
SOC INTERCONNECT ARCHITECTURE DESIGN AND EVALUATION

UNDER TIMING CONSTRAINTS

by

Cristian Grecu

B.A.Sc, Technical University of Iasi, Romania, 1996

M. Eng, Technical University of Iasi, Romania, 1997

A thesis submitted in partial fulfillment of the requirements for

the degree of

Master of Applied Science

in

The Faculty of Graduate Studies

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the required standard:

The University of British Columbia

December 2003

© Cristian Grecu, 2003

Library Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the

head of my department or by his or her representatives. It is understood that

copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

CRISTIAN GRECU 19/12/2003
Name of Author (please print) Date (dd/mm/yyyy)

Title of Thesis: SoC INTERCONNECT ARCHITECTURE DESIGN AND
EVALUATION UNDER TIMING CONSTRAINTS

Degree: M.A.Sc. Year: j=£B&&

Department of ELECTRICAL AND COMPUTER ENGINEERING
The University of British Columbia
Vancouver, BC Canada

S O C I N T E R C O N N E C T A R C H I T E C T U R E E V A L U A T I O N

U N D E R T I M I N G C O N S T R A I N T S

ABSTRACT

System on chip design steadily evolves toward different non-overlapping

abstraction levels. Very different competence and design tools w i l l be needed at each

level. One specific level of abstraction w i l l deal with interconnect technologies, with a

pronounced trend towards networks on chip.

It is projected that, within five years, the large majority of end-user SoC products

wi l l consist of heterogeneous embedded processors, built on multi-processor SoC

platforms (MP-SoC) . There is a tremendous amount of research required to characterize

the various topologies and their effectiveness for different application domains.

A common issue with all network-on-chip topologies is communication latency.

Due to the increase of global wire delay with technology scaling, pipelining is required to

hide the latency associated with the exchange of data across the chip.

The building blocks of a network-on-chip are intelligent switches, which provide

a data transport mechanism across the chip. Their design is critical due to different

architectural and circuit level trade-offs.

This work is novel in that it addresses the issues of quantifying the delay of

different pipeline stages in an on-chip topology, and evaluates the effectiveness of a

given topology in forthcoming technology nodes.

TABLE OF CONTENTS

ABSTRACT II

T A B L E OF CONTENTS Ill

LIST OF FIGURES V

LIST OF TABLES VI

ACKNOLEDGEMENTS VII

CHAPTER I

INTRODUCTION 1

1.1 R E S E A R C H G O A L S 2

1.2 R E S E A R C H A P P R O A C H 3

1.3 THESIS O R G A N I Z A T I O N 4

CHAPTER II

RELATED WORK .. 5

2.1 INTRODUCTION T O I N T E R C O N N E C T N E T W O R K S 7

2.2 CLASSIFICATION OF INTERCONNECTION N E T W O R K S 8

2.2.7 Shared-Medium Networks 9
2.2.2 Direct Networks 11
2.2.3 Indirect Networks 14
2.2.4 Hybrid Networks 19

2.3 A R C H I T E C T U R E O V E R V I E W 22

2.3.1 Floorplanning and Routing for BFTs 24
2.4 S U M M A R Y 27

CHAPTER III

SWITCH DESIGN FOR NETWORKS ON CHIP 28

3.1. INTRODUCTION 28

3.2. SWITCHING T E C H N I Q U E 29

3.3. BUILDING B L O C K S 34

3.4 SILICON A R E A O V E R H E A D 40

3.5 S U M M A R Y 45

CHAPTER IV

INTER-SWITCH WIRE DELAY ANALYSIS 46

4.1 Soc M I C R O A R C H I T E C T U R E T R E N D S A N D ASSUMPTIONS 46

4.2 I N T E R C O N N E C T M O D E L S A N D T R E N D S 48

4.3 INTER-SWITCH WIRE D E L A Y IN B F T A R C H I T E C T U R E 53

4.4 WIRE D E L A Y IN A S H A R E D M E D I U M SoC 59

4.5 S U M M A R Y 64

CHAPTER V

INTRA-SWITCH DELAY ANALYSIS 65

5.1 INTRODUCTION T O L O G I C A L E F F O R T 65

5.2 INTRA-SWITCH PIPELINE S T A G E S A N D D E L A Y A N A L Y S I S 70

5.3 S U M M A R Y 80

CHAPTER VI

CONCLUSIONS AND FUTURE WORK 81

6.1 S U M M A R Y 81

6.2 CONTRIBUTION OF T H E W O R K 83

6.3 F U T U R E W O R K 84

6.3.1 Power Analysis 84
6.3.2 Interfacing 85

REFERENCES 87

iv

LIST OF FIGURES
FIG. 1: F L O O R P L A N OF A 64-IP-MESH N E T W O R K 5

FIG. 2: G E N E R I C F A T T R E E WITH 16 L E A V E S 6

FIG. 3: S H A R E D M E D I U M O N CHIP I N T E R C O N N E C T 10

FIG. 4: (A) 2 -ARY 4 - C U B E ; (B) 3 -ARY 2 - C U B E ; (C) 3-D M E S H 14

FIG. 5: M I N (FAT T R E E) WITH 16 E N D NODES A N D F O U R L E V E L S O F SWITCHES 16

FIG. 6: (A) F A T T R E E R E C U R S I V E L Y BUILT B Y C O N N E C T I N G T H E N E W ROOTS V,, V2, v, T O T H E ROOTS R,, R2,

RK O F T H E SUBTREES; (B) F A T T R E E WITH T W O ROOTS; (C) F A T T R E E WITH M U L T I P L E EDGES

B E T W E E N T H E R O O T V, A N D T H E ROOTS OF T H E SUBTREES T, A N D T2 17

FIG. 7: T Y P I C A L A M B A A R C H I T E C T U R E 20

FIG. 8: A T W O - L E V E L HIERARCHICAL BUS 20

FIG. 9: C L U S T E R - B A S E D 2-D M E S H 21

FIG. 10: B F T WITH 64 IPs 22

FIG. 11: B F T A N D PHYSICAL L A Y O U T 25

FIG. 12: R E A R R A N G E D B F T A N D P H Y S I C A L L A Y O U T 25

FIG. 13: B L O C K D I A G R A M OF A SWITCH 29

F I G . 14: (I) M E S S A G E DIVIDED INTO H E A D E R , D A T A A N D T A I L FLITS; (LL)A: H E A D E R F L I T , (LL)B: D A T A A N D

T A I L FLITS 31

FIG. 15: SWITCH WITH 6 PORTS 32

FIG. 16: B L O C K D I A G R A M OF A SWITCH WITH V I R T U A L C H A N N E L S 32

FIG. 17: E F F E C T OF M U L T I P L E V I R T U A L C H A N N E L S O N T H R O U G H P U T 34

FIG. 18: SWITCH OPERATION: PROCESSES 35

FIG. 21: PRIORITY M A T R I X FOR A 4:1 ARBITER 37

FIG. 22: PRIORITY M A T R I X TRANSITION W H E N R E Q U E S T O R 2 is G R A N T E D A C C E S S 38

FIG. 23: L O G I C CIRCUIT T O G E N E R A T E GRANT, SIGNAL 38
FIG. 24: R O U T I N G B L O C K 39

FIG. 25: T R E E OF N O R G A T E S 40

FIG. 26: E F F E C T OF M E S S A G E L E N G T H O N T H R O U G H P U T 41

FIG. 27 B U F F E R D E P T H IMPACT O N T H R O U G H P U T 43

FIG. 28: I 2 P A R E A O V E R H E A D 44

FIG. 29: L A T E R A L , FRINGING A N D P A R A L L E L P L A T E COMPONENTS OF T H E WIRE C A P A C I T A N C E 49

FIG. 30: DISTRIBUTED WIRE M O D E L 50

FIG. 31: B U F F E R INSERTION 51

FIG. 32: U N B U F F E R E D A N D B U F F E R E D G L O B A L WIRE D E L A Y IN 0.1 3 - M M T E C H N O L O G Y 52

FIG. 33: C L O C K C Y C L E OF H I G H - P E R F O R M A N C E MICROPROCESSORS IN N O R M A L I Z E D UNITS OF F 0 4 53

FIG. 34: INTER-SWITCH WIRE L E N G T H S IN A 64-IP B F T 54

FIG. 35: CROSS SECTION OF M U L T I P L E M E T A L L A Y E R S 56

FIG. 36: U N B U F F E R E D G L O B A L WIRE D E L A Y IN DIFFERENT T E C H N O L O G Y NODES 58

FIG. 37: B U F F E R E D G L O B A L WIRE D E L A Y IN DIFFERENT T E C H N O L O G Y NODES 58

FIG. 38: M U L T I P L E X E R - B A S E D BUS A R C H I T E C T U R E 60

FIG. 39: V A R I A T I O N OF C P W I T H BUS WIRE L E N G T H 62

FIG. 40: V A R I A T I O N OF CP WITH C L O C K C Y C L E FOR DIFFERENT T E C H N O L O G Y NODES 63

FIG. 41: A CRITICAL P A T H WITH T H R E E S T A G E S 69

FIG. 42: SWITCH WITH 6 PORTS 70

FIG. 43: B L O C K D I A G R A M OF A SWITCH PORT 71

FIG. 44: F L I T S T R U C T U R E (A) H E A D E R FLIT; (B) D A T A A N D T A I L FLITS 71

FIG. 45: P A C K E T CONSISTING OF H E A D E R , D A T A A N D T A I L FLITS 72

FIG. 46: (A) B L O C K D I A G R A M O F A N ARBITER; (B) O N E E L E M E N T OF T H E PRIORITY M A T R I X 73

FIG. 47: CRITICAL P A T H OF T H E INPUT ARBITER : 74

FIG. 48: G R A N T SIGNALS AS C O N T R O L INPUTS OF T H E M U X 75

FIG. 49: CRITICAL P A T H OF T H E R O U T I N G B L O C K 77

T A B L E 8: C O M P A R I S O N OF D E L A Y S : C A L C U L A T E D VS. SYNOPSYS' T O O L - G E N E R A T E D 79

FIG. 50: E X A M P L E O F O C P INTERFACES [28] 86

FIG. 51: P A C K E T I Z A T I O N / D E P A C K E T I Z A T I O N INTERFACES. 86

V

LIST OF TABLES
T A B L E 1: DISTRIBUTION OF I P B L O C K S A N D SWITCHES IN SUCCESSIVE T E C H N O L O G Y NODES. ^

T A B L E 2: F L I T L E N G T H S - B F T ^

T A B L E 3: M A X I M U M N U M B E R OF I P B L O C K S (1 0 0 K G A T E S / I P B L O C K) [18] A N D CORRESPONDING F A T - T R E E

L E V E L S AS T E C H N O L O G Y S C A L E S

T A B L E 4: INTER-SWITCH WIRE L E N G T H S IN M M f

T A B L E 5: V A L U E S O F R W , C W , T , N V A N D F 0 4 IN DIFFERENT T E C H N O L O G Y NODES !

T A B L E 6: L O G I C A L E F F O R T A N D PARASITICS O F U S U A L L O G I C G A T E S (

T A B L E 7: L O G I C A L E F F O R T - S U M M A R Y OF P A R A M E T E R S [21] [24] "

T A B L E 8: L O G I C A L E F F O R T A N D PARASITIC D E L A Y S OF T H E R E L E V A N T G A T E S [24] "

T A B L E 9: C O M P A R I S O N OF D E L A Y S : C A L C U L A T E D VS . S Y N O P S Y S ' T O O L - G E N E R A T E D 1

ACKNOLEDGEMENTS

First of all, I wish to thank my academic advisor, Dr. Andre Ivanov, for the

guidance, technical advice and moral support that he provided throughout my Masters.

Also , I would like to thank Dr. Res Saleh for his help and critical feedback.

I greatly appreciate the financial support provided by the Micronet R & D and

Gennum Corporation. Without their support, this work would not be possible.

I would also like to thank to all members of Dr . Ivanov's research group for their

helpful insights and for creating a friendly research environment. Special thanks are due

to Partha Pande, for his help throughout the project and the time spent in long and fruitful

discussions.

Over these years, it was a great pleasure to work in the SoC Research Group at

U B C , and I take the opportunity to thank all the people in the group for creating an

excellent, motivating atmosphere.

Finally, I would especially like to thank Gabriela for support and encouragement

throughout my academic years at U B C .

vi i

1 Chapter I

Introduction

Developments in semiconductor technology have led to a point where the

integration of tens or hundreds of different IP (Intellectual Property) blocks on a single

chip is possible. One of the main challenges in integrating such systems is to provide a

reliable, high performance on-chip data transport mechanism. In general data exchange

among these modules is performed through so called "global wires", whose main

characteristic is that they do not scale with technology improvement. Currently, designers

have a choice of using ad hoc (point to point) interconnects or structured interconnects in

the form of buses when designing large systems. Both these types of interconnects consist

of global wires and exhibit the disadvantage of non-scalability.

Buses and ad hoc interconnects have another major drawback, i.e., their length is

not predictable at the early stages of the design flow. A s a consequence, it is difficult to

estimate whether a given design wi l l meet the initial performance requirements. In fact,

designers spend a large part of their time running and optimizing logic-synthesis and

physical-implementation (place-and-route) tasks. The name given to this process, timing

closure, refers to the application of EDA (Electronic Design Automation) tools and

design techniques to meet RTL (Register Transfer Level) chip-timing specifications.

Unfortunately, global timing closure can be achieved today only after numerous

iterations. There is no definite procedure to achieve timing closure and performance

requirements while using non-structured interconnects.

1

Recently, the use of highly structured interconnect topologies was proposed to cope

with the above-mentioned issues. Most of these topologies come from the parallel

processing world and there is an impressive amount of research going on in the attempt

of mapping them on silicon. This thesis focuses on the characterization of such a

topology with respect to timing and on placing it in the perspective of technology trends.

1.1 Research Goals

There are a few different networks on chip that have been proposed by different

research groups [1][2]. The general claim is that by using a highly structured interconnect

scheme, it is possible to avoid the problems related to global wires and achieve timing

closure while reducing the design time and meeting performance requirements. Signal

transmission between any of the system components is highly pipelined, so, intuitively,

the speed of operation of such an interconnect w i l l be fast, at the expense of higher

latency.

