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Abstract ii 

Abstract 

Using the large number of transistors available on a chip, designers have 

already managed to put an entire system on a single chip. These are referred 

to as System-on-a-Chip (SoC). Being able to rapidly develop, manufacture, 

test, debug and verify complex SoCs is crucial for the continued success of 

the electronics industry. 

In the problem of SoC test integration three issues need to be addressed: 

wrapper design, TAM design and test scheduling. In this thesis, a novel wrap

per design method is introduced to minimize the core test time, the number 

of test I/O pins and the required ATE memory. While previous methods for 

wrapper design only minimize the test time, the proposed method considers 

all of these factors in the test cost. 

Also a novel TAM based on time domain multiplexing (TDM-TAM) is 

introduced. This TAM is P1500 compatible and uses a P1500 wrapper. Its 

characteristics are flexibility, scalability, and reconfigurability. 
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Chapter 1 

Introduction 

1.1 Motivat ion 

Spurred by technology which makes millions of gates per chip now available, 

system-level integration is evolving as a new paradigm, allowing an entire 

system to be built on a single chip, referred to as System-on-a-Chip (SoC; 

Figure 1.1). The advantages of an SoC over its conventional multi-chip coun

terpart include higher performance, lower power consumption, higher density 

and lower weight. 

| i : . \R l 

RISC' 

ROM 
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SRAM 

T1MI-R 

MPLCi 
UI)I. 
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• • • • • • • • • • • • • • l l 

Figure 1.1: Example of System-on-Chip (SoC). 

In SoC design, using complex, pre-designed and pre-verified functional 
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blocks (modules) allows greater on-chip functionality, and leads to shorter 

product development cycles. These reusable modules are called Embedded 

Cores, while the reuse design style is known as a core-based design. A few 

examples of reusable cores include CPUs, DSPs and embedded memories. 

Being able to rapidly develop, manufacture, test, debug and verify com

plex SoCs is crucial for the continued success of the electronics industry. 

To make production practical and cost effective, however, the International 

Technology Roadmap for Semiconductors (ITRS) identifies a number of ma

jor hurdles to be overcome [5]. Among these problems, testing and diagnosis 

of SoCs is the most important. Many experts believe that testing SoC chips 

will be the bottleneck of future designs if issues of DFT (design for testability) 

for SoCs are not addressed [41, 54]). 

ITRS introduces "Manufacturing Test Cost" as a difficult challenge (through 

2007) to be solved in the short term. The most important issues involved in 

manufacturing test costs are shown in Table 1.1. 

Table 1.1 makes it obvious that DFT methods that reduce test cost by 

minimizing test I/O pin, test time, and equipment reuse, are desired. Also, 

since using such DFT methods leads to longer test development time, auto

matic test program generators are required. The research reported in this 

thesis focuses on DFT methods for SoCs to reduce test costs and also develop 

tools to automate generating test circuitry for SoCs. 



Chapter 1. Introduction 3 

Table 1.1: Manufacturing test cost issues (from Table 19 in [5]). 

Difficult Challenge 
through 2007 

Summary of Issues 

Manufacturing Test Cost 

Test cell throughput enhancements are needed 
to reduce manufacturing costs. 

Device test needs must be managed through 
DFT to enable low-cost manufacturing test 
solutions; including reduced pin count test, 
equipment reuse, and reduced test time. 

Automatic test program generators are 
needed to reduce test development time. 

1.2 Research Goals 

For the problem of SoC test integration three issues need to be addressed: 

wrapper design, test access mechanism (TAM) design and test scheduling. 

The wrapper forms the interface between the embedded core and its system 

chip environment, and provides switching capability between the normal op

eration mode and test mode. A TAM is used to deliver test data to the 

cores and also to transfer test response from the cores to the sink where it 

is evaluated. Test scheduling focuses on determining the start time of the 

various core tests, such that no resource conflict occurs with respect to the 

test access infrastructure from I/O pins to core terminals, and vice versa [21]. 

The test cost of an SoC depends on three major factors: (1) test time, 

(2) test input/output (I/O) pins, and (3) Automatic Test Equipment (ATE) 

machine resources. In an SoC integration problem, it is desirable to minimize 
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test cost by minimizing the test cost factors. 

Therefore, the goal here is to design and develop a computer-aided-design 

(CAD) tool which facilitates shorter test development time. Using this tool 

SoC designers can design the "optimal" test circuitry (with the minimum 

test cost). 

The first two issues concerning SoC testing and their optimization are 

addressed extensively in this thesis, both theoretically and experimentally. 

Software has also been developed for optimal SoC testing in two steps: a core 

wrapper design for each individual core within the SoC, and a TAM design 

for the entire SoC. 

In the first step, the wrapper that optimizes the core's test cost (by 

minimizing all the important test cost factors), is designed for each core. 

In the second step, the optimal TAM configuration for SoC are derived to 

optimize test cost (by minimizing test time and test I/O pins). 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 provides 

an overview of basic concepts of SoC testing such as wrapper, TAM, and 

so forth. It also describes previous work on wrapper and TAM design and 

optimization. This work on TAM optimization [19, 20] is addressed in this 

chapter. 
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Chapter 3 describes wrapper design and optimization. In this chapter, a 

novel wrapper design method is introduced to minimize the core test time, 

the TAM width (translates to test I/O pins) and the required ATE memory. 

Superior performance of my method as compared to existing methods is 

proved through several experiments. 

Chapter 4 proposes a novel TAM based on time domain multiplexing 

(TDM-TAM), which can especially handle multi-frequency SoCs. It also 

provides TDM-TAM characteristic details and a comparison to the two other 

approaches. 

The thesis is concluded with a summary, possible directions for future 

research, and the contributions this project has made to the SoC test research 

community. 
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Chapter 2 

Background and Previous 

Works 

This chapter presents an overview of basic concepts of SoC testing, along 

with a background on wrapper and TAM design and optimization methods. 

Also, the focus and contribution of this research project are presented. 

2.1 Overview of SoC Testing 

In a core-based design, the system integrator is responsible for putting to

gether a test strategy (for all embedded cores, and User Defined Logics 

(UDLs) and interconnect wiring) for the entire system chip. 

The SoC test integration steps are shown in Figure 2.1. The wrapper 

concept and existing wrappers in the literature are discussed in Section 2.1.1. 

The definition of TAM and different types of TAM design are reviewed in 

Section 2.1.2. For test scheduling, given a set of tests for each core in the SoC 

and a set of test resources (e.g., TAM), a test plan for conducting the tests 
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on the SoC is derived. Test scheduling is the last step of SoC test integration, 

however, it is not part of test circuitry design and can usually be done after 

tape out; thus, it is not in the scope of this research. 

Core i SoC test 
data requirements 

SoC test 
requirements 

and constraints 
test resource 
constraints 

Wrapper design for all the cores 

Test circuitry design 

T A M design — 

Finish ") 

Figure 2.1: SoC test integration steps. 

2.1.1 Wrapper 

A wrapper is a shell around the core that integrates it with its surroundings 

and provides an isolation mechanism for testing purposes. A wrapper acts 

like a switch between normal functional access and test access, providing a 

mechanism for core test data access and core test isolation; it allows the tester 

to control core inputs and observe core outputs via the TAM, so that the 

core's internal test can be re-applied at the SoC level. To avoid any damage 

to the SoC, a core has to be isolated when it, or one of its neighboring cores 

or UDLs, is tested. 
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Furthermore, a wrapper should have additional modes so that the isolated 

core can interface with available test access paths and assume internal states 

necessary for the core's own test execution, as well as testing external in

terconnects and UDLs. Therefore, a well-designed wrapper can handle both 

core-internal testing and core-external testing. In order to achieve these ob

jectives, the following capabilities are potentially required at core terminals: 

• Input Observation: This capability allows logic values of the core 

input terminals (which are supplied by external logic) to be observed 

by the wrapper. 

• Input Control: This wrapper function allows test data to be applied 

to the core input terminals. 

• Input Constraint: Allows forcing or limiting core input terminals 

to fixed logic values. Input constraint can be useful during testing to 

prevent damage to the core, reduce power consumption, and so forth. 

• Output Observation: This capability allows for the observation of 

logic values of the core output terminals (which are propagated from 

internal logic) at the wrapper. 

• Output Control: This wrapper function allows test data to be applied 

at the core output terminals by the wrapper, such that the test data 

can be propagated to the system chip logic external to the core. 
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• Output Disable: Allows forcing tri-sate core outputs to their inactive 

state. This is useful in preventing damage to other tri-state drivers on 

the same bus during the test application. 

• Output Constraint: This allows constraining appropriate non-tri-

sate core output to fixed logic values in order to prevent damage to the 

logic external to the core and reduce its power consumption. 

There are several proposed core test wrappers in the literature. A core 

test wrapper called TestShell [41] has been proposed by Marinissen, and is 

currently being used by Philips. This wrapper supports four basic modes: 

(1) normal (functional), (2) core test, (3) interconnect test and, (4) bypass. 

In this approach, TAMs are called TestRail. In principle, a TestShell is 

connected to the same TestRail at both input and output. Therefore, the 

TAM input plug and the TAM output plug of a TestShell normally have the 

same width. 

Varma and Bhatia of Duet Technologies described a very similar wrapper, 

called Test Collar [50]. Aside from the different naming of basically similar 

features, the main difference between this wrapper and TestShell is that the 

Test Collar does not have a bypass feature. 

The IEEE P1500 Standard for an Embedded Core Test (SECT; under 

development) [4] consists of two components: a Core Test Language to facil

itate the test knowledge from the core provider to the core user, and a Core 
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Test Wrapper [44]. The P1500 wrapper (see Figure 2.2), which satisfies all of 

the functional requirements mentioned above, is composed of the following: 

• Wrapper Boundary Cells: These are associated with the core terminals. 

They provide controllability as well as observability. Together, these 

cells make the Wrapper Boundary Register. 

• Wrapper Instruction Register (WIR): This is used to load instructions 

to control the operation of the wrapper. 

• Bypass Register. This is the bypass for the Serial Interface Layer (SIL). 

• Wrapper Interface Port (WIP): This is for the control of wrapper reg

isters via SIL. It comprises control and data signals for accessing DFT 

features of the target core. 

A detailed description of P1500 core test wrapper elements is reported in 

Appendix A. 

The P1500 wrapper connects to one mandatory one-bit wide TAM, Wrap

per Serial Input/Output (WSI/WSO), and zero or more scalable-width TAMs 

(TAM-in/TAM-out). A minimal compliant implementation has only the 

single-bit TAM plug, through which both test control values for the WIR, as 

well as test stimuli and responses are transported. Envisaged typical usage 

has one multi-bit TAM next to the mandatory TAM. In this case, access to 

the bulk test data is performed along the multi-bit TAM, while the single-
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WBR 

Inputs 
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P1500 Wrapper 
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Figure 2.2: Conceptual view of IEEE P1500 wrapper [44]. 

bit TAM is used to program the WIR, and possibly transport test data in a 

silicon debug scenario. TAM-in and TAM-out need not have the same width. 

This research on optimal wrapper design (Chapter 3) is based on the 

P1500 wrapper standard. The previous works on wrapper design and opti

mization are reported in Section 2.2. 
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2.1.2 T A M 

Since cores in an SoC are not directly accessible via chip inputs and outputs, 

special access mechanisms are required to test them at the system level. 

Zorian et al. [54] proposed a generic conceptual test access architecture 

for embedded cores, with the following components: source, sink, and TAM 

(Figure 2.3). A TAM is used to deliver test stimuli from the source (which 

generates test stimuli) to cores, and also to deliver responses from cores to 

the sink (which evaluates test responses). 

Source : Zorian 99 

Figure 2.3: Conceptual TAM architecture. 

In this architecture (Figure 2.3), both source and sink can be either on-

chip or off-chip. The TAM is not only the physical mechanism that connects 

source and sink to the core, but also includes the control signals needed for 

this connection. 
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The IEEE P1500 proponents, accepting the fact that test schemes for 

each core cannot be standardized, specifically decided not to standardize the 

design for the TAM. Hence, the TAM design is left to the SoC integrator. 

Several TAM architectures are suggested. These architectures can be 

classified into four categories: (1) multiplexing, (2) serial connection, (3) 

indirect access and (4) bus-based connection. 

In the first category, multiplexing is uses to access the cores. The simplest 

method in this category directly multiplexes the test pins to the primary 

inputs/outputs (I/O) [30]. Another method modifies the cores such that 

each core has a transparent mode for testing [22]. There are several problems 

with the multiplexing TAM methods, such as limited scope of use for future 

complex SoCs, large overhead area, long test time, and non-scalability of the 

architecture. 

TAMs in the serial connection category [40, 49, 52] use the established 

IEEE 1149.1 standard. For a few cores on an SoC, it may be possible to 

spend time transporting the test vectors serially to the cores. However, as 

the number and complexity of the cores increases, a serial solution based on 

the IEEE 1149.1 standard, or its variants, proves too costly in terms of test 

time. 

There are some proposed methods that implement TAM without a direct 

path from I/Os to each core. One of these methods is Networked Indirect 
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and Modular Architecture (NIMA) proposed in [45], where the emphasis is 

placed on modularity, generality, and configurability of the architecture. The 

basis of NIMA is the establishment of indirect digital communication paths 

among cores using packet-switching connections. It is assumed that all test-

related communications destined and/or originated to or from the SoC need 

to be communicated by the on-chip network. 

Bus-based connection schemes are the most common TAM architecture. 

A number of different variations of the scheme are reported in [41, 50, 53]. 

The idea is to have parallel access to the cores using a shared medium on 

which data is broadcasted. Bus access control is usually provided by tri-

state switches (Figure 2.4). In terms of trading-off increased overhead area 

to reduce test access time, bus-based architectures are the most efficient TAM 

schemes suggested to date. 

Marinissen and others [41] suggest a topology (as a bus-based TAM) 

where cores are connected in a rail configuration, and buses have different 

widths, fan-in, and fan-out. If needed, each core can be bypassed to access 

the next one in line, and control is achieved by a serial connection. This 

architecture is conceptually illustrated in Figure 2.5 (the control signals for 

the bypass elements are not shown). Test data is normally passed through 

the bypass elements and the corresponding cores are inhibited in this mode. 

When the data has to be applied to a core, the bypass element is inhibited 
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Core Core Core Core 
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Figure 2.4: TAM using bus-based connection. 

and the corresponding core reads the data. The wrapper configuration used 

for each core (not shown in the diagram) closely resembles that of the first 

draft of IEEE P1500. 

Using the bus width as the varying parameter, TAM architectures based 

on a bus provide some degree of adaptability and configurability for the 

designer: increased overhead area is traded-off for reduced test access time 

to design for the best case. In Section 2.3 previous work on TAM optimization 

are reported. 
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Figure 2.5: TESTRAIL architecture for TAM [41]. 

2.2 Wrapper Optimization Methods 

The existing wrapper optimization methods are mostly based on the PI500 

wrapper standard. The publications on P1500, however, provide only general 

guidelines for wrapper design, and details are left to the core user. For exam

ple, a wrapper may provide width adaption in case of a mismatch between 

the core I/O width and TAM width (e.g. by serial-parallel and parallel-serial 

conversion). Interconnection between the wrapper cells, core-internal scan 

chains and TAM plugs effect core test time, required TAM width, and also 

required ATE memory. 

. Marinissen [42] proved that the unbalanced TAM scan chains (i.e. the 

scan chains formed by internal scan chains and the core's inputs/outputs 
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having unequal lengths; see Section 3.2.1) of the wrapper lead to longer core 

test time. He suggested a method to balance the TAM scan chains of the 

wrapper, aimed at minimizing core test time [42]. 

Iyengar [32, 34, 35] not only improved Marinissen's method of reaching 

shorter test times, but also considered minimizing TAM width while keeping 

the test time at the minimum. 

Gonicari [24] addressed useless memory allocation (UMA) as an issue in 

wrapper design. To reduce on-chip control when feeding embedded core's 

multiple scan chains, the test vectors are augmented with useless data to ac

count for their unequal lengths (Section 3.4). Gonicari proposed a new test 

methodology which merges core wrapper design and ATE memory manage

ment problems. His core wrapper design is capable of finding the minimum 

number of TAM scan chain partitions, so that for each partition, useless 

memory is minimized. 

2.3 T A M Optimization Methods 

An efficient TAM should reduce test costs by minimizing test application time 

and test I/O pins. Since there is no standard for a TAM configuration, each 

type of TAM has its own optimization method. Usually for any proposed 

TAM, optimization is also addressed as part of the TAM solution. How

ever, sometimes the problem of TAM optimization for a general bus-based 
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configuration is also addressed. 

