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ABSTRACT 

A number of aspects of speech training involve assessing the quality of 

the student's speech. It is of interest to determine whether such speech 

quality analysis can be done automatically. This thesis provides a 

preliminary answer to that question by proposing and then evaluating a set 

of quality measures for comparing the quality of two segments of speech. 

Speech quality is taken to be the lack of defects in the articulatory 

and prosodic components of speech. It is a non-quantitative definition from 

speech pathology that can meet the needs of speech training. Speech defects 

common among deaf children and students of English as a second language are 

reviewed, and classified according to this scheme. 

The speech quality measures are based on a linear prediction model of 

speech, and adapt several techniques from the field of speech recognition. 

Evaluations using speech with known quality defects show that the 

articulatory measures are effective in detecting most of the common errors 

of articulation, with the exception of ones between nasal sounds. The 

prosodic quality measures of loudness and timing give very useful indica­

tions of syllable stress and voicing errors. The timing measure is derived 

from the optimal time-warping curve between the two utterances, and provides 

an accurate means of tracking speed variations in speech. Differences 

between speakers tend to mask articulatory quality errors, but have l i t t l e 

effect on the prosodic quality measures. An articulatory distance measure is 

proposed that partly counters these interspeaker differences. 

Work remains to be done in a number of key areas, but the results of 

this preliminary investigation suggest that automatic speech quality 

analysis by computer is practical and may one day become a versatile tool 

for speech training. 
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CHAPTER 1 

INTRODUCTION 

1.1 WHY SPEECH QUALITY ANALYSIS 

There has been considerable interest in recent years in the development 

of technical aids for the purpose of speech training. These aids, which in 

general depend on a visual display of certain features of speech, are 

intended for use in the classroom by deaf children and language students, 

and possibly by others. Children with a severe hearing impairment of early 

onset face an enormously crippling social handicap i f they are unable to 

learn useful speech, and the difficulties of teaching them by traditional 

means have provided a strong incentive for research into improved methods of 

training. 

Unfortunately, speech training aids have had only limited success, and 

the need to investigate and design better aids remains as strong as ever. 

One difficulty has been that the devices were a l l intended to help with 

specialized aspects only of the speech learning problem. This thesis 

describes a new tool for use in speech training that is general in approach 

and applicable to many facets of the problem. It makes a direct evaluation 

of the quality of the student's speech from a comparison between i t and the 

teacher's speech. Indications are that a wide range of quality errors can be 

detected by the method, and diagnostic information, i.e. information as to 

how and why the speech is defective, is additionally available. The speech 

quality analysis system is implemented on a computer via linear prediction 

methods, and borrows from techniques developed for speech recognition and 

speaker identification. It will likely find most use in those speech 

training applications in which an extra feedback channel can benefit the 
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learning process. This i s the case with deaf children who lack the normal 

auditory capacity for comparing their attempts at speech with those of 

others around them; i t is also the case with students learning another 

language, who through long exposure to their native tongue have lost some of 

their a b i l i t y to make fine auditory discriminations with the foreign sounds 

being learned. 

The next section examines more closely aids for speech training, 

including their advantages, limitations, and current capabilities. It w i l l 

be apparent from the discussion that the design and implementation of a 

speech training aid is a major interdisciplinary undertaking. Therefore, 

this thesis can be concerned only with an investigation of the f e a s i b i l i t y 

of the quality analysis approach, and not with the construction of a ready-

to-use speech training aid. 

1.2 AIDS FOR SPEECH TRAINING 

Speech training aids are the result of applying technology to the 

d i f f i c u l t problem of teaching speech, and as such they potentially have many 

advantages over traditional methods. Their principal function is to provide 

a visual (or sometimes tactile) feedback channel to assist in the correction 

of specific speech problems [32]. They are capable of immediately displaying 

information about a speech utterance, and avoid the d i f f i c u l t i e s a teacher 

can have in identifying and verbally describing an error. 

Speech training aids can also help alleviate the shortage of highly 

proficient teachers of speech, by allowing the student to practise with the 

device on his own. There is even a potential for self-tutoring, as the 

student may use the device at home. If the device is implemented on a 

computer and i s combined with a program of computer-aided instruction (CAI), 

then demands on the teacher can be reduced s t i l l further. Speech training 
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aids can also help overcome the problem of adaptation [4], in which the 

teacher through prolonged exposure to defective speech eventually becomes 

unaware of its errors. 

Recent efforts 

Speech training aids go back to the attempts of A.G. Bell in 1874 to 

use feedback of a deaf pupil's speech waves. The "modern" era began with 

Bell Telephone Laboratories' visible speech translator of 1944, which was 

capable of identifying many features of speech. Details of these, as well as 

recent work on speech training aids, can be found in Pickett [35], Levitt 

[24], and Pronovost [39]. This section will give only a short survey of some 

of the more recent devices that have been developed. 

In discussing speech training aids, Povel [37] divided them into four 

categories: pitch and intonation correctors, intensity correctors, rhythm 

correctors, and articulation correctors. This grouping illustrates both the 

diversity of problems encountered in the speech of students requiring 

special training, and the variety of devices that have been proposed. 

Numerous pitch displays have been built that give the fundamental 

frequency of a speech utterance against time. These have proven to be the 

most useful of the speech training aids, and a number of them are in actual 

use in deaf schools. Boothroyd reviews some of these in [4], as well as 

describing one of his own. 

Articulation correctors present greater problems to the would-be 

designer, for no longer is there a single parameter to extract and display. 

Povel [37] has developed a vowel corrector that helps teach the distinction 

between the vowels / i / and /e/. Stark [53] has investigated a method for 

teaching the production of voiced and unvoiced plosives. Crichton and 

Fallside [11] have developed an approach for teaching sustained sounds 
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(especially vowels) that is based on a display of the estimated vocal tract 

profile for that sound. 

Some interesting training aids have come out of Bolt Beranek and 

Newman, Inc. Nickerson and Stevens [32] have attempted to put together a 

comprehensive system allowing the display of pitch, intensity, and possibly 

other parameters, with time. Kalikow and Swets [23] have developed a set of 

displays for teaching English as a second language (ESL) to Spanish 

speakers. The displays were carefully chosen in response to common 

pronunciation errors among Spanish speakers, and show tongue location and 

trajectory during vowels, vowel duration in multisyllabic words, and amount 

of aspiration and time lapse before voicing with aspirated-consonant / vowel 

pairs. 

Requirements for speech training aids 

The requirements for the successful construction of a speech training 

aid extend well beyond a straightforward application of speech science and 

signal processing methods. In addition to the development of basic 

algorithms for parameter extraction or comparison, i t is necessary to design 

a display modality to present the information in an informative and yet 

motivating way to the student; to code the algorithms on a mini- or micro­

computer to work in real time (assuming i t to be possible at a l l with 

today's technology); to assemble support hardware, such as a closed-loop 

tape system for instant replay of a spoken word; to evolve a training 

program for using the device in a classroom environment; and finally to 

thoroughly test the effectiveness of the teaching aid, preferably by 

comparison against a control group of students taught without i t . 

It is clear that one must work closely with educators and 

psychologists, and that the work extends beyond "mere engineering". Perhaps 
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it is the failure of past designers to do this that is responsible for the 

lack of acceptance of speech training aids by educators [32]. As further 

evidence that this area of research requires more than an engineering 

solution stands the experience of Boothroyd [4], who tried unsuccessfully to 

teach pitch control to a deaf child. He concluded pessimistically that: 

The problems of knowing what to teach, and of structuring the 
student's environment to create a need for the new sk i l l s , may be 
so great that the exact form which the feedback takes [i.e. the 
nature of the speech training aid] is of relatively minor 
importance. 

Until the greater problems are solved, the engineer can hope to make no more 

than a modest contribution to the field. 

1.3 OUTLINE OF THESIS 

This work comprises an investigation of the feasibility of speech 

quality analysis via linear predictive analysis. It consists of firstly 

evolving a suitable definition of speech quality, which ordinarily lacks 

precise meaning, and then of deriving and testing suitable algorithms for 

computing quality so defined. 

Chapter 2 is concerned with arriving at and justifying a working 

definition of speech quality. It is necessary to review the speech process 

and how speech is formed, to examine the well-defined notions that speech 

pathologists and therapists have of voice and speech quality, and to review 

the specific speech quality problems of the deaf and of ESL students. A 

qualitative definition of speech quality is then proposed that characterizes 

these speech problems in a manner suitable for the design and evaluation of 

a computer-based speech quality analysis system. 

Chapter 3 begins with a short description of the mathematics of linear 

prediction, the speech analysis method that has been chosen for this work. 

Linear prediction is excellently suited to digital computation, and is 
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currently enjoying great popularity in speech processing. Methods of 

comparing speech utterances are discussed, and a set of distance measures 

for expressing articulatory and prosodic speech quality i s proposed. 

Finally, the problem of interspeaker differences is examined and a possible 

method is described for reducing their effect. 

Chapter 4 deals with the experimental work that was carried out to 

evaluate the proposed speech quality measures, and gives results for the 

performance of the measures under a variety of speech inputs. Experimental 

reasons for certain choices in the analytic form of the quality measures are 

also given. 

A discussion of the overall significance of the results and their 

limitations i s given in Chapter 5, together with a summary of the findings 

and directions for further research. Two Appendixes, covering the phonetic 

alphabet and certain speech processing algorithms, and a bibliography 

complete this work. 
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CHAPTER 2 

SPEECH QUALITY; MEANING AND MEASUREMENT 

2.1 THE SPEECH PROCESS 

Speech is the result of using the vocal apparatus to produce sound 

containing an encoding of linguistically organized thought. Its production 

involves a complex interaction between mental activity and the dynamic 

motions of articulatory organs, and has been the subject of much study. An 

understanding of the means of its production is essential for the 

appreciation of quality defects in speech. Though this is amply covered in 

the speech science and linguistics literature (see [15], [10], [12], [54] 

for discussions and further references), i t will be useful to briefly review 

it here; i t will also serve to introduce important terminology. 

Speech is produced from the controlled movement of breath from the 

lungs through the mouth and nose. The breath stream is shaped by the action 

of the vocal cords (vocal folds) , and by the lips, jaw, tongue, and soft 

palate (velum). Speech comprises the elements of voice, articulation, and 

prosody. Each of these will be examined in turn. 

Voice is the sound produced by the action of the vocal cords on the 

expiratory breath stream. The vocal cords are folds in the lining membrane 

of the larynx, and under voluntary control known as phonation, the opening 

through them (the glottis) can be rapidly opened and closed to produce a 

quasi-periodic pulsed pressure wave. The lung pressure (subglottal pressure) 

controls the amplitude of vibration of the vocal cords, and hence the 

loudness of the resultant sound. The adjustment of length, thickness, and 

tension applied to the vocal cords determines their fundamental frequency of 

vibration, and hence the pitch of the sound. 
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The sound of voice is modified, owing to changes in its harmonic 

composition, by resonance effects in the vocal tract through which the sound 

passes. The most important components of the vocal tract are the oral cavity 

and the nasal cavity. The latter is normally blocked by the velum, but can 

be coupled to the oral cavity for certain speech sounds, for which the oral 

cavity is then closed. 

