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ABSTRACT

Two methods for identifying multiple-input mutliple-output linear
time-invariant discrete systems from input-output data are.derived. The -
selector matrix principle of Gopinath is used and two special classes of
selector matrices that lead to candnical system models are introduced.

Very general input éequences c;n be applied. However, a few restrictions

exist for the initial system state. The input matrix is identified column-
wise. Both methods are considerably better than Gopinath's method in terms
of storage requirements and numerical accuracy.' Tests on a large computer

are performed. One method is implemented on a minicomputer with good results.
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I. INTRODUCTION

Aim of Thesis

Recent advances in the capabilities of process computers-and
corresponding digital interface equipment have made the application of
"modern" control techniques much more feasible. '"Modern'" design methods
for multi-input multi-output linear time-invariant systems require a state-
space model of the system and the problem of identifying such models from
experimental data has therefore been the subject of intepsive research in
recent years. Several identification methods have been proposed and tested
on large computers. They all require extensive data processing, which
makes their implementation on minicomputers inefficient if not impossible.
The aim of this thesis is to develop and test on-line identification al-
gorithms that can be realized efficiently on minicomputers.

Background

It is essential for the practical usefulness of an identification
method that the class of applicable input signals is not restricted to par-
ticular inputs such as impulse function, step function or white noise. The
ideal case would certainly be the identification from normal operating
records. Another practically relevant requirement regards the minimality
of the number of significant parameters of the model and this requires
the choice of a suitable canonical form, whemever this is possible. More-
over the simplicity of the link between the selected state-space repre-
sentation and the set of input-output equations used for the identification
heavily conditions the required amount of computatiomn.

The above problems have been solved for single-input single-

output or multi-input single-output systems [9] but no unified approach



for multi-input multi-output systems that satisfies all previous require-
ments can be found in the literature. So far a number of methods thgt
allow the use of géneral input-output records have been suggested: .Gopin-
ath [1], Budin [2], Bonivente and Guirdozi [3], Ackermann [4] and Bingulac
and Djorovic [8].  Gopinath introduces the principle of a data selector
matrix which enables the identification method to be formulated concisely
and in a manner suitable for digital computation. However, the models
found generally have no canonical structure. The computational part of
this procedure, especially the determination of a selector matrix, has
been improved by Budin. Bonivento and Ackermann both introduce a parti-
cular canonical system model and then identify the reduced number of model
parameters using the corresponding input-output equations. However, the
selection and processing of input-output data is more complicated than
With'Gopinath's selector matrix. Bingulac's procedure leads to a model

in Jordan canonical form and requires the determination of system eigen-
values i.e. polynomial roots. This makes the treatment of noisy data very
difficult, which is a serious drawback.

Outline of work

An examination of éopinath's method in chapter II shows that a
slightly more general definition of the selector matrix allows us to con-
sider both Ackermann's and Bonivento's approach as special cases bf Gopin-
ath's selector matrix formulation. The generality of Gopinath's pfbcedure
justifies its further investigation. Two modified versions ofv?opinath's
method are proposed in chapter III and the implementation of one such
method on a minicomputer is described in chapter IV. Finally chapter V
presents experimental results and examples whereas chapter VI contains the

conclusions.



II. GOPINATH'S METHOD USING SPECIAL SELECTOR MATRICES

2.1 Problem Statement

A linear time-invariant multiple-input multiple-output system can
be represented by the state equations

x(k + 1)

]

A x(k) + B u(k) - (1)

y(K) = Hx(k) @
where x is an n'x 1 statéivéctOr,ﬂy:is an % x 1 output vector, u is an
m x 1 input vector, A is an n x n state transition matrix, B is an n x m
input matrix and H is an £ x n output matrix. The system is thus~speci-
fied by the triplet (A,B,H). (A,B,H) is assumed to be completely observ-
able and controllable because otherwise it is impossible to identify the
system from input-output data.

The problem is to find a model (A,B8,f) of the same dimension as
(A,B,H) from a sequence of inputs u(k) and outputs y(k) such that (A,ﬁ,ﬁ)
simulates the input-output behaviour of (A,B,H). It is clear that the
number of correct models (A,ﬁ,ﬁ) is infinite and that there are input
sequences u(k) which will not be sufficient to uniquely specify any real-
ization (A,ﬁ,ﬁ).

The use of a selector matrix for the processing of data splits
the problem into two parts:
1) The finding of a selecto;tmaéiix. This]is'équivalént=toldétefminihg
order and structure of (A,ﬁ,ﬁ).
2) The identification of all parameters in (A,ﬁ,ﬁ).

This thesis deals with an efficient on-line computer solution of
problem part 2) and a selector matrix is,therefore, always assumed to be

known. Two particular classes of selector matrices are introduced in the

next section and then used throughout the thesis.



A more general class of selector matrices than the one intro-
duced in [1] and used in [2] is defined below.

‘Definition 1:

8 denotes the set of n x d matrices (n < d) with the following

properties:

1) §8-= {Sij} ~where 515 = 0orl | (3)
2) Vi, Sij = 1 for one and only one j, say ji (4)
3) j;ti forizk i,k=1,2,...,n (5)

This definition implies that when premultiplying a d x p matrix A with S
‘the resulting n x p matrix SA consists of n of the rows of A ordered in
accordancg with the unit row vectors of S. Note that with selector ma-
trices as defined in [1] and [2] the n rows in SA are always ordered as
they are in A. However, with selector matrices as defined in Definition
1, the n rows of SA can be ordered in any possible way. We can now
define the following special class of selector matrices.