A network on-chip (NOC) is a structured, pipelined interconnect template; data w i l l

travel between one IP block to another following paths consisting of wires and intelligent

switches.

There are two elements involved in the operation of a N O C : active elements, i.e.,

switches, and passive elements, i.e., wires between switches.

The purpose of this thesis is to analyze quantitatively the delays of the active and

passive elements and to provide an insight in regards to the achievable performance in

terms of minimum clock cycle. Specifically, there are performance requirements that the

high performance systems on chip have to meet [3].

2

This work develops a method for the analysis of N O C s with respect to delays

involved in data transport mechanism. B y detailed circuit level design and analysis, we

are able to quantify the contribution of each element of the interconnect template to the

overall timing characteristic.

The primary goal is to demonstrate what are the main components of the delay, the

parameters affecting the timing of a network on chip and the trade-offs that a designer

has to consider when working with these concepts.

1.2 Research Approach

A detailed analysis was performed of both passive (wires) and active (switches)

devices of the N O C described in [4].

In [4] we proposed the use of the butterfly fat-tree as the overall template to

interconnect functional IP blocks in large SOCs. Architectural trade-offs of this topology

were discussed in [5]. Here, the performance of this topology is analyzed in terms of

minimum achievable clock cycle.

First, we develop a deterministic wire length model of the butterfly fat-tree. B y

mapping the butterfly fat-tree graph onto a square 2-dimensional area corresponding to

the physical silicon die, we are able to come up with an accurate expressions for the

inter-switch wires. This model was then enhanced by considering distributed R C effects

and buffer insertion requirements; a projection of the wire delay model is provided by

analyzing the interconnect technology trends, i.e., mainly, copper metallization and low-k

dielectrics.

Next, we developed a delay model for the switches in the butterfly fat-tree network.

Starting from the logical operation of the switches and implementing a virtual channel

3

wormhole routing strategy, we characterized each process involved in the switch

operation in terms of technology independent delay units.

Finally, having the two components of the delay, namely, the inter-switch and

intra-switch delays, we analyzed the achievable clock cycle of our interconnect

infrastructure based on the butterfly fat-tree topology. The analysis shows that the

infrastructure complies with ITRS 2001 projections for high performance SoCs with

respect to the achievable clock cycle.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 describes succinctly a few topologies

proposed by different research groups as suitable for on-chip implementation and

provides a short theoretical classification of interconnect networks. It also gives an

overview of the butterfly fat-tree topology and presents a simple solution for floorplaning

and routing for networks-on-chip using this architecture. Chapter 3 details the design of a

switch for a network-on-chip, together with the factors that governs designer's decisions.

Chapter 4 provides an in-depth analysis of the interconnect-related issues: wire length

modeling, resistance and capacitance effects, and buffer insertion. The the intra-switch

delay calculation is given in Chapter 5. Finally, Chapter 6 summarizes the conclusions

drawn throughout this thesis and provides suggestions for future work.

4

2 Chapter II

Related Work

A few on-chip micro network proposals for SoC integration can be found in

literature. Kumar [4] and Dally [1] have proposed mesh-based interconnect architectures.

These architectures consist of an m x n mesh of switches interconnecting computational

resources (IPs) placed along with the switches. Each switch is thereby connected to four

neighboring switches and one IP block. In this case, the number of switches is equal to

the number of IPs.

The physical placement of such a micronetwork is reported in F ig . 1, with white

squares representing the functional IPs and black squares denoting the switches.

TO

Fig. 1: Floorplan of a 64-IP-mesh network.

5

Guerrier and Greiner [7] have proposed a generic interconnect template for on-

chip packet switched interconnections, where they have used fat-tree architecture to

interconnect IP blocks. In generic fat tree architecture adding more links in parallel as

switches become closer to the root switch increases transmission bandwidth between

switches. As a result of this the architecture of the switches wi l l also vary from level to

level and they w i l l not be reusable.

Fig. 2: Generic fat tree with 16 leaves.

The above works neither discuss the suitability of the proposed interconnect

architectures in the SoC domain nor they show any comparison with other possible

architectures. A l l of the above mentioned works proposed different types of interconnect

architectures to solve the global wire delay problem; however none of them specifically

deals with this.

In [4] [8] we have described an interconnect architecture for a networked SoC, as

well as the associated design of required switches and addressing mechanisms.

Addressing the wire delay problem and more generally analyzing the global

timing closure in a communication-centric SoC is precisely the focus of this thesis.

6

2.1 Introduction to interconnect Networks

Interconnection networks are currently used in many different applications, ranging

from internal buses in V L S I circuits to wide area computer networks. Among others,

these applications include backplane buses; telephone switches; internal networks for

A T M and Internet switches; processor-memory interconnects for vector supercomputers;

interconnection networks for multicomputers and distributed shared memory

multiprocessors; clusters of workstations and personal computers; networks for industrial

applications.

There are many factors that may affect the choice of an appropriate interconnection

network. Some of the most important are the following:

1 Performance requirements. Processes executed by different processing elements

exchange data and synchronize through the interconnection network. These

operations are performed by message passing and/or by accessing shared

resources. Message latency is the time elapsed between the time a message is

generated at its source and the time the message is delivered at the destination.

Latency negatively affects the idle times of the processing nodes and memory

access times to remote memory locations. Also, the amount of information that a

network can deliver is finite and limited. The maximum amount of information a

network can physically deliver per unit time defines the throughput of that

network.

2 Scalability. A scalable topology implies that as more processing elements are

added, their memory bandwidth, I/O bandwidth and network throughput should

increase proportionally. Otherwise, the components that do not scale may become

7

a bottleneck for the rest of the system, decreasing the overall performance

accordingly.

3 Simplicity. Simple designs tend often to lead to higher clock frequencies and may

achieve higher performance.

4 Physical Constraints. A n interconnection network connects processing elements,

memories and/or I/O devices. It is desirable for any network to accommodate a

large number of components while maintaining low communication latency. A s

the number of components increases, the number of wires needed to interconnect

them also increases. One major limitation in large networks is the arrangement of

wires in a limited area, that is, the maximum possible wire density limits the

complexity of a connection. Also the speed of such a system tends to be limited

by the wire lengths. A significant amount of power is expected to be consumed to

drive these wires.

5 Cost Constraints. It is obvious that the best possible interconnection network may

be too expensive, in terms of design time and silicon area. There is always a

trade-off between cost and performance.

2.2 Classification of Interconnection Networks

In order to choose an appropriate template for an on-chip interconnect network, it is

useful to have a classification [9]. Known interconnection networks are categorized into

four major classes based primarily on network topology:

• shared medium networks,

• direct networks,

• indirect networks,

• hybrid networks.

2.2.1 Shared-Medium Networks

The least complex interconnect structure is the one in which the transmission

medium is shared by all communicating devices. Only one device is allowed to use the

network at a time. Every device attached to the network has requester, driver, and

receiver circuits to handle the passing of addresses and data. A unique characteristic of a

shared medium is its ability to support broadcast, in which all devices on the medium can

monitor network activities and receive the information transmitted on the shared medium.

Due to limited network bandwidth, a single shared medium can only support a limited

number of devices before the medium becomes a bottleneck [31]. They are known under

the common name of buses and, in SoC environment, they are the first attempt to

structure the data exchange medium. Some examples are A M B A [10], W I S H B O N E [11],

C O R E C O N N E C T [12]. A conceptual example is given in F ig . 2.

9

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

BCU

In

Out

In
Out

In -

Out

In
Out

In
Out

Fig. 3: Shared medium on chip interconnect.

Due to the very nature of the medium, several devices may attempt to use the bus

simultaneously. To deal with this issue, a policy must be implemented to allocate the bus

to the devices making such requests. Bus allocation is carried out by arbiters. In order to

perform an access request, the initiator has to exclusively own the bus and become a bus

master.

Most bus transactions involve request and response. After a request is issued (by

the master device), it is desirable to have a fast response (from the slave device). Due to

slow slaves, the bus bandwidth is wasted while waiting for a response. In order to

minimize the waste of bus bandwidth, the split transaction protocol is being used in

many bus networks. In this protocol, the bus mastership is released immediately after the

request, and the slave device has to gain mastership before it can send the data. Split

transaction protocol has a better bus utilization, but it requires much complicated control

hardware. Buffering is needed in order to save messages before the slave device can get

the bus mastership.

10

2.2.2 Direct Networks

Scalability is an important issue when designing SoCs with a large number of IP

(Intellectual Property) blocks. Bus-based systems are not scalable because the bus

becomes the bottleneck when more blocks are added. One way to address the scalability

issue is to use a direct network. A direct network consists of a set of nodes, each one

being connected to a (generally small) subset of other nodes in the network. Each node is

an independent functional unit and it is connected locally to a router, which handles

communication among nodes. For this reason, direct networks are also known as router-

based networks. Each router has direct connections to the router of its neighbor. Usually,

two neighboring nodes are connected by a pair of unidirectional channels in opposite

directions. A bidirectional channel may also be used to connect two neighboring nodes.

Each router supports some number of input and output channels. The channels connected

to the local resource are called internal channels, and the channels connected to the other

routers are called external channels. B y connecting the input channels of one node to

output channels of other nodes, the direct network is defined.

Direct network can be modeled by a graph G(N,C), where the vertices of the graph,

N, represent the set of processing nodes, and the edges of the graph, C, represent the set

of communication channels. This simple model does not consider any hardware

implementation issue, but it allows the study of network properties. From the graph

representation, some basic network properties can be defined:

• Node degree: number of channels connecting a node to its neighbors;

• Diameter, the maximum distance between two nodes;

11

• Regularity: a network is regular when all the nodes have the same degree;

• Symmetry: a network is symmetric when it looks alike from every node.

A direct network is mainly characterized by three factors: topology, routing and

switching. The topology defines how the nodes are interconnected by channels and can

be modeled by a graph as indicated above. A n ideal direct network would connect each

node to all other nodes. N o message would even have to pass through an intermediate

node before reaching its destination. This fully connected topology requires a router with

N links (including the internal link) at each node for a network with N nodes. Therefore,

the cost is prohibitive for networks of moderate to large size. The engineering and scaling

difficulties preclude the use of fully connected networks. As a consequence, many

topologies have been proposed, trying to balance performance and cost parameters. In

these topologies, messages may have to traverse some intermediate nodes before reaching

the destination node.

For efficient use of network resources, a message may be divided into packets

prior to transmission. A packet is the smallest unit of information that contains the

destination address, carried in the packet header. For topologies in which packets may

have to traverse some intermediate nodes, the routing algorithm, determines the path

selected by a packet to reach its destination. A t each intermediate node, the routing

algorithm dictates the next channel to be used, which may be selected from a set of

possible choices. If all the candidate channels are busy, the packet is blocked and cannot

advance. Efficient routing is critical to the performance of interconnection networks.

When a packet reaches an intermediate node, a switching mechanism determines how and

when the router's input channel is connected to a certain output channel selected by the

12

routing algorithm. Some buffer space is required to store the packet until the next channel

is reserved. If a packet is blocked, it requires some buffer space to be stored, until a free

channel can be reserved.

Direct Network Topologies

Many network topologies have been proposed in terms of their graph-theoretical

properties. The most known direct networks are the n-dimensional mesh, the k-ary n-cube

or torus, and the hypercube.

Formally, an n-dimensional mesh has nodes, kj nodes along each

dimension i, where kj > 2 and 0 < i < n-1. each node X is identified by n coordinates (x„.i,

x„-2, ...,xi, xo), where 0 < x, < kt-l for 0 < i < n-1. Two nodes X and Y are neighbors if and

only if v, = JC, for all i,0<i<n-l, except one, j, where y; =Xj± 1. Nodes have from n to

2n neighbours, depending on their location; therefore the mesh is not regular.

In a &-ary n-cube, all are equal to k and two nodes X and Y are neighbors if and only if

yi = X; for all < i < n-1, except one, j, where y7 = (JC, ±1) mod k. this change with respect

to aforementioned mesh adds wraparound channels to the &-ary n-cube, giving it

regularity and symmetry.

The hypercube is a special case of both n-dimensional mesh and £-ary n-cube. A

hypercube is an n-dimensional structure in which kj = 2 for 0 < i < n-1, or a 2-ary n-cube,

also referred to as a binary n-cube. For example, the network in Fig. 4(a) is a binary

4-cube.

13

(c)

Fig. 4: (a) 2-ary 4-cube; (b) 3-ary 2-cubc; (c) 3-D mesh.

Fig . 4 (a) depicts a binary 4-cube or 16-node hypercube. F ig . 4 (b) shows a 3-ary 2-cube

or two-dimensional (2-D) torus. F ig . 4 (c) illustrates a 3-ary three-dimensional (3-D)

mesh.

2.2.3 Indirect Networks

Indirect or switch-based networks are another major class of interconnection

networks. Instead of providing a direct connection among some nodes, the

communication between any two nodes has to be carried out through switches. Each

switch can have a set of ports. Each port consists of one input link and one output link.

The main difference between direct networks and indirect networks is that, in the case of

14

indirect networks, a subset of the switches is connected to one or more communicating

nodes (IP block), while the rest of the switches are connected only to each other. In the

case of direct networks, each router is connected to a local node and to other routers. In

parallel processing, the terminology is router-based networks for direct networks, and

switch-based networks for indirect networks. The interconnection of the switches defines

various network topologies.

Indirect networks can also be modeled by a graph G(N,C), where N is the set of

switches and C is the set of links between the switches. Each switch in an indirect

network may be connected to zero, one or more processing cores. Obviously, only

switches connected to some processing core can be the source or destination of a

message.

Similar to direct networks, the indirect networks are mainly characterized by three

factors: topology, routing, and switching. In regular indirect network, the switches are

usually identical and are organized as a set of stages. Each stage is only connected to the

previous and next stage using regular connection patterns. Input/output stages are

connected to the functional nodes as well as to another stage in the network. These

networks are referred to as multistage interconnection networks (MIN) and have different

properties depending on the number of stages and how those stages are arranged.

15

Fig. 5: MIN (fat tree) with 16 end nodes and four levels of switches.

