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| ABSTRACT

v Theifeasibilitf;of deve10ping an_automatic electtoencephalographic
- (EEG)'pattern recognition system for reliably estimating‘the level of con-
sciousness of surglcal patlents dur ng general anesthesia is investigated.

An»effort_was made to establish a valid methodology, by iden-
‘tifying and eontrolling as manyhextraneous variahles as possible and by
ensuring that the work woold'be relevant to curreht anesthetic practiee.
The ‘data base that was established for use in all experlmental investiga-
.tlons consists of 938 EEG pattern samples from 72 subjects -and three types
of anesthesia. anh EEG pattern sample corresponds to one of five possible
'eliﬁical levels ofianesthesia. |

‘The use of automatic pattern recognition techniques, in con-
jonction with heuristio techniques.of clinical EEG analysis, to develop
soectrai and time domain EEvaattern recognition systems is described. .
A1l of the_initially’developea systems extract a small number of heuris-.
tically derived features from unkoown EECfpattern samples.v The classifiers
in these systems employ Bayes decision‘rule under the assumption that the
fextraoted.features are statistically independent. A rationale cohcerning
the choice of this particular feature extraction schehe and pattern clas-
sification algorithm is presented and discussed.

.tConsideration'isvgiven to the general‘problem of how to use a
relatively small set of available EEG pattern samples to effectively
evaluate thehperformance of EEG patterh recognition s&stems. Two non-
parametric techniques which provide particularly informative and efficient
estimates of the performance of such systems are formulated. Results
, obtained by employing these techhiques to'estimate the performance of

the initially developed spectral and time domain EEG pattern recognition

systems are presented. The results clearly demonstrate the feasibility

ii



vof estimating the level of anesthesia by means of automatic EEG pattern
recognition. However, the results also indicate that the initially dev-
eloped systems are not sufficiently reliable for immediate and general )
clinical application. - |

Theoretical techniques are developed to model some felevant
statistical properties of spontaneous EEG activity, with a view to im-
proving the performance of the initially developed EEG pattern recognition
systéms. Results which were obtained by applying the modelling techniques
to some specific ensembles of EEG pattern samples are presented. The
comparative advantages of employing alternate methods of.EEG analysis
are then discussed in relation to the estiﬁated statistical characteristics
of thé particular EEG ensemﬁles under consideration. -

Several factors which could adversely affect the reliable per-
formance of EEG pattern recognition systems in general, and the inifiélly
developed systems in particuiar, are identified and discussed. Various
‘schemes for improving the berformance of the initially developed systems

are suggested and an evaluation of the practicability of each is presented.
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CHAPTER I

INTRODUCTION

1.1 Problem Area

The need for a reliable method of assessing the level of conscious-
ness of surgical patients during general anesthesia has existed since the
introduction of the first general anesthetic agents more than a century
ago. The clinical Signs and stages of anesthetic depth that traditionally
have oeen employed have never been entirely satisfactory. However, as a
result of recent advances in anesthesiology, many of'these traditional signs
and stages have clearlyibecome unreliable and inadequate in terms of modern
anesthetic practice. It is significant that the electroencephalogram, an
intuitively appealing indicator of the'gross electrical activity of the
brain, is not among the indicators which are routlnely evaluated in attempt-
" ing to assess the level of anesthesia. In fact, electroencephalographlc
activity is rarely even monitored during general anesthesia at present.A
~ The oossibility of developing a computer-based system for reliably“esti-
mating the level of anesthesia By means of electroencephalographic pattern

recognition is the subject of this thesis.

produced by anesthetic agents, Wlth an absence of pain sensation over the

entire body and a greater or lesser degree of muscular relaxatlon. An,

the brain and recorded from electrodes attached to thevscalp.' Spontaneous
electroencephalographic activityi(or EEG actirity)-is characterized b&
roltages which are usually less than 100 uv,.by'frequencies thch are
essentially bandlimited to 30 Hz and by a wide range of patterns or wave-

forms, some of which are associated with different states of consciousness.



R

Because a numbervof general references are available in the areas of anes-

thesiology (e. g. ‘[1-4]) and electroencephalography (e.g. [5-8]), further

information of a fundamental nature in thesetparticular areas will not be
included in the thesis.
intuitively, because general anesthesia is'defined primarily in
--terms "of brain function, it is reasonable’to.suspectwthat-different levels
of anesthe31a, i.e. different 1evels of consciousness, could be’ manifested
' -by different spontaneous EEG patterms. Considerable motivation exists for
-2the -development -of -an automatic- system*which could reliablyrestimate -the
"level of anesthesia by means’ of ‘spontaneous” EEG pattern- recognition. :Some
of the potential applications are immediately apparent.
1) ‘Such a system could be employed to monitor'the level of anesthesia
‘;““throughout'surgery;“i.e.‘to“provide“a;continually*updated estimate-
~ of the anesthesia level. This-would'nernit‘an anesthesiologist
to.more accurately control the administration of anesthetic agents,
~—~thereby" reducing'the~probability'of~sub3ecting the -patient tov
| unnecessarily deep, 1i.e-threatening levels of- anesthesia or,
:alternatively, to-very light levels~of;anesthe51a which might result
‘“inﬁperiods of -consciousness or awareness during ‘Surgery.
.2) The system could provide a rapid and. sensitive indication of the
- .occurrence of anesthetic accidents. N i_
.23) It would be particularly valuable inacertain.kindS‘of;OPerations.V
-where most clinical, non-EEGnsignsuof;anesthetic depth are un-
' Javailable,.e.gr during the:critical3cardiopu1nonarygbypass phase ‘

-of -open~heart surgery.

e LTI L TR T

'4) It could be employed in the ‘clinical evaluation of new anesthetic
agents.

5) It could be of value in the instruction -of anesthesiologists.

Lo



1.2 Evaluation of Previous Research

The prospect of using the EEG to estimatevthe level of anesthesia
was first suggested in 1937 as a practical application of observed correla-
tions between different EEG patterns and various levels of anesthesia induced
by ether [9]. During the next two decades similar correlations between ob-
served EEG patterns and anesthetic depth were desoribed for other anesthetic
,agents'including cyclopropane, nitrous oxide - ether and nitrous oxide -
thiopental [10-12]. More quantitative correlationsAwere also investigated
by relating observed EEG patterns to the arterial blood eohcentratioosbof
different anesthetic agents [13,14]. Over the years, subjeetive descriptions
of recognizable tiﬁe domain EEG patterns at various anesthetie 1evels-have
been reported for most of the commonly used anesthetic agents. An extensive
review of the correlations between various general anesthetics and observed
EEG patterns ‘was recently publlshed [15]

In a 1959 review paper, Martln et al. proposed that most of the

general anesthetics that were then in common use had a s1mllar, dose-depen— S

:dent relationship to a recognlzable sequence of EEG patterns 116]. - This
relationship seemed to suggest that a reliable’ method for'estimating the
level of aoesthesia could eventually be developed by identifying and clas-
gifying the:various»EEG.patterns produced by different patients and dif-
ferent anesthetics. This expectation was,not:realized, however, largely
because of a variety of methodological problens relating to the validity
and reliability of previous work. EEG validity in this instance may be
defined as the extent to which the EEG contains information concerning the
actual level of anesthesia, while reliabllity refers to the dependability
of a particular method for extracting'such informatlon from the EEG in

order to correctly estimate the level of anesthesia.



Four major unresolved problems relating to the validity and relia-

bility of prev1ous work can be identified. 'Maftin et al..recognized the

basic problem of level deflnltion' a prec1se definition of the different
possible levels of anesthe31a is necessary before one can properly consider
the question of whether or not the EEG constitutes a valid indicator of those

levels. A second problem 1nvolv1ng the rellablllty of EEG pattern defini:ion

has also been acknowledged:_different investigators may vary cons1derab1y
in their subjective definitions of what constitutes recognizably different
EEG patterﬁs [17]. In addition, .the use of a variety of anesthetic agents

results in'pattern'variability,'thereby increasing the complexity of the

pattern recognition task. Finally, the inter-rater reliability of visual

EEG'assessmgnt amoﬂg experienéed clinical raters, even with an established
set of objective criteria for pattern jdentification, may be surprisingly
1owf No étudy of inter-rater reliability has been conducted using EEG Aata
from different lévels of anesthesia. Howeﬁer, in a recent study based on
clinical EEG data, the highesf average intraclass correlation reported
among séven experienced clinical EEG raters was 0.56 [18].

Largely because of such methodological problems, the fesults of
'manf attempts to gstimate énesthesia'levels on the basis of visual EEG és—
sessment have been confusing and contra@iqtory.‘ For example, one group
which studied EEG activity at différeﬁt»lévels of halothane anesthesia
réported that se&en distinct EEG patterns were observed [19], but a second
group which studied the same type of anesthesia reported thét only two
distinct EEG.patterns could be identified [20]. Furthermore, the second
gréup stated that the classical sequence of EEG changes associated with
progressively deeper levels of ether anesthesia could not be observed during
‘halothane anesthesia.

It should be noted that the issue of whether or not the EEG con-

stitutes a valid indicator of the level of ariesthesia was not resolved



simply because the results of investigations based on visual EEG.assessment_

were not reliable. Intuitively, the EEG still appears to be the single, -

"% . 'most valid parameter to evaluate invattempting to estimate the level of

anesthesia. From a practical viewpoint»EEG nonitoringfis,safe, non4invasive,
and can usually be performed'with relative ease in the operating roon.
"Recent advances in the fields of automatlc EEG analysis [21—23]
and pattern recognltion [24-26] have prov1ded a valuable new perspective ‘
for reconsidering the anesthetic level estimation.problem. 'A few automatic
. techniques have already been used to analyse EEG act1v1ty during anesthe31a,>
e.g. [27-32], but this work has been confined to‘the.implementatlon ot var;¢
ious methods of.EEG data compression.and parameter identification,'gEence
the pattern recognition tash, i.e.'the'identification and‘interpretationuof
any-changes_in EEG characteristics_during anesthesia, wouldlstill bevper-v'
formed,subjectively,.presumably~by an experienced anesthesiologist,'gThe;f
work to be described in this thesis represents'a.significant‘departure'fromx
previous research..it constitutes the first comprehen31ve 1nvest1gation 1nto
‘the poss1billty -of ueveloplng a computer-based EEG pattern recognition sys-

- tem for reliably estimatlng the level of anesthe51a durlng surgery.‘;.

1.3 Scope of Thesis

.The overalliobjective of the research described.infthis.thesis'
j'was to investigate the fe351b111ty of reliably estimatlng the level of
‘.anesthesia during surgery by means of an EEG pattern r- cognition system.f?“.
dThe speclfic objectives were: | |

1) to define a set of clinically valid levels of anestb051a 1n.terms

1-. of objective, non-EEG criteria-'ga

2) to establish a sample EEG data base, consisting of a set of EEG

pattern samples corresponding to known clinical anesthesia levels, o



o -,base. Accordingly, in additlon to describing the preparation and organi—& F

"for_one or more commonly used types of anesthesia;
3) to develop systems for estimating anesthesia,levels‘bv the recog-
nition of different spectral and:time domain EEG patterns;
4) to establish a method'for‘effectivelv evaluating the performance
f of EEG pattern recognition»syStems'on'the basisrof a finite set
of available EEG‘pattern-samples;" | |
5) to_ evaluate the performancevot the initially developedbspectral;h
" and time domain-EEé pattern recognition svstemsg |
6) to develop.theoretical techniques_whichvenable'the_degree of vide-f
sense stationarity and GauSSianity of.spontaneous EEGdactivity‘to
'.be modelledﬁ- | |
7) - to model the degree of wide—sense stationarlty and. Gau551an1ty ofr'
. some specific ensembles of EEG pattern samples;.w1th a v1ew to
“vimproving the performance of the 1nit1ally developed pattern recf
ognition systems; R | |
8)'.to identify the major factors which:affect the‘performance'of EEG
. _pattern recognition systemS' and . -
_kéji to investlgate any schemes which appear llhely'to improve the

'“\performance.of the 1nitially developed systems. .

Chapter II describes the establishment of avsamplevEEG data base, -
consisting of a number of digitized multlchannel EEG segments which cor—'.
respond to different levels of anesthe51a; In the course of establishing .
the data base, a considerable effort was made to control a w1de range of.
'extraneous variables because it was recognized that the.control of such

o variables was crucial to the success of subsequent work 1nvolv1ng the data’

'zation of the sample EEG. data base, Chapter II outlines ‘the effort that



- was made to identify and control as many extraneous variables as-pOssible..;,‘
For example, explicit definitions of the different pOSSlble 1evels of anes- ~ﬂ;
thesia were established to control the incidence of errors in clinical non-’

EEG assessments of anesthetic depth. Chapter II also describes how a number

of other potential sources of variability were controlled e.g. by restricting B

. the number of differentvtypes of‘anestheSia under conSideration, by ‘estab-
lishing a standardized anesthetic techniqueyandjby'taking'éavariety ofrpre—,
- cautions during the preparation of_digitalvEEG pattern_samples..- B
"Chapter III describes the initial'development and performance
evaluation of spectral and time domain EEvaattern recognition systems.
"All of the initially developed systems extract a small number of heuristi—
- cally derived features from unknown EEG pattern samples. The claSSifiers
"n in these systems employ Bayes deciSion rule under the assumption that the‘
extracted features are statistically independent._ A rationvle concerning
'the choice of this particular feature extraction scheme and c1ass1fication
- rule is presented and discussed in Chapter III. Then-the general problem -
of how to use a relatively small set of available EEG" pattern samples to
effectively evaluate the performance of an EEG pattern recognition system
is discussed.» Two nonparametric techniques which prov1de particularly

.'informative and efficient estimates of the performance of such systems are

. . suggested.: Results which were obtained by employing these techniques to

- estimate the performance of the initially developed spectral and time ’
.domain EEG pattern recognition systems are then presented. These results
’clearly demonstrate ‘the- feaSibility of estimating the level of anestheSia lf
:by means of automatic EEG pattern recognition._’ | : o B

Chapter v describes the development of a statistical model of }

Aspontaneous EEG activity. It was thought that such a model could be of

value in improving the performance of the initially developed EEG pattern



recégnition systems. Almost all methods of quantitative EEG énalysis are
based on certain implicit assumptions regarding the statistical character-
istics of the underlying random process, particﬁlarly with respect to the
extent of stationarity and Gaussianity of the process. The efficacy of
alternate mgthods of analysis therefore depends upon the degree to which
such assumptiops are justified by the characteriétics of the particular
ensémbles.of EEG segments being analysed. In Chapter IV, theoretical tech-
niques are developed which enable the degree of wide—sensevstationarity and
Gaussianity of spontaneous EEG activiﬁy to be modelled. Results whiﬁh‘were
obtained by applying these techniques'to some specific ensembles of EﬁG
pattern samples are presented. The comparative advantages of.employing
alternate methods of EEG analysis are then discussed in relation o the‘
estimated degree of stationarity and Gaussianity of the particular EEG
ensembles under consideratién.

Chapter IV contains a discussion of possible methods for improving
the performance of the initiaily developed pattern recognition systems by -
" taking intb account the aétual statistical characteristics of the EEG data
being analysed. Chapter V describes the investigation of other possible:
strategies for improving the performance of the initially developed systems.
"~ Most of these étfategies.invdlve changes in the initial feature extraction.
scheme and pattern élassification algérithm. In the same chapter, it is
argued that intersubject EEG variation is one of the major factors
which adversely gffect the performance of EEG pattern recognition systems.
Accordingly, most'of the work describéd in Chapter V was directed toward
estimating and reducing the effect of intersubject EEG variation.

A few concluding remarks are presented in Chapter VI. . In addi-
tion, the major original contributions of the research described in the

thesis are briefly summarized and some suggestions are made regarding

A



possibie'are#é for further research. vTheiAﬁpendices contaiﬁ detailed.in-' -
formation about the sample EEG data Base that.was’establishéd. This infor-
mation should‘be'sufficient to allow the d#té base ﬁo‘be readily used and_
expanded in future investigations. The Appendices alsovcdntain listings of »
- the major programs ;hat.were written.in the éourse of thisvinvesﬁigation.'
The program listings serve a dual purﬁosé:.they provide detailed documenta-
tion concerning-specifiﬁ computafional pfoéedures and they facilitate the.ﬁse"
of such procedurés.bybothers. | :

. For reference purposes, it éhould be noted that‘some ofjthe.orif
ginal fesults ?resented in subsequent chépﬁers héve{alreédy been pubiisﬁéd :

 elsewhere [33-39;140].
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'CHAPTER II

EXPERTMENTAL CONTROLS AND DATA ACQUISITION

2.1 'Objectives

This chapter describes the establishment of a. data base, con—.
sisting of a relatively 1arge number of sample EEG segments which corres—
pond to different'clinical anesthesia levels. During the establishment
of this data base a substantial effort wasjnade‘to.identifv and control
as many extraneous variables’as'practicable, because it was recognized
that the subsequent value.of.the’acquired data would obviously be depen—
dent on the extent to which such variables could be identified and con-
vtrolled. -To control the incidence of errors in clinical, non—EEG assess-
ments of the 1evel of anestheSia, it was necessary.to establish explicit
definitions of the_different‘pOSSible anesthe51a levels in terms of'rel—
iable clinical criteria. Section 2,2.2 discusses the inadequacy of the

f'traditional stages and signs of anestheSia for this purpose' section 2.2, 3
';.describes how five clinically significant 1evels of. anesthesia were de— o

fined, in terms of relatively objective non-EEG criteria, for this re- vi”b

search To eliminate some potential sources of variability, the number _
of different types of anesthesia under consideration was restricted and
a standardized anesthetic technique was established as described in sec;i
tion 2. 3 1 and section 2.3.2. The‘data:acquisition'procedure'which was
followed is outlined‘in section 2.3.3hand the control of:extraneous vari;_L‘:
ables during data‘acquisition is discussed.in section 2'3‘4 Finally,
sections 2, 4 1 and 2.4. 2 describe the preparation of a. digital EEG data

' base from the experimental data collected
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2.2 Establishment of Anesthesia Levels

2.2.1 Introduction

General anesthesia may be defined as a.state‘oflunconsciousness
produced by anesthetic agents, with absence of pain sensation over the-
~entire body and a'greater‘or,lesservdegree of muscular relaxation‘[4d].
At present, different dosages.of a wide variety_of anesthetic agents‘and :
drugs, administered either by inhalation‘orhintravenously,'can be used to
: produce different 1evels.of general anesthesia. For the'purposes of this
research a set of five possible levels of general'aneSthesialwas:explicitly

defined in terms of clinical, non-EEG signs of anesthetic depth.

2.2.2 _Historical Perspective

The first description of different.stageshof anesthesia was -
:contained in a monograph published in 1847 [41] The monograph described
five recognlzable stages of anesthesia w1th ether, based primarlly on -
.changes in the character of resplration and the degree of suppress1on of
reflex activity., In subsequent years, various poss1b1e clinical signs of
-different anesthe31a stages were investlgated vincluding heart rate, blood -
pressure, respiration, pupil diameter and reactiv1ty to llght tearing -
vand eye movement. Several of these s1gns were eventually incorporated
into a detailed description of four different stages of anesthe31a which
was published in a fairly complete form in 1937 [42] For many years th1s
‘._description of c11nica1 signs and stages served as the standard reference .
.for inhalational anesthe51a. It should be noted however, that only'a '
small number of inhalational aresthetic agents were then in common use
- and the primary goal of the anesthe51ologist in this period was simply ‘il-
fto administer one of the available agents in- sufficient concentration to 2Lf
produce‘a stage of anesthesia associated with unconsciousness and an ad- hs

equate degree of muscular relaxation, without seriously endangering the
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patient's life. .Unfortunately; this ratherﬁadmirable goal'Was'not,almays,
satisfactorily achieved. | o | :
| Recent developments in anesthe51ology have decreased the mortality
rate associated with the administration of general anesthesia, but have el-
iminated or obscured many of the traditional clinical signs and‘stages.of
anesthesia [43]. For example,‘the clinicalfuse‘of drugs.which specificallyu
produce good muscle relaxation and the emergence of controlled respiration
to assure adequate patientbventilation have largely eliminated two formerly.iv
valuable clinical s1gns. the degree of: muscle relaxation ‘and the character
of respiration [44] Furthermore, factors such as the introduction of pre-
anesthetic medication, the use of a combination of drugs during anestheSialf
and the 1ncrea51ng variety of . anesthetic agents have contributed to the
' complexity of correctly interpreting changes in many of the remaining clin-:gf:
ical signs‘[43-46] In addition, modern anesthetic practise has reduced the
significance of'some of the traditional:stages‘of anesthe51a and has pro—bi
vided 1ncreased motivation for the definition of some new stages. for ex—llh
{.ample, the currentvpractise of_rwpid 1nduction of anesthe51a has. essentially
eliminated one of the traditional stages while recent reports of conscious-’:
ness occurring.at apparent surgical levels of anesthe51a [47- 52] 1ndicate e
the need for a new definition of anesthe81a levels. | | |
 Thus, at least two important problems associated with the defin-.f~”
ition of anesthesia levels are apparent. First many of the traditional o
clinical signs and" stages of anesthesia are not relevant to modern anes—‘*f“
thetic practise. Second _any available clinical signs may often be equiv-i:

~ocal and require considerable subjective interpretation.

C . 2.2, 3 Definition of Anesthesia Levels

For. this research the set of possible levels of . anesthesia was

defined in a unique manner tovclearly’establish its validity in,terms of__?_i



13

k modern anesthetic practise. 'After considerable discussion, experienced'
anesthesiologists1 deflned five clinically 51gn1ficant 1evels of anesthe81a
in terms of non-EEG criteria that they. considered to be meanlngful and ap-
propriate.. Subsequently, minor revisions of the criteria were made to re--
solve possible ambigulties in the wording, to allow for a more obJective
differentiatlon of 1evels, and to facilltate the use of the same set of
criteria with three common types of general anesthe51a (to be descrlbed in
section'2>3 1. - The resultant setkof clinicalicriteria is‘givenbin Table
2-1. The" criteria are based prlmarlly upon a patient .S respon81veness to
various stimuli and upon changes in his blood pressure and pulse rate.- Aj-
concerted. effort was made to keep all criteria as obJective and‘quantltatlve

as practicable..

Table 2-1 _Clinical-Criteria for.Estimating'Levels’of Anesthesiapd':

Level c ' .~ -~ Clinical Criteria
-0 1 (Consc1ousness) Patient is alert with spontaneous
' ) speech. . . A coL
1 S (Light Anesthe31a) Movement in response to the pre-

paration and surgery if not paralyzed.. Movement in
response to vocal command during emergence. - Tachy--
"cardia and hyperten51on during surgery. . '

y . o (Light Surgical Anesthesia) Movement in response to
B ' surgical stimulation but not in response to the pre-’
~paration or similar light stimulation. . Tachycardia
and hyperten51on during surgery. : - )

3 g ' »(Surgical Anesthe51a) No movement in re5ponse to the
' . preparation or surgical stimulation. No tachycardia
‘or bradycardia. Patient is either normotensive or
.:-mildly hypoten51ve, i.e. within 20 percent of normal.

& v (Deep Surgical Anesthesia) No. movement in response . -
' ‘ ' to the preparation or surgical stimulation. Brady—
cardia and hypotension, i.e. greater than a 20 per— o
cent deviation from normal. : o

-1 pr, L.C. Jenkins, Professor and Head of the Department, and Dr. B. A.
.. Saunders, Clinical Assistant Professor, Department of Anaesthe31ology,
Faculty of Medic1ne, University of B. c.ﬂ o _ : L , .
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2.3 Acqnisition:odexPerimental‘ﬁata
2.3.1 Types of Anesthesia Considered

The different types of general anesthesia are commonly differ-
entiated by referring to the comblnation of agents employed to maintain
~an adequate level of ‘anesthesia. Hence the three types of anesthe51a to
be considered in this thesis_are-generally known to anesthe51ologists as
halothane—nitrous oxide—relaxant‘anesthesia, narcotic—nitrous oxidefrelax—
‘- ant anesthesia and enflurane-nitrous oxide;relaxant anesthesia. bThe first
two types of anesthesia accountifor.most of the general anestheticsiadi.
ministered in North America today. For example,‘of 28,988 inhalational :
anesthetics-which were administered'at the'Vancouver General Hospital‘in.
'1974 approximately 33 percent employed some variation of the halothane-
'nitrous ox1de—relaxant fechnique and 63 percent employed some variation
of the narcotic-nitrous oxide-relaxant.techniquev[53] “The th1rd type of
- anesthesia, i.e.'enflurane—nitrous oxide-relakant anesthes1a, is rela- li‘
:tively‘new but isvrapidly gaining.in‘popnlarity and may be in.common .
usage within a'feﬁ years. For convenience,vthese three types of anes—?
’thesia will subsequently be referred to in the the81s as halothane anes—

thesia, narcotic anesthesia and enflurane anesthe81a, respectively.

2.3.2 Standardlzed Anesthetic Technique‘A

b. The follow1ng standardized technlque was established forvthe C
administration of all three types of anesthe81a., Approx1mate1y one hour
before surgery,.a premedlcation con51st1ng of morphine (10-15 mg) or me-
tperidine (50—100 mg) and atropine (0.6 mg) or scopolamine (0 4 mg) was
administered.d Induction of anesthesia was accomplished with sodium thio—

vpentone (5 mg/kg body weight) and tracheal intubation was,facilitated.by

‘the administration of snccinylcholine (1 mg/kg).; Halothane anesthesia
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was.naintained with.halothane vapour”(0;75 percent initially) as the pri-
mary anesthetic agent snpplemented by.a mirture‘of 60 percent nitrous oxX-
ide-and_40_percent oxygen. ’Simiiarly,'enflurane anesthesia was‘maintained
with enflurane vapour (1.0 percent initially) as.the primary anestheticA
'agent supplemented by a mixture of 60 percent nitrous oxide and 40 percent’
oxygen.‘ The adninistered concentration_of'both primary anesthetic agents .
was changed occ381onally during.surgery to change the level of anesthesia
of patients. The third type of anesthe51a,‘narcotic anesthesia, was main-
‘tained -with a mixture of 60. percent nitrous-oxide and 40 percent oxygen '
in conjunction with.small incrementsn(Selsjﬁg) of aiphaprodine, a narcotic
- analgesic, which'were given'intravenousi§”as necessary during surgery.

In all. cases,'adequate muscle relaxation was obtained w1th d- tubocurarine
(0.3 mg/kg initially, with more as required during longer operations) A
wBird Marko8 Respirator was used to,prov1deﬂcontrolled,respiration, Wlth‘
brespiratory rates:and.tidal yolnmes initiallysdetermined by avRadford- ‘

‘nomogram [54]. To ensure adequate ventilation‘during anesthesia; a Beck—

" man LB—l Medical Gas Analyzer was used to monitor each patient s end tidal - .

:carbon dioxide concentration and the respirator was adJusted so that ‘the
end-tidal carbon dioxide concentration and the respirator'was_adjusted so'“ '
thatvthe end;tidal carbon dioxide concentrationbnasbalways between 35 and-
45 mm Hg. At.the end of each-OPeration the actionfof'the muscle relaxant
was. reversed with atropine (1.2 mg) and neostigmine (2 5 mg)

Detailed 1nformation regarding the different anesthetic tech-
niques and procedures and the properties of various anesthetic agents and
drugs can be found in many general references, e. g.-[7 3 ], and w1ll not
be given here. Thorough rev1ews_ofvpossible-EEG_effects of a Vide variety -

of general_anesthetics are also.availahle, e.g. [15-17], as are’manyt
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papers dealing specifically w1th relevant EEG and cardiovascular effects

of the anesthetic ‘agents and drugs used in the thesis research, e.g. ni-
trous oxide [55,56], sodium thioPentone'[12],_d—tubocurarine [57], halo—
thane [19,20,58—60],lnarcotics'[50,61] and enflurane [62-66]. At present,.
-the most serious clinical problems associated with the three.tynes'of anes-
thesia considered in the thesis are: ’possihle‘hepatitis resulting from -

" halothane anesthesia [67-69]; reported incidents.of awareness during nar-
;cotic anesthe51a [47 =521 and occ351onal central nervous system irritabll-
“ity during enflurane anesthesia [62 641]. It should be,noted in pas31ng

that the latter-two.prohlems are currently being investigated by means of

- EEG analysis.

2.3.3v’Data Acquisition

o " Fig. 2~la.shows most ofuthe equipment employed to acnuire ex—
perimental data, as well as some of the usual anesthetic equlpment in the
operatinglroom. Fig. 2 lb shows the actual configuration of the equipment
for data acquisltion during an operation.t The.anesthetic_eqvipment cartﬁ_
seen in Fig. 2-1a contains a Bird Respirator, an anesthetic gas vapor-
izer and supolies of various anesthetic agents and drugs. The EEG elec-
trodes seen in Fig. 2-1b are standard cup electrodes, filled with conduc—:
tive paste, whlch have been attached to the patient at p051t10ns deflned
‘by the International 10-20 System [70] to establish four differential EEG
channels' F3-C3 C3—01 Fb4- C4 and C4- 02 The relative locations of

‘these two bilaterally symmetric pairs of channels are. indicated in Fig.

. 2-3. The EEG electrodes were connected to a termination box (Fig.,Z la)

'which can be used 1n one mode to measure the electrode contact re51stance o
and in another mode as a preamplifier for the EEG machine. A Beckman 8-

channel EEG machine, w1th its lowpass filters set at. 50 Hz and its highpass ';lf
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filters set aﬁ 0.54 Hz to reduce artifact,was used to amplify the EEG and
to plot the amplified EEG on chart paper for immediate visual inspection.
- A Hewlett-Packard Model 3960A instrumentation tape recorder was connected
to the EEG machine; at a tape séeed of 15/16 ips the recordef could store
four channels of EEG activity for more than four hours on one reel of 3M
Type 871 instrumentation tape. The pulse generator seen in Fig.. 2-1b was
connected to the recorder so that short pulses could be inserted into one
channel of the recording to idgntify EEG segments of interest. As men-
tioned in section 2.3.2, an infrared CO, analyser waé uséd to monitor the
end-tidal carbon dioxide concentration throughout each operation. Not:
evident in either Fig. 2-la or Fig. 2-1b is a Tektronix 410 Monitor'which-
was used tO'monitor'electrocardiographic activity.

.The acquisition of experimentalbdata pfbceéded in:thé:foiiowing B
’ mannér. After a suitable_surgical patient had been identified by oﬁe‘of_.
" the anesthesiologists participating'in this research, the patient was
visited pré—operatively and informed consent.was obtained. EEG electfpdes
weré then attachedland, béfore tﬁé étandard premedication was adminiétered,
the patient's baseline_EEG activity was recorded for several minutes while
he or sﬁe.was resting Wiﬁh eyes closed§ the puisé generator‘was used to
mark at least two 64s éegments of baseliﬁe EEG activity for subsequent

analysis. EEG recording was later resumed when the patient entered the

operating room and was continued uptil the patient was moved. to a‘post—'l
operative recbvery area. Estimations of the léygi of anésthesié, based-
on the clinical criteria given ig Table 2-1, were made by an.anesthesiol-
ogist_at.intervals of approximafely five'minutés during . the operatioﬁ.
The pulse generator was used to markv6és EEG segments which corresponded -
gb the clinically estimated anesthesia levels.'_If'the anestﬁesiologist

was uncertain of the level of anesthesia as defined by the clinical
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criteria, e.g. during a period of tranSitiOn between levels, no‘further
_.attempt was made to estimate>the level.at,that time. Similarly, no attempt
was made to estimate the level of_anesthesia When the EEG contained obvious
and excessive artifact, e.g, while the electrosurgicalvunit was in use.

.- The Level of Anesthesia Evaluation Form shown in Appendix A was employed

to record each estimated level of anesthe81a and the number of the pulse
which identified the corresponding EEG segment, as well as all other rel-

evant information about. the operation. '

2.3.4 Control of Variables During Data.Acquisition f

_An attempt was made to controlvseveral extraneous variables
during the acquisition of experimental data.vaany ofdthese variablesr.
tended to increase the range of EEG pattern variability and the 1nc1dence -
of errors in clinically estlmated anesthe31a levels. Obviously the sub- :
. sequent value of the acquired data is highly dependent on the: extent to
which' such extraneous variables could be. controlled |
Q_x-b-, o To reduce the‘rangevof EEG variability-resulting from the~use
of different anesthetic agents and drugs, only the three most common types4:
of general anesthes1a were considered and a standardized anesthetic tech—
’_ nique was established Furthermore,vdata was acquired only from healthy qd
adult patients who underwent similar kinds of surgery, thus reduc1ng the
extent of EEG variability due to differences 1n age, general health status,~?
: inten51ty of surgical stimulation and duration of anesthe51a. EEG vari--b'
ability assoc1ated with abnormal carbon dioxide levels in the blood [71]
was controlled by monitoring the patient s carbon diox1de level and ad-
justing the respirator to keep it w1thin normal limits, as described in.
section 2 3. 2 | | |

Additional precautions were taken to reduce the amount of
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artifact present in recorded EEG activit&. .lhe EEG electrodes ‘were firmly
attached with gauze pads soaked in collodion, a spec1al glue and sealant’
which prevented the electrode paste from_drying out during the operatlon
and thus reduced the possibility of artifact due to poor electrode.con— i
: tacts.. Any artifact above SOIHi,.e.g. 60 Hz electrical‘interference, and
below 0.54 Hz, e. g. some movement artifact, was eliminated by setting the
lowpass and hlghpass filters on the EEG machlne to 50 Hz and 0.54 Hz res—
pectively. EEG activity was not recorded while-the electrosurgical unit
was being used because artifact-from the unit saturated the EEG amplifiers; K
Attempts were also made to reduce,the incidence of_incorrecth.“
.estimations of anesthesia levels caused by errors in clinical Judgement )

and by possible non-stationarities in the actual level of anesthe51a over

“hythe'GAS duration of the corresponding EEG segment. Errors in c11n1ca1
judgement were reduced by developlng an explicit set of obJective clinical
criteria (Table 2-1) and by minimizing the number of anesthesiologists WhO'l
made ‘clinical estimations of levels; these anesthesiologists became fami-
1iar with the standardized anesthetic technlque and became quite proficient '
at estimating anesthesia levels on the b351s of the clinlcal cr1teria.'
,When they could not confidently estimate levels on the ba51s of the cri-j-*
teria, they were asked to refrain from guessing. The 1nc1dence of non—i:A
stationary anesthe51a levels‘w1th1n the 64s intervals corresponding to id-
entified EEG ~,egments was reduced in two Ways.i First,v henever poss1b1e,_;f
a clinical level estimation was made at the beginning and end of a 64s in-
terval and_the‘corresponding EEG_segment was‘only_retained for analysis if both d
estimations were the same, Secondv at 1east‘threetminutes Waslalloned.to.elapsebf
'_ between a change 1n the administered concentration of thebprimary anesthetic
agent and the time that the next clinical level estimation was made, so that

the concentration of anesthetic agents in the blood could approach equilibrium,~
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it would have been preferable<to determine a state of equilibrium by di-
rectly monitoring the arterial blood concentrations of the various anes-
thetic agents, but it was not possible to do so because the appropriate

‘equipment was not available.

2.4 Establishment of EEG Data Base .

2.4, 1 Description of Analog EEG Data Collected

As stated previously, the operations from which data was collectedv
consistedvprimarily of-general surgical cases involving patientsbwho were
in.the best surgical risk categories5 i.e. Who were in either Class I or
Class II as defined by the American Society of Anesthe51ologists ([8],.
pp. 401-402). Data which was collected from an operation was not retained v
for analysis when there was a significantfdeviation from the standardized-
anesthetic procedure outlined in section 2 3 2,.or when 1t was apparent‘
that the control of variables described in section 2. 3 4 was 1nadequate.
In total, EEG recordings and c11n1ca1 data from 72 operations were retalned :'
for‘analysis;' of this total halothane anesthesia was used ir 21 cases,
narcotic anesthesia was used in 26 cases and enflurane anesthe31a accountedi
~ for the remaining 25 cases. Fig. 2 2 shows sample multichannel segments
of baseline EEG actlvity (Level 0) and EEG activity at a. surgical level
.of anesthesia (Level 3) for the'three_different types. of anesthe81a.

The halothane anesthesia:data was ohtained from 8.male and.ld*
.female patients ranging in age from 17 to 65 years uith an average.age
of 46 years. ‘The average- duration of anesthesia was 70 min, although ‘the
duration of individual cases varied from 30 min to 135 min. The number
of anesthe31ologists who made clinical estimations of the level of anes-— ,/"
thesia during halothane anesthesia was 1imited to three;'

' Of the 26 narcotic anesthesia cases, 9 1nvolved male patients
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and 17 inVolVed:female patients; Theirvages ranged from 20 to 64-years,
with an average age of 44.years., The anesthetic wasladministered for be-
tween'30 min‘andvlSO min; the average duratiOn'wasv9d min. Thirteen an-
esthesiologiSts made clinical estimations_of the level ofvanesthesia during -
_narcotic anesthesia. o

‘The enflurane anesthesia data was obtained from 9 male and 16
female patients. All were between 23 and 70 years of age,»with an average
age of 47 years. The anesthesia varied from 60 min to 150 min in- dura-
tion, withhan average duration of approximately 90 mln.“Three anesthe51—-
ologists were involved in making c11n1ca1 estimations of anesthe51a levels.

