
TRAFFIC ENGINEERING METHODS FOR A NETWORK
PROCESSOR BASED MULTIMEDIA ROUTER

By

Amr Elramly

B.Sc. Electrical and Computer Engineering, Ein Shams University, 1982

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

Electrical and Computer Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

July 2006

© Amr Elramly, 2006

ABSTRACT
The thesis proposes methods to build network processor based multimedia router that

provides more services than what is offered by the most expensive network routers. The

new methods provide scalability to serve hundreds of thousands of multimedia streams

and serve fast enough to meet the low latency required by the multimedia application.

The first method proposed is a proxy agent that turns the router into multimedia aware

router by preparing the profiling and the routing information for the forwarder and the

scheduler, which simplifies the processes required for the rest of the router operation. The

second method is Lowest Credit Weighted Fair Queuing or LCWFQ scheduler, that

achieves a fairness index of 1 (One) and a work order of 0(1) which is similar to the

famous Deficit Round Robin (DRR) scheduling algorithm, except that the LCWFQ

avoids the DRR weakness in implementation. The third method is an Adaptive Weight

Adjustment (AWA) traffic shaper that the Internet Service Provider (ISP) may use when

the total ISP commitments to the subscribers are more than what the network can handle.

The A W A also serves the bursty streams when conflicting with the assigned SLA while

maintains fair services to non-bursty traffic. The forth method is a three level memory

index that fast search a record in the forwarding table where the number of memory

accesses is always three no matter how large is the forwarding table. The thesis also

includes two methods to translate the Service Level Agreement (SLA) into scheduling

profiles and to report any bandwidth over-usage to help redefining the subscriber SLA.

The proposed methods are designed to fit the network processors abilities to implement

loosely coupled profiling, traffic shaping and scheduling.

n

Table of Contents
ABSTRACT ii
Table of Contents iii
List of Tables v
List of Figures vi
List of Acronyms and Symbols vii
Acknowledgement ix
Dedication x
1 Introduction 1

1.1 Contributi ons 2
1.1.1 Architecture Design of SMM Router 2
1.1.2 LCWFQ Scheduler 3
1.1.3 Adaptive Weight Adjustment Traffic Shaper 4
1.1.4 Other Contributions 4

1.2 Thesis Outline 4
2 Network Processors 6

2.1 Introduction 6
2.2 Micro-engines 7

2.2.1 Registers 7
2.3 Memory.. 9

3 Network Processor Based Multimedia Router 10
3.1 Introduction 10
3.2 Proxy Agent - Proxy Server Relationship 13
3.3 Architecture 14
3.4 The Ingress 14
3.5 The Proxy Agent 15
3.6 The SMM Forwarder 18
3.7 The Forwarder 19

3.7.1 Three-Levels Indexing 20
3.8 The Scheduler 22
3.9 The Egress Module 22

4 Selection of a Suitable Scheduler 23
4.1 Introduction 23
4.2 First-In-First-Out (FIFO) 23
4.3 Simple Round Robin 23
4.4 Deficit Round Robin 24

4.4.1 DRR Weakness 25
4.5 The SFQ and SCFQ 25

5 Scheduler and Traffic Shaper 26
5.1 Introduction .26

5.1.1 Per-Flow scheduling Vs Aggregate Scheduling 26
5.1.2 Forwarder, Profiler and Scheduler relationship 27

5.1.2.1 Profiler Processing Cost 28

i n

5.2 The Profiler 30
5.3 Adaptive Weight Adjustment 32

5.3.1 Formulas and mechanism 32
5.3.2 AWA Traffic Shaper Performance 37

5.4 LCWFQ Scheduler 39
5.4.1 Assumptions and Notations 39
5.4.2 The LCWFQ Name Origin 39
5.4.3 LCWFQ Concept 39
5.4.4 LCWFQ Operation 41

5.5 Performance Analysis of LCWFQ 43
5.5.1 Computational Complexity 43
5.5.2 Startup Latency 43

5.6 Service Level Agreement (SLA) 44
5.7 FIFO-Effect 47
5.8 FIFO-Effect Suppression 50

5.8.1 FIFO-Effect Suppression Mechanism 51
6 Simulation and Results 56

6.1 Simulation Overview 56
6.2 Traffic Generation 57

6.2.1 Traffic Generation Using the Bernoulli's Process 57
6.2.2 Results of Traffic Generation 59

6.3 Simulation 61
6.3.1 Scheduling with Fixed Bandwidth 61
6.3.2 Scheduling with Adapted Weight Adjustment. 63
6.3.3 Fairness Index diagrams 64
6.3.4 Simulation of the FIFO effect 68

6.4 Memory Access Overhead Estimates 69
7 Conclusion and Future Work 72
8 Bibliography 74
9 Appendix A: Class Description 77

9.1 Program Execution Overview 77
9.2 Class Description 78

9.2.1 BWShape 78
9.2.2 CSchedulerDlg 78
9.2.3 Queue 80
9.2.4 SchedulerSim 82

9.2.4.1 Setup 82
9.2.4.2 SimData 82
9.2.4.3 QueueLineParam 82
9.2.4.4 QParams 83
9.2.4.5 Packet 83
9.2.4.6 Profile 83
9.2.4.7 Node 83
9.2.4.8 MaxAvgFileNamelnputDialog 83
9.2.4.9 DRRQuantum 83

10 Appendix B: GUI Screen Shots 84

iv

List of Tables
Table 5.1: Illustration of Traffic shaping in the case of four profiles 34
Table 5.2: Illustration of Traffic shaping in the case of nine profiles 36
Table 5.3: Numerical example of the scheduler 41
Table 5.4: Illustration of Profiling based on a Service Level Agreement 45
Table 6.1: Bandwidth quota assignment assumed by the SLA Manager 61
Table 6.2: Typical Read/Write time for the router modules 71

v

List of Figures
Figure 3.1: Simple Diagram of the proposed router architecture 10
Figure 3.2: Packet Classifying & Forwarding Diagram 12
Figure 3.3: Proxy Agent - Proxy Server Relationship Diagram 13
Figure 3.4: Detailed architecture of the SMM Router 14
Figure 3.5: Operational relationship between the Core and the Proxy Agent 16
Figure 3.6: Relationship between Forwarding and routing tables 17
Figure 3.7: Three Levels Indexing 20
Figure 3.8: Forwarding Table Structure 21
Figure 5.1: An illustration of the profiling mechanism for three profiles 28
Figure 5.2: ASD Architecture 31
Figure 5.3: BW adjustment performed by the Traffic Shaper in case of four profiles 35
Figure 5.4: BW adjustment performed by the Traffic Shaper in case of nine profiles 35
Figure 5.5: Adaptive Weight Adjustment for profile 0 37
Figure 5.6: Adaptive Weight Adjustment for profile 8 38
Figure 5.7: Adaptive Weight Adjustment for profile 4 38
Figure 5.8 Diagram showing the FIFO Effect 50
Figure 5.9 Illustration of the Scheduling and the FIFO-Effect 52
Figure 6.1 The Simulator Schematic Diagram 56
Figure 6.2 Sample of Generated Packets Length Variation 60
Figure 6.3 Generated packets arrivals per profile for a case of four bursts 60
Figure 6.4 The average delay with fixed BAV assigned 62
Figure 6.5 The maximum delay with fixed BAV assigned 62
Figure 6.6: Average delay with adapted weight assignment 63
Figure 6.7 The maximum delay with adapted weight assignment 64
Figure 6.8 Fairness measurement of the FIFO scheduling algorithm 65
Figure 6.9 Fairness measurement of the RR scheduling algorithm 66
Figure 6.10 Fairness measurement of the DRR scheduling algorithm 66
Figure 6.11 Fairness measurement of the LCWFQ scheduling algorithm 67
Figure 6.12 The Average delay when the Egress queue size is 1000 packets 69
Figure 10.1: Main Setup Screen 84
Figure 10.2: The Queue and Line Parameters 84
Figure 10.3: Simulation in initial mode before setup 85
Figure 10.4: Simulation completed shows the average delay and maximum delay 85
Figure 10.5: The simulator reports on profiles that have more than their shares 85

List of Acronyms and Symbols
ASD Adaptive Scheduling Device

A W A Adaptive Weight Adjustment

DC Deficit Counter

DRR Deficit Round Robin

ERR Elastic Round Robin

GPS Generalized Processor Sharing

IP Internet Protocol

ISP Internet Service Provider

LCWFQ Lowest Credit Weighted Fair Queuing

LR Latency Rate

LI Lawful Intercept

MRR Mini Round Robin

NP Network Processor

PDRR Pre-order Deficit Round Robin

PERR Prioritized Elastic Round Robin

QoS Quality of Service

RF Relative Fairness

RFB Relative Fairness Bound

RR Round Robin

SC Surplus Counter

SCFQ Self-Clocked Fair Queuing

SFF Smallest Finish-time First

SFQ Start-time Fair Queuing

SLA Service Level Agreement

S M M Selective MultiMedia

SRR Surplus Round Robin

SSF Smallest Start-time First

T E Traffic Engineering

U A User Agent

VoIP Voice over IP

WF2Q Worst-case Fair Weighted Fair Queuing

WFQ Weighted Fair Queuing

WRR Weighted Round Robin

Acknowledgement
I would like to express my sincere gratitude and appreciation to my supervisor, Professor

Hussein Alnuweiri for his encouragement and support at all levels. Dr. Hussein

Alnuweiri has constantly guided me to remain focused on achieving my goal and

exploring in depth and many thanks for his support in funding this research.

I would like to thank Dr. Steve Wilton and Dr. Rabab Kreidieh Ward for agreeing to be

on my thesis committee and reviewing my thesis.

I would like to thank all the people who made this work possible. Thanks to Mollalign

Assefa for providing expertise C++ and for the help in lab experiments. I would like also

to thank Yasser P. Fallah and Tariq Al-Khasib for the critical comments and the helpful

suggestions.

I really appreciate the wonderful Research Assistance program provided by The

University of British Columbia. The program helped me to give up my previous job and

get dedicated for my thesis. Thanks to UTStarcom for offering better job afterwards and

funding the last part of the research. I would like to mention my mangers, Wael Menyawi

and Jack Mar for their support in the last two years and Joe Perrella for the appreciation.

My gratefulness is to my wife Mosheera for the inspiration and the moral support.

Raising four kids is challenging when living on one income most of the time.

ix

Dedication

lb Mosfieera

X

1 Introduction

The Intel IXP2400 is an example of a network processor that consists of one Intel XScale

core processor and eight micro-engines. The micro-engines are organized into two

clusters of four, all on the same die. Applications can be implemented using the network

processor to perform pipeline processing in which the different processors exchange

packet descriptor information through Next-Neighbor (NN) registers or shared memory.

The thesis is proposing new methods to implement multimedia routers using the

advantages of the network processors. The proposed methods are tested heuristic methods

and focus on simplifying the implementation of the multimedia router. The methods are

implemented in the proxy agent module, the scheduler module, the traffic shaper module,

the forwarder three-level index module and the SLA manager module. In general, the

Service Level Agreement (SLA) defines the profiles and the scheduler serves the streams

according to their profiles. The streams that are classified under the same SLA profile are

also expected to receive the same level of network services.

It is a complex task for the Internet Service Provider (ISP) to recalculate the bandwidth

share per subscriber every time a new SLA is in action and added to the service. In some

cases, the total commitment for the ISP to subscribers may be more than what the

network can handle.

1

The thesis proposes methods to help design multimedia routers that are capable of

reading the SLA parameters, recalculate the bandwidth per each SLA and schedule the

traffic to provide fair bandwidth allocation for each SLA in action.

1.1 Contributions

The main contributions of this thesis are summarized hereinafter as follows:

(1) High level architecture design of selective multimedia (SMM) router to show

where the proposed Scheduler, Profiler and Traffic Shaper fits

(2) Design and simulation of advanced complex scheduling algorithm referred

hereinafter as the Lowest Credit Weighted Fair Queuing (LCWFQ)

(3) Design and simulation of adaptive weight adjustment traffic shaper

(4) Introducing methods to input the SLA parameters into the traffic shaper and

recalculating the bandwidth allocated to each profile. Also introducing a method

to provide feedback to the network manager when over commitment occurs

(5) Implementing a simulator and traffic generator that mimic network traffic and

configuring traffic parameters like silent gaps, bursts and streams

1.1.1 Architecture Design of SMM Router

The Selective Multi-Media (SMM) router architecture includes two main contributions, a

design of an S M M Proxy Agent and a Forwarder. The design of the proxy agent turns the

router into multimedia aware router. The proxy agent selects the multimedia streams

from the Egress modules and provides priority services to them. The proxy agent

populates a proposed indexed forwarding/routing table for the active streams and adhere

2

the profile tag to each record in the forward table. Moreover, it provides time stamp for

each record for the purpose of aging and cleanup.

On the other hand, the proposed S M M forwarder performs forwarding functions that are

controlled by the proxy agent. Strictly speaking, the S M M forwarder is unaware of the

type of the stream it processes, while the proxy agent is the one that determines the type

of the multimedia streams. The proxy agent makes the router capable of recognizing and

handling different multimedia streams, by simply configuring the proxy agent.

The thesis also proposes a memory indexing method to improve the suitability of the

network processors in implementing the multimedia routers. The index method limits the

search for a route record in a forwarding table to three memory accesses. Regardless of

how large is the forward table; the number of memory accesses is fixed. In a worst-case

scenario, more than 100,000 records in a table can be searched in only three memory

accesses by using less than 16MB of memory. A 16MB of memory is affordable

internally in most of the network processors.

