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Abstract

A new matched filter bound (MFB) for a dispersive Rician fading channel with
unrestricted normalized Doppler rate is presented. Analytical expressions are derived for BPSK

modulation.

The channel model is based on the standard linear time varyi_ng filter. The BER perfor-
mance, in general, is found to improve with an increase in the fading rate due to the inherent
diversity present within a single pulse. The shape of the transmitted pulse is shown to affect the
BER in fast fading conditions. It has been found that the specular component improves the BER at
lower fading rates; for very high fading rates, the implicit diversity effect becomes dominant in

diminishing the effect of fading.

Discrete (two and three beam) models are assumed for the dispersive channel. The error
bounds for the three-beam model are derived as a function of the inter-beam delay and correlation
parameters. In general, the delay spread was found to result in lowering the BER for both the slow
and fast fading cases when the fading in the beams is uncorrelated. In the two-beam frequency

selective case, the BER is very sensitive to the degree of beam overlap.

Finally, assuming errors in estimating the channel fading waveform, the BER for a non-

ideal receive filter is obtained. It was observed that, for the specified model, the system degrada-

tion is higher for phase mismatches than for amplitude mismatches for a given error variance.
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Chapter 1 Introduction

Mankind has been on an unending quest to improve his communication ability. It began
with the use of sign language and gradually developed into well defined speech. Communication
at a distance was a challenge. The practice of sending handwritten messages/letters through
messengers is a very old one and still in prevalence. However, the twentieth century has seen
dramatic changes in the field of telecommunications: the telegraph, telephone, internét and
cellular phones are but the most visible examples. For many people, the need to be able to
communicate anytime, anywhere is satisfied using cellular systems. However the design éf mobile
communication systems presents challenging problems because of the random time-varying

nature of the land mobile radio channels.

1.1 Motivation

One of the main problems with transmission over land mobile radio channels is the
multipath fading phenomenon which results in amplitude and phase fluctuations of the received

signal, at times causing significant dispersion leading to interference.

Various diversity schemes [1] have been proposed to combat fading. Most of the
commonly used schemes involve multiple transmission and/or reception of the signal in space,
time, frequency and polarization planes. Although these methods can lower the error rates, they
often achieve this at the cost of different system parameters like the transmission rates, bandwidth
and system complexity. Orthogonal Frequency i)ivision Multiplexing (OFDM) ['2] is a concept
that works on a simple principle of inducing time diversity inherently in the system by lengthen-

ing the symbol period so that the system is more robust to impulse noise and channel fades.
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Since the coherence time of a-channel is inversely proportional to the carrier frequency,
the application of higher operating frequencies (ih the GHz range), for fixed (or relatively less
increase in the) transmission rates, would increase the fading rate in the channel resulting in the
channel to be treated as time variant over a single symbol. Figure 1.1 illustrates the difference
between a fast and a slow flat-fading channel response assuming a fixed symbol/pulse duration. It

is important to realize that a system is referred to as slow or fast fading with respect to both, the

channel parameter i.e. Doppler rate, f,, and the symbol parameter i.e. pulse duration, T, which

are together incorporated in the normalized Doppler rate, fy = f;-T,.
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Figure 1.1 Received signal corresponding to slow and fast fading channels
In addition, as shown in [3], microcellular systems i.e. mobile radio systems configured

with many small cells having low-powered base stations, often have Rician rather than Rayleigh

envelope fading characteristics. The deployment of such systems in urban mobile radio channels




Chapter 1 Introduction 3

and the use of multi-carrier modulation schemes like OFDM, provides the motivation for the

study of the effect of frequency dispersion along with time dispersion in Rician fading channels.

1.2 History of Related Work

Communication over wireless channels has been studied since the early 1960’s. In [4], the
error probabilities for coherent and non-coherent multichannel (or multibranch) communication
system involving Rician fading are obtained. The paper is among the pioneering works in obtain-
ing the performance bounds for the coherent and non-coherent multichannel systems subjected to
Rician and Rayleigh fading. It shows that the effectiveness of the multichannel reception is more
pronounced in the case of channels with small Rician factors. However, it does not consider time

dispersion within each of the channels.

Reference [5] discusses signal propagation through a Rayleigh fading channel without any
explicit diversity (multichannel reception). The paper presents more general results than those in
[4] by considering cases of a single-beam (flat-fading) and two-beam (frequency-selective fading)
signal reception taking into account correlation between the beams. An extension of the above
work appears in [6] which provides the performance analysis of a Rayleigh channel with continu-
ous and discrete delay profiles for a space-diversity mobile radio receiver. This work compares the
gain in bit error rate performance, obtained with space diversity over the gain obtained with
frequency selectivity in the channel and the effectiveness of frequency selectivity, in lowering the

error rate, in a single branch system over a multiple branch system.

The Rayleigh fading channel is a commonly used model when there is no line of sight

(LOS) path between the transmitter and the receiver. When LOS path is present, a Rician fading

model can be adopted. Matched filter bounds over a multipath Rician fading channel of discrete
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and continuous dispersion are derived in [7]. The paper emphasizes that the diversity gain achiev-
able with intrinsic frequency diversity(IFD) (or frequency selectivity) diminishes with the
increase in the Rician factor of the channel. It is worth noting that [4] and [7] refer to the diversity
gain from different aspects. The former defines diversity gain with respect to multiple branch
system when the diversity is induced in the system whereas the latter relates it to the IFD of the

channel.

A more recent and useful contribution to the system presented in [6] appears in [8], [14]
and [9] where the channel is no longer assumed to be time-invariant. The effect of fading rate in
the Rayleigh fading channel is studied. In [8] a general algorithm for obtaining matched filter
bounds for an uncoded BPSK modulation scheme is devised and the effect of pulse shape on
receiver’s performance is analyzed. Similar approach is applied in [9], although in the frequency
domain and the assumption of’ uncorrelated scattering in the channel is made in deriving the
results for a continuously dispersive channel. The exploitation of Doppler diversity (frequency

dispersion) in fast fading channels is also discussed in [10].

1.3 Thesis Contribution

The research presented in the thesis involves deriving the optimum bit error rate perfor-
mance of a system, comprising of a linear time-varying Rician fading channel, with uncoded
BPSK modulation. In compliance with the previous results, [8] and [14], the probability of error is
found to be significantly affected by the channel’s fading rate and unlike in slow fading case, the
shape of the transmitted pulse poses an issue. The system behavior as a function of different
parameters like the Rician factor, normalized Doppler rate etc. for frequency flat and in addition,

the delay spread and beam correlation for frequency selective channels is studied. Finally, bit
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7
t

error rate perfom'lance of a system employing a non-optimum receive filter is presented.

1.4 Thesis Organization

The research work, background information and conclusions are, in all, presented in five

chapters, a brief description of which follows:

¢ Chapter 1: The chapter introduces the challenge undertaken in the present research and
chronologically provides the background of the problem. It also specifies, in brief, the

contributions of the thesis.

e Chapter 2: The objective is to provide a necessary and basic understanding of the fad-
ing phenomenon, the communication system, the wireless channel and other related

topics.

e Chapter 3: This chapter forms the core of the thesis as it presents the solution to the
problem stated in the introductory chapter. A detailed analysis of the matched filter

bounds is presented.

« Chapter 4: All the analytical and simulation results are graphically presented in this
chapter. It includes physical interpretation of the results and comparisbns between

some of the plots.

e Chapter 5: The conclusions derived from this research and some useful suggestions for

future work in related field are presented in this chapter.
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Chapter 2 The Wireless Channel

2.1 Introduction

The effect of a fading wireless channel on a transmitted signal is both complex and
interesting. The main purpose of this chapter is to provide a basic understanding of the fading
phenomenon, its cause and effects; this is necessary background for the work presented in this

thesis.

2.2 Signal Propagation in a Wireless Channel

In a wireless communication system, the transmitted signal often reaches its destination
via multiple paths. The mechanisms that impact signal propagation can be classified into three

types, namely reflection, diffraction and scattering [1], [11]:

* Reflection is caused by the radio wave striking and reflecting off a smooth surface with very
large dimension compared to the signal wavelength, A.

* Diffraction occurs due to the obstruction of the radio path between the transmitter and the
receiver by a dense body with large dimension relative to A resulting in the formation of sec-
ondary waves behind the obstructing body.

* Scattering occurs when the signal impinges on either a large rough surface or any surface with

dimension of the order of A or less, causing the reflected energy to scatter in all directions.

Fading is a cumulative effect of the above mechanisms.

2.2.1 Land Mobile Fading

The arrival of the transmitted signal at the receiver over multiple paths gives rise to the
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phenomenon of fadingl, in which a signal undergoes random and time varying attenuation and
delay.

It is useful to distinguish between two types of fading effects [1]:

Large-scale fading which represents average signal power attenuation or path loss due to
motion over large areas and small-scale fading which refers to the changes in signal amplitude
and phase owing to small changes in the location of the receiver with respect to the transmitter.
Although both fading aspects are significant frorﬁ different perspectives, the present work focuses
on small-scale fading as encountered in land mobile fading channels.

It has been often observed that, due to the denge population of sky-scrapers and other tall
structures within a city, there seldom exists a direct line of sight (LOS) path between a Base Sta-
tion (BS) and a Mobile Station (MS) whereas in sub-urban areas this is usually not the case.
Rather, there are generally some prominent structures which may act as fixed scatterers or signal
reflectors. Thus, inspite of the lack of a LOS path, the MS may continue to receive a signal of a
fixed, appreciable strength in addition to the randomly varying? signals from other scatterers and
reflectors which are in relative motion to the mobile.

Accordingly, the channel is modeled as Rician fading if it is characterized by the presence
of LOS, fixed scatterers or signal reflectors in the medium or Rayleigh fading if the specular path

(i.e. the non-fading component of the channel) is absent. The Rician fading channel is considered

' When the multipath effect is caused by physical changes in the propagating medium for example varia-

tions in the density of ions in the ionospheric layers, it is referred as Scintillation. This is especially appli-
cable in radio astronomy; however both terms, fading and scintillation, refer to a signal’s random

fluctuations and differ mainly in their causes of occurrence [11].

Here the random variations in the signal are being treated as variations with respect to different symbols

or variations within a symbol of a finite duration.
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as a more general model in which the absence of the specular path results in the Rayleigh fading

channel.

2.2.2 Fading Channel

In a wireless communication system, the received signal is often a random transformation

of the transmitted one.

