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S O C I N T E R C O N N E C T A R C H I T E C T U R E E V A L U A T I O N 

U N D E R T I M I N G C O N S T R A I N T S 

ABSTRACT 

System on chip design steadily evolves toward different non-overlapping 

abstraction levels. Very different competence and design tools w i l l be needed at each 

level. One specific level of abstraction w i l l deal with interconnect technologies, with a 

pronounced trend towards networks on chip. 

It is projected that, within five years, the large majority of end-user SoC products 

wi l l consist of heterogeneous embedded processors, built on multi-processor SoC 

platforms (MP-SoC) . There is a tremendous amount of research required to characterize 

the various topologies and their effectiveness for different application domains. 

A common issue with all network-on-chip topologies is communication latency. 

Due to the increase of global wire delay with technology scaling, pipelining is required to 

hide the latency associated with the exchange of data across the chip. 

The building blocks of a network-on-chip are intelligent switches, which provide 

a data transport mechanism across the chip. Their design is critical due to different 

architectural and circuit level trade-offs. 

This work is novel in that it addresses the issues of quantifying the delay of 

different pipeline stages in an on-chip topology, and evaluates the effectiveness of a 

given topology in forthcoming technology nodes. 
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1 Chapter I 

Introduction 

Developments in semiconductor technology have led to a point where the 

integration of tens or hundreds of different IP (Intellectual Property) blocks on a single 

chip is possible. One of the main challenges in integrating such systems is to provide a 

reliable, high performance on-chip data transport mechanism. In general data exchange 

among these modules is performed through so called "global wires", whose main 

characteristic is that they do not scale with technology improvement. Currently, designers 

have a choice of using ad hoc (point to point) interconnects or structured interconnects in 

the form of buses when designing large systems. Both these types of interconnects consist 

of global wires and exhibit the disadvantage of non-scalability. 

Buses and ad hoc interconnects have another major drawback, i.e., their length is 

not predictable at the early stages of the design flow. A s a consequence, it is difficult to 

estimate whether a given design wi l l meet the initial performance requirements. In fact, 

designers spend a large part of their time running and optimizing logic-synthesis and 

physical-implementation (place-and-route) tasks. The name given to this process, timing 

closure, refers to the application of EDA (Electronic Design Automation) tools and 

design techniques to meet RTL (Register Transfer Level) chip-timing specifications. 

Unfortunately, global timing closure can be achieved today only after numerous 

iterations. There is no definite procedure to achieve timing closure and performance 

requirements while using non-structured interconnects. 
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Recently, the use of highly structured interconnect topologies was proposed to cope 

with the above-mentioned issues. Most of these topologies come from the parallel 

processing world and there is an impressive amount of research going on in the attempt 

of mapping them on silicon. This thesis focuses on the characterization of such a 

topology with respect to timing and on placing it in the perspective of technology trends. 

1.1 Research Goals 

There are a few different networks on chip that have been proposed by different 

research groups [1][2]. The general claim is that by using a highly structured interconnect 

scheme, it is possible to avoid the problems related to global wires and achieve timing 

closure while reducing the design time and meeting performance requirements. Signal 

transmission between any of the system components is highly pipelined, so, intuitively, 

the speed of operation of such an interconnect w i l l be fast, at the expense of higher 

latency. 

A network on-chip (NOC) is a structured, pipelined interconnect template; data w i l l 

travel between one IP block to another following paths consisting of wires and intelligent 

switches. 

There are two elements involved in the operation of a N O C : active elements, i.e., 

switches, and passive elements, i.e., wires between switches. 

The purpose of this thesis is to analyze quantitatively the delays of the active and 

passive elements and to provide an insight in regards to the achievable performance in 

terms of minimum clock cycle. Specifically, there are performance requirements that the 

high performance systems on chip have to meet [3]. 
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This work develops a method for the analysis of N O C s with respect to delays 

involved in data transport mechanism. B y detailed circuit level design and analysis, we 

are able to quantify the contribution of each element of the interconnect template to the 

overall timing characteristic. 

The primary goal is to demonstrate what are the main components of the delay, the 

parameters affecting the timing of a network on chip and the trade-offs that a designer 

has to consider when working with these concepts. 

1.2 Research Approach 

A detailed analysis was performed of both passive (wires) and active (switches) 

devices of the N O C described in [4]. 

In [4] we proposed the use of the butterfly fat-tree as the overall template to 

interconnect functional IP blocks in large SOCs. Architectural trade-offs of this topology 

were discussed in [5]. Here, the performance of this topology is analyzed in terms of 

minimum achievable clock cycle. 

First, we develop a deterministic wire length model of the butterfly fat-tree. B y 

mapping the butterfly fat-tree graph onto a square 2-dimensional area corresponding to 

the physical silicon die, we are able to come up with an accurate expressions for the 

inter-switch wires. This model was then enhanced by considering distributed R C effects 

and buffer insertion requirements; a projection of the wire delay model is provided by 

analyzing the interconnect technology trends, i.e., mainly, copper metallization and low-k 

dielectrics. 

Next, we developed a delay model for the switches in the butterfly fat-tree network. 

Starting from the logical operation of the switches and implementing a virtual channel 
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wormhole routing strategy, we characterized each process involved in the switch 

operation in terms of technology independent delay units. 

Finally, having the two components of the delay, namely, the inter-switch and 

intra-switch delays, we analyzed the achievable clock cycle of our interconnect 

infrastructure based on the butterfly fat-tree topology. The analysis shows that the 

infrastructure complies with ITRS 2001 projections for high performance SoCs with 

respect to the achievable clock cycle. 

1.3 Thesis Organization 

This thesis is organized as follows. Chapter 2 describes succinctly a few topologies 

proposed by different research groups as suitable for on-chip implementation and 

provides a short theoretical classification of interconnect networks. It also gives an 

overview of the butterfly fat-tree topology and presents a simple solution for floorplaning 

and routing for networks-on-chip using this architecture. Chapter 3 details the design of a 

switch for a network-on-chip, together with the factors that governs designer's decisions. 

Chapter 4 provides an in-depth analysis of the interconnect-related issues: wire length 

modeling, resistance and capacitance effects, and buffer insertion. The the intra-switch 

delay calculation is given in Chapter 5. Finally, Chapter 6 summarizes the conclusions 

drawn throughout this thesis and provides suggestions for future work. 
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2 Chapter II 

Related Work 

A few on-chip micro network proposals for SoC integration can be found in 

literature. Kumar [4] and Dally [1] have proposed mesh-based interconnect architectures. 

These architectures consist of an m x n mesh of switches interconnecting computational 

resources (IPs) placed along with the switches. Each switch is thereby connected to four 

neighboring switches and one IP block. In this case, the number of switches is equal to 

the number of IPs. 

The physical placement of such a micronetwork is reported in F ig . 1, with white 

squares representing the functional IPs and black squares denoting the switches. 

TO 

Fig. 1: Floorplan of a 64-IP-mesh network. 
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Guerrier and Greiner [7] have proposed a generic interconnect template for on-

chip packet switched interconnections, where they have used fat-tree architecture to 

interconnect IP blocks. In generic fat tree architecture adding more links in parallel as 

switches become closer to the root switch increases transmission bandwidth between 

switches. As a result of this the architecture of the switches wi l l also vary from level to 

level and they w i l l not be reusable. 

Fig. 2: Generic fat tree with 16 leaves. 

The above works neither discuss the suitability of the proposed interconnect 

architectures in the SoC domain nor they show any comparison with other possible 

architectures. A l l of the above mentioned works proposed different types of interconnect 

architectures to solve the global wire delay problem; however none of them specifically 

deals with this. 

In [4] [8] we have described an interconnect architecture for a networked SoC, as 

well as the associated design of required switches and addressing mechanisms. 

Addressing the wire delay problem and more generally analyzing the global 

timing closure in a communication-centric SoC is precisely the focus of this thesis. 
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2.1 Introduction to interconnect Networks 

Interconnection networks are currently used in many different applications, ranging 

from internal buses in V L S I circuits to wide area computer networks. Among others, 

these applications include backplane buses; telephone switches; internal networks for 

A T M and Internet switches; processor-memory interconnects for vector supercomputers; 

interconnection networks for multicomputers and distributed shared memory 

multiprocessors; clusters of workstations and personal computers; networks for industrial 

applications. 

There are many factors that may affect the choice of an appropriate interconnection 

network. Some of the most important are the following: 

1 Performance requirements. Processes executed by different processing elements 

exchange data and synchronize through the interconnection network. These 

operations are performed by message passing and/or by accessing shared 

resources. Message latency is the time elapsed between the time a message is 

generated at its source and the time the message is delivered at the destination. 

Latency negatively affects the idle times of the processing nodes and memory 

access times to remote memory locations. Also, the amount of information that a 

network can deliver is finite and limited. The maximum amount of information a 

network can physically deliver per unit time defines the throughput of that 

network. 

2 Scalability. A scalable topology implies that as more processing elements are 

added, their memory bandwidth, I/O bandwidth and network throughput should 

increase proportionally. Otherwise, the components that do not scale may become 
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a bottleneck for the rest of the system, decreasing the overall performance 

accordingly. 

3 Simplicity. Simple designs tend often to lead to higher clock frequencies and may 

achieve higher performance. 

4 Physical Constraints. A n interconnection network connects processing elements, 

memories and/or I/O devices. It is desirable for any network to accommodate a 

large number of components while maintaining low communication latency. A s 

the number of components increases, the number of wires needed to interconnect 

them also increases. One major limitation in large networks is the arrangement of 

wires in a limited area, that is, the maximum possible wire density limits the 

complexity of a connection. Also the speed of such a system tends to be limited 

by the wire lengths. A significant amount of power is expected to be consumed to 

drive these wires. 

5 Cost Constraints. It is obvious that the best possible interconnection network may 

be too expensive, in terms of design time and silicon area. There is always a 

trade-off between cost and performance. 

2.2 Classification of Interconnection Networks 

In order to choose an appropriate template for an on-chip interconnect network, it is 

useful to have a classification [9]. Known interconnection networks are categorized into 

four major classes based primarily on network topology: 

• shared medium networks, 



• direct networks, 

• indirect networks, 

• hybrid networks. 

2.2.1 Shared-Medium Networks 

The least complex interconnect structure is the one in which the transmission 

medium is shared by all communicating devices. Only one device is allowed to use the 

network at a time. Every device attached to the network has requester, driver, and 

receiver circuits to handle the passing of addresses and data. A unique characteristic of a 

shared medium is its ability to support broadcast, in which all devices on the medium can 

monitor network activities and receive the information transmitted on the shared medium. 

Due to limited network bandwidth, a single shared medium can only support a limited 

number of devices before the medium becomes a bottleneck [31]. They are known under 

the common name of buses and, in SoC environment, they are the first attempt to 

structure the data exchange medium. Some examples are A M B A [10], W I S H B O N E [11], 

C O R E C O N N E C T [12]. A conceptual example is given in F ig . 2. 
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Fig. 3: Shared medium on chip interconnect. 

Due to the very nature of the medium, several devices may attempt to use the bus 

simultaneously. To deal with this issue, a policy must be implemented to allocate the bus 

to the devices making such requests. Bus allocation is carried out by arbiters. In order to 

perform an access request, the initiator has to exclusively own the bus and become a bus 

master. 

Most bus transactions involve request and response. After a request is issued (by 

the master device), it is desirable to have a fast response (from the slave device). Due to 

slow slaves, the bus bandwidth is wasted while waiting for a response. In order to 

minimize the waste of bus bandwidth, the split transaction protocol is being used in 

many bus networks. In this protocol, the bus mastership is released immediately after the 

request, and the slave device has to gain mastership before it can send the data. Split 

transaction protocol has a better bus utilization, but it requires much complicated control 

hardware. Buffering is needed in order to save messages before the slave device can get 

the bus mastership. 
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2.2.2 Direct Networks 

Scalability is an important issue when designing SoCs with a large number of IP 

(Intellectual Property) blocks. Bus-based systems are not scalable because the bus 

becomes the bottleneck when more blocks are added. One way to address the scalability 

issue is to use a direct network. A direct network consists of a set of nodes, each one 

being connected to a (generally small) subset of other nodes in the network. Each node is 

an independent functional unit and it is connected locally to a router, which handles 

communication among nodes. For this reason, direct networks are also known as router-

based networks. Each router has direct connections to the router of its neighbor. Usually, 

two neighboring nodes are connected by a pair of unidirectional channels in opposite 

directions. A bidirectional channel may also be used to connect two neighboring nodes. 

Each router supports some number of input and output channels. The channels connected 

to the local resource are called internal channels, and the channels connected to the other 

routers are called external channels. B y connecting the input channels of one node to 

output channels of other nodes, the direct network is defined. 

Direct network can be modeled by a graph G(N,C), where the vertices of the graph, 

N, represent the set of processing nodes, and the edges of the graph, C, represent the set 

of communication channels. This simple model does not consider any hardware 

implementation issue, but it allows the study of network properties. From the graph 

representation, some basic network properties can be defined: 

• Node degree: number of channels connecting a node to its neighbors; 

• Diameter, the maximum distance between two nodes; 
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• Regularity: a network is regular when all the nodes have the same degree; 

• Symmetry: a network is symmetric when it looks alike from every node. 

