RMP and sequencing-per-pin ATEs,

the deployment of two sets can be achieved at the expense of an external

module [13] to support custom ATE behavior, employed when IEEE P1500

compliant SoCs are tested. If DFT-ATEs with RMP are employed, a test

vector deployment procedure (see Section 3.4.2) can be part of the memory

management. If sequencing-per-pin ATEs are considered, the methodology

proposed in [48] can be used, and the control of test vector deployment can

be carried out by a procedure similar to the one in Section 3.4.2.

Chapter 3. Wrapper Design 55

Pattern 1 Pattern 2

M A X T C

Diff 5FF I I I
| S P = 2

5FF I I I

8FF
| S P = 2

8FF

11FF I 11FF I

12FF 12FF

0 4 12 16 24

Figure 3.9: ATE test vector deployment.

3.4.1 Wrapper Design A l g o r i t h m to Reduce U M A

Here, a new core wrapper design algorithm which accounts for test time, TAM

width, and UMA is proposed. Previous heuristics [32, 34, 35, 42]always aim

at minimizing test time only taking into account the number of inputs or

outputs. In contrast, the proposed algorithm, based on observations from

the second example of Section 3.4, takes into account both the number of

inputs and the number of outputs to reduce UMA. The core wrapper design

problem can be formulated as follows.

Wrapper Design Problem: For a core with Ni inputs, No outputs,

Ns scan chains with lengths l\, l2, • • •, IN, and a TAM width of W, find the

wrapper design for TAM width W' such that (i) core test time [in Equation

3.1] is minimized, (ii) W is the minimum subject to priority (i), and (iii)

UMA is minimized.

Note that in this problem, test time is prioritized, that is, first we try to

Chapter 3. Wrapper Design 56

minimize the test time. Then we try to minimize TAM width. This problem

is a Vw problem defined in Section 3.4 with an additional constraint for the

assignment of wrapper input/output cells. We consider UMA minimization

only for Steps 2 and 3 of wrapper design, because with TAM width minimiza

tion, there are no options for the assignment of core internal scan chains to

TAM chains. Here, when assigning inputs and outputs, we aim at minimiz

ing UMA. It should be noted that the problem of wrapper design with these

three priorities is NP-hard. This can be easily shown by assuming that the

number of partitions equals the TAM width. In this particular case, there is

no UMA and the problem reduces to the Vw problem presented earlier which

proved to be NP-hard. However, as illustrated in two examples in Section

3.4 (and shown again in Section 3.4.2), the number of partitions influences

the complexity of the ATE program. Hence, finding the minimum number

of partitions is important. Toward this goal, Algorithm 5 (Table 3.7) was

developed for the assignment of wrapper input/output cells to TAM chains,

giving a minimum UMA.

Note that the assumption of Nr > No in Algorithm 5 (Table 3.7) is made

because in UMA minimization, it is important to consider adding inputs

when AT/ > No, and adding outputs when Ni < No- Thus, when Nj < No,

the outputs are added to TAM chains, then inputs. Other cases remain

the same, except we add outputs first and then inputs. Reconsider the first

Chapter 3. Wrapper Design 57

Table 3.7: Adding wrapper input/output cells to minimize UMA.

Algorithm 5: U M A Minimization
Adding wrapper input/output cells to T A M chains

Assume NR > NQ

sort V such that l(Px) > l(P2) >...> l(Pw)

Adding Inputs:

Add input to the Pi such that scan-in length of Pi = si;
C\ = sf, (first cluster)
Initially set i:=l and j:=2;
While j < W

j:=i+l;
Try to put Pj in cluster i;

If Impossible Then (Ci+1) := l{Pj);

Else Add inputs to the Pj such that scan-in length of Pj = C»;
j:=j+l;

Adding Outputs:

until all the outputs are assigned:
For z:=l to W'

Add outputs to the Pz such that # of outputs of Pz = # of inputs of P z ;

Calculating UMA, and ATE deployment parameter:

If NCL > 2 then:
Choose m, 1 < m < NQL, such that

UMA:=(Ci * m + CTO+i * (NCL — m)) — {L + max(NI, N0)} be minimum
UMA = (Ci * m + C m + 1 * (NCL - m)) - {L + max^N^ N0)}\

MAXTC = Ci;

Diff = Ci - Cm+1,
sp = NCL - m;

else
If NCL = 2:

UMA = 0;
MAXTC = Ci\

Diff = Ci - C 2 ;
sp = |C 2 | ;

If NCL = 1:
UMA = 0;

There is no need to use the ATE feature;

return UMA and (MAXTC, Diff, sp) for ATE deployment procedure

Chapter 3. Wrapper Design 58

example of Section 3.4 (p. 49). The minimum width is the same, so W' = 4.

There are some aspects of partitioning of scan chains; first, because the

number of partitions (W) is the result of a bin-packing problem, it certainly

cannot be more compressed. Second, because the partitions are the result of

a scheduling problem, the partitions are of the same size. Therefore, making

the minimum number of clusters in this case is not hard.

Algorithm 5 first gets the W partitions from the results of assigning core

internal scan chains to W' TAM chains, and then sorts them in descending

order. For the example of page 49, pi = {12}, p2 = {11}, p3 — {8} and

p2> — {5}. Hence, we make the first cluster of size which here is 12, so

Ci = 12. Next, we try to make each partition fit in this cluster. With adding

one input, p2 can fit in clusterl, because the scan-in length of this TAM

chain will be 12 again. When we try the same thing for ps, we note that it

is impossible to fit p3 in C\, because we need 4 inputs, though only 3 inputs

are left. Therefore, we make another cluster of size 8, C2 = 8. Next, we start

from the following partition, p±, to make it fit. By adding 3 inputs to p±, it fits

in the second cluster. Therefore, the result of Algorithm 5 for this example is

two clusters of size 12 and 8. The number of clusters (NQL) varies from one

(best case: even the new feature of ATE is not required because all the TAM

chains have the same length) to W (means even two partitions could not fit

into one cluster). It is highly desirable that the number of clusters be one

Chapter 3. Wrapper Design 59

or two. To have a single cluster, max(Nj, No) — max(si, sQ) * W' — YliJi h,

which is not usually the case. This makes a double cluster the most desirable

and practical situation. In [24], it is shown that even though for NQL = 2 the

UMA is not always 0, this particular case leads to a good solution from an

UMA standpoint, with the advantage of eliminating extra ATE requirements.

Therefore, at the end of Algorithm 5, we check whether the number of clusters

is more than two, and we try to fit all the clusters into two new clusters. If

the number of clusters is more than two, NQL > 2, the UMA is no longer

zero, but because the ATE procedure is simple, and the UMA is less than

in a case where the ATE features are not used, it is worthwhile. To try

to fit NQL clusters into just two clusters, we make the first new cluster the

largest, C[— C\. The second new cluster could be any of the clusters which

minimizes the UMA: C'2 = Cm+i, 2 < (m + 1) < NQL- In this case \C[\ = m

and ICjI = Net — m- The UMA is computed as the difference between the

area of two new clusters and the sum of the area of all the clusters, i.e.,

UMA = (C[* \C[\ + C2* \C'2\) - (EiIciL \Ci\ * d). For the above example

NQL — 2, so the UMA is zero and ATE deployment procedure parameters

are MAXTC = 12, Diff = 12 - 8 = 4, and sp = 2.

Chapter 3. Wrapper Design 60

3.4.2 A T E Deployment Procedure to Reduce U M A

In order to fully exploit the new core wrapper design, the initial test set

is divided into a number of sets equal to the number of partitions. The

ATE program must deploy test vectors from different sets at separate times.

Hence, an increase in the number of partitions leads to a more complex

ATE program. However, if the number of partitions is limited to two, the

necessary changes in the ATE deployment are minor. This section gives the

pseudo-code for the ATE program for this particular case (two partitions).

Consider two clusters C[and C2 that are the result of Algorithm 5. Since

\C[\ + \C'2\ = W' (this is how the partitions are constructed) and C[> C2

(the TAM chains are in descending order, see Algorithm 5). As mentioned in

the explanation of Algorithm 5 (p. 58), MAXTC = C{, Diff - C[-C2, and

sp = \C'2\. Using this information, the initial test set can be divided into two

sets. The deployment of the test vectors at different intervals can be easily

achieved by supplying the ATE with the three parameters MAX^Ci Diff,

and sp in addition to the two test sets (TSl and TS2). The pseudo-code for

a very simple ATE procedure, which accounts for the parameters mentioned

above, is shown in Table 3.8. This procedure takes as inputs the width of the

test bus W', the number of patterns Np, and the three parameters MAX^c,

Diff, and sp. During MAXTC clock cycles, TS2 is loaded onto the test bus

from ATE memory. Since the first partition is smaller than the second, the

Chapter 3. Wrapper Design 61

Table 3.8: ATE deployment procedure.

Procedure 1
i = NP

Whi le (i > 0) do
for j := 1 to MAXTC

i f i > Diff then
load[l • • • sj5]=read-mem(TS2,Ar

P • Diff + j)
load[sp • • • W]=read-mem(TSl,iVp • MAXTC + j)

i — i — 1;

ATE reads the test data for the TSl in only Diff clock cycles.

3.5 Wrapper Design for Flexible Cores

For cores with flexible-length scan chains, (1) input wrapper cells, (2) core-

internal scan flip flops, and (3) output wrapper cells can be equally dis

tributed over the available TAM wires. This is easy because the length of

all elements is one. Hence, for a core with Nj inputs, No outputs, and Np

internal scan flip flops (for non-scanned cores, Np — 0) when the TAM with

width W is assigned to it, the scan-in length Si(W) and scan-out length

s0(W) can be defined as follows [42]:

8i(w) = r
Np + Ni

W
(3.2)

s0(W) = \
Np + Np

W
(3.3)

Chapter 3. Wrapper Design 62

Thus, the test time for the core can be calculated from Equation 3.1.

By dividing TAM chain elements equally, we actually minimize the scan-

in and scan-out lengths, so we minimize test time.

Actually the only difference in all the theorems and equations for fixed-

length cores is that for the flexible cores, the lengths of all the scan chains

are one, so lmax = 1 and L — YL^=\ k = NF. If we apply Theorems 3.2.1 and

3.2.2 for flexible cores, the following result is derived.

Corollary 3.5.1 For a flexible core with Nj inputs, No outputs, Np scan

flip flops, and Np test patterns, the upper bound on the core test time, T, is

given by

Tupper = (1 + NF + max(Nj, N0))NP + Np 4- min(AT/, No)

Corollary 3.5.2 For a flexible core with Ni inputs, No outputs, Np scan

flip flops, and Np test patterns, the lower bound on the core test time, T, is

given by T\ower — 2Np + 1 and the minimum TAM width required to achieve

this lower bound on the test time is given by Wmin — Np + max(Ar/, No)-

The second step of wrapper design, as with fixed cores, is TAM width

reduction. Here, we look for a smaller width than W that gives the same

test time. Note that since the first term of Equation 3.1 is more impor

tant, by "same test time", we mean "same max(sj,s0)". Therefore, we

Chapter 3. Wrapper Design 63

look for the possible minimum W' < W, such that max(sj(W), s0(W)) =

max(Si(W'),s0(W')).