" For reasons which w1ll be given elsewhere in the the31s, it was
considered - des1rab1e to collect some data from patients who were under—
going.two successive operations within a short perlod of time. This was
" possible in a few 1nstances, i.e. where female.patients underwent ‘tissue
' biopsies followed by mastectomies or hysterectomies. Consequently,:the
“halothane anesthesia data included data from one pair of operations per—-"dw'
formed on'the same_patient and the narcoticranesthesiabdata included datar,

from three such pairs of operations. :

2.4.2 Digitization and Preparation of higital EEG Data Base i

Fig. 2-3 shows the general configuration of the system ‘that was
deweloped to prepare and screen d1g1tized-EEG pattern samples. As des—
cribed in section 2.3.3, throughout each 0perat10n an 1nstrumentation f:’
tape recorder was used to record four channels (F3 c3, C3 01, F4-04 and |
C4-02) - of spontaneous EEG activity.' Short pulses which ‘were- 1nserted in-
one channel of the recording 1dentified all EEG segments correspondlng to
" known clinical anesthesia levels. The system shown in Fig._2 3 was used

_to digitize these EEG recordings, to separate digitized EEG pattern samples .
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corresponding to known anesthesia levels, and to plot these pattern samples
for visual screening. |
The Nova 840 Signal Processing Fac1lity at the U.B.C. Electr1ca1
Engineering Department was used to convert-all analog EEG records to dig-

ital records stored on digital data tapes. To accomplish this, as illus-

trated in Fig. 2f3; the recorded EEG activity was first_reproduced on the

instrumentation recorder, lowpass filtered at.éoroiﬁa‘éith,Kronn;Hite'
3342R filters and then tne filtered'data_waSgdigitized and stored on 9—:’

~ track, ’IBMrcompatible.tapes using the Nova 840 Signal Processing Facility.
The digitizer consisted of a multlplexer which sampled each EEG channel
at 128 samples/s and a 10-bit analog/dlgltal converter which converted
:each sample to binary form. For programmlng ease; each digltal sample_,
.value was stored in two successive bytes on tape although thevmakimumd
.resolutlon was limited to .10 bits. | dw*

The digital data tapes were transferred to the IBM 370/168 com-
puter at the U.B;C. Computing Centre.- A FORTRAN program was used to find
~the pulse locations-on.each'tape. Afterathe pulse'locationsiwere veri;
fied.py checking the pulsekinformation mhich:had.been~recorded on the.
‘Level of Anesthesia‘Evaluation Forms (Appendix_A),Ta second program wasd
used to extract al64s EEG segment from each location and then to,copy
.each extracted.segment into a separate.file onba.new digital tape. :Thus,'
-each file.on the new tape containedva digitizedﬁ64s.EEG pattern.samplev
corresponding to a known level-of anestnesia,- o |

‘After’all EEG pattern samples‘nad been extracted »they wered
‘visually screened in order to reject samples containing obvious and ex-
cessive artifact. The visual screening procedure was facilitated by Te-
. producing all EEG pattern samples in analog form on standard EEG chart

paper. _To do this, as indicated in Fig. —3,_the digitizedlEEG pattern
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samples were first converted to analog form u31ng.the Nova’ 840 Signal Pro-
cessing Facility: each digitized EEG pattern sample was read from a tape,
demultiplexed and transferred to digital/analog converters. The resultant
analog EEG samples were lowpass filtered at 30.0 Hz and were then recorded _
on the instrumentation tape recorder. By 1ater connecting the recorder to
an 8-channel EEG machine at the Vancouver.General Hospital,'the EEG pattern
samples could be reproduced on standard EEG chart paper in a format suit-
able for visual screening.

" An EEG pattern sample was usually rejected if itlcontained more
than 10s of‘visually apparent artifact in more.than one channel. Major'd
sources of visually recognizable.artifact included interference from electrof
surgical units in the: operating rooms,bpoor electrode contacts, eyeblinks,
electrocardiographic act1v1ty, movement and muscle act1v1ty._ ‘EEG pattern
samples containing primarily low frequency artifact, e.g. movement artifact
‘below 0.5 Hz; were not rejected because it was known that all data would '
again be highpass filtered (digitally) at 0.54 Hz before being analysed._'
'EEG pattern samples containing small amounts of v1Sua11y apparent artifact
were not rejected in order to retain asilarge a data base-as.poss1ble.
Approximately'ZO percent'of the'EEG patternfsamples which Were visually
screened were reJected because of artifact._ y;v’v | ”

‘Table 2-2 indicates the number of EEG pattern samples which were
retained after visual screening. A total of 938 samples from 72 subJects
and three types of anesthe51a were retained for subsequent analysis.‘ The

'screened EEG pattern samples associated w1th each type of anesthe51a were
transferred to the digital tapes 1isted in Table 2—2 In addition,_the
three disk files identified in Table 2- 2 were used to store the following
information about each EEG pattern sampleQ its 1ocation on the appropriate :

tape, it85corresponding level_of'anesthesia and the identity of the'patient -



from which it was obtained. The structure of data on the digital tapes

and in the disk- files is documented in_Appéndix B. In addition, Appendix

B contains the listing for an input subroutine which can be used to trans-

fer a specified EEG pattern sample from tape to a FORTRAN-array.

Table 2-2 Description of Resulting EEG Data Base

EEG Data Base Information

Type of Anesthesia

‘Halothane Narcotic' = Enflurane
Number of EEG pattern samples: . ‘
Level O 56 51 92
Level 1 37 47 - 58
Level 2 12 86 15
Level 3 125 152 81
Level -4 50 5 71
Total number of EEG pattern
samples - 280 -341 317
‘Number of cases from which o o _
the samples were obtained 21 26 25
Rack number of the digitai
tape which contains the S :
EEG pattern samples - RAO562 - RAO558 ~ RAO561
Name of disk file which '
contains labels for the I
EEG pattern samples HS.I AS.I ES.I
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CHAPTER III

DEVELOPMENT OF EEG PATTERN RECOGNITIQN SYSTEMS

3.1 EEG Pattern Recognition Systems °

3.1.1 Basic Description

This chapter describes the initial development and perfofmance
evaluation of various systems for estimeting the level of anesthesia by
means of EEG pattern recognition. Fig. 3-1 conteinsva siﬁple block dia-
gram of an EEG pattern recognition system. The‘preproceseor‘t;ansfofms
an EEG pattern saméle;intb a form which allews ﬁeaningful features to be
more easily’extracted. ) Thevamplification;‘ filteringvand digiti—
zation of EEG pattern samples could all be considered to be examples of.e.
preprocessing; As indicated in'Fig.v3—i; aefeature extractor enalyses_
eaeh preprocessed sample and quantifatively'evalﬁates it in terms of a'“
specified set of features.. For exemple, feeture extractibn might coneist
.of the calculation of e éewer density sﬁeetrem for each pfeprqcessed EEGv
pattern sample, followed by thefevaluetion*efafeatures epch as the peak
frequency and the :elati&e energy in“differeﬁf ffequency benes; iEaeh'set:
of extfaeted.feature values is’transfeffed tdva-classifier which'eﬁpleys v
seme algorithm,vin conjunction with stored_eata, to‘classify tﬁe'cqrres%‘
ponding_EEG-bateern eample.into one of five ﬁossible classee;vi;e.'five
possiBle-levels bf enesthesia."" | KRR -

There is noeoptimuﬁ‘pfocedere for.seleeting.the Besfvfeatures
.to be used in discriminating among EEG éattern samplee corres?dndihg'to=,f.
‘different le?eis_of apesthesia.- However, in selecﬁiﬁg feetufes:for |
specific pattern recognition prqﬁieme;rexperience ﬁas shown.that‘abfew"

well chosen;‘heuristically derived features are ueually better than a-
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» | ' 1  EsmmartED
PATTERN——|PREPROCESSORI= ex7racTor| ~|CLASSIFIER[LEVEL OF

SAMPLE ANESTHESIA

Fig. 3f1 EEG Paftern Recognition System |
larger nﬁmbér_chésen more_fandomly. This is-primarily“becauﬁé processing..
many features requires more computing time,bmore-storage éﬁd mére.data
for tfaining_a ciassifier.[72;73]._'Consequghtlj; the EEG féaturés coﬁf
- sidered in this research were_restfiéted to-a relativély.smallbnumbervOf.
featurés which had én established”dlinical'significénce or‘ﬁhich had pre-
yiéusly been described as Qeéningful in the‘litératﬁre on aﬁtomafic EEG“_»
<analysis; | | |
3.1.2 :Developﬁent'and Performance Evaluafibn
| ) With'the éxception of highpéés'fiite;ing; all preproéeséingv
hadvbéeﬁ performed_duringﬂ£he pfepafatiqn ofbthé sets of EEG péttérn .
sambles which are listéd in Table.ZQZ.: The célcqléfioﬁ of_EEG'ﬁowér Speéeif
‘tra from the,prepféceésed pattern saﬁpies and thé subsequgnt éxtraction3“lf'
of_spéctral features is described iﬁ sectioﬁv3.2;,“A descfi?tion |
. of relevant time domain EEG meésﬁremeﬁts and ;ﬁe éxﬁracpiﬁn pf v_v
time domain,feéﬁures is given'in éecfion 3.3.':Sec;ion‘3.4 ouﬁlines»thé 0
'dlassificatioﬁ algori#hﬁ which was empioyedviﬁ‘all sﬁécgral and timei - 
'doﬁain EEG pétteru recogﬁition'systems{'_Ihé problém.qf ésfiméting’thé ‘
performance of_éuchISystemg is descriﬁed in éeéfion 3.5.1;'the'devé1§§; ' 
ment of.tﬁo nbnpa;ametrig.teéhniqueé whiéh‘érQVide.parti¢ﬁlarly-usefﬁix‘»
and efficient‘esﬁimates o£vthe pérforméncé df EEG pétterﬁgreéoéﬁitibn'.

syst;ms is then described in sections 3.5.2 - '3.5.4. Results.obtéiﬁedi :
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by using these techniques to estimate the performénce-of various spectrél'
and time domain EEG pattern recognition systems are presented in section
3.6. Finally, in section 3.7, the signifigaﬁce of the results is dis-

cussed.

3.2 Spectral Feature Extraction

3.2.1 EEG Spectrél Analysié'

" Spectral analvsis of EEG activity only became_a-popular-anaiytic
technique after 1965,_when the introdﬁctidn of the Faét fqurier Transform
algorithm made digital speétral énalysis‘fést'and.eéonomically feasible,
[21,74~761. Dﬁring thé‘last decadé EEG>s§e¢£ra1 analysis has been'empldyed
with mixed sﬁccess in a wide variety 6f diagnostic inveétigations (é.gf
[77-719D), monitoring studies_(e.g.‘[31,80] and sleep research projécts
(e.g. [81-83D). " | S
| ~ EEG spegtfal analysis treéts the émpiitudé éf-spontaneous_EEG'f
" activity as a rgndom,Variabie."If‘tﬁeFEEG activity.from one éhannélvis |
denéted;by x(t) théﬁ; if it isuassumed'that'thevhnderlying'?aﬁdom prqééésl”'
ié efgodic‘([84], pp,‘343—344); jthe EEG power density spectrum (or more

simply, the EEG spectrum) can be definedi{ g

s(f) = E{|X()]2}

E{X(£)X*(£)}
Coadm Lol ke S e =
= oo {FIX(H)X (f)]} N ] - (3.1) _
where X(f)'denotes the Fourier transform of x(t) in the interval
-'2"5 t S+§' , ‘

i.e. -

Fx(e)]

T/2
IT/Z x(t

X(f)

ye J20EE dt, f.f_'» S  ;'(3.2)..

‘and where X*(f) denotes the complex'conjugate of X(f) [76]. The
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relevance to EEC spectral analysis df-certain assumptions concerning the
stationarity and Gaussianit& qfuthe underlying random process will be
considered in Chapter Iv.:

At present, EEG S§ectra can #e computed by three. different
methods: digital bandpass filtering [86], Fourier transformation of
'autbcorrelatian functions [87], or_thé.Direct Method, i.e. direct Fourier
transformatioﬁ;with subsequent smoothing [21,88]. The Direct ﬁethod waé
employed in the computation of all EEG spectra in this research because

it was found to be the fastest and most convenient of the three methods.

- 3.2.2 Computafion of EEG Spectra
As described in section 2.4.2, all of the .EEG pattern gamples
listed in Table 2-2 had been lowpass filtered at 30.0 Hz and digitized at
128 samples/é. By considering every second sample value it wés.therefore
possible to analyse data with an effective sémpling rate of 64 sampleg/s,
Assume that‘{xl,...,xN} represénts the set of sampies obtainéd by sampling |
one EEG channel at 64 samples/s fdr 64s, i.e. N = 4096, The discrete

Fourier transform of {xl,...,xN} was computed as follows:

N
T(g) = I x, exp{=2Rkl-1), (3.3)
L N :
=1 .
for k = 0,1,...,(N/2), where T(fk) is“fﬁe kth complex coefficient of

the transform at the fundamental frequency

k
£ = NAt

X ,
= gz-Hz _ | (3.4)

since At = (1/64)s, the sampliﬁg interval [89,90}. To remove any arti-
fact below 0.54 Hz, as mentioned in section 2.4.2, the data was highpass

filtered in the frequency domain:

C(£) = HIEDT(E)  k=0,1,...,(8/2)  (3.5)
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where - : -
0 0.0 < £, < 0.50
H(f,) = { (f - 0.50)/0.8  0.50 = f) < 0.58 - (3.6)
” 1 0.58 < £, < 32.0

 From the filtered Fourier coefficients C(fy) a periodogram was calcu-
lated:

I(fy) = ﬁE |[C(f) |2 - k= 0,1,...,(/2). 3.7

To improve the statistical properties of the raw spectral estimates pro-.
vided by (3.7), averaging was performed over adjaceht frequencies by

means of a spectral window Gi to yield the smoothed periodogram

w .
I(fk)'— i_w Gll(fk_i) (3.8)
where ,
w o SR ’ ' . ) . :
Gi ﬁas chosen to be a rectangular windbw of width 15/64 Hz, i.e.
. ‘ - i = _W’-'..’W:. , . ‘ oo .
G, = 2w+l | S (3.10)
0 " otherwise . L :

where W = 7. Finélly, from (3.8) a smoothed EEG spéctrum with spectral .,{”

estimates at 0.125 Hz intervals from 0 - 32 Hz was ¢omputed£j

. 8 _ , o ' . . '
=1 i . S : :
S(fg) =§ I T(fgn) , - Gab
=1 - - e
for
@D, . B, m=l,...,26. 0 (1)

More detailed information concerning'theﬁcoﬁputation of EEG speétra in
‘this manner may be found elsewhere-([85], pp.,43-52); ‘Appendix‘C-con—
tains a listing'of the pfogram which was used to compute EEG spectra'by -

the method described ébbve._.'
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3.2.3 *Spectral Feature Vectors
Table 3-1 contains a descriptlnn of the set of features {0 1,
1 <1i< 13, chosen for extractlon from the spectra corresponding to. each
EEG pattern sample, It should be noted that, for the reasons given in
section 3.1.1, only a relatively small number of features from two EEG
' cnannels were initially considered. These particular features were
heuristically chosen. after reviewing tne literature on computer-based EEG
spectral analysis (e.g. [77-83, 91]) and after censiderable con-
sultation with an academically well quaiitied and clinically experienced
electroencephalographerl; From (3.11>l—'(3.12) and from the deaeription
of»features given in Table 3-1, it is euident that |
fbl

0'1= X

f =f

CS(£)Af
m a m Lo

1
bl )

Af T S(fy)
m=a1

256 ; S : : S
0.125 I S(f L : : - (3.13)
oo m=l _ o SR '

because Af = 0.125, a; is the amallest_integer greater than 8féi and .

b1 = Sfbl.' Knowing O1s the subset of features'{oi}, 2<i 5‘7,:can bei

 evaluated: ' -
| £,
5. = 100 Zi N ,
i~ 0 S(f_)Af
1 f=f, m'
‘ i
by 3 B
12.5 . '
- o 8(e) . 2s<ig?. . (3.14)
°1  meay | | SRR

1 Dr. M.D. Low, Associate Professor of Neurology at the University of
" British Columbia and Dlrector of the EEG Department at the Vancouver

General Hosp1tal
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Spectral Feature oy

Frequency Range (Hz)

" can easily be computed.,

The wvalue of o

i= . Description - . Channel fai fbi
1 Total spectral energy _. C4-02 0.00 - 32.00
2 Relative energy: A_band. - C4-~-02 10.00 - 4,00
3 Relativevenergy: é band c4-02 - _'A.Ol - .8.00
4 ‘Relative energy: a band - C4-02 - 8.0L 13.00 -
5 Relative emergy: o band | C4-02 13.01 15.00
6 Relative emergy: §, band C4-02 15.01 32,00
7 Relative energy: B, band - C4-02 18.01 24.00
8 Mean spectral frequency C4-02 '0.00 - . 32.00
9 ‘Second moment C4-02 0.00 32,00
10 Peak intensity: o band - C4-02 - 8.01 £13.00
11 Peak frequency: o band = - C4-02 -8.01 113.00
12 Peak intensity: o band - F4-Ch 8.01 13.00
13 Peak frequency: o band . F4-C4 8.01 | 13.00
l'The.features'corresppnding to the first.and‘second_moments'of-the‘spectrum;v
e o be . _ .
1 1 | |
og = ;—'--E S(fm)fmAfv . (3.15)
. _1 m=aj - : o
" and I bl: , _
og = i— I 8(gy) 208, (3.16)

8-indicates the'mean spectral fre~

' ‘quency. The value. of g is of interest because, assuming that the under—

lying random process is stationary and Gau351an with zero mean ([84], pPP.

485-495), 9 is related to a popular t1me domain EEG feature.

EEG zero-crossing rate [92- 94]

10 i < 13, can be quickly evaluated-: for i

C4-02)'and i 12 (with spectral data from F4-C4), if

the mean
‘The remalning subset of features {0 },

10 (with spectral data from
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A

8(f) > S(£f for. f, < < ’
( m)- ( n) or. ‘8 fm fbi (3.17)
fm # f
then | o, = S(£) ' 1 (3.18)
and | g | Oypq = fpe - L (3.19)

The extraction of spectral features éroceeded in‘thevfollowing
manner. First, EEG spectra were computed~for all of the 938.pattern samples
listed in Table 2-2. . Ihen, for each~pattern sample, the set of 13 features
. summarized in Table‘3—1 was evaluated. Appendix D contains the llsting of
a program that was written to evaluate spectral features. The resultant '
13-element feature vectors were stored for'suhsequent_use.ln-the develop-

ment and evaluation of various pattern classifiers.

_3,3_rTime Domain EEG.Feature Extraction

3.3.1 Time Domain EEG Analysis

It is known that EEG soectra'will_contain complete statistical
iriormation about<the underlying random proCesses.if the processes are
stationary and Gaussian ([84], pp. 474-475) .However it was initially
suspected and subsequently confirmed by the results in Chapter IV, that
the assumptlons of statlonarity and Gau581an1ty‘are not generally valld.
vIt was also known that visual EEG assessment'is based primarily_on the
evaluation.of time domain EEG features, not spectral features f22,95]a
Therefore it was decided to develoo EEC pattern.recognitionlsystems‘based ‘
ontclinicallf’relevant time'domain.features, so that their.performance'
_could be evaluated and compared to. the performance of spectral pattern
recognition systems. | | | |

After reviewing much of the literature on automaticbtime domain;

~ EEG analysis (e.g. [21, 81, 92—94 96]), and after discussions with Dr.~.
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M.D. Ltw,bit Was.decidéd that thé clinicallyvrelevant'features desctibed

in Taﬁle 3-2 would be e#tracted frbm.EEG pattern samples. It should be
noted that, as with'spectral analysis, only t&o channels of EEG data (F4-Cca
and C4-02) were COnéidergd initially. 6f the 10 features in the set‘{ri},
1 <4i =10, four are derived from a ptriqd.anaiysis of EEG activity and

six are derived from an amplitude analysis. 'Ifbx(t) denotes the EEG ac- f
tivity from one channel then the ﬁean zefo4ctossing rate is the average
numbef of times per éecond that x(t) = 0. The mean zero—crossiﬂg rate of
the time derivativevcorresponds to the>avefage numBer of times per_secoﬁd_
that x(t) reéches‘an extremum, i.e. tﬁat

4 x(t) _

at 0. ._ - ' _' (3.20)

All of the EEG amplitude features can be derived from p(x), the amplitude

probability distribution of x(t): if

m o= S0 xp() dx T 30
m =/ (x- ml) p(x)dx, - n'= 2,3,4,. 0 (3.22)

then the standard deviation of the amplitude

”~-;, _ - BO-= (mz)%,'_' ' | N . o - (3.23)
‘the skewness o |
8 ; _;Eé___ R - .
| 1 <mz>3’2.; o o : ,’_:(3.25)
and the excess of kurtosis
R

are easily obtained,[97]. - The skewness feature .indicates thé.relative
,asymmetry of p(x), i.e. in the case of a symmetrlcal distrlbution B 0;
the excess of kurtosis indicates the relatlve flatness of p(x) in comparl- o

son to a Gaussian distribution, for which 52‘= Q‘([85], pp.:39-40). .
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Table 3-2 Description of Time Domain EEG Feature Set

i=- : | Time Domain Feature Ti' g o | Channel
' Mean zero-crossing rate o s | F4-C4
Mean zero-crossing rate of first E _ :
derivative - F4-C4:
3 Standard deviation of amplitude F4-Ch4
4 Skewness T o ' S_ ’ F4-C4
5 Excess of kurtosis | . : R F4-C4
6 Mean.zeroécrossing rate v‘vi" C4-02
7 Mean zero-crossing rate of first o
_ . .derivative _ o Co C4-02
Standard deviatiun of amplitude ’ , ;_;CQ-OZ
9 Skeuness . - S _ ‘-64—02‘
10 ‘|~  Excess of kurtosis .- ; L N C4-02

3.3.2' Time»homain Feature Vectors
' This section outlines the procedure for evaluating.individual.iﬁ
pattern samples in terms of the feature setb{r 1, l-f is 10,'summarized'”
‘in Table 3-2 and- descrlbed in the prev1ouslsect10n.v Before any features..

- were evaluated, EEG pattern. samples were digltally filtered w1th _'l

0o - 0S<f<0.50
Be) = (£0.50)/0.8  0.50 < £ < 0.58 (3.26)
) < ’
_ o esssfsiy
»0‘ :. t . f>fLP l

to remove  any artifaet below 0.54 Hz and tevremove high frequency:EEG’
activity-above f Hz ‘whach, in visual EEG assessment at least, often,

tended to obscure 31gnificant changes in time domain feature values. " The
different choices for f will be descrlbed in section 3 6 2. ; To'illus—

. trate the feature evaluation procedure let {xl,...,xN} denote the set of

.values obtalned by digitizing the EEG activity from channel F4—C4 at 64 samples/s

: for T = 648, i.e. N = 4096 and then bandpass filtering the digitized EEG
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with B(f) in (3.26). The mean zero-crossing rates of the EEG and its first
derivative can be evaluated from the_following equations:.

N

v =3 B 11 - sgnG,p)semln)] | (3.27)
and v
; X : .
T, =57 k__2_1[1 -'Sgn(Akﬂ)Sgn(Ak)] o (3.28)
vhere ' v
b = Dogg = % ]- e

To evaluate the amplitude features defined in (3.23)-(3.25), the sample.

mean N

L - | , : (3.30)
ko1 Xk _ T

~

1
MY

and higher order central moments

- ' "N _ o
a1 _ ~ D _ 5 . ) .
R L T D
are employed: A
= @yt s | S (3.3
3= oy o : e
Yapd? 6w
8, — B |
Tg =~ ~ 3. B o . R (3.34)
@)~ , o

Simiiarly, features 16‘—-110:can be.eQQiuated using the saﬁple EEG data- 
- from channel C4-02.'  o | B |
Appendix E contéins fhe'listing 6f.a program‘thé;:wés.written tb'
evaluate EEG pattern samples inbterms of the time domaiﬁ'feéturés;in Table
3—2;' This program was used to prgpare_timé domainvfeatqre véctors for_ |
all available-pétterh samﬁles.' The'fesulféht:featufe vecfprs.ﬁeré stored |

for later use.
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Fig. 3.2 summarizes the procedure for preparingVSPectralfand'time

domain EEG feature vectors for subsequent use in classifier development

and performance evaluation.

—

DIGITIZED EEG-
PATTERN SAMPLES

EEG IsPeCTRAL

SPECTRUM FEATURE

ANALYSER EXTRACTOR . -
- FEATURE VECTORS
 FOR CLASSIFIER
DEVELOPMENT

TIME DOMAIN TIME DOMAIN

 EEG FEATURE

ANALYSER EXTRACTOR |

“Fig. 3-2 Preparation of Spectral and Time Domain Feature Vectors -

"3.4 ‘Classification Algorithm

A wide4varietyfof_algorithms have'beenodeveloped to classifysf

unknown pattern samples on the basis of a specified set'of-extraote& fea-

ture values [24].

In EEG pattern recognition, many of the classifiers

_ described in the llterature have been heur1st1ca11y derived and are- based |

on ad hoc dec151on rules (e. g. [32 79 98])

Consequently the condltlons :

under which such classifiers may be opt1ma1 are unknown,_and mean:mgful

' omparisons of performance are often d1ff1cu1t or 1mp0531b1e.

- Of the few EEG pattern classificatlon algorlthms Whlch have a’

firm theoretlcal basis, the most popular is an algorlthm based on. linear '

'discriminant analysis [99].

‘ Under the assumptions that all sample fea—

ture values are from a multivariate normal populatlon and that the feature
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covariance matrices for the different classes are identical, this algorithm
creates linear discriminant functions (in a stepwiseimanner) which can be :

d used to classify unknown feature vectors [77,100]. However in many EﬁG ap-
plications the assumptions of normality and identiCal‘covariance‘matrices
are obviously invalid (e.g.[lOl]), thus;affecting the optimality of the
classifier and the accuracy of parametric performance estimates.v-Despite
these‘and other problems, stepwise discriminant analysis is at present per-fv
haps the most widely used EEG pattern cla831f1cat10n ‘algorithm (e g {77, 78;

83 91 lOl])

The classificatlor algorithm chosen for thlS 1nvest1gat10n makes

only one assumption about the feature data. it is based on Bayes declsion rule .

([102]’p, 13) under the assumption that all features are statlstically 1n—..
dependent-, Although the algorithm has certa1n characterlstlcs whlch 1nd1—i
cate'that it might be particularly appropriate‘for EEG patternvclaSSifica-’"
tion problems, apparently it has not been exten31vely studied 1n thlS con--"
- text previous to this 1nvest1gation._ To explain the algorithm, let (d 6 )A_
. represent an observed EEG pattern sample from an unknown class° gﬁ isva row :
vector‘contalning N feature values or measurements from the'pattern'sample'
and 6 is the label 1dentifying the class to which the pattern sample be— N
longs. The purpose of the class1f1cat10n algorithm is to dec1de on a o
value for Gu; tIt 'is known that the.observed feature vector_gu.must‘belong:};t
to oneﬁof M possiblenclasses Cd,.i.,CM_l;iin this.problem_M‘= SIand the p,
five possible classes correspond to the five different_levelSIOf anesthesia.
| The.classification algorithm is based dﬁ'thé maximum likelihoodzl

principle, i.e. one asks which class (or level of anesthesia) was most
1ike1y to produce the observed sample vector du and,decides eu = Cj;

<3S (M1), if o AT



P(legu) > P(cm|du). for {m:gf°f"M_lv : (3.35)

By using Bayes.Rule ([102],p.11) the a posteriori probabilities in (3.35)
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_can be expressed in terms of conditional and a priori probabilites, e.g. o

P(d | )P(C )
P

P(cmlgu) =

Therefore, using (3.36), the decision rule in (3.35) becomes: decide

8, = c; if | | | |
P(Qule)P(Cj)-> P(d lc)P(C) (3 375
CT R TEW -3
or “ . _ . o _
B, lCpR(C) > R(g leprcy 0 (3.39)

" for ‘{m=0,...,M-l'
m#j.

(3.36) :'

. The amounts of storage, computation time and training data re-

quired to 1mp1ement (3 38) are greatly reduced [24 72 73] if it is assumed

that the vector components dun’ 1=<n N are statistlcally 1ndependent

~: of one another, i.e. if it is assumed that

- N

P(g lc) = L oP(lc). o ';t o _(3f39)'

n=1

Under this assumption,'and after taking logarithms of both sides,‘the’de-;ﬂ

cision rule in (3.38) becomes: decide éu'= Cj'if _.

R, >R fm=0,..0,M1 o (3.40)
* where - N | B | o |
| R fl~£l>£n[P(dun|Cm)] s‘zn[p(cmg].'j, ) ‘i“‘: p(3.41)

This classification rule minimizes the probability of ‘an error when the

- features are statistically 1ndependent and when P(d [C )‘and P(C'jiin:(3 41)-f

are either known exactly or estimated using Bayes estimation procedure [103]-

Assume.that a total of S pattern samples arevavailable for estimating the -
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probability distributioﬁs and that the'kth pattern sample is represented by

(gk,ek), l‘Sbk svs; where d, is the extracted feature vector and 6, is the

k k
label which identifies the corresponding level of anesthesia. If each of
the N feature measurements is scaled and quantized to some value £,

1221, then Bayes estimates of _P(dun = 2|Cm) and P(Cm), denoted by

P.(dun = EICm) and P(Cm) regpectively, are given by
-
' qn/m +1 ‘
f»(dun = g[cm) == (3.42) 
‘and
: . s +1 :
P(C) =3 TN (3.43)

In (3.42) qi/m_denotes the number of available pattern samples belonging -

to class Cﬁ in which d

kn.= %, while sﬁ in (3.43) denotes the total nﬁmber

of available pattern samples belonging to Cm,'i.e.

: S ' , S
L : . -
and '
s = ¢ f(8,, C) - - (3.45)
L kf m’ S T L
where . _ . o
: ' - (1 4if 6,=C_ and d; = 2 Lo
g(dkn’ ek; lyva) = { kom0 _dk#" ‘ ,»:(3.46)
. o 0 otherwise. SR .
T ‘ 1if ek=cm o
f(ek, Cm) = ' - (3.47)

0 otherwise.
In generai, the assumption that the features are statiétically :
independent may not be wvalid. - However the’pérformancefof a classifier
based on Bayes decision rule, under the'assumption_of.statistically_indef
pendent features,  does provide a bound oh the-performaﬁce £hat'would“

be possible if any existing feature interdependencé’could'be exploited.
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This follows from the argument that an invalid assumption regarding the
feature.probabiiit& distributions cannot increase the probability that

unknown pattern samples will be correctly classified.

:3.5 Evaluation of System Performance

3.5.1 The Performance'Estimatien Problem

The criterion usually adopted for assessing the overall perfor-
mance of a pattern recognition system is its probability of misclassifi- |
cation error, denoted here by P,. If the system_preprocessor_end feature
extractor have beeu specified, then evaluating the'performance of the_sys—
tem is equivalent to evaluzting the performance of the patterh'classifier.
However, P, for the classifier is notrreadilyreualuated.' Assume that the -~
set of_available pattern samples'{d,e}’contaius a total of S pattern'l
gamples from J subjects, where each pattern sample-eonsists of an extracted
feature vector and a label which identifies the corresponding anesthesie
level. If the complete set {d,0} is used to train the pattern c13351fier,i‘
i.e. to estimate P(d |C ) and P(C )Uin (3.41) u81ng (3.42)—(3.47), then
P, is defined as the probability that future pattern samples will be in-
correctly c1ass1f1ed.. Obviously P cannot be. evaluated because, by defl—
nition,>all.available patternrsamples would be used for_training the-clas-'
“sifier and.none would be left for testlng 1ts performance.‘ Hehce, as de—
‘picted in Flg. 3 3, some technlque must be employed to estimate P ‘on the‘”

basis of the set of avallable pattern samples._

- 3.5.2 .Perforuauce-ﬁstimation Techniques rfh
. Several parametric and nonparametric uethods heue_been deueieped
to estimate Pe for different types of classifiersion the‘basis.of a finite
- get of pattern samples [25].: However, only'e‘feubof these.methods Arepph

" appropriate for estimating the performance of EEG pattern classifiers.
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(B) TESTING THE CLASSIF/ER

Fig. 3-3 Estimating Classifier Performance. The available
set of pattern samples, i.e. feature vectors and -
labels, must somehow be used for training the clas-
sifier and for testing its performance.

A method of ﬁerformance estimation that is appropriate for EEG classifigrs
should possess some or all of the following characteristics..vFirst, it
should be a nonparamétric method because, in general, little is.known
about the underlying nature of the feature distributions. Second, the
method should make efficiént use of the available pattern samples because
in most EEG pattern recognition investigations the set of available pattern
samples is relatively small. Third, the method should yield an estimate
“of Pe that is as unbiased as possible, i.e. an eStimate‘that’is neither

overly optimistic nor overly pessimistic [104]. Finally, it should provide
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an indication of the'variability of the estimate: it is‘important to have
some'indication'of the extent to.which the performance of the classifier:
‘will be affected by_the normal range‘of variability‘among pattern samples.
It appears that .the major source of variability in small sets’of EEG pat-
tern samples is due to differences in EEG characteristics’among different
subjects, i.e. intersubject EEG variation.-ASome'early investigations of:‘
.EEG'pattern recognition systems indicated that intersubject EEG variation
apparently had a significant effect on the performance of.such'systems
[77,105]. These findingS‘were supported by some initial results which were
obtained in the course of" this research [37] Therefore, it was concluded :
that a satisfactory method of performance estimation should also be capable_
of prov1d1ng an indication of the expected effect of 1ntersub3ect EEG var-
' iation on’ c1a331fier performance.
No single, existing method of performance'estimationjwas found

‘to satisfy all of the above requirements.‘ However; two nonparametric tech-.
niqnes were fOrmnlated which, together,.eatiafied‘many ofnthe above reqniree ‘
ments and prov1ded partlcularly useful estlmates of thevperformance of. EEG '
_pattern classifiers. Because these technlques were based on two popular
nonparametric methods of’ performance estimation, known in the 11terature L
as the I method [106 107] and the U method [108 109], they will subsequently
be referred to 'in this the31s as the_H*_technlque and the U%* technlque,-
respectively. The II* technique;‘to-be descrihed in”section.é.5.3,vproduces
.an estimate_of Pe mhich.indicates the expected.performancevof the claeaiepf
fier on future EEG data from a population of subjects. The U* techniqne,

to be described in section 3}5.4,_produces‘anAestimate.of P which indi—i'
cates the. expected performance of the classifier on future EEG data from

“only one subJect, or the performance that would be p0851ble across a
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subjéct population if the effect of intersubject EEG variation could some-
how bé eliminatédf’. |
To permit concise descriptions of the NI* and U* techniques iﬁ the
following sections, let the set of § aVéilable paftgrn samples from.J suB-
jects be partitioned into J'mutually:exclusive sets, denoted by
'v {g,e.}l,"{d,e}z,..;',{d;e}J,
where each set corresponds to the pattérn samples obtained fréﬁ one sub-

ject. Then :
.o agdd, s (3.48)
and the label of the kth pattern sample from the jth subject, and

for j =1,...,3 where'gl_j and'ej denote,“fespectively, the feature vector -

H p(3) = 5, SR B9y
=1 | _ L o
i.e. p(j) denotes the ﬁumber'of'avéilabie patﬁérn‘saméles from fhe jfhi
subjeét. | | |
5.5;3 The II* Te;hniqﬁe -
Lét the.estimate of_Pe.préduced b& thgvn*‘techﬁique be denotedt.
" by ﬁe[n*]. Tﬁen the T* techniquéIfor:estiﬁatipg ciassifiervperformance
can‘bevconveniently desc;ibed by the folloﬁihg ;igorithm.' |
| 1) Set aéide'{g;e}j, the sét of pafterﬁ saﬁpleé’frdm the jth' ‘
subject, for testing the classifier. B
2) Traiﬁ'the’classifiér-on_all battgrn samples from’the J;l
‘ réﬁaining sets; i.e..f£om : a § . S
{d,ett fm=1,...,3
| Iy

3) Test the classifier on'{g,e}j.to obtain a proportion of
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errors denoted by

B, [1¥]

J P(J)k_ (3.50)

where - j ' : ’ :
i 0 if gk is correctly classified : _
e = : : . - (3.51)

1 otherwise,

g

i.e. e, acts as an error indicator.

4) Repeat steps 1)-3) for j = 1,...,J to obtain the proportions
of errors fe[H*]j,for ji=1,...,J.

5) The II* estimate of Pe can then be computed:

(&

'fe[n*] - jziﬂigl-fé[n*]j.

Appendix F contains the listing of a program that was written

(3.52)

to compute P e [T1%] for the classifier deScribed invsection'B 4.- The program

can accommodate up to 500 pattern samples, i e. up to 500 spectral or time
‘domain feature vectors and thelr labels. The program allows the classifier'

feature-quantizatlon scheme to be varied ,and also permlts-the a priori .

class probabilities P(C ) in equation (3 41) to be assumed equal or to be -

estimated by (3.43).