Two types of channel models have been proposed in [7]: continuously dispersive (CD) and

discrete path (DP) channel models. A CD channel has a continuum of diffused components. For a
transmitted signal, s(t), the received signal can be written as [12]

Ty
rea(t) = [ 2,4(57) - s(t-1) dt 2.2.1)

0
where T, is the channel’s delay spread and z_,(¢, T) is the impulse response of the CD channel

which is defined as the response of the channel at time ¢ to an impulse applied at time - T.
On the other hand, we model the DP channel as consisting of a large number of discrete

paths (multipath); each path n has independent time varying attenuation, o.,(¢) , delay, t,(), and

phase, ¢@,(), with respect to the transmitted signal, s(¢). The signal, rdp(t) , at the channel

output is

rap(t) = X0, (1) e s(t-1 (1)) . (2.2.2)

The difference between the above two channel models can be clearly observed in Figure 2.1

which displays the response of a CD and DP channel to a short pulse (ideally an impulse). The
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received signal appears as a continuously time-varying signal or a train of pulses respectively.
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Figure 2.1 Continuously Dispersive and Discrete Path channel outputs
Small variations in the spatial separation between the transmitter and the receiver and/or
random changes in the surroundings have two major manifestations:
* Time-spreading and
* Frequency-spreading of the signal
Time-spreading, commonly known as signal dispersion, is the elongation of the transmit-
ted signal as it undergoes multipath propagation. It is caused by the fact that the different signal
paths vary in length causing copies of the signal to reach the receiver at different times. As a
result, not only is the signal spread in time but the signal components arriving at the receiver also

differ in phase. Thus, a signal component with phase ©,, transmitted at time t,, may arrive in con-

junction with another component of phase ¢; transmitted at time ty, resulting in constructive or
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destructive interference between the two. We can characterize signal dispersion in terms of Delay

Spread (T, ). Viewed in the frequency domain, signal dispersion is expressed in terms of Coher-

ence Bandwidth (Af . ) which implies that the signal components having frequency separation

less than Af, are treated alike by the channel. It can be shown [12] that Af = TL . Based on
M

this, we can further classify fading as:

» Flat or frequency non-selective fading: When Af . is large relative to the signal bandwidth,

the channel is said to be flat. Viewed in the time domain, the channel ideally causes no delay
spread in the transmitted signal, i.e. T,, = 0.

* Frequency Selective fading: If the coherence bandwidth is small compared to the signal
bandwidth, the channel is said to be frequency selective. The attendant delay spreading causes
inter-symbol interference (ISI).

Frequency-spreading of the signal is a direct consequence of the spatial changes of the

receiver relative to its surroundings, accounting for propagation path changes. As a result, the

channel offers a time-variant response. This is characterized by the Coherence Time At _, which is

defined as the duration over which the channel’s impulse response can be considered as time-

invariant. Coherence time is inversely proportional to the Doppler Spread, At o< 71— [12]. The

d
Doppler spread is a function of the MS velocity, v, and signal wavelength, A, and is a measure of

the spectral broadening of the signal

f, = fg-cos(6,) (2.2.3)

where f, is the Doppler shift [15] for the n'h wave arriving at an angle 6, with respect to the
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direction of motion of the MS and f, (f, = %) is the maximum Doppler frequency.

Depending on the channel’s coherence time with respect to the signal duration, the Doppler
spreading results in:

+ Fast Fading: The channel exhibits a rapidly time-varying impulse response relative to the
symbol duration and the signal experiences spectral broadening. Fast fading often causes the
occurrence of frequent deep fades in the received signal.

* Slow Fading: When the channel’s coherence time is long compared to the symbol duration,
the channel is considered as slowly fading. Equivalently, the Doppler spread is small.

It is important to understand that the time-spreading and frequency-spreading are indepen-
dent phenomenons. A wireless channel may exhibit any combinations of Flat/Frequency Selective

and Fast/Slow fading.

2.3 Channel Model and its Statistical Characterization

2.3.1 The Linear Channel
In terms of the complex lowpass equivalent form of a bandpass system [12], we can
express the impulse response of the channel as z(z, T), which represents the response of the

channel at time ¢ to an impulse applied at time 7 — 7. In this section an expression for z(z, T)
applicable for both flat and frequency selective fading channels is obtained. In doing so, we follow

an approach similar to that of [12]. The general expression of the impulse response is given as

260 = Yo, e S(r-1,0) 2.3.1)

where f is the carrier frequency of the bandpass signal; a.,(¢) and 7,(¢) are the attenuation and
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delay of the nth ray at time ¢, respectively.

Equation (2.3.1) is a general expression from the point of view that it accounts for both Rician and

Rayleigh fading channels and accommodates for all types of fading discussed in Section 2.2.2.
Since the specular path is a non-fading compdnent of the channel, we can implement the

impulse response of a Rician fading channel, z,, (¢, T), by taking a constant attenuation, 0., and

rice

associated delay, T, for the first arriving ray

_jznfc _jznfrtn(t)

(6T) = 0 e 3 (T—1g) + Yo, (1) e

Zrice

- 0(T—1T,(2)) (2.3.2)

Figure 2.2 shows the block diagram representation of the response r(z) of a fading

channel z(z, T), corrupted with noise n(t), to an input s(¢).

| A

l I

I I

s(t)—{—-» z(t,7) { | > (1)
I [
b —_ - -
Channel n(t)
AWGN
Figure 2.2 Linear System model
The signal r(¢) can be written as
r(t) = j 2(t, T)s(t - T)dT + n(t) (2.3.3)

—00

Substituting (2.3.1) in (2.3.3) and neglecting the noise term for the moment, the received signal,
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r (), is given as

—jZRfCTn(’)

ro(1) = Yo, (1) e -s(t=7,(1)) . (2.34)

The autocorrelation function of z(¢, T) is defined as [12]

R (A1}, 1,)) = % CE[z%(1,7,) - 2(t + A, 1,)] . (2.3.5)

Assuming uncorrelated scattering, i.e. independence of attenuation and phase shifts associated
with different path delays, and letting At = 0, (2.3.5) can be re-written as

R,(0:(1}, 7)) = R(T)) - 8(T;-1,) . (2.3.6)

The function R(t), known as the delay power spectrum of the channel, represents the average

power output of the channel as a function of the time delay <. In urban environments, R(t) can

be approximated by the continuous one-sided exponential function [13], i.e.

R(t) =

-exp(—pT ) 120 (2.3.7)

rms

D

rms

where D, is the rms delay spread. In some previous works [6], the class of two-sided continu-

ous spectra is considered by assuming the Gaussian spectrum. However, for simplicity, we confine
our analysis to one and two beam cases (Double-Spike spectrum (2.3.8)) which can easily be

extended to a system with N, (N > 2), beams by applying a similar procedure.

R(7) = %(8(1)+8(’t—0)) (2.3.8)

A snapshot of the impulse response with continuous one-sided exponential delay power

spectrum is shown in Figure 2.3. The figure is plotted assuming D, = 0.1 sec and a Doppler
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frequency of 10 Hz. One needs to be careful while comparing Figure 2.1, pertaining to the

response of the fading channel to an impulse, with the three-dimensional plot of the impulse
response, |z(t, T)| ; since z(#, T) isa function of two time variables, ¢ and T, whereas the response
of the channel is a function of ¢ only. It is, however, possible to trace the channel’s response to an

impulse from the three-dimensional plot of it’s impulse response.

1249 |

Figure 2.3 3-D view of the continuous-time impulse response, |z(t, T)|
Tt should be noted that the terms ‘one beam’ and ‘two beam’ models do not simply refer to

the arrival of one and two rays at the mobile; rather each beam may be interpreted as a collection
of several rays with varying path-delays closely distributed about the mean delays T, and T,,
respectively [14].

Thus, on splitting the second term in (2.3.2) into two parts (summation series) each reflect-

ing the case of a single Rayleigh faded beam and denoting their respective indices by n; and n,,
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with each ray in the group having an associated delay of ‘cnl(t) and ‘cnz(t) , respectively, where

T, (1) = T, +A7, (1), AT, () «T,

- (2.3.9)
’tnz(t) =T+ A'cnz(t), Arnz(t) « Tp
T, is the transmitted signal block/pulse duration, we obtain
—jznfc’t()
Zice(t,T) = Oy € “O(T-Tp) +2,(1,T) +25(8, T) (2.3.10)
where
-j2 L.— —j21tchT" 0] _
40 = Y0, (1) e T 8(t- (3 + AT, (1)
ny

(2.3.11)

~j2nf i —j2nf At, (1)
51 = Y (1) e :

n,

-8(T-(Ty+ AT, (1)) -

An upper-bound on AT, () can be obtained by realizing [14] that the greatest change in

the path length occurs when the mobile is directly in line with the direction of arrival of the signal.

Over the duration T, this would correspond to a change in path-length of v- T, fora mobile
moving at velocity v. Therefore the change in delay (AT, (1)), .. associated with the change in
path-length wouldbe v- T p/ c, wher.e c is the speed of light. Since (A7, (7)), . is much smaller
than the pulse duration, we can drop the At,(¢) factor from the delta functions in (2.3.11).

However, the same cannot be neglected in the exponential terms due to the large value of f ..

Assuming that each of the two beams consists of a large number of independent rays and
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the phases of the rays are uniformly distributed from 0 to 2z [15], the Central Limit Theorem [16]

can be applied to (2.3.11). Taking T, = 0 and T, = ©, (2.3.10) simplifies to

_jznfc

(1,7) = 0g-e RSt -1 +2,(1) - S(1) +e

() 8(1-0) (23.12)

Zrice

where z,(#) and z,(¢) are complex Gaussian random processes accounting for the attenuation

and phase of the two independent beams.

Since the direct/specular path is assumed to have the shortest path-length and the first

Rayleigh faded component arrives with negligible delay, we have T, = 0. Normalizing the two
random processes such that E[|z;(#)]*] = E[|zz(t)|2] = 1 and explicitly specifying the
strengths of the two Rayleigh faded beams as o; and o, respectively, we can re-write (2.3.12) as

(5, 7T) = O 8(T) + 0ty z,(£)- 8(T) + 0ty 2,(1)- (T~ 0) (2.3.13)

Zrice

Equation (2.3.13) is a general expression for the impulse response of a time-varying, frequency

selective channel. The impulse response corresponding to a flat fading channel is

(2,7) = 0 8(T) + 0y z,(2) 8(7) (2.3.14)

Zrice

Figure 2.4 illustrates the impulse response corresponding to (2.3.13) assuming a unity gain

channel with a Rician factor of 1. The figure is plotted with a Doppler frequency of 20 Hz and a

delay(c) of 0.2 sec.
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020 o0

Figure 2.4 3-D view of the discrete-time impulse response, |z(t, Tl
The Rician factor K is defined as the power of the specular component relative to the

power in the Rayleigh faded or diffused component and is often expressed in dB. Thus

a 2
K,z = 10-log,o(K) = 10-log;, (%) (2.3.15)
j%fade(t)dt

where R fad .(T) is the average delay power spectrum of the fading component of the channel,
(0y)? is the power of the specular path and the power of the diffused component is obtained by

integrating the average delay power spectrum l.e. jEK fad T)dT.

