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Abstract 

Image interpolation or resizing has wide applications in areas such as digital 

photography, the printing industry, HDTV and computer graphics. The traditional 

methods for image interpolation are known to suffer from visual artifacts that degrade the 

subjective quality of images. The goal of this research is to study and develop new image 

interpolation techniques that provide images with improved visual quality. In our study, 

we focus on the two most harmful artifacts resulting from traditional image interpolation, 

zigzagging and blurring. 

In developing the new interpolation method, we concentrate on visually oriented 

interpolation techniques. We explore the feature-oriented and content-adaptive approach 

emerging from recent studies on image interpolation. 

To find out why and how zigzagging arises, we first study the isophotes, i.e., the equi-

intensity contours, of interpolated images. Based on this analysis, we design an 

interpolation scheme that employs interpolation grid that adapt to the orientation of image 

isophotes. This method yields much smoother isophotes in the interpolated images than 

the traditional interpolation methods. As a result, the zigzagging artifacts are largely 

suppressed. 

To remove the blurring effect, we propose a method of enhancing the contrast of 

expanded images. To do so, we first discuss the properties an edge-sharpening function 

should satisfy. From these we choose a family of edge-sharpening functions that have the 

desired properties. The proposed contrast enhancement method proves to be effective in 

removing the blur. 



Ill 

We also show that evaluations based on the mean squared error (MSE) are not 

effective, thus we employ and improve the curvature-based measures to evaluate the 

performance of the proposed interpolation method. The experiments and analysis show 

that our proposed interpolation method is visually superior to traditional methods, and 

provide interpolated images with high visual quality. 
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Chapter 1. Introduction 

1.1 Background 

In many image processing applications, it is common to seek a digital image with a 

higher spatial resolution than that of a given image. During the process of changing the 

spatial resolution of a digital image, intensity values of newly introduced pixels (known 

as children pixels) have to be estimated from those of the original grid pixels (known as 

parent pixels). The operation of estimating children pixels from the existing parent pixels 

is called image interpolation. In our research, we are only interested in image 

interpolation using digital techniques, instead of analog or optical methods. 

When referring to image interpolation different researchers use different terms, such 

as image resizing, re-sampling, zooming, super-resolution and sub-resolution, up-

sampling and down-sampling, expansion (or enlargement, magnification) and reduction. 

Usually these terms are used to emphasize different aspects of image interpolation, 

depending on the intended application. 

In fact, image interpolation is not restricted to changing the spatial resolution. 

Another application of image interpolation is image rotation. When an image is rotated, a 

point (s,u) in the rotated lattice is related to point (JC, y) in the original lattice by 

s cos 6 sin 6 X 

u - sin 6 cos 6 y. 

For an arbitrary angle 8, pixels in the rotated coordinates usually are not in grid 

positions in the original coordinates, therefore their values are not known and must be 

estimated. The pixel values in the rotated image are obtained through image interpolation. 
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Figure 1.1 Rotation of coordinates 

Point (s, u) in the rotated grid (right) corresponds to point (x, y) in the 

original grid, the value of which is unknown and has to be interpolated. 

Image interpolation has applications in many areas, including 

• Resizing and rotation of digital images. These are vital operations in digital 

camera, image workshops and digital photography. 

• Large format printing. In the advertisement industry, production of the large-

scale prints is currently a very expensive, computationally demanding and time-

consuming process. One important reason is the lack of efficient image 

interpolation techniques. 

• Resolution conversion amongst different T V systems, such as the present TV 

broadcasting and the HDTV. The compatibility between low-resolution 

transmitters and high-resolution receivers and vice versa also require conversion 

of resolution, thus video interpolation is needed. 
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• Computer graphics. In 3-D graphical applications (e.g., in entertainment and 

computer game industries), rendering of 3-D objects requires color and 

shadowing information to be obtained from the known discrete pixels, a special 

type of interpolation referred to as triangulation. Currently, effective and visually 

pleasing triangulation remains a highly researched topic in the field of computer 

graphics. 

• Video compression/Zooming. By deriving more pixels from a limited set of 

known pixels, image interpolation is useful in compressing images. An image's 

size may be reduced before compressing it. The reconstructed image must then be 

enlarged to its original size. Interpolation-based compression is especially useful 

when combined with multi-scale video transmission. 

1.2 Objectives 

In the past few decades, substantial research effort has been made in the study of 

effective interpolation methods. However, the majority of the current interpolation 

methods are still based on the traditional techniques. As we will discuss in the next two 

chapters, traditional interpolation methods suffer from visual degradations, or artifacts. 

As a result, the images interpolated through traditional methods often have inferior visual 

qualities. 

In recent years, research interest in image interpolation has been more focused on 

visually oriented techniques, that is, the new emphasis is to develop interpolation 
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methods that provide images with better visual quality than the traditional methods. In the 

recently introduced interpolation methods, different techniques have been proposed to 

study and solve the visual degradations associated with traditional interpolation, of which 

the zigzagging artifacts and the blurring effects are of most interest. 

In this thesis, we propose a new visually oriented interpolation method that provides 

images with superior visual quality. To achieve our goal, we carry the following studies: 

1. Survey the recently introduced interpolation methods, especially the visually 

oriented methods. 

2. Study the zigzagging artifacts by examining the isophotes (equi-intensity contours) 

of the interpolated images. 

3. Develop an isophote-oriented, orientation-adaptive interpolation scheme that 

provides smooth isophotes in the interpolated images. By doing so, the zigzagging 

artifacts are largely reduced. 

4. Propose a content-adaptive scheme of image sharpening, which enhances the 

contrast of the interpolated images, thus removing the blurring effects. 

5. Evaluate the performance of the proposed interpolation method by conducting 

experiments and quantitative analysis based on improved curvature measures. 

1.3 Structure of the Thesis 

In Chapter 2, we review the traditional study of interpolation. We summarize the 

traditional interpolation kernels and the associated interpolation methods. Images 
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interpolated through the traditional methods are shown. We also discuss the traditional 

MSE-based evaluation of image quality in this chapter. 

In Chapter 3 we first discuss the degradations associated with the traditional methods 

— the zigzagging and blurring artifacts. Next, the recently introduced interpolation 

methods are surveyed. Most of these methods emphasize the visual quality of images, 

thus we classify as "visually oriented" methods. We discuss the general ideas as well as 

the specific approaches of these methods, and then analyze their strengths and 

weaknesses. 

In Chapter 4, we examine the isophotes of interpolated images in order to explain and 

solve the zigzagging artifacts. We introduce a method for detecting the isophotes of the 

bi-linear and bi-cubic interpolated images. O f special interest, we study the curvature of 

the isophotes in the bi-linearly interpolated images. 

In Chapter 5, we propose a directional interpolation method, which is based on the 

isophote analysis in Chapter 4. In this method, the bi-linear interpolation is generalized 

by employing interpolation lattice that adapts to the orientation of isophotes. We show 

that by doing so the interpolated isophotes are smoother than those of the traditional b i 

linear method, thus suppressing the zigzagging artifacts. The implementation of the 

proposed interpolation method is described, and experimental results are shown. Also in 

Chapter 5, we conduct a curvature evaluation of different interpolation methods, showing 

the superiority of the proposed method. 

Chapter 6 introduces a scheme of contrast enhancement for removing the blurring 

effect in the interpolated images. The proposed scheme employs different sharpening 
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techniques in edge areas and smooth areas. The algorithm of the proposed sharpening 

method is described and experimental results are shown. 

In Chapter 7, we summarize and discuss the proposed interpolation method. We 

summarize the contributions of this thesis, and give suggestions for future research. 



Chapter 2. 
TRADITIONAL INTERPOLATION METHODS 

In this chapter, we review the traditional interpolation methods. Section 1 

discusses the image interpolation as an image re-sampling problem, and briefly 

reviews the traditional study of image interpolation. Section 2 and Section 3 

review the traditional spatial domain methods and transform domain methods, 

respectively. Section 4 shows the experimental results obtained through some of 

the traditional methods reviewed. In section 5, we discuss the M S E measurement 

of interpolation methods. 

2.1 Image Interpolation as a Re-sampling Problem 

2.1.1 The Sampling Theorem 

In the study of image interpolation, the digital image to be expanded or reduced, 

F<j(m, n), is usually assumed to be acquired by sampling an original continuous image f(x, 

y). Ideally, the resulting interpolated image F(m, n) should be obtained by re-sampling 

fix, y) at the new spatial resolution or on the new spatial lattice. Usually, the original 

continuous image f(x, y) is unknown, thus it has to be estimated from its known samples 

Fd(m, n). 

According to the Nyquist sampling theorem, i f an image f(x, y) is band-limited, i.e., 

F ( B T , , G 7 2 ) = 0, for |87, | > Q , or |c7 2 | > Q 2 (2-1) 

and the sampling intervals A* and A^ satisfy 



— >2Q,, —>2Q 2 , 
A, A„ 

(2-2) 

then the original image f(x,y) can be precisely reconstructed from its samples by 

f(x,y)= ^Fd(m,n)-sinc(*-m)sinc(;y-n) (2-3) 
m=-«> n=-

In (2-3) the sine function is defined as 

sinc(jc) = 
sin(;zx) 

nx 

For convenience and without losing generality, we assume that the sampling intervals 

Ax and A y for the original image are always 1 unless otherwise specified. 

Figure 2.1 and 2.2 show the waveforms of the one-dimensional and two-dimensional 

sine functions, respectively. In (2-2), 2Qj and 2Q2 are called the Nyquist sampling rates. 

Figure 2.1 The one-dimensional sine function 
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Figure 2.2 The two-dimensional sine function 

When reconstructing the original image (formula (2-3)), the sampling positions for 

the original continuous image, i.e., the original sampling grid, must be known. In 

practice, for a given original digital image F^m,n), the exact layout of the original 

sampling grid is often not known, and usually has to be assumed. In this thesis, we make 

the following general assumptions on the sampling grid. 

(1) The sampling grid is square-based, that is, the samples are placed in positions with 

coordinates (mAx, nAy), where m and n are non-negative integers. We also use 

integer pair (m, n) as the index of a sampling position or a pixel. 

(2) The pixel with index (0, 0), i.e., the top-left sampling position, is always positioned 

on the point in the continuous image that has coordinates (0, 0), i.e., the top-left 

corner of the continuous image. 
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When re-sampling the reconstructed continuous image, a new sampling grid needs to 

be set. When forming the new sampling grid, we also follow the same assumptions as 

above, except that the spacing between sampling positions are different from the original 

image. For expansion or reduction of an image with an interpolation ratio of R>0, the 

new horizontal and vertical spacing between pixels are Ax/R and A / R , respectively. The 

sampling grids are illustrated in Figure 2.3. 

In Figure 2.3, the shaded area is the continuous image. The original continuous image 

is assumed to have the size of W (width) x H (height). Assuming A^=l and Ay=l, the 

original digital image contains exactly WxH pixels. See Figure 2.3(a). 

In figure (b), the reconstructed continuous image has the same size as the original 

continuous image, but the re-sampling grid is different from the original sampling grid. 

The new sampling grid contains MxN pixels, where M=WxR and N=HxR (after 

rounding to the nearest integers if necessary). 

W-2 W-l 

H-2 

H-l 

0 
0 O : O T — O O" 
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Figure 2.3 Illustration of sampling g r id 
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2.1.2 The Practical Interpolation Functions 

The Nyquist sampling theorem indicates that a band-limited original image f(x, y) can 

be precisely reconstructed from its samples F^m, n) i f the sampling rate is no lower than 

the Nyquist rate. The interpolated image F(m, n) can in turn be "ideally" obtained by re

sampling the reconstructed f(x, y). Unfortunately, due to well-known reasons, the sine 

function required by the Nyquist reconstruction (equation (2-3)) is impossible to 

implement. Therefore, in practice, different functions have been developed to replace the 

sine function in (2-3), yielding 

f(x,y)= £ ^ F r f ( m , n ) - / i ( x - m , y - n ) (2-4) 

In (2-4), f(x, y) is the approximately reconstructed continuous image, an 

approximation of f(x, y). Function h(x, y) is called the interpolation function. In our study, 

we also refer to h(x, y) as the interpolation kernel. 

When developing a practical interpolation function h(x,y), usually h(x, y) is required 

to meet certain restrictions so that it has desirable properties for the interpolation purpose. 

In our research, we survey the restrictions adopted by different researchers, and 

summarize some of the commonly used ones as follows. 

A n interpolation function h(x,y) is or has 

1. Similar waveform as the sine function. h(x, y) can also be developed in the Fourier 

domain. In this case, the spectrum of h(x, y) is required to resemble the rectangular 

impulse, the spectrum of the sine function. The resemblance is often measured by 

the percentage of energy contained in the main lobe, or the speed of attenuation of 

the side lobes. 
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2. Compactly supported. This is a critical condition for h(x, y) to be practical. Most 

interpolation functions should have zero value beyond a small region of support. 

Some functions, which are originally defined to have large or infinite region of 

support, are truncated so as to become compactly supported. 

3. Separability. h(x,y) is separable i f 

Separable functions are often mathematically easier to handle than inseparable ones. 

More importantly, separability of interpolation functions leads to the separability of 

the interpolation process, that is, interpolation could be done first in one dimension 

and then the other. This property usually simplifies the interpolation algorithm. 

4. Cj continuous. A function is C, continuous i f its /-th derivative is continuous. 

Usually h(x, y) has different requirements of continuity in different applications. For 

example, i f the curvature of f(x, y) is to be analyzed, then it is highly desirable 

that the interpolation function h(x,y) is C2 continuous. 

5. Straightness, that is, for integers m and n, 

To meet the straightness restriction, h(x, y) must have zero values on grid positions 

except point (0, 0). The straightness property guarantees that the values of the 

sampled pixels remain unchanged after interpolation. 

6. Energy conservation. That is, 

h (x,y) = hx(x)-h2(y) (2-5) 

(2-6) 

(2-7) 
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If h(x,y) meets the energy conservation condition, the average intensity level of the 

image is constant before and after interpolation. 

Note that the above restrictions are neither necessary nor sufficient conditions for 

function h(x,y) to be a practical interpolation kernel. For many traditional kernels, the 

above restrictions are not all met at the same time. In fact, usually some of the restrictions 

have to be sacrificed for others to be met. For example, in the piecewise polynomial 

kernels, usually higher differentiability (restriction 4) results in a greater region of 

support, and therefore restriction 2 (compactly supported) is sacrificed. 

One property that all the traditional kernels reviewed in this chapter have in common 

is separability, that is, all these two-dimensional kernels have the form of 

h (x,y) = hl'x)-hl(y) 

It is also common that extra restrictions are supplemented to those listed above, in 

order to achieve other desired properties under the given circumstance. For example, 

h(x,y) may be required to have linear phase in the Fourier domain, in order to eliminate 

the phase distortion in interpolation. 

Each different h(x, y) yields a different reconstructed image f(x, y) through equation 

(2-4). That is to say, each interpolation kernel corresponds to a unique interpolation 

method. In the next section, we review some of the commonly used interpolation 

methods. Many of these methods were developed in the early stage of the study of image 

interpolation, thus are known as the traditional interpolation methods. In our review, the 

traditional methods are divided into two main categories, the spatial domain methods and 

the transform domain methods. 
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2.2 Spatial Domain Interpolation Methods 

Among the traditional spatial domain methods, the most commonly used are: 

(1) The piecewise polynomials, 

(2) The B-Spline functions, and 

(3) The Gaussian functions. 

In the following sections, we review each of the above methods. 

2.2.1 Piecewise Polynomial Kernels 

Piecewise polynomial kernels form the largest family of traditional interpolation 

functions, and have received extensive applications in image interpolation. The 

polynomial kernels are identified by their degrees. Limited by computational complexity, 

usually polynomials with 0 to 3rd degrees are used in practice, while those with higher 

degrees are rarely used. The interpolation method associated with piecewise polynomial 

kernels are commonly referred to as pixel replication (degree 0), bi-linear interpolation 

(degree 1), quadratic interpolation (degree 2), and bi-cubic interpolation (degree 3). The 

polynomial kernels are reviewed below. 

P ixe l replication 

The simplest piecewise polynomials kernel is the rectangular impulse function, that is 

hrep(x) = \ 
1 

0 
2 2 

otherwise 
(2-8) 
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In the 0 order interpolation, the values of the children pixels (pixels to be 

interpolated) are obtained by replicating the nearest parent pixel. This method is also 

referred to as the "nearest neighbor" method. 

1.5 

0.5 

-0.5 
-1.5 -0.5 0 

x 
0.5 1.5 

Figure 2.4 K e r n e l of pixel replication. 
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Bi-linear interpolation 

The kernel of bi-linear interpolation is the triangle impulse, that is 

h"near(x) = 
I-x x<l 

(2-9) 
[0 otherwise 

The 1-dimensional and 2-dimensional forms of the bi-linear kernel are shown in 

Figure 2.5. 

1.5, 

>- 05 

Figure 2.5 Kernel of bi-linear interpolation. 
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Quadratic interpolation 

The quadratic interpolation kernel proposed in [32] is 

hquad(x) = \ 

-2a\x\2 + i ( a + l ) 

a\xf+(-2a-h\x\ + ha + l) 

0 

x< 

otherwise 

(2-10) 

In (2-10) a is a free parameter that gives the interpolation function a one-degree 

freedom. Regardless of the value of a, restriction 6 (energy conservation) is met, whereas 

restriction 4 (C/ continuous) and 5 (Straightness) cannot be both met at the same time. 

With a=l restriction 5 is met while 4 is not; with a=0.5 restriction 4 is met while 5 is not. 

In practice, a is usually chosen to be either 1.0 or 0.5 depending on the specific 

application. Figure 2.6 shows the kernels of the quadratic interpolation. 

(a) The 1-d quadratic kernels 



(c) 2-d kernel with a=0.5. 

Figure 2.6 K e r n e l of quadratic interpolation 
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Note that when a=1.0, for children pixels with coordinates (x=n or n+0.5, y-m or 

m+0.5), where n and m are integers, quadratic interpolation yields the same results as the 

bi-linear interpolation. This implies that when expanding an image by 2.0x2.0, the 

quadratic interpolation with a=1.0 is equal to bi-linear interpolation. 

Compared with other polynomial-based methods, quadratic interpolation has received 

less attention and research interest. One reason for this is the phase distortion introduced 

by the quadratic kernel ([8]). However, some researchers ([32]) showed that the properly 

designed quadratic interpolation can provide acceptable interpolation results with low to 

moderate computational complexity. 

Bi -cub ic interpolation 

Cubic interpolation kernels have received the most research attention among all 

polynomial kernels. In the past few decades, many types of different cubic kernels have 

been studied and introduced. 

The most commonly used 1-dimensional cubic interpolation function is Keys ' cubic 

spline ([10]), where, 

(a + 2)\x\3-(a + 3)\x\2 +1 0<\x\<\ 

a\xf -5a\x\2 + 8a|;rj-Aa \<\x\<2 (2-11) 

0 |x|>2 

h*ey\x)-

h*eys (x) is a four-point interpolation kernel, which means it uses the value of the four 

nearest grid pixels to interpolate a child pixel. 

Keys ' cubic spline has a free parameter a, which controls the shape and properties of 

the cubic spline. Regardless of the value of a, h*eys(x) is Cy continuous and has the 
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energy conservation and straightness properties, i.e., restriction 4, 5 and 6 are all 

unconditionally met. Therefore, the value of parameter a is decided by another 

restriction. 

