
INTENTIONAL ACCESS MANAGEMENT:
MAKING ACCESS CONTROL USABLE FOR

END-USERS

by

XIANG CAO

B.Eng., Southeast University, P.R. China, 1996

M.Eng., Nanyang Technological University, Singapore, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

February 2006

© Xiang Cao, 2006

2

Abstract

In today's network-connected, highly dynamic and distributed computing

environments, end-users are motivated to share information and collaborate. It is often

the responsibility of end-users, however, to control access to their information. The

usability of access control mechanisms in modern distributed systems has been widely

criticized but little studied.

In this thesis, I carefully examine one widely deployed access control mechanism

embedded in the WebDAV (Web-based Distributed Authoring and Versioning)

standard, from the point-of-view of an end-user trying to decide how to grant or deny

access to some resource to a third party. My analysis points to problems with the

conceptual usability of the system. Significant effort is required on the part of the user

to determine how to implement the desired access rules. The user, however, has low

expertise and interest in this task, given that such access management actions are

almost always secondary to the collaborative task at hand.

This gap between interest and complexity does, however, indicate a possible solution

to this problem: to recast the access control puzzle as a decision-support problem in

which user intentions (i.e., the descriptions of desired system outputs) are interpreted

by an access mediator that either automatically or semi-automatically decides how to

achieve the designated goals. I call such systems intentional access management

(IAM) systems, and describe them in both general and specific terms. I then propose a

set of design principles, as well as three levels of I A M model (wizard, full, and multi-

backend). By using the IAMs, end-users interact with the access control system in a

ii

natural and consistent way (e.g., by simply specifying their intentions and getting

feedback in terms of system effects) without needing to know the internal security

mechanism used. Such simplification makes access control more usable.

To demonstrate the feasibility and usability of the proposed I A M models, I develop an

intentional access management system for WebDAV. End-users can manage access to

their WebDAV resources by specifying intentions to this system. The results of a user

study conducted on the system show its superior usability compared to traditional

access management tools like the access control list editor.

i i i

Table Of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgements ix

Chapter 1 Introduction 1

1.1 Background and Scope 1
1.1.1 Why Make Security Usable? 1
1.1.2 Usability and Task Complexity 4
1.1.3 Thesis Scope 8
1.1.4 Why Choose WebDAV? 11

1.2 Objective 13
1.3 Summary of Contributions 14
1.4 Organization of the Thesis 15

Chapter 2 Related Work 17

2.1 Usable Access Control 17
2.2 Human-Computer Interaction and Security (HCISEC) 27
2.3 Summary 36

Chapter 3 Intentional Analysis of WebDAV Access Control Mechanism 37

3.1 WebDAV Access Control 38
3.2 Intentional Analysis 40

3.2.1 A C L s in Collaborative Environment 45
3.2.2 Algorithmic Analysis 48
3.2.3 Side Effects 54
3.2.4 Conflicts 55
3.2.5 Modeling Decisions 56

3.3 Discussions 57
3.3.1 Other Intentions 57
3.3.2 More Complex Cases 58
3.3.3 Beyond the Algorithmic Analysis 60

3.4 Windows NTFS Access Control 65
3.5 Summary 68

Chapter 4 Intentional Access Management (IAM) 71

iv

4.1 Design Principles 71
4.2 The I A M Wizard 75
4.3 Full I A M 77
4.4 Multi-Backend I A M 79
4.5 Summary 81

Chapter 5 Implementation: IAM for WebDAV 82

5.1 Related WebDAV Applications 82
5.2 System Design 85
5.3 Interface Design 91

5.3.1 Security Context Displayed When Any Resource Selected 92
5.3.2 Needed Information Shown to the User When His Setting Intention 93
5.3.3 User Notified Only When Necessary 93
5.3.4 Side Effects Shown to the User 94
5.3.5 User Cannot Lock Him- or Herself Out of Own Folder and File 94

5.4 Discussion 96
5.5 Summary 97

Chapter 6 User Study 98

6.1 Study Design 99
6.1.1 Participants 99
6.1.2 Task Descriptions 100
6.1.3 Procedure 103
6.1.4 Rules for Determining Task Success or Failure 104

6.2 Results 104
6.2.1 Speed 104
6.2.2 Accuracy 106
6.2.3 User Confidence and Satisfaction 108

6.3 Discussion 109
6.4 Summary 112

Chapter 7 Conclusion 113

7.1 Summary of Research 113

7.2 Further Directions 115

Bibliography 119

Appendices 127
Appendix 1 U B C Research Ethics Board's Certificate of Approval 127
Appendix 2 Introduction to WebDAV Access Control for User Study 129
Appendix 3 User Study Questionnaire 131
Appendix 4 Description of Tasks Using the A C L Editor for User Study 132
Appendix 5 Description of Tasks Using the I A M Wizard for User Study 136
Appendix 6 User Study Interview Questions 139

v

List of Tables

Table 3.1: Comparison of an A C E and an intention 42

Table 3.2: Summary of the conditions determining the answer to query Q l 51

Table 6.1: Description of participants' backgrounds 99

Table 6.2: Percent of accurate completions for the four tasks by using the A C L Editor
and the I A M wizard 107

Table 6.3: Average confidence ratings for the four tasks by using the A C L Editor and
the I A M wizard 108

Table 7.1: Comparison of the two security management models 116

vi

List of Figures

Figure 1.1: Access Management and Access Control 10

Figure 3.1: A possible decision process for determining how to implement G l :
principal X must have privilege Y on object Z 48

Figure 3.2: A possible decision process for determining how to implement intention

G2: principal X must not have privilege Y on object Z 52

Figure 3.3: Example of a user's modeling decisions for Gl 57

Figure 3.4: A n example of N G O M S L model for a system supporting direct

manipulation on A C L + feedback 62

Figure 3.5: A screenshot of the File Permissions interface in Windows 2000 66

Figure 4.1: Two access control system models and the corresponding user's mental

models 73

Figure 4.2: Full intentional access management (IAM) model 77

Figure 4.3: Multi-backend I A M model 79

Figure 5.1: A screenshot of the File Permissions interface in GroupDrive Client 83

Figure 5.2: A screenshot of the View A C L interface in D A V Explorer 86

Figure 5.3: A screenshot of the Add/Modify A C L interface in D A V Explorer 86

Figure 5.4: The program flow for fulfilling the user's intention 87

Figure 5.5: A screenshot of DialogA obtaining the intention from the user and
showing the current access control state 88

Figure 5.6: A screenshot of DialogB showing the conflicts and modeling decisions. 89
Figure 5.7: Another screenshot of DialogB showing the alternatives when the user has

no privileges to modify the A C L 90

Figure 5.8: A screenshot of DialogC showing the task result 91

Figure 5.9: A screenshot of the interface showing the security context 92

vii

Figure 5.10: A screenshot of the interface showing side effects 94

Figure 5.11: A screenshot of the interface showing a warning when the action will

cause the user's own privileges to be changed 95

Figure 6.1: A tree of supported privileges in the Slide server 100

Figure 6.2: Average time to complete Taskl, Task2, Task3, and Task4 105

Figure 6.3: A screenshot of the interface showing the side-effects that caused by
multiple actions 111

viii

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Dr. Lee

Iverson, for his persistent encouragement and invaluable academic guidance

throughout the research work. His insightful comments have been an inspiration for

my work. Without his patience and help, this thesis would not have been possible.

I would like to express my appreciation to all my friends, especially the research

students in the U C L research lab, who have given me a lot of help and created a

flexible, productive and pleasant environment for this work.

Last but not the least, my sincere thanks go to my wife, my parents and my sister.

They provide me with endless love and unreserved support, which I would value

forever.

ix

Chapter 1

Introduction

Technological advances in computers and networks, especially the proliferation of the

Internet, have made it easier for novice or average users to share their information and

collaborate with others. However, with this unprecedented ease of sharing information, it

becomes increasingly challenging for users to protect their shared information against

unauthorized use. In this thesis, I focus on improving the usability of security systems, in

particular of access control systems, for end-users. In this chapter, I briefly review

preliminary knowledge of usable security, then describe the research scope and objective

of this thesis, then summarize its contributions and organization.