Definition 2:

Sf‘ denotes the set of n x d matrices with the following proper-

52
ties:
) oy
1) Ssz S (6)
2) d'is an integral multiple of & 7)
T _ 1 ' '
3) Ssz = [S1 Sy - SQJ (8)
where Sk = {gk,ij} are my X d matrices with
ji =k+(1-1) 2 i=1, ... n,
k=1, ... %

and ji is defined as in (4)

4y 21 for k =1, ... % %)



An example of a selector matrix Ssé is

100000

. 001000

S, =]000010
010000 .
000100Q e |

with

100000

Sl =1 001000 and 5
000010 :

The advantage gained

is demonstrated in section 2.3.

as defined below will be shown in sectibn 234,

from the application of

010000
000100

a selector matrix of type 2
The use of a selector matrix of type 3

However, it is not nec-

essary for the understanding of the remainder of the thesis, except section

2.4, to read Definition 3 which is obtained by slightly changing (8) and

(9) in Definition 2.

Definition 3:

1 SS3C$
2) d is an integral multiple of
' — T qt gl
3) SS3 [S1 §y oo %hJ-
where Sk = {Sk,ij} are n, X

k + (i-1)1 i

I3

k

and ji is defined as in (4).

> 1
K = 1

An example of a selector matrix SS

4) n for k = l;;...h

SS3

i
COo OO
coocoo
cCoorO
cococoo
coroo
coooo
orRrooO
coco oo o

P

d

matrices with

(10)

(11)

(12)

(13)

10



2.3 The Algorithm with Selector Matrix Type 2

Gopinath's derivation starts out from the assumption that a sel-

ector matrix S exists such that

S gA = T where T is nonsingular v _ (14)
* k-
AT 1
where
n* = observability index of (A,B,H)
n* S n

Theorem 1 states that there always exists a selector matrix of type 2 that

satisfies (14).

Theorem 1l:

If the system (A,B,H) is completely observable and the matrix
H has the rank 2,.i.e. p[H] = &, then there exists an S € 882 of dimen-

sion n x #n* such that

H

HA .
S|+ = T where T 1s nonsingular (15)
a1 |

The proof for Theorem 1 is descfibed in Appendix 1. The next step

in the procedure is the introduction of a basis for the model (A,ﬁ,ﬁ) such
‘that : 3
s|H =1 | | - e)
égp*-l |

(14) and (16) imply directly that

A=TaAaT?! -
B=1TB . - (17)
f=mTt - o |



It is well known that a state transformation of (A,B,H) with the
transformation matrix T described in (15) leads to a model (A,ﬁ,ﬁ) with the

following observable canonical form:

- )

01 “010...0 0...0 1
: ", . . n r '
0 110...00...00...0]| — b
—o11— ) —uip— | —op—4 ——b,——
i - |[0--0l01 0 0 ...0/] i -
. . . v n, .
0...0l0 I 0...0
—0p1— | —agy— o029
0 010...0 01 OT
X X , b
. . : n
. I ! n L .
0 ...010 ... 0 0 ... 1 12
—Opr— 1 —oapo— g
(18)
I B ! !
X 0...0110...! }
H = | | |
| I |
0 ..... b, 0! !

Because of Theorem 1 we can without loss of generality continue the deri-
vation of Gopinath's input output equation assuming that (&,B,H) satisfies
(18). Simple manipulation of (1), (2) and the equivalence of (A,B,H) and

(A,ﬁ;ﬁ)-yield _

H
_ HA ) _
y(k)={ . x(k) + R; u(k) (19)
ﬁﬁp*—l
where
F'(k) = [y'(k) y'(k+l) ... y'(kin*-1)]

(20)

TK) = [u' (k) u' (k1) ... u'(kbn*—1)]



and
[0 .. 0]
EIE‘A 9;\‘ *
Rl = HAB HB o .. . .
. . (21) -
AnanF— . AA'
HAM2 L. BB o

The multipliéation of (19) by S, using the equations (16) and (18), gives -

08 (k) = x(k) + SR, u(k) - . . (22)
where ,
[0 ... .. 07
bl hd :
b P
byl Paya oot Bp cee O
0... ; eew O
an -~ v - - b ) Igg)
=*1 "ny+l D o o
b LN ] 0
bn1+n2—l n1-|112-2 n1+1
0... 0
Lbn_l see e s se bn-n2+l 0_

Substituting ®(k) and x(k+l) from (22) into
x(k+1) = A R(k) + B u(k).

' yields Gopinath's direct input—outputArelétion

sy ) S ‘ '
. S ¥(ktl) = [AR] (k) o - . ‘_(24)
. where B
A8 o-...
‘R=-RSRl+s ﬁ&ﬁ itz O eee
I - N 1)



(24) is an external description in the sense that the variables u(k), y(k),
can be measured externally. Equation (24) does not involve a system state.

With relation - (18), (23) and (25) it can be verified that

o1 oo 0f. 10 ...010... 07
ST ¥ AR '
0 1,0...0, 0:.0,0...._ 0
—O1i— | —oalp—) | Tapp— | —P1
_______________ m——————
o..obl 0::0. 0,0 ... 0
"2| i AR s
~ 0...010 1. lo...o0l0. 0
[AR] = l —052,.1_' I—;0L22'———| I—Otzg_._‘ ] -p0 (26)
Y- ——— e e
IR I N R
T 0 o% oT Rl o:o 0
n, : [ | | |
l 0...0l0o...0 lo...1l0 .0
v L —ag1— b—oago—I l—ogp— 1 pg—— |

All significant parameters of [AR] appear in the rows n lﬁé#hl, ... n when

1’
a selector:matrix of .type 2 is used. Therefore the number of parameters that

have to be estimated is reduced from (n + mm*)n to (n + mn*)4%.