- 3.5.4 The U* Technique

Let_the estimate of P, produced by the U* technique:be denoted

]

by ﬁe[U*]. Then ﬁe[U*] for‘a given classifier can be'couputed by means of

the following algorithm:
1) Consider oniy the set of'pattern samples from the jth sub- -
Ject, .1.e.'{d'e}j for 1 <3 < J. |

2) Take out the kth pattern sample. (di,lej) and. then defiue‘ -

c.gd g3
479 k-1’ k+1’ -.’dp(j)’ép(j)

% j j..... h J j
{4, e} A {4 :d e -1 dk+1,
| | ' (3.53)

_}.
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3) Train the classifier oni{g,e}i.

4) Test the classifier on (gj,ei) and use ei'for an error indi-
cator, as in equation (3.51).

5) Repeat steps 2)-4) for k = 1,...,p(j) to obtain ei values
for some fixed j and for k = 1,...,p(3).

6) Repeat steps 1)-5) for j = 1,...,J. .Thus‘ei valuee are oh—
tained for all j = 1,...,J and k = 1,...,p(3).

7) The U* estimate of P, is then computed in the following

J _ .
5 5% el : ' ' (3.54)

The -program listed in Appendix G was written to compute ?e[U*]
for the classifier described in section 3.4. The only exception-to the

above algorithm was in the case of very small sets {d, G}J' the classifierv

3
%

least one pattern sample from the level corresponding to ei As w1th the

I* perfdrmance estimation program,. the U# performance estimation program

was not tested on (dj, ) if the training set {d 6}J did not 1nc1ude at’

flisted in Appendix G permits changes in the cla851f1er s feature quantiza—,
;tion scheme and a priori class probabillty a551gnments, and can accommodate

up to 500 pattern samples.

3.6 Results

3.6.1 EEG Spectral Pattern Recognition Systems

The 1I* and U* technioues described»in‘the'previons aectiona
‘were used to estimate the performance of various EEG spectral pattern f
recognition systems. To 51mp11fy the descriptlon of these different |
. systems, it should be recalled that all EEG pattern recognition systems"

can be regarded as. consisting of the three ba31c elements depicted in
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Fig. 3-1: a preprocessor; a feature eétractor and a claSsifier. In all’
of the spectfal‘pattern recognition systems thcﬁ were éqnsidéred, the’
preprbcessor and feature eﬁtractor remained unchanged. Therefbfe, the
different»systeﬁs varied.onlyﬂin the structure of theirfclassifiers.

As stated in section 3.1.1, the basic function ofia systeﬁ
preprocessor is to transform'an EEG sample into a form which allows
‘features to be more easily éxtracted.  The preprocessor chosen for all
spectral pattern recognition systems consisted of an amplifiér to in-
creaée EEG amplitudes to convenienﬁilevels, a béndpass-filﬁef (0.54-30.0
Hz) to reduce artifaCt, and a digitizér to éonvert each smpiified and.>v
filtered EEG sample to digital form. ' The spéctral feature‘extractor
had two functions: the cdmputation of spectra cﬁrresponding to each pre-
processed 64s EEG sample and the SubseQuént e&aluation 6f_the 13 spectral
features listed in‘Tablé 3-1. In the feature extractdr; the spetha '.
‘were to be cbmputed in the manner outlined in séction 3;2.2 and the .
spectral,features were to be'evalﬁated as described in section 3.2;3.

Fig. 3-3 shows the basic configuration of the'classifier éﬁ—'.
ployed in all spectralfpattern recognition syétémé; It coﬁéists of3:

- a featuf; quantizer, a decision devigekand:a‘memdry for‘storing:eéti—
mates of the cléss-conditioﬁai'feature probabiiities-and the a Eriori_
class probabilities. Thé'featuré QuantiZer waé iinear iﬁ>a11 systems,
buﬁ the quantization rénge aﬁd-the humber:of poséibleAquantization
levels were changed to stﬁdy their possible effect on performance. .
The:different quantization ranges,weré definédvin terms of.a specifiéd
.maximum number of étandard deviations from thé‘mean féatufe values, _ 
vhere.the means_aﬁd staﬁdard‘deviatioﬁs were éalculated ffqm the'évaii_ :
able'trainiﬁg data. The.deéisidn rule that Qas described in seéﬁioﬁ |

3.4 constituted the "decision:devic¢".shoﬁn in Fig. 3-3. In some" 1
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classifiers the a priori class probabilities P(C_) were estimated by

the Bayes probabllity_estimates defined in equation (3.43).. For com-
parative purposes, similar classifiers.were also considered.in which

the a priori class probabilities were assumed to be equal.

The performance of each different spectral pattern recognition :
ystem was estimated by the H* and U* techniques. These techniques made
use of the three sets of available spectral_feature vectors, corresponding

to the three types of anesthesia, which had been prepared'as-describedv
in section 3.2.3. Estimating the overall performance of a system on the
basis of a set of available.pattern samples was therefore equivalent to
estimating the performance of the system's cla351f1er on the basis of

the corresponding set of spectral feature vectors, because allipreproc- »
) essing and feature extraction operations_had_already been performed on>
the EEG samples during the preparation of the feature.vectors.' The
results obtained forbmany of the,spectral pattern recognition systems
which nere developed for‘halothane anesthesia,‘narcotic anesthesia \

and enflurane anesthesia are summarized in Tables 3-3 3-4 and 3—5,
respectively. As stated in section 3.5. 2 the estimate of mlscla531f1—-
cation error probability provided by the H* technique i.e. the value

of P [H*], indicates the expected performance of the system on future

~ EEG data from a population of subJects. Alternatively, the U* per—..
‘formance estimate (P, [U*]) for the same system 1ndicates its expected
performance on future EEG data from only one SubJect, or the performance-f
that would be p0331b1e across a. subject population 1f the effect of
intersubJect 'EEG variation could somehow be eliminated.

The best spectral pattern recognition system among those com~

'pared in Table 3- 3, Table 3-4 or Table 3-5 was considered to be the one .

. which minimized the mean of the two estimates of error probability, i. e."
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the one which minimized

?e[Mean] = "/2{ %] + P [U*]} - (3.55)

e’

Table 3-3 Performance of Spectral Pattern Recognition Systems
on EEG Data from Halothane Anesthesia

Feature Quantizer - Type of Estimated Error Probability
P(Cp) . -
, ' Number of Estimates Pe[H*] ?e[U*] Mean
Range Levels Employed :

+5.0 8d 16 Equal | 0.454  0.142  0.298
* 5.0 sd .32 Equal 0.393 0.149 0.271
t 5.0 sd - 64 Equal . 0.389% 0.108%* 0.248%
+ 5.0 sd 128 Equal 0.471 0.175 0.323
* 5.0 sd 64 Bayes 0.404 0.138 0.271
+ 1,0 sd 64 | Equal 0.475 0.224 0.349
+50.0 sd 64 Equal 0.396 0.108 .0.252

Table 3-4 Performance of Spectral Pattern Recognition Systems
on EEG Data from Narcotic Anesthesia

Feature Quantizer Type of ' Estimated Error Probability
P(Cpy) - -
Number of Estimates P [TI*] P [U*] Mean
Range Levels Employed ¢ €
* 5.0 sd 16 Equal 0.463 0.256 0.359
* 5,0 sd 32 Equal 0.460 0.240 0.350
+ 5.0 sd 64 Equal 0.449% 0.211* 0.330%
£ 5,0 sd 128 Equal 0.519 0.250 0.384
+ 5,0 sd 64 Bayes 0.478 0.244 0.361
+ 1.0 sd 64 Equal 0.490 0.279 0.384
+50.0 sd 64 Equal | 0.481. 0.211 0.346
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Table 3-5 Performance. of Spectral Pattern Recognition Systems
on EEG Data from Enflurane Anesthesia

Feature Quantizer Type of ' Estimated Error Probability
- P(Cp) "
- Number of Estimates P [11*] P [UX]  ° Mean
Range - - Levels: Employed € e
+ 5.0 sd 16 Equal ~ | 0.426 0.122 ©0.274 .. -
+ 5.0 sd 32 | Equal ©0.420 0.135 - 0.277
+ 5.0 sd 64 Equal ~0.420 0.132 - 0.276
+ 5.0 sd 128 Equal 0.413 = 0.168  0.290
+ 5.0 sd . 64 Bayes | 0.432 0.178  0.305
+1.0sd - 64 . Equal 0.420 - 0.148 - 0.284
$50.0 sd 64 Equal  0.416 0.132 ©0.274
+5.0 8d 16 Bayes .| 0.404 ~  0.148  0.276
* 1.0 sd 16 - | Equal | 0.432 0.145 - -0.288
£50.0 sd -~ 16 Equal 0.413% . 0.122% . 0.267%

In Table 3-3, Table‘3—4 and Table 3-5 the best systen_is iden-
tified with asterisks. Accordingly, from'the results in Table 3%3;’the
best spectral pattern recognition system developed for halothane anesthe81a
can be expected to classify between 61.1 percent and 89.2 percent of future.
EEG samples correctly. This system has a linear feature quantizer with 64
possible quantization levels over a range. of +5.0 sd (standard dev1at10ns) and
employs equal a priori class probabillty estimates. From the results in Table
3-4 it'is evident that the bestlspectral pattern recognitlon system for v
- narcotic anesthesiavhas the same feature quantization scheme and nses
the same probability estimates. 'Honever,yits performance is‘slightly.

inferior' it can only be expected to correctly classify between 55.1



percent’and 78.9 percent of future EEG sémples. Finally, the results
in Table 3-5 indicate that between 58.7 percent and 87.8 pefcent of
future EEG samples from enflurane anesthesi# will be correctly classi-
fied by the best spectral pattern recognition system. This éystem em-
ploys equal class probability estimates, as do thé best systems for
halothane and>narcotic.anesthesia, but has a féature quantizer with

only 16 possible quantization levels over a range of +50.0 sd.

3;6.2 Time Domain_EEG'Pattern'Recognition Systems

In addition tovspectral pattern recognition systems, various-
systemsbbased on the recognition of <time domain EEG pattern# were devel;
oped. As stated in section 3.3.1, thése éystems were investigated be-
cause it was suspectgd that-the_conditions under which some form of 
Spéctral pattern recognition system would be optimal were not satisfied,
and because.it waé known that visﬁal EEG assessment is based primarily
on the evaluation of time domain EEG featureé, not spectral feétures.
Time doméin EEG patterﬁ.recoghitioh-éyétémé'wéré.thereforevdevelopedb
so that their performance could berestimatéd aﬁd compared to thé esti-
mﬁted performance-of spectral paﬁtefn recognitidn systeﬁs.

The structurevof all time domain_EEG-pattefn recognition
systems which were considered Qasvsimilar to‘the structure‘of the.spec—
tral pattern recognifion systems described in'seétiont3.6.1. Both con-
‘sisted of the three basic elements shoﬁn in Fié. 3—1: a preﬁrocessor,
~ a feature extractor and a cléssifier._ Thé preprdcéssors in. all time =
domain systems were identical to ;hg:éreprocessofs in Sﬁectralvpattern'
recognition systems, with the folloWing-eiception: instead'of a band-
pass filtér from 0;54-30;0 Hég the filter défide@jin (3.26) was employed

and the lowpass filter frequency'fLP

was set at 8.0, 16.0, 24.0 and 30.0

53
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Hz in different systems to study the effect of prefiltering on system
performance. As mentioned in section 3.3}2, tbis additional prefiltering
was performed to eliminate.high frequency EEG activity above be Ha which,
at least in visual EEG assessment, seemed to obscure significant changes -
in time domain feature values. |

The function of‘the.featurevextractor-employed in all time'domain
EEG pattern recognition systems was to evaluate each preprocessed 64s EEG
sample in termS'of the set ofl10 time domain features listed in Table 3-2,
so that the EEG sample could subsequently be classified on the basis of
the set of extracted feature values. The class1f1ers in all time domain
systems had the same basic structure as the classifiers in spectral -
systems, consisting of a feature quantizer; a.decision device and_a»
memory for.storing estimates of the relevant probability distributions,'
as indicated in'Fig.'343,.‘The quantization range and the number of
.possible.quantization-levels were changed in different systems, in the
manner described in section‘3.6;1; in'an‘attempt-toiestablish tne best.
linear featnre_quantization schemei'°An implementation of the“decision
rule described in section 3.4 constituted the ﬁdeciSion device" in -
all time domain system classifiers,inor comparative purposeSvthe '

a priori class probabilities were assumed to be equal in some systems,
‘while the Bayes probability estimates defined in (3 43) were employed
in other- systems.

Using.the‘sets of available'pattern‘samples_from halothane‘y‘
anesthesia, narcotic anesthesia and'enflurane.anesthesia, estimatesvof
the miscla551ficat10n error probability for various ‘time domain EEG -
pattern recognition systems were obtained by -the H* and U* techniques
described in section 3.5.3 and section 3.5.4; respectively. Thevresultiné';"

values of P [n*] and ﬁe[U*] are presented in Table 3-6, Table'3f7 and
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Table 3-6 Performance of Time Domain Pattern Recognition
Systems on EEG Data from Halothane Anesthesia

Lowpass - Feature Quantizer ' Estimated Error ?robability'
Prefilter _
Frequency Range ~ Number of . .
/ . * * ’
£ P (Hz) ‘ . Levels Pe[H ] Pe[U_] Mean
8.0 + 5.0 sd 8 . 0.500  0.213  0.356
8.0 + 5,0 sd 16 £ 0.471 c.187 . 0.329
8.0 +5.08d 32 ©0.514  0.291 . 0.402
16.0 £ 5,0 sd 8 0.500 - 0.127  0.313
- 16.0 + 5,0 sd 16 | 0.450 . 0.179 0.314
16.0 + 5.0 sd 32 0.518 0.231 = 0.374
24.0 +50s 8 | 0,532 - 0.179 0.355
24.0 '+ 5.0 sd 16 |  0.514 . 0.198 . 0.356
24.0 + 5,0 sd 32 © 0.525 0.213 0.369
16.0 | * 1.0 sd - 8 | 0.496 . 0.243 . 0.369
16.0 $50.0sd 8 | 0.486%*  0.127%  0.306%

Table: 3-8. Because their performance was con51stently better, only e
‘systems which employ equal rather than Bayes, a Eriorl class pro-
bability estimates are described 1n-these'three tables. _The best_system
among those presented'in‘each table was considered to‘be the one which'min—.
imized the mean of the two error estimates, i e. the one which minimized
(3.55). The best system in each of the three tables is identifled with
asterisks. From the results presented in Table 3-6,the best: time domaln EEG
pattern recognition system_deveIOped for halothane anesthesia can be expected‘
‘to classify between 51.4 percent and 87;3 percent of:future.EEG sampleS'
correctly. -In this system the lowpass filter freduencyifLé'isfl6.O Hz-
and the feature quantizer,has_B possible quantization leyels extending

-over a range of 50.0'sd; The results in Table 347'indicate‘that between .
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Table 3-7 Performance of Time Domain Pattern Recognition,
" Systems on EEG Data from Narcotic Anesthesia

Lowpass . v Feature Quantizer ~ Estimated Error Probability
Prefilter
Frequency Range " Number of '} - _
P o rer
£ P (Hz) o Levets. Pe[H ] ‘ Pe[U ] Mean
8.0 +50sd 8  0.504% 0.320%  0.412%
8.0 + 5.0 sd _ 16 . .- 0.522 0.349 0.435
8.0 + 5.0 sd . 32 ~0.519 0.391  0.455
16.0 £50sd 8 . 0.548 0.288  0.418
16.0 + 5.0 sd - 16 0.578 . 9.317 0.447
16.0 £50sd 32 | 0.592 0.378 0.485
24,0 + 5.0 sd 8 |- 0.578 0.276 - 0.427
24.0 + 5.0 sd 16 . |  0.572 - 0.305  0.438
24.0 +50sd - 32 | - 0.566 = 0.359 0.462
8.0 +1.0sd . 8 0.551 0.378 - 0.464
8.0 ' +50.0 sd 8 1 o0.507 | 0.320 - 0.413

f49 6 percent and.68 0 percent of future‘EEG samples from narcotic anes-
thesia could be correctly class1f1ed by the best time domain EEG pettern-
'recognition system. The lowpass filter frequency f is 8 0 Hz in the :«
) preprocessor of thls system and the feature quantlzer has 8 p0531b1e |
quantization levels over a range'of 15.0 sd. -Finally, from the results
in Table 3-8, the best time domain EEG pattern recognltlon system dev—
eloped for enflurane anesthesia can be expected to correctly c1a581fy
between 62.8 percent and 89. 8 percent of future EEG samples.- In this-

- system the feature quantizer has 8 possible quantization 1eve18 extendlng
over a rsnge'of‘tS.O sd and, in contrast to the.best systems ianable'“:

3-6 and Table 3-7, the 1owpass‘filter frequency fLP is 30.0 Hz, i.e. the
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Systems on EEG Data from Enflurane Anesthesia
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Lowpass Feature Quantizer Estimated Error Probability
Prefilter
Frequency Number of . .
fLP (Hz) Range Levels Pe[H*] Pe[U*] Mean
8.0 + 5.0 sd 8 10.435 0.204 0.319 -
8.0 + 5.0 sd 16 0.410 ©0.224 0.317
8.0 + 5.0 sd 32 - 0.410 0.250 © 0.330
16.0 + 5.0 sd 8 0.394  0.141  0.267
16.0 + 5.0 sd 16 0.404 0.135 0.269
16.0 + 5.0 sd 32 0.416 '0.197 0.306
24,0 . + 5.0 sd 8 0.397 0.095 0.246
24.0 + 5.0 sd 16 0.347  0.132 0.239
24.0 + 5.0 sd. 32 - 0.369 0.161 - 0.265
300 + 5.0 sd X 0.372%  0.102%  0.237%
30.0 + 5.0 sd 16 0.369 0.145  0.257
30.0 : * 5.0 sd 32 0.404 0.184 0.294
30.0 £1.0 sd 0.401 0.138 0.269
30.0 +50.0 sd. 0.385 0.102 10.243

.elimination of high frequency EEG activity did not result in an:improve—

ment in system performaice.

3.7 Discussion

. 3.7.1 Spectral and Time Domain EEG Pattern Recognition Systems

‘The primary objective of the work described in this chapter was

to study‘thé feasibility of estimating anesthesia levels by means of EEG -
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pattern recognition. It was assomed that the clinical, non-EEG criteria
listed in Table 2-1 defined five.clinically valid levels of anesthesia
for patients during halothane, narcotic or enflurane anesthesia.”_The
various spectral and time domain EEG pattern recognition systems des-

~ cribed in sections 3.6.1 - 3.6.2 were developed in an attempt to reliably
. estimate the different ievels of»anesthesia; i;e. to agree with assessments
made by anesthesiologiste on the oasie of the non—EEG»critetia. Speci-
fically, the function of each EEG pattern recognitioo system was to
estimate the level of anesthesia oy classifying an unknown EEG saﬁple

on the basis of a set_of extraeted feature ﬁalues, corresponding to the
spectral'features listed in Table 3-1 or the time domain features listed_
in Table 3-2,

The performance of each EEG pattern recognition system on future
"data-wasﬂevaluated, inftetms of the eStiﬁated'probability"of”misclassifi; .
cation-error, by means of the H*’technique and»the-U* techniqueees des-
cribed in sections 3.5.2 - 3.5.4. The resolting values of §e[n*] and
ﬁe[U*] for various spectral and time domain EEG pattern recognition sys-
tems are summarized in Tables 3-3 to 3—8.;»In seetion 3.5.2 it was pointed
out that the II* and U* techniques provide perticulatly informative'and
effitient estimates of the_performance:of'EEG pettern'recognition systems.
It is suspected that the values of ?e[n*j'aod fetU*]vobtained for a spe—
eific system could be-decreaseo, i.e._performance could be imptoved, by'
increa31ng the number of Y*‘EG pattern samples avallable for tra1n1ng the
system, . Thls follows from the argument that the error between the actual
'feature pIObablllty dlstrlbutlons needed to evaluate'the declslon rule
in (3.41) and the Bayes estimates of those dlstrlbutions, deflned in

(3.42) , can be expected to decrease with an increase in sample size..
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The best systeme among those cempared in Tables 3-3 to 3-8
were‘considered to be the enes'which minimized the mean error estimate
defined in (3.55). it should be noted that all of the best systems in
terms of this crite:ion employed equal, rather than Bayes, estimates of
the a priori class-probabilities.. Assuming ﬁhat future EEG samples will
be from M=5 equiprobable classes, the performance of these systems can
reasonébly be compared to the ekpeeted performance.ef a completely ran-
dom’pattern clessification system, forvwhich

B [m*]

]
ay
~
c
*
d

1

= 0.8, o o (3.56)

i.e. only 20 pefcent of future EEG samplee.would be correctly claseified.'
In'epntrast, the reselté obtained for the best spectral pattern recogni-
tion systems (in Teﬁles 3-3 to 3-5) indicete:that between 61.1 - 89.2
pereent; 55f1'- 78.9 befcent and 58.7 - 87;8 pefcent‘of futurekEEG
samples ffom, respectively, halothane aneetﬁesia, narcotic anesthesia
and enfluraﬁe anestheSia’will be cofrectlf‘classified. The,best”tiﬁe
domain‘EEGmpattere recognition systems (in Tables 3-6 to 3-8) have
" slightly inferier performance COmpered‘to the best sﬁectfal systemé-for :
halothane and narcotic anesthesia, but slighfiy superier performance for -
enflurane anesthesia: it is expected thatebetween 51.4:— 87.3 pereent,
49.6 - 68.0 percent and 62.8 - 89.8 fercent of future EEG,samplee.frem
halothane, nareetic and enflufane anesthesia, respectively, could be
correctly classified by these systems. N

It would obviousl& be desirabie te comparevthe reéults oBtained_
‘, for the best epectral and tiﬁev&omain'EEG'pattern reeognition syetems to

the expected reliability of visual EEG assessment. Although an exact

AT
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éoﬁparisén is nof possiblé, thé reéults of a recent investigation con-
cerning the reliability of visual EEG assessment; discusséd pfeviously |

in Chapter I , ére'releﬁént.:,The results‘of this“inVestigétion indi-
cate that, even with an establiéhed set of objectivg criteria for pattern |
identification, the reliability of visual EEG assessment may bé surprisingly
low; the highest average iﬁtraclass.corfelation coefficient among seven -
experienced clinical EEG raters.wasvreportéd to be 0.56'[18].'_

. One additional point cénéerhing_the results is worthy ef comn- -
sideration. An. IBM 370/168.computer was used to develop all EEG-patﬁern
recognition systems and to'estimate their performance. Consequeﬁtly,_

, the‘differing amounts of membry énd processing fime réquired by the wvar-

- ious. systeﬁs were not apparent.. However, ;ﬁese factors are of praétical
signifiéance since one'woﬁld obvibuély prefer to use the smallest, least
expensive computer when actually implementing such»a system for-usebqn a
routine basis in a hospital environment. It was calculated that the im-
.pléhentation of the best spectfél pattern recognition systems. would require
a computer with at least 8000 bytes of memory and an efficient vérsion of |
the Fast Fourier Transform (FFT) algorithm._ In contrast, the best time
domain EEG pattern recbgnition systems would require approximately 50 per—
cent less memory and would beicomputationally fasﬁer and simpler, primarily

because the FFT would not be required.

3.7.2 Evaiuation of EEGIPattern Recognition Approach
The results presented in this chapter have clearly demonstrated
the feasibility of obtaining reliable estimations of the level of anes-
thesia during surgical operations by means of computer-based EEG pattern
recognition. Pefhaps the valﬁe of this approach, in relation to earlie:

attempts to visually evaluate EEG activity during anesthesia, can best be
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asseseed in terms.of.the.four methodological prcblems associated with
earlier work'which'werevdiscussed“prenieuely (section 1.2.4): the defin-
ition of anesthesia leVels, the definition of.EEG patterns, EEG pattern
variability and the extent of inter-rater reliability.

In this research, the different levels of anesthesia were de-
fined by a set‘of~clinica11y valid, non-EEG criteria. Estimations of the
level of.anesthesia which were made‘on the basis of these criteria were
assumed to be correct and EEG pattern recognition systems were then de-
signed to agree with the eatimations.IVOf course, any error‘intrqduced by.
the inability of anesthesiologiats te'consistently identify 1evels of
anesthesia on the basis of the clinicallcriteria would‘obviously be incor-
porated into such systems. VAttempts to control this possible source of
error were described in Sectlons 2 3.3 - 2. 3>4

The earller d1ff1culty associated w1th the rellablllty of EEG
pattern def1n1tion was resolved in this research by expllCltly def1n1ng
sets of heurlstlcally derlved‘features so that EEG samples conld be.quan— '
titatiﬁely evaluated-in terms_df these featurea.v‘Although it was'assumed*”
that all features were‘statisticaily independent'for computationai_sim—- .
plicity,‘this assumption is.not'neceseariiy justified.' As‘stated in sec—
tion 3.4, it is therefore theoretically possible to develop a more reliable
EEG pattern recognltion system by exploiting any statlstlcal dependence
that may exist among features. . However, taking statlstlcal dependenc1es
into account canbeasily prove to be a_formldable task because of an ex-
ponential increase in the measurement complexity, where the measurement
complexitf referé to the total number of discrete probability values tn‘e
be estimated [73]. For example, the measnrement_complexitth{of;a-set of
N statiaticaliy independent'features, each‘bf;which can asSume-L nbssible '
quantiZation values, iedgiven hy | | ‘

c=LeN; . @sn



62

- however, if thé features are intérdependént_the measurement complexity is
given by _
c=1L", } o ' (3.58)
an enormous increase for reasonable valueé éf L and N. This is sighificant
because as a rule of thuﬁb the amount of data requiréd to adequétely train
a classifier, as well as the memory ahd'computation time required in its
subsequent utilization, is proportional to the measﬁrement complexity of
the feature data. In the evént that many of tﬁe features are thought
to be strongly intefdependent the use of a different pattern recognition
technique such as sfepwise diécriminant‘anaiysis, Which does not assume
,Statistically independént featurés, might‘pro§é td be more tfactable.
However, in‘the théoretical deveiopment of stepwise»discfiminant-analysis
other simplifying assumptions éoncérning thé é;atistical properties of thé
feature set are made which ére_aiéobnot necessarily valid.
The previogsly encountered metﬁodoiogical problems associated
with the variabi1ity of EEG patterns amongldifferent anesthetic agents
and different patients for the same ieﬁel of anesthesia were reduced.in
three ways. First,.oniy ihree-Specified éombinations of anesthetic_agénts_
were considered in this initiél_investigatioﬁ.' In additién, oﬁlylheélth& '
adult patients in the best surgical risk'caﬁegbrieé“weréTgéIééﬁfﬁ;as sub-‘;'
‘jécts. ,Finallj, because the EEG pattern recognition systemévwérebdeveloped
by processing all available,training data and‘storing the_extracted feature
values, no simplifying assumptions concerning thekundérlying featﬁre disF
tributions Wwere necessary. _Hdweﬁer tﬁé‘fagt'fhat'the'avail#ble data Base
is relatively small, @orresponding to a limited number bf patiénts, means
that EEG pattern §ariability must‘stiil be ;egarded»asia'majof poténtialiv
" source of variability in the performancé:of,EEG pattéfh'recognition systgmé

which were trained on the available setlbf pattern samples.
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Obviously, the inter-rater reliability probléms which were evi-
dent in eariiér studies based on visual EEG assessment are effectively |
eliminated by the computer-based EEG patterﬁ reéognition approacﬁ.~ Once
one reliable EEG pattern recognition éystem has.been developéd, other -
replicas can easily be produced to provide consistent and contiﬁuous'

estimations of the level of anesthesia during surgery.

3.7.3 Further Work
Aside from the factors alreédy mentioned, the performance of

the EEG pattern recognition sYstems_described in this chapter couid have
‘been affecfed‘by invaiid assumptions concerning the'underlyiné statistical
characteristics of the EEG data, by the liﬁitéd number and type of.featu£es
extracted,.by the preéenée of undetected artifa@t iq EEG samples énd by
a marked degree of EEG.ﬁégfern variabiiity and intéréubjecthEG variation.
Each of these factors should Be investigated further Witﬁ a‘view to iﬁ—
proving'system performancé. .

- In Cﬁapter 1v, for'éxample, éomé-relevant statistical character-
istics of spontaneous EEG activity_will be inﬁgétigated; Specificélly,
.it would be useful to know o§er what time iﬁtéfval_(if any) the EEG can
be coﬁsidered to béva sample function.from‘a stationary, or at leﬁst a.
wide;sense stationary, random process. In additionm, it would be pdtentialiy
useful to havé an indication of the extentbtd which a sample EEG ampli-
tudé_distribution deviates from a GaussianIQistribution.‘ With such in-
,formation-an‘appfopriate EEG souréé mbdel couid be gene;ated and-sﬁbsequeﬁtly
employed in déveloping iﬁproved coﬁputér—based éystems for monitoring:the
level of‘anesthésia.

Ali systems considered'iﬁ this chapter were baséd on the ektrac—

tion of relatively'small sets of spectral or time'domaiﬁ features. 'These .
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features were choseﬁ either because they had an established clinical sig-
nificance or because they had previously been described as meaningful in
the literature on automatic EEG analysis. The exfraction of additional,'
heuriétically derived features to improve the performance of specific EEG
pattern recognition systems will be considered in Chapter V. Alternatively,
although beyor.l the scope of this thesis, the use of statistical feature
selection techniques (e.g. [110]) to choose a small set of good features
from a large number of more randomly-chosen ones might also be explored.

As stated in section 3.4, it is theoretically possible tc dev-
elop more reliable EEC pattern recognition systems by exploiting aﬁy sta-
tistical interdependencizs that may exist among spectral or time domain
EEG features. In Chapter V fhe magnitude of any interdependencies, of at
least the magnitude of any intercorrelations, that may exist among spectrél
features will be investigated. Also in Chépter V, methods for reducing
the effect-of intersubject EEG variation on the performance of EEG pat-—

tern recognition systems will be explored.

Finally, instead of considering only spontaneous EEG pattern
recognition systems, the possibility of developing systems which are based
on the recognition of different sensory evoked responses during anesthesia

(e.g., see [15]) might also be comnsidered.
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CHAPTER IV

MODELLING THE STATIONARITY AND GAUSSIANITY OF‘EEG ACTIVITY

4.1  Introduction

4.1.1 Motivation
. Cpnsiderable motivatioa exisﬁs for ehe-development of an ade-

quate-statistical'medel for spoataneous EEG‘activity. For example, it
was mentioned in secfibn 3.7.3 thaf auch.a_mode1>might be of_falue in the
development of EEG patterﬁ recognition systems fof-monitoring anesthesia
 levels. More generally, almost all methods of quantitative EEG analysis
are based on certain implicit assemptions regarding the statisticalAchar-
acteristics of the.underlying randoﬁ process, particularly with respect -
to the extent of stationarity and.Gaussianity of the process. The effi-
eacy of alternate analytic techniQues depends upon the degree to which
such ascumptions are.jaatified by the.characteristics of theiparticular
ensemble of EEG segments being analysed. In addition, a better undef—
stanaing of some of the.statistieal properties of different EEG ensembles
might eventually resulf ip a bettef upderstanding of the neurophysiological
mechanism of spontaneous EEG generation, a mechanism which is still not
well understood. Despite such motivatioﬁ, relatively few investigations
' ofAthe statistical froperties of specific EEG_ensemblea aavelﬂeeh described

in the literature.

4;1.2’ Evaluation of Previous Investigations
The first studies of the EEG amplitude probability distribution
suggested a striking similarity to the normal or Gaussian distributioa -
[111,112]._A_1ater analysis of one 8.33s EEG segment from each of four sub-

jects also showed that in two cases the amplitude distributions closely
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fitted a Gaussién diétribution'[113].However; subéequenf reports £y'
‘..othe:s’confained rathér conﬁrédicfofy-results; “Fof example,_tests of
thirty:52.89 EEG segmeﬁts for Gaussianity resultediiﬁ 29 rejections;'thé
3v investigétors'conclﬁded thaf the - spontaneous EEG could nof.be modelled
- as a normél»rand&m process beéause not even its,aﬁplitude distribution
_waé Gaussian filA].Elul éuggéstedvthat this study illustrated an e#treme
.case where nonfstationarity of~the EEG was erroneously construed as indi-
ative of a non-Gaussian distribution'£115];Hé tested successive 2s EEG
"segmenté ffom one subject and.reported thét the EEG.was Gaussian 66 per-
. cént of the.timé in the resting state, shifting to 32 percent during.é
_ mehtal arithmetic-task; Although the results of some later studies ap-
pear to agree with thosg.of Elul (e.g. [116]);.othgrs do not. For example,
Dumermuﬁh et al;’com@ented that most of the 40; EEG segmentsrwhich they
had ahélysed deviated from Gaussiénity [21]. Following fhé»éuggeStidn
of Elul théy also analysed 4s EEG‘segﬁents in aﬁ;attempt to reduce ef-
fects due to non—stationarityvbut reported even stfohger deviations from
a Gauésian model f117,113]-.

Several factors can be identified which have‘céntriﬁuted ﬁo the
previoﬁsiy described incbnsistencieé in tﬁezliterature. Many early in-
vestigations involved relatively small>ensembles of EEG segments from
very féw subjects. Frequeqtly, EEG data from only one non—sténdardized
channel was considered. The réliability and cbmparability of the résults
obtained in such studies were therefore affected by'topological differ—
-ences, ﬁy étatistical variability due to small sample sizes and by inter-
subject EEG vériation. ,Anothér factor-confributing to discrepancies
among pﬁblished»fiﬁdinés conéefns the different EEG digitization rates

which were used: it will be shown in this chapter that different sampling



67

,hrates change'the efficecy‘of‘statisticai h&pothesie teete.. fiually, the
~ problem of estimating'thegdegree of,statioharity of a particular ensemble
~ of EEG.segmentslhas Beldom beeu.coneidered directly in such investiga-
‘tions. Attempts.were instead made to circumvent the'oroblem of station-
arity when iﬁvestigatingiGaussianitj by subdividing the EEG into very
‘short segments ih the expectation thet any uon—stationary effects would

obe reduced.

4.1.3 Outline of Chapter

In this chapter, a‘technique is'proposed for estimating the
degree of w1de—sense stationarity -and the degree of Gauss1anity of .
- an ensemble of EEG_records. " Results which have been obtained by
apolying this‘techuiqueito three relatively large ensembles of mul-
tichannel EEG data are:also described.;‘ In.addition, the comparative
advantages of«employingmalternate:methods of EEG.aﬁalysis'are dis- -
cussed in relatlon to the estimated degree of stationarity and
Gau851an1ty of the particular EEG ensembles under consideration.
Finally, the specific relevance of the results presented in-thie_
chapter to.the development of EEG pattern recognition.systems for

monitoring anesthesia levels is discussed.

4.2 Random Process Characterization

The ensemble of all poss1b1e time functions which can be gene-
rated by a particuler source together w1th their respective probabilities
of occurrence defines a random. process. Spontaneous EEG activity may
:therefore be modelled as a random process. Any such process, denoted by

X(t), is said to be completely characterized or modelled if its nth order
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' ,distribution fupctionjb. _ U
F[xl,..;,xn;‘ Eaeeestyl = P [X(£) € xppen (e #n]"(a.l)
.is.knoﬁn fo; any n and»ény set of sampling fimes‘tl,...,tﬁ'([Sa], PP-
:296-297). -for mdst_raﬁdom-proceséeé it is'difficult,to obtain émpirical
‘-estimates of (4.1). Howevef, if a farticular random pfocess is bofh -
éaussiaﬁ and Stationary‘then the»p%oblem of modelling it by estimating
(4.15 is greatly simplified.
‘ -Briefly, a-fandom process X(t) is‘said to be'éaussian or normal
~if its nth order p;obability density funétion'
f[xl,...,kn; .tl""’tn]’ |
obtainea by differentiating (4;1).with respeét to allAvariables xi, takes

the form of a jointly Gaussian distribution, i.e.

| expl-+(x - w K] (x - wT)
f(xl,...,xn; Fl""’tn? =

@m™?(|x)y? "
' ' _ (4.2)
where ‘ o
X = [Xl,""’xn]’ v . (4.3)
u = [E(X(e}, .. E{X(t )]
R ORI | - o (4.6)
kyq oee Ko |
KDL= | 2 | | | (4.5)
khl tee knnv |
gy E{(xi‘— uy) (= - uj)}, 4.8

~and |K| is the determinant_of'[K],.the covariance matrix ([119], pp. 111-
112).
. A random process X(t) is said to be strictly stationary if none

of its statistics are‘affeéted by a shift in time origin, i.e. if the two
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procésses X(ﬁ) and‘x(t+g) have'the éamé statistiés‘for-aﬁy é. .A;much
 weaker conditibﬁ is tﬁat §f‘&ide-sense statioﬁarity in a finitettime
interval: if - |

E[X(tj] = py = constant - - . , ‘ _ : 4.7) -
.and iflthe autotorfelaﬁion fuﬁctién‘is given by / _

Rty - R(T?;j S o 4.8)
where ,‘ _ . | | _ |

T = ltj—til _— . _ B | (4.9)

.fOr all t, t, and ;j.e[O,T] fhen X(t).is said to be wide-sense st#tionary
iﬁ'the interval [O;T] ([841, PP..300;304). Under  this con&itioﬁ, (4.6)

becomes

E {(xi'— ui)(xb -u)}

ki3 3 7Y

E {x,x.} - u,u,
J

13

- y2

i

R(T) - n2 - : o (4.10)

for all t, tj_e[o,T]. Fr9m<(4.g) and (4.10) it is therefore evident
that, undef the cohdition of wide-sense stationarity in the interval
[0,T], a Gaussian random process X(t) is completély specified by its mean
_and autocorrelation function in the interval.