Theorem 3.5.3 Given a core with Ni functional inputs, No functional out

puts and Np scan flip flops and a TAM with width W, there is W' < W with

max(si(W), s0(W)) — m&x(si(W'),s0(W')); the upper bound on W' is

w , = rw_ W - ((NF + max(NI,N0))%W) t

max(si(W), s0(w))

Proof Assume that W' — W — m, m > 0, and m is the maximum possible

integer number such that m&x(si(W), s0(W)) = max(si(T47'), s0(W')). From

Equations 3.2 and 3.3

(mn ttxrw rNF + max(NI,N0)1 m&x(Si(W),s0(W)) = \ ^ 1

Letting A = NF + max(NI, N0), B = max(si(T47), s0(W)) and C = (NF +

max(Nj,N0))%W = C,then B = \ £] = + 1, so A = (B — 1)W + C.

Also, we know that max(sj(W — m), s0(W — m)) should be the same for W.

So

m&x(si(W), s0(W)) = m&x(si(W — m), s0(W — m))

^m%n "m modulo n."

Chapter 3. Wrapper Design 64

B

B

B

B

B

B

B

0

(B -1)W + C
J + l W — m

(B - l)W + C + (B-l)m-(B- l)m
W - m

(B - 1)(W - m) + C + (B - l)m

J + l

B-1 +

W — m
C + {B- l)m

W-m

J + l

J + l

B - I + L ^ - ^ J + I
W - m

C + (B - l) m

W-m J

C + (B - l)m

Hence, C + (5 - l)m < W - m ̂ m < w-c
B •

That is m = \W~{{NF]mZ[N!'n°FoW}\• We know that W' = W-m, therefore

W = \W - W~(NF+'rnax(Nj,No))%Wi m
I max(si(W),s0(w)) ' •

The next step in wrapper design is to minimize the UMA. Actually, our

strategy of dividing scan flip-flops and wrapper input/output cells equally to

TAM lines not only minimizes the test time, but also minimizes the UMA.

We will show that for flexible cores the UMA is either zero or the minimum

possible number.

If we divide all the TAM chain elements equally, we have two clusters:

C i = [f e « o i] a n d C 2 = l ^ + m y . J V o) ^ g 0) t h e following p a r a m e -

Chapter 3. Wrapper Design 65

ters of ATE memory bitmap are derived:

• MAXTC = ^F+max{Nj,N0)^

Diff =
0, ((NF + max(NI, N0))moduloW) = 0

1, Othrewise

sp = W' - ((NF + max(Ni, N0))moduloW)

UMA
0, NT > N0

No — Ni, Otherwise

• Required Memory=A P̂ • (MAXTC • W' - sp • Diff).

To summarize, for wrapper design of a flexible core, first we find the

smallest W' and then divide all the TAM chain elements, including scan

flip-flops and wrapper input/output cells equally on the W' TAM chains.

The experiments have been done on circuits from the ISCAS'89 bench

marks.

Example Consider the circuit S1196 from ISCAS'89 benchmarks [2] with

Ni = N0 = 14, NF = 18 and NP = 113 [26].

Assume that we assign a TAM with width 28, W = 28. In the first step,

we should find W'.

Chapter 3. Wrapper Design 66

From the core information, we can calculate NF + max(Nr, No) = 32 and

so max(st(W),s0(W)) = = = 2.

Now, we can calculate W' from Theorem 3.5.3.

= W - (NF + mas(Arf, JV0))%W
1 1 max(Sl(W),So(W)) 1

w , = r 2 8 _ 28 -(32%28)1

28 — 4

W' = r,28 - - ^ - 1 = r 161

W = 16

The next step is to divide the TAM chain elements equally into W' TAM

lines; the result is shown in Figure 3.10(a).

TAM chain 1

TAM chain 14

TAM chain 15

TAM chain 16

I FF
1 *<"1

•
•
•

I FF 0
14 14 .14

FF
15

FF
16

FF
17

FF
18

1

13

14

15

16

FF I

•
•
•

FF I

FF I

FF FF

FF FF

(a) T A M chain Elements Partitions (b) A T E Memory Bitmap

Figure 3.10: Wrapper design for S1196 from ISCAS'89 benchmarks.

Also, the AMB for the wrapper is shown in Figure 3.10(b). The ATE

memory bitmap parameters are as follows: MAXTC = 2, Diff = 0, sp = 16,

Chapter 3. Wrapper Design 67

UMA = 0 and required memory is 3616 bits .

The wrapper design algorithm has been applied for different widths. The

results are reported in Table 3.9. For all the widths, the UMA is zero, because

here TV/ > N0-

Table 3.9: The result of the wrapper design algorithm for S1196 of ISCAS'89
benchmarks.

w W' Si So Test Time (cycles)
1 1 32 32 3761
2 2 16 16 1937
3 3 11 11 1367
4 4 8 8 1025
5 5 7 7 911
6 6 6 6 797
7 7 5 5 683

8-10 8 4 4 569
11-15 11 3 3 455
16-31 16 2 2 341
> 32 32 1 1 227

3.6 Experiments

In previous sections (3.2-3.4.1), the important issues of wrapper design have

been discussed. To validate the efficiency of the proposed wrapper design

method, several experiments were performed on the large cores of the ITC'02

SoC test benchmarks [43].

Consider Core 6, the largest logic core from p93791. In Section 3.3,

we presented a wrapper design for this core for W = 38, and showed that

Chapter 3. Wrapper Design 68

the width can be decreased to W' — 24 (Figure 3.4(b)). The last step of

our wrapper design is UMA minimization. The final result of this wrapper

design is shown in Figure 3.11(a).

The ATE Memory bitmap of the final design has been shown in Figure

3.11(b). The UMA for this design is zero, and we saved 14 bits in the TAM

width (W'=24).

The wrapper design results for all widths for core 6 of p93791 is reported

in Table 3.10. There are many noteworthy points. First our algorithm min

imizes UMA for most cases (UMA is often zero) while it saves TAM width

and test time. Other researchers only attempt to minimize test time [42],

or to minimize test time and TAM width [32-35], or to minimize test time

and UMA [24]. As far as we are aware, no previous work considers all these

aspects to date.

In Table 3.10, we also see that the wrapper design algorithm performs

better than all other algorithms. It saves up to 77% in the ATE memory,

58% in TAM width and 2% in test time.

The TAM width and ATE memory for my method and previous method

are compared in Figures 3.13 and 3.12, respectively.

Core 6 of SoC P93791, was the largest core in all the cores of the ITC'02

SoC Test benchmarks. A lot of experiments on different SoC of the ITC'02

SoC Test benchmarks and also ISCAS'85 and 89 benchmarks were run. For

Chapter 3. Wrapper Design 69

example the test time vs. width for core 3 to core 10 of the SoC D695 is

shown in Figure 3.14.

Chapter 3. Wrapper Design 70

si=so=1040

TAM chain 1 520 520

TAM chain 15 520 520
TAM chain 16 191 521 500 190

TAM chain 22 191 521 500 190

TAM chain 23 1781 521 178 0
TAM chain 24 178 1 521 85 0

W'=24

(a) Final wrapper design for W=38

MAX T C=1040

A
sp=2

T

520 520
• • •

520 520
521 500 191

• • •
521 500 191

niff "3/11 k 521 178 I

521 1781

(b) ATE Memroy Bitmap : UMA=0

Figure 3.11: The final wrapper design for core 6 of p93791 from ITC'02 SoC
test benchmarks for TAM width=38.

Chapter 3. Wrapper Design 71

Table 3.10: The result of the wrapper design algorithm and comparisons
with previous works for core 6 of p93791 of the ITC'02 SoC Test
Benchmarks

Test U Required Mem. W Time
w W' Si So Time M Memory impr. impr. impr.

A (%)a (%)» (%)c

1 1 24278 24185 5317007 0 5292604 0 0 0
2 2 * 12139 12093 2658613 0 5292604 0 0 0
3 3 8180 8180 1791638 0 5292604 1.1 0 1.01
4 4 6202 6202 1358456 0 5292604 2.2 0 0
5 5 5060 5060 1108358 2 5293040 4.2 0 1.62
6 6 4140 4140 906878 0 5292604 2.3 0 0.02
7 7 3620 3620 792998 0 5292604 4.4 0 0.03
8 8 3100 3100 679118 0 5292604 2.2 0 0.03
9 9 3000 3000 657218 6 5293912 11.2 0 2.7
10 10 2580 2580 565238 2 5293040 6.3 0 0.04
11 11 2560 2560 560858 3 5293258 16 0 0.04
12 12 2080 2080 455738 0 5292604 2.8 0 0

13-14 13 2060 2060 451358 0 5292604 10.3 7.7 0.05
15 15 2000 2000 438218 10 5294784 23.5 0 2.05

16-19 16 1560 1560 341858 0 5292604 2.8 18.8 0
20-21 20 1540 1540 337478 46 5303068 26.6 5 0

22 22 1500 1500 328718 2 5293040 35.9 0 1-4
23 23 1056 1052 231478 0 5292604 0.04 0 0

24-38 24 1040 1040 227978 0 5292604 2.8 58.3 0
39-42 39 1020 1020 223598 14 5295656 63.8 7.7 0
43-45 43 1000 1000 219218 2 5293040 77.1 4.7 0

46 46 528 526 115848 0 5292604 0.04 0 0
> 47 47 521 521 114317 0 5292604 0.9 - 0

aMemory savings comparing to [32]
6 T A M width savings comparing to [24, 42] (maximum improvement)
cTest Time savings comparing to [32]

Chapter 3. Wrapper Design 72

Figure 3.12: New TAM width for core test vs. given TAM width for core 6
in P93791 SoC from SoC benchmarks ITC'02.

Chapter 3. Wrapper Design 73

Figure 3.13: Required memory for core test vs. TAM width for core 6 in
P93791 SoC from SoC benchmarks ITC'02, with and without
UMA minimization.

Chapter 3. Wrapper Design 74

OCore 3 • Cote 4 DCore 5 DCore6 • Core7 0 C o r e 8 B C o r e 9 OCore 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Width (bits)

Figure 3.14: Test time vs. TAM width for core 3 to 10 in D695 SoC from
SoC benchmarks ITC'02.

Chapter 3. Wrapper Design 75

3.7 Conclusions

In this chapter, we present a novel wrapper design algorithm which can

be used as a tool for SoC designers (integrators). The proposed algorithm

considers all test costs. The algorithm can handle cores with both fixed-

length scan chains and flexible-length scan chains. The experiments show

improvement in comparison to existing methods.