Keys ([10]) proved that with a=-0.5, the coefficients of the Taylor expansion of 

h.Keys (x) are the same as the sine function up to the third (x 2 ) term. This property implies 

that the Keys ' cubic with a=-0.5, known as Catmull-Rom cubic spline, is able to 

precisely interpolate (reconstruct) any original function f(x,y) which does not have terms 

higher than x2 in its Taylor expansion. Catmull-Rom cubic spline is one of the most 

frequently used cubic splines in image interpolation and computer graphics. 

h{Ceys (x) with other values of a are also studied in order to meet specific requirements 

useful for certain applications. For example, when a=l hf^'ix) has the same slope with 

the sine function at x=l, whereas a=-3/4 makes the second derivative ofhfeys(x) 

continuous at JC=1. Regardless of the value of a, Keys ' cubic spline is N O T Ci 

continuous. 

Other than the family of Keys ' cubic spline, 6-point and 8-point cubic kernels, 

h™bic6(x) and hc

x

ubic%(x), are also studied ([35], [36]). These cubic kernels involve the 

nearest 6 and 8 parent pixels, respectively, to interpolate a child pixel. With a larger 

region of support and more degrees of freedom, these cubic kernels are able to meet 

stricter restrictions, such as C2 continuity, than the Keys ' cubic. However, due to their 

high computational cost, the 6-point and 8-point kernels are not widely used in practice. 



(b) 2-d Catmull-Rom kernel. 

Figure 2.7 The Keys' cubic kernel 
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Due to their high complexity, piecewise polynomial kernels with degrees higher than 

3 are rarely attempted by researchers. A s a result, these interpolation kernels are not 

reviewed. 

2.2.2 The B-Spl ine Kernels 

Basic splines (B-splines) are amongst the most commonly used in the family of spline 

functions. The B-splines can be constructed by a series of self-convolutions of a basis 

function, that is, 

hLune (x) = Mix)* ju(x)*...*M(x) (2-12) 
N~\ times 

In (2-12) hg line(x) is the Mh-order B-spline function, and fi(x) is the basis function. 

Usually, simple and impulse-like functions are chosen as the basis functions. 

If using the kernel of the pixel replication h[ep(x) (the rectangular impulse) as the 

basis function, the linear kernel h-hnear{x) in (2-9) is the 2nd order (N=2) B-spline 

function, and the quadratic kernel h^uadr(x) in (2-10) with a=0.5 is the 3rd order B-spline. 

The cubic (N=4) B-spline is 

1 I I3 I |2 2 I | 

2 I I I I 3 ' I I 

nBSpline W ~ 
-—IJCI3 + | X | 2 - 2 | x | +—, l < y < 2 (2-13) 

0 otherwise 

When N —> °°, the limit ofhgspUne(x) is the 0-mean Gaussian function 

G ( j , f j ) = T ^ e 2 3 2 
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2.2.3 Gauss ian Kernel 

A family of interpolation kernels based on the Gaussian function is presented in [19]. 

These kernels are called Gaussian interpolation kernels. 

Some of the one-dimensional Gaussian kernels are 

h2

N(x) = G°(x,2y2)-y2G2(x,y2) 

h6

N(x) = G0(x,2y6)-y6G2(x,y6)-^G6(x,y6) (2-14) 

In (2-14), G(x, a) is a Gaussian function with zero mean and standard deviation o, and 

Gn(x, a) is the nth derivative of G(x, o). The coefficients y2, y6 and yl0 in (2-14) are 

_J_ J _ 2 _ J _ , J _ 1^2 _ J _ . J _ 4065 2 

r 2 _ 2 ^ ( V 2 + n _ 2 ^ ( V 2 + 2 4 ) ' r ' ° " 2 ^ ( V 2 + 1920 ) • 

The region of support of the Gaussian kernel h" (x)is (-AV2, N/2], which means the 

Gaussian interpolation uses the values of the nearest N grid pixels. M is the degree of the 

kernel. It is shown by [19] that only some of the kernels with even degrees exist. The first 

three existing Gaussian kernels have degree 2, 6 and 10, and are given in (2-14). 

In the Fourier domain, the Gaussian kernel (see the analysis in [8]), especially those 

with high degrees, have an almost rectangular main lobe (note: the spectrum of the sine 

function is ideally rectangular), and its side lobes attenuate very quickly. This property 

gives the Gaussian kernels the best concentration of energy, i.e., percentage of energy 

within the main lobe, among all kernels discussed in this chapter. The main lobe of the 

Gaussian kernel, however, is considerably wider than that of the sine function, and 

therefore the Gaussian kernel is not a near perfect approximation of the sine function. 
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2.2.4 Other Interpolation Kernels 

Besides the methods reviewed in sections 2.2.1 through 2.2.3, there are other 

members in the family of the traditional methods, such as the truncated sine, the 

windowed sine, and the Lagrange kernels ([8], [33]), etc. Due to their relatively rare 

usage and less practical importance, these methods are not reviewed here. For detailed 

discussion of these methods, refer to the corresponding references. 

2.3 Transform-based Methods 

Image interpolation can also be carried in the transform domain. Performing a 

transform on a digital image of H x V pixels yields a matrix of H x V of its transform 

coefficients. For the majority of real-life images, most energy is located in the low end of 

the coefficient matrix, and the high-end coefficients usually have very small values. B y 

virtue of this property, the coefficient matrix of the interpolated image can be estimated 

from the coefficient matrix of the original digital image. The interpolated image is then 

obtained by performing the inverse transform. 

Among the transform domain interpolation methods, the most frequently used is 

based on the Discrete Cosine Transform (DCT) . 

The procedure of the DCT-based interpolation is as follows. 

(1) Perform D C T on the original digital image. This results in the image's transform 

matrix Q. 

(2) Estimate Qs, the transform matrix of the interpolated image. For image reduction, 

Qs is the top-left corner of matrix Q that has the same size as the reduced image. 
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For image expansion, Qs is formed by copying Q to its top-left corner and assigning 

all remaining coefficients the value of zero. 

The Qs so obtained is then multiplied by the interpolation factor R to make the total 

energy constant. 

(3) Perform the inverse transform on the coefficient matrix Qs. This yields the 

interpolated image. 

Another transform domain interpolation method is based on the Wavelet Transform 

(WT). Wavelet transform splits the energy of the original image into the L L , L H , H L and 

H H bands. The coefficients in the L L band are used to estimate the coefficient matrix of 

the interpolated image. The W T coefficient matrix of the interpolated image is estimated 

through similar procedure as step (2) of the DCT-based method, and then the interpolated 

image is obtained by the inverse W T . The WT-based interpolation method has the 

restriction that the interpolation factor is 2", where n is an integer. 

Following the similar idea described above, some researchers proposed interpolation 

methods based on transforms other than D C T and W T . Two examples are the D S T 

(Discrete Sine Transform)-based method proposed in [69] and the FFT-based method 

proposed in [66]. 

It is known that the transform-based interpolation methods suffer from certain 

degradations, e.g., the blockiness and ringing effects along image edges. Compared with 

the spatial domain interpolation methods, the transform-based methods have drawn less 

interest and practical usage. A s a result, the transform-based methods are only briefly 

discussed, and wi l l not be the focus of the remainder of this research. 
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2.4 Experimental Results of the Traditional Methods 

In our experiments, we use some commonly used images as the original digital 

images, and perform interpolations on them using some of the traditional methods 

reviewed earlier. Here we show the results from two images: Camera M a n and Tropic. 

The images are interpolated by replication, bi-linear, quadratic (a=0.5) and bi-cubic with 

a=-0.5 (Catmull-Rom). Camera Man (256x256) is expanded by a factor of 2x2. Tropic 

(320x320) is first reduced by the above methods by - x - and then expanded by 2x2, so 

2 2 

that the interpolated image has the same size as the original. 

Both images are gray-scale, with pixel value ranging from 0 to 255. The spatial 

resolution of display is chosen as 96 DPI. The original images are shown in Figure 2.8, 

and the interpolated images are shown in Figure 2.9 and 2.10. 

The original image Camera Man The reduced image Tropic 

Figure 2.8 The test images 

Image Tropic is reduced by — x —. 
2 2 



Figure 2.9 (a) Expanded by pixel replicat ion 



Figure 2.9 (b) Expanded by bi-l inear interpolation 



Figure 2.9 (c) Expanded by quadratic interpolation wi th a=0.5 



Figure 2.9 (d) Expanded by bi-cubic interpolation wi th a= -0.5 
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(c) Quadratic with a=0.5 (d) Bi-cubic with a= -0.5 

Figure 2.10 Tropic expanded by 2x2 after reduction 
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2.5 MSE-based Evaluation of Interpolation Methods 

A s discussed in section 2.1, in a practical interpolation method, the original 

continuous image f(x,y) can only be approximately reconstructed. That is to say, in the 

general case an interpolation method always has errors. Meanwhile, the amount of error 

introduced by different methods varies. A s a result, the qualities of the interpolated 

images are also different. 

Several objective measures have been used by researchers for evaluating the 

performance of different interpolation methods. Among them, the Mean Squared Error 

(MSE) is one of the most commonly used. 

The M S E is defined as 

in which Fd(m,n) is the original digital image, F(m,n) is the digital image resulting 

from interpolation, and N is the total number of pixels in the image. 

The M S E measures are also often expressed in the form of Signal to Noise Ratio 

(SNR) or Peak Signal to Noise Ratio (PSNR). S N R and P S N R are respectively defined as 

Y,(F(m,n)-Fd(m,n))2 

MSE = m,n (2-15) 

f ^Fd(m,n)2 

SNR (dB) = lOlog (2-16) 
10 m,n)-Fd(m,n)) 

and 
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f 

PSNR (dB) = lOlog 
D2xN 

(2-17) 10 m,n)-Fd(m,n)) 
J 

In (2-17) D is the maximum range of the pixel value. For the case of 8-bit gray-scale 

images, the value of D is 255. 

In calculating MSE, SNR and PSNR, it is required that the interpolated image 

F(m,n)has the same lattice as the original digital image Fd(m,n). Since the sampling 

lattice and number of pixels are different before and after interpolation, (2-15), (2-16) and 

(2-17) cannot be directly calculated. Many researchers adopt an alternative approach to 

obtain MSE, SNR and PSNR, that is, to reduce the original digital image by a factor of 1/R 

(R>1) and then expand the reduced image by the factor of R, both through the same 

interpolation method. After this reduction-and-expansion process, the resulted image 

F(m,n) w i l l have the same lattice and number of pixels as the original image Fd(m,n), 

and thus (2-15), (2-16) and (2-17) can be evaluated. 

When evaluating the performance of a certain interpolation method using the above 

reduction-and-expansion approach, usually the reduction and expansion are carried using 

the same interpolation method. If different methods are used for reduction and expansion, 

the overall result is considered the combined performance of the two methods. 

In Chapter 5, M S E of some traditional interpolation methods is evaluated and 

compared to the proposed interpolation method. For detailed results, see section 5.5.2. 
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Chapter 3. 
Recent Studies of Image Interpolation 

In Section 1, we discuss the visual degradations commonly seen in most 

traditional methods. Section 2 describes the recent visually orientated 

interpolation methods, which focus on good visual quality of images. We survey 

the visually oriented interpolation methods by introducing their ideas and 

methodologies, and by examining some representative ones in details. Section 3 

reviews the Edge-Directed and Orientation-Adaptive methods. Section 4 reviews 

the Level Set-based methods. In section 5, we summarize these newly introduced 

methods and their relationships, strengths and weaknesses are discussed 

3.1 Artifacts in the Traditional Methods 

At present, the majority of image interpolation methods are based on the traditional 

techniques, most of which are reviewed in Chapter 2. Among the traditional methods, the 

pixel replication, bi-linear and bi-cubic interpolation are the most widely used. These 

three methods are ubiquitous in the field of image interpolation, and have been used as 

the "standard" techniques by many researchers and applications developers. 

Among the reasons why the traditional methods are so widely accepted, the most 

important one is their simplicity. Most traditional methods employ compactly supported 

kernels and simple algebraic operations that allow them to be implemented at low to 

moderate computational expense. The simplicity of the traditional methods makes them 
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applicable on almost all platforms with different computing capabilities, and especially 

suitable for applications that have real-time requirements. 

Despite the wide acceptance of the traditional methods, in most cases the qualities of 

the interpolated images they provide are less satisfying. The interpolated images usually 

suffer various types of degradations. Two of the worst degradations in the traditional 

methods are the zigzagging and the blurring artifacts, which are explained next. 

3.1.1 Z igzagging Art i facts 

Zigzagging artifacts, sometimes referred to as aliasing errors or jaggies, are most 

commonly observed as staircasing of the image edges and thin lines, or moire patterns in 

areas featuring fine texture. The zigzagging is a very annoying visual effect in that it 

makes the interpolated images look unnatural and poorly rendered. For a typical example 

of the zigzagging effects, see the interpolated images shown in Figure 2.8 and 2.9. In 

Figure 3.1 below, we show another example of zigzagging effects in image interpolation. 

Almost all traditional interpolation methods suffer from the zigzagging artifacts, both 

for up-sampled and down-sampled images. 

(a) The original image Flower (75x75) 
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(b) Through bi-linear interpolation (c) Through bi-cubic interpolation 

Figure 3.1 F lower expanded by 3x3 

Notice the obvious zigzagging effects along the stamen and leaf edges. 

3.1.2 Blurr ing Effects 

Blurring effects only happen when an image is expanded (interpolation ratio R > 1). 

Blurring effects make the expanded images visually not as sharp as the original image, 

i.e., images suffer loss of contrast during the process of expansion. Usually the greater the 

expansion ratio, the more severe the blurring effects. As a result of blurring effects, 

especially when the expansion factor is large (e.g., 2.0 or greater), the expanded images 

are obviously fuzzy and visually not as pleasant. Blurring effects affect almost all 

traditional interpolation methods except the pixel replication. For an example of the 

blurring artifacts, see the expanded images in Figure 2.8, 2.9 and 3.1, especially the ones 

expanded by the quadratic method. 

Note that blurring does not only happen in image interpolation. There are also other 

types of image blurring, such as motion blurring and the blurring resulting from out-of-
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focus cameras. Within the scope of this research, only the blurring effect associated with 

image interpolation is of interest. 

Apart from the examples we have shown above, visual artifacts are also commonly 

observed in printed media (e.g., newspapers), online images, digital videos, etc. In Figure 

3.2 below, we show a real example of images visually degraded by the presence of 

zigzagging and blurring. 

Figure 3.2 Visua l artifacts i n a real example. 

Shown in the figure is a frame extracted from live Internet video stream 

played by RealPlayer®, a popular PC-based commercial video player. On 

the left is the frame at 100% scale, on the right is the same frame at 200% 

scale. The enlargement is provided by RealPlayer® itself. Notice the 

zigzagging effects along the edges of the cars, shadows and traffic lines. 

Usually, blurring and zigzagging artifacts exist simultaneously in interpolated images. 

These artifacts, while affecting virtually every part of an interpolated image, are both 
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especially harmful to edges and image contours. Zigzagging artifacts are mostly harmful 

to expanded images, and blurring effects only happen in expanded images. 

3.1.3 The M S E Evaluat ion and Visual Quality 

In the traditional study of image interpolation, the performance of an interpolation 

method is usually evaluated by the MSE-based measurements (see section 2.5). 

Accordingly, the emphasis of traditional interpolation is to achieve superior M S E 

measure in the interpolated images. Nevertheless, it is well realized that the MSE-based 

objective measures are often ineffective in evaluating the subjective quality of the 

interpolated images. These measures often fail to adequately represent the extent of an 

image being visually pleasing, i.e., the perceived quality. 

As an example, the bi-cubic interpolation usually outperforms the bi-linear 

interpolation in M S E (for examples, see Table 7-1 and 7-2), but in many cases the 

subjective impression of the images it yields is not superior to that of the bi-linear 

interpolation (see the comparison in section 2.4 as an example). A s another example, the 

bi-linear interpolation, which usually results in significantly better S N R than the pixel 

replication method, does not proportionally outperform the latter visually, largely due to 

its obvious blurring effect. 

3.2 Visually Oriented Interpolation Methods 

A s a result of the disadvantages of the traditional methods, visually oriented 

interpolation has become the focus of recent studies on image interpolation. It is 
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commonly agreed by recent researchers that providing visually pleasant and artifact-free 

images should be the emphasis of the newly developed interpolation techniques. 

Accordingly, different new methods of image interpolation ([ll]-[30]) have been 

proposed in recent years. These newly introduced methods include edge-directed, 

direction-adaptive, data-dependant, contour preserving, and isophote-based 

methods, and are distinguishingly different from the traditional methods. In our survey, 

these methods are categorized as "visually oriented" interpolation techniques. 

Our survey shows that the methods of this new family generally have the following 

common features: 

(1) They concentrate on the visual satisfaction of images. A s discussed in the previous 

section, the presence of artifacts is an important reason why interpolated images 

suffer visual degradations. Expectedly, the elimination of artifacts is highly 

emphasized in almost all of the new methods. 

(2) They emphasize visually pleasing reconstruction of important image features, the 

most important one being the edges. Because the subjective assessment of images is 

on its own a complicated topic, a comprehensive improvement in images' visual 

quality is difficult to achieve within a limited scope of study. A s a result, most of 

the new methods currently focus mainly on improving image features that are 

already known to be crucial in image perception. 

(3) Adopt content adaptive and non-linear techniques. In the traditional methods, only 

the location of the pixel to be interpolated and the intensity value of its nearest 

parent pixels are used in determining the value of an interpolated pixel. In the new 

methods, further content-related information, such as the location of edges, gradient 
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and curvature, is extracted from the original image, and used to obtain the 

interpolated pixel values. 

Despite the similarities at the fundamental level as described above, the specific 

methodologies adopted by these new methods are highly diversified. Because of such 

diversity, it is not easy to establish a very clear classification of these methods. However, 

in our study, we approximately divide these methods into the following categories. 

(1) Edge-directed. 

(2) Orientation-adaptive. 

(3) Level Set-based. 

In the following sections, we discuss the above three categories of methods, by 

introducing their general approaches and examining their methodologies. It is not 

possible in this research to review with full detail all these methods. Instead, we only 

review a few representative ones from each category. Because of the relative closeness 

between the edge-directed and the orientation-adaptive methods, we review them in the 

same section. 

3.3 Edge-Directed and Orientation-Adaptive Methods 

Edges are the most prevalent features of images. Study of human visual system 

(HVS) shows that HVS is highly sensitive to image edges ([73], [74]), and this explains 

why edges are extremely important in the perception of images. As a result, almost all of 

the newer interpolation methods emphasize visually pleasing edges in the interpolated 

images. 
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It is accepted by many researchers that the quality of the interpolated images highly 

depends on two major factors: smoothness and sharpness of the edge ([11], [15]). These 

two factors correspond respectively to the elimination of the zigzagging and blurring 

artifacts on edges. 

Some of the newly introduced methods ([11]-[14], [17]) employ explicit edge 

detection and manipulation in the interpolation process, and thus are referred to as the 

edge-directed methods; others ([15], [16], [18], [22]) use the edge information in 

alternative ways. These methods are referred to as orientation-adaptive. 

3.3.1 Edge-Directed Methods 

The basic methodology in most of the edge-directed methods can be summarized as 

follows. 

1. Detect (or estimate) the edges from the original digital image, and map the 

location of edges on the expanded lattice, or onto the continuous domain. 

2. For children pixels near an edge, its value is obtained by a specially designed 

interpolation algorithm, which attempts to 1) preserve the contrast across the 

edge, and 2) prevent the interpolation from being carried across the edge. 

For pixels away from the edges, usually traditional interpolation is used to obtain 

their values. 

Reference [11] proposes one of the earliest edge-directed interpolation methods. A s 

an example, we briefly review this method as follows. 
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The basic idea in [11] is that when interpolating the value of a child pixel close to an 

edge, all parent pixels involved should be on the same side of the edge. A n example is 

given in Figure 3.3. 