The relative positions of the speech organs and resonant cavities are 

shown in Fig. 2.1. 

Articulation is the process of forming from the breath stream the 

distinct speech sounds of v^iich language is composed. These distinct sounds 

are called phonemes, and are of two types: vowels and consonants. English 

uses approximately 45 different phonemes, and these are shown, together with 

a classification scheme, in Appendix I. 

Phonemes are classified according to their manner of production and 

their place of articulation. The sound may be voiced or unvoiced (i.e. with 

LIPS 

HARD PALATE 

Fig. 2.1 Position of the speech organs 
(after Markel & Gray [29]) 
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or without phonation, respectively), and may be produced by resonance, 

friction or plosion. The resonants are formed by resonance in the oral (or 

nasal) cavity, and are a l l voiced; they include a l l the vowels, and among 

the consonants the sonorants (also known as liquids, or as glides and semi­

vowels) and the nasals. The remaining consonants form complementary pairs of 

unvoiced and voiced sounds. The fricatives are formed by rapidly forcing air 

through a small constriction so as to give turbulent, noisy, flow ('audible 

friction'). The plosives are generated by the sudden release of built-up air 

pressure behind an occlusion in the vocal tract. Because of the motion 

required to form them, they are the only simple sounds not capable of being 

sustained. A combination sound known as an affricate is formed when the 

release of air pressure is relatively slow and audible friction occurs. 

The vowels are controlled mainly by tongue position, and a l l being 

resonants are classified according to tongue hump position and tongue height 

or degree of restriction. Other factors affecting the vowels are l i p 

rounding, whether the tongue muscles are tense or lax, etc. The consonants' 

second dimension for classification is their principal place of 

articulation, which for the sounds of English can be: the two lips 

(bilabial), the upper teeth on the lower l i p (labiodental), the tongue 

behind the teeth (dental) , the tongue to the gum ridge (alveolar), the 

tongue against the hard palate (palatal) or the soft palate (velar), and the 

vocal cords constricted and fixed (glottal). 

Because of the dynamic constraints imposed on the movement of the 

articulatory organs, particularly the tongue, phonemes are influenced by 

adjoining ones. For example, the /k/ in 'kid' is distinctly different from 

the one in 'could'. The phenomenon is known as coarticulation, and is useful 

in the perception of speech because of the information i t gives about the 

adjoining sounds. Different forms of the same phoneme are known as 
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allophones. 

Prosody is the term used to refer to the rhythm, stress, and intonation 

components of speech that are used both for communicating additional 

linguistic information and for conforming to established conventions of 

language. For example, syllable stress is required in every English word of 

more than one syllable, and phrasing is used in much the same way as is 

punctuation in written language. 

The acoustical correlates of prosody (sometimes referred to as the 

lower level prosody [56]) are vocal pitch, intensity, and phonetic duration. 

Syllable and word stress are accomplished by a rise in pitch and an increase 

in vowel duration, together with an increase in intensity. Intonation 

involves a rise or f a l l in pitch towards the end of a sentence, and is best 

characterized by the pitch contour of the sentence. Phrasing is the 

insertion of silent intervals ('boundaries') into a continuous utterance. 

2.2 COMPONENTS OF SPEECH QUALITY 

The term "speech quality" is used in this work to mean, loosely, the 

degree of perfection present in the speech being appraised. Although 

electrical engineers have long had to compare speech transmission systems on 

the basis of which sounds best, and speech clinicians are directly concerned 

with the diagnosis and treatment of speech disorders, neither these groups 

nor others have satisfactorily defined speech quality. However, an 

understanding of what is speech quality can be gained by examining their 

differing approaches to the question. 

Electrical engineers have a measurement approach to speech quality, 

involving the use of preference and intelligibility tests, e.g. [21], [16]. 

The dimension of preference is essentially that of pleasantness or 
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mellisonance; the term aesthetic acceptability has also been used. 

Generally, defects of voice affect its mellisonance only and not its 

intelligibility (though they may have a distracting effect). Defects of 

articulation or prosody can greatly affect the intelligibilty of the speech 

as well as its mellisonance. 

Mellisonance is assessed via preference tests, in which speech samples 

are ranked in order of preference from a series of two-way comparisons, or 

by category judgment, in which each speech sample is rated (e.g. from 

unsatisfactory 0% to excellent 100%) according to an arbitrarily assigned 

scale. Intelligibility is measured as the fraction of words understood 

correctly in test phrases. Because of the contextual cues present in 

continuous text, isolated words or short phrases must be used. 

In contrast, speech clinicians have viewed speech quality from an 

analytical viewpoint. The defects of speech are the defects in its component 

elements of voice, articulation, and prosody [5]. The remainder of this 

section examines these factors in more detail. 

Defects of voice 

The dimensions of voice are pitch, loudness, vocal quality, and 

nasality, and hence defects of voice involve problems with one of these. 

Both pitch and loudness are prosodic variables (and therefore are 

linguistically important, unlike voice), but their average values and their 

range of variation are attributes of voice only. Vocal quality, also called 

voice quality, is a term universally used in speech pathology to describe 

the timbre or tone of the voice, typically being expressed via words such as 

harsh, hoarse, strident, resonant, etc. It includes the effects of vocal 

mode (part-fold, as in vocal fry and falsetto, to full-fold or normal) and 

vocal constriction (from open to closed). The term voice, as usually used, 
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includes only those aspects of the speech production process that are not 

phonemically significant. Thus hypernasality is a problem of voice as i t 

merely results in speech having an unpleasant nasal ring, whereas 

hyponasality, in which the inadequately nasalized phonemes /m/, /n/, /rj/ can 

be confused with the non-nasalized phonemes /b/, /d/, /g/, is properly a 

defect of articulation. 

Defects of articulation 

These are due to errors with voicing, manner of production, and place 

of articulation, and errors or inaccuracies with the dynamics of forming 

individual sounds and combinations of sounds. A great variety of defects 

have been reported in the literature, and a representative selection 

follows; actual errors among the deaf and among ESL students are discussed 

in section 2.3*. Errors of voicing involve the substitition of a voiced 

phoneme for an unvoiced one, e.g. /d/ for / t / , and vice versa. Errors of 

manner of production include hyponasality and such effects as replacement of 

fricatives by plosives or affricates, e.g. / t / for /#/. Errors of place of 

articulation are more common, including distortions of recognizable 

phonemes, substitutions of similar sounds (e.g. /w/ for /r/, /e/ for /e/, 

etc.). Errors of dynamics include diphthongization of pure vowels, 

malarticulation of consonant blends, inaccuracies with voice onset after 

unvoiced consonants and with the timing of general transitions between 

sounds, etc. 

Many other schemes for classifying articulatory disorders are possible 

[38]. A simple one groups them as omissions, substitutions, distortions, and 

additions, where substitutions and distortions are distinguished according 

to whether or not the sound produced is phonemic. 
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Defects of prosody 

These are errors in syllable and word stress, intonation, and rhythm, 

such as monotone pitch, irregular or erratic stress and rhythm, etc. The 

importance of correct prosody has been demonstrated by Hudgins and Numbers 

[20] in their investigation of the speech of the deaf: a sentence spoken 

with correct stess and rhythm was almost four times as likely to be 

understood as one without. 

2.3 SOME SPECIFIC SPEECH QUALITY PROBLEMS 

This section will give a brief review of the specific speech problems 

that have been noted in investigations of the speech of the deaf, and of 

some of the pronunciation difficulties faced by students of English as a 

second language. 

(1) Speech quality problems among the deaf 

An important distinction can be drawn between the prelingually deaf -

those who were born deaf or who lost their hearing prior to the development 

of speech (at around age 3) - and the postlingually deaf, who suffered their 

hearing loss in later l i f e . By deafness here is meant a hearing impairment 

of about 90 dB (threshold level), which is sufficient to render "everyday 

auditory communication impossible or nearly so" [12]. The greatest 

difficulties with speech occur with prelingual deafness, and the object of 

speech training is the development of speech. With deafness in later l i f e , 

training is aimed at the preservation of speech. 

The defects in the speech of (prelingually) deaf children have been 

investigated by many researchers, both by comparison with the speech of 

normally hearing children, and independently by correlating defects with 
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speech intelligibility. Comprehensive studies include those by Hudgins 

(1934) [19], Hudgins and Numbers (1942) [20], and Calvert (1961) [6]. 

Summaries of reported problems can be found in [52] and [32]. 

Most characteristic of the speech of the deaf is their "distinctive 

voice quality" [7]. It has regularly been described as tense, flat, breathy, 

and throaty, and i t has even been suggested as a clinical indicator of 

deafness. In [19], Hudgins reported the speech of the deaf to be 

characterized by slow and laboured speech with extensive expenditure of 

breath, resulting in short, irregular breath groups. Vowels and fricatives, 

indeed entire sentences, are prolonged to 2 to 4 times their normal length, 

and there is excessive nasality with both consonants and vowels. 

In their investigation of the intelligibility of the speech of deaf 

children, Hudgins and Numbers [20] found both articulatory and prosodic 

errors to be responsible for poor intelligibility. Errors of articulation 

involving the consonants were voicing errors, consonant substitutions, 

malarticulation of compound and of abutting consonants, and omission of 

arresting and of releasing consonants. The most difficult consonants to 

pronounce correctly were (in order of difficulty) /d3/, /d/, /h/, /b/, /g/, 

///. Among the vowels the problems were vowel substitutions, malarticulation 

of diphthongs, and diphthongization or neutralization of vowels. The 

difficult vowels were / a l / , /oi/, /£/, / i / , /£/. Errors of prosody included 

misplacement or absence of word and syllable stress and of phrase-level 

boundaries, incorrect intonation patterns, and the inability to control 

pitch and loudness independently. Utterances frequently lacked a natural 

rhythm. 

Postlingual hearing loss can also cause serious defects in speech 

quality. Articulatory defects generally occur first, typically involving 

distortion of unvoiced fricatives and omission of arresting consonants [51]. 
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Abnormalities of voice quality and with use of prosody can follow. However, 

deterioration of speech quality can be minimized by a program of speech 

conservation, which usually takes the form of developing the subject's 

sensitivity to the kinesthetic cues accompanying speech, a program which in 

some respects is not unlike that used to teach the prelingually deaf child. 

(2) Speech quality problems with ESL 

A foreign accent can be considered a speech quality defect. The speaker 

is unable to make his pronunciation and rhythm conform to the requirements 

of the second language as a result of his enormous familiarity with his 

native language. Whereas, with the deaf, speech quality problems arise from 

an inability to hear their own and others' attempts at speech, the problem 

for ESL learners is interference from the sound system and rules of their 

native language [34], [36]. 