1.1.2 L C W F Q Scheduler

The Lowest Credit Weighted Fair Queuing (LCWFQ) scheduler is a new innovative

algorithm and is considered as the main contribution for the thesis. LCWFQ algorithm

has some similarity with the famous Deficit Round Robin (DRR) scheduler. The LCWFQ

algorithm performs as good as the famous Deficit Round Robin (DRR) scheduling

3

algorithm. LCWFQ is relatively easier to implement on NP, and avoids the DRR

weaknesses and implementation problems.

1.1.3 Adaptive Weight Adjustment Traffic Shaper

The Adaptive Weight Adjustment (AWA) method is designed to control the bandwidth

allocation according to the composition of the existing measured traffic, and the SLA

assigned bandwidths to reshape traffic congestion. AWA is considered as an extended

function to the scheduler where it feeds back the scheduler with the status of the traffic in

the backlog, recalculates the bandwidth assigned to the profiles, and adjusts the priority

to achieve the optimum fairness. The A W A is a traffic shaping technique and the word

"Traffic Shaper" is used alternatively through the thesis for simplicity.

1.1.4 Other Contributions

The thesis also proposed a mechanism to translate the Service Level Agreement SLA into

profiles and assure fairness to all subscribers. More contributions added to the thesis,

which is implementing a simulator and traffic generator that mimic network traffic by

configuring the parameters like the silent gaps, the bursts and the packets. The simulator

provides more of a deep look into the backlog traffic in the scheduler input buffer.

1.2 Thesis Outline

This thesis introduces a multimedia aware router architecture that can be implemented on

the FXP Network Processor (NP) platform. The thesis is organized as follows:

• Chapter 1 is this introductory chapter.

• Chapter 2 is an overview on the FXP NP platform.

4

• Chapter 3 describes the design of the proposed router architecture based on the

IXP NP platform. In this chapter, the relevant NP modules and features, and the

implementation of the respective network services are described in details.

• Chapter 4 describes three of the commonly known scheduling algorithms called

the First-In-First-Out (FIFO), the Round Robin (RR) and the Deficit Round Robin

(DRR) scheduling algorithms.

• Chapter 5 introduces a proposed scheduling algorithm named the Lowest Credit

Weighted Fair Queuing (LCWFQ) and describes its operation. The chapter also

describes a proposed adaptive weight adjustment method.

• Chapter 6 presents the simulation technique used to proof and justify the

suitability of the proposed methods for the network processors based multimedia

routers. The chapter demonstrates advantages of the LCWFQ proposed

scheduling algorithm and presents simulation results of the performance of the

scheduler and the adapted weight adjustment.

• Chapter 7 concludes the thesis and summarizes simulation results.

• Chapter 8 is the bibliography and references

• Appendix A describes the Class Description for the simulator

• Appendix B includes GUI screenshots

5

2 Network Processors

2.1 Introduction

Network Processors (NP) are optimized for packet processing and offer performance and

flexibility for implementing network services. Network Processor also allow the addition

of the new network services while maintaining high packet throughput and low packet

latency. The NP meets the network performance and flexibility requirements through

highly parallel, programmable architectures. The parallel nature of network processors

allows processing of multiple packets simultaneously, which can greatly increase the

throughput. This chapter provides a brief overview of the Intel IXP2400 Network

processor that is relevant to the design of network processor based router design

discussed in the next chapter [1].

The Intel IXP2400 Network processor consists of one Intel XScale core processor and

eight micro-engines. The micro-engines are organized into two clusters of four, all on the

same die. The Intel XScale core is an Advanced Reduced Instruction Set Computer

(RISC) machine. The micro-engines are also RISC processors optimized for fast-path

packet processing. IXP2400 has one scratchpad-hash-Control and status Access Proxy

(CAP) unit, one Media Switch Fabric unit, one PCI controller, two SRAM controllers and

one-DRAM controller.

The Intel XScale Core is compliant with the A R M V5TE architecture as defined by A R M

Limited and has support for ARM ' S thumb instructions that allow the Intel XScale core to

6

switch back and forth between the standard 32-bit instruction set and a 16-bit instruction

set for better performance.

2.2 Micro-engines

Each micro-engine has an independent instruction store large enough for 4K of 40-bit

instructions that is initialized by a code in the XScale core. The micro-engine has eight

hardware-based threads of execution, which can be configured to use either eight or four

threads. The threads are non-preemptive, which means that the currently active thread

must explicitly release control of the processor before another thread can run. This nature

of the threads simplifies synchronization within the micro-engine.

2.2.1 Registers

The micro-engines have four types of registers: general purpose, SRAM transfer, D R A M

transfer, and Next Neighbor (NN). Micro-engine registers do not need to be flushed to

memory when the control of the micro-engine switches from one thread to another

because the hardware allocates an equal portion of the total register set to each micro-

engine thread.

Each micro-engine has 256, 32-bit General Purpose Registers (GPRs), allocated into two

banks of 128 registers. The GPRs per-micro-engine can be accessed in thread-local or

absolute mode. In thread local mode, each thread accesses a unique set of GPRs. If the

micro-engine configured to execute eight threads, 32 GPRs are allocated to each thread.

However, if is configured to execute four threads, 64 GPRs are allocated to each thread.

7

Each micro-engine has 256, 32-bit SRAM transfer registers that are used to read from

and write to all functional units on the Intel IXP2400 network processor except for the

D R A M unit. SRAM transfer registers are the primary mechanism for dealing with

asynchronous memory operations.

Each micro-engine has 256, 32-bit D R A M transfer registers divided equally into read

only and write only. D R A M transfer registers are used for communication between the

micro-engines and the D R A M unit can be used for read-only communications with the

other hardware unit. Like the SRAM transfer registers, D R A M registers can be accessed

in thread-local and global manners.

Each micro-engine has 128 32-bit next neighbor registers. These registers can be used in

one of two modes. The first mode makes data written in these registers available in the

next micro-engine. Assisted by two Control and Status Registers (CSRs) in the micro-

engine, the next neighbor registers are used as a 128-entry First-In-First-Out (FIFO)

queue. In the second mode, the registers are used as extra general purpose registers.

Each micro-engine has 640 long words of local memory. Any thread in the micro-engine

can access data in this memory with at most three-clock-cycle latency, much faster than

the scratchpad, SRAM or D R A M memory.

8

2.3 Memory

The IXP2400 Processor can access three external memory types the scratchpad, the

SRAM and the SDRAM. All micro-engines as well as the Intel XScale Core processor

share these memory interfaces.

Scratchpad memory is a 16K on-chip memory organized as 4K 32-bit words. It provides

a small low-latency interface to all of the micro-engines. It supports operations that are

ideal for keeping counters across multiple micro-engine threads as well as synchronizing

access to data structures across micro-engines.

Unlike scratch pad memory, SRAM is off-chip. The IXP2400 processor only provides an

interface to the actual SRAM. This interface is embodies in the micro-engine's SRAM

unit. Each SRAM unit provides an interface for up to 64 Mbytes of memory. In addition,

each SRAM unit contains a 64-element queue array. Like the SRAM memory, SDRAM

memory is external to the IXP2400 processor. The D R A M unit provides an interface for

up to one Gigabyte of high throughput memory.

9

3 Network Processor Based Mul t imed ia Router

3.1 Introduction

This chapter presents an architecture design that exploits the implementation of pipelined

router architecture. A simple diagram of the proposed router architecture is shown in

Figure 3.1 where it shows User Agents (UA) where each UA represents a multimedia

client/server that may establish connection to another multimedia U A server/client. The

router serves also non-multimedia Terminals (T) connected that may send, and receive

non-multimedia streams like FTP, HTTP and text messaging. The first stage shown in the

figure is a simple packet classifier in the ingress module that sends all received packets to

an SMM forwarder while it picks the packets that should be distant to S M M proxy and

sends a copy to a proxy agent.

/ SMM \
I Proxy I

UAV-,-

"T

SMMSignaling

All Ingress
Streams •

SMM Signaling

SMM
Forwarder'

Non SMM
•Forwarder

Forwarded
SMM Streams

Forwarded Non

SMM Streams

Figure 3.1: Simple Diagram of the proposed router architecture

10

The purpose of the Ingress Packet Classifier is to determine the packets distant to a proxy

server configured in the proxy agent, while the purpose of a proxy agent is to turn the

router into multimedia aware router. The proxy agent can be programmed to serve

selected multimedia streams that pass through the router and known to the agent. The

router contains a Selective MultiMedia (SMM) forwarder that performs forwarding to the

multimedia streams selected by the proxy agent. Strictly speaking, the S M M forwarder is

unaware of the type of the stream it processes while the proxy agent is the one that

determines the type of the streams, and builds the SMM forwarder lookup table.

To meet the quality of service requirements for multimedia networks and to enhance the

search speed for the lookup tables in routers, the thesis proposes a fast method for

searching the lookup table. The method is an indexing scheme that makes the search time

for a record always constant regardless of the number of records in the lockup table. The

lockup table record contains profiling information and forwarding information that is

obtained from a static database and is updated by the network administrator. The

forwarding information is obtained from the conventional routing table of the router.

When a new stream starts, the proxy agent is the one that updates the stream record in the

S M M lookup table during the stream connection establishment.

Figure 3.2 shows the packet classification and forwarding where the Selective

MultiMedia (SMM) classifier classifies the packets it receives into packets distant to a

proxy servers and non-proxy packets that are not distant to a proxy server. The packet

11

distant to the proxy server passes through the proxy agent. Then, the proxy agent

modifies the lookup table of the S M M forwarder. The forwarder knows from the updated

lookup table which streams are Selected Multimedia streams and push the stream forward

to the scheduler, while the non-selected multimedia streams passes through the normal

routing and forwarding module.

INGRESS ft CLASSIFIER

Proxy
Messages

PROXY AGENT

Non Proxy
Packets

SMM CLASSIFIER ft FORWARDER

Proxy
Message: Classified Non

SMM Streams

ROUTE/ FORWARDER

Forwarded
Non SMM
Streams

Forwarded
SMM
Streams

SCHEDULER

Scheduled
Packets

Figure 3.2: Packet Classifying & Forwarding Diagram

Next, the streams are scheduled according to their profiles assigned by the scheduler that

uses a new proposed scheduling algorithm known as the Lowest Credit Weighted Fair

Queuing (LCWFQ) and the details of the algorithm are discussed in Chapter 5. the last

module in the router is the egress module that transmits the packets to the external

network.

12

3.2 Proxy Agent - Proxy Server Relationship

The User Agent (UA) sends signaling messages to the proxy Server to establish a

connection to a remote UA. As explained earlier the router has a non-multimedia

forwarding tables and a multimedia forwarding table. The UA signaling message uses the

non-multimedia routing and forwarding module, as it does not need to have a high

priority. Afterwards, the proxy server contacts the distant User Agent (UA) to establish

the connection. In doing so, the normal routing module finds the routing information to

the distant UA. Simultaneously, the proxy agent reads a copy of signaling message,

which is distant to the proxy server that is known to the agent [2].

UA

200 O K

— •

Profile

201 O K

Invite

« —
100 "Trying"

Proxy
Server

Register

180 "Ring ing"
180 "R ing ing"

Proxy
Agent

Bye

Proxy
Server UA

180 "Ring ing"

Figure 3.3: Proxy Agent - Proxy Server Relationship Diagram

13

3.3 Architecture

As shown in Figure 3.4 below, the proposed router has six modules, which are the

Ingress, the Proxy Agent, the S M M Forwarder, the Route Forwarder, the Scheduler, and

the Egress. The proposed router has a pipelined architecture taking the advantage of the

of the network processor where each module is implemented in its own micro-engine and

executed independent of each other (loosely coupled)

*
Routing Table

Forwarding table

Figure 3.4: Detailed architecture of the S M M Router

3.4 The Ingress

The Ingress unit receives packets at high speeds and maintains two queues, one queue to

communicate with the Proxy Agent, which is known as the proxy queue, and the second

is the non-proxy queue that communicates with the SMM Forwarder. The Ingress module

maintains the IP address of the Proxy Server represented by the proxy agent.

14

3.5 The Proxy Agent

When a User Agent (UA) seeks to communicate with another UA, it undergoes a

sequence of steps that enables the U A to establish a communication session. The Proxy

Agent handles these steps. Upon successful reception of a packet, the Ingress module

retrieves the destination IP address from the D R A M where the packet is stored. It then

compares the destination IP address with the IP address of the Proxy Server. If it

matches, the packet is sent to the proxy queue or else to the non-proxy queue.

Assuming that the proposed router has eight ports, the Ingress will have eight hardware-

assisted threads at its disposal. Each thread is associated with one port and performs

similar operations on the packets received from that port. The Ingress unit design is

modified to include a first level classifier to identify the multimedia signaling data with a

destination address pointing to a proxy server previously configured in the proxy agent. It

is assumed that the implementation of the router provides a way to set the address in the

multimedia proxy server.

Part of the responsibility of the proxy agent is to identify the content of the packet to

determine the proxy server of the UA. The Proxy Agent needs to know the address of

each proxy server and can be as many proxy servers as needed. The addresses of the

proxy servers are maintained in the proxy agent module. All packets sent to the proxy are

kept in a single queue called ProxyQ queue. All other packets are sent to a single FIFO

15

queue called NonProxyQ. The Proxy Agent partially depends on the StrongArm XScale

Core, hereinafter referred to as the Core.

Upon retrieving packets from ProxyMsglnQ, the first operation performed by the Proxy

Agent is to copy the packet pointer into the output queue called ProxyMsgOutQ. This

method enables the next module, which resides in a different micro-engine, to carry on

processing the packet.