1.1 Background and Scope

1.1.1 Why Make Security Usable?

In the modern multi-user computer environment, Internet-capable network servers, along

with Peer-to-Peer (P2P) [79] and Grid [28] technologies, provide connectivity that allows

1

a large portion of the user population to share and access information at the desktop from

sources around the world, facilitating collaboration. For example, users can save, retrieve,

share, and co-author documents over the Internet via WebDAV-based servers [31]. They

can also use P2P applications like Kazaa [44] to share files from their own computers.

Furthermore, they can take advantage of the emerging pervasive or ubiquitous computing

infrastructure [68], which enables them to be connected via portable devices and wireless

networks, when they share information with others, so that information sharing is no

longer restricted at offices and homes.

However, these new opportunities for sharing information have associated costs. Without

sufficient security protection, the ease of accessing information proportionally increases

the risk of computer security breaches. For example, we have learned many stories from

the media about security breaches and their serious consequences, such as disclosure of

business secrets or credit card fraud. Even though modern PCs are powerful enough to

support use of strong cryptographic techniques in data protection, security remains a

major concern for both organizations and individuals who want to control access to their

information [22].

To address this concern, numerous sophisticated security mechanisms have been

developed. Most existing attempts to improve computer security are based on identifying

specific security weaknesses and designing new mechanisms or functions to eliminate

them. However, technical correctness and effectiveness alone do not guarantee that the

systems are secure in practice [17] [24]. In most (if not all) systems, security depends on

the behaviour of the users. If users do not use the system properly, the security

2

mechanism may not accomplish the intended objectives. In addition, i f the security

measures unduly inconvenience users, it wi l l impair users' acceptance of security

measures as well as their willingness to follow required procedures, which is necessary

for the measures to be effective [72]. As early as 1975, Saltzer and Schroeder [62]

identified "psychological acceptability" as one of the eight basic design principles of

information protection. In recent years, more and more research has demonstrated that the

correct and effective use of security measures is just as important as their technical

correctness and effectiveness [1] [3] [85]. It is widely recognized that, in any reasonably

well-implemented information system, the barriers raised by security mechanisms often

confuse or frustrate users to the extent that users become the "weakest l ink" in the

system. For example, in [70], Bruce Schneier observed that "security is only as good as

its weakest link, and people are the weakest link in the chain," and that "security

measures that aren't understood by and agreed to by everyone don't work." Matt Bishop

[6] claimed that configuration errors made by users are the probable cause of over 90% of

all computer security failures.

The situation is worse when the security mechanisms are used by casual and non

technical end-users, instead of professional security administrators. Compared with

administrators, end-users usually have limited technical capacity and less security

knowledge, and so find it more challenging to properly use and/or maintain the security

mechanism. For instance, Good and Krekelberg [32] have shown that the Kazaa peer-to-

peer file-sharing service's interface misled many users into unintentionally sharing

personal and private files. In a study of P G P 5.0 users, Whitten and Tygar [85]

demonstrated that the majority of their test subjects were unable to use P G P to properly

3

encrypt and decrypt emails. In addition, security tasks may not be everyday tasks for end-

users [53]. They may need to be done every few weeks or months. For example, from

time to time end-users may need to set permissions on their own files to restrict access to,

or grant access for, associates. In this case, if the operations of setting file permissions are

arcane, end-users w i l l have difficulty in remembering them for the next time [53]. These

studies suggest that there is a critical need to make security usable and manageable for

end-users, and the Computing Research Association (C R A) Conference on Grand

Research Challenges in Information Security and Assurance has identified the ability to

"give end-users security controls they can understand and privacy they can control for the

dynamic, pervasive computing environments of the future" as a major research challenge

[13].

Finally, making security usable is actually an enabling task. Unless end-users can

successfully and easily use security mechanisms to protect their information from

unauthorized access, the cautious ones may refuse to share information and participate in

collaborations [74].

1.1.2 Usability and Task Complexity

Before touching on the question of "how to make security usable," it is useful to arrive at

a definition of "usability." Although many people use an informal and personal definition

of "usability" — software is usable if they can use it — a variety of more specific

definitions of usability are available [12] [21] [80] [85]. Here I use the formal definition

of usability promoted by the U S Department of Health and Human Services [80], which

is based on [55]:

4

"Usability is the measure of the quality of a user's experience when
interacting with a product or system — whether a web site, a software
application, mobile technology, or any user-operated device.

Usability is a combination of factors that affect the user's experience with
the product or system, including:

Ease of learning How fast can a user who has never seen the user
interface before learn it sufficiently well to accomplish basic tasks?

Efficiency of use Once an experienced user has learned to use the system,
how fast can he or she accomplish tasks?

Memorability If a user has used the system before, can he or she
remember enough to use it effectively the next time or does the user have
to start over again learning everything?

Error frequency and severity How often do users make errors while
using the system, how serious are these errors, and how do users recover
from these errors?

Subjective satisfaction How much does the user like using the system?"

There are a number of different approaches to analyzing the usability of a system or an

interface. Most of them are from the field known as Human-Computer Interaction (HCI).

Normally, usability testing takes place in the context of a system already designed or in

the process of being designed. It involves systematic testing of versions of the system

with actual users and gathering feedback in the form of measurable quantities and/or

interviews and questionnaires [56]. In an extreme case, the principles of participatory

design actively involve the user in defining the system goals, determining the overall

structure of the system, and designing the specific user interface(s) [71]. One approach to

analyzing the usability of a security system would be to use these techniques to build a

"usable" interface that allows users to manipulate the fundamental model of the security

system using standard principles of visibility, direct manipulation, etc. I suggest,

however, that this approach would be inappropriate without considering the relationship

5

between the user's interest in the problems the security systems are being used to solve

and the tasks in which their use might be assumed.

To end-users, security is usually a secondary goal [85]. People just want security in place

to protect them while they are achieving their primary goal (e.g., browsing web pages,

co-authoring papers, etc.). Sometimes security is a "necessary ev i l " (i.e., something a

user is required to do but is not interested in doing). For example, Scott Berkun, a highly

experienced program manager leading the U I design of Internet Explorer 1.0 thru 5.0,

explained in his blog why he switched from IE to Firefox: "(Firefox's) Security isn't

annoying. The press makes security into such a huge deal, but I'll be honest. I don't want

to think about security at all. I'll do what I need to, but mostly I want the system to take

care of it and stay out my face." [4] Berkun's comments have two implications: (1) even

the most sophisticated users like Berkun focus on their primary goals (e.g., browsing web

pages), and have little interest in interacting with the system for managing security; (2)

people don't necessarily resist interacting with the system for security, but want their

involvement to be minimal and wi l l allow a system to "do what I mean."

Consider another example: In an information management environment, an end-user's

primary goals are to find, create and share information and to collaborate in service to

some even more primary task. In such settings, the users care most deeply about their

primary task, less deeply about the sharing of information and collaborative work, even

less about controlling the "sharing environment", and probably no at all about how that

control is implemented in an access control system. However, many (if not all) existing

access control systems require users to understand the embedded access control model

6

and mechanism. Users must determine by themselves how to implement their security

goals through the user interface (UI), which usually provides the functionality to directly

manipulate the internal access control mechanism.

In these examples, the burden is on the user to learn how such a system works. I strongly

support the view that the burden should increasingly be on the system designers to

analyze and capture the user's expectations and build the expectations into the system

design [56]. Given end-users' low interest in security, security systems that place less of a

burden on them for security management should be inherently more usable. The burden

or workload of users in this regard usually comes from the specific subtasks users need to

perform to achieve their security goals. Moreover, a better match to user's expectations

should lead to a reduction in conceptual complexity and thus in the confusion and

misinterpretation that increase the frequency of human errors.

Therefore, taking into account the five usability criteria listed above, we can conclude

that the simpler the security task users need to execute, the lower workload users have for

security, and the more usable the security system should be. This conclusion points to

providing systematic support to reduce the complexity of security tasks. Ideally, based on

the models of human information processing [56] [58], such systems should acquire a

task statement (i.e., security goal) from the user, perform reasoning on it, and execute the

task automatically on behalf of the user, interacting with the user only when necessary.