A direct network is mainly characterized by three factors: topology, routing and 

switching. The topology defines how the nodes are interconnected by channels and can 

be modeled by a graph as indicated above. A n ideal direct network would connect each 

node to all other nodes. N o message would even have to pass through an intermediate 

node before reaching its destination. This fully connected topology requires a router with 

N links (including the internal link) at each node for a network with N nodes. Therefore, 

the cost is prohibitive for networks of moderate to large size. The engineering and scaling 

difficulties preclude the use of fully connected networks. As a consequence, many 

topologies have been proposed, trying to balance performance and cost parameters. In 

these topologies, messages may have to traverse some intermediate nodes before reaching 

the destination node. 

For efficient use of network resources, a message may be divided into packets 

prior to transmission. A packet is the smallest unit of information that contains the 

destination address, carried in the packet header. For topologies in which packets may 

have to traverse some intermediate nodes, the routing algorithm, determines the path 

selected by a packet to reach its destination. A t each intermediate node, the routing 

algorithm dictates the next channel to be used, which may be selected from a set of 

possible choices. If all the candidate channels are busy, the packet is blocked and cannot 

advance. Efficient routing is critical to the performance of interconnection networks. 

When a packet reaches an intermediate node, a switching mechanism determines how and 

when the router's input channel is connected to a certain output channel selected by the 
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routing algorithm. Some buffer space is required to store the packet until the next channel 

is reserved. If a packet is blocked, it requires some buffer space to be stored, until a free 

channel can be reserved. 

Direct Network Topologies 

Many network topologies have been proposed in terms of their graph-theoretical 

properties. The most known direct networks are the n-dimensional mesh, the k-ary n-cube 

or torus, and the hypercube. 

Formally, an n-dimensional mesh has nodes, kj nodes along each 

dimension i, where kj > 2 and 0 < i < n-1. each node X is identified by n coordinates (x„.i, 

x„-2, ...,xi, xo), where 0 < x, < kt-l for 0 < i < n-1. Two nodes X and Y are neighbors if and 

only if v, = JC, for all i,0<i<n-l, except one, j, where y; =Xj± 1. Nodes have from n to 

2n neighbours, depending on their location; therefore the mesh is not regular. 

In a &-ary n-cube, all are equal to k and two nodes X and Y are neighbors if and only if 

yi = X; for all < i < n-1, except one, j, where y7 = (JC, ±1) mod k. this change with respect 

to aforementioned mesh adds wraparound channels to the &-ary n-cube, giving it 

regularity and symmetry. 

The hypercube is a special case of both n-dimensional mesh and £-ary n-cube. A 

hypercube is an n-dimensional structure in which kj = 2 for 0 < i < n-1, or a 2-ary n-cube, 

also referred to as a binary n-cube. For example, the network in Fig. 4(a) is a binary 

4-cube. 
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(c) 

Fig. 4: (a) 2-ary 4-cube; (b) 3-ary 2-cubc; (c) 3-D mesh. 

Fig . 4 (a) depicts a binary 4-cube or 16-node hypercube. F ig . 4 (b) shows a 3-ary 2-cube 

or two-dimensional (2-D) torus. F ig . 4 (c) illustrates a 3-ary three-dimensional (3-D) 

mesh. 

2.2.3 Indirect Networks 

Indirect or switch-based networks are another major class of interconnection 

networks. Instead of providing a direct connection among some nodes, the 

communication between any two nodes has to be carried out through switches. Each 

switch can have a set of ports. Each port consists of one input link and one output link. 

The main difference between direct networks and indirect networks is that, in the case of 
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indirect networks, a subset of the switches is connected to one or more communicating 

nodes (IP block), while the rest of the switches are connected only to each other. In the 

case of direct networks, each router is connected to a local node and to other routers. In 

parallel processing, the terminology is router-based networks for direct networks, and 

switch-based networks for indirect networks. The interconnection of the switches defines 

various network topologies. 

Indirect networks can also be modeled by a graph G(N,C), where N is the set of 

switches and C is the set of links between the switches. Each switch in an indirect 

network may be connected to zero, one or more processing cores. Obviously, only 

switches connected to some processing core can be the source or destination of a 

message. 

Similar to direct networks, the indirect networks are mainly characterized by three 

factors: topology, routing, and switching. In regular indirect network, the switches are 

usually identical and are organized as a set of stages. Each stage is only connected to the 

previous and next stage using regular connection patterns. Input/output stages are 

connected to the functional nodes as well as to another stage in the network. These 

networks are referred to as multistage interconnection networks (MIN) and have different 

properties depending on the number of stages and how those stages are arranged. 
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Fig. 5: MIN (fat tree) with 16 end nodes and four levels of switches. 

MINs were initially proposed for telephone networks and later for array processors. 

MINs have been popular as alignment networks for storing and accessing arrays in 

parallel from memory banks. Depending on the interconnection scheme employed 

between two adjacent stages and the number of stages, various MINs have been 

proposed. 

Fat-Trees 

From the family of MINs, of particular interest are the fat-trees. Unlike traditional 

trees in computer science, fat-trees resemble real trees because they get thicker near the 

root, that is, the number of channels connecting two switches on adjacent levels grows 

from the leaves towards the root. Formally, fat-tress are defined as follows: 

Definition 1: A fat-tree is a collection of vertices connected by edges, constructed 

recursively as follows: 

• A single vertex by itself is the root of the fat-tree. 
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• Ifvj, V2, v, are vertices ant Tj, T2, 7} are fat-trees, with rj, ri, rk 

as roots (j and k need not be equal), a new fat tree is built by connecting 

with edges, in any manner, the vertices vj, V2, v, to the roots with rj, ri, 

r^ The roots of the new fat tree are vj, V2, v,. 

The above definition is extremely general and can cover ordinary trees, fat-trees with 

variable-sized switches and multiple connections between vertices and irregular 

constructions. Some examples are shown in F ig . 6. 

(c) 

Fig. 6: (a) Fat tree recursively built by connecting the new roots V / , v_, v,- to the 
roots rh r2,r/t of the subtrees; (b) Fat tree with two roots; (c) Fat tree with 

multiple edges between the root v; and the roots of the subtrees T% and T2. 

From the family of fat-trees branches the class of &-ary n-trees [13]. A formal 

definition of the &-ary n-trees is: 
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Definition 2: A k-ary n-tree is composed of two types pf vertices: N = k" processing 

nodes and nknlk communication switches. Each node is an n-tuple {0, 1, k-l}n, while 

each switch is defined as an ordered pair (w,l), where w e (0, n-l}nl and I e (0, 

1,..., n-1}. 

• Two switches (wo, Wj, w„.2, 1} and {w'o, w'i, w'n-2, V) 

are connected by an edge iff V = I + 1 and w, = w'i for all i This edge is labeled 

with w'i on the level I vertex and with wi on the level I' vertex. 

• There is an edge between the switch {wo, Wi, ... , wn-2, n-1} and the processing 

nodepo, pi, ..., pn-i iff 

wt = pi for all i e fO, 1, n-2}. 

This edge is labeled with pn-i on the level n-1 switch. 

From Definition 2 it can be inferred that any path starting from a level 0 switch and 

leading to a given node po, pi, pn-i traverses the same sequence of edge labels (po, pi, 

-,Pn-l)-

Minimal ly routing between a pair of nodes in a &-ary «-tree can be accomplished by 

sending the message to one of the nearest common ancestors of both source and 

destination and from there to the destination node. Thus, each message experiences two 

phases: an ascending phase to get to a nearest common ancestor, followed by a 

descending phase to get from that common ancestor to destination. 

Fat-trees have many interesting properties. Leiserson [14] formally proved the 

so-called universality theorem, stating that a universal fat-tree of a given volume can 

simulate any other interconnection network of equal volume with only a polylogarithmic 

factor increase in the time required. 
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The number of ports of the internal switches of the fat-tree increases as we go 

closer to the root; this makes the physical implementation of these switches unfeasible. In 

SoC environment, a key requirement of these switches is that they must be reusable. If 

the number of channels differs from level to level, the corresponding switches need to be 

different, which poses difficulties in terms of logical design, placement, routing 

congestion, non-uniform power dissipation across the chip, etc. For this reason, some 

alternative constructions have been proposed that use building blocks with fixed number 

of ports. These solutions trade connectivity with simplicity: in a "complete" fat-tree an 

incoming message at a given switch may have more choices than in a corresponding 

network with fixed size (number of ports) switches. 

2.2.4 Hybrid Networks 

In general, hybrid networks combine mechanisms from shared-medium networks 

and direct or indirect networks. Therefore, they increase bandwidth with respect to shared 

medium networks and reduce the distance between nodes with respect to direct and 

indirect networks. However, for systems requiring very high performance, direct and 

indirect networks achieve better scalability than hybrid networks because point-to-point 

links are faster than shared-medium buses [9]. Most high-performance parallel computers 

use direct or indirect networks. In the case of the on-chip interconnects, hybrid networks 

are present in the form of hierarchical buses, a typical example being AMBA bus [10] 

shown in Fig. 7, where there can be, for example, a high speed bus (AHB - Advanced 

High-Performance Bus) hosting the CPU and DMA (Direct Memory Access) devices, 
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and a lower speed bus ( A P B - Advanced Peripheral Bus) hosting slower peripherals 

( U A R T , IOs); the two buses are linked together by a bridge. 

High-performance 
ARM processor 

High-bandwidth 
External Memory 

Interface 

High-bandwidth 
on-chip RAM 

AHBorASB 

DMA bus 
master 

UART 

APB 

Keypad 

AHBtoAPB Bridge 
or 

ASBtoAPBBridge 

Fig. 7: Typical AMBA Architecture. 

In general, hierarchical buses consists of multiple buses connected by bridges, 

with higher performance buses layered at the higher level of the hierarchy, as indicated in 

F ig . 8. 

Global Bus 

Bridge » I • Bridge 

Local Bus 
1 i 1 

Local Bus 
I I i 

Fig. 8: A two-level hierarchical bus. 

Another class of hybrid networks are the cluster-based networks. They combine 

the advantages of two or more kinds of networks at different hierarchical levels. For 

example, it is possible to combine the advantages of buses and point-to-point links by 

using buses at the lower levels in the hierarchy to form clusters and a direct network 

topology connecting clusters at the higher level. A n example is D A S H - Stanford 
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Directory Architecture for Shared Memory, whose basic architecture is shown in Fig. 9. 

At the lower level, each cluster consists of four processors connected by a bus. At the 

higher level, a 2-D mesh connects the clusters. 

Cluster bus 

• • d 

Cluster bus 

Cluster bus 

D-
Cluster bus 

Cluster bus 

Cluster bus 

Cluster bus 

Cluster bus 

Cluster bus 

Fig. 9: Cluster-based 2-D mesh. 

Other combinations of different structures are possible and have been studied in 

parallel processing: direct and indirect networks, shared medium and indirect networks, 

etc. 
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2.3 Architecture Overview 

For the "Network on Chip" project at UBC we have chosen the butterfly fat-tree 

(BFT) as the interconnect architecture. The BFT offers a good trade-off between the 

properties of fat-trees and the reusability requirements of the SoC environment, in the 

sense that all the switches are identical (they have the same number of channels). The 

architectural evaluation and comparison of BFTs was done in [5]. In the following, a 

brief formalized description of the particular BFT used will be given. This will help us in 

developing a wire length model for inter-switch delay analysis in Chapter IV. 

We use the BFT with N functional IP (FIP) blocks as shown in Fig. 10 [15][29] . 

Level (j) 

Fig. 10: BFT with 64 IPs. 

Each node (leaf or vertex) is labeled by a pair of indices (j,a), where j represents the level 

of the node in the network and a represents the address of the node in that level (its 

index). The level of a node is defined as its distance from the leaves. At the lowest level 

(j = 0) are the N FIP blocks with addresses 0 to /V - 1. Each switch S(j, a) has six ports: 

parento, parents childo, child/, child2, childs. The number of levels depends on the total 
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number of FIPs, i.e., for N IPs, the number of levels w i l l be levels = (log2 N) - 3. The 

FIPs are connected to AV4 switches at the first level such that the FIP P(0, a) is connected 

to the childa mo<i 4 of switch 5(1, L#/4_|). A t the y'-th level (for j = 1 to (\0g2N) - 3) there are 

N/2M switches. The connections of a switch are determined by the switch's address as 

follows: parento of S(j, a) is connected to child; of S(j+l, a •2J"+amod2J), and 

parent/ of S(j, a) is connected to childt of S(j+l, a •2j +(a + 2j 1 ) m o d 2 > ) , where 

1 = 
a m o d 2 J + 1 

Each channel connecting two adjacent switches consist of two unidirectional links. The 

number of switches in the butterfly fat-tree architecture converges to a constant 

independent of the number of levels. If we consider a 4-ary tree as shown in F ig . 10, with 

four down links corresponding to child ports, and two up links corresponding to parent 

ports, then the total number of switches in level 1 is N/4. 