Chakrabarty [14, 16, 31] addressed several issues in optimal TAM design 

with respect to test time, for example, assignment of cores to the test buses, 

the distribution of the test width among multiple test buses, and the estima

tion of TAM width required to satisfy an upper bound on testing time. All 

of these problems are proved to be NP-complete, and therefore, in [14, 16] 

integer linear programming (ILP) is used to solve them. 

As an extension of previous work, Chakrabarty [15] proposed a method of 

designing the optimum TAM (using ILP) considering system level constraints 

on power consumption and place-and-route (arising from the functional inter

connections amongst the cores). All of his work [14-16] required serialization 

at all the cores' I/Os. 

As part of this research, the TAM optimization problem was. The same is

sues as Chakrabarty (cores assigned to buses, width distribution and required 

width estimation) were investigated. However, the necessity of serialization 

constraint was removed, which allowed the system to handle serial or parallel 

loading of test data for any core; this improves the test time for up to 40%. 

The implementation of the proposed method was built around a genetic al

gorithm (GA). In Figure 2.6 this method [19] is compared to Chakrabarty's 

[14]. 

In another work, the proposed method have been improved to handle the 
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Figure 2.6: Comparison of result using ILP [14] and GA [19]. 

power and place-and-route constraints [20]. In this work the proposed system 

was able to find an optimal test architecture with four options: (1) without 

any constraint, (2) with a power consumption constraint, (3) with a place-

and-route constraint, and (4) with power consumption and place-and-route 

constraints. An example of the results of the proposed system is shown in 

Figure 2.7. 

In some works the problem of wrapper and TAM optimization are com

bined and solved together [33-36]. For example, in [33], the wrapper design 

algorithm (which minimizes test time and TAM width) calculates test time 



Chapter 2. Background and Previous Works 20 

4.00E+05 

2.00E+05 -I , 1 1 1 1 1 , 1 , 1 
20 28 32 36 40 44 48 52 56 60 64 

Total width (bits) 

Figure 2.7: Example of result of the system in [19]. 

values that are used by a mathematical model for TAM optimization. 

2.4 Focus and Contributions 

The goal for this research project is to build a tool for designing a test 

circuitry for SoC test integration. As it is shown in Figure 2.1, the first step is 

wrapper design. In this thesis, a new method for wrapper design regarding all 

important test cost factors, including test time, required width, and required 

ATE memory is proposed. As reported in Section 2.2, all previous works 

consider only one or two of the major factors. The proposed approach not 
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only considers all the major test cost issues, but also, its performance is 

better than the previous methods (e.g., lower test time as compared to the 

methods that just minimize test time [32, 42]). Also, the proposed method 

is implemented as a tool for optimal wrapper design for a given core. The 

details of wrapper design and optimization are discussed in Chapter 3. 

In Chapter 4, a novel TAM based on time domain multiplexing (TDM-

TAM) is proposed. This TAM is P1500 compatible, and uses a P1500 wrap

per. TDM-TAM characteristics are flexibility, scalability, and reconfigurabil-

ity. Also, this TAM could be very useful for testing multi-frequency SoCs be

cause with TDM, we can manipulate frequency. The concept of TDM-TAM 

is expanded theoretically and experimentally. The optimization method is 

tailored specifically for TDM-TAM based on my previous work in TAM op

timization [19, 20]. The efficiency of TDM-TAM is proved by a comparison 

with two other TAMs. 

The contributions of this thesis are summarized as follows: 

1. A novel wrapper design algorithm considering all major components of 

test cost. 

2. A novel TAM based on time domain multiplexing with the following 

special characteristics: 

• P1500 standard compatible 
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• Reconfigurability (even after fabrication) 

• Low overhead area and acceptable test time 

• Ability to handle multi-frequency SoCs without expensive ATE 

and complicated ATE programming 

3. Specific optimization algorithms for TDM-TAM based on previous work 

on TAM optimization is reported in [19, 20]. 
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Chapter 3 

Wrapper Design 

This chapter introduces the important issues in wrapper design. Next, the 

TAM chain design problem is addressed and existing methods for this prob

lem are reviewed. A new method is introduced that improves wrapper design 

to minimize area and ATE (Automatic Test Equipment) resources, as well 

as core test time. Finally, wrapper design for flexible cores is elaborated. 

3.1 Wrapper Design Issues 

There are many important factors to consider in the design of wrappers. 

Anything that has an impact on the test cost can be a factor. The most 

important part of the test cost is known to be determined by the test time. 

The silicon area is also a factor of the test cost. Another factor is the number 

of I/O pins in the test cost, because the number of I/O pins is limited by 

area. That is, as the number of I/O pins increase, we need a larger area 

so the test cost increases. The resources of an ATE machine can also be 

counted as a factor of the test cost. Since we need more resources from an 
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ATE , such as memory, we have to employ a more expensive ATE, which has 

a large impact on the test cost. To summarize, the factors that should be 

considered are as follows: 

• Test Time 

— Core Internal Test Time: core test time 

— Core External Test Time: interconnection test time 

• Area 

— Silicon Area 

— I/O Pins 

• A T E Resources 

— Memory 

— I/O Pins 

3.2 Wrapper Design w.r.t. Test Time 

3.2.1 T A M Chain Design 

One of the most important tasks in wrapper design, which has a direct impact 

on the core test time, is to make the interconnection between the wrapper 

boundary cells, the core internal scan chains, and the TAM lines (plugs). We 
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refer to this task as TAM chain design. Also, we call the elements that make 

up a TAM chain (wrapper input cells, core internal scan chains and wrapper 

output cells), TAM chain elements. Access to the core for testing is already 

guaranteed if all the TAM chain elements are accessible from the TAM plugs. 

In this section, it will be shown that the ordering and partitioning of TAM 

chain elements has a large impact on the size of the resulting test vectors 

set. Also, it is obvious that the size of the test vector set is an important 

cost factor in the testing of ICs. When the test vector set is large, not only 

the application test time is long, but also, expensive pieces of equipment 

with large pin memories to store those vectors are required to test the IC. 

Therefore, the reduction of the size of the test vector results in the reduction 

of test cost. 

Wrappers are used for both core-internal and core-external tests. Design

ing the wrapper to optimize the test vector set for a core-internal test might 

lead to a conflict with the test vector set optimizing for a core-external test. 

Usually, the core-internal circuitry is much larger than the circuitry used to 

interconnect the cores. Therefore, the test data volume involved in core-

internal testing is much larger than the test data volume for core-external 

testing. Also, in many cases, the wrapper is designed by the core provider 

to whom the circuit environment in which the core is used is unknown, and 

data about the core-external test is not available at the wrapper design time. 
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Therefore, we give priority to optimizing the core-internal test vector set, 

and the wrapper is designed without considering the core-external test. 

The test time T (in clock cycles) of a core is determined [23] by the scan-in 

length the scan-out length s0, and the number of test patterns NP: 

T = (1 + max(sj, s0)) • NP + min(sj, s0) (3.1) 

This equation assumes that the scan-out operation of one pattern is over

lapped with the scan-in of the subsequent test pattern, and that the ac

tual test application costs one clock cycle. In regular scan testing, typically 

Si — s0. Since in the wrapped cores, the scan chains also include wrapper 

cells for core terminals, and the number of core input terminals might dif

fer from the number of core output terminals [42], then Si and sQ might be 

different for these. Note that this formula is valid even for non-scan-testable 

cores, for which s, — s0 — 0. 

T h e o r e m 3.2.1 For a core with Nr inputs, No outputs, N$ scan chains of 

length li, I2, • • •, INs respectively and Np test patterns, the lower bound on the 

core test time, T, is given by the following: 

Tlower Nplmax ~t~ Np -|- Imax 

and the minimum T A M width required to achieve this test time's lower bound 
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is given by Wmin, as follows: 

_ RL + max{NI,N0)^ 
Wmin — | | 

*>m.ax 

where lmax = maxj=1>... ! jVs U and L = £i l s i l{. 

Proof Since in best case, each TAM chain element is on one TAM line, so 

Si and s0 cannot be less than lmax- In the best case the longest internal 

scan chain is on a private TAM chain making S j = s0 — lmax- Substitution 

of these values into Equation (3.1) gives the lower bound for the test time 

Nplmax + Np + lmax- Also, the minimum width required to achieve this lower 

bound is in the case where S j = s0 = lmax for all the TAM chains. As well, 

we know that S j > , and s0 > L~W

W°, giving us the following: 

> L + Nj _ L + Nr L + NT 

&i _ rxr i — '"max '* 'mai _ T x r " _ 5 ~ t - m u x ' "itLux :— • • .— ^ 

max 

L + Np _ L + Np . W > L + N0 

So — JJT 5 So — bjriax * '-max _ T T 7 ? _ 
max 

Therefore, W > L+ma*iN''No). However, can only take integer values, so 
'•max 

}y > rJ-+max(JVj,JV0)i I 
lmax 

Theorem 3.2.2 For a core A7/ inputs, No outputs, Ns scan chains of 

length li, I2, • • • ,INs respectively, and Np test patterns, the upper bound on 

* [.] denotes rounding to the closest larger integer. 
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the core test time, T, is given by the following: 

TuPPer = (1 + L + max(/V/, N0))NP + L + min(/Yj, iV0) 

where L — J2fJi h-

Proof The worst case for test time is when only a one-bit wide line is used for 

TAM. In this case all the scan chains and inputs and outputs are on one TAM 

line, so Si = L + Ni and s0 = L + No- By substituting in Equation (3.1), the 

upper bound of the test time is (1 + L + max(./V/, N0))NP + L + mm(Nr, No)-

I 

In our test architecture design approach, we distinguish two types of cores: 

• Cores with fixed-length scan chains: cores for which the numbers and 

the lengths of the internal scan chains are fixed. Examples of such cores 

are hard cores and firm cores after scan insertion. When designing an 

SoC-level test architecture, we have to cope with the fixed scan chain 

parameters. 

• Cores with flexible-length scan chains: cores for which the numbers and 

lengths of the internal scan chains are determined during test architec

ture design. Examples of such cores are soft cores and firm cores before 

scan insertion. Such cores provide better opportunities to minimize test 

time, as we can tune their scan chain parameters to fit the overall SoC. 
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In all the sections of this chapter, except Section 3.5, we assumed all the 

cores have fixed-length scan chains. 

3.2.2 Ordering of T A M Chain Elements 

From the set of all TAM chain elements, two non-disjoint subsets are involved 

in the loading and unloading of test patterns. The wrapper input cells and the 

core-internal scan chains (we refer to these as the input elements) participate 

in loading of test patterns, while the wrapper output cells and core-internal 

scan chains (we refer to these as the output elements) participate in the 

unloading of test patterns. In order to reduce and so, it is best to order 

the items in any TAM chain such that the input elements are at the head, and 

the output elements are at the tail of the TAM chain. However, considering 

that core-internal scan chains are in both sets, the elements should be ordered 

in the following way: (1) wrapper input cells, (2) core-internal scan chains, 

and (3) wrapper output cells. 

input wrapper cells 

input elements 

output elements 

scan chains 
output wrapper cells 

— E t scan chain 1 scan chain Ns 

scan chain bypass 

•Bypass;reg 
wrapper bypass 

•Bypass;reg 

Figure 3.1: Ordering of TAM chain elements (optional items are dashed). 
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In Figure 3.1, the generic template for a single TAM chain is shown. As 

another option, we can provide a bypass for the core-internal scan chains, and 

at the cost of a multiplexer and an additional control wire, we can reduce 

the length of the access chain by bypassing them during the core-external 

test. We can also provide a bypass for the entire TAM chain in this wrapper. 

Such a bypass is practically useful when multiple cores are concatenated into 

a single TAM, such as the case in the Daisy-chain architecture described in 

[8]. Cores which are not being tested can be bypassed in order to reduce the 

access length to cores which are being tested. As multiple cores are daisy 

chained into one TAM, this might lead to long TAM wires, and hence to long 

propagation delays. 

3.2.3 Partitioning of T A M Chain Elements 

Usually the TAM width is limited because of limited IC pins, silicon area, 

and so forth. Therefore, in many cases, the total number of TAM elements 

is much larger than the width of the TAM (the number of TAM lines). In 

these cases, it is required to partition the set of TAM elements into a number 

of subsets equal to the number of available TAM chains. 

The partitioning of TAM elements over TAM wires has a direct impact 

on scan-in time, S j , and scan-out time s0. Partitioning determines core test 

time; hence, we look for a partitioning of the TAM elements which yields to 
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the minimum test time. 

For cores with fixed-length scan chains, the TAM element partitioning is 

challenging. Suppose that we have the core and the following information: 

Nj functional inputs, No functional outputs and N$ scan chains with lengths 

li, I2, • • •, INS. We want to design a wrapper for this core with TAM width 

(TAM plugs) W to minimize the core test time. 

The partitioning problem can be formulated as finding an assignment of 

all TAM elements to one of the available TAM chains such that the core test 

time, Equation 3.1, is minimized. This problem can be formalized as follows 

[42]: 

Problem 1 Partitioning of TAM Chain Elements (PTE) 

Assume a set of W identical TAM chains and a set WT — {Ii, I2, - • •, IN,} of 

wrapper input cells, where each wrapper input cell has a length 1, 1(1 j) — 1. 

Given a set of <S = {si, s2, • • •, Sjvs} of core-internal scan chains, where scan 

chain Sj has length lj, 1(SJ) = lj. Given a set of WO = {Oi, 02, • • •, 0NO} 

of wrapper output cells with length of 1, 1(0j) = 1. We define, the group 

of TAM elements as: TS = VVl U S U WO, with \TS\ — NT + Ns + N0- A 

TAM partition V = {P\, P2, - • •, P\v} of TS is such that it divides TS into 

W disjoint sets, one for each TAM chain. For each TAM chain j, 1 < j < W 

we define a set of input elements INj = Pj — WO and a set of output 

elements OUTj — Pj - Wl. Thus, the scan-in length of TAM chain j, 
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becomes i(sj-) = l(INj), which is actually the length of the wrapper input 

cells (or the number of wrapper input cells) and the sum of the lengths 

of the scan chains in TAM i. Also, the scan-out length of TAM chain j 

becomes l(s0j) = l(OUTj). Hence, the scan-in and scan-out length for the 

whole core with this partitioning becomes Si(V) = maxjlf (SJ.) and s0(V) — 

m&x^zY(s0j), respectively. Thus, the core test time for this partitioning 

would be T(V) = {1 + max(si(V), s0{V))} • NP + min{si(V), sQ{V)). From 

the latter definitions, the PTE problem can be stated as follows: 

Find an optimal TAM partition V*, which satisfies TCP*) < T(V), for all 

partitions V of TE. 

To solve the PTE problem, we use a three-step approach. 

1. First, we assign the core-internal scan chains in S to W TAM chains, 

such that the maximum sum of scan lengths assigned to a TAM chain 

is minimized. The resulting partition is named Vs-

2. Second, we assign the wrapper input cells in W I to TAM chains on 

top of Vs, such that the maximum scan-in time of all TAM chains is 

minimized. 

3. Third, we assign the wrapper output cells in WO to TAM chains on 

top of Vs, such that the maximum scan-out time of all TAM chains in 

minimized. 
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w 

scan chain 1 scan chain y1 H o . °* 
, Bypass reg 

scan chain 
y1+1 scan chain y2 

Bypass reg 

i. H i, h 
scan chain 

yjAu 
— scan chain Ns iSv- i O , h»-Ho. 

Bypass reg 

Figure 3.2: A conceptual view of TAM elements partitioning over TAM 
chains. 

Note that wrapper input and output cells have lengths of one. Therefore, 

Steps 2 and 3 can yield an optimal solution in linear processing time, once 

Step 1 is completed. The first step is to solving the problem of partitioning 

scan chains over TAM chains, which can be formulated as follows. 

Problem 2 Partitioning of Scan Chains (PSC) 

Assume a set of <S = {s\, s2, • • •, SJVs} of core-internal scan chains, where 

scan chain has length /j, i.e. l(si) = U, and a set of W identical TAM 

chains. A scan partition is a partition VS = {Psi, Ps2, • • •, Psw} of <S 

into W disjoint sets, one for each TAM chain. TAM chain i, 1 < i < W, 
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contains all scan chains in Ps,. The scan length of scan partition V is given 

s{V) = max|=jv(/(Psi)), where for any X C S, l(X) = £ a e A r (Z(s)) . F i n d a n 

optimal scan partition V*, which satisfies s(V*) < s(V), for all partitions V 

of S into W subset. 