However, different users may perform their tasks in different ways for the same goal

when using the same system; some may do so correctly, while others may not. In this

thesis, I use the term "conceptual complexity" to designate an accurate and consistent

7

representation of the task complexity held by the designer or an expert user. This

designation represents the inherent complexity of the task. Correspondingly, the

workload on users caused by this conceptual complexity to fulfill the task wi l l be called

the "conceptual load." It should be noted that I mean these two terms fairly loosely. M y

goal is to uncover the complexity and the load qualitatively, instead of measuring them

quantitatively.

1.1.3 Thesis Scope

The primary focus of this thesis is security for information sharing in modern cyberspace,

where access control remains a major challenge. Therefore, I limit the scope of my

discussion to making access control usable for end-users, although some of the results

may also apply to other security usability problems. In particular, to support information

sharing, I chose shared file-systems as the underlying collaborative infrastructure. In this

context, there is a need for fine-grained, user-centered, dynamic control of sharing to

match trust and ad-hoc collaboration. The solution I am pursuing is the end-user

management of resource sharing with minimal changes to backend infrastructure. Making

such management usable enough to be effective for those non-expert end-users then

becomes my main task.

A s a cornerstone of secure information systems, access control provides the mechanisms

for protecting users' information resources from unauthorized access. Traditional access

control models include mandatory access control (M A C) , discretionary access control

(D A C) , and role-based access control (R B A C) [64]. To implement and enforce these

access control models, access control lists (ACLs) , capability lists, or policy-based

8

mechanisms are often adopted. Since my research interest is information sharing that can

be controlled by end-users, in this thesis I am looking at discretionary access control with

a potential variety of enforcement mechanisms. Over the past several decades there has

been much progress in access control, but at its core the academic perspective has largely

remained unchanged, centered around the access matrix model [48] [49]. In an access

matrix, there is a row for each user of the system (i.e., Subject), and a column for every

resource (i.e., Object) that should be protected. The cells of the matrix describe what

kinds of operations are permitted (i.e., Rights). The access matrix model lies at the heart

of most access control systems. The core idea is that access is driven by rights granted to

a subject to access an object.

It is important to clarify the terminology used in this thesis. "Access control," which

appears frequently in the literature, refers to the enforcement of specified authorization

rules to control access to information systems. It is implemented by some access control

mechanisms. A n access control mechanism such as A C L can be seen as providing a

language by which users can express their intended access control rules to the system.

The system employing this access control mechanism then evaluates the rules set by

users and enforces them accordingly.

However, in this thesis, I use a slightly different term (but with much different meaning),

"access management" to refer to the process of formulating the access control rules (rule

sets, group memberships, attributes, etc.) for an access control system to achieve a

desired set of access privileges for a user or users, as shown in Figure 1.1. This access

management is performed by a user interacting with an access control system. Current

9

access control systems often try to simplify access management by providing an interface

to the system in front of the internal access control mechanisms. In a typical access

control system, users interact with the system through a graphic user interface (GUI),

which allows them to manipulate the access control mechanism directly or indirectly. In

such systems, management of access involves creating and maintaining access control

rules according to the access control mechanism to effectively protect resources. Most of

the management burden, however, such as formulating the rules based on his or her

security goals is carried by the end-user. Note that it is the user who configures and

manages the access control rules; i f this type of management is difficult, it wi l l most

likely be done poorly.

Access Management \ Access Control

J Access / i
Goals A—AC Rules-U>

"Intentions" / ; |

Access Control Privileges / 7 Access / i
Goals A—AC Rules-U>

"Intentions" / ; |
System Enforcement

Figure 1.1: Access Management and Access Control

In the above I have made a clear distinction between access control and access

management. In this thesis, I focus on access management, the process of evaluating and

formulating access control rules with necessary feedback to users, which I believe is a

key to making access control usable.

I make two simplifying assumptions in this research. First, I assume that the access

control mechanism is supported by a good and usable authentication scheme and this

10

thesis w i l l not discuss authentication. Second, I assume that the security system is in a

multi-user environment and that access to a resource is managed by a combination of a

central administrator and the end-users who have the appropriate rights to perform such

management. Although portions of my analysis can be applied to systems that are entirely

centrally administered, I focus on end-user control, since such systems are becoming

more prevalent and necessary with drastic technological advances in computers and

networks [26].

1.1.4 Why Choose WebDAV?

To demonstrate the usability problems in current access control systems and the

feasibility of my proposed solution, I have chosen an existing access control mechanism,

the W e b D A V access control mechanism [11], as the starting point for usability

improvement. Today, W e b D A V [31] is the most popular network file-system protocol for

use across the wide-area Internet and also the third most widely used email-retrieval

protocol (behind POP and I M A P) [83]. The W e b D A V system is designed to create an

infrastructure for distributed file systems built on top of the now-ubiquitous foundation of

the World-Wide-Web, the H T T P protocol. W e b D A V has already achieved wide

deployment on many platforms, in software from many vendors. It can be found in Web

servers such as Apache and Microsoft Internet Information Server (IIS), and Web

browsers such as Microsoft Internet Explorer (IE). Desktop applications including

Microsoft Office 2000 and Adobe software also adopt W e b D A V . In addition, W e b D A V

client functionality is being implemented in modern operating systems at the file system

level, for example in Windows X P and Mac OS X .

11

The W e b D A V standard includes a comprehensive access control list (A C L) system,

designed to allow repository managers and end-users to control the granting and denying

of a wide range of privileges to other users. A key point in the design is that the building

blocks of the A C L system, including the A C L s , users, groups and inheritance properties,

are subject to access control just like the target resources. In essence, the delegation of

access control is implemented by extending modification rights to the A C L resources.

With this system, it becomes possible to think of an entirely user-controlled, distributed

information sharing environment with enormous flexibility and potential, which is my

research interest. Typical current deployment patterns have a shared file server with

W e b D A V client access, thus allowing unlimited, flexible sharing of information in the

workplace and reducing reliance on email attachments and centrally-administered

document management systems for collaboration [25]. One could imagine that every

networked system has both the W e b D A V client and server support and complete

integration of H T T P + W e b D A V with local file system and desktop support; actually, this

seems to be a goal that both Microsoft and Apple are pursuing.

Since targeting such a widely deployed Internet-scale specification makes potential

results more applicable to real-world information-sharing settings, and since W e b D A V

access control semantics are modeled after Windows N T F S access control semantics

(with some simplification), I have chosen W e b D A V access control as the basis for my

research on usable security. The results should also have implications for improving the

usability of similar access control systems, such as Windows N T F S access control.

12

1.2 Objective

The objective of this research is to improve the usability of access control for end-users.

Through a thorough analysis of the conceptual complexity embedded in the W e b D A V

access management tasks, a gap between user interest and task complexity is observed.

Significant effort is required on the part of the user to determine how to implement the

desired access rules. The user, however, has low expertise and interest in this task, given

that such access management actions are almost always secondary to the collaborative

task at hand. In addition, the significant effort indicates another gap between the user's

intention and implementation. Even for simple needs/intentions (e.g., a professor needs to

be able to edit his student's thesis draft), the user must be able to assess the state of

system (i.e., is the intention already fulfilled?) and then determine how to modify the

configuration to fulfill the intention.

In this thesis, I propose reducing the conceptual complexity of access management tasks

by isolating end-users from access control mechanisms. This is done by clearly

separating access management from access control. The access management system wi l l

allow users to express intentions (i.e., the descriptions of desired system outputs) without

considering the details of access control implementation. The system wi l l then interpret

users' intentions, formulate access rules to achieve these intentions automatically or

semi-automatically, and provide feedback. This solution, called "intentional access

management" (I A M - see Chapter 4), leads to the hypothesis of my thesis:

Use of IAM reduces the conceptual complexity of access management tasks, thus

13

making the access control system easier to use for end-users, and enabling quick and

accurate accomplishment of security tasks.

To demonstrate the applicability and effectiveness of this solution, I developed an

intentional access management system for W e b D A V and conducted a laboratory user

study on it.

Please note that throughout this thesis, my goal is not to make security invisible, but to

make it a natural result of normal computer operations by hiding the security mechanism.