2.3.2 RF Spectrum and Autocorrelation of the Fading Process

The present work is based on Clarke’s model [17] which assumes a fixed transmitter with
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a vertically polarized antenna. The statistical characteristics of the random process z,(¢) are based

on isotropic scattering of the components/rays randomly arriving at the receiver at uniformly

distributed angles and experiencing similar attenuation over small-scale distances.

Figure 2.5 depicts the spectral broadening of an unmodulated continuous wave (CW)

carrier at frequency f, due to Doppler shift caused by the Rayleigh channel. Thus each of the
rays arrives at the MS in its own frequency, offset from f_ within £ ;. The corresponding power
spectrum density S(f) and autocorrelation function ¢(¢) of the Rayleigh fading process z,(¢)

for the case of a vertical whip antenna on the MS are given by [15]

S(f) = (2.3.16)

where b is the average power received by an isotropic antenna and w,; = 2nf,, f, being the

maximum Doppler frequency, and

o) = 1.5-b-Jy(w, 1) (2.3.17)

where J,(x) is the zeroth order Bessel function of the first kind.
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S(f

fc-fd fc
' Frequency

Figure 2.5 Power Spectrum of an unmodulated CW carrier

fe+fd
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Chapter 3 Derivation of the MFB’s

3.1 Introduction

Matched Filter Bounds (MFB’s) are useful to system designers in setting a goal for the
practical realization of the system [6]. Assuming perfect equalization, the channel is considered
free from Inter-symbol Interference (ISI). However the transmitted signal gets subjected to time-
varying channel fades which, in most of the previous analyses, are assumed constant during a
symbol duration. This chapter presents the MFB 'énalysis for an uncoded BPSK system on a
Rician fading channel with an arbitrary normalized Doppler rate. We assume an adaptive

matched filter whose impulse response varies in accordance with the received (faded) signal.

By varying the Rician factor, the derived expressions can be used to obtain the bit error
rate (BER) performance in strongly (Rayleigh) and weakly fading channels and compare their
behavior under fast and slow fading conditions. Although developed for the cases of one and two
beam (in addition to the non-fading component) channels, the analysis can be extended to include

multiple (>2) beams with arbitrary arrival times and inter-beam correlations.

We define a channel as slowly or fast fading with respecf to the normalized Doppler rate

fn=fq4 T, where f, is the Doppler frequency and T, is the symbol duration. In land mobile

radio systems operating in the range of 900 MHz to 1.8 GHz, f, typically ranges from 50 to 100

Hz for a vehicle speed of 60 km/hr. Therefore a system using a transmission rate of 104 symbols/

sec would have a maximum normalized Doppler rate of 0.01. This means that there are negligible

variations in the channel characteristics over the duration T',. We will refer to a system for which
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fx <0.01 as slowly fading. For an OFDM system employing hundreds of tones, Tp would be

hundreds of times longer and in this case an analysis applicable to fast fading is required.

3.2 System Model

We assume BPSK modulation for simplicity, although the analysis presented in the

chapter can be applied to any PAM scheme with minor modifications. Figure 3.1 shows the
complex baseband representation of the communication system. A signal, s(¢), is sent by the

modulator over the Rician channel. It is convenient to write

s(y=tA-p(1), A=E, (3.2.1)

where p(t) is aunit energy pulse of duration T p> SO that s(¢) has energy E, .

From Section 2.3.1, the complex baseband equivalent form of the impulse response of the
time-varying channel is denoted by z(¢, T) which is defined as the response of the channel at time
t to an impulse applied at time 7 —t [12]. The response z(#, T) can be written as the sum of the
impulse response of the direct path, o, - 6(7), and the response of the diffused beam, zmy(t, 1),
ie.

2(8,7) = 0 - O(T) +2,,,(, T) (3.2.2)

where ocg is the power of the direct/specular component. The real and imaginary parts of

zray(t, T) are independent and identically distributed (i.i.d.) zero mean Gaussian random

processes.

The channel imposes a maximum delay spread of T, ,, on the transmitted signal s(#).
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Matched
Filter x( Z.) X

h(t) ——%——»

s(t)

direct path

I
Tx Signal | oy - o(7) l Signal
I
1
Rician Channel
Figure 3.1 System Model
The received signal r(¢) is given by

T

r(t) = j 2(t, 1) - s(t—1) dr+ n(r) , (3.2.3)
0
where n(t) is a sample function of the zero mean complex additive white Gaussian noise process

with power spectral density N, . The receiver’s decision, as to which signal was transmitted, is

based on the real component, X, , of the output variable X = x(T), where

T
x(t) = [h(t-0)-r(Ddt, T=T,+T,q (3.2.4)
0
3.3 Error Performance Analysis
The faded signal at the channel output is written as
rfad(t) = iA 'Sfad(t) (3.3.1)

where
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T

max

_[ z(t, 1) - p(t—T)dt
0

sfad(t)
(3.3.2)

T

max

o p(t) + I zmy(t, T)-p(t—-1)dr.

T

In (3.3.2) we have assumed that the direct path has zero delay whereas the impulse response of the

diffused beam, z, (¢, T), extends from T, ; to 1T

ray max*

It is well known that a matched filter (MF) is the optimal receiver for a signal transmitted
over a non-fading AWGN channel [181. Therefore, by having the impulse response, h(t), of the
receive filter matched to the complex signal, s¢,,(7), we can obtain the optimum BER perfor-
mance, i.e.

h(t) = M (T=1) . (3.3.3)

Thus the entire system in Figure 3.1 can be interpreted in the form shown in Figure 3.2.

Using (3.3.3) in (3.2.4), we can write the filter output as

T
(1) = [sp (T —14+7) r(1) dt. (3.3.4)
0
{ I
| n(t)
| |
| lr(t) x(1) >§
rfad(t) : I Sfad*(T_t) T—>X
t =

| |
I !

Tx Signal + AWGN Channel Receiver

Figure 3.2 The Transformed System
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Therefore, the decision variable X, can be expressed as

X =%A-Y+N (3.3.5)

where the signal component, Y, is given by

T
Y = [|s pa(0)|2dr
0
r - 5 (3.3.6)
= j[(xo'p(t)+ J zmy(t, T) - p(t—1)dt )dt
0 ’ Tin : : |
and the noise component, N, is given by
-T
N = Re J.sfad*(t)-n(t)dt}
” (3.3.7)

]
=
o

rT Tmax
J‘(OLO -pr() + ,[ Zray*(t’ T) - P*(I_T)drj' n(t)dt:l .

L0 T

In order to find the probability of error, we need to know the probability density function
(pdf) of X,. For convenience it is assumed that s(t) = A - p(¢) is transmitted. Since the noise
component, N, is Gaussian, the pdf of X, conditioned on the signal component, Y, is also

Gaussian with mean A - Y ; it’s variance can be obtained using Parseval’s theorem [18] as

6% = 7-I|sfad*(T—t)|2dt
(3.3.8)
_ Moy
=Y.

Equation (3.3.8) shows that the noise variance, being a function of Y, is itself a random variable.
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The pdf of X, conditioned on Y is given as

1 —(x,—(Ay))?
Fx(x») = exp[ L. (33.9)
2T 6% 20y
The conditional probability of error is the probability that X is less than zero, i.e.
0
P(X,<0|Y) = [ fy(x,|y) dx,. (3.3.10)
The overall probability of error P, is obtained by averaging (3.3.10) over the pdf of ¥
P, = J.Pr(Xr<O|Y)-fY(y) dy . (3.3.11)
Using (3.3.9) and (3.3.10) and the fact that ¥ >0 from (3.3.6), we can rewrite P, as
(x,— (Ay))?
P, = dx.|- fy(y)dy. (3.3.12)
b H(mz o U )1,

Equation (3.3.12) can be expressed in terms of the complementary error function, erfc(x), as

o Ay
P, = > |erfc J fy(V)dy
{ [26%

(3.3.13)

o

Ey,-y
= 5 Jerfe N, [
0 0

The term E,y/N can be interpreted as the received SNR where E, /N is the transmit-

ted SNR. The BER can be calculated using (3.3.13) if the pdf fy(y) is available. The determina-

tion of f,(y) can be a challenging task. The following quote from [14] summarizes the problem,



file:///erfc
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‘The effects of fast fading, correlations and diversity are reflected solely in how they affect the pdf

of Y.

3.3.1 Deriving the pdf of Y

Expanding (3.3.6), Y can be written as

Y=Y, +7,+7, (3.3.14)
where
TP
Y, = a}- [ p2ndr = of (3.3.15)
0
Tp Tmax
Y, =20 | (Re [ 2y, ’r)-p(t—’c)d’c:|~p(t)]dt (3.3.16)
Tmin Tmin
T T”l(l.t 2
Y3 = [ | [ 24yt ®) - plt—1)d| di
T o | (3.3.17)
= [ If@)2ar

T

min

Tmax

and f(t) = j zmy(t, T) - p(t—1)dr . Following [14], we approximate (3.3.17) as a finite

T

min

summation, i.e.

M
Yy = At Y |f? (3.3.18)

n=
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n-l
2

i ) : At); the floor function [ x | is used to
t

T +t -7 . :
where M = { p_max "”"J and f, = f((
denote the largest integer < x. Since f(#) is a zero mean complex Gaussian random process

comprising of i.i.d. real and imaginary components, each of the M terms, | f n| 2 has a central chi-

squared degree 2 distribution. However (3.3.18) is a sum of correlated random variables. In order

to express Y5 as a sum of independent random variables, we use an orthogonal expansion

(Karhunen-Lo’eve Expansion, [16], [19]), i.e.