Theorem 3.2.3 The PSC problem is NP hard. 

Proof The PSC problem [39] is equivalent to the well known problem of 

minimum makespan problem, described in Appendix B. To show that PSC 

is NP hard, we consider the decision problem version of PSC: given Ns scan 

chains with length {l\, l2, • • •, INS} and W TAM chains, is there any partition 

(of Ns scan chains into W subset, Pj) such that, X êPjGj) < VP,? This 

problem is exactly equivalent to the multiprocessor scheduling version min

imum makespan problem. The multiprocessor scheduling (MPS) problem is 

stated as follows [47]: 

Instance: There is a finite set A of "tasks", a "process time" t(a) for each 

a £ A, a number m > 0 of "processors", and a "deadline", D > 0. 

Question: Is there a schedule of A into m disjoint subsets, i.e. A = 

Ax U A2 U • • • U Am, such that max{£ a e4 t(a); 1 < i < m} < D? 

This problem is known to be strongly NP-complete[47]. 

The equivalence between a decision version of PSC and a minimum makespan 

problem can be easily established by noting the correspondence between pro

cessors (m) and TAM chains (W), and between tasks and scan chains. The 
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Table 3.1: List Decreasing Algorithm. 

Algorithm 1 [LP] 
(assume W < Ns) 
Sort S such that l(si) > l(s2) > • • • > 1{sNS)', 
for i :— 1 to W 

Pi — S j , 

for i := W + 1 to Ns 

select k € {j\l{Pj) = mm^^w l(Px)}; 

Pk :=PfcU{5i}; 
return maxi<x<w/ l(Px)', 

deadline D corresponds to /C. Therefore, the decision version of PSC problem 

is NP-complete. Also, when a decision version of a combinatorial optimiza

tion problem is proven to belong to the class of NP-complete problems, then 

the optimization version is NP-hard [6]. So PSC problem is NP-hard. | 

In the literature, various polynomial-time algorithms have been proposed 

for MPS [9, 18, 28, 47] that achieve near-optimal schedules. These methods 

are reviewed in the following. 

Graham [25] proposed the List Decreasing (LD) algorithm (See Table 

3.1), that first sorts the tasks in order of decreasing processing time. Then it 

assigns the task at the top to the minimally loaded processor. LD has a time 

complexity of 0(NslogNs + Ns\ogW), in which W is the number of the 

processors (the width of TAM) and Ns is the number of tasks (scan chains). 

In Appendix B it is proved that the worst case performance ratio is | — 3̂ 7-
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Bin-packing and MPS problems are dual problems[27]. In the MPS prob

lem, the goal is to pack several objects of given sizes into a given number 

of bins, and to minimize the maximum necessary capacity of the bins. The 

original formulation of MPS was scheduling jobs of different lengths to run 

on a given number of machines so that the whole system finishes as early as 

possible (these formulations are equivalent). In the bin-packing problem, the 

number of bins is variable, but their capacities are constant. The two prob

lems are the duals of each other: both are known to be strongly NP-hard. 

Suppose we have a super-optimal solution to the bin packing problem, an 

instance that is known to use at most as many bins as the optimal, but may 

"overhang" a bit, by a factor of e, making it infeasible. This solution then 

can be used to approximate the corresponding makespan problem in Table 

3.2 

Table 3.2: Using Bin-packing solution to solve MPS. 

Let L = max{maxj Sj, ̂  s,}. 
Guess a median d £ [L, 2L}. 
Find an e-dual approximation for packing W bins of size d. 
If less than W bins were used, search the smaller half of the interval. 
If W bins proved to be too few, search the larger half of the interval. 
Repeat until length of the interval is less than 1. 

The algorithm shown in Table 3.2 is very general. For example there is 

a method (Table 3.4) in which the First Fit Decreasing (FFD) algorithm is 

used for bin-packing [11, 38, 46]. 'Also, for upper bounds of the interval, the 
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List Decreasing algorithm is used. 

Table 3.3: Using First Fit Decreasing to solve MPS. 

Algor i thm 2 (Using First F i t Decreasing) 
Sort S such that l(si) > l(s2) > • • • > KSNS) 

MinCost := ^ S i ; 
C v := LD; 

CL - L m a x ( T T 3 r , h, MinCost)\; 
3 3W 

d := CL; 

while d < Cu A FFD(d) > W do 
d := d+ 1; 

return "P; 
First F i t Decreasing : FFD(d) 

Assume initially Pj = 0 for all j 
Sort »S such that l(si) > l(s2) > • • • > 1{SNS) 

for i := 1 to A r

s 

J := 1 
while l(Pj) + k > d do 

J := J + 1 
Pj :== Pj U 5j; 

return max{j| Pj ^ 0}; 

As we mentioned above, MPS and bin-packing are equivalent, so from 

a standard algorithm providing a bin-packing solution we can extrapolate 

to solve MPS. There are some standard algorithms for bin-packing, such as 

FFD, Last Fit Decreasing, Worst Fit Decreasing, and Best Fit Decreasing 

(BFD) [11, 38, 46]. BFD is the best algorithm for our purposes because it 

looks for the best possible assignment (of scan chain to TAM chains) with 

the minimum cost (minimum makespan). Algorithm shown in Table 3.4 uses 

the BFD to solve PSC. 

Example Consider core 6, the largest logic core from p93791 from the 
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Table 3.4: Best Fit Decreasing Algorithm (BFD). 

Algorithm 3 (BFD) 
Assume initially Pj — 0 for all j 
Sort S such that /(si) > l(s2) > ••• > 1{SNS) 
for i := 1 to Ns 

find Pmax with current maximum length 
find Pmin with current minimum length 
assign to TAM chain P, such that |/(Pm a x) — {l(P) + Ksi)}\ ^s minimum 
if there is no such TAM chain (P) then assign S j to P m „ 

return P; 

ITC'02 SoC Benchmarks [7]. Core 6 has 417 functional inputs, 324 func

tional outputs, 72 bidirectional I/Os, and 46 internal scan chains. Seven 

scan chains have length of 500 bits, thirty have length of 520 bits, and nine 

scan chains have length of 521 bits. LD, the one that used FFD to solve 

MPS (Table 3.3) and BFD have been used to assign core internal scan chains 

to the TAM chains. The result is shown in Table 3.5. 

From Table 3.5, the three algorithms, LD and BFD perform the same, 

but Algorithm 2 performs better. Here, LD and BFD perfomarance is the 

same baceause in both algorithm all the scan chains are sorted first, so best 

assignmnet (BFD) is the same as the assignmnet to the TAM chain with 

minimum length (LD). Algorithm 2 performance is better, for example, for 

W = 9, both LD and BFD output has a cost of 3081, but the Algorithm 

2 solution has a cost of (makespan) 3000, which means saving 81 cycles for 

each pattern, considerable for a large number of test patterns. 

The same result (better performance of Algorithm 2) has been derived 
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Table 3.5: The maximum scan-in/scan-out length of the assignment of core 
internal scan chains to TAM chains for core 6 of p93791 of ITC'02 
benchmarks. 

makespan: max(l(P) ) 
T A M Width Algorithm 1 Algorithm 2 Algorithm 3 

(LD) (using bin-packing) (BFD) 
1 23789 23789 23789 
2 11904 11904 11904 
3 8263 8263 8263 
4 6202 6202 6202 
5 5142 5142 5142 
6 4141 4140 4141 
7 3621 3620 3621 
8 3101 3100 3101 
9 3081 3000 3081 
10 2581 2580 2581 
11 2561 2560 2561 
12 2080 2080 2080 
13 2061 2060 2061 
14 2060 2060 2060 
15 2041 2000 2041 

16-19 1560 1560 1560 
20-21 1540 1540 1540 

22 1521 1500 1521 
23 1041 1041 1041 

24-38 1040 1040 1040 
39-42 1020 1020 1020 
43-45 1000 1000 1000 
46-oo 521 521 521 



Chapter 3. Wrapper Design 40 

Table 3.6: Adding wrapper input/output cells to TAM chains. 

Algor i thm 4: Add ing wrapper input/output cells to T A M chains 
i := AT/ or N0; 
Whi le i > 0, do 

find Pmax with current maximum scan-in/scan-out length 
find Pmin with current minimum scan-in/scan-out length 
i f I(Pmax) < l(Pmin) then 

Add l(Pmax) ~ I (Pmin) wrapper input/output Cells to P m i n 

i- i-(l(Pmax) I (Pmin)) 
i f I (Pmax) = KPmin) then 

Add L£J to all Ps; 
i f i%w ^ 0 then 

Add 1 wrapper input/output cell to i%w Ps; 
return V (which we call it after that Vs', 

for differenet cores. Therefore, Algorithm 2, the one using a bin-packing 

solution, is chosen for the first step of wrapper design, the assignment of core 

internal scan chains to the TAM chains. 

The second step is adding the wrapper input cells to the TAM chains, 

and the third step is to add wrapper output cells. These two steps are equal 

and both can be solved optimally in linear processing time. Algorithm 4 t in 

Table 3.6 is proposed for steps 2 and 3. 

The result of wrapper design for core 6 of p93791 is shown in Figure 3.3. 

For this wrapper design we used Algorithm 2 to assign core internal scan 

chains to the TAM chains, and Algorithm 4 to add wrapper input/output 

cells. In Figure 3.3, the max{sj, s0} vs. TAM width is plotted (for this core 

since A 7/ > No, so max{s,,s0} = s»). We observe that as W increases, the 

t in Algorithm 4 i%w is the remainder of i divided by w. 
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scan-in length decreases in a series of distinct steps. This is because as W 

increases, the core internal scan chains are distributed among a larger number 

of TAM chains. Thus the scan-in length decreases only when the increases 

in W are sufficient to remove an internal scan chain from the longest TAM 

chain. For example, when the internal scan chains of core 6 are distributed 

among 24 TAM chains, is 1040 bits long. The value of remains at 1040 

until W reaches 39. We will use this trend to save in test I/O pins (for 

example, we can reach the same test time using 24 TAM lines instead of 

38 TAM lines, saving 14 TAM lines for just one core). Another observation 

is that beyond a TAM width of 47, the test time does not decrease. This 

observation corresponds to Theorem 3.2.1: the lower bound on the test time 

based on the theorem is this (for this example lmax = 521 and number of test 

patterns NP = 218): 

T > lmax • NP + lmax + NP = 521 x 218 + 521 + 218 = 114317 

and the minimum TAM width required to achieve this test time lower bound 

IS Wmin 

_ rL + max(NI,N0)1 

min — I , [ 
'max 

7 x 500 + 30 x 520 + 9 x 521 + max(417 + 72, 324 + 72) 
' 521 ' 
23789 + 489 _ 24278 

' 521 ' ~ ' 521 ' 



Chapter 3. Wrapper Design 42 

47 

Therefore, any increase after 47 bits in the TAM width does not affect the 

test time. 

Max of scan-in/scan-out length 

.Q 15000 

£ 10000 

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 

Width (bits) 

Figure 3.3: The scan-in length for core 6 in P93791 SoC from SoC bench
marks ITC'02. 

3.3 Wrapper Design w.r.t. Area 

As we mentioned in the previous section, sometimes a decrease in TAM width 

does not affect the core test time. For example, for core 6 of SoC p93791, 

the test time for widths 38 and 24 are the same, so we can save 14 bits on 
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TAM width. Therefore, our wrapper design strategy is to first minimize test 

time, and second, to identify the maximum number, W, of TAM chains that 

actually need to be created to minimize test time, when W TAM lines are 

provided to the wrapper. The set of values of W corresponding to the values 

of 1 < W < co is known as the set of pareto-optimal points [1] for the graph. 

"Pw, the two-priority wrapper optimization problem, addressed in this 

section, can now be formally stated as follows: 

• Vw- Given a core with Nj functional input, No functional output and 

Ns scan chains of lengths l\, l2, • • ., INS, a n d TAM width W, assign the 

W + NS + N0 TAM chain elements to W < W TAM chains, such that 

(i) core test time in Equation 3.1 is minimized and (ii) W is minimum 

subject to priority (i). 

The second priority is based on the earlier observation that test time can 

be minimized even when the number of designed TAM chains is less than 

W. This reduces the width of a TAM required to connect to the wrapper. 

Therefore, Vw is analogous to the problem of MPS (minimizing the makespan 

of scheduling) with the secondary priority of bin-packing (minimizing the 

number of bins). When W is fixed at the value of W, this problem is equal 

to the partitioning of TAM chain elements (PTE), which has been proved to 

be NP-hard (Theorem 3.2.3). Therefore, the Vw problem is also NP-hard. 

To solve Vw an algorithm with three steps is developed: 
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1. Calculate the possible minimum test time (T(W)) using TAM width 

W. For this step we can use the previous algorithm of wrapper design. 

2. Calculate the possible minimum W', for which W < W and T(W) = 

T{W'). For this step we can use a standard algorithm for bin-packing, 

such as First Fit Decreasing (FFD). Therefore, W = FFD(T(W)). 

3. Now, we know the minimum test time and the minimum obtainable 

width. The last step is wrapper design (assignment of TAM scan chain 

elements, i.e., internal scan chains, inputs and outputs) for a TAM 

width of W' using wrapper design algorithms is discussed in the Section 

3.2.3. 

For example, for the core 6 of SoC p93791, when W = 38, our wrapper 

design algorithm works as follows. First, the possible minimum test time for 

the TAM width 38 should be calculated. Using the wrapper design algorithm 

(Algorithm 2), the scan-in and scan-out times are s, = s0 — 1040 and the 

total test time (NP = 218) is T(38) = 227978. 

In the second step, we calculate the possible minimum W. For this step 

we can use the first fit decreasing procedure (mentioned in Section 3.2.3). 

The result becomes W = FFD(1040) = 24. 

The last step is wrapper design for W' = 24, as shown in Figure 3.4. For 

this step we can use Algorithm 2 (for internal scan chain assignment) and 

then Algorithm 4 (for adding wrapper input/output cells). 
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(a) wrapper design for W=38 (b) wrapper design for W=24 

Figure 3.4: Wrapper design for core 6 in P93791 SoC from ITC'02 for TAM 
of width 38. 

As we can see in Figure 3.4, even with a 14-bit decrease in width, the 

scan-in/scan-out lengths and so the core test time has not been changed. 

With this algorithm we can save in the TAM width of each core, which 

decreases the total TAM lines required to test the whole SoC. This translates 

to silicon area and test I/O pins savings. 

So far, the wrapper design optimizing both test time and area (silicon 

area and I/O pins) has been addressed. The remaining important factor in 

wrapper design, ATE memory, is addressed in the next section. 

3.4 Wrapper Design w.r.t. the A T E 

Memory 

In this section we discuss wrapper design optimization considering ATE re

sources. One of the important ATE resources which has a large impact on 
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ATE cost is memory. Therefore, the goal is to minimize the memory require

ment for testing by eliminating useless test data memory for SoC testing. 

First, useless test data memory is analyzed. Next, the core wrapper design 

algorithm is combined with a new test vector deployment procedure stored in 

the ATE. To reduce memory requirements, the proposed core wrapper design 

finds the minimum number of TAM chain element partitions, minimizing the 

useless memory allocation in each partition, which facilitates efficient usage 

of ATE capabilities. Furthermore, the new test vector deployment procedure 

provides seamless integration with the ATE [24]. 

Since modern SoCs may consist of highly complex cores, the memory 

requirements to.test these cores tend to increase. Therefore, careful manage

ment of memory requirements is of importance. Although tester accuracy 

has improved by 12% annually, IC performance increases 30% per year [12]. 

This forces semiconductor manufactures to step down from functional testing 

paths and adopt design-for-test (DFT) solutions for SoC. These new solu

tions, however, come with different requirements for the ATEs. Hence, the 

features of these new DFT-ATEs differ significantly from the conventional 

ATEs [10]. For example, one of the features of these new testers manages 

memory as a reconfigurable pool, that is, by using the right memory man

agement, the DFT makes a larger number of transfers on some pins, while 

others remain unchanged [10]. Here, we show how core wrapper design and 
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a simple ATE deployment procedure (which also accounts for memory man

agement) can be combined to exploit this feature of DFT-ATE, leading to 

reduced ATE memory requirements. 

Two factors influence ATE memory requirements: TAM design and core 

wrapper design. The previously described approaches to designing core wrap

pers indirectly influence ATE memory requirements. A potential straight

forward solution to the ATE memory problem is a built-in self-test (BIST). 