MINs were initially proposed for telephone networks and later for array processors.

MINs have been popular as alignment networks for storing and accessing arrays in

parallel from memory banks. Depending on the interconnection scheme employed

between two adjacent stages and the number of stages, various MINs have been

proposed.

Fat-Trees

From the family of MINs, of particular interest are the fat-trees. Unlike traditional

trees in computer science, fat-trees resemble real trees because they get thicker near the

root, that is, the number of channels connecting two switches on adjacent levels grows

from the leaves towards the root. Formally, fat-tress are defined as follows:

Definition 1: A fat-tree is a collection of vertices connected by edges, constructed

recursively as follows:

• A single vertex by itself is the root of the fat-tree.

16

• Ifvj, V2, v, are vertices ant Tj, T2, 7} are fat-trees, with rj, ri, rk

as roots (j and k need not be equal), a new fat tree is built by connecting

with edges, in any manner, the vertices vj, V2, v, to the roots with rj, ri,

r^ The roots of the new fat tree are vj, V2, v,.

The above definition is extremely general and can cover ordinary trees, fat-trees with

variable-sized switches and multiple connections between vertices and irregular

constructions. Some examples are shown in F ig . 6.

(c)

Fig. 6: (a) Fat tree recursively built by connecting the new roots V / , v_, v,- to the
roots rh r2,r/t of the subtrees; (b) Fat tree with two roots; (c) Fat tree with

multiple edges between the root v; and the roots of the subtrees T% and T2.

From the family of fat-trees branches the class of &-ary n-trees [13]. A formal

definition of the &-ary n-trees is:

17

Definition 2: A k-ary n-tree is composed of two types pf vertices: N = k" processing

nodes and nknlk communication switches. Each node is an n-tuple {0, 1, k-l}n, while

each switch is defined as an ordered pair (w,l), where w e (0, n-l}nl and I e (0,

1,..., n-1}.

• Two switches (wo, Wj, w„.2, 1} and {w'o, w'i, w'n-2, V)

are connected by an edge iff V = I + 1 and w, = w'i for all i This edge is labeled

with w'i on the level I vertex and with wi on the level I' vertex.

• There is an edge between the switch {wo, Wi, ... , wn-2, n-1} and the processing

nodepo, pi, ..., pn-i iff

wt = pi for all i e fO, 1, n-2}.

This edge is labeled with pn-i on the level n-1 switch.

From Definition 2 it can be inferred that any path starting from a level 0 switch and

leading to a given node po, pi, pn-i traverses the same sequence of edge labels (po, pi,

-,Pn-l)-

Minimal ly routing between a pair of nodes in a &-ary «-tree can be accomplished by

sending the message to one of the nearest common ancestors of both source and

destination and from there to the destination node. Thus, each message experiences two

phases: an ascending phase to get to a nearest common ancestor, followed by a

descending phase to get from that common ancestor to destination.

Fat-trees have many interesting properties. Leiserson [14] formally proved the

so-called universality theorem, stating that a universal fat-tree of a given volume can

simulate any other interconnection network of equal volume with only a polylogarithmic

factor increase in the time required.

18

The number of ports of the internal switches of the fat-tree increases as we go

closer to the root; this makes the physical implementation of these switches unfeasible. In

SoC environment, a key requirement of these switches is that they must be reusable. If

the number of channels differs from level to level, the corresponding switches need to be

different, which poses difficulties in terms of logical design, placement, routing

congestion, non-uniform power dissipation across the chip, etc. For this reason, some

alternative constructions have been proposed that use building blocks with fixed number

of ports. These solutions trade connectivity with simplicity: in a "complete" fat-tree an

incoming message at a given switch may have more choices than in a corresponding

network with fixed size (number of ports) switches.

2.2.4 Hybrid Networks

In general, hybrid networks combine mechanisms from shared-medium networks

and direct or indirect networks. Therefore, they increase bandwidth with respect to shared

medium networks and reduce the distance between nodes with respect to direct and

indirect networks. However, for systems requiring very high performance, direct and

indirect networks achieve better scalability than hybrid networks because point-to-point

links are faster than shared-medium buses [9]. Most high-performance parallel computers

use direct or indirect networks. In the case of the on-chip interconnects, hybrid networks

are present in the form of hierarchical buses, a typical example being AMBA bus [10]

shown in Fig. 7, where there can be, for example, a high speed bus (AHB - Advanced

High-Performance Bus) hosting the CPU and DMA (Direct Memory Access) devices,

19

and a lower speed bus (A P B - Advanced Peripheral Bus) hosting slower peripherals

(U A R T , IOs); the two buses are linked together by a bridge.

High-performance
ARM processor

High-bandwidth
External Memory

Interface

High-bandwidth
on-chip RAM

AHBorASB

DMA bus
master

UART

APB

Keypad

AHBtoAPB Bridge
or

ASBtoAPBBridge

Fig. 7: Typical AMBA Architecture.

In general, hierarchical buses consists of multiple buses connected by bridges,

with higher performance buses layered at the higher level of the hierarchy, as indicated in

F ig . 8.

Global Bus

Bridge » I • Bridge

Local Bus
1 i 1

Local Bus
I I i

Fig. 8: A two-level hierarchical bus.

Another class of hybrid networks are the cluster-based networks. They combine

the advantages of two or more kinds of networks at different hierarchical levels. For

example, it is possible to combine the advantages of buses and point-to-point links by

using buses at the lower levels in the hierarchy to form clusters and a direct network

topology connecting clusters at the higher level. A n example is D A S H - Stanford

20

Directory Architecture for Shared Memory, whose basic architecture is shown in Fig. 9.

At the lower level, each cluster consists of four processors connected by a bus. At the

higher level, a 2-D mesh connects the clusters.

Cluster bus

• • d

Cluster bus

Cluster bus

D-
Cluster bus

Cluster bus

Cluster bus

Cluster bus

Cluster bus

Cluster bus

Fig. 9: Cluster-based 2-D mesh.

Other combinations of different structures are possible and have been studied in

parallel processing: direct and indirect networks, shared medium and indirect networks,

etc.

21

2.3 Architecture Overview

For the "Network on Chip" project at UBC we have chosen the butterfly fat-tree

(BFT) as the interconnect architecture. The BFT offers a good trade-off between the

properties of fat-trees and the reusability requirements of the SoC environment, in the

sense that all the switches are identical (they have the same number of channels). The

architectural evaluation and comparison of BFTs was done in [5]. In the following, a

brief formalized description of the particular BFT used will be given. This will help us in

developing a wire length model for inter-switch delay analysis in Chapter IV.

We use the BFT with N functional IP (FIP) blocks as shown in Fig. 10 [15][29] .

Level (j)

Fig. 10: BFT with 64 IPs.

Each node (leaf or vertex) is labeled by a pair of indices (j,a), where j represents the level

of the node in the network and a represents the address of the node in that level (its

index). The level of a node is defined as its distance from the leaves. At the lowest level

(j = 0) are the N FIP blocks with addresses 0 to /V - 1. Each switch S(j, a) has six ports:

parento, parents childo, child/, child2, childs. The number of levels depends on the total

22

number of FIPs, i.e., for N IPs, the number of levels w i l l be levels = (log2 N) - 3. The

FIPs are connected to AV4 switches at the first level such that the FIP P(0, a) is connected

to the childa mo<i 4 of switch 5(1, L#/4_|). A t the y'-th level (for j = 1 to (\0g2N) - 3) there are

N/2M switches. The connections of a switch are determined by the switch's address as

follows: parento of S(j, a) is connected to child; of S(j+l, a •2J"+amod2J), and

parent/ of S(j, a) is connected to childt of S(j+l, a •2j +(a + 2j 1) m o d 2 >) , where

1 =
a m o d 2 J + 1

Each channel connecting two adjacent switches consist of two unidirectional links. The

number of switches in the butterfly fat-tree architecture converges to a constant

independent of the number of levels. If we consider a 4-ary tree as shown in F ig . 10, with

four down links corresponding to child ports, and two up links corresponding to parent

ports, then the total number of switches in level 1 is N/4.

A t each subsequently higher level of the tree the number of required switches reduces by

a factor of 2. In this way the total number of switches, 5, is calculated as:

„ N IN IN
S = — + + + •

4 2 4 4 4

(1 Veve',s N N

C / 1 \ levels \

1 - -

1 —

N
levels-

(2.1)

which illustrates that 5 tends to N/2 as N grows arbitrarily large. In the case of 64 IPs the

number of switches is 28 as shown in Fig . 10.

23

file:///0g2N

2.3.1 Floorplanning and Routing for BFTs

Contemporary V L S I processes offer six or more layers of metallization for

wiring. With the advent of Chemical Mechanical Planarization (C M P) , it is feasible for

process technology to continue stacking additional metal layers as long as the cost of the

extra mask steps and processing are justified by area benefits. This produces an

interesting effect on the traditional V L S I models: active devices are still largely limited to

two-dimensional layout on the silicon substrate. However, wire layers can feasibly be

stacked on top of each other creating a three-dimensional structure for interconnects. A n

efficient placement and routing of an interconnect topology such as the butterfly fat-tree

requires a uniform distribution of resources (switches and metal tracks) across the chip

[15]. A potential problem with the B F T structure is the wire congestion occurring

towards the higher levels of the tree. This congestion can be avoided by intelligently

placing the switches on the silicon substrate.

We start by showing that the chip area can be divided into smaller squares of

equal size (subsequently called "tiles"), each of these squares containing the same

number of functional nodes and switches. Then we account for the wiring per layer and

vias required between layers. Each tile consists of a set of four IP blocks connected to the

same level one switch, the corresponding level one switch, and, eventually, one more

switch belonging to a level characterized by an index greater than one. Thus, the number

of tiles is equal to the system size divided by the number of child ports of a switch (four).

24

Fig. 11: BFT and physical layout.

Fig . 11 shows the original 2-D layout of the B F T (here with 64 leaf nodes). B y

rearranging the basic B F T as indicated in Fig . 12, at most two switches end up in each

tile, along with four processing nodes.

• D

LU
d

•

c m r r

4[— i=r- |

£ J 4

T
- u 1

L

i " 1

4

3

Fig. 12: Rearranged BFT and physical layout.
In the original B F T arrangement, all the switches lie along the same diagonal. In the

modified layout, the diagonals are complementary such that, when folded together, the

25

next diagonal is always left open. Finally, each tile w i l l contain four end nodes, the

switch associated with those four end nodes, and, at most, one additional switch.

A t each stage, after folding, the lower levels manage to leave both main diagonals free.

One main diagonal is then consumed by the new switches added at the level onto which

the lower levels are being folded. This, in turn, leaves one diagonal free in the folded box.

Consequently, when this new level is now folded with its peers to create the next tree

level, it w i l l also create a structure with both main diagonals free so that the next level of

switches can be added and the folding can continue further in this manner.

Wires

A simple strategy for wiring is to give each tree level, in a tile, its own pair of metal

layers, one for horizontal wires and one for vertical wires. A s in each tile there are at

most two switches, four levels of metal w i l l be sufficient for all levels, independently of

the number of levels in the B F T . This is an upper limit, a lower limit being two metal

layers - one for horizontal and one for vertical traces. Therefore, within each tile there

w i l l be 6 or 12 wiring channels, and the total number of wire traces wi l l be given by the

product 2NW, where N is the number of channels, and W is the data channel width. The

first term indicates the fact that the channels consist of two unidirectional links in

opposite directions. It is important to notice that by using this placement style, the wire

congestion at the root of the B F T is completely avoided.

26

2.4 Summary

In this chapter, the butterfly fat-tree architecture is formally described, and V L S I

implications of this interconnect are briefly outlined. We have also shown a strategy to

physically place the active devices (switches and end nodes) on the silicon substrate. The

chip area was symbolically divided into square tiles, each tile containing at most two

switches, of which exactly one is a level one switch. Wire congestion toward the B F T

root is thus avoided by arranging the active devices such that there are at most two

switches per tile; the maximum number of channels is 24 x W (six ports per switch, each

channel consisting of a pair of unidirectional channels). This simple model for the B F T

interconnect w i l l help the development of detailed models for inter- and intra-switch

delays in Chapter I V and Chapter V , respectively.

27

3 Chapter III

Switch Design for Networks on Chip

3.1. Introduction

The building blocks of a network on chip infrastructure are the switches. Their

function is to transport data from a source functional block to a destination functional

block. They are responsible for the successful routing of messages through the network

by implementing the specific flow control mechanism. When a message or packet header

reaches an intermediate switch, a switching mechanism determines how and when the

input channel is connected to the output channel selected by the routing algorithm. Flow

control is tightly coupled with the switching technique for the synchronized transfer of

information between switches and through switches in forwarding messages through the

network. The flow control mechanism establishes a dialog between sender and receiver

blocks, allowing and stopping the advance of information units. If a packet is blocked, it

requires some buffer space to be stored. When there is no more available buffer space,

the flow control mechanism stops information transmission. When the packet advances

and buffer space becomes available, transmission is started again. A simplified block

diagram of a switch that performs these basic tasks is given in Fig . 13:

28

FIFO buffers

-H L C

c — —
CO

- C
o

-*i L C -QTID-
-H L C

• L C -0ILD--

Switching
fabric

FIFO buffers

L C

L C

CD c _
CO

- C

L C

L C

Q.

• O

Routing and
Arbitration

Fig. 13: Block diagram of a switch.

Thus, one can identify the factors that w i l l govern the design of the switch:

switching technique, routing algorithm, flow control. The effect of these factors on

design decisions is analyzed in the following subsections. A s a consequence, the building

blocks of a switch, in the simplest case, are the following:

- Routing and Arbitration block: implements the routing algorithm and output

buffer allocation;

L ink Controllers (LC) : implements the flow control mechanism;

Switching fabric: connects input channels to output channels according to the

decision of the routing block;

F IFO buffers: store the messages until a free channel is allocated by the

Routing and Arbitration unit.

3.2. Switching Technique

The switching techniques determine when and how internal switches connect

their inputs to outputs and the time at which message components may be transferred

along these paths.