The determination of [AR] is straightforward. Using (24) we

have
_ N Sy(k) ... Sy(k+n+tmn*-1)
S[Y(+D) ... Fletntmn®)] = [ARR] = = ——— =~ — — — — 27)
o u(k) T (k+ntmn*-1)
which can be written compactly as
S Y, (k+l) =-[AR] U_, (k) (28)

Equation (26) allows us to introduce a reduced selector matrix

Snl

red 1t n2- . ; Sred is 2 xon*g (29)

\

S N .
nl+ n2 +‘ oo ol

2: .

where si is the ith row of S.



Substituting Sre into (28) Wé get

d . .
%11 %p vt %y Py
S g Toa(ktl) = | S21 7" U (k) (30)
%g1 v % Py
which has the form f
Sred Yn*(k+l) - [Ared Rred] Un*(k) (31)

Note that (31) represents the input-output equations derived by Bonivento
and Guirdozi in [3]. Theorem 2 states conditions under which a unique so-

lution for [AR] and therefore [A Rred] can be found.

red
Theorem 2:

If (A,B,H) is completely observable and controllable and S ¢ 852
and u(k) are random variables with joint nonlattice distribution, then
Un*(k) is "almost surély" nonsingular, i.e. there exists a unique solution
for [AR] with probability one.

The proof of this theorem is given in Appendix 1. @ncef[AR] is

known, then ﬁ is found as descki@éﬁ;in [11..

T

~ _‘ ~ An*;l

B =R +AR +...A R, . (32)
where

R ='»[R0Rl . Rn*—l] with each R; an n x m matrix. (33)

Using equation  (18), it can be verified that H is found in the following

manner

hij = Sji fori=1, ... 2 and j =1, ... n (34)

where

'{sij}

H

I
it

{hij} and S

2.4, The Algorithm with Selector Matrix Type 3

As in the preceding section it can be shown that there always

exists a seiegtor matrix of type 3 such that equations (28) and (32)

10



lead to. —0 1 l : : — T
)L 1
: a. = 0 'o-‘,‘{ O nl .
. o . - -
0 1 Lo b
gt & W N R U ‘
0...0f01 o] | b2
N . i: A 0 n ~ :
A= 0...0010,..11 | 12 ~ B= : (35)
— — | —ago—
ey B —
‘o".T._o_:o ... o'IT }_0 1 0 T
. I o ‘. oy
0...0j0...0 | 10 1 b
—on1— |—oh2— | —%n— | s n |
Note that in this particular case equation (31) repreéents'the input-output
representation derived by Ackermann in [4]. The number of significant para-
meters in A is reduced because A is in lower triangular form. Howevers the
output matrix i contains more significant parameters.
[_10 . oo . / -n -
. 0... 10... .o 0
H= (36)
—————_10_...0
N
. hz

Equation (34) can still be used to find

the first h rows of the matrix H.

' The finding of the bottom rows requires the solution of the following system

_of linear equations
- _
yh+1(k) .o
yﬁ+2(k) cee

_y;(k)

Y1 (kH0-1)

11

v, (k+n-1)

——

~ where yj(k) is'thé jth component of y(k).

*[{E(k) ﬁ(k+l)‘.'..;<(k-fn—l):| (37)

,
4
KOO
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The model states x(k), x(k+1)....can be found with equation (22) after A

and B have been computed.

2.5. Summary

It has been shown that a selector matrik of type 2 in conjunction
with equations (28), (32) and (34) leads directly to a canonical observable
model (A,ﬁ,ﬁ) as in (18). It has also been proved that such a selector
matrix exists for any observable and controllable system with

p[H] = &/
and that a unique solution of (28) is guaranteed for a random input se-
quence.

Similarly, a selector matrix of type 3 and the equations (28), (32),
- (34) and (37) yield a model as in (35) and (36). .The proof that a selector
matrix of type 3 always exists and that a unique solution of (28) and (37)
is guaranteed for a random input sequence is analogous to the proof for

selector matrix type 2.



III. Modified Versions of Gopinath's Method

3.1. Method A

A reduction of the matri% dimensions in equation (28) is achieved
by decomposing the identification ekperiment into m intervals. A different
input sequence is used during each interval and the data for one interval
are used to identify A and one coluﬁn of B.

After interchanging columns in R and components in u(k) equation

(24) can be split up in the following way

Sy (k+1) = ASy(k) + Riﬁi(k) + ... Rﬁﬁﬁ(k) (38)
where
Ry = I75 Tiim oo Tiar-Dym]
. . (39)
r, is the ith column of R
and
u ! = 1 k..
u, (k) [ui(k) ui(k+l) cee ui(k+n 1]
ui(k) is the ith component of u(k)
Assuming that
HJ. k) =0 for j + 1 (40)
we get the following partial input-output equation analogous to (24)
— = Sy (k) . ~
Sy (k+l) = [ARi] [ ﬁ;(kj fori=1, ...m (41)
The determination of [Aﬁi] is straightforward. We have
~ Sy (k). .. Sy(kinitn*-1)
S[F(k+D) ... Flktntn¥)] = [AR,] |- — = === ————— (42)
a, (k) u, (k+ntn*-1)
i i
for i = 1, Bl ¢
which can be written compactly as
SYn*(k+l) = [ARi] Uin*(k) for i =1, ...m (43)

A unique solution for [Aﬁﬁ] exists whenever Uin*(k) is nonsingular. We

first assume that the one-input system (A,bi,H) is controllable, where bi



is the ith column of B. Then theorem 2 applies to (A,bi,H), i.e. a unique
solution for [Kﬁg] exists with probability one whenever the input ui(j) is
random. Most likely not all the m systems (A,bi,H) will be controllable.
If (A,bi,H) is not controllable, general conditions that guarantee Uin*(k)
to be nonsingular have not been found. However, whatever input sequence
ui(j) is used, the starting condition

x(k) + 0, and therefore §Kk) + 0 : (44)
is necessary for Uin*(k) to be nonsingular. The proof follows directly
from an equation analogous to (4) in Appendix 1.