D C 

Figure 3.3 Edge-directed interpolation proposed by reference [11] 

Assume A , B , C, and D are parent pixels, and p is a child pixel whose value is to be 

interpolated. If an edge line is detected going through block A B C D as shown in Figure 

3.3, then the value of p is interpolated by parent pixels B , C , and D , which are on the 

same side of the edge. In [11], the interpolation of p using B , C and D is implemented as 

a bi-linear interpolation involving al l parent pixels A , B , C and D , but with the value of 

pixel A (called the "corner pixel") replaced by an extrapolation through B , C and D . 

To detect the edges, [11] employs an approximated Laplacian of Gaussian (LoG) 

filter. The edge is defined as the curve on which the output of the approximated L o G 

filter crosses 0. The interpolation algorithm (see Figure 3.3) requires location of edges 

with sub-pixel (fractional) precision, while the L o G filter cannot be directly applied on 

non-grid locations. Alternatively, the L o G filter is applied on the parent pixels, and the 

output for a non-grid point is approximately obtained by bi-linearly interpolating the 

output of the 4 nearest parent pixels. 
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Similar to [11], most of the edge-directed methods precisely locate edges with pixel 

or sub-pixel precision and very thin width through different techniques. The methods of 

edge estimation they employ and the corresponding precisions are listed in Table 3.1. 

Among the edge-directed methods, besides the difference in edge detection, the 

approaches to interpolating the edge pixels are also largely different. Table 3.2 briefly 

summarizes their edge-interpolation methods. Note that some of the methods are 

restricted to expansion factors of integers, due to their specially designed mechanisms of 

interpolation. 

Table 3-1. Edge estimation in different edge-directed methods 

Method Edge Detection Location of Edge Width of Edge 

Ref. [11] L o G , interpolated on non-grid points. <1 pixel <1 pixel 

Ref. [12] 
Model-based. Assumes that a continuous 

"step edge" exists, and solves its parameters 

from nearby original parent pixels. 

<1 pixel <1 pixel 

Ref. [13] Laplacian. Applied on grid pixels. 1 pixel 1 pixel 

Ref. [17] Canny. Applied on grid pixels. 1 pixel 1 pixel 

Table 3-2. Edge interpolation in different edge-directed methods 

Method Interpolation of Edge Pixels 
Interpolation 

Ratio 
Interpolation of 
Non-edge Pixels 

Ref. [11] Modified bi-linear interpolation. Arbitrary Bi-linear 

Ref. [12] 

Estimate the continuous "step edge" in the 

continuous domain and then re-sample 

it for near-edge children pixels. 
2" N / A ( 2 ) 

Ref. [13] 

Model-based edge reconstruction. Edge 

line is chain-coded and mapped into 

expanded image. 

Integers Pixel replication 

Ref. [17] 
Gradient-based interpolation for pixels 

near edges. 
Integers Bi-linear 



44 

(1) See the corresponding entry of Table 3.1. 

(2) Not specified by the reference. 

3.3.2 Orientation-Adaptive Methods 

The underlying assumption of the orientation-adaptive methods is that the 

interpolation should be performed along the orientation of the edges. This idea is similar 

to that of the edge-directed. On the other hand, the orientation-adaptive methods usually 

do not require very thin edges to be detected with high precision. Instead, the information 

of edges is used implicitly. 

Among these methods, the methods by which interpolation is carried so as it adapts to 

the orientation, and their approaches largely differ. In the following we briefly review 

two of these methods. 

The method proposed in [15] is based on the Wiener-filtering theory. The pixels of 

the interpolated image F(m,n), according to the Wiener theory, can be predicted from 

the original digital image Fd{m,n), i f the covariance information of F(m,n) is fully 

known. Because in general the covariance of F(m,ri) is unknown, just as F(m,n) itself, 

[15] introduces an approach to estimate it from the covariance of the original image 

Fd (m, n), which can be obtained from Fd (m, n ) . 

In [15] it is assumed that for areas near the edges, the image signal is stationary, so 

that F(m, n) has approximately the same covariance characteristics as Fd(m, n). In short, 

the covariance is "resolution-invariant" in the edge areas. Note that this assumption is 

N O T true for an image area with arbitrary nature, where the image signal cannot be 

unconditionally assumed stationary. 
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Based on the above assumption, the covariance matrix of F(m,n) for the edge areas 

can be obtained by mapping the covariance matrix of Fd (m, n) into the expanded lattice. 

Some approximations are made during the mapping. With the covariance of F(m,n) 

(approximately) obtained, the unknown pixel values are calculated through the equations 

of Wiener filtering. 

For non-edge areas, because the assumption that the covariance is resolution-invariant 

does not hold, the above approach is not applicable. Instead, [15] uses the traditional bi

linear method for the non-edge areas. 

The algorithm takes the following 4 steps: 

(1) Detect the edges in the original digital image, and map the edge areas into the 

expanded image. 

(2) For edge pixels, calculate the covariance of the original image, and map it into the 

covariance matrix of the interpolated image after some approximations. 

(3) For edge areas, children pixels are calculated using parent pixels and the covariance 

obtained from step (2), through Wiener filtering. 

(4) For non-edge areas, bi-linear interpolation is performed. 

The mapping mechanism of the covariance matrix imposes the restriction that this 

method is only applicable to interpolation ratio of 2"(n is an integer). The authors 

suggest that arbitrary expansion ratio can be achieved by first expanding by the closest 

and greater 2" and then down-sampling to the desired scale through bi-linear 

interpolation. 

In the above method, the orientation information is embedded in the covariance 

matrix of the interpolated image and is used implicitly in the interpolation. 
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Reference [16] proposes another orientation-adaptive, P D E (partial differential 

equation)-based scheme. In this method the interpolation is treated as a variational 

problem — it seeks the reconstructed continuous image f(x,y) that satisfies certain 

conditions. In their method, the following two conditions are initially set: 

(1) The magnitude of gradient is minimized over the whole image. 

(2) The known (parent) pixel values remain unchanged after the interpolation (the 

Straightness property). 

Reference [16] concludes that given the original digital image, finding the 

interpolated image f(x, y) by solving the partial differential equations yielded from the 

above two constraints is very difficult. Although an iterative numerical solution is 

possible, even disregarding its computational complexity, the result is often sensitive to 

the initial values. Note that this problem is encountered in the level set-based methods 

([20] and [24]) reviewed in the next section. 

In order to achieve a direct and one-pass solution of f(x, y), [16] suggests that 

another condition be added besides conditions (1) and (2) above. In their method, the 

third condition is chosen as: 

(3) On the grid positions of f{x, y), the angle of the gradient has minimized error. 

This condition can be interpreted as: f(x, y) has approximately the same direction of 

gradient on its grid_pixels as that of the original continuous image f(x, y), i.e., 

6{m,n) ~ 6{m,n). 
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Condition (3) is another variational problem by itself, which is solved in [16] by 

making some approximations. It is then shown in [16] that under conditions (1), (2) and 

(3), the interpolated image F(m,n) can be directly calculated from the original digital 

image. 

B y adding condition (3), the orientation information is introduced into the 

interpolation process through a series of derivations. In this method, the edges are not 

directly detected, but the orientation of gradient is estimated and used in the interpolation 

process. Therefore we categorize [16] as an orientation-adaptive method. 

3.4 Level Set-Based Methods 

The Level Set Methods are a set of methodologies originally introduced by Sethian, 

Osher et al ([40], [42], [43]), studying the problem of dynamic contours (also known as 

the propagating fronts, or Snakes). 

In the Level Set Methods, the curve (contours) to be studied is considered as the level 

set contour (i.e., the equi-intensity contour) of a certain surface, which is called the level 

set function. B y doing so, the analysis of the curves can be equivalently replaced by that 

of their level set function. With the help of the methodologies of differential geometry, 

the Level Set Methods discusses how the dynamic contours behave under given 

circumstances, and more importantly, how to control their behaviors (such as change of 

shape, speed of motion, etc) in order to make them satisfy certain requirements. The 

Level Set Methods have found applications in different areas of image processing, 

including shape evolution, de-noising, object extraction, etc. 
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It is not until recently that interpolation methods based on the level set theories were 

proposed in [20], [24] and [29]. These methods are reviewed below. 

In the methods proposed in [20] and [24], the zigzagging artifacts are reduced by 

smoothing the isophotes of the interpolated image. Their interpolation method adopts a 

variational approach, in which the interpolated image f{x, y) is required to meet the 

following constraints. 

(1) In the reconstructed continuous image f(x, y), the curvature of the isophotes is 

minimized. 

(2) The values of the parent pixels are unchanged after the interpolation (Straightness). 

Starting from the above two restrictions, derivations from the level set theory show 

that such f(x, y) must satisfy the condition 

A / ( x , y) = -c(x, y) • V / ( x , y) (3-1) 

where A/(JC, y) is the total differential of f(x, y), c(x, y) is the curvature of the isophote 

at point (x, y), and V is the gradient operator. Condition (3-1) is interpreted as: the 

(differential) change of f(x,y) at point (x,. y) should equal the product of the local 

curvature and the magnitude of the gradient; or, each point of the isophote should move 

in the normal direction with the speed proportional to the curvature of that point. 

Unfortunately, the analytical solution of equation (3-1), in a general case, is very 

complicated. Alternatively, Morse et al adopted an iterative numerical approach that 

yields an approximate solution for equation (3-1). The procedure of their method is 

explained as follows. 
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Step 1. Interpolate the original digital image F / m , n) by a known method, say bi-cubic, 

resulting in an initially interpolated image F̂ Vi, j). 

Step 2. Calculate curvature c(i, j) for all pixels of Fil)(i, yj. To do this, the derivatives of 

the original image f(x, y) are needed, and they are estimated from F̂ Vi, j). 

Step 3. Modify F^'^i, j) by adding an increment A(2)(i, j) to it, resulting in an updated 

version of the interpolated image, F̂ 2Vi, j), that is, 

F(2)(i,j) = F{])(iJ) + A(2)(i,j) 

in which 

A ( 2 ) ( U ) = 
- c(i, j) • G(i, ;) | , i f (i, j) is a child pixel 

0 i f (i, j) is a parent pixel. 

Curvature c(i, j) and G(i, j), the gradient of pixel (i, j), are estimated in Step 2. 

Step 4. Repeat Step 2 and 3. 

During the £th iteration, the F{k'1){i, j) is used to estimate the curvature and 

gradient, which in turn decide the next increment A(k) (i, j). 

Step 5. If, after the nth iteration, A(n+I>(i, j) is found to have very small values, the 

iteration is considered to have converged and thus stopped. The image resulting 

from the last iteration, F(n)(i,j), is the final interpolated image, that is 

F(i,j) = F{n)(iJ) 

See Figure 3.4 for the flow diagram of the level set-based method. Experiments in 

[20] and [24] show that their level set-based interpolation method reduces the zigzagging 

artifacts in the interpolated images. 
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Another level set-based method is proposed by A l y and Dubois in [29]. In this 

method, the reconstructed continuous image f(x, y) is required to satisfy a data fidelity 

criterion, which is derived from the observation model proposed in [29]. It is pointed out 

in [29] that obtaining f(x, y) by solving the yielded partial differential equation is an i l l -

posed problem, which often results in undesired noise and artifacts in the interpolated 

images. To solve this problem, an extra constraint that the gradient of f(x,y) is 

minimized is added in [29]. 

Combining the data fidelity condition and the minimum-gradient condition, and 

through derivations of the Level Set Method, an iterative solution of the interpolated 

image F(m,n) is obtained in [29]. 

Experimental results in [20], [24] and [29] show that the level set-based methods 

yield less artifacts and improved visual quality in the interpolated images, compared with 

the traditional methods. 

3.5 Discussions and Summary 

In Section 3.3 and 3.4, we reviewed the recently introduced interpolation methods, 

which are all visually oriented and content-adaptive. Overall, these methods have shown 

that they are effective in achieving improved visual qualities. The new methods 

outperform the traditional methods by providing interpolated images that are more 

visually pleasing and subject to less degradation. A s a result, the newly emerging visually 

oriented techniques have been attracting much research interest. 
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Input 
Fd(m,n) Initial 

Interpolation 
F<'>(i,j) Derivative 
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fx> fy 
fxx> fyy> fxy 

Calculate 

Curvature 

c(i,j) 

F<k)(iJ)=^1>(iJ)+^k>(hJ) 

No A(k)(i,j)«l? 

Yes 

F<n)(i,j) 

Output 

Figure 3.4 Flow diagram of the interpolation method proposed in [20] and [24] 

Based on our survey, we summarize the logical relationship between the visually 

oriented methods, and then discuss the advantages and disadvantages of these methods. 

• Among members of the visually oriented family, the edge-directed methods are the 

first to be developed. Their emphasis on visually pleasing edges is acknowledged 

by the later studies; 
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• The orientation-adaptive methods broaden the idea of "edge-directed" to 

"orientation-directed", and overcome some disadvantages of the edge-directed 

methods; 

• The level set-based methods introduce the isophote-orientated approaches, in which 

the concept "orientation" can be strictly defined, and the cause of the zigzagging 

artifact can be more clearly explained. 

The edge-directed methods emphasize the importance of image edges and employ 

specially designed, non-linear techniques to reconstruct more visually pleasing edges. 

Despite their obvious contributions in developing the family of new interpolation 

methods, some edge-directed methods still have the following disadvantages: 

(1) These methods require edges to be "pinpointed", and in turn their performance is 

often dependent on obtaining edge estimators with high precision. Such edge 

detectors are usually computational costly. 

(2) In these methods the edges are often defined as very thin lines segmenting 

different parts of the image. Pixels on and off the edge lines are treated 

differently. This rigid definition of edges in turn introduces strong non-linearity 

into the interpolation process, which results in some undesired artifacts. One of 

the so resulting artifact is referred to as the "cartooning effect". This disadvantage 

is also mentioned in [20] in a slightly different manner. 

Comparing the edge-directed methods with the orientation-adaptive methods, the later 

are more flexible and linear, in the sense that they attempt to employ orientation-adaptive 

linear interpolators. Also , the orientation-adaptive methods do not emphasize the location 

of the edges with high precision, but rather their orientations. The orientation-adaptive 
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methods can be considered as a generalization of the edge-directed methods, with its 

same basic idea inherited. 

The concept "orientation-adaptive" is further clarified by the introduction of isophote-

oriented methodologies ([20], [24], [29], [39]). The isophotes, as w i l l be discussed in full 

details in the next chapter, are image features on which orientation can be clearly defined 

and the zigzagging artifacts can be properly explained. 

The level set-based methods are among the first few methods to suggest that the 

zigzagging artifacts should be studied from the isophote point of view. Introduction of 

isophote-orientated approach is the primary advantage of the level set-based methods. A s 

we wi l l show in the next two chapters, zigzagging artifacts can be effectively analyzed in 

the isophote field, and through this analysis isophote-oriented interpolation methods that 

are superior in providing zigzagging-free images can be developed, 

However, the level set-based methods still have some disadvantages. Some of these 

disadvantages are listed as follows. 

(1) High computational expense caused by the iterative process. The computational 

cost, especially when the interpolation factor is large, is a serious concern. 

(2) The results sometimes "depend heavily on the initial approximation" ([24]), that 

is, with different methods chosen for the initial interpolation method, the eventual 

interpolated image could be considerably different. 

(3) In these methods, the isophotes are manipulated implicitly and numerically. 

Although this does not affect their underlying smoothing of the isophotes, the 

isophotes are not shown in an explicit and visual way. 
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Our study also shows that many of the new interpolation methods have one common 

drawback, that is, the blurring artifact is not sufficiently addressed except in [12], [25] 

and [29]. In most of the methods reviewed in this chapter, the blurring and zigzagging 

artifacts are not clearly differentiated and dealt with accordingly. Instead, they are often 

inadequately mentioned in general terms, e.g., the artifacts along the edges, or visual 

degradation on edges. A l l the methods except [12], [25] and [29] either do not propose a 

solution for the blurring effects, or do not focus on this problem within their scopes. 

Also , many of the newly proposed methods suffer from the following two limitations: 

(1) The interpolation ratio is often limited to integers or 2". In many cases, such 

limitation is a result of a specially designed mechanism in the interpolation method, 

for example, the mapping between the original and the expanded grids. 

(2) The interpolation process is often multi-pass or iterative. This disadvantage is 

associated with most of the PDE-based methods (except [16]) and some non-PDE-

based methods. 

Based on an examination and analysis of the different types of recent methods, we 

reached the conclusion that the strengths of the visually oriented methods could be 

further explored and improved by studying the content-adaptive interpolation from the 

isophote point of view. A n d to do this, we find it necessary to first study the behavior of 

isophotes in image interpolation and the performance of different methods in the 

interpolated isophotes. A s a result, in the next chapter, we continue our research of 

visually oriented interpolation by studying the isophote fields of interpolated images. 
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Chapter 4. 
Isophote Analysis in Image Interpolation 

In this chapter, we study the isophotes of interpolated images, in order to 

understand the nature of zigzagging artifacts and why they arise. To do this, we 

first discuss the relationship between image interpolation and isophote 

reconstruction. Then we derive the form of isophotes of images interpolated by 

the bi-linear and bi-cubic methods. The curvature of isophotes in bi-linear 

interpolation is then analyzed. 

4.1 Zigzagging Artifact and Image Isophote 

As discussed in Chapter 3, the visually oriented interpolation methods have shown 

encouraging effectiveness in removing zigzagging artifacts associated with traditional 

interpolation methods. It is suggested by recent researchers ([20], [38]) that zigzagging 

effects should be studied and solved by studying isophotes of the interpolated images. 

Correspondingly, some isophote-oriented interpolation methods have been introduced, 

among which are the level set-based methods reviewed in Chapter 3. In these methods 

zigzagging artifacts are explained as a result of excessive curvature in isophotes of the 

interpolated images. 

The formal definition of an isophote and further discussions on isophotes are given in 

the following section. We show later in this chapter, that after interpolation smooth 
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isophotes of the original image become piecewise curves, regardless of their real shape in 

the original image. These piecewise curves have similar patterns in their curvature 

changes, which are repeated along the image contours. In the intensity domain, these 

psuedo-periodic patterns of curvature are visually perceived as zigzagged contours. 

Figure 4.1 illustrates an example of what may happen to isophotes in an area containing a 

straight edge after traditional bi-linear interpolation. 

Small circles: Original (known) pixels 
Original isophotes 
Isophotes after bi-interpolation. 

Figure 4.1 Illustration of zigzagged isophotes after bi-linear interpolation 

Although the importance of isophotes in image interpolation has been noticed by 

some researchers, and some implicit isophote-oriented interpolation methods have been 

proposed ([20], [24], [29]), not much effort has been made to study the performance of 

different interpolation methods by analyzing the resulting isophotes. The linkage between 

zigzagging effects and distorted isophotes (illustrated in Figure 4.1) has not been shown 

analytically. Also, not many isophote-based measurements of the image quality have 

been introduced to measure the artifacts in interpolated images. As a result, a direct and 



57 

explicit study of the interpolation methods so as to explain what happens to isophotes is 

still to be sought, and the strength of isophote-oriented interpolation methods remains to 

be fully explored. It is noticed that some academic software packages do provide 

functions for approximately displaying isophotes of digital images, such as the 

C O N T O U R function of MATLAB®. However, these functions do not have sub-pixel 

spatial precision, i.e., they do not show the true curve of isophotes between sampled 

pixels. Therefore these functions cannot be used as exact tools when studying the jaggies 

in image interpolation. 

We first study the isophote field of interpolated images. In the following sections of 

this chapter, we first discuss the relationship between image interpolation and isophote 

reconstruction, and then show how to find the isophotes in bi-linear and bi-cubic 

interpolated images. 