29

There are different types of switching techniques, namely: Circuit Switching,

Packet Switching, and Wormhole Switching [9]. In circuit switching, a physical path

from source to destination is reserved prior to the transmission of the data. This setting

up of an end-to-end path causes unnecessary delay. In packet switching, data is divided

into fixed-length blocks called packets, and instead of establishing a path before sending

any data, whenever the source has a packet to be sent, it transmits the latter. Packet

switching is advantageous when messages are short and frequent. Unlike circuit

switching, where a segment of the reserved path may be idle for a significant period of

time, in packet switching, a communication link is fully utilized when there are data to

be transmitted. Packet switching is based on the assumption that a packet must be

received in its entirety before any further routing decision can be made to forward the

packet towards its destination. The need for storing entire packets in a switch in case of

conventional packet switching makes the buffer requirement high in these cases.

In an SoC environment, the requirement is that switches should not consume a

large fraction of silicon area compared to the IP blocks. In wormhole switching, the

packets are divided into fixed length flow control units (flits), as indicated in F ig . 14, and

the input and output buffers should be able to store only a few flits. A s a result, the

buffer space requirement in the switches can be small compared to that generally

required for packet switching.

30

Header Tail

(a) Type

Data

(i)

V C I D ! Address Length Packet Length Source Address Dest. Address

(b) Type V C I D Data

(ii)

Fig. 14: (i) Message divided into header, data and tail flits; (ii)a: Header Flit, (ii)b:
Data and tail Flits.

Thus, using a wormhole switching technique, the switches will be small and

compact. The first flit, i.e., header flit, of a packet contains routing information. Header

flit decoding enables the switches to establish the path and subsequent flits simply

follow this path in a pipelined fashion. As a result, each incoming data flit of a message

packet is simply forwarded along the same output channel, as the preceding data flit and

no packet reordering is required at destinations. If a certain flit faces a busy channel,

subsequent flits also have to wait at their current locations.

One drawback of this simple wormhole switching method is that the transmission of

distinct messages cannot be interleaved or multiplexed over a physical channel.

Messages must cross the channel in their entirety before the channel can be used by

another message. This will decrease channel utilization if a flit from a given packet is

blocked in a buffer. By introducing virtual channels [25] in the input and output ports,

channel utility can be increased considerably. If a flit belonging to a particular packet is

blocked in one of the virtual channels, then flits of alternate packets can use the other

virtual channel buffers, and hence, ultimately, the physical channel. Thus, the

31

corresponding switch for the B F T architecture described in the previous chapter has six

ports (two parent ports PO, P I , and four child ports CO, C l , C2 , C3) each port consisting

of two unidirectional links in opposite directions, each link being multiplexed over a few

virtual channels (FIFO buffers), as in Fig . 15.

Fig. 15: Switch with 6 ports.

In order to implement virtual channels, multiple F IFO buffers have to be

multiplexed over a single physical channel and, hence, an arbitration mechanism is

required to implement virtual channel allocation policy. The simplified switch shown in

F ig . 13 has to change to accommodate virtual channels, as indicated in F ig . 16.

CO
SI
o
Q .
C

L C

FIFO buffers

i —̂LTJJTJ—T

FIFO buffers

L C

L C

L C

SA

-LUILJ-

-rrrm-
HZLTX]—r
4 i i m - L
-nrm-
-azm-

SA

SA

SA

Switching
fabric

- A OA

OA

OA

OA

—rrrrr

—riiirj——
- m i E -
- n r m -

L C

Kkc>

-arr_-
- L U l l r -

- [L C] -

-n_r_-
L C

Routing and
Arbitration

- • 5

_ o

Fig. 16: Block diagram of a switch with virtual channels.

The arbitration is carried by S A (Switch Allocation) blocks at the input side, and

by the O A (Output Allocation) blocks at the output side.

32

A n important design parameter is the optimum number of virtual channels per

physical channel that has to be implemented. The trade-off here is to maximize the

throughput, while keeping the number of virtual channels low to minimize silicon area

consumed by F I F O buffers [5]. In order to determine the optimum number of virtual

channels, simulations were run using a flit-level wormhole routing simulator. In each

simulation cycle, a pair source-destination is randomly selected from the leaf nodes, with

equal probability. Messages of equal length (number of flits) are injected at the source

nodes. Simulation is run for a period of 20,000 simulation cycles, and then the average

throughput is calculated. Throughput is defined as:

(Total messages completed)x(Message length)
Throughput =- - —̂J

(Number of IP blocks)x(Total time)

Thus, throughput is measured, as the fraction of maximum load the network is

capable of physically handling. A throughput equal to 1 means all end nodes are

receiving one flit every cycle. Realistically T P <1 since it is improbable that all possible

destinations are active each cycle. Successive simulations are run keeping the same

message length, but increasing the number of virtual channels per link (FIFO buffers)

from one to eight. F ig . 17 shows the effect of sweeping the number of virtual channels on

throughput.

33

0.05

0 -I , , , , , ,
0 2 4 6 8 10 12

Virtual Channels

Fig. 17: Effect of multiple virtual channels on throughput.

From Fig . 17, i f the number of virtual channels is increased beyond four then

there is a trend towards saturation. Since additional buffers are required for each virtual

channel, it is advantageous to reduce the number of virtual channels to lower the required

silicon area. Thus, a switch with four virtual channels strikes an appropriate balance

between high throughput and conservation of silicon area.

3.3. Building Blocks

The operation of the switch consists of one or more processes depending on the

nature of the flit. In the case of a header flit, the sequence of the processes is: (1) Input

Arbitration; (2) Routing; and (3) Output Arbitration. In the case of data and tail flits,

Switch Traversal replaces the routing process as the routing decision based on the header

information is maintained for the subsequent body flits. These processes materialize as

pipeline stages of the switch, and they alternate as indicated in F ig . 18.

34

header

data"
or tail

input
arbitration

routing s input
arbitration

routing
output

arbitration
w input

arbitration switch
traversal—

output
arbitration

w input
arbitration switch

traversal— /

Fig. 18: Switch operation: processes.

When the first flit of a message, i.e. the header flit, enters the switch through a

specific port, it is first object of input arbitration. If it wins the arbitration, the routing

information contained in the header flit is extracted and fed to the routing block. The flit

is directed to one of the other ports, according to the routing information and the specific

routing algorithm implemented. A t the output port, the flit is again subject to an

arbitration stage and is assigned an output virtual channel depending on the availability of

the output F IFO buffers. B y the time the header flit has left the switch, the path for the

rest of the packet is already created, in the sense that virtual channels are reserved and

routing decision is made, such that the data and tail flits can follow the header flit in a

pipelined fashion.

Each port of the switch consists of two links: an output link and an input link. The

effect of the routing process is that an input link of a port is connected to the output link

of another port, creating the physical path for message transmission. The block diagram

of a pair of input-output links is represented in Fig . 19. At the input side, there are four

virtual channels multiplexed over a single physical channel through a multiplexer. A 4:1

arbiter circuit controls which of the virtual channels wi l l enter the switch. If the incoming

flit is a header flit, the winning channel is then subject to a routing phase and directed to

one of the output ports by a demultiplexer. If the flit is not a header, then no routing is

required and the flit follows the same path as the header.

35

Output virtual channels
I I I I I-

—TTTTT

Fig. 19: A pair of input-output links of a switch.

When the flit reaches the output link, it requests access to free output virtual

channel. This is again subject to an arbitration phase, as more input links can direct flits

to the same output link. Because there are six ports in a switch, at the output there is a

5:1 arbiter required, as all other five input links can request access to a particular output

link (a flit cannot exit the switch through the same port it entered the switch [4]).

Arbiter Circuit

The arbiter circuit mainly consists of a priority matrix, which stores the priorities

[26] of the requesters and grant generation circuits used to grant resources to requesters.

The matrix arbiter stores priorities between n requestors in a binary n-by-n matrix. Each

matrix element [i, j] records the binary priority between each pair of inputs. For example,

suppose requestor / has a higher priority than requestor j, then the matrix element [i, j]

wi l l be set to 1, while the corresponding matrix element [j, i] w i l l be 0. A requestor w i l l

be granted the resource i f no other higher priority requestor is bidding for the same

resource. Once a requestor succeeds in being granted a resource, its priority is updated

and set to be the lowest among all requestors.

36

(a)

Fig . 20: (a) Block diagram of an arbiter; (b) one element of the priority matrix.

This arbitration policy is efficient because the flit with longest waiting time w i l l

have the highest priority, and the time a flit has to spend waiting for getting access to a

resource is minimized in this way [26]. The priorities are stored in a matrix of flip-flops.

Only the elements above the main diagonal are going to be physically implemented, due

to the fact that Py and Pjj are complementary, i.e., i f requestor i has higher priority than

requestor j, then requestor j has lower priority than requestor i (Py - P~).

X Pn Pu
p X p P24

Pn X Pu

4, P X

Fig . 21: Priority matrix for a 4:1 arbiter.

As an example, consider that the status of the priority matrix is as shown in left matrix in

F ig . 22 and requestor 2 is granted access to the switch. Than after arbitration, column 2 is

set to 1 and row 2 is set to 0, such that requestor 2 has the lowest priority with respect to

all other requestors. This mechanism is implemented by using the grant signals to

set/reset the flip-flops storing the elements of the priority matrix as shown in F ig . 20(b).

37

X 0 0 1
X X 1 0
X X X 0
X X X X

—>

X 1 0 1
X X 0 0
X X X 0
X X X X

Fig. 22: Priority matrix transition when requestor 2 is granted access.

The logic equations to express the value of grant signals are given as follows:

gnt, = req, {req2 + pn Jreq~} + pl3 Jreql + pu)

gnt2 = req2 {req{ + pl2 ^reql + P2i \reqt + p2i)

grit-, = req, (feq[+ pn \req2 + p22 \reqt + pM)

gnti = req 4 {req, + pu

Applying De Morgan's law to the equations above, the gate level circuit for a

grant signal is shown below:

r—I / ^ grant,

Fig. 23: Logic circuit to generate granti signal.

The rest of the grant signals are generated similarly to Fig. 23. The critical path of the

grant circuits consist of a sequence of one inverter, two successive 2-inpus NOR gates, a

NAND gate and a final inverter. This critical path is continued with the priority matrix

elements, as shown in Fig. 20(b). The detailed calculation of the delay of the critical path

of the arbiter circuit is given in Chapter 5.

3 8

Routing Circuit

The routing circuit implements a simple L C A (Least Common Ancestor)

determination algorithm. It compares a certain range of bits of the source and destination

addresses [4] and, i f the result string contains at least a ' 1' bit (L C A bit), it directs the

message to one of the available parent ports. If the result string contains only ' 0 ' bits, it

directs the message to one of the child ports. The address length is a function of the size

of the system (number of IP components), and hence, the routing circuit depends on the

size of the system. A s such, the circuit to implement this simple algorithm for a 64 IP

system (six bits address length), has the structure shown Fig . 24.

Source Destination
address address

I '

Fig. 24: Routing block.

The 6-inputs N O R gate is not feasible for C M O S implementation due to its large

delay, and the solution is to replace it with a tree of N O R and inverter pairs [24]. The

depth of the tree grows logarithmically with the number of inputs of N O R gate, which

39

helps in reducing the delay of the equivalent N O R gate. A 6-inputs N O R gate can be

replaced by a two-levels tree of NOR/inverter pairs, as shown in F ig . 25.

The size of the routing circuit depends on the number of inputs, i.e., on the number of bits

in the address field, which has a logarithmic dependence on the system size. Accordingly,

the size of the routing circuit is a logarithmic function of the system size.

3.4 Silicon Area Overhead

To evaluate the feasibility of the B F T interconnect scheme we need to study its

silicon area overhead. A s the switches are the integral active components of this

infrastructure it is important to determine the amount of relative silicon area consumed

by those.

After synthesis using Synopsys' Design Compiler and Virtual Sil icon 0.18um

standard cell library, the total area of a switch with six ports and four virtual channels

per port is reported as 35,500 equivalent 2-input N A N D gates. From the total amount,

less than 10% is used to implement arbitration, routing and traversal, while the rest is

consumed by F IFO buffers implementing the virtual channels.

Fig. 25: Tree of NOR gates.

40

The number of IPs in a single SoC varies from one technology node to the other.

Consequently, the number of bits required to address the IPs wi l l also vary. This w i l l be

reflected in the length of the header flit as shown in Fig . 14(H). Two bits are needed to

specify each of Flit Type and VCID. Simulation results [5] show that throughput does

not vary much with the packet length, as shown in F ig . 26. However packet length

negatively affects the latency [5]. A s a trade-off between throughput and latency the

packets are assumed to consist of 16 flits and 4 bits wi l l be sufficient to denote the

packet length in each technology node.

et
ra ,
O

u> ?JJ «o

Messaye Length (flits)

»70 l»0

Fig. 26: Effect of message length on throughput.

A n SoC consists of two types of IPs, the functional IPs integrated with the help of

infrastructure IPs, i.e. the switches. The number of functional IPs govern the number of

bits required to denote each of address length, source address and destination address

fields. Table 2 shows the header flit length (number of bits) in different technology nodes

for the B F T architecture. The header flit length can expressed as:

41

Header _ length 2^pe + 2VCID + Aaddresslenglh + Apackel lenglh + Ssource_address + Ddeslinalion address [bits]

where SSOurce_address, Dsource_address denote the length of the source and destination address

fields of the header flit, and Headerjength is the total length of the header flit, in bits. In

order to determine the number of bits needed for the source and destination address

fields, we need to know the maximum number of 100K gates IP blocks that can be

integrated on a N o C . Assuming a 20mm x 20mm chip size, the size of a 2-input N A N D

gate being 11 um 2 in T S M C 0.18um C M O S technology and a scaling factor of 0.7 for

successive technology nodes [3], one can calculate the number of digital IP blocks that

can be fitted on a chip. From these, due to the properties of B F T topology (the upper

bound of the number of switches is half the number of leaf nodes), one third w i l l be

switches and the rest w i l l be functional IPs. The distribution of the number of switches

and functional IPs is given in Table 1. Accordingly, the length of the source/destination

address can be calculated as log2 (Number of functional IPs).