If a random.process'X(t) is ergodic [120] then such statis-
tics as the mean and autocorrelation functioh can be calcilated from a

single sample function, denoted by x(t), i.e.

Bx] = o LT gy ae=w (4.11)
: ‘ -T/2 .
and
R(7) = E[X(£)X(t+1)]
= %iz- %‘f T/2 x(t)x(t+1)dt

-T/2 o A .
R , o ‘ (4.12)
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.where k(1) repfesents the time au;otorrélation.function. However, Qn em-
pirical test for ergodicity Wouid require extensive ensemblevcalquiations
.and>wou1d certainly not be feasiblé when only a limited ﬁumber of sampleb
fﬁnctioné of,relativély.sﬁort duraﬁidn'are available. Under these condi-~
tions-ergodiciﬁy'is usually.assumed and any desired ensemble statistics
aré estimated ffqﬁ the individual charac;eristics of all availéble sample:
functions. Fof example, if alllsamplé functions can be modelled as the
_:oﬁtput'of a wide—sense_stationary.Gaussian pfo;ess in an interval [0,T]
then the meén'and>autocorrelation function are sufficient statistical
_.desériptors of the process in the interval. ’fhese ensemble'descriptors
‘can be estimated in practiée by averaging the means and the time auto-
correlation functions (or equivalenfly the power spectra) of the avail-
éble.sample functions. | |

A.pegessary requirement before any such modelling of observed
EEG_activity can~be attempted is thaﬁ some empirical proceduresvbe esf-
_ablished for testiﬁgvindividual EEG ségments, ét a specified significance‘

level, for wide-sense stationarity and Gaussianity.

4.3 Establishment of Empirical Testing Procedures

4.3.1 Testing for Wide-Sense Sta;ionarity
' Assume that v[xl, ces ’x2n] has been obtained by sampling a band-

limiﬁed EEG signal x(t) at or above the Nyquiét rate during the time
interval [0,2T]. Although‘an exact determination of the degree:of wide~
sense stationarity and Géussianity of x(t) in the given interval is not
possible, useful estimates of these statistical pfopertiéé can be oﬁtained
by the appliﬁation of certain hypothesis testing.procedures.

| A procedure for determining whether or not‘[xl,}..,xzn] can be

considered to be a set of samples from. a wide-sense stationary function
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can be based on the requirement that the amplitude distributions and the
power spectra calculated for the sample subsets [xl,...,x ] and [x +1,
'.;.,xzn] must not be 51gnificant1y different. * Specifically, a test for
the wide-sense stationarity of a given sample set can be constructed_by
first dividing;thevset into two.equalvsubsets’and.calcnlating anvampli-
tude'histogram'and power.spectrum for each. Then the two—sample Kolmo~'
~ gorov-Smirnov (K—S) test [121 1221 can be employed to compare the sample |

amplitude and spectral distribution functions of each The two—sample '

K-5 ‘test is based on thejstatistic D2 which is defined as

WL @-g@ . way
where.,Fn (s)hand Gn (s) are:distributionffnnctions'calculated from a set
of samples of‘size n fromxpopulations F and G_respectively.: A large
value of D2 resulting from application.of'the tmo-sample K-S test would
indicate rejection, at some significance level, of the null hypothesis

- that f and G are identical. When [xl,...,x ] and [x 1,...,x2 1 are
tested in this manner, rejection of either the hypothe31s of identical
amplitude distributions or the hypothes1s of 1dent1cal spectral distri-

_ butions 1nd1cates that the orlginal EEG 31gnal cannot be modelled with
'confidencevas a sample function of a random process that is wide—sense-
stationary over the interval [O,ZT]; Thus, rejection of either hypothesis
for a given set of samples constitutes an»empirical upper bound on the
interval of wide;sense stationarity,’i.e. in this instance the interval

of wide-sense stationarity-for the random process of which x(t) isva

sample function is- assumed to be less than 2T.

4.3.2 - Testing for Gaussianity

Testing the amplitude distribution of a set of EEG samples
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[xi;...,xzn]'fer.Ceuseianity ef'nermality is eecomplished by means of a. -
vgoodness'of fit'fest; The k—Sjgeodeess.of fie_tes;'is employed because
v_it hes beenishdwh ﬁhat,_with ehe_population mean and varianee estimated

4‘b§ tﬁe sample‘mean andvvariaﬁee;_iteyields a test'fof normality whicﬁ is

more'powefful than the more pepﬁlar_chi—séuere test [121-123]. The K-S .

_ statietic Dl represents theAleestiupper bovnd of the differences.between

‘ thevempirical and assumed distribution functions:

sup

Dy Tals lFZn(S)._ F <§)lh’,-. - | ' o (4-14)

where an(s) is the distribution function calculated from the set of 2n

1
“large, the null hypothesis that F(s) represents the population distri-' : »%!

» samples and F(s) is the assumed distribution function. . If D, is too

bution function is rejected.

4.4 Exgeriment'
4.4.1 Selectiqn of Sample EEG Data
In order to epply the preQiedsly described tests for Caussianity‘
. and wide?seﬁse stationarity'fo sdﬁe ectual EEG eneeﬁbles; three sets of

_fféemple_EEG segmentS’were-seiected from the available EEG data base (des-

cribedvin_Table-Z—Z). Because of the.eﬁtensive.eomputatioﬁ involved inf:
testing for Gaussianity end wideesense statioﬁarity, iﬁvwas'necessary ffom :
a prectical standpeint to limit the ameunt>of eample EEG daea‘under con—e
sideration(»-Consequentl?, only eample.EEG.segmeets from the two most
coﬁmon types.of:general anesehesia,.preViously referred to in this thesis
~as halothane and narcotic anesthesia, were-donsidered.' It.was also nec—-
ieseary to restrict the number of sample EEG segments from each typevof
enesthesia_because of computationel‘time and cost cdnside;ations._ Ac-

cordingly, it was decided that four multichanneltEEG segments without . -
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visually aoparent‘artifact‘from each of 30 subjects would‘be’considered:
15 of the subjects who were chosen had received halothane anesthesia and
the other 15 subJects had received narcotic anesthesia.

Detailed descriptions of thevEEG'data acquisition'procedure and
the preparation of sample EEG'segments corresnonding to clinical anesthesia -
1evels were given inhChapter II. ‘ Briefly,.EEG activity'was reCorded from
two pairs of bllaterally symmetric, dlfferential channels‘ F3-C3, C3-01,
F4-C4 and C4-02, according to the Internat10na1 10-20 System of electrode
placement [70]. The recorded data was later lowpass filtered'at-30.0:Hz -
and then the 4—channel,:oés samole EEG segments were. prepared. As stated
_ above;-four fiitered muitichannel EEG segments nere selected from each of
30 different subjects for the modelling~investigation. Two of.the 64s
»segments frombeach‘snbject were baseline EEGvsegments‘corresponding to
Anesthesia Level d,vi.e. they werehrecorded whilevthe subject was awake
and resting with eyes closed, approxiinately one hour before surgery. The
. two additional EEG segments frOm the same subject corresponded to Anes—
thesia Level 3, i.e. they were recorded at a surgical levei of anesthesia.

Three different sets of multichannel EEG segments were thus se-
lected for consideration: one set of_60 baseline segments from 30 awake
and resting subjects, a second set of 30 segments from 15 of these sub-
jects‘during halothane anesthesia, and a third set of 30 segments from '
‘the other 15 snbjects,during narcotic anesthesia;' Some samples.of multi-
channel EEG activity‘from each‘of'these three sets of data can be seen in

Fig. 2-2(a)-(d).

4.4,2 Determination of Optimum Sampling Rate
After the three sets of sample EEG data had been selected for

" the modelling investigation, it was desired to determine the best rate at
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" which to”sample and”digitize‘the7data. Because the EEG segments had
-already been 1owpass filtered at 30 0 Hz, the theoretical minimum sampling
rate, as given by the Sampling Theorem ([119], pp. 400-405), was 60.0 Hz,
i.e. the Nyquist rate. The fllter roll-off characteristics and the com-

.putatiOnal desirabilitilof setting tne sampling rate to a power of.two
.1ndicated that the most practical minimum sampling rate, denoted by F
w0u1d be 64 Hz. Most of the prev1ous investigations of Gaussianity or
stationarity have considered EEG data sampled at rates of from Zfs to 4fs
and even higher. However, statistical hypothesis tests such as the K-S
'and chi-square tests assume that the set of samples'to Be tested’corres-
pones to a set of- statlstically 1ndependent random varlables or observations.
Therefore when this assumption of ,tatistlcal 1ndependence is v1olated
because of an unnecessarily high sampling rate,:one can expect the'effi-
cacy of such tests to decrease accordingly.
| To examine and illustrate tne.effect.of_different sampling_rates
on statistical hypothesis tests, 30 of the recorded-64s baseline EEG'seg—
ments from channel C4-02 were reproduced bandpass filtered from 0.54 Hz
~ to 30.0 Hz, and digitized at a rate of 512 Hz or 8FS. By considering
every second, fourth or eighth-sample it was also possible to study EEG
data with an effective sampling rate of 4Fg, 2Fg, or.FS, respectively.
At each of thesessampling rates a K-S goodness of fit test for Gaussianity,
at the 0.05 significance 1evel,'was performed on each of the M available

EEG segments of T sec duration, where

T=21,1=0,1,....6, - | (4.15)
and . M = 30;6?? o | | . (4.16)

The results of these tests are summarized in Fig. 4-1 and clearly indicate

the desirability of using a sampling rate as little above the Nyquist'rate

as practicable.
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PERCENTAGE

I

oL 1 ‘ t ' Sy
7 2 4 8 5 32 54
DURATION OF EEG SEGMENTS (SECONDS)

Fig. 4-1 Effect of Increased Sampling Rates on K-S Goodness of Fit
Tests for Gaussianity. . Fg is equal to 64 Hz, slightly . ' °
above the Nyquist rate. ~ The percentage of EEG segments

.of a specified duration which could be modelled as Gaussian
is plotted for 4 different sampling rates.

4.4.3 Application of Tests for Wide-Sense Stationarity and
’ Gaussianity

To reduce error in the éomputation of power spectra, a sampling
rate of 128 Hz was used to‘digitize all 120 EEG segments from the three
ensembles under consideration.  However, in view of the results in Fig.
4-1, EEG data with an effective’sampling‘réte of 64 Hz was prepared by
conéidering every second sample value and was used to compute all sample

amplitude distribution functions needed for the previously described tests
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fo;ﬂwide-senéé Stationérity and Gaussianity.

Recail'from sgcfion 4;3:1’tha#, for an EEGisegment x(t) to be
modelléd as a éample function of a.érécess that isvwide4sén3e statibnary
‘.in the inter§a1 [0,2T], é necessary éonditionvié that the amplitude dis-
tributibn”funétions and the péwgr spé#tral distribution functions of x(t)
in tﬁe intervals [0,T] and'[T,ZT] ﬁusf not be significantly different.
The distributién functions can Bé compared by means of thé-two—sample K—S
test. it should also be recalléd'frqm section 4.3.2 that x(t) in the in-
terval [0,2T] éan be tested for Gaussianity by means of fhe K-S goodness
of fit test, with the mean and ﬁériancé of the Caﬁssian population esti-~
mated by the sample mean and variance. Values for the fwo—sample K-S
test ([121], p.487) and‘fdr thé K-S goodness of fit test ﬁith un}nown mean
and Variahce [124], at the'0.0S'level.of significance, were used. After
'testing all 120 EEG segments of 64s duration for wide-sense stationéfity
and'Gaussianity,'eéqh segment wasvsubdivided,into:two segmentsvof 32s.
duration which were also fested_in.the same maﬁner. This procedufe of
successively subdividing and testing was repeated unfil all available
EEG segments of 1s duratidn were tested. In total, 4M EEG segments of I

seconds duration were tested, 2M segmeﬁts_from the baseline ensemblé and
M segﬁents from‘each of the anesthesia ensembles, where T and M are given
bj (4.15) and (4.16) respectively. For each of the three ensembles, the
peréentage of'EEG segments of a specified duration which could be modelled
as being wide-sense stationary, Gaussian, or both wide—sense‘stationary
.and Gaussian was calculated. All results were ﬁhen correctedrfor.type I
errors arising from false rejection of the hypotheses being tested.
Thevcomputaﬁion of power spectra required as part of the pre-

viously described test for wide-sense stationarity was performed by the
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- Direct Method 1l.e.. direct Fourier transformation of the data with consec-.
' utive averaging over frequency, as. described in section 3.2.1. Before
Fourier transformation, each digitized EEG segment of T seconds duration,

',consisting of a set of 128T sample values, was first. tapered with a time

window W(t) of the,form

_ /[1 - cos(0 lT)] 0.‘ t< 0.1T
wee) = ¢ 1  0.1T ¢t < 0.9T C(4.17)
%[1 - cos(ll ==t ] 0.9T < t < T.
. 0.1T

'Each tapered EEG segment was then’ transformed via the Fast _Fourier Trans~
dform algorithm;_ A periodogram was calculated from the complex Fourier.
coefficients for each fundamental frequency k/T Hz, where k=0 1,...,64T.
,Smoothing of the periodogram was performed using a rectangular window
with 7 non—zero_coefficients~' In this_manner a set of (64T + l)'smoothed
spectral estimates from 0—64.Hz mas,calculatedvfor each.EEGvsegment of T
seconds duration. Therdistrisution.functioniof the subset of snectral
‘estimates between 1»ﬁz and 30 Hz was ‘then used in theopreviously described
test for wide-sense stationarity. |

Appendix.H contains.a_listing of the program that was used to
- compute EEG.amplitude distribution functions and to evaluate the appro-
__priate one—sample.and two-sample K-S statistics. A companion program that
was used to compute‘EEG power spectra and to evaluate the two-sample K-S
statistics for the appropriate spectral distribution functionsiis listed
in Anpendix I. Finally a'third program,'liSted in Appendix J, performed
K-S tests on the sample statistics evaluated by the first two programs,
and calculated the'corrected percentages of EEG segments of different
durations which could be modelled aS»Gaussian,or wide-sense stationary,

“or both.
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A4 5 Results
4.5.1 Interpretatlon of Results

The results of the modelllng investlgatlon are  summarized graph-
1cally in Fig. 4 1 to Fig. 4 5.; In Fig. 4-2 to Flg. 4-5, the results for
each EEG channel are presented topologlcally, i.e. the results are located
" on a styllzed representatlon of the head in a posit1on corresponding to -
the location of the electrodes fromAwhich the EEG activity was recordedr
‘ Although all results have alreadf'been corrected for type I errors due to
' false rejections of the hypothesis being tested, type II errors due to
false acceptances of the hypothesis may still ex1st. Also, these results
are Based on empirical tests.for necessary, but not sufficient, proper-
ties tnat sample EEG segments must possess in order to be modelle:d as_the
'output of a particular type of random process. _For.these reasons, the.
estimated percentages given in Fig. 4-1 to .Fig. 4;5 therefore represent

useful empirical upper bounds on the corresponding "true' percentages.

4.5.2 Effect of Sampling Rate of Empirical Tests:

The.effeet of different sampling rates upon tne outcome of sta~‘
tistical hypothesis tests is illustrated in Fig. 4-1. This marked and
prev1ously unexplored relatlonshlp may account for some dlscrepancies ap-
parent in the 11terature.- The problem arlses from the assumption, made
in the formulation of both the chi—square and the K-S tests, that the set
of samples to be- tested represents a set of independent random observations.
In practise, as the rate of sampling a bandlimited EEG seément"increases
above the Nyquist rate, successive samples become more interdependent and
the efficacy%of statistical Hypotheses tests is conseduently affected_'
[125,126].Itlis therefore not surorising tnat one study of 2s EEG segments

- which were sampled at 200 Hz concluded that resting EEG activity 1is
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Gaussian’bb percent of the time [1l51;'nhile other’studies of EEG segments
vof similar duration which were sampled at 5000 Hz concluded that resting

EEG activity is strongly non—Gau851an [21,117,118] Fig. 4 1 indicates that,if
‘it is desired to investigate the'characteristics'of EEG segments by means

of stat1stica1 hypothesis tests, the best tradeoff between the requirement

to adequately sample a bandlimited signal znd the de81rab111ty of satis-
fying the assumptlon of a statistically 1ndependent sample set is reached

1f ‘the sampling rate is set as 11tt1e above . the Nyqulst rate as is prac-

ticable. .

4.5.3 Estimated BaselinevEEG Characteristics

The estimated statistical'characteristics of -the ensemble of
baseline EEG activity.are presented in Fig. 4-2. The percentage of.EEG :
segments which can be modelled as being Gaussian, wide—sense stationary;
or. both is. glven for. each of. the 4. differential channels under considera-
tion. 1In Fig. 4- .2 the strong dependence of the results on the duration
of the EEG segments being tested is-apparent. This dependence ‘accounts
»for many of the discrepancies in the literature, e.g. the results pre-
sented here are consistent with one previous finding [113] that two of four
‘baseline EEG segments (of 8;33s duration) tested were Gaussian and they
are also consistent with another report that only 3.3 percent’of 30 base-
- line EEG segments (of 52.8s duration) were found to be Gaussian [114]. The
results in Fig. 4-2 also clearly differentiate between the properties of.
Gaussianity and_stationarity: for example, in channel C4-02 over 57 per-
cent of'EEG segments of 64s duration were modelled.as wide-sense stationgpgfil.i
ary but only 5.3 percent were found to be Gaussian and less than‘2.0 per;?
cent could be considered both Gaussian and wide-sense.stationary. Fig.

4-2 also reveals_striking similarities among corresponding results for
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all 4 chanhels, and even stronger similarities between results for pairs
of bilaterally symmetric channels. Thus, while no obvious inter-hemis-
pheric EEG differences were found, occipital EEG activity appears to be

consistently more Gaussian and more stationary than frontal EEG activity.

4.5.4 Wide—Sense Stationérity

In fig. 4-3 to Fig. 4-5 the estimated statisticél cﬁaracteris—
tics of baseline EEG activity are compafed to the correspondiﬁg charac-
teristics during narcotic aneéthesié and during hélothane anesthesig.
The data base fof each type of anesthesia consisted of 1920s of EEG ac-
tivity from 15 subjects, i.e. two 64s segments per subject, and the base-
line data consisted of a total of 3840s of EEG activity from. all 30 sub- |
jects.

Fig. 4-3 shows the estimated percentage of sample EEG segments
of various durations from each of the three different ensembles which
can be modelled as wide-sense stationary.‘ If the stationarity of EEG
'segments of the same durétion is considered, it appears that EEG éctivity'
vduring hélothane anesthesia is marginally more stationary than baseline
activity while EEG activity during narcotic anésthesia‘is slightly less
stafionary than baseline activity. The results in Fig. 4-3 indicate that;
for sample EEG segments less than 32s in duration from any‘channel and-
from any ofrthe three ensembles, the assumption of wide—sense;stationarity

may be valid more than 50 percent of the time.

4.5.5 Gaussianity
Fig. 4-4 gives the estimated percentage of sample EEG segments
"from each ensemble which can be modelled as Gaussian. EEG segments from

halothane anesthesia are generally . less Gaussian than the baseline activity,
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pafticularly in cﬁannels'C3-Olian& 64—02, ﬁﬁile,EEG segmenta.from nar-
.cotic.anestheaiabare marginally mafe Caussian than the Baséline activity;v
In all'éhannels, EEG‘activity duriag.haloﬁhaae anesthesia is aonsistently
less Gaussian thaﬁ EEG activity during nafcotic anesthesia.
4.5.6 Wide—Senae_Stationarity and Gausaianity

In:Fig. 4-5, the percentage of sample EEG ségﬁents‘from each of
the:three ensemﬁles which can be modelled as aoth Gaussian and wide—éense
bstationary is pfesented.x A bilateral symmetry is‘immediately apparent |
via these results. In all channels, the percentage of EEC segments from
halothane anesthesia which are wide-sense atationary and Gaussian is
markedly smallef than the corresponding percentage from narcotic anes-
’vtheaiaf Also,,fram Fig. 4-5 it is eviaeﬁt that less than 10 percent of
the 64s EEG segments from any ensemble can be modelled as widefsenSe

stationary and Gaussian.

4.6 Significance of Results

4.6.1 Development of EEG Monitoring Systems

The estimated degree to whi;h ensembles of-EEG activity may be
modelled as stationary and Gaussian, e.g. the results presenfed in Fig.
4-3 and Fig. 445, should be an important consideration in the choice of
an appropriate techniqua for analysing sampie EEG segments from those>
ensembles. vFor example, the primary motivation for investigating the
.statistical characteristics of the threa specific ensembles of EEG ac-
tivity descriﬁed in this chapter was the expectatibn that the results
_ would assist in the development of a computer-based system for monitoring
the level of anesthesia during surgery by ﬁeans of an automatic analysis
of apontaneous EEG.actiVity. In the.development of such a system, de-

cisions must be made with respect to the duration of the EEG segments to
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be analysed, the fate at which the estimated level should be updated, the
choice of an analytic technique, ana the significance thch may be attached
to the results of the analysis.It should be noted that the feasibility

of employing EEG monitoring systems to continuously assess a patient's
status during sleep, serious illness, coma, and possible cerebral death

is elso currently being investigated by.others,'e.g.'[83,127,128]. The sta-
'tistical characteristics of the particular ensembles of EEG activity being

analysed in each instance should be an important consideration in the

development of the appropriate monitoring system.
To illustrate how knowledge concerning the degree of station-
arity of the three ensembles described in this chapter might influence
the develoPment of a system for monitoring and analysing EEG activity
during anesthesia, the pfpblem of selecting the most appropriate duration
for sample EEG segments on the basis of fhe results in Fig. 4-3 will be
briefly considered. It would obviously be desirable to analyse EEG- seg-
ments of 1eng duration because the significance'of any trensient noise
and artifact is thereby reduced, because a high resolution in the esti-
" mation of power spectra is possible, and because a potentially large data
reduction can be realieed if such seéﬁents can be adequately character-
ized. However, in the theoretical develepment of most analytic techniques
the assumption is made that the signal under consideration represents a
sample function from a random process that is at least stationary to some
extent over the interval of interest. Fig. 4-3 indicates that the assump-
tion of wide-sense stafionarity for the three ensembles under considera-
tion is only partially justified, even for EEG segments of relatively
short duration. The a priori selection ofiphe most suitable analytic

technique therefore cannot be made on a firm theoretical basis. Under


http://analysis.lt

. 87

such conditions, the results in'fig. 4-3:indicate'that the choice.of 32s
vduration for:sample EEG segments might; in this»instance, represent a
reasonable compromise. For all three ensembles at least one half of the
EEG segments of this duration could be modelled as w1de-sense stationary.
An analytic technique which assumes wide-sense stationarity

could then reasonably be applied to the 32s segments and any inherent
non-stationarity could be taken into account by some ancillary technique.'
For example, the previously described K-S Dy statistics could be included
in the analysis as parameters indicating the degree of non-stationarity
of the segment being analysed and hence'could be used in interpreting the
significance of the results. Alternatively, individual EEG segments could
be tested for wide-sense stationarity as described previously’and only
those segments found to be statlonary would be analysed If non—station-
arities are to be con81dered for some’ particular EEG ensembles, and they

cannot adequately be taken into account by such anc1llary,techniques,

then a non-stationary analysis of the EEG could be attempted [129-131].

' 4;6;2 Evaluation of Alternate Analytic Techniques

This section will consider some implicationsvof the results in
Fig. 4-5 with respect to the choice of the most appropriate-technique for
analysing EEG segments of a specified duration from any of the three en-
sembles. For the reasons stated preyiously in section 4.2, power spectrum
analysis of the EEG segments would be preferable if the segments could be
modelled as both wide—sense stationary and Gaussian, HOwever; Fig. 4-5
shows that only a certain proportion of sample EEG segments may be so -
" modelled, e.g. for all ensembles less than 50 percent of the 8s segments
from any channel could be considered Wideesense stationary and Gaussian.

. It cannot therefore be assumed that spectral analysis will provide a
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.sufficiént-charac;erizatién of éuch sample.EEG segmenté. When‘itvis knpwn :
‘that a éertéin propoftioh of thngEG segmenﬁs fo‘be analysed‘cénnOt be
'modelled‘as thg oﬁtput qf a stationary‘Gaussian fan&ém procéss; élternﬁfe
analytic'stfategies might be cénsidered;”'Of course, an& analytic teéh— _
Inique could arbitraril§ be aﬁpiiéd to the data in_the hoﬁe that the re-
sﬁlts-miéﬁt s omehow proﬁide'aﬁ ad hoc justification for.its ﬁsage.» How-
'ever, if'it can be‘assumed fhat most of the segments under consideration
are widé—sense stationary; br that any inherenﬁ non—stationariﬁ? has been
taken iﬁto account by one of the techniqﬁes descriﬁed previously, then

) certain-analytic étrateéies might be more>profitab1y inQesEiga;ed. For
example, if'the EEGvsegménts are stationafy and only slighfly non-Gaussian,

ancillary parameters which indicate the degree of non-Gaussianity (e.g.

ékewness and.ku?tosis [97]'of'the préviously described K-S Dl Statistic)
‘ might be employed in'addition tb gpectral analysis. Altérnatively,-if

the EEG segments to be analysed are“stationary but very non—Gaﬁssian,vtheﬁ
tﬁe infofmation providéd by EEG épectral anaiysis couid be supplemented'

by the use of other analytic techniques, e.g., bispectral analysis [117].°

4.6.3 ‘Further'Wofk

The modelling investigafion described in this chapter also in-
dicatés_éome.éreas for further work that are beyond the'scope of this
thesis. It has been suggested_that;'OQ the basis of the_Central Limit
Theorem,.increaSed Gaussianity.in obserVed'EEG activity'may'reflect an
increased degreé of independencé among individual cortical neural gener-
ators [115].If one acceﬁts this breﬁise, theﬁ Fig. 4-4 and Fig; 4-5 in-
dicate that the cortical genefatdrs are coqsiderabiy more intérdependent_
dufing halothane anesthesia'than.during narcotic anesthesia._ The péssible

‘neurophysiological significance of this result could be investigated,
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pérﬁaps'by stﬁdies of EEG cohérencé in.individual subjects and by consi-
deriﬁg more'samplé data from more éhannelé.‘vIn»addition,-the tecﬁnique:
desériﬁed in this chapter fdr estiﬁating.the deg;ée_of wide—sénse station-
arity and Gaussianity of an ensemble of EEG.segménts could'oﬁviously be

applied to many other ensembles of EEG activity corresponding to other

states of consciousness.



CHAPTER V PERFORMANCE IMPROVEMENT SCHEMES

- 5.1 Introduction

The initial resultsvpresented in:Chapter III demonstrated the_fea-
gibility of using EEG.pattern recognition systems to estimate the level of
" anesthesia. To a large extent, the modelling results presented in Chapter‘
IV v1nd1cated the initial EEG pattern recognition approach. In addition,.

Chapter IV contained a discussion of p0581b1e methods for improving the |
performance of the initially developed systemspbyvgiving greater conslder-

ation to the actual statistical characteristics of the EEG data.' In this

chapter, other possible methods for improving performance will be investi-
:gated for illustrative- purposes each of ‘these methods will be 1nvestigated
w1th a view to 1mprov1ng the performance of three specific EEG spectral
pattern recognition systems. It should be recalled that all such systems

_classified an unknown EEG pattern sample on the basis-of.a-set of thirteen
‘extracted spectral feature values. The Bayes classifier-that was‘employed'
.in all systems was optimal onlyvif all features were statistically inde-

pendent and if the required class-conditional feature~probabilities either
were known exactly or were given by the corresponding Bayes estimatesr
‘ Most of the performance improvement schemes. considered in this chapter
involve changes in the initial feature extraction procedure and pattern
classification algorithm.

The three initially developed EEG spectral pattern recognition sys-
tems which were.employed in the.work described in this chapter had the same
structure; i.e. all'contained a linear feature'quantizer with 64 possible
levels and a,claSsifier‘which>assumed equal a priori class probabilities.
However,'each was trained on the set of available EEG pattern samples from
a different type of anesthesia. Fig. 5-1 depicts the "confusion" matrices
which were calculated for these three systems. The i-jth element in each.

confusion matrix contains the number of pattern samples from class
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i, 0 < 1 < 4, which the system identified as belonging to class j» 053 < 4.
. The actual numbers are given, rather than the corresponding probabilities,
to indicate the unequal number oflavailable pattern samples per class
'for‘the different types of anesthesia. The matrices on the left in Fig.

"~ 5-1 resulted from performance estimation by the M* technique and those on

~ the right resulted from performance estima*ion by the U* technique. Thus
the performance estimates for the three systems, which were given-pree,_
vious1y in Tables 3-3 to 3-5, can be derived from the appropriate con-
fusion matrices in Fig. 5—1:_§e[n*] and ﬁe[U*] were 0.389 and 0.108 for the
.halothane anesthesia system, 0.449 and 0,211 for the narcotic anesthesia
system, and 0.420-and 0.132 for the'enflurane anesthesia syStem.

From the. definitions of ‘t.:he“]l;'c and U* techniques (section 3.5),
it is evident that the difference between P [H*] and P o[U*] for a
specific system provides an indication of the effect of intersubject
EEG variation on system performance - [39]. The relatively large
magnitude of this effect is apparent when the difference between
%e[H*] and @é[U*] is evaluated for each of the systems considered in
Chapter III. Similar results have been reported in the literature
for other types of EEG pattern recognition systems (e.g. [77,132]).
Accordingly, intersubject EEG variation must be regarded as a major
obstacle preventing the development of more reliable systems. Much
of the work described in this chapter was directed toward reducing
- the effect of intersubject EEG variationm,

In section 5.2 the possibility of improving performance by in-
creasing the number of extracted features is considered. The feasibility of
exploiting statistical interdependencies among features is discussed in sec-
tion 5.3. In section‘5.4 a "nearest subject" scheme for reducing the effect

of intersubject EEG variation on classifier performance is explored.
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5.2 Extraction of'Additiona1 Features

5.2.1 Rationale

e ‘iThe EEG spectral_péttern recognition'éystems'that_wereAinitially
vdeQelopéd'weré,bééed:dn the_exﬁraction.of a»total of 13 spectral featﬁres
' from‘twé EEC channels. All of tﬁese”features wefe heuristically derived,
i;e.lthey either ﬁad-an estéblished-clinié#l rélevance.of theyihad pre-
fv-viously been déécribéd as ﬁeaningful in fhe literature an EEG pattern rec-
ognition.: Each EEG‘péttern sample was evaluétéd in terms of these features
and was éubsequently ciassified_on»the baéié of the extracted set of fea-
tu:evvalués;{ Beéaﬁse of coﬁputatiénél time and cost conéidérétions in the
initialjpﬁ;;e of thé fesearéh it was neéessarf‘to limit the nuﬁber of ex-
tracted featureé, i.e. to limit thewe#tent to whiéh»EEG pat;ern samplés
‘could be characterized. 1In spite of this iimitétio#, the resulté of the
-initialvphase of‘the réséarch (as;descfibed in Chépter'IiI) cleariy est-
ablished thé feasibility of éstimating thé lével of anesthesia.by means
of‘EEG'pattern fecognition syétemé.> Consequenfiy, éftér the feaéibility'
had beén established-it seémed Qorthwhile to investigate'the possibilifj
thaﬁ_the pérfofmancé of the'initiélly_developed EEG spectfél pattérn rec—
ognitio#bsystemsvéould be»improved'By the inclusion of additional feafures
in thevextraCtéd feature set. -

. To investigéte this possibility, it was decided that tﬁe selec-

.tiop of an appropriate set of'additional featqres would proceed_in'the
. following manner.. Firét, a_iarge sef'of,additional, heuristically derived 
E features would bevdefined;' It was recognized that adaing each of these
featureé-to the extracted’feature set would not necessarily result in an
improvement'in peffdrmance. it was ‘also recognized that there was a prac-
"~ tical conmstraint on the largé number qf additional features‘that should

 be selected from thellarge'set, becauseiof'the limited computational time
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that.wdﬁid be évailéblé.fdf.extréctingvféatures from successive EEGbpaftern
:'samﬁle; in an on?liﬁe monitori#g‘system. For.the‘purposés éf.fhis invesfiga-
‘tion, thergforé, the-mékimum'ﬁumber of additional-feafureS'té be selected was
#rbitra?iiy'set at iS,'i.e; it was,deéided fhat the total nuﬁber of extracted |
,‘featureé’&ould be increased by .a factor of ;wo. However, in general there is' 
n0»qptimél_proc§dure:for selecting fhé béét subset of féatures»from é 1afge
set, except by the exhaustive‘evaiuation of éll possible subsets [110].
Since that wouid.be computationally impraéficai hgre, it was ‘decided that
various suboptimal feature-seleétion critefia would be used to chﬁose al-
ternafe sets of 13 additional features. EEG épectral pattern recognition
systems which included these addifional featﬁrés in:their extracted fea-

ture sets_would then be developed and their pérformance would be estimated.

5.2.2 Definitidn of Additional Featuies

- To define the_relativelyvlargefnumber,of additional, heuristi-.
. cally derived features from which various sets.of 13 featuréé would léter
-vbe‘selected, the notation that was introduced in section 3.2;1'will be -
gxtended: let x(t) and y(t) denote the sample EEG actifify from twé.spec—
ified channgls, let X(£) and‘Y(f):représent their Fourier transforms, as
defiﬁed in (3.2), and let X*(f) and Y*(f) denote thg cémplex conjugates
of X(f) and Y(f), respectively;- From (3.1) it follows that the EEstpec;
tra, or more spécifically»the EEG'autosgectré, correspondihg to‘x(;) and

y(t) are given by

' Sxx(f) E{x(f)’x*(f)}. | : ‘ | - (5.1)

and

S _(£f) = E{Y(£) Y*(£)} . : _ (5.2)
yy . 4 :

The 13 features which were initially chosen for extraction from the EEG
autospectra corresponding to two of the four available channels were des-

cribed previously in section 3.2.3.
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Many of the additional_features which were chosen for extraction
are derived from the EEG autospectra corresponding to all four available

channels.  Other features were defined‘in terms of the EEG coherence spec-

trum: if . : . )
o 5,5 (5) = E(X() YD)}, o (5.3)

~i.e. Sxy(f) denotes the cross-spectrum, then the coherence spectrum ny(f)

is defined as

L 15y o] o .
A I COR C A -6

 where S (f) and S '(f) are given by (5. 1) and (5.2); respectively [21,133].
It should be pointed out that the quantlty in (5 4) is the square root of
" the quantlty deflned as coherence in some references (e g. [9] 134]). From
: the definition in (5. 4) it is ev1dent that the coherence spectrum ny(f)
is a real-valued function of frequency for which N
ny(f) = ny(f) _ | : (5.5)
~and for which : _ ' ' :
0<c ()1 o : . (5.6)
It should also be noted from (5.4) that, if x(t) and y(t) are iinearly

related, i.e. if ‘
| Y(£) = H(f) X(£). ’ (5.7)

fdr some H(f), then ny(f) = 1.,.Accordingly, the coherence spectrum can
be regarded as a measure of the degree of linear relationship between the
EEG activity from'rwo specified channels as a function of frequency [134,
135]. This has motiﬁated the investigation of various "coherence features",
i.e; features derived from the.ccherence spectrum, askpotentially signi-
ficant descriptors of multichannel EEG activity (e.g. [78,81,91]).