The pronunciation (articulation) problems may be classified as follows. 

(1) The phoneme does not occur in the speaker's native language. Examples of 

this abound: the vowels /ce/, / I / are absent in many languages, as are 

the consonants /Q/, /$/, /M/, /T,/, /dj/; the French and Spanish lack 

/h/, the Germans lack /w/, the Japanese and Chinese lack both / r / and 

/ l / ; Spanish is also missing /U/, /o/, /a/, ///, /v/. In this case, the 

speaker substitutes the nearest familiar sound or its orthographical 

equivalent in his native language (e.g. /v/ for /w/ with Germans). 

(2) The phoneme is articulated differently in English. For example, in 

French and Spanish / t / is dental, but in English i t is alveolar. 

Moreover, initial / t / is not aspirated, whereas in English i t is; an 

unaspirated initial / t / sounds very much like a /d/ to an English 

listener. The English / r / is very different in character to that of 
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other languages. Here the speaker substitutes his native articulation. 

(3) The utilization of the phoneme is different in English. Thus, in Spanish 

/z/ occurs only as an allophone of /s/, used before a voiced consonant, 

and /%/ occurs only as an allophone of /d/ used between vowels. German 

has no voiced consonants at the ends of syllables, using instead the 

unvoiced counterpart. Consonant clusters, e.g. /mpst/ in glimpsed, are 

common in English, but do not exist in Japanese, or in Spanish (in 

word-final position), and are another great source of difficulty. 

Problems with prosody arise from differences in the use of stress, 

pitch and juncture. In French, each word and each word group is given an 

increase in stress towards its end, and i f this is carried over to English, 

the result sounds poor. Spanish lacks both the diphthongization of stressed 

vowels and the neutralization of unstressed vowels, a feature of English. 

Juncture is rare in both Spanish and French. 

2.4 PRACTICAL CONSIDERATIONS 

The preceding discussion has shown speech quality - the degree of 

perfection present in the speech - to be the lack of defects in its 

components of voice, articulation, and prosody. This is a qualitative 

definition based on a comparison with "normal" speech, but one that is quite 

adequate for the purposes of speech training, where the requirements are 

essentially diagnostic and corrective. A single-valued quantitative measure 

of speech quality, useful as i t may be in Communications Engineering, is 

unable to satisfy these requirements. Moreover, i t can only be obtained 

after an investigation of how speech quality defects affect mellisonance and 

intelligibility scores, a separate piece of research that, though useful, is 

not needed for speech quality analysis. 
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To illustrate, a speech quality system for speech training need not 

judge, for example, the relative severity of a consonant distortion as 

against misplaced word stress, but should be capable of distinguishing 

misplaced stress from inadequate or absent stress. 

As a first step in investigating the feasibility of speech quality 

analysis, i t will be acceptable to ignore defects of voice, and instead to 

concentrate on developing techniques sensitive to articulation and prosody 

errors. Poor voice quality is more difficult to correct without the skilled 

interaction of a speech clinician, and fortunately is not an important 

contributor to poor speech intelligibility. 

There are other concessions that need to be made to practice. The first 

of these concerns the way in which quality is assessed. I propose to view 

speech quality as inherently relative, and to judge i t only by direct 

comparison between the test utterance and one produced by a "teacher" 

speaking the same text. This approach carries with i t the disadvantage that 

any features of speech unique to the teacher (such as a regional accent) are 

taken as standard, their absence in the test utterance being flagged as a 

quality defect. Also, in a practical situation, some flexibility will be 

lost as a teacher must be present or must have produced a tape of speech 

exercises. But the advantages of simplicity and precision afforded by having 

a direct standard available appear to outweigh the disadvantages. 

Another concession is the restriction of analysis to single words and 

short phrases only. The present expense and amount of real time used to 

process the vast amount of data in speech precludes the analysis of ful l 

sentences. This severely restricts the extent to which sentence level 

prosody can be assessed and corrected. However, much useful speech training 

can be done at the word and phrase level, and in any event, the computing 

restriction is likely to be only a temporary one. 
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The speech processing method of linear prediction, to be described in 

Chapter 3, appears to be well suited to the analysis of speech articulation 

and prosody. Linear prediction reduces the data to manageable size, and 

nicely reflects its spectral properties (including implicitly therewith the 

shape or position of the articulators, and the identity of the speech sounds 

actually made). LP techniques also allow the loudness and pitch of speech, 

whether or not i t is voiced, and its time alignment with respect to a 

reference utterance to be monitored. Additionally, the fields of speech 

recognition and speaker identification have contributed numerous techniques 

for comparing two samples of LP-processed speech. 

Yet the requirements for speech quality analysis are different from 

those for speech or speaker recognition, and the suitability of these 

techniques has yet to be investigated. I propose to examine in subsequent 

chapters the following three questions. Satisfactory answers to each will go 

a long way towards establishing the feasibility of automatic speech quality 

analysis as envisioned above. 

(1) Can linear prediction analysis of speech reliably detect articulation 

errors? If so, what kind of errors, and using which techniques? 

(2) Do interspeaker differences mask these quality differences, and if so, 

how might their effect be reduced? 

(3) Can a linear prediction analysis of speech reliably detect prosody 

errors, especially general timing errors? 
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CHAPTER 3 

LINEAR PREDICTION AND SPEECH QUALITY 

3.1 LINEAR PREDICTION OF SPEECH 

A digital model of speech production 

The speech production mechanism can be modelled as an acoustical tube 

of varying dimensions (the vocal tract) that is excited at one end by a 

glottal pulse or noise source, and terminated at the other by the lips. The 

acoustical tube acts as a linear time-varying fi l t e r , and for convenience is 

assumed to include the spectral effects of glottal flow and l i p radiation. 

The model is essentially due to Fant [14], and is depicted in Fig. 3.1. 

The glottal source consists of periodic pulses when the sound is 

voiced, and of random noise when i t is not. Despite some deficiencies, such 

as the need to regard nasal sounds as arising from excitation of the vocal 

tract, the model has proved very successful in a wide variety of 

applications, synthesis as well as analysis. In the linear prediction model, 

PITCH 
PERIOD 

PULSE 
SOURCE AMPLITUDE 

GLOTTAL EXCITATION 
TIME-VARYING 

DIGITAL 
FILTER 

—•* SPEECH 

NOISE 
SOURCE 

VOICING 
SWITCH 

Fig. 3.1 Digital model of speech production 
(after Schafer & Rabiner [49]) 
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made popular by Atal and Hanauer [3] in 1971, the filter is represented by 

its z-transform, and its coefficients are estimated by linear prediction on 

the sampled values of actual speech. The filter is assumed to be stationary 

over short periods of time, typically 10 ms to 30 ms; its order is generally 

chosen to l i e between 8 and 14. 

Calculating the filter coefficients 

In the model of Fig. 3.1, let the excitation signal be u(n), n=0(l)N-l, 

the amplitude be o~, and the filter coefficients be {a^}, k=0(l)p with aQ=l. 

p is the filter order. The speech signal is then given by 

cr 
X(z) = p U(z) (3.1) 

1 + Z a kz- k 

k=l 
P 

or x(n) = - "Z a|<x(n-k) + Cu(n) (3.2) 
k=l 

The {â } are found by minimizing the total squared error E that arises 

from predicting x(n) from a linear combination of past values only. 

E=Ze2(n) (3.3) 
n 
P 

where e(n) = £ ak x( n - k) (3.4) 
k=0 
P P 

Therefore E= £ Z a^k I x(n-i)x(n-k) (3.5) 
i=0 k=0 n 

Two choices of summation over n are possible, giving rise to two 

different solutions for the {â } [25]: 

(a) autocorrelation method (Yule-Walker method): AC 

Here we choose -°°<n<°°, and assume x(n)=0 for n<0 and n>N-l. In 

practice this assumption is met by the use of a finite duration window w(n) 

which premultiplies x(n) . Setting tiE/ba^ =0 in Eq. (3.5) gives a set of 
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linear equations in the a k: 

P 
2 a k r | i - k | =- r i f i=l(l)p (3.6) 
k=l 

where {r^} is the autocorrelation sequence of x(n): 

N-l-i 
r i = J_ x(n)x(n+i) , i=0(l)p (3.7) 

n=0 

rg is the energy in the speech frame, and is proportional to o"2. 

Eq. (3.6) can be solved by Gaussian elimination, but there is a more 

efficient procedure known as the Levinson method that makes use of the 

special form of the equations. It is described in Appendix II. 

With the {ak} satisfying Eq. (3.6), the total squared error E is 

minimized, and is given by 

P 
* = Emin = ro + 2 a k r k (3.8) 

k=l 

«. is known as the prediction residual, and represents the residual energy in 
P 

the output of the inverse filter A(z) = 1 + Z &kz operating on the speech 
k=l 

signal x(n) . 

Prior to calculation of the autocorrelation coefficents, i t is usual to 

pre-emphasize x(n) by differencing once in the time domain (i.e. multiplying 

X(z) by l - z - 1 in the frequency domain). This cancels one of the poles due to 

glottal flow, and experimentally has been found to give improved results in 

most applications. x(n) is additionally preprocessed by windowing, so as to 

taper the data smoothly to zero at the ends of the finite sample. The window 

most commonly used is the Hamming window, given by 

w(n) = 0.54 - 0.46 cos 2nn/(N-l), n=0(l)N-l (3.9) 

(b) covariance method (least squares method): COV 

Here we choose p<n<N-l, and in consequence x(n) is always known and 
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windowing is unnecessary (though x(n) is s t i l l pre-emphasized). The 

resulting equations are again linear, and are: 

P 
I a k0 i k = - 0 i o, i=l(l)p (3.10) 
k=l 

where the 0 j k are the covariances of the x(n): 

N-1 
*ik = 0ki = I x(n-i)x(n-k) , i,k=0(l)p (3.11) 

n=p 

Eq. (3.10) cannot be solved by the Levinson method, but as the 

resulting matrix of coefficients is symmetric and positive definite, 

Cholesky decomposition can be used to gain some improvement in computational 

efficiency over Gaussian elimination. 