4.2 Interpolation and Isophote Reconstruction 

Isophotes, also known as equi-intensity contours or level set contours, are significant 

features in the perception of images. One of the most important visual features, the image 

edge, is where isophotes are (near) parallel and densely located. Isophotes have already 

been extensively used in many other research areas such as astronomy. 

A n isophote is defined as the curve in the continuous x-y plane on which all points 

have the same intensity value. For simplicity, the isophote of a particular intensity value 

lo is referred to as isophote lo- B y virtue of its definition, the curve of isophote lo of a 

continuous function f(x,y) can be found by solving the equation f(x,y)=In. The set of all 
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isophotes of f(x,y) is called the isophote field or isophote domain of f(x,y). The isophote 

field forms another representation of a continuous image f(x,y). 

Despite the virtual equivalence between a continuous function f(x,y) and its isophote 

representation, given an arbitrary f(x, y), its isophote field is not always known. This is 

because the explicit relationship between x and y is not always obtainable by analytically 

solving equation f(x,y)=Io-

After sampling, the intensity information of the continuous image f(x,y) is partially 

lost, with the only known intensity values being on the sampled pixels. Meanwhile, much 

information in the original isophotes field is also lost — only isophote points on the grid 

pixels are known, and the curve shapes connecting the grid points are unknown. 

As discussed in section 2.1, in image interpolation, the estimate of the original 

continuous image / (* , y) ~f(x,y) is obtained by 

/(*. y) = Z Z Fd ( m ' " ) " h(x> y) 
m n 

We re-write /(*, y) as a function of the sampled values and spatial variables x and y, 

i.e., 

f(x, y) = <P [x, y, Fd(m, n)], for all (m, n) e Fd(m, n) (4-1) 

In (4-1) 0(.) is the interpolation operator. 

Given an intensity value lo and letting f(x, y) = I0, (4-1) yields 

I0=<S>[x,y,Fd{m,n)] (4-2) 

B y definition, the curve described by (4-2) is the implicit form of isophote lo of the 
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reconstructed image f(x, y). If for every lo, the solution of 

I0-^[x,y,Fd{m,n)] = 0 (4-3) 

yields an explicit relation between x and y for any possible value of lo, then the explicit 

form of the isophote field of the reconstructed image f(x, y) can be obtained. 

Equation (4-3) shows the fact that, given Fd(m,n), the isophote of the reconstructed 

image f(x, y) is determined by the interpolation operator d>(.). That is to say, an 

interpolation method reconstructs the original image in the intensity domain; it also 

reconstructs the isophotes off(x,y). 

Each interpolation method has its unique operator 0(.). Given Fd(m,n), each method 

yields an f(x, y) that is different from other methods, and thus the interpolated 

isophotes are different, i.e., each interpolation method has its unique way of 

reconstructing the isophotes of the original image. 

Because of its mathematical complexity, for an arbitrary <£(.), (4-3) usually is not 

analytically solvable. Yet we show in the following sections that for the bi-linear and b i 

cubic interpolations, (4-3) can be solved as polynomial equations, and thus the explicit 

form of the reconstructed isophote associated with these interpolation methods can be 

obtained. 
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4.3 Isophote Reconstruction by Different Interpolation 

Methods 

4.3.1 Bi-linear Interpolation 

Consider a pixel block formed of four adjacent parent pixels (0,0), (1,0), (1,1) and 

(0,1) (see Figure 4.2). The intensity values are only known at these pixels and we denote 

them as A, B, C and D. Assume the intensity value f(x, y) of a pixel P(x,y) lying inside 

this block is to be interpolated. 

Figure 4.2 Bi-linear interpolation 

In bi-linear interpolation, the value of the interpolated pixel P is obtained by 

f(x,y) = Pr(l-y) + P2-y (4-4) 

where pixels PI and P2 have the same horizontal coordinates as point (x,y), and their 

values can be preliminarily interpolated as 

P. = A • (1 - x) + B • x, P2 = D • (1 - x) + C • x (4-5) 

Substituting (4-5) into (4-4) and letting 
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a = B-A, fi = D-A, y = A + C-B-D 

(4-4) becomes 

f'x,y) = A + ax + 0y + yxy (4-6) 

To obtain the isophote of intensity value lo inside the A B C D block, we let 

f(x, y) = I0 in (4-6) and solve the resulting equation 

A + a x + (3 y + y xy -1 0 = 0 (4-7) 

with y as the unknown. The solution, which is given in (4-8), is the isophote To, i.e. the 

curve of all points (x, y) having the constant intensity value lo, within block A B C D . 

r ( Z B - A ) W a ( 4 . 8 ) 

Y 

The x and y in (4-8) must satisfy the restriction that point (x, y) lies inside the block 

A B C D , i.e. 

0 < x, y < 1 (4-9) 

From (4-8) it is seen that in each block A B C D , any isophote lo takes the form of a 

hyperbola, determined by parameters a, P and y. Thus within a grid block, the traditional 

bi-linear interpolation always implicitly uses a hyperbola to approximate an original 

isophote irrespective of the real shape of the original isophote (see Figure 4.1). For 

different blocks, a, p and y assume different values that yield different hyperbolae. 

Therefore, the entire isophote lo is a curve of piece-wise hyperbolae. 
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4.3.2 B i -cub ic Interpolation 

In the 4-point bi-cubic interpolation (see Figure 4.3), the interpolated pixel value is 

obtained by 

2 2 

f(x,y)= Z ' Z P n ^ r i x - m i r i y - n ) , 0<x,y<l 
(4-10) 

m--\n--\ 

in which P„ , m is the pixel value at grid point (n, m) and r(x) is the cubic interpolation 

functions discussed in Chapter 2 (refer to 2.2.1). 

O 
P2.-1 

O 
P1.-1 

Po,-. 

O 
P-i.-

o 
p 2,l 

1.0 P'... 
\—x~*I(x,h 

o 
P2,2 

o 
Pi, 2 

Pp.o 

9 
"-1,0 

Po, 

O 

Po, 2 

O 
P-1,2 

Figure 4.3 Bi-cubic interpolation 

In our analysis, we use the Keys ' cubic function as the interpolation function in 

formula (4-10). Its one-dimensional general form is 

r(x) = 

(a + 2)\xf -(a + 3)\x\2 +1 0<\x\<l 

a\x\3 -5a\x\2 + 8a\x\-Aa \<\x\<2 

0 \x\>2 

(4-11) 

In order to solve equation f(x, y) = I0 , (4-10) is converted into a cubic equation 

with variable y as the unknown. In doing so we substitute (4-11) into (4-10), and then 
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expand (4-10) into the sum of 256 terms of power products of x and y, we then merge the 

terms with the same order, and (4-10) becomes 

hx,y) = fJfJP,umxnym 0<x,y<l (4-12) 
n=0 m=0 

in which Bnm is the coefficient of the corresponding x"ym term. Bn>m is given by 

A.„ = P » E 4 x ( 3 - „ ) + ( 3 - m ) + l (4-13) 

In (4-13), P is the row vector formed by the parent pixel intensity values, i.e., 

P = \.-°2,-l -°2,0 2̂,1 ^2.2 ^Y-l ^1,0 1̂,1 ^*l,2 ^0,-1 ^0,0 0̂.1 -°0,2 ^-1,0 -̂1.1 -̂1,2 ] (4-13b) 

E is a 16x16 coefficient matrix resulting from the expansion of (4-10). In (4-13) we 

use Ek to represent the kth column of matrix E. See appendix A-1 for matrix E. 

We consider (4-12) a cubic equation with y the unknown, that is, 

f(x,y) = cy +c2y2 +c{y + c0 (4-14) 

in which 

cm=IX,m-*" (4-15) 
n=0 

For a given x, the coefficients C3 ~ co in equation (4-14) are fixed, and given a pixel 

value l(x,y)= k , (4-14) becomes 

C3 y3 + c2 y2 + ci y + c0-Io = 0 (4-16) 

By solving cubic equation (4-16) and pairing the corresponding root y with the free 

variable x, a series of points (x, y) can be found, which form the isophote /o within the 

local interpolation block (the shaded area in Figure 4.3). 

We rewrite (4-16) it as 

y3+b-y2+biy + b0=0 (4-17) 
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and use the method given by [60] to solve (4-17) as follows. 

Let 
, b\ . -2b\ b{b2 , 

p = b.- — and q= - + -L-L-bn 
1 3 27 3 0 

The root(s) of (4-17) are then obtained by discussing the following cases. 

Case I p = 0. There is one real root 

Case II p ± 0. There are four further sub-cases 11(a), 11(b), 11(c) and 11(d). In the first 

three sub-cases, there is one real root, and in sub-case 11(d) there are three real 

roots. To discuss these sub-cases, define 

4 o 3 
h = , ,k = - 7 - 7 , and C = q*k 

3 - h\p 

In all four sub-cases, the real root(s) have the form 

yi=h*z0-^- (4-18) 

In (4-18) zo is an interim unknown (in the three-real-root case, y, and zo both 

represent three values), zo is determined by the value of p and C. 

Sub-case II (a) p > 0, there is one real root y, whose value is determined by (4-18) and 

z0 =sinh[^sinh-'(C)] (4-19a) 

Sub-case I I (b) p < 0 and C > 1, there is one real root, and 

z0 =cosh[jCosh~'(C)] (4-19b) 

Sub-case II (c) p < 0 and C < -1, there is one real root, and 
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z0 = -cosh[^cosh ' ( - C ) ] (4-19c) 

Sub-case II (d) p < 0 and |C | < 1, there are three real roots y,- (1 ), y / 2 ) and y , ( 3 ) related to 

zo{l\ zo~2) and zo ( 3 ) correspondingly, and 

ITT 1.71 

z^=cos(T), 4 2 ) = c o s ( T - — ) , zf = cos(T + — ) 
(4-19d) 

in which 

1 
r = - c o s _ 1 ( C ) 

3 
(4-19e) 

The sinh(x) and cosh(x) in (4-19) are the hyperbolic sine and hyperbolic cosine 

functions, respectively. 

Figure 4.4 The zo — C curves, a l l four sub-cases. 

*-marked: sub-case II (a), 
circle-marked: sub-case II (b). 
square-marked: sub-case II (c). 
upper dashed line: sub-case II (d), zo(1>-

solid line: sub-case II (d), zo(2). 

lower dashed line: sub-case II (d), zo<3>-

For equation (4-16), explicit solutions are obtained by (4-13) through (4-19). For each 

given value of the free variable JC„ one or three y, can be found and the corresponding 
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isophote point(s) are located. However, because of the complication of solving the cubic 

equations, in the general case there is no concise and straightforward relationship 

between x and y. In sub-case II (see equations (4-19)), the interim unknown zo is a 

function of the variable C, which is furthermore and eventually a function of x. A s a part 

of the complicated x-y relationship, the zo - C curve is drawn in Figure 4.4, illustrating 

how zo varies with C in sub-case II (a) through II (d). 

A s seen from Figure 4.4, for -1<C<1 (sub-case II (d) ), the three zo's are located on 

three types of curves, cos(T), cos(T-120°) and cos(T+120°), respectively. For each of the 

three real roots yJJ>, yo(2>, yo<3>, we assign a type to it, according to the type of its 

corresponding zo. For convenience, we write the three types as T, T-120 and T+120, 

respectively. 

4.3.3 Track ing and Displaying the Isophotes 

B y solving equation (4-8) or (4-16), we are able to find point (x„ yi) on isophote lo in 

each interpolation block for each given horizontal coordinate x-t. When visualizing the 

isophotes, as A: is a continuous variable, we cannot calculate all points (x, y) of an 

isophote. In order to display the curve of isophote lo, we find some of the (x„ yO points of 

isophote lo and then join these points by straight-line segments, i.e., we link the obtained 

discrete isophote points to form the reconstructed continuous isophote. 

In our experiments, we calculate points of isophote lo with equally spaced JC,-. In order 

to do so, we set a series of grid points on the x (horizontal) axis with spacing A t . A t is 

defined as the spatial resolution of the reconstructed isophote. 
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Jj?=0 J T ; X2 Xs X4=l 

Figure 4.5 T rack ing the isophote 

In Figure 4.5, X3 yields a yj >1, indicating that isophote lo goes out of the 

upper bound of the current interpolation block enclosed by A B C D , and 

such y>3 is invalid. As a result, y? is re-calculated using parent pixels 

D C E F , which yield a valid new value of y^. 

The whole image is formed of a number of interpolation blocks with each block 

formed by four (bi-linear) or sixteen (bi-cubic) parent pixels surrounding it. We solve 

equation (4-8) or (4-16) for every one of these blocks in the test image and this yields all 

points of isophote lo horizontally positioned on the grid with spacing A t . 

On each grid position J C , =/*A t (1 is integer), the corresponding y, is found as described 

in 4.3.1 and 4.3.2. Each yielded solution point (*,-, yi) must satisfy (4-9) to be a valid 

point on isophote lo in the current interpolation block, otherwise this point is discarded. 

To display the curve of isophote, the discrete points found in different blocks have to 

be joined. We track the isophote by monitoring the yielded solution y,'s in each block, y,-

>1 indicates that the isophote goes to the upper block so the current segment of the 
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isophote should be linked to that in the upper block; similarly y, <0 indicates linkage with 

the lower block. If all y,-'s in a block are between 0 and 1, then the isophote goes to either 

the left or the right block. Refer to Figure 4.5 for an example of tracking an isophote in 

bi-linear interpolation. 

In bi-cubic interpolation, solving (4-16) with a given sometimes results in more 

than one (up to three) y,-'s with values between 0 and 1, which means more than one 

isophotes of lo exist. In this case we sort the y,'s by their type, T, T-120 or T+120, and the 

points with the same type are linked to form each individual isophote. 

4.3.4 Isophote in Other Interpolation Methods 

A s mentioned earlier in this chapter, in the general case, obtaining isophote through 

solving equation (4-3) is not easy. For the family of piecewise polynomial interpolations, 

equation (4-3) is always a polynomial equation. We have shown how solutions are 

obtained for the most commonly used bi-linear and bi-cubic methods. Finding isophote in 

other types of piecewise polynomial interpolations are only briefly discussed as follows. 

For quadratic interpolation, its isophote can be found by solving the quadratic 

equations. Due to its rareness in practical use, the isophote in quadratic interpolation is 

not derived in this research. 

A s reviewed in Chapter 2, there are different forms of bi-cubic interpolation. In the 

previous section, we discussed the case of the most commonly used 4-point Keys ' cubic. 

For the 6-point and 8-point bi-cubic interpolations ([35]), their isophotes can also be 

obtained by solving the cubic equations as discussed in 4.3.2. However, their much 

larger regions of support (6x6 and 8x8, respectively) make solving the equation 
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extremely lengthy and time consuming. A s a result, these types of bi-cubic interpolations 

are not attempted. 

The isophote for piecewise polynomial kernels with orders higher than 3 is also not 

studied due to both mathematical complexity and lack of practical interest. General 

polynomial equations higher than the quartic (4th order) are not analytically solvable (the 

Abel 's Impossibility Theorem). 

4.3.5 Experimental Resul ts 

In order to test the introduced method of finding isophotes in image interpolation, we 

conduct experiments on several test images. In the experiments, isophotes with different 

intensity values lo are calculated for bi-linear and bi-cubic interpolation, using the 

methods proposed in sections 4.3.1 and 4.3.2. We show results obtained from a part of 

image Camera M a n with strong edges, where zigzagging artifacts are most severe. The 

derived isophotes are shown in Figure 4.7. The test area is also interpolated by a factor of 

5, and shown in Figure 4.8 as a comparison of the visual effects in the intensity domain. 

In Figure 4.7, the spatial resolution of isophote calculation is A t = 0.2. The Catmull-Rom 

cubic spline (a=-0.5) is chosen as the cubic interpolation function. 

Figure 4.6 Test image Camera M a n (enclosed is the test area) 
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(a) bi-linear (b) bi-cubic 

Figure 4.7 Isophotes detected i n the test area. 

(a) bi-linear (b) bi-cubic 

Figure 4.8 Test area interpolated by 5x5. 

The test area shown in Figure 4.6 has smooth, mostly straight edges. In this area, the 

isophotes along the edges are also expected to be smooth and straight. From the test 

results shown in Figure 4.7, it is clearly observed that, through bi-linear and bi-cubic 

interpolation, the isophotes become piecewise wavy curves which have unrealistically 

high curvatures. In the intensity domain (see Figure 4.8), the excessive curvature of 

isophotes is perceived as zigzagging effect. 
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4.4 Isophote Analysis for Bi-linear Interpolation 

In 4.3.1, it is shown that the isophotes in the bi-linear interpolation are piecewise 

hyperbolae (see (4-8)). Because of its mathematical ease to manipulate, we examine the 

hyperbola isophote of the bi-linear interpolation for further study of zigzagging artifact. 

4.4.1 Isophotes and Zigzagging in the Edge Area 

Zigzagging artifacts are most visually harmful to image edges. In order to further 

study the behavior of isophotes in the edge areas, we use the "rotated ideal one-

dimension edge" to approximate the real two-dimensional image edges. 

An ideal horizontal edge e=e(x, y) has constant values along the horizontal direction, 

i.e., e(x, y) is reduced to a one-variable function e(y), and has vertically sharp changes 

(Figure 4.9 (a)). A two-dimensional edge can be approximated by rotating the ideal one-

dimensional edge by an angle 9 (Figure 4.9 (c)). It is easy to prove that under such a 

model the isophotes in the edge area are straight lines parallel to the edge's direction 

(Figure 4.9 (b) and (d)). 

(a) (b) (c) (d) 

Figure 4.9 The edge and its isophotes. 

The edge function in (a) is e(x, y) = y 3 . (c) is obtained by rotating (a) by 

45° counterclockwise, (b) and (d) are illustrative and not exact. 
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Usually in real-life images, the edges are not precisely one-dimensional, i.e., e(x, y) 

does not precisely reduce to a one-dimensional functions e(y), and neither is the 

orientation of the edge strictly a constant. However, provided that the sampling rate is 

sufficiently high, within a small area enclosed by a few pixels, the real edges can be 

approximated by the rotated one-dimensional edge with sufficient accuracy. 

Consequently, under this approximation, the isophotes in the edge area can be 

approximated by near-parallel straight lines illustrated in Figure 4.9 (d). 

77////: 

M 
SggJjS^. 

Figure 4.10 Isophotes in the edge area of Figure 4.9(c), reconstructed by 

bi-linear interpolation. 

In the figure, four neighboring interpolation blocks are shown. 

Each block is enclosed by four parent pixels. 

Figure 4.10 shows some of the isophotes in the edge area of the image shown in 

Figure 4.9 (c), calculated by the method described in 4.3.1. A s discussed in 4.3.1, in the 

bi-linear interpolation, the isophotes in each interpolation block have the form of 
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hyperbolae. We can prove that the isophotes reconstructed by bi-linear interpolation are 

straight lines only in the following two special cases: 

(1) The parent pixels in the edge areas are all located on a plane, or 

(2) The original isophotes are horizontal {6=0°) or vertical (0=90°). 

That is to say, only in the above two special cases, the hyperbolic isophotes reduce to 

straight lines; for general cases the isophotes are always piecewise hyperbolae, thus 

zigzagged. 

4.4.2 Curvature of Hyperbol ic Isophotes 

To obtain the curvature of the hyperbolic isophotes, we first re-write hyperbola (4-8) 

into the following form, which is mathematically more convenient. 