In this research, additional.features were derived from "bilat-

- " n .
eral” coherence spectra and from unilateral coherence spectra. For
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-jconvenienceuin.defining.thesevfeatures,elet.channels F3-C3 C3-01‘ F4-C4
and C4-02 (1n Fig. 2-3) be denoted as channels 1, 2 3 and 4, respectively.
Then bilateral coherence features refer to features derlved from a coher—
ence spectrum corresponding to a symmetrlcally located pair of channels,"
i.e. channels 1 and 3 or channels 2 and 4, Unilateral coherence features
refer to those features derived.from the coherence spectrum-corresponding
‘to an anterior-posterior channel pair, i.e.»channels 1 and 2 or channels 3
and 4, | |
Coherence spectra were computed, smoothed and averaged in a man-
ner analogous to the procedure outlined preViously in section 3.2.2 for
autospectra. Appendix C contalns a listing of the program that was used
to corpute the autospectra and the coherence spectrum for sample EEG data
from any two specified channels. The results of all spectral and coherence
calculations that were performedvon each EEG pattern sample consisted of-
four smoothed autbspectra |

SJj(fm) . .for j s 1,2,3,4

and four smoothed coherence'spectra

1
R
& & K
I

Cjk(fm) for

[ R S
-
_I

P L I N

'

where j and k correspond to the appropriate channel numbers and where

£ = Egl Hz,  for m=l,...,256. (5.8)

Table 5-1 describes all of. the spectral and coherence features
~ chosen for extraction from each EEG channel. In Table S-l,‘channel j re-
fers to the channel under consideration and channels k and 2 refer, res-
pectively, to the correspondingiunilateral and bilateral channels. Three

autospectral features and two coherence features were chosen for extraction



...Table 5-1 Spectral and Coherence Features Chosen for Extraction
- From Each EEG Channel '

‘Frequency Range

Spectral and Coherence Feathresr

Second moment

- Description Symbol
0.00 - 4.00 Hz Relative spectral energy: e
(A band) A3
‘ : ) Peak spectral frequency fAj
Peak spectral intensity iAj
.Mean coherence (unilateral) uAjk
Mean coherence (bilateral). ‘bAjl
4.01 - 8.00 Hz Relativevspectral energy ey
(¢ band) Peak spectral frequency fej
“?gak spectrgl intensity iejv
Mean coherencg-(unilateral)’ uejk
Mean coherence (bilateral) bejl
8.01,—'13.00 Hz Relative spectral energy e
(o ﬁand) Peak spectfal frequency ij
Peak. spectral.intensity iaj
Mean coherepce (unilateral) uajk
Mean coherence (bilateral) bajl
13.01 - 15.00 Hz Relative spectral energy e
(U'bané) Peak sbeétral frequency ij
Peak spectrai intensity ioj'
Mean coherence (unilateral) ik
" Mean coherence (bilateral) 3%
15;01 - 32.00 Hz Relative spectral energy e
(81 band) | Peak spectral frequency ij
Peak spectral intensity _ iBj
Mean coherence (unila;eral) quk
Mean coherence (bilateral) ijl
18.00 - 24,00 Hz Relative spectral ene?gy esz
(B, band) :
0.00 - 32.00 Hz Total épectral energy Ej
(Total) Mean spectral frequency f

97
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" from each'of the five traditional EEG frequency bands., The last threeb

f_: features listed in Table 5-1, i e. the total spectral energy, the mean

vspectral frequency and the mean second'moment,_were defined prev1ously in>
.'.equatlons (3.13), (3.15) and (3.16), respectively. ‘All other autospectral
’bfeatures describing the‘relatine'energy,‘the peak freduency and the peak
intensity in the_traditiona1~frequency bands were evaluated as_indicated '
in'(3.14)‘and (3.17) - (3.19) for the corresponding G-band features. The
coherence‘features described in Table 5-1 were evaluated_in a similar man-
.mer. | |

In total, Table 5-1 describes 76 spectral features and 20 coher—.

_ ence features corresponding ‘to four EEG channels. However, because 13 of
" these features constituted the initiallyvchosen spectral feature set, only
83 additional spectral and coherence features:are describedvby Table 5-1.
'To facilitate the subsequent selection of-various sets of 13 additionall.
features, all available:EEG pattern‘samples were evaluated in terms of the
‘additional features in Table 5;1 and the resultant 83-element feature vectors

were stored for later use.

5.2.3 Feature'Selectionf
The purpose of selecting‘additional features was to explore the

p0551b111ty of 1mprov1ng the performance of the 1n1t1ally developed EEG
spectral pattern recognltion systems by expanding the1r extracted feature
.sets.b As stated in section 5.2. l, it was dec1ded to increase the size
of the extracted feature set by a factor of two, i.e. to select 13 addi—
tional features. Alternate sets of 13 additional features were therefore
chosen from-the 83'spectral and coherence features_described'in seétion'
5.2.2 by means of various feature selection criteria. EEG spectral pattern

recognitlon systems which extracted the additional features thus selected
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were then develoﬁed.ana their perfefmance was estimated. :The'systems
‘empleyed 64 feeture quantization»levels ovef_a.range of.iS;O_sd and ae-
sumed thetxehe a priori class probabilities were.eeual. A summafy of
‘ theifbestimated perfotmanee, Based on the extraction of 13_specfral |
features, wes given.in secfion 5.1.
Severel alternate feature selectioﬁ_cri;eria‘were considered. -
In each instance, a set of the 13 "best" features was seleeted after all
83 available.featufes had'ﬁeen ranked on the basis of some criterion such .
as the magnitede of their interclass/intraclass F ratios [136,137], their
reletive'lack of eor:elation with.ether_feetures, and their estimated er-
ror probabilities when used separately'[llO]F Tﬁe performance of each EEG
»'sfectral pattern recognition system which empieyed_a set of additionai.fee—
tures selected in'this'manner was estimated By the T* and U* techniques.
Results iﬁdicated'thaf only mafginal'improﬁements in system perfermence
. . could be'achieved.with‘most'of'the feature selection criﬁeria that were
iﬁifially_considered.‘. | | |
| quever, the use of one‘particular criterion in conjunction with
, a stepwise feature selection algorithm did result in significane iﬁprove;
.ments in system performance. ‘To describe the criterion and the algorithm,
1et’{oi},'1AS izcs n,.denote the.eomplete set of features chosen for exﬁrac—
‘tion from each EEG pattern sample (n = 13 initially) and let'{aj}, 123 <N,
denote the set of edditional features described in sectioﬁ 5.2f2 which
have net yet been included iﬁ the extracted feature set (N - 83 initially).‘
Furthermore, let L
| (B [1%])

n+l aj

indicate the misclassification error probability, as estimated by the II*

technique, for an EEG spectral pattern recognition system in which a, was

k|

‘selected to be the additional extracted feature o The feature selection

ntl’
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criterion can then be described as follows: at each step choose Oty aj

if

| (®_[1*1) _ < (P_I1*]) _ (5.9)
e Tatl ~ 3 © bl = 3

for k = 1,...,N and k # j; An algorithm was implemented to select 13
additional features, in terms of the above criterion, in a étepwise man-
ner. Table 5-2 lists the additional featufes which were selected in this
way for each of the three'different'tfpes of anesthesia under considera-
tion. The symbols used in Table 5-2‘correspdnd to those defined.previOusly

in Table 5-1.

Table 5—2 Summary of Seleeted Spectral and Coherence Features

Selected Type of Anesthesia

Feature

Number _ Halothane . Narcotic Enflurane
14 €03 £ fo2
';5 iaZ 1a2 -Ei .
16 fo3 £a3 fo1
17 £r4 ®g1 £
18 Pa13 . Pg13 fe1
19 fa1 Pa24 fp2
20 103 iBl ' f02
21 fo1 Pa24 101
22 b813 ' 'EGZ ba13
23 fo2 £ P24
24 bm13 f04 v f2
i fe3 for €01
26 Y ip3 Ps13

EEG spectral pattern recognition sjstems which extracted the
additional features listed in Table 5-2, as well as the 13 initially chosen

features, were developed and their pefformahce was estimated. The results
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arevsummarined in Figs.75—2 to'5f4;f In each figure the.estimated'pronab—
ility of norrect CIéssifination‘fnf a ginen system is plntted as a funntion
of the.number'of feétnreé inclu&eé_in the eitracted feature set. If should
.be noted that, ;o facilitatébthe‘subjective‘intérpretation of resulté. es-

timated probabilities of correct classification are given in Figs; 5-2 to

5-4, 1i.e,
B [U*] = 1 - B [U*], - . (5.10)
B(n%] = 1 - B [n%] - BRRCREY
and R . S
P [Mean] = (B [U%] - B [1%])/2

1l

1 - [Mean], L (5.12)
’where'ﬁe[n*] and ﬁé[U*] nére aescribed in sections 3.5.3 - 3.5.4 and
, ﬁe[,Mem] was defined in (3.55). -
5{2.4 Resultingblmnrnvement‘in Performance

The results presented in Figs. 5-2 to 5-4 indicate that signi—
ficant improvements,in-performnnce hawve been acnieved by the seléction_of
additional, heuristically derived features for inciusion in.the extracted-A
feature set. The improvement in pérformance is reflected by increaéed
values of_ﬁc[U*], fc[H*], andvnence ?c{Mean] for the systems:under con- '
sidexation. Improved performance is also indicated by a decrease in the

value of A A ~ :
- A= |P [U*] - pc[n*]| _ _ - (5.13) -

for systems wninh extracted the nddiﬁional features, as shown in Figs.
5-2 to 5-4. From the definitions of the II* and.U* techniques (section 3.5),
it is evident that the value of A;‘i.e; the magnitude of the difference be-
tween_the two estimateé of performance, nan be regarded as an estimate of
thé_efféct_of intersubject EEG variation on system performance [39].

In considering the results presentéd'in Fig..S-Z for halothane

‘anesthesia, it is evident that the values of ?c[H*] and ﬁC[U*] changed
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Fig 5- 2 Improvement in the Performance of an EEG Spectral Pattern
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Recognition System Developed for Narcotic Anesthesia



- 1.00

ESTIMATED PROB’AB/L/TY‘« OF CORRECT C_LASS/F/CAT/_ON

106

. ENFLURANE ANESTHESIA
o—o B[u*] |
1 x——-—x ’Bc _MEAN]
0..90--' 0———01 _ v..Ac -7T*]

050 L '- 1 : l'. . I '.1 1 -‘\ TR | .
13 14 15 16 17 18 19 20 21 22 23 24 25 26

NUMBER OF FEATURES

Fig. 5-4 Improvement in the Pe’rforman.ce of an EEG Spectral Pattern
Recognition System Developed  for Enflurane Anesthesia
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- from 0.611 and 0 892 resPectively, }or 13 extracted features to 0.700
‘and 0.866 for 26 extracted features. .There was_a_corresponding increase
in‘the,value of ﬁc[Mean] from'O.751'to'0.783. lt can also be seen in Fig.
5—2 that A decreased from 0.281 initially to 0.166 finally, a relative..
decrease of more than 40 percent in the value of A.

For narcotic anesthesia, the results in Fig. 5-3 show that the
extraction of the. 13 additional features 1isted 1n Table 5-2 resulted in
da change of P [H*] and P [U*] from 0. 551 and 0. 788 1n1t1a11y to O. 613 and
0.724. This did not represent an 1mprovement in the value of P [Mean],
whichvchanged from 0.670 to 0.669. However, 'Fig. 5-3 shows that for nar-
cotic anesthesia the value of A decreased from 0.237 for 13 extracted
features to 0.111 for 26'features,.a decrease of more than 53 percent.

" The results presented in Fig. 5-4 for enflurane anesthesia in-
. dicate the greatest imprcvenent in performance. In Fig..5—4 it canrbe
- seen that the values of ﬁc[ﬁf]'andbﬁc[U*] uere 0.580.and 0.868 initially,
but'increased to 0.751.and.0.878 with‘the_inclusion‘of the 13 additional
features in the extracted feature set. . The value of ?c[Mean] showed a
gsignificant increase, from 0.724 for 13 extracted features to 0.815 for
26 extractedvfeatures. 'Tnere was also a marked decrease of more than
:55.percent in the value of A, from 0.288 to 0.128.

The confusion matrices for the systems nhicn extracted 26 features
are presented in Fig. 5-5. The improvement in.the performance of these
sjstems is evident when the matricesvin Fig. 5~5 are compared ﬁith those
in Fig. 5—1. To summarize, the results indicate that the initiall&
developed'EEG.spectral pattern recognition systems were significantly
improved by expanding the extracted feature set to include to apprcpriate
set of additional features listed‘in Table 5-2. The manner in which
these additional features were selected suggests\some.promising areas for

further work. For example; a larger number and a wider variety of possible
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right resulted from performance estimation by the U* technique.
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additidnal features cquld be Aefiﬁed.. Othef featursvsélection.c;iteria,
sgch as those suggssted‘in [liO],ndght also be explored.“In_fast, the

: efficacy'of-choosihg“the'complete ektracted feature set on the basis of
‘some feature séleCtion criterion could be investigated. Altefnatively,

the effect‘of includiﬁg—more than'13 additional features in the extracted
feature set might be considered,: It should be recalled, hdwever, that the
maximum ﬁumber‘of festufes.that‘could_actually be extracted from successive
EEG patsern samplss in an on-line monitoring enviroﬁment must'ultimately_
vbe detérmined by the nature of'fhe-pstterﬁ recognition system_implementa—

‘tion.

5;3v'§xpioitation of Statisticai-Interdepeﬁdengies'Among’Features
'5;3.1 Method of Inﬁestigasion

" In the initial development of EEG pattefn classifiers it was
assumed ‘that all~of~thé~festurés-chosen~for extraction.were ststistically
independent. This assumption sllowed the decision rule iﬁ (3.38) to be
simplified and'thereby'redused.she amount'of storage, computstion time .
.and training data reqﬁired to impiement various classifiers based_on thst
decision rule. Such classifiersyafe.optimal only if the assumption of
sﬁatistisally independent features is valid. Otherwise the .decision
rule in (}.38) will not be evaluate& correstly because the estimates of
P(gulcj),‘i.e. the estiﬁates of'ths class-conditibnal feature probsbilf
ities formed by these classifiers, will not be accurate. Theréfofe, if
_the features are not in fact Ststistically'independent, the initially
developed classifiers are suboptimal and classifiers_with improved per-
formance could theoretically be developed by explbiting statistical
‘ iﬁterdependencies among features.,‘ |

To obtain some indication of the feasibility of improving
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performancebin this manner,'it'Was decided'to.iﬁvestigate‘fhe.validity of
 ‘the'as$umption of statistically.ihdepgndenﬁ featurés. Because no practi-
~cal meth;d‘of directly'determining‘the degree of statistical interdependence.
‘amoﬁg the features was available, the following pfoperty waS'émployed to
obtain an indirect indication: if two,fgatures (or_two random vafiables)
are statistically independent tﬁén they arefuncorrelated,‘i.e..the lack
of éorrélation is a necessary‘épndition for statistical independencé
- (841, pp. 211-212). 1t should be notéa that this is a necessary but
. not sufficient condition: two random variables can be uncorrelated but
not . statistically indépendenf (for an example, see [138], P.135). How~
" ever, a pon—zero'torrelation coefficient does.indicate that the features
- in quesfion'ére not statistically independent.

To be more specifiq, let'{ci} s 1 2 i< N, repreéeﬁt the set
of spectral features chosen'for-éxtraction; déscriptions.of the N=13
initially chosen spectral features can be found in Table 3-1. The‘cdrf

relation coefficient for any two features o5 and Gj is given by

. E{(oi—ai)(cj—aj)}

(5.14)

Pij —/ =7 =7

| E{(ci-ci) }- E{\Oj-cj) }

for 1S i<Nand 123 < N. If the feétureé are Statistically inde~
pendent then, by the definition of statistical independence, (5.14)

becomes

E{(ci—Ei)}- E{(gifaj)}

p.. =
N VR 57T B((o;5 )7 (5.15)

= 0,
i.e. the features are also uncorrelated.
To estimate the magnitudes of any intercorrelations among the

13 initially chosen spectral features, a sample correlation matrix



"R = (rij) ‘ ._‘ for {i‘ ,...,8 o | (5.16)
.' g j = 1,’0.-,N ‘ '
. was éalculated'for each of the three évailable_sets*of speétral feature

vectors (descfibed in section 3;2f3), which correspond to the three types

- of anesthesia under consideration. ' Let each spectral feature o, be re-

i

garded as a random variable which assumes the value dki in the kth fea-

ture vector, where 1 < k < S. To calcuiafe (5.16), the sample means

s 1
d, =% £ d_,
175

i Mmwm

for i = 1,...,N, B (5.17)

were first obtained. The sample covariance matrix

was then formed by evaluating
1 ' = = S .
15751 2 Qa0 Gty | (5.19)

for {i_ 1,...,N
_ j,= 1,...,N .

“After (5.18) had been formed, the sample correlation matrix in (5.16)

was computed: ¢

.‘rij _ _ij : for {i‘= 1,...,N (5.20)
ftii tjj j=1,...,N .

Only half of the elements in each sample correlation matrix were computed
because rij=rji’ i.e. R is symmetric. Finally, the average correlation
coefficient magnitude for each feature was evaluated:
| . N
1
a, =g —=—. 1% |r

i N-1

for 1 = 1,...,N. (5.21)
j#1 o - a

ijl ’
The quantity defined in (5.21) indicates the average correlation of a
specific feature with all other features in the set. Table 5-3 lists the
‘values of 51, for i=1,...,13, which were obtained for each of the three

types of anesthesia under consideration.
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Table 5-3 :Averagé Correlation Coefficient Magnitudes_'

.Spectral. Type of Anesthesia

Feature

Number - Halothar.e Narcotic Enflurane
1 .26 .10 .34
2 .59 46 .52
3 12 .20 .15
4 .41 .27 .32
5 .49 .28 40
6 .51 4b .48
7 .48 .43 .46
8 .60 .48 .57
9 .59 .45 .55
10 .29 27 .30
11 .35 .23 .35
12 .31 .22 .24
13 .28 .23 .31

- 5.3.2 Results and Discussion

110

It is evident from the results in Table 5-3 that many spectral.

features are strongly correlated with other features in the set. Individual

correlation coefficients for specific pairs of features can be seen in Fig.

5-6. The sample‘cOrrelation matrices in Figs. 5-6(a) to 5§%§c) were -

obtained by evaluating (5.20) with the available sets of feature vectors
_ from.haldthane anesthesia, narép;ic anesthésia-énd enflurane anesthesia,
resﬁectivély. Strdng.correiations between several pairs of features are’
'evi&ent‘in Fig. 5-6., For example, ét ieast eight paifé of features in

each sample correlation matrix have correlation coefficient magnitudes

which are greater than 0.80. In view of such strong correlations, it
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is apparent.that the assumption of statisticall& independeﬁt féaturés is
generally invalid. Thefefore,.the initially»develdped classifiers.are
suboptimal and ﬁhe,development of BetFer classifiers is theor¢£ically
feasible.

However, as indicated previously in section 3.7.2, the exploi-
tation of allrpossible stétistical.interdependencies would increase the

amound of required memory, computation time and training data by a fac~

tor of ‘ N
F=

Il"‘

=
1

6413
6413

(5.22)
for a classifier with N=13 features and L=64 possible feature quantiza-
tion levels. Even with a substantial reduction in both the number of

statistical interdépendencies taken into consideration and the number

' of possible feature quantization levels, . the complexity of the classifiers
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would be greatly inc;eased. Thefe would be a corresponding>increase in

the size of the EEG data base requiréd fo.adequately train such classifiers.
HoweQer, the relativéiy small EEG data base that was acquired in the course
of this reseafch &as less tﬁan‘adequate,fof training classifiersfwhich
assumed statistically independeﬁt featuresf' Ciearly, a much larger EEG
data base should be acquired before any attempts are méde»to ékploit even

the strongest of the observed feature intercorrelatioms.

5.4 '"Nearest Subject' Scheme

5.4.1 Rationale

As stated inHSection 5.1, the magnitﬁde qf the difference be-
tween ﬁe[U*] and ?e[n*] for a SPecifié EEG pattern recognition system
provides an indication of the effect of intersubject EEG variation 6@
system performance. Based on this measure, it is evident from the re—
suits summarized in section 5.1 that. the initially developed systems
were significantly affected by intersubject EEG variétion. Accordingly,
considerable attention was directed toward the developmeht of schemes .
for adapting the classifiers in these-syétems to the'particulér EEG
characteristics of the subject to be monitored. However, the small size
6f the available EEG data base greatly limited the types of adaptive
schemes which could be studied experimentally. One intuitively appéaling
adaptive scheme that was investigated was based on the following notion:
"a classifier trained only on data from a éubject with EEG characteristics
which are very similar to those of the test subject should'perfofm more
reliably than a classifier trained on all available data from the sub-
ject population. This scheme is analogous fo schemes which have been
 considered previously in the context of multifont print recognition and

multiauthor character recognition problems (e.g., see [139]). Among the
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rsubjects represented in the set of available EEG training data, the one
. with EEG characteristics which are most similar to those of the test sub-
ject will be referred to as the nearest‘subJect . Assuming the»availability
:of:training'data from a sufficiently large number of subjects, it‘was anti-_
.cipated that the performance:of a’classifier trained'only on data from theﬁ\
"nearest subject"_could approach the U* estimate. of classifier performance.
This'was antic1pated because the U* technique (section 3 5 4) provides an
' estimate of the expected system performance when both training and testing
data are from the same subject.

| . The feasibility of”employing the "nearest subject" scheme for
improving classifier performance.was studied in two phases. The objective
».Lofbtheﬁfirst_phase.was to:determine the feasibility of training a classi-
fier o;jéata from a subject_other than_the one on which'the classifier
would be tested."Because.this was established as_feasible, the second
phase 01 ‘the study was undertaken. The obJective was to determine

]
whether the "nearest subject" could be identified on the basis of EEG

pattern samples from.class C, alone. To gain some insight into why the
'second phase of the study was undertaken, it should first be recalled
from the description of.the data acquisition procedure giyen in section
‘ 2.3.3 that EEG pattern samples from class C, could be obtained from.ai
particular testasubject before the induction of anesthesia. If the
i"nearest subject” could.be identified on the basis of these pre-anesthesia '
- EEG patternfsamples,,then the classifier could be trained uith the appro- ‘
priate subset of pattern samples at that time. bAccordingly, the "nearest
‘_subject" scheme would have been shown to be a practicable.means of im-
proving classifier performance. |

5.4.2:':‘Feasibility

The following training/testing paradigm was used in the initial
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ﬁhaseuof the feasibility sfﬁdy: an EEG classifier waé'first trained on the
éhbset of available data'from‘subject j, 1 < j £ J , and was theﬁ teéted.'
* on the subset of available data from éubject i, 1 <41 <J. Using this‘
:paradigmva J x J matrix was caiculéfed for.each of the three tyﬁes of
anesthesiaj each_element‘contained the percentage of EEG pattern samples
 fr§m subject i which had been correctly classified by a cléssifier trained
‘only'on data from subject j} éome‘diffiéulties'in the computation.of these
matricés arose because the subséts of available EEG_pattefn samples from
individual subjects were ffequently too small and because all of the
classes which were represénted in the test data were not necessarily rep-
resented in the training data. The 1at§er problem was resblved aé des-
‘cribed in sectién 3.5.4.'11
The results of the first phase of the feasibility study were
encouraging. For moét téét subjects, one or more appropriéte tréining
subjects.were identified; when the classifier had been trained on the
available data from any one of these subjeqts, its perforﬁance on Aata,
_from the test subject was superior fo the II* estimate (section 3.5.3) of
tﬁe expected classifier berformance on data from a subject popuiation.
Consequently, the secénd‘phase of the feasibility study was undertaken
to ascertain‘whether certain‘techniques could be employed to idgntify
the most appropriate training subject, i.e. to identify the ''nearest
subject" to the test subject, on the basis of the available C, pattern
samples. Consideration was given to the possibility of matching sub-
jects by evaluating the relative doﬁinance of alpha-band activity [82]
or by using the mean Co spectra as templates in a clustering glgorithm
(e.g. [132]). Euclidean distances, likelihoods and correlations (e;g.
[24]) between Co spectral feature vectors were also considered. However
the initial results were inconclusive: the '"nearest subjects" which were

identified by these techniques did not consistently match the best
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tralning subjects which had been identified in the first phase of the study..
Thus the objective of the second phase might be infeasible, i.e,
it might not be possible to identify the nearest subJectﬁ on the basis of
pre-anesthesia data from.Co'only. -Alternatively, the initial attempts to
" do se may have been hampered_bfhthe'inadequacies of the available EEG
data base. It has already been‘noted that manf of the subsets of pattern
- samples corresponding_to individual snbjects were very small and/or did
~not eontain samples from all possible classes.‘ In addition, some subsets
 did not contain any artifact—free,'pte;anesthesia EEG pattern sambles.
. Finally, the relatively small nnmber of subjects'represented in the avail-
abie data base may have pteventedlthe accurate identification of the
"nearest subject".
5.4.3 Discussion
The'resultsvof the.initial phase of the feasibility study indi~-

cated that it was possibleito trainva classifier on data from one snbject
se that it would perform reliably on test data from another subject._ How-
ever the results of the second phase of the study were equivoeal: the
ptacticability‘of using a small number ofvEEG'pattern samplesifrom class
C, to identify the most appropriate-training subject, i.e. the "nearest
subject", was not established: The reselution-of this issue by the tech-
niQues mentioned in section 5.4.2 would be greatly facilitated if the'
available EEG data base»could be expanded to include a larger number of
‘subjects. The subset of data corresponding to each subject should also

be expanded to'include a larger number of artifact-free, pre;anesthesia
EEG pattern.samples, as well as an adequate number of pattern samples

from all possible classes or leveis of anesthesia.

It should perhaps be recalled that the "nearest subjeetﬁ’scheme
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. for imﬁroving.perfofmance was in?éstigatgd Becauge it was thdught tﬁat
'such a scheme Could_béireadily employed in some_practicalvmonitoring sit-
'vuations.’ Pre-anesthesia samplés of baseline EEG activity could be ob-
‘;tained'ffom a particular test subject and used. to identify the "nearest
sﬁﬁject" rgpresented in the availablé data base. An EEC pafternvrecog-
nition system could then be traiﬁed with the available spbset of pattern

‘samples cofrespbnding to_this~subject. In some anesthesia moﬁitoriﬁg.
situatioﬁs the identificatioﬁ of_the."neargst éubject" might not be nec—
essary,'i.e; it might be'poséible to tréin»the sysfem‘with EEG pattern
samples from the‘same subject. . For examplebbsample EEG data which had

vbeen collected f;om a subjéct during onevoperatibn might bebuSéd to tr#in
an EEG paftern recbgnition system ior monitoring the same subject during _

subsequeht oﬁerationS. .AnoﬁherAexample involveé thg develbpment_of a
reliable Systém for éstimating fhe level of anesthesia dﬁring_open—hearf
sufgery. In- this situation,.sample EEG d#ta ééuld be colléétéd during‘
the initial phase of the operation and céuld be used to train an EEGv
pattern recognition system; the trained éystem could then be empldyed
during the.critiCal cardiopuimohary bypass phase:of the'operation; when.

most clinical non-EEG signs of anesthetic'depth are unavailable. .
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~ CHAPTER VI

CONCLUSIONS AND SUGGESTIONS.FOR-FUTURE RESEARCH

6.1 Conclusions
6.1.1 Summa;y

o The work descfibed'in this thesis cbﬁétitutés the first compre-
ﬁensive invesfigation iﬁto thé~question of.ﬁhether or not the levél of
anesﬁﬁesia can belreliably estimated during surgery by means of an auto-
matic.EEG_pattern recognition system. A valid methodology for conducting
the research was. first estéblisﬁed'and a‘digital EEG daté base was prepared.
, Aﬁtématic pattern recognition techniqﬁes, in cohjunction with heuristic
‘teéhﬁiques of clihicai EEG'anélysis,_were eﬁployed in the development of
- spectral and time éoméin'EEG pattern recbgnition systems for three dif-
ferent types of gene;al aﬁestheéia. An eyaiuation of the pérformance of
the initially developed‘systems cleérly dgmonstrated the Qalidity of the
EEG pattefn'recognition appfoach, but‘also indiéatéd that such systems
‘are not sufficiently reiiable for immediaté and general qlinical abplica—
- tion. Accordingly, theoretical.technidues werevdeyeiﬁped to model some |
relevant statistical properties of spontaneous EEG activity,‘with a view
to improving the performance of.the-initially develpped syStems{ Several
. factors which could adverseiy afféét the reliable performancé of EEG pat-
'te;n recognition systems in generai, and the initially developed systems
in particular;.were identified'aﬁd discussed. Various scﬁemes for improving
the performancé of thé initially deveioped systems wefe_suggested énd an

‘evaluation of the practicability of each was presented.-

6.1.2 Major Original Contributions
The following items constitute the major original éontribuﬁions
of this work:

1) the establishment of a valid methodology for conducting research



2)

3)

B

5)

6)

N
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,

~into the question of whether or not the level of anesthesia can

be estimated by EEG pattern recognition;

the first comprehensive appliéation of automatic pattern recognition

techniques. to. this problem area; 7

the formulation of nonparametricftechniques for effectively esti-
: RSk
mating the performance of EEG pattern recognition systems on future

EEG data;

the demonstration that; with specified experimental controls, it

is feasiblé.to'estimate the level of aheéthegiaAby means.of auto-
matic EEG patterﬁ recognition;

the development'offthéoretical techniqﬁeé for modelling the degree
of wide-sense statiqnarity‘and‘Gauésianity'of spontaneous EEG

activity;

the establishment of the first model of the degree of wide-sense

stationarity and Gaussianity of spontaneous EEG activity; and

the suggestion and evaluation of a number of promising schemes

_fof improving the performance of.the initially developed EEG -

pattern recognition systems.

These points are discussed in more detail in the following sections.

6.1.3 Establishment of a Valid Research Methodology

It was largely because of methodological problems that the results

of many previous attempts to estimate anesthesia levels by means of visual

EEG assessment were confusing and contradictory. Therefore, a considerable

effort was made throughout the present research to establish a valid

methodology, by idehtifying and controlling as many extraneous variables

- as possible and by ensuring that the work would be relevant to current

anesthetic practice. The methodology that was established was crucial to
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the success of the research reported here and should also facilitate

future research in the same. area.

6.1.4 Introduction of Automatic Pattern Recognition Techniques
_The present work does not constitute the first attEmpt'to empioy

automatic techniques in the analysis of EEG activity during surgical anes-
thesia. t'cheﬁer, preyious work in this area has'primarily beén
1imitéd to conéidering various schemes for EEG data comﬁfession and
parameter identification (e.g., see [27-32]). The work reported here is
apparently the first attempt to develop an automatic EEG pattern recogni-
tion system capéh}e of reliably estimating clinically relevant anesthesia
1evels; As such;'it“constituteé the first comprehensive application of
automatig pattern recognition techniqﬁes, including preprocessing, feature
extraction, feature selectibﬁ, pattern classification and performance eval-

uvation techniques, to this problem area.

6.1.5 Formulation of Performance Estimation Techniques

Thé two nonparametric performance estimation techniqres formulated
in this work ;re farticularly suitable for estimating the performance of
EEG pattern recognition systems. In most potential'applications, such as
the one under consideration, the set of available EEG patt:rn samples is
felatively small. By making efficient use of :he pattern samples which
are available, the two techniques estimate the performance of a given
system on future EEG data from only one subject, as well as its ﬁerformance
on future EEG data from a subject population. More generally, because the
two performance estimation techriques are nonparametric, they can be ap- |
‘plied to a wide variety of EEG pattern recognition systems to produce
.meaningful and comparable perfqrﬁance estimates. This is a potentially

significant advance because, as noted elsewhere [22,39], meaningful
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performance evaluations are conspicuously absent from much of the current

: literéture.on automatic EEG pattern recognition.

. 6;1.6 Demonstration of FenSibility
| The'demonstrationithat,it is feasible to estimatevtne level of

aneéthesia byAmeans'of automatic EEG pattern recognition is the.most impor-
tant single contfibntion of this work;b It should be.emphasized'that fea-
sibility in this‘instance does not imply-immediate practicability,vi.e..

the initially developed EEG pattern tétognition.systems are not sufficiently
.reliable for immediate and general clinical.application. It should also

be noted.that‘the demonstration of feasibility was accomplished.by the im-
plementation'of a wide range of exnerimental controls; the effect of modi-

fying or relaxing these controls was not investigated.

6.1.7 _Denelnnment of Theoretical Modelling Techniques
Theoretical techniques have béen,developed for modelling the negree

of‘wide—sense stationatity and Gaussianity of spontaneous EEG nctivity.
Thisvis significant benause almost'alllmetnods of qnantitative EEG analysis
are based on cettain implitit'aésumptions régérding the statistinnl char-

. acteristics of the undeflying random process, particularly with respect. to
the extent of stationarity and Gaussianity of the process{ Therefore the
efficacy of altetnate nethods of anélysis-depends upon the degree to which
such assumptions are justified by‘the characteristics of the particular

ensembles of EEG‘segments being analysed.

6.1.8 Establishment of a Statistical Model of EEG Activity
Relatively few investigations of the statistical properties of
specific EEG ensembles have'been‘reported in the literature. In this work,
a mndel of the degree of wide-sense stationarity and Gaunsinnity of spon-

‘taneous EEG activity is established. The model resolvés most of the major
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;inconsistencigs'in.the litérnfufe with regard to the'eétimatéd.degree of
”_f‘Gaussianity of sponténeous'EEC nctivify. Mofe significantly, the model
1'providés the first compfehénsivé estimates,of‘tﬁé extént to which ensembles
nf spontaneous.EEGrsegments.exhibit the properties of widé-sense sﬁaﬁionarity .

and Gaussianity.

: 6.1.9n Evaluation of Pérformance Impfdvement Schemes

An evaluation-of several promising schemes for improvingbthe per-
formancé of the initially developed EEG pattern recognitiqn systems is.pre-
éented. for_éxample, if-is shown that the pgrformance‘of the initially
developed spectral pattern recognition systems can be significantly im-
.prbved by doubling fhé numbérvof extracted features. ‘Some improvements
in the initial pattefn classifiéatidn algorithm are also suggested, but
only preiiminary feésibility évaluntions are possible'becauée of the rel-
| ativeiy small size of the avéilnﬁie.EEG data base. Finally, it appenrs
thét some»schemes-which.wefe suggested'fof improving perﬁornance by-
réducing the effect of intersubject EEC variation could be of immediate

practical significance.

6.2 Suggestions for Future Research

6.,2.1 Performance Improvement Schemes
Many of the éuggested SCHQmes for improving the performance of

the initiallyndeveloped EEG pattern recognition systems should be explored
- further. A few of these schemes can be readiiy innestigated but the ex- .
ploration of others, particularly some of the mosf promising performance
improvement schenes considered'in‘Chapter V, cannot bé undertaken at |
present because of the inadéquacy of the available EEG data base.

| ‘The‘inadequacy of the available EEG data base also preven;ed
the consideration nf some appealing schemes for‘adapting the pattern clas-

sifiers to the particular EEG characteristics of individual test subjects.
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Thus;iAIf#ture éxbansion of the EEdeata‘base is neéessary if thev‘
| efficacy of séme‘?romisihg Perforﬁance imﬁrovement schemes-;s to.be
invéstigated. ' in any fuﬁﬁre expansion of the data base for this
-purpose;~én effort.shduld be made to_coilect'as many EEG pattern samples
as_poésible, corresponding to all.lgvels éf'anesthesia, from each:addi-
tional_Sﬁbject.'bAlsd, to faéilitate_futgre investigations iﬁté the feasi-
bility of classifier adaptation and "néarest subject" identification (see>
'.Chapter V), the suﬁset of data correspondihg t6 each subject shéuld con~-
tainba‘large'number of aftifact—freé) pre-aﬁeéthesia EEG pattern sampies.

Before the acquisition of more sample EEG data, an inter—fater
reiiability study might be_éonductéd fo estimate the rate of error in
.clinical assessments éf.thé_1e§¢l~c€ adestHesia én fhe basis of the cri-~.
teria employed in this work. If_Wé;rantgd, éneéthesiologists might then
»be asked to suggeét refinements in the criteria ahd improvements~iﬁ the
~clinical assessment procedure,

6.2.2 Expérimental Controls

The effect.ofvmodifying br-relaxing the expe;imental controls
which weré implemented in the work reported here shduld be explofed. Hopefully,
such research would identify the major clinical séurces of variability
which could'adversély affect. the reliable performance of the EEG pattern
recognition systems developed in this work. This would provide a clear
iﬁdidation.of the variables that must be adequately controlled if such
'_systems are to be employed iﬁ a clinical environment. In addition, re~
‘search in this area might evéntually result in the deﬁelopment‘of adap~
tive systems which could take such variables into consideration, thereby

improving their reliability and exteﬁding their range of appiicability.

6.2,3 Time Domain EEG Pattern Recognition Systems

The feasibility of developing more reliable time domain EEG
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patterd‘fecognition Systemeﬂshodld be stddied.‘ On‘the ﬁasis of.the initial
,resuits,reported in this work; the besf time domain.systeme'develdﬁed for
halothane.enesthesiadand narcotic anesthesia were 31ightly less reliable’
than the correspodding spectral-systems,.bdf for enflurane anesthesia the
best time domain‘eystem‘was more reliable than the best spectral system.
From.a practical Qiewpoint,»imﬁlementation of the time-domain systems
considered here would be simpler and less expensive than implementation
of the corfespondiné specfral systems. This is primerily because mady of
the time domain features could»be more easily extfacted, e.g. an implemen-
tation of the FFT’algerithm would not be neceesery. Thus, both ekperimental
results end practical considerations provide motivation for'attempting to
increase the reliability of the initially developed time domain-systems'to
.a clinically'acceptable level. In this regard, most of the performance
improvementvschemes which hefe suggesfed in this work and applied to spec-

tral'systems could ‘also be applied to time domain systems.

6.2.4 The Reliability of Visual EEG Assessment
_In attempting to view the performance of automatic EEG pattern

recognition systems in perspective, it would be desirable to be able to
compare their reliability to the expected reliability of experienced
clinical EEG raters performing the same task. Unfortunafely, almost no
date is available concerning the expected reliability of visual EEG
assessment. The few papers which ha&e been published in this area indi-
cate that the reliability of visual EEG assessment, even among experienced.
clinical EEG raters, may be surprisingly low (e.g. see [18]). Accordingly,
a futdre interdisciplinary study, pefhaps employing the EEG data.base
prepared in this work, seems to be warranted in order to obtain a quan-

titative estimate of the expected inter-rater reliability of visual EEG
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" assessment.