M
fo-At =N U A0y (3.3.19)

k=1

where {Q,.} = {(pk((n - %) . At)} are orthonormal vectors (3.3.20) and {U, } are orthogonal

complex zero-mean Gaussian random variables with unit variance as shown in (3.3.21)

M
S Gur O™ = Oy = Lil=m (3.3.20)
nl nm Im O,l¢m o

n=1
EWU, U, =3, (3.3.21)

{A;} and {@,(¢)} are recognized as the eigenvalues and eigen-functions [16] that satisfy the

integral equation

T
[ Ry(ry,09) - 0lty) dty = hy - (1) - (3.3.22)

Tmin

where R f(tl, t,) is the autocorrelation function of the process f(¢) . The function
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Rf(tl, t,) = E[f(2)) - f*(2))]
Tmax Pmaz (3.3.23)
b

E| [ [ 2ay(ti, T2,y (t TPty = T)P*(1, = T, )dT dT

Tnin ¥

min “min

can be expressed as a Hermitian matrix R 7 whose (I,m)th element is

Rpg,my = EUL ]

Tmuxtmax , (3.3.24)
= [ [ R I0-mAn(z, ) (At =1, p* (m At~ 1) dr d,
Tinin Tmin o . ‘
where I’ = l—% , m' = m—% and 1<, m<M. From (2.3.5), the autocorrelation of

zmy(t, T) is given by

gtz[tl - tz;(Ta, Tb)] = E[Zray(tl, Ta) : Zmy*(l‘z, Tb)] . (3.3.25)

Accommodating At in (3.3.24) and using (3.3.19), we obtain

R; At = E[f - fH] = ¢-A-oH (3.3.26)

T : T
where f = JBt-[f, . £y 9= [0 0] with 0= gy, .. gy and
A = diag(\,...\y) . The eigenvectors are real and the eigenvalues are real and non-negative

[20]. This also follows from [21] which shows that the eigenvalues of a positive definite matrix,

R, are both real and positive.

Y, can now be expressed as a sum of uncorrelated random variables, U, U,, ..., Uy,.

This follows from (3.3.18) and (3.3.19) from which we can write
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Y; = fH - f
T
M M M M

= 2 UkA/xl-c(plk 2 Uk«/)"—k(pMk ' z Ukm(plk Z Uk«/fk(PMk (3.327)
k=1 k=1 k=1 k=1 e
M

= 2 h U
k=1

where the random variable, U, , can be written as
u,=V,+jW, (3.3.28)

and |U |2 = V2 + W2 has a central chi-squared degree 2 pdf. Also, from (3.3.19) and (3.3.21),
n n n i g

the real component, V,, and the imaginary component, W, of U, are i.i.d. zero-mean Gaussian

random variables with variance 0"2/ = 0‘3‘, = % . The characteristic function of Y is then easily

obtained from the characteristic function of chi-squared degree 2 random variables as

M
Wy (v) = I1 ﬁm (3.3.29)
n=1 n ,

Equation (3.3.29) gives the characteristic function of the signal component Y when the fading is
Rayleigh.
Writing (3.3.16) in terms of f(¢) and using (3.3.19), we have

T,

Y, = 209 [ Re[f(D)]- p(1)dt

T

min

2%(2Re[ il p; At) (3.3.30)

N /M
20‘02L Re[Uk]'A/)‘—k'(pi'kJ'pi"‘/Kt
=1

i=D
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rm"”J, T,>7,.,>0 T
where D = A ,N={_I’Jandi'=i—D+1.

t
1,71 =0 At

min

Interchanging the order of summations yields

Y,

M N
200 JAt Y RelU,]- fA, - (2 Py - pi}
=D

k=1 ’ (3.3.31)

M
2 Vial By
k=1

N
where B, = ZGOJKI- 2 ©; - p; is a constant. Equation (3.3.31) suggests that ¥, is a
i=D

weighted sum of independent zero-mean real Gaussian random variables, {V,}, with variance

(5‘2/ . Adding Y,, Y, and simplifying, we obtain
k

M M
Y;+Y, = LZ A, (V2+ Wﬁ)}f[nZ (VnA/A’_n) : Bn]
=1 =1 (3.3.32)
M Bn 2 M Bn 2 M )
= 3 (Va3 - 3 (F) + X W
n=1 n=1 n=1

From (3.3.14) and (3.3.15), we have

h<
]

M B \2 M M
2 _ n N2 "2
(% n§1(2)]+n§1(v") +n§](W") (3.3.33)

Y, +Y+ Yy,

where V,” = V,M/fn + B—Z" and W,” = Wm/?»—n. In (3.3.33) Y is represented as a sum of three

independent terms. The characteristic function of Y is therefore the product of the characteristic
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functions of each term. Realizing that the first term, Y, is a constant, its characteristic function is

written as

M 2
¥y (V) = exp(ju(oc%— D (%’) j] (3.3.34)

n=1

The second term, Y,;, has a non-central chi-squared distribution of degree 1. Since V,’ has

variance ?" and mean — 2 , it’s characteristic function is given by [12]

(3.3.35)

M :
)= ] 1 exp| —2 v B,
L JaSaey =)
The third term, Y, has a central chi-squared distribution of degree 1 with W,’ having variance

7" . Accordingly, we have from [12]

(3.3.36)

¥, (v) =
Vi ,,I_I“/(l A0)

The characteristic function of Y is thus given by

¥y(v) = ¥y (0) - ¥y (0)- Py (V)

" a2 3.3.37)
| PR M . (
exp(juog) H1(1_jknn)exp 4(1-jA,0))

The corresponding pdf of Y can be obtained numerically by taking the inverse Fourier transform

of (3.3.37), i.e.
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fy(y) = %t [ Fy(v)exp(=joy) dv. (3.3.38)

—00

3.4 Flat Fading

In flat fading, all the frequency components suffer similar attenuation and phase-shift by
the channel and the delay power spectrum of the channel R(7) is ideally an impulse. Therefore,
for very-slow fading, we may write the channel’s impulse response as

2(6,T) = 08(T) +Z - 8(1), O0<o<1 (3.4.1)

where Z is a complex Gaussian random variable; assuming that the channel has unity power gain,
E[|Z]?] = 1-a}. However in the general case, when the attenuation may vary within the pulse

duration, the channel’s impulse response is given by (2.3.14)

z(1, T) = 0pd(T) + 0t;2(2)d(T) (3.4.2)

where .} is the power of the diffused beam. The Rician factor of the channel is defined as

o
Kyp = 10-logjo| =3 |- (3.4.3)
1

z(t) is a complex Gaussian random process with E[|z(#)|?] = 1. Thus from (3.2.2)

zmy(t, T) = o, z(¢)8(T) and the corresponding autocorrelation function is given by

E[z(t)z*(t5)] - 6(,)0(t,)
0,(t; — 1) - 6(2))0(¢,) .

R, (1) - 155(T1, T,)) B.4d)

From (3.3.24) the (I,m)th element of the corresponding Hermitian matrix R ¥ is given by
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TmaxT

max “max

Ry my = j J’ 0,((1-m)At)8(t,)8(t,) p(I'At = T,) p*(m’ At — 1) drdty,.  (34.5)
0 O

Using the channel autocorrelation function for a mobile whip antenna with isotropic scattering
[15]

$.(1) = Jo(o,-T) (3.4.6)

where J(x) is a zeroth order Bessel function and w, = 27nf; is the maximum Doppler angular
frequency, (3.4.5) simplifies to

Ry my = Jo(2f 4(1=m)Ar) p(I' Ar) p*(m’At) . (3.4.7)

The eigenvalues and eigenvectors corresponding to the matrix R At can be easily
obtained using mathematical tools [22]. Since T,,,, = T,,;, = 0, from (3.3.30), N = M and

’

i” = i which gives

h<
N
|

= 2060 (‘2 Vil (szJﬂiJKt

i=1 (3.4.8)

0y Z (VA0 - By
k=1

and from (3.3.27) we have

M
2 M(VE+WD) (3.4.9)

Since the channel is assumed to be time-varying within the pulse duration, we expect the
pulse shape to have a significant effect on the system performance as the effective channel averag-

ing depends on the pulse shape. This can also be observed from the expression of the received
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SNR where the signal component Y depends on the pulse p(t). Therefore three pulse shapes are

chosen

rect pulse:

1/ JT,, 0<t<T _
Preci(t) = { JTo 0 (3.4.10)
0, otherwise

half sin pulse:

[2/T,-sin(nt/Ty), 0<t<T
Ps(t) = { 0 0 o0 (3.4.11)
, otherwise
root raised cosine pulse:
([ n(t—aly)
— . <
2T0(1+cos( aTy D,O_t<aT0
1/ JT,, aT,<t<T
Pys(t) = 1 JTo 0 0 (3.4.12)
1 n(t—-Tg)
— — <
£T0(1+cos( aT, D, Ty<t<Ty(1+a)
L0, otherwise

where a is the roll-off factor of the pulse and 0 <a < 1. The notation T,, in general,

refers to the symbol/pulse duration; henceforth Tp = To(1+a) where a = O for the rect pulse

and the half sin pulse.

3.4.1 Special Cases:

3.4.1.1 Very Slow Fading

When the fading is very slow, 0< f <0.01, using (3.4.1), the signal component Y in
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(3.3.6) reduces to Y = |0L0 + Z|2 which implies that E[Y] = 1.0. This shows that the BER

does not depend on the pulse shape and P, is calculated by averaging the error probability for a
non-fading AWGN channel over the non-central chi-squared degree 2 pdf, i.e.

1, By 1 ad+y), (2+yoq
P, =z : e I . 3.4.13
b= 3 .["”"fc[ N, ] (1-ad) Xp[ 1-aZ) %\ 1-02 7 G413

0

Equation (3.4.13) is simplified in [4] and P, is expressed in terms of the Marcum’s Q-function

2 2
P, = O(v, w)—%(l + /%)exp(—v ;W )Io(vw) (3.4.14)

where & = E[|Z|?]-E,/N,and

) - Jﬁl +2e—2.Je(1 +8)]

2(1+¢)

. JK[] +2e+2.e(1 +€)]

2(1+¢)

(3.4.15)

K is the Rician factor, K = ad/E[|Z|?], I p(x) is the Pth order modified Bessel function of the

first kind and the Marcum’s Q-function is defined as [12]

(=]

Ov, w) = exp(—vz ;Wz) y (i)nln(vw), w>v>0 (3.4.16)
n=0

3.4.1.2 Very Fast Fading

It has been shown in Appendix B that in the extreme condition when the normalized

Doppler rate increases without limit, i.e. f, — o, the variance of the signal component Y

approaches zero. Since the mean, E[Y] = 1.0, this implies that the pdf,
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lim f,(y) = 8(y—1). Applying this in (3.3.13), we obtain

fy—ree
. 1 P Eb-y
lim P - |erfc ’— -O(y—-1) dy
fyn—ree b J [ NO J

0 (3.4.17)
_1 E,
= 2-erfc( 170]

which gives the BER for a non-fading AWGN channel. Thus using an extremely long signaling

[\

pulse relative to the channel’s coherence time or having a very high Doppler frequency has

essentially made the fading channel look like a non-fading one [14].