Chapter 4. Time Domain Multiplexed TAM 76

Chapter 4

Time Domain Multiplexed

T A M

In this chapter a novel TAM based on time domain multiplexing (TDM) is

introduced. TDM-TAM not only has all the advantages of common bus-

based TAMs, such as scalability and efficiency in time and area, but it is

also flexible, reconfigurable and handles cores with BIST efficiently. It also

needs less global routing than common bus-based TAMs. The underlying

concepts of TDM-TAM are presented and test time and area models are

derived. A dynamic masking method is described. It gives the tester the

flexibility to change test scheduling and strategy after fabrication. Also, an

example of how to use TDM-TAM in testing multi-frequency SoCs and a

TAM optimization method for TDM-TAM are reported. Finally, a compar

ison is drawn between TDM-TAM and other types of TAM.

Chapter 4. Time Domain Multiplexed TAM 77

4.1 Basics

TDM-TAM is a bus-based TAM that uses logic situated locally at each core

to enable or disable the core, such that bus contention cannot occur. This

architecture eliminates the necessity for global address lines, which are nor

mally required in a bus-based architecture. In our TDM-TAM, the data to

be sent on the TAM bus is divided into frames. Each core is assigned a

specific mask enabling the cores to extract the appropriate data bits from

the frames.

Frame 1 Framo 2 Framo 3

Bl» SI »| • I B IM " l" I • B l • I • • •

Core A
mask: 1000

Core B
mask:0101

Core C
mask 0010

A B c B

Frame

Figure 4.1: Example illustrating the concept of Time Domain Multiplexing
(TDM).

For example, in Figure 4.1, a frame is assumed to consist of four bits. Core

A uses the first bit of each frame, core B uses bits 2 and 4, and core C uses

bit 3. For this specific configuration, assume that we wish to send the data

"11" to core A, "00" to core B and "don't care" bits "XX" to core C. The

two required frames to be sent on the TAM bus in this case must, therefore,

Chapter 4. Time Domain Multiplexed TAM 78

be "10X0", followed by "1XXX". Optimal frame and mask assignment is

obviously critical for the efficiency of the scheme. This is addressed later in

this chapter.

WBR

Inputs

TAM-in

WSI

P1500 Wrapper

C o r e *4

Scan chain 0 ' f
4 Scan chain 1 f

WIR

4
WRCK WRSTN

Wrapper Control
signals

16 State
TAP FSM

TCK TRSTN T M S

Wrapper
Boundary

Cel l

Outputs

TAM-out

W S O

Figure 4.2: Conceptual view of the IEEE P1500 wrapper and TAP controller.

To implement the TDM-TAM, a P1500 wrapper is used to wrap each

core. Figure 4.2 shows the P1500 wrapper and the 1149.1 TAP controller.

In the standard 1149.1 TAP controller, a 16-bit finite state machine gen

erates the wrapper control signals from the serial TMS * bit stream. For our

TDM-TAM, we transform the original 1149.1 TAP controller into a TDM-

*Test Mode Select

Chapter 4. Time Domain Multiplexed TAM 79

Reset

mask[N-2]
mask[N-1]

Clock

D O D O

Enable

Reset

D O

r-t>

Mask-/-

Clock_

Time
Domain

Multiplexer
Wdlk

Enable

T M S

T V T »

Ciag I AP
Controller

1: CaptureWIR
2: ShiftWIR
3:UpdateWIR

2 3 4 4:SelectWIR 1
Wrapper Control

Signals

Figure 4.3: Block diagram for TDM-TAM TAP Controller.

TAP controller (Figure 4.3). This controller includes the original 1149.1 FSM

as well as some minimal extra logic, referred to as a Time Domain Multi

plexer (TDM) Block, which creates the Enable signal for the core according

to a preassigned mask.

Here, we assume that the masks are assigned, before the layout and Fab

rication step. In this case, the mask for each core is said to be local. This

means the mask lines for each core are hard-wired to ground or power supply.

However, in Section 4.4, we show that it is useful to have the ability to change

a mask after fabrication. We refer to this feature as dynamic masking.

The TDM block operates as follows. When the Reset signal goes low, the

mask is loaded into the flip flop chain. When the Reset is high, the mask is

shifted by one bit on every falling edge of the clock. Using the falling edge

allows the Enable signal to be stable before the rising edge of the clock, thus

Chapter 4. Time Domain Multiplexed TAM 80

avoiding glitches when used to gate the clock. The Enable signal generated

for each core is used to enable three different components. When a core's

Enable signal is active (high), the TMS control signal is read by the core's

TAP controller and the core's P1500 wrapper. The core is then clocked,

allowing it to read data from the WSI and TAM-in. Moreover, the tri-state

buffer is enabled, thereby allowing the core to write to the WSO and TAM-

out. When Enable is deactivated (low), all these components are deactivated,

allowing other cores on the same TAM bus to use the bus. Cores tested by

a full BIST scheme may not be disabled, so that their test can be executed

as quickly as possible, although their TAP controller, P1500, and tri-state

buffer may still be deactivated. Test power considerations may, however,

require that BISTed cores be disabled at times as well.

Figure 4.4: Single branch TDM-TAM.

Chapter 4. Time Domain Multiplexed TAM 81

Figure 4.4 illustrates what we refer to as a single branch TDM-TAM with

multiple cores, where a branch includes the one-bit wide TMS, a one or more

bit-wide TAM-in bus (to accommodate at least the WSI signal) and a one

or more bit-wide TAM-out bus. Hence, the minimum data line width of a

branch is three. Each branch also includes global Clock and Reset signals.

All the cores connected to a branch have a local TDM-TAP controller and

associated logic, and a tri-state buffer. They share TMS, Clock, Reset, TAM-

in, and TAM-out lines.

Different SoCs can have different numbers of TDM-TAM branches. A

case where all the cores connect to the same branch constitutes the simplest,

single-branch case, illustrated above. The other extreme is to have as many

branches as there are cores on the SoC, with each core connected to its own

private branch.

4.2 T iming Mode l

In this section, a model for test time with the TDM-TAM is developed. To

refine the test time model, we consider the time required to send instructions

to the wrapper, and to put the wrapper in test mode, as well as the time

required for loading/capturing a signature (if necessary). We assume that the

cores are tested using either test patterns provided externally via the TAM,

or by using patterns generated and evaluated within the core, that is, by

Chapter 4. Time Domain Multiplexed TAM 82

using a form of built-in self test (BIST). For BISTed cores, the TAM is only

assumed to send a form of "start BIST" instruction, and to subsequently

communicate a BIST result, such as a signature. The cores that are not

BISTed require not only test instructions, but also test pattern data to be

sent via TAM. Based on the latter observation, we define two parameters for

each core: t[and to- tj is the portion of the core test time during which the

core does not need to control or use the TAM, and is therefore independent

of the mask assignment. For instance, the time a BISTed core requires for

the BIST test patterns to be generated, applied and evaluated, tu is the part

of a core's test time that requires the control/use of the TAM and which is,

therefore, dependent on the mask assignment, that is, the time required to

send a specific test instruction to a core.

Let the SoC consist of NQ cores and NB branches, and assume that core

j , 1 < j < Nc, is assigned to branch k, 1 < k < NB- The £/ portion of the

test time of core j, £/., does not depend on the mask assignment. Hence the

core-branch connections do not effect this part of the core test time. On the

other hand, the try portion of the core test time depends on the cores' mask

assignments and frame lengths, that is, tp. depends on mask assignments and

frame lengths. The example in Figure 4.1, makes clear that as the number of

"ones" in a core's mask increases (i.e., with increasing Hamming weight), the

proportion of data from each frame used by the corresponding core increases

Chapter 4. Time Domain Multiplexed TAM 83

accordingly. Hence, the test time for core j, when assigned to branch k, is:

T " = f f ^ M l * M ' + '" (4 ' 1)

Where Mk is the number of bits in a frame for branch k and ||mas/Cj|| is

the number of ones in the mask assigned to core j. To illustrate, reconsider

the example in Figure 4.1 and assume that core B is not BISTed and that

the TAM-independent test time is 20 cycles while tr>B = 15. From Figure

4.1, M for the bus is 4, Umasfĉ H = ||mas/cc|| = 1 and | | m a s & B | | = 2. Core

B can use two bits of every 4-bit frame. Therefore, testing core B requires

[•yl time frames. In turn, this implies a total of 8 x 4 clock cycles.

Let Xij be a 0-1 variable defined as follows:

1, core j is assigned to bus k

0, Otherwise

Using Equation 4.1, the test time for each core can be determined such

that total test time for testing all cores assigned to bus k amounts to Tk =

maxff^Xjk * Tjk) since all the cores can be tested concurrently due to time

division multiplexing. Assuming all TAM branches can be used simultane

ously, the total test time amounts to T = maxf^pTk) or

TT = mix(max(Xjk * Tjk) (4.2) t=i j=i

Chapter 4. Time Domain Multiplexed TAM 84

Theorem 4.2.1 For a SoC using TDM-TAM and with Nc cores, an upper

bound on the total test time is given by

UPTT = max Ui • M

where Ui is the upper bound of the test time for core i given by Theorem

3.2.2.

Proof The single branch with the minimum width TDM-TAM is the worst

case for test time of an SoC. To derive an upper bound on the test time,

assume that all cores of SoC lie on one branch having a one-bit wire width

for TAM-in/TAM-out. This implies that the test time of each core equals

the corresponding upper bound for test time. Assuming that the worst case

for test time is maxj^ Ui, and that such a core is not BISTed, then £/ of

this core is zero and £p = max^C/j. Furthermore, in the worst case, such

a core has a minimum share of the bus. That is, it is assigned only one bit

in each frame. Under these conditions, the total SoC test time reaches its

upper bound: TT = *-f] * M + £/ = max^ Ui * M. |

Theorem 4.2.2 For a SoC using TDM-TAM with Nc cores, a lower bound

on the total test time is given by

LOTT = maxLj
i=l

Chapter 4. Time Domain Multiplexed TAM 85

Where Li is the lower bound on the core i test time given by Theorem 3.2.1).

TDM-TAM width required to attain the minimum test time is

i=Nc

wLO = £ w(Ti < L 0

TT)
i=l

P r o o f The minimum test time is attained when each core has its own branch

(NB — Nc) wide enough to test each core at its lower bound test time, so the

test time of each core should be the minimum possible test time, Lj (given

by Theorem 3.2.1). Hence, the total test time, based on Equation 3.1, is

max^ Li.