The prediction residual is given by 

P 
a = Emin = 000+2 ak0kO (3.12) 

k=l 

The covariance (COV) method, by avoiding the need for windowing, is 

able to estimate the filter coefficients from the data with considerably 

greater accuracy than the autocorrelation (AC) method; de Souza [13] has 

presented results that amply confirm this. However, the COV method can 

sometimes give rise to an unstable f i l t e r , while the AC method, for 

sufficient numerical accuracy, will always give a stable filter [29]. Choice 

of which method to use in a particular application is therefore based on 

which property is deemed more important. Computational efficiency is not 

really a factor in the decision, for the methods, surprisingly, require 

similar amounts of computation. The dominant aspect of both methods, for 

N » p, is calculation of the covariances or autocorrelations, and Appendix 

II shows that the matrix of covariances can be computed in almost the same 

time as the array of autocorrelations. 
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Transformations of the filter coefficients 

There are a number of important transformations of the filter 

coefficients that can uniquely characterize the linear prediction filter 

H(z) = X(z)/U(z). These alternative parameter sets are related to the filter 

coefficients by a 1:1 non-linear transformation, and have distinct physical 

interpretations. The most useful ones for speech processing are: 

1. The filter coefficients {ak}, k=l(l)p. 

2. The normalized autocorrelation coefficients {r^}, i=l(l)p with ro=lf of 

the impulse response of the f i l t e r . Conversion from {ak} to {r^} is 

described in Appendix II. 

3. The reflection or "parcor" (partial correlation) coefficients {kj}, 

i=l(l)p, defined by k ^ a ^ i ) where a^i) is the i th filter coefficient 

of an i th order filter fitted to the speech data, ki can be considered 

the reflection coefficient at the boundary between sections i and i+1 of 

a p-section acoustic tube having transfer function H(z). 

4. The log area coefficients {gi}, i=l(l)p, defined as 

g i = log (l+ki)/(l-ki) (3.13) 

Note that gi = log(Ai/Ai+j) with Ap+]=1, where Ai is the cross-sectional 

area of the i th section of the acoustic tube model. 

5. The poles {zi}, i=l(l)p, of the filter H(z), defined by 

P P 
11 d-z kz-l) =1+J. a kz~ k (3.14) 
k=l k=l 

6. The cepstral coefficients {ci}, i=l(l)p, of H(z), defined by [1],[33] 

oo p 
Z c kz- k = - ln (1 + I a kz" k) (3.15) 
k=l k=l 
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giving c l = ~ a l (3.16) 

k-1 
ck = " ak ~ 2 d-i/k)c k_iai, k=2(l)p 

i=l 
P 

= - I d-i/k)c k_iai, k=p+lf... 
i=l 

Each of these parameter sets represents a different weighting of the 

properties of the speech signal from which i t is derived, so certain 

applications will favour certain parameter sets. 

Calculating loudness, pitch, and other speech properties 

The LP parameters characterize the spectrum of the speech during the 

speech frame. To fully describe the speech, i t is necessary to also specify 

the loudness, pitch, and voiced-unvoiced nature of the speech over the 

frame;! these aspects of speech can be determined by LP-related methods. 

Also, i t is of interest to obtain from the LP parameters the traditional 

descriptions of the speech spectrum; these can be determined directly. This 

section discusses how these speech properties are obtained. 

The loudness L of speech is simply equal to the energy rn or </>QQ in the 

speech frame. It is usual to express L in decibels relative to some 

reference level RQ, so we take 

L = 10 log 1 0 r 0 / R 0 (3.17) 

N-l 
where r 0 = I x(n) 2 (3.18) 

n=0 

1 Loudness and pitch in this work are synonyms for the average energy and 
fundamental frequency of speech; they are not the subjective quantities of 
the same name used in acoustics and audiology. Note that pitch is undefined 
for unvoiced speech. 
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The pitch P of speech is defined here to be 

P = log 2f 0 / F o (3.19) 

where fg is the fundamental frequency of the vocal tract excitation. This 

expresses i t in octaves above some reference pitch FQ. Determining the pitch 

of speech essentially relies in the observation that the residual e(n) , 

defined in Eq. (3.4), is equal to the excitation function u(n), and should 

show a pronounced peak every pitch period. This allows one to find the pitch 

period, or in the event of no regular peaks in e(n), to deduce unvoiced 

speech. The actual problems in deriving pitch period or voicing function, 

however, are considerable, and special algorithms are required to obtain 

reliable estimates. These are discussed by Markel in [27] and [29,Ch.7], and 

Rabiner in [43]. Important as knowledge of pitch is to calculations with 

speech prosody, the implementation of a pitch extractor was felt to be 

unwarranted at this stage of the work. 

Traditional representions of speech include its short term spectrum and 

a formant analysis. The frequency response of speech is readily found from 
cr 

Hg(j6>) = p ; (3.20) 
1+2 a ke-D u T k 

k=l 

Formants are the resonant frequencies of the vocal tract, and the first 3 to 

5 formants, with their bandwidths, are normally sufficient to characterize 

articulation. In general, the formants correspond to the poles Z i of H(z) , 

defined in Eq. (3.14). However, sometimes i t is difficult to associate a 

particular formant with a pole; a discussion of the difficulties and their 

solutions can be found in [26] or [29,Ch.7]. 
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3.2 METHODS OF COMPARING SPEECH UTTERANCES 

The previous section has described LP methods for characterizing speech 

over a single time frame. This section considers methods for comparing two 

complete speech utterances. From this comparison will arise techniques for 

evaluating the speech quality of one utterance with respect to the other. 

One speech segment will be taken as the test utterance and will be 

described by umprimed symbols; the other, the reference utterance, will be 

described by primed symbols. If the vector of LP coefficients for a single 

time frame m of the test signal S is denoted by a(m), then 

where M is the total number of (possibly overlapping) frames in the test 

utterance. Similarly, the reference signal S1 is given by 

with n, N written in place of m', M' 

We are seeking functions fi(S,S') for comparing the two utterances that 

describe in some meaningful way the quality of S with repect to S'. It is 

clear from the discussion in Chapter 2 that the fj f i t into two distinct 

classes: measures of articulatory quality, and measures of prosodic quality. 

Since quality is defined non-quantitatively, there will not be a strict 

correlation between measures of quality and actual speech quality; neverthe­

less i t will be clear that the fj do measure the dissimilarities that 

influence subjective assessments of quality. 

The f i will be functions of the results of comparing individual frames 

of S and S'. Thus 

S = {a(m) | m=l(l)M} (3.21) 

S' = {a'(n) | n=l(l)N} (3.22) 

fi(S,S') = fi( {di(w(n),n)|n=l(l)N} ) (3.23) 
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where di(m,n) is a scalar measure of the dissimilarity between test frame m 

and reference frame n, and w(n) , n=l(l)N, is a mapping function that maps 

the reference time axis into the test time axis. The function d is referred 

to as a distance measure, and the function w as a time warping or time 

normalization function. The remainder of this section will be concerned with 

arriving at suitable choices for the di(m,n), w(n), and f j . 

Distance measures for articulatory quality 

Articulation is almost completely characterized by the spectrum of the 

speech.2 As the filter coefficients are sufficient to fully specify the 

spectrum of (non-nasalized) speech, i t would appear that distance measures 

based solely on the {ak} (or a transformation of them) would be adequate as 

indicators of articulatory quality. Thus we may take 

dA(m,n) = dA({ak},{ak'}) 

Distance measures of this kind have been used very frequently for 

speech recognition (cf. [2], [18], [40]), and four of the more successful or 

promising of these are reviewed next. 

(1) Prediction residual ratio RESID 

This is a simple function of the filter and autocorrelation 

coefficients proposed by Itakura [22] in 1975 and used extensively since. 

The distance measure is taken to be the natural logarithm of the ratio of 

the prediction residual 6 obtained by passing the test signal through the 

inverse filter A*(z) to the minimum residual o( obtained by passing the test 

signal through its inverse filter A(z). Thus 

2 Voicing function, i.e. whether or not the speech is voiced, is also 
required. 



28 

dA(m,n) = In S/<* (3.24) 

P 
where <* = r 0 + £ a k r k (3.25) 

k=l 
P P 

h = 1 I ai'ak'rii.ki (3.26) 
i=0 k=0 

&/* is the ratio of a prediction residual to a minimum prediction residual, 

and is a likelihood ratio under certain circumstances. 

(2) Cosh measure COSH 

The Itakura measure has received much criticism from theoreticians and 

statisticians, e.g. [13], [17], because i t is asymmetric, i.e. a different 

distance is obtained i f the test and reference frames are interchanged. Gray 

and Markel [17] have combined the two likelihood ratios h/c and S*/oc' to 

obtain a theoretically sound symmetrical measure. The cosh measure is 

dA(m,n) = cosh"1 (8/x + £>'/«' )/2 (3.27) 

where <* and S are as before, and 

P 
«' = V + I a k'r k' (3.28) 

k=l 
P P 

&' = I I a i a k r ' | i _ k | (3.29) 
i=0 k=0 

cosh = ln(x + Jx2-l) 

The cosh measure has the property that i t approximates, and bounds from 

above, the rms difference between the log spectra of the two speech signals. 

It therefore provides a highly efficient technique for calculating that 

difference. (To express i t in decibels, the cosh measure must be multiplied 

by 10/lnlO = 4.34.) 
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(3) Cepstral measure CEPS 

The cepstral measure, also proposed in [17], is an alternative method 

of calculating the rms difference between the log spectra, bounding i t from 

below. The distance measure is taken as 

dA(m,n) = 2 Z ( C k - C k ' ) 2 (3.30) 
V k=l 

where the cepstral coefficients {ck} are as defined in Eq. (3.16). Taking 

the infinite rather than partial sum in Eq. (3.30) gives the rms spectral 

measure exactly (in dB if multiplied by 4.34). 

(4) F-test measure FTEST 

De Souza [13] has derived a statistical test for comparing two segments 

of speech from their LPC coefficients (the filter coefficients obtained by 

the COV method). The test computes a statistic F of known distribution that 

can be used to test the null hypothesis that the two observed series (speech 

samples) arise from the same process. The distance measure is therefore 

taken to be 

dA(m,n) = - In Qp(F I p,2N-4p) (3.31) 

where F= ((2N-4p)/p) («/(*+«•)-l) (3.32) 

and Qp is the upper-tail-area function for the F distribution with p and 

2N-4p degrees of freedom. N is the number of speech samples in a speech 

frame, <* and oc' are the prediction residuals for the test and reference 

signals, and « is the prediction residual for the two signals combined 

together into one series: 

_ P _ 
* =000+2 a k c j k 0 (3.33) 

k=l 
- , - P 

where <f>^ = + 0 j k , and a k satisfies ][ <?ikak = - c?io f° r i=l(l)p. 
k=l 
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The time warping function w(n) 

The function w(n) , which maps the reference time axis [1,N] into the 

test time axis [1,M] determines which frames of the test and reference 

utterances to compare. If M=N, then the simplest possible choice for w is 

w(n)=n. In general, a linear map from reference to time axis is 

w(n) = 1 + [(n-l)(M-1)/(N-1)], n=l(l)N (3.34) 

But a linear mapping function cannot take account of any variation in 

speaking rate that may exist between the two utterances. Particularly with 

multisyllabic words, there may be imperfect registration in time between the 

phonemes. For example, vowel duration can be incorrect because of wrong or 

misplaced syllable stress, or because of neutralization or diphthongization 

of the vowel. The actual time alignment pattern is therefore an important 

indicator of prosodic quality, and i t is desirable to choose w(n) to 

approximate i t , e.g. Fig. 3.2. 