© 6.2.5 Modelling
R The'estimate& statistiéél chafactefistics of spontaneous EEG ac-
‘ fivity should be exploited in.a future'attémpt to deveiop more reliable
EEG péttérn recognitibn systems' for monitoring the level of anesthesia.
The model of spontaneous EEG activity_éstablished in this work should be .
~of considerable'value-iﬁ a fuﬁure rééonsideration of the often arbitrary
déﬁisions which were made in the initial deﬁelopment of the EEG pattern .
récognition systemé, e.g. decisions regardiﬁg the choice‘of'analytic'tech-
'niques, the duration of EEG éegments to be anélysed ﬁnd the rate at which
the estimated 1evel'ofvanesthesia éhould be updated.

| The modelling techniqueé'&eveloﬁed in this wo;k’could also be
applied to ﬁany‘othér enéembles éf_EEG activity corresponding to other 
‘states of consciousness. For éxaﬁple, it was noted pfeviously.that the
feaéibility of employing EEG pattern recognition systems to monitor the
status of subjects during sleep, intensiﬁe care, coma and possible cere~ .
bral death is cﬁrrently being ihvestigated By others. = In each instance,
the statistical characteristics.of the barticular ensembles of EEG activity
being analysed should be an important consideration in fhe deveiopmeﬁt of

the most appropriate monitoring system.

6.2.6 Identification of»Artifact
~ Another area deserving further exploration, but beyond the scope
of the preéent investigation, concerns the identificatinn of EEG artifact.
It should be recalled that artifact was defined as.that cdmponent of the
EEG which does not originaté in the brain. -Most of the viéqally,recog-
ﬁizablé artifact encountered in the work‘reported here may be attributed

to interference from electrosurgical units in the operating rooms, poor
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eiectfode contacts,beyeblinks,.eiectroéafdiograpﬁic actiVity, movement and
muscle acti&ity. In this work, digiﬁized EEG.éegﬁents'were viéﬂally screened
io eliﬁinaté thoée_segments‘whicﬁ conﬁained exceséive artifact.' However,

éﬁ EEG pattern recognition sysfem.suitéhlé'for monitoring the level of
anesthesia should bé'capable’of automatically identifying EEG pattern

éamples which_contéin éicessivé éftifact.--Ehereforé;-the development of
valgdrithmé_for the»autoﬁatic:ideﬁtifigation_of EEG artifact should be

~undertaken.
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Date:

LEVEL

OF ANESTHESIA EVALUATION FORM

Patient:-

Surgical Procedure:

Age:

Premedication:

Analog Tape Number:

EEG Machine Gain:

Anesthetic Agents:

Footage:

LP Filtexr Frequency:

Weight:

Anesthetist:

Start

Page of

Sex:

End =

Time Constant: _____

Coding
Pulse

Level of
Anesthesia

- pCoy

Time

Comments

(mm Hg)

10.

11,

12

13.

14.

15.

16.

17.

18.

19.

20.
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'APPENDIX B
DESCRIPTION OF EEG DATA BASE

Iﬁformatioﬁ concerning the sample EEG data base for each of
the three types of anesthesia is giveﬁ in.Table B-1. All of the digi—
~ tal tapes listed in Table B-1 afe 9-track,.IBM-com§atib1e tapes with a
density of 1600 B?I and a biock size of 4096 bYtes; The taﬁes.are
unlabelled. Documentation whicﬁ_describes how to mount and use such
- tapes under the Michigan Terﬁinal Systém (MIS) can be.obtained from the

U.B.C. Computing Centre.

Table B-1 EEG Data Base

- Type of Anesthesia

Information —
Halothane Narcotic Enflurane
Number of available ’ :
EEG pattern samples 280 341 317
Rack number of digital
tape containing EEG o
pattern samples RA0562 ' RAO558 - RAO561
Rack number of
duplicate tape » RC0490 RA0559 RB0120

Name of disk file
containing labels
for EEG pattern

samples HS.I AS.I ES.I

128
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Each EEG pattern sample; i.e. the digital representation of

'each four-channel EEG. segment of 648 duration, is stored in a separate

file on the approprlate_tape. Each file on the tape therefore contains
ba total of 32768'samp1e values; the result of sanpling four,EEG‘channels
(F3f03, C3-01, F4-C4 and C4-02)'at 128 Hz/channel for 64s.'_For programming
ease, each sample value is stored in two bytes although the maximum res- .
olution is limited to 10 bits.‘ Each successive set of 8 bytes in a file
therefore contains one sample value from each channel: F3—C3, Cc3-01,
| "F4-C4 and C4-02, in that order. ‘The 32768 samples in each file on the

tape are grouped into 16 blocks, with 2048 samples (4096 bytes) per

block. ‘

The disk files;listed in'Table B-1 contain thebfollowing in-
formation about each EEGlpattern sample: the sampie identification
number; the level of anesthesia and the subject identification number.
This>information is stored in integer form, with one disk'file line per
EEG sample, in the foilowing FORTRAN format:,(IS; 5X, 2I5). The "sample
'identification number" represents the nunber of the file on the appro-
priate tape which contains the sample EES. The "level of anesthesia"
represents the clinically estlmated anesthesia level assoclated with the
sample EEG. The * subject identification number" refers to the’ indlvi—
dual patient from which the sanple_EEG was_obtainedt-

The following-FORTRAN subroutine can be used.tO'(i) read a
sample identification number, (ii) locate the appropriate tape file,

(iii) read the 16 blocks of sample data from the file, (iv) sort the
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data by éhaﬁnels; and (v) store the sorted data in an array:

naacoo

20

12

14

10

SUBROUTINE INPUT(NFLAG)

NFLAG=0 INITIALiY;NFLAG=1 AT TAPE END
INDEXF CONTAINS CURRENT-FILE NO
LUNIT INDICATES TAPE LOGICAL UNIT NO

REAL DATIN(4,8192)

COMMON /DATIN/ DATIN .
INTEGER*2 BLOCK(2048), TEN1
INTEGER INDEXF /0/

LUNIT=1 -

NSKIP=0

READ THE FIﬁE NO

READ (5,20 ,END=10) NFILE
FORMAT(I5)
WRITE(6,12)NFILE
FORMAT (' #%%%' I5)

PREPARE TO SKIP. TO THE APPROPRIATE FILE
ITEMP=NFILE-INDEXF-1

CALL SKIP(ITEMP ,NSKIP,LUNIT)
INDEXF=NFILE-1

READ FILE DATA AND STORE IN ARRAY

DO 14 IBIK=1,16

INDX=(IBLK-1)*512 '
CALL READ(BLOCK,LEN1,0,LINEl,LUNIT,&10)
DO 14 ICH=1,4

DO 14 ISAM=1,2048,4
IR=INDX+1+(ISAM-1) /4

IRR=(ICH-1)+ISAM
DATIN(ICH,IR)=BLOCK(IRR)

RETURN
NFLAG=1
RETURN
END
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APPENDIX C

- COMPUTATION OF EEG SPECTRA

APPEMLIA C COMPUTATION OF ESG SEECTEHA

THIS PROGRAM COMPUTES THE POWER SPECTRA AND CCHERENCE SFECTRUNM FCR

TWO0 SELECTEL: CHANNELS CE _EEG LATA.
INPUT:

OUTPUT:

*LUNIT .8& POWER SPECTRUN FCR CHANNEL ®A%
*LUNIT, - ‘97 ECWER SETCTRUM FCR CEANNEL ®E®

*L U} 10 ".COHERENCE SPECTRUN
LAST ULDATE:. -

a;yuggf 6 1975

INEUT CATA ThPE (SEE AEPENLIX E)
FILE CONTAINING DATA LABELS

nnonoonannNnnnnoonnNnn

3

00

1
C
[

4

C
Cc

20

12
c
c

nn

INTEGER NCHANA/1/,NCHANE/2/

COMPLEX TitAN (2049),TR {2049)

"REAL DATA(4096),LATE (4096)

CONMON s TRAN ,/ TRAN,TR

EQULIVALENCE (TRAN,LATA)
ZQUIVALENCE. (IR, DATB)

REAL CATIN(4,8192)

COMMON / DATIN / DATIN,INDPXP NPILE

NFLAG= 0
LNCEXE=0.
NS AHP=8192"
N=4096. S
SRATE=64, .

GET ALL FOUR EEG CHANS PROM A 64 SEC SA AND FUT IN DATIN

CALL INFOT(NFLAG)
IF (NFLAG.EQ.1)GO TO 4

COPY TWO CHANS AT 64 SA/SEC (NOT THE CRIG 128/SEC)

DO 1 J=1,KSANMP,2
DATA((I-1)/241)= DATIV(NCHAuA J)
DATIB{ (U~ 1)/201)‘EATIN(NCHANE J)
CONTINUE .

CALCULATE PLJEW ’PEC”RA AND COHERENC”
CALL COHER(N, SRATE, urxnr)
GO TO 3 oo .

STOP
ENE ) o ‘
SUERCUT E INPDT(NPIAG)

REAL CATIB(Q 8192)

COMMON /DATIN/ DATIN, INDEXF NFILE
_ INTEGER®2 axocx(zouu) LENY . -

LUNIT=1. .

NSKIP=0

READ THE' FILE RO
READ (5; 20, PNﬂ IO)NPILE
FORFAT(IS) ‘ :
WRITE (6, 12)NFILE
FORNAT(? #ses0 15)

PRCFARE TC SKIP TC THE AFFROPRIATE FILE

ITEMP=K FILE-INDEXF-1
CAIL SKIP(ITE®P,NSKIE,LUNIT)
INCEXF=NFILE-1

DO 14 IBLK=1,16

(AXD OUTPUT SAMNE)

1.000
2.000
3,000
4,000
£.000
6.000
7.000
8.000
9.000
10,000
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11,000

12.000
13.000
14,000
15.000
16,000

17.000 "

18.C00
19,000
20,000
21,000
22.€00
23,000
24,C00
25,000
26.C00
27,000
28,000
29,000
30.000
31,000
32,000
33.000

353,000

35.000
36.C00
37.000
38.€00
39.000
40.000
41.000
42,000
43,000

44,000

45,000

-86.,000

472.000
48,000

.

49,000

£0.000
51.000
52.000
53,000
54,000
55.000
56,000
5$7.000
58.000
59.000
60,000
61,000
62,000
63,000
64,000
65.000
66,000
67.000
68,000
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0015 INDX= (IBLK-1) %512
0016 CALL READ(BLOCK,LENY,0, lINE1 LUNIT,E10) .
0017 0o 14 ICH=1,4
0018 DO 14 ISAE=I,20H8,Q
0019 IR=INDX+1¢ (ISAM-1) /U
" 0020 . IRB=(ICH-1) +ISAN
0021 1% DATIN (ICH,IR)= BLCCK(IFR) : e
c .
0022 ' RETURN ) ) ’ : o
0023 10 NFLAG=1. ' S
0024 . - RETURN
0025 END
0001 SUBROUTINE COHER(N,SRATE,NFILE)
- c COBPUTES THE SPECTRA AND CCHEFENCE VIA METHOL OF CUMERMUTE ET AL,
c IEEE TRANS AUCIO LEC *70.
C
0002 ) COBPLEX TFAN(2049),TE (2049)
' 0003 . REAL DATA (4096),DATB {4096)
. 0004 - . cormcN sTEAN/ TRAN,TE
S . 0.0005 EQUIVALENCEZ (TRAi,DATA)
. 0006. EQUIVALENCE (TR,LATE) ’ b
-0007 REAL SP (256),SM4 (2049),5M2 (48096), snocma(que).srzazse), SF3(25€) .
< ‘0008 COMPLEX XSPEC({2049),Sm3(2049), Sur3 . o ] S
- 0009 - . INTEGER NN (1)
Lo - [ . . L
: ) [ GET FOURIER TRANSFORM VIA FPT =—e-weweve-eeac—ac R e e ST : 94,000
0010 . - NN (1) =¥ ’ . 95,000
0011 - . ISIGN=~-1 : 96.,0€0
L0012, CAIL FOUR2(CATA,KN,1,ISIGN,0) i ’ 97,000
. 0013 - CALL FOUR2 (DATB,HN,1,ISIGN,Q) 7 98,€00
: [ : 99.000
. e e e [ HP PILTRING - e : 1€0.0¢C0
0018 L1=32 . 101,€00
-.0015 . : L2=5 _ 102.€CO
~0016 D0 3 J=1,11 : 103,000
0017 TR (J) = (0. ,0.) ) . 104.000
0018 . | TRAK({J) =(0.,0.) : ’ : ' 105,000
0019 DO 4 J=1,L2 . : 106.0C0
0020 TR (L1+J) = 1a(L1oJ)~(r1cnt(J)/rtch|L¢)) 107,000
0021 . 8 TRAN(L1+4J)=TRAN (L1+4J)* (FLOAT (J) /FLOAT (L2)) . : 108.C00
o Cc 109.000
[ OBTAIX RAM SPECTRAL ESTIHATES (INCL CECSS~SPECTRA) =-==-=-==== - . 110.C00
PACIOR=1./(SRATE®FLCAT (N)) ) o _ . 111,000
BID=N/2¢1 . ' ’ ! ’ . o : 112.000
DO 99 I=1,MID - o ‘ S e 113.0C0
T=CABS (TRAN {I}) : ’ ) ‘114,00
1T=CABS (TF(I)) ’ - - 115,000
XSPEC (I)= (CONJG (TR (L)) *IRAN (1)) . . . ) 116,000
DATA(I) =i *T*FACTCR ) . . 117,000
DATS {I)=TT*TT*PACTOR : . 118,000
XSPEC(I)= XSEEC(I)'FACTCF o . 119,000
CONTINUE ) 120,000
_ . 121.000
SMOOTHED SPECTRAL ESTIMATES OBTAINED VIA SQUARE HINDCW -{2¥+1)=15 .~ '~ 122,000
TRE PIRST AKD LAST 8 ECINTS ARE NCT SMCOTEEL : 123,000
Do 52 1=1,8 124,C00
SM2 (I)=CATB (I) . . : . o 125,000
SH3 (I)=XSPEC (1) o . C - 126,000
SMCCTH(I)=DATA(I) : - L S 127,000
po 11 1=1,7 ) o 128.C€00
SN2 (RID=7+I)=CATE(RIT=-7+1) ) ) ) : 129,.0C0
SH3 (MID-7+I)=XSPEC (HID~7+1I) ) ) : 130,000
SMCCTH(®MIC-T7+I)=CATA(RILI-7+1) ’ ‘ : ) o .131,000
. . v v 132.€00
DO 50 I=9,2042 S . ) 133.000
son=0, . : o I 134,000

soe2=0, 135,000
SGR3= (0.,0.) 136.000
po S1 J=1,15 . 437.000
SUN2=SOM2+4DATB ((I~1)+J-T) 138,000
SUR3=SUEI+XSPEC{ (I-1) +3-7) ] : ~v7 139,000
SUN=SUM+DATA ((I~-1) +3-7) _ S S 180,000
SHCCTH (I)=S0UM/15. o B . 181,000
SM2(I)=sum2/15. ) L T : : C . T4 182,000

SM3 (L)=SUu3/15. ) . : o 183,000 .
CONTINUE : ) . . 148,000
: ) 145,000
C CORERENCE CALCULATION - -- - R L L 146,000
DO 1012 I=1,32 : . o . . 147.000

1012 sna(1)=0. o o : 148,000 .

00 1011 X=33,81ID ’ : o ;"  ' 149,000
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TTT=CABS (SM3 (1))

IP (SMCOTH (I).BQ.0.)SMCCTE (1)=,00C001
IF(SN2(I) .FQ.0.) SM2(I)=.000001

SMY (I)=SCRT { (TTT*TTT)/ (SNCCTE (I)*5M2 (1))

NEAS ENERGIES ANC CCHER CF 8 FOINT EANCS M1= H(1230567€)

TOTAL EN=POWER*(1,/64) MEAN DOWIR=EN/ (1,8}
THUS MEAN PCWER = ECWER® {1/68)%8 = ECWER/H
DENOM=8,

PO 100 I=1,256

sumM2=0,

SUEs=0,

Ssun=0.

Do 101 J=1,8 .

sun2= SUHZ’JHZ((I—1)‘8+J)

SUMU=SUNMLU+SNU ({(I-1)*8+T)
SUM=SUM+SXOOTH ( {I- 1) *8+J)

SF (I) =SUM/CENCH . .
SP2(I)=SU42/DENOY :
SP3(1)=SUNL/DENCE

CONTINOE

OUTPUT PHASE BEGINS ~==m=mcemoocmcocoo oo ooeemeccosnanas —————-

WRITE (8,58) KFILE

WRITE(10,S8)NFILE

FORMAT (* FRECY," NFILE=*,15,' NCEAN=A')
PO 60 I=1,255,8

WRITE (8,63) (SF (I+J-1),J=1,4)

WRITE (10, €5) (SF3({I+J-1),J=1,8)

PORMAT (8F9.6)

FORMAT(® *,€F9.2)

WRITE (9,59) NFILE

PORMAT (" FREQ®,* NFILE=',I5,¢ NCHAN=B")
po 61 I=1,25%,8 -

WRITE(9,613) (SP2(I+J-1),J=1,8)

OUTBUT PHASE ENDED —---=-=<=s——=mssswo-mcoce-oo- .

RETURN
END
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APPENDIX D

SPECTRAL FEATURE EXTRACTION PROGRAM
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APPENDIX D SPECTRAL FEATURE EXTRACTICN ERCGRAH

THIS PROGRAM CALCULATES ONT U44~-ELEMINT AUTOSPECTRAL FEATURE VECIC
CORRZSPONCING TC EACH 64 SEC EEG EATTERN SAMPLE,

INPUT:
: . *LUSIT 1: SEERCTRAL [ATA FRCM CEAN 1 (F3:C3)
*LONIT 2: SPECTRAL DATA FROM CHAN 2 (C3:01)
*LUNIT 3: SEZCTRAL [ATA FRCM CFAN 3 (F4:CH)
SLUNIT 4: SPECTRAL DATA FROM CHAN 4 (CU:02)
SLUNIT S: INCEXING CATA FCR EACEL EEC SEGMENT (F/LEV/PTNT)
OUTPUT:

*LOKIT 11: FEATURE VECTCRS
SLOUNIT 6: ERROR MSGS - -
11 SPECTRAL FEATURE ELEMENTS CALCULATEL FCR EACH EEG CHANNEL.
LIMITATIONS:
*NC MCRE THAN S00 FATTEEN SPMELES :
*ONLY DATA FROM 64 SEC SPECTRAL CALCULATICHS
NOTES: :
. 1. DATA WAS PREPARED IN FMT SPICIFIED IN ®“AEEENLIX C©
2. CUTPUT FILE (LUNIT 11) MUST EE SEQUENTIAL -
3, SPECTRUM IS ASSUMED 70 BXIST FROM 0-32 HZ, WITEH
8 SAMPLES/HZ
LAST UPLATE:
NCV 23 1974

REAL DATA {256),FEATUR (BQ)"
COEHON sCCMy/ LATA,FEATUF

DO 6 INCX=1,500
DO 99 Iv=1,44

.99 PEATUR(IV)=0.

¢

C

C

c

DO 1 LUNIT=1,4

THE SUBSET OF SPECTRAL PEATURE ELEMENTS ARE CALCULATED:
READ (LUN1T,5,2NC=3)
FORMAT ()
po 4 J=1,255,8
RBAD(LUNIT 2)(DATA|(J*K 1)) K=1,8)
FOREAT(1X,8F9.2)
CALL SPECTF (LUNIT)
COBTINUE

~E w

-

OUTPUT THEZ CCFPLETEE FEATUFE VECTCR ANL INCEXING CATA:
READ (S, 11)FILE,LEV,IPTNT
IFILE=FILE+Q.
11 PORMAT (5X,FS5.0,2I5)
6 - WRITE(11,12) (F2ATUR(JY) ,JY¥=1, u“),IFILE LZv, IPTINT, INCX
12 FOBRMAT (44F1U4,.6,81I4)

WRITE (6, 16) . .
16 TFORMAT(//s" *%%% ERRCR: TCC MANY PATTERN SANPLES*%'///)
3 INDX=INDX-1.

WRITE(6,15) INCX

.15 FORMAT(IS,* FCATURE V”CTORS HAVE BEEN CALCUIATED'//)

STCP
~ END
- SUBROUTINE SPECTP(LORIT)
'REAL DATA (256) ,FEATUF (4u)
connoy /CoM/ DATA,FEATUR
A= (LUNIT-1)*11

ENERGIES: ===-===-- cecmeccmmcnanncans -
Do 1 I=2,256 :
1 FEATUR( (R+1))= rEArun41r41))orArA(1)
DELTA: =====
0.125-4.00 HZ

1.000
2.€00
1.€00
4.c00
£,000
6.C00
7.000
8,000
9,000

10.000

11.000

12.CC0

13.000

14.000

15.C00

16.CC0

17.000

18.000

19.000

2¢.C00

21,000

22.€00

23,000

24.€00

25.000

26.000

27.c00

22,0C0

29.000

30.€00

31.000

32.000

33,000

34,000

35,000

36.€C0

37.000

38.000

39.000

4¢.000

41,000

42.€00

43,000
. 84,000

4£.000
46.CCO

47,000

48,000
49,000
S0.000
51,000
52,000
£3.000
54,000
£5.000
$6.000
57.000
58,000
£9.000

1 66.0C0

61,000

62,000

63,000
64,000

€5.000

66,000

f'67.000
" 68,000

134



0007
0006

0009

0010
0011
~0012

0013
0014

0015
0016 -

0017
0018

0019
0020
0021
0022

0023
0024
0025
0026
0027

002¢
0029
0030
0031
0032
0033
0034

no

52

10

‘4,00-8.,00 HZ

DO 5 K=2, 32

FEATUR((N+2))=PEATUR ( (M42)) +CAT A (K)
THETA: ----—-—==-—cenwe e——

DO 6 K=33,64

FEATUR ((M¢3) )= PEATUB((F03))OEATA(K)
ALPHA: ==-==--e==ceceeseona cmecaes
8.00-13.00 HZ

Lo 7 K=65,104

FEATUR ( (M+4))=FPEATUR ( (MeU)) +CaTA(K)
SIGMA: -- e B e R

13-15 HZ

PO 8 K=105,120 o
PEATUR ((N+5))= PEATUR((H#S))#CATD(K)
BETA: ====—=mmm-m=—m——eceem—a=e ——

15.00~31.875 HZ ' : . N

DO 9 kK=121,256

FEATUR ( (M+6))=FEATUR ((M+6)) +CAT A (K)
BETAZ ====m===-==e-eccocea= —————
18.00-24,00HZ

Lo S0 K=145,192

FEATUR{ (%*7))=FEBATUR ((M+7)) +LATA(K)

FREQ: FIRST AND SECCNL MOMENTS =--=-c-ccec—c—e—caas
Do 5% I=2,256
= (I-1)%0.125
FEATUR( (N+8)) =FEATUR ( (M+8) ) +DATA (I)*XX
FEATUR( (E+9))=FEATUR{ (M+9)) +CATA (1) #XX*XX

PEAK INTEKSITY ANC FRECUENCY IN ALPEA EANL ===-==-e
DO 52 I=65,104

IP (PCATUR ((X+10)).GE.LATA(I)) GC TC 52
PEATUR ( (M+10) ) =DATA (I)

FEATUR (("+11))=0.125% (I-1)

CONTINUE

RELATIVE ENERGIES: ==w==m=-e-e-iec-eccecaceeooa -——
DO 10 K=2,10

FEATUR{ (M+K)) = (FEATUR ( (M+K)) /JEEATUR ( (E+1))) *100.
FPEATUR ( (M+8))=FEATUR { (#+8)) /100,

FEATUR ( (M+9)) =SQRT (FEATUR ((1+9)) /1CC.)

IF (FEATUR ((E41)). NE.100.) FEATUR((#+1) ) =FEATUR ((M+1))*0.12¢

RETURN
END

69,000
70.000
71,000
72.000
73,000
74,.C00
7€.000
76.000
77.000
78.C00
79.000
80,000
81,000
82.C00
83,000

24,000

85,000
86.000
87,000
eg.co0
€9.000
9C.0C0
91.000
92,000
93,C00
94,C00
95,000
96,000
97.000
98.€00
99.000
1€C.000
101,000
102.000
103.C€00
1C4.C00
105.000

106.000

107.000
108.0C0
109.000
11€.000
111.000

112.000
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

0012
0013

0014
0015

0016
0017
0018
0019
0020
0021
0022
0023
Q024

0025
0026
0027
0028
0029

0030

0031
0032
0033
0034

0035

0036
0037
0038

0039
0040
0041
0082

anNANANAONANAOANN

APPENDIX E

TIME DOMAIN ANALYSIS AND FEATURE EXTRACTION PROGRAM

QUTPUT:

APPENDIX E IIFE CCEAIN ANALYSIS aANL EEATUMC -XTRACTICN FFCGRAH

THIS PRCGRAM CALCULATES CNE 10-ELEMENT T]HE COMAIN FEATURE VECTOR
FOR EACH 64 SEC EEG PATTERN SAMPLE.
INPUT:

SLUNIT
*LUKIT

1: INPUT DATA TAPE (SEE ACPENDIX B)
)
*LUNIT S
3

¢ PITE CCNTAINING LATA LAEELS
¢ FILE CONTAINING DATA LABELS

*LONIT 7: OUTPUT FILE FOR 10-ELEMENT PEATURE VECTORS

LAST UPDATE:

JANUARY 20 1975

[+
c

€

c

[+
c

e

C

1

1

12

13

q

INTEGER NCHANA/3/,NCHARE/G/

COMPLEX TRAN (2049)

BEAL DATA (4096) ,SRATE/64./

COMMON TRAN

EQUIVALENCE (TRAN,LATA)

REAL CATIN (4,8192)

COMNON , LATIN , CATIK,INCEXE,NFILE

INTEGER NELAC/O/,NSEC/6H/,NSAHP/E192/,N/0096/
INDEXF=0:
PRN=N
PREQLP=16

GET ALL FCUR ,zc canus rscu A 64 src SA ANC PUT IN CATIN
CALL INPUT (NFLAG) -
IP(HFLAG.:Q.I)GO TC 4

COPY CNE CHAN AT 6“ SA/SEC (NOT TEE CRIC .128/SEC):

DO 1 J=1,NSANP,2
DATB((J 1)/201)-CATIN(NCHANA J)

COMPUTE TIMNE COPAIN FPEAT EL'S AFTER PREFILTERING OF SIGNAL

CALL PILTLP (N,SRATZ FREQLP)

CAIL NORM(DATA,N, ZAVEF $%2,TH3, EMU)

CALL PSKEwW (TN3, SHZ SKEW,VARSK,SDSK,ERN)
CAIL RKURT(FHU srz, ERh CKURT, VAYRT SLKRT)
XXX=SQRT(SF2)

CALL ZCROSS(DATA N, ZRAT +NSEC)

CALL DCRCES(DATA,M.IRATE,NSEC)
ZRATESZRATE/2. -

DRATE=DRATE/2.

CoPY THE CTHRR CHAN ABL CCMFUTE TIME L[OMAIN FEAT EL°S

LO 11 J=1,NSANP,2

DATA { (J- 1)/201) CATIN(NCHAWB,J)

CALL PILTLP (N,SRATE,FREQLP) :

CALL NORFM(DATA,N,ZAVEER,SM2,THN3,ENU)

CALL PSKEW(TM3,SK2,SKEW2,VARSK,SDSK,PRN)
CALL RKURT{FHM4,SP2, FRN, [KUnTZ V2KRT,SLKRT)
XXX 2=SQRT(SN2) .

CALL 2CRCES (CATA,N, ZFATEZ.NSEC)'

CALL DCRCSS (DATA,;N,LRATE2,NSEC)
ZRATE2=ZRATE2/2.’

DRATE2=CRATE2/2. -

COMPLETE AND QRITB CNE FEATURE VECTCR

READ (4, 12)NP,LEV,NPTNT
FORMAT(I5,5%,215) )
WRITE (7,13)XXX,ZRATE,DRATE, SKEW,DKURT ,XXX2,ZRATE2, DRATEZ, SKEWZ,

-YDKURT2,NF,LEV,NPINT

FORNMAT (10F14.6,314)
Go TO 3

sTop

EHD
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1.000

4,000

3,¢00

4,000

£.C00

€,00¢C

7.000

8,000

s.C00
10.000
11.0C0
12.000
13.000
14,000
15,000
1€,000
17.C00
18,000
19,000
20,000
21.€00
22,000
23,C00
c4,C00
25,000
26,000
27.000
<8,000
29.€00
20,000
31.CC0
32,000
33,.co0
34,000
35,000
36,000
37.000
38,000
39,.C€C0
40,000
41,000
42,000
43,00
44,000
45,000
46,000
47.€00
48,000
49,000
50,000
51,000
£2.000

.53.C00

£4,000
55.000
£€.000
57.000
£8,000
59.€00
60,000
61,000
€2.,000
63,00

T 64,000

65.€00
66.000
67.000
68,000



- 0001

0002
0003
~ 0004

0005
0006

0007
0008
0009
0010

0011
0012
0013

0016
0015
001e
0017
0018
001¢
0020

0021 -

0022
0023
0024
0025
0001

0002

00013

0004
0005
0006

0007
0008
0003
0010

- 0011

0012

0013 -

0014
0015
0016
0017
0018
0019

0020
0021
0022
0023
0024
0025
0026
0001

0002
0003
0004

0005
0006

nn

onnnO

Annon

20
12

14

10

SUBRCUTINE INPUT(!PLAG)

THIS SUBR WAS ACAETEL FBOM SOGT.U4.S Jll 10 197

REAL DATIN(4,8192)

COMMON /DATIN/ DATIN,INDEXP,NFILE
INTZCGER®2 nlocx(zoua).nlnl
LUNIT=1 -
NSKIP=0

'READ TH® PILE WC.. . -
READ(S, 20, END—!O)IFIL!
FORMAT (IS) .
WRITE(6, 14} NPILE
FOR®AT (* ....-,15,

PREPARE TC JKIP TC TBE AFEROPEIIT! FILE.
ITEMP=NFILE-INDEXF~1

CALL SXIP(ITEERP, LSKIE IUIIT)
INDEXF=NFILE~-1

DO 14 IBLK=1,16

INDX=(IBLK-1)%512

CALL READ(BLOCK,LEN1,0O, LIHB1 LONIT,E10) =
DO 14 ICH=1,4

po 14 ISAH“ 20u8,8

IR= INDX010(ISAF-1)/Q

IRR=(ICH-1) +ISAN - . .

DATIN(ICH, IB)—ELCCK(IBB)

RETURYN
NPLAG=1
RETURN
Euc "'.;.'.. N i
SUURCUTIdL PIﬁTtP(HSlHP,SFAT! FEECLF)

LOWPASS FILTERS THE SIGKNAL IN AFRAY "LATA® VIA FFT ll:
COHVOLUTIOHAL-TYPB PILT”R THEN PUTS RISULTS IH DATA.

COMPL EX TRAN(2009)

REAL DATA {(4096)

COMMON TRAN
EQUIVALZNCE. (TRAN, CATA)
INTEGER NN (1)

PFT OF SIGNAL -- -——- comea—-

NN (1) =NSAED

1S ICN=-

CALL FOUR2(CATA,BN,1,ISIGH,0)
NID=NSAND/2+1

1LIe= (FRECLP/(SRATE/2 y)*(mIC~- t)01 01

LP FILTERING .- -
00 1 J=LLIN,NID: . = - .
TRAN(J) =(0.600) ’

HP FILTBRING ok ceona
L1=32 ' .
12=5

Do 3 J=1,L1 R
TRAN(J) = (0. ,0.)

Do 4 J=1,L2

IRAN(LI'J)-TRAN(II'J)‘(fLCAT(J)/fLOlTlLZ))

INVERSE TRASSFCRE -- '_ --
ISIGN=1 :

CAIL rouaz(nnra.
RN=NSANP - N
DO 2 J=1,NSARE - .
nuau)nununu'
RETURN . ,
END : o ! ’
suaaourxu; zca055(x ¥, nvtzc lSlC)

'",1 ISIGI,-l)

TRIS SUBR CCUNTS THE NC. GF ZERO CFOSSINGS IN AN
SIZE AND RETURNS TAE AVERAGE CROSSING BATE

REAL X (N)
2C=0,
LIN=N=T1 ~

o t I=1,LIN
IP (x{I).GE.0.) GCTC 2

‘ARRAY OF

€9,000
7C.CC0O
71.000
72.000
73,000
74,000

75,000 .

76,000
77,000
7€.0C0
79.0C0

- '80,C00

€1.000
e2.€c0
83,000
eu.coC

85,000

26,000
87.000
€g,C00
29,000
90.000
91,000
92.CC0
93,000

94,00

95.000
96.C00
97.000
98.C00
99.000
1CC.CCO

"101.000

102,000
103.000
104,CC0
105.€00
106,000
107.0C0

108,000

109.000
110.000

111.CC0

112,€00
113.CC0
114,C00
115.€00
116.000

“117.€00

118.€C0

119,000

120,000
121.€00
122.000
123,000

124,000

125.000
126,000
127.€00
128.000
129.000
130,000
131,.C00
122.000
133,000

134,000

135.000
136.000
137.€00
138.000
139,000
140,000
131.€00
142.000

143,000

144,000
145,00

146,00

147.000
148,000

- 1ue.CCOo

150,000

137



0007
~ 0004

0009 .

0010

0011
0012
0013
0001

0002
0003
0004
. 000s
0006
0007

000¢
0009

0010
0011
0012
0013

0014
0015
0016

0001

0002
0003
0004
0005
0006
0007

0008
0009
0010

0011
0012
0013
0014
0015
0016

0017
0018
0019
0020
0021

0022
0023
0024
0025

0026
0027
0001

C IF NOT, X (I) MOST BE LT Oees
IP (X(I+1).GE,0,) 2C=ZCe1,
GO TO 1
-2 IF (X(I+1).LT.0.)ZC=2C+1,
1.  CONTINUE
c
AVEZC=ZC/NSEC
RETURN
END
SUEROUTINE DCROSS (DEL,N,AVEDC,NSEC)
c .
C _THIS SUBR COMPUTES THE AVER 22RO CRCSSING RATE OF THE CERIV OF THE
c SIGNAL STCRED IN AREAY X, : :
C NOTE: CONTE8TS OF ARG ARRAY ARE CHANGED,
c
RLAL DEL (N)
LIfB=N-1
DC=0,
D03 J=1,LIM. ;
DEL (J)= nEL'J¢1) DEL(J)
DEL (N} = BEL(L 1)0(t£L(h 1) - EEL(N 2))
c
DO 1 I=1,1IM
: IP(DEL(I).GB.O.) GO T0 2
c IF NCT,DEL(I) ™UST BE LT Oues.
IF(CEL (I+41).GE.0.) DC=DC*1,
: GO 10 1
2 IP (CEL (I+1).LT.0,.)DC=DC+1,
1 CONTINUE
[
AVZDC= DC/bSBC
RETURN . ..
BND’ ’
"SUBROUTINE NORNM(ARRAY,N, AVER SV MR, TH3 ENG)
c
C TRIS PROGRAM ACCEPTS AN AFRAY OF SIZF TC N=64%128=8192 ANL
c -COMPUTES THEZ MEAN,VARIANCE CP THE SAMPLE ANB
c COMPUTES TEE  THIRL BNI ECURTE MOMENTS,
c
C INITIALIZATICN
CIMENSION ARRAY (N)
sue=0,
SV AR=0,
£53=0,
SS4=0,
RN=N
c
C MBAN:
po 1 J=1,K
1 SUE=SUN+AFRAY(J) °
AV ER=SOM/RN )
c

C SAGPLE VARIANCE:

[

[+

DO3 1=1,N

Z=ARRAY (L)-AVER

SVAR=SVAReZ*Z

SUNS=SVAR

SVAR=SVAR/ (RN=-1,)

SDEV=SQRT (SVAR) '

CONMPUTE THIRD AND FOURTHB MOMENTS...
DO 4 J=1,8

S53=SS3I+ARRAY (J)**3
SSU=SSU+AFRAY (J) **4

CONTINUE .

SM=AVER

TM3=553-3,#SHASUES+3, #SHASHASUN~-RN* (SHe+3)

TM3=TH3/RN

FM4=SSU-U,sSNeSSI+6, *SHASEPSURS -4, +(SHe*3)SSUMRN® (SAeL)
FNU=FN4 /RN

BETURN
END
SUBROUTINE PSKEW (TM3,5M2,SKEW,VARSK,SDSK,RN)

C THIS SUBROUTINE CALCULATES THE MOMENT OF SKEWNESS AND ITS

C VARIANCT AND STANCAREL CEVIATICY

C
C
[

TMI IS THE 3RD MOMENT
SM2 IS THZ SECCNL MCPENT (VARIANCE)
SKEW WILL CONTAIN THE MEASURE OF SKEWNESS

151,000

1£2,000
153,000
154,000
155,000
15€.,000
157.000
158,000
159.C00
16C.000

1€61.€00

162.C00
163.000
164.C00
165,000
166.€00
1€7.000
168.C00

169.000

170.C00
171.C00
172.C00
173.000
174.CC0
17€.000
176.CC0
177.000
178.CC0
179.000
180.€C0
181,C00
182.€00
183,000
184,000
185.CC0O
18€.C00
187.CC0
188,000
1€9.€00
190,000
191.CC0
192,000
193.CCO
194.000
195.€00
196,000
197.CC0O

198,000

199.CCO
200,000
201.CCO
202.000
203.C00
204,000

- 2€5.C00

206,000
207.000
208,000
2Cs.C00
210,000
211.C00
212.€00
213.0C0
214,000
215.C00
21€.000
217.000
218,000
219.000
220,000
221.C00
242,000
223.€C0
24,000
225.C00
226,000
227.CC0

228.CC0°

229.CC0O
210,000
231.0C0

138



0002
0003
0004

0005

0006

0007
0008
0009
0001

0002

0003
0004
0005

0006
0007

0008
0009
0010

nnNnoonanaann

aon

oo -

[~
(o

c

nnonnn

VARSK WILL CONTAIN ITS VARIANCE

. SDSK WILL CONTAIN ITS STANDARD DEVIATICN

RN IS THE NUMBER CF CESERVATICHS
TK IS K3
SK IS K2

~TK= (RN*RN/{ (RN=1,) * (RN=2.))) *TH3

= (KN/ (RN=1.))*5n2
SKEW=TK/SCRT (SKe*s3)

CALCOLATE VARIAKCE CP.SKEQHESS

GET

YARSK=6., * RN * (RN-1,)
VARSK= vnasx/((au 2 )‘(RN01 )t(anol.))