Selective Multimedia Intermediate Forwarding Table

Destination IP SourcelP Output Port TCP Port Local MAC Next Hop.MAC Profile Reservation Time

StrpngArnrvCore

Source IP Profile

Selective lAiltimedia Catalogue

Destlnatton IP SourcelP Output Port TCP Port Local MAC Next Hop MAC Profile Reservation Time

Selective Multimedia Forwarding Table

Figure 3.5: Operational relationship between the Core and the Proxy Agent

Figure 3.5 above shows a Proxy Agent makes use of three lookup tables called SMM

Catalogue, S M M Forwarding Intermediate Table and SMM Forwarding Table. The SMM

Catalogue is a static data table that associates the source address of the S M M UA to its

assigned profile. The catalogue is initialized and then updated through the Core

processor. Multiple User Agents may be assigned identical profiles. The network

administrator assigns the profiles to indicate the service level for each UA. S M M

Forwarding table is a data structure stored in the SRAM that is used to store records of

composed information retrieved from the SMM Catalogue and the routing table.

16

Source IP Profile

Selective Multimedia Catalogue

I l)|m^T.i„ I

Q ^ l a L J
Route

i—i T^;„ i
Next Trie

Routing Table

Destination IP Destination Port Local MAC Next Hop MAC

Forwarding Cache Table

Destination IP SourcelP Output Port TCP Port Local MAC Next Hop MAC Profile' Reservation Time
Destination IP SourcelP Output Port TCP Port Local MAC Next Hop MAC Profile Reseivation Time

Selective Multimedia Intermediate and Forwarding Table

Figure 3.6: Relationship between Forwarding and routing tables

Unlike the Ingress module, the Proxy Agent needs to know the signaling protocol and has

to be able to identify when a sender U A invites another U A for a communication session

and when the receiver U A accepts the invitation. When the Proxy Agent detects an

INVITE Message, the agent communicates with the Core processor so that the core loads

all the necessary routing information into the S M M Forwarding Intermediate table. This

is because an INVITE message most likely w i l l be followed by an OK message and the

communication begins. Retrieving the routing information before the communication

begins wi l l speed up the process. When an OK message is received, the stream record is

marked active, and then is used later to assemble the packet to forward it to its

destination. In fact, the S M M Forwarding Intermediate table and the S M M Forwarding

Table are implemented as a single table with the addition of a flag field in the data

17

structure. Thus, the two tables are implemented as contiguous array of records interleaved

with each other. The records marked active are those records for which the INVITE and

OK messages have been received and the records marked inactive are those records for

which only the INVITE message has been received [3] [4].

3.6 The SMM Forwarder

S M M Forwarder is a module running in a single micro-engine that is responsible for

classifying incoming packets into multimedia and non-multimedia packets. It places the

classified packet record into a queue identified by the port number while the non-

multimedia packets are placed in a single queue, which is a shared memory by the S M M

Forwarder and the Route/Forward unit.

The S M M forwarder communicates with the Ingress module through a FIFO queue

implemented in the SRAM. Each queue element contains a pointer to a D R A M unit

where the packet under consideration is stored. The proposed S M M forwarder and

profiler modules create a common data structure that contains the pointer to the packet,

the source and destination IP addresses, and the length of the packet. It uses the source IP

address to index the active catalogue maintained in the SRAM from which the profile of

the source are retrieved. The profile ID and the relevant data are then added to the data

structure created. These data are then placed in a different SRAM queue that serves as

communication channel between the SMM Forwarder and the Scheduler. If a route

record corresponding to a source is not found in the SMM forward table, the source

record data is passed to the normal Router/Forwarder module [5].

18

The S M M Forwarder identifies whether the packet is a multimedia or not by looking up

the S M M Forwarding table updated by the Proxy Agent. The packet is identified as

multimedia packet if the source IP address of a packet is found in the S M M Forwarding

table. Then the forwarder passes the profile information to the scheduler. If the packet is

non-multimedia, then the SMM forwarder send it to the normal forwarder to find the

routing information in conventional way. Non-multimedia packet gets the lowest profile

then sent to the scheduler.

3.7 The Forwarder

The Route/Forward module is responsible for routing and forwarding all non-multimedia

in addition to the multimedia signaling packets. It initializes and maintains the routing

table to determine the output port path of the packets. After determining the route for a

packet, both the Proxy Agent module and the Route/Forward module transfer the records

for the packets under consideration to the respective queues. The scheduler dispatches the

packets to the Egress module, which performs the actual transmission of the packets to

the external network. The next chapter provides more details on the scheduler.

Because of the real time requirements of multimedia streams, it is important that the

search of a record corresponding to the packet under consideration is time efficient. For

this purpose, the thesis introduces a three level indexing scheme discussed next.

19

3.7.1 Three-Levels Indexing

In the implementation of the proposed router, the lookup tables are designed to keep the

routing information in the SDRAM. However, retrieving the information with fewer

memory accesses is critical. The thesis proposes Three-Levels Indexing method for route

storage scheme whereby the route of any destination IP address is determined by three

memory accesses as illustrated in Figure 3.7.

9)

4-1
c
o
a.
c
o
o
o

if)
CM

CD
t o
CM

Each pointer in level one will be
assigned linked segment of 64

elements

Each pointer in level two will be
assigned linked segment of 64

elements

Level one index i Level two index i Level three index

Figure 3.7: Three Levels Indexing

The first level is an array of one million SRAM pointers pointing to a second level of

memory segments, which uses the most significant 20 bits of the destination IP address.

The second level, indexed by the next 6 bits of the IP address, points to a memory

segment storing 64-DRAM memory locations represented by the last 6 bits. The third

level of the memory segment is stored in the D R A M and contains the addresses where

the stream information is stored.

20

This mechanism insures that the time required finding a record is always 3 memory

accesses regardless of the number of records. The lookup table may hold hundreds of

thousands of records or even millions while keeping the search time fixed. The record

may include the destination port, the multimedia profile tag, the pointer to the actual

packet, and any other information that may be required. The record is used in the

forwarding process, scheduling process, and routing process.

Destination IP

1M pointers or
256 X 256 X 16

20 bit

Offset

c 64 Pointers per
segment

6bit
Offset

64 Pointers per
segment

Pointers to SDRAM
where the route
information is

stored

Address 1000,000 Pointers 6,400,000 Pointers 6,400,000 Pointers 64 Pointers

Figure 3.8: Forwarding Table Structure

In an example of a worst case scenario, the maximum number of memory locations to

build the three levels index is equal to the first level 20 bits (1,000,000) x second level 6

bits (64) x third level 6 bits (64) = 4 Giga locations, which practically will not happen.

Typically, for 64,000 streams routes, it needs 100,000 locations out of the first 20 bits

index and that reduces the total number of locations to the following:

LI (1,000,000) + L2 (100,000 x 64) + L3 (100,000 x 64) = 13,800,000 locations.

21

Similarly, one million records need 129,000,000 index locations, which is still affordable

by most of the available network processors. The three-levels indexing method is scalable

to accommodate larger forwarding tables. In this way, one forwarding table may hold

millions of records and searching time stays fixed unlike the hashing searching method

and the binary searching method where the scalability costs more delay. However, if the

memory cost is a concern, then more levels of indexing may be considered [6][7][8].

3.8 The Scheduler

There is a complexity in implementing the per-flow scheduler in the most commonly

used core routers. Routers use aggregate scheduling rather than per-flow scheduling. The

proposed scheduler module provides a simple method to regroup the individual streams

into aggregate flows and turn the per-flow scheduling to aggregate scheduling. The

scheduler uses the time waiting the Egress to transmit one packet to turn on Adaptive

Weight Adjustment (AWA) scheme. The A W A calculates the backlog traffic in the

scheduler input queue and readjust the aggregate profiles accordingly. For simplicity, the

A W A scheme will be referred through the thesis as the traffic shaper. The traffic shaper

looks at the backlog packets and adjusts the aggregate profile weight. The scheduler uses

the calculated aggregate profiles.

3.9 The Egress Module

The Egress module transmits the scheduled packets to the external network. The Egress is

deployed on one micro-engine. Each port requires a dedicated micro-engine thread.

When it dispatches packets, the scheduler uses as many queues as the number of ports.

22

4 Selection of a Suitable Scheduler

4.1 Introduction

In this chapter, there is a consideration of three scheduling algorithms called First-In-

First-Out (FIFO), Round Robin (RR), and Deficit Round Robin (DRR). The chapter

discusses the merits of these algorithms to determine their suitability in the real time

system. The next chapter will introduce the Lowest Credit Weighted Fair Queuing that

has a predictable behavior and effective packet processing cost.

4.2 First-In-First-Out (FIFO)

In FIFO scheme, the order of the packet arrival determines the allocation of packets to

output buffers. This algorithm assumes that congestion control is performed by the source

itself. To achieve this purpose it uses a feedback scheme. In feedback schemes for

congestion control, connections are supposed to reduce their sending rate when they

sense congestion. However, a rogue flow can keep increasing its share of the bandwidth

and cause other well-behaved flows to reduce their share. If a rogue connection sends

packets at a high rate, it can capture an arbitrary fraction of the outgoing bandwidth.

4.3 Simple Round Robin

Simple Round Robin is a scheme by which every profiled queue is serviced at least once

in every round. Ordinary round robin servicing of queues can be done in constant time.

The major problem, however, is the unfairness caused by possibly different packet sizes

used by different profiles. For example, if, hypothetically, the low priority profile keeps

23

sending long packets while the high priority profiles have short packets, then the low

priority profile monopolizes the use of the bandwidth. Therefore, this scheme is not

suitable for scheduling multimedia streams [9] [10].

4.4 Deficit Round Robin

Deficit Round Robin is a scheduling algorithm [11] [12] whereby the scheduler transmits

packets from different profiles based on predetermined quantum values assigned to each

of these profiles. The scheduler allows each profile to send packets subject to the length

of the packet. The packet length, expressed in bytes, is less than or equal to the sum of

the quantum value assigned to the profile and the value contained in a state variable

called the Deficit Counter, which contains the difference between the assigned quantum

value and the number of bytes transmitted in the previous round. If there are no more

packets in the queue, the scheduler resets Deficit Counter to zero. Otherwise, it holds the

difference between the assigned quantum value and the length of the packet sent.

D R R provides an isolation mechanism that achieves nearly perfect fairness, and also

takes 0 (1) work to process a packet. The scheme is simple to implement at a router or a

gateway. The main difference between D R R and R R is that i f a queue was not able to

send packet in the previous round because its packet size was too large, the remainder

from the previous quantum is added to the quantum for the next round. Thus, deficits are

tracked and recorded, and hence, queues that were shortchanged in a round are

compensated in the next round.

24

4.4.1 D R R Weakness

The empty queue introduces errors for the DRR process. To avoid empty queues, the

algorithm keeps an auxiliary list called the Active List, which is a list of indices of

queues that contain at least one packet. The packet is added to the end of Active List

when it arrives to a previously empty queue. Whenever the index is at the head of the

Active List, the algorithm services the corresponding queue by scheduling packets whose

combined length is less than or equal to the sum of the Quantum value and the Deficit

Counter. If at the end of this service opportunity the queue still has packets to send, the

index is moved to the end of Active List, otherwise the Deficit counter is set to zero.

The size of the various quantum variables in the DRR algorithm determines the number

of packets that can be served from a queue in a round. This means that the latency for a

packet and the throughput of the router are dependent upon the value of the quantum

variable. The thesis introduces a new scheduling algorithm to avoid this dependency. The

new scheduling algorithm called the Lowest Credit Fair Queuing that has work load of

0(1) and achieves a fairness index of 1 (one), which is discussed in the next chapter.

4.5 The SFQ and SCFQ

These schedulers are time-based schedulers [13]. The LCWFQ, DRR, RR, and FIFO are

frame-based schedulers [14] [15]. However, the proposed adaptive weight adjustment

method behaves when used with the scheduler it does fall in a category between the

frame scheduling and time scheduling as it depends on the time spent by the Egress to

transmit the last packet to recalculate and redistribute the bandwidth shares.

25

5 Scheduler and Traffic Shaper

5.1 Introduction

This chapter presents a proposed scheduling method as part of a router and called Lowest

Credit Weighted Fair Queuing (LCWFQ). There is an additional module added to the

scheduler, which is Service Level Agreement Manager module that allocates bandwidth

to clients based on a specified Service Level Agreement (SLA).

The chapter presents also the proposed Adaptive Weight Adjustment method that may be

used in some situations when the Internet Service Provider may be over committed to the

subscribers. Another situation would be when there is a need to serve applications that

normally are inactive unless required like the Lawful Intercept (LI) function. The LI

function is intercepting with certain streams, copy the streams, and send them to a LI

agent. The intercepted streams require a very small bandwidth, yet have a very high

priority.

5.1.1 Per-Flow scheduling Vs Aggregate Scheduling

The thesis proposes the LCWFQ, which is a weighted fair queuing scheme. LCWFQ is

used to schedule flow traffic in a per-flow scheduling mode. However, the LCWFQ is

designed also to schedule the aggregate flows with the help of the proposed add-on

modules like the SLA manager and the proposed A W A traffic shaper.

26

In order to use the L C W F Q with the aggregate flows, each flow must be assigned to a

profile group and then each group is assigned to an aggregate flow. Each aggregate flow

must have a new profile value for the scheduler. The traffic shaper calculates these values

as explained later. A l l flows belong to the same aggregate flow must have the same

profile weight. The aggregate flow weight is calculated as the total number of

streams/flows within the aggregate multiplied by the per flow weight originally assigned

by the S L A . The thesis presents two schemes for the traffic shaper where one scheme is

based on fixed weight assigned by the S L A while the other scheme is an adaptive weight

adjustment calculated based on the backlog traffic in the scheduler input queue.

5.1.2 Forwarder, Profiler and Scheduler relationship

Since packet sizes are generally large to move internally between the internal modules,

the router saves the packets in memory and work only with packet pointers. The payload

data portion of the packet is not needed until the packet is ready to leave the router.