Once [Kﬁi] is determined the column bi of ﬁ is found directly

from
b. = F + AF, + AV (45)
i o 1 tt n*-1
where _ o
Ri = [ro tl?""rn*él] with each r, ann X 1 vector.

/

Relation (45) follows from (32) and (39).
3.2, '‘Method B

Particular input sequences allow a modification of (A,B,H) into
an auémented system (é,g@ eliminating the input matrix. The identification
of the augmented system with Gopinath's method will give A directly and is
simplified because the term R in the input-output equation (24) disappears.
ﬁ is then identified columnwise with a different algorithm which does not
require any knowledge about A.
3.2.1. A-Algorithm

' For any input sequence-of the type

u(k+l) = C u(k) for k =1, ... (46)

where C is m x m, the dynamic behaviour of system (1), (2) can be described

by the following augmented state equations

14



15

x(kt+1) = A x(k) 4n
y&k) = H x(k)
where .
x'(k) = {u'(k) x"(k)]
¥R = [u' (k) y' (k)] | g
and (48)
cC1l1 0 Iml| O
A= |=F= , E= |-t
B I A Ot H
It is obvious that
p[H] = m + p[H] (49)
We define the following augmented (mn) x (m+2)n* selector matrix
f f .
Im, 0
S = "‘I““F“}"‘”“‘“1“‘r“‘“' -
ors, ol s,...1014 s (50)
L Loy 2T 7 m¥
> > <>
m® m m

where S = [Sl*S2 oo Sn*] with Si an n x % matrix, is the selector matrix
for the originél system (A,B,H) as used in (15) and (24).

It is now easy to show that selector matrix S can be ased fé:idén—
tify an augmented model (A,ﬁ) with Gopinath's method. Multiplying S with

the observability matrix of (A,H)<and using (15), (48) and (50) gives

: U L B
H %__|_%——— —Im: 0 T 1o '
S |EA =sly~—lg - |"=|" 7T ~T| " |—d_—_|=% D
I:{An*-l [ X :s }:IA X : T
— |
*—
AT L | |
X [ ™™t

Because T is nonsingular T must be nonsingular too, i.e. the augmented sys-

tem (A,H) as defined in (48) is observable. Furthermore S can be used to.
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identify model (ézﬁ). Analogous to (17) we obtain

-zAT] (52)

IS

which leads with (48) and (51) to

] .
= rq,-*—g—:l = E_J_El
X [ TAT X } A (53)

where A is identical to A in (18) and (24).

|>>

Because " (A,H) has no input matrix; equation (24) is reduced to
§ TG+ = A 5 5O (54)
“and equation (24) becomes

5 Y ,(k+l) = A8 Y (k) (55)

with
Y (k) = [¥(k) y(k+l) ... y(k+ntm-1)]
where ij)—;; defined corresponding to (20) and (48). A unique solution
for A is found whenever
u(k) Cu(g) eee C “Tuk)

SY () = |—————m—m— e (56)
) Sy (k) Sy(k+1)...Sy(k+n+m-1)

is nonsingular.

Sufficient and practical relevant conditions for C, u(k) and in-
itial system state x(k) such that (56) is satisfied have not been found.
However, it is necessary that matrix C be cyclic (definition in Appendix 1).
This is no serious restriction. '"The condition of being non-cyclic is caused
by having two identical subsystems embedded in one system and yet completely
decoupled from each other'[15]. In spite of an afbitrary choice of C and
u(k) in all numerical examples a unique A_was.always found, i.e. the al-

gorithm is practical even without sufficient conditions for C, u(k) and x(k).
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3.2.2. B-Algorithm

Simple manipulation of (1) and (2) gives

M an o~ =
HA HB |
V(k+1) = | HAZ |%(k) + | HAB HB (k) (57)
Arpk ' o %- “ ~n
HA™ AR L A8

where y(k) and u(k) are defined in (20).
It is assumed now that (A,ﬁ,ﬁ) is initially in the steady state,

in the sense that

%, = A% + Bu_
. (58)
g T HXs
Let
Yo (k) = y(k) -y,
- A - A
xo(k) = x(k) = X (59
A
uo(k) = u(k) - ug
Substituting y,ﬁ and u in (57) and using (58) gives
yo (1) B, u  (0)
° _ | HAB HB .
(60)
AAn*_lA AA:
yo(n*) HA B ... HB| uo(n*—l)

To simplify the notation y(k), u(k) shall denote yo(k) and uo(k) in the
rest of this section.
In the case of m different input sequences of length n* equation

(60) can be written in the form

;. | - |HAB HB : (61)

AR E=T A ~
a1 .



where
Y. = [yl(k) yz(k) . ym(k)] is an %2:x m matrix 62)
Uk = [ul(k) uz(k) ces um(k)] is an m x m matrix
and
yi(k), k=1, 2, ...n*% represents the ith output sequence
. (63)
ui(k}, k = 0,22, ...n*=1 represents the ith input sequence
The starting values uk(O) of the input sequences are chosen such that
they span the whole input space, i.e.
Uo is non-singular (64)
With (61) we compute sequentially the following. terms
s -1
HB = Yl U0
AAA An _l R
HAB = (Y, - HBU;) U_ (65)
~epk-1s S LN ann SRpeia) -1
HA . B = (Yn* HA BUl .+ —HAB Un*—';?'_HBUﬁ*-—l)Uo
Recalling (16) tone gets B directly by use of (65)
. . n
HB H
s | HAB =s| HA B =B (66)
FAD lB HAR 1