For a point (x, y) on a curve described by equation f(x,y)=0, its curvature is defined as 

-x0)(y-y0) = k (4-20) 

in which 

y(I0-A) + aj3 

r2 
(4-21) 

c(x, y) = xx (4-22) 

Particularly for hyperbola (4-20), curvature of a point (x, y) on it is 
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Further derivation proves that the maximum value of (4-23), i.e., the maximum 

curvature of hyperbola (4-20), is 

(4-24) 

and cmax is obtained at points (x0 + Jyk~\, y 0 + J*\k\) and (x0 -^j\k\, y0 -^j\k\). The 

minimum curvature of hyperbola (4-20) is cm ( n=0, obtained at x = x0 and x = ±°° , where 

the hyperbola virtually becomes straight lines when converging to its asymptotes. 

For mathematical simplicity, we use the maximum curvature of hyperbola, equation 

(4-24), to represent the extent of zigzagging within each interpolation block. 

From (4-24) it is seen that the greater \k\, the less is the curvature. Combining (4-24) 

and (4-21), it is concluded that the curvature of the hyperbolic isophotes approaches 0 

when y —> 0 . Parameter y is defined as (refer to 4.3.1 and Figure 4.2) 

y = A + C-B-D (4-25) 

The value of y is determined by the values of the parent pixels A , B , C and D , and in 

the general case y 0 . However, under the assumption that the isophotes in the edge 

areas are parallel straight lines, i f the interpolation lattice is parallel to the isophotes, 

parent pixels A and B always have equal values and so do C and D , thus 

y = A + C-B-D = 0 is always met. See Figure 4-11 for illustration. 

The above discussion reveals the fact that by making the interpolation lattice parallel 

to the original isophotes, the reconstructed isophotes w i l l have near zero curvature, 

regardless of the specific edge function e(x, y)=e(y). A n d by doing this, zigzagging 

artifacts in the interpolated image can be eliminated or largely reduced. 
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C 

Figure 4.11 Interpolation grid parallel to the isophotes 

This conclusion explains the idea held in some recent interpolation methods that the 

interpolation should be carried along the edges. Also , that the interpolation grid should be 

parallel to the isophotes is not restricted to edge lines. Instead, this conclusion is 

applicable to any image areas that have near parallel isophotes, for example, ramps and 

some textured areas. 

Based on the above analysis, in the next chapter, we introduce an interpolation 

method in which the interpolation grid is adaptively adjusted so it is parallel to the local 

orientation of isophotes, and by doing this suppresses zigzagging artifacts in the 

interpolated image. 
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In this chapter, we employ the knowledge gained in Chapter 4 to design an 

isophote-oriented directional interpolation method. In the proposed method, we 

generalize the bi-linear interpolation by employing interpolation grid adaptive to 

the local orientation of isophotes. By doing so, the isophotes of the interpolated 

image are much smoother than in the traditional methods, thus largely eliminating 

the zigzagging artifacts. As a result, the subjective quality of the interpolated 

images is substantially improved. 

5.1 The Proposed Directional Interpolation Method 

5.1.1 The Parallelogram Interpolation Grid 

As discussed in Chapter 4, by employing interpolation grid along the orientation of 

the isophotes, the resulting isophotes in the interpolated image are piecewise parallel 

straight lines, and thus the zigzagging effects will be suppressed. Unfortunately, for most 

of the digital images, the sampling grid is rectangular, i.e., the pixels are always aligned 

horizontally and vertically, regardless of the orientation of isophotes. As a result, the 

traditional bi-linear interpolation is always carried using rectangular grids. 
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For our proposed interpolation method, we design an adaptive grid setting that 

enables the bi-linear interpolation to be performed along the local direction of isophotes. 

To do so, we first introduce the parallelogram interpolation grid. 

Figure 5.1 The parallelogram interpolation grids. 

In the figure, the circles are the grid positions, on which the parent 

pixels are located. 

In Figure 5.1, we show examples of the parallelogram grid, A B C D and E F G H . 

Parallelogram A B C D has two vertical sides, A D and B C , and two other sides with an 

angle of 6i>45°, A B and C D . Parallelogram E F G H has two horizontal sides and two sides 

with an angle of 02<45°. We call parallelogram where 9i>45°, such as A B C D , a vertical 

parallelogram (grid), and parallelogram where 8i<45°, such as E F G H , a horizontal 

parallelogram. 9i and 9j are referred to as the angle of the parallelogram. 

The vertical sides of the vertical parallelogram and the horizontal sides of the 

horizontal parallelogram always have the length of 1. The angle of the parallelogram, 9, 

is within the range of 0° to 90°. As can be seen from Figure 5.1, the actual values of 9 for 
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a practical interpolation grid do not form a continuous function, but have the discrete 

values tan-1 (n) or tan-1 (—), where n is a positive non-zero integer. 
n 

It is easy to prove that the area of any types of parallelograms is always 1, regardless 

of its angle 6. 

5.1.2 The Direction-Adaptive Interpolation 

In the proposed interpolation method, a child pixel is always interpolated using 

intensity values of its parent pixels located on a parallelogram grid that encloses it. We 

illustrate this process by examples shown in Figure 5.2 and Figure 5.3, where 6=45°. 

(a) Deciding the parallelogram grid (b) Interpolating the child pixel 

Figure 5.2 The vertical parallelogram grid. 
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Refer to Figure 5.2(a). Assume the value of child pixel F(x, y) is to be interpolated. 

First, the orientation of the isophote passing through pixel F(x, y) is estimated, yielding 

6T the angle of isophote at (x, y). 6 is then obtained by rounding 6T into the nearest 

discrete angle of parallelogram. Based on the assumption that, in a small local area, the 

isophotes are approximately parallel straight lines, a straight line / is drawn passing 

through point F(x, y) and having the angle 8, the angle of parallelogram. 

v 

(a) Deciding the horizontal parallelogram grid. 

A B E F 

(b) Interpolating the child pixel. 

Figure 5.3 The horizontal parallelogram grid. 
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In the case of # r > 4 5 ° (illustrated in Figure 5.2), the intersections of line / with the 

two nearest vertical grid lines, points ti and t2, are found. Gr id pixels immediately above 

and below ti and t2, A , B , C , and D , are chosen as the parent pixels for child pixel 

F(x, y). 

For 6T <45°, the case of which shown in Figure 5.3, the parallelogram grid is 

similarly decided. See Figure 5.3(a) for illustration. 

If 6T is approximately 0° or 90°, the isophotes in the traditional interpolation methods 

are near straight lines and not zigzagged (as discussed in 4.4.1), thus we employ 

traditional interpolation using the square grid. 

For simplicity, in our discussions we always index the four parent pixels of the 

interested interpolation grid as A , B , C, and D , starting from the bottom-left vertex and 

counterclockwise. 

After the parent parallelogram is decided for child pixel F(x, y), the value of the child 

pixel is obtained using (refer to Figure 5.2 (b) and Figure 5.3 (b)) 

F(x,y) = A + adx' + /3d y'+yd x'y' (5-1) 

In (5-1) x' and y' are the re-defined coordinates; Bd and yd are coefficients obtained 

from parent pixels A, B, C, and D. Their values are decided as follows. 

For the vertical parallelogram, 

x'= x/cos8, y'= y-x-tand (5-2a) 

ad =(B-A)cos0, /3d=D-A, yd = (A +C - B - D)cos0 (5-2b) 

For the horizontal parallelogram, 
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x'= x-y-cold, y '=y / s in t? (5-2c) 

ad=B-A, /3d=(D-A)smd, yd-= (A + C-B-D)sin0 (5-2d) 

Because the proposed interpolation method uses grids that adapt to the direction of 

isophotes, it is referred to as the directional interpolation method. 

5.1.3 Isophotes of the Directional Method 

Substituting (5-2) into (5-1) and letting F(x, y)=Io, we can show that for both cases of 

the horizontal and vertical parallelogram, the isophote of the directional interpolation is 

given by 

Equation (5-3) holds under the restriction that point (x, y) is located within 

parallelogram A B C D . 

Equation (5-3) shows that within each interpolation parallelogram, the isophote of the 

directional interpolation is composed of two parts: a straight line with angle 6 

(y = x • tan 6) and a hyperbola. 

Comparing (5-3) with (4-8), it is seen that the traditional bi-linear interpolation can be 

considered as a special case of the directional interpolation with 9 = 0. In the traditional 

bi-linear method, the interpolation grid is always the rectangle that encloses the child 

pixels, implying that the angle of the interpolation grid is always assumed to be 0° (or 

90°), regardless of the true orientation of the isophotes. In the proposed directional 

method, the angle of the parallelogram grid 6 adapts to the local orientation of the 

y = x • tan 0 + Y d (I0-A) + ad J3d 

y/(x+— ) 

(5-3) 
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isophotes. From this point of view, the proposed directional method is a generalized b i 

linear interpolation. 

The hyperbolic part of the isophote in (5-3) is similar in its form to the hyperbolic 

isophote of traditional bi-linear interpolation (see (4-8)), but the coefficients fid and yd 

are differently defined. 

We can prove that i f the following condition is met, 

(1) In a small image area all isophotes are parallel straight lines with angle Or, and 

(2) Bj is accurately estimated, and 

(3) the angle of the parallelogram can be precisely chosen, i.e., 6 = 6T, 

(5-3) w i l l reduce to only its linear part. That is to say, under the above conditions, the 

proposed directional method wi l l generate completely non-zigzagged isophotes. 

In practice, it is not likely that the above condition is precisely met, and as a result, 

the hyperbolic part of isophote (5-3) usually cannot be fully eliminated. However, from 

our analysis in Chapter 4, when the interpolation grid is parallel (or approximately 

parallel) to the isophotes, the curvature of the hyperbolic isophote is reduced. Therefore, 

in our proposed directional interpolation method, the zigzagging in the interpolated 

isophotes is largely suppressed. As a result, zigzagging artifacts in the interpolated image 

are effectively suppressed. 

In Figure 5.4 we show examples of isophotes interpolated by the directional method. 

To give a comparison, we also show the isophotes interpolated by bi-linear and bi-cubic 

method (the same as Figure 4.7 (a) and (b)). 
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(a) bi-linear (b) bi-cubic (c) the directional method 

Figure 5.4 Comparison of isophotes in different interpolation methods 

16 r 

Figure 5.5 A close-up of isophote I0=20 (segment) in Figure 5.4 

For a close-up comparison of some zigzagging effects in different methods, we show 

a segment of isophote I0=20 in Figure 5.5 with a higher resolution. 
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Experiments on other test images yield results similar to those shown above. In 

section 5.5, Summaries and Discussions, we calculate the average curvature of 

isophotes of different interpolation methods, in order to evaluate the performance of the 

proposed method quantitatively. For detailed results of the curvature analysis, see 5.5. 

The above analysis and results show that the isophotes in the directional interpolation 

are much smoother than in the traditional methods. Thus we expect the directional 

method to yield interpolated images with much less zigzagging artifacts. In the following 

sections, 5.2 and 5.3, we describe the implementation of the proposed directional 

method. The images interpolated by the proposed method will be shown in section 5.4. 

5.2 Algorithm of the Directional Interpolation 

5.2.1 Est imation of the Isophote Orientation 

For each child pixel (x, y) to be interpolated, the orientation of the isophote passing 

through it needs to be estimated. The orientation of an isophote at point (x, y) is 

characterized by the angle of its tangent vector t at that point. See the illustration below. 

The angle of t is given by 
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Z t = tan- '(— x -) 
F„ 

(5-4) 

where Fx and Fy are the first partial derivatives of the intensity function F(x, y). B y 

definition of the gradient of F(x,y) 

VF(x,y) = (Fx,Fy), 

the orientation of the isophote can be obtained by estimating the gradient of F(x, y) at 

point (x, y). 

Several gradient estimators are available for estimating the gradient of a continuous 

image from its sample pixels, such as 2-neighbor (Roberts), the 4-neighbor, the Sobel, the 

spline-based, and etc. Among them, [2] (page 333) concludes that the improved Sobel 

operator has the best accuracy in estimating the angle of the gradient. 

The improved Sobel operator consists of a horizontal kernel and a vertical kernel, 

which are 

5 " " 32 

3 0 3 

10 0 10 

3 0 3 
S v 32 

3 10 3 

0 0 0 

- 3 - 1 0 - 3 

(5-5) 

The gradient is estimated by convolving the above kernels with the digital image, i.e., 

F (m, n) = Sh* F(m, n), Fv (m, n) = Sv* F(m, n) (5-6) 

However, the improved Sobel operator cannot be directly used to obtain the gradient 

of children pixels because it is only applicable to grid pixels. In our proposed method, we 

use the improved Sobel operator to estimate the gradient of the four nearest parent pixels 

of a child pixel, and then obtain the gradient of the child pixel by bi-linearly interpolating 

the parents' gradients, that is (see Figure 5.6 for illustration.), 
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G(x,y) = GA+aG-x + j3G-y + yG-xy (5-7) 

where G - (Fx,Fy) is the estimated gradient for child pixel F(x, y). aG = (ax,ay), 

PG = (f3x,/3y), and yG = (yx,yy) are coefficient vectors, which are obtained by 

&G=GB-GA> 0G=GD~GA> VG =GA+GC ~GB ~GD (5-8) 

In (5-8), GA,Gg,Gc andGD are the gradients of parent pixels A, B, C and D, 

estimated by the improved Sobel operator. 

D C 
<f> — — — i> 
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,<$ '• <S>„ 
A B 

Figure 5.6 Estimating gradient for child pixel F(x, y). 

The gradients of parent pixels A, B, C and D are first estimated by the 

improved Sobel operator. The gradient of pixel F(x, y) is bi-linearly 

interpolated from that of A, B, C and D. 

Apart from the proposed gradient estimator ((5-7)), some other operators can also be 

used to estimate gradient of children pixels. Such examples are the interpolation 

functions including linear, quadratic, cubic, B-spline, etc. Their derivatives are used to 

interpolate the gradient of a child pixel with arbitrary position. In our experiment, we 

tested the proposed gradient estimator and several others, including the ones based on the 

linear kernel and the Keys' cubic kernel. Most of the results show that our method of 

gradient estimation is more accurate in estimating the angle of a child pixels' gradient 
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(and thus that of the isophote), and that the directional interpolation based on the 

proposed gradient estimator yields better performance. 

5.2.2 Interpolating the Children Pixels 

A t the start of the interpolation procedure, the coordinates of all pixels in the 

interpolated digital image F(i, j) is calculated by 

x = i-As, y = j-As 

in which i and j are the horizontal and vertical indices of the children pixels, respectively; 

A s is the desired new spatial resolution. Given the interpolation ratio RxR, 

For each child pixel, the direction of the isophote passing through it is estimated by 

the above method proposed in 5.2.1. Based on the angle information so obtained, the 

parent grid of each child pixel is decided through the process described in 5.1.2 (see 

Figure 5.2 (a) and Figure 5.3 (a)). The values of the children pixels are obtained using the 

directional interpolation described by (5-1) and illustrated by Figure 5.2 (b) and Figure 

5.3 (b). 

In our method, we set a threshold Tgracj for the magnitude of gradient of a child pixel. 

Only those children pixels F(x, y) that satisfy 

\\VF(x,y)\\>Tgrad (5-9) 

are interpolated using the directional mechanism described above. Other children pixels 

are interpolated using the traditional method. Traditional methods, such as the bilinear 
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and the bi-cubic, can be used to interpolation the non-edge pixels. In our illustration, we 

use the bi-linear method for simplicity. 

The reason of the above thresholding is as follows. 

(1) Pixels with low gradient magnitude are likely to belong to smooth areas, which 

are visually less important. For these pixels, the traditional methods wi l l not 

generate severe degradations while being computationally economic. 

(2) With low gradient magnitude, i.e., small values of Fx and Fy, the angle estimation 

in (5-4) is sensitive to noise and rounding errors, and therefore less accurate. 

Guided by inaccurate angle information, the parallelogram grid could be formed 

by irrelevant parent pixels, leading to large errors in the interpolation. 

The process of thresholding the gradient is similar to the gradient-based edge 

detection ([2]), therefore for simplicity we refer to the image resulting from thresholding 

as "edge map", and the pixels contained in the edge map as "edge pixels". However, our 

interpolation method does not require factors such as precise location of the edge, the 

edges' being thin, or high connectivity of the edges, etc. (Edge-directed interpolation 

methods often have such requirements. Refer to 3.3.1). In our algorithm, the magnitude 

threshold is usually set lower than that used for regular edge detection purposes. As a 

result, the yielded edge map contains areas, or "clusters", of pixels, rather than very thin 

edges. Examples of edge maps are shown in Figure 5.7. 

5.2.3 Pixels with High Curvatures 

In the directional method described above, there is an underlying assumption that 

within the interpolation grid the isophotes are approximately straight lines. Although this 
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is true for the majority of situations, in some cases it is not accurate enough. We illustrate 

one such case in Figure 5.8. 

Figure 5.7 Examples of edge maps 

In Figure 5.8, the intensity value of a child pixel F(x, y) is to be interpolated. The 

local direction of the isophote passing through point (x, y) is estimated as that of the 

straight line / , for example, and the parallelogram grid is accordingly selected as ABCD. 

However, in some cases, the isophotes are so highly curved that even within a small 
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region of few pixels they considerably deflect from the assumed straight line / . A s 

confirmed in our experiments, such cases usually happen at the sharp corners of image 

objects, or in areas where multiple image objects overlap, so that abrupt changes of 

direction occur. 

H G D > C 
O O ,e--v"=-—--€> 

Figure 5.8 A chi ld pixel with high curvature 

A s shown above, the high curvature of an isophote could result in an improperly 

selected parallelogram grid, which in turns yields mistakenly interpolated pixel values. 

These erroneous pixels are visually annoying and must be avoided during the 

interpolation. Figure 5.9 shows some examples of such mistakenly interpolated pixels. 

Figure 5.9 Mis takenly interpolated pixels caused by high isophote curvature. 

Notice the visually interfering pixels around the corners of some image 

contours, whose values are obviously irrelevant. 
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In order to suppress these erroneously interpolated pixels, we introduce a curvature-

thresholding mechanism into the directional interpolation. For a child pixel, we estimate 

the curvature of the isophote passing through it. The directional interpolation is only 

applied on children pixels with low curvature. For pixels with high curvature, the 

traditional bi-linear interpolation is used. 

For a curve described by equation F(x, y)=0, its curvature at point (x, y) is defined as 

c(x,y) = 
F F +2F F F - F F 
r x ryy T z , r x r y r x y 1 y 1 xi 

(F2 + F2)^ 
(5-10) 

As in the case of gradient estimation, several operators are available for estimating 

the curvature. One of the most commonly used curvature estimators is cubic-based. In 

our experiments, we found that cubic-based curvature estimation is often not accurate 

enough for our purpose. Instead, we introduce a curvature estimator derived from the 

gradient estimator described in 5.2.1. 

The definition of curvature can be interpreted as: the differential change of angle of 

the curve's tangent line divided by the differential length of the curve, over which the 

change of angle occurs, that is (see Figure 5.10), 

dd(x,y) 
c(x,y) = —-=— (5-11) 

ol 

By the properties of the directional derivatives, (5-11) becomes 

c(x,y) = d B ^ y ) c o s 0 + d 6 { x ' y ) s i n 0 = 0xcos0 + 0y sin0 (5-12) 
dx dy 
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Ofay) 

F(x>y) 

Figure 5.10 Illustration of curvature. 

in which 6(x, y) is the angle of isophote at point (x, y), and 

0(x,y) = tm-l(-^-) (5-13) 
F„ 

In order to find 6X and 6y of (5-12), let 

g(x, y) = — (5-14) 

Differentiating (5-13) yields 

a - %x a -
x 1 + g2 y 

(5-15) 

Now we resort to our method of gradient estimation described in 5.2.1, by which Fx 

and Fy are estimated. Substituting (5-7) and (5-8) into (5-14) and differentiating the 

result, g(x, y), gx and gy in (5-15) are all obtained. The obtained g(x, y), gx and gy are in 

turn substituted into (5-15), yielding 

6r = 
(ay+Yy-y)-Fx-(ax + yx-y)-Fy 

F2 + F2 

x y 

and 
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(/3y+yy-x)-Fx -(j3x + yx-x)-Fy 

Fl + Fy

2 
(5-16) 

Eventually, we substitute (5-16) and (5-13) into (5-12), and the estimated curvature 

c(x, y) is calculated. 