Table 1: Distribution of IP blocks and switches in successive technology nodes.
Technology Max. Number Number of Number of

node of IPs Functional IPs Switches
130nm 500 333 167
90nm 1000 666 337
65nm 2500 1666 834
45nm 7500 5000 2500
32nm 10000 6666 3334

Table 2: Flit Lengths - BFT.

Te
ch

no
lo

gy

no
de

Ty
pe

V
C

ID

A
dd

.
Le

ng
th

Pa
ck

et
 L

en
gt

h

So
ur

ce

A
dd

re
ss

D

es
tin

at
io

n
A

dd
re

ss

H
ea

de
r

Fl
it

L
en

gt
h

130 nm 2 2 4 4 9 9 30
90 nm 2 2 4 4 10 10 32
65 nm 2 2 4 4 11 11 34
45 nm 2 2 4 4 13 13 38
32 nm 2 2 4 4 13 13 38

42

The length of the data flits is kept equal to the length of the header flit. To

estimate the silicon area consumed by the buffers, we developed a V H D L model of a

switch, having four virtual channels using a fully static, standard cell-based, C M O S 0.18

pm technology. Simulation results shown in F ig . 27 indicate that the throughput is

relatively independent of buffer depth. Therefore, to save silicon area the depth of the

F IFO buffer is kept as one flit.

a " n
o

Buffer Depth (flits}

Fig. 27: Buffer depth impact on throughput.

The switches have two main components, the storage buffer, and logic to

implement routing, flow control. The storage buffers are the FIFOs at the inputs and

outputs of the switches. Using data from Tables 1 and 2, we can estimate the amount of

silicon area consumed by the infrastructure IP blocks (switches) in different technology

nodes for the B F T interconnect architecture. The procedure for area calculation is

straightforward:

- the size of a switch in 0.18pm technology is known as 35,500 2-input N A N D

gates;

43

- the scaling factor for successive technologies is 0.7 according to [3];

- the size of the switch is assumed to be proportional with the number of bits

required for the virtual channels (FIFO buffers);

- the number of switches is given in Table 1;

- the size of the F I F O buffers (in bits) is given in Table 2;

- the area overhead due to switches is calculated with the expression:

Area = No. of switches x No. of virtual channels x Flit size

[equivalent 2-input N A N D gates]

14 j
1 2 r — " I

S 10 -">;'. ' * —

2 . - n - -n - - ' o

130 nm 90 nm 65 nm 45 nm 32 nm

Technology nodes

Fig. 28: I2P Area Overhead.

The total silicon area consumed by switches amounts from 9% in 130 nm

technology, to 12% in 32nm technology node, for a 20mm x 20mm total chip area. Given

the advantages that such an architecture offers in terms of parallel programming

capability and latency, the area overhead is within reasonable limits.

3.5 Summary

In this chapter we have detailed the main design considerations for the

infrastructure blocks, i.e., switches, of a network on chip, here considering the B F T

(Butterfly Fat-Tree) topology in particular. The main system level parameters governing

physical implementation of switches have been identified and their effect on design

decisions analyzed. The major building blocks of a switching element were described.

Sil icon area overhead for a complete system in different technology node was shown to

be between 9% (130nm) and 12% (32nm).

45

4 Chapter IV

Inter-Switch Wire Delay Analysis

We begin this chapter by outlining the trends that develop in SoC design in the

context of semiconductor technology evolution. We then show a simple model for the

inter-switch wire length in B F T topology; based on this model we evaluate inter-switch

delays. Finally, for comparison, the scalability of shared medium (bus) topology is

analyzed from a delay point of view and a simple metric is developed to quantify it.

4.1 Soc Microarchitecture Trends and Assumptions

In a conventional digital A S I C design flow, several iterations of logic synthesis

and physical design are required before convergence to design specifications is achieved.

During synthesis, the capacitances of the global wires are generally unknown, and wire-

load models are typically used as estimators. The accuracy of such estimations is

generally acceptable for short wires, but increasingly unacceptable as the wire delays

reach levels where they constitute a significant portion of the critical path delay.

For IP blocks consisting of 50-100K gates, such interconnect delay estimation

related problems can be reasonably well tackled by existing C A D tools [16]. Moreover,

various publications show that global wires in blocks of 50-100K gates tend to scale with

technology [17] [18]. Therefore, problems in ultra deep submicron processes arising from

non-scalable global wire delay and poor back annotation mechanisms can be assumed to

be readily surmountable when these are limited to such blocks. There is plenty of

evidence in support of IP blocks amounting to such sizes. For example, a 32-bit D S P

46

core can have around 115K gates [19]; a M P E G 2 decoder can consist of approximately

6 0 K gates [19], and a general purpose 32-bit R ISC microprocessor can amount to around

5 0 K gates [19].

We are already at a point where a few new designs coming out from industry

consist of up to 100 embedded processors [20]. B y extension to the above, we conjecture

that the trend for future SoC integration wi l l be based on a hierarchical design paradigm

where an increasing number of IP blocks consisting of 100K gates wi l l be integrated

according to a specific interconnect template. One possible interconnect template is the

butterfly fat-tree as shown in F ig . 10.

Assuming IP blocks consisting of 100K gates and a constant chip size [3] of

20mm x 20mm, Table 2 shows the maximum number of IP blocks that can be integrated

in a single SoC in different ITRS technology nodes [18]. In the foregoing, we assume that

such blocks would be integrated according to a butterfly fat-tree microarchitecture

template, described in Chapter 2. A s reported in Table 3, as the number of IP blocks

increases, the number of required levels in the butterfly fat-tree also increases. Table 3

also reports the number of required B F T levels for each technology node. In the next

section, we show that the increased number of levels does not negatively impact the

achievable clock cycle rates for the SoC.

Table 3: Maximum number of IP blocks (100K gates/IP block) [18] and

Technology
Node

Max. No.
of IPs

No. of BFT
levels

130 nm 500 6
90 nm 1000 7
65 nm 2500 9
45 nm 7500 10
32 nm 10000 11

47

4.2 Interconnect Models and Trends

The demand for high levels of integration in semiconductor industry has resulted in

an aggressive shrinking of the devices, with the added bonus of increased device speeds

resulting from smaller channel lengths. Interconnect delay, which was formerly

insignificant, is rapidly becoming a bottleneck due to degrading performance trends with

scaling [17] [21]. Longer wires due to a larger chip size, coupled with smaller and more

closely packed interconnects (smaller pitch) is leading to a continuous increase in

resistance and capacitance, forcing longer R C interconnects delays with each generation.

Several solutions have been proposed at different levels: physical design, circuit, and

material level. The physical design solution is to progressively increase the number of

metal layers in the future. This leads to more relaxed dimensions for longer wires at the

top metal levels. However, an excessive increase in the number of metal layers inflates

process complexity and cost. A t the circuit level, the most common solution is repeater

insertion to mitigate the increase in global wire delay [21]. The major penalty of repeater

insertion is area and power consumption. Finally, the material-based solution consists of

replacing aluminium and silicon-dioxide with copper and low dielectric constant (low-&)

materials, respectively. The effect is the increase of speed by reducing the resistance and

capacitance per unit length.

These solutions alone are not enough to allow the continuation of the existing

design paradigm [22]. In the following, we wi l l briefly introduce simple models for

capacitance and resistance of metal traces, which wi l l help us apply the repeater insertion

methodology for inter-switch wires in the B F T topology.

48

Resistance

For metal traces with rectangular cross-section the resistance is calculated as:

R = £*— = R*— = RW*L
T W W (4.1)

where p is the metal resistivity. It has been shown [22] that the resistivity of global metal

traces is not constant, but rises slowly with shrinking of feature size; in fact, resistivity

varies from 2 jxQ-cm in 0.18|im technology, to 4 u.£2-cm in 32 nm technology [22].

Capacitance

The capacitance per unit length, needed for delay calculations, is obtained using a

simple parallel plate model consisting of inter and intra-level components, along with a

fringe component, as shown in Fig . 29 [23].

/

Lateral

Fringing

Area VA/

Fig. 29: Lateral, fringing and parallel plate components of the wire capacitance.

It is interesting to observe that as feature size shrinks, the parallel plate

component of wire capacitance decreases slowly, while the lateral and fringe components

remain almost constant. The overall effect is that after 65 nm technology node, lateral and

fringe capacitance wi l l dominate and the total wire capacitance per unit length wi l l

remain almost constant [22]. Accordingly, capacitance can be calculated with the

formula:

49

C = 2 C f . +2C +2C, , .
^fringe area lateral (4.2)

When dealing with global wires, it is appropriate to use a distributed R C model

for more accurate calculation. Assuming that the wire is divided into n sections, and

applying a simple Elmore delay method, the delay of the wire in F ig . 30 can be estimated

as [30]:

n(n + i) ,
D = R C • V „ ' L2

w w 2n2

R.C
(4.3)

(1)
"CJn

(2)
'CJn

(n)

CJn

Fig. 30: Distributed wire model.

However, a more accurate expression for the delay of a wire considering the distributed

model is [21]:

D = 0ARwCwL2

(4.4)

Repeater Insertion

From the delay equation (4.4), it is evident that delay increases quadratically with

wire length. This dependence can be reduced to a linear one by inserting repeaters [21].

B y breaking the wire into N sections and inserting N repeaters of size M times the

minimum inverter, the new delay can be calculated as:

50

D.~A=Nt. +
buffered mv

CGRWM+-
CR w eqn

M
L + OARC

J N
(4.5)

^ % M i? . M M N
Fjw

N

- A A

(D
N

(2)

Fig. 31: Buffer insertion.

M

Here, we have used the following notations:

tiny - delay of an inverter driving its own parasitic capacitance

Ryy
N

NY

(N)

• Cyy
N

• CG - gate capacitance of a minimum size inverter with equal rise/fall time

• Reqn - equivalent resistance of the n-type diffusion region in QJO

Fig . 32 plots the unbuffered and buffered wire delay for upper metal layers in 0.13pm

technology using the corresponding resistance and capacitance parameters from Table 4.

The horizontal line represents the 15F04 limit taken as reference according to ITRS

2001. It can be noticed that the maximum length of global wire that can be theoretically

utilized in this specific technology is around 10 mm; in this case the wire delay represents

100% of the critical path of the signal transported through it.

51

• 1400

1200

• .1000

J[800
>\

^ 600

400

200

0
0.5 1 1.5 2 2.5 3 3.5 4 4.5

Global Wire Length [um] x 1 0

4

Fig. 32: Unbuffered and buffered global wire delay in 0.13-pm technology.

To explain why the reference limit of 15F04 is considered here, one must take into

account the trend of the clock cycle of high-performance processors. In order to increase

the achievable clock cycle and, consequently, the performance of processors, designers

had two main resources: at device level, technology improvements leading to smaller

feature size with better gate delays as an immediate consequence, and, at circuit level, the

amount of combinational logic within a pipeline stage was reduced. This trend is shown

in F ig . 17 [3]. It is projected that the normalized clock cycle w i l l saturate somewhere in

the range of 10 - 15 F04 delay units. The main reason is the fact that around 4F04 units

is the overhead of the clocked elements (latches, flip-flops), while the rest up to 10 - 15

F04 can be used for combinational logic.

J I L

52

110 -i

100 -

90 -
\ Clock cycle of high-performance microprocessors

in F04 delay units

80 \
\
\
4 70

\
\
\
4

60 -

50 -

40

30 -

20 - 15F04 " * .

10 -10 - 10FO4

U i i i i i

1983 1988 1993 1998 2003 2008

Fig. 33: Clock cycle of high-performance microprocessors in normalized units of
F04.

4.3 Inter-Switch Wire Delay in BFT Architecture

The wire length between switches in the butterfly fat-tree architecture depends on

the levels of the switches. For ease of analysis, we wi l l use the simplified layout of the

B F T shown in F ig . 34 to determine the inter-switch wire-length expression. Let Lchjp be

the size of the chip on one side, assuming a square silicon die, and let Area be the area

of the chip, Area = LMp. In the case of the B F T topology with 64 leaves, the wire

lengths between successive levels of switches can be calculated as:

^chip

2,1

(4.6)

(4.7)

53

(4.8)

where w, 0 is the length of the physical channel between the IP blocks and the first level

of switches, w 2 , is the length of the physical channel between switches of level two and

one and so on.

In general, the inter-switch wire length is given by the following expression:

yjArea
w a+l,a r^leveh-a (4.9)

where wa+i,a is the length of the wire spanning the distance between level a and level a+1

switches, where a can take integer values between 0 and (levels-1), with levels being the

number of B F T levels in the particular interconnect implementation.

{Area

{Area/4
k H

Fig. 34: Inter-switch wire lengths in a 64-IP BFT.

54

Table 4 shows the inter-switch wire length in mm for different technology nodes.

X denotes that the particular inter-switch wire is not present in the concerned technology

node. The maximum die size is assumed to remain unchanged at 20 mm, assumption

supported by ITRS 2001 projections [3].

Table 4: Inter-switch wire lengths in mm

Technology
node

No. of
levels w „ , 1 0 w 1 M w 9 3 Wg, 7 w 7 , 6 w w w 4 J W 3 , 2 w 2 , ,

130 nm 6 X X X X X 10.000 5.000 2.500 1.250 0.625

90 nm 7 X X X X 10.000 5.000 2.500 1.250 0.625 0.312

65 nm 9 X X 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078

45 nm 10 X 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039

32 nm 11 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039 0.019

We can compute the intrinsic RC delay [21] of a wire according to the equation below:

Dimbuffered=0ARwCwL2 (4.10)

where R w and C w are the resistance and capacitance per unit length of the wire,

respectively, and L is the wire length. The minimum conceivable clock cycle time

considering a highly pipelined design style can be assumed to equal the value of 15F04,

with F 0 4 defined as the delay of an inverter driving four identical ones [24]. In different

technology nodes, F 0 4 can be estimated as 4 2 5 * L m i n [ps] where Lmjn is the minimum

feature size in each technology node [3]. For long wires, the intrinsic delay wi l l easily

exceed this 15F04 limit. In those cases, the delay can, at best, be made to increase

55

linearly with wire length by inserting buffers. If the wire is divided into N segments and a

total of N inverters inserted, then the total delay of the buffered wire wi l l be according to

the following expression [21]:

^buffered ~ ^inv + CGRWM +
C.R ^ ' 2

M ,
L + 0ARwCw^- (4.11)

where ?,„v is the delay of an inverter sized for equal rise and fall propagation delays, and

can be approximated as r ,„ v =F04/5. M is the size of the inverters, C G is the gate

capacitance of the minimum size inverter with equal rise and fall times, R e q n is the large

signal resistance of n-type transistor in Q./0. Differentiating DbUffered with respect to N and

equating to zero yields the optimum number of segments [21]:

M 10ARWCWL2

1' (4- l 2)

inv

Rw can be calculated according to the following formula:

R... =
TW

(4.13)

where p is the resistivity of the metal wire (here assumed to be 2.2Qum for copper), and

T and W are the wire thickness and width, respectively.