Equation (6§D becomes particularly simple when m'stepfunctions are used
as input sequences such that
U =0, =... = Un*_1 =0 (67)

and

U= U : (68)

Substituting (67) and (68) into (65) gives

AN _ _l

HB =Y, U

~on -1

HAB = (Yz - Yl) U (69)
~ E 3 PN —_

a3 - (v L -y y vt

n* n*-1

18



and for (66)

1Y |
Y: - Y
s |t 1 vl =38 (70)
Partitioning (70) into m columns gives
Fy“i(l) i
S|. =b, fori=1,...m (71)
. u_, i
. . . si
Ly*::L‘(n ) = y;(®-1) |

where bi is the ith’column of B.
Note that the matrix A need not be known in order to solve (65)

and (66) or (70) and (71) for B.

3.3 Comparison with Gopinath's Method

Four aspects of identification that are important in practical
applications are discussed for Gopinath's method and method A and B.

1) order of input-output equations

2) input restrictions

3) number of experiments

4) inditial conditions

1) The order of the systems of linear input-output equations

(28), (43) and (55) varies from method to method. Low order equations
require less computer storage and time and give more accurate results (less
numerical errors). Method A and B are always better than Gopinath's method
in this respect. Method B is the best one in case of few output components.

The following maximum matrix dimensions are obtained in equation (28), (43)

19
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and (55) respectively for a fourth order system with a maximum of 4 in-

puts and 4 outputs.

max (n + mn*) = 20 for Gopinath's method

8 for Method A

max (n + n%)

max (n + m) 8 for method B.

2) Only Gopinath's method facilitates theoretically the identi~
fication of a model (A,ﬁ,ﬁ) from normal operating records but better
results will certainly be achieved with the application of chosen input

signals. All three methods allow the use of simple input sequences like

the square wave illustrated in Figure 3.1.

Figure 3.1.

The following restrictions for the input sequences have to be
considered though:

The lower mn* rows in Un*(k) in equation (28) have to be
linearly independent if we use Gopinath's method. The same is necessary
for the lower n* rows in Uin*(k) in equation (43) for method A whereas
for method B equation (46) haé to be satisfied. Tests showed that the
occurrence of a singular data matrix from sqch restricted input:sequences

is unlikely (Experiment 1 and 2).
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3) The number of necessary experiments is:
1 for Gopinath's method
1 with m interyals for method A
m + 1 for method B.

4) No initial conditions for the system are required by Gop-
inath's method whereas in case A equation (44) has to be satisfied. With
method B the system has to be in the steady-state when the identification -
of B is started. This restriction is balaﬁced off by the advaﬁtage that
the identification of A and B is decoupled in case B.

In conclusion, it may be said that there is a trade off
between experimental and computational requirements. We obtain small
matrices and numeriéal decoupling but require several experiments for
method B on the one hand and obtain large matrices with only one experiment

for Gopinath's method on the other hand.
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IV. IDENTIFICATION OF REAL-TIME SYSTEMS WITH A MINICOMPUTER

4.1 Experiment

Identification method B has been implemented on a NOVA mini-
computer in order to identify models of linear systems realized on the
DONNER 3400 analoé combuter. The experimental setup is shown in Figure
4.1. The NOVA as a central unit supervises the identification experiment,
in particular it controls the A/D conversion and initiates and resets
the input sequences. The computer accepts known system parameters
(dimension, etc.) from the teletype and computes the model parameters from
the measured data after all the samples have been taken. The control
logic generates the desired input sequenée at a rate given by the external
signal generator. The state of the sampling logic tells the waiting
computer when a sample can be taken and when the experiment can be started.

4.2. Software for Minicomputer

Because of the 4K memory limitation of the standard NOVA emph-
asis was put on efficient storage use rather than fast data processing
whenever these two goals were‘incompatible. On<line computation of ~
A and ﬁ would have been possible but would not have resulted in storage
savings as all input—butputfdata;had“td-be stored anyway, for tgleﬁypg o
output and performance evaluation. Lt proved to be simpler to acquire all
experimental data first and then compute A and B cff line. The program
flow chart is shown in Figure 4.2. The experiment supervision and data;
acquisition is performed by the same subroutine in both case A and ,case

B even though it is represented by two different boxes in the flow chart.
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" The computation of_é from equation (55) proved to be insufficient
even for the small disturbances described in Section 4.3. 1In order to
reduce the influence of measurement noise more data has to be included
into the parameter identification. Equation (55) can be generalized to

z=3p+V | (72)
where ZyandiD*are,(n%m)ui d with d = 1,2,... and V is an array of noise

terms. The least squares estimate of A is then

A

A =z’ [-,DD']'l for d > (mén) | (73)
The least squares program described in [7] was used to solve
equation (73) recursively. The algorithm starts out with d = 1 and then
updates_ée with each new data vector. New data vectors are checked for
linear independence until the first unique solution (d = mtn) is reached.
This check enables us to detect cases of singular or nearly singular data
matrices. (The recursive least squares algorithm and the linear independence
check are presented in Appendix 2.)
Matrix B is computed columnwise with formila (71)5 therefore
only step_inpﬁts as given by (67) and (68) can be used. In the presence

of measurement noise we have

y; (1)
S yi(Z) - yi(l) _— =b, = bi+Vfof “fori= 1,0.im o (74)

- ¥, (%) -y, (n*-1)

-

where b, is the estimate.~of columm bi and v is a mnoise vector.
i . c VE
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If we assume that

E[v] =0 (75)