3.4.1.3 Rician Factor

Equation (3.3.13) gives the general expression of the BER for a Rician fading channel.
Varying the Rician factor, K, corresponds to varying the power of the non-fading component with
respect to that of the fading component. We consider two extreme cases corresponding to a

Rayleigh channel (K = 0) and a non-fading channel (K — o).

When K = 0, o, = 0 and the direct/specular path is absent. Accordingly, the signal

component Y in (3.3.14) equals Y;3. Using (3.4.2) with o= El|z(H)]?] = 1 and oy = 0, we

have the following results from [8]

E,/N,
1- /—— o1
Eb/N0+1j’ 0<fy<00

P, = | (3.4.18)

D=

, otherwise

LoLooa A(E,/Ny)
 NA(E,/Ng) + 1

=X I:le )

n

N —
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where L is the number of non-zero eigenvalues of the matrix R Az. On the other extreme when

K — o, the channel’s impulse response (3.4.2) reduces to that of a non-fading AWGN channel

and the BER is given by

) 1 -
Khmoo P, = > erfc( /(x(%Eb/NO) . (3.4.19)

—

3.5 Frequency-Selective Fading

When there is a significant amount of delay spread relative to the pulse duration, the
channel is said to be frequency selective. This implies that the channel is selective in it’s response
to the signal at different frequencies and the fading at different frequencies is not necessarily
correlated. We present the general cases of two and three beam signal reception when the direct

(non-faded) and diffused versions of the transmitted pulse arrive at different time instants.

3.5.1 Two-Beam Case

In our two-beam case, the channel is modeled with the following impulse response

z(t,7) = 0d(T) +0y2,(1)d(T-0,) . (3.5.1D)
Assuming that the non-faded beam has the shortest path length, the first and the second terms
correspond to the non-delayed (direct component) and delayed (faded component) responses of
the channel respectively. Considering a unity gain channel, o, = JI——ocg and E[|z,( DI*1 =1,
By varying the delay parameter G, , we can study the influence of signal dispersion on the system

performance.

The signal component Y for the present case is written as
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T, T
Y = af + 2000, [ Relzy()p(t-o)]p(Ddi+af - [|oy(Dpt-op|2dr  (352)
o, O,

where T = Tp + 0, . Using (3.3.30) and (3.3.31), the second term in (3.5.2) can be written as

N /M
Y, = 20‘00‘1@ 2 L‘ VkA/7Tk : (pi’kjpi
i =1

=D
" (3.5.3)
= 0oy Z Vk«/}‘—k B
k=1
where
{EJ, c,>0 '
D = AL (3.5.4)

and N = {%’J, i" = i-D+1. {)A,} are the eigenvalues of the matrix Rf - At; the (I, m)th
t .

element of matrix R f is defined in (3.4.7).

When ¢, 2 Tp, Y, = 0 which gives

T
5 (3.5.5)

= o2+ 02
=og+or-Y,,,

T
where Y, ay = I |z1(t) p(t— 0'1)|2dt is the received signal component from the diffused beam.

g,
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The pdf of Y, obtained from the pdf of Y, [14], is given as

ray

L 2
1 B, ()’—0‘0) 5
fr) =1a’ 23 CXP[" o2 A J Y% (3.5.6)

1 “n

(03
0, otherwise

and L is the number of non-zero

1
V=

L
where the constants B, = [(1 - iv0) - T (1_1___]
i=1" i

J?"il))

eigenvalues. The expression for the BER is thus given by

oo 2
P, = —- —_— | — - . 3.5.7
ORI I B AL )

1 ™n

p =L o By o f Ey) @ T 29, ) 2 fEb }o [ya.] . \~1/2 g
=—s > =~ exp —erfe| |[—le ' o -0 = ey iray
b 2a12 )\4 az}\' NO 1n , 1n Non o2

o} 3

(3.5.8)

2 2
1 E, 0, , E, 5 (v
P, == E B |erfc — erfe( .o ex 359

are constants.

For a very-slow fading case (with any degree of overlapping between the direct and the

diffused beams), (3.5.1) and (3.5.2) are given as

2(£,7) = 0p8(1) + Z,8(T-05)) (3.5.10)
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!
1l

2 2 +72
0f + 200k Z, +(Z7 +Z])) (3.5.11)

02(1—k2) +(Z,, + k)2 + Z}

where Z| = Z,, +jZ,,, E[|Z)|?] = E[Z}, +Z}}] = 1-0}; Z,) and Z;; are i.i.d. zero mean

TP

Gaussian random variables and k = Jp(t)p(t— G,)dt is a constant. By employing simple

G,

transformations to the non-central chi-squared degree 2 distribution, the pdf of Y is written as

2002k2 — o2 + [y —oaZ(1-k2) 204k
p(— 0 0 yJIO(y o¢ ) 20k (3.5.12)

2 2
1 -of 1 —-of

1
= €
fy(y) g™

When the two beams are non-overlapping, 6, 2T, and k£ = 0. Consequently (3.3.13) simplifies

to

1 E, -y y—od
P, = — — |- exp|- . 3.5.13
A YE —od) IzerfCL N ] P[ Y y ( )
L

The above expression can also be directly obtained from (3.5.9) by realizing that the matrix

Ry - At hasonly a single non-zero eigenvalue, A, = 1.0, when the fading is very slow.
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3.5.2 Three-Beam Case

In the three-beam channel model, the transmitted signal arrives following three propaga-
tion paths of which the first (non-delayed) one is the direct component and the other two arriving
at some delays, 6, and G,, are the diffused components. Accordingly the impulse response is
given by

z(1,T) = 00(T) + 0,2, (£)8(T—0}) + 0y2,(1) (T - G,), 6,20, . (3.5.15)

Comparing (3.2.2) with (3.5.15), z,,,,(£, T) = 0,2,(£)8(T—G}) + 0,2,(2)8(T— 0,) . Assuming a

ray
unity gain channel and E[|z,(#)|2] = E[|z,(2)|?] = 1, we have

1 2
a+o?+o03 = 1. (3.5.16)

The signal component corresponding to (3.5.15) is

T, T
Y = a§+2a0jRe[f(t)]p(t)dt+ j|f(t)|2dt (3.5.17)

g, o,
where, from Section 3.3.1, f(#) = oz, (£)p(t-0y) + 0,2,(1) p(t = G,) . Considering the
general case where the two processes z;(#) and z,(#) have a normalized cross-correlation coeffi-

cient p, which is given as

0,,2,(T)

- . plst (3.5.18)
Jo.. (D) - Jo, (1)

P

where (I)lez(’c) is the cross-correlation function and ¢,(7), i = 1,2, is the autocorrelation

function of the two processes. Assuming both the fading processes have identical statistical

characteristics, we can write
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¢Zl(’c) = ¢zz(’t) = Jo(, - 1) . (3.5.19)

The autocorrelation function of z___(¢, T) is given as

ray

R, (1~ 12:(T1, 1) = 0 - b, (£, —1)8(T, - 6,)8(T, — 0})
+03 - 9, (1 —15)8(T) — 6,)8(1, - 5,)
+ 00,0, (£ = 1,)8(T; — 61)8(T, - G3)

+ 0,0 p*0, (1) = 1,)8(T, - 6,)8(T, - 0y)
(3.5.20)

which results in the following elements of matrix R f

Rigmy = Jo(@y (1= m) Aty [af p(I'At - 0)) p*(m’ At = 6,) + 07 p(I’At = G,) p*(m At - 5)
(3.5.21)
Using (3.3.31)

~
&}
|

N M
- 20,/ S [ S Vi m,-,k]p,-
i=DM=1 (3.5.22)

M
> VidhiBy -

k=1

When the first two beams arrive simultaneously i.e. 6; = 0, the three-beam case may be

interpreted as a two-beam signal reception of which the first one is Rician faded and the second

one is Rayleigh faded. Under these circumstances, for the special case of slow fading Rician

channel when the fading in the two diffused components is uncorrelated, o; = o, and 6,27,

the BER is given as (Appendix A)

oo n+1
1 -1 ket (2k—1\ =1 (1
Fo = 2 ;ocnlil— 3 _kglz ( k ) T(X)} 022
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E,(1-03)

here A = 1
where + N,

and the coefficients C, are defined in (A.13).

In another case when 6, > T,(1 + a), i.e. there is no overlap between the direct and the

diffused beams, (3.5.17) reduces to

T
o2+ J]f(t)|2a't

Y =
e (3.5.24)
1
= 0‘8 + Yray

T

where Y = ||f(#)|2dt. Comparing (3.5.24) with (3.3.14), we have Y, = al, Y, =0 and
ray 1 0 2
G,

Yy =Y, The pdf of Y derived from the pdf of Y, [14]is given as

ray

ol B (y-0)
im 2um-1 - Y0
fy() = 2 X (=) eXp[' Y J yZ04 (3.5.25)

[=im=1(m=1)K]

0, otherwise

where L is the number of distinct and non-zero eigenvalues, {A,}, and r; is the order of A

The constants B, are given by

1 a" "
B, = (1=jA0)"¥, (V) (3.5.26)
l ] (rl—m)!(—j)\'l)r’_mlid’o r,—m l Yray k)] ;%,-,

M
where ‘I‘Ym(l)) = H m is the characteristic function of Y ray"
' i=1 :

Combining (3.5.25) with (3.3.13) yields
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e B T [E (y-ad)
P, = - _m 57 | (y— a2y lexp[ 0 g 3.5.27
> (m— D)X Ierfc( Noj e tess( M Jor s

Evaluating the above integral (Appendix C) results in the following expression

E 2
”%J(m— 1IN

; 2 (m—l)m, [rf[ No

DN —
NIH

(3.5.2Z8)

gt e - h-3
Nonz =1 exp[(z—il)ocg]cl 2 ch 2)1*(|,L)W1 ul_H(Cloc(z))

27712

272

E
where L = m —n and constants C, = —2 + l I'(z) is the Gamma function and W, | (z) is
[ 1 NO 7\'1 : A v

known as the Whittaker function [23]. », = 2, V! applies when the two faded beams are indepen-

dent and non-overlapping. However when r; = 1, VI, (3.5.28) simplifies to

P, =-- LdB erf £y 95 N TR % I erfe(./C,02) (3.5.29)
b= o Ny | ANgm PR T, 150 >

where erf(x) and erfc(x) are the error functions and complementary error functions respec-

tively.
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Chapter 4 Numerical Results

4.1 Introduction

The expressions obtained from the analysis in Chapter 3 are used to obtain BER curves for
different channel conditions. The results for flat fading Rician and frequency selective fading

Rician channels are presented in Section 4.2 and Section 4.3 respectively. In the figures, the BER

plotted against E,/N, assuming a unity gain channel. Unless otherwise stated, a rect pulse shape

1s assumed.