1.3 Summary of Contributions

The major contribution of this thesis is a new conceptual design of usable access control

that reduces the conceptual workload for end users in their tasks of managing access

control. In particular, I make the following contributions:

• I reveal the high conceptual complexity of formulating access control rules given

an access goal or intention. I do this through a thorough flow-chart analysis

(called intentional analysis) of the W e b D A V access control mechanism.

• I develop new design principles and system models (called intentional access

management (IAM) systems) that isolate users from security mechanisms by

automatically or semi-automatically resolving user intentions into

implementation. These user-centered designs aim at reducing the conceptual

burden of end-users, thus improving the usability of access control.

14

• I design and implement a usable access management system for W e b D A V that

eases access management on a W e b D A V repository for end-users and

demonstrates the applicability of I A M models to real-world situations.

• I conduct a user study that provides further insight into user behaviour in setting

access control rules and validates the usability of the proposed I A M models.

1.4 Organization of the Thesis

This thesis consists of seven chapters. The rest of the thesis is organized as follows:

• Chapter 2 reviews some existing work on the problem of usable security, in

particular usable access control, mainly from the information security and human-

computer interaction perspectives.

• Chapter 3 analyzes W e b D A V access control as an example of the conceptual

complexity embedded in access management tasks. The analysis concludes that

the conceptual load involved in setting access control rules is too heavy for end-

users. Issues discussed in the analysis include side effects, conflicts and modeling

decisions.

• Chapter 4 introduces my system design, which aims at alleviating the conceptual

complexity of access management tasks and improving the usability of access

control. I propose a set of design principles and translate them into three levels of

models that I call Intentional Access Management (IAM) systems.

15

Chapter 5 describes the design and implementation of an access management

system for W e b D A V that embodies the models proposed in Chapter 4.

Chapter 6 presents a user study on managing access to a W e b D A V repository,

demonstrating the improvement in usability of the new design for end-users.

Chapter 7 summarizes the thesis and suggests further work. A n initial design of a

fully functioned access management system for end-user controlled information

sharing is presented.

16

Chapter 2

Related Work

The resurgence of interest in security and usability at the end of the 1990s has led to a

broad understanding of the significant relationship between security and usability [65]

[70] [77] [85] [90]. However, to date, little work has been carried out to investigate the

usability of access control systems, especially for non-expert end-users. This chapter first

examines prior work on usable access control, and then extends the review to a superset

of the first - work in the emergent field of human-computer interaction and security, also

known as H C I S E C .

2.1 Usable Access Control

Although access control has been intensively studied by numerous researchers and a

variety of access control models, mechanisms, and systems have been investigated, most

of the studies have been conducted in a purely technical manner and have overlooked

usability issues associated with access control. I discuss some exceptions here.

17

One of the earliest attempts to synthesize usability and access control is the work by

Zurko and Simon [93]. They introduced the term user-centered security to refer to

security models, mechanisms, systems, and software that have usability as a primary

motivation or goal. A user-centered authorization engine M A P was developed. The M A P

prototype used access control list (A C L) as its underlying mechanism but augmented it

with sensitivity labels, object groups, and access rules. After developing the prototype,

they reported the advantages and pitfalls of the approach, which they later considered in

the design of M A P ' s successor Adage [94], a modular authorization service for

distributed applications. A primary emphasis of Adage was employing usability design

techniques to design an authorization language and the corresponding administrative

graphic user interface (GUI) for policy definition and management. Constructs including

groups, attributes, constraints and rules were used in the user interface design. A novel

feature of Adage is including a "debugging" mode in which security administrators can

make changes to policies and determine the effect of changes before actually deploying

them into the system to prevent affecting the security of a running system. Both

contextual interview and formal usability testing were chosen for usability evaluation.

The two outputs from the formal usability testing were notes on the subjects' actions and

statements, and the numeric results of the exit questionnaire.

Although usability was a major design goal in M A P and Adage, they were intended for

use by professional system administrators who already possess a high level of expertise,

and as such they did not address the problems posed in making security effectively usable

for a more general population of end-users. For example, the authorization language they

proposed was domain-specific and designed for administrators. However, this work is

18

helpful as an attempt to outline general issues of concern in the design of a usable access

control system. The direction they suggested of providing access management support to

users at a high level of abstraction without abandoning the underlying mechanism (i.e.,

the A C L) is just the one I am pursuing.

The work most directly related to the topic of this thesis is the study performed by a

research group at Carnegie Mel lon University on the Windows N T F S file permissions

model [53] [61]. They studied an existing interface for setting N T F S permissions, the

Windows X P File Permissions interface (referred to as X P F P) , and identified three

aspects of the N T F S file permissions model that seemed potentially confusing. These

aspects include group conflicts, permission mappings and override permissions.

Grounded in a theory of human error, they proposed a design principle, called "external

subgoal support", to reduce goal errors in setting file permissions. They then

implemented this in a new interface, called Salmon, for setting N T F S file permissions.

Salmon and X P F P were evaluated in a laboratory user study and Salmon was found to be

more dependable.

Salmon can be seen as an interface that provides the user direct manipulation on the

internal access control mechanism (i.e., the A C L) with useful feedback (e.g., displaying

effective permissions). In [61] Reeder found that while error rates were somewhat lower

with this design, they were far from zero, and the design also introduced some new

causes of error. They attributed the errors mainly to those three particularly troublesome

aspects of the N T F S security model, and concluded that simplifying the model, rather

than continuing to redesign the interface, could be the best route to reducing error rate in

19

setting file permissions. From cognitive science perspective, Salmon was designed to

provide an accurate, clear and salient external representation of the information needed to

achieve the user's primary goal. However, the user still has to formulate subgoals from

his or her primary goal according to the information provided by Salmon and determine

by him- or herself how to implement these subgoals. Considering the low interest and

expertise of end-users, it is usually not an easy task for them, even with useful feedback

provided by the interface. I wi l l discuss Salmon in more detail and compare it with my

work in the following chapters.

A body of research on security and usability has also been conducted at Palo Al to

Research Center (P A R C) [77] [34] [27] [2] [3]. Considering the changes brought by

ubiquitous computing, Smetters and Grinter [77] identified the need to design usable and

useful systems that provide security to end-users in terms of the applications that they use

and the tasks they want to achieve. They looked at the problem of usable security from a

software engineering perspective, and proposed alternate engineering approaches to

building and integrating usable security technologies into applications. Three engineering

approaches they proposed include coupling security actions with the user's action in

application terms (an approach called implicit security that has also been mentioned in

other recent literature [91]), using software engineering techniques such as refactoring to

identify which security components should be handled by the operating system and

domain infrastructure and which components should be left to applications, and taking

advantage of security-related software idioms and patterns to create reusable security

"building blocks." They also argued for reformulating traditional usability testing

approaches for the purpose of testing usability of security as a secondary task from the

20

end-user perspective, and presented usability methods for evaluating the proposed

prototypes. Later in [34], they presented three interface challenges for embedding

security into applications, which include starting with a user-centered threat model,

inferring security action from user intent, and reflecting security state back to the user.

To explore the approach of implicit security on access control, this group developed

Casca, an application built on their Speakeasy framework and designed to support ad hoc

collaboration [27]. Casca implemented sharing as a primary interface construct to make

sharing policies more visible to users. Users who wish to share things with each other set

up a shared "space" (called converspace). They invite each other to join the space and let

members add objects to the space (such as files or services); these objects then become

visible and accessible to all of a space's members. Thus the extension of access rights is

incidental to the act of sharing. In this way, the access information is visible to the user,

but the details of how it is implemented are not. Unfortunately, this type of implicit

security does not support fine-grained access control (such as extending read access, but

restricting modification rights). However, this idea of making security states visible but

hiding the implementation details is helpful and applied in my work.

Implicit security was also applied in their designs of usable Internet [2] and usable P K I

[3]. In [2] Balfanz proposed an access control system for the World Wide Web that was

easy to use both for content providers and content consumers. In this system, to control

access to the content, the content provider needs to pick from his address book a list of

consumers whom he wants to grant access to. Then the system adds pointers to every

selected email recipient's address book entry to the address control list, and sends out an

21

email message to every selected one which includes a U R L that recipients can click on to

access the content. On the consumer's end, recipients of an email message can simply

click on a single U R L provided, and wi l l have access to the content. For the first time

they visit a U R L , they wi l l be taken through a quick online setup process, which is

similar to the process when people use S S H to log onto a server.