E[ b.-b,]
1 1

and Efvv'] R
then it is possible to reduce the covariance matrix R by averaging N

independent estimates. We compute

~ N A
b,=_1 5 b | (76)
r - . ij
N j=1
where 6,, jth estimate of b,
1] = - N A S
v = ﬁ,. - b
i ij i
Elv.v. ' ={R for j =k (77)
bvyw ' 0 forj %k
and get
E[bi—bi; =E[v] =0
R _ (78)
Elvv'] . = RS

The program enébles the user to repeat the identification of B several
times and it computes the average of all parameter estimates as a final
result,

The program diverges in one point from the described theory.
The selector matrix is replaced by the less general selection vector
because it saves storage and computing time and is easier to initialize.
Whereas selector matrices can sele?t rows out of a data matrix ordered in
any possible way the selection vectorsvseleét the rows as they are ordered
in the data matrix, é.g. s = [1011] indicates that out of 4 rows number
1,3 and 4 are selected in this sequence. The consequence of this is‘that

model (A,ﬁ,ﬁ) will not be in the canonical form described in (18). Example
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"l and 2 in Experiment 1 show, however, that the canonical form is easily
obtained by interchanging of rows and columns in A, rows in B and columns
in H.

4.3 Sources of Error

The experimentally found model is inaccurate even for an exactly
linear system because of noise contaminated system outputs, quantization
errors in the A/D conversion from continuous signals to lZ—bi; binary numbers
and computational errors (truncation, round off). The relative parameter
error caused by all the above effects was less than one percent in all
experiments of Chapter 5. A further error source are nonideal input

signals as indicated by the dashed lines in Figure 4.3.

/
/

/
/
!

/

—

-

|

|

|
N ;
cl) 'i‘ T 47’[5.%]

Figure 4.3.

The computation of model parameters is based on fhe assumption of ideal
input step - funetions and sampling of input and output immediately after
the steps. The measuring of an incorrect input amplitude can be pre-
vented by delaying the sampling of the input by T and the influence of
the nonideal shape on the output can be neglected as long as the condition
T << T

is satisfied. A delay of the input sample was built into the program



and set at 1t = 0.0032 seconds for the experiments in chapter V.

4.4, Storage Allocation and Time Requirements

The storage allocation in the program is such that at the most
fourth order systems with up to four inputs and four outputs can be ident-
ified. The 4000 available storage locations are apportioned as follows

1215 for floating point arithmetic and operating software

(binary loader etc.)
1255 for complete identification package (method B)
1125 for data storage

405 empty

4000 total

It was calculated tﬁat about 4300 storage locations would be required
~for the identification of fifth order systems. An estimation of the
storage needed by Gopinath's procedure for fourth order systems was
carried out under the assumption that only the least squares algorithm
of the complete program would be used. It. was found that about 7500
storage locations would be required, i.e. twice as much as with method
" B or A.

The used recursive least squafes algorithm completes the
cycle for one data vector for a fourth order system in about three
seconds which inaicates the length of the shorteét'possible sampling

interval for real-time identification of A.

28
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V. EXPERIMENTS AND RESULTS

The purpose of the following experiments was to test the pro-
grams written for the proposed identification methods A and B and to
study various properties of the algorithms. Linear systems were either
realized on the analoé computer DONNER 3400 or simulated on the IBM 370.

Models identifieéd on the large computer were tested by comparing
their step response with the éne of the original system over the first
15 sampling intervals whereas models computed on the NOVA with real
system data were compared with models found from a disturbance free

system simulation on the IBM 370.

Experiment 1

The following syétem was simulated and identified on the IBM 370.

0 1 -1 "0:.-1 1 :
-1 1 1 0 2 0 1 0 1 -1'=1}
A= 1 0 1-=2.0 B=1|1 H=lg o--1:"1 0 (0)
l 0 l "—.2 ]. . l V. . N AV
1 0 -1 0 =3 1

The results achieved with four different selector matrices are
shown in Table 5.1. Both identification methods were applied in all four
cases, method A with an input sequence o, o, 0, 0, o, o, O, 0,...and
.Method B with a step input. The equivalence of the models (1), (2), (3),
(4) and system (0) was then verified by matching their step responses.
The errors caused by round-off were less than 10"6 for model parameters
and step response, i.e. both method A and B gave identical and correct

models.



Selection Vector

Selector Matrices

(1)

(2)

(3)

OO HmM

OO -HoOn

oOH o oOom

O OOoOm

Cocooan

}

r 1
N - O
L )

0000_0

=N o [=
s NoNoNelle
oo Hdolo
oo oolo
o moolo
OAU.U‘U“1

— O O Olo

<

HOHOHOHO
[

-1

o
1

L ] <

Table 5.1.
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The four models (1), (2), (3) and (&) demonstrate the relation

between selector matrix and model structure. Selector matrix Sl and S3

are of type 2 and the structures of model (1) and (3) verify equation (18)
and (34). Selector matrix S1 leads to two coupled subsystems of second

and third order in A1 but with S3 the subsystems invA3 are of fourth and

first order. Matrix A4 is in lower triangular form because S4 is of type 3.

~

.Mbdel (4) demoﬁstrates that the complete system'(O) is observable through

the first output component, consequently A, contains only one subsystem

4

and the second row of H4 becoﬁes "general" according to (36). Model (1),
(3) and (4) verify that the selector matrix principle allows one to choose
the order and number of subsystems within certain limits.

The Selector matrices S1 and 52 select the 'same rows in a

_different_order where S1 is of type 2 and 5, has a corresponding selection

vector. - The models (1) and (2) are hence véfy closely related. " An

exchange of rows and chumns in A1 after the followingbscheme

253, 3+5,4+2, 5+4
gives A2. In Bl only the rows and in Hl only the columns have to be

~

exchanged in order to get B, and H,.