In order to verify the results from our analysis, simulations using MATLAB® [22] were
performed for all the curves presented. The Rayleigh fading simulator used in the simulation is
based on Clarke’s model, [17], and uses a modified version, [24], of the algorithm in [25]. In all

cases, the simulation results were found to agree closely with the analytical curves. The 99%
confidence intervals for the simulation results are within +5 % of the corresponding mean values.

Because of the close agreement, the simulation results are generally not plotted.

The results in Section 4.2 and Section 4.3 assume that the receiver has perfect knowledge

of the channel. In Section 4.4, the effect of channel estimation errors is studied.

4.2 Flat Rician Fading

Figure 4.1 illustrates the BER, P, curves for different normalized Doppler rates, f ,

with a Rician factor of 0dB. The limiting case of very fast fading (f, — °) which coincides

with the non-fading AWGN channel case (Section 3.4.1.2) is also shown. The pair of dots marked

at intervals of 2 dB depict the confidence intervals. It is observed that the system performance
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improves substantially with the fading rate.

0.0< fN <0.01

fN -5
(AWGN)

P, (BER)

fN=5.12

L

Eb/ Ny [dB]

Figure 4.1 BER as a function of f, for the Rician channel, K, = 0 dB

The case 0.0 < f), <0.01, corresponding to very-slow fading, has the poorest perfor-
mance and the curve shifts towards the non-fading case as f, increases. The improvement in
performance with f, is more noticeable as we move from the very-slow fading to f, = 0.64

and it tends to diminish with further increase in f, .

A comparison of the performance for the Rayleigh (K 3 — - dB), Rician

(K 45 = 0 dB) and non-fading (K ;5 — = dB) channels as a function of fN is shown in Figure

4.2. As expected, the Rician channel has a lower BER than the Rayleigh channel.
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P, (BER)

E/N, dB]

Figure 4.2 BER as a function of the Rician factor and f

Kg=0dB

K g2 d8
(Rayleigh}

P, (BER)

EN, (48]

Figure 4.3 ‘Effect of the Rician factor for f, = 1.28
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In Figure 4.2, for the values of f, chosen, the gap between the Rayleigh and Rician
curves, for a given E, /N, tends to increase with f, . However, the two curves converge to the

AWGN curve as f, — eo. Thus, the specular component improves the BER at lower fading rates;

for very high fading rates, the implicit diversity effect becomes dominant in diminishing the effect
of fading.

The effect of the specular component on P, for a range of Rician factor, K, values is
illustrated in Figure 4.3. As noted earlier, the BER decreases with K. However, a substantial gain
in performance is observed for K ;5> 0 dB. Since K ;5 = 0 dB corresponds to equal powers in

the fading and non-fading components of the channel, this behavior shows that a greater power in
the non-faded signal component relative to the faded component diminishes the fading effect of

the channel.

- - half sin
- =+ RRC{a=0.5)

— I

P, (BER)

EN, [08]

Figure 4.4 Effect of pulse shape in fast fading Rician channel, K ;5 = 0 dB
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Unlike in very slow (0.0 < f,, <0.01) and nonfading conditions where the BER does not

depend on the shape of the transmitted pulse, p(t), the pulse shape does influence the BER in fast
fading environments [8], [14]. This is illustrated in Figure 4.4 where the P, curves for three pulse
shapes: rect, half sin and root raised cosine (RRC), are shown. The parameter ‘a’ refers to the

roll-off factor for the RRC pulse. Due to less effective channel averaging for the half sin and RRC

(a > 0) pulses, the BER, for the pulse shapes chosen, is found to be the lowest for the rect pulse.

25 T T T T T T T T T

— rect
— = half sin
+=+ RRC (a = 1/4)

- -+ - fading signal

Amplitude

1
0 0.05 0.1 0.15 0.2 0.25 0.3

t {sec]

Figure 4.5 Channel averaging ability of different pulse shapes

Figure 4.5 shows the rect, half sin and RRC (a = 0.25) pulse shapes, all of the same

pulse duration, T, = 0.5 sec. A sample of a channel fading waveform is also shown. It can be

seen that the amplitudes of the half sin and RRC pulse shapes are relatively smaller at the

beginning and end of the pulses.
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T
~-a=1.00

=+ 2=050
- a=025

P, (BER)

EN, [¢B]
Figure 4.6 Effect of the roll-off factor on the system performance, K ;5 = 0 dB

It is important to understand the basis on which comparison among different pulse shapes

is made, especially as it applies to the RRC pulse with varying roll-off factors. Since the normal-
ized Doppler rate, f, = f dTp is a function of the total pulse duration, Tp = Ty(1+a) where
T, is the duration of a rect or half sin pulse, a roll-off factor of 1.0 (for instance) for the RRC

pulse would correspond to twice the normalized Doppler rate for a rect pulse with the same

Doppler frequency, f, . Figure 4.6 shows how an increase in ‘a’ adversely affects the BER due to

degradation in channel averaging ability of the pulse.

4.3 Frequency-Selective Rician Fading

The results for fast and slow fading Rician channel as two and three beam models are

presented in this section. The curves are plotted for varying amount of delay (or overlap) and
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correlation between the beams and comparison is also made with respect to the Rician factor.

4.3.1 Two-Beam Case

MFB for the two-beam Rician channel, of which the first beam is the direct and the second
the diffused beam, are illustrated in Figure 4.7 for both fast (f,, = 0.64) and very slow fading
conditions. The curves are plotted for normalized delays of 0.0, 0.5 and 1.0 for the diffused beam
which account for 100% overlap, 50% overlap and no overlap between the two beams. As
expected the results for zero delay match with the flat fading BER and P, reduces with the
decrease in the amount of overlapping (interference) between the two beams. Also the dB spread
is found to be more in the slow fading case because in slow fading, diversity is achieved only from
the extent of beam independence whereas in fast fading there is an additional advantage from the

implicit diversity in each symbol.

1) T

* 100% overlap
+ 50% overlap
O No overlap

¥

P, (BER)
ht

fN= 0.64

- 0.0<1N<0.01

E,/N, [68]

Figure 4.7 Two-beam frequency selective fading, K ;5 = 0 dB
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4.3.2 Three-Beam Case

Figures 4.8 to 4.11 are plotted for the three-beam channel comprising of a direct/non-
faded beam and two diffused/faded beams. The curves are presented for varying normalized
delays, o, and correlation coefficients, p, between the two faded components assuming no

overlapping with the non-faded component. The correlation [26] between the fading processes in

the two beams is implemented as follows: two (independent) sets of fading samples are generated

using the fading simulator. Samples from one of the sets are then scaled by the factor 4/'1 - p2 and

a fraction (p) of the corresponding samples from the other set is added to the scaled samples. The

two correlated sets of samples are then normalized independently.

+ [0.0;-05]
. [0.0;00]
* [0.0;05)
0 [00;10]

[o:p]

P, (BER)

EN, [68]

Figure 4.8 Three-beam frequency selective fast fading, f, = 0.64 and 6 = 0
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Figures 4.8 and 4.9 refer to fast and slow fading conditions with no delay between the two
diffused beams i.e. 6 = 0. In both cases it has been found that an increase in p results in an
improvement in system performance due to an increase in the received signal strength when the
beams tend to be correlated and co-phased. At the other extreme, a condition of [0.0;-1.0] would
result in total cancellation of the diffused beams and reception of just the non-faded signal

component. Although not shown in thé figures for the sake of clarity, [0.0;-1.0] corresponds to a

constant BER of 0.5 for the Rayleigh channel; for the Rician channel since K 5= —6 dB

f E
corresponds to a power of 0.2 (for a unity gain channel) in the direct beam, P, = % erfc( ﬁj .
: 0

Comparing Figures 4.8 and 4.9, the gain (obtained with an increase in p ) in the latter is seen to be

reduced. This is because in fast fading there is diversity within a single pulse.

P, (BER)

E,N, [d8]

Figure 4.9 Three-beam frequency selective very-slow fading, ¢ = 0
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Figures 4.10 and 4.11 illustrate the BER curves assuming a delay between the diffused

beams. The curves corresponding to the cases [1.0;-1.0] and [1.0;1.0] (not shown in figures)
coincide since the filter can resolve the two beams independently. In contrast to ¢ = 0O case, a

gain in performance is observed (especially for ¢ — 1) with lesser correlation (|p| — 0) between

the two beams. This occurs due to the diversity effect achieved when the fading in the two beams
is uncorrelated. Also the gain is less for the fast fading case due to the inherent diversity present

within a single pulse.

0 [05;
+ [1.0;
A [10;
+ [1.0;

~05]
-1.0]
0]
05]

loip]

P, (BER)

/N, (48]

Figure 4.10 Three-beam frequency selective fast fading, fN = 0.64 and 6>0
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P, (BER)

E,IN, (48]

Figure 4.11 Three-beam frequency selective very-slow fading, 6 >0
Another model of the three-beam channel is considered in Figures 4.12 to 4.16 for

frequency selective fading. It is assumed that the non-faded beam and one of the faded beams
coincide. The curves are plotted as a function of the normalized delay (0 < ¢ < 1) and correlation

coefficient (-1 < p < 1) between the two faded beams.

Figure 4.12 displays the BER curves for a fast fading Rician channel with equal channel

gain for the faded and the non-faded beams. In general, gain in BER performance is observed with

an increase in 6. The case [0.0;-1.0] is equivalent to transmitting the signal through a channel

comprising of only the direct path of half the total strength of the Rician (K ;5 = 0 dB) channel.
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[oip]

P, (BER)

E/N, [68]

Figure 4.12 Three-beam fast fading, K ;5 = 0 dB and fN = 0.64

[o:p]
0.0; 0.0}

P, (BER)

E/N, 98]

Figure 4.13 Three-beam slow fading, K ;; = 0 dB




Chapter 4 Numerical Results 57

Figure 4.13 depicts BER for slow fading Rician channel. The variations of P, with [o;p]

are similar to the fast fading case except for a few cases of which [1.0;0.0] is particularly notewor-
thy. Since in a slow fading channel, the signal amplitude does not vary within the symbol
duration, interference between the direct beam and the coinciding diffused beam results in a
greater loss in the received signal energy when they tend to be out of phase. On comparing

[1.0;1.0] with [1.0;0.0], in contrast to the fast fading case, we find the former has a lower BER and

the gain >5dB at P, = 1074.

To facilitate comparison and in particular to observe the trends in system performance as a

function of the Rician factor in fast and slow fading conditions, curves are plotted for four

combinations of [C;p].