Following this logic, the forwarding module passes one record for each packet, which

contains the packet pointer, the packet length, and the packet profile. The profile of the

packet represents the percentage quota of the bandwidth given to a packet stream from a

specific source address. In the design of the high performance network processor based

router, the Ingress module extracts information from the received packet and passes it

through to the forwarder. Then, the forwarder calculates some other information to

determine the route for each incoming packet and send it to the scheduler.

27

The profiler is a module that adds the profile information into a proposed forwarding

table. It should be mentioned that the profiler reuses the forwarder information to classify

the packets. The profiler in this case is running with a minimal processing cost since it

reuses the existing information. Then the profiler passes the results into the scheduler

input queue along with the packet descriptor information. The scheduler works with the

classified packets that are placed in their own separate queues by the profiler. Figure 5.1

illustrates the profiling mechanism applied on three profiles, when the scheduler

implements a round robin scheduling algorithm.

Profiler

Figure 5.1: An illustration of the profiling mechanism for three profiles

5.1.2.1 Profiler Processing Cost

In order to depict the profiler processing cost, a sample calculation is provided below to

calculate the total time required to build the profiler information for one packet in the

worst condition when the packet is short, or in other words, 64 bytes long. A single

access to the SRAM takes approximately 4 clock cycles and the maximum clock

frequency of the FXP2400 network processor is 600MHz.

2 8

The proposed Three-Level indexing needs three memory accesses to read a record then

one-memory access to write. Thus, the access time, as discussed in chapter 2, takes a total

memory access time of

3*2 Clock Cycles

600MHz

• 1*4 Clock Cycles

However, sending the same packet (64 bytes) over a line with a rate of 100Mbps line

takes a transmission time, tx, of

_ bits
8 * Mbytes
byte ' . ,„

t=— = 5.12//s.

100Mbps

Therefore, the maximum overhead delay, toverhead, is approximately

r ^ = M ^ * 1 0 0 = 0 . 0 0 3 %

5.12//5
This delay is considered negligible compared to delay caused by any queuing situation.

One of the conclusions is that by adding processing functions on early stages of the

router, it saves processing time later. These proposed functions are the profiler, the Proxy

Agent, the SLA manager, and weight adjustment traffic shaper. The proposed functions

are simple and low cost processes. Moreover, these functions make the other modules

like the scheduler and the forwarder processes simpler and shorter.

29

5.2 The Profiler

The purpose of the Profiler is to assign a profile tag to the incoming packet record and

place the packet record in a queue designated for each profile. The profiler packet record

is mainly the packet length, source IP and destination IP addresses and the profile tag.

Normally, the profiler search for the profile tag for each incoming packets in the profiling

table based on the source address. It is proposed that the profiler with the use of the SLA

manager extracts the profile information from each SLA and populate the profiling table.

It is proposed also that the profiler with the help of the weight adjustment, construct the

aggregate flows and assign them new profile values.

In ASD Architecture diagram shown in figure 5.2, the profiler does calculations that

describe the aggregate flow profiles and sends the results along with the packet headers to

the scheduler input queue.

The profiler module classifies incoming packets according to their source information

like the IP address, port number, and then obtains the profile information from the SLA

manager. That makes the scheduler dedicated to perform packet scheduling based on the

assignments prepared by the profiler. The record for each packet in the scheduler input

queue contains:

1. The length of the packet

2. The profile identification

3. The total length of all previously arrived packets

30

4. The total length of all previously arrived packets from the same profile

5. The pointer to the next packet in the same profile

6. The pointer to the packet data

The Scheduler creates one queue for each physical egress port. These queues are shared

memory regions, or Next-Neighbor registers in the IXP2400, used by the Scheduler and

the Egress module to exchange packet records.

6

<
"ah

>

—

*3

I

Traffic Shaper

SLA Assigned BW

A c t u a l T r a f f i c

Distribution

I
Queue

A n a l y z e r

— x —

Scheduler

|
<
Go

I

SLA1 |

•i S L A 2 |

SLA n

Profiler

Figure 5.2: ASD Architecture

The Profiler is responsible for assigning profiles for incoming packets according to a

profiling database maintained within the profiler application. Having done the profiling,

the Profiler sets up a separate queue for each profile and places every packet in its own

respective queue. In the proposed Multimedia Router application, the profiling database

is a static data table based on the Service Level Agreements (SLA) and can be changed

by the network administrator. The profiler is accessible to both the Traffic Shaper and the

Scheduler.

31

5.3 Adaptive Weight Adjustment

5.3.1 Formulas and mechanism

Routers use aggregate scheduling rather than flow scheduling. The thesis proposes an

Adaptive Weight Adjustment (AWA) heuristic method to provide a simple way to adjust

the scheduling parameters and adapt the scheduler to serve aggregate flows. For

simplicity, the adaptive weight adjustment will be expressed as the traffic shaper though

the thesis. To explain the traffic shaper method, assume that the service provider signs

hundreds of thousand of service level agreements with the subscribers. It is expected that

the subscribers, over time, will generate distinctive flows equal to or more than the .

number of the signed agreements. However, these distinctive flows may be grouped into

few aggregate flows based on their assigned profiles.

Similarly, the proposed traffic shaper reads the SLA parameters for each subscriber and

catalogues the agreements into complete and detailed database of flow profiles. Then the

traffic shaper works on the created database to link each flow profile to an aggregate flow

profile. All flow profiles that belong to the same aggregate profile have the same type

like VoIP, HTTP, FTP and also have the same characteristics like packet length and

maximum accepted delay. This way, the number of aggregate flows will be few

compared to the distinctive flows. Within the aggregate flow, all packets are treated

similarly. The proposed traffic shaper puts each aggregate flow in a separate input queue

to the scheduler. This way, it simplifies the scheduling process and the scheduler deals

with aggregate flow as if it is a single flow.

32

During initialization, a proposed SLA manager module calculates the weight assigned to

each aggregate flow and assigns it as initial value. Then after initialization, the adaptive

weight adjustment or the traffic shaper starts. The traffic shaper measures the actual

active aggregate flows, recalculates the aggregate flow weight, and then sends the new

values to the scheduler. From figure 5.2 shown earlier, a queue analyzer unit determines

the actual traffic distribution for all profiles. The traffic shaper receives the assigned

bandwidth from the SLA manager and the actual traffic distribution from the analyzer.

Then the shaper uses the assigned bandwidths and the actual traffic composition to

determine the final weights for each aggregate profile, which is named within the thesis

as the adaptive weight adjustment. The actual aggregate profile rate, Racr,P is recalculated

according to the following formula:

R
nuct,P N '

I',
p=\

Where lp is the combined length of all the packets in aggregate profile p and Np is the

number of aggregate profiles.

If, Vp,Racl>I, < Ras.p => Rfp = Ras,p, where p is the active aggregate profile number, and

Rf,p is the final calculated percentage of the active aggregate profile. Otherwise,

Rf.P -IF,

L(Racl.p+min(Ras.p>Rac,,p))
p=\

33

Where Ras_p is the assigned percentage for profile p. It is assumed that the above formulas

expressed for a single output port. For any port j and profile i the two schemes are

expressed as,

r-i_ P r o f d e L e n ^ i] ^ \ p m { j \

K«a.Por<\j}Vl\- ~ i
^profileLength\i]pBrt[j]

i=0

And

„ [-•] _ R actual,pon[j]\f] + m™(Rassigned,pon[j]\i\Ractual.Pon[j][ib
adapted,pon[j]\?i~ n-\

X (R actual.port[j^\
 +

 ™n(Rassigned,partial R actual .portlj]^)
/=0

Table 5.2 and figure 5.4 are numerical examples for the above formulas and demonstrate

the effectiveness of the traffic shaper, which is based on adapted weight adjustment. For

example, the actual traffic of profile 1 is greater than the assigned value while profile 2

and profile 3 have a traffic level less than the assigned. In this case, the traffic shaper

distributes the BW such that active aggregate profile 1 gets more than the assigned BW

while profile 2 and 3 are assigned a value of BW that is just enough to accommodate

their needs. In addition, even though profile 4 has the lowest priority (as determined by

the initial BW assignment), it is allocated more than its assigned value.

PI P2 P3 P4
Assigned BW (%) 40 30 20 10
Actual Traffic (%) 50 10 10 30
Minimum of Actual and assigned R m i n 40 10 10 10
Sum of Actual and R m i n 90 20 20 40
Adapted BW Assignment 52.94 11.76 11.76 23.53

Table 5.1: Illustration of Traffic shaping in the case of four profiles

34

Comparison of Assigned and Adapted BWs
60

50

40

30

20

10

• Assigned BW

• Actual Traffic

• Adapted BW

to to

Profile

Figure 5.3: B W adjustment performed by the Traffic Shaper in case of four profiles

The traffic shaper used the unallocated bandwidth from the aggregate profiles that are not

using all of their assigned bandwidth and then reassigns the unused bandwidth to active

aggregate profiles that needs it. The traffic shaper may also be configured to set threshold

alarms when a certain aggregate profile exceeds its usage of the allocated bandwidth.

Table 5.3 and figures 5.4 show another example using nine profiles.

Comparison of Assigned and Adapted BWs
2 5

• Assigned BW

• Actual Traffic

• Adapted BW

Profile

Figure 5.4: B W adjustment performed by the Traffic Shaper in case of nine profiles

35

P1 P2 P3 P4 P5 P6 P7 P8 P9
Assigned BW (%) 19 17 15 13 11 9 7 5 3
Actual Traffic (%) 22 10 20 5 8 15 3 10 7
Minimum of Actual and assigned Rmln 19 10 15 5 8 9- 3 5 3
Sum of Actual and Rmin 41 20 35 10 16 24 6 15 10
Adapted BW Assignment 23.2 11.3 19.8 5.7 9.0 13.6 3.4 8.5 5.7

Table 5.2: Illustration of Traffic shaping in the case of nine profiles

In the proposed network processor architecture, the Traffic Shaper and the Scheduler

reside on the same micro engine. Therefore, the adapted percentage, which is calculated

by the Traffic Shaper, is communicated to the Scheduler through shared registers, called

absolute registers in the IXP2400 NP. If the number of profiles is too large to be

contained within the registers, it is spilled to the local memory of the micro engine. The

local memory has a lower latency than all the three different kinds of memory the

IXP2400 supports, and hence the performance penalty has low significance.

In relation to the network processors, and in order to calculate the actual percentage

composition, the Traffic Shaper makes use of the state information stored in Scratchpad.

It performs a number of Scratchpad memory accesses that is equal to one more than the

number of the active aggregate profiles. One memory access is required per profile to

read the length of each aggregate profile. Additional memory access is required to read

the combined length of all aggregate profiles. Therefore, its performance is proportional

to the number of the active aggregate profiles.

36

5.3.2 AWA Traffic Shaper Performance

A s described before, the traffic shaper uses the unallocated bandwidth from the profiles

that are not using their assigned bandwidth and reassigns it to the profiles that need it.

Figure 5.5 shows an example of the traffic shaper handling the highest priority. It can be

seen that the Traffic shaper always finds middle "ground" between the actual traffic

percentage and the assigned bandwidth. Because Profile 0 does not have enough traffic to

use, the traffic shaper strips off the bandwidth assigned to profile 0.

Tnfflc i d a p t a t f o n for profile 0

*> 1

6

4

2 •

0 i . I 1 . I 1 1 . . r— . I

t 2 3 4 5 6 ? 0 9 10 11 12 13 14 IS 16 17 16
Calculation number

|—Adapted P*K«M*Q* —*—Actual P«c«nt»fl* Asiign»d Pfcsnaagt |

Figure 5.5: Adaptive Weight Adjustment for profile 0

Figure 5.6 shows an example of the adaptive weight adjustment handling the lowest

priority profile. It can be seen that the Traffic shaper always finds middle "ground"

between the actual traffic percentage and the assigned bandwidth. Because profile 8 has a

traffic level that is much higher than it can accommodate within its share, the traffic

assigns more bandwidth to the "needy" profile 8. The extra bandwidth was taken earlier

from the unused bandwidth by other profile like profile 0.

37

Figure 5.7 shows the bandwidth allocation pattern for profile 4, which has a medium

priority compared to profile 0 and profile 8. As shown in the figure, profile 4 has been

provided less bandwidth than the assigned value because its actual traffic is low.

B W adaptation for Profit* 4

j—Atfiipwi "p*tc*r»*fj* —•f»Aciu»l Ptwttmy .*»«yi<nl Ptrearfltfltj

Figure 5.7: Adaptive Weight Adjustment for profile 4

However, the Traffic shaper ensures that this profile does not get more bandwidth than

the assigned value when the actual traffic of the profile is less than the assigned value.

38

5.4 LCWFQ Scheduler

5.4.1 Assumptions and Notations

• The line rate (wire speed) is known to be a constant R bits per second.

• The total number of active aggregate profiles (Np) is known.

• The elements (packets) of the aggregate queue are sorted according to their arrival

time in the queue.

• The rate for every active aggregate profile (r,) is specified as a percentage of the

•th
line rate, where r is the percentage bandwidth allocation of the /. profile.

5.4.2 The LCWFQ Name Origin

The "Lowest Credit" name is driven from your bank credit card statement value when it

is negative, it means the bank owes you money and when it is positive, it means you owe

the bank. Assume that all cardholders are the only owners of the bank and assume simple

bank operation that when you owe the bank, you owe each cardholder a percentage of

your debts equal to the share of the cardholder.

5.4.3 LCWFQ Concept

Similarly, the LCWFQ scheduler serves all profiles as if all the profiles own the

scheduler and each profile owns a share equal to the assigned bandwidth percentage

defined by the SLA for that profile. When a packet is served from a profile for a certain

time t, the served profile owes each of the active non-served profiles a share of the time t

39

to wait. Each of the non-served profiles gets a share equal to the time t multiplied by the

assigned bandwidth percentage for that non-served profile.