Also, in this configuration each branch width can be calculated from the

minimum width required to achieve a core test time equal to or less than the

minimum total test time of SoC. Therefore, the TDM-TAM width required

for a minimum total test time is W = E;=fc W(Ti < LOTT)- |

4.3 Overhead Area Mode l

Modeling area for the TDM-TAM is straight forward since the same ad

ditional logic is required for each core. In our area modeling, we neglect

the wiring area. The overhead for each core is due to the TDM-TAP con

troller and a tristate buffer. Hence, for an SoC with Nc cores, the total area

overhead ATDM_TAM = Nc * (Abuffer + DM-TAP controller) where Abuffer

Chapter 4. Time Domain Multiplexed TAM 86

Table 4.1: Area estimates for TDM-TAM controller block.

Circuit Area(^m2) Description
Buffer 37 tri-state buffer
CTAG-TAP 1142 CTAG TAP controller
FF & MUX 123 Flip Flop & 2 x 1 Multiplexer

and AT DM-TAP controller correspond to the area of the buffer and TDM-TAP

controller, respectively. The TDM-TAP controller, illustrated in Figure 4.3,

includes a C T A G TAP Controller block and a TDM block. Therefore,

the overhead area is this:

AT DM—TAM — Nc{A0Uffer+ATDM-TAp) = Nc{Abuf fer-\-ACT AG-TAP+ATDM block)

In the TDM block, there are M flip flops and M 2 x 1 multiplexers. Therefore,

AT DM block = M * (AFF + A 2 X L M U X) , where AFF and A 2 X L M U X is the area of

the flip flop and multiplexer respectively. From the above, the area overhead

for the scheme can be expressed as:

A-TDM-TAM = Nc(Abuffer + ACT AG-TAP + AT DM block
) (4.3)

Estimates of actual area for the constituent blocks appear in Table 4.1 (for

a 0.18pm CMOS technology).

In Equation 4.3, the area overhead is proportional to the number of cores

in the SoC and to the length of the data frames, M (also corresponding to

Chapter 4. Time Domain Multiplexed TAM 87

the number of bits required to encode the mask associated with each core).

As the frame length increases, the area overhead increases. However, test

time generally decreases with increased frame length, thereby resulting in

the usual tradeoff between area and test time.

4.4 Dynamic Masking

The preceding discussion includes an assumption that the mask associated

with each core is hard-wired prior to fabrication by making appropriate

ground and power line connections. However, it is possible to implement the

scheme such that the masks are programmed at arbitrary post-fabrication

times. We refer to this scenario as Dynamic Masking. Dynamic masking can

be realized at the expense of little additional logic over that required for the

static cases. Dynamic masking offers many potential advantages, primarily

that of flexibility, allowing for better and more effective post fabrication test

resource optimization.

One example of an advantage offered by dynamic masking is that of in

creased core diagnostics, deemed necessary only at post fabrication, and pos

sibly subsequently to an initial test phase. For example, a given core under

test may need to be more easily diagnosed. This may be achieved a posteriori

by modifying the core's mask to allow for more test data to reach and leave

the core per given test time. Also, dynamic masking can accommodate test

Chapter 4. Time Domain Multiplexed TAM 88

data/pattern alterations that occur in post fabrication, and therefore, allow

for better test resource optimization (e.g. test time minimization) subsequent

to such changes and fabrication. Dynamic masking can also be exploited to

modify the mask assignments to accommodate different core test times or

data requirements for cores connected on the same or different branches.

Finally, power dissipation, coupling, and other noise or performance related

post-fabrication effects can be more easily handled by virtue of the versatility

introduced by dynamic masking.

Dynamic masking can be implemented by adding a new state in the TDM

TAP controller that controls the shifting in of a mask to the flip flop chain

of the TDM block in Figure 4.3. Note that for realizing dynamic masking,

the only additional logic required in the TDM block is a multiplexer. This

multiplexer needs to be controlled by the T A P Controller to select between

the WSI (for shifting in a new mask) and the feedback signal (for normal

operation).

4.4.1 Multi-Frequency SoC

Today's SoC could have cores with different frequencies. None of the existing

TAMs are suitable for multi-frequency SoC testing. The proposed TDM-

TAM can handle the multi-frequency SoC, because with the TDM technique,

we can manipulate frequency. Consider the example in Figure 4.1: data fed

Chapter 4. Time Domain Multiplexed TAM 89

to core A and core C is a quarter of the frequency of the branch. Core B is

fed by a branch frequency. Also, with n-lines and a multiplexer, we can have

a line with frequency n times the frequency of a single line.

1 G
1 G

1 G

1 G

4 G

Core B
freq=2 GHz

1181111
Core B

freq=2 GHz
Core C

,freq=1*GHz

Frame

Figure 4.5: Using TDM-TAM for multi-frequency SoC.

Figure 4.5 shows a SoC with 3 cores, working at two different frequencies.

Assume that ATE can send at 1 GHz. In Figure 4.5, the one-branch config

uration that can test each core at its own speed is shown. The mask of core

A , B and C should be "1000", "0101" and "0010" respectively. This way, if

the frequency of the branch is F, the frequency of buses going to core A , B

and C is j, j and j . Based on this formulation, F should be 4 GHz, but

the maximum frequency of the ATE machine is 1 GHz. Using 4 lines and a

multiplexer, we can generate a 4 GHz line. With this configuration, we can

test each core at its own speed. Please note that Figure in 4.5 does not show

TDM-TAM in full detail.

Chapter 4. Time Domain Multiplexed TAM 90

4.5 Optimization

In previous sections, we describe the basic concepts of TDM-TAM, as well as

a test time model, and a model for area overhead. One of the most important

issues associated with TAM architectures is SoC test time minimization. This

section focuses on this issue, and assumes that core designs and their test

requirements are fixed. Specifically, we focus on the optimal assignment of

cores to test buses and the optimal assignment of masks to individual cores,

assuming the TDM-TAM architecture is in place.

We address the following problems: Mask Assignment: Assuming an SoC

using the TDM-TAM scheme and Nc cores is assigned to NB branches,

determine the optimal mask assignment for each core.

Core-Branch Pairings: Assume an SoC using the TDM-TAM scheme and

a total of Nc cores is assigned to NB. branches; determine the optimal core-

branch pairing for each core.

These problems are in fact revised from earlier TAM optimization works

[14, 19] where the objective is to find the optimum configuration for a specific

TAM [41], to achieve a minimum test time. In our special TDM-TAM, the

problem is not only (1) finding the best assignment of cores to buses, but

also (2) finding the best mask assignments for each core.

Toward solving these optimization problems, here we used a Genetic Algo

rithm (GA)-based method. Our program requires the following information

Chapter 4. Time Domain Multiplexed TAM 91

Table 4.2: U226 from ITC SoC'02 benchmarks.

No. of No. of No. of Scan" TAM
Core primary test scan chain use

I/Os patterns chains lengths
1, 2,3 2/1 1363968 0 - n
4, 5, 6 3/17 2666 0 - y

7 97/64 76 20 52 y
8 34/32 1048576 0 - n
9 17/10 15 0 - y

as input: number of cores, number of branches, the test strategy for each

core, and whether any functional (non-scan) test patterns need to be ap

plied, the number and length of the core scan chains, and the number of core

input/outputs. Our program outputs an optimal branch configuration and

core mask assignments.

Example 1: Consider the U226 SoC benchmark from the ITC'02 SoC test

benchmarks [7]. The characteristics of this benchmark are reported in Table

4.2. We use a TDM-TAM design for this SoC and apply our optimization.

We assume two branches with a minimum width, i.e. NB = 2, and the num

ber of bits/frame to be sixteen in both cases (i.e. Mi = M 2 = 16). As five

of the nine constituent cores are assumed to be connected to the TAM for

this benchmark, the problem is optimally assigning these five cores to two

branches and making optimal mask assignments for each core. Our optimiza

tion program yields the assignment of cores 4, 5 and 9 to the first branch,

and cores 6 and 7 to the second, as illustrated in Figure 4.6(a). For the first

Chapter 4. Time Domain Multiplexed TAM 92

branch, the optimal mask assignment is such that ||masA;41| = ||masA;5|| = 7

bits, and ||maŝ 91| = 2 bits, while those for the second branch are such that

||masA;6|| = 6 bits and 11masA/7H = 10 bits. This configuration and assignment

yields a total test time of 140160 cycles. This test time results creates a case

where the branches are both of minimal width, that is, each TAM branch con

sists of only one available data line, and hence, the total effective TDM-TAM

width = 2*. However, when the total effective TDM-TAM width — 3, the op

timal configuration differs. The optimal configuration is illustrated in Figure

4.6(b), that is, branch one is attributed an effective width of one bit (minimal

width), with cores 4 and 5 assigned to it such that ||mas/C4|| = ||mas/c5|| = 8.

Branch two is attributed an effective width of two bits, with cores 6, 7 and 9

assigned to it, and such that \\mask6 = 6||, ||mas&7|| — 10 and ||mas/c9|| = 2.

The total test time for this configuration amounts to 95984 cycles. In Figure

4.7, the total test time (cycles) versus total effective TDM-TAM width is

given, assuming the two-branch configurations shown for benchmark U226.

Example 2: In this example, we consider the D695 SoC benchmark from

ITC'02 SoC test benchmarks [7]. The test data for cores in the D695 is shown

in Table 4.3. In the first step of TAM design, we should apply available

wrapper design algorithms, and for each core, calculate the test time for

^Note that we define the total effective T D M - T A M width as the total number of in
put/output T A M lines, excluding the necessary control lines, such as T M S , Clock and
Reset.

Chapter 4. Time Domain Multiplexed TAM 93

TAM-in 1 TAM-in 1

core 4 core 5 core 9
mask(7) mask(7) mask{2)

1111111000000000 1000000111111100 000000000000011
| TAM-out 1

core 4 core 5

mask(8) mask(8)

1111111100000000 1000000011111111

TAM-out 1

TAM-in 2 TAM-in 2

core 6 core 7
mask (6) mask(10)

1111110000000000 0000001111111111

TAM-out 2

core 6
mask(6)

core 7

mask(9)

pooooon n 1111 iol

core 9
mask(1)

TAM-out 2

(a) (b)

Figure 4.6: Optimal configurations for SoC U266 assuming two branches:
(a) total effective TDM-TAM width=2, (b) total effective TDM-
TAM width=3.

different widths. The result of using the wrapper design algorithm for the

cores in D695 is reported in Table 4.4. Note that core 1 and core 2 are not

scan-testable cores, so the test time for them is equal to the number of test

patterns for all the widths. In Table 4.4, the test time for w = 1 is actually

UPT for the core, and the last number of each column is the minimum test

time (LOT), and corresponding width is Wmj„ of the core. First, we try to

design a one branch TDM-TAM with a minimum width for this SoC. In the

worst case scenario, the core with the largest UPT has the minimum share of

the bus, so in this example, if we assume that M — 16, the upper bound on

the SoC test time becomes 16 * maxI=L...W{UPTI) = 16 * 191874 = 3069984.