1 'REFERENCE AXIS N 

Fig. 3.2 A non-linear time warping function 

Therefore, we choose w(n) to optimize the agreement between the two 

utterances, as expressed via the function 
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N 

D = 2 dA(w(n) ,n) 
n=l 

(3.35) 

subject to the endpoint and continuity constraints 

1. w(l)=l, w(N)=M (3.36) 

2. w(n+l)-w(n) = 0, 1, or 2 i f w(n)/w(n-l), else 1 or 2. 

The optimum w(n) can be found by dynamic programming on Eq. (3.35). An 

algorithm for this is listed in Appendix II. The idea of dynamic programming 

(DP) and non-linear mapping functions to compensate for imperfect time 

alignment between utterances is due to Sakoe and Chiba [46] who used them to 

obtain improved performance in a speech recognition system. Their use has 

since become commonplace in speech recognition systems. 

Distance measures for prosodic quality 

Prosodic quality is a function of the loudness, pitch, and timing of 

one utterance with respect to another. As the average value and range of 

variation of these quantities are attributes of voice and not prosody, i t is 

necessary to include factors in the distance measures for prosody to cancel 

out and equalize them. These factors must be estimated from data obtained 

across the entire utterance, so unlike distance measures for articulation, 

the ones for prosody are utterance dependent as well as frame dependent. 

(1) Loudness 

If we restrict ourselves to factoring out differences in average value 

and range of variation via a linear transformation of the loudness in 

decibels, then a suitable loudness distance measure is 

dL(m,n) = ajL(m) + 32 - L'(n) (3.37) 
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The transformation variables a^ and a 2 are chosen to give a minimum rms 

value of C3L across the utterance, i.e. a^ and a 2 minimize 

N 
DL = I (a 1L(w(n))+a 2-L ,(n))2 

n=l 
This results in the values 

a : = ( N I L L ' - I L I L ' ) / ( N I L 2 - ( 2 L ) 2 ) ( 3 . 3 8 ) 

a 2 = ( 2 L 2 2 : L ' - 2 : L 2 : L L , ) / ( N 2 : L 2 - ( 2 L ) 2 ) 

( 2 ) Pitch 

In analogous fashion, define a pitch distance measure to be 

dP(m,n) = a3P(m) + a 4 - P'(n) ( 3 . 3 9 ) 

where a 3 and a 4 are defined similarly to a^, a 2 in Bq. ( 3 . 3 8 ) . 

( 3 ) Timing 

If w(n) is chosen optimally, then its derivative w'(n) will be a good 

indicator of the instantaneous speed of the test utterance relative to the 

reference utterance. Values of w'(n)>l mean that the test word is being 

spoken more slowly than the reference word, and w'(n)<l that i t is being 

spoken more quickly. 

The quantity ( M - 1 ) / ( N - 1 ) represents average speed of the test to the 

reference utterance, so we take the timing distance measure to be 

dx(m,n) = w'(n) - ( M - 1 ) / ( N - 1 ) ( 3 . 4 0 ) 

Because w(n) is an integer-valued function defined over the integers, 

w'(n) cannot be obtained by normal differentiation. A simple numerical 

differentiation formula such as w'(n)=w(n)-w(n-l) can be shown to greatly 

amplify the round-off noise present in w(n) that comes from representing a 
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continuous relationship by an integerized function. The ideal differen­

tiation formula smoothes out such local irregularities in w(n), but responds 

rapidly to more extensive changes in its behaviour. Experimentation is 

needed to find the most suitable such formula, and results for this are 

reported in Section 4.3. 

Combining individual distance measures 

The individual distance measures di, evaluated at each pair of frames 

(w(n) ,n) , need to be combined to form overall quality measures f j . Each f j 

describes a particular aspect of the speech quality between the test 

utterance S and the reference utterance S 1. The f i are the outputs of the 

speech quality analysis system, and must therefore convey to the user a l l 

the available and desired information about the quality evaluation. It 

follows then that selection of the f^ depends on sufficient knowledge being 

available as to (i) the kind of outputs desired of a speech quality analysis 

system, and (ii) the relationship of the observed distance measures across a 

word pair to the actual errors they represent. For example, some 

applications may require the full set of distance measures djjn) = 

di(w(n),n) for n=l(l)N, while others require only a simple judgment of good 

or bad quality; in some contexts a large value of d A occurring for only a 

few frames may have special meaning, while in other contexts i t may be 

without significance. It is therefore important to defer decision as to the 

form of the overall speech quality measures fj until a l l the required 

knowledge has been derived. 

A simple but adequate choice of f^ for representing the results of the 

distance measure evaluations of Chapter 4 is to take each f j to be the set 

{di(n)| n=l(l)N}, evaluated against a fixed threshold t. The length of the 

period for which di(n) >t indicates approximately the duration of the 
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quality error, and the magnitude of di(n) in the interval indicates its 

severity. 

3.3 INTERSPEAKER DIFFERENCES IN SPEECH 

Two segments of speech spoken by different persons, and judged 

subjectively to be of good quality, will show substantial differences when 

compared through the techniques described above. These differences are known 

as interspeaker differences, and they arise from dissimilarities in the 

physiology of the vocal apparatus and in learned patterns of movement of the 

articulators; for example, a shorter vocal tract length will result in 

higher formant frequencies. Interspeaker differences are minimized by the 

removal of average value and range of variation in the prosodic distance 

measures. However, the LP parameters on which the articulatory distance 

measures are based are quite speaker dependent. They have even been used 

successfully for speaker identification [1]. For this reason one can expect 

that the articulatory distance measures described in this chapter will be 

speaker dependent. 

Speaker dependence in speech comparisons is also very much a concern in 

the field of speech recognition. Most of the systems implemented to date are 

in fact single speaker systems - the speaker who wishes to use the system 

must be the one to speak the reference vocabulary. But some speaker-indepen­

dent speech recognition (SISR) systems have been built, and i t can be 

expected that a study of the emerging methods used to overcome interspeaker 

differences in SISR will reveal techniques applicable to speech quality 

analysis. 

Unfortunately this is not the case. The method of multiple reference 

templates per word, as described by Rabiner in [40] and Gupta in [18], is 

not practicable because in speech quality analysis there is only one teacher 
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to speak the reference utterance. Moreover, sensitivity to quality 

differences is lost by simply matching the test word to the nearest 

reference word. The method used by Sambur and Rabiner in [48] to achieve 

SISR for spoken digits is also not applicable, as i t bases its classifi­

cation on crude speaker-independent measurements (e.g. "five" starts with a 

fricative and "eight" with a vowel) that cannot capture more subtle quality 

differences. 

It therefore appears that new techniques are required for cancelling 

interspeaker differences in speech quality analysis. A thorough 

investigation of possible techniques, however, is beyond the scope of this 

work, for basic questions remain to be answered concerning the performance 

of the regular articulatory measures and the effect on them of differences 

between speakers. One method that does deserve investigation now is that of 

orthogonal linear prediction, which appears to offer a means of reducing 

speaker dependence in the LP parameters themselves. It comes, paradoxically, 

from the field of speaker identification. Sambur [47] has described a means 

of calculating from the regular LP parameters (or a non-linear 

transformation of them) a set of orthogonal parameters that divide into two 

groups: ones that vary significantly across the utterance, and ones 

essentially constant across i t . He hypothesized that the first group 

reflects the linguistic features of the utterance, and the second its 

speaker dependent features. Use of the second group only for speaker 

identification gave excellent results. 

The orthogonal parameters {b(m) } are calculated from any set of LP 

parameters {c(m)} as follows: 

1. Calculate the covariance matrix R= [rij]i(i)p of the {c(m) | m=l (1)M} 

across the utterance: 
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M 

r 4 j = (1/M) 2 C i m c j m - C i C j (3.41) 
m=l 

M 
where = (1/M) 2 cim' a n <^ cim = i th component of c(m) . 

m=l 

2. Calculate the eigenvalues and eigenvectors of R by solving |R-XI|=0 and 

(R-Ail)ej=0. Label the eigenvalues so that Ai>\2>..->̂ p/ and scale the 

eigenvectors so that £i^ei = 1. 

3. Then the orthogonal parameters are 

b(m) = [ej.. .ep]T c(m) 

or b(m) = Ec(m) (3.42) 

and {bi m}, i=l(l)p' are the ones that vary significantly across the 

utterance. A suitable choice for p' is p/2. E = [ei...ep] T is an 

orthogonalizing matrix. Note that E T = E--'-. 

An orthogonal LP distance measure ORTHO 

Since the {X^} are the variances of the {bj} across the utterance, a 

natural measure of the dissimilarity between the test and reference is 

P 
6=1 (bi-bi'jZ/^i 

i=l 
= (Ec-Ec')T diag(1/Xi) (Ec-Ec') 

= (c-c') T E Tdiag(l/Ai)E (c-c'J 

by Eq. (3.42) if the {b^} and {bj/} are both derived from the same matrix E. 

The CEPS distance measure of Eq. (3.30) can be written as dA(m,n) = 

J2(£-£')T(c-c*) where the c's are now the cepstral coefficients. This 

suggests that the ORTHO distance measure should be taken as 

dA(m,n) = / k(c-c')Tw(c-c') (3.43) 
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where k is a scaling constant, and the weighting matrix W is given by 

W = E Tdiag(l/Xi) E (3.44) 

The orthogonalizing matrix E should be computed from a pooled 

covariance matrix R obtained from the individual cepstral covariance 

matrices of the test and reference utterances. The longer these utterances 

are the more stable will be the estimated eigenvalues and eigenvectors. 

Further, the implied summation in Eq. (3.43) should be carried out to the 

first p1 terms only, to avoid including the speaker-identity-dependent 

elements of b and b'. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE AND RESULTS 

4.1 DESCRIPTION OF EXPERIMENTAL WORK 

A number of experiments were carried out to evaluate and improve the 

speech quality measures described in the previous chapter. A computer 

program was written to implement a l l of the proposed articulatory and 

prosodic quality measures with the exception of that for pitch. The measures 

were tested selectively on a variety of word pairs. The basic test was the 

comparison of two mono- or disyllabic words that differed in a single 

phoneme or prosodic feature. 

It was decided to run the evaluation tests using pseudo quality 

defects, in which an "error" was the result of having a capable speaker 

deliberately mispronounce a word, rather than with real quality defects 

obtained from the speech of deaf or non-English speakers. This approach 

allows much more careful control over the errors, and makes i t possible to 

investigate quality errors in the absence of interspeaker differences 

between test and reference utterances. A word l i s t of 40 words was 

accordingly constructed that reflected the phonemic or prosodic errors most 

common among the deaf and ESL students. Where an English word was not 

available to provide a particular contrast, the appropriate nonsense word 

was used. The word l i s t is shown in Fig. 4.1. 