Fig. 35: Cross section of multiple metal layers.

56

Cw can be calculated according to the following equation [22]:

(4.14)

where Sd is the dielectric constant, eo is the permittivity of free space. Cfringe is the fringing

capacitance assumed to be constant and equal to 0.04fF/pm in all technology nodes [22].

In our calculations of Rw and Cw, the inter-level dielectric thickness (H), top level metal

thickness (T), intra-level dielectric thickness (S), and top level wire width (W), are all

assumed to be the half pitch [22] for the given technology node, as shown in F ig . 35.

Specific values for Rw, Cw and Unv are shown in Table 5 for successive technology nodes.

Table 5: Values of Rw, C w , tinv and F04 in different technology nodes

Technology node Rw [ilium] C w [fF//tm] tinv [PS] F04 [ps]

130 nm 0.06 0.30 11.05 55.25

90 nm 0.12 0.22 7.65 38.25

65 nm 0.20 0.20 5.50 27.5

45 nm 0.44 0.20 3.82 19.1

32 nm 0.73 0.20 2.70 13.5

We used the values of Rw, Cw, and tinv from Table 4 to calculate unbuffered and buffered

global wire delay in different technology nodes.

Figs. 36 and 37 report the unbuffered and buffered global wire delay variation

with wire length in successive technology nodes, with D130 denoting 130 nm

technology, D90 denoting 90 nm etc., and 15F04 130 denoting 15 times the delay of an

inverter driving four identical inverters in 130 nm, 15 F O 90 that for 90 nm etc.

57

. 1800

1600

1400

' 1 2 0 0 ,

] [1000

, f 800
Q

..; '• eoo

200

Ol
• ; 0.5 1 ' 1.5 2

Global Wire Length (unbuffered) [um] x 1 0

4

Fig. 36: Unbuffered global wire delay in different technology nodes.

Fig. 37: Buffered global wire delay in different technology nodes.

From Figs. 36 and 37, the length of global wires (inter-switch connections), which

require buffering, can be determined. Shading in Table 5 highlights these. From Table 5,

58

it can be noticed that most of the inter-switch wires need not be buffered. Consequently,

the inter-switch propagation delay always remains within one clock cycle. This facilitates

achieving system-level timing closure and brings out one advantage of switch-based SoC

design, i.e., global wires requiring buffering can be identified in early stages of the design

cycle.

Another advantage that emerges from our scheme is that the inter-switch wire

delay, and hence, the clock cycle, are largely independent of the number of IP blocks in

the system. In our networked SoC, the only global wires are those that span distances

between switches. A s the inter-switch wire delay (either buffered or unbuffered) does not

exceed one clock cycle (i.e., 15F04 delay units), these switch-based SoCs do not suffer

from the global wire delay problem that arises in ultra deep submicron technologies.

A n important point is that our inter-switch wire length and delay analysis and its

results do not strongly depend on the IP block size assumption. If the number of gates in

the IP blocks were to largely exceed 100K gates, or were much smaller than 50K, then

the total number of IP blocks in an SoC would scale accordingly, i.e., inversely to the size

of IP blocks. Consequently, only the number of levels in our template would change. The

inter-switch wire length and delay would remain largely unaffected.

4.4 Wire Delay in a Shared Medium SoC

In this section we analyze the effects on delay of connecting IP blocks to a bus.

In a bus-based SoC, multiple IP blocks share the transmission media. A s the number of

connected IP blocks increases, the capacitance attached to the bus wires increases

correspondingly. This negatively impacts propagation delay, and, ultimately, the

59

achievable clock cycle. This thus limits the number of IP blocks that can be connected to

the bus, and thereby the system scalability.

Each attached IP block w i l l capacitively load the bus wires. For ease of analysis

(but without loss of generality), we assume this extra capacitance to be evenly distributed

along the wire and model it as a parasitic capacitance.

A s many existing on-chip buses are multiplexer - based [10] [11] [12], as shown

in F ig . 38, they are basically unidirectional and can therefore easily be buffered.

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

In
Out

Fig. 38: Multiplexer-based bus architecture.

We consider the length of bus wires, Lbus, to equal the maximum unbuffered wire

length at each technology node as shown in Fig . 37, as this length can be driven within

one clock cycle. Attaching IP blocks to a bus adds an equivalent capacitance of Cp

per unit length of wire. A s a result, the driving capability of the bus wi l l be negatively

affected, and buffer insertion is required to accommodate multiple IPs while satisfying a

60

propagation delay within one clock cycle. If a bus wire is divided into N segments, then

each wire segment w i l l have a capacitance of (Cw + Cp) per unit length and the delay in

the buffered bus wire can be obtained by modifying equation (4.11). The delay in this

case w i l l be as follows:

^buffered,bus ^bus^inv

f (C +C)R \ J l

V n > D J ean CGR M +-— p—^
V M J

L
Lbus+0ARw(Cw + Cp)-f^ (4.15)

^bus

Similarly to equation (4.12), the optimum number of sections wi l l be given by the

following:

Nbu,=
0ARW{CV + CX 2

t
p) bus

(4.16)
inv

From equation (4.15) one can determine how much parasitic capacitance can be added to

a bus wire before Dbus exceeds one clock cycle for a specific wire length in successive

technology nodes, assuming the clock cycle to be 15F04. The value of Cp can be

considered as a metric for the scalability of a bus-based system as it relates to how many

IP blocks can be appended to a bus before the delay exceeds one clock cycle. Decreasing

bus wire length increases the value of admissible Cp, but the physical size of IP blocks

wi l l limit the scaling down of bus wire lengths. On the other hand, i f bus wire lengths are

increased, then wire capacitance wi l l dominate and result in decreasing the allowable Cp

and hence the number of IPs possibly appended to the bus. In Fig . 39 we illustrate the

effect of bus wire length on Cp for different technology nodes. From the latter, the bus

driving capability decreases exponentially with bus wire length.

61

Cp vs. Length

4 5 6 7

Length [um]

Fig. 39: Variation of Cp with bus wire length.

Fig . 39 illustrates the scalability problem associated with bus-based SoCs. For a

fixed bus length, there is an upper limit on the parasitic capacitance (due to attached IP

blocks) that can be accommodated i f the bus delay is to be less than one clock cycle. As

a result, there is a corresponding upper limit to the number of IPs that can be connected

to a bus. Furthermore, in order to meet such delay requirements, the value of allowable

parasitic capacitance decreases exponentially with bus length. A s a result, the number of

IP cores that can be added to the bus decreases.

However, due to heterogeneous nature of constituent IP cores in a SoC

(embedded processors, DSPs, M P E G decoders, memories etc.), it is not possible to

quantify the number of IPs that can be connected to the bus a priori. B y knowing C p and

the types of IPs that need to be integrated for a particular application, we are able to

determine whether timing closure is achievable when connecting these IPs to a bus.

62

If the 15F04 constraint on the clock cycle is relaxed and thereby increased, then

the permissible values of Cp and hence the number of attached IP blocks also increases as

shown in F ig . 40. This implies that by stretching the clock cycle, more IP blocks can be

added to the bus at the cost of overall system speed degradation.

Cp vs. F04

60

50

40

E"
.3
£ 30
Q .

O
20

10

I

I
0
15 20 25 30 35 40 45

Clock cycle [F04]

Fig. 40: Variation of Cp with clock cycle for different technology nodes.

The length of bus wires is difficult to predict in early stages of the design cycle.

Hence, typically, system-level timing closure can only be reached post-layout and after

several iterations.

In contrast, in the case of a networked SoC, the system size does not imply any

extra loading on the inter-switch wire. A s a result, variations in system size have little

effect on the achievable clock cycle. That is, the inter-switch wire delay is largely

insensitive to system size and only depends on the levels of the switches in the butterfly

fat-tree architecture.

-e- 130 nm
90 nm
45 nm

63

4.5 Summary

This chapter specifically analyzes global wire delays in a new switch-based

interconnect architecture for future generations of SoCs. The butterfly fat-tree

architecture was assumed as a system-level interconnect template. As this is a highly

structured and regular architecture, the inter-switch wire delay can be estimated

accurately, in initial phases of the design cycle. It was shown that it is possible to

constrain this delay to be within one clock cycle, where the latter is, in turn, dictated by

the technology dependent parameter limit governed by 15F04.

The delay in a bus-based SoC depends on the number of connected IP blocks. To

further quantify this dependency, we proposed the parasitic capacitance, Cp , as a metric,

which, in turn, is directly proportional to the number of IPs attached to a bus. indicated

upper limits on the value of Cp, and therefore on the number of IPs, for different

forthcoming technology nodes, and showed how these limits decrease exponentially

against increases in bus wire length.

Looking forward in time, where numerous (hundreds or thousands) IP blocks

consisting of 50-100K gates wi l l need to be integrated, single bus-based interconnect

templates w i l l face serious limitations. We envisage that multiple forms of buses

connected through a hierarchical architecture wi l l ultimately converge to some form of

network as the one proposed and analyzed here. A s a result, we propose that future

design processes start with a network architecture in mind. This w i l l allow for better

interconnect delay predictions. The ultimate effect w i l l be the shortening of the design

cycle and a reduced number of iterations.

64

5 Chapter V

Intra-Switch Delay Analysis

Together with inter-switch delay, the intra-switch delay component dictates the

performance of any interconnect template, with respect to the maximum achievable clock

rate. In this chapter we provide a detailed analysis of the intra-switch delays by using the

method of logical effort. First, we consider the pipelined nature of the switch and explain

what are the factors governing each pipeline stage. Then, we develop delay models for

each pipeline stage based on the detailed gate-level design of the blocks involved in

corresponding stages. The delay numbers are provided in technology independent units of

F 0 4 , thus lending an insight of what the effect of technology evolution w i l l be on the

performance of the B F T architecture coupled with wormhole routing.

5.1 Introduction to Logical Effort

The method of logical [21] [24] effort is an easy way to estimate delay in C M O S

circuits. It is founded on a simple model of the delay of a single C M O S logic gate. The

model accounts for the delays caused by the capacitive load driven by the logic gate and

for the topology of the logic gate. A s the load increases, the delay also increases, but

delay also depends on the logic function of the gate. Inverters, which perform minimum

logical processing of a signal, drive loads best and are often used as amplifiers to drive

large capacitances. Logic gates that compute other functions require more transistors,

some of which are connected in series, making them poorer than inverters at driving

65

currents. The method of logical effort quantifies these effects to simplify delay analysis

for individual logic gates and multistage logic networks. The complete method for a

multistage logic path involves two steps: the first step is the determination of the

optimum number of stages in the path, and the second step is delay calculation (with gate

sizing as a side effect, but most important from a designer's perspective). In the

following, we w i l l give the basics of logical effort method, used further to analyze the

delays in the pipeline stages of switches in B F T architecture.

The effect of a particular fabrication process is isolated by expressing delays in

terms of a basic delay unit tmv particular to that process. tinv is the delay of an inverter

driving an identical one with no parasitics.

The delay incurred by a logic gate is comprised of two components: a fixed part

called the parasitic delay ip) and a part that is proportional to the load the gate is driving,

called the effort delay or fan out delay (/). The total delay, measured in units of tinv, is the

sum of the fan out and parasitic delays:

d = f + p (5.1)

The fan out portion of the delay,/ , is characterized by two terms: the logical effort (LE)

captures the properties of the logic gate, while the fan out, also called electrical effort,

(FO) characterizes the load. The fan out portion of the delay is the product of these two

factors:

f = LE*FO (5.2)

The logical effort (LE) expresses the effect of the gate's topology on its ability to produce

output current. The electrical effort F O describes how the electrical environment of the

66

logic gate affects performance and how the size of the transistors in the gate determines

its load driving capability. F O is defined as:

F O = £OUL (53)

C

in

where C o u , is the capacitance that loads the output of the logic gate and C,„ is the

capacitance presented by the input terminal of the logic gate.

Combining Eq . (5.1) and (5.2) we obtain the basic equation that models the delay

through a single logic gate, in units of tinv:

d = LE*FO + p (5.4)

The logical effort of a gate is defined as the number of times worse it is at delivering

output current than would be an inverter with identical input capacitance. It is important

to note that the logical effort of a gate does not depend on the size of the gate, but only on

its topology. There are two options to calculate the logical effort of a gate:

1. A s the ratio between the input capacitance of that gate and the input capacitance

of an inverter that produces the same output current;

2. A s the ratio between the delay of the gate and the delay of an inverter with the

same input capacitance.

In most C M O S processes, the P M O S transistor width is larger than the N M O S

transistor width to account for different carrier velocity, when circuits are designed for

equal rise and fall times, y = Wp/W n is the ratio of P M O S to N M O S width in an inverter

for equal conductance (equal rise and fall times). In our analysis, for simplicity, we wi l l

assume y = 2. Under these assumptions, the logical effort of different logic gates can be

calculated and it is given in Table 6.