" Experiment 2
The following continuous third order system with two inputs

and two outputs. was realized on the analog computer. .

[ 0.0 1.0 0.0 2.0 2.0
x=|-0.04 0.1 0.0 |'x +_ | 0.1 0.0]u o
| 0.0 0.0 -0.08 1.0 0.0 -




A sampling period period T = 3 seconds, n* = 2 and the selec-

tion vector [1 110}

model.

were chosen for the identification of a discrete

~

The input sequence for the A-identification is shown below -

0.5
U
to0.03 T (sec)
0.5
U, y |
0.03 7 (Sec)
sampling
Pulse
-
_ t (sec)
Figure 5.1.

Steps on input 1 respect
column .1 respectively 2
The model comp

in Chapter 3 was

~ [ 0.00000
A= 0.72637
| -0.58098
s_[10 o0
. 0.0 1.0

System (5) was

The resulting model was

. | 0.00000
A= | 0.73002
| -0.58131
s_[10 o0
| 0.0 1.0

ively 2 were used for the identification of
of B.

uted on the NOVA with real data as described

-0.00000 1.00000 ~ -3.44633 -6.03377
0.69602 -0.92843| B = 6.03390 5.68480 (6)
0.24383- 1.53274 -3.48022 -4.76172

o.i]
0.0

also simulated and identified on the IBM 370.

0.00000 1.00000 | . -3.47356 -5.98833
0.70000: -0.92806 | B = 6.06758 5.67127
0.24084 1.52562 -3.46499 -4.74163

o.éJ (7)
0.0
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| Figﬁre 5.2; shows that the free motion_(ub=]0) of the analog
system andbthe simulated system are nearly identical. The relative dif-
ference between (6) and (7) exceeds 1% for only one parameter in &. This
discrepancy is caused by the differencé between tﬁe analog system and

its simulation as well as the error sources mentioned in Section 4,3.

Repetitions of the experiment with changed input amplitudes

S u, = u, = 0.35 or with exchanged u  and u

1 1

" Experiments were also carried through under the assumption of incorrect

o gave results of the same accuracy.
system orders 4 and 2. The case n % 4 with real system and simulated

data resulted‘in linear dependent data vectofs.‘ Consequently, no model
parametérs could bg'computed. Model paraﬁeters,were alwayé-found in the
case n = 2, However, the parameters depended cn the input amplitudes

and the initial state ofvthe Systém and Qere therefore meaningless.

Experiment 3

Model (6) found in experiment 2 can be used for the design of

‘a digital controller for_thé analog system (5); - A suboptimal control

was chosen to apprbximately minimize the performancé function

. N-1 . |
T = x'@M)Q x(N) + I x'K)Q.x(k) + u'(k)Q., u(k)
o k=0 1 2
with
N =15 , :
2 -1 -1 . 20 o B ,
Q =Q =1]-1 1 1 ~and Q, =" ‘ 9
o 1 -1 o1 2.»0 LT

- 20

- where x(k) is the observed state of model (ﬁ,ﬁ;ﬁ).
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A

Yy ¥, (Volts)

Yy with u = ~Fx
«—= Analog Computer
vy with u = 0
0 Simulation
Yy with u = -Fx

Yy with u =

~e Analog Computer
0
O Simulation

T = 3 sec

t (sec)

Figure 5.2.



The formulas for the computation of F and the state observation
are given in Appendix 3. The experimental scheme is shown in Figure 4.1.,
where the computer controlled stepping motors coupled with precision
potentionmeters set the inputs according to (8) after each sampling
pulse. F was computed on the NOVA in 30 seconds before the start of the
control sequence.

Figure 5.2. compares for an initial state

x'(0) = [3.75 -1.0 6.25] y'(0) = [1.5 3.75]
the output obtained with control (8) with the open-loop case with control
u(k) = 0 for all stages. The potentiometer control voltages are shown
in Figure 5.4. Note the zero-input at stage 0 resulting from the fact
thét the first state observation was only possible at stage 1.

Control (8) was also simulated on the IBM 370 and the obtained
output data are compared with the real output in Figure 5.3. The oscil-
lation of the real response around the simulated undisturbed output has
two main reasons: The input voltage can only be adjusted stepwise,

0.025 V per motorstep, and the setting of the second potentiometer is

always delayed until the first input is set. The delay in case of a

0.5 volt step for input 1 is about 0.3 seconds. Further error sources
y»@re=£helinaccuracy of model (6),1Fhe ramp-- instead of step-function pro-
.dcégéed”by~the,s;epging mbtof anq}méasurementéhoise;” o

meagr! "mosE
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]
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VI. CONCLUSIONS
The purpose of this thesis is to identify multi-input multi-output
linear systems on-line on a minicomputer. The selector matrix method

of Gopinath is employed for the derivation of two new identification

methods. Both methods are successfully tested with different input

sequences for various systems on a large computer. The implementation

of method B on a NOVA minicomputer for the identification of systems sim-

ulated on an analog computer gives an estimated 50% storage saving in
comparison with Gopinath's method and very accurate results. The main
features of the two methods are:

1) Less computational requirements (less storage, more accuracy) than
Gopinath's method.

2) Simple input sequences can be used. The few existing restrictions"
prove to be insignificant for practical applications.

3) Each column of input matrix B is identified from different data. Iq
method B the identification of the state transition matrix A and the
input matrix B are completely decoupled.

4) Some restrictions for the initial system state exist but they can
be satisfied quite easily.

5) The selector matrix has to be known in advance. Two classes of
selector matrixes that lead to canonical models are proposed and
tested.