A t each subsequently higher level of the tree the number of required switches reduces by 

a factor of 2. In this way the total number of switches, 5, is calculated as: 

„ N IN IN 
S = — + + + • 

4 2 4 4 4 

( 1 Veve',s N N 

C / 1 \ levels \ 

1 - -

1 — 

N 
levels-

(2.1) 

which illustrates that 5 tends to N/2 as N grows arbitrarily large. In the case of 64 IPs the 

number of switches is 28 as shown in Fig . 10. 
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2.3.1 Floorplanning and Routing for BFTs 

Contemporary V L S I processes offer six or more layers of metallization for 

wiring. With the advent of Chemical Mechanical Planarization ( C M P ) , it is feasible for 

process technology to continue stacking additional metal layers as long as the cost of the 

extra mask steps and processing are justified by area benefits. This produces an 

interesting effect on the traditional V L S I models: active devices are still largely limited to 

two-dimensional layout on the silicon substrate. However, wire layers can feasibly be 

stacked on top of each other creating a three-dimensional structure for interconnects. A n 

efficient placement and routing of an interconnect topology such as the butterfly fat-tree 

requires a uniform distribution of resources (switches and metal tracks) across the chip 

[15]. A potential problem with the B F T structure is the wire congestion occurring 

towards the higher levels of the tree. This congestion can be avoided by intelligently 

placing the switches on the silicon substrate. 

We start by showing that the chip area can be divided into smaller squares of 

equal size (subsequently called "tiles"), each of these squares containing the same 

number of functional nodes and switches. Then we account for the wiring per layer and 

vias required between layers. Each tile consists of a set of four IP blocks connected to the 

same level one switch, the corresponding level one switch, and, eventually, one more 

switch belonging to a level characterized by an index greater than one. Thus, the number 

of tiles is equal to the system size divided by the number of child ports of a switch (four). 
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Fig. 11: BFT and physical layout. 

Fig . 11 shows the original 2-D layout of the B F T (here with 64 leaf nodes). B y 

rearranging the basic B F T as indicated in Fig . 12, at most two switches end up in each 

tile, along with four processing nodes. 

• D 
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4[ — i=r- | 
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i " 1 

4 

3 

Fig. 12: Rearranged BFT and physical layout. 
In the original B F T arrangement, all the switches lie along the same diagonal. In the 

modified layout, the diagonals are complementary such that, when folded together, the 
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next diagonal is always left open. Finally, each tile w i l l contain four end nodes, the 

switch associated with those four end nodes, and, at most, one additional switch. 

A t each stage, after folding, the lower levels manage to leave both main diagonals free. 

One main diagonal is then consumed by the new switches added at the level onto which 

the lower levels are being folded. This, in turn, leaves one diagonal free in the folded box. 

Consequently, when this new level is now folded with its peers to create the next tree 

level, it w i l l also create a structure with both main diagonals free so that the next level of 

switches can be added and the folding can continue further in this manner. 

Wires 

A simple strategy for wiring is to give each tree level, in a tile, its own pair of metal 

layers, one for horizontal wires and one for vertical wires. A s in each tile there are at 

most two switches, four levels of metal w i l l be sufficient for all levels, independently of 

the number of levels in the B F T . This is an upper limit, a lower limit being two metal 

layers - one for horizontal and one for vertical traces. Therefore, within each tile there 

w i l l be 6 or 12 wiring channels, and the total number of wire traces wi l l be given by the 

product 2NW, where N is the number of channels, and W is the data channel width. The 

first term indicates the fact that the channels consist of two unidirectional links in 

opposite directions. It is important to notice that by using this placement style, the wire 

congestion at the root of the B F T is completely avoided. 
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2.4 Summary 

In this chapter, the butterfly fat-tree architecture is formally described, and V L S I 

implications of this interconnect are briefly outlined. We have also shown a strategy to 

physically place the active devices (switches and end nodes) on the silicon substrate. The 

chip area was symbolically divided into square tiles, each tile containing at most two 

switches, of which exactly one is a level one switch. Wire congestion toward the B F T 

root is thus avoided by arranging the active devices such that there are at most two 

switches per tile; the maximum number of channels is 24 x W (six ports per switch, each 

channel consisting of a pair of unidirectional channels). This simple model for the B F T 

interconnect w i l l help the development of detailed models for inter- and intra-switch 

delays in Chapter I V and Chapter V , respectively. 
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3 Chapter III 

Switch Design for Networks on Chip 

3.1. Introduction 

The building blocks of a network on chip infrastructure are the switches. Their 

function is to transport data from a source functional block to a destination functional 

block. They are responsible for the successful routing of messages through the network 

by implementing the specific flow control mechanism. When a message or packet header 

reaches an intermediate switch, a switching mechanism determines how and when the 

input channel is connected to the output channel selected by the routing algorithm. Flow 

control is tightly coupled with the switching technique for the synchronized transfer of 

information between switches and through switches in forwarding messages through the 

network. The flow control mechanism establishes a dialog between sender and receiver 

blocks, allowing and stopping the advance of information units. If a packet is blocked, it 

requires some buffer space to be stored. When there is no more available buffer space, 

the flow control mechanism stops information transmission. When the packet advances 

and buffer space becomes available, transmission is started again. A simplified block 

diagram of a switch that performs these basic tasks is given in Fig . 13: 
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Fig. 13: Block diagram of a switch. 

Thus, one can identify the factors that w i l l govern the design of the switch: 

switching technique, routing algorithm, flow control. The effect of these factors on 

design decisions is analyzed in the following subsections. A s a consequence, the building 

blocks of a switch, in the simplest case, are the following: 

- Routing and Arbitration block: implements the routing algorithm and output 

buffer allocation; 

L ink Controllers (LC) : implements the flow control mechanism; 

Switching fabric: connects input channels to output channels according to the 

decision of the routing block; 

F IFO buffers: store the messages until a free channel is allocated by the 

Routing and Arbitration unit. 

3.2. Switching Technique 

The switching techniques determine when and how internal switches connect 

their inputs to outputs and the time at which message components may be transferred 

along these paths. 
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There are different types of switching techniques, namely: Circuit Switching, 

Packet Switching, and Wormhole Switching [9]. In circuit switching, a physical path 

from source to destination is reserved prior to the transmission of the data. This setting 

up of an end-to-end path causes unnecessary delay. In packet switching, data is divided 

into fixed-length blocks called packets, and instead of establishing a path before sending 

any data, whenever the source has a packet to be sent, it transmits the latter. Packet 

switching is advantageous when messages are short and frequent. Unlike circuit 

switching, where a segment of the reserved path may be idle for a significant period of 

time, in packet switching, a communication link is fully utilized when there are data to 

be transmitted. Packet switching is based on the assumption that a packet must be 

received in its entirety before any further routing decision can be made to forward the 

packet towards its destination. The need for storing entire packets in a switch in case of 

conventional packet switching makes the buffer requirement high in these cases. 

In an SoC environment, the requirement is that switches should not consume a 

large fraction of silicon area compared to the IP blocks. In wormhole switching, the 

packets are divided into fixed length flow control units (flits), as indicated in F ig . 14, and 

the input and output buffers should be able to store only a few flits. A s a result, the 

buffer space requirement in the switches can be small compared to that generally 

required for packet switching. 
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(b) Type V C I D Data 

(ii) 

Fig. 14: (i) Message divided into header, data and tail flits; (ii)a: Header Flit, (ii)b: 
Data and tail Flits. 

Thus, using a wormhole switching technique, the switches will be small and 

compact. The first flit, i.e., header flit, of a packet contains routing information. Header 

flit decoding enables the switches to establish the path and subsequent flits simply 

follow this path in a pipelined fashion. As a result, each incoming data flit of a message 

packet is simply forwarded along the same output channel, as the preceding data flit and 

no packet reordering is required at destinations. If a certain flit faces a busy channel, 

subsequent flits also have to wait at their current locations. 

One drawback of this simple wormhole switching method is that the transmission of 

distinct messages cannot be interleaved or multiplexed over a physical channel. 

Messages must cross the channel in their entirety before the channel can be used by 

another message. This will decrease channel utilization if a flit from a given packet is 

blocked in a buffer. By introducing virtual channels [25] in the input and output ports, 

channel utility can be increased considerably. If a flit belonging to a particular packet is 

blocked in one of the virtual channels, then flits of alternate packets can use the other 

virtual channel buffers, and hence, ultimately, the physical channel. Thus, the 
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corresponding switch for the B F T architecture described in the previous chapter has six 

ports (two parent ports PO, P I , and four child ports CO, C l , C2 , C3) each port consisting 

of two unidirectional links in opposite directions, each link being multiplexed over a few 

virtual channels (FIFO buffers), as in Fig . 15. 

Fig. 15: Switch with 6 ports. 

In order to implement virtual channels, multiple F IFO buffers have to be 

multiplexed over a single physical channel and, hence, an arbitration mechanism is 

required to implement virtual channel allocation policy. The simplified switch shown in 

F ig . 13 has to change to accommodate virtual channels, as indicated in F ig . 16. 
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Fig. 16: Block diagram of a switch with virtual channels. 

The arbitration is carried by S A (Switch Allocation) blocks at the input side, and 

by the O A (Output Allocation) blocks at the output side. 
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A n important design parameter is the optimum number of virtual channels per 

physical channel that has to be implemented. The trade-off here is to maximize the 

throughput, while keeping the number of virtual channels low to minimize silicon area 

consumed by F I F O buffers [5]. In order to determine the optimum number of virtual 

channels, simulations were run using a flit-level wormhole routing simulator. In each 

simulation cycle, a pair source-destination is randomly selected from the leaf nodes, with 

equal probability. Messages of equal length (number of flits) are injected at the source 

nodes. Simulation is run for a period of 20,000 simulation cycles, and then the average 

throughput is calculated. Throughput is defined as: 

(Total messages completed)x(Message length) 
Throughput =- - —̂J 

(Number of IP blocks)x(Total time) 

Thus, throughput is measured, as the fraction of maximum load the network is 

capable of physically handling. A throughput equal to 1 means all end nodes are 

receiving one flit every cycle. Realistically T P <1 since it is improbable that all possible 

destinations are active each cycle. Successive simulations are run keeping the same 

message length, but increasing the number of virtual channels per link (FIFO buffers) 

from one to eight. F ig . 17 shows the effect of sweeping the number of virtual channels on 

throughput. 
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Fig. 17: Effect of multiple virtual channels on throughput. 

From Fig . 17, i f the number of virtual channels is increased beyond four then 

there is a trend towards saturation. Since additional buffers are required for each virtual 

channel, it is advantageous to reduce the number of virtual channels to lower the required 

silicon area. Thus, a switch with four virtual channels strikes an appropriate balance 

between high throughput and conservation of silicon area. 

3.3. Building Blocks 

The operation of the switch consists of one or more processes depending on the 

nature of the flit. In the case of a header flit, the sequence of the processes is: (1) Input 

Arbitration; (2) Routing; and (3) Output Arbitration. In the case of data and tail flits, 

Switch Traversal replaces the routing process as the routing decision based on the header 

information is maintained for the subsequent body flits. These processes materialize as 

pipeline stages of the switch, and they alternate as indicated in F ig . 18. 
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Fig. 18: Switch operation: processes. 

When the first flit of a message, i.e. the header flit, enters the switch through a 

specific port, it is first object of input arbitration. If it wins the arbitration, the routing 

information contained in the header flit is extracted and fed to the routing block. The flit 

is directed to one of the other ports, according to the routing information and the specific 

routing algorithm implemented. A t the output port, the flit is again subject to an 

arbitration stage and is assigned an output virtual channel depending on the availability of 

the output F IFO buffers. B y the time the header flit has left the switch, the path for the 

rest of the packet is already created, in the sense that virtual channels are reserved and 

routing decision is made, such that the data and tail flits can follow the header flit in a 

pipelined fashion. 

Each port of the switch consists of two links: an output link and an input link. The 

effect of the routing process is that an input link of a port is connected to the output link 

of another port, creating the physical path for message transmission. The block diagram 

of a pair of input-output links is represented in Fig . 19. At the input side, there are four 

virtual channels multiplexed over a single physical channel through a multiplexer. A 4:1 

arbiter circuit controls which of the virtual channels wi l l enter the switch. If the incoming 

flit is a header flit, the winning channel is then subject to a routing phase and directed to 

one of the output ports by a demultiplexer. If the flit is not a header, then no routing is 

required and the flit follows the same path as the header. 
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Fig. 19: A pair of input-output links of a switch. 

When the flit reaches the output link, it requests access to free output virtual 

channel. This is again subject to an arbitration phase, as more input links can direct flits 

to the same output link. Because there are six ports in a switch, at the output there is a 

5:1 arbiter required, as all other five input links can request access to a particular output 

link (a flit cannot exit the switch through the same port it entered the switch [4]). 

Arbiter Circuit 

The arbiter circuit mainly consists of a priority matrix, which stores the priorities 

[26] of the requesters and grant generation circuits used to grant resources to requesters. 