The l i s t was read by four English Canadian speakers designated as JD, 

DK, RS (male), and EW (female). Each speaker read the l i s t twice, with each 

reading taking about one minute. The speakers were instructed to articulate 

clearly, but otherwise to read normally. The readings were made in a quiet 

(acoustically screened) environment, and were recorded using a Bruel and 



39 

1 crystal 21 meat 
2 thistle 22 mitt 
3 this'11 23 mat 
4 fuss 24 moot 
5 fuzz 25 mot 
6 bleating 26 might 
7 bleeding 27 desert (v) 
8 joy 28 desert (n) 
9 zhoi 29 convict (v) 

10 that 30 convict (n) 
11 dat 31 object (v) 
12 zat 32 object (n) 
13 shin 33 I scream 
14 chin 34 ice cream 
15 win 35 hist'ry 
16 wim 36 history 
17 wing 37 eye 
18 live 38 ah-ee 
19 Liz 39 boy 
20 riv 40 baw-ee 

Fig. 4.1 Word l i s t for speech quality tests 

Kjaer condenser microphone type 4145 on a Scully 280 tape recorder operating 

at 38 cm/s. 

The recorded speech was then bandpass filtered from 100 Hz to 4 kHz 

using a Krohn-Hite variable filter type 3342R, and was sampled at 10 kHz 

with a 12-bit analog-to-digital converter. A program was written to read 

this data and to semi-automatical ly segment i t and eliminate the silent 

intervals between words. Endpoints were found by an algorithm examining the 

energy in each 10 ms frame of speech, but could be adjusted manually via a 

graphics display. 

The main computer program, written in FORTRAN and run on the U.B.C. 

Computing Centre's Amdahl 470 V/6 Model II machine, then read the data 

corresponding to the desired word pair, and performed an LP analysis and 

speech quality comparison on i t according to instructions given i t . Output 

was in graphical form and was given via a Tektronix 4014 graphics terminal 
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or a hardcopy plot. The data acquisition and speech quality systems are 

represented in the flowcharts of Fig. 4.2. 

SPEECH INPUT 

RECORDING 
ON ANALOG TAPE 

BANDPASS 
FILTERING 
100Hz-4kHz 

SAMPLING 
at 10kHz 

12-bit A/D 

SEMI-AUTOMATIC 
ENDPOINT 
ANALYSIS 

STORAGE OF 
INDIVIDUAL WORDS 
ON DIGITAL TAPE 

(Formatted Speech Data) 

LP METHOD 

(AC,COV) 

d f t METHOD 

(RESID.COSH, 
CEPS.FTEST, 
ORTHO) 

CHOICE OF 
TEST & REF. WORDS 

RETRIEVAL OF 
DATA FROM 

TAPE 

LP ANALYSIS 
P~ 12 

20 ms FRAME 

TIME 
NORMALIZATION 

ALGORITHM 

w(n) 

CALCULATION 
OF 

ARTICULATORY 
& PROSODIC 
QUALITY 

d A , d L , d T 

GRAPHICS 
DISPLAY 

or 
HARDCOPY PLOT 

(a) Preprocessing and 
data acquisition system 

(b) Speech quality 
evaluation system 

Fig. 4.2 Flowchart of speech processing system 
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4.2 EVALUATION OF THE ARTICULATORY QUALITY MEASURES 

In order to separate the question of sensitivity of the articulatory 

measures to quality errors from that of their susceptibility to interspeaker 

differences, tests were firstly run using test and reference utterances 

spoken by the same speaker. These tests are described in this section and 

the following one. It was felt that examining the effect of quality 

differences alone would help establish an upper bound on attainable 

performance. 

The first issue to settle was that of how the various articulatory 

quality measures performed relative to one another. Chapter 3 described two 

ways of calculating a set of linear prediction coefficients {ak} (AC and 

COV), and four ways of calculating a measure dA(m,n) for the quality 

difference between speech frames (RESID, COSH, CEPS, and FTEST). Initial 

tests sought to reduce this field of eight options. Only then was i t 

feasible to investigate the greater issue, the capability or otherwise of 

one of the proposed schemes for detecting a variety of articulatory quality 

errors. 

Comparison of AC and COV methods 

It was found that the AC (autocorrelation) and COV (covariance) methods 

of linear prediction computed coefficients that differed significantly from 

one another - at times by up to 30 percent averaged across a speech frame -

but which resulted in very similar articulatory quality measures. The 

differences in the quality measures were much less than either (i) the 

quality measure for identical words spoken by the same speaker but at 

different times, and (ii) the differences between quality measures for good 

and poor quality parts of the one word. This is illustrated in Fig. 4.3 

which shows dA(n) for the comparison mitt v. meat, and LP data for frame 15 
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TIME (s) G\5 TIME (s) 0.5 

mitt v. meat mitt v. meat 

(a) AC (autocorr. method) (b) COV (covariance method) 

AC ak COV 

-0.09 a l -0.04 
-0.64 a2 -0.49 
-0.48 a3 -0.56 
-0.42 a 4 -0.59 
0.63 a5 0.47 
-0.04 a6 0.10 
0.04 a7 0.21 
0.32 a8 0.30 
-0.03 a 9 -0.05 
0.31 a10 0.26 
-0.20 a l l -0.19 
-0.23 a12 -0.21 

(c) LP coefficients of meat 
after 0.15 s (at frame 15) 

Fig. 4.3 Comparison of AC and COV methods 
of linear prediction 

of meat computed by the AC and COV methods. 

The unimportance as to whether the AC or COV method is used is rather 

surprising in view of the differences between coefficient sets. It implies 

that although the {ak} differ, they describe perceptually similar speech 
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spectra. For example, when meat (JD^-AC)1 is compared with meat (JD^-COV), 

the average difference by the CEPS measure is only 1.18 dB, but when i t is 

compared with meat (JD2-AC), the difference rises to 3.48 dB. 

The suitability of the AC method for cruder speech recognition 

experiments has been demonstrated repeatedly, but the results here show that 

use of the AC method costs l i t t l e in sensitivity over the COV method even 

when fine comparisons of spectral similarity are required. Given the 

slightly better computational efficiency of the AC method, i t follows that 

it is a better choice in practice. The remainder of this work, however, was 

carried out using the COV method. Interestingly, its supposed drawback of 

occasionally generating an unstable filter was never encountered. 

Comparison of RESID, COSH, CEPS and FTEST measures 

The various articulatory quality measures dA(m,n) were compared with 

one another on four pairs of test words. It was found that differences 

between the first three measures were small, and again relatively 

insignificant when compared to the variation in dA(m,n) across the words or 

the value of dA(m,n) for portions of good quality speech. The FTEST measure 

was an exception to this, giving results that were quite unrelated to those 

obtained using the other three. It sometimes responded very sharply to a 

quality error, but at other times failed to recognize one. Because i t was 

computationally very expensive, i t was not possible to run extensive tests 

with the method, but i t does appear that FTEST is unsuitable as a reliable 

articulatory quality measure without some modification. 

The RESID measure gave less consistent results than did the other two 

1 Symbols in parentheses specify which version of the preceding word is 
meant - in this case, the first recording of meat by JD with the AC method 
of linear prediction. Where no specification is given, the first recording 
by JD can always be assumed. 
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rms spectral measures, which performed very similarly. COSH weighted some 

quality differences more heavily than did CEPS, as expected from the 

discussion in [17]. The CEPS measure was preferred for subsequent tests, as 

it appeared to be the closest approximation to a true rms spectral measure, 

and because i t offered superior computational efficiency. 

The four articulatory measures are compared with one another in Fig. 

4.4 on the word pairs moot v. mat and live(2) v. live(l). All but FTEST are 

scaled by the factor 4.34. 

The choice of articulatory measure has an effect on the time 

normalization function w(n) constructed by the dynamic programming 

algorithm, and hence on the prosodic timing measure. Despite differences in 

magnitude between the four articulatory measures, a l l resulted in very 

similar paths being taken by the DP algorithm. This was taken as evidence 

that the time normalization relationship between test and reference 

utterance was chosen correctly. 

Ability to detect poor articulatory quality 

Contours of dA(n) were obtained for around 100 comparisons of test and 

reference words. The comparisons were done using the COV method to derive 

linear prediction data, and the CEPS measure for the actual comparison. A 

threshold of about 5 dB was found to generally indicate poor quality. The 

choice of test and reference words allowed a range of quality errors to be 

investigated, and the examples below give representative results for each 

category of articulation error. Appendix III gives details of the actual 

words compared in each category. 

Most easily detected were errors in vowels (Fig. 4.5) and voiced 

fricatives and sononants (Fig. 4.6). Peak distances between word pairs were 
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10 -, 
d A (n) RESID 

10 -, 

(dB) 

d A (n) COSH 

10 ~\ 

(dB) 

d A (n) CEPS 

100 -i 
d A(n) FTEST 

, TIME (s) 0.5 

(a) moot v. mat 

10 -, 
d f l(n) RESID 

10 

(dB) 

d A (n) COSH 

10 -] 

(dB) 

d A (n) CEPS 

100 n 
d A (n) FTEST 

TIME (s) 

(b) l ive(2) v. l i v e ( l ) 

-1 
0.5 

F i g . 4.4 Comparison of the four a r t i cu l a to r y measures 
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Fig. 4.5 Articulatory quality measure for vowel errors 
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in the range of 10 to 15 dB for the vowels, and 7 to 12 dB for the 

consonants. The strength of these sounds helped separate them from 

background noise, including quantization noise, and their prolonged 

repetitive structure appeared well suited for linear predictive analysis. 

Voicing errors had their greatest effect on the loudness measure, but where 

the error concerned a plosive, the characteristic puff of air called 

aspiration that is present after an unvoiced plosive was readily detected by 

the short duration peak in the articulatory measure (Fig. 4.7). Consonant 

substitutions involving plosives or fricatives could usually be detected 

(e.g. Fig. 4.8), but no characteristic patterns in the distance measure 

could be associated with them. 

d A (n ) CEPS 

10 n 

(dB) 

TIME (s) 0.8 

bleating v. bleeding 

Fig. 4.7 Articulatory quality measure for 
plosive voicing errors 
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TIME (s) 0.5 TIME (s) 0.6 

(a) win v. wim (b) mat v. that 

F i g . 4.9 A r t i cu l a to r y qua l i t y measure for nasal errors 
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Errors in nasal sounds could not be detected at a l l in the word pairs 

investigated, though the substitution of a nasal for a fricative was 

apparent (Fig. 4.9). This points to a weakness of the all-pole linear 

prediction model of speech, which is not able to correctly model the zeros 

introduced by nasal coupling. The result is somewhat surprising though, for 

nasal sounds have been satisfactorily synthesized from an all-pole LP model 

[3], and there have been no indications in the literature that nasal sounds 

are particularly troublesome in speech recognition. But the test words used 

to check d A for nasal sounds were very simple (wim-win-wing) , and i t is 

possible that with other words there would be greater coarticulation, which 

would assist both synthesis and recognition. 