S.D. CF cK"HNBSS

SDSK=SQRT (VARSK)

BLIURN

END

SUBRCUTINE RKURT(FM4,SM2,FN,LKURT,VAKRT,SDKAT)

THIS SUBRCUTIME CAICULATES A MEASURE CF¥ KUETOSIS

PM4 IS THE UTH MOMENT ABOUT THE MEAN

SM2 IS THE SECONC MCMENT AEOUT TEE MEAN (VARIANCE)

BN IS THE NUMBER OF OLSERVATIONS

DKURT WILL CONTALN ThE MEASURE CE KURTCS1S
VAKRT WILL CONTAIN ITS5 VARIANCE

SDKRT WILL CONTAIN ITS STANLCARL LEVIATION
FK IS K& . ’

AK IS K2

PR=RN*RN/ ((RN=-1,) * (RN-2,) * (RN=3,))
FK=FK* ( (RN+1.)*PN4 - 3, * (RN-1,)2SM29582)
TK=(RN/ (RN=1,)) s5¥2

DKURT=FK/ (TK*TK)

CALCULATE THE VARIANCE OF THE KURIOSIS'

VAKRT=24, * BRK * (RX-1.) #* (RN~-1,)

VAKRT=VAKRT/ { (RN=3,) % (RN=2.) % (AN+3,) ¢ (RN+5.))

C GET STANDARD DEVIATION OF THE KURTOSIS

SDKRT=SCRI(VAKRT)
RETURN
END

232,000
233,000
234,000
235.€00
216,000
227.€00
228,.C00
239.C00
240,000
261,000
242,€00
243,00
244,000
245,000

246.C00°

247.C00
248,000
249,000
250,000
2581.CCC
252,€00
253,.€00
254,€00
252.0C0
256.000
257.€00
258.000
259.CC0
260,000
261.000
262,C00
263,000
2€4,000
265.C00
266,000
267.CC0
268,C00
265.CCO
270.C00
271.C00
272,000
273.CC0

274,000
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0001

0002
0003
0004

0005
0006
0007
000%
0009

0010
001
0012
0013

0014
001%
0016
0017
001te
0019
0020
0021
0022
0023
0024
0025

0026
0027
0028
0029
0001

0002
00013
0004
0005

0006
0007
0008
0009

APPENDIX F

PERFORMANCE ESTIMATION BY THE I'* TECHNIQUE.

APPENCIX P ETRSFCREMANCE ESTIMATION EY TEEZ PI-¢ TECHNICUE

THIS PRCGRAM CAY% BY USEC TC ESTIMATE TEE PERFORMANCE OF SPECTIRAL ANC
TIME DUMAIN ETG PATTERN RECOGNITION SYSTEMNS BY TH PI-* TECHNIQUE.
INPUT:
SLUNIT 4: FEATURE VECTORS AND LALELS
*LUNIT S5: QUANTIZEF FARRMETERS
QUTPUT:
*LUNIT 6: ALL CUTEUT
PARAMETERS:
HEL = NOMBER CF ELEFMENTS IN FEATURE VECTOR
NQUANT = NUMBER OF POSSIBLE QUANTIZATION LEVELS
SD = NUMBER CF ST. L[EV.'S AILCWEL FCR FEATURE VARIATION
IPROB = 0 IF EQUAL A PIORI CLASS PRCB'S ARE TO BE OSEC
IERINT = O TC ERINT TEST RESULTS AT EACH STEP
LAST UPDATE: - . '
OCTCBER 19 1974

nnNoDaONOannnNoNnnNoOnNnOnOnn

an

wKN

REAL DATA {500, 80)

INTEGER 1X(500,80),LEV(500),¥1HF (500)
COMMON /CMAIN/ IX,LEV,NUMP

COKECH /MPRCG/ DATA

READ IN ALL AVAILAELE FEATUFE CATA:

NEL=80

DO 1 I=1,501
1 READ (4, 2, END=13) {(DATA (I,J),J=1,NEL),LEV (I),NUNP ()
© FORMAT(80F14.6,8X,2I4)

NS AMP=1-1

" INITIALIZATION OF PARAMETERS:
IPRCB=) .
IPRINT=1

56 READ(5,55,2ZN0=50) NCUANT,SE
55 PORMAT (I3,F5.0)

c
C 'PI METHOL® OF PZRFORMANCE ESTIMATICN:
4 Low=1
9 THIGH=LOW
8 IF (IHIGH,EC.NSANP)GC TC 7
. IF (NUMP ({IEIGH#1)).NE, NUHP(LOH))GC 10 7
IHIGH=THIGH+1 .
Go TO 8
7 CALL QUANT(LCW,IHIGH,NSAMP,NEL,NCUANT,SD)
CALL TRAIM(LOW,IHIGH,NSAME,NEL, NCUANT)
CALL TEST(LOW,IHIGH,NZL,IPRINT,IPROB)
IF (IHIGH. EQ.NSAMP)GC TC 6
LOWN=THIGH®1
GO 10 9
c .
6 CALL PRINT (NSAMP,NEL,SCUANT, IPRCE)
GO TO 56
50  STCP
END
SUBRCUTINE CUANT (INIL,IENL,NSAME, NEL,NCUANT,ST)
C CONSIDEBS ALL FEATURE VALUES FROM THE TRAINING DATA (IE,NOT
c SAMPLES FROM IMIC,...,1ENL) FCR FACE FEATURE. TEE MIN, MAX, MEAN
c AND ST. DEV. ARE CALCULATEL. ALL FEATURC VALUES ARE THEN CUANTIZEL
c
INTEGER IX (500, 80)
BREAL DATA (500,80) ,CEIN(80),CMAX (80),LAVER(80),LCSCEV(8C),F (8C)
_ COMMON /1,PROG/ DATA
COMNON /CBAIN/ IX
INITIALIZATION:

an

RANSANP=NSAMP~-1-IEND+INID
DO 1 J=1,)EL

CHIN(J) =999999,

DMAYX (J)=-999999,

1.£00
2,000
3.600
4,000
5,000
€.000
7.0C0
8,000
9,000
10.000
11.000
12.000
13.€C0
14,€C0
15,000
16.000

-17.000

18.C€00
19,000
20,000
21.C00
22.000
23.C00
24,€00
25,0C0
26,000
27.CC0
z28.C00
29.CC0
30,000
31.€00
32.000
33.000
34,000
35.€00
3€.000
37.000
2g,C00
3s5.CC0O
40.000
41,000
uz.CC0O
43,.CC0
44,000
45.€00
46,000
47.c00
48,000
49,000
€0.000
51.C00
52.000
53.CC0
£4,000
£5.000
56.000
€7.CCO
e.000
£€9,C€CO
€0,000
61.CC0
62.C00
63.0C0
€4.000
65.0C0
66,000
67.0C0
€8,000
63,000
70,000
71.€00
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0010 .

0011
<0012
0013
0014

0015
0016
- 0017
0018
0019
0020
o021
0022
0023
0024

0025

0026
- 0027
0028
0029
0030

0031
0032
0033
0034
0035
0036
0037

0038
0001

0002
0003
0004
0005

0006
0007
gooe

0009’

0010

Q0119
0012
0013
0014
0015
0016
0017
0018
0019
0020

0021
" 0022
0023
0024
0025

0026 -

0027
0028
0029
0030

0031
0032
0033
0034
0035
Q036
0037
0038
0001

0002
00013

-~ DAVER(J) =0,
1 DSDEV (J)=0.
IP(INID.EQ. 1) GO 10 2
LON=1
IHIGH=INID~1

~C FIND MIN, MAX, M2AN AND SD. UEV. FOR BACH FEATURE:

5 DO 3 I=LCw,IHIGH
o 3 J=1,NEL
IF (CATA (I, J).IT.EPIN(J))EHIN(J)-[ATA(I J)
IP (LATA(I,3) .GT.DNAX (J))DMAX (3) =DATA (I,J)
DAVER (J)=LAVER (J) +CATA (I,J)

3 DSLEV (J)=USDEV(J) ¢+ (DATA(I,J)*DATA(X,J))

IF ((INLGH.EC. NSAEE).CR. {IENC, EC. NSANP)) GO TO U4
2 LOW=T1END+}

IHIGH=NSALP

GO TO S

C  PIND CLASS WIDTH POR LINEAR QUANTIZATION:
4 DO 6 J=1,NEL
DAVER (J) =DAVER (J) /RNSANP .
DSDBV(J)—JORT((DSCEV(J)-(F\SA?P*[PVIR(J)*tAVnR(J)))/(RN‘AHP 1.))
IF (CMIN (J)-.LT. (DAVER (J)-SD*DSDEV (J))) DEIN (J)=CAVER (J)-SC*LCSCEV {J)
IF (LEAX (J).GT. (CAVER (J) +TSTEV (J) *SE)) IMAX (J) =LAVER (J) +SC*CSCEV (J)
6 F(J)= (LCMAX(J)-UMIH (J))/FLOAT (NQUANT)
c
C - QUANTIZE ALL SAMPLE DATA (TRAINING AND TESTING DATA):
DO 10 I=1,NSAEP :
Do 10 J=1,NEL
IX(I,Jd)=(CATA(I,Jd)-CEIN(J))/F ()
IX (I,3)=IK(1,3)+1 _
IF(IX(I,3).1T.1)IX(I,d)=1
10 IF(IK{I,J).GT.NQUANT)IX (I,J)=NQUANT
RETURN

END
SUBRCUTINE TRAIN(LCW,IENC,NSANP,NEL,NCUANT)

INTEGER IX(500,80),LEV(500)
REAL PRCOKD {5, 80, 128),PRCLAS (5)
coerMCN SCEAIN, IX,LEV
COMMON ,/TST/ PRCUND,PRCLAS

c ‘ 5

C INITIALTIZATION:
po 1 I=1,5
PRCLAS (I)=0.

DO 1 J=1,MBL
CO 1 K=1,NQUANT -
1 PRCCND(I,J, k) =0,

c .

C - USE TRAINING CATA TC ESTIPATE PRCE [ISTRIBUTIONS:
IP(LO4.NE.1)GO TO 2
IA=IEND#}

. IB=NSAMP
5 DO 3 I=IA,IE
II=LEV (I)+1
DO 4 J=1,KEL
4 PRCOND (IT,J, IX {I,J))=PRCOND (II,J,1X (I,J))*1.
3 PRCIAS (II)=ERCLAS (II) +1.
IP (IB.EQ.NSANP)GO TO 6
IF (LEND.EC.NSANP)GC TC 6
IA=IEXD+1
IB=NSAMP
GO 1C S
2 IA=1
1B=10W-1
GO TO 5
c
C CRECK TRAINING DATA FOR UNREPRESENTED CLASSES:
6 DO 9 K=1,5
KK=K~-1
9 IF (PRCLAS {K) . EQ.0.)WRITE (6,10) KK
10  FORMAT(/* #*% WARNING: NO SAMPLES FOR LEVEL',I3/)

c

C . APPLY BAYES ESTIMATION PROCEDURE TC PROB MATRICES:

S= PRCLAQ(I)'PRCLAS(Z)OFECIAS(3)4FF(LAS(U)OPRCLAS( )

b0 7 I=1,5

DO 8 J=1,NTL

DO 8 K=1, NQUANT

PRCCHND (I,d,K)= (PRCCHL (I,J,K)y *+1.)/ (PRCLAS (1) 4+FLOAT (NQUANT))

PRCLAS (I} = (PRCLAS (I) +1.) / {5¢5.)

RETURN

SNC

SUBRCUTINE TEST(LCW¥,IENL,NEL, IPRINT, IEFOR)

~

INTEG=R IX(500,40),LEV(500),NUME (500)
REAL CLASS™ (5,5),PRCOND (5,40, 12H) ,PRCLAS (S) ,PTEST (5)

72.000
73.000
74.000
75.000
76,000
77.000
78,000
79.CC0
80,000
€1.C00
82,000
€3.C00
84,000
e5.€co0
86,00

€7.CC0 -

28,000
€9,C00
90,000
91.000
92,000
g3.CC0
94,000
95.CCO
€6.6C0
97.000
98,CCO
99.000
1C0.0C0
101.€00
102,00
103.€00

" 104,.C00

105.000
106.,0C0
107.000
108.CCO
109,000
110.CCO
111.C00
112.€C0
113,000

114,€C0

115,000
116.0C0
117.€00
118,CC0O
119,000

120,€00

121.000
122.C€00
123.C00
124,000
125.000
126.C00
127.0C0
12¢8.000

129,000 °

13C¢.C00
131,000
132.€00
133,000
134,CC0
135,000
136,000
137.000
138.000
139.000
14C.000
141.€00
142,00
143,000
144,.C00
145,000
146.000

“147.000

1ue,.CCo
149.000
15C.CCO
1€1.€00
1£2.0C0
1€3,000
154,000

- 155,.CC0

15€.,000
157.€00

141



0004
0005

0006

0007
0008
0009
0010

0011
0012
0013
0014
0015

0016

0017

. 0018 -

0019

0020

0021
0022

0023
0024
0025
0026
0027
0028
0029
0030
0031
0032

0033

0001

0002
0003
0004
0005

0006

0007
0006
0009
0010
0011
0012
0013
0014
0015
0010
0017

0018

0019

0020
0021
0022
0023
0024
0025
0026
0027
- 0028
0029

0030
0031
0032

0033
- 0034
- 0035
0036
0037
0038
0039
0040
0041

COFNON /CEAIN/ IX,LEV,NUNME
CONMON /TST/ PRCUND,PRCLAS :
COEMCN /PANT/ CLASSH ‘ : .

INITIALIZATION CN FIRST SUEB CAll:

- O

16
13
14

17

18

20
19
21

22

27

23

25
24
26

IF(LOW.NE.1)GO TO 1
Do 2 I=1,5

00 2 J=1,5
CLASSN(I,J) =0,

GET CLASS CCNCITIONAL ERCE ESTIMATES FCR TEST]NG SAMPLE(S):
DO 10 I=LOW,IEND
DO 3 K=1,5
PTEST(K)=0-
DO 4 ICLASS=1,5
L0 4 IEL=1,NEL
PTEST(ICLASS):PTEST(ICLASS)OALOG(FRCONE(ICLASS,IEL,IX(I,I!L)))

INCLUDE A FRICRI CLASS ERCE'S ANL ESTIMATE ANESTHESIA LEVEL:
IP(TPROB.EQ.0)GO TO S
DO 6 ICLASS=1,S
) ETEST(ICLASS)=?TESTIICLASS)*ALOG(PRCLAS(ICLASS))
Ir=1
DO 7 ICLASS=2,5
IP (PTEST(ICLASS). GT.FTEST(IR))IR']CLASS

UPDATE CLASSIPICATICN MATFIX ANC ERINT RESULTS 1F LESIRED:
II=LEV (I} + )
CLASSM(II,IE)=CLASSPF (II,IR)+1. o ~
IP (IPRINT.NE.O)GU TO 10 ’
IRR=IR~1
IP(II.NE.,IR)WRITE {6,8)I,L2V(I),IRR, NUME(I)
IP(I1.EC.IR)WRITE(6,9)I,HNUnP{1),LEV(I)

FORMAT (5X,T3,* WAS FISCLASSIFIELC',13,'-->9,11,5X,°%#¢',13)
FORMAT(SX,13,* (#',I3,'} IS OK: LEVEL',I2)

CONTINUE :

RETURN

END

SUBROUTINE PRINT (NSAMP,NEL,NQUANT,IPRCB)

BREAL CLASSY(5,5),TOTAL (5) ' - : T

COENCN /PENT/ CLASSE

po 78 1Q=1,5

TOTAL(IC) =0.

WRITE (6, V1)

FORMAT(*1°%,20X,* S U M B ARY */7/)

WRITZ (6, 12) NSANP

FORMAT(5X,*TCTAL NUMEER CE PATTERNY SANELES=Y, 13/)

WRITE (6,16)

FORMAT(5X, ®ETHCL CF EERFCRMANCE ESTIMATICN: "PI~-* NETHCD®'/)

IP (IPROB.NE.O)WRITZ {6,13)

IP (IPROB.EQ.O) WRITZ (6, 18)

FORMAT (5X,'UNEQUAL A ERICFI CLASS FRCEABILITIES WERE USED"/)

FORHMAT (5X, "SQUAL A PRIOKI CLASS PROBABILITIES WERE USEC*'/)
. WRIT2(6,17) KEL,NCUANT

FORMAT (5X, %2, ELEMENTS IN FEATURE VICTOR WITH',I&4,"' CUANTIZATICN
1LEVELS PEB PEATURE'/)

SRITE (6 ,18)

PORHAT(///1OX,'CLASSIPICAIION HATRIX~'//)

0K=0,

o 19 I=1,5

D0 20 J=1.5

TOTAL (T) =TOTAL (I) +CLASSH (I,J)

OK=CK#CLASSE (I, 1)

WRITE(6,21) (CLASSM(I,J),Jd=1,5),TOTAL (I}

FORMAT (10X,5F10.2,10%, F6.0)

PERCNT= (OK/FLOAT (NSANP)) *100.

WRITE {6,22) PERCKT,CK

PORMAT{///5X, *#%%4 F8.3,% PERCENT OR',F5.,0,° SAMPLES WERE CLASSIFI
1ED CCRRECTLY.'/)

BX=100.-PERCNT

WRITE (6,27) BX

FORMAT (5X, *##%% MISCLASSIFICATION ERRCR:',F8.3///)

WRITE(6,23)

FORMAT (10X, 'CLASSIFICATICN PRCEAEILITY MATRIX:%//)
Do 24 I=1,5

DO 25 J=1.5

CLASSHM (I,J) =(CLASSM (I,J) /TOTAL(I))*100.

WRITE {6 ,26) (CLASSE (I,J),J=1,5)

FORMAT (10X, 5F10.2)

RETURN

END

158,000

159.CC0
160,000
161.€00
1€2.000
163.0C0
1€4.000
165.000
1€€.€00
167.000

" 168,000

165,000
170.000
171.CC0
172,000
173.000
174,000
175.C00
176.000
177.0C0
178.CC0
179.000

180.000-

181.C00
182.0C0
183.000
184,000
185,000
186,000
187.€00
188.000
189.C00
190,000
191.C00
192,000
193,CC0
194,000
195,000
196.CCC
197.0C0
198.€00
199.000
2€0.C00

201,000

202.000
203.000
2C4,C00
205,C00
2C6.CC0

207.000.

208.0C0
209.000
210.000
211,000
212.C00
213.000
214,000
21%.000
216,000
217.000
218,000
219.000
220,000
221.000
222,00
223.000
224,C00
225,000
226.CC0
2z7.0Q0
228.€00
229.000
230.C00
231,000
232,000
233,000

"234.000

235,000
236.€00
237.€00
2138.0C0
229,000
24¢,C00
241,€00
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0001
0002
0003
0004

0005
000¢
0007
cooe
0009

0010
0011
0012
0013

0014 -

0015
0016
0017
0018
0019

0020
0021
0022
0023
0024
0025
0026

0027
0028
0001

0002
0003
0004
0005

0006
0007

nAaNAaNQchNONAONONNOO0N

APPENDIX G

PERFORMANCE ESTIMATION BY THE U* TECHNIQUE

APPENDIX G FERPCREANCE ESTIMATIUN EY TFE "I* TEEHNIGUE

THIS PRCGRAM CAN BE USEL TC ESTIMATE TEE PERFORMANCE OF SPECTRAL ANC
TIME DUMAIN EEG PATTERN RECOGNITION SYSTEMS BY THE U* TECHNICUE.
INPUT:

SLUNTT 4: NUMBER OF THE SUBJECTS TO BE CONSIDERED

*LUNIT S: FEATURE VECTORS ANL LAEELS

OUTPUT:

*«LUNIT 6: ALL CUTEUT
PARAMETERS:
NEL = NUMBER CF FLEMENTS IN FEATURE VECTOR
NQUANT = NUMBER OF POSSIBLE QUANTIZATION LEVELS
SC = NUMBER CF ST. [EV.'S MLLCWEL FOR FEATURE VARIATION
IPRUB, = 0 IF EQUAL A PIORI CLASS PRCB'S ARE TC BE USEL
IERINT = 0 TC ERINT TEST RESULTS AT EACHE STEP
LAST UPCATE:
JANUARY 20 1975

on

[

.C

AR
10

3
C
c

nnanao

an

12

REAL DATA(SOO 80)

INTEGER IX(500,80), IEV(SOO),NUHP(SOO)
COMMON /CMAIN/ IX,LEV,NOMP

COFMMCN /MERCGy/ LCATA

INITIALIZATIOR CP PARAMETERS:
NEL=13
NQUANT=6U
IPROB=0
sD=5.
IPRINT=0

READ 1IN ALL AVAILABLE FEATURE DATA:
READ(U,10,ENL=12) FTNT
FORMAT (F5.0)
NPTINT=PINT
I=1

1 READ(5,2,ENC=3) (CATA{I,J) ,J=1 NEL),LEV(I) NUNP (I)
FORMAT (1X, 13F9.2,4X,214)
IF(NUHP(I).NE.NPTNT)GC 1C 1
I=1+1
GO TO 1
NSanp=I-1

'y METHCD'. CP PERFCREANCE ESTIMMTICN:
DO 5 I=1,NSAMP
CALL QUANT(I,I,NSAME,KEL,RCUANT,ST)
CALL TRAIN(I,I,NSAMP,NEL,NQUANT)
CcAil TEST(I,I,NEL,IERINT,IEROE)
CALL PRINT(NSAMP,NEL,NQUANT,IPRCB,NPINT)
REWIND 5
GO TO 11

STOP

END

SUBROUTINE QUANT(IMID,IZND,NSANMP,NEL,NCUANT,SD)

CONSIDERS ALL FEATURE VALUES FRCM TFE TRAINING LATA (1E,NOT
SAMPLES FROM INID,...,IEND) POR EACH FEATURE. THE HIN, MAX, MEAN
AND ST. CEV. ARE CAICULATEL. ALL FEATURE VALUES ARE TEEN QUANTIZED

INTZGER IX(500,80)

REAL DATA(SCO,80) ,DMIN (80) ,DMAX (80) ,DAVER (80),DSDEV (80),F (80)
COEMON /MERCG/ CATA

COMMON /CHMAIN/ IX

INITIALTZATION:
RNSAMP=NSAWP-1~- IENEOIHIt
Do 1 J=1,NEL

1.CC0

2.000

3,000

4,00

£.C00

6.000

7.0C0

2.cQ0

9.000
10,000
11.CC0
12,€00
13.€00
14,000
15.C00
16.000
17.0C0
18.C00
19.C00
20,000
21.€00
22,000
23.€00
24,000
25.C00
26.000
27.€C0
28.000
29.C00
30.000
31,600

- 32.000

33.cco
34,000
35.C00

3€.000

37.C€00
38.000
39,.CC0
40,000
41,CC0

- 42,000

43.c00
44,C00
45,00
46,000
47.€C0

4e,€00

49.CC0O
50.000
51.C00
€2,0C00
53.€00
S4,000
£5.C00
$6.000

57.C00

£8.000
£s.CCO
60,000
61,00
€2.000
63,000
64,000
65.000
66,000
67.000
68.000
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000¢
0009
0010
0011
0012
0013
0014

0015
0016
0017
001¢€
0019
0020
0021
0022
0023
0024

0025
0026
0027
002¢
0029
0030

0031
0032
0033
0034
0035
0036
0037
0013¢8
0001

0002
0003
0004

Q005 .

0006
0007
0008
00039
0010
0011

0012
0013
0014
0015
0016
0017
0018
00158

0020 °

0021
0022
0023
002y
0025
0026
0027

0028
0029
0030
0031
0032

0033
0034

DMIN(J)=999999,
DMAX (J) =-699999,
DAVER (J) =0,
1 DSCEV (J) =0, .

IF (IMID.EC.1)GC TC 2
LOW=1
IHIGH=IPIL=1

c

€ FIND MIN, MAX, PZAN ANLC SL. LEV., FCR EACF FEATURE:

-5 DO 3 I=LOW, IHIGH

DO 3 J=1,8%L .
IP{CATA(I,J).LT.DHIN(J))DNIN (3)=DATA (I,J)
IF (CATA{1,3).GT .[PAX(J))EPAX(J)=EATA(1 J)
CAVER (J) =DAVER (J) +DATA (I,J)
3 DSUEV (J)=LSCEV (J) + (LATA (I,J)*LATA(I,J))
: IF ((IHIGH.EO.NSARP) .OR. (IEND.EQ. NSARP))GO TC &
2 LOW=IEND+1 : ,
THIGH=NSANP
GO TI0 S

o FIND CLASS WILTH PCR LINEAR CUANTIZATION:
4 DO 6 J=1,HEL
DAVER (J)=CAVER (J) /RNSANE
DSDEV(J)‘&QRT((DbDVV(J)-(R“SAHPtDAVnR(J)‘DAV“R(J)))/(FNSAHP 1.))
IF (DMIN(J). LT, (CAVER(JY~-SL*LSLEV (J))) [MIN(I)=CAVER{J)-SC*LSLCEVN (J)
IP(CHAX (J) «GT. (DAVER (J) +DSCEV (3) *SD) ) DMAX (J)=DAVER (J) +SD*DSLCEV (J)
6 F(Jd)= (CEAX(J)~-DRIN(J))/FLCAT (NCURNT)
(o4
[ QUANTIIZE ALL SAFPLE LATA (TEAININC AN[ TESTING LATA):
0O 10 I=1,NSANMD. -
DO 10 J=1,HEL"
Ix (I, J)-(LATA(I J)- DHI“(J))/F(J)
IX{I,N=IXx(1,d)*+1
IP(IX(I,J).LT.1)IX (X,3)=)
10 IF (IX{(I,J).GT. NCUANT)IX (I, J)~NQUANT
RETURN
ENE
SUBROUTINE TRAIN {(LOW,IEND,NSAMP,NEL,NCUANT)

INTEGER IFLAG (5),1IX (500,80),LEV (5C0O)
REAL PRCCAND(5,80,128) ,PRCLAS (5)
COMMON /CMAIN/ IX,LEV

COrnoON /TSTy PRCCNC,ERCLAS,IFLAC

c
Cc INITIALIZATION:
50 1 I=1,5
IPLAG (I)=0
PRCLAS (I) =0, . .
DO 1 J=1,KRL
CO 1 K=1,HQUANT
1 PRCCHD(I,d, K) =0,

C  USZ TRAINING CATA TC ESTIMATE PRCE [ISTRIBUTICNS:
IF (LOW.NE.1)GO TO 2
IA=IEND*1
IB=NSANP
S DO 3 I=Ia,IE
II=LEV (I) #1
DO 4. J=1,NFL
PRCOND (II,J, IX (I,J))=PRCOND (XI,J,IX(T,J))+1,
PRCLAS (IT)=ERCLAS (II) +1,
IP (IB.EQ.NSANP)GO TO 6
IF (IEND.EC.NSAMP)GC TC 6
IA=TEND+1
IB=NSANE
GO 10 5
2 IA=1
IB=10N~-1
GO0 TO.S

w &

c .
[ CHECK TRAINING -DATA POR UNREPRESENTED CLASSES:
[ AND PCR CLASSES WITH CNE SAMPLE CNLY:

6 DO 9 K=1,5
KK=K-1 : .
IP (PRCLAS (K) .E0.0.) IFLAG (K) =1

9 IF (FRCLAS (K) .EC.O.)®WRITE (6, 10) KK

10  FORMAT(® * WARNING: NO TRAINING SAMPLES FOR LEVEL',I3)
C .
C  APPLY BAYZS ESTIMATION PROCERURE TC PRGB MATRICES:
S=PRCLAS (1) +PRTLAS (2) ¢EECLAS (3) +FRCLAS (4) +PRCLAS (5)
0o 7 I=1,5

69.CC0O
70.000
71.000
72.000
73.€00
74,600
75.€00
76,000
77.CC0
78.000
79.000
80,000

.€1,€00.

82,000

83,000

E4,.C00

85,00

86,000

87,000

28,000

89,000

90,000

91.000

92.000

93,000

94,000

95,000

96.0C0

97.000

98,CCO

99,000
1€C.000
101.000
102.C00
102,000
104,CCO
105,000
106.0C0
107.C00
108.C00
109,000
11C.CCO
111.000
112.C00
113.€00
114,C00
115,000
116.000
117.CC0O
118.€00
119.000
12C.CCO
121.C00
122.C00

23,000
124,000
125,000
126,000
127.000
128.CCO
129.000
13C.C00
131.000
132,€00
133,000
134,CCO
135,000
136.CCO
137.000
138,.C00
139.0¢0
14C.0C0
141,000
162,000
143,000
144,C00
145,000
146,CCO
147.000
18.CCO
149,000

144



0035
0036
0037

00348 .

0039
0040

0001

0002
0003
000u

- 0005
Q006

0007

0ooe
0009
0010

0011
0012
0013
0014
0015
0016

0017

0018
0019
0020
0021
0022
0023

0024
0025
0026

0027

0028
0029
0030
0031
0032
0033
- 0034
0035
0036
0001

0002
0003
0004
0005
0006
0007
Q008
0009
0010
0011
0012
0013
0014
0015
0016

0017

Q018

0019
0020
0021
0022
0023
0024
0025
0020
0027

n
12

10

30
12
15
16

13

1w

17

50

18

20
19

DO 8 J=1,KEL

DO 8 K=1,NQUANT

PRCCND (I,J,K)= (PRCCKL (I,J,K) +1.)/ (PRCLAS (1) 4FLOAT (NQUANT))
~PRCLAS (I) =(PRCLAS (I) +1, )/(sos )

RETURN -

END

SUBRCUTINE TEST([CH IENL,NEL, IPRINT, IEROE)

INTEGER IFLAG(S),IX(500,80),LEV (500),NUNP (500)

REAL CLASSM (5,5),PRCOND (5,80,128) ,PRCLAS (S) ,PTEST (5)
COrMON ,CFAIN/ IX,LEV,NUME

COMMON /TST/ PRCOUWD,PRCLAS,IFLAG

COFMCN /PRNT/ CLASSH

INITIALIZATION CN FIRST SUEF CALL:
IF (LOW.NE.1)GO TO 1 :
DO" 2 I=1,5
Do 2 J=1,5
CLASSH(I,J) =0,

GET CLASS CCNCITIONAL ERCE ESTINATES FCE TESTING SAMPLE (S):
DO 10 I=LGW,IEYD
IF (IFLAG((LEV(I) +1)). sc.1)co 10 11
Lo 3 k=1,5
PTEST (K) =0,
DO 4 ICLASS=1,5
DO & IBI=1,NEL
PTEST (ICLASS)=PTEST (ICLASS)+ALOG (ERCOND (ICLASS,IEL,IX (I,IEL}))

INCLULDE A PKIORI CLASS PROB'S AND ESTIMATE ANESTHESIA LEVEL.
IF (IPRCE.EQ.0)GC TC S
DO 6 ICLASS=1,5
PTEST (ICLASS)=PTEST (ICLASS) +ALOG (FRCLAS (ICLASS))
IR=1
DO 7 ICLAsSS=2, S
IF(PTEST (ICLASS).GT.PTEST (IR))IR= ICLA‘S

UPDATE CLASSTFICATION MATRIX AND PRINT RESULTS IF DESIRED:

II=LEV(I)+1
CLASSH (II,IN)=CLASSH (I1,IR)+1,

IF (IPRINT.NE.0) GC TC 10

IRR=IR-1

IP(II.NE.IR)WRITE(6,8)I,LEV(I),IFR, NOME (1)

IP (II.CQ.IR)WRITE (6,9)I,NUMP(I),LEV (1)

IF (IFLAG((LEV(T) +1)) .EQ.1) ¥RI1TE (6,12)LEV (1)

FORKAT (* LEVEL®,I2,* NCT TESTEC: CHLY CNE SAMPLE®)
FORMAT (5X,I3,' WAS MISCLASSIFIED®,I3,'~=->',I1,5X,°1%,13)
FORMAT(SX,I3,¢ (#',I3,') IS OK: LEVELY,I2) :
CONTINUE

RETURN

END

SUBRCUTINE ERIST (KSAEE,NEL,NQUANT, IPRCE, NPTNT)

BEAL CLASSN(5,5),TCTAL(5),T0K/0./,TCT/0./

COMMON /DPENT/ CLASSH

WRITE (6,30) NPTNT :

FORMAT (/5X, *SUBJECT NUMBER: *,I3)

WRITZ (6,12) NSAMP

FORMAT (5X, *TOTAL NUMBER OF PATTERN SAFPLES='.13)

WRITZ (6, 15)

FORMAT (5X,* METHCE CF EEFFCRMANCE ISTIMATION: "U® METHOC®?®)
FORMAT (5X, *METHOD OF PERFORMANCE ESTIMATICN: "PI METHCD™')
IF (IPROB.NE.O) WRITE (6,13) .

IF (IPROB. EQ.0) WHITE (6, 14)

FORFAT (5X,'UNECUAL A EFICFI CLASS FRCEABILITIES WERE USEDY)
FORMAT (5X, "EQUAL A" PRIORI CLASS PROBABILITIES WERE USED')
WRITE (6,17) NEL, NCUANT

PORMAT(5X,T2,* ELEMENTS IN FEATCUKRE VECTOR WITH',I4,* CUANTIZATICN
1LEVELS FEF FEATURE')

DO 50 I=1,5

TOTAL (I) =0,

oK=0,

WRITE (6, 18)

FORMAT (//10X, CLASSTFICATICN nnraxx-'//)
0o 19 I=1,5

DO 20 J=1,5
‘TOTAL(I)=TOTAL(I)0CLASSH(I,J)
OK=CK+CLASSP (I,1)

WRITE (b,21) (CLASSA(I,J),Jd=1,5),TCTAL (I)
T=TCTAL{1)+TOTAL (2) *TCTAL (3) *TCTAL (4) +TOTAL (5)

1£C.000

- 11,000

152.€00
1£3.000
154.C00
155.000
156,000

"157.€00

158.CCO
159,000
160,000
161.C00
1€2,000
163.000
1€4,.000
165,000
1€6.000
167,000
168,C00
169.0C0C
170,000
171.CC0
172.000

173.C€C0

174,000
175.€00
17€.000
177.0C0
178.000
179.CC0
180,000
1€1.€00
182,000
183.€00
184,000
185.C00
186,000
1€7.0CC
188,0C0
1€9.000
190,000

191.CC0

192,000

193,.C00 °

194,000
1€5.C00
19€,000
197.CC0
198.C00
199,000
20C.CC0O
201.000
2C€2.0C0
203,000
204,CC0
205,000
2C6.CC0O
207.000
208.cC0
209,000
21C.CCO

211,000

212.€C0
213,000
214.C00

£.C00
216.CCC
217.000
218.CC0
219,000
220.C00
221.€00
222.€00
223,000
224,€00
22¢,000
226,000
227.€00
228,.CCO
229,000
230.000
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0028
0029

~-0030

0031

0032
0033
0034
00135
0036

0037
003¢
0039
o040

21

22

51

11

FORMAT( 10X, 5F10.2, 16X, F6.,0)
PERCNT= (CK/T)*100,
WRITE(b,22) PERCNT,0K

FORFPAT (///5X,"¢*#* ,F8,.3,* BERCERT CB',E5.0,% SAMPLES WERE CLASSIFI

1ED CORRECTLY.'/

TOK=TOK+CK

TOT=TOT+T

TP= (TOK/TCT) %100,

WRITE(6,51) TOK,TOT, TP

FORMAT (5X,*#*#¢ TCTAL CCREECT:
1, 10X, 9 (%, F6.2,") *)

WRITE(6,11)
FORNAT('1 %)
RETURN
EZND

'»F4.0,* OF ", Fu,0,' SAMPLES!