However, even in this case if we apply our optimization algorithm to find a

better masking scheme, we can save 200% in test time. The best masking

scheme (for M = 16) is 1, 1, 1, 1, 3, 3, 3, 1, 1, 2 for cores 1,2, •••,10

Chapter 4. Time Domain Multiplexed TAM 94

x 1 0 « Test Time vs. Width for U226
15. 1 1 : 1 1 i r

2 3 4 5 6 7 8
Width (bits)

Figure 4.7: Benchmark U226: Test time (cycles) vs. total effective TDM-
TAM width for two-branch configurations.

respectively, giving a test time of 1023328. As mentioned before, with the

increase of M (the number of bits in the mask), the test time may decrease.

For example, here, for M = 32, the best masking scheme is 1, 1, 1, 3,

10, 8, 3, 1, 1, 5, and the corresponding test time is 425632: 140% further

improvement.

To find the lower bound on the test time for D695, as we proposed in

Theorem 4.2.2, the lower bound is the maximum of all lower bounds of the

cores' test time. From Table 4.4, core 6 has the largest lower bound (9869),

so the lower bound on the total test time of D695 SoC is 9869. To calculate

the width required to achieve this lower bound, Theorem 4.2.2 can be used:

W = Ej=i Wi(Ti < 9869) = 1 + 1 + 1 + 4 + 32 + 20 + 9 + 3 + 3 + 3 = 77. For

Chapter 4. Time Domain Multiplexed TAM 95

Table 4.3: Test data for the cores in D695

No. of No. of No. of Scan chain
Circuit Primary test scan length
(core) I/Os patterns chains Min Max
c6288 64 12 - -
c7552 315 73 - -
s838 35 75 1 32 32
s9234 75 105 4 52 54
S38584 342 110 32 44 45
sl3207 214 234 16 39 41
sl5850 227 95 16 33 34
s5378 84 97 4 44 46
S35932 355 12 32 54 54
s38417 134 68 32 51 55

all cores, the width required to achieve core test time < 9869 is highlighted

in the Table 4.2.2. In this design, each core i has its own private branch

width Wi(Ti < LOTT) and the mask of each core is M. However, we show

that with a better design, the width needed to attain the LOTT can be less.

For example, in the following design shown in Figure 4.8, total test time is

the lower bound (9869) but the total width is 65: 12 lines savings in TAM

width.

Chapter 4. Time Domain Multiplexed TAM 96

Table 4.4: Test data for the cores in D695

width
(W) 3 4

Core's Test T ime
5 6 7 8 9 10

1 5058 26602 191874 185489 65381 22327 26351 22580
2 2658 13354 95992 105798 29393 11243 13182 11296
3 2507 11129 61870 62246 21926 8691 8802 6934
4 6782 48106 73400 16477 5769 6597 5660
5 5829 38478 37338 13224 4605 5310 4653
6 32164 31240 11027 4440 3990
7 27613 27964 9966 3798 3327
8 24163 54610 8341 3305 2836
9 21518 20906 7383 2964 2664
10 19646 19034 6716 2820 2664
11 17624 19034 6431 2418 2073
12 16205 18799 6431 2226 2001
13 14983 18799 6431 2118 2001

14-15 14762 18564 6431 2118 2001
16 12192 11978 4219 1659 1374
17 11420 11273 4026 1572 1338
18 10869 10571 3739 1488 1338
19 10319 10103 3549 1416 1338
20 9989 9869 3454 1416 1338

21-24 9989 3359 1416 1338
25-31 9878 1416 1338

32 6206 836 763
33 5985 822 739
34 5765 798 727
35 5655 774
36 5435 750
37 5325 738
38 5215 714
39 5105

Chapter 4. Time Domain Multiplexed TAM 97

Branch 1
width=20

Branch 3
width=7

Branch 4
width=3

Branch 5
width=3

20

Core 6

| | m a s k | | = 3 2

32

Branch 2 Core 5 Core 7
width=32 | |mask| |=21 | |mask| |=11

7

Core4

| | m a s k | | = 1 9

Core 9

| | m a s k | | = 1 3

I

I
Core 3

| | m a s k | | = 9

T

Core 10
| |mask | |=23

I

I
Core 1

| |mask| |=1 | | | |mask| |=1

Core 2
1

Core 8

| | m a s k | | = 3 0

I

Figure 4.8: Benchmark D695: Design for minimum test time, 5 branches,
with mask 32 bits and, total width=65, total test time=9869.

4.6 Case Study

4.6.1 Platform Description

To evaluate the effectiveness and tradeoffs associated with the proposed

TDM-TAM, a network processor engine (NPE) design was developed and

used as a target test vehicle. Our NPE is an OSI Layer 3 device that for-

Chapter 4. Time Domain Multiplexed TAM 98

wards IPv4 packets [29]. NPE's major blocks include a pre-processing unit, a

classifier, an embedded processor, several post-processing units, and various

memory components. The blocks communicate with each other through an

^4MiM™-compliant high speed bus. Point-to-point connections are also

used for control signals and interrupts.

NPE blocks were developed following reuse guidelines such as I/O buffer

ing and sub-block partitioning. The embedded processor is a modified Mo

torola HCll™ micro-controller. The AMBA-compliant bus was developed

using the AMBA AHB specifications available from ARM Ltd. The bus

uses a master-slave request-based architecture with multiple clock cycles per

transfer. The pipelined bus design yields an efficient implementation that

satisfies the high bandwidth requirements of NPE.

For the core-level test methodology, a full-scan test methodology is as

sumed for the preprocessing and the post-processing units. One single scan

chain was created for each block, and scan vectors were generated by an

ATPG tool and assumed to be provided to the blocks from an external

source. To emulate a heterogeneous test methodology environment, the clas

sifier and embedded processor blocks are assumed to be tested using a logic

BIST methodology. The logic BIST uses a 32-bit linear feedback shift reg

ister (LFSR) to generate pseudo-random test vectors, and uses a signature

analyzer to compact the test results. The memory modules use memory

Chapter 4. Time Domain Multiplexed TAM 99

BIST that runs a Marching C algorithm. All the blocks and the associated

test structures are encapsulated with P1500-compliant wrappers [4].

As illustrated in Figure 4.9, we compared three different TAM architec

tures using the NPE as a target design. A first TAM that we investigated

in our comparison, referred to as Serial PI 500, leverages the new PI 500-

compliant wrappers. The proposed P1500 standard architecture resembles

the STD 1149.1 Test Access Port and Boundary Scan architecture. The most

noticeable difference is the removal of the TAP controller and the addition of

a parallel test port. By removing the TAP controller and providing more ac

cess ports, the serial input constraint of STD 1149.1 is removed and a wide

variety of test access mechanisms are supported. It is possible to serially

thread P1500 wrappers to create a simple TAM for a SoC.

The second TAM that we included in our comparison is the Network

(Novel) Indirect and Modular Architecture (NIMA) [45]. The basis of NIMA

is the establishment of indirect digital communication paths between cores

through the use of packet-switching connections. We used the on-chip net

work for test purposes. Hence, the test methodology when assuming NIMA

consists of converting test vectors into packets that can find their way from

a source to their destination cores. Similarly, test results can also be trans

ferred from cores to a sink. The underlying assumption here is that all

test-related communications destined for or originated from the SoC need to

Chapter 4. Time Domain Multiplexed TAM 100

be communicated using the on-chip network. Finally, the third TAM used

in our comparison is the TDM-TAM.

Serial P1500 NIMA TDM-TAM

HHP

Figure 4.9: TAM architectures considered in our comparison.

While all three TAMs considered in our study use P1500 wrappers, the

NIMA TAM requires that test data be pre-processed into packets. Therefore,

with NIMA, test data (either scan test vectors and/or BIST instructions)

must initially be converted into test packets and subsequently sent to des

ignated blocks. In turn, to translate the test packets back into information

understandable by a P1500 wrapper, a NIMA interface module is required

for each SoC block. A controller within the NIMA interface module gener

ates the P1500 wrapper control signals. Since the P1500 specifications do

not include the implementation of such a controller, we assumed the use of

the 1149.1 TAP controller for this purpose. This controller is responsible for

generating the required P1500 control signals from the NIMA test packets

such that the PI500 wrapper performs the operations outlined in the stan

dard. Furthermore, in the case of NIMA, test data is parallelized by the

Chapter 4. Time Domain Multiplexed TAM 101

test network. Hence, a data funnel lying between the test network and the

NIMA interface modules of each core is required for down-converting the

data width. Finally, since test data from the NIMA test network arrives at

the NIMA core interfaces in bursts, a buffering scheme must be incorporated

to ensure that the P1500 wrappers receive data only when ready to accept

it.

As mentioned above, two test methodologies were applied to our NPE

design, BIST and full scan. BIST has the advantage of lower test traffic

compared to full scan. Moreover, BIST eliminates the need for off-chip vec

tor storage and management, and thereby requires a simpler ATE. On the

other hand, the BIST methodology used here is based on pseudo-random

pattern generation, which typically suffers from reduced fault coverage, in

comparison to full scan, unless special measures are taken. One way to miti

gate this drawback, for example, is to boost the number of BIST test patterns

in comparison to the number of full scan test patterns. This in turn amounts

to longer test times. Consequently, it is evident that various test methodolo

gies have different impacts on the choice and effectiveness of different TAM

architectures.

Chapter 4. Time Domain Multiplexed TAM 102

4.6.2 Resu l t s

We derived specific test time and area overhead models for the TDM-TAM

when the latter is applied to the NPE design described above. For test time,

we derived expressions that depend on a core's test methodology whether

full scan or BIST. For BISTed cores, we assumed that a given set of instruc

tions are required to initiate and complete the BIST, while the actual test

(application of test patterns and signature generation) can proceed indepen

dently of the specific TAM architecture. Hence, for a BISTed core, td is the

time required to send the BIST instructions, while t, is the core test time.

Based on simulations we performed on our NPE design, the times required

to implement core BIST functions are as follows:

Instruction Time(Cycles)

Reset 1

Start BIST 11

Load Reference Signature 38

Capture Signature 16

Hence, for BISTed cores:

td = Reset + StartBIST = 12 cycles
<

U — tc — CoreScanLength * CoreVectorCount

Chapter 4. Time Domain Multiplexed TAM 103

Cores tested using a full-scan test methodology must use the TAM through

out the entire test session. Hence, t% = 0 for such cores. Based on our simu

lations, td includes a 3 times loading instruction, and once loading signature

and capture signature, plus the time needed to load the test pattern here

given as VectorCount * (ScanLength + 5). For the cores using full-scan:

U = 0

^ td — 2 + 3 Loadlnstruction + LoadSignature+

VectorCount(ScanLength + 5) + CaptureSignature

The above formula for i, and td are not general and differ for different

designs. Nevertheless, our simulation with our NPE shows that these formu

lae are relatively accurate for test time predictions for our NPE design. Test

time prediction errors appear to be bounded by M cycles in our specific case.