The credit value C, for the i'h profile that has just been scheduled and is calculated

according to the formula C, = C, -1 + L, * (1- r/100). This is the bandwidth that the

current profile "owes" to the other profiles. The credit value for the other profiles is

calculated according to the formula C, = C, -1 — Li * r/100. The right operand

calculates the share of the total bandwidth that is owed to this profile by the profile of the

transmitted packet. The whole expression evaluates the net credit value for the profile.

After the credit values for every profile is updated, the scheduler goes back to fetch the

record for the next packet in the next profile. If there are no packets in the queue, the

scheduler resets the previous credit values. If there is only one packet in the queue, the

scheduler updates the previous credit to the new calculated value. If there is more than

one packet in the queue and if all the packets have the same profile, the packets will be

scheduled according to their order in queue. Within the same profile, the first packet

encountered first is the first to be scheduled.

However, if the packets in the queue have different profiles, the scheduler will select the

packet that has a profile of the lowest credit value. Again, the credit value of each profile

is calculated accordingly. A sample scheduler calculation for the scheduler is shown table

5.3. For simplicity, it is assumed that all packets have the same length of 1500 bytes.

40

SCHEDULED PACKETS
Packet Rate 10% 20% 3 0 % 4 0 %

Length Profile Credit 1 Credit 2 Credit 3 Credit 4
0 0 0

1500 4 -150 -300 © S O 900
1500 3 -300 - 6 0 0 600 300
1500 2 - 6 0 0 600 150 -300
1500 1 750 300 -300 - T O O

1500 4 600 0 - 7 5 0 0
1500 3 450 -300 300 - 6 0 0

1500 4 300 It -150 300
1500 2 150 600 - M M -300
1500 3 0 300 450 - 9 0 0

1500 4 . 1 5 0 0 0 0
1500 1 1200 -300 -450 -•.(Ml
1500 4 1050 -600 - 9 0 0 300
1500 3 900 -«>00 150 -300
1500 2 750 300 -300 - 9 0 0

1500 4 600 0 - 7 5 0 0

Table 5.3: Numerical example of the scheduler

5.4.4 L C W F Q Operation

The scheduler serves only one packet in a full round. The scheduler starts the round by

checking the credit value of all active profiles and serves a packet from the profile that

has the lowest credit. A credit is defined as the assigned bandwidth percentage that a

served profile owes to other non-served profiles. A negative credit value for a profile

indicates that the scheduler owes the profile a service. If the system owes multiple

profiles a service, the system serves the profile with the lowest credit value first.

Initially a credit of zero is assigned to each profile. As packet(s) arrive in the queue, the

scheduler selects a packet that has the lowest credit and places it in the corresponding

egress queue then updates the credit value for all profiles. The credit value Ci for the ith

profile that has just been scheduled is given by

41

c,=c,_1 + z , * a -) 100

Following the logic, for the non-served profiles, the credit value Cj for the jth is given by

The right operand evaluates the share of the total bandwidth that is owed to the profile.

After the credit value for each profile is updated, the scheduler starts the next round and

fetches next record for the next packet. If there are no packets in the queue, the scheduler

resets the previous credit values.

If, during the scheduling process, the LCWFQ scheduler finds that any two or more

aggregate profiles have identical and lowest credit values, it selects a packet that has an

aggregate profile with the highest assigned percentage. However, if all of the lowest

credit profiles have identical assigned percentages, it schedules the packets in a simple

round robin fashion.

LCWFQ always operates with O(l) work complexity and, unlike DRR and PDRR, does

not require the prior knowledge of the maximum size of a packet that eventually arrives

in the system. All profiles are considered during every scheduling cycle and only one of

them qualifies to have a packet scheduled. In addition, the scheduling process is

independent of the status of the input queue. That is, it performs steadily whether the

queue is backlogged or not. In the case when a profile is empty, it accumulates credit

C J = C H - L i , J

42

only to a pre-specified level. In addition, a profile can only owe a pre-specified level of

credit to the remaining active profiles.

5.5 Performance Analysis of LCWFQ

5.5.1 Computational Complexity

The input queue to the scheduler is organized such that it has as many queues as the

number of profiles. The scheduler, the traffic shaper, and the profiler share a data

structure that describes the queue. The description of the queue contains the location of

the head of each sub-queue. The profiler adds a packet at the end of the queue and the

scheduler removes a packet from the beginning of the queue. Therefore, the scheduler

does not spend any time searching for a packet within the queue. That is why the per

packet work complexity of the L C W F Q scheduler is 0(1) . The scheduler performance

does not depend upon knowing the maximum packet size that possibly arrives in the

system. Furthermore, there is no hashing involved to queue packets according to their

profiles. Each aggregate profile is assigned its own queue and newly arriving packets are

appended at the end of the queue. This renders the queuing mechanism to be simple and

low processing cost.

5.5.2 Startup Latency

The worst-case situation is when all aggregate profiles are active at the same time.

Assume a case when the router restarts or when many packets arrive at the same time

from multiple input ports and exit from one single output port. Also, assume that these

packets belong to deferent profiles. In this circumstance, the L C W F Q scheduling

43

algorithm selects the packet that has a profile of the highest bandwidth percentage

assignment. The worst-case scenario is when a profile / has the lowest assigned

bandwidth. The packet that belongs to the profile in question will wait until its credit

value becomes the lowest. This happens after (Np —1) aggregate profiles are served

where Np is the number of the active profiles. Assume that m is the size (in bits) of the

largest packet served during the execution of one scheduling cycle. It implies that, at

most, (Np —l)*m bits are sent before the first bit of the profile is sent. Then the

maximum latency experienced by an aggregate profile in a startup cycle is

(AT,-Dm
LCWFQ —

5.6 Service Level Agreement (SLA)

The ISP may provide three types of services called Premium, Normal, and Light.

Subscribers under the same type of service share the same aggregate profile. Assume the

Normal service is an average type of service and the Premium service has higher priority

and higher bandwidth allocation than the Normal service. Also, assume the Light service

is a low speed service with a lower priority than the Normal and Premium Services.

Suppose that the premium SLA (profile 1) value is 60 (like $60 a month), the normal

SLA (profile 2) value is 30, and the light SLA (profile 3) value is 10. Assume also, there

is only one common output port channel that is used to carry the traffic from all

44

subscribers. Then the fair percentage of the output port usage should be 60%, 30%, and

10% respectively.

However, if there are 20 subscribers that have a premium SLA of profilel-1, 10 clients

with SLA of profile-2 and 10 clients with SLA of profile-3 and all of them uses the

common channel simultaneously. Then profile-1 subscribers would require 1200 points

value of the port assigned bandwidth percentage, while profile-2 Subscribers would

require 300 points value of the bandwidth, and finally profile-3 clients would require 100

points value of the bandwidth. In this case, the bandwidth allocations can be adjusted so

that it reflects the weight of the original percentage assignments. The results are

summarized below.

SLA Value Symbolic
Representation

Profilel
BW,= 60%

Profile2
BW2= 30%

Profile3
BW3= 10%

Of subscribers per
SLA

20 Subscribers 10 Subscribers 10 Subscribers

Relative BW
Requirement

(BWi*Nc) 60x20= 1200 10x30 = 300 10 x 10= 100

BW Assignment
Per Aggregate profile

BW:*N <= -̂)*100 75.00 % 1875 % 6.25 %

BW Share per Client BW.
(= ••)*100

375%
per subscriber

1.875%
per subscriber

0.625 %
per subscriber

Table 5.4: Illustration of Profiling based on a Service Level Agreement

The SLA manager accepts the SLA configurations from the administrator. Individual

SLA specifies the maximum delay and minimum transmit rate then translated into

assigned bandwidth BW for each aggregate profile and maximum delay aggregate

profiles whenever required.

45

The shaper readjusts the assigned bandwidth and reports over-usage using the maximum

delay. For example, for a certain profile P„ if the line speed is lOMb/s and the SLA for P,

is 10% guaranteed bandwidth and the maximum delay guaranteed is 250ms, there will be

number of issues to consider. In order to guarantee the maximum delay for a certain SLA,

the SLA should include profile rate ratio, TMaxDeiay, of

LP,
V MaxDelay fP X

Where R is the line rate, where TP, is the Max delay for a profile /, and where LP, is the

length of profile i in the input queue.

For example if the queue depth for P, in the scheduler input queue is equal to a burst of

500K bits, which needs 50 ms to be transmitted, in this case, there is ho issue in conflict

with the SLA. However, assume that the total traffic in the input queue from P (and other

profiles is equal to 10M bits, which equal to one second of transmission. If 10% of BW is

assigned for the Pj as per the SLA, then the maximum delay will reach about 500ms for

the last packet sent from P (. In order to comply with the SLA Maximum delay then the

SLA manger must increase the bandwidth assigned to P, from 10% to 20% BW. That

means finishing the P, traffic transmission within 250ms. After 250ms of transmission,

there will be no more packets from P, to transmit, so the traffic shaper redistributes the

unused 20% bandwidth from Pj profile to the other profiles.

46

If the queue of P, is a burst of 5M bits which needs 500ms to transmit, then there is an

issue of conflict with the SLA as Pj should have been assigned at least 50% the

bandwidth in order to grantee the maximum delay.

5.7 FIFO-Effect

The Scheduler is the module that determines the order with which incoming packets are

disposed to the Egress module for transmission. The egress module always serves the

packets on a FIFO basis. Since there is a speed mismatch between the Profiler, the

Scheduler and the Egress module, regardless of the scheme the scheduler implements, the

scheduler may always operate on a FIFO basis, due to a phenomenon termed here as the

FIFO-Effect. The cause of this effect and its remedy are described hereinafter.

FIFO-Effect is defined as a phenomenon whereby a scheduler implementing a non-FIFO

algorithm inadvertently behaves as a FIFO scheduler. This occurs because the scheduler

operates in between the forwarder module and the Egress module and it is much faster

than both the egress process and the forwarder process. Since the scheduler works with

packet records, and not with actual packets, it takes the same amount of time to schedule

any packet regardless of the length. So, the speed of the scheduler is determined only by

the computational limitations of the hardware platform upon which it is running.

Definition: The Profiler/Forwarder processing time, 7>, is the time required processing a

packet to determine the route of the packet and its profile, to compile the relevant packet

descriptor record, and place the record in the scheduler queue.

47

Definition: The Scheduler processing time, Ts, is the time the scheduler required reading

one packet record, process the record according to the algorithm it implements, and place

the record in the output queue.

The Scheduler Processing Time is constant for every packet. Every record within the

scheduler queue contains the length of the packet, the packet pointer (the address of the

packet within memory) and the profile of the packet. Furthermore, any scheduling

algorithm performs only a finite number of actions such as multiplications, additions, and

comparisons. These operations are performed on every record within the scheduler

queue. Therefore, the scheduler processing time is approximately constant for every

packet.

Let TP be the packet processing time of the profiler/forwarder unit and TS be the time the

scheduler requires to schedule one packet. The maximum number of packets arriving in

the scheduler queue, NS, during TS is given by,

,NS€I.

If the scheduler is faster than or as fast as the profiler/forwarder, it operates as a FIFO no

matter which scheduling algorithm it implements. Let NS(t) be the number of packets

within the scheduler queue at arbitrary time and let nS be the number of packets that have

been scheduled during a time period of t. Therefore,

t = nsTs

48

During the same period, the number of packets that have been profiled and placed in the

scheduler, np is given by,

The total number of packets within the queue is therefore given by,

Ns (t) — Ns (nsTs) = np —ns —ni ns = ns(•1).

Ns(t) will have a positive value only when TS > TP. Otherwise, it is zero or negative.

However, the number of packets cannot be negative. It only means that there are no

packets with in the queue. Therefore, it can be concluded that if the scheduler operates

faster than or as fast as the profiler/forwarder, there will only be a maximum number of

one packet within the queue. Thus, the scheduler decides to schedule this packet because

it is the only packet with in the queue. Hence, packets are dispatched to the Egress

module in the same order as they have arrived.

The implication of this behavior is that if the line rate is such that the transmission time

of a single packet is greater than the Scheduler Processing Time, any backlog that may

exist at the input of the Profiler/Forwarder is invisible to the Scheduler. To avoid this

problem, the scheduler must wait for duration of time, Tw, given by,

LF

W ~ R

Where LE is the combined length of all the packets in the output queue of the scheduler

and R is the line rate, then the existing backlog will be transparent to the scheduler and

49

hence the scheduler will be able to dispatch packets according to the algorithm that it

implements. Specifically, implementation of the scheduler on high performance

platforms such as the LXP2400 NP incorporates such phenomena. The FIFO-Effect is

illustrated hereinafter.

Ix lOOx lOx
EGRESS SCHEDULER

QUEUE (EQ) OUEUE (SO)
EGRESS SCHEDULER • FORWARDER

Figure 5.8 Diagram showing the FIFO Effect

Suppose that the scheduler process works 100 times faster than the Egress process and 10

times faster than the forwarding process. This implies that during the time the Egress

module transmits one packet, the scheduler can schedule 100 packets and places them in

the Egress Queue. In the same period, the forwarder can place 10 packets in the scheduler

queue. Since the Egress module transmits packets in the order of their arrival in its queue

and the scheduler is disposing packets one at a time, the whole process represents a FIFO

scheme no matter which scheduling algorithm is implemented by the scheduler.

5.8 FIFO-Effect Suppression

To counter this effect and to ensure that packets are scheduled as per the algorithm

implemented by the scheduler, we propose that the scheduler has to take into

consideration the Egress process time required to transmit all the packets found in the

Egress Queue.