67

Table 6: Logical effort and parasitics of usual logic gates

Gate type Logical effort Formula Parasitic

N A N D (n inputs) Total n(n + Y)
l + y

n P i n v

N A N D (n inputs)

Per input (n + y)
l + y

n P i n v

N O R (n inputs) Total n(\ + ny)
l + y

" P i n v

N O R (n inputs)

Per input (1 + ny)
l + y

" P i n v

Multiplexer

(n inputs)

Total An
2nPinv

Multiplexer

(n inputs) d(data), s (select) 2 , 2
2nPinv

X O R , X N O R

(n inputs)

Total n22"-x

nT-l

Pinv

X O R , X N O R

(n inputs) Per bundle n2"-1

nT-l

Pinv

C-element

(n inputs)

Total n2

n P i n v

C-element

(n inputs) Per input n
n P i n v

For a path comprised of multiple logic gates, the logical effort along the path,

called path logical effort (LEP) is calculated as the product of LE of all gates along the

path:

LEp=ULEgate (5.5)

The path effective effort or path fan out FOp can be defined as the ratio of the load

capacitance of the last gate of the path to the input capacitance of the first gate:

F 0 =^L (5.6)
S i

68

Fig. 41: A critical path with three stages.

When fan out occurs at the output of a node and some of the available drive

current is directed along the analyzed path, and some branches out of the path, to account

for logical fan out within the logical path, we use branching factor (BF) of a logic gate:

C +C
J^J? on-path off-path

r
on-path

(5.7)

The path branching effort BEP is defined as the product of the branching factors along

that path:

BEp=YlBFgale

Finally, the total path effort P E can be defined as:

PE = FOpUBFgateLEgate = FOpBEpLEp

(5.8)

• (5.9)

The gate effort that minimizes the path delay, called stage effort (SE), is calculated

according to:

SE = tfPE (5.1.0)

69

where /V is the number of stages (gates) on that path. The minimum delay through the

path can therefore be calculated as:

D = N*SE + 2P (5.11)

That is, the delay is the sum two components: a fan out related delay and a parasitic

delay. In the following subsections, we wi l l use this methodology to calculate the

minimum achievable delay of the three pipeline stages of the switches in the B F T

interconnect network. We wi l l make the assumption that y = 2 to simplify the analysis.

5.2 Intra-Switch Pipeline Stages and Delay Analysis

The switch has six ports, four children ports denoted by CO, Cl, C2 and C3

respectively, and two parent ports, denoted by PO and PP respectively as shown in F ig .

42.

PO P1

SWITCH

/ \ , / \ , / x

V v v v
CO C1 C2 C3

Fig. 42: Switch with 6 ports.

In order to have a considerably high throughput, we use a virtual channel switch, where

each port of the switch has four parallel buffers [5]. The different components of the

70

switch are shown in F ig . 43. It mainly consists of two arbiters, a routing block and a

chain of multiplexers/demultiplexers.

req.

Input
arbiter

virtual channels

T T T T —
ILT

HMM
-I I I I I

INPUT
MUX

Routing
logic

INPUT
DEMUX

Output
arbiter

OUTPUT!
MUX

vcid

OUTPUT
DEMUX

Output virtual channels

H II i i-
I I I I r-

I I I I h

I I I I I-

Fig. 43: Block diagram of a switch port.

Each physical input port has more than one virtual channel, uniquely identified by

its virtual channel identifier (VCID) [25]. Flits may simultaneously arrive at more than

one virtual channel. A s a result, an arbitration mechanism is therefore necessary to allow

only one virtual channel to access a single physical port. A s there are four virtual

channels corresponding to each input port, we need a 4:1 arbiter at the input. Similarly,

flits from more than one input port may simultaneously try to access a particular output

port. Consequently, on the output side, we need a 5:1 arbiter since among the six ports of

the switch, any five may try to access a particular output port [4]. The routing logic block

determines the output port to be taken by an incoming flit.

(a) Type
T

VCIDj Address Length Packet Length Source Address Dest. Address

(b) Type VCID Data

Fig. 44: Flit structure (a) Header flit; (b) Data and Tail flits.

71

The packets consist of a header flit, one or more data flits and a tail flit. The header,

data, and tail flit structures are as shown in F ig . 44. The first field denotes the flit type,

namely header, data or tail. The second field contains the virtual channel identifier

(VCID) . The third field denotes the address length, which is dependent on the number of

SoC IP blocks. The fourth field contains packet length information, i.e., the number of

flits in the corresponding packet. The next two fields give source and destination

addresses. The flit length is constant but the total number of flits in a packet w i l l vary

according to the contents of the packet length field. One packet w i l l consist of a

sequence of flits starting with a header flit, followed by a set of data flits (this set may be

void eventually) and ended by a tail flit.

Header
Data

Fig. 45: Packet consisting of header, data and tail flits.

The operation of the switch consists of one or more processes depending on the

nature of the flit. In the case of a header flit, the sequence of the processes is: (1) Input

Arbitration; (2) Routing; and (3) Output Arbitration. In the case of body flits, Switch

Traversal replaces the routing process as the routing decision based on the header

information is maintained for the subsequent body flits. The blocks involved in the input

arbitration process are the 4:1 arbiter and the input multiplexer; similarly, the blocks in

the output arbitration process are the 5:1 arbiter and the output multiplexer. The routing

process is performed by the combination of the routing block and the input demultiplexer.

The switch traversal mainly involves the chain of four multiplexers and demultiplexers.

72

Each of these processes occurs in different clock cycles. From a signal propagation point

of view, each process is a pipeline stage on the critical path of the data flow.

Consequently, we need to calculate the delays incurred in these processes.

The arbiter circuit mainly consists of a priority matrix, which stores the priorities

[26] of the requesters and grant generation circuits, granting resources to requesters. The

matrix arbiter stores priorities between n requestors in a binary n-by-n matrix. Each

matrix element [i, j] records the binary priority between each pair of inputs. For example,

suppose requestor i has a higher priority than requestor j, then the matrix element [i, j]

w i l l be set to 1, while the corresponding matrix element [j, i] w i l l be 0. A requestor w i l l

be granted the resource i f no other higher priority requestors is bidding for the same

resource. Once a requestor succeeds in being granted a resource, its priority is updated

and set to be the lowest among all requestors.

(a) ,(b)

Fig. 46: (a) Block diagram of an arbiter; (b) one element of the priority matrix.

Fig . 46 shows the block diagram of the arbiter, consisting of the grant generation

circuit and the priority matrix. A s for the input side, there are four virtual channels

competing for the resources and the grant circuit generates four grant signals denoted by

gnti to gnt4. The Boolean expressions for the grant signals are given as follows:

73

gntx = req, (req2 + pn)(req3 + p13)(reqA + p14)

gnt2 = req2 (req, + pl2)(re^3 + p23)(reqA + p24)

gnt3 = re<?3 (reg, + p13) (req2 + p23) (re<?4 + p 3 4)

gnr4 = reqA (re^! + pu) (re^2 + pu) (reg3 + p 3 4)

where reqt is the request signal from virtual channel i and ptj denotes the priority of

virtual channel / over virtual channel j, with i, j e [1,4].

We use the method of logical effort to determine the delay involved in the input

arbitration process. The delay will be given in terms of F04, with F04 defined as the

delay of an inverter driving four identical ones. The critical path of the input arbiter

circuit is shown in Fig. 47.

BF=3 L

Fig. 47: Critical path of the input arbiter

From Boolean expressions of grant signals, it is clear that remand rê Tfan out to

four and three places in the grant circuits and therefore the branching factors at points A

and B are four and three, respectively. The grant signals control a multiplexer to select a

specific virtual channel. Considering an 8-bit data bus, these grant signals are the control

inputs of eight multiplexers as shown in Fig. 48.

74

9nti—

Qrt, , H

du H

Fig. 48: Grant signals as control inputs of the mux.

This will give rise to a side load capacitance equivalent to CSideioad = (8+8/3) times the

minimum size inverter input capacitance at point C according to Fig. 47. As each grant

signal splits to three elements of the priority matrix we have a branching factor of three at

point C. From Fig. 46(b), it is evident that the signal uy is driving a NAND gate and

inverter considering that the flip-flop consists of a pair of cross-coupled NAND gates.

Consequently, the load capacitance at point D will be equivalent to three minimum-sized

inverter gate capacitances. The load capacitance at the point C is considered as a side

load. Al l the capacitances are expressed relative to the input capacitance of a minimum

sized inverter.

We use the notations in Table 7 in determining the delay.

Table 7: Logical Effort - Summary of parameters [21][24]

Term Expression
Logical Effort of a gate LEi
Logical Effort of a path LEP = niEi
Fan Out FO = Coui/ Ci„
Branching Factor BFi
Branching Effort BE = nBFi
Path Effort PE = (LEp)(BE)(FO)
Stage Effort SE = (PE)I/N, N = No. of stages in the path
Parasitic Delay of a gate Pi (Intrinsic delay due to its own internal capacitance)
Parasitic Delay of the path P = ZPi
Delay of a path D = (SE)(N) + P

The values of the logical efforts and parasitic delays of the gates used in our design are

shown in Table 8.

75

Table 8: Logical Effort and parasitic delays of the relevant gates [24]

Gate Type Logical
Effort

Parasitic Delay
[tinv]

Inverter 1 1
NOR2 5/3 2
NOR3 7/3 3
XOR2 2 4

NAND2 4/3 2
MUX (Fig. 25) 2 2

From Table 7, the determination of the delay of a path is straightforward. It

mainly involves determining the optimal stage effort. In the case of the input arbiter

circuit as shown in Fig. 47, in addition to the output load Cout there is a side load at point

C. Consequently, this amounts to two stage efforts, one characterizing the circuit

behaviour from point C to the output load, and the other from the input to point C. To

determine the first one, we eliminate the side load and find SE= 2.8 according to Table 6.

Considering SE = 2.8 and Cioad = 3, we calculate the input capacitances at the

point D as

£ _ ^3inputsNOR
 X BFp * Clgad _ ^ g

D~ SE
(5.12)

Considering Co as the load capacitance, we can calculate the input capacitance at

point C. Using a similar equation as (4.5) we get Cc = 1.49. Consequently, in the

calculation of the SE of the first 5 stages, we consider the total load capacitance at point

Cas

Cload,c=Csideload +1.49 = 12.16 (5.13)

Again, following Table 7 with a fan out of 12.16 yields the stage effort of the first

five stages to be SE = 4.38.

76

The parasitic delay of the path is P=13tinv (according to Tables 7 and 8).

Combining both stage efforts and the parasitic delay we get the delay of the input arbiter

as

Dinput_arbi!er = 5x4.38 + 2x2.8 + 13 = 40^ = 8 F 0 4 (5.14)

The delay of the input multiplexer wi l l be given as

Dinput_MUx =2+2=4^ = 0 . 8 F O 4 (5.15)

Combining the latter two, the delay in the input arbitration process is

Dinpu, arbitration = ^input ̂ arbiter ^ ^Input _MUX = 8 . 8 F 0 4 (5.16)

The first step in the implementation of the routing logic involves the comparison

(X O R) of the source and destination addresses taking the most significant (M= (log2N -

21)) bits, where N is the number of functional IP blocks in the system and / denotes the

level number of the switch. Subsequently, the result of the comparison is checked, i.e.,

whether a " 1 " results from the X O R operation. A s a result of these two logical operations

the critical path of the routing block is as shown in F ig . 49.

Fig. 49: Critical path of the routing block.

The final M-input O R gate of Fig . 49 is modeled as a tree of 2-input N O R gates

[24], also indicated in F ig . 25. If k is the number of levels in the N O R tree then 2k = M.

The logical effort of this M- input OR tree is

77

LE0R(M) = {LE)N0R^M = M l 0 § 2 3 = M 0 ' 7 (5.17)

The output of the routing logic block fans out to an input demux control inputs

and to the input of a 5:1 arbiter. According to the circuits shown in Figs 47 and 48, the

output load of the routing block will be equal to Cioad = (8+8/3+l)=11.67 times the

minimum size inverter input capacitance and the fan out will be 11.67. Hence, the stage

effort is given as

SErouling=(2xM01xU.6lj (5.18)

and the delay of the routing block will be

DMULING_BLOCK = 3x(2xM 0 7 x l 1 . 6 7) 3 +(log2 M){PNOR2 + PINV) (5.19)
+P +P
^ 1 inv ^ 1 XOR2

The parasitic terms PNOR2, PINV, PXOR2 are equal to 2, 1 and 4 respectively, according to

Table 7.

By adding the delay corresponding to the demux to the delay of the routing

block, we get the total delay associated with the routing process expressed by

^routing = ^routing_block ^ ^Input_DEMUX (5.20)

Dr0uting_biock will depend on M, which in turn depends on the system size. From Table 2,

the value of M varies from 7 (in 130 nm node) to 11 (in 32 nm node). Consequently,

Dr0uting_btock varies from 4 F04 (130 nm) to 6 F04 (32 nm). As a result, Drou,ing varies

from 5 F04 (130nm) to 7 F04 (32 nm).

Similarly to the input arbitration process, the delay involved in the output

arbitration can be expressed as

78

^ output _ arbitration ^ output _ arbiter ^output _ MUX 10.3.FO4 (5.21)

For the switch traversal process the delay is computed considering the chain of four

input and output muxes and demuxes. The output of the final demux drives the latches

of the virtual channels as shown in the Fig. 43. Considering that the latches consist of a

pair of cross-coupled NAND gates, the load capacitance is equivalent to two minimum-

sized inverter gate capacitances, and hence, the fan out will be 2. Following the same

method as in the case of the input arbiter we get the stage effort (SE) of this mux-demux

chain to be 2.38. Finally, the delay of the switch traversal process can be expressed

according to the following:

D, switch _ traversal — (4XSE) + P,nput_MUX
 + ^lnput _ DEMUX +

p +p = 17 5/ =3 5F04
1 Output_DEMUX ~ 1 Output_MUX 1 ' ""inv • w

(5.22)

The parasitic terms Pinput_Mux, PinPut_DEMux, PoutPut_DEMux and PoutPut_Mux are all equal to 2,

according to Table 7 and Fig. 48.

We developed a V H D L model for the switch and synthesized it using Synopsys'

synthesis tool in CMOS 0.18p technology. We compared results obtained from the

theoretical analysis with those given by Synopsys' tool. These comparisons are reported

in Table 9.