For the area overhead associated with TDM-TAM when applied to our

NPE, we used the area model described in Section 4.3. Results for the frame

lengths of 16 and 32 are reported in Table 4.5, assuming the NPE design

implemented in a .18pm CMOS technology.

The serial TAM has minimum area overhead, very close to that of TDM-

TAM. That is, the test time for TDM is much shorter than that of serial

TAM. The area overhead for the NIMA is very large.

Chapter 4. Time Domain Multiplexed TAM 104

Table 4.5: Overhead area comparison.

T A M Type Overhead Area
pm2 %

TDM (with 16-bit mask) 18882 0.75
TDM (with 32-bit mask) 30690 1.22

NIMA 1343236 53.3
Serial 5041 0.2

For the test time, the three TAMs were compared in six different scenarios

corresponding to increasing numbers of cores tested using a full scan test

methodology, that is, corresponding to increasing test data volumes (Table

4.6). Figure 4.10 illustrates the total test time (measured in clock cycles)

required for testing the NPE, assuming full-scan DFT for NIMA and TDM

of different widths (from 2 to 5 bits), and the serial TAM. The horizontal

axis indicates the total test data (in bits) transferred. The BIST execution

time is approximately 530,000 cycles for all six scenarios, and it is chosen as

the threshold for total test time. From Figure 4.10, it is obvious that the

serial TAM has the worst test time and TDM with width 5 has the shortest.

The test time of NIMA is very close to that of TDM, but the area overhead

for NIMA is much larger than that of TDM-TAM.

TDM-TAM has the disadvantages of bus-based TAM. For example, TDM-

TAM performance is better for small SoCs, rather than huge SoCs (Figure

4.10). Also, the interconnect will be an important issue in future for TDM-

TAM design.

Chapter 4. Time Domain Multiplexed TAM 105

Table 4.6: Scenarios for assessing TAM performance.

Total test bits Core that use full scan
Scenario 1
Scenario 2
Scenario 3
Scenario 4
Scenario 5
Scenario 6

420014
522460
692364
972072

1789122
2769456

pre and post
pre, post, and HCl l
pre, post, HCll , and classifier
pre, postx.4, HCl l , and classifier
pre, postx4, HCllx4, and classifier
prex4, postx4, HCllx4, and classifierx4

4.7 Conclusions

We proposed a new bus-based TAM which is scalable and compares favorably

to other proposed TAMs in terms of test time and area requirements. The

proposed TAM uses the concept of time domain multiplexing (TDM) to ef

fectively reduce TAM area requirements, while still achieving good test time

performance. This is made possible by the optimal assignment of cores to

buses and the optimal assignment of time slots in the time domain multiplex

ing scheme. We illustrated the use of a genetic algorithm-based methodology

to achieve these optimal assignments. We presented test time and area re

quirement models for our TDM-TAM.

TDM-TAM can be a solution for testing multi-frequency SoCs. By using

TDM-TAM for testing, we can not only test each core at its own speed, but

also test the SoCs without high-frequency and expensive ATEs.

TDM-TAM not only offers generally excellent time and area performance,

but also can be implemented to enable optimal reconfiguration of test re-

Chapter 4. Time Domain Multiplexed TAM 106

0 0.5 1 1.5 2 2.5 3

Total bits transferred x 1 "

Figure 4.10: Test Time for Serial P1500, NIMA, and TDM-TAM.

sources after fabrication using dynamic masking. This feature is particularly

attractive for addressing test requirements that cannot be anticipated before

fabrication, for example in cases requiring increased diagnostics due to one or

more faulty cores on an SoC. We implemented the TDM-TAM on a network

processor engine design, and compared area and test times of TDM-TAM

to other proposed TAMs. We illustrated how TDM-TAM offers an attrac

tive alternative to other TAMs, because of its smaller area requirements and

shorter test time.

Chapter 5. Conclusions 107

Chapter 5

Conclusions

In this thesis the issues of SoC test integration are discussed, a novel wrapper

design considering all factors of test cost is introduced, and a new TAM based

on TDM is reported. Proposed wrapper design and TDM-TAM are analyzed

both experimentally and theoretically and their high performance is proven.

DFT and test generation for SoC are becoming major concerns in the

semiconductor industry because manufacturing test costs are emerging as a

difficult challenge [5]. Also, since test issues should be considered during the

design phase (not after), tools observing DFT are badly needed. The first

step in SoC test integration is wrapper design. In Chapter 2, some of the

previous work on wrapper design and optimization are reported. In Chapter

3, a new wrapper design that can be used as part of a SoC test integration tool

is proposed and implemented. The proposed method is extensively described

theoretically, and many examples are reported to demonstrate its efficiency.

A comparison between our wrapper design and existing methods is conducted

using experiments on the largest core in ITC'02 SoC test benchmarks. The

results show up to a 2.7% reduction in test time, a 58% reduction in TAM

Chapter 5. Conclusions 108

width (test I/O pins) and a 77% reduction in required ATE memory for

testing. These improvements for one core translate into a dramatic cost

decrease, if our method is used for all cores of SoC.

The next step in SoC test integration is TAM design. As part of this

research in this area TAM optimization for general bus-based configuration

was investigated. This work are published in [19] and [20]. In [19] heuristics

methods (GA) was applied to find an optimal test access configuration. Since

this approach can handle both serial and parallel test data transportation

to cores, a test time of 40% less than the previous leading method [14],

which was much slower (with a run time of hours compared to seconds) was

achieved. In [20] the system was improved to handle power consumption and

place-and-route constraints.

Multi-frequency SoC testing is being performed by expensive ATEs and

complicated ATE programming. In Chapter 4, a novel TAM, able to handle

multi-frequency SoC testing, is proposed and implemented. Experiments

show that for a nearly minimum possible test time, the overhead area of this

TAM is very small (less than 2% as compared to 53% for NIMA [45]). An

optimization method for this specific TAM is also reported.

Chapter 5. Conclusions 109

5.1 Future Work

To complete a tool package for SoC test integration, SoC test scheduling

should be studied and included in one package. Test scheduling is used

after fabrication to determine in what order testing of the cores should be

conducted. A test scheduling scheme takes the information related to TAM

design and test data for each core as its input. Of the several methods

available for scheduling, one should be selected and used to determine the

best order of testing from the input data to minimize the test cost.

Also, a complete TAM design and optimization package should be de

veloped. Using this package, the SoC integrator would have the option to

choose the right type of TAM for the SoC. In this research, our focus was

on bus-based TAM and TDM-TAM. A complete TAM design tool, however,

should include different types of TAMs.

The last step in making the SoC test package is to integrate tools for

wrapper design/optimization, TAM design/optimization and test schedul

ing) into a single package. So far, we have developed independent software

tools for wrapper design and TAM design. After the test scheduling method

(mentioned above) is complete, these three stand-alone techniques should be

integrated into a single package, making a novel and much needed tool for

SoC test design.

Chapter 5. Conclusions 110

5.2 Contributions of this Work

This work has made the following contributions to the SoC test research

community:

1. A novel wrapper design and optimization method has been introduced

to minimize the core test time, the TAM width (translates to test

I/O pins) and the required ATE memory. While previous methods

for wrapper design only minimize one or two of these parameters, the

proposed method considers all of these factors in minimization. Also,

the performance of the proposed method is superior when compared to

previous methods.

2. The optimization of a general bus-based TAM architecture has been

studied [19, 20]. We considered the following issues in designing an

optimal TAM with the minimum test time: assignment of cores to test

buses, distribution of the total test width among multiple test buses,

and estimation of TAM width required for an upper bound on testing

time. The proposed method is implemented using a genetic algorithm.

The system is able to design an optimum test access architecture incor

porating system level constraints on power consumption and place-and-

route (arising from the functional interconnections amongst the cores).

This component is not reported in this thesis.

Chapter 5. Conclusions 111

3. A new TAM based on time domain multiplexing is reported. TDM-

TAM characteristics are accurately derived. An example showed that

this TAM can be very useful in testing multi-frequency SoCs. Exper

iments were performed on different SoCs and the overhead area and

test time was compared to serial and NIMA TAMs.

Bibliography 112

Bibliography

[1] Three Methods for Determining Pareto-Optimal Solutions of Multiple-

Objective Problems. Directions in Large-Scale Systems, pages 117-138.

New York, Plenum Press, 1975.

[2] ISCAS 85 and 89 web sites. http://www.cbl.ncsu.edu/CBL_Docs/Bench.html,

1989.

[3] IEEE P1500 Embedded Core Test: Wrapper Interface

Port, Wrapper Instruction Register and Wrapper Bypass,

http://grouper.ieee.org/groups/1500/augOO/wir.pdf, 2000.

[4] IEEE P1500 web site, http://grouper.ieee.org/groups/pl500/, 2001.

[5] International Technology Roadmap for Semiconductors.

http://public.itrs.net/Files/2001ITRS/Home.htm, 2001.

[6] National Institute of Standards and Technology.

http://www.nist.gov/dads/HTML/nphard.html, 2001.

http://www.cbl.ncsu.edu/CBL_Docs/Bench.html
http://grouper.ieee.org/groups/1500/augOO/wir.pdf
http://grouper.ieee.org/groups/pl500/
http://public.itrs.net/Files/2001ITRS/Home.htm
http://www.nist.gov/dads/HTML/nphard.html

Bibliography 113

[7] ITC'02 SoC Test Benchmarks, http://www.extra.research.philips.com

/itc02socbenchm/, 2002.

[8] J. Aerts and E.J. Marinissen. Scan chain design for test time reduction

in core-based ICS. In Proc. of International Test Conference, pages 448-

457, 1998.

[9] G. Ausiello, P. Crescenzi, and G. Gambosi nand V. Kann ... [et al.].

Complexity and approximation : combinatorial optimization problems

and their approximability properties. Springer, Berlin ; New York, 1999.

[10] J. Bedsole, R. Raina, A. Crouch, and M. S. Abadir. Very low cost testers:

Opportunities and challenges. IEEE Design and Test of Computers,

18:60-69, Sept 2001.

[11] A. Borodin and R. El-Yaniv. Online computation and competitive anal

ysis. Cambridge University Press, 1995.

[12] B. Bottoms. The third millennium's test dilemma. IEEE Design and

Test of Computers, 15:7-11, Oct 1998.

[13] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for

Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer Academic,

2000.

http://www.extra.research.philips.com

Bibliography 114

[14] K. Chakrabarty. Design of a system-on-chip test access architecture

using integer linear programming. In Proc. of VLSI Test Symposium,

pages 127-134, 2000.

[15] K. Chakrabarty. Design of system-on-a-chip test access architectures

under place-and-route and power constraints. In Proc. of International

Design Automation Conference, pages 432-437, 2000.

[16] K. Chakrabarty. Optimal test access architecture for system-on-a-chip.

DAES, 6:26-49, Jan. 2001.