In [30], Gates and Slonim presented the concept of users owning their personal

information and introduced some of the issues involved in users being able to control

access to this information. They discussed the security requirements for this new

paradigm, including authentication, access control and audit (as well as user interface and

trust). For example, they argued that the user interface must be designed in a manner that

"not only allows users with various levels of skill to configure the access control system,

but that also allows the user to understand the consequences of his configuration

decisions, alerting the user to any conflicts in configuration." However, in this paper they

did not provide any concrete technical solutions to address these issues. In this thesis, I

w i l l present my work to address these issues.

Whereas the above works represent the extent of the published literature on usable access

control that directly informs this thesis, there is also a body of research that gives more

general direction to systems for end-user security and privacy management, or that

appears to have significant shortcomings.

A group of researchers at the University of California, Irvine is actively involved in the

research on usable security [24] [23] [22] [17] [18] [16]. They first investigated everyday

security practices and mental models of security, by examining how people manage

22

security as a practical, day-to-day concern, and exploring the context in which security

decisions are made [22] [23]. Their study yielded some interesting conclusions. For

example, they suggested that protection and sharing of information are two aspects of the

same task and always carried out together. They also argued for high visibility of security

to the user, as opposed to being "transparent" (this is an explicit argument against

"implicit" security). Based on this empirical work, they considered the problems of

security to a large degree as an interactional problem, and proposed a systems approach

to usable security based on event monitoring and visualization [24]. Two design

principles - visualizing system state and integrating configuration and action - have been

at the center of their approach [17]. B y applying these two principles, they have built an

application called Impromptu for peer-to-peer file sharing with the Slide W e b D A V

repository in face-to-face collaboration settings [17] [18]. Impromptu provides a visual

client interface which presents a circular "pie" and is separated into multiple concentric

regions. Files, represented by labeled dots, are placed in and around the circular region.

The basic metaphor is that the closer the files are to the center, the "more shared" they

are. Thus file access is managed by moving the files between the levels. In [16], they

proposed to use the social navigation paradigm as a way of organizing visual displays of

security action. Holding a similar principle of making security visible, Yur ick [92]

presented some visualization tools targeted for security administrators.

Long et al. [51] evaluated a preliminary, paper-based interface for limiting applications'

(as opposed to user's) access to system resources. This access control was implemented

by partitioning all applications and data based on general task types, or "roles." B y using

cognitive walkthrough and think-aloud user studies of paper prototypes, they concluded

23

that their interface was simple to understand and use.

The abstraction of security and privacy in terms of "space" (as in implicit security) was

also explored by Sampemane et al. [63] They defined "active spaces" as physical spaces

augmented with heterogeneous computing and communication devices along with

supporting software infrastructure. A n active space can be configured for different types

of applications at different times. They introduced the notion of collaborative access

control modes and presented an access control architecture for active spaces, which

integrates physical and virtual access control mechanisms and has the ability to

dynamically reconfigure access control policies to create different policies for different

virtual spaces.

In collaborative systems domain, Dewan and Shen [19] [20] [75] have explored the use

of access control and meta-access control models as a basis for describing and controlling

degrees of information access and management. The resulting system, called Suite, was

designed to support flexible control of all significant shared operations, high-level

specification of access control policies, and automatic and efficient implementation of

access control in a multi-user interface. However, they only addressed these issues in

technical terms and ignored human and social constraints. This seems a significant failure

of the work, considering that the structure and behaviour of these internal components

can have a significant effect on forms of interactivity and collaboration they can support

[33].

W e b D A V A , a system that allows end-users to selectively give fine-grained access to

their resources without involving their system administrators, was proposed by Levine

24

and colleagues [50]. They accomplished this design by using authorization credentials

that define the users' privileges. However, thus seems to introduce problems since it may

be difficult for end-users to manage the credentials, and they did not perform any

usability testing for their system.

The above papers explored a set of techniques and systems that can positively facilitate

usable access control. On the other hand, Good and Krekelberg [32] used a cognitive

walkthrough as well as a laboratory user study to analyze the usability of the Kazaa file

sharing user interface. They discovered that this interface failed all four of the usability

guidelines that they developed and misled many end-users into unexpectedly sharing

files. In any case, it is clear from their work that users simply do not choose peer-to-peer

systems such as Kazaa for active collaboration.

Another alternative approach was used by Kapadia et al. in investigating the effect of

informing users of the reasons why an access request was denied while controlling the

disclosure of the system's security policies [43]. Their framework Know uses Ordered

Binary Decision Diagrams and cost functions to provide feedback to users about access

control decisions. When the system denies a user access to a resource, it generates

permissible and relevant feedback to the user on how to gain access. They suggested that

such a system is more user-friendly to legitimate users, because they can use the feedback

to reason about, and correct, errors. However, they only evaluated this system by a

qualitative analysis on some examples, and performed no usability testing to explore the

effect of their approach on real users.

Above I reviewed a body of research on usable access control, from specific techniques,

25

security metaphors, to general access control system design for aligning security and

usability. This thesis focuses on the design of access management to make access control

usable for end-users. Those techniques developed for specific application domains and

lacking in support for fine-grained access control may not be applicable for this system.

However, they do provide the insight, definitions and design indicators for making access

control usable for end-users. In essence, the studies of Zurko and Simon [93] and on

implicit security [77] [27] suggested providing users high level access management tools,

instead of low-level mechanisms, and the Salmon interface [53] as well as the work by

[17] [22] demonstrated the importance of visibility (i.e., good feedback) for end-users.

These provided direct guidance for my work, while the rest provided general

observations and tests that are helpful in improving the design.

Compared to some of this work, this thesis approaches the usability problem from a very

low level, considering that A C L s are the "assembly language" of security policy [93]. A s

for computer programming, the assembly language is hard to use and understand, even

with powerful debugging tools providing good feedback. Therefore, researchers are long

working to create better, easier to use tools for program development and analysis. One

approach is to developing high-level languages (e.g., scripting languages) which can

usually be interpreted or compiled into the assembly language automatically so that even

non-expert users can program without learning the low-level language. Similarly, security

management w i l l become more usable for end-users if we can decouple high-level user

intentions from the internal security mechanism so that users needn't deal with such low-

level mechanisms directly. A n analogous idea is declarative security [59] in which the

security logic is decoupled completely from the business logic and the security

26

requirements are described by the so-called security policy outside the application. For

example, the Java 2 Enterprise Edition (J2EE) provides declarative authorization for

deployers to define access control policies at deployment time, rather than during

application development. However, this design is not intended for use by end-users.

Security policies and user intentions are similar in that they are both represented in a

higher level of abstraction compared to the A C L . There has been some useful work from

security researchers on queries of security policies and on the impact of policy changes.

Examples include the work by Lupu and Sloman [52], Spencer et al. [78], and Jaeger et al

[38]. However, the security policy systems investigated are not easily understood in terms

of user intentions, instead intentions can be understood as the overall effects of the

relevant policies. In these policy-based systems users still need to translate their needs to

appropriate security policies by themselves. This task may be no easier than it is with

A C L s and is potentially much harder because of the added expressiveness of the policy

languages.

2.2 Human-Computer Interaction and Security

(HCISEC)

A s noted in Chapter 1, Saltzer and Schroeder [62] identified the need to consider

usability as a primary factor in developing secure systems in their landmark 1975 paper.

For the last of eight design principles for building systems that can protect information,

27

the authors wrote:

"h) Psychological acceptability: It is essential that the human interface be
designed for ease of use, so that users routinely and automatically apply
the protection mechanisms correctly. Also, to the extent that the user's
mental image of his protection goals matches the mechanisms he must use,
mistakes will be minimized. If he must translate his image of his
protection needs into a radically different specification language, he will
make errors."