Table 9: Comparison of Delays: Calculated vs. Synopsys' tool-generated

Process Delay (LE
analysis)

Delay (Synopsys'
Tool)

Input Arbitration 8.8 F04 9AF04

Routing 5F04 6.2F04

Output Arbitration 10.3FO4 %.6F04

Switch Traversal 3.5F04 5F04

79

Table 9 shows that the delays estimated by our logical effort analysis match

closely those obtained from Synopsys' tools. However, it should be taken into account

that the numbers on the second column reflect a full custom design approach (with

respect to gate sizing) while the synthesis tool used did not have the option of modifying

the gate size to optimize the delay of paths depending on the load. Our detailed analysis

shows an improvement over the existing highly pipelined virtual channel routers [27].

This indicates that the delay associated with each processes involved with the operation

of the switch is well below the limit of \5F04 and can therefore be driven by a clock

with this period or less.

5.3 Summary

This chapter analyzes the delays associated to the pipeline stages involved in the

switch operation. We have shown that there are three pipeline stages on the signal critical

path. For header flits, these stages are: input arbitration, routing, and output arbitration.

For data (body and tail) flits, routing is replaced by switch traversal. For each of these

processes, the corresponding delays were calculated using the method of logical effort.

The results indicate that all delays of the switch pipeline stages are within 15 F04 delay

units, and, consequently, the switch can be driven by a clock cycle with this period. The

principal conclusion of this chapter is that the switches in the B F T interconnect template

w i l l not be a bottleneck for data transmission rate, as the maximum rate at which

functional IP block w i l l generate output signals corresponds to \5F04 delay units.

80

file:///5F04
file:///5F04

6 Chapter VS

Conclusions and Future Work

6.1 Summary

In this thesis, we have investigated the timing characteristics of an on-chip, switch-

based interconnect template, namely the butterfly fat-tree. The underlying hypothesis was

that a paradigm change will happen in the SoC design methodology, where multiple,

heterogeneous IP blocks, consisting of around 100K gates, will be integrated together

using a structured interconnect template. The functional IP blocks will exchange data in

the form of packets, divided into smaller flow control units (flits) of constant size. From

one functional IP to another, the flits will traverse multiple pipeline stages, according to

the routing algorithm that is implemented (least common ancestor determination and

turnaround routing in the BFT graph). Each pipeline stage will be represented by either

an inter-switch wire or a process in a switch. Depending on the nature of the flit (header

or data), the processes that will be executed by the switch will be:

for header: input arbitration, routing, output arbitration;

for data: input arbitration, switch traversal, output arbitration.

Then, the delays associated to each of the pipeline stages were determined. For

inter-switch wires, we developed a wire length model based on the layout of the

interconnect template, and calculate the delay of each of these segments. When

necessary, it was pointed out which of the inter-switch segments need to be optimized by

inserting buffers. The analysis was extended for successive technology nodes using

technology dependent parameters such as copper resistivity, gate oxide capacitance,

fringing capacitance of metal tracks.
81

For the active devices of the interconnect network, i.e., the switches, we

determined the delays involved in their pipeline stages using the method of logical effort.

B y expressing the delays of the processes in technology independent units, it was

possible to isolate the effect of technology scaling.

The analysis shows that the individual delay of each of the pipeline stages can be

made to fit within the limit of \5F04 suggested by ITRS as appropriate for the clock

cycle of high performance SoC. Given the likelihood of having multiple clock domains in

a large SoC, our understanding of the \5F04 rule is that data exchange between any two

functional IP blocks should be possible at this rate, with the penalty of an increased setup

time required by the header flit to reach the destination node. But after this setup time,

once a header arrives at the destination, the incoming packets, can be absorbed at a clock

speed governed by 15F04 delay units, required for signals to traverse one pipeline stage.

The non-scalability of buses as on-chip interconnects was quantified with respect to

the achievable clock cycle. It was shown that the amount of capacitance (corresponding

to the attached functional IP blocks) that can be added to a bus is extremely limited,

under the clock cycle constraints mentioned above. Also , a simple method of evaluating

the feasibility of buses for specific on-chip applications was presented: it has been shown

that the total capacitance added to the bus has to be less than a predefined, technology

specific value.

The method can be adapted for any on-chip interconnect topology, with minor

changes involved by the specific design parameters such as topology, number of virtual

channels, arbitration scheme.

82

file:///5F04
file:///5F04

6.2 Contribution of the Work

The goal of this research is to analyze and characterize a specific on chip

interconnect architecture with respect to timing. Demonstrating the issues that affect the

system level timing is a key component in designing high-speed, high-performance

on-chip data transmission mechanisms. We assume that the interconnect network should

not limit the system's speed of operation. A methodology was developed to evaluate the

maximum achievable clock rate of the SoC communication fabric. The basic question

that this thesis answers is the following: given a certain topology of an on-chip network,

what is the minimum clock rate at which it is possible to move data across the chip? In

our case, the topology is the butterfly fat-tree and the clock rate is \5F04 delay units as

specified in ITRS 2001 document. The movement of signals from one IP block to another

is pipelined, and the pipeline stages consist of both passive (metal wires) and active

(intelligent switches) devices. Analyzing the delay of each stage and placing the work in

the context of future technology nodes, it is possible to accurately quantify the raw

performance (measured in maximum achievable clock rate) of a networked SoC. We also

quantified the non-scalability of bus-based systems on chip, and showed a method to

decide when the transition from a bus-based to a network-centric design style is required.

The innovative contributions of this thesis are summarized as follows:

- Development of a wire-length model for the B F T (butterfly fat-tree) topology and

associated delays for future technology nodes.

- Development of a technology independent delay model for the active devices (switches)

and the corresponding pipeline stages.

83

file:///5F04

- Provision of a quantitative formulation for the non-scalability of bus-based systems and

indications for how designers should decide on the transition point between bus-based

and network-based design style.

6.3 Future Work

6.3.1 Power Analysis

This work is an important step toward the complete realization, characterization and

evaluation of the on-chip interconnection networks for large SOCs. After characterizing

the B F T interconnect template from a timing/delay point of view, the next logical step is

to analyze and parameterize its power dissipation. Based on the pipeline stages on the

data path of the flits from source to destination, four components of power dissipation

can be identified:

- wire power: power dissipated in driving messages along the inter-switch wires;

- arbitration power: Power is dissipated during the input/output arbitration steps;

- routing power: power required to make a routing decision for the header flit;

- switching power: power dissipated in the switch traversal process by the data flits.

Power dissipation in the interconnect network can be viewed in two ways: a) a

message-centered view and b) a switch-centered view. The message-centered view

focuses on the amount of power dissipated in driving a message through the network,

from a source node to a destination node. Consider a message spread across a number of

D links. In a steady state view of the network and at a particular moment of time, the

power required to drive the message is equal to the power required to make the routing

84

decision, Pr, and the power required to drive the data flits through the network. Since the

message is spread over D links and each link is concurrently switching, the

message-centered power can be expressed as:

Pmss=Pr + D(Ps+Pw) (6.1)

where Pr is the power required for routing decision, Ps is the power dissipated during

switch traversal, and Pw is the power dissipated by a flit traversing a wire segment

A switch-centered view focuses on power dissipated in switch per message. The power

per switch is the power it takes to process a message. This results in:

Pswilch=(Pr/D) + Ps+Pw (6.2)

These different views capture power dissipation in the network at two different levels.

The message-centered view of power dissipation is helpful when analyzing the network

from an application perspective. The switch centered view is useful when the network is

analyzed from a technology standpoint.

6.3.2 Interfacing

Another important problem in this N o C project is the interfacing between the

functional IP blocks and the communication template. To solve this problem, and

considering the heterogeneous nature of the functional IP blocks in the SoC, we shall

start from the assumption that all the cores are OCP-compatible. This is not a very

restrictive requirement, since most of the existing digital blocks can be converted to the

O C P protocol [28]. A n example of O C P compatible cores and their corresponding

interfaces is given in F ig . 27. A first step in interfacing the IP blocks is making them

O C P compatible. The result of this is the fact that we wi l l have to deal with a clearly

85

specified, standard set of signals corresponding to the master/slave instances of the O C P

interface. This set of signals w i l l be packetized by a second interface, which wi l l sit

between the O C P instances and the communication fabric. The interface wi l l have two

functions:

1: injecting/absorbing the flits leaving/arriving at the functional IP blocks;

2: packetizing/depacketizing the signals coming from/reaching to O C P compatible cores

in form of messages/flits;

System Initiator System Initiator-Target System Target

Core Core

Slave

B u s wrapper
interface

module

C o r e

• m 1 f O C P

Bus Initiator
I

Response
Request

B u s Initiator/Targe

On-Chip Bus

Fig. 50: Example of OCP interfaces [28].

Fig. 51: Packetization/depacketization interfaces.

86

R E F E R E N C E S

[I] W . J. Dally, B . Towles, "Route Packets, not Wires: On-Chip Interconnection
Networks", Proceedings ofDAC 2001, pp.684-689.

[2] P. Guerrier, A . Greiner, " A Generic Architecture for On-Chip Packet-Switched
Interconnections", Proceedings of Design, Automation and Test in Europe
Conference and Exhibition 2000, pp. 250 -256.

[3] http://public.itrs.net/Files/2002Update/Home.pdf.

[4] P. P. Pande, C . Grecu, A . Ivanov, R. Saleh, "Design of a Switch for Network on
Chip Applications", Proceedings oflSCAS, pp. 217-220.

[5] P. Pande, C . Grecu, M . Jones, A . Ivanov, R. Saleh, "Architecture Evaluation for
Communication-Centric SoC Design", submitted to ISCAS 2004.

[6] S. Kumar, et al, " A Network on Chip Architecture and Design Methodology,"
Proceedings ofISVLSI2002, pp. 117-124.

[7] A . Adriahantenaina, A . Greiner, "Micro-network for SoC : Implementation of a
32-port SPIN network" , Proceedings of DATE 2003, pp. 1128-1129.

[8] P. P. Pande, C. Grecu, A . Ivanov, R. Saleh, "High-Throughput Switch-Based
Interconnect for Future SoCs", Proceedings of 3rd IEEE International
Workshop on System-on-Chip for Real-Time Applications, June 30-July 2, 2003,
Calgary, Canada, pp. 304-310.

[9] J. Duato, S. Yalamanchili , L . N i , "Interconnection Networks: An Enginering
Approach", Morgan Kauffman, 2002.

[10] [A M B A Bus specification, http://www.arm.com.

[II] CoreConnect Specification, http://www-3.ibm.com/chips/products/coreconnect/.

[12] Wishbone Service Center, http ://www. silicore. net/wishbone .htm.

[13] F . Petrini, M . Vanneschi, "k-ary n-trees: High Performance Networks for
Massively Parallel Architectures", Proceedings of the 11th International
Parallel Processing Symposium, IPPS'97, Geneva, Switzerland, Apr i l 1997,
pp. 87-93.

87

http://public.itrs.net/Files/2002Update/Home.pdf
http://www.arm.com
http://www-3.ibm.com/chips/products/coreconnect/

[14] C. E . Leiserson, "Fat-Trees: Universal Networks For Hardware-Efficient
Supercomputing", IEEE Transactions on Computers, October 1985,
C-34(10):892-901.

[15] A . DeHon, "Compact, Multilayer Layout for Butterfly Fat-Tree", Twelfth
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
2000), July 9-12, 2000, pp. 206-215.

[16] D . Sylvester, K . Keutzer, "Impact of Small Process Geometries on
Microarchitectures in Systems on a Chip", Proceedings of the I E E E , V o l . 89,
No. 4, Apr i l 2001, pp. 467-489.

[17] M . A . Horowitz, et al., "The Future of Wires", Proceedings of the IEEE,
Volume: 89 Issue: 4, Apr i l 2001 pp. 490-504.

[18] P. Wielage, K . Goossens, "Networks on Sil icon: Blessing or Nightmare?",
Euromicro Symposium on Digital System Design, Dortmund, Germany,
September 2002, pp. 196-200.

[19] Design and Reuse website, http://www.us.design-reuse.com/sip/.

[20] P. Magarshack, P . G . Paulin, "System-on-Chip Beyond the Nanometer W a l l " ,
Proceedings ofDAC'03, June 2-6, 2003, Anaheim, U S A , pp. 419-424.

[21] D . A . Hodges, H . G . Jackson and R. Saleh, "Analysis and Design of Digital
Integrated Circuits'", Third Edition, M c G r a w - H i l l , 2003.

[22] K . C . Saraswat, et al., "Technology and Reliability Constrained Future Copper
Interconnects - Part II: Performance Implications," IEEE Transactions on
Electron Devices, V o l . 49, No. 4, Apr i l 2002 pp. 598-604.

[23] C . Yuan, T. Trick, " A Simple Formula for the Estimation of the Capacitance of
Two-Dimensional Interconnects in V L S I Circuits", IEEE Electron Device
Letters, vol . E D L - 3 , 1982, pp. 391-393.

[24] I. Sutherland, B . Sproull and D . Harris, "Logical Effort: Designing Fast CMOS
Circuits", Morgan Kaufmann, 1999.

[25] W . J. Dally, "Virtual-Channel H o w Control," IEEE Transactions on Parallel
and Distributed Systems, vol . 3, no. 2, March 1992, pp. 194-205.

[26] H.Wang, L - S Peh and S. Mal ik , " A Power Mode l for Routers: Modeling Alpha
21364 and InfiniBand Routers", Proceedings of the 10th Symposium on High
Performance Interconnects (Hot Interconnects), Stanford, C A , August 2002, pp.
21-27.

88

http://www.us.design-reuse.com/sip/

[27] L . Peh, W . Dally, " A Delay Model and Speculative Architecture for Pipelined
Routers", The Seventh International Symposium on High Performance
Computer Architecture, Jan. 2001, pp. 255-266.

[28] Open Core Protocol, www.ocpip.org.

[29] R.I . Greenberg, Lee Guan, " A n Improved Analytical Model for Wormhole
Routed Networks with Application to Butterfly Fat-Trees ", Proceedings of the 1997
International Conference on Parallel Processing, pp.: 44 - 48.

[30] J . Rabaey, A . Chandrakasan, B . Nikol ic , "Digital Integrated Circuits - A Design
Perspective (2nd Ed)", Prentice Hal l , 2003.

[31] C . Grecu, P. Pande, A . Ivanov, R. Saleh, " A Scalable Communication-Centric
SoC Interconnect Architecture", to appear in the Proceedings. oflSQED 2004.

89

http://www.ocpip.org