[17] A. Chandra and K. Chakrabarty. System-on-a-chip test data compres

sion and decompression architectures based on golomb codes. IEEE

Transactions on Computer-Aided Design, 20:113-120, March 2001.

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction

to algorithms. MIT Pres, Cambridge, Mass., 2nd edition, 2001.

[19] Z. Ebadi and A. Ivanov. Design of an optimal test access architecture

using genetic algorithm. In Proc. of Asian Test Symposium, pages 205-

210, 2001.

[20] Z. Ebadi and A. Ivanov. Design of an optimal test access architecture

under power and place-and-route constraints using ga. In Proc. of Latin-

American Test Workshop, pages 154-159, 2002.

Bibliography 115

[21] Y. Zorian E.J. Marinissen. Challenges in testing core-based system ics.

IEEE Communications Magazine, 37(6):104-109, June 1999.

[22] I. Ghosh, N.K. Jha, and S. Dey. A low overhead design for testabil

ity and test generation technique for core-based systems. In Proc. of

International Test Conference, pages 50-59, 1999.

[23] S.K. Goel and E.J. Marinissen. TAM architecture and their implication

on test application time. In Proc. of International workshop on Test

Embedded Core-based Systems, pages 3.3-1-10, 2001.

[24] P.T. Gonciari, B.M. Al-Hashimi, and N. Nicolici. Useless memory al

location in system-on-a-chip test: problems and solutions. In Proc. of

VLSI Test Symposium, pages 423-429, 2002.

[25] R.L. Graham. Bounds on multiprocessing anomalies. SIAM Journal of

Computing, 17:416-429, 1969.

[26] I. Hamzaoglu and J.H. Patel. Test set compaction algorithms for combi

national circuits. IEEE Trans, on Computer Aided Design of Integrated

Circuits and Systems, 19:957-963, Aug. 2000.

[27] Dorit S. Hochbaum. Integer programming and combinatorial optimiza

tion: Lecture. Lecture notes of Course IEOR 269, Department of In

dustrial Engineering and Operations Research, University of California

Berkeley.

Bibliography 116

[28] Dorit S. Hochbaum. Approximation Algorithms for NP-Hard Problems.

PWS Publishers, 1 edition, January 1996.

[29] L. Hong, M. Nahvi, R. Fung, A. Ivanov, and R. Saleh. Novel test

methodologies for soc/ip design implementation and comparison. In

Proc. of IEEE International Workshop on System-on-Chip for Real-

Time Applications, pages 20-30, 2002.

[30] V. Immaneni and S. Raman. Direct access test scheme-design of block

and core cells for embedded ASICS . In Proc. of International Test

Conference, pages 488-492, 1990.

[31] V. Iyengar and K. Chakrabarty. Test bus sizing for system-on-a-chip.

IEEE Transactions on Computers, 51:229-459, May 2002.

[32] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Test wrapper and

test access mechanism co-optimization for system-on-a-chip. Journal

of Electronic Testing: Theory and Applications (JETTA), 18:213-230,

April 2001.

[33] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Test wrapper and

test access mechanism co-optimization for system-on-a-chip. In Proc. of

International Test Conference, pages 1023-1032, 2001.

Bibliography 117

[34] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Efficient wrap-

per/TAM co-optimization for large socs. In Proc. of Design Automation

and Test in Europe, pages 491-498, 2002.

[35] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. Integrated wrap-

per/TAM co-optimization, constraint-driven test scheduling, and tester

data volume reduction for SOCs. In Proc. of International Design Au

tomation Conference, pages 685-690, 2002.

[36] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. On using rectangle

packing for soc wrapper/tam co-optimization. In Proc. of VLSI Test

Symposium, pages 253-258, 2002.

[37] A. Jas and N. Touba. Test vector decompression via cyclical scan chains

and its application to testing core-based designs. In Proc. of Interna

tional Test Conference, pages 458-464, 1998.

[38] B. Korte and J. Vygen. combinatorial optimization, theory and algo

rithms. Springer, 2000.

[39] J.H. Van Lint. A course in combinatorics. Cambridge University Press,

2nd edition, 2001.

[40] L.Whetsel. An I E E E 1149.1 based test access architecture for ic with

embedded cores. In Proc. of International Test Conference, pages 69-

78, 1997.

Bibliography 118

[41] E.J. Marinissen. A structures and scalable mechanism for test access

to embedded reusable cores. In Proc. of International Test Conference,

pages 284-293, 1998.

[42] E.J. Marinissen, S.K. Goel, and M. Lousberg. Wrapper design for em

bedded core test. In Proc. of International Test Conference, pages 911—

920, 2000.

[43] E.J. Marinissen, V. Iyengar, and K. Chakrabarty. A set of benchmarks

for modular testing of socs. In Proc. of International Test Conference,

pages 519-528, 2002.

[44] E.J. Marinissen, Y.Zorian, R. Kapur, T. Taylor, and L. Whetsel. To

wards a standard for embedded core test: an example. In Proc. of

International Test Conference, pages 616-627, 1999.

[45] M. Nahvi and A. Ivanov. A packet switching communication-based test

access mechanism for system chips. In Proc. of European Test Workshop,

pages 81-86, 2001.

[46] N. Piersma. combinatorial optimization and empirical process. Thesis

Publisher, 1993.

[47] M. Pinedo. Scheduling: theory, algorithm and systems. Prentice Hall,

1998.

Bibliography 119

[48] A. Sivaram. Split timing mode (stm) - answer to dual frequency domain

testing. In Proc. of International Test Conference, pages 140-147, 2001.

[49] N.A. Touba and B. Pouya. Testing embedded cores using partial iso

lation rings. In Proc. of International Test Conference, pages 10-16,

1997.

[50] P. Varma and S. Bhatia. A structured test re-use methodology for core-

based system chips. In Proc. of International Test Conference, pages

294-302, 1998.

[51] B. West and T. Napier. Sequencer per pin test system architecture. In

Proc. of International Test Conference, pages 355-361, 1990.

[52] L. Whetsel. Core test connectivity communication and control. In Proc.

of International Test Conference, pages 303-312, 1998.

[53] L. Whetsel. Addressable test ports, an approach to testing embedded

cores. In Proc. of International Test Conference, pages 1055-1064, 1999.

[54] Y.Zorian, E.J. Marinissen, and S. Dey. Testing embedded-core based

system chips. In Proc. of International Test Conference, pages 130-143,

1998.

Appendix A. P1500 Wrapper Elements 120

Appendix A

P1500 Wrapper Elements

In this section we describe the P1500 wrapper [4] elements in detail.

A . l Wrapper Boundary Cells

Wrapper Boundary Cells (see Figure A.l) are associated with the core ter

minals and provide controllability as well as observability for core terminals.

These cells should support different modes:

• Normal: In this mode, the cell does not have any effect on the terminal,

and the core functions normally.

• Inward Facing: In this mode, the test is directed toward the core, so it

effects the core.

• Outward Facing: In this mode, the test is directed outward from the

core. This mode is the mirror image of the Inward Facing mode.

• Safe: In this mode, the cell effects the core and ensures the wrapper

does not damage core or system (a recommended mode).

Appendix A. P1500 Wrapper Elements 121

Cell Test Output

C T O

A

Cell Functional
Input C F I

Wrapper
cell Model > - C F O

Cell Functional
Output

C T I

Cell Test Input

Figure A.l: Conceptual View of IEEE P1500 Wrapper Boundary Cell [4].

Also, the wrapper boundary cell event can be as follows:

• Shift: Move data through shift path

• Capture: sample data

• Apply: The moment when test data become active and effective

• Update: 1149.1-type update

• Transfer: Move data from Update element to shift path

Appendix A. P1500 Wrapper Elements 122

C T O

> - C F O

Figure A.2: P1500 Wrapper Boundary Cell: Cell Example Displaying all
Events [4].

A.2 Wrapper Interface Port (WIP)

The WIP is defined to control and clock the Wrapper Instruction Register

(WIR) and Bypass, Figure A.3. The WIP wrapper terminals include these:

• WRCK is one or more clocks used to operate registers.

• WRSTN is a dedicated asynchronous Wrapper Reset.

• SelectWIR selects whether or not the WIR is connected between WSI-

WSO.

Appendix A. P1500 Wrapper Elements 123

• UpadteWR,ShiftWR and CaptureWR are enables for register opera

tions.

w np
Contois
& C ticks

W SO -*
W R S T N -

UpdateW R -
ShiffiW R -

CaptureW R -
SelectW JR -

W R C K -

W s i -

COIE
W _apperwih

W]R , eta.

Figure A.3: P1500 Wrapper Interface Port (WIP) [3].

A.3 Wrapper Instruction Register (WIR)

The WIR is used to shift in and update instructions to the wrapper. The WIR

circuitry (Figure A.4) is controlled and clocked by the Wrapper Interface Port

(WIP) and provides the following:

• Serial shifts of the WIR contents from WSI to WSO

• Wrapper instruction decoding and circuitry updating

- Generates Wrapper and Cores Modes based on Wrapper Instruc

tion

— Ensures that Modes remain stable during WIR shift operations

• Optional parallel capture of test control information into the WIR

Appendix A. P1500 Wrapper Elements 124

ShiftWR
WSI

CaptureWR
SelectWIR
UpdateWR

Optional Parallel Capture Data Serila Shift
,! Stage

WIR2 WIR1 WIRO WIR2 WIR1 WIRO

Decode & Update

WIR_WSO

WRSTN
WRCK

o
3

o o
30
I O 3

00

o
3

Selection[n:0]

Figure A.4: P1500 Wrapper Instruction Register Circuitry [3].

— can also be utilized for testing of WIR logic and WIR scan path

An example of WIR implementation is shown in Figure A.5.

A.4 Bypass Register

The Wrapper Bypass Register (WBY) provides a single bit scan bypass of

Wrapper's SIL, from WSI to WSO (Figure A.6. The WBY is controlled and

clocked by the WIP (e.g. , WRCK, WSI) and WIR Circuitry (e.g. WBY-

Cntrl signals).

• The WBY Control signals from the WIR Circuitry are generated based

on the current Wrapper Instruction and the WIP.

WBY can only be selected when the WIP SelectWIR signal is logic 0.

Appendix A. P1500 Wrapper Elements 125

W M O p c o d e s

W BYPASSJDpcode = 3b001

W PRELOAD_Opcode = 3b010 W PRELOAD = ft]

W EXTEST_Opcode = 3 b O l l W EXTEST = B]

SAFESTATE_Opcode = 3bl00 SAFESTATE= B]

W C LAM P_0 pcode = 3 b l 01

COREBBT_Opcode = 3 b l l 0

U p d a t e s taqe

W BYPASS = p]

W CLAM P = D-3

C O R E B E T = p]

Figure A.5: P1500 Wrapper Instruction Register: Example Implementation
[3].

An example of WBR implementation is shown in Figure A.7.