Despite the early recognition of this problem, it is only toward the end of the 1990s that

HCISEC has emerged as a distinct field. Recent years have witnessed several research

conferences dedicated to security and usability. The first formal gathering of researchers

actively working in this interdisciplinary area took place at the CHI 2003 Workshop on

Human-Computer Interaction and Security Systems

(http://www.andrewpatrick.ca/CHI2003/HCISEC/). A larger Workshop on Usable

Privacy and Security Software (WUPSS) (http://dimacs.rutgers.edu/Workshops/Tools/)

was held at the DIMACS Center at Rutgers in July 2004. In July 2005 the first

Symposium on Usable Privacy and Security (SOUPS)

(http.V/cups.cs.emu.edu/soups/2005/) took place in Pittsburgh, PA.

Whitten and Tygar [84] [85] presented an analysis of how software with security-related

features differs from other kinds of software as a problem domain for usability

engineering, and created a definition for usable security software. Using this definition,

the pair argued that inherent properties in security software make such software

inherently difficult for user interface design. These properties include the secondary goal

property, the hidden failure, the abstraction property, the barn door property, and the

weakest link property [85] [87]. Therefore, they suggested that effective security would

28

http://www.andrewpatrick.ca/CHI2003/HCISEC/
http://dimacs.rutgers.edu/Workshops/Tools/
http://http.V/cups.cs.emu.edu/soups/2005/

not be achieved through the user interface design techniques appropriate to other types of

consumer software. From that analysis, they derived a set of design principles for

building usable security software, which includes removing the user from security-critical

decisions whenever possible, software modifications to increase the usability of this

security software, and increased user training to make errors and mishaps less likely.

Instead of making security invisible, Whitten suggested that it is better to teach users to

manage their own security. A case study on the usability of P G P 5.0 was presented,

demonstrating how a user interface that appeared good by traditional standards, failed to

make public-key based electronic mail security manageable for experienced e-mail users.

This work is remarkable for providing both a working definition of usability for security,

and an example of how to evaluate the usability of security software. It uncovered how

the poor match between users' needs and the technology provided to meet those needs

can result in failure. As for interface design, the pair [86] proposed a user interface design

technique for security, called safe staging, enabling users to safely postpone learning how

to use a particular security technology until they decide they are ready to do so. Garfinkel

[29] has provided a detailed analysis and critique of the definitions, principles, and

findings put forth by Whitten and Tygar in [85] and elaborated in Whitten's PhD thesis

[87]. His critiques were focused on the term "security software", the emphasis on

disclosure control, and the case against making security invisible. For example, Garfinkel

argued that there are cases that machines consistently make better judgments than

humans against a class of attacks. In these cases it may make more sense to make the

security policy and decisions visible, but not to allow the policy to be modified.

Yee [90] [91] summarized ten design principles for secure interaction design. Three of

29

them are listed below:

Visibility: The interface should let the user easily review any active
authority relationships that could affect security decisions.

Clarity: The effect of any authority-manipulating user action should be
clearly apparent to the user before the action takes effect.

Expressiveness: The interface should provide enough expressive power to
let users easily express security policies that fit their goals.

However, I argue that although these principles are desirable in designing security

systems, their application may not guarantee the usability of the designed systems. Two

problems exist: (1) a system so designed may be perfectly usable for one group of users

and opaque and unusable for a different group (e.g., system administrators vs. end-users),

and (2) these guidelines do nothing to address the gap in reasoning that could allow a user

to determine what changes need to be made to a system's state to achieve a desired goal.

In a series of studies, researchers at University College, London have explored some of

the interactions between usability and security [1] [8] [65] [66]. They focused on user-

visible elements of security systems, such as passwords. Their investigations

demonstrated that users are certainly motivated to support the security of the system, but

often unable to determine the security implications of their actions. Thus they suggested

that the design and implementation of any technology, including security, must fit the

characteristics of the end-users, their goals and tasks through which they achieve goals,

and physical and social context in which they perform tasks. They used password

authentication as a widely used example to argue that so far the security community had

failed to comply with this rule. Some other challenges of the usability of security were

also mentioned, including users' misconception about cost/benefit as the main barrier in

30

their adaptation and usage of security. They then proposed some approaches for aligning

security and usability from the socio-technical perspective [82] [9], which include

persuasive methods and an adaptation of a safety model called G E M S (Generic Error

Modeling System) to security.

Other researchers also made similar analyses on usability of security from various

standpoints. Schultz et al. [72] reviewed major types of security controls that currently

exist, appraised the usability issues, and developed a taxonomy to organize these issues.

A t the end of their paper they advocated systematic usability analyses and development

of better usability metrics for information security. Besnard and Arief [5] analyzed the

cognitive processes underlying security impairments by legitimate users, and proposed a

short usability-centered set of recommendations.

A s discussed above, to make security usable, designers can ease the user's burden by

making security decisions for them, or offer features that ensure that users can make the

right security decisions. Zurko et al. [95] investigated such tradeoffs by a field study in a

500-person organization on the security of each user's Lotus Notes client against

unsigned active content. They found that when their workflow is interrupted with a

security dialog, many of those otherwise secured users would make a choice that is

unsafe. They suggested that the common software practice of warning users of danger but

letting them click on something to proceed anyway provides inadequate security, and the

user community or security-related interfaces should undergo some radical sea change

including education, and better and more pertinent information from the software.

A s suggested in [77], security design patterns could help developers less sophisticated in

31

the use of security technology to understand how to incorporate it more effectively into

their applications. In his PhD thesis, Garfinkel [29] proposed principles and patterns for

aligning security and usability. His patterns are grouped into three specific areas: patterns

for user visibility and sanitization, patterns for secure messaging, and patterns for

promoting overall secure operation. Earlier work on security design patterns includes the

studies by Schumacher [73] and by Blakley et al. [7].

Some similar attempts to design new technologies that solve security problems from a

usability perspective were presented in [37] [40]. Holmstrbm [37] described the

development of a user-centered security concept for a personal communication device,

and proposed the metaphor of "secure electronic business card." In [40], Jendricke and

Markotten argued that most users of internet applications do not have the knowledge

and/or the motivation to configure or to use the existing security functions correctly.

They introduced an extended classification of protection goals, and proposed an "identity

manager" that interposes itself between the user's computer, the outside world, and all

data stored on the system. This identity manager keeps track of the role that the user is

playing and thus the everyday use of security functionality can be reduced to selecting the

user's identity. However, their system was not evaluated in user tests.

From a human factors point of view, Patrick and Kenney [57] introduced a process for

privacy interface design that begins with privacy legislation, works through derived

privacy principles, examines the H C I requirements, and ends with specific interface

design solutions. They grouped the human factors requirements for effective interface

design into four categories including comprehension, consciousness, control, and

32

consent, and proposed a technique called "Privacy Interface Analysis" to show how

interface design solutions can be used to meet the requirements when developing a

privacy-enhanced application or service. The U M L (Unified Modeling Language)

technique was suggested for conducting this analysis. Although their analysis was for

privacy interface design, considering that privacy control also implies security control,

interface design for security applications may take advantage of a similar process.

Above I reviewed the H C I S E C work in terms of general principles and guidelines that are

beneficial to my research. Those that are of direct relevance to my design include

visualizing security and accommodating user needs, which help end-users make informed

decisions for security [85] [1] [65] [90]. I w i l l discuss them further in context of the I A M

design in the following chapters.

A s indicated above, Whitten and Tygar [85] argued that software with security-related

features is somehow different from other kinds of software and effective security wi l l not

be achieved through the user interface design techniques appropriate to other types of

consumer software. However, there are some concepts and techniques proposed in the

traditional H C I literature that may be useful for this research. For example, the terms

"Gu l f of Evaluation" and "Gu l f of Execution" introduced by Norman [56] are a good

reference in the discussion of security usability. The gulf of execution is the degree to

which the interaction possibilities of an artifact, a computer system or likewise

correspond to the intentions of the person and what that person perceives is possible to do

with the artifact/application/etc. In other words, the gulf of execution is the difference

between the intentions of the users and what the system allows them to do or how well

33

the system supports those actions [56]. The gulf of evaluation is the degree to which the

system/artifact provides representations that can be directly perceived and interpreted in

terms of the expectations and intentions of the user [56]. For security systems, while the

gulf of evaluation is extremely important, bridging the gulf of execution is also one

promising approach to improving the usability. Note that Norman's terms relate strongly

(but not exactly) to Yee's Visibi l i ty, Clarity and Expressiveness [90] [91]. I w i l l rely on

all of these concepts and guides in the design of my systems.