50

5.8.1 FIFO-Effect Suppression Mechanism

Definition: The scheduler is said to be Serving when it is busy transferring packets from

scheduler input queue and disposing packets into the Egress Queue.

Definition: Service Window is defined as the time interval during which the scheduler is

Let / be the total length of packets that have been scheduled during the Service Window.

For a line rate of R bits per second, it takes the Egress module a transmission time given

by the following formula:

During this time, the scheduler should not send packets to the Egress Queue because the

Egress Module is already busy and any more packets sent to the Egress module will be

queued. During this time, packets should be accumulated in the scheduler input queue. In

this way, the scheduler behaves more towards the expected scheduling scheme, which in

this case is LCWFQ.

Therefore, the FIFO-Effect suppression process forces the scheduler to wait for a length

of time equal to TEQ before scheduling the next round of packets. The scheduler, thus,

will be able to see more packets and hence schedule the packets according to the

bandwidth quota of the profiles. If there is a continuous flow of packets, the number of

serving.

in seconds
Where TEQ is defined as the time required for the Egress
module to transmit all the packets in the Egress Queue

51

packets that the scheduler sees within the queue increases. As time progresses, the

scheduler will be able to see more and more packets within the queue and hence

recalculates the bandwidth accordingly. The more packets the scheduler sees, the more

accurate the fairness will be. The detail of the operation of the scheduler is illustrated

below.

Simple example to explain service windows RI, R2 and R3:

Suppose there are three profiles; profile 1 contains only 4 packets, profile 2 contains 9

packets, and finally profile 3 contains 6 packets. For simplicity, assume that all profiles

assigned the same bandwidth percentage such that the scheduler will behave as a Round

Robin scheduler. Assume that no more packets arrived for a period long enough to

dispose all packets in the queue.

In the first stage of packet scheduling, the scheduler continues to schedule packets until

the fifth round. At this instant, the scheduler is ready to schedule packets from profile-1,

but there is no packet to serve. At this point, the scheduler stops to fork the shaper to

recalculate the new bandwidth percentage distribution. The shaper calculates the time,

TEQ, required by the egress to finish transmitting the scheduled packets and waits for that

P R O F I L E 1

P R O F I L E 2

P R O F I L E 3

Figure 5.9 Illustration of the Scheduling and the FIFO-Effect

52

time. During TEQ more packets for profile-1 may arrive. Even if no packets arrive, as

assumed in this example, a new bandwidth distribution is calculated at the end of TEQ. Rl

here is defined as a service window where the scheduler is using fixed pre-calculated

bandwidth distribution. Then another window R2 starts and the previous scenario

repeated again until the second profile finishes, which is after R2 period. At the end of

R2, the scheduler realizes that there are no more packets for profile-3 to serve. At this

time, the scheduler again enters into a wait state, recalculates the bandwidth distribution

to include any new arrived packets, and eliminates any finished profiles. Finally, Window

R3 starts and repeats the same process until the current Window R3 expires or profile-2

runs out of packets, whichever comes first.

Once the egress process finishes transmission, the traffic shaper starts to calculate the

adapted bandwidth quota for each profile and then the scheduler dispatches the packets

from the profiled queues. The scheduler stops scheduling if it runs into a Silent Gap or if

any of the active profiles is due to be scheduled but do not have a packet as determined

by the scheduling algorithm.

The following example illustrates the procedure described above. Suppose that the Egress

Queue is initially empty and let the line rate be lOMb/s. Thus, to transmit the longest

packet, say 1540 bytes, the Egress module requires a total time TEQ shown below.

1540*8 bits

10,000,000—
s

53

During 1.232 ms, the scheduler enters into a wait state during which the Profiler can

place 10 packets in the profiled queues into the input queues of the scheduler. TEQ is,

therefore, the first waiting time and the next Packet Disposition Time Window. When

1.232 ms is elapsed after the scheduler enters in to the wait state, the scheduler requests

new bandwidth allocation percentages from the Traffic Shaper. The Shaper, then,

calculates the new adapted percentages based on the current profiled queues, marks the

end of each input queue, and passes the BW information to the scheduler.

Consequently, the scheduler starts disposing packets based on the received BW allocation

information. It continues to do so until one of the profiled queues runs out of packets.

During the process newly arriving packets records are placed in the scheduler input queue

but will not be recognized by the scheduler. The scheduler assumes an input queue is

empty when it finishes scheduling all the packets before running into the mark. After

scheduling the 10 packets presented to it by the profiler, the scheduler enters into a wait

state whose duration is determined by

Suppose that the scheduled packets are voice packets. That is, the length of each packet is

64 bytes. Therefore, the new waiting time is calculated by

Total Length of Scheduled Packets /

Line Rate R

10*64*8*10 bits

bits
= 5.12 ms

10,000,000
s

54

If, in the worst case, all the packets were the longest (1540 bytes), the waiting time would

be calculated by

10*1540*8*10 Wta
TEQ = : jr—- = 123.2 ms

10,000,000—-
s

Therefore, the scheduler waits for the calculated period before it starts the scheduling

process again. During this period, more packets are accumulated. The adaptive weight

adjustment module in the scheduler determines how long to wait before scheduling

packets, then enforce BW allocation assignments while keeping the egress module busy

transmitting packets into the external network.

Another way of FIFO-Effect Suppression is to force the Traffic Shaper to perform its

bandwidth allocation calculations after scheduling every packet or, in general, after

scheduling a number of packets whose transmission process takes an amount of time that

is sufficient for the traffic shaper to calculate a new bandwidth allocation quota for each

profile. Thus, following the procedure described above, the scheduler waits TEQ long,

calculates the percentage based on the existing input profiled queues and the scheduled .

the packet from the appropriate profile. This optimum solution, therefore, limits the

Egress Queue Depth to one Packet. The proposed traffic shaper takes care of this

relationship in performing two functions. First, it serves the burst even if it is conflicting

with the SLA whenever possible and meanwhile reports the over-usage to the SLA

manager [16]. Second, it fairly serves Pj traffic in case of backlogged queue coexists

from the other profiles.

55

6 Simulation and Results

6.1 Simulation Overview

In order to simulate the scheduler and the traffic shaper, a C++ object oriented program

was designed and implemented to generate the packet traffic and simulate the operations

of the Scheduler and the Traffic shaper [20]. This is accomplished in two steps: Traffic

generation and operational simulation. Finally, a simulation of FIFO effect suppression is

presented.

Packet Record
Generator

Randomized
Packet records Output

Scheduled
packets

Profiled Queues

I I

i r

Traffic Shaper

Egress Queue

I I Egress

Figure 6.1 The Simulator Schematic Diagram

Main Queue: Simulates an input queue where incoming packets are stored by order of arrival.

Profiler: Assigns profiles to incoming packets and places them in the respective queue

Profiled Queue: Simulates queues of pointers of packets that are classified per their profile.

Traffic Shaper: Automatically adjusts the BW allocation of each profile if the option is selected

Scheduler: Schedules packets from the profiled queues according to the algorithm it implements

Egress Queue: Simulates queues of pointers of the scheduled packets and ready for transmission.

Egress: It represents the module that transmits the scheduled packets.

56

I

6.2 Traffic Generation

Traffic generation is defined as the random generation of packet records called profile,

and packet length. This is because the profile and the packet length are the two attributes

that the traffic shaper and the scheduler need in order to modify the percentage bandwidth

quota or dispatch the packet respectively. Randomization was important in order to

mimic a real traffic situation, which is realized using the Bernoulli's process described

below. Let us first define some terms used in the rest of this chapter.

Definition: Burst Span, BS, is defined as the period of time during which packets are

assumed to arrive with a very little time difference.

Definition: Silent Gap, SG, is defined as duration of time in which no packets arrive.

Definition: Simulation Window, SW, is defined as a period comprised of two or more

Burst Spans arid one or more Silent Gaps.

Definition: Queue depth, QD, is defined as the total length of all Burst Spans and Silent

Gaps expressed as a percentage of the line rate.

The input parameters for the traffic generator are Minimum and Maximum Burst Spans,

Minimum and Maximum Silent Gaps, Simulation Window, and Queue Depth.

6.2.1 Traffic Generation Using the Bernoulli's Process
The packets are assumed to arrive in bursts separated by Silent Gaps. These Silent Gaps

are randomized according to the following formula:

SG,= R * MinimumSG + {randQ % (MaximumSG - MinimumSG)),

Where SG, is the length of the i'h Silent Gap,

57

J

R is the line rate in bits per second,

MaximumSG is the maximum length of Silent Gap expressed in seconds and,

MinimumSG is the minimum Silent Gap expressed in seconds.

Similarly, the length of each burst is calculated by the following formula.

N; = MinimumB + (rand Q % (MaximumB — MinimumB))

Where Ni is the length of the i'h burst,

MaximumB is the maximum burst length expressed in terms of number of packets,

MinimumB is the minimum burst length expressed in terms of number of packets.

The maximum length of the IP packet is 1540 bytes and a minimum of 20 bytes. In the

simulation, these values define the Range, Rg. The Range is divided into TV/ intervals.

Each interval represents a packet of length, LP, calculated by

N,

A Binomial probability distribution function quantifies the probability of a number of

successes in a given number of trials that is described by the following formula.

p(x = x)=ncx*P**(\-Py-x

Where X is a random variable representing the number of successes in n trials and x is the

number of successes. In the simulation, this probability determines the percentage of

Rg

packets whose length, lx, is x*——. and the probability distribution will take the form

shown in the following formula.

58

P(X=x)=NCx*p**(}-p)N'-x

The simulator converts every input parameter into an equivalent number of packets with

a variable length. Therefore, given the total number of packets Np that need to be

generated, the number of packets in each interval, nx, is calculated using the following

formula.

nx = Np *P(X =x) = Np*Ni Cx *px*(l- p)N'~x

In addition, these packets have a length of

In the simulator, packets are generated for every interval, and hence, Np represents the

number of packets per interval, Nit calculated above. However, the profiles are generated

by the following C++ code shown below.

srand(time(NULL));

Profile = rand % NumberOfProfiles;

Some screenshots are presented in Appendix B where it shows the details of setup

parameters described before.

6.2.2 Results of Traffic Generation

Figure 6.2 shows the graph of packet length generation for packets arriving at the

scheduler in four bursts and three silent gaps. It can be seen from the graph that the

packet length distribution per interval is random. While the variation of the length within

every burst follows Bernoulli's distribution, it is randomized to vary the arrival of packets

59

of same length so that generation scheme is appropriate for the simulation. The long

spikes indicate the lengths of the silent gaps expressed in equivalent number of bits.

Vamtionof the Lengths of Incoming Packets

4bC 800 if 99 1598, '1.998- 2397: 2797
Sequence Number

Figure 6.2 Sample of Generated Packets Length Variation

Figure 6.3 shows the distribution of packets within each profile. Note that the number of

packets shown in the figure is 3,500,000 packets. Again, it shows four bursts and three

silent gaps.

10

§ 6
©

£ 4 '

2
0 ^

D i s t r i b u t i o n o f P a c k e t L e n g t h s w i t h i n e a c h p r o f i l e

0. 500000 1000000 1500000 2000000 2500000 3000000 3500000:
Cumulative Length (bytes)

Figure 6.3 Generated packets arrivals per profile for a case of four bursts

60

6.3 Simulation

The simulation is done in two stages: Scheduling with fixed bandwidth and Scheduling

with adapted bandwidth.

6.3.1 Scheduling with Fixed Bandwidth

The performance of the FIFO, SRR, DRR and LCWFQ scheduling algorithms for

identical traffic input of two bursts separated by one silent gap and a fixed bandwidth

assignment for every profile, shown in Table 6.1, is shown in Figure 6.4.

Profile 0 1 2 3 4 5 6 7 8

BW Assignment (%) 19 17 13 11 9 7 3 2 1

Table 6.1: Bandwidth quota assignment assumed by the SLA Manager

Figure 6.4 shows the average delay for the four scheduling algorithms. It can be seen

from the figure that LCWFQ prioritize, and discriminates the profiles according to their

bandwidth assignments. Since profile 0 has the highest bandwidth quota, it incurs the

lowest delay. On the other hand, profile 8 incurs the highest delay because it has the

lowest bandwidth quota, and hence, the lowest priority.

Figure 6.5 shows the maximum delay for the same and further clarifies this assertion. The

figure reaffirms the ability of the LCWFQ algorithm to discriminate between different

profiles according their priority. It should be noted that the performance of the LCWFQ

is a little bit better in the average delay, while it provides the same performance on the

maximum delay. The LCWFQ performs the same during the bursts and the silent gaps.

While the empty queues and silent gaps cause errors to the DRR.

61

Average Delay

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8

— 1 Avg Delay FIFO

—B—Avg Delay RR

- tx Avg Delay DRR

—X— Avg Delay LCWFQ

— 1 Avg Delay FIFO

—B—Avg Delay RR

- tx Avg Delay DRR

—X— Avg Delay LCWFQ

— 1 Avg Delay FIFO

—B—Avg Delay RR

- tx Avg Delay DRR

—X— Avg Delay LCWFQ

— 1 Avg Delay FIFO

—B—Avg Delay RR

- tx Avg Delay DRR

—X— Avg Delay LCWFQ

— 1 Avg Delay FIFO

—B—Avg Delay RR

- tx Avg Delay DRR

—X— Avg Delay LCWFQ

• - I

\ +

(

t
>

• - I
<

Figure 6.4 The average delay with fixed B/W assigned

Maximum Delay

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8

— T_>> ~~* ~ " — - • - - » -— T_>> ~~* ~ " — - • - - » -— T_>> ~~* ~ "

— * • Max Delay FIFO

—•—Max Delay RR

- t* Max Delay DRR

—X— Max Delay LCWFQ

— * • Max Delay FIFO

—•—Max Delay RR

- t* Max Delay DRR

—X— Max Delay LCWFQ

Figure 6.5 The maximum delay with fixed B/W assigned

6.3.2 Scheduling with Adapted Weight Adjustment

Scheduling with adapted weight adjustment is performed with the help of the Traffic

Shaper. As described in chapter 3, the Traffic Shaper adjusts the bandwidth allocation

toward the actual incoming traffic composition to distribute allocated but unused

bandwidth of profiles that have higher bandwidth quota and have lower traffic to those

profiles that have lower bandwidth quota and have higher traffic. The original bandwidth

assignment is used as a reference to determine the relative priority of the profiles. Figures

6.6, and 6.7 show the average delay per profile, and maximum delay comparisons.