The matrix arbiter stores priorities between n requestors in a binary n-by-n matrix. Each 

matrix element [i, j] records the binary priority between each pair of inputs. For example, 

suppose requestor / has a higher priority than requestor j, then the matrix element [i, j] 

wi l l be set to 1, while the corresponding matrix element [j, i] w i l l be 0. A requestor w i l l 

be granted the resource i f no other higher priority requestor is bidding for the same 

resource. Once a requestor succeeds in being granted a resource, its priority is updated 

and set to be the lowest among all requestors. 
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(a) 

Fig . 20: (a) Block diagram of an arbiter; (b) one element of the priority matrix. 

This arbitration policy is efficient because the flit with longest waiting time w i l l 

have the highest priority, and the time a flit has to spend waiting for getting access to a 

resource is minimized in this way [26]. The priorities are stored in a matrix of flip-flops. 

Only the elements above the main diagonal are going to be physically implemented, due 

to the fact that Py and Pjj are complementary, i.e., i f requestor i has higher priority than 

requestor j, then requestor j has lower priority than requestor i (Py - P~). 

X Pn Pu 
p X p P24 

Pn X Pu 

*4, P* X 

Fig . 21: Priority matrix for a 4:1 arbiter. 

As an example, consider that the status of the priority matrix is as shown in left matrix in 

F ig . 22 and requestor 2 is granted access to the switch. Than after arbitration, column 2 is 

set to 1 and row 2 is set to 0, such that requestor 2 has the lowest priority with respect to 

all other requestors. This mechanism is implemented by using the grant signals to 

set/reset the flip-flops storing the elements of the priority matrix as shown in F ig . 20(b). 
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X 0 0 1 
X X 1 0 
X X X 0 
X X X X 

—> 

X 1 0 1 
X X 0 0 
X X X 0 
X X X X 

Fig. 22: Priority matrix transition when requestor 2 is granted access. 

The logic equations to express the value of grant signals are given as follows: 

gnt, = req, {req2 + pn Jreq~} + pl3 Jreql + pu) 

gnt2 = req2 {req{ + pl2 ^reql + P2i \reqt + p2i) 

grit-, = req, (feq[ + pn \req2 + p22 \reqt + pM) 

gnti = req 4 {req, + pu 

Applying De Morgan's law to the equations above, the gate level circuit for a 

grant signal is shown below: 

r—I / ^ grant, 

Fig. 23: Logic circuit to generate granti signal. 

The rest of the grant signals are generated similarly to Fig. 23. The critical path of the 

grant circuits consist of a sequence of one inverter, two successive 2-inpus NOR gates, a 

NAND gate and a final inverter. This critical path is continued with the priority matrix 

elements, as shown in Fig. 20(b). The detailed calculation of the delay of the critical path 

of the arbiter circuit is given in Chapter 5. 
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Routing Circuit 

The routing circuit implements a simple L C A (Least Common Ancestor) 

determination algorithm. It compares a certain range of bits of the source and destination 

addresses [4] and, i f the result string contains at least a ' 1' bit ( L C A bit), it directs the 

message to one of the available parent ports. If the result string contains only ' 0 ' bits, it 

directs the message to one of the child ports. The address length is a function of the size 

of the system (number of IP components), and hence, the routing circuit depends on the 

size of the system. A s such, the circuit to implement this simple algorithm for a 64 IP 

system (six bits address length), has the structure shown Fig . 24. 

Source Destination 
address address 

I ' 

Fig. 24: Routing block. 

The 6-inputs N O R gate is not feasible for C M O S implementation due to its large 

delay, and the solution is to replace it with a tree of N O R and inverter pairs [24]. The 

depth of the tree grows logarithmically with the number of inputs of N O R gate, which 
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helps in reducing the delay of the equivalent N O R gate. A 6-inputs N O R gate can be 

replaced by a two-levels tree of NOR/inverter pairs, as shown in F ig . 25. 

The size of the routing circuit depends on the number of inputs, i.e., on the number of bits 

in the address field, which has a logarithmic dependence on the system size. Accordingly, 

the size of the routing circuit is a logarithmic function of the system size. 

3.4 Silicon Area Overhead 

To evaluate the feasibility of the B F T interconnect scheme we need to study its 

silicon area overhead. A s the switches are the integral active components of this 

infrastructure it is important to determine the amount of relative silicon area consumed 

by those. 

After synthesis using Synopsys' Design Compiler and Virtual Sil icon 0.18um 

standard cell library, the total area of a switch with six ports and four virtual channels 

per port is reported as 35,500 equivalent 2-input N A N D gates. From the total amount, 

less than 10% is used to implement arbitration, routing and traversal, while the rest is 

consumed by F IFO buffers implementing the virtual channels. 

Fig. 25: Tree of NOR gates. 
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The number of IPs in a single SoC varies from one technology node to the other. 

Consequently, the number of bits required to address the IPs wi l l also vary. This w i l l be 

reflected in the length of the header flit as shown in Fig . 14(H). Two bits are needed to 

specify each of Flit Type and VCID. Simulation results [5] show that throughput does 

not vary much with the packet length, as shown in F ig . 26. However packet length 

negatively affects the latency [5]. A s a trade-off between throughput and latency the 

packets are assumed to consist of 16 flits and 4 bits wi l l be sufficient to denote the 

packet length in each technology node. 

et 
ra , 
O 

u> ?JJ «o 

Messaye Length (flits) 

»70 l»0 

Fig. 26: Effect of message length on throughput. 

A n SoC consists of two types of IPs, the functional IPs integrated with the help of 

infrastructure IPs, i.e. the switches. The number of functional IPs govern the number of 

bits required to denote each of address length, source address and destination address 

fields. Table 2 shows the header flit length (number of bits) in different technology nodes 

for the B F T architecture. The header flit length can expressed as: 
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Header _ length 2^pe + 2VCID + Aaddresslenglh + Apackel lenglh + Ssource_address + Ddeslinalion address [bits] 

where SSOurce_address, Dsource_address denote the length of the source and destination address 

fields of the header flit, and Headerjength is the total length of the header flit, in bits. In 

order to determine the number of bits needed for the source and destination address 

fields, we need to know the maximum number of 100K gates IP blocks that can be 

integrated on a N o C . Assuming a 20mm x 20mm chip size, the size of a 2-input N A N D 

gate being 11 um 2 in T S M C 0.18um C M O S technology and a scaling factor of 0.7 for 

successive technology nodes [3], one can calculate the number of digital IP blocks that 

can be fitted on a chip. From these, due to the properties of B F T topology (the upper 

bound of the number of switches is half the number of leaf nodes), one third w i l l be 

switches and the rest w i l l be functional IPs. The distribution of the number of switches 

and functional IPs is given in Table 1. Accordingly, the length of the source/destination 

address can be calculated as log2 (Number of functional IPs). 

Table 1: Distribution of IP blocks and switches in successive technology nodes. 
Technology Max. Number Number of Number of 

node of IPs Functional IPs Switches 
130nm 500 333 167 
90nm 1000 666 337 
65nm 2500 1666 834 
45nm 7500 5000 2500 
32nm 10000 6666 3334 

Table 2: Flit Lengths - BFT. 
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130 nm 2 2 4 4 9 9 30 
90 nm 2 2 4 4 10 10 32 
65 nm 2 2 4 4 11 11 34 
45 nm 2 2 4 4 13 13 38 
32 nm 2 2 4 4 13 13 38 
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The length of the data flits is kept equal to the length of the header flit. To 

estimate the silicon area consumed by the buffers, we developed a V H D L model of a 

switch, having four virtual channels using a fully static, standard cell-based, C M O S 0.18 

pm technology. Simulation results shown in F ig . 27 indicate that the throughput is 

relatively independent of buffer depth. Therefore, to save silicon area the depth of the 

F IFO buffer is kept as one flit. 

a " n 
o 

Buffer Depth (flits} 

Fig. 27: Buffer depth impact on throughput. 

The switches have two main components, the storage buffer, and logic to 

implement routing, flow control. The storage buffers are the FIFOs at the inputs and 

outputs of the switches. Using data from Tables 1 and 2, we can estimate the amount of 

silicon area consumed by the infrastructure IP blocks (switches) in different technology 

nodes for the B F T interconnect architecture. The procedure for area calculation is 

straightforward: 

- the size of a switch in 0.18pm technology is known as 35,500 2-input N A N D 

gates; 
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- the scaling factor for successive technologies is 0.7 according to [3]; 

- the size of the switch is assumed to be proportional with the number of bits 

required for the virtual channels (FIFO buffers); 

- the number of switches is given in Table 1; 

- the size of the F I F O buffers (in bits) is given in Table 2; 

- the area overhead due to switches is calculated with the expression: 

Area = No. of switches x No. of virtual channels x Flit size 

[equivalent 2-input N A N D gates] 

14 j 
1 2 r — " I 

S 10 -">;'. ' * — 

2 . - n - -n - - ' o 

130 nm 90 nm 65 nm 45 nm 32 nm 

Technology nodes 

Fig. 28: I2P Area Overhead. 

The total silicon area consumed by switches amounts from 9% in 130 nm 

technology, to 12% in 32nm technology node, for a 20mm x 20mm total chip area. Given 

the advantages that such an architecture offers in terms of parallel programming 

capability and latency, the area overhead is within reasonable limits. 



3.5 Summary 

In this chapter we have detailed the main design considerations for the 

infrastructure blocks, i.e., switches, of a network on chip, here considering the B F T 

(Butterfly Fat-Tree) topology in particular. The main system level parameters governing 

physical implementation of switches have been identified and their effect on design 

decisions analyzed. The major building blocks of a switching element were described. 

Sil icon area overhead for a complete system in different technology node was shown to 

be between 9% (130nm) and 12% (32nm). 
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4 Chapter IV 

Inter-Switch Wire Delay Analysis 

We begin this chapter by outlining the trends that develop in SoC design in the 

context of semiconductor technology evolution. We then show a simple model for the 

inter-switch wire length in B F T topology; based on this model we evaluate inter-switch 

delays. Finally, for comparison, the scalability of shared medium (bus) topology is 

analyzed from a delay point of view and a simple metric is developed to quantify it. 

4.1 Soc Microarchitecture Trends and Assumptions 

In a conventional digital A S I C design flow, several iterations of logic synthesis 

and physical design are required before convergence to design specifications is achieved. 

During synthesis, the capacitances of the global wires are generally unknown, and wire-

load models are typically used as estimators. The accuracy of such estimations is 

generally acceptable for short wires, but increasingly unacceptable as the wire delays 

reach levels where they constitute a significant portion of the critical path delay. 

For IP blocks consisting of 50-100K gates, such interconnect delay estimation 

related problems can be reasonably well tackled by existing C A D tools [16]. Moreover, 

various publications show that global wires in blocks of 50-100K gates tend to scale with 

technology [17] [18]. Therefore, problems in ultra deep submicron processes arising from 

non-scalable global wire delay and poor back annotation mechanisms can be assumed to 

be readily surmountable when these are limited to such blocks. There is plenty of 

evidence in support of IP blocks amounting to such sizes. For example, a 32-bit D S P 
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core can have around 115K gates [19]; a M P E G 2 decoder can consist of approximately 

6 0 K gates [19], and a general purpose 32-bit R ISC microprocessor can amount to around 

5 0 K gates [19]. 

We are already at a point where a few new designs coming out from industry 

consist of up to 100 embedded processors [20]. B y extension to the above, we conjecture 

that the trend for future SoC integration wi l l be based on a hierarchical design paradigm 

where an increasing number of IP blocks consisting of 100K gates wi l l be integrated 

according to a specific interconnect template. One possible interconnect template is the 

butterfly fat-tree as shown in F ig . 10. 

Assuming IP blocks consisting of 100K gates and a constant chip size [3] of 

20mm x 20mm, Table 2 shows the maximum number of IP blocks that can be integrated 

in a single SoC in different ITRS technology nodes [18]. In the foregoing, we assume that 

such blocks would be integrated according to a butterfly fat-tree microarchitecture 

template, described in Chapter 2. A s reported in Table 3, as the number of IP blocks 

increases, the number of required levels in the butterfly fat-tree also increases. Table 3 

also reports the number of required B F T levels for each technology node. In the next 

section, we show that the increased number of levels does not negatively impact the 

achievable clock cycle rates for the SoC. 

Table 3: Maximum number of IP blocks (100K gates/IP block) [18] and 

Technology 
Node 

Max. No. 
of IPs 

No. of BFT 
levels 

130 nm 500 6 
90 nm 1000 7 
65 nm 2500 9 
45 nm 7500 10 
32 nm 10000 11 
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4.2 Interconnect Models and Trends 

The demand for high levels of integration in semiconductor industry has resulted in 

an aggressive shrinking of the devices, with the added bonus of increased device speeds 

resulting from smaller channel lengths. Interconnect delay, which was formerly 

insignificant, is rapidly becoming a bottleneck due to degrading performance trends with 

scaling [17] [21]. Longer wires due to a larger chip size, coupled with smaller and more 

closely packed interconnects (smaller pitch) is leading to a continuous increase in 

resistance and capacitance, forcing longer R C interconnects delays with each generation. 