In addition, direct manipulation is a human-computer interaction style that was defined

by Ben Shneiderman [76] and involves continuous representation of objects of interest,

and rapid, reversible, incremental actions and feedback. In [56] Norman also suggested

the direct manipulation with good feedback for interface design. In the next chapter, I

w i l l demonstrate that direct manipulation of the internal security mechanisms (e.g., the

A C L) is not the right goal for a user-centred security U I design, but direct manipulation

of the intentions (i.e., at a level of abstraction on the resulting effective privileges) may

provide a usable interface for end-users to manage access control.

To date, most security management systems force users to understand and manipulate the

internal security mechanisms and models used. However, security mechanisms and

models that are confusing to the user w i l l be misused [93]. Although some work has been

carried out to align usability and security as discussed above (e.g., providing helpful

feedback [53]), this burden remains on users. Users have to make reasoning to determine

what changes need to be made to a system's state to achieve a desired goal (i.e., the gulf

of execution). One of the gating factors is that people are wil l ing to accept long-

34

established models, mechanisms and designs for basic functionality provided by

operating systems and application programs, rather than to redesign these systems so that

they are more consistent with user expectations and can do a better job supporting actual

user needs [29]. In the following chapters, I w i l l present my pursuit of the latter.

A s suggested in [61], simplifying the security model could be the best way to reduce

error rate and make access control more usable for end-users. However, in many

situations we need a solution that imposes minimal changes to current backend

infrastructure and security model, as in this research. In this context, a mediator that

interposes itself between the user and the backend could be a better choice (e.g., as in

Adage). The mediator should present in a way that the user's mental image of his

protection goals wi l l match the mechanisms (not the internal mechanisms) he must use,

which satisfies the principle of psychological acceptability [62] quoted above. In other

words, such systems wi l l present a higher level of abstraction which is not incompatible

with a user's mental model. Someone may argue that it is better to teach users to use the

internal security mechanism by providing direct manipulation on the internal mechanism

plus feedback. However, as discussed above, end-users have low interest in implementing

security, considering security is (at best) a secondary goal. Also they usually have low to

non-existent expertise and managing access control is not their everyday task, which

makes learnability and memorability a challenging problem. Taking an example of the

calculator, Garfinkel [29] commented on a similar argument that "These arguments seem

similar to those of a mathematics teacher arguing that students should learn how to

perform long division rather than relying on handheld calculators. Yes, it is intellectually

interesting and perhaps even important to learn long division, but most people rely on

35

their calculators, even though most calculators present quotients as truncated decimal

representations rather than as rational numbers or repeating decimal fractions.''''

2.3 Summary

In essence, what I am going to do in the next chapters are to demonstrate that: (1) A C L

manipulation is an inappropriate level of abstraction for end-users; (2) a task-goal

abstraction wi l l solve the problems with A C L manipulation; (3) even a rudimentary

system at this level w i l l demonstrate its worth. This agenda was informed by the

literature and past work reviewed in this chapter, including [93], [77], [27], [53], [17],

[85], [90] and more, as discussed above. However, my approach is different from

previous work in that it aims at fine-grained access control and bridges both the gulf of

execution and the gulf of evaluation for end-users.

36

Chapter 3

Intentional Analysis of WebDAV Access

Control Mechanism

The previous chapter reviewed related work on usable security, most of it from the

security and human-computer interaction (HCISEC) perspective. In this chapter, I begin

to analyze the usability of access control from a novel perspective - the algorithmic

complexity of the access management task. Access management is never an easy task,

even for a trained administrator. The administrator/end-user who wants to control access

to his/her resources initially has a goal or intention in mind, such as who can perform

what operation on what resource. However, intention is not implementation. Only by a

sequence of processes of checking and analyzing the state of the system and reasoning

about the effect of potential changes wi l l he/she reach a decision on how to resolve this

intention (e.g., designing the access control lists (ACLs)) . It is this procedure that I wi l l

analyze in this chapter. The emphasis is not on the interaction between the user and the

system, but on the relationship between the user's goal and the actions needed to take

place (i.e., the "gulf of execution").

37

A s a focus of this analysis I wi l l use W e b D A V access control, as a case study to

demonstrate that even for such a simple A C L model there is a large gap between

intention and actual implementation of control for the user. Here the "user" can be either

an administrator or an end-user with rights to manage access, since our analysis can be

applied to both of them.

3.1 WebDAV Access Control

I briefly introduced W e b D A V in Chapter 1. Here I provide more detailed information

about W e b D A V , in particular its access control mechanism. W e b D A V (Web-based

Distributed Authoring and Versioning) is a set of extensions to HTTP/1.1 that allows

Web authoring tools, content management systems and many other document-oriented

applications to save documents directly to a remote Web server and manage the content

on that server [25] [31]. In 2004, the Internet Engineering Task Force (IETF) published

the W e b D A V Access Control Protocol [11], which provides A C L s for controlling who

has what privileges on a W e b D A V resource. W e b D A V clients may interact with the

server and remotely set and retrieve access control lists using the protocol.

This access control mechanism for W e b D A V resources was very consciously derived

from existing file system practice, with slight adaptations to handle resource properties.

The resources are organized in a file-system-like hierarchy. Access is divided into several

well-defined privileges (e.g., read, write). Privileges may be containers of other

privileges, in which case they are termed "aggregate privileges." Granting or denying the

38

aggregate privilege effectively grants or denies all its contained privileges. Each resource

has one A C L attached to it. A n A C L contains a set of "access control elements/entries"

(ACEs) , where each A C E specifies a principal and a set of privileges that are either

granted or denied to that principal. A n A C E can be inherited from the A C L of another

resource (e.g., the parent of the current resource in the resource hierarchy). A principal

can be a named user or a computational actor. A principal may also be a group, where a

group is a principal representing a collection of other principals, called the members of

the group. A resource may have an owner who has special access control capabilities

(e.g., the owner frequently has a permanent privilege to change access control settings).

These groupings of principals, privileges, and resources by hierarchy complicate the

access control list model.

Usually W e b D A V access control systems provide a user interface (UI) that allows users

to manipulate the A C L s , like the Windows systems using N T F S do. To manage access by

manipulating the A C L s , the user must learn how an A C L is evaluated to determine

whether or not access wi l l be granted for a particular W e b D A V request. A C E s are

maintained in a particular order, and are evaluated until all of the permissions required by

the current request have been granted, at which point the A C L evaluation is terminated

and access is granted. If, during A C L evaluation, a <deny> A C E (matching the current

user requesting the access) is encountered for a privilege that has not yet been granted,

the A C L evaluation is terminated and access is denied. Failure to have all required

privileges granted results in access being denied [11]. Note that the principal in an A C E

matches the current user requesting the access when they are identical or the principal in

that A C E is a group and the current user is a member of that group.

39

The evaluation procedure described above leads to the distinction between the stated

privileges, the explicit privileges granted or denied to the user in the A C E s , and effective

privileges, the actual privileges that a user wi l l have according to the combination of the

involved A C E s in an A C L . A n example is provided in the next section.

3.2 Intentional Analysis

So, how can we assess or improve the usability of this A C L model? Although a G U I

A C L Editor like the one described in [93] can facilitate manipulating and understanding

of the A C L s , and the W e b D A V A C L model is relatively simple, I suggest that before

even considering user interface issues we should determine whether too much may be

asked of the user in terms of sheer involvement with the process. As stated above, I

contend that the end-user is primarily interested in the output of the A C L system (e.g.,

either a success or failure of an access request), and not in the means by which this output

is achieved. Since the conceptual complexity of a task shouldn't exceed the user's

commitment to that task, it becomes necessary to characterize the complexity and assess

how well it matches the user's expectation.

There exist some possible techniques for analyzing task complexity [46] [42] [60]. In this

thesis, I suggest approaching it from an algorithmic point of view, since it is easy,

straightforward and sufficient for this kind of tasks. Developing and analyzing the

algorithm wi l l reveal the algorithmic relationship between the goal and configuration

changes. It w i l l help understand where the complexity in the system lies, characterize

40

basic "gulf of execution", and reveal representations/visualization of state needed to meet

a user's goal.