Appendix A. P1500 Wrapper Elements 126

—- W B Y O
4 -

w W B Y O

< r
W mpper
Bypass

SeralS hift
Stage
w BY_W S(

W R C K

Figure A.6: P1500 Wrapper Bypass Register [3].

W BY Shiftstage

Figure A.7: P1500 Wrapper Bypass Register: Example Implementation [3].

Appendix B. Minimum Makespan Problem 127

Appendix B

Minimum Makespan Problem

B . l Problem Formulation

Suppose that we have m identical machines an there are n jobs, each with a

processing time ofpj,j — l...n, which must be processed on these machines.

We are given that n > m and no preemption of jobs is allowed, which means

that each job must be processed on the same machine from start to finish.

The idea is to partition the n jobs into m sets and create a schedule. Our

objective in the schedule is to minimize the maximum machine makespan;

that is, we minimize the latest finish time of the last job completed [28]. The

decision version of this problem is as follows:

Is there a schedule (partition of n jobs into m subsets, Si) such that

Z3es,Pj<K V S ,

This problem is known to be strongly NP-complete. A reduction from Bin-

packing is possible.

Appendix B. Minimum Makespan Problem 128

B.l . l Strongly NP-complete Problems

Definition The running time of an algorithm for a strongly NP-complete

problem is independent of the size of the numbers in the input.

Alternatively, strongly NP-complete problems remain NP complete even if

the input is given in unary. An NP-complete problem that is not strongly

NP complete is called "weakly NP-complete." An example of a weakly NP

complete problem is the 0/1 Knapsack problem, which has a running time

oiO(nB).

B.2 Heuristics for Solving the Problem

B.2.1 A n Example using the LIST Heuristic

We illustrate the list heuristic with the following example. Suppose we have

6 machines, and the following list of jobs: 5 jobs of length 5, 5 jobs of length

1, and 1 job of length 6. The list heuristic works as follows:

List heuristic: Given a list of jobs, take each job one at time, and place it

in the machine with the current earliest finish time.

Applying this rule results in a schedule with a makespan of 11, using the

list as given above. The optimal schedule has a makespan of 6: put the job

Appendix B. Minimum Makespan Problem 129

of length 6 on one machine, and the other five machines have one job of

length 5 and one of length 1. So the list heuristic gives us a ratio of 11/6.

Although not perfect, one advantage of the list heuristic is that it is an on

line algorithm. That is, it does not look ahead in the data before choosing

an allocation. The following is a theorem [Graham 1966] providing a bound

on the error of the list heuristic.

Theorem B.2.1 The list heuristic is a (2 — ^)-approximation algorithm.

Proof Let OVT be the optimal solution value, and C be the makespan

returned by the LIST heuristic. First, observe that the best makespan that

can be achieved with preemption is the sum of the job lengths, divided by

m, the number of machines. The optimal solution must be greater than that

solution obtained with preemption, and must also be greater than the longest

job. Thus,

1 n

OVT > max{—Pi, maxp,}

Now, let t be the processing time of the last job on the list. Then,

£ - * < ^ (_ _ > - *)
' n 3 = 1

=> m(C -t)< m.OVT-t

m.OVT+ (m - l)t
m

Appendix B. Minimum Makespan Problem 130

Since t < OVT, then C < (2 m ~ ^ o p r = (2 - ±)OVT. Thus, the heuristic

is approximation (2 — ^) algorithm. |

B .2.2 A n Improvement: The LIST D E C R E A S I N G

Heuristic

To improve upon the list heuristic, we can sort the list in non-increasing order

prior to assigning jobs to machines. This gives us the list decreasing heuristic.

List Decreasing heuristic: Sort list of jobs in non-increasing order, then

apply the list heuristic.

The example in class had 6 machines, and a list of 13 jobs. The times

for the jobs, in non-increasing order are 11, 11, 10, 9, 9, 8, 8, 7, 7, 6, 6,

and 6. When we applied the heuristic, we obtained a makespan of 23. The

optimal value is actually 18, so our ratio for the heuristic is 23/18. An

alternate theorem by Graham states the quality of solution obtained with

this heuristic.

Theorem B.2.2 List Decreasing is a f | — approximation.

Proof We show that either this magnitude of error is valid, or the heuristic is

optimal. Let us assume that the jobs are indexed so that pi > p2 > • • • > pn.

Appendix B. Minimum Makespan Problem 131

Again, let OVT be the optimal makespan and CV be the makespan returned

by the List Decreasing heuristic. If we suppose that the above theorem is

false, this implies that | — ~ < for some problem instances. Since list

decreasing is a list heuristic, theorem B.2.1 applies, and < 1 + ^^f-

For list decreasing, t — pn, then

4 _ J _ - (m - l) p n

3 3m m.OVT

Am — 1 (m — l)pn

3 O P T

m — 1 (m — l) » n < V => OVT < 3pn 3 OVT

OVT < 3pn implies that at most two jobs are assigned to each machine,

and n < 2m. If n < 2m, then add 2m — n jobs of length 0, therefore, there

are 2m total jobs. Next, we claim that list decreasing is an optimal heuristic

for 2m jobs. Consider this solution: simply assign the first m job, one to

each machine, then assign the remaining m jobs to the machines, starting

with the last machine assigned to a job in the first pass, and end with the

first machine. We can show that this produces an optimal solution:

Compare the "pairing up" solution (described above) produced to an optimal

solution. Suppose that these solutions differ first at the ith machine, where

job i is matched to job 2m — i + 1 in the "pairing up" solution, but matched

with job j in the optimal solution. Likewise, machine k, k > i, is paired up

Appendix B. Minimum Makespan Problem 132

with machine j, but paired up with 2m — i + 1 in the optimal solution. Here

is a summary:

Optimal List Decreasing

Pk + P2m-i+l ->• Pk + Pj

Pi + Pj -> Pi + P2m-i+l

Then,

Pk + Pj <Pi+ Pj because pk < p%

Pi + P2m-i+i <Pi+ Pj because Pi < p2m-i+i

lipi + Pj were the optimal makespan length, then the pairing up solution

delivered by the heuristic would improve the solution, by the above inequali

ties. However, this would contradict our initial assumption that the optimal

solution differs at the zth position. If Pi+Pj is less than the optimal makespan

length, then the heuristic has simply delivered a different optimal solution.

There may be instances where the list decreasing solution is different than

the "pairing up" solution given above. However, we can show that the list

decreasing solution is at least as good as "pairing up". For example, find a job

i in the list decreasing assignment that is in a machine by itself (which means

another machine contains three jobs). Now, we know that CD — p2m < Pi,

because otherwise, job 2m would be on the same machine as job i. Using

Appendix B. Minimum Makespan Problem 133

this inequality, and the fact that p2m < P2m-i+i, we have the following:

CD < pi + p2m <Pi+ P2m-i+i < Pairing Up Makespan

Now, since list decreasing is at least as effective as "pairing up", then

for 2m machines, the list decreasing heuristic is optimal. We have reached a

contradiction, since we know the list decreasing does not always produce an

optimal solution. So, this heuristic must be a (| — ^-^-approximation. |

A strong relationship exists between the MAKESPAN problem and the

BIN-PACKING problem: suppose we knew the optimal makespan, and called

it D. This quantity becomes the size of the bins, into which we must pack

n items of varying sizes pj. The number of bins used must be at most m,

the number of available machines. If the value of D is unknown, it can first

be guessed as the midpoint of a known interval. Then, if more than m bins

were used, D must lie in the larger half of the interval. If less than m bins

is used, then the smaller half of the interval must contain D. This procedure

can be repeated, leading to a binary search approach.

From the above, the optimal solution to the BIN-PACKING problem

leads to an optimal solution to the MINIMUM MAKESPAN problem. The

complexity of this algorithm for the makespan problem is the number of calls

times the complexity of the BIN-PACKING problem. How many calls are

Appendix B. Minimum Makespan Problem 134

necessary? Consider this interval which contains the following:

n 1 71

|max{— ^2 P], maxpj}, — Y^Pi) + m m P j J

The upper limit of this interval is an upper bound on the optimal solution,

as it is achieved by the list heuristic. Therefore, the number of calls is at

most logarithmic in the length of the above interval, and hence, polynomial.

Unfortunately, BIN-PACKING is also known to be NP-complete. Thus,

instead of solving it optimally, we solve it with a dual approximation scheme.

If one uses a dual algorithm for linear programming, primal feasibility is often

violated in choosing the solutions to the dual problem. Likewise, we "violate"

feasibility by allowing our bins to be slightly larger than D. Basically, our

dual approximation solution has two properties:

1. Solution is super-optimal. Number of bins used < optimal number of

bins.

2. There is an e violation of feasibility: we allow bins of size < (1 + e)D.

This approximation scheme is the subject of the next section, where the

concept of scaling and grouping is introduced.

Appendix B. Minimum Makespan Problem 135

B.3 Polynomial Approximation Scheme to

"Makespan"

Consider two similar problems: makespan and bin packing. In the makespan

problem, we want to pack several objects of given sizes into a given number

of bins, and to minimize the bins' maximum necessary capacity. The original

formulation involved scheduling jobs of different lengths to run on a given

number of machines so that the whole system finishes as early as possible

(these formulations are equivalent). In the bin-packing problem, the number

of bins is variable, but their capacities are constant. The two problems

are dual to each other. Both are invariant to scaling, that is, feasibility,

optimality and so forth do not depend on the units of measurement. Both

are known to be strongly NP-hard. Suppose we have a super-optimal solution

to the bin packing problem, an instance that is known to use at most as many

bins as the optimal, but may "overhang" by a factor of e, making it infeasible.

This solution can then be used to approximate the corresponding makespan

problem in the following way:

Appendix B. Minimum Makespan Problem 136

Let L = max{maxj tj, ^ J2i ti}-

Guess a median d G [L, 2L].

Find an e-dual approximation for packing m bins of size d.

If less than m bins were used, search the smaller half of the interval.

If m bins proved to be too few, search the larger half of the interval.

Repeat until length of the interval is less than 1.

Here, we look for a scheme to find e-approximations to bin packing in time

polynomial in n (number of items) for each given e. Our algorithm runs as

follows. (1) Pack all items larger than e (assuming bin sizes are normalized

to 1). And (2) pack the remaining items.

In stage 1, no more than ^ items can go into a single bin. The problem

would be easier with a fixed number of possible sizes, because then dynamic

programming could be used. Instead, we use a technique called scaling and

grouping. Divide the interval (0, e) into subintervals of size e2 . Divide every

item's size by ,̂ rounding down to the nearest multiple of e2. Then solve the

problem optimally using dynamic programming. We round down to ensure

super-optimality, since if item sizes are reduced or kept the same, fewer or

as many bins are required to accommodate them than before.

A feasible configuration is a collection of items that can feasibly go into

one bin. There are s = possible sizes, and for each size, at most ^ can