Several solutions have been proposed at different levels: physical design, circuit, and 

material level. The physical design solution is to progressively increase the number of 

metal layers in the future. This leads to more relaxed dimensions for longer wires at the 

top metal levels. However, an excessive increase in the number of metal layers inflates 

process complexity and cost. A t the circuit level, the most common solution is repeater 

insertion to mitigate the increase in global wire delay [21]. The major penalty of repeater 

insertion is area and power consumption. Finally, the material-based solution consists of 

replacing aluminium and silicon-dioxide with copper and low dielectric constant (low-&) 

materials, respectively. The effect is the increase of speed by reducing the resistance and 

capacitance per unit length. 

These solutions alone are not enough to allow the continuation of the existing 

design paradigm [22]. In the following, we wi l l briefly introduce simple models for 

capacitance and resistance of metal traces, which wi l l help us apply the repeater insertion 

methodology for inter-switch wires in the B F T topology. 
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Resistance 

For metal traces with rectangular cross-section the resistance is calculated as: 

R = £*— = R*— = RW*L 
T W W (4.1) 

where p is the metal resistivity. It has been shown [22] that the resistivity of global metal 

traces is not constant, but rises slowly with shrinking of feature size; in fact, resistivity 

varies from 2 jxQ-cm in 0.18|im technology, to 4 u.£2-cm in 32 nm technology [22]. 

Capacitance 

The capacitance per unit length, needed for delay calculations, is obtained using a 

simple parallel plate model consisting of inter and intra-level components, along with a 

fringe component, as shown in Fig . 29 [23]. 

/ 

Lateral 

Fringing 

Area VA/ 

Fig. 29: Lateral, fringing and parallel plate components of the wire capacitance. 

It is interesting to observe that as feature size shrinks, the parallel plate 

component of wire capacitance decreases slowly, while the lateral and fringe components 

remain almost constant. The overall effect is that after 65 nm technology node, lateral and 

fringe capacitance wi l l dominate and the total wire capacitance per unit length wi l l 

remain almost constant [22]. Accordingly, capacitance can be calculated with the 

formula: 
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C = 2 C f . +2C +2C, , . 
^fringe area lateral (4.2) 

When dealing with global wires, it is appropriate to use a distributed R C model 

for more accurate calculation. Assuming that the wire is divided into n sections, and 

applying a simple Elmore delay method, the delay of the wire in F ig . 30 can be estimated 

as [30]: 

n(n + i) , 
D = R C • V „ ' L2 

w w 2n2 

R.C 
(4.3) 

(1) 
"CJn 

(2) 
'CJn 

(n) 

CJn 

Fig. 30: Distributed wire model. 

However, a more accurate expression for the delay of a wire considering the distributed 

model is [21]: 

D = 0ARwCwL2 

(4.4) 

Repeater Insertion 

From the delay equation (4.4), it is evident that delay increases quadratically with 

wire length. This dependence can be reduced to a linear one by inserting repeaters [21]. 

B y breaking the wire into N sections and inserting N repeaters of size M times the 

minimum inverter, the new delay can be calculated as: 
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D.~A=Nt. + 
buffered mv 

CGRWM+-
CR w eqn 

M 
L + OARC 

J N 
(4.5) 

^ % M i? . M M N 
Fjw 

N 

- A A 

(D 
N 

(2) 

Fig. 31: Buffer insertion. 

M 

Here, we have used the following notations: 

tiny - delay of an inverter driving its own parasitic capacitance 

Ryy 
N 

NY 

(N) 

• Cyy 
N 

• CG - gate capacitance of a minimum size inverter with equal rise/fall time 

• Reqn - equivalent resistance of the n-type diffusion region in QJO 

Fig . 32 plots the unbuffered and buffered wire delay for upper metal layers in 0.13pm 

technology using the corresponding resistance and capacitance parameters from Table 4. 

The horizontal line represents the 15F04 limit taken as reference according to ITRS 

2001. It can be noticed that the maximum length of global wire that can be theoretically 

utilized in this specific technology is around 10 mm; in this case the wire delay represents 

100% of the critical path of the signal transported through it. 
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Fig. 32: Unbuffered and buffered global wire delay in 0.13-pm technology. 

To explain why the reference limit of 15F04 is considered here, one must take into 

account the trend of the clock cycle of high-performance processors. In order to increase 

the achievable clock cycle and, consequently, the performance of processors, designers 

had two main resources: at device level, technology improvements leading to smaller 

feature size with better gate delays as an immediate consequence, and, at circuit level, the 

amount of combinational logic within a pipeline stage was reduced. This trend is shown 

in F ig . 17 [3]. It is projected that the normalized clock cycle w i l l saturate somewhere in 

the range of 10 - 15 F04 delay units. The main reason is the fact that around 4F04 units 

is the overhead of the clocked elements (latches, flip-flops), while the rest up to 10 - 15 

F04 can be used for combinational logic. 

J I L 

52 



110 -i 

100 -

90 -
\ Clock cycle of high-performance microprocessors 

in F04 delay units 

80 \ 
\ 
\ 
4 70 

\ 
\ 
\ 
4 

60 -

50 -

40 

30 -

20 - 15F04 " * . 

10 -10 - 10FO4 

U i i i i i 

1983 1988 1993 1998 2003 2008 

Fig. 33: Clock cycle of high-performance microprocessors in normalized units of 
F04. 

4.3 Inter-Switch Wire Delay in BFT Architecture 

The wire length between switches in the butterfly fat-tree architecture depends on 

the levels of the switches. For ease of analysis, we wi l l use the simplified layout of the 

B F T shown in F ig . 34 to determine the inter-switch wire-length expression. Let Lchjp be 

the size of the chip on one side, assuming a square silicon die, and let Area be the area 

of the chip, Area = LMp. In the case of the B F T topology with 64 leaves, the wire 

lengths between successive levels of switches can be calculated as: 

^chip 

2,1 

(4.6) 

(4.7) 
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(4.8) 

where w, 0 is the length of the physical channel between the IP blocks and the first level 

of switches, w 2 , is the length of the physical channel between switches of level two and 

one and so on. 

In general, the inter-switch wire length is given by the following expression: 

yjArea 
w a+l,a r^leveh-a (4.9) 

where wa+i,a is the length of the wire spanning the distance between level a and level a+1 

switches, where a can take integer values between 0 and (levels-1), with levels being the 

number of B F T levels in the particular interconnect implementation. 

{Area 

{Area/4 
k H 

Fig. 34: Inter-switch wire lengths in a 64-IP BFT. 
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Table 4 shows the inter-switch wire length in mm for different technology nodes. 

X denotes that the particular inter-switch wire is not present in the concerned technology 

node. The maximum die size is assumed to remain unchanged at 20 mm, assumption 

supported by ITRS 2001 projections [3]. 

Table 4: Inter-switch wire lengths in mm 

Technology 
node 

No. of 
levels w „ , 1 0 w 1 M w 9 3 Wg, 7 w 7 , 6 w w w 4 J W 3 , 2 w 2 , , 

130 nm 6 X X X X X 10.000 5.000 2.500 1.250 0.625 

90 nm 7 X X X X 10.000 5.000 2.500 1.250 0.625 0.312 

65 nm 9 X X 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 

45 nm 10 X 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039 

32 nm 11 10.000 5.000 2.500 1.250 0.625 0.312 0.156 0.078 0.039 0.019 

We can compute the intrinsic RC delay [21] of a wire according to the equation below: 

Dimbuffered=0ARwCwL2 (4.10) 

where R w and C w are the resistance and capacitance per unit length of the wire, 

respectively, and L is the wire length. The minimum conceivable clock cycle time 

considering a highly pipelined design style can be assumed to equal the value of 15F04, 

with F 0 4 defined as the delay of an inverter driving four identical ones [24]. In different 

technology nodes, F 0 4 can be estimated as 4 2 5 * L m i n [ps] where Lmjn is the minimum 

feature size in each technology node [3]. For long wires, the intrinsic delay wi l l easily 

exceed this 15F04 limit. In those cases, the delay can, at best, be made to increase 
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linearly with wire length by inserting buffers. If the wire is divided into N segments and a 

total of N inverters inserted, then the total delay of the buffered wire wi l l be according to 

the following expression [21]: 

^buffered ~ ^inv + CGRWM + 
C.R ^ ' 2 

M , 
L + 0ARwCw^- (4.11) 

where ?,„v is the delay of an inverter sized for equal rise and fall propagation delays, and 

can be approximated as r ,„ v =F04/5. M is the size of the inverters, C G is the gate 

capacitance of the minimum size inverter with equal rise and fall times, R e q n is the large 

signal resistance of n-type transistor in Q./0. Differentiating DbUffered with respect to N and 

equating to zero yields the optimum number of segments [21]: 

M 10ARWCWL2 

1' ( 4- l 2 ) 

inv 

Rw can be calculated according to the following formula: 

R... = 
TW 

(4.13) 

where p is the resistivity of the metal wire (here assumed to be 2.2Qum for copper), and 

T and W are the wire thickness and width, respectively. 

Fig. 35: Cross section of multiple metal layers. 
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Cw can be calculated according to the following equation [22]: 

(4.14) 

where Sd is the dielectric constant, eo is the permittivity of free space. Cfringe is the fringing 

capacitance assumed to be constant and equal to 0.04fF/pm in all technology nodes [22]. 

In our calculations of Rw and Cw, the inter-level dielectric thickness (H), top level metal 

thickness (T), intra-level dielectric thickness (S), and top level wire width (W), are all 

assumed to be the half pitch [22] for the given technology node, as shown in F ig . 35. 

Specific values for Rw, Cw and Unv are shown in Table 5 for successive technology nodes. 

Table 5: Values of Rw, C w , tinv and F04 in different technology nodes 

Technology node Rw [ilium] C w [fF//tm] tinv [PS] F04 [ps] 

130 nm 0.06 0.30 11.05 55.25 

90 nm 0.12 0.22 7.65 38.25 

65 nm 0.20 0.20 5.50 27.5 

45 nm 0.44 0.20 3.82 19.1 

32 nm 0.73 0.20 2.70 13.5 

We used the values of Rw, Cw, and tinv from Table 4 to calculate unbuffered and buffered 

global wire delay in different technology nodes. 

Figs. 36 and 37 report the unbuffered and buffered global wire delay variation 

with wire length in successive technology nodes, with D130 denoting 130 nm 

technology, D90 denoting 90 nm etc., and 15F04 130 denoting 15 times the delay of an 

inverter driving four identical inverters in 130 nm, 15 F O 90 that for 90 nm etc. 
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Fig. 36: Unbuffered global wire delay in different technology nodes. 

Fig. 37: Buffered global wire delay in different technology nodes. 

From Figs. 36 and 37, the length of global wires (inter-switch connections), which 

require buffering, can be determined. Shading in Table 5 highlights these. From Table 5, 
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it can be noticed that most of the inter-switch wires need not be buffered. Consequently, 

the inter-switch propagation delay always remains within one clock cycle. This facilitates 

achieving system-level timing closure and brings out one advantage of switch-based SoC 

design, i.e., global wires requiring buffering can be identified in early stages of the design 

cycle. 

Another advantage that emerges from our scheme is that the inter-switch wire 

delay, and hence, the clock cycle, are largely independent of the number of IP blocks in 

the system. In our networked SoC, the only global wires are those that span distances 

between switches. A s the inter-switch wire delay (either buffered or unbuffered) does not 

exceed one clock cycle (i.e., 15F04 delay units), these switch-based SoCs do not suffer 

from the global wire delay problem that arises in ultra deep submicron technologies. 

A n important point is that our inter-switch wire length and delay analysis and its 

results do not strongly depend on the IP block size assumption. If the number of gates in 

the IP blocks were to largely exceed 100K gates, or were much smaller than 50K, then 

the total number of IP blocks in an SoC would scale accordingly, i.e., inversely to the size 

of IP blocks. Consequently, only the number of levels in our template would change. The 

inter-switch wire length and delay would remain largely unaffected. 

4.4 Wire Delay in a Shared Medium SoC 

In this section we analyze the effects on delay of connecting IP blocks to a bus. 

In a bus-based SoC, multiple IP blocks share the transmission media. A s the number of 

connected IP blocks increases, the capacitance attached to the bus wires increases 

correspondingly. This negatively impacts propagation delay, and, ultimately, the 
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achievable clock cycle. This thus limits the number of IP blocks that can be connected to 

the bus, and thereby the system scalability. 

Each attached IP block w i l l capacitively load the bus wires. For ease of analysis 

(but without loss of generality), we assume this extra capacitance to be evenly distributed 

along the wire and model it as a parasitic capacitance. 

A s many existing on-chip buses are multiplexer - based [10] [11] [12], as shown 

in F ig . 38, they are basically unidirectional and can therefore easily be buffered. 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

In 
Out 

Fig. 38: Multiplexer-based bus architecture. 