However, to make existing cores BIST-ready, considerable redesign effort is 

required and performance penalties are incurred. An alternative solution to 

the ATE memory problem is test data compression [17, 37]. While test data 

compression reduces useful data, our goal here is to reduce useless data (in 

multiple scan chain embedded cores). The useless data can be explained as 

follows. The test vectors should be augmented with useless data (to account 

for the unequal lengths of multiple scan chains) to reduce on-chip control. 

For example, for three scan chains of lengths 2, 5 and 3, the test tools pad 

the scan patterns with "don't cares" (X) to make them all of equal lengths. 

This is illustrated in Figure 3.5, where the padded values (shown as X) are 

part of the test vector. Hence, they have to be stored explicitly in the ATE 

memory, even though they do not represent any valuable test information. 

This extra memory is defined as useless memory allocation, hereafter referred 

to as UMA [24]. 
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first bit last bit 

S1 X X 0 1 

S2 1 0 1 0 0 

S3 X X 1 0 1 

Figure 3.5: Useless Memory Allocation. 

Here, the core wrapper design and the ATE memory management prob

lems have been merged. The core wrapper design algorithm should be capa

ble of finding the minimum number of TAM chain elements partitions such 

that for each partition the UMA is minimized. The ATE deployment pro

cedure (proposed in [24]) provides memory management for the ATE, since 

it exploits the features of the core wrapper and deploys test data on each 

TAM chain partition as required. That is, the ATE deployment procedure 

uses the reconfigurable memory pool (RMP) feature of DFT-ATEs. 

To recognize the feasibility of this method, one should note that the ATE 

supports sequencing-per-pin, which replicates a sequence of events in the 

same manner as an IC timing/logic simulator [51]. The only requirement of 

the ATE is to allow the memory management module to transfer test data on 

some ATE channels, while the remaining ATE channels remain unchanged. 

Recently [48], the sequencing-per-pin ATEs have been used in a similar man

ner where separate groups of ATE channels run at different frequencies, with 
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each group having different memory requirements. 

From Equation 3.1 we know that core test time is a function of max(sj, SQ) 

because the last term of the equation, min(si,s0), has a small influence on 

the overall test time. It should also be noted that each TAM line is assumed 

to be assigned to one ATE channel. Having explained the and s0, the 

following two examples clarify their relation to UMA. 

Example Figure 3.6 shows two core wrappers with 4 inputs, 4 outputs, 4 

internal scan chains of length 5, 8, 11 and 12, and a TAM with width of 

4. The two designs are equivalent from the test time point of view since 

the longest scan-in/out have an equal length (for both designs = s0 = 12). 

The TAM chains representation and the corresponding ATE memory bitmap 

(AMB) for both designs are shown. Because the inputs are loaded last, they 

are shown at the end of the memory bitmap. Considering that the ATE 

can control the load of each group of TAM chains of different lengths, the 

UMA in both cases can be reduced. However, the control overhead implied 

in this situation should be considered. The main difference between AMB 

for design 1 and design 2 is that the latter has a smaller number of ATE 

channels partitions (e.g. AMB1 has 4 partitions, the maximum possible 

number of partition in which each TAM chain is one partition, while AMB2 

has just two partitions: pi ={TAM chains 1 & 2}, p2 = {TAM chains 3 & 

4}). The advantage of this (having less partition) is explained as follows. 
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Figure 3.6: Alternative wrapper designs with equal test time. 
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Assuming a DFT-ATE with RMP, the control overhead implied by the first 

solution is larger because a larger number of partitions have to be controlled. 

Furthermore, as the number of TAM chains differ from core to core and the 

number of partitions obtained can vary for different cores, different number 

of parameters are required for the memory management of each core. On the 

contrary, AMB2 is shaped such that it can be easily split into two partitions 

(TSl and TS2). This reduces the control, and having only two partitions, 

the memory management becomes very simple (Section 3.4.2). The same 

reasoning is applicable for sequencing-per-pin ATEs. It should be noted that 

the amount of test control for the first solution is clearly larger than for the 

second solution. This is why the first solution is considered to have useless 

memory as illustrated in Figure 3.6. Since the proposed ATE deployment 

procedure can handle maximum two partitions, for the case with more than 

two partitions, there will be UMA (this is one resource for UMA). 

All the TAM chains are loaded in parallel using the same clock. Also, in 

the explanation of Equation 3.1, we note that the scan-out operation overlaps 

the scan-in. Hence, in a case where the number of inputs is larger than the 

number of outputs, the ATE memory has to account only for the UMA caused 

by the input scan chain, as in the previous example. 

The second source of UMA is caused by the difference in TAM chain 

lengths when s$ < s0. Since the scan-out operation of one pattern overlaps 
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with the scan-in of the subsequent test pattern, in a case where s* < s0, we 

need to scan-in more data, causing useless data in ATE memory. We will 

show that the UMA caused by a difference of s, and s0 cannot be eliminated 

completely. 

Example Consider the core in the Figure 3.7(a) with Nr — 4, No = 6 and 

four scan chains of lengths 12, 11, 8 and 5. An optimum TAM chain design 

with respect to test time leads to S j = s0 — 12. The ATE memory bitmap 

(AMB) of this design is shown in Figure 3.7(b) and (c). 

8 F F 8 F F 

1 I .1 5 F F o o o i o O O M 5 F F 1 1 1 1 
11FF 11FF 

12FF 12FF 

TAM Chain Elements Partition (Designl) 

(a) 

8FF 

5 F F I I I I 

11FF 

12FF 

UMA=8 

ATE Memory Bitmap for Designl 

(b) 

OR 

(C) 

TS1 

T S 2 

8 F F 

5 F F f||| 111 I i l l 
11FF 

12FF 

UMA=5 

Figure 3.7: TAM chain design and ATE memory bitmap when s, < s0. 

While the UMA for this design (even if we use the ATE feature) is 5, 

we can get a UMA of only 2 by simply rearranging the inputs and outputs 

in TAM chains. The design 2, shown in Figure 3.8(a), has the minimum 

possible UMA that we can reach for this core ,i.e., 2. The AMB for this 
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Figure 3.8: TAM chain design and ATE memory bitmap when s, = s0. 

design is shown in Figure 3.8(b). 

Theorem 3.4.1 For a core with Nj inputs, No outputs and Ns scan chains 

of lengths l\, l2, • • •, INs> and Ni < No, the lower bound on UMA is given by 

N0 - Nj. 

Proof In the case of Ni < No, S j is smaller than s0. Certainly then, there 

is a source for the UMA in the difference between and sQ, even if we could 

prevent other UMA sources. Therefore, 

i=W i=W i=W 
UMA > £ (s0 - Si) > £ s0 - ^ = (L + No) ~(L + Nx) 

2 = 1 2=1 2=1 
UMA > N 0 - Nr 

where k is the length of scan chain i and L = Si=i U- I 

There are two steps to follow in order to reduce UMA. First, a new core 

wrapper design algorithm is needed. Second, the ATE has to exploit the 

features of new wrappers. Since the test set is divided into two, the ATE 
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has to deploy the test vectors for the two sets at different intervals. Consider 

the example of Figure 3.6. The intervals at which the ATE deploys the 

test vectors are shown in Figure 3.9. Three parameters for ATE test vector 

deployment are introduced: MAXTc, Diff and sp. MAXTC is the length of 

the maximum partition, Diff is the difference between the lengths of the two 

partitions, and sp (split point) is the number of TAM chains that AMB fits 

to the first partition (their data should be sent as the first test set). So, for 

example in Figure 3.9, MAXTc = 12, Diff — 4 and sp = 2. Since the core 

wrapper design is an intermediate step in a SoC test, the proposed approach 

does not incur any extra overhead. Hence, the ATE modifications are the 

only changes. For both DFT-ATEs with RMP and sequencing-per-pin ATEs, 

the deployment of two sets can be achieved at the expense of an external 

module [13] to support custom ATE behavior, employed when IEEE P1500 

compliant SoCs are tested. If DFT-ATEs with RMP are employed, a test 

vector deployment procedure (see Section 3.4.2) can be part of the memory 

management. If sequencing-per-pin ATEs are considered, the methodology 

proposed in [48] can be used, and the control of test vector deployment can 

be carried out by a procedure similar to the one in Section 3.4.2. 
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Figure 3.9: ATE test vector deployment. 

3.4.1 Wrapper Design A l g o r i t h m to Reduce U M A 

Here, a new core wrapper design algorithm which accounts for test time, TAM 

width, and UMA is proposed. Previous heuristics [32, 34, 35, 42]always aim 

at minimizing test time only taking into account the number of inputs or 

outputs. In contrast, the proposed algorithm, based on observations from 

the second example of Section 3.4, takes into account both the number of 

inputs and the number of outputs to reduce UMA. The core wrapper design 

problem can be formulated as follows. 

Wrapper Design Problem: For a core with Ni inputs, No outputs, 

Ns scan chains with lengths l\, l2, • • •, IN, and a TAM width of W, find the 

wrapper design for TAM width W' such that (i) core test time [in Equation 

3.1] is minimized, (ii) W is the minimum subject to priority (i), and (iii) 

UMA is minimized. 

Note that in this problem, test time is prioritized, that is, first we try to 
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minimize the test time. Then we try to minimize TAM width. This problem 

is a Vw problem defined in Section 3.4 with an additional constraint for the 

assignment of wrapper input/output cells. We consider UMA minimization 

only for Steps 2 and 3 of wrapper design, because with TAM width minimiza

tion, there are no options for the assignment of core internal scan chains to 

TAM chains. Here, when assigning inputs and outputs, we aim at minimiz

ing UMA. It should be noted that the problem of wrapper design with these 

three priorities is NP-hard. This can be easily shown by assuming that the 

number of partitions equals the TAM width. In this particular case, there is 

no UMA and the problem reduces to the Vw problem presented earlier which 

proved to be NP-hard. However, as illustrated in two examples in Section 

3.4 (and shown again in Section 3.4.2), the number of partitions influences 

the complexity of the ATE program. Hence, finding the minimum number 

of partitions is important. Toward this goal, Algorithm 5 (Table 3.7) was 

developed for the assignment of wrapper input/output cells to TAM chains, 

giving a minimum UMA. 

Note that the assumption of Nr > No in Algorithm 5 (Table 3.7) is made 

because in UMA minimization, it is important to consider adding inputs 

when AT/ > No, and adding outputs when Ni < No- Thus, when Nj < No, 

the outputs are added to TAM chains, then inputs. Other cases remain 

the same, except we add outputs first and then inputs. Reconsider the first 
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Table 3.7: Adding wrapper input/output cells to minimize UMA. 

Algorithm 5: U M A Minimization 
Adding wrapper input/output cells to T A M chains 

Assume NR > NQ 

sort V such that l(Px) > l(P2) >...> l(Pw) 

Adding Inputs: 

Add input to the Pi such that scan-in length of Pi = si; 
C\ = sf, (first cluster) 
Initially set i:=l and j:=2; 
While j < W 

j:=i+l; 
Try to put Pj in cluster i; 

If Impossible Then (Ci+1) := l{Pj); 

Else Add inputs to the Pj such that scan-in length of Pj = C»; 
j:=j+l; 

Adding Outputs: 

until all the outputs are assigned: 
For z:=l to W' 

Add outputs to the Pz such that # of outputs of Pz = # of inputs of P z ; 

Calculating UMA, and ATE deployment parameter: 

If NCL > 2 then: 
Choose m, 1 < m < NQL, such that 

UMA:=(Ci * m + CTO+i * (NCL — m)) — {L + max(NI, N0)} be minimum 
UMA = (Ci * m + C m + 1 * (NCL - m)) - {L + max^N^ N0)}\ 

MAXTC = Ci; 

Diff = Ci - Cm+1, 
sp = NCL - m; 

else 
If NCL = 2: 

UMA = 0; 
MAXTC = Ci\ 

Diff = Ci - C 2 ; 
sp = |C 2 | ; 

If NCL = 1: 
UMA = 0; 

There is no need to use the ATE feature; 

return UMA and (MAXTC, Diff, sp) for ATE deployment procedure 
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example of Section 3.4 (p. 49). The minimum width is the same, so W' = 4. 

There are some aspects of partitioning of scan chains; first, because the 

number of partitions (W) is the result of a bin-packing problem, it certainly 

cannot be more compressed. Second, because the partitions are the result of 

a scheduling problem, the partitions are of the same size. Therefore, making 

the minimum number of clusters in this case is not hard. 

Algorithm 5 first gets the W partitions from the results of assigning core 

internal scan chains to W' TAM chains, and then sorts them in descending 

order. For the example of page 49, pi = {12}, p2 = {11}, p3 — {8} and 

p2> — {5}. Hence, we make the first cluster of size which here is 12, so 

Ci = 12. Next, we try to make each partition fit in this cluster. With adding 

one input, p2 can fit in clusterl, because the scan-in length of this TAM 

chain will be 12 again. When we try the same thing for ps, we note that it 

is impossible to fit p3 in C\, because we need 4 inputs, though only 3 inputs 

are left. Therefore, we make another cluster of size 8, C2 = 8. Next, we start 

from the following partition, p±, to make it fit. By adding 3 inputs to p±, it fits 

in the second cluster. Therefore, the result of Algorithm 5 for this example is 

two clusters of size 12 and 8. The number of clusters (NQL) varies from one 

(best case: even the new feature of ATE is not required because all the TAM 

chains have the same length) to W (means even two partitions could not fit 

into one cluster). It is highly desirable that the number of clusters be one 
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or two. To have a single cluster, max(Nj, No) — max(si, sQ) * W' — YliJi h, 

which is not usually the case. This makes a double cluster the most desirable 

and practical situation. In [24], it is shown that even though for NQL = 2 the 

UMA is not always 0, this particular case leads to a good solution from an 

UMA standpoint, with the advantage of eliminating extra ATE requirements. 

Therefore, at the end of Algorithm 5, we check whether the number of clusters 

is more than two, and we try to fit all the clusters into two new clusters. If 

the number of clusters is more than two, NQL > 2, the UMA is no longer 

zero, but because the ATE procedure is simple, and the UMA is less than 

in a case where the ATE features are not used, it is worthwhile. To try 

to fit NQL clusters into just two clusters, we make the first new cluster the 

largest, C[ — C\. The second new cluster could be any of the clusters which 

minimizes the UMA: C'2 = Cm+i, 2 < (m + 1) < NQL- In this case \C[\ = m 

and ICjI = Net — m- The UMA is computed as the difference between the 

area of two new clusters and the sum of the area of all the clusters, i.e., 

UMA = (C[ * \C[\ + C2* \C'2\) - (EiIciL \Ci\ * d). For the above example 

NQL — 2, so the UMA is zero and ATE deployment procedure parameters 

are MAXTC = 12, Diff = 12 - 8 = 4, and sp = 2. 
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3.4.2 A T E Deployment Procedure to Reduce U M A 

In order to fully exploit the new core wrapper design, the initial test set 

is divided into a number of sets equal to the number of partitions. The 

ATE program must deploy test vectors from different sets at separate times. 

Hence, an increase in the number of partitions leads to a more complex 

ATE program. However, if the number of partitions is limited to two, the 

necessary changes in the ATE deployment are minor. This section gives the 

pseudo-code for the ATE program for this particular case (two partitions). 

Consider two clusters C[ and C2 that are the result of Algorithm 5. Since 

\C[ \ + \C'2\ = W' (this is how the partitions are constructed) and C[ > C2 

(the TAM chains are in descending order, see Algorithm 5). As mentioned in 

the explanation of Algorithm 5 (p. 58), MAXTC = C{, Diff - C[-C2, and 

sp = \C'2\. Using this information, the initial test set can be divided into two 

sets. The deployment of the test vectors at different intervals can be easily 

achieved by supplying the ATE with the three parameters MAX^Ci Diff, 

and sp in addition to the two test sets (TSl and TS2). The pseudo-code for 

a very simple ATE procedure, which accounts for the parameters mentioned 

above, is shown in Table 3.8. This procedure takes as inputs the width of the 

test bus W', the number of patterns Np, and the three parameters MAX^c, 

Diff, and sp. During MAXTC clock cycles, TS2 is loaded onto the test bus 

from ATE memory. Since the first partition is smaller than the second, the 
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Table 3.8: ATE deployment procedure. 

Procedure 1 
i = NP 

Whi le (i > 0) do 
for j := 1 to MAXTC 

i f i > Diff then 
load[l • • • sj5]=read-mem(TS2,Ar

P • Diff + j) 
load[sp • • • W]=read-mem(TSl,iVp • MAXTC + j) 

i — i — 1; 

ATE reads the test data for the TSl in only Diff clock cycles. 