With the curvature of the children pixels estimated, a threshold Tcurv is set. Children 

pixels F(x, y) that have high curvatures, i.e., 

are N O T interpolated by the directional grids. Instead, their values are obtained through 

the traditional bi-linear method. 

In our algorithm, the threshold Tcurv is made adaptive to 9, the angle of the 

parallelogram. Refer to Figure 5.8. The closer 9 is to 0° or 90°, the thinner the 

parallelogram, and thus the less curved the isophote needs to be, i f it is to be contained by 

the parallelogram grid. Therefore, in our algorithm, we set Tcurv as 

Tcurv
 = — 1 ~ ' f ° r a vertical parallelogram; Tcurv = —t—, for a horizontal parallelogram. 

In (5-18) t is a constant. In our experiments we find t= 0.8-1.5 yields satisfying 

results in most situations. 

Although the estimation of the curvature is a fairly resource consuming operation, in 

our method it is only carried on the edge pixels, which only occupy a minority (usually 

less than 20%) of the total pixels. The non-edge pixels are already filtered out in the first 

stage of the interpolation algorithm by the gradient thresholding, and thus wi l l not have 

their curvature estimated. Also , by using the proposed method of curvature estimation, 

c(x,y)\>Tc curv 
(5-17) 

tan<9 cotf? 

(5-18) 
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most information needed for calculating the curvature is already obtained when 

estimating the gradient, and thus can be reused. As a result of the above factors, the 

curvature estimation is not particularly time consuming in our algorithm. 

The experimental results show that the curvature thresholding effectively suppresses 

pixels with high curvatures that are inappropriately interpolated. As a result, the visual 

satisfaction of the interpolated images is considerably improved. 

In the following section, we continue to improve the proposed directional method by 

discussing another type of visually important image features, the ridges. Before that, we 

here show in Figure 5.11 and Figure 5.12 some images interpolated by the directional 

method so far proposed. 
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Figure 5.11 Camera M a n interpolated by 2x2 using the proposed method 



Figure 5.12 Lena sub-sampled (upper) and expanded (lower) by the proposed method 
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5.3 Interpolation of the Ridge Areas 

5.3.1 Ridgel ines and Arti facts 

In the directional interpolation method proposed in sections 5.1 and 5.2, the 

orientation of the isophotes is estimated by the gradient operator applied on the original 

image. In our further study, we find that although the gradient-based orientation 

estimation is effective on image features such as edges and ramps, it does not work 

equally well for some image features with low gradient magnitude. One type of those 

image features is the "ridgelines", or "ridges". 

Our formal definition of a ridge is given later in 5.3.2. The most commonly seen 

examples of the ridges are bright (or dark) thin lines. See Figure 5.13 for two examples. 

Figure 5.13 Examples of ridgelines. 

The hair (Mandrill) and the bright lines inside the legs of the tripod 

(Camera Man) are typical ridgelines 
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A closer study of the ridges reveals that the ridges have several types, not all 

appearing in the form of thin lines. We show three different types of ridges in Figure 5.14 

by illustratively drawing the profiles across the ridgeline. 

ridge ridge ridge 

ridge 

(a) (b) (c) 

Figure 5.14 Cross section of different types of ridges 

Figure 5.14 (a) and (b) both correspond to the cross section of an image object that 

has a ridgeline near its top and slopes on both sides. In (b) the ridgeline is in the middle 

of the two edges. The case of (a) corresponds to a very thin line. In (c), the ridges occur 

along an edge in the form of overshootings (ringing). Overshooting can be caused by 

limited bandwidth of the original acquisition system. 

A l l three cases of ridges suffer artifacts after interpolation. A s an example, in our 

experimental results shown in Figure 5.11, notice the artifacts along the bright lines in the 

legs of the tripod and the handle. This phenomenon is also observed in other results not 

shown here. Degraded by artifacts, the ridgelines appear twisted, zigzagged, and in some 

cases as broken lines. A l l traditional interpolation methods reviewed in Chapter 2 suffer 

from these ridge-related artifacts. 
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Our observations also show that although the ridges of cases (b) and (c) are usually 

less visible than case (a), both case (b) and (c) are very common in images even though 

they are usually not as noticeable. These ridge-related artifacts often degrade the visual 

appearance of the associated edges after interpolation. Such ridge-related artifacts can be 

observed along the r im of the hat in Figure 5.12, and some of the edges in Figure 5.11. 

The proposed directional interpolation method has proved to be very effective in 

removing the zigzagging artifacts in edge areas. However, the artifacts associated with 

ridgelines are not solved yet. Next, we study how to improve the proposed directional 

method in ridge areas. 

5.3.2 Isophote Model of Ridges 

A typical ridgeline often appears to have a constant intensity value over its stretch, 

and i f so, the isophotes along this ridgeline are all parallel straight lines, in which case 

directional interpolation should yield good results. However, a close examination of the 

ridges reveals that the intensity values along a ridgeline still vary, although usually 

slowly. A s a result, the isophotes along the ridgeline are nested closed curves, instead of 

straight lines. Figure 5.15 illustrates one case of ridgelines. In Figure 5.15, the intensity 

value of the ridgeline is the highest at the bottom-right corner, decreases toward the 

center, and increases toward the top-left corner after passing through the center point. 

Most commonly, the intensity of the ridge fluctuates along it, and in such a case the 

model could be drawn as multiple sets of the nested curves shown in Figure 5.15 aligned 

along the ridge direction, concatenating each other. 
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(a) The isophotes (b) The intensity 

Figure 5.15 Isophotes in the ridge area. 

For better visibility, the isophotes close to the center are not shown. 

Referring to Figure 5.15, we use homocentric ellipses to approximate the isophotes in 

the ridge area. One reason of the ellipse approximation is its mathematical simplicity. 

Under this model, we define the ridge point as the point on each ellipse isophote that 

has the maximum curvature. Accordingly, the ridgeline is defined as the straight line 

that links all the ridee points. 

A s stated earlier in this section, ridge points have low gradient magnitudes. This can 

be briefly explained by examining Figure 5.14. As can be seen from Figure 5.14, the 

ridge point is near the peak (or valley) of the ridge's cross section, and therefore has a 

near-0 partial derivative along this direction. Assuming that the intensity value along the 

ridge direction is changing slowly, the partial derivative along the ridge direction is also 

small. The gradient, formed by the partial derivatives along and across the ridgeline, thus 

has a low magnitude. This wi l l be mathematically proven in the next sub-section when 

we prove that the ridge pixel is very close to either the horizontal maximum or vertical 

maximum, or both. 
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The low gradient magnitudes for the ridge pixels impose the following two major 

difficulties on the mechanism of the proposed direction interpolation. 

(1) With || V F ( x , y) 0 , the ridge pixels are likely to be filtered out by the gradient 

thresholding at the early stage of the interpolation. 

F 0 
(2) With Fx and Fy having small values, is close to type —. A s a result, the 

Fy 0 

f 
direction of the isophote, tan 1 ( — - ) , is very sensitive to noise and errors 

Fy 

(typical errors are those introduced by the gradient estimation and the rounding 

error when digitizing the original image). 

Note that (2) is also the reason why the orientation cannot be accurately estimated for 

pixels in the smooth areas, and consequently they are excluded from the proposed 

directional interpolation by the gradient thresholding (see 5.2.2). 

With the presence of the above two problems, the directional interpolation does not 

effectively detect the ridge areas, nor adapts the interpolation grid appropriately to the 

correct direction for ridge pixels. In fact, the above two problems also affect all gradient-

based edge-detection (including Sobel, Canny, Spline-based, and so on), orientation 

estimation, and the interpolation methods so based. 

Apart from the above two problems associated with ridge pixels in general, there is 

another difficulty specific to the proposed directional method. A s illustrated in Figure 

5.15, on the ridgeline, the isophotes are no longer near-parallel straight lines. Instead, 

they are highly curved, and it is proven that on the ridgeline, the isophotes are 

perpendicular to the orientation of the ridgeline, instead of parallel to it. That is to say, 
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even i f the ridge pixels were detected and the orientation of the isophotes properly 

estimated, the interpolation parallelogram would be set with a totally wrong direction. 

Extensive studies and rigorous mathematical derivations of how interpolation should 

be carried in the ridge areas in order to reduce the zigzagging artifacts are much more 

difficult than for the edge areas, and such analysis w i l l not be conducted with full 

strength within the scope of this research. However, we here adopt the reasonable idea 

that in the ridge areas the interpolation should be carried along the ridgeline, rather than 

the along the isophotes as in the case of edge areas. In the next sub-section, we design a 

scheme through which the orientation of the ridgelines is estimated and the corresponding 

directional interpolation is carried. 

5.3.3 Interpolating the Ridgelines 

In order to estimate the orientation of ridgelines, we first examine the ellipse-based 

isophote model of the ridge area introduced in 5.3.2. 

Assume that an ellipse has a major axis a and a minor axis b, and its major axis is at 

an angle 6 with the x-axis. The parametric form of such an ellipse is 

x = acosq>cos6-bsin(psm8 = co(<p) 

y = acos<psin0 + bsin<pcos0 = 7](<p) 
(5-19) 

in which (p=0~2n is the angle parameter. 

From (5-19) it follows that 

dy _ rj (<p) _ - a sin (p sin 6 + b cos cp cos 6 
(5-20) 

dx co {(p) - a s i n cp cos 0-bcos (p sin 9 
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Let n'(<p)=0 and co'(<p)=0, i.e., — = 0 and — = ° ° , respectively, and denote the 
dx dx 

yielding <p as <ph and <pv, respectively. Derivations show that cph and cpv satisfy 

(ph = tan - 1 ( -co t (9) ; (5-21a) 
a 

(pv=- tan"1 ( - tan 6) (5-2 lb) 
a 

Meanwhile, because the ellipse is an isophote, it must satisfy 

0- = -^- (5-22) 
dx Fy 

Equation (5-22) implies that <pt, and <pv correspond to points on which Fx=0 and Fy=0. 

Therefore, non-stricfly but without losing practicality, it is concluded that <ph and (pv 

correspond to the horizontal maximum and vertical maximum of function F(x, y) (here 

we refer to both maximum and minimum as maximum, when the meaning is clear from 

the context). 

In our model of isophotes in the ridge areas, the ellipses are usually very thin, i.e., 

b«a. With b«a, (5-21a) reveals that when 8>45° (so that cotQ < 1), >0; similarly, 

when 6<45°, there is <pv—>0. 

It is easy to prove that the ridge point, defined as the point that has the greatest value 

of curvature on the ellipse, is the intersection of the major axis with the ellipse (here we 

only examine one of the two such points), which corresponds to (p = 0 . 

Because <ph and <pv always have different signs (see (5-21)), cp = 0 is always between 

(ph and (pv. Combining this fact with the conclusion drawn above, it is concluded that 

when Q>45°, the ridge point is very close to the horizontal maximum; when 8<45°, the 

ridge point is very close to the vertical maximum. Figure 5.16 illustrates the case of 
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d>45°. In this case the ridgeline is very close in both angle and location to the line that 

links the horizontal maxima, and is away from the line that links the vertical maxima. 

Based on the above analysis, we detect the lines of horizontal maxima and vertical 

maxima, and use them to approximate ridges with 0>45° and 6<45°, respectively. The 

case of searching a ridgeline with 6<45° is illustrated in Figure 5.17. 

Figure 5.17 Track ing a ridgeline wi th 9<45°. 

In the figure, triangles are vertical maximum pixels, and circles are other 

grid pixels. 
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Refer to Figure 5.17. In the original image, we search for runs of vertical maxima — 

consecutive vertical maximum pixels aligned horizontally — for each row. For example, 

A - B and C - D - E are two runs of vertical maxima. A ridgeline starts with a single run of 

maxima, say run A - B . If another run of vertical maxima is found in the neighboring row 

(upper or lower) and its starting pixel diagonally neighbors the ending pixel of current 

ridgeline (pixel B) , the new run is connected to the ridgeline and the ridgeline grows. In 

this case, run C - D - E is connected because pixel C neighbors pixel B diagonally. The 

ridgeline grows until no more runs can be connected to it. 

In our algorithm, only ridgelines with 3 or more runs connected are considered valid, 

otherwise they are considered too short to be interested, or likely to be interference, and 

are ignored. In a ridgeline, each run of maxima is a segment, and the orientation of the 

ridgeline for each segment is decided by dividing its vertical and horizontal span, i.e., 

tan<9 = — , as illustrated in Figure 5.17. For the case of 6<45°, there is always L/ ,=i . 

Different segments of the ridgeline can have different 6 angles because L/,'s for different 

segments are different. 

In the case of 6>45\ the ridgeline is detected by searching for runs of horizontal 

maxima. The detailed process is similar to the case of 9<45° and is not separately 

explained. In the case of 9^45°, the maxima most often appear both horizontal and 

vertical (two-dimensional maxima), and in this case the ridgeline is detected by both 

horizontal searching and vertical searching. 

The ridgelines formed by minimum pixels, or the valleys, are also detected by the 

same mechanism as described above, but with maxima replaced by minima. Similar to 

the case of edges, ridgelines that are almost horizontal or vertical usually suffer less from 
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artifacts. Therefore we neglect such ridges and use traditional bi-linear method to 

interpolate them. Figure 5.18 shows some examples of detected ridges. 

When the orientation of each segment of the ridgelines is decided, children pixels 

located within 1-pixel distance from the ridgeline (e.g., the shaded area in Figure 5.17 for 

segment C-D-E) are interpolated using the directional method described earlier in this 

section, with 9 the angle of the parallelogram. 

Summarizing 5.1 through 5.3, the completed directional interpolation method 

consists of the following 5 major steps. 

(1) Gradient thresholding, through which the edge pixels are identified. 

(2) For pixels identified in step (1), their orientation is estimated. During this step, the 

curvature thresholding is performed. Those pixels with high curvatures are excluded 

from orientation estimation. 

(3) Detect ridgelines on all pixels, and estimate the orientation of ridgelines. 

(4) For all pixels whose orientation is obtained through step (2) and (3), their values are 

interpolated by the directional interpolation method. 

(5) For all pixels excluded from step (4), their values are obtained using bi-linear 

interpolation. 



Figure 5.18 Examples of detected ridges. 
In the figures, the original image is set as background with lowered 

intensity level. The ridgelines are highlighted. Note that ridgelines that are 

almost horizontal or vertical are not shown. 



108 

5.4 Experimental Results 

With the proposed directional interpolation method completed, we conduct extensive 

experiments in order to test the performance of the proposed method. In this section, we 

show some of the experimental results. 

In our experiments, the original test images are sub-sampled and then expanded, and 

the expanded images have the same size as the original ones. The expansion ratio in each 

direction is chosen as R=2 unless otherwise specified, and correspondingly the down-

sampling ratio is 1/R. Some of the images, such as the Camera Man , are originally 

obtained with low resolutions. In such cases they are not sub-sampled and only expanded 

by R=2. To compare the proposed method to the traditional methods, we also show the 

result obtained through the bi-cubic interpolation, using the Catmull-Rom cubic spline. 

The results of image Camera Man, Lena, Zelda, Pepper, Tropic and Mandri l l are 

shown in Figures 5.19 - 5.24. For image Camera M a n and Tropic, results from 

replication, bi-linear, and quadratic interpolation (which are not shown in this section) 

can be seen in Figure 2.6 and 2.7. For some of the images, we also show the results from 

the directional method with and without ridge interpolation in order to demonstrate its 

effect. If not specified, the directional method is with ridge interpolation. 

For all images shown below, the size after expansion is 512x512 except Tropic 

(320x320), and the spatial resolution of display is 96 DPI . 



Figure 5.19 (a) Expanded by bi-cubic interpolation. 
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Figure 5.19 (b) Expanded by directional interpolation. 

See the bright lines on the legs of the tripod for ridges. Compare with Figure 

5.11, which does not have the ridges specially interpolated 



Figure 5.20 (a) Expanded by bi-cubic interpolation. 



Figure 5.20 (b) Expanded by directional interpolation. 

See the r im of the hat and the hair area for differences between with and 

without ridge interpolation (Figure 5.12). 



Figure 5.21 (a) Expanded by bi-cubic interpolation. 

Note: Expansion Ratio R=2.5. 



Figure 5.21 (b) Expanded by directional interpolation. 

Expansion Ratio R=2.5. 



Figure 5.22 (a) Expanded by bi-cubic interpolation. 



Figure 5.22 (c) Expanded (part) by the directional method without ridge interpolation 



(c) Expanded by directional interpolation 

Figure 5.23 Tropic expanded. 



Figure 5.24 (a) Expanded by bi-cubic interpolation 

Expansion ratio R=1.5. 

Notice the artifacts in the hair areas. 
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Figure 5.24 (b) Expanded by the directional method without ridge interpolation 

Expansion ratio R=1.5. Notice that the hair areas still have some artifacts. 



120 

Figure 5.24 (c) Expanded by directional interpolation with ridge interpolation 

Expansion ratio R=1.5. Notice the hair areas improved by the ridge interpolation. 
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5.5 Quantitative Evaluation of the Proposed Method 

5.5.1 Curvature Evaluation 

The isophote analysis in 5.1.3 shows that the proposed directional interpolation 

method yields very smooth isophotes in the interpolated images (see Figure 5.4 and 

Figure 5.5). This is also visually proven by the experimental results shown in 5.4. In 

order to provide a quantitative evaluation for the isophote performance of the direction 

method, we calculate the average curvature of isophotes of the interpolated image as a 

measure of zigzagging in the interpolated images. 

In our evaluation, we adopt the "minimum curvature" criterion, that is, the less the 

average curvature yielded by a certain interpolation method, the less zigzagged the image 

so interpolated. In reference [24], the average curvature is obtained by averaging the 

curvatures of all pixels in the interpolated image. In our study, we find that this approach 

has a drawback, which is explained below. 

In an image that contains both smooth and edge areas, usually the average curvature 

of the smooth areas is greater than that of the edge areas. The isophotes along image 

edges usually have slow changes of orientations. That is to say, the curvatures of 

isophotes in the edge areas usually have small values, except for the few locations where 

the edges turn sharply. A s a result, the average curvature of isophotes in the edge areas is 

usually low. 

On the other hand, in the smooth areas, the isophotes very often appear as nested 

circles surrounding the local maxima and minima. A t each local maxima or minima, the 

curvature has a very large (theoretically infinite) value. This property of isophote, 

combined with the small percentage the edge pixels occupy in the image, leads to the fact 
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that the average curvature of the edge areas is usually only a fraction of the overall 

average. 

Because our purpose is to evaluate zigzagging artifacts, which mostly affect the 

visual appearance of the edge areas, a proper quantitative measure should be the average 

curvature of the edge pixels. Because curvature estimation usually has errors, curvatures 

of smooth pixels therefore act as strong interferences to what we are trying to detect. A s a 

result, the evaluation based on the average curvature of all pixels is subject to very poor 

signal to noise ratio. 

To demonstrate the high curvature values in the smooth areas, we show two curvature 

maps in Figure 5.25. This phenomenon is also proven by the data shown in the tables 

below. The curvature is estimated by the method proposed in 5.2.3. 

Figure 5.25 Curvature map of Camera Man and (reduced) Lena. 

In the curvature maps, the highlighted pixels have estimated curvature 

values greater than 1.0 — note most of the edge pixels are not among them. 
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To avoid the interference caused by smooth pixels, in our evaluation, we calculate the 

average curvature for edge pixels only. The edge detection process is the same as in the 

proposed interpolation method. 