We consider the length of bus wires, Lbus, to equal the maximum unbuffered wire 

length at each technology node as shown in Fig . 37, as this length can be driven within 

one clock cycle. Attaching IP blocks to a bus adds an equivalent capacitance of Cp 

per unit length of wire. A s a result, the driving capability of the bus wi l l be negatively 

affected, and buffer insertion is required to accommodate multiple IPs while satisfying a 
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propagation delay within one clock cycle. If a bus wire is divided into N segments, then 

each wire segment w i l l have a capacitance of (Cw + Cp) per unit length and the delay in 

the buffered bus wire can be obtained by modifying equation (4.11). The delay in this 

case w i l l be as follows: 

^buffered,bus ^bus^inv 

f (C +C )R \ J l 

V n > D J ean CGR M +-— p—^ 
V M J 

L 
Lbus+0ARw(Cw + Cp)-f^ (4.15) 

^bus 

Similarly to equation (4.12), the optimum number of sections wi l l be given by the 

following: 

Nbu,= 
0ARW{CV + CX 2 

t 
p ) bus 

(4.16) 
inv 

From equation (4.15) one can determine how much parasitic capacitance can be added to 

a bus wire before Dbus exceeds one clock cycle for a specific wire length in successive 

technology nodes, assuming the clock cycle to be 15F04. The value of Cp can be 

considered as a metric for the scalability of a bus-based system as it relates to how many 

IP blocks can be appended to a bus before the delay exceeds one clock cycle. Decreasing 

bus wire length increases the value of admissible Cp, but the physical size of IP blocks 

wi l l limit the scaling down of bus wire lengths. On the other hand, i f bus wire lengths are 

increased, then wire capacitance wi l l dominate and result in decreasing the allowable Cp 

and hence the number of IPs possibly appended to the bus. In Fig . 39 we illustrate the 

effect of bus wire length on Cp for different technology nodes. From the latter, the bus 

driving capability decreases exponentially with bus wire length. 
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Cp vs. Length 
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Fig. 39: Variation of Cp with bus wire length. 

Fig . 39 illustrates the scalability problem associated with bus-based SoCs. For a 

fixed bus length, there is an upper limit on the parasitic capacitance (due to attached IP 

blocks) that can be accommodated i f the bus delay is to be less than one clock cycle. As 

a result, there is a corresponding upper limit to the number of IPs that can be connected 

to a bus. Furthermore, in order to meet such delay requirements, the value of allowable 

parasitic capacitance decreases exponentially with bus length. A s a result, the number of 

IP cores that can be added to the bus decreases. 

However, due to heterogeneous nature of constituent IP cores in a SoC 

(embedded processors, DSPs, M P E G decoders, memories etc.), it is not possible to 

quantify the number of IPs that can be connected to the bus a priori. B y knowing C p and 

the types of IPs that need to be integrated for a particular application, we are able to 

determine whether timing closure is achievable when connecting these IPs to a bus. 
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If the 15F04 constraint on the clock cycle is relaxed and thereby increased, then 

the permissible values of Cp and hence the number of attached IP blocks also increases as 

shown in F ig . 40. This implies that by stretching the clock cycle, more IP blocks can be 

added to the bus at the cost of overall system speed degradation. 

Cp vs. F04 
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Fig. 40: Variation of Cp with clock cycle for different technology nodes. 

The length of bus wires is difficult to predict in early stages of the design cycle. 

Hence, typically, system-level timing closure can only be reached post-layout and after 

several iterations. 

In contrast, in the case of a networked SoC, the system size does not imply any 

extra loading on the inter-switch wire. A s a result, variations in system size have little 

effect on the achievable clock cycle. That is, the inter-switch wire delay is largely 

insensitive to system size and only depends on the levels of the switches in the butterfly 

fat-tree architecture. 

-e- 130 nm 
90 nm 
45 nm 
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4.5 Summary 

This chapter specifically analyzes global wire delays in a new switch-based 

interconnect architecture for future generations of SoCs. The butterfly fat-tree 

architecture was assumed as a system-level interconnect template. As this is a highly 

structured and regular architecture, the inter-switch wire delay can be estimated 

accurately, in initial phases of the design cycle. It was shown that it is possible to 

constrain this delay to be within one clock cycle, where the latter is, in turn, dictated by 

the technology dependent parameter limit governed by 15F04. 

The delay in a bus-based SoC depends on the number of connected IP blocks. To 

further quantify this dependency, we proposed the parasitic capacitance, Cp , as a metric, 

which, in turn, is directly proportional to the number of IPs attached to a bus. indicated 

upper limits on the value of Cp, and therefore on the number of IPs, for different 

forthcoming technology nodes, and showed how these limits decrease exponentially 

against increases in bus wire length. 

Looking forward in time, where numerous (hundreds or thousands) IP blocks 

consisting of 50-100K gates wi l l need to be integrated, single bus-based interconnect 

templates w i l l face serious limitations. We envisage that multiple forms of buses 

connected through a hierarchical architecture wi l l ultimately converge to some form of 

network as the one proposed and analyzed here. A s a result, we propose that future 

design processes start with a network architecture in mind. This w i l l allow for better 

interconnect delay predictions. The ultimate effect w i l l be the shortening of the design 

cycle and a reduced number of iterations. 
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5 Chapter V 

Intra-Switch Delay Analysis 

Together with inter-switch delay, the intra-switch delay component dictates the 

performance of any interconnect template, with respect to the maximum achievable clock 

rate. In this chapter we provide a detailed analysis of the intra-switch delays by using the 

method of logical effort. First, we consider the pipelined nature of the switch and explain 

what are the factors governing each pipeline stage. Then, we develop delay models for 

each pipeline stage based on the detailed gate-level design of the blocks involved in 

corresponding stages. The delay numbers are provided in technology independent units of 

F 0 4 , thus lending an insight of what the effect of technology evolution w i l l be on the 

performance of the B F T architecture coupled with wormhole routing. 

5.1 Introduction to Logical Effort 

The method of logical [21] [24] effort is an easy way to estimate delay in C M O S 

circuits. It is founded on a simple model of the delay of a single C M O S logic gate. The 

model accounts for the delays caused by the capacitive load driven by the logic gate and 

for the topology of the logic gate. A s the load increases, the delay also increases, but 

delay also depends on the logic function of the gate. Inverters, which perform minimum 

logical processing of a signal, drive loads best and are often used as amplifiers to drive 

large capacitances. Logic gates that compute other functions require more transistors, 

some of which are connected in series, making them poorer than inverters at driving 
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currents. The method of logical effort quantifies these effects to simplify delay analysis 

for individual logic gates and multistage logic networks. The complete method for a 

multistage logic path involves two steps: the first step is the determination of the 

optimum number of stages in the path, and the second step is delay calculation (with gate 

sizing as a side effect, but most important from a designer's perspective). In the 

following, we w i l l give the basics of logical effort method, used further to analyze the 

delays in the pipeline stages of switches in B F T architecture. 

The effect of a particular fabrication process is isolated by expressing delays in 

terms of a basic delay unit tmv particular to that process. tinv is the delay of an inverter 

driving an identical one with no parasitics. 

The delay incurred by a logic gate is comprised of two components: a fixed part 

called the parasitic delay ip) and a part that is proportional to the load the gate is driving, 

called the effort delay or fan out delay (/). The total delay, measured in units of tinv, is the 

sum of the fan out and parasitic delays: 

d = f + p (5.1) 

The fan out portion of the delay,/ , is characterized by two terms: the logical effort (LE) 

captures the properties of the logic gate, while the fan out, also called electrical effort, 

(FO) characterizes the load. The fan out portion of the delay is the product of these two 

factors: 

f = LE*FO (5.2) 

The logical effort (LE) expresses the effect of the gate's topology on its ability to produce 

output current. The electrical effort F O describes how the electrical environment of the 
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logic gate affects performance and how the size of the transistors in the gate determines 

its load driving capability. F O is defined as: 

F O = £OUL (53) 

C 

in 

where C o u , is the capacitance that loads the output of the logic gate and C,„ is the 

capacitance presented by the input terminal of the logic gate. 

Combining Eq . (5.1) and (5.2) we obtain the basic equation that models the delay 

through a single logic gate, in units of tinv: 

d = LE*FO + p (5.4) 

The logical effort of a gate is defined as the number of times worse it is at delivering 

output current than would be an inverter with identical input capacitance. It is important 

to note that the logical effort of a gate does not depend on the size of the gate, but only on 

its topology. There are two options to calculate the logical effort of a gate: 

1. A s the ratio between the input capacitance of that gate and the input capacitance 

of an inverter that produces the same output current; 

2. A s the ratio between the delay of the gate and the delay of an inverter with the 

same input capacitance. 

In most C M O S processes, the P M O S transistor width is larger than the N M O S 

transistor width to account for different carrier velocity, when circuits are designed for 

equal rise and fall times, y = Wp/W n is the ratio of P M O S to N M O S width in an inverter 

for equal conductance (equal rise and fall times). In our analysis, for simplicity, we wi l l 

assume y = 2. Under these assumptions, the logical effort of different logic gates can be 

calculated and it is given in Table 6. 
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Table 6: Logical effort and parasitics of usual logic gates 

Gate type Logical effort Formula Parasitic 

N A N D (n inputs) Total n(n + Y) 
l + y 

n P i n v 

N A N D (n inputs) 

Per input (n + y) 
l + y 

n P i n v 

N O R (n inputs) Total n(\ + ny) 
l + y 

" P i n v 

N O R (n inputs) 

Per input (1 + ny) 
l + y 

" P i n v 

Multiplexer 

(n inputs) 

Total An 
2nPinv 

Multiplexer 

(n inputs) d(data), s (select) 2 , 2 
2nPinv 

X O R , X N O R 

(n inputs) 

Total n22"-x 

nT-l

Pinv 

X O R , X N O R 

(n inputs) Per bundle n2"-1 

nT-l

Pinv 

C-element 

(n inputs) 

Total n2 

n P i n v 

C-element 

(n inputs) Per input n 
n P i n v 

For a path comprised of multiple logic gates, the logical effort along the path, 

called path logical effort (LEP) is calculated as the product of LE of all gates along the 

path: 

LEp=ULEgate (5.5) 

The path effective effort or path fan out FOp can be defined as the ratio of the load 

capacitance of the last gate of the path to the input capacitance of the first gate: 

F 0 =^L (5.6) 
S i 
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Fig. 41: A critical path with three stages. 

When fan out occurs at the output of a node and some of the available drive 

current is directed along the analyzed path, and some branches out of the path, to account 

for logical fan out within the logical path, we use branching factor (BF) of a logic gate: 

C +C 
J^J? on-path off-path 

r 
on-path 

(5.7) 

The path branching effort BEP is defined as the product of the branching factors along 

that path: 

BEp=YlBFgale 

Finally, the total path effort P E can be defined as: 

PE = FOpUBFgateLEgate = FOpBEpLEp 

(5.8) 

• (5.9) 

The gate effort that minimizes the path delay, called stage effort (SE), is calculated 

according to: 

SE = tfPE (5.1.0) 
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where /V is the number of stages (gates) on that path. The minimum delay through the 

path can therefore be calculated as: 

D = N*SE + 2P (5.11) 

That is, the delay is the sum two components: a fan out related delay and a parasitic 

delay. In the following subsections, we wi l l use this methodology to calculate the 

minimum achievable delay of the three pipeline stages of the switches in the B F T 

interconnect network. We wi l l make the assumption that y = 2 to simplify the analysis. 

5.2 Intra-Switch Pipeline Stages and Delay Analysis 

The switch has six ports, four children ports denoted by CO, Cl, C2 and C3 

respectively, and two parent ports, denoted by PO and PP respectively as shown in F ig . 

42. 

PO P1 

SWITCH 

/ \ , / \ , / x 

V v v v 
CO C1 C2 C3 

Fig. 42: Switch with 6 ports. 

In order to have a considerably high throughput, we use a virtual channel switch, where 

each port of the switch has four parallel buffers [5]. The different components of the 
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switch are shown in F ig . 43. It mainly consists of two arbiters, a routing block and a 

chain of multiplexers/demultiplexers. 

req. 

Input 
arbiter 

virtual channels 

T T T T — 
ILT 

HMM 
-I I I I I 

INPUT 
MUX 

Routing 
logic 

INPUT 
DEMUX 

Output 
arbiter 

OUTPUT! 
MUX 

vcid 

OUTPUT 
DEMUX 

Output virtual channels 

H II i i-
I I I I r-

I I I I h 

I I I I I-

Fig. 43: Block diagram of a switch port. 

Each physical input port has more than one virtual channel, uniquely identified by 

its virtual channel identifier (VCID) [25]. Flits may simultaneously arrive at more than 

one virtual channel. A s a result, an arbitration mechanism is therefore necessary to allow 

only one virtual channel to access a single physical port. A s there are four virtual 

channels corresponding to each input port, we need a 4:1 arbiter at the input. Similarly, 

flits from more than one input port may simultaneously try to access a particular output 

port. Consequently, on the output side, we need a 5:1 arbiter since among the six ports of 

the switch, any five may try to access a particular output port [4]. The routing logic block 

determines the output port to be taken by an incoming flit. 