3.5 Wrapper Design for Flexible Cores 

For cores with flexible-length scan chains, (1) input wrapper cells, (2) core-

internal scan flip flops, and (3) output wrapper cells can be equally dis

tributed over the available TAM wires. This is easy because the length of 

all elements is one. Hence, for a core with Nj inputs, No outputs, and Np 

internal scan flip flops (for non-scanned cores, Np — 0) when the TAM with 

width W is assigned to it, the scan-in length Si(W) and scan-out length 

s0(W) can be defined as follows [42]: 

8i(w) = r 
Np + Ni 

W 
(3.2) 

s0(W) = \ 
Np + Np 

W 
(3.3) 
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Thus, the test time for the core can be calculated from Equation 3.1. 

By dividing TAM chain elements equally, we actually minimize the scan-

in and scan-out lengths, so we minimize test time. 

Actually the only difference in all the theorems and equations for fixed-

length cores is that for the flexible cores, the lengths of all the scan chains 

are one, so lmax = 1 and L — YL^=\ k = NF. If we apply Theorems 3.2.1 and 

3.2.2 for flexible cores, the following result is derived. 

Corollary 3.5.1 For a flexible core with Nj inputs, No outputs, Np scan 

flip flops, and Np test patterns, the upper bound on the core test time, T, is 

given by 

Tupper = (1 + NF + max(Nj, N0))NP + Np 4- min(AT/, No) 

Corollary 3.5.2 For a flexible core with Ni inputs, No outputs, Np scan 

flip flops, and Np test patterns, the lower bound on the core test time, T, is 

given by T\ower — 2Np + 1 and the minimum TAM width required to achieve 

this lower bound on the test time is given by Wmin — Np + max(Ar/, No)-

The second step of wrapper design, as with fixed cores, is TAM width 

reduction. Here, we look for a smaller width than W that gives the same 

test time. Note that since the first term of Equation 3.1 is more impor

tant, by "same test time", we mean "same max(sj,s0)". Therefore, we 
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look for the possible minimum W' < W, such that max(sj(W), s0(W)) = 

max(Si(W'),s0(W')). 

Theorem 3.5.3 Given a core with Ni functional inputs, No functional out

puts and Np scan flip flops and a TAM with width W, there is W' < W with 

max(si(W), s0(W)) — m&x(si(W'),s0(W')); the upper bound on W' is 

w , = rw_ W - ((NF + max(NI,N0))%W) t 

max(si(W), s0(w)) 

Proof Assume that W' — W — m, m > 0, and m is the maximum possible 

integer number such that m&x(si(W), s0(W)) = max(si(T47'), s0(W')). From 

Equations 3.2 and 3.3 

( mn ttxrw rNF + max(NI,N0)1 m&x(Si(W),s0(W)) = \ ^ 1 

Letting A = NF + max(NI, N0), B = max(si(T47), s0(W)) and C = (NF + 

max(Nj,N0))%W = C,then B = \ £ ] = + 1, so A = (B — 1)W + C. 

Also, we know that max(sj(W — m), s0(W — m)) should be the same for W. 

So 

m&x(si(W), s0(W)) = m&x(si(W — m), s0(W — m)) 

^m%n "m modulo n." 
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B 

B 

B 

B 

B 

B 

B 

0 

(B -1)W + C 
J + l W — m 

(B - l)W + C + (B-l)m-(B- l)m 
W - m 

(B - 1)(W - m) + C + (B - l)m 

J + l 

B-1 + 

W — m 
C + {B- l)m 

W-m 

J + l 

J + l 

B - I + L ^ - ^ J + I 
W - m 

C + ( B - l ) m 

W-m J 

C + (B - l)m 

Hence, C + (5 - l)m < W - m ̂  m < w-c 
B • 

That is m = \W~{{NF]mZ[N!'n°FoW}\• We know that W' = W-m, therefore 

W = \W - W~(NF+'rnax(Nj,No))%Wi m 
I max(si(W),s0(w)) ' • 

The next step in wrapper design is to minimize the UMA. Actually, our 

strategy of dividing scan flip-flops and wrapper input/output cells equally to 

TAM lines not only minimizes the test time, but also minimizes the UMA. 

We will show that for flexible cores the UMA is either zero or the minimum 

possible number. 

If we divide all the TAM chain elements equally, we have two clusters: 

C i = [ f e « o i ] a n d C 2 = l ^ + m y . J V o ) ^ g 0 ) t h e following p a r a m e -
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ters of ATE memory bitmap are derived: 

• MAXTC = ^F+max{Nj,N0)^ 

Diff = 
0, ((NF + max(NI, N0))moduloW) = 0 

1, Othrewise 

sp = W' - ((NF + max(Ni, N0))moduloW) 

UMA 
0, NT > N0 

No — Ni, Otherwise 

• Required Memory=A P̂ • (MAXTC • W' - sp • Diff). 

To summarize, for wrapper design of a flexible core, first we find the 

smallest W' and then divide all the TAM chain elements, including scan 

flip-flops and wrapper input/output cells equally on the W' TAM chains. 

The experiments have been done on circuits from the ISCAS'89 bench

marks. 

Example Consider the circuit S1196 from ISCAS'89 benchmarks [2] with 

Ni = N0 = 14, NF = 18 and NP = 113 [26]. 

Assume that we assign a TAM with width 28, W = 28. In the first step, 

we should find W'. 
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From the core information, we can calculate NF + max(Nr, No) = 32 and 

so max(st(W),s0(W)) = = = 2. 

Now, we can calculate W' from Theorem 3.5.3. 

= W - (NF + mas(Arf, JV0))%W 
1 1 max(Sl(W),So(W)) 1 

w , = r 2 8 _ 28 -(32%28)1 

28 — 4 

W' = r,28 - - ^ - 1 = r 161 

W = 16 

The next step is to divide the TAM chain elements equally into W' TAM 

lines; the result is shown in Figure 3.10(a). 

TAM chain 1 

TAM chain 14 

TAM chain 15 

TAM chain 16 

I FF 
1 *<"1 

• 
• 
• 

I FF 0 
14 14 .14 

FF 
15 
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16 
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17 

FF 
18 

1 

13 

14 

15 

16 

FF I 

• 
• 
• 

FF I 

FF I 

FF FF 

FF FF 

(a) T A M chain Elements Partitions (b) A T E Memory Bitmap 

Figure 3.10: Wrapper design for S1196 from ISCAS'89 benchmarks. 

Also, the AMB for the wrapper is shown in Figure 3.10(b). The ATE 

memory bitmap parameters are as follows: MAXTC = 2, Diff = 0, sp = 16, 
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UMA = 0 and required memory is 3616 bits . 

The wrapper design algorithm has been applied for different widths. The 

results are reported in Table 3.9. For all the widths, the UMA is zero, because 

here TV/ > N0-

Table 3.9: The result of the wrapper design algorithm for S1196 of ISCAS'89 
benchmarks. 

w W' Si So Test Time (cycles) 
1 1 32 32 3761 
2 2 16 16 1937 
3 3 11 11 1367 
4 4 8 8 1025 
5 5 7 7 911 
6 6 6 6 797 
7 7 5 5 683 

8-10 8 4 4 569 
11-15 11 3 3 455 
16-31 16 2 2 341 
> 32 32 1 1 227 

3.6 Experiments 

In previous sections (3.2-3.4.1), the important issues of wrapper design have 

been discussed. To validate the efficiency of the proposed wrapper design 

method, several experiments were performed on the large cores of the ITC'02 

SoC test benchmarks [43]. 

Consider Core 6, the largest logic core from p93791. In Section 3.3, 

we presented a wrapper design for this core for W = 38, and showed that 
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the width can be decreased to W' — 24 (Figure 3.4(b)). The last step of 

our wrapper design is UMA minimization. The final result of this wrapper 

design is shown in Figure 3.11(a). 

The ATE Memory bitmap of the final design has been shown in Figure 

3.11(b). The UMA for this design is zero, and we saved 14 bits in the TAM 

width (W'=24). 

The wrapper design results for all widths for core 6 of p93791 is reported 

in Table 3.10. There are many noteworthy points. First our algorithm min

imizes UMA for most cases (UMA is often zero) while it saves TAM width 

and test time. Other researchers only attempt to minimize test time [42], 

or to minimize test time and TAM width [32-35], or to minimize test time 

and UMA [24]. As far as we are aware, no previous work considers all these 

aspects to date. 

In Table 3.10, we also see that the wrapper design algorithm performs 

better than all other algorithms. It saves up to 77% in the ATE memory, 

58% in TAM width and 2% in test time. 

The TAM width and ATE memory for my method and previous method 

are compared in Figures 3.13 and 3.12, respectively. 

Core 6 of SoC P93791, was the largest core in all the cores of the ITC'02 

SoC Test benchmarks. A lot of experiments on different SoC of the ITC'02 

SoC Test benchmarks and also ISCAS'85 and 89 benchmarks were run. For 
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example the test time vs. width for core 3 to core 10 of the SoC D695 is 

shown in Figure 3.14. 
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si=so=1040 

TAM chain 1 520 520 

TAM chain 15 520 520 
TAM chain 16 191 521 500 190 

TAM chain 22 191 521 500 190 

TAM chain 23 1781 521 178 0 
TAM chain 24 178 1 521 85 0 

W'=24 

(a) Final wrapper design for W=38 

MAX T C=1040 

A 
sp=2 

T 

520 520 
• • • 

520 520 
521 500 191 

• • • 
521 500 191 

niff "3/11 k 521 178 I 

521 1781 

(b) ATE Memroy Bitmap : UMA=0 

Figure 3.11: The final wrapper design for core 6 of p93791 from ITC'02 SoC 
test benchmarks for TAM width=38. 
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Table 3.10: The result of the wrapper design algorithm and comparisons 
with previous works for core 6 of p93791 of the ITC'02 SoC Test 
Benchmarks 

Test U Required Mem. W Time 
w W' Si So Time M Memory impr. impr. impr. 

A (%)a (%)» (%)c 

1 1 24278 24185 5317007 0 5292604 0 0 0 
2 2 * 12139 12093 2658613 0 5292604 0 0 0 
3 3 8180 8180 1791638 0 5292604 1.1 0 1.01 
4 4 6202 6202 1358456 0 5292604 2.2 0 0 
5 5 5060 5060 1108358 2 5293040 4.2 0 1.62 
6 6 4140 4140 906878 0 5292604 2.3 0 0.02 
7 7 3620 3620 792998 0 5292604 4.4 0 0.03 
8 8 3100 3100 679118 0 5292604 2.2 0 0.03 
9 9 3000 3000 657218 6 5293912 11.2 0 2.7 
10 10 2580 2580 565238 2 5293040 6.3 0 0.04 
11 11 2560 2560 560858 3 5293258 16 0 0.04 
12 12 2080 2080 455738 0 5292604 2.8 0 0 

13-14 13 2060 2060 451358 0 5292604 10.3 7.7 0.05 
15 15 2000 2000 438218 10 5294784 23.5 0 2.05 

16-19 16 1560 1560 341858 0 5292604 2.8 18.8 0 
20-21 20 1540 1540 337478 46 5303068 26.6 5 0 

22 22 1500 1500 328718 2 5293040 35.9 0 1-4 
23 23 1056 1052 231478 0 5292604 0.04 0 0 

24-38 24 1040 1040 227978 0 5292604 2.8 58.3 0 
39-42 39 1020 1020 223598 14 5295656 63.8 7.7 0 
43-45 43 1000 1000 219218 2 5293040 77.1 4.7 0 

46 46 528 526 115848 0 5292604 0.04 0 0 
> 47 47 521 521 114317 0 5292604 0.9 - 0 

aMemory savings comparing to [32] 
6 T A M width savings comparing to [24, 42] (maximum improvement) 
cTest Time savings comparing to [32] 



Chapter 3. Wrapper Design 72 

Figure 3.12: New TAM width for core test vs. given TAM width for core 6 
in P93791 SoC from SoC benchmarks ITC'02. 
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Figure 3.13: Required memory for core test vs. TAM width for core 6 in 
P93791 SoC from SoC benchmarks ITC'02, with and without 
UMA minimization. 
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OCore 3 • Cote 4 DCore 5 DCore6 • Core7 0 C o r e 8 B C o r e 9 OCore 10 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Width (bits) 

Figure 3.14: Test time vs. TAM width for core 3 to 10 in D695 SoC from 
SoC benchmarks ITC'02. 



Chapter 3. Wrapper Design 75 

3.7 Conclusions 

In this chapter, we present a novel wrapper design algorithm which can 

be used as a tool for SoC designers (integrators). The proposed algorithm 

considers all test costs. The algorithm can handle cores with both fixed-

length scan chains and flexible-length scan chains. The experiments show 

improvement in comparison to existing methods. 
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Chapter 4 

Time Domain Multiplexed 

T A M 

In this chapter a novel TAM based on time domain multiplexing (TDM) is 

introduced. TDM-TAM not only has all the advantages of common bus-

based TAMs, such as scalability and efficiency in time and area, but it is 

also flexible, reconfigurable and handles cores with BIST efficiently. It also 

needs less global routing than common bus-based TAMs. The underlying 

concepts of TDM-TAM are presented and test time and area models are 

derived. A dynamic masking method is described. It gives the tester the 

flexibility to change test scheduling and strategy after fabrication. Also, an 

example of how to use TDM-TAM in testing multi-frequency SoCs and a 

TAM optimization method for TDM-TAM are reported. Finally, a compar

ison is drawn between TDM-TAM and other types of TAM. 
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4.1 Basics 

TDM-TAM is a bus-based TAM that uses logic situated locally at each core 

to enable or disable the core, such that bus contention cannot occur. This 

architecture eliminates the necessity for global address lines, which are nor

mally required in a bus-based architecture. In our TDM-TAM, the data to 

be sent on the TAM bus is divided into frames. Each core is assigned a 

specific mask enabling the cores to extract the appropriate data bits from 

the frames. 

Frame 1 Framo 2 Framo 3 

Bl» SI »| • I B IM " l" I • B l • I • • • 

Core A 
mask: 1000 

Core B 
mask:0101 

Core C 
mask 0010 

A B c B 

Frame 

Figure 4.1: Example illustrating the concept of Time Domain Multiplexing 
(TDM). 

For example, in Figure 4.1, a frame is assumed to consist of four bits. Core 

A uses the first bit of each frame, core B uses bits 2 and 4, and core C uses 

bit 3. For this specific configuration, assume that we wish to send the data 

"11" to core A, "00" to core B and "don't care" bits "XX" to core C. The 

two required frames to be sent on the TAM bus in this case must, therefore, 
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be "10X0", followed by "1XXX". Optimal frame and mask assignment is 

obviously critical for the efficiency of the scheme. This is addressed later in 

this chapter. 

WBR 

Inputs 

TAM-in 

WSI 

P1500 Wrapper 

C o r e *4 

Scan chain 0 ' f 
4 Scan chain 1 f 

WIR 

4 
WRCK WRSTN 

Wrapper Control 
signals 

16 State 
TAP FSM 

TCK TRSTN T M S 

Wrapper 
Boundary 

Cel l 

Outputs 

TAM-out 

W S O 

Figure 4.2: Conceptual view of the IEEE P1500 wrapper and TAP controller. 

To implement the TDM-TAM, a P1500 wrapper is used to wrap each 

core. Figure 4.2 shows the P1500 wrapper and the 1149.1 TAP controller. 

In the standard 1149.1 TAP controller, a 16-bit finite state machine gen

erates the wrapper control signals from the serial TMS * bit stream. For our 

TDM-TAM, we transform the original 1149.1 TAP controller into a TDM-

*Test Mode Select 
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Reset 

mask[N-2] 
mask[N-1] 

Clock 

D O D O 

Enable 

Reset 

D O 

r-t> 

Mask-/-

Clock_ 

Time 
Domain 

Multiplexer 
Wdlk 

Enable 

T M S 

T V T » 

Ciag I AP 
Controller 

1: CaptureWIR 
2: ShiftWIR 
3:UpdateWIR 

2 3 4 4:SelectWIR 1 
Wrapper Control 

Signals 

Figure 4.3: Block diagram for TDM-TAM TAP Controller. 

TAP controller (Figure 4.3). This controller includes the original 1149.1 FSM 

as well as some minimal extra logic, referred to as a Time Domain Multi

plexer (TDM) Block, which creates the Enable signal for the core according 

to a preassigned mask. 