Table 5-1, 5-2 and 5-3 show the average curvature of edge pixels detected under 

different threshold Tgmd. Figure 5.26 is the edge map of (expanded) Camera M a n 

corresponding to two different values of Tgrad, showing the edge pixels involved in the 

curvature averaging. In Figure 5.26, the edge maps are reduced to fit the space. 

(a) Tgrad=5. (b) Tgrad=25. 

Figure 5.26 Edge maps with different gradient thresholds. 

In Table 5-1, 5-2 and 5-3, the leftmost column is the gradient threshold Tgrad. The 

rightmost column shows the percentage improvement (decrease) in average curvature by 

the directional method compared with the bi-linear/bi-cubic method. 
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Table 5-1. Average curvature of Camera M a n for edge pixels. 

Bi-linear Bi-cubic Directional Improvement 

Tgrad=0 0.679 0.668 0.671 1.1/-0.5 

0.338 0.355 0.314 7.1/11.6 

0.189 0.196 0.160 15.3/18.4 

Tgrad—25 0.151 0.152 0.119 21.2/21.7 

Table 5-2. Average curvature of Lena for edge pixels. 

Bi-linear Bi-cubic Directional Improvement 

Tgrad=0 0.652 0.648 0.649 0.5/-0.2 

Tgrad=5 0.237 0.252 0.208 12.2/17.5 

Tgrad=10 0.175 0.186 0.144 17.7/22.6 

Tgrad=15 0.143 0.151 0.109 23.8/27.8 

Table 5-3. Average curvature of Tropic for edge pixels. 

Bi-linear Bi-cubic Directional Improvement 

Tgrad=0 0.372 0.404 0.368 1.1/8.9 

Tgrad=5 0.148 0.161 0.120 18.9/25.5 

Tgrad=10 0.119 0.125 0.087 26.9/30.4 

Tgrad=15 0.102 0.105 0.069 32.4/34.3 

In the above tables, Tgrad=0 corresponds to the case that all pixels of the image are 

involved when calculating the average curvature. A s we have predicted, the average 

curvature for Tgrad=0 has the greatest value. Also , it is obvious from the results shown 
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that when all pixels are involved, the resulting average curvatures are often ineffective in 

reflecting the extent of zigzagging in the interpolated images. Compare the average 

curvature with Tgrad=0 in all the three tables. 

In our test, we gradually increase Tgrad- With a higher Tgrad, more interfering (smooth) 

pixels are filtered out, and edge pixels occupy a higher percentage in the averaged pixels. 

A s a result, the average curvature becomes a better measure of the zigzagging artifact. In 

all the three tables, the higher the threshold, the more the directional method outperforms 

the traditional methods (see the percentage improvement). The data also proves our 

conclusion that the average curvature of the edge pixels is considerably lower than that of 

all pixels. 

When edge pixels with a proper percentage are involved (refer to the last one or two 

rows of each table), the smoothness of the isophotes in the proposed directional 

interpolation method is consistently better than that of the traditional methods. This is an 

expected result, which is also matched by visual evaluation of the expanded images and 

their isophotes shown earlier in this chapter. Meanwhile, the bi-linear and bi-cubic 

methods are approximately comparable in most cases, with the bi-linear interpolation 

slightly better than the bi-cubic. 

5.5.2 M S E Evaluat ion 

A s discussed in Chapter 3, the MSE-based measures are not consistently effective in 

evaluating the subjective quality of the interpolated images. Here, however, we still 

conduct a M S E evaluation of the proposed directional method. The reasons for carrying 

the M S E evaluation are as follows. 
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(1) M S E is still one of the most widely adopted methods of evaluation, and performed 

by many researchers in their study of image interpolation. 

(2) B y comparing the M S E with the corresponding visual quality of expanded images, 

we demonstrate the weakness of the M S E measures. 

In the M S E tests, the original images are reduced and then expanded, so that they 

have the same size before and after the interpolations. The M S E is calculated by formula 

(2-15). In the following tables, we show M S E obtained from four different images, each 

expanded by 2.0 and 2.667 (8/3), through different interpolation methods. 

Table 5-4. M S E of images expanded by 2.0 

~~ -~--^Method 

Image — 
Bi-linear Bi-cubic Directional 

Lena 4.267 4.006 4.099 

Pepper 5.923 5.818 5.664 

Zelda 3.790 3.746 3.792 

Tropic 3.753 3.416 3.153 

Table 5-5. M S E of images expanded by 2.667 

--^Ivlethod 

Image —.^^^ 
Bi-linear Bi-cubic Directional 

Lena 5.691 5.307 5.369 

Pepper 7.255 6.993 6.857 

Zelda 4.774 4.627 4.793 

Tropic 5.293 4.737 4.224 

A s can be seen from the above tables, the proposed directional interpolation method 

does not always outperform the bi-linear and bi-cubic method in the M S E sense. This is 
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to some extent an expected result, in that the directional information is not designed to 

optimize the M S E measure. Similar results and conclusions are also drawn by other 

researchers (such as [24]) when comparing their proposed visually oriented methods to 

the traditional methods. 

These results also show that the M S E measure is not very effective in evaluating the 

subjective quality of interpolated images. For an example, it can be seen from Table 5-4 

and 5-5 that for image Lena, the M S E of bi-cubic interpolation is slightly better than that 

of the proposed method. But from subjective quality point of view, the proposed 

directional method yields by far superior results than the bi-cubic methods. The 

comparison of Lena expanded by 2.0 (corresponding to Table 5.4) can be seen in Figure 

5.20. We show the images expanded by 2.667 (corresponding to Table 5.5) through 

different methods in Figure 5.27, which clearly demonstrates that, at least in this case, the 

M S E measure does not well match the extent of visual satisfaction. 

5.5.3 Summary of the Directional Method 

The experimental results and quantitative evaluations show that the proposed 

directional interpolation method is effective in removing zigzagging artifacts in the 

interpolated image. A s a result, the subjective quality of the interpolated images are 

considerably improved, compared with the traditional methods. 

The directional method yields smoother and more natural looking expanded images 

for different types of original images. For example, the Camera M a n image has the 

special features of long and very sharp edges; Zelda and Pepper have some fine textures; 
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Lena has a mixture of edges, textures and details; Mandri l l is a typical image that is rich 

of ridge objects. 

Because a Mean Opinion Score (MOS) test is usually tedious, expensive and time-

consuming, we do not conduct such a test. To evaluate subjective satisfaction of the 

proposed method, resulting images are shown to a number of viewers with various 

background and expertise, and feedbacks are collected. It is agreed by almost all viewers 

that images interpolated by our proposed method in virtually all cases give better 

subjective impressions, compared with images interpolated by traditional methods. 

In our method, the directional interpolation is carried differently in the edge and ridge 

areas. In the edge areas, the interpolation parallelograms are along the isophotes; in the 

ridge areas, the parallelograms are perpendicular to the isophotes, i.e., along the ridgeline. 

It is observed in our experiments that although the ridge pixels usually only occupy a 

low percentage, they are very important in the overall quality of the interpolated images. 

In many cases edges are accompanied by ridges of type (b) and (c) (refer to Figure 5.14). 

A s a result, i f the directional interpolation did not incorporate the ridges, the artifacts 

along many edges could not be completely suppressed. For results of the directional 

method with and without ridge interpolation, compare Figure 5.11 to Fig.5-19 (b), and 

Figure 5.12 and Figure 5.20 (b). 

In the next chapter, we discuss another major degradation in image interpolation, the 

blurring effect, and introduce a contrast enhancement scheme to reduce the blurring. 



Figure 5.27 (a) Expanded by 2.667 using bi-linear method. 



Figure 5.27 (b) Expanded by 2.667 using bi-cubic method. 



Figure 5.27 (c) Expanded by 2.667 using the directional method. 
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Chapter 6. 
Contrast Enhancement in Image Interpolation 

In this chapter, we introduce a contrast enhancement scheme to remove the 

blurring effects in the interpolated images. Section 1 discusses the blurring effects 

in image interpolation, and briefly reviews some recent work on contrast 

enhancement. Section 2 introduces a multi-band contrast enhancement scheme 

based on edge sharpening and unsharp masking ( U M ) . Section 3 shows the 

experimental results and gives some discussions. 

6.1 Overview 

6.1.1 Adapt ive Contrast Enhancement 

As discussed in Chapter 3, traditional interpolation methods suffer from loss of 

contrast in the expanded images. This phenomenon is often referred to as the blurring 

effect. The blurring effect, apart from the zigzagging artifact, is another major 

degradation resulting from image expansion. Meanwhile, in most of the visually oriented 

interpolation methods reviewed in Chapter 3, the blurring problem is not specifically 

addressed and effectively solved. A s a result, it is necessary in our research to study and 

design a method of contrast enhancement for the expanded images. 

Contrast enhancement on its own is an in-depth topic, and numerous methods have 

been introduced to improve the image contrast in various applications. Generally, these 
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methods can be classified as (1) the traditional global techniques and (2) the recent 

adaptive techniques. 

Among the traditional techniques are histogram equalization (HE), unsharp masking 

(UM), and the linear contrast stretch (also called windowing and leveling). Although the 

global methods are usually simple to implement and effective for some applications, they 

have some serious weaknesses, one of the most annoying ones being their sensitiveness 

to noise. 

The recently proposed methods of contrast enhancement are generally divided into 

two categories - the spatial-domain methods and the frequency-domain methods. The 

spatial-domain methods, [55] - [59], employ content-adaptive U M or H E in order to 

provide adequate enhancement to image details while suppressing the noise level in 

smooth areas. The frequency-domain methods, [51] and [53], increase the image contrast 

by enhancing the high-frequency components. In particular, [53] introduces a multi-band 

contrast enhancement. In their method the image is divided into the low-, mid- and high-

frequency bands. The mid- and high-bands are enhanced, whereas the low-band is not or 

little enhanced. 

The adaptive contrast enhancement methods have improved the performance of the 

traditional methods. However, most of the methods mentioned above are designed for 

specific applications (e.g., medical images, or images after lossy de-compression), and 

are not particularly designed for enhancing the contrast of expanded images. 

In order to design a contrast enhancement scheme to increase the visual sharpness of 

the expanded images, we adopt the idea of multi-band enhancement. In our method, an 

image is divided into two types of areas based on the nature of the content - the edge 
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areas (also called the high-contrast, high-activity, or detailed areas), and the smooth 

areas (also called the low-contrast, homogeneous, or monotone areas). 

It is known that the edge areas are visually more important than the smooth areas in 

image perception. Also, in image expansion, the blurring effects are more harmful to the 

edge areas than to the smooth areas. As a result, our method mainly focuses on 

sharpening the edge areas. 

6.1.2 Edge Sharpening in the Expanded Images 

After expansion, the width of an edge is increased, while the difference in intensity 

across the edges remains almost unchanged. As a result, the sharp changes of intensity 

across the edges become gradual. This phenomenon is perceived as loss of contrast across 

the edge. See Figure 6.1 for illustration in a 1-dimensional case and 6.2 for a real 

example of a blurred edge. 

1 di 

(a) The original edge. (b) The expanded edge. 

Figure 6.1 Expansion of a 1-d edge. 

In the figure, d} and d2 are the width of the edge before and after 

d2 

expansion, respectively. Approximately — = expansion ratio. 
d. 
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(a) (b) 

Figure 6.2 Blurring in the expanded edge. 

In this figure, (a) is a part of Lena that has a typical image edge, (b) is the 

edge expanded by 3x3 using the directional method. Notice that the 

expanded edge does not suffer from zigzagging, but the visual appearance 

of blur still exists. 

The proposed directional interpolation, described in Chapter 5, removes the 

zigzagging artifacts by providing smooth isophotes in the interpolated image. However, it 

does not enhance the contrast of the interpolated edges. Therefore, after the directional 

interpolation proposed in Chapter 5, a separate process of contrast enhancement is needed 

so that contrast comparable to the original image is restored. 

Among the recent interpolation methods reviewed in Chapter 3, references [12] and 

[25] proposed an interpolate-then-sharpen approach. In these two-phased schemes, the 

original image is first interpolated using the visually oriented method; the interpolated 

image then undergoes an edge-sharpening process that enhances the contrast in the edge 

areas. To carry the edge sharpening, the pixel intensity values of the interpolated edges 

are changed, so that the profile of the edges is steeper than those initially interpolated. 

This process is explained in the one-dimensional case as follows (refer to Figure 6.3). 
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Figure 6.3 Sharpening a 1-d expanded edge. 

In the figure, all functions are normalized in both x and y directions. 

In Figure 6.3, the expanded edge F(x) is less sharp than the original edgef(x). A roll-

down function <p(t) is applied on F(x), resulting in the modified edge <p(F(x)). If function 

cp(t) is properly designed, the central part of the modified edge <p(F(x)) (around x=0.5) 

becomes steeper then the parts on both sides, and thus a sharper edge between the smooth 

areas (areas around x=0 and x=l) results. 

In [12], the edge-sharpening function (called the "weighting function") is 

1 + e x 

In (6-1) r is a free parameter that controls the shape of o(x), i.e., the extent of 

sharpening. See Figure 6.4 for curves of a(x). 

In [25], we proposed an edge-sharpening function (called the "edge re-shaping 

function" in that reference): 
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<PXX) = 

0 x<0 

0 < x < l 
2x2-2x + l 
1 x>\ 

(6-2) 

The curve of (6-2) can be seen in Figure 6.5 (the curve with a=2.0). 

0.1 0.2 0.3 0.4 0.5 0.6 9.7 0.8 0.9 

Figure 6.4 a(x) wi th different values of r. 

References [12] and [25] show that the edge-sharpening schemes based on the above 

functions improve the contrast of the expanded images, especially in the edge areas. A s a 

result, the blurring effects in the expanded images are reduced. 

However, the edge-sharpening functions of (6-1) and (6-2) have their own 

disadvantages. In the following section, we study the properties of a good edge-

sharpening function, and introduce a family of edge-sharpening functions. Based on the 

introduced functions, we design the corresponding edge sharpening scheme. 
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6.2 The Proposed Image-Sharpening Scheme 

6.2.1 The Edge-Sharpening Funct ion 

Edge-sharpening functions employed by [12] and [25] ((6-1) and (6-2), respectively) 

are both roll-down functions, which satisfy the general requirement of sharpening edges. 

However, in order to achieve better performance, further requirements on the edge-

sharpening function should be added. In our study, we found the following properties are 

desirable for an edge-sharpening function. 

Assume <p(x) is a normalized edge-sharpening function defined on 0<x<l. 

(1) (p(x) is continuous. 

(2) <p(0) = 0,<p(l) = 1. 

(3) <p'(0) = <p'(l) = 0. 

(4) <p(x) does not have overshooting around x=0 and x=l. 

(5) <p(x) has a parameter that controls the steepness in the central part of (p(x). In 

particular, the parameter could be adjusted so that 

cp' (0.5)=R (R>1 is the expansion ratio) (6-3) 

Restriction (1) is obvious. (2) and (3) guarantee that the sharpened edges smoothly 

connect to the smooth areas on both its sides. (4) is important for the sharpened edges to 

be ringing-free, which is a concern especially in the frequency-domain methods. Property 

(5) is needed to provide different extent of the edge-sharpening effect under different 

circumstances. The particular requirement of equation (6-3) is explained as follows (refer 

to Figure 6.3 for illustration). 
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Assuming the profile of the original edge is linear with unit steepness, i.e.,f(x)=-x, the 

expanded edge is (approximately) F(x)=x/R (refer to Figure 6.3). Applying the edge-

sharpening function yields the sharpened edge 

Fd(x) = <p(F(x)) = <p& (6-4) 
R 

If, after edge sharpening, we require that the central part (around x=0.5) of Fdx) have 

approximately the same steepness as that of the original edge, i.e., 

Fd\x) = \, for x = 0.5, (6-5) 

we could then show that 

(p\x) = R• Fd'(x) = R, forx = 0.5 

Function a(x) in (6-1) satisfies property (1), (4) and (5), but not (2) and (3). 

The edge-sharpening function (6-2) we proposed in [25] satisfies restrictions (1) 

through (4), but not (5), meaning that it does not have a free parameter by which the 

extent of edge sharpening can be adjusted. 

We can show that function (6-2) is a member of the function family 

<Pa (*) = 

0 JC<0 

xa 

xa+(l-x)a 

1 J C > 1 

, 0 < x < l ( 6 . 6 ) 

In (6-6) the parameter a is a positive real number. Function (6-2) is a special case of 

(6-6) with a=2.0. Function <pa(x) has found applications in other fields of studies, such as 

in the discrete Markov analysis. In this research we introduce it as the edge-sharpening 

functions family. 
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We can prove that <pa(x) satisfies all the restrictions (1) through (5). Besides, we can 

also prove that (pa(x) has other properties that are favorable for edge sharpening, some of 

them are listed below. 

(6) <pa'(0.5) = a. 

(7) <pa[(Pb(x)]= <Pb[(Pa(x)]=(pab(x), i.e., the superposition property. 

(8) When a=l, <pa(x)=x, and when a—cpa(x) —>the ideal step function. 

Property (6) reveals that parameter a is a direct indication of the steepness of the 

sharpened edge. Combining property (6) and equation (6-3), it is concluded that when 

sharpening expanded edges using <pa {x), it is appropriate to choose 

a = the Expansion Ratio (6-7) 

Based on property (7), i f cpjx) is applied repeatedly, the overall effect equals that of 

applying <pa(x) once with the value of a being the product of all the other a's. 

F i g u r e 6.5 C u r v e s o f (pa(x) w i t h d i f f e r e n t v a l u e s o f a 

Starting from cpi(x): a=l, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, co 
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Property (8) implies that when a = 1, (pa(x) does not change the original edge f(x) (no 

sharpening); with a = oo , (pa(x) changes the original edge into an ideal step edge, 

regardless of its original shape. The curves of (pa(x) are shown in Figure 6.5. 

Based on the edge-sharpening function derived, we now design the edge-sharpening 

algorithm below. 

6.2.2 The Edge-Sharpening A l g o r i t h m 

In our edge-sharpening scheme, the edges in the interpolated image are first detected; 

then we apply the proposed edge-sharpening function to the detected edges. This process 

is illustrated in Figure 6.6. 

Figure 6.6 (a) shows a small region of an edge area, and we assume that within such a 

small region the isophotes are straight lines parallel to the edge direction. Based on this 

assumption, the following properties can be derived or assumed: 

(1) The direction of the edge is the same as that of the isophotes. The boundary 

lines of this region, bl and bl in Figure 6.6 (a), are isophotes themselves. 

(2) The edge direction is e, and the normal vector of the isophotes is i i . 

(3) The pixel value on boundary line (isophote) bl is Vmin, and on b2 is V W Pixel 

values increase monotonically from Vmi„ to Vmax along the normal direction i i . 

(4) F(xo, yo) is a pixel whose value is to be changed during the edge sharpening. 
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v 

(a) (b) 

Figure 6.6 Applying the edge-sharpening function on edge pixels. 

In the ideal case, the edge-sharpening function cpa(x) should be applied along direction 

n across the edge area, so that the profile of the edge is sharpened (also refer to Figure 

6.3). The edge-sharpening process so based would be carried as follows: 

(1) For all pixels on the normal line that passes through point F(xo, yo), their values 

are first normalized to 0 to 1 to lie in the range of 0 to 1. 

(2) The normalized pixel values are sharpened using 

(3) The sharpened pixels values are then de-normalized so that the values of the 

original Vm,„ and Vmax are re-obtained. 

However, in the actual interpolated lattice, because the edge direction e is arbitrary, 

the grid pixels are usually not aligned in the normal direction n, and thus the above 

process cannot be directly applied. 