(a) Type 
T 

VCIDj Address Length Packet Length Source Address Dest. Address 

(b) Type VCID Data 

Fig. 44: Flit structure (a) Header flit; (b) Data and Tail flits. 
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The packets consist of a header flit, one or more data flits and a tail flit. The header, 

data, and tail flit structures are as shown in F ig . 44. The first field denotes the flit type, 

namely header, data or tail. The second field contains the virtual channel identifier 

(VCID) . The third field denotes the address length, which is dependent on the number of 

SoC IP blocks. The fourth field contains packet length information, i.e., the number of 

flits in the corresponding packet. The next two fields give source and destination 

addresses. The flit length is constant but the total number of flits in a packet w i l l vary 

according to the contents of the packet length field. One packet w i l l consist of a 

sequence of flits starting with a header flit, followed by a set of data flits (this set may be 

void eventually) and ended by a tail flit. 

Header 
Data 

Fig. 45: Packet consisting of header, data and tail flits. 

The operation of the switch consists of one or more processes depending on the 

nature of the flit. In the case of a header flit, the sequence of the processes is: (1) Input 

Arbitration; (2) Routing; and (3) Output Arbitration. In the case of body flits, Switch 

Traversal replaces the routing process as the routing decision based on the header 

information is maintained for the subsequent body flits. The blocks involved in the input 

arbitration process are the 4:1 arbiter and the input multiplexer; similarly, the blocks in 

the output arbitration process are the 5:1 arbiter and the output multiplexer. The routing 

process is performed by the combination of the routing block and the input demultiplexer. 

The switch traversal mainly involves the chain of four multiplexers and demultiplexers. 
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Each of these processes occurs in different clock cycles. From a signal propagation point 

of view, each process is a pipeline stage on the critical path of the data flow. 

Consequently, we need to calculate the delays incurred in these processes. 

The arbiter circuit mainly consists of a priority matrix, which stores the priorities 

[26] of the requesters and grant generation circuits, granting resources to requesters. The 

matrix arbiter stores priorities between n requestors in a binary n-by-n matrix. Each 

matrix element [i, j] records the binary priority between each pair of inputs. For example, 

suppose requestor i has a higher priority than requestor j, then the matrix element [i, j] 

w i l l be set to 1, while the corresponding matrix element [j, i] w i l l be 0. A requestor w i l l 

be granted the resource i f no other higher priority requestors is bidding for the same 

resource. Once a requestor succeeds in being granted a resource, its priority is updated 

and set to be the lowest among all requestors. 

(a) ,(b) 

Fig. 46: (a) Block diagram of an arbiter; (b) one element of the priority matrix. 

Fig . 46 shows the block diagram of the arbiter, consisting of the grant generation 

circuit and the priority matrix. A s for the input side, there are four virtual channels 

competing for the resources and the grant circuit generates four grant signals denoted by 

gnti to gnt4. The Boolean expressions for the grant signals are given as follows: 
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gntx = req, (req2 + pn)(req3 + p13)(reqA + p14) 

gnt2 = req2 (req, + pl2)(re^3 + p23)(reqA + p24) 

gnt3 = re<?3 (reg, + p13) ( req2 + p23) (re<?4 + p 3 4 ) 

gnr4 = reqA (re^! + pu) (re^2 + pu) (reg3 + p 3 4 ) 

where reqt is the request signal from virtual channel i and ptj denotes the priority of 

virtual channel / over virtual channel j, with i, j e [1,4]. 

We use the method of logical effort to determine the delay involved in the input 

arbitration process. The delay will be given in terms of F04, with F04 defined as the 

delay of an inverter driving four identical ones. The critical path of the input arbiter 

circuit is shown in Fig. 47. 

BF=3 L 

Fig. 47: Critical path of the input arbiter 

From Boolean expressions of grant signals, it is clear that remand rê Tfan out to 

four and three places in the grant circuits and therefore the branching factors at points A 

and B are four and three, respectively. The grant signals control a multiplexer to select a 

specific virtual channel. Considering an 8-bit data bus, these grant signals are the control 

inputs of eight multiplexers as shown in Fig. 48. 
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9nti— 

Qrt, , H 

du H 

Fig. 48: Grant signals as control inputs of the mux. 

This will give rise to a side load capacitance equivalent to CSideioad = (8+8/3) times the 

minimum size inverter input capacitance at point C according to Fig. 47. As each grant 

signal splits to three elements of the priority matrix we have a branching factor of three at 

point C. From Fig. 46(b), it is evident that the signal uy is driving a NAND gate and 

inverter considering that the flip-flop consists of a pair of cross-coupled NAND gates. 

Consequently, the load capacitance at point D will be equivalent to three minimum-sized 

inverter gate capacitances. The load capacitance at the point C is considered as a side 

load. Al l the capacitances are expressed relative to the input capacitance of a minimum 

sized inverter. 

We use the notations in Table 7 in determining the delay. 

Table 7: Logical Effort - Summary of parameters [21][24] 

Term Expression 
Logical Effort of a gate LEi 
Logical Effort of a path LEP = niEi 
Fan Out FO = Coui/ Ci„ 
Branching Factor BFi 
Branching Effort BE = nBFi 
Path Effort PE = (LEp)(BE)(FO) 
Stage Effort SE = (PE)I/N, N = No. of stages in the path 
Parasitic Delay of a gate Pi (Intrinsic delay due to its own internal capacitance) 
Parasitic Delay of the path P = ZPi 
Delay of a path D = (SE)(N) + P 

The values of the logical efforts and parasitic delays of the gates used in our design are 

shown in Table 8. 
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Table 8: Logical Effort and parasitic delays of the relevant gates [24] 

Gate Type Logical 
Effort 

Parasitic Delay 
[tinv] 

Inverter 1 1 
NOR2 5/3 2 
NOR3 7/3 3 
XOR2 2 4 

NAND2 4/3 2 
MUX (Fig. 25) 2 2 

From Table 7, the determination of the delay of a path is straightforward. It 

mainly involves determining the optimal stage effort. In the case of the input arbiter 

circuit as shown in Fig. 47, in addition to the output load Cout there is a side load at point 

C. Consequently, this amounts to two stage efforts, one characterizing the circuit 

behaviour from point C to the output load, and the other from the input to point C. To 

determine the first one, we eliminate the side load and find SE= 2.8 according to Table 6. 

Considering SE = 2.8 and Cioad = 3, we calculate the input capacitances at the 

point D as 

£ _ ^3inputsNOR
 X BFp * Clgad _ ^ g 

D~ SE 
(5.12) 

Considering Co as the load capacitance, we can calculate the input capacitance at 

point C. Using a similar equation as (4.5) we get Cc = 1.49. Consequently, in the 

calculation of the SE of the first 5 stages, we consider the total load capacitance at point 

Cas 

Cload,c=Csideload +1.49 = 12.16 (5.13) 

Again, following Table 7 with a fan out of 12.16 yields the stage effort of the first 

five stages to be SE = 4.38. 
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The parasitic delay of the path is P=13tinv (according to Tables 7 and 8). 

Combining both stage efforts and the parasitic delay we get the delay of the input arbiter 

as 

Dinput_arbi!er = 5x4.38 + 2x2.8 + 13 = 40^ = 8 F 0 4 (5.14) 

The delay of the input multiplexer wi l l be given as 

Dinput_MUx =2+2=4^ = 0 . 8 F O 4 (5.15) 

Combining the latter two, the delay in the input arbitration process is 

Dinpu, arbitration = ^input ̂ arbiter ^ ^Input _MUX = 8 . 8 F 0 4 (5.16) 

The first step in the implementation of the routing logic involves the comparison 

( X O R ) of the source and destination addresses taking the most significant (M= (log2N -

21)) bits, where N is the number of functional IP blocks in the system and / denotes the 

level number of the switch. Subsequently, the result of the comparison is checked, i.e., 

whether a " 1 " results from the X O R operation. A s a result of these two logical operations 

the critical path of the routing block is as shown in F ig . 49. 

Fig. 49: Critical path of the routing block. 

The final M-input O R gate of Fig . 49 is modeled as a tree of 2-input N O R gates 

[24], also indicated in F ig . 25. If k is the number of levels in the N O R tree then 2k = M. 

The logical effort of this M- input OR tree is 
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LE0R(M) = {LE)N0R^M = M l 0 § 2 3 = M 0 ' 7 (5.17) 

The output of the routing logic block fans out to an input demux control inputs 

and to the input of a 5:1 arbiter. According to the circuits shown in Figs 47 and 48, the 

output load of the routing block will be equal to Cioad = (8+8/3+l)=11.67 times the 

minimum size inverter input capacitance and the fan out will be 11.67. Hence, the stage 

effort is given as 

SErouling=(2xM01xU.6lj (5.18) 

and the delay of the routing block will be 

DMULING_BLOCK = 3x(2xM 0 7 x l 1 . 6 7 ) 3 +(log2 M){PNOR2 + PINV) (5.19) 
+P +P 
^ 1 inv ^ 1 XOR2 

The parasitic terms PNOR2, PINV, PXOR2 are equal to 2, 1 and 4 respectively, according to 

Table 7. 

By adding the delay corresponding to the demux to the delay of the routing 

block, we get the total delay associated with the routing process expressed by 

^routing = ^routing_block ^ ^Input_DEMUX (5.20) 

Dr0uting_biock will depend on M, which in turn depends on the system size. From Table 2, 

the value of M varies from 7 (in 130 nm node) to 11 (in 32 nm node). Consequently, 

Dr0uting_btock varies from 4 F04 (130 nm) to 6 F04 (32 nm). As a result, Drou,ing varies 

from 5 F04 (130nm) to 7 F04 (32 nm). 

Similarly to the input arbitration process, the delay involved in the output 

arbitration can be expressed as 
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^ output _ arbitration ^ output _ arbiter ^output _ MUX 10.3.FO4 (5.21) 

For the switch traversal process the delay is computed considering the chain of four 

input and output muxes and demuxes. The output of the final demux drives the latches 

of the virtual channels as shown in the Fig. 43. Considering that the latches consist of a 

pair of cross-coupled NAND gates, the load capacitance is equivalent to two minimum-

sized inverter gate capacitances, and hence, the fan out will be 2. Following the same 

method as in the case of the input arbiter we get the stage effort (SE) of this mux-demux 

chain to be 2.38. Finally, the delay of the switch traversal process can be expressed 

according to the following: 

D, switch _ traversal — (4XSE) + P,nput_MUX
 + ^lnput _ DEMUX + 

p +p = 17 5/ =3 5F04 
1 Output_DEMUX ~ 1 Output_MUX 1 ' ""inv • w 

(5.22) 

The parasitic terms Pinput_Mux, PinPut_DEMux, PoutPut_DEMux and PoutPut_Mux are all equal to 2, 

according to Table 7 and Fig. 48. 

We developed a V H D L model for the switch and synthesized it using Synopsys' 

synthesis tool in CMOS 0.18p technology. We compared results obtained from the 

theoretical analysis with those given by Synopsys' tool. These comparisons are reported 

in Table 9. 

Table 9: Comparison of Delays: Calculated vs. Synopsys' tool-generated 

Process Delay (LE 
analysis) 

Delay (Synopsys' 
Tool) 

Input Arbitration 8.8 F04 9AF04 

Routing 5F04 6.2F04 

Output Arbitration 10.3FO4 %.6F04 

Switch Traversal 3.5F04 5F04 
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Table 9 shows that the delays estimated by our logical effort analysis match 

closely those obtained from Synopsys' tools. However, it should be taken into account 

that the numbers on the second column reflect a full custom design approach (with 

respect to gate sizing) while the synthesis tool used did not have the option of modifying 

the gate size to optimize the delay of paths depending on the load. Our detailed analysis 

shows an improvement over the existing highly pipelined virtual channel routers [27]. 

This indicates that the delay associated with each processes involved with the operation 

of the switch is well below the limit of \5F04 and can therefore be driven by a clock 

with this period or less. 

5.3 Summary 

This chapter analyzes the delays associated to the pipeline stages involved in the 

switch operation. We have shown that there are three pipeline stages on the signal critical 

path. For header flits, these stages are: input arbitration, routing, and output arbitration. 

For data (body and tail) flits, routing is replaced by switch traversal. For each of these 

processes, the corresponding delays were calculated using the method of logical effort. 

The results indicate that all delays of the switch pipeline stages are within 15 F04 delay 

units, and, consequently, the switch can be driven by a clock cycle with this period. The 

principal conclusion of this chapter is that the switches in the B F T interconnect template 

w i l l not be a bottleneck for data transmission rate, as the maximum rate at which 

functional IP block w i l l generate output signals corresponds to \5F04 delay units. 
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6 Chapter VS 

Conclusions and Future Work 

6.1 Summary 

In this thesis, we have investigated the timing characteristics of an on-chip, switch-

based interconnect template, namely the butterfly fat-tree. The underlying hypothesis was 

that a paradigm change will happen in the SoC design methodology, where multiple, 

heterogeneous IP blocks, consisting of around 100K gates, will be integrated together 

using a structured interconnect template. The functional IP blocks will exchange data in 

the form of packets, divided into smaller flow control units (flits) of constant size. From 

one functional IP to another, the flits will traverse multiple pipeline stages, according to 

the routing algorithm that is implemented (least common ancestor determination and 

turnaround routing in the BFT graph). Each pipeline stage will be represented by either 

an inter-switch wire or a process in a switch. Depending on the nature of the flit (header 

or data), the processes that will be executed by the switch will be: 

for header: input arbitration, routing, output arbitration; 

for data: input arbitration, switch traversal, output arbitration. 