Here, we assume that the masks are assigned, before the layout and Fab

rication step. In this case, the mask for each core is said to be local. This 

means the mask lines for each core are hard-wired to ground or power supply. 

However, in Section 4.4, we show that it is useful to have the ability to change 

a mask after fabrication. We refer to this feature as dynamic masking. 

The TDM block operates as follows. When the Reset signal goes low, the 

mask is loaded into the flip flop chain. When the Reset is high, the mask is 

shifted by one bit on every falling edge of the clock. Using the falling edge 

allows the Enable signal to be stable before the rising edge of the clock, thus 
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avoiding glitches when used to gate the clock. The Enable signal generated 

for each core is used to enable three different components. When a core's 

Enable signal is active (high), the TMS control signal is read by the core's 

TAP controller and the core's P1500 wrapper. The core is then clocked, 

allowing it to read data from the WSI and TAM-in. Moreover, the tri-state 

buffer is enabled, thereby allowing the core to write to the WSO and TAM-

out. When Enable is deactivated (low), all these components are deactivated, 

allowing other cores on the same TAM bus to use the bus. Cores tested by 

a full BIST scheme may not be disabled, so that their test can be executed 

as quickly as possible, although their TAP controller, P1500, and tri-state 

buffer may still be deactivated. Test power considerations may, however, 

require that BISTed cores be disabled at times as well. 

Figure 4.4: Single branch TDM-TAM. 
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Figure 4.4 illustrates what we refer to as a single branch TDM-TAM with 

multiple cores, where a branch includes the one-bit wide TMS, a one or more 

bit-wide TAM-in bus (to accommodate at least the WSI signal) and a one 

or more bit-wide TAM-out bus. Hence, the minimum data line width of a 

branch is three. Each branch also includes global Clock and Reset signals. 

All the cores connected to a branch have a local TDM-TAP controller and 

associated logic, and a tri-state buffer. They share TMS, Clock, Reset, TAM-

in, and TAM-out lines. 

Different SoCs can have different numbers of TDM-TAM branches. A 

case where all the cores connect to the same branch constitutes the simplest, 

single-branch case, illustrated above. The other extreme is to have as many 

branches as there are cores on the SoC, with each core connected to its own 

private branch. 

4.2 T iming Mode l 

In this section, a model for test time with the TDM-TAM is developed. To 

refine the test time model, we consider the time required to send instructions 

to the wrapper, and to put the wrapper in test mode, as well as the time 

required for loading/capturing a signature (if necessary). We assume that the 

cores are tested using either test patterns provided externally via the TAM, 

or by using patterns generated and evaluated within the core, that is, by 
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using a form of built-in self test (BIST). For BISTed cores, the TAM is only 

assumed to send a form of "start BIST" instruction, and to subsequently 

communicate a BIST result, such as a signature. The cores that are not 

BISTed require not only test instructions, but also test pattern data to be 

sent via TAM. Based on the latter observation, we define two parameters for 

each core: t[ and to- tj is the portion of the core test time during which the 

core does not need to control or use the TAM, and is therefore independent 

of the mask assignment. For instance, the time a BISTed core requires for 

the BIST test patterns to be generated, applied and evaluated, tu is the part 

of a core's test time that requires the control/use of the TAM and which is, 

therefore, dependent on the mask assignment, that is, the time required to 

send a specific test instruction to a core. 

Let the SoC consist of NQ cores and NB branches, and assume that core 

j , 1 < j < Nc, is assigned to branch k, 1 < k < NB- The £/ portion of the 

test time of core j, £/., does not depend on the mask assignment. Hence the 

core-branch connections do not effect this part of the core test time. On the 

other hand, the try portion of the core test time depends on the cores' mask 

assignments and frame lengths, that is, tp. depends on mask assignments and 

frame lengths. The example in Figure 4.1, makes clear that as the number of 

"ones" in a core's mask increases (i.e., with increasing Hamming weight), the 

proportion of data from each frame used by the corresponding core increases 
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accordingly. Hence, the test time for core j, when assigned to branch k, is: 

T " = f f ^ M l * M ' + '" ( 4 ' 1 ) 

Where Mk is the number of bits in a frame for branch k and ||mas/Cj|| is 

the number of ones in the mask assigned to core j. To illustrate, reconsider 

the example in Figure 4.1 and assume that core B is not BISTed and that 

the TAM-independent test time is 20 cycles while tr>B = 15. From Figure 

4.1, M for the bus is 4, Umasfĉ H = ||mas/cc|| = 1 and | | m a s & B | | = 2. Core 

B can use two bits of every 4-bit frame. Therefore, testing core B requires 

[•yl time frames. In turn, this implies a total of 8 x 4 clock cycles. 

Let Xij be a 0-1 variable defined as follows: 

1, core j is assigned to bus k 

0, Otherwise 

Using Equation 4.1, the test time for each core can be determined such 

that total test time for testing all cores assigned to bus k amounts to Tk = 

maxff^Xjk * Tjk) since all the cores can be tested concurrently due to time 

division multiplexing. Assuming all TAM branches can be used simultane

ously, the total test time amounts to T = maxf^pTk) or 

TT = mix(max(Xjk * Tjk) (4.2) t=i j=i 
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Theorem 4.2.1 For a SoC using TDM-TAM and with Nc cores, an upper 

bound on the total test time is given by 

UPTT = max Ui • M 

where Ui is the upper bound of the test time for core i given by Theorem 

3.2.2. 

Proof The single branch with the minimum width TDM-TAM is the worst 

case for test time of an SoC. To derive an upper bound on the test time, 

assume that all cores of SoC lie on one branch having a one-bit wire width 

for TAM-in/TAM-out. This implies that the test time of each core equals 

the corresponding upper bound for test time. Assuming that the worst case 

for test time is maxj^ Ui, and that such a core is not BISTed, then £/ of 

this core is zero and £p = max^C/j. Furthermore, in the worst case, such 

a core has a minimum share of the bus. That is, it is assigned only one bit 

in each frame. Under these conditions, the total SoC test time reaches its 

upper bound: TT = \*-f] * M + £/ = max^ Ui * M. | 

Theorem 4.2.2 For a SoC using TDM-TAM with Nc cores, a lower bound 

on the total test time is given by 

LOTT = maxLj 
i=l 
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Where Li is the lower bound on the core i test time given by Theorem 3.2.1). 

TDM-TAM width required to attain the minimum test time is 

i=Nc 

wLO = £ w(Ti < L 0 

TT) 
i=l 

P r o o f The minimum test time is attained when each core has its own branch 

(NB — Nc) wide enough to test each core at its lower bound test time, so the 

test time of each core should be the minimum possible test time, Lj (given 

by Theorem 3.2.1). Hence, the total test time, based on Equation 3.1, is 

max^ Li. 

Also, in this configuration each branch width can be calculated from the 

minimum width required to achieve a core test time equal to or less than the 

minimum total test time of SoC. Therefore, the TDM-TAM width required 

for a minimum total test time is W = E;=fc W(Ti < LOTT)- | 

4.3 Overhead Area Mode l 

Modeling area for the TDM-TAM is straight forward since the same ad

ditional logic is required for each core. In our area modeling, we neglect 

the wiring area. The overhead for each core is due to the TDM-TAP con

troller and a tristate buffer. Hence, for an SoC with Nc cores, the total area 

overhead ATDM_TAM = Nc * (Abuffer + DM-TAP controller) where Abuffer 
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Table 4.1: Area estimates for TDM-TAM controller block. 

Circuit Area(^m2) Description 
Buffer 37 tri-state buffer 
CTAG-TAP 1142 CTAG TAP controller 
FF & MUX 123 Flip Flop & 2 x 1 Multiplexer 

and AT DM-TAP controller correspond to the area of the buffer and TDM-TAP 

controller, respectively. The TDM-TAP controller, illustrated in Figure 4.3, 

includes a C T A G TAP Controller block and a TDM block. Therefore, 

the overhead area is this: 

AT DM—TAM — Nc{A0Uffer+ATDM-TAp) = Nc{Abuf fer-\-ACT AG-TAP+ATDM block) 

In the TDM block, there are M flip flops and M 2 x 1 multiplexers. Therefore, 

AT DM block = M * (AFF + A 2 X L M U X ) , where AFF and A 2 X L M U X is the area of 

the flip flop and multiplexer respectively. From the above, the area overhead 

for the scheme can be expressed as: 

A-TDM-TAM = Nc(Abuffer + ACT AG-TAP + AT DM block 
) (4.3) 

Estimates of actual area for the constituent blocks appear in Table 4.1 (for 

a 0.18pm CMOS technology). 

In Equation 4.3, the area overhead is proportional to the number of cores 

in the SoC and to the length of the data frames, M (also corresponding to 
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the number of bits required to encode the mask associated with each core). 

As the frame length increases, the area overhead increases. However, test 

time generally decreases with increased frame length, thereby resulting in 

the usual tradeoff between area and test time. 

4.4 Dynamic Masking 

The preceding discussion includes an assumption that the mask associated 

with each core is hard-wired prior to fabrication by making appropriate 

ground and power line connections. However, it is possible to implement the 

scheme such that the masks are programmed at arbitrary post-fabrication 

times. We refer to this scenario as Dynamic Masking. Dynamic masking can 

be realized at the expense of little additional logic over that required for the 

static cases. Dynamic masking offers many potential advantages, primarily 

that of flexibility, allowing for better and more effective post fabrication test 

resource optimization. 

One example of an advantage offered by dynamic masking is that of in

creased core diagnostics, deemed necessary only at post fabrication, and pos

sibly subsequently to an initial test phase. For example, a given core under 

test may need to be more easily diagnosed. This may be achieved a posteriori 

by modifying the core's mask to allow for more test data to reach and leave 

the core per given test time. Also, dynamic masking can accommodate test 
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data/pattern alterations that occur in post fabrication, and therefore, allow 

for better test resource optimization (e.g. test time minimization) subsequent 

to such changes and fabrication. Dynamic masking can also be exploited to 

modify the mask assignments to accommodate different core test times or 

data requirements for cores connected on the same or different branches. 

Finally, power dissipation, coupling, and other noise or performance related 

post-fabrication effects can be more easily handled by virtue of the versatility 

introduced by dynamic masking. 

Dynamic masking can be implemented by adding a new state in the TDM 

TAP controller that controls the shifting in of a mask to the flip flop chain 

of the TDM block in Figure 4.3. Note that for realizing dynamic masking, 

the only additional logic required in the TDM block is a multiplexer. This 

multiplexer needs to be controlled by the T A P Controller to select between 

the WSI (for shifting in a new mask) and the feedback signal (for normal 

operation). 

4.4.1 Multi-Frequency SoC 

Today's SoC could have cores with different frequencies. None of the existing 

TAMs are suitable for multi-frequency SoC testing. The proposed TDM-

TAM can handle the multi-frequency SoC, because with the TDM technique, 

we can manipulate frequency. Consider the example in Figure 4.1: data fed 
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to core A and core C is a quarter of the frequency of the branch. Core B is 

fed by a branch frequency. Also, with n-lines and a multiplexer, we can have 

a line with frequency n times the frequency of a single line. 

1 G 
1 G 

1 G 

1 G 

4 G 

Core B 
freq=2 GHz 

1181111 
Core B 

freq=2 GHz 
Core C 

,freq=1*GHz 

Frame 

Figure 4.5: Using TDM-TAM for multi-frequency SoC. 

Figure 4.5 shows a SoC with 3 cores, working at two different frequencies. 

Assume that ATE can send at 1 GHz. In Figure 4.5, the one-branch config

uration that can test each core at its own speed is shown. The mask of core 

A , B and C should be "1000", "0101" and "0010" respectively. This way, if 

the frequency of the branch is F, the frequency of buses going to core A , B 

and C is j, j and j . Based on this formulation, F should be 4 GHz, but 

the maximum frequency of the ATE machine is 1 GHz. Using 4 lines and a 

multiplexer, we can generate a 4 GHz line. With this configuration, we can 

test each core at its own speed. Please note that Figure in 4.5 does not show 

TDM-TAM in full detail. 
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4.5 Optimization 

In previous sections, we describe the basic concepts of TDM-TAM, as well as 

a test time model, and a model for area overhead. One of the most important 

issues associated with TAM architectures is SoC test time minimization. This 

section focuses on this issue, and assumes that core designs and their test 

requirements are fixed. Specifically, we focus on the optimal assignment of 

cores to test buses and the optimal assignment of masks to individual cores, 

assuming the TDM-TAM architecture is in place. 

We address the following problems: Mask Assignment: Assuming an SoC 

using the TDM-TAM scheme and Nc cores is assigned to NB branches, 

determine the optimal mask assignment for each core. 

Core-Branch Pairings: Assume an SoC using the TDM-TAM scheme and 

a total of Nc cores is assigned to NB. branches; determine the optimal core-

branch pairing for each core. 

These problems are in fact revised from earlier TAM optimization works 

[14, 19] where the objective is to find the optimum configuration for a specific 

TAM [41], to achieve a minimum test time. In our special TDM-TAM, the 

problem is not only (1) finding the best assignment of cores to buses, but 

also (2) finding the best mask assignments for each core. 

Toward solving these optimization problems, here we used a Genetic Algo

rithm (GA)-based method. Our program requires the following information 
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Table 4.2: U226 from ITC SoC'02 benchmarks. 

No. of No. of No. of Scan" TAM 
Core primary test scan chain use 

I/Os patterns chains lengths 
1, 2,3 2/1 1363968 0 - n 
4, 5, 6 3/17 2666 0 - y 

7 97/64 76 20 52 y 
8 34/32 1048576 0 - n 
9 17/10 15 0 - y 

as input: number of cores, number of branches, the test strategy for each 

core, and whether any functional (non-scan) test patterns need to be ap

plied, the number and length of the core scan chains, and the number of core 

input/outputs. Our program outputs an optimal branch configuration and 

core mask assignments. 

Example 1: Consider the U226 SoC benchmark from the ITC'02 SoC test 

benchmarks [7]. The characteristics of this benchmark are reported in Table 

4.2. We use a TDM-TAM design for this SoC and apply our optimization. 

We assume two branches with a minimum width, i.e. NB = 2, and the num

ber of bits/frame to be sixteen in both cases (i.e. Mi = M 2 = 16). As five 

of the nine constituent cores are assumed to be connected to the TAM for 

this benchmark, the problem is optimally assigning these five cores to two 

branches and making optimal mask assignments for each core. Our optimiza

tion program yields the assignment of cores 4, 5 and 9 to the first branch, 

and cores 6 and 7 to the second, as illustrated in Figure 4.6(a). For the first 
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branch, the optimal mask assignment is such that ||masA;41| = ||masA;5|| = 7 

bits, and ||maŝ 91| = 2 bits, while those for the second branch are such that 

||masA;6|| = 6 bits and 11masA/7H = 10 bits. This configuration and assignment 

yields a total test time of 140160 cycles. This test time results creates a case 

where the branches are both of minimal width, that is, each TAM branch con

sists of only one available data line, and hence, the total effective TDM-TAM 

width = 2*. However, when the total effective TDM-TAM width — 3, the op

timal configuration differs. The optimal configuration is illustrated in Figure 

4.6(b), that is, branch one is attributed an effective width of one bit (minimal 

width), with cores 4 and 5 assigned to it such that ||mas/C4|| = ||mas/c5|| = 8. 

Branch two is attributed an effective width of two bits, with cores 6, 7 and 9 

assigned to it, and such that \\mask6 = 6||, ||mas&7|| — 10 and ||mas/c9|| = 2. 

The total test time for this configuration amounts to 95984 cycles. In Figure 

4.7, the total test time (cycles) versus total effective TDM-TAM width is 

given, assuming the two-branch configurations shown for benchmark U226. 

Example 2: In this example, we consider the D695 SoC benchmark from 

ITC'02 SoC test benchmarks [7]. The test data for cores in the D695 is shown 

in Table 4.3. In the first step of TAM design, we should apply available 

wrapper design algorithms, and for each core, calculate the test time for 

^Note that we define the total effective T D M - T A M width as the total number of in
put/output T A M lines, excluding the necessary control lines, such as T M S , Clock and 
Reset. 
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Figure 4.6: Optimal configurations for SoC U266 assuming two branches: 
(a) total effective TDM-TAM width=2, (b) total effective TDM-
TAM width=3. 

different widths. The result of using the wrapper design algorithm for the 

cores in D695 is reported in Table 4.4. Note that core 1 and core 2 are not 

scan-testable cores, so the test time for them is equal to the number of test 

patterns for all the widths. In Table 4.4, the test time for w = 1 is actually 

UPT for the core, and the last number of each column is the minimum test 

time (LOT), and corresponding width is Wmj„ of the core. First, we try to 

design a one branch TDM-TAM with a minimum width for this SoC. In the 

worst case scenario, the core with the largest UPT has the minimum share of 

the bus, so in this example, if we assume that M — 16, the upper bound on 

the SoC test time becomes 16 * maxI=L...W{UPTI) = 16 * 191874 = 3069984. 