(6-8) 
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Based on assumptions (1) and (3) above, we can prove that (pa(x) can be applied on a 

line passing through F(xo, yo) from any direction and the same result will be achieved. In 

our algorithm, we apply (pa(x) in two orthogonal directions, horizontal and vertical but 

with a = *Jthe Expansion Ratio for each. By virtue of the superposition property of 

<pa(x), the overall effect of sharpening is equivalent to a-ihe Expansion Ratio. See Figure 

6.6b for illustration of the above separable sharpening process. 

6.2.3 Edge Detection 

Both our edge-sharpening algorithm and our interpolation method, as described in 

Chapter 5, require edge information of the expanded image, thus the edge information 

needed for edge sharpening is already available. However, in our edge-sharpening 

scheme, we detect the edges again although it seems unnecessary. This is because in our 

experiments, we found that for the sharpening purpose, smoothing the interpolated image 

before detecting its edges yields better results. 

After proper smoothing, edge detection yields edge areas with better connectivity and 

that are less sensitive to noise. This is highly desirable since our edge-sharpening 

algorithm requires the edge pixels to be consecutively aligned (see Figure 6.6 (b)). After 

smoothing, the edge map changes, and therefore has to be detected again. 

As our sharpening algorithm has the advantage that it only requires the location 

information of edges and not their orientation, edge detectors that are easy to implement 

(and usually less accurate in estimating the edge's direction) can be used, e.g., the 4-

neighbor edge detector or the classic Sobel operator. In our algorithm, we still use the 

improved Sobel operator, the same as used in the interpolation algorithm. 
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In the preliminary smoothing, we use the Gaussian filter with o=1.0. 

6.2.4 The Contrast Enhancement Scheme 

As described above, for the edge areas in the interpolated image, the edge sharpening 

operation is performed to enhance the contrast. For the smooth areas of the image, we use 

the traditional unsharp-masking (UM) to increase the contrast. The U M kernel employed 

in our algorithm is 

a a a 

aba , a = 

a a a 

c-1 • 10c-1- n c 

•,b = , 0.5<c<l. 18c-9 18c-9 
(6-9) 

In (6-10), the lower the value of c, the stronger the sharpening effect. If c=l, the 

image is unchanged after the U M operation. Because strong U M operation tends to raise 

the noise level in the output image, we usually avoid strong U M by choosing c>0.8. 

The flow diagram of our contrast enhancement scheme is shown in Figure 6.7. 

Input 
Image 

Smoothing Edge Smoothing 
Detection 

Edge Information 

No U M 

Yes 
+ 

Edge 
Sharpening 

i 
i 

Edge 
Sharpening 

Output 
Image 

Figure 6.7 Flow diagram of the proposed contrast enhancement scheme 
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6.3 Experimental Results and Conclusions 

We first test the performance of the proposed edge-sharpening algorithm on 

simulated (artificially created) edges. Shown in Figure 6.8 are some of the results 

obtained. 

In Figure 6.8 (a), (b), and (c), from left to right are the original blurred edge, the edge 

sharpened with a=2, a=4, and a=8. The original blurred edge is linearly interpolated 

from an ideal step edge by a factor of 8, and then rotated by a certain angle. In Figure 6.8, 

edges of 90°, 65°, and 45° are shown. 

The results show that our edge-sharpening scheme is effective in thinning the edges. 

For different angles of edge, the sharpening yields satisfying results without introducing 

noticeable artifacts (such as ringing or zigzagging) to the sharpened edges. With a-ihe 

Expansion ratio (a=8.0, the rightmost image of all 3 angles), satisfying visual sharpness 

is achieved in the sharpened edges. 

(a) 90° edge. The edge is on the right side of each black area 

(b) 65° edge 
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(c) 45° edge 

Figure 6 . 8 Sharpening the simulated edges. 

We then apply the proposed contrast enhancement algorithm to images interpolated 

by the directional method proposed in Chapter 5. In Figure 6.9 through 6.11, we show the 

results of image Pepper, Zelda, and Lena. The images are initially expanded by a factor 

of 2.0x2.0 using the directional method; then their edges are sharpened, and the non-edge 

areas are enhanced by unsharp masking. The original images are also shown for 

comparison purposes. 

The original images are first down-sampled to 0.5x0.5 of their original sizes; they are 

then expanded to their original sizes. For edge sharpening, the sharpening parameter a 

has the value of V2 horizontally and vertically, resulting in an overall strength of a=2.0. 

For the U M , we choose a low strength with c=0.8~0.9. 

From our experimental results, it is seen that the proposed scheme of contrast 

enhancement effectively raises the visual contrast level of the expanded images. The 

blurring effects resulting from expansion are largely alleviated by the sharpening scheme. 

The proposed image sharpening method is not restricted to sharpening images 

expanded by our proposed directional method. It is also applicable to other images that 

have expansion-related blurring. However, it is an expected conclusion, and also proven 
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by our experiments, that the proposed edge-sharpening method does not equally improve 

the subjective quality of images expanded by the traditionally interpolated methods. The 

reason is that the proposed edge-sharpening method does not remove the zigzagging 

artifacts associated with the traditional interpolation methods. In fact, it is observed in our 

experiments that after edge sharpening the zigzagging artifacts could be worsened in 

some cases. In order to show the effect of the proposed sharpening method on images 

expanded by traditional methods, we apply the sharpening method on Lena after it is 

expanded by bi-cubic interpolation. The result is shown in Figure 6.12. A s can be seen, 

although the edges indeed become sharper, the overall visual quality of the image is 

hardly improved by sharpening. 

It is also expected and observed that with inappropriately strong strength of edge 

sharpening, e.g., a=6 for images expanded by 2, over-sharpening could result. One of the 

worse cases of over-sharpening is the cartooning effect, which is also one of the 

drawbacks in some of the edge-directed interpolation methods. For an example of over-

sharpened images, see Figure 6.13. 



Figure 6.9 (a) Pepper expanded without contrast enhancement 



Figure 6.9 (b) Pepper sharpened after expansion 





Figure 6.10 (a) Zelda expanded without contrast enhancement 



Figure 6.10 (b) Zelda sharpened after expansion 



Figure 6.10 (c) Or ig ina l image Ze lda 



Figure 6.11 (a) Lena expanded without contrast enhancement 



Figure 6.11 (b) Lena sharpened after expansion 



Figure 6.11 (c) Or ig ina l image L e n a 
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Figure 6.12 L e n a sharpened after expansion by bi-cubic method 

Edge sharpening is performed with a=2.0. N o U M is carried. Notice that 

the zigzagging effects are not alleviated, in some cases even exaggerated. 

The overall subjective quality is hardly improved. 



Figure 6.13 A n example of over-sharpening 

Zelda expanded by 2 and sharpened with a=10. Notice the cartooning 

effect resulting form over-sharpening. 
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Chapter 7. 
Conclusions and Discussions 

In section 1, we summarize the proposed directional interpolation method and 

the contrast enhancement scheme. Section 2 summarizes the contribution of this 

thesis. In section 3, we give some suggestions of future work. 

7.1 Summary of the Proposed Interpolation Method 

In our research of the visually oriented image interpolation, the two major 

degradations in the traditional methods, the zigzagging artifact and the blurring effects, 

are solved in two separate steps, the directional interpolation and image sharpening. 

In Chapter 5, we introduced the directional interpolation method. In the proposed 

method, an image is divided into two types of areas, the smooth areas and areas that 

contain orientation information. For the orientation-featured areas, we further divide them 

into edge and ridge areas, in both of which the interpolation grids are direction-adaptive 

parallelograms. Meanwhile, based on different isophote models of the edge and ridge 

areas, different mechanisms of estimating the orientation are designed and employed for 

those areas. 

The proposed directional method is based on visual satisfaction, and belongs to the 

visually oriented family that includes other such methods reviewed in Chapter 3. In the 
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following, we briefly compare the proposed method and other visually oriented methods 

and discuss the difference between them 

Compared with the edge-directed methods, the proposed method does not require 

precise detection of the very thin image edges. As our isophote analysis reveals, usually 

within a fairly wide area along the edges, the isophotes are nearly parallel and straight. 

The directional interpolation method smoothes all these isophotes, including the very thin 

edge line detected in the edge-directed methods. B y doing so, the zigzagging artifacts are 

removed more thoroughly. Also , the edge-directed methods are subject to the problem of 

detecting ridges, because of the limitation of the gradient-based edge detection. 

Compared with the orientation-adaptive methods, the proposed interpolation method 

is more flexible in that it is applicable to arbitrary interpolation ratio, including R<1 

which corresponds to image reduction. One important reason for this flexibility, 

seemingly only technical, is that the proposed directional interpolation is in nature a 

generalized bi-linear interpolation, which is largely a flexible method. The method 

proposed in [15] requires that spatial pattern of the expanded grid be identical to that of 

the original grid in order to apply the orientation information, thus causing the 2" 

restriction. 

It is also desirable to show the experimental results from other visually oriented 

methods for comparison purpose. However, due to difficulties in obtaining these results 

with proper quality, they are not included in this thesis. 

The proposed directional method employs a one-pass algorithm, which is more 

computationally economic, compared with the iterative approaches adopted by the level 

set-based methods. 
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In Chapter 6, we introduce a method for sharpening the expanded images. In this 

method, the edge areas are sharpened by a proposed edge-sharpening function, and the 

smooth areas are unsharp masked with light strength. A s reviewed in Chapter 3 and 6, the 

blurring effect in image expansion is not properly addressed in most of the recent 

methods, and is not specifically solved. 

In studying the edge-sharpening functions, we raised a set of properties desirable for 

edge sharpening. Based on the above analysis, we suggested a family of roll-down 

functions for edge sharpening, and developed the corresponding algorithm. Our 

experiments show that the so-based image-sharpening scheme is effective in enhancing 

the contrast of the expanded images. 

The computational cost of the proposed directional method is low to moderate. Our 

estimation concludes that the directional interpolation (excluding the image sharpening) 

takes about 6 times the computation required for the traditional bi-linear method, and less 

than that of the 4-point bi-cubic interpolation for the case of arbitrary interpolation ratio. 

Without optimization, the computational time of image Camera M a n (256x256) is about 

0.5 second. Such modest computational complexity enables the proposed algorithm to 

have the potential of being implemented in real time, with the help of a modern graphics-

associated system. 

Although throughout this thesis we focus our effort on interpolation of gray scale 

images, the proposed interpolation and contrast enhancement scheme can both be 

extended to color images. In some of our experiments, we interpolated the red, green and 

blue components of color images using the proposed directional methods, resulting in the 

interpolated color images. We also tested the proposed image-sharpening scheme on 
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color images using the same approach. The results show that images interpolated by the 

proposed method are very visually impressive. Although we only tested a simple method 

of extending the proposed method to color images, it is proved that the visual advantages 

of proposed directional method are also applicable to color images, similarly to the case 

of gray scale images. 

7.2 Contribution of This Thesis 

The main contributions of our research are summarized as follows. 

• After surveying the visually oriented interpolation methods, we classify the recently 

introduced methods into three categories: edge-directed, orientation-adaptive, and 

level set-based. For each category, the representative methods are reviewed and 

discussed. 

• We propose a method of analytically calculating isophotes for bi-linear and bi-cubic 

interpolation methods, and explain the zigzagging artifacts using the reconstructed 

isophotes. In particular, we show that in the traditional bi-linear methods, the 

reconstructed isophotes are piecewise hyperbolae, and that by employing 

interpolation grid that adapts to the orientation of isophotes, the resulting 

zigzagging can be reduced. 

• Based on the isophote analysis, we proposed a novel interpolation method. Our 

proposed method is a generalized bi-linear interpolation, in which the interpolation 

grid adapts to the local orientation of isophotes. By isophote derivations, curvature 

evaluation and experimental results, we showed that the proposed interpolation 
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method yields smoother isophotes in the interpolated images, thus eliminating the 

zigzagging artifacts. 

• We studied a type of visually important image features that have strong orientation 

information, ridgelines. We show that the gradient-based estimators, adopted by 

many recently introduced interpolation methods, are inefficient in detecting ridges. 

We proposed an ellipse-based isophote model for ridgelines, and accordingly 

developed an algorithm that yields smooth and artifact-free ridgelines. 

• In order to remove blurring effects after image expansion, we proposed a content-

dependent enhancement scheme for expanded images. We introduced a family of 

roll-down functions that we show to have desirable properties for edge sharpening, 

and developed an adaptive contrast enhancement algorithm based on the proposed 

edge-sharpening functions. 

7.3 Suggestions for Future Work 

From our study and experiments, it is noticed that there are still some aspects in 

which the proposed directional interpolation method can be further improved. Because of 

the limit of time and scope, these improvements cannot all be completed within this 

research. However, below we summarize some of the questions and problems that still 

exist in the proposed method, and give suggestions for future work. 

In the proposed directional interpolation method, the accuracy and reliability of 

estimating the orientation of isophotes can still be improved. In our algorithm, we employ 

the improved Sobel operator to predict the orientation, and implement the curvature 
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thresholding to prevent false estimations. This approach proves to be effective and yields 

satisfying results. Meanwhile, in some cases the estimation errors are still not completely 

eliminated, and some of them lead to erroneously interpolated pixels. Although these 

cases are very rare and yield little noticeable degradations, it is still desirable that these 

errors are corrected. In the future work, it is suggested that more study on estimating the 

orientation of image objects be carried, so that the performance of the directional 

interpolation is further improved. 

The directional interpolation and image sharpening procedure are currently separate 

from one another. We realize that in a typical application of image expansion, in which 

both expansion and sharpening are to be carried, it is feasible that these two steps are 

combined. A unified sharpen-when-interpolate process is more concise and 

computationally economical. 

The proposed idea of adapting the interpolation grid to the local orientation is in 

nature not restricted to the parallelogram grid proposed in Chapter 5, which originated 

from the bi-linear grid. For example, the orientation-adaptive grid can also be applied to 

the bi-cubic grid, resulting in the directional bi-cubic interpolation. A probable advantage 

of the orientation-adaptive cubic interpolation is the improved M S E compared with the 

linear-based methods. 

In our experiments, we tested a method that performs the directional interpolation on 

the R, G and B components separately, resulting in interpolated color images. This is 

rather a proof of applicability than a practical scheme. For practical applications, a more 

efficient method that utilizes the correlation of different color components needs to be 

developed. One such method is to use the Y U V representation of color images, instead of 



165 

the R G B . Because usually it is the intensity component (Y) that contains most visually 

important information in a color image, it is reasonable to apply the proposed 

interpolation method only on the Y component, while interpolating the less important U 

and V components using other methods that are computationally simple. 

O f practical importance, the structure of the algorithm, and its implementation as 

well , are still to be optimized. The optimization of the algorithm is especially important 

for possible future applications in video processing. 
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A-1. Coefficient Matrix of Cubic Interpolation 

The following is the matrix E in equation (4-13). See 4.3.2. In matrix E, the parameter a is 

that of Keys ' cubic spline. 

Column 1 through 8 

Row 

1 a2 -5a2 8a2 -4a2 -5a2 25a2 -40a2 20a2 

2 a2+2a -5a2-10a 8a2+16a -4a2-8a -4a2-9a 20a2+45a -32a2-72a 16a2+36a 
3 -a2-2a 5a2+10a -8a2-16a 4a2+8a 5a2+9a -25a2-45a 40a2+72a -20a2-36a 
4 -a2 5a2 -8a2 4a2 4a2 -20a2 32a2 -16a2 

5 a2+2a -4a2-9a 5a''+12a -2a2-4a -5a2-10a 20a2+45a -25a2-60a 10a2+20a 
6 a2+4a+4 -4a2-17a-18 5a2+22a+24 -2a2-8a-8 -4a2-17a-18 16a2+72a+81 -20a2-93a-108 8a2+34a+36 
7 a2-4a-4 4a2+17a+18 -5a2-22a-24 2a2+8a+8 5a2+19a+18 -20a2-81a-8 25a2+105a+108 -10a2-38a-36 
8 -a2-2a 4a2+9a -5a2-12a 2a2+4a 4a2+8a -16a2-36a 20a2+48a -8a2-16a 
9 -a2-2a 5a2+9a -8a2-12a 4a2+5a 5a2+10a -25a2-45a 40a2+60a -20a2-25a 
10 -a2-4a-4 5a2+19a+18 -8a2-28a-24 4a2+13a+10 4a2+17a+18 -20a2-81a-81 32a2+120a+108 -16a2-56a-45 
11 a2+4a+4 -5a2-19a-18 8a2+28a+24 -4a2-13a-10 -5a2-19a-18 25a2+90a+81 -40a2-132a-108 20a2+61a+45 
12 a2+2a -5a2-9a 8a2 + 12a -4a2-5a -4a2-8a 20a2+36a -32a2-48a 16a2+20a 
13 -a2 4a2 -5a2 2a2 5a2 -20a2 25a2 -10a2 

14 -a2-2a 4a2+8a -5a2-10a 2a2+4a 4a2+9a -16a2-36a 20a2+45a -8a2-18a 
15 a2+2a -4a2-8a 5a2+10a -2a2-4a -5a2-9a 20a2+36a -25a2-45a 10a2+18a 
16 a2 -4a2 5a2 -2a2 -4a2 16a2 -20a2 8a2 

Column 9 through 16 

Row 
l 8a2 -40a2 64a2 -32a2 -4a2 20a2 -32a2 16a2 

2 5a2+12a -25a2-60a 40a2+96a -20a2-48a -2a2-4a 10a2+20a -16a2-32a 8a2+16a 
3 -8a2-12a 40a2+60a -64a2-96a 32a2+48a 4a2+5a -20a2-25a 32a2+40a -16a2-20a 
4 -5a2 25a2 -40a2 20a2 2a2 -10a2 16a2 -8a2 

5 8a2+16a -32a2-72a 40a2+96a -16a2-32a -4a2-8a 16a2+36a -20a2-48a 8a2+16a 
6 5a2+22a+24 -20a2-93a-108 25a2+120a+144 -10a2-44a-4 -2a2-8a-8 8a2+34a+36 -10a2-44a-48 4a2+16a+16 
7 -8a2-28a-24 32a2+120a+108 -40a2-156a-144 16a2+56a+48 4a2+13a+10 -16a2-56a-45 20a2+73a+60 -8a2-26a-20 
8 -5a2-10a 20a2+45a -25a2-60a 10a2+20a 2a2+4a -8a2-18a 10a2+24a -4a2-8a 
9 -8a2-16a 40a2+72a -64a2-96a 32a2+40a 4a2+8a -20a2-36a 32a2+48a -16a2-20a 
10 -5a2-22a-24 25a2+105a+108 -40a2-156a-144 20a2+73a+60 2a2+8a+8 -10a2-38a-36 16a2+56a+48 -8a2-26a-20 
11 8a2+28a+24 -40a2-132a-108 64a2+192a+144 -32a2-88a-60 -4a2-13a-10 20a2+61a+45 -32a2-88a-60 16a2+40a+25 
12 5a2+10a -25a2-45a 40a2+60a -20a2-25a -2a2-4a 10a2+18a -16a2-24a 8a2+10a 
13 -8a2 32a2 -40a2 16a2 4a2 -16a2 20a2 -8a2 

14 -5a2-12a 20a2+48a -25a2-60a 10a2+24a 2a2+4a -8a2-16a 10a2+20a -4a2-8a 
15 8a2+12a -32a2-48a 40a2+60a -16a2-24a -4a2-5a 16a2+20a -20a2-25a 8a2+10a 
16 5a2 -20a2 25a2 -10a2 -2a2 8a2 -10a2 4a2 

Note: See (4-13b) and Figure 4.3 for the order of parent pixels when using matrix E. 
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