P, (BER)

Eb/No [dB}
Figure 4.14 Three-beam fast fading as a function of K; [o;p] : [0.0;0.0], [1.0;1.0]

In Figure 4.14, the gain is seen to be more for [1.0;1.0] than for [0.0;0.0] for small K
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values because of the lower received signal strength in [0.0;0.0] when the fading in the two coinci-

dent diffused beams is independent.

T
- - Kdg=-wd8
. Kg~—60B
. o Kg=0d8

B

P, (BER)

EN, (dB]

Figure 4.15 Three-beam fast fading as a function of K ; [o;p] :

[0.0;1.0], [1.0;0.0]

P, (BER)

E,/N, (BER)

Figure 4.16 Three-beam slow fading as a function of K; [o;p]

: [0.0;0.0], [1.0;1.0]
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In Figure 4.15, the case [0.0;1.0] seems to follow an opposite trend i.e. P, increases as the
Rician factor is increased from K ;5 = —o dB to K, = 0 dB. This occurs because at low

Rician factors, i.e. K, 5 <0 dB, when the strength of the direct beam is lower than that of the

diffused beams, the faded component influences the received signal amplitude more than the non-
faded component; a decrease in the power of the diffused beam, due to an increase in X, tends to

adversely affect the system performance. However for K ;; = 3 dB, the non-faded signal

dominates and a gain is observed with further increase in XK.

T I

T Kg=—0B
. Kg=-6B
__Kg=0dB
. Kg=3dB

P, (BER)

EbIN " [dB]

Figure 4.17 Three-beam slow fading as a function of K; [c;p] : [0.0;1.0], [1.0;0.0]
The variations of P, with [o;p] for the slow fading channel as observed in Figures 4.16 and 4.17

are found to be similar to the fast fading case.
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4.4 Imperfect channel estimation

We have analyzed the system behavior when the receiver consists of a correlator demodu-
lator which is perfectly matched to the fading channel. The case when the receive filter makes

some error in estimating the channel variations is considered in the present section.

It is assumed that in estimating the channel fading samples, the receiver is liable to make

random errors which are Gaussian distributed with zero mean and variance, 63 , proportional to

the average power, 02, of the faded beam. We study the performance for flat fading Rician

(K 3 = 0dB) and Rayleigh channels, each with a unit power gain.

P, (BER)

EN, [dB]
Figure 4.18 Performance degradation in a flat fading Rician channel
By modifying 6?2, the BER curves, obtained from simulations with 99% confidence

intervals within £7% of the mean value, are plotted for varying degree of error in estimation. A
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rect pulse shape is used in the simulations. The mis-matched signal in the receiver is simulated by

adding a complex Gaussian random process, with i.i.d. real and imaginary parts each with power

spectral density 62/2, to the fading waveform. In order to study the sensitivity of the (non-ideal)

filter under different fading conditions, results for both fast and very-slow fading channels are

shown.

The degradation in system performance for the Rician and Rayleigh channels as a function
of 62 is shown in Figures 4.18 and 4.19 respectively. Since 62 depends on the power of the faded

beam, the degradation in performance tends to be more for the Rayleigh channel.

P, (BER)

2 4 6 8 10 12 14 16 18
E/N, [9B]

Figure 4.19 Performance degradation in a flat fading Rayleigh channel
The following plots (Figures 4.20 to 4.23) illustrate the influence of error in estimating the

amplitude and phase, individually, on the BER.
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P, (BER)

Q
RS

"

Q

E/N, [6B]

Figure 4.20 Effect of mis-match in phase on the BER in a Rician channel

P, (BER)

7 ! I I L L { 1 I

10

E/N, [dB]

Figure 4.21 Effect of mis-match in phase on the BER in a Rayleigh channel
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Figures 4.20 and 4.21 correspond to the BER for the case when the filter is unable to
correctly trace the phase of the fading waveform. Although, for all the values of GZ chosen, the
BER for the fast fading case is found to be lower than that for the slow fading case, the dB spread
corresponding to f, = 1.28 is found to be considerably greater than the dB spread correspond-
ing to 0< f, <0.01. A similar observation can be made in Figures 4.22 and 4.23 which

correspond to the effect of error in estimating the amplitude of the fading samples.

P, (BER)

E/N, (8]

Figure 4.22 Effect of mis-match in amplitude on the BER in a Rician channel
Caution should be exercised in deriving conclusions from a comparison of the figures
showing the effects of phase and amplitude estimation errors since the curves presented

correspond to the specific model assumed in the simulations. The BER curves which are plotted
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as a function of 62 reveal a greater degradation in receiver performance caused by imperfect

phase estimation than that due to imperfect amplitude estimation. The plots do not imply that in

general the receivers are more sensitive to phase errors than to amplitude errors.

P, (BER)

10'5 1 { I t I ) 1 1 :
0 2 4 6 8 10 12 14 16 18

E,/MN, (8]

Figure 4.23 Effect of mis-match in amplitude on the BER in a Rayleigh channel

The calculations corresponding to the mean square error (MSE) in amplitude estimation

and mean error in phase estimation are shown in Appendix D.
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Chapter 5 Conclusions and Suggestions for Future Work

5.1 Conclusions

Matched filter bounds for fast fading Rician channels have been derived to establish lower

bounds on the BER for uncoded BPSK modulation over flat and frequency-selective fading

channels. The analysis holds for any value of the normalized Doppler rate, f, . The BER perfor-

mance, in general, is found to improve with an increase in the fading rate due to the inherent
diversity present within a single pulse. All the analytical results were verified to be in close

agreement with simulation results.

Unlike the Rayleigh fading case where the statistical distribution of the (received) random
signal component, after diagonalizing the covariance matrix of the fading samples, is given by the
central chi squared distribution, thé Rician case is more complex. The new random signal
component is a sum of three terms: a constant term, a scaled version of the signal component
encountered in the Rayleigh case and a term which is dependent on the second term. The distribu-
tion was derived by separating the i.i.d. real and imaginary parts of the uncorrelated complex
Gaussian random variables encountered in the second term and grouping all the real components
and imaginary components separately; the random signal component can then be expressed as a

sum of a constant term and a random variable with a non-central chi squared distribution.

A comparison between the BER curves for the Rayleigh and the Rician channels, as a

function of f in flat fading suggests that under slow fading conditions, the performance gain is

attributed mainly to the presence of the direct/specular component in the Rician channel whereas

when f increases without limit, the gap between the two tends to reduce and both the curves
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finally converge with the MFB for the non-fading AWGN channel. The latter effect shows the
dominant role of the fading rate in lowering the BER in fast fading conditions. In general, the
BER performance improves with an increase in K; little gain is observed when the ratio of the
powers of the direct and diffused beams is less than -6dB. The system performance was also
studied for different transmitted pulse shapes: it was found that the pulse shape affects the BER
significantly when the channel exhibits fast fading. This is consistent with earlier results for the
Rayleigh case [8], [14]. Results for the frequency selective channel, derived for the general case
of correlated scattering, were also examined. In two-beam frequency selective fading, particularly

for slow fading, the BER is very sensitive to the degree of beam overlap.

The BER performance of a receive filter whose impulse response is not perfectly matched
to the channel fading waveform was studied through simulation. It was observed that, for the
specified model, the system degradation was higher for phase mismatches than for amplitude

mismatches for a given error variance.

5.2 Suggestions for Future Work
1. Inthis thesis, the pdf, f,(y), of the signal component, Y, is obtained from its characteristic

function, ¥ (), through numerical integration. To the best of the author’s knowledge, no

computationally effective closed form expression of the pdf of unequally weighted non-
central chi squared random variables is available. To avoid numerical approximation errors

and computational complexity, it would be beneficial to obtain a closed form expression for

fy()’)-

2. In the present work, frequency selectivity in the channel is obtained by assuming a double
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spike model for the delay power spectrum of the fading channel with arbitrary correlation
between the fading waveforms. The analysis is limited to a single branch system i.e. without
explicit diversity. Deriving the MFB’s for a multibranch system would be a useful extension

to this work.

3. MFB’s for both flat and frequency selective fading in a rapidly time-varying Rician channel
have been derived assuming BPSK modulation. The same for any PAM(ASK) scheme can
also be obtained with some minor modifications; the new (variable) threshold boundaries of
the decision maker would be a function éf the received signal component. Deriving the error

bounds other modulation schemes can prove to be a little challenging especially when the

transmitted pulse, p(t), is a complex entity.

4.  The BER corresponding to imperfect channel estimation were obtained by simulations and
presented in Section 4.4. The theoretical analysis for the same is complicated since the
additive Gaussian error in the matched signal, i.e. the impulse response of the receive filter,

does not correspond exactly to the assumption that the noise component in the decision

variable is Gaussian.
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Appendix A : MFB (slow fading 0 < f, <0.01) |

The impulse response of a slow fading frequency-selective Rician channel assuming
reception of two faded (Rayleigh) components in addition to the direct one, i.e. three-beam

channel, when one of the faded beams and the non-faded beam coincide, is given as

0,0(T) +Z,8(1) + Z,8(t—©) (A.D
(0 +Z1)d(1) +Z,8(1-0)

z(t, 1)

where Z; and Z, are complex Gaussian random variables with i.i.d. real and imaginary parts

Z,=U,+jV,, n=12and o is the power of the direct/specular path. Using the following

expansion, i.e.

|Zy+Z,)? = |Z4|2 +|Z,)? + 2Re[Z,1Re[Z,] + 2Im[Z,1ImI Z,] (A2)

the corresponding signal component Y can be written as

Y = 03 +|Z)|2+|Zy|2 + 200U, + 204Uk +2U, Uk + 2V, V ok (A.3)

TI’

where k = J p(t) p(t—o)dt is a constant symbolizing the amount of pulse overlap (between the

o3

two diffused beams) during signal reception.