However, even in this case if we apply our optimization algorithm to find a 

better masking scheme, we can save 200% in test time. The best masking 

scheme (for M = 16) is 1, 1, 1, 1, 3, 3, 3, 1, 1, 2 for cores 1,2, •••,10 
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Figure 4.7: Benchmark U226: Test time (cycles) vs. total effective TDM-
TAM width for two-branch configurations. 

respectively, giving a test time of 1023328. As mentioned before, with the 

increase of M (the number of bits in the mask), the test time may decrease. 

For example, here, for M = 32, the best masking scheme is 1, 1, 1, 3, 

10, 8, 3, 1, 1, 5, and the corresponding test time is 425632: 140% further 

improvement. 

To find the lower bound on the test time for D695, as we proposed in 

Theorem 4.2.2, the lower bound is the maximum of all lower bounds of the 

cores' test time. From Table 4.4, core 6 has the largest lower bound (9869), 

so the lower bound on the total test time of D695 SoC is 9869. To calculate 

the width required to achieve this lower bound, Theorem 4.2.2 can be used: 

W = Ej=i Wi(Ti < 9869) = 1 + 1 + 1 + 4 + 32 + 20 + 9 + 3 + 3 + 3 = 77. For 
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Table 4.3: Test data for the cores in D695 

No. of No. of No. of Scan chain 
Circuit Primary test scan length 
(core) I/Os patterns chains Min Max 
c6288 64 12 - -
c7552 315 73 - -
s838 35 75 1 32 32 
s9234 75 105 4 52 54 
S38584 342 110 32 44 45 
sl3207 214 234 16 39 41 
sl5850 227 95 16 33 34 
s5378 84 97 4 44 46 
S35932 355 12 32 54 54 
s38417 134 68 32 51 55 

all cores, the width required to achieve core test time < 9869 is highlighted 

in the Table 4.2.2. In this design, each core i has its own private branch 

width Wi(Ti < LOTT) and the mask of each core is M. However, we show 

that with a better design, the width needed to attain the LOTT can be less. 

For example, in the following design shown in Figure 4.8, total test time is 

the lower bound (9869) but the total width is 65: 12 lines savings in TAM 

width. 
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Table 4.4: Test data for the cores in D695 

width 
(W) 3 4 

Core's Test T ime 
5 6 7 8 9 10 

1 5058 26602 191874 185489 65381 22327 26351 22580 
2 2658 13354 95992 105798 29393 11243 13182 11296 
3 2507 11129 61870 62246 21926 8691 8802 6934 
4 6782 48106 73400 16477 5769 6597 5660 
5 5829 38478 37338 13224 4605 5310 4653 
6 32164 31240 11027 4440 3990 
7 27613 27964 9966 3798 3327 
8 24163 54610 8341 3305 2836 
9 21518 20906 7383 2964 2664 
10 19646 19034 6716 2820 2664 
11 17624 19034 6431 2418 2073 
12 16205 18799 6431 2226 2001 
13 14983 18799 6431 2118 2001 

14-15 14762 18564 6431 2118 2001 
16 12192 11978 4219 1659 1374 
17 11420 11273 4026 1572 1338 
18 10869 10571 3739 1488 1338 
19 10319 10103 3549 1416 1338 
20 9989 9869 3454 1416 1338 

21-24 9989 3359 1416 1338 
25-31 9878 1416 1338 

32 6206 836 763 
33 5985 822 739 
34 5765 798 727 
35 5655 774 
36 5435 750 
37 5325 738 
38 5215 714 
39 5105 
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Figure 4.8: Benchmark D695: Design for minimum test time, 5 branches, 
with mask 32 bits and, total width=65, total test time=9869. 

4.6 Case Study 

4.6.1 Platform Description 

To evaluate the effectiveness and tradeoffs associated with the proposed 

TDM-TAM, a network processor engine (NPE) design was developed and 

used as a target test vehicle. Our NPE is an OSI Layer 3 device that for-
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wards IPv4 packets [29]. NPE's major blocks include a pre-processing unit, a 

classifier, an embedded processor, several post-processing units, and various 

memory components. The blocks communicate with each other through an 

^4MiM™-compliant high speed bus. Point-to-point connections are also 

used for control signals and interrupts. 

NPE blocks were developed following reuse guidelines such as I/O buffer

ing and sub-block partitioning. The embedded processor is a modified Mo

torola HCll™ micro-controller. The AMBA-compliant bus was developed 

using the AMBA AHB specifications available from ARM Ltd. The bus 

uses a master-slave request-based architecture with multiple clock cycles per 

transfer. The pipelined bus design yields an efficient implementation that 

satisfies the high bandwidth requirements of NPE. 

For the core-level test methodology, a full-scan test methodology is as

sumed for the preprocessing and the post-processing units. One single scan 

chain was created for each block, and scan vectors were generated by an 

ATPG tool and assumed to be provided to the blocks from an external 

source. To emulate a heterogeneous test methodology environment, the clas

sifier and embedded processor blocks are assumed to be tested using a logic 

BIST methodology. The logic BIST uses a 32-bit linear feedback shift reg

ister (LFSR) to generate pseudo-random test vectors, and uses a signature 

analyzer to compact the test results. The memory modules use memory 
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BIST that runs a Marching C algorithm. All the blocks and the associated 

test structures are encapsulated with P1500-compliant wrappers [4]. 

As illustrated in Figure 4.9, we compared three different TAM architec

tures using the NPE as a target design. A first TAM that we investigated 

in our comparison, referred to as Serial PI 500, leverages the new PI 500-

compliant wrappers. The proposed P1500 standard architecture resembles 

the STD 1149.1 Test Access Port and Boundary Scan architecture. The most 

noticeable difference is the removal of the TAP controller and the addition of 

a parallel test port. By removing the TAP controller and providing more ac

cess ports, the serial input constraint of STD 1149.1 is removed and a wide 

variety of test access mechanisms are supported. It is possible to serially 

thread P1500 wrappers to create a simple TAM for a SoC. 

The second TAM that we included in our comparison is the Network 

(Novel) Indirect and Modular Architecture (NIMA) [45]. The basis of NIMA 

is the establishment of indirect digital communication paths between cores 

through the use of packet-switching connections. We used the on-chip net

work for test purposes. Hence, the test methodology when assuming NIMA 

consists of converting test vectors into packets that can find their way from 

a source to their destination cores. Similarly, test results can also be trans

ferred from cores to a sink. The underlying assumption here is that all 

test-related communications destined for or originated from the SoC need to 
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be communicated using the on-chip network. Finally, the third TAM used 

in our comparison is the TDM-TAM. 

Serial P1500 NIMA TDM-TAM 

HHP 

Figure 4.9: TAM architectures considered in our comparison. 

While all three TAMs considered in our study use P1500 wrappers, the 

NIMA TAM requires that test data be pre-processed into packets. Therefore, 

with NIMA, test data (either scan test vectors and/or BIST instructions) 

must initially be converted into test packets and subsequently sent to des

ignated blocks. In turn, to translate the test packets back into information 

understandable by a P1500 wrapper, a NIMA interface module is required 

for each SoC block. A controller within the NIMA interface module gener

ates the P1500 wrapper control signals. Since the P1500 specifications do 

not include the implementation of such a controller, we assumed the use of 

the 1149.1 TAP controller for this purpose. This controller is responsible for 

generating the required P1500 control signals from the NIMA test packets 

such that the PI500 wrapper performs the operations outlined in the stan

dard. Furthermore, in the case of NIMA, test data is parallelized by the 
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test network. Hence, a data funnel lying between the test network and the 

NIMA interface modules of each core is required for down-converting the 

data width. Finally, since test data from the NIMA test network arrives at 

the NIMA core interfaces in bursts, a buffering scheme must be incorporated 

to ensure that the P1500 wrappers receive data only when ready to accept 

it. 

As mentioned above, two test methodologies were applied to our NPE 

design, BIST and full scan. BIST has the advantage of lower test traffic 

compared to full scan. Moreover, BIST eliminates the need for off-chip vec

tor storage and management, and thereby requires a simpler ATE. On the 

other hand, the BIST methodology used here is based on pseudo-random 

pattern generation, which typically suffers from reduced fault coverage, in 

comparison to full scan, unless special measures are taken. One way to miti

gate this drawback, for example, is to boost the number of BIST test patterns 

in comparison to the number of full scan test patterns. This in turn amounts 

to longer test times. Consequently, it is evident that various test methodolo

gies have different impacts on the choice and effectiveness of different TAM 

architectures. 
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4.6.2 Resu l t s 

We derived specific test time and area overhead models for the TDM-TAM 

when the latter is applied to the NPE design described above. For test time, 

we derived expressions that depend on a core's test methodology whether 

full scan or BIST. For BISTed cores, we assumed that a given set of instruc

tions are required to initiate and complete the BIST, while the actual test 

(application of test patterns and signature generation) can proceed indepen

dently of the specific TAM architecture. Hence, for a BISTed core, td is the 

time required to send the BIST instructions, while t, is the core test time. 

Based on simulations we performed on our NPE design, the times required 

to implement core BIST functions are as follows: 

Instruction Time(Cycles) 

Reset 1 

Start BIST 11 

Load Reference Signature 38 

Capture Signature 16 

Hence, for BISTed cores: 

td = Reset + StartBIST = 12 cycles 
< 

U — tc — CoreScanLength * CoreVectorCount 
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Cores tested using a full-scan test methodology must use the TAM through

out the entire test session. Hence, t% = 0 for such cores. Based on our simu

lations, td includes a 3 times loading instruction, and once loading signature 

and capture signature, plus the time needed to load the test pattern here 

given as VectorCount * (ScanLength + 5). For the cores using full-scan: 

U = 0 

^ td — 2 + 3 Loadlnstruction + LoadSignature+ 

VectorCount(ScanLength + 5) + CaptureSignature 

The above formula for i, and td are not general and differ for different 

designs. Nevertheless, our simulation with our NPE shows that these formu

lae are relatively accurate for test time predictions for our NPE design. Test 

time prediction errors appear to be bounded by M cycles in our specific case. 

For the area overhead associated with TDM-TAM when applied to our 

NPE, we used the area model described in Section 4.3. Results for the frame 

lengths of 16 and 32 are reported in Table 4.5, assuming the NPE design 

implemented in a .18pm CMOS technology. 

The serial TAM has minimum area overhead, very close to that of TDM-

TAM. That is, the test time for TDM is much shorter than that of serial 

TAM. The area overhead for the NIMA is very large. 
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Table 4.5: Overhead area comparison. 

T A M Type Overhead Area 
pm2 % 

TDM (with 16-bit mask) 18882 0.75 
TDM (with 32-bit mask) 30690 1.22 

NIMA 1343236 53.3 
Serial 5041 0.2 

For the test time, the three TAMs were compared in six different scenarios 

corresponding to increasing numbers of cores tested using a full scan test 

methodology, that is, corresponding to increasing test data volumes (Table 

4.6). Figure 4.10 illustrates the total test time (measured in clock cycles) 

required for testing the NPE, assuming full-scan DFT for NIMA and TDM 

of different widths (from 2 to 5 bits), and the serial TAM. The horizontal 

axis indicates the total test data (in bits) transferred. The BIST execution 

time is approximately 530,000 cycles for all six scenarios, and it is chosen as 

the threshold for total test time. From Figure 4.10, it is obvious that the 

serial TAM has the worst test time and TDM with width 5 has the shortest. 

The test time of NIMA is very close to that of TDM, but the area overhead 

for NIMA is much larger than that of TDM-TAM. 

TDM-TAM has the disadvantages of bus-based TAM. For example, TDM-

TAM performance is better for small SoCs, rather than huge SoCs (Figure 

4.10). Also, the interconnect will be an important issue in future for TDM-

TAM design. 
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Table 4.6: Scenarios for assessing TAM performance. 

Total test bits Core that use full scan 
Scenario 1 
Scenario 2 
Scenario 3 
Scenario 4 
Scenario 5 
Scenario 6 

420014 
522460 
692364 
972072 

1789122 
2769456 

pre and post 
pre, post, and HCl l 
pre, post, HCll , and classifier 
pre, postx.4, HCl l , and classifier 
pre, postx4, HCllx4, and classifier 
prex4, postx4, HCllx4, and classifierx4 

4.7 Conclusions 

We proposed a new bus-based TAM which is scalable and compares favorably 

to other proposed TAMs in terms of test time and area requirements. The 

proposed TAM uses the concept of time domain multiplexing (TDM) to ef

fectively reduce TAM area requirements, while still achieving good test time 

performance. This is made possible by the optimal assignment of cores to 

buses and the optimal assignment of time slots in the time domain multiplex

ing scheme. We illustrated the use of a genetic algorithm-based methodology 

to achieve these optimal assignments. We presented test time and area re

quirement models for our TDM-TAM. 

TDM-TAM can be a solution for testing multi-frequency SoCs. By using 

TDM-TAM for testing, we can not only test each core at its own speed, but 

also test the SoCs without high-frequency and expensive ATEs. 

TDM-TAM not only offers generally excellent time and area performance, 

but also can be implemented to enable optimal reconfiguration of test re-
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Figure 4.10: Test Time for Serial P1500, NIMA, and TDM-TAM. 

sources after fabrication using dynamic masking. This feature is particularly 

attractive for addressing test requirements that cannot be anticipated before 

fabrication, for example in cases requiring increased diagnostics due to one or 

more faulty cores on an SoC. We implemented the TDM-TAM on a network 

processor engine design, and compared area and test times of TDM-TAM 

to other proposed TAMs. We illustrated how TDM-TAM offers an attrac

tive alternative to other TAMs, because of its smaller area requirements and 

shorter test time. 
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Chapter 5 

Conclusions 

In this thesis the issues of SoC test integration are discussed, a novel wrapper 

design considering all factors of test cost is introduced, and a new TAM based 

on TDM is reported. Proposed wrapper design and TDM-TAM are analyzed 

both experimentally and theoretically and their high performance is proven. 

DFT and test generation for SoC are becoming major concerns in the 

semiconductor industry because manufacturing test costs are emerging as a 

difficult challenge [5]. Also, since test issues should be considered during the 

design phase (not after), tools observing DFT are badly needed. The first 

step in SoC test integration is wrapper design. In Chapter 2, some of the 

previous work on wrapper design and optimization are reported. In Chapter 

3, a new wrapper design that can be used as part of a SoC test integration tool 

is proposed and implemented. The proposed method is extensively described 

theoretically, and many examples are reported to demonstrate its efficiency. 

A comparison between our wrapper design and existing methods is conducted 

using experiments on the largest core in ITC'02 SoC test benchmarks. The 

results show up to a 2.7% reduction in test time, a 58% reduction in TAM 
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width (test I/O pins) and a 77% reduction in required ATE memory for 

testing. These improvements for one core translate into a dramatic cost 

decrease, if our method is used for all cores of SoC. 

The next step in SoC test integration is TAM design. As part of this 

research in this area TAM optimization for general bus-based configuration 

was investigated. This work are published in [19] and [20]. In [19] heuristics 

methods (GA) was applied to find an optimal test access configuration. Since 

this approach can handle both serial and parallel test data transportation 

to cores, a test time of 40% less than the previous leading method [14], 

which was much slower (with a run time of hours compared to seconds) was 

achieved. In [20] the system was improved to handle power consumption and 

place-and-route constraints. 

Multi-frequency SoC testing is being performed by expensive ATEs and 

complicated ATE programming. In Chapter 4, a novel TAM, able to handle 

multi-frequency SoC testing, is proposed and implemented. Experiments 

show that for a nearly minimum possible test time, the overhead area of this 

TAM is very small (less than 2% as compared to 53% for NIMA [45]). An 

optimization method for this specific TAM is also reported. 
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5.1 Future Work 

To complete a tool package for SoC test integration, SoC test scheduling 

should be studied and included in one package. Test scheduling is used 

after fabrication to determine in what order testing of the cores should be 

conducted. A test scheduling scheme takes the information related to TAM 

design and test data for each core as its input. Of the several methods 

available for scheduling, one should be selected and used to determine the 

best order of testing from the input data to minimize the test cost. 