4.3 EVALUATION OF THE PROSODIC QUALITY MEASURES 

Similiar tests to those of the previous section were made to 

investigate the prosodic quality measures of loudness and timing proposed in 

Chapter 3, and results of these are described below. Also given are 

experimental arguments for certain aspects of these measures, and for the 

modifications made to the dynamic programming time normalization procedure 

of Sakoe and Chiba. The development of the prosodic quality measures was 

much influenced by experimental results. 

Time normalization path w(n) 

The time normalization procedure of Sakoe and Chiba was found to choose 

a path through the network of (m,n) pairs that was, on a local level, 

erratic, and on a global level, occasionally quite wrong. That a chosen path 

correctly represents the actual time alignment between the two utterances is 

impossible to verify, but a grossly incorrect path can be identified by its 

unlikely shape. In a number of instances, the original algorithm chose a 
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path that indicated very rapid speech followed by very slow speech, when in 

fact the two words being compared were the same, spoken by the same speaker. 

Fig. 4.10 shows the phenomenon, with (a) following the incorrect path and 

(b) the path chosen by the modified algorithm. 

. d A ( n ) FTEST 
1 0 0 1 ARTICULATION 

1 

-1 

TIME (s) 

d L ( n ) 

0.6 

0.6 

d T ( n ) 

TIMING 

S l O W 

TalT TIME ( s ) ^ 
/ i 

o.e 

(a) mat(2) v. mat(l) 
NO LOUDNESS TERM 

d A(n) FTEST 
1 0 0 1 ARTICULATION 

(dB) 

•10 J 

1 

TIME (s) 
1 

0.6 

d L ( n ) 

LOUDNESS 
t 

f\ A^ o u d A \J V V A V 7 ^ 

soft 

d T ( n ) 

• TIMING 

slow 

fast TIME (s) 0.6 

(b) mat(2) v. mat(l) 
LOUDNESS TERM 

Fig. 4.10 Effect of loudness term in DP cost function 
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The algorithm was modified by the inclusion of an empirical loudness 

agreement term 0.2 (L (m)-L' (n)) 2 in the cost function of the DP algorithm. 

The path chosen is therefore determined by agreement in loudness as well as 

in spectral shape. Even better than the term (L-L') 2 would be a function of 

the loudness measure itself, e.g. dj2 = (ajL-t^-L 1) 2, but as a^ and &2 can 

be calculated only after the path is found, this would require iterative 

computation which cannot be justified in terms of computing effort. 

Local irregularities in w(n) were felt to be without physical meaning, 

and a method was sought of eliminating them. It was accomplished by 

restricting the speed with which the algorithm could switch the rate of 

increase of w(n) between its maximum and minimum allowable values (2 and 0 

respectively). This was done by imposing the conditions that 

Aw(n) J- 2 if Aw(n-l) = 0 (4.1) 

Aw(n) / 0 if Aw(n-l) = 2 

where Aw(n) denotes w(n)-w(n-l) etc. These additional restrictions had a 

negligible effect on the assessed articulatory quality, but resulted in a 

smoother w(n). 

The loudness quality measure 

The loudness measure was found to respond strongly to both voicing 

errors and syllable stress errors, as seen from Fig. 4.11. For voicing 

errors, the surprising result was obtained that unvoiced sounds frequently 

have greater loudness than the corresponding voiced ones. However, the 

loudness measure was greatly affected by other aspects of the speech, 

especially vowel errors, and identification of the above errors is difficult 

without prior knowledge about them. Indeed, the loudness quality measure dj^ 

must be judged a rather unreliable indicator of true loudness quality. 



Fig. 4.11 Loudness quality measure for 
voicing and syllable stress errors 

(a) Liz v. live (b) Liz v. live 
NO CORRECTION CORRECTION 

ai=1.13, a2=5.6 dB 

Fig. 4.12 Loudness quality measure: 
effect of correction factors 



53 

Its main use is likely to be in providing visual feedback during speech 

training of the magnitude of a particular error; in its present form i t is 

not really suitable as a diagnostic tool. 

The effect of the correction factors a^ and a 2 was examined. These 

factors attempt to compensate for differences between the test and reference 

utterances of average loudness and range of variation of loudness. Fig. 4.12 

shows a contour for dL with and without the correction factors included. The 

factors are likely to prove most useful in recording situations less 

carefully controlled than the one here. 

The timing quality measure d-p 

Derivation of a suitable timing measure required finding a satisfactory 

definition of w'(n) , the rate of change of the time alignment function w(n) . 

Because of the integerized nature of w(n), the usual algorithms of numerical 

analysis do not yield a sufficiently smooth w'(n) . After some experimen­

tation i t was found that good results could be obtained using the cubic 

spline curve smoothing algorithm of Reinsch [44],[45], and taking w'(n) to 

be the slope at n of the smoothed function. Reinsch's algorithm finds the 

function having minimum average squared second derivative (hence: a cubic 

spline) among a l l functions w*(n) satisfying 

N 
(1/N) I (w(n)-w*(n))2 = S (4.2) 

n=l 
where S is a constant controlling the degree of smoothing; S=l/2 was found 

to give the most satisfactory smoothing. 

Fig. 4.13 shows the resultant timing quality measure d<p(n) for three 

methods of calculating w'(n) . It is seen that the Lagrangian difference 

formulas perform very poorly indeed. 



0.6 T n=60 

TIME 
(s) 

n=60 
—I 

TIME (s) 0.6 

(a) Time alignment function w(n) for dat v. that 

(b) Using 2-point Lagrangian differentiation 

1 - i 
d T (n) 
TIMING 

-1 J 

(c) Using 5-point Lagrangian differentiation 

1 n 

d T (n) 

TIMING 

•1 J 

TIME; (s) 0.6 

(d) Using cubic spline smoothing (S=l/2) 

Fig. 4.13 Timing quality measures for 
differently computed w'(n) 
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The timing measure was found to give a useful indication of speed 

variation within a word, as can be seen by the results in Fig. 4.14 in which 

pairs of words having voicing and syllable stress contrasts are compared. 

However, variations in speed comparable to those obtained in such situations 

were found to occur in other instances too. These variations were partly due 

to articulatory errors, and partly due to entirely natural variations in 

speech. They overshadowed, for instance, the variations due to omission of a 

syllable or due to a diphthongization error. Though i t appears to faithfully 

track speed variations in speech, the timing quality measure too must be 

regarded as useful primarily for producing visual feedback during corrective 

speech exercises, rather than for diagnostic purposes. 

d T(n) d T(n) 

1 n TIMING 1 n TIMING 

• TIME (s) 0.5 

-1 J -1 J 

(a) thistle v. this'11 (DK̂ ) 
(Voicing error) 

(b) con-vict' (v) v. con'-vict(n) 
(Syllable stress error) 

Fig. 4.14 Timing quality measure for 
voicing and syllable stress errors 
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4.4 EFFECT OF INTERSPEAKER DIFFERENCES 

Tests were made with several combinations of speakers and word pairs to 

determine the deleterious effect, i f any, of interspeaker differences on the 

various speech quality distance measures. The performance of the ORTHO 

(orthogonal linear prediction) distance measure of Section 3.3 was also 

examined. 

Articulatory quality 

Deterioration in the deduced speech quality was definitely noticed with 

the CEPS measure. The level of 'background' disagreement (i.e. dA(n) for 

sections of good quality) increased by about 3-4 dB, and peaks in the 

distance measure of the order of 10 dB were found to occur in passages where 

there were no differences in the articulated speech sounds. These phenomena 

may be observed in the example of Liz(DKi) v. live(JDi), shown in Fig. 

4.15(a). The improvement sometimes achievable with the ORTHO distance 

measure is shown in Fig. 4.15(b) (scaling factor k = 0.05 x 4.34 dB) , where 

the false peaks in d A alone are reduced. However, this improvement was not 

always obtained, and in about 30 per cent of the cases examined, even the 

ORTHO articulatory measure implied a quality error where there was none. 

(Actual errors were always indicated, to about the same degree as for no 

interspeaker differences.) The ORTHO measure, therefore, has some use in 

reducing interspeaker articulatory differences, but i t is not a final 

solution. It is possible that an increase in utterance length for 

calculation of the covariance matrix would bring further improvements, but 

these are likely to be minor. 

Prosodic quality 

Despite the errors in the articulatory quality function, the dynamic 

programming algorithm continued to choose a reasonable time alignment path 
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Fig. 4.15 Articulatory quality measures for 
interspeaker differences 

Fig. 4.16 Prosodic quality measures for 
interspeaker differences 
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between the test and reference utterances, indicating that relationships 

between adjacent (m,n) sample points remain well preserved in the presence 

of interspeaker differences. Whether the CEPS or ORTHO distance measure was 

used made very l i t t l e difference to the path chosen by DP algorithm. Fig. 

4.16 shows the loudness and timing distance measures obtained for the case 

of reversed syllable stress for different speakers. It is seen that both 

measures remain meaningful indicators of prosodic quality within the 

constraints discussed previously. 

Interspeaker differences, then, have an adverse effect on the 

articulatory quality measure, but not on the prosodic quality measures. 

Useful evaluations of articulatory quality are s t i l l possible, but false 

errors are often indicated. It is important to investigate further ways of 

reducing interspeaker differences, and these may have to involve the 

inclusion of information not obtainable from the linear prediction 

parameters alone. 
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CHAPTER 5 

CONCLUSIONS 

This thesis is concerned with an investigation of the feasibility of 

automatic speech quality analysis. A computer-based system that can assess 

the speech quality of an input utterance will have application in speech 

training of the deaf and of second language students, and will partly 

integrate the special-purpose devices existing now. 

A speech pathologist's view was taken of speech quality, which was 

regarded as the lack of defects in the components of speech - voice, 

articulation, and prosody. A set of quality measures, based on the all-pole 

linear prediction model of speech, was proposed for expressing the 

articulatory and prosodic quality between a pair of utterances. 

Evaluations made of the measures and of aspects of linear prediction 

showed firstly that the difference between the autocorrelation and 

covariance methods of linear prediction was not significant for speech 

quality analysis. The differences between results with the RESID, COSH, and 

CEPS measures were also slight, but the CEPS (cepstral) measure was 

preferred because of its theoretical accuracy and computational efficiency. 

The proposed FTEST measure gave inconsistent results, and was rejected in 

its current form. 

The CEPS measure was found to be effective in detecting most of the 

common errors of articulation, with the exception of errors between nasal 

sounds. A general threshold for deciding between good and poor quality was 

5 dB. Vowel errors registered peak disagreements of up to 15 dB, and voiced 

fricative and sonorant errors peaks up to 12 dB. 