Average Delay - Adapted Wieght Adjustment

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8

0.05

Figure 6.6: Average delay with adapted weight assignment

63

M a x i m u m Delay - A d a p t e d Wieght Ad jus tment

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7 Profile 8
j 1 j 1 L 1 \- I

— • ' Max Delay FIFO

" • Max Delay RR

- £r Max Delay DRR

)(Max Delay
LCWFQ

0-1 J I I I ! ! I I I I

Figure 6.7 The maximum delay with adapted weight assignment

6.3.3 Fairness Index diagrams

The fairness of the four algorithms under consideration is calculated and the percentage

allocation of the bandwidth is plotted against the sequence number of the packets as

shown in Figures 6.8, 6.9, 6.10 and 6.11. The straight lines indicate the assigned

bandwidth while the others show the actual bandwidth allocation as determined by the

corresponding scheduling algorithm [21][22].

The graphs show that the FIFO and the R R algorithms do not ensure fair sharing of

bandwidth. The fairness of the FIFO is such that the output pattern is the same as the

input pattern. Because of this, bursty profiles get unfair usage of the output link. That is,

if the lowest profile has many packets that have arrived just before highest profile

64

packets, then the highest profile will be treated unfairly because it will be forced to wait

despite its status.

Fairness of F I F O II \
V II A

ft

n

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961 1009 1057 1105 1153 1201

Sequence Number

Figure 6.8 Fairness measurement of the FIFO scheduling algorithm

The Round Robin algorithm corrects the situation a little bit by scheduling packets from

each profile that has packet in every round. However, RR suffers from the lack of an

ability to enforce bandwidth allocation based on bandwidth quota. It is suitable only

when the bandwidth is shared equally between all the profiles. Because RR inherently

favors longer packets, bursty packets that are longer and that have lower profile get unfair

advantage over higher profile packets that are shorter.

65

F a i r n e s s of R R

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961 1009 1057 1105 1153 1201

Sequence Number

Figure 6.9 Fairness measurement of the RR scheduling algorithm

F a i r n e s s of D R R

-

| K - -
- j , ifTJifjW^^.^W*^W'»>.w«i^yw,^^»«~. .«~~w —^jrrr- — , r. ,-••„.

¥1

(UuX^^hM^^^ . . _ _ _ _ _ _ _ _ _

^ v J v M s r v - J — - ™ • - -

1 49 97 145 193 241 289 337 385 433 481 529 577 625 673 721 769 817 865 913 961 1009 1057 1105 1153 1201

Sequence Number

Figure 6.10 Fairness measurement of the DRR scheduling algorithm

Figures 6.8 to 6.11 also indicate that on the long run, the allocation of bandwidth between

the profiles approach the assigned bandwidth only for DRR and LCWFQ algorithms.

However, it is worth noting that LCWFQ offers relatively more stability than DRR and it

does not suffer from the drawbacks of the DRR in that it behaves graciously when a

specific profile has an empty queue. Figures 6.13 to 6.16 show the responses of the four

scheduling algorithms for an input pattern shown in Figure 6.12.

Fairness of L C W F Q

25

20

1 55 109 163 217 271 325 379 433 487 541 595 649 703 757 811 865 919 973 1027 1081 1135 118*

Sequence Number

Figure 6.11 Fairness measurement of the LCWFQ scheduling algorithm

As the figures depict, the FIFO algorithm provides a chaotic response for a chaotic input.

It does not provide any order to smooth the traffic or share the BW accordingly. The

Round Robin algorithm provides a certain degree of order. However, it falls short of

having the ability to perform fair bandwidth allocation. The Deficit Round Robin

algorithm overcomes the disadvantages of the Round Robin scheduling algorithm by

67

enhancing the order maintained by Round Robin to enforce a fair bandwidth allocation.

The LCWFQ refines the DRR scheduler by providing more stability and better

discriminative capability.

6.3.4 Simulation of the FIFO effect

As described in the previous chapter, FIFO effect is a situation in which a scheduler

operates on a FIFO basis regardless of the algorithm it implements due to a speed

mismatch between the module that supplies the packet records for the scheduler to work

on and the scheduler itself. In order to simulate the effect, the scheduler uses a

mechanism to control the number of packet records in the Egress queue.

Normally, the system operates with the principle that the scheduler is not required to

schedule any packet until Egress module finishes transmitting the packets that are already

scheduled. This will help the scheduler see as many packets as possible, and hence,

enable it to distribute the bandwidth according to the assigned or adapted quota. In order

to accomplish this, the scheduler keeps track of the combined length of all the scheduled

packets that are disposed during the last scheduling cycle.

Therefore, if the number of packets the Egress queue can hold is not limited, or in other

words, if the scheduler is allowed to schedule packets without waiting for the Egress

module finishes transmitting the scheduled packets and if the scheduler is faster than the

packet supplier module, then any scheduler operates in a FIFO mode. Figures 6.17 below

demonstrate this effect.

68

The figure shows that the delay per packet is the same for all the profiles. The difference

between the maximum delays of any two profiles is less than 0.'006ms. If the number of

packet records in the Egress queue increases, the aforementioned difference approaches

to zero. This fact has been mathematically proven in chapter 3.

Profile

0.2

0.19

0.18

0.17

_0.16
"»
E
"^0.15 m a> O

0.14

0.13

0.12

0.11

0.1

0 1 2 3 4 5 6 7 8

—O- - Avg Delay FIFO
—H—Avg Delay RR
- A - Avg Delay DRR
— • — Avg Delay LCWFQ

—O- - Avg Delay FIFO
—H—Avg Delay RR
- A - Avg Delay DRR
— • — Avg Delay LCWFQ

—O- - Avg Delay FIFO
—H—Avg Delay RR
- A - Avg Delay DRR
— • — Avg Delay LCWFQ

A v e r a g e Delay C o m p a r i s o n

Figure 6.12 The Average delay when the Egress queue size is 1000 packets

6.4 Memory Access Overhead Estimates

It is assumed that the state information of all the queues implemented, as a shared

memory between any two micro engines is small enough to fit in the Scratchpad memory.

It is also assumed that the queue is implemented in the SRAM and the actual packet is

stored in the D R A M . The Ingress module makes one SRAM write operation per packet to

write the pointer of the memory in the SDRAM where the packet that has just been

69

received is stored. It also reads the Scratchpad memory to read the pointer to head of the

queue, called the non-proxy queue, and writes the same memory unit to update the new

head of the queue.

The Profiler makes one Scratchpad memory read to get the tail pointer of the non-proxy

queue. Using the tail pointer, it reads the non-proxy queue to retrieve the pointer to the

packet. Afterwards, it writes the Scratchpad to update the tail pointer of the queue. It

makes two-DRAM accesses to obtain the source and destination IP addresses. Using the

source IP, it indexes into the SMM Active Catalogue to obtain the profile identification

corresponding to the source.

It takes two extra Scratchpad memory accesses to read and update the head pointer of the

Scheduler queue, which is shared between the Profiler and the Scheduler, four SRAM

memory accesses to write the profile ID, the length of the packet the record represents the

pointer to the actual packet and the pointer to the next record. It also makes two

additional write accesses to the same memory unit to update the combined length of all

the packets to which the profile of the packet under consideration belongs and to update

the total length of all the packets represented by the records in the Scheduler queue. On

top of this, the profiler needs to make at least two D R A M write operations to update the

source IP, destination IP, source M A C , and destination M A C addresses. Assuming nine

profiles, the Traffic shaper makes nine Scratchpads read memory accesses.

70

The Scheduler performs two Scratchpad memory accesses to read the tail of the pointer to

use in removing a packet record from the queue corresponding to the profile that is being

scheduled and to write the updated tail pointer. It makes four SRAM memory accesses to

read from the Scheduler queue and another three memory accesses to the same memory

unit to write into the Egress queue, which is the queue that serves as a shared memory

region for the communication between the Scheduler and the Egress modules. The reason

why the scheduler only requires two SRAM accesses is that the packet record written in

the Egress queue is comprised of only the packet pointer and a pointer to the next record

within the same queue.

Like the Scheduler, the Egress module performs two Scratchpad memory accesses to read

the tail of Egress queue and to write the updated value back. In addition, the Egress

module makes two SRAM memory accesses to read a packet record. The following table

summarizes the above result. The IXP2400 Network processor speed is 600MHz.

Scratchpad SRAM DRAM
Read

(Cycle)
Write

(Cycle)
Read

(Cycle)
Write

(Cycle)
Read

(Cycle)
Write

(Cycle)
Ingress 0 0 0 1 0 0
Profiler 4 4 2 4 2 2
Traffic Shaper 9 0 0 0 0 0
Scheduler 1 1 4 2 0 0
Egress 1 1 1 0 0 0
Total Num of Access 15 6 7 7 2 2

Approximate Latency 60 90 120
Daley (us) 0.1 0.15 0.2
Total Daley per memory unit (us) 2.1 2.1 4

Total Delay (us) 8.2

Table 6.2: Typical Read/Write time for the router modules

71

7 Conclusion and Future Work \

The thesis introduces number of additional and simple functions and methods to the

router operation that process the received packets on early stages. In doing so, the rest of

the router functions and modules turn into simple operations and require less processing

resources compared to the conventional routers. The methods also fall under a new view

of implementation to move away from the conventional forwarding and scheduling

operations to seek the scalability and add more intelligence to handle complex operations

in a simple way. B y adding processing functions on early stages of the router, it saves

processing time later. These proposed functions are the profiler, the Proxy Agent, the

S L A manager, and weight adjustment traffic shaper. More depth in searching within the

router for a record is also addressed by introducing the 3-level index method. The

proposed functions are simple and low cost processes. Moreover, these functions make

the other modules like the scheduler and the forwarder simpler and faster. From the

simulation results, it is found that the 3-level index finds a route of any destination IP

address and insures that the time required finding a record is always three memory

accesses even i f there is a million records. The proposed methods turn the router to be

configurable to handle different types of multimedia packets through the inclusion of.a

proxy agent. The design includes a new traffic shaper method that adds another horizon

to interpret the S L A and provide direct interface between a signed agreement and the

active streams served by the router. The proposed L C W F Q scheduler has work load of

0(1) and achieves a fairness index of 1 (One). The L C W F Q found to perform similar to

72

the famous Deficit Round Robin (DRR) scheduling algorithm, but does not have the

D R R weakness in dealing with the empty queues as the empty queue introduces errors in

the D R R case. Unlike D R R , L C W F Q does not require the prior knowledge of the

maximum size of a packet arrives in the system. The Service Level Agreement manager

calculates bandwidth shares for all subscribers. Individual S L A specifies the maximum

delay and bandwidth guarantee parameters, while the traffic shaper readjusts the assigned

bandwidth and reports the over-usage cases.

There are three areas of research for future work. The first area is to design optimized

memory index that can be used by all the modules in the router and the table structure.

The second area is to introduce more algorithms in the area of the Adaptive weight

adjustment. The third area is to design advanced S L A manager user interfaces.

73

8 Bibl iography

[1] Intel® IXP2400 Network Processor Datasheet.

http://www.intel.com/design/network/datashts/30116411 .pdf

[2] SIP Introduction by Jan Janak "A brief overview of SIP describing all important

aspects of the "Session Initiation Protocol."

[3] IETF, RFC 3261 "SIP: Session Initiation Protocol"

[4] Understanding SIP by Dorgham Sisalem and Jiri Kuthan GMD FOKUS

[5] Narvaez, P.; Kai-Yeung Siu; Hong-Yi Tzeng, "Traffic Engineering with traditional

Routing Protocols," IEEE/ACM Transactions on Networking, Volume: 9 Issue: 6,

December 2001 pp. 706 -718.

[6] Ming-Yen Lin; Sun-Yin Lee, "Fast Discovery of Sequential Patterns through

Memory Indexing and Database Partitioning" Journal of Information Science and

Eengineering 21, pp. 109-128 (2005)

[7] Yuk Ho, "Application of Minimal Perfect Hashing in Main Memory Indexing",

Massachusetts Institute of Technology, 1992

[8] Jussi Myllymaki and James Kaufman, "LOCUS: A Testbed for Dynamic Spatial

Indexing" EBM Almaden Research Center, 2002

[9] D. C. Stephens, J. C. R. Bennett, and H. Zhang, "Implementing scheduling algorithms

in high-speed networks," IEEE J. SelectedAreas in Commun., vol. 17, no. 6, pp. 1145-

1158, Jun. 1999.

74

http://www.intel.com/design/network/datashts/301

[10] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, New Jersey, 2nd

edition, 1992.

[11] S. S. Kanhere, H. Sethu, and A. B. Parekh, "Fair and efficient packet scheduling

using elastic round robin," IEEE Transactions on Parallel and Distributed Systems, vol.

13, no. 3, pp. 324-336, Mar. 2002.

[12] M . Shreedhar and G. Varghese, "Efficient fair queuing using deficit round-robin,"

IEEE/ACM Tran. Networking, vol. 4, no. 3, pp. 375-385, June 1996.