The main problem that remains to be solved is the extension of

the proposed methods to the case of noise contaminated data. Both
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methods as well as Gopinath's procedure lead to a system of linear
equations as shown below

Dl = PD2 + Vv ' D)

where D1 and D2 contain measured data, P is the array of unknown fixed
parameters and V is an array of measurement noise terms. The classical
method of least squares computes the estimate P such that the cost

function

J = - PD - PD)'
trace (D1 2) (Dl PDZ) 2)

is minimized. However, even independent measurement errors (additive
noise), i.e.

y(k) = Hx(k) + n(k)
result in correlated residual vectors in (1). The reason for this is
that any component of the output vector y(k) may appear in more than one
column of D2. As a consequence of correlated residual vectors fhe least
squares estimate will be biased. This bias can be eliminated by the use
of one of the many sophisticatea estimation methods described in [9],
[13] and [14].

Another remaining problem is the finding of the selector matrix.
An efficient algorithm to determine selector matrices from noisy data
would certainly make the proposed identification methods more useful.

The question of "optimal" input sequences with respect to "good" para-

meter estimates is another problem that requires further investigation.
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Proof of Theorem 1:

Assuming that

" -where

™Mo

n
i=1

1

—h—]
—_—h—
2
——h —
L 2 -
H
HA
S
gan*t

' APPENDIX 1

(1)

(2)

= 1n and n#i,niz; for i=1,..;2

Luenberger [5] has shown that for a completely observable system (A,B,H)

with p[H] = % and observability coefficient n* there exists a sequence

N,y Nyse.elly such that T given by (15) is nonsiugﬁlar q.e.d.

Proof of Theorem 2:

Using the known relation

Sy (k).

H
H

]
/2]

A

. *—
HAP 1

Tx(k) + SR, (k)

0;..'
HB 0.. .
if(k) -(3)
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we get T SR, x(k) ... x(k+ntmn*-1)
A T L Y T T =aqp (4)
n |
(k). .. u(ktntmn*-1
0 : Imn*: a(k) u(ktn¥mn {

The (n+mn*) x (n+mn*) matrix Q is nonsingular because T is nonsingular
(15) and therefore

U, ()T = o [P]
The rest of the proof follows from Lemma 2 in Gopinath's paper [1].

Definition of a Cyclic Matrix:

C is an m x m matrix and u(k) is:'m x lu -C-is eyclic if thetre exists
u(k) such that the matrix
o ) Cu(l). ... Cru(k) ]

is nonsingular.



APPENDIX 2

The Recursive Least Squares Algorithm of Tapp [7].

The relation between a collection of input-output data and
model parameters was shown in (72) to be given by

Z=AD+V (€))

where

Z = Z] Zyees zp and D = dl d2... dP are s X p ¢

~

A is an s x s matrix of unknown fixed parameters and V is an array of
noise terms. The least squares estimate ée of the parameters é_mini—
mizes the cost
J=tr - A Z - AD)'
trace (Z éeD) ( A, ) (2)

and can be computed recursively as follows with k = 1,2....p

¢ = (T-¢q_ ;) d (3
_ -1
e = o (oge k) *)
Qk=le k’Qk O0at k=20 (5)
k<s = - +ed d + e e/
Re = Reg ~ Beordeep — aediBior oo adeer toeey s
Rk =0atk=20 (6)

Be=Bate (- Gh ) s A =0atk 7

b = P qd (1+dppy 1d)7t | (@)
p>k>s Pk = Pk-l bkdkPk 1° -k = Rk at k = s 9)

~ _ A - "‘ A ="

Aok T Ae k-1 TPk (zk dde o1 0 Ak T Ak

from (7) at k = s (10)

Whenever the first s data vectors'dl;d .dS are linearly dependent,

g
the equation (3) will give

¢ = (- Qy) & =0
Since the recursive least squares procedure and condition (56) require
that dl’d2 .dS are linearly independent, the value of R for a new data

vector is an extremly useful indicator of linear independency.



43

APPENDIX 3

Suboptimal Control:

The solution of the optimal control problem for the deterministic
system
x(k + 1) = A x(k) + B u(k) : (1
with the criterion
N-1 :
J = x' (DQuEN) x' (k)Qyx (k) + u' (K)Qyu(k) 2)
k=0 '

is a time dependent feedback

uk) = -F(k) x(k) (3
where

F(k) = [Q, + B'S(k+1)B]~1B'S (k+1)A

S(k) = [A - BF(K)]'S(k+1)A + Q (4)

s = Q

The matrices Q0 and Ql be symmetric and nonnegative, the matrix Q2 be
positive definite.

It is known that F(k) and S(k) asymptotically approach a "steady
state" value for decreasing k. The suboptimal control

u(k) = -F(0) x(k) = -F x(k) . (5)
is a good approximation of (3) because F(k) departs significantly from its
asymptotic value only over the terminal stages of the process when x(k) is
already small. The larger the N the better the approximation will be. The
relative increase of the cost J for suboptimal control of the system in

experiment 3 was computed. It was less than 3% for N = 15.



Observer:

The particular structure of (A,ﬁ,ﬁ) described in (18) gives a very
simple state observer. At stage k + n*- 1 the past model state §(k) is found
from (22)

x(k) =S §(k) - SR, (k)

where u(k) and y(k) are defined in (20) and SR, has the form in (23). By re-

1
peated use of

x(k + 1) = A X(k) + B uk) and u(k),ulitl)...u(k+n*-2)
we get the present model state x(k+n*—l). Note that the first observation is

. * v .
possible at stage n' - 1 of the process, therefore an n* as small as possible

should be chosen for the identification (see ekperiment 1).
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