A valuable indicator of prosodic quality was derived from the time 

alignment function w(n) - a by-product of the dynamic programming algorithm 
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for matching the test and reference utterance time axes with one another. 

The timing measure was most effective in showing errors in syllable stress 

and voicing function, and appeared to be accurate in tracking speed 

variations in general. The loudness measure also responded clearly to these 

errors. Neither of these measures, however, was particularly satisfactory in 

diagnosing such an error (or other errors of prosody), and both will likely 

find most use in the monitoring of error magnitudes. 

Interspeaker differences did occasionally mask articulatory errors, and 

indicate poor quality where there was none. The ORTHO measure, derived from 

orthogonalized cepstral coefficients, cancelled these differences to a 

degree, but not always sufficiently. The prosodic quality measures were 

relatively immune to interspeaker differences, in part because such 

speaker-dependent properties as average value and dynamic range of a 

quantity are removed in the definition of the measures. 

Work remains to be done in several key areas. Distance measure data 

needs to be collected over a full range of quality errors, to allow suitable 

functions f^ to be found for the overall quality measures. These functions 

are dependent on knowledge about the amounts of variation in the djjn) that 

are normal or else indicative of an error. Decisions need to be made as to 

appropriate display modalities for the computed quality measures, and these 

will be influenced by the actual teaching program designed for use with the 

system as a training aid. 

The work begun on interspeaker differences will have to be extended. 

Larger interspeaker differences will be encountered in practice than were 

examined here, and poorer performance of the quality measures can be 

expected. Although additional improvement may be obtained by continuing in 

the directions of this work, i t is likely that new methods will have to be 
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developed. One idea is to cancel the effect of differences in vocal tract 

lengths by transformations of the filter coefficients. Another is to make 

use of articulatory models such as Coker's [9] to characterize and then 

compensate for the differences between learned motions of the articulators. 

The problem of interspeaker differences is actually much more tractable for 

speech quality analysis than i t is for speech recognition. It is quite 

acceptable to require student and teacher to initialize the system by 

speaking a standard sentence from which their individual characteristics can 

be identified, and even to require input of the phonemic representation of 

the speech being evaluated. 

Other areas for further research include implementation and testing of 

the proposed pitch measure, together with investigation of the required 

accuracy for the pitch detector; adoption of a more general linear 

prediction model that will allow nasal zeros to be represented exactly; and 

removal of the constraints of fixed endpoints and maximum slope range of 1/2 

to 2 in the time normalization algorithm. Rabiner et a l . have reported some 

algorithms for this in [41]. Allowing a greater slope range will be 

important i f the speech quality system is to be used with deaf children, who 

tend to speak 2 to 4 times more slowly than normal speakers. 

In spite of these needed extensions, the results of this preliminary 

investigation suggest that automatic speech quality analysis by computer is 

practical. Such computer analysis of speech may one day find useful 

application in speech training. 
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APPENDIX I 

THE PHONETIC ALPHABET FOR ENGLISH 

These tables give the symbols of the International Phonetic Alphabet 

for the sounds occurring in English. The classification used is described in 

Section 2.1 of the main text. More detailed classifications and variations 

in symbology are also possible, see for example [54], [31]. 

A. Vowels and diphthongs 

DEGREE OF TONGUE HUMP POSITION 
CONSTRICTION front center back 

high / i / e /*/ ur /u/ oo 
/I/ i /?/ er /U/ oo 

medium /e/ a / 3 / 
A 
u /o/ o 

/£/ e /e/ B /o/ aw 
/A/ U 

low /a/ a /o/ o 
/ay a /o/ ah 

DIPHTHONGS 

/ a l / T 
/o i / oi 
/aU/ ow 
/ju/ u 

B. Consonants 

PLACE OF MANNER OF PRODUCTION 
ARTICULATION fricatives plosives sonorants nasals 

bilabial /P/ p M/ wh /m/ m 
/b/ b M w 

labiodental / f / f 
/v/ V 

dental /&/ th 
/3/ dh 

alveolar /s/ s / t / t /V 1 /n/ n 
/z/ z /d/ d 

palatal /// sh A// ch /V y /n/ ng 
/3/ zh /dj/ j / r / r 

/n/ ng 

velar /k/ k 
/g/ g 

glottal /h/ h -
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Notes 

1. Each phonetic symbol is followed by its usual dictionary transcription. 

Note the pronunciation of u (fur), oo (boot), oo (foot), th (thin), dh 

(this), zh (azure). 

2. Vowels: /a/, /$/ are unstressed. /$/, /a/ are the equivalent in the 

General American accent of /3/, / D / . /a/ is used in New England and 

elsewhere in place of /ae/. /u/, /U/ have no initial form, and /I/, /£-/, 

/a/, /ae/, / A / , /{]/, /o/, /a/ have no final form. 

3. Consonants: The groupings represent unvoiced-voiced pairs, with the 

exception of / j / - / r / which are unrelated. / t j / , A I 3 / are actually 

affricates, not plosives. /%/, /n/ have no initial form, and /h/, M/, 

/w/, / j / have no final form. 
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APPENDIX II 

ALGORITHMS 

This Appendix gives details for several of the algorithms mentioned in 

Chapter 3. 

1. Solving the LP autocorrelation equations 

The Levinson method is an elegant recursive solution to the p linear 

equations in {ak} given in Eq. (3.6): 

P 
2 a k r | i _ k | = - r i , i=l(l)p 
k=l 

the method is derived in [3], [11], and [29]. As stated below i t is due to 

Makhoul [25]. 

1. Put «Q=r0 
2. For i=l(l)p evaluate 

i-1 
a i ( i ) = (- l A i _ 1 ) ( r i + Z a k(i-Dri_ k) 

k=l 

a k(i) = a k( i" 1) + a i( i)a i_ k( i- 1) for k=l(l)i-l 

cxi = (l-aiCiJZjKi.i 
3. Then ai=ai(P) , i=l(l)p, and «=« p 

The a^ 1) are identical with the reflection (parcor) coefficients ki. 

2. Calculating the r k from the a k 

The Levinson method gives a procedure for transforming the 

autocorrelation coefficients {rk} into the filter coefficients {ak}. 

Sometimes i t is necessary to make the reverse transformation, i.e. to find 
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the {rk} that satisfy Eq. (3.6) for a given set of {ak}. 

The algorithm is derived in [3], and involves firstly computing the 

{ak(i)} and then finding the {rk} from these. The computed {rk} are 

normalized with respect to rn, i.e. rn=l. 

1. ak(P) = a k for k=l(l)p 

For i=p(-l)2 do: for k=l(l)i-l do: evaluate 

a k ( i - D = (a k(i) - a ^ ^ a ^ U ) )/(i- a i(i)2) 

2. r x = -a^ D 

For i=2(l)p evaluate 
i-1 

r i = _ a i ( i ) - 2 r k a i _ k
( i ) 

k=l 

3. Efficient calculation of the covariance matrix 

The COV method requires calculation of (pfl) 2/2 covariances, defined by 

Eq. (3.11): 

N-l 
0ik = 0ki = 2 x(n-i)x(n-k) , i,k=0(l)p 

n=p 

An efficient way of calculating these covariances, for N » p, is to 

calculate only <l>iQ, i=0(l)p, from the definition, and then to make use of 

the relationship 

0ik = «H-l,k-l + x(p+l-i)x(p+l-k) - x(N+l-i) x(N+l-k) 

for i=l(l)p, k=l(l)i. This enables calculation of the covariances to be 

almost as fast as calculation of the autocorrelations defined in Eq. (3.7). 
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4. Dynamic programming to find the optimal w(n) (after Itakura [22]) 

The optimal time warping funtion w(n) is defined here to be the mapping 
N 

that minimizes the total distance D = Z dA(w(n),n), subject to the endpoint 
n=l 

and continuity constraints 

1. w(l)=l, w(N)=M 

2. w(n+l)-w(n) = 0, 1, or 2 i f w(n)A?(n-l) , else 1 or 2. 

Let D(m,n) represent the optimum distance from (1,1) to (m,n), so that 

D(M,N) = D. Dynamic programming then makes use of the relationship 

D(m,n) = m i n (D(m',n-l)) + d(m,n) m' 

The complete algorithm, incorporating the constraints on w(n), is as 

follows: 

1. Put D(l,l)=d(l,l), h(l,l)=l. 

Define for n=l(l)N: 

mL(n) = max([(n+l)/2],2n+M-2N) 

mu(n) = min(2n-l,[(n+l+2M-N)/2]) 

2. For n=2(l)N do: for m=mL(n) (l)n\j(n) do: 

(a) Find the m' in the range max(mL(n-l) ,m-2) to min(ni(j (n-l),m) 

- but excluding m'=m if h(m,n-l)=0 - for which D(m',n-1) is a 

minimum. 

(b) Put D(m,n) = D(m',n-1) + d(m,n) 

h(m,n) = m-m' 

3. Then D = D(M,N), and w(n) is found via the recursion: 

w(N) = M 

w(n-l) = w(n) - h(w(n) ,n) , n=N(-l)2. 
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APPENDIX III 

LIST OF WORD PAIRS COMPARED 

The following l i s t sets out the full selection of word pair comparisons 

made in obtaining the results of Chapter 4. 

1. Comparing AC and COV methods: 

mitt/meat (AC/COV); riv/live (AC/COV); [kit/cat (RE: AC/COV)]. 

2. Comparing RESID, COSH, CEPS, FTEST measures: 

moot/mat (all 4); live(2)/live(l) (all four); zat/dat (all 4); Liz/live 

(all 4). 

3. Evaluating articulatory quality: 

mitt/meat (JD]/JD2/DKi/RS]/EWi); mat/meat; moot/meat; mot/meat; might/meat; 

moot/mat; Liz/live (JDj/RE); riv/live (JD]/RE); bleating/bleeding (JD]/DK]/ 

EWi); dat/that; zat/that; zat/dat; joy/zhoi; shin/chin; win/wim; mat/that; 

wing/wim; mat/zat. 

4. Evaluating prosodic quality: 

dat(2)/dat(l) (FTEST); [cat(2)/cat(l) (RE: FTEST)]; Liz/live; mitt/meat 

(DKi); thistle/this* 11 (JDj/^/DKx/EW!); fuss/fuzz (JD]/JD2/DKi); convict/ 

convict; desert/desert (JDi/JD2/DK]/EWi); object/object (JDi/DK]/RS]/EWi). 

5. Interspeaker differences: 

Liz/live (JD]/DKi/l)K;[-JDi: CEPS/ORTHO); mitt/meat (JD^Kx/RSi/EWi/DKi-JD]/ 

JDi-DKi/JDi-RSi/EWi-JDi: CEPS/ORTHO); object/object (JDi/RSx/RSx^JDi: CEPS/ 

ORTHO); bleating/bleeding (DKi-JDi). 
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