[13] J. C. R. Bennett and H. Zhang, "WF2Q: worst-case fair weighted fair queueing," in

IEEE LNFOCOM, Mar. 1996, pp. 120-128.

[14] P. Goyal, H. M . Vin, and H. Cheng, "Start-time fair queueing: a scheduling

algorithm for integrated services packet switching networks," IEEE Trans. Networking,

vol. 5, no. 5, pp. 690-704, Oct. 1997.

[15] P.Goyal, H. M . Vin, and H. Haichen, "Start-Time Fair Queuing: A Scheduling

Algorithm for Integrated Services Packet Switching Netwirks," JJEEE/ACM Trans.

Networking, 5(5): 690-704, Oct. 1997.

[16] Naomi Karten, "Establishing Service Level Agreements", 2001, www.nkarten.com

[17] D. Stiliadis and A. Varma, "Efficient fair queueing algorithms for packet-switched

networks," IEEE/ACM Trans. Networking, vol. 6, no. 2, pp. 175-185, Apr. 1998.

[18] J. A. Cobb, M . G. Gouda, and A. El-Nahas, "Time-shift scheduling - fair scheduling

of flows in high-speed networks," IEEE Trans. Networking, vol. 6, no. 3, pp. 274-285,

June 1998.

75

http://www.nkarten.com

[19] D. Stiliadis and A. Varma, "Latency-rate servers: a general model for analysis of

traffic scheduling algorithms," IEEE/ACM Trans. Networking, vol. 6, no. 5, pp. 611-

624, Oct. 1998.

[20] A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a fair queueing

algorithm," in A C M SIGCOMM, 1989, pp. 1-12.

[21] Y. Zhou and H. Sethu, "On the relationship between absolute and relative fairness

bounds," IEEE Comm. Letters, vol. 6, no. 1, pp. 37-39, Jan. 2002.

[22] A. Kumar and J. Kleinberg, "Fairness measures for resource allocation," in 41st

Annual Symposium on Foundation of Computer Science. Nov. 2000, pp. 75-85, IEEE.

[23] S. Keshav, An engineering approach to computer networking:ATM networks, the

Internet, and the telephone network, Addison-Wesley, Massachusetts, 1997.

[24] A. K. Parekh, A generalized processor sharing approach to flow control in integrated

services networks, Ph.D. thesis, Massachusetts Institute of Technology, Feb. 1992.

76

9 Appendix A : Class Description

9.1 Program Execution Overview

• Packet records are generated according to Bernoulli's process and written into a

file. The records are then read from the initial file, randomized and written into

another file.

• These records are read from the later file and written into memory (into the main

queue) as a linked list of records. This list serves as a queue that holds packet and

the order of packets within the queue indicates their order of arrival.

• The profiler classifies the packet in the main queue and places the packet records

in the queue designated for the profile. The profiled queue is a linked list of

pointers that point to the actual packet record in the main queue. A packet record

will not be removed from the main queue until the packet is transmitted.

• The execution of the scheduler is determined by one factor: the number of queues

the Egress unit is allowed to hold. The scheduler enters a waiting state when a

number of packets that is equal to the number of packets that the scheduler is

allowed to hold have been scheduled. The combined length of all the packets

within the Egress Queue determines the duration which the scheduler waits before

scheduling the next packet. The waiting time is equal to the transmission time of

all the packets that reside in the Egress Queue.

• The traffic shaper calculates new bandwidth allocation quotas at the end of the

waiting time and the scheduler uses these new values to schedule packets.

77

9.2 Class Description

9.2.1 BWShape

This class represents the traffic shaper and calculates the adapted percentage values.

Methods:

• BWShape(): default constructor, which is currently not doing anything

• BWShape(SimData *setup): Constructor that initializes the traffic shaper with the

current setup data values

• calcNewPercentageFormulal(int *Flag): method that performs the calculation of

the bandwidth quota for each non-empty profile as indicated by Flag. Flag is an

array whose size is equal to the number of profiles and whose elements can

assume a value of 0 or 1 indicating the corresponding profile is empty or non

empty respectively.

• Round(double in): method rounds in to the nearest long integer

• update(long length): method that updates the variable containing the total length

of all packets

9.2.2 CSchedulerDlg

• This class represents the core object that coordinates the acquisition of simulation

parameters and executes the simulation with the assistance of other classes that

wi l l be described later.

78

Methods:

• calcBernMulti(int burstID): This method generates packet records(Length and

Profile) for a given burst in which the length of the packets varies according to

Bernoulli's distribution. This method will be invoked as many times as the

number of bursts as determined by the corresponding simulation parameter. The

generated packet records are written into an intermediate file.

• calcPureRandom(): This method generates packet records with the length of the

packets varies according to random{) function of C++. This function is not

designed to generate multi-burst packet records.

• Clean(): This method frees up allocated memory space used by the queue.

• factorial(unsigned int num): This method calculates the factorial of the number

passed to it as a parameter.

• RandomizeBernoulli(): This method reads the intermediate file generated by

calcBernMulti(), randomizes the packet records within each burst and writes them

into a different file.

• writePackets(Packet *pkt, int Len, Packet lastPkt): This method is responsible for

writing the randomized packets of a burst into an output file.

• fdlQFile(): This method is responsible for reading the packet records from the

input file and sets up the input queue to the profiler.

• init(int schedulerlndex): This method initializes variables for the scheduling

algorithm referenced by schedulerlndex (0 for FIFO, 1 for Round Robin, 2 for

DRR and 3 for LCWFQ).

79

• initSimStatusProgress(): This method sets up the range for the simulation

progress bar of the GUI.

• OnSetupQ: This method is responsible for the acquisition of simulation data

including the creation of data entry GUIs.

• OnSimulate(): This method coordinates the overall simulation process after the

simulation data has been acquired.

• print(int id, int index): This method the delay of a packet given the scheduler

identification and the profile number.

• printDRR(), printRR(), printFIFO() and printLQ): This methods are responsible

to update the simulation result for the respective field.

• refreshDlg(): This method is responsible for updating the current adapted

percentage in use every time a new percentage is calculated by the traffic shaper.

• updateMax(int scheme, int prof, double delay),updateAvg(int scheme, int prof,

double delay): This methods are updates the maximum and average delay

respectively of the profile of the current packet, identified by prof, since

simulation of the current scheduling algorithm identified by scheme has begun.

• updateSimProgress(int Length), updateSimProgress(int Length, int Flag): These

overloaded methods are used to update the simulation progress bar on the GUI.

9.2.3 Queue

This class is designed as a linked list data structure that can represent any queue. It

contains a pointer to the master queue used by the profiler and the profiled queues used

by the scheduler and the traffic shaper.

80

Methods:

• fillQD(int &ref): This packet is responsible to fill all the profiled queues.

• getNumPackets(int prof): This method is responsible the total number of packets

that have the same profile as prof.

• getSize(void): This method returns the total number of packets of all the different

profiles.

• getSize(int profile): This method calculates and returns the total number of packet

records that have the same profile as profile.

• init(SimData *setup): initializes the queue with the simulation data.

• insert(Node *newNode): Inserts a new node at the end of the queue.

• insertMainQ(Packet pkt): Inserts a new packet at the end of the main queue.

• isEmpty(): checks if the queue is empty

• isProfileEmpty(int prof): checks if the profiled queue, identified by prof, is empty.

• remove(int &cur, int quantumf], int &ref): used in the DRR algorithm, it is used

to remove the next packet that is due in the current round and updates the

quantum value for the specific profile.

• remove(int &cur, char n, int &ref): used in the RR algorithm, it evaluates the

current profile to be removed and uses the next method to actually remove the

packet record.

• remove(Profile prof int &ref): removes the packet record from the profiled queue

whose profile is the same as the profile of prof.

81

• remove(int seqNum, int &ref): used in the FIFO algorithm, it removes the packet

whose sequence number is seqNum from the profiled queues.

• remove(double *credit, int &ref): used in the L C W F Q scheduling algorithm, it is

used to remove the packet whose profile has the lowest credit.

• removeMainQi): This method removes a packet at the head of the main queue.

9.2.4 SchedulerSim

This class implements the four scheduling algorithms

Methods:

• RunFIFO(),RunSRR(),RunDRR(),RunLC(): These methods represent the

algorithms FIFO, Round Robin, Deficit Round Robin and Lowest Credit

Weighted Fair Queuing respectively.

9.2.4.1 Setup

This class implements the G U I used to acquire the simulation setup parameters.

9.2.4.2 SimData

This class represents an aggregate data type that is capable of storing all the relevant

simulation parameters.

9.2.4.3 QueueLineParam

This class implements the G U I interface that is used to enter simulation data

parameters such as line speed, maximum, and minimum silent gaps, maximum

and minimum number of packets in each silent gap, scheduler and profile process

times, and the number of bursts.

82

9.2.4.4 QParams

This class represents the data structure that stores the parameters entered through the

GUI QueueLineParam.

9.2.4.5 Packet

This class represents the data structure that stores the packet record and other relevant

information such as sequence number and input time stamp.

9.2.4.6 Profile

This class represents the data structure that stores the information relevant to a profile

such as the profile type and the percentage BW quota of the profile.

9.2.4.7 Node

This class represents a linked list data structure that stores an object of type Packet and a

pointer to the next Node.1

9.2.4.8 MaxAvgFileNamelnputDialog

This class is represents the interface that is used to enter the file name to stores the

maximum and average delays of all the profiles.

9.2.4.9 DRRQuantum

This class is represents the interface that is used to enter the base quantum value that is

used in the simulation of the DRR scheduling algorithm.

83

10 Appendix B: GUI Screen Shots

Packet Generation

Scheme
IB er n Quiirp is tub ut i on £ j

Probability

|5T
tt at Internals

F
Unit of Interval ItofPackets
J64 J1000

No. of Prof les

Schadutet Conftguiation

Schedulirtg Scheme

- Trafhc Shaping

BW shaping j

;-output

i File Name (Fixed : 1-joutput.txt

- Profile Configuratorr
Profile ID Percentage

- Profile Configuratorr
Profile ID Percentage I m 1
Flag Type

Cance!

Submit

8 of Input Queues Max Credit Min. Credit
1000 •1000

Figure 10.1: Main Setup Screen

Packet Generation is randomized according to Bernoulli distribution or conventional random

function. B W Shaping is either Fixed (L C W F Q only with no shaping) or use the adapted

Weight Adjustment

1QUEUE AND LINE PARAMETERS

- Burst Width — - Burst Width —
Line Rale (Mb/s)

|T~~
Min (n)

|300

Max(n)

J1000

Queue Depth (s) O K ' |

|le-006 Silent Gap
Man Is) i l i j |

| l

Cancel |
Number of Bursts Minfs)

|0.5

Man Is) i l i j |

| l

Egtess Packets (n) Packet Read Piocess Time (ms)

| l 0 002

Scheduter/Shaper Piocess
Time [ms)

JO 02

Figure 10.2: The Queue and Line Parameters

8 4

PoWeC ProHe2 Profile 3 PmHe4 p-oSeS

RFO. 0 0 0 1° |0 |0 jo
SrapteRR 0 » |o l» 1°

MftR: o |o 1° l» » |o
DRR 0 0 0 |0 10 !° 0 1°

LLVfQ. 0 0 0 |c |o 1° 0 0 p
1 1 i 1

r 1 1 i •jj RJstnetad « 0 » T |0 |o o ~ •jj
8«nd Widtt. Alocabon f*

PwrteO P«fte 1 Prt>fte2 Pra«o3 hcflel fertile 5 PiftfJe 7
11 17 15 l» hi »

Aetuftt a o 0 |o]o 0 0 |o
Adapted 8 o » |o H lo IT" »

Atugivnent 19
0 '

15 I"
"15 Tjj

1°

|9
15 o

5
l» |

Nuntifti of «len«v. in eachProlM

Pkofl»2-J0

Packet Geneishcn S

P-inl <wg wt Me* j

Figure 10.3: Simulation in initial mode before setup

MawmiM Driay ft**)

PioHa2 PtoBa3 Proftel ftoM»5 PtoMeE PioK«7 PrcHeS .

FIFO;)4Z1 ffgOOO ĵ SSj*23610000J423076000[421112000Jm~mm|4g51603014)?•366000j*1S398000 :

LCwni; p ? 3 l S 7 ^ [2 l 3 l » s r o ^ 3 9 G O 0 0 [« H) 1 7 0 0 C O

r
r

R»ttie»*i |o~

Pto*4e 1 |S3Gf.3

P n * f 3 f ; ' j g i T

AsMo 4.̂ 7504

Pntfta SJ3970T~
Raa»6:|7257s""
ptDfds /jcaw-4

K I

•6»«JWi*>Aft)C*tPW(^
Pintail M t Pi ohle 2 PwWe 4 Pidte b Pratie 6 Ro)it f

Anv«d. |13 1" l§ !" Is 1' " F
Actus! |'0 N l« \ii JS ho j S>nufdtbnSi.̂ luv " " " *••

Adapts |'3 1" |.s 1" \3 |7 Is |3

A,;gtinoJ |19 1" |,3 1" I5 JJ | . _____-™.
RiscirBon JJ |c |o s 1° lo |0 ' jo o IL > * « - . . . !

Manimum DeJdy J AvwagejDelw j Part Avg «tW Ma.

Figure 10.4: Simulation completed shows the average delay and maximum delay

The simulator shows:

• 9 profiles with their assigned bandwidth, actual bandwidth and adapted bandwidth

• Packet generated and their distribution

• Maximum delay for the four schemes FIFO, Simple RR, DRR, LCWFQ

Certain Prof les have used mm fcen the* shoe

A mourn Exceeded

5. 6

foK: ; j

Figure 10.5: The simulator reports on profiles that have more than their shares

85