Also, a complete TAM design and optimization package should be de

veloped. Using this package, the SoC integrator would have the option to 

choose the right type of TAM for the SoC. In this research, our focus was 

on bus-based TAM and TDM-TAM. A complete TAM design tool, however, 

should include different types of TAMs. 

The last step in making the SoC test package is to integrate tools for 

wrapper design/optimization, TAM design/optimization and test schedul

ing) into a single package. So far, we have developed independent software 

tools for wrapper design and TAM design. After the test scheduling method 

(mentioned above) is complete, these three stand-alone techniques should be 

integrated into a single package, making a novel and much needed tool for 

SoC test design. 
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5.2 Contributions of this Work 

This work has made the following contributions to the SoC test research 

community: 

1. A novel wrapper design and optimization method has been introduced 

to minimize the core test time, the TAM width (translates to test 

I/O pins) and the required ATE memory. While previous methods 

for wrapper design only minimize one or two of these parameters, the 

proposed method considers all of these factors in minimization. Also, 

the performance of the proposed method is superior when compared to 

previous methods. 

2. The optimization of a general bus-based TAM architecture has been 

studied [19, 20]. We considered the following issues in designing an 

optimal TAM with the minimum test time: assignment of cores to test 

buses, distribution of the total test width among multiple test buses, 

and estimation of TAM width required for an upper bound on testing 

time. The proposed method is implemented using a genetic algorithm. 

The system is able to design an optimum test access architecture incor

porating system level constraints on power consumption and place-and-

route (arising from the functional interconnections amongst the cores). 

This component is not reported in this thesis. 
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3. A new TAM based on time domain multiplexing is reported. TDM-

TAM characteristics are accurately derived. An example showed that 

this TAM can be very useful in testing multi-frequency SoCs. Exper

iments were performed on different SoCs and the overhead area and 

test time was compared to serial and NIMA TAMs. 
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Appendix A 

P1500 Wrapper Elements 

In this section we describe the P1500 wrapper [4] elements in detail. 

A . l Wrapper Boundary Cells 

Wrapper Boundary Cells (see Figure A.l) are associated with the core ter

minals and provide controllability as well as observability for core terminals. 

These cells should support different modes: 

• Normal: In this mode, the cell does not have any effect on the terminal, 

and the core functions normally. 

• Inward Facing: In this mode, the test is directed toward the core, so it 

effects the core. 

• Outward Facing: In this mode, the test is directed outward from the 

core. This mode is the mirror image of the Inward Facing mode. 

• Safe: In this mode, the cell effects the core and ensures the wrapper 

does not damage core or system (a recommended mode). 
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Cell Test Output 
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Figure A.l: Conceptual View of IEEE P1500 Wrapper Boundary Cell [4]. 

Also, the wrapper boundary cell event can be as follows: 

• Shift: Move data through shift path 

• Capture: sample data 

• Apply: The moment when test data become active and effective 

• Update: 1149.1-type update 

• Transfer: Move data from Update element to shift path 
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C T O 

> - C F O 

Figure A.2: P1500 Wrapper Boundary Cell: Cell Example Displaying all 
Events [4]. 

A.2 Wrapper Interface Port (WIP) 

The WIP is defined to control and clock the Wrapper Instruction Register 

(WIR) and Bypass, Figure A.3. The WIP wrapper terminals include these: 

• WRCK is one or more clocks used to operate registers. 

• WRSTN is a dedicated asynchronous Wrapper Reset. 

• SelectWIR selects whether or not the WIR is connected between WSI-

WSO. 
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• UpadteWR,ShiftWR and CaptureWR are enables for register opera

tions. 

w np 
Contois 
& C ticks 

W SO -* 
W R S T N -

UpdateW R -
ShiffiW R -

CaptureW R -
SelectW JR -

W R C K -

W s i -

COIE 
W _apperwih 

W ]R , eta. 

Figure A.3: P1500 Wrapper Interface Port (WIP) [3]. 

A.3 Wrapper Instruction Register (WIR) 

The WIR is used to shift in and update instructions to the wrapper. The WIR 

circuitry (Figure A.4) is controlled and clocked by the Wrapper Interface Port 

(WIP) and provides the following: 

• Serial shifts of the WIR contents from WSI to WSO 

• Wrapper instruction decoding and circuitry updating 

- Generates Wrapper and Cores Modes based on Wrapper Instruc

tion 

— Ensures that Modes remain stable during WIR shift operations 

• Optional parallel capture of test control information into the WIR 
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Figure A.4: P1500 Wrapper Instruction Register Circuitry [3]. 

— can also be utilized for testing of WIR logic and WIR scan path 

An example of WIR implementation is shown in Figure A.5. 

A.4 Bypass Register 

The Wrapper Bypass Register (WBY) provides a single bit scan bypass of 

Wrapper's SIL, from WSI to WSO (Figure A.6. The WBY is controlled and 

clocked by the WIP (e.g. , WRCK, WSI) and WIR Circuitry (e.g. WBY-

Cntrl signals). 

• The WBY Control signals from the WIR Circuitry are generated based 

on the current Wrapper Instruction and the WIP. 

WBY can only be selected when the WIP SelectWIR signal is logic 0. 
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W M O p c o d e s 

W BYPASSJDpcode = 3b001 

W PRELOAD_Opcode = 3b010 W PRELOAD = ft] 

W EXTEST_Opcode = 3 b O l l W EXTEST = B] 

SAFESTATE_Opcode = 3bl00 SAFESTATE= B] 

W C LAM P_0 pcode = 3 b l 01 

COREBBT_Opcode = 3 b l l 0 

U p d a t e s taqe 

W BYPASS = p] 

W CLAM P = D-3 

C O R E B E T = p] 

Figure A.5: P1500 Wrapper Instruction Register: Example Implementation 
[3]. 

An example of WBR implementation is shown in Figure A.7. 
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Figure A.6: P1500 Wrapper Bypass Register [3]. 

W BY Shiftstage 

Figure A.7: P1500 Wrapper Bypass Register: Example Implementation [3]. 
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Appendix B 

Minimum Makespan Problem 

B . l Problem Formulation 

Suppose that we have m identical machines an there are n jobs, each with a 

processing time ofpj,j — l...n, which must be processed on these machines. 

We are given that n > m and no preemption of jobs is allowed, which means 

that each job must be processed on the same machine from start to finish. 

The idea is to partition the n jobs into m sets and create a schedule. Our 

objective in the schedule is to minimize the maximum machine makespan; 

that is, we minimize the latest finish time of the last job completed [28]. The 

decision version of this problem is as follows: 

Is there a schedule (partition of n jobs into m subsets, Si) such that 

Z3es,Pj<K V S , 

This problem is known to be strongly NP-complete. A reduction from Bin-

packing is possible. 
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B.l . l Strongly NP-complete Problems 

Definition The running time of an algorithm for a strongly NP-complete 

problem is independent of the size of the numbers in the input. 

Alternatively, strongly NP-complete problems remain NP complete even if 

the input is given in unary. An NP-complete problem that is not strongly 

NP complete is called "weakly NP-complete." An example of a weakly NP 

complete problem is the 0/1 Knapsack problem, which has a running time 

oiO(nB). 

B.2 Heuristics for Solving the Problem 

B.2.1 A n Example using the LIST Heuristic 

We illustrate the list heuristic with the following example. Suppose we have 

6 machines, and the following list of jobs: 5 jobs of length 5, 5 jobs of length 

1, and 1 job of length 6. The list heuristic works as follows: 

List heuristic: Given a list of jobs, take each job one at time, and place it 

in the machine with the current earliest finish time. 

Applying this rule results in a schedule with a makespan of 11, using the 

list as given above. The optimal schedule has a makespan of 6: put the job 



Appendix B. Minimum Makespan Problem 129 

of length 6 on one machine, and the other five machines have one job of 

length 5 and one of length 1. So the list heuristic gives us a ratio of 11/6. 

Although not perfect, one advantage of the list heuristic is that it is an on

line algorithm. That is, it does not look ahead in the data before choosing 

an allocation. The following is a theorem [Graham 1966] providing a bound 

on the error of the list heuristic. 

Theorem B.2.1 The list heuristic is a (2 — ^)-approximation algorithm. 

Proof Let OVT be the optimal solution value, and C be the makespan 

returned by the LIST heuristic. First, observe that the best makespan that 

can be achieved with preemption is the sum of the job lengths, divided by 

m, the number of machines. The optimal solution must be greater than that 

solution obtained with preemption, and must also be greater than the longest 

job. Thus, 

1 n 

OVT > max{—Pi, maxp,} 

Now, let t be the processing time of the last job on the list. Then, 

£ - * < ^ ( _ _ > - * ) 
' n 3 = 1 

=> m(C -t)< m.OVT-t 

m.OVT+ (m - l)t 
m 
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Since t < OVT, then C < ( 2 m ~ ^ o p r = (2 - ±)OVT. Thus, the heuristic 

is approximation (2 — ^) algorithm. | 

B .2.2 A n Improvement: The LIST D E C R E A S I N G 

Heuristic 

To improve upon the list heuristic, we can sort the list in non-increasing order 

prior to assigning jobs to machines. This gives us the list decreasing heuristic. 

List Decreasing heuristic: Sort list of jobs in non-increasing order, then 

apply the list heuristic. 

The example in class had 6 machines, and a list of 13 jobs. The times 

for the jobs, in non-increasing order are 11, 11, 10, 9, 9, 8, 8, 7, 7, 6, 6, 

and 6. When we applied the heuristic, we obtained a makespan of 23. The 

optimal value is actually 18, so our ratio for the heuristic is 23/18. An 

alternate theorem by Graham states the quality of solution obtained with 

this heuristic. 

Theorem B.2.2 List Decreasing is a f | — approximation. 

Proof We show that either this magnitude of error is valid, or the heuristic is 

optimal. Let us assume that the jobs are indexed so that pi > p2 > • • • > pn. 
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Again, let OVT be the optimal makespan and CV be the makespan returned 

by the List Decreasing heuristic. If we suppose that the above theorem is 

false, this implies that | — ~ < for some problem instances. Since list 

decreasing is a list heuristic, theorem B.2.1 applies, and < 1 + ^^f-

For list decreasing, t — pn, then 

4 _ J _ - (m - l ) p n 

3 3m m.OVT 

Am — 1 (m — l)pn 

3 O P T 

m — 1 (m — l ) » n < V => OVT < 3pn 3 OVT 

OVT < 3pn implies that at most two jobs are assigned to each machine, 

and n < 2m. If n < 2m, then add 2m — n jobs of length 0, therefore, there 

are 2m total jobs. Next, we claim that list decreasing is an optimal heuristic 

for 2m jobs. Consider this solution: simply assign the first m job, one to 

each machine, then assign the remaining m jobs to the machines, starting 

with the last machine assigned to a job in the first pass, and end with the 

first machine. We can show that this produces an optimal solution: 

Compare the "pairing up" solution (described above) produced to an optimal 

solution. Suppose that these solutions differ first at the ith machine, where 

job i is matched to job 2m — i + 1 in the "pairing up" solution, but matched 

with job j in the optimal solution. Likewise, machine k, k > i, is paired up 
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with machine j, but paired up with 2m — i + 1 in the optimal solution. Here 

is a summary: 

Optimal List Decreasing 

Pk + P2m-i+l ->• Pk + Pj 

Pi + Pj -> Pi + P2m-i+l 

Then, 

Pk + Pj <Pi+ Pj because pk < p% 

Pi + P2m-i+i <Pi+ Pj because Pi < p2m-i+i 

lipi + Pj were the optimal makespan length, then the pairing up solution 

delivered by the heuristic would improve the solution, by the above inequali

ties. However, this would contradict our initial assumption that the optimal 

solution differs at the zth position. If Pi+Pj is less than the optimal makespan 

length, then the heuristic has simply delivered a different optimal solution. 

There may be instances where the list decreasing solution is different than 

the "pairing up" solution given above. However, we can show that the list 

decreasing solution is at least as good as "pairing up". For example, find a job 

i in the list decreasing assignment that is in a machine by itself (which means 

another machine contains three jobs). Now, we know that CD — p2m < Pi, 

because otherwise, job 2m would be on the same machine as job i. Using 
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this inequality, and the fact that p2m < P2m-i+i, we have the following: 

CD < pi + p2m <Pi+ P2m-i+i < Pairing Up Makespan 

Now, since list decreasing is at least as effective as "pairing up", then 

for 2m machines, the list decreasing heuristic is optimal. We have reached a 

contradiction, since we know the list decreasing does not always produce an 

optimal solution. So, this heuristic must be a (| — ^-^-approximation. | 

A strong relationship exists between the MAKESPAN problem and the 

BIN-PACKING problem: suppose we knew the optimal makespan, and called 

it D. This quantity becomes the size of the bins, into which we must pack 

n items of varying sizes pj. The number of bins used must be at most m, 

the number of available machines. If the value of D is unknown, it can first 

be guessed as the midpoint of a known interval. Then, if more than m bins 

were used, D must lie in the larger half of the interval. If less than m bins 

is used, then the smaller half of the interval must contain D. This procedure 

can be repeated, leading to a binary search approach. 

From the above, the optimal solution to the BIN-PACKING problem 

leads to an optimal solution to the MINIMUM MAKESPAN problem. The 

complexity of this algorithm for the makespan problem is the number of calls 

times the complexity of the BIN-PACKING problem. How many calls are 
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necessary? Consider this interval which contains the following: 

n 1 71 

|max{— ^2 P], maxpj}, — Y^Pi) + m m P j J 

The upper limit of this interval is an upper bound on the optimal solution, 

as it is achieved by the list heuristic. Therefore, the number of calls is at 

most logarithmic in the length of the above interval, and hence, polynomial. 

Unfortunately, BIN-PACKING is also known to be NP-complete. Thus, 

instead of solving it optimally, we solve it with a dual approximation scheme. 

If one uses a dual algorithm for linear programming, primal feasibility is often 

violated in choosing the solutions to the dual problem. Likewise, we "violate" 

feasibility by allowing our bins to be slightly larger than D. Basically, our 

dual approximation solution has two properties: 

1. Solution is super-optimal. Number of bins used < optimal number of 

bins. 

2. There is an e violation of feasibility: we allow bins of size < (1 + e)D. 

This approximation scheme is the subject of the next section, where the 

concept of scaling and grouping is introduced. 
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B.3 Polynomial Approximation Scheme to 

"Makespan" 

Consider two similar problems: makespan and bin packing. In the makespan 

problem, we want to pack several objects of given sizes into a given number 

of bins, and to minimize the bins' maximum necessary capacity. The original 

formulation involved scheduling jobs of different lengths to run on a given 

number of machines so that the whole system finishes as early as possible 

(these formulations are equivalent). In the bin-packing problem, the number 

of bins is variable, but their capacities are constant. The two problems 

are dual to each other. Both are invariant to scaling, that is, feasibility, 

optimality and so forth do not depend on the units of measurement. Both 

are known to be strongly NP-hard. Suppose we have a super-optimal solution 

to the bin packing problem, an instance that is known to use at most as many 

bins as the optimal, but may "overhang" by a factor of e, making it infeasible. 

This solution can then be used to approximate the corresponding makespan 

problem in the following way: 
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Let L = max{maxj tj, ^ J2i ti}-

Guess a median d G [L, 2L]. 

Find an e-dual approximation for packing m bins of size d. 

If less than m bins were used, search the smaller half of the interval. 

If m bins proved to be too few, search the larger half of the interval. 

Repeat until length of the interval is less than 1. 

Here, we look for a scheme to find e-approximations to bin packing in time 

polynomial in n (number of items) for each given e. Our algorithm runs as 

follows. (1) Pack all items larger than e (assuming bin sizes are normalized 

to 1). And (2) pack the remaining items. 

In stage 1, no more than ^ items can go into a single bin. The problem 

would be easier with a fixed number of possible sizes, because then dynamic 

programming could be used. Instead, we use a technique called scaling and 

grouping. Divide the interval (0, e) into subintervals of size e2 . Divide every 

item's size by ,̂ rounding down to the nearest multiple of e2. Then solve the 

problem optimally using dynamic programming. We round down to ensure 

super-optimality, since if item sizes are reduced or kept the same, fewer or 

as many bins are required to accommodate them than before. 

A feasible configuration is a collection of items that can feasibly go into 

one bin. There are s = possible sizes, and for each size, at most ^ can 