For the special case when the fading in the delayed and non-delayed beams is uncorrelated

and there is no overlappingie. 62T, k = 0 and (A.3) simplifies to

Y = (U +0y)2+U2+V2+V2 (A.4)

Y is thus stated as a sum of non-central chi-squared degree 4 random variable. The cdf of Y is
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given as [27]

Fy(y) = i C, P,(x§+2ns ) (A.5)

n=0

oI

E[|Z,|21E1|Z,|*]

is a suitably chosen constant [7]. From [28], we have

where [ =

Pr(x2+ 2n s

i<

)= 1-en(5) S A G 46

Substituting (A.6) into (A.5) and computing the pdf of Y by differentiating Fy(y), we obtain

d 1 _an+11 y k _Lﬁn+l 1 1 y _1
_a - 2 (XY _.2 L
Tro) = Z5FvO) ZC”[we SCRES =16 ]
n=0 k=0 k=1 (A7)
ic 1 gﬁ[ngl » Y2 g
e S 6
o 2B k=0k. 2B 2B
The BER is thus given by (3.3.13)
o0 [~e] 1
1 E,y I _'2'y['3 J y ¥ 10y
Py =3 Jerfel |- 2 Crope k_om(is) (55-)] @
0 " - (A.8)
o0 Ey ,
= = J.erfc 7Vb— -Fy(y)dy .
0 0

Integrating (A.8) by parts and simplifying
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oo

1 E,y " E,y
Py =3 erfc( /N—OJFY(y) —jFY(y) d[erfc[ /N—O (A.9)
o O
_1|E T ~1/2
=3 N_Oﬂ: JFy(Y)eXP(“—O)y dy
0
o0 e 1
1 |E, ) o 1y} 172
2 | Nom ZCnJ[l‘exp(‘zB)' 7i(5p) [l e
n=0 0 k=0
Knowing that [23]
[exp(~gy)y112dy = A/g (A.10)
0
and
- net _n-l
je-qyy 2dy=4m2""q 2@n-1D!, n=0 (A.11)

0

equation (A.9) further simplifies to
oo n+1 .
1 -1 ~2k+1 (2k=1Y Ju—1 (1}
P, == C|l- [—~ 2 ( )—(—) A.12
’ 2 ngo ”|: H k§=:1 k H H ( )

where L = 1+2B(E,/N,) is a constant. Assuming E[|Z|2] = E[|Z,|?], the coefficients C,

are given as [27]

Co = exp(-203/(1-0aj))
n-1
C,=1/n-Y b, ;C, n2l
j=0
{20(3/(1—0(3), n=1
b, =

0, n>1

(A.13)
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Appendix B : MFB (fast fading f, — )

We are interested in finding the limiting case of the variance of the signal component Y,
0)2, ,as fy—> .
For the flat-fading Rician channel, Y is given by
Y = [log+oyz(0|2- |p(0)? ar (B.1)
and its mean

E[Y] = [Ip()12El|og + 0y 2(1)[2)ar
[Ip12(ad + a)ar (B.2)

2 2
oy + O

where we have used E[|z(#)]?] = 1. Accordingly we have

o2 = E[Y?]- (E[Y])?
(B.3)
= E[Y2] - (0} +03)2.
Finding the second moment of ¥
E[Y?] = ”|p(t1)|2|p(t2)|2E[|oco+(xlz(tl)|2|0c0+(xlz(t2)|2] dt, dt, (B.4)

Expanding the expectation term in the integral gives

O + 0, 2(2))|? [ + 0y 2(8))])? = af + o ad(|z(2))]? +|a(22)]| D) + of [2(t;)|?|2(2)]?
+20d o Relz(t))] + 203 o Re[z(2,)] B.S)
+ 201 0 Relz(t))1|z(ty)|? + 20 oc?Re[Z(fz)]IZ(tl)lé .

+ 402 o?Re[z(1))]Re[z(1;)]

and taking the expectation of both sides in (B.5) yields
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E[|og + oy z(r))| ot + 0y 2(1)] 2] = of + 20507 + ot E[|z(2))]?|2(2)]?] (B.6)
Substituting (B.6) into (B.4) and using [14]

El)z(t))|*z(2p)]*] = 1+p2 B.7)

where p is the normalized cross-correlation between the two samples of the real or imaginary part

of the process z(¢) [16]. Thus, we have

E[Y?] = o} +2030 + of H|p(t1)|2|p(t2)|2(1 +p2) dt; dt, . (B.8)

Since p can be viewed as the correlation of the fading process, from [15]
p(1) = Jo(2rfpT) (B.9)
where Jy(x) is the zeroth order Bessel function of the first kind and f, is the maximum Doppler
frequency in Hertz. Applying the transformation t,—t, = T and using (B.3), (B.8) and (B.9), the

variance of Y can be written as

o2 = af jjlp(t1)|2|p(t1-r)|213(2nfD1) dudt, . (B.10)

Following the analysis in [14], we substitute the autocorrelation of the squared pulse

magnitude which is given by

R,(D) = [P |p(t-1)|2 dr (B.11)
in (B.10) resulting in
TP
o2 = af J’Rp(r)-Jg(znfDr) dt. (B.12)
T,

The limiting variance of Y as fy — o can be obtained by taking the limit as T, — oo.
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Writing p(¢) in terms of u(¢), a unit energy and unit duration pulse, i.e.

p(t) = —— u(i). (B.13)
N
Substituting (B.13) in (B.11) and evaluatingat T = 0
T, .
1 t
R,(0) = = j u(T—j dt
Tp 0 p
1
1 B.14
= = [lu(a)* dq ®-14)
p
0
-9
T,

1

where Q = j |u(q)|* dq is a constant.
0

Since an autocorrelation function has it’s maximum value

at zero delay, it is convenient to write

Rp('c)sg (B.15)
T
p
which implies
TP
2af [Q-J3Q2nfp1) do
2 0
oy < T . (B.16)
P
Taking the limit as T, — oo and applying L’Hopital’s rule
(B.17)

lim 62 = lim 2af QJ3Q2nf,T,)dt =0
Tp—)OO Tp—)oo

- Thus the variance of the signal component Y approaches zero for any unit energy pulse as the

normalized Doppler rate increases without limit.
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Appendix C : Solving the Integral
To evaluate the following integral encountered in Section 3.5.2:

1 Blm °° [ EbyJ 2vm—1 (y—OC(%)
P, = = — erfc ’—- (y—o )m exp(—

0 (C.1)

1 1 B 2.m—1 (y—oc(%)
=5-5 — |erf f (y—0g)" " exp|—
2 2 1;1m§1(m—1)'7&7 j ( J ° ( A

Substituting the integral expression in the above equation for /

oo

I = j udy (C.2)
o
where
E,y
YE , N, _
bY )

u=cerf|l|[— |= —= exp(—t-)dt (C.3)

f[/ No) NV { p

2

dv = (y—ocg)m‘lexp(—(y KaO)de (C4

l

which gives

fEb EN 112
du = IV—OTCeXp(—TV—;'))' dy (CS)

1)'}\1n+1 —— _a2
_Z (m n-1)! oD %) leXP[‘y i OJ- (C.6)

Integrating (C.2) by parts yields
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( _1)|7\'n+1 I —(12 o0
I = [—erf[f Jz :nm o 1)' _0(8) leXp(_y - O]:I
Flly=08
(C.7)

E, " (m—l)'?»”“ o2\ T (y-ad)" ! E, 1
exp Tl J 5 exp[—(}—v-(—)+};)y]dy

Non [ (m=—n=1)!

o

From [23] we obtain the following expression for the integral term in (C.7)

1
)
2 3
T-odt! e - 5
| =¥ T Pay=c 2 ag )F(u)exp(——O)Wl L (Cad)  (C8)
ol A/)-) 27 * 2_11
0 2 72
Eb
where p = m—n,C; = l and I'(z) is the Gamma function. W, (z) is known as the
!
Whittaker function which is defined as [23]
I'(-2v | @AY
W, o(2) = —1(-——)——Mm(z) N ——i—%Mx, (@) (C.9)
F(i—v—k) F(§.+v—k)
where
v+ - -2/2 1
M, (2) =z Z%e d)(v—?wi, 2v+ 1;2)
| (C.10)
_v -
M, _(2) =z +2e_2/2(I>(—V——7»+ %, -2v+1; z)
d(0, v; z) is the confluent hypergeometric function [23]
2
oot Dz (C.11)

oy = T+ i+ S D2

Equation (C.7) thus simplifies to


http://2-.ni
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E, 05 m
I = erf = (m—1)'A,

0

xn+1 C _ 3
Nonz (ul—)'l)! CXPK%;_TIJQ‘%}C’ 2 a(()u Z)F(”)Wl 1 (Cog)

which results in the following expression for P,

1 1 Eba(% m
-2 - DA
"2 2‘? g(m—m, [rf[ N ](m M
(1)) (C.1B)
gt 1 CN A 22 (”_%)
Non 2 T e [(T,‘?)“O]C’ Ol F(H)W%_l‘ _;____(Clao)
72

Equation (C.13) can be written in a more simplified form when r; = 1, VI

2 2
( Ebaoj+ Ey exp(%gjjgerfc( /C,a&)} (C.14)
l l

Ld
1

where erf(x) and erfc(x) are the error and complementary error functions respectively
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Appendix D : Calculating the Errors in Amplitude and
Phase estimation

actual sample
sample with error

Y,
random error
’
y e/ :
ee
y
8 X
0 x x’
Y

Figure D.1 Resolution of the fading sample with/without error
Figure D.1 illustrates the resolution of the fading sample, s = x + jy, the error variable,
e = x’ + jy’ and the fading sample with error, s, = (x +x") + j(y + y") in the XY-plane. x" and

= 62/2 where 62 is the

y’ are both i.i.d. Gaussian random variables with variance, 0'3, = csyz,
variance of e.

The amplitude estimation error is given by

e, = |s.| sl (D.1)

where |s,| = Jx+x)2+ (y+y')? has a Rician distribution and |s| = J/(x)2+ (¥)? is a
constant. The mean square error (MSE) is therefore a function of the amplitude of the fading

sample and is given by
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E[€2]

E[]s,|? +s|2 - 2|s,|Is]]
E[|s,|?] +|s]2 = 2|s|E[|s,|]

2 2
02 +2-Is2- (sl - JoZ exp(-L) o3, L))
[4

e

(D.2)

where ®(a, b;z) is the confluent hypergeometric function [23]. E [|s e|2] and E [|se|] are the first
moments of the non-central chi squared and Rician distributed random variables respectively as
shown in [12]. The normalized amplitude estimation error, E ), is written as

_ E[g]]

V=T (D.3)

Since the phase of the fading sample is uniform from O to 27, the phase estimation error,

8, , is independent of © and can be obtained by assuming 6 = 0 in Figure D.1. It thus follows

_ le] sin®’ )
0, = atan(—————lsl +lelcost’) (D.4)

Letting R = |e| and knowing from [19] the joint pdf, fgqe/(7, ®), of R and 6 which is

given by

Frg(r @) = = exp(—’—z) D.5)
Re ? no_e2 0'62 » . .

the mean phase estimation error, E[0,], is obtained by integrating (D.4) over fzq-(7, @), i.e.

|s| + rcos@

1 2
E[6,] = 7%2 [] ratan(—rs—‘-‘&)exp(—g—z)dm@. (D.6)
0 e
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