221.000
232.000
223.000
234,000
235.000
236.€00
237.000
23€.0C0
229,000
24€.€00
241,000
242.000
243.000
244,000
20s5.€CO
246,000
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0001
0002
0003
0004
. 0005
0006
0007
0008

0009
0010
0011

0012

0013
0014

0015
0016
0017
0018
0019
0020
0021
0022
0023

0024
0025
0026

0027
0028
0029

0030
0031
© 0032
0033
0034
0035
0036

0037
0038
0039
.0040
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APPENDIX H

APPENCIX H EVALUATION OF K-S STATISTICS FC4 FEA AMPLITUCLE CISIRIB'E
THIS PXROGRAM CALCHLATES D1 (FOR GAUSSIANITY) AND D2 (FCR FIRST-CHRLER
STATICNARITY) FOR EEG [ATA SANMPLEL 2T A FATE OF 64 Hz, TES DATA EAS
PREVIOQUSLY BEEN (DIGITALLY) P FILTERED AT 0.54 HZ AND LP FILTEREL AT
30.0 uz,
INPUT:
sLUNIT 3: INPUT DATA TAPE
«LUNIT S: NUMPEBS CE THE TAFE FILES TC BE ANALYSED
" QUTPUT:

*LUNIT VY: K-S L1 VALUES

*LUNIT 2: K-S D2 VALUES
LAST UPCATE:

JUNE 25 1974

faNOANNNOANOGANAANGD

Cc
C

c
¢

C

c
C

[
o

INTEGER I1/1/,12/2/.8NREC/0/

REAL XA (U4C96),XB(4096),D(7,2,64,6C)
INTEGER NSAFP/8192/,8FLAG/0/,NCERE/Uy.
REAL DATA(8192) -

COFMCN sCATA/ DATA,INLEXE

INDEAF=0

SIGLEV=0.05

SRATE=64,

INPUT ONE CHANNEL OF DATA AND CHANGE SA RATE
3 CALL INPUT (NFIAG,NCHAX)

IF (NFLAG. EQ. 1) GO TO 44,

NREC=NREC+1

DO 10 K=2,8192,2

KK=K/2
10  DATA(KK) =DATA (K)

TEST SEGMENTS OF 2%4N SEC. DURATION,N=0,...,6
DO 1000 K=1,7
NS EC=2% % (K= 1)
N=(NSZC'SBRTS)'0.1 .
NQ=N-1 .
MO= (8/2) =1
CALL KS(NQ,SIGLEV,I1,DTHECT)
CALL KS(HC,SIGLEV.IZ,ETHECZ)
WRITZ (6, 111) NSEC,NQ,nQ,DTHEO1,DTHED2
111 FORFAT (' NSEC=',I13,% UuC=*,15," HC=*,I5,' TLi=*,
1F9.6,° D2=',F9.6)

DO 4 JJ=NSEC, 64,NSEC
1LIB=(JJ-NSEC) *SRATE+0. 1
INDEX=JJ/NSEC

B0 5 J3J=1,N
XA(JJJ)'DATA(IIIP‘JJJ)
5 XB (JJJ)=DATA (LLIN*JJ3J)

CALCUL;TE THE D VALUES AND STORE THEA
n=N/
CALL CDFCEV(XE{1),XE(M+1),N,D2)
CALL DNCBEL (XA,XE,N,L1)
C(K,I2 INUEX,NREC)=D2
4 D(K,I1,INCEX,RREC)=L1
1000 CONTINUE
GO TO 3

OUTPUT ALL D VALUES
44 DO 45 K=1,7
LIM=64/ {2%% (K=1))
DO 45 IREC=1,NREC
WRITE (I1,46) (C(K,I1,1L,IREC),LL=1,L1Y)

1.000
2,000
3,000
4,CCO
£.0C0
€.000
7,000
€.CC0
9.000
1¢.C00

© 11,000

12.€00
13,000
14.C00
15,000
16.€00
17.000
18.000
19.000
2¢.000
z1.C00
22,.€00
23.000
24.C00
25.000
26.C00
27.000
28.€00
29.000
3C.C00
31.000
32.€00
313,000
34,.0C0
35,000
36,000
37.000

-3e.co0

39,000
4c.C00
41,000
42,.C00
43,000
44,C00
4s,CC0
46,000
47,CC0
48,000

49.C00°

€0.000
5$1.C00
£2.000
53.000
4,000
55.C00
56.000
£7.000
58.C00
9,000
60.000
61.000
62.000
63.000
64.C00
65.000
66,000
67.000

‘68.000
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oou1
0042

00643 -

0044

Q001

0002
0003
0004
0005
0006

0007

0008 -

0009
0010

0011
0012
0013

0014
0015
0016
0017
‘001e
0019
0020

0021

0022
- 0023
0024
0001

. 0002
00013
0004

0005
0000
0007
0008
0009

0010
oot
0012
0013

0014
0015
0016
0017

0018
0019
0001

0002
0003
0004
0005

T0006
0007

us

4d

C
C

20

12

14

10

NDnononaan

nao

100

naonn

HRITP(IZ ﬂﬁ)(D(K I2,LL, IREL) LL=1, lIH)
FORMAT (64 FH.6)

STOP -

END

SUBROUTINE INPUT (KFLAG, ICH)

BEADS IN ONE CHANNEL OF DATA SAMPLED AT 1£H HZ.

REAL DATA(B192)

COPMON sDATA/ CATA,INLEXF
INTEGER®2 BLOCK (2048) ,LENY
LUNIT=3

NSKIP=0

READ THE PILE NO
READ (5,20 ,END=10) NPILE
FORMAT(IS)
WRITZ (6,12) NPILE
FORMAT (' s9¢%¢,15)

PREPARZ TO SKIP TO THE APPROPRIATE FILE
ITEMP=NFITZ-INCEXF-1

CALL SKIP(IT2MP,NSKIP,LONIT)
INDEXF=NPILE-}

DO 14 IBLK=1,16

INCK= (IBLK-1) #512

CALL REAL (BLOCK,LEN?1,0,LINE1,LUNIT,E10)
DO 14 ISAn=1,2048,4

IR=INDX+1¢ (ISAN-1) /4

IRR=(ICH-1) +ISAN

DATA (LR)=bLCCK {IRR)

RETURN

NPLAG=1

RETURN
. END

SUBRCUTINE CNCREC(X1,X2,H,E)

THIS SUBR EBRFCRMS THE FCLLCWING FCNS:
1.COMPUTES THE CDP FOR DATA IN X1
2.GCTS SAMELE MEAN ANC VAR VIA “STAT™
3. CALCULATES A CUF FOR THE CUKRESPONDING -
_ NCRMAL DISTWN
"4.FPINDS THE MAX DZV BETWEZIN THE TWO CDP°'S

REAL X1 (N),X2(N)
1D0=0
RN=N

PIRST COHDUTE THE DIST FCN BY SORTING ARRAY VAL'S

CALL SSCRI(X1,N8,3,£10,£10)

GO TO 2

WRITZ(6,1)

FORMAT (% #ssx» SORTING ERRQR ®9s9e?)
RETURN

CAIC A CCF FOR A NORMAL LCIST WITE SAMELE MEAN
AND VARIAUCE,

CALL STAT(X1,N,AVER,SLEV)

CO 100 J3=1,N

ZUL= (X1 (JJ) ~AVER) /STEV

X2 (JJ)=0,5%ERP (ZUL/1.41421)+40,5

NEXT,FIND MAX DBV BETWEEN ARRAY INDICES FOR EZACH SUCCESSIVE VAL
OF X,USING X1 AS THE STANCARC.NCTE:2RRAY INLEX 1->N IS IQUIV TO
0=>N-1 OR 0->1 :

D=0.

DO 3 J=1,N

DEV=ABS ((FLCAT (J) /PLCAT (N)) =-X2(J)) -
IP (CEV,GT.D)D=DEV

RETURN

END

SUBROUTINE STAT (ARRAY,N,AVER,SDEV)

THIS SUBR CCMPUTES THE MEAN ANL STANLCARL CEVIATICK CF THE
SAMPLES STORED IN ABRFAY (N)eeseoae

INITTIALIZATION

DLPCUSICN AFRAY (N)
sun=0.
SVAR=0,

. RN=N

c
C MEAN:

DO 1 J=1,8

 SUNM=SUS+ARPAY (J)

69,000
7C.000
71.€00
72.CC0
73.CC0
74,000
75.€00
. 76,000
77.C00
78.000
79.CC0
80.C00
€1,000
82.000
83.Cc0o
eu,000
85.000
86,000
27.CC0
88,000
€9.C00
90,000
91.C00
92.000
93.C00
-94.C€00
- 95.C00
96.000
97.CC0O
98.€00
$9.C00
100,000
101,€C0
102.000
103.C00

104,000

105.0C0
106.CCC
107.000
10e.CC0O
109.CC0
11C,.CCO
111.000
112.CC0
113,000
114,.CC0
115,000
116.,CC0
117.C00
118.CC0

119,000

12€.CC0
121.000

122.CC0

123,000
124.CC0
125.000
126.C00
127.000
128.CC0
129.000
130.CCO
131.€00
132.CC0
133.000

134.C00

35,000
136.C00
137.000
138.CC0O
139,000
1uc.CCo
141.000
142,000
143,000
144,.CC0
145,000
146.CC0O
147.00¢C
1ug.cco
149,000
15C.000
1£1.0C0

123,000
154,.C00
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000d

0009
0010
0011
0012
0013
0014
0015
0001

0002
0003
0004
" 0005
. 0006

0007
0008
0009
0010
0011
0012
0013

0014
0015
0016
0017

0018
0019

0020

0021
0001

0002
~ 0003

0004
0005
0006
0007
000¢
0009

0010

0011

0012
0013

0014

0015
0016
0017
0018

- 0019

0020
0021

0022
0023
0024

AVER=SU#/BN

[of
C SAHMPLE VARIANCE:

naaannonan

nNonoan

na

C

DO 3 L=1,N

2=ARRAY (L) -AVER

SVAR=SVAR+Z*2Z

SYAR=SVAR/ (RN=1,)
. 'SDEV=SQRT (SVAR)
" RETURN

END .

SUBARCUTINE XS ({NSAME,SIGLEV,NSILES,[CRIT)

" THIS SUBR FINDS THE CRIT VALUE CF [ FOR TEE ONE-SAMPLE

.OR 2-SAMPLE K-S TEST AT THESZ LEVELS CF SIGNIFICANCE:

/0.01,0.05,0.10,0.15,0.20 /

VALUES FOR THE ONE~SAMPLE TEST ARE FROM JASA,P399,1967.

VAIYES FCR 2-SANMELE TEST FRCM AN.M,STAT.,P279,1948.

RESTRICTIONS:SAMPLES MUST BE GREATER THAN 100 AND IK

THE 2-SAMPLE TEST,SIZES MUST EE EQUAL.

REAL DNKS(5)/1.031,0.886,0.805,0.768,0.736/
. REAL TWOKS (5)/1.63,1.36,1.22,1,14,1,07/

I=0 .

RN=NSANP

ROOT=SQRT (RE)

IF (SIGLZV.EC.0.01)
IP (SIGLEV.EQ.0.05)
IF (SIGLEV.TUC.0.,10)
IF(SIGLEV.EQ.0.15)
IP (SIGLEV.PC.0.,20) I
IFP(I.EQ.O)YBITE (6,1)

FORMAT(°® ss* ERROR IN KS *e3 )

Lol R Bl
O I I}
N EWN -

GOUDNESS OF PIT TEST (WITH MEAN AND VAR UNKNOWN)
IF (NSIDES.2C.2)GC TC 2
IP (NSIDES.HE. 1) WRITE(6,1)
DCRIT=DNKS (1) /RCCT
RETURN

THO SAMPLE TEST (EQUAL SAMPLZ SIZES)
FACTCR=SCET (2. /RN)
BCRIT=FACTORSTHOKS (I).

RETURN
END
SUBRCUTINE CDFDEV(X1,X2,N,L)

. THIS SUBR TAKES TWC ARGAYS CF ECUAL SI2E,COMPUTES TEE LIST FECHN.- FCR

EACH,AND THEN CALCULATES THT MAXIMUM-DEVIATION BETWEEN THE TWO L[IST

PCNSeeesJAN 23,1970,

REAL X1 (N) ,X2 (%)
ID=0

#IRST,COMPUTE THE 2 DIST PCNS BY SORTING ARRAY VAL'S
CALL SSCRT(X1,N%,3,810,£10) ‘
CALL SSORT (X2,N,3,610,810)

GO TC 2 ’ .
WRITE(6,1) e
FORMAT(® %+4* SCRTING ERROR ##wsr)
RETURN :

NEXT,FIND MAX DEV EETWEEN AFRAY INLICES FOR EACE SUCCESSIVE VAL
OF X,USING X1 AS THEC STANDARD.NOTE:ARRAY INDEX 1=>N IS EQUIV TOQ

0->N-1 OR 0->1
Do 3 J=1,H
XTENP=X1 (J)

DO & K=J,¥
IF (X2(K) .GE.XTENP) GO "TO 7
CORTINUE

Do 6 1Z%=1,K

I1Z=172-1

IF (X2(K~I2) .LE.XTEMP)GO TO S
CONTINUE

IDTENP=IALS (J-R¢I2Z)
IP(IDTINP.GT, ID) ID=IDTENP
CONTINUE

NOwW,CCMPUTE THE TRUE VAL CF CEVIATICN [ FOR USE IN 2
K-S TEST. .
D=FLCAT (LL) /FLCAT { (¥=-1))
RETUAN
END

SANPLE

15,000
156,00
1£7,€00
158,€C0O
159.€00
160,CCO
161,000
162.€00
163,000
168,000
165,000
166.0C0
167,€C0
168.0C0
169,000
170.€C0O
171.00¢C
172.€C0
173,000
174.€€0
175.0€0
176.0C0
177.000
17€.€C0
179,000
120,00
181,000
182,€00
183,000
184,C00
185.000

186.,C00

187,000
168,000
189,000
19C.C00
191,000
192.0C0

193,000

194,C00
195,000
196.CCO
197,0C0
198.CCO
199,000
200,000
201.CC0
202,00C
2€3,.C00

204,000

149

205,000 -

206,000

-207.C00

208,C00
209,.€00
210,000
211,000
212,000
213.C00
214,000
215.0C0
216,000
217.€00
218,CC0O
219.CC0
220,000
221.€00
222.C00
223.C00
224,000
225.000
226,000
227.0C0
228,000
229.€00
230,000
231.C00
23z2,C00
213,C00
234,000
235.C00
23€.000
237.CC0
228,000
239.C00



0001
0002
0003

© 0004

0005
0006
0007
0008
0009

0010

0011
0012
0013

0014

0015
0016
0017
001e
0019

0020 -

0021

0022 -
0023

0024
0025
0026

0027
0028
0029
0030
0031
0032
0033
0034
-0035
0036
0037
003¢
0039
0040

004y

0042
0043
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APPENDIX I

APPENDIX I EVALUATION OF K-S STATISTICS FOR EZG SPECTRAL DISTRIB®S

THIS PRUGRAM CALCULATZS D2 (FOR SPECTRAL DISTRIBUTICN FUNCTICNS) FCR
EEG DATA SAMEFLEC AT A RATE CF 128 KZ. THEE CATA HAS PREVIOUSLY BCEN
(DIGITALLY) ©P FILTERED AT 0.54 HZ AND LP FILTERED AT 3C.C HZ.
INPUT:

*LUGIT 3: INPUT DATA TAPE

*#LUNRIT 5: NUMBERS COF THE TAFE FILES TO BE ANALYSEL
OUTPUT:

. *LUKIT 2: K-S [2 (SEECTFRAL) VALUES

LAST UPLCATE:

JUNE 25 1974

33

33
33

4

INTEGER I1/1/,12/2/,NREC/0/

REAL SMCOTH(2049) ,52(2049),C (7,64, 60)
CONMON /SHOOTH/ SMOOTH

INTEGTR NSANP/3192/,NELAC/0/,NCEAN/U/
REAL DATA (8192),DATB (4098)

COPMON sTHAN/ CATE

COMMON /DATA/ DATA,INDEXF

INCEXF=0

SIGLEV=0,0S

SRATZ=128.,

INPUT CNE CHANNEL OF. CATA.
CALL INPUT (NFLAG,NCHAN)
IF (NFLAG.EQ.1)GC TC 44
NREC=NREC+*1

. TEST SEGMENTS OF 2%#¢N SEC DURATION,N=0,...,6
DO 1000 K=1,7
NS EC=2%%* (K- 1)
N= (NSEC*SRATZ) +0.1
ISPEC= (NSEC*64) /2¢1
NX=NSEC*)
IX=ISPEC- (2#NSEC)
ISTHEO=IX-NX
CALL KS {ISTHEC,SIGLEV,I2,[THECR)
WRITE (6, 111) NSEC, ISTHZO,DTHEOR :
1 TFORMAT({' NSEC=*,13,' ISTREC=1', 15, CTEEQR=",F9.6)

DO 4 JJ=NSEC,64,KSEC
LLIN=(JJ- HS’C)‘SRATE'O 1
INDEX=JJ/NSEC

CALCULATE THY D VALUES ANL STORE TEEM
NOTE: ONLY TRE SPECTRAL VALUES FROM 1- -30 Hz ARE COMEAREL.
B=8/2
D3=1.
DO 33 J=1,H
DATB (J) =DATA (LLIN+J)
CALL SPECT(¥,SRATE)
Lo 331 J=1, ISPEC
1 S2(J)=SMOOTH (J)
DO 332 J=1,8
2 CATB{J)=DATA (LLIA+M¢J)
CALL SPECT(M,SRATE)
CALL CDFDEV (SMOOTH {NX),S2 (NX) ,IX,D3)
D(K,[NDEX,NREC)=L3

1000 CONTINUE

4y

GO TO 3

OUTIPUT ALL D VALUES
DO 45 K=1,7
LIM=6G4/ (2¢%(K=-1))
DO 45 IREC=1,NREC

1.C00
2.CC0
3.C00
4.CCO
€.00C
6.C00
7.000
g.Cco
3.000
1C.0C0
11.000
12.CC0
13,000
14.€00
15.000
16,00
17.000
18.€00
19,000
20,€00
21,000
22.C00
23.000
24,€00
25,000
26,000

27,000

28,CC0
29,000
jc.cC0
31,000
32.C00

313,000

3u.C00
35.000
36.C00
37.000
3e.CCo
39,000
uc.cco
41.000
42.C00C
43,000

‘T u44.CC0

4c,000
46.,C00
47,000
u8,.Cco0
49.CC0O
5C.CCO
€1.000
52.CC0
£3.,000
54,C00
5,000
56.CCO
£7.00C
5e,.,CC0
$9.000
60.000
€1.C00
62.C00
6§3.000
64,C00
65,000
66.,C00
67.000
68.CCO
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0044y
00us
0046

0047 .

0001

0002
0003
0004
0005
0006
0007
000¢
0009

0016
0011
0012
0013
0014
0015
0016

0017
Q018
0619
0020

0021
0022
0023
0024
0025
0026

0027
002¢
0029
0030

0031
0032
0033
0034
0035
0030
0037
0038

0039
0001

0002
0003
0004
0005
0006

0007
0008
- 0009
0010

0011
0012
0013

0014
0015
0016
0017
0018
0019
0020

aonn

[of
[

[

00

a5
46

99

52
n

51
S0

20
12

14

WRITE(I2,46) (C(X,LL,IREC),LL=1, an)
FORMAT (6UF8.6)

STCP

END
. SUBRCUTINE SPECT (N,SRATE)

COMPUTES THE POWER SFECTRUM vxa METROL OF [UMERMUTH ET AL,
IEEE TRANS AUDIO DEC *70.

COMPLEX TEHAN (2049)

REAL DATA (4096)

COFMMCN , TRAN / TBAR

EQUIVALENCE (TRAN,DATA)

REAL SMCCTH (2049)

COMMON ,/ SMOOTH / SMOOTH

INTEGER B (1)

REAL PI/3.141592,

WINDOW DATA BEPORE FPT,...SEZ EEG HANDBCCK,VS5-A,P50

ILIf= (§/10) 41

LINGP=N~LLIN

XI NT=FLCAT (LLIN)

D0 1 IQ=1,LLIN .

DATA (IQ)=LATA (IQ)*0.5# (1. -COS (PI*FLCAT (I1Q) /XINT))
DO 2 IQ=LIMUP,N

DATA (IQ)=CATA ({IQ)*#0.5% (1. -COS (PI#ELCAT (§-1Q) /XINT))

GET RAW SEECTRAL ESTIFATES VIR FFT -----~=- --
NN (1) =N -
ISIGN==-1

CALL FOUR2(DATA,NN,1,ISIGN,0) _ _
DELT=1./SFATE _
NOTE: EXTRA FACTOR NEEDED BECAUSE. OF TAFZR; (SPECTRA ABE 1-SICEL)
FACTCR= (DELT/FLCAT (K)}*1. 1u625 '

BID=K/2+1

DO 99 I=1,MID

T=CABS(TRAN (1)) -

DATA (I):=T4T*FACTCH

CONTINUE "~ -

SMOOTHED SPECTRAL ESTIMATES OBTAINED -VIA SQUARE WINDGW (2W+1)=?
THE FIRST AND LAST 3 ECINTS ARE NCT SMCOTEEL

po 52 I=1,3

SMCCTH (1) =DATA (I)

po 11 I=1,3

SMCCTH (NIL-3+1)=CATA (NIL-3+1)

. LIN=RID-3

DO 50 I=4,LIN

s0r=0.

DO 51 J=1,7
SUN=SUMN+DATA((I-1) J-3)
SMOOTH(I) =sun/7,.

CONTINUE

RETURN

END

SUBROUTINE INPUT (NPLAG,ICH)

READS IN CNE CHANRNEL CE CATA SANPLEL AT 128 EZ.

REAL DATA(8192)

COMMON /DATA/ DATA,INDEXP
INTEGER*2 BLOCK{2048) ,LEN1
LUNIT=3

NSKIP=0

READ THE FPILE NC ] N
REALD (5, 20, END=10) NPILE

FORMAT (I5)

WRITZ (6, 12)NFILE

FORMAT (' #*#+°,I5)

PREPARE TC SKIP TC THE AFEROPRIATE FILE
ITEMP=NFILE~INDEXF=-1

CALL SKIP(ITEZFP,NSKIE, LUN!T)
INDEXF=NFILE-1

DO 14 IBLK=1,16

INDX=(LBLR-1) %512

CALL READ (BLOCK,LEN1,0,LINZ1,LONIT, 510) R
DO 14 ISAM=1,2048,4

IR=INDX +14 (ISAN-1)/0

IRR= (ICIi-1) ¢ISAN

CATA (IR)=LLCCK (IRR)

€9.,000°

7C.CCO
71,000
72.CC0
73.C00
74.CC0
75.€00
76.CC0
77.000
78.€00
79.000
€0.C00
21,000
82.000
83,000
g4,C00
85,000
£6.C00
87,000
€8.CCO
89.000
90.0C0
91,000
92.C€00
.93.0¢0
94,C00
95,000
96.000
97.000
98.0C0
99.000
1C0.CCO
101.000
102.€00
103,000
104,C00
105.000
1€6.CCC
107.000
108.CC0
103.000

11C.CCO.

111.0C0
112,000
113,000
114,.CC0
115,000

116.C00

117,000
118.0C0
119,000
120.€00
121,000
122,000
123.€00
1z4.C00
125.CC0
126.000
127.C00
128.000
129.000
130.000
131.000
132,000
133.€00
134,000
135.€00
136.000
137.€00
138,000
139.C00
140,000
141,C00
142,000
143,00
144,000
145,€00
146,000
147.C€00
148.0C0
146,0C0
150,000

151.



0021
0022
0023
0024
0001

0002
0001
0004
0005

0006
0007
0008

0009 -

0010
0011
0012
0013
Q014
0015
0001

0002
0003
0004
0005
0006

0007
000¢
0009
0010
0011
0012
0013

0014
0015
0016
0017

0018
0019
0020
. 0021
0001

0002
0003

0004
0005
0006
0007
0008
0009

Qo0

nn

annoanann

10

RETURN

NFLAG=1

RETURN

END

SUBRCUTINE STAT(ABRRY N, \VEB SCEV)

THIS SUBR COMPUTES THE FEAN ANRD STANLARLC [EVIATION OF TEE
SAMPLES STORED IH ARRAY(N) ceecose

INITIALIZATICE

DIMENSTION ARRAY (N)
syn=0,

SV AR=0,

RN=N

NEAN:

po 1 J=1, N
SUM=SUM+ARRAY (J)
AV ER=SOM/RN

SAMPLE VARIANCE:

an o0

[t XaNe Na KL

an

nnn

DO 3 L=1,8

2= ARRAY (L)-AVER

SVAR=SVAR¢Z42Z

SVAR=SYAR/ (RN-1.)

SDEV=SQRT (SVAR)

RETURN

END

SUBROUTINE KS (NSAMP,SIGLEV,NSIDES,DCRIT)

THIS SUBR FINDS THE CRIT VALUE OF D FOR THE CNE-SAMPLE
OR 2-SAMFLE K-S TEST AT TEESE LEVELS OF SIGNIFICARCE:
/0.01,0,05,0.10,0.15,0.20 /

VALUES FCR THE CNE-SAMELF TEST ARE FROM JASA,P399,1967.
VALUES FOR 2~SAMPLE TEST FROM AN M,STAT.,P279,1948.
RESTRICTICAS:SAMPLES MUST EE GREATER TFAN 100 ANE 1IN
THE 2-SAMPLE TEST,SIZES MUST BE ECUAL.

REAL DNKS (5)/1.031,0.886,0.805,0.768,0.736/
REAL TWCKS(5)/1.63,1.36,1.22,1.14,1.07/

1=0

BN=NSANE
ROOT=SQRT (BN} -

IF(SIGLEV.EQ.0.01)I=
IF (SIGLEV.EC.0.05) I=
IP{SIGLEV.EQ.0.10)I=
IP (SIGLEV.EC.0.15) 1=
IP (SIGLEV.EQ.0.20)I=5
IP{I.EQ.0) WRITE (b, 1)

PORMAT (* #%¢ ERRCR IN KS #s ")

1
2
3
4

GOCDNESS CP PIT TEST (WITE MEAN ANL VAR UNKNOWN)
IP (NSIDES.EQ.2) G0 TO 2
IP (NSIDES.NE.1) WRITE (6,1)
DCRIT=DNKS{I) /ROOT
RETURN

TWO SANPLE TEST (ECUAL SAFFLE SIZES)
FACTOR=SQRT (2./Rd)
DCRIT=FACTOR*THWOKS (I)

RETURN
END
SUBROUTINE CDFDEV {X1,X2,N,D)

THIS SUBR T&4KES TWO ARRAYS OF EQUAL SIZE,COMPUTES THE TIST FCN FCR
EACH ,AND THEN CALCULATES THE HAXIPUH [EVIATION BETWEEN TEE 1IWO L[IST.
PCNS.esoJAN 23,1974,

REAL X1 (N),X2 (¥)
ID=0

PIRST,CCMPUTE THE 2 LIST FCNS BY SCRTINC ARRAY VAL'S
CALL SSORT (X1,%,3,610,£510)
CALL SSCRT(X2,N,3,£10, 510)
GO TO 2
WRITZ(6,1)
FORMAT (* %%e% SORTING EFRCE #¢s9?)
-RETURN :

NELiT,PIND MAX DEV MBETWEEN ARRAY INDICES FOR EACH SUCCESSIVE VAL
OF X,USING X1 AS THE STANIAFC.NCTE:ARRAY INCEX 1->N IS EQUIV 10

1€1.€00
12,000
153.C00
154.C00
1€8,000
156.C00
1£7.000
158.CC0O
159,000
160,000
1€1,000
162,0C0
1€3.000
164.C00

1€5.000

166.C00
167,000
168.C00
1€9.000
170.CCO
171,000
172.CC0
173.000
174.CC0
17£.000
176.CCO

"177.0C0

17€.CC0
179.000
160.C00
181,€00
182.€00
183,000
184,CCO

85,000
186.C00
187.000

128.C€00.

185,.C00
19C.CCO
191.0C0
192.CC0
193,600

194,C00°

195.0C0
196.€C0
197.CCO
198.0C0
199,000
200.C00
201,000
202.C00
203.C00
204.CCO
205,000
206.C00
207.000
208.C0C0
209.000

21C.CCO -

211.000
212.CC0
213.C€00
214,000
215,CC0
21€,000
217,000
218,000
218,.CC0
220.000
221.CC0
222,000
223.CC0
224.000
225.CC0O
226,000
227.CC0
228,000
229.C00
220,000
231.€00
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0010 .

0011

0012
0013
0014
0015
0016
0017
0018

0019
0020
0021

0022
0023
0024

c

0->N-1 OR 0->1
DO 3 J=1,8
XT EMNP=X 1(J)

DO 4 K=J,N .

IF (X2 (K) «G2.XTEMP)GC TC ?
CONTINUE

DO 6 IZ2Z=1,K

1z2=122-1

IF (X2 (K=IZ).LlE, XTEFF)GC TC S
CONTINUE

IDTEMP=TABS (J-K+IZ)
IF (IDTENF.GT. ID)IE‘I[T!FE
CONTINUE

NOW, CONPUTE THE TRUE VAL OF DEVIATICN D FOR USE IN 2 SAMELE
K-S TEST.

= FLOAT(ID)/FLOAT((h-1))

RETURN

END

232,000
223,000
224,C00
235.C00
236,000
237.0C0
238,000
239,C00

240,000

241.CC0
242,000
243,000
244,000
245,000
246,000
247,000
248,0C0
249,C00
250,000
251.CC0

$Z.000
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0001
0002
0003
0004
0005
0006

0007
000¢
0003
0010
D RR)
0012

0013

0014
0015
0016
0017
001b
0019
0020

0021

0022
0023
0024
0025
0026
0027
0029

0029
0030
0031
0032
0033

0034
0035
0036
0037
003t
0039
0040
0041
0042

noononnooonNOnNOoannNnn

APPENDIX J =

TESTS OF K-S STATISTICS

APPENLIX J TESTS OF K-S STATISTICS

THIS PROGRAM INTERPRETS THE SIGNIFICANCE CF THE K-S VALUES PRODUCEL

BY MEANS OF THE PRCGRAMS LISTEIL IN "APFENLIX E" ANL WAPPENCIX In,

INPUT:
*LUNIT
*LONIT
*LUNIT

: K-5 [1 (AMPLITULE) VALUES
: K-S D2 (AMPLITUULR) VALUES
K-S L2 (SPECTRAL). VALUES

“w N -

QUTPUT:
"#«IUNIT 7:. GAUSSIAN EERCENT PACGES
*LUHIT B: PIRST-ORDFNR STATICNARY PERCUNTAGES
#LUNIT 9: WILE-SENSE STATICHARY PERCENTAGES
0:

LAST UPDATE:
JUNE 28 1974

W-S STATTONARY AND GAUSSIAN PERCENTAGES

10

[«

[
C

1

10

44

INTEGER I1/1/,12/2/,11/1/,12/2/,13/3/,L4/4/,15K1P1/30,,15KIP/0/

REAL G (7}/7%¥0./,FS (7} /7%0./,%°S17)/7%0./,4SSG (1) /7*0.y
INTEGER IG(7)/63,127,255,511,1023,2C47,8035,

INTEGER IFs(7)/31,63.127,255,511,1023,20u7/

INTZGER ISP(7)/29,58,116,232,464,926,1856/

REAL GKS(?),FSKS(I),SFKS(7),SIGLEV/0.0S/,K(Gu),Y(éU),Z(E“)

CALCULATZ VALUES FCR R~S TESTS AT SCME SIGNIFICANCE LEVEL:
po 1 I=1,7
CALL KS(IG(I),SIGLZV,I1,GK5(I))

. CALL KS(IFS{I),SIGLEV,I2,FSKS(I))
CALL KS (ISP (I),SIGLEV,I2,SEKS (1))
HRIT‘(G,IOZ)IG(I),GKS(I),IFS(I), SK5{I),ISP(T),SEKS (I)

2 FORMAT(' IG=',I5, GKS="',Fd.6," 1FS=°,15,' FESKS=',FE.¢,"

,I5,° SPKS='.F5.6)
CONTINUE

INPUT D VALUTS ANC TEST TEEN:

CALL SKIP(0,ISKIP,1)
CALL SKIP(0,ISKIP,2)
CALL SKIP (0, ISKIP,3)
DO 44 J=1,7
LIN=64/ (2%* (3=-1);
DO & N=1,30
READ (1, 100) (X (L), L=1,LIN)
READ(2,100) (¥(1) ,L=1,1IM)
REAL (3, 100) (2 (L),L=1,LIN)

O FORMAT (64EB.6)
CO 4 Ll=1,LIM
IF (X(L) .LE.GKS (J))G (J) =G {J} +1.
IF (Y (L) .LE.FSKS (J)) ES (J)=ES (J)+1.

IF((Z(L) «LE.SPKS(J)) «AND. (Y(L) . LE.FSKS (J))) WSS (J)=WSS (J) +1,

Icp

IF ((2Z(L).LE.SEKS (J)). ANC. (¥ (L)o LE. FSKS (J)) « ANCa (X (L) LLE.GKS (J)))

1WSS5G (J) =WSSG(J) +1.
CONTINUE

CALL SKIP(0,ISKIP1,1).
CALL SKIP(0,ISKIP1,2)
CALL SKIP(0,ISKIE1,3)
CONTINUE

CALCULATE PERCENTAGES AND CORRECT FOR TYPE I EARORS:
CORREC=1,-SIGLEV
DO § J=1,7
DENCH=((b4*30.) /(249 (J~1))) *CCRREC
XX=J=1
G (J)=(G(J) /TENOCE) #100.,
IF (G (J).GT.100.)G (J)=100.
FS (J)=(FS(J) /CZKCM) *1C0.
IF (FS (J) .GT.100.)FS {(J})=100.
WSS (J) = (NSS (J) /DENOM) #100.

1.000

2.CCC

3.000
4.0C0
£.000

6,000

7.000

8,C00

9.C00
10.€00
11.000
12.€00
13.000
14,000
15.000
16.0C0
17.€00
18.C00
19,000
20.€00
21.000
22.€00
23.0C0
24,C00

© 25,000

26.C00

- 27.000

28.€CO
29,000
3¢.C00
31,000
32.€00
313,000
3u.C00
35.€00
36.000
37.€00
3g.C00
39.€00
40,000

41.€00

u2.0c¢0
43.000
44,000
45.0C0
u6,000
47.C00
48,C00
49,00
€0.000
51.C00
£2.000
53,000
4,000
55.C00

S€.000
57.€00

© 58,000

59.000
60.€00
61.€00
62.000
63,000
64.000
65.000
66,000
67.000

68,000,
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0043

0044

004s

0046
oou]
. 004w
0049

0050
0051
0052
0053
0054
0001

0002
0003
0004
0005
0006

0007
000¢
0009
0010
0011
0012
0013

0014

0015
0016
0017

0018
0019
0020
0021

14
15

fananoaan

2

IF (§S5(J) .GT.100.) WSS (J)=100,
WSSG (J) = (WSSG (J) /LENON) #100,

PREPARE A PLOTPILE:
WRITE (7,%3) XX,0(J),Lu
WRITE (8, 13) XX,FS(J),L3 ... . .
WRILZ(9,13) xX,HS5 {I),12 - -
WRITE (10, 13) XX, HSSG(J),L1
FORMAT (2F10.2,24,I2)

Do 14 J=7,10
WRITE (J, 15) . .
FORHAT('S:WDFI!")
STOP L
END '

SUBROUTINE KS(NSAUP SIGLEV, NSIDES DCRIT)

THIS SUBR PINDS THE CRIT VALUE OF D FOR THE CNE-SAMPLE
OR 2-SAMPLE K-S TEST AT THESEI LEVELS OF SIGNIFICANCE:
/0.01,0.05,0,10,0.15,0,20 / .

VALUES FCR THE CNE-SAMCLE TEST ARE FROM JASA,P399,1967.
VALUES FOR 2-SAMPLE TEST FROUM AN.M,.STAT.,P279, 1948,
RESTRICTICNS:SAMPLES MUST EX GREATER TEAN 100 ANC 1IN

"THE 2-SAMPLT TEST,SIZES MUST BE ECQUAL.

REAL DNKS (5)/1.031%,0.886,0.805,0.768,C.736/
REAL TWCKS(5)/1.63,1.36,1.22,1.14,1,07/

1=0

RN=NSANP

BOOT=SQRT (RN)

IP(SIGLEV.EQ.0.01)I=
IF (SIGLEV.%C.0.05) I=
IP (SIGLEY,E0.0.10)I=
IP (SIGLEV,EC.0.15) I=
IF (SIGLEV.EQ.0.20)I=5

IF (I.EQ.0)WRITE (6, 1) ‘
FORMAT('  *%% ERRCR IN KS %ss )

GOODNESS CP FIT TEST (WITR MEAN ANI VAR UNKNOWN)
IF(NSIDES.2Q.2)GO TO 2
IP (NSIDES.NE.1)WRITE (6,1) o
CCRIT=DNKS (I)/ROOT
RETURN

TWO SAMPLE TEST (ECUAL SAMELE SIZES)
FACTOR=SQRT (2./RN)
DCRIT=FACTICR*TWCKS (I)

RETURN
ZND

6¢.0C0
70.0C0
71.€C0
72.000
73.C00
74,000
75.C00
7€.000
77.CCO
78.000
79.0C0
80,000
21.C€00
82.000
e3,cco
eu,.C00
85,000
86.CCO
27,000
€8.,CC0O
89,000
9C.CCO
$1.000
92.CC0
93.000
94,CC0
95.000
96.C00
97,000
98,.CCO
99,0C0
10¢.0C0
101,000
102.€C0
103,000
104,€CO
105.0C0
1€6.CCO

107,000

1€8.C00
109,0¢¢
11¢.CC0

111.000

112.€0C0
113,000
114,000
115,000
116.CC0
117.000
118,€00
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