Then, the delays associated to each of the pipeline stages were determined. For 

inter-switch wires, we developed a wire length model based on the layout of the 

interconnect template, and calculate the delay of each of these segments. When 

necessary, it was pointed out which of the inter-switch segments need to be optimized by 

inserting buffers. The analysis was extended for successive technology nodes using 

technology dependent parameters such as copper resistivity, gate oxide capacitance, 

fringing capacitance of metal tracks. 
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For the active devices of the interconnect network, i.e., the switches, we 

determined the delays involved in their pipeline stages using the method of logical effort. 

B y expressing the delays of the processes in technology independent units, it was 

possible to isolate the effect of technology scaling. 

The analysis shows that the individual delay of each of the pipeline stages can be 

made to fit within the limit of \5F04 suggested by ITRS as appropriate for the clock 

cycle of high performance SoC. Given the likelihood of having multiple clock domains in 

a large SoC, our understanding of the \5F04 rule is that data exchange between any two 

functional IP blocks should be possible at this rate, with the penalty of an increased setup 

time required by the header flit to reach the destination node. But after this setup time, 

once a header arrives at the destination, the incoming packets, can be absorbed at a clock 

speed governed by 15F04 delay units, required for signals to traverse one pipeline stage. 

The non-scalability of buses as on-chip interconnects was quantified with respect to 

the achievable clock cycle. It was shown that the amount of capacitance (corresponding 

to the attached functional IP blocks) that can be added to a bus is extremely limited, 

under the clock cycle constraints mentioned above. Also , a simple method of evaluating 

the feasibility of buses for specific on-chip applications was presented: it has been shown 

that the total capacitance added to the bus has to be less than a predefined, technology 

specific value. 

The method can be adapted for any on-chip interconnect topology, with minor 

changes involved by the specific design parameters such as topology, number of virtual 

channels, arbitration scheme. 
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6.2 Contribution of the Work 

The goal of this research is to analyze and characterize a specific on chip 

interconnect architecture with respect to timing. Demonstrating the issues that affect the 

system level timing is a key component in designing high-speed, high-performance 

on-chip data transmission mechanisms. We assume that the interconnect network should 

not limit the system's speed of operation. A methodology was developed to evaluate the 

maximum achievable clock rate of the SoC communication fabric. The basic question 

that this thesis answers is the following: given a certain topology of an on-chip network, 

what is the minimum clock rate at which it is possible to move data across the chip? In 

our case, the topology is the butterfly fat-tree and the clock rate is \5F04 delay units as 

specified in ITRS 2001 document. The movement of signals from one IP block to another 

is pipelined, and the pipeline stages consist of both passive (metal wires) and active 

(intelligent switches) devices. Analyzing the delay of each stage and placing the work in 

the context of future technology nodes, it is possible to accurately quantify the raw 

performance (measured in maximum achievable clock rate) of a networked SoC. We also 

quantified the non-scalability of bus-based systems on chip, and showed a method to 

decide when the transition from a bus-based to a network-centric design style is required. 

The innovative contributions of this thesis are summarized as follows: 

- Development of a wire-length model for the B F T (butterfly fat-tree) topology and 

associated delays for future technology nodes. 

- Development of a technology independent delay model for the active devices (switches) 

and the corresponding pipeline stages. 
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- Provision of a quantitative formulation for the non-scalability of bus-based systems and 

indications for how designers should decide on the transition point between bus-based 

and network-based design style. 

6.3 Future Work 

6.3.1 Power Analysis 

This work is an important step toward the complete realization, characterization and 

evaluation of the on-chip interconnection networks for large SOCs. After characterizing 

the B F T interconnect template from a timing/delay point of view, the next logical step is 

to analyze and parameterize its power dissipation. Based on the pipeline stages on the 

data path of the flits from source to destination, four components of power dissipation 

can be identified: 

- wire power: power dissipated in driving messages along the inter-switch wires; 

- arbitration power: Power is dissipated during the input/output arbitration steps; 

- routing power: power required to make a routing decision for the header flit; 

- switching power: power dissipated in the switch traversal process by the data flits. 

Power dissipation in the interconnect network can be viewed in two ways: a) a 

message-centered view and b) a switch-centered view. The message-centered view 

focuses on the amount of power dissipated in driving a message through the network, 

from a source node to a destination node. Consider a message spread across a number of 

D links. In a steady state view of the network and at a particular moment of time, the 

power required to drive the message is equal to the power required to make the routing 
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decision, Pr, and the power required to drive the data flits through the network. Since the 

message is spread over D links and each link is concurrently switching, the 

message-centered power can be expressed as: 

Pmss=Pr + D(Ps+Pw) (6.1) 

where Pr is the power required for routing decision, Ps is the power dissipated during 

switch traversal, and Pw is the power dissipated by a flit traversing a wire segment 

A switch-centered view focuses on power dissipated in switch per message. The power 

per switch is the power it takes to process a message. This results in: 

Pswilch=(Pr/D) + Ps+Pw (6.2) 

These different views capture power dissipation in the network at two different levels. 

The message-centered view of power dissipation is helpful when analyzing the network 

from an application perspective. The switch centered view is useful when the network is 

analyzed from a technology standpoint. 

6.3.2 Interfacing 

Another important problem in this N o C project is the interfacing between the 

functional IP blocks and the communication template. To solve this problem, and 

considering the heterogeneous nature of the functional IP blocks in the SoC, we shall 

start from the assumption that all the cores are OCP-compatible. This is not a very 

restrictive requirement, since most of the existing digital blocks can be converted to the 

O C P protocol [28]. A n example of O C P compatible cores and their corresponding 

interfaces is given in F ig . 27. A first step in interfacing the IP blocks is making them 

O C P compatible. The result of this is the fact that we wi l l have to deal with a clearly 
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specified, standard set of signals corresponding to the master/slave instances of the O C P 

interface. This set of signals w i l l be packetized by a second interface, which wi l l sit 

between the O C P instances and the communication fabric. The interface wi l l have two 

functions: 

1: injecting/absorbing the flits leaving/arriving at the functional IP blocks; 

2: packetizing/depacketizing the signals coming from/reaching to O C P compatible cores 

in form of messages/flits; 

System Initiator System Initiator-Target System Target 

Core Core 

Slave 

B u s wrapper 
interface 

module 

C o r e 

• m 1 f O C P 

Bus Initiator 
I 

Response 
Request 

B u s Initiator/Targe 

On-Chip Bus 

Fig. 50: Example of OCP interfaces [28]. 

Fig. 51: Packetization/depacketization interfaces. 

86 



R E F E R E N C E S 

[I] W . J. Dally, B . Towles, "Route Packets, not Wires: On-Chip Interconnection 
Networks", Proceedings ofDAC 2001, pp.684-689. 

[2] P. Guerrier, A . Greiner, " A Generic Architecture for On-Chip Packet-Switched 
Interconnections", Proceedings of Design, Automation and Test in Europe 
Conference and Exhibition 2000, pp. 250 -256. 

[3] http://public.itrs.net/Files/2002Update/Home.pdf. 

[4] P. P. Pande, C . Grecu, A . Ivanov, R. Saleh, "Design of a Switch for Network on 
Chip Applications", Proceedings oflSCAS, pp. 217-220. 

[5] P. Pande, C . Grecu, M . Jones, A . Ivanov, R. Saleh, "Architecture Evaluation for 
Communication-Centric SoC Design", submitted to ISCAS 2004. 

[6] S. Kumar, et al, " A Network on Chip Architecture and Design Methodology," 
Proceedings ofISVLSI2002, pp. 117-124. 

[7] A . Adriahantenaina, A . Greiner, "Micro-network for SoC : Implementation of a 
32-port SPIN network" , Proceedings of DATE 2003, pp. 1128-1129. 

[8] P. P. Pande, C. Grecu, A . Ivanov, R. Saleh, "High-Throughput Switch-Based 
Interconnect for Future SoCs", Proceedings of 3rd IEEE International 
Workshop on System-on-Chip for Real-Time Applications, June 30-July 2, 2003, 
Calgary, Canada, pp. 304-310. 

[9] J. Duato, S. Yalamanchili , L . N i , "Interconnection Networks: An Enginering 
Approach", Morgan Kauffman, 2002. 

[10] [ A M B A Bus specification, http://www.arm.com. 

[II] CoreConnect Specification, http://www-3.ibm.com/chips/products/coreconnect/. 

[12] Wishbone Service Center, http ://www. silicore. net/wishbone .htm. 

[13] F . Petrini, M . Vanneschi, "k-ary n-trees: High Performance Networks for 
Massively Parallel Architectures", Proceedings of the 11th International 
Parallel Processing Symposium, IPPS'97, Geneva, Switzerland, Apr i l 1997, 
pp. 87-93. 

87 

http://public.itrs.net/Files/2002Update/Home.pdf
http://www.arm.com
http://www-3.ibm.com/chips/products/coreconnect/


[14] C. E . Leiserson, "Fat-Trees: Universal Networks For Hardware-Efficient 
Supercomputing", IEEE Transactions on Computers, October 1985, 
C-34(10):892-901. 

[15] A . DeHon, "Compact, Multilayer Layout for Butterfly Fat-Tree", Twelfth 
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 
2000), July 9-12, 2000, pp. 206-215. 

[16] D . Sylvester, K . Keutzer, "Impact of Small Process Geometries on 
Microarchitectures in Systems on a Chip", Proceedings of the I E E E , V o l . 89, 
No. 4, Apr i l 2001, pp. 467-489. 

[17] M . A . Horowitz, et al., "The Future of Wires", Proceedings of the IEEE, 
Volume: 89 Issue: 4, Apr i l 2001 pp. 490-504. 

[18] P. Wielage, K . Goossens, "Networks on Sil icon: Blessing or Nightmare?", 
Euromicro Symposium on Digital System Design, Dortmund, Germany, 
September 2002, pp. 196-200. 

[19] Design and Reuse website, http://www.us.design-reuse.com/sip/. 

[20] P. Magarshack, P . G . Paulin, "System-on-Chip Beyond the Nanometer W a l l " , 
Proceedings ofDAC'03, June 2-6, 2003, Anaheim, U S A , pp. 419-424. 

[21] D . A . Hodges, H . G . Jackson and R. Saleh, "Analysis and Design of Digital 
Integrated Circuits'", Third Edition, M c G r a w - H i l l , 2003. 

[22] K . C . Saraswat, et al., "Technology and Reliability Constrained Future Copper 
Interconnects - Part II: Performance Implications," IEEE Transactions on 
Electron Devices, V o l . 49, No. 4, Apr i l 2002 pp. 598-604. 

[23] C . Yuan, T. Trick, " A Simple Formula for the Estimation of the Capacitance of 
Two-Dimensional Interconnects in V L S I Circuits", IEEE Electron Device 
Letters, vol . E D L - 3 , 1982, pp. 391-393. 

[24] I. Sutherland, B . Sproull and D . Harris, "Logical Effort: Designing Fast CMOS 
Circuits", Morgan Kaufmann, 1999. 

[25] W . J. Dally, "Virtual-Channel H o w Control," IEEE Transactions on Parallel 
and Distributed Systems, vol . 3, no. 2, March 1992, pp. 194-205. 

[26] H.Wang, L - S Peh and S. Mal ik , " A Power Mode l for Routers: Modeling Alpha 
21364 and InfiniBand Routers", Proceedings of the 10th Symposium on High 
Performance Interconnects (Hot Interconnects), Stanford, C A , August 2002, pp. 
21-27. 

88 

http://www.us.design-reuse.com/sip/


[27] L . Peh, W . Dally, " A Delay Model and Speculative Architecture for Pipelined 
Routers", The Seventh International Symposium on High Performance 
Computer Architecture, Jan. 2001, pp. 255-266. 

[28] Open Core Protocol, www.ocpip.org. 

[29] R.I . Greenberg, Lee Guan, " A n Improved Analytical Model for Wormhole 
Routed Networks with Application to Butterfly Fat-Trees ", Proceedings of the 1997 
International Conference on Parallel Processing, pp.: 44 - 48. 

[30] J . Rabaey, A . Chandrakasan, B . Nikol ic , "Digital Integrated Circuits - A Design 
Perspective (2nd Ed)", Prentice Hal l , 2003. 

[31] C . Grecu, P. Pande, A . Ivanov, R. Saleh, " A Scalable Communication-Centric 
SoC Interconnect Architecture", to appear in the Proceedings. oflSQED 2004. 

89 

http://www.ocpip.org