To assess this complexity and eventually try to match it with the user's commitment, I

w i l l start my analysis from the goal states and go backwards to try to determine the

minimal changes needed to achieve the intention. In this thesis, I w i l l examine two simple

goal states that the user is likely to be interested in achieving:

Gl: Principal X must have privilege Y on object Z .

G2: Principal X must not have privilege Y on object Z .

The principal here may be a set of principals. I focus on these two intentions since they

represent the basic effects all access control systems should produce through the

implementation of access control. Also all the goal statements discussed in the user study

for Salmon [53] can be generalized into these two intentions, i f the privileges in user

intentions match the privileges used in the system. I describe these goal states as primary

user intentions and analyze the steps necessary to determine what A C L changes must be

made to the current system state to ensure that the output of the A C L system wi l l produce

these results. For obvious reasons, I call this style of analysis "intentional analysis". Note

that this is not an analysis of the intentions that users wi l l have, but of the process that has

to be taken based on the intentions. From the H C I perspective, this is also an analysis of

the "gulf of execution" for users and the system to manipulate the internal security

mechanism (i.e., the A C L) .

Some readers (and users) may think that the A C E and the intentions given above are the

41

same because they read them as the same - "Principal X has privilege Y on object Z " or

"Principal X does not have privilege Y on object Z . " However, due to the ordering of

A C E s and the indirection by group hierarchy, there are clear differences in semantics

between them, as shown in Table 3.1. Note especially that A C E s must be read in context

of the A C L to interpret them. To clarify the distinction between A C E and intention, I

suggest that each A C E should be read as "grant/deny principal X the privilege Y on

object Z if he has not yet been granted/denied that privilege." Actually, the confusion

between intention and A C E is one of the main sources of error for end-users in

manipulating the A C L 1 .

Table 3.1: Comparison of an A C E and an intention

A C E Intention

in an A C L

- a statement of enforcement that
is only examined if previous
statements in the A C L are
irrelevant or incomplete

regarded as data in the
enforcement/control algorithm

statement of "goal" or output
constraint

many different A C L s could result
in this goal being fulfilled

Let us take some examples of how an intention is different from an A C E . Suppose that

the A C L attached to the fi le/oo has seven ordered A C E s :

A C E 1 . "Deny user test the read privilege" (read privilege is an aggregate
privilege that contains the read-acl privilege);

A C E 2 . "Grant user test the read-acl privilege";

1 This fact was observed in the user study described in Chapter 6.

42

A C E 3 . "Deny group users the write-acl privilege" (users having the write-
acl privilege can modify the A C L) ;

A C E 4 . "Grant user test! all privileges";

A C E 5 . "Grant group users the read-content privilege";

A C E 6 . "Grant user test the write-acl privilege", which is inherited from its
parent directory;

A C E 7 . "Deny user test3 the read-content privilege", which is inherited
from its parent directory.

In addition, user test is a member of the group users.

User test! has two intentions:

Intentionl: "User test must have the read-acl privilege"; and

Intention2: "User test must have the write-acl privilege".

User test has two intentions:

Intention3: "User test2 must have the read-content privilege"; and

Intention4: "User test3 must have the read-content privilege".

Intentionl seems to have been already fulfilled because of A C E 2 . However, since it is

preceded by the <deny> A C E 1 , this intention has not been fulfilled.

Similarly, it seems that Intention2 has already been fulfilled because of A C E 6 . However,

since it is preceded by the <deny> A C E 3 , it has not been fulfilled.

For Intention3, according to A C E 4 , this intention has already been fulfilled.

For Intention4, according to the deny A C E 7 , this intention is not fulfilled.

So, clearly it is not simple just to assess the current state of system. Let's examine the

43

means to achieve an intention that has not been fulfilled by the current state. Because of

A C E 4 , user test2 can modify the A C L to fulfill Intentionl and Intention2. For example,

test! can add a new A C E that is the same as A C E 2 at the top of the A C L , or remove

A C E 1 from the A C L . Consider the situation that user test2 has fulfilled Intentionl but

has not fulfilled Intention2, and at that time user test wants to implement Intention4.

Because user test has been denied the write-acl privilege, it seems that he cannot

implement Intention4. However, because user test has the privilege to modify the A C L of

the current resource's parent (according to A C E 6) , he can change A C E 7 from <deny> to

<grant> by modifying the parent's A C L . In addition, even if A C E 6 does not exist, user

test can still implement Intention4 if he has the privilege to modify the group users. In

this case, he can add user test3 into group users, and then Intention4 is fulfilled according

to A C E 5 . Of course, the last two implementations may cause side-effects, which I w i l l

discuss in Section 3.2.3.

From these examples we can see that it is difficult for a user to know promptly and

without error if his intention has already been fulfilled by simply examining an A C L .

Harder still is to determine how to implement it, especially for an end-user who has little

knowledge of the A C L model or may not know how to locate necessary information such

as the group membership.

If we consider the notions of stated privilege and effective privilege introduced in the

previous section, we can see that it is the effective privileges, not the stated privileges,

that determine if an intention has been fulfilled.

The task at hand for the user is then to (1) assess the current state of the system, (2)

44

decide whether or not the goal is already fulfilled, and (3) develop a strategy to decide

how to minimally achieve the goal state given the current system state. Since the

W e b D A V A C L system is relatively simple, it is likely that we can develop an algorithm

to determine this minimal change set. The complexity of this algorithm is then a

reasonable measure of the complexity of fulfilling this intention. Therefore in this thesis I

also call the analysis based on the algorithm "algorithmic analysis" and the corresponding

task complexity "algorithmic complexity".

It is worth noting that this task analysis is coincident with the models of human

information processing proposed in the H C I and cognitive science literature. For

example, according to the Norman[56]/THEA[58] models, which Maxion and Reeder

[53] summarized, human information processing starts with a problem, the primary goal,

and proceeds in the following loop: (1) Perceive and interpret information from the

environment, and evaluate whether the problem is solved. (2) If the problem remains

unsolved, formulate a subgoal, according to perceived information, for solving all or part

of the problem; if the problem is solved, exit the loop. (3) Formulate a plan to achieve the

subgoal. (4) Execute the actions in the plan.

3.2.1 ACLs in Collaborative Environment

Consider that the state of A C L system is the result of a number of people with access to

shared file-systems collaborating on the current configuration. If we assume that each of

these users is pursuing a similar goal-oriented approach to making A C L changes, then the

current state should be considered as the result of a multi-agent collaboration. Therefore,

before proceeding to the full analysis, let us examine the first stage of the reasoning

45

necessary to deal with the Gl intention: "Principal X must have privilege Y on object Z . "

A t first glance, it may appear easy to implement - just adding an A C E that grants the

particular principal X the privilege Y (denoted as <X, Y>) to the top of the A C L of object

Z . Since the order of A C E s determines precedence, this addition wi l l automatically

override any <deny> A C E s that might appear later in the A C L . If we suppose however,

that the <deny> A C E was added by another user through his or her own intention then we

have a conflict between these two intentions that both users should be informed of.

Detecting and resolving such conflicts may be important in a collaborative environment.

Therefore, rather than simply adding the grant at the top, we should examine all A C E s

until we find one that specifically grants or denies the access rights we intend. Some A C L

systems, such as the Windows N T F S A C L system, specify that <deny> A C E s always

take precedence over <grant> A C E s . In this case, adding a <grant> A C E wi l l never fulfill

the intention if conflicting <deny> A C E s exist in the A C L (the details wi l l be discussed

in Section 3.4).

In addition, simply adding an A C E to the top of an A C L without examining the existing

A C E s may introduce redundancy to the A C L , which may then result in undesired

consequences in the long term. For instance, suppose that the existing A C E s have

determined that principal X already has privilege Y or some sub-privileges contained in

privilege Y , and the user simply adds a <grant> A C E at the top to fulfill the intention Gl.

If later on the user wants to achieve the reversed intention, G2, it is possible that he/she

may just undo the previous action by removing that <grant> A C E from the A C L . This

action wi l l result in an incorrect or incomplete accomplishment of G2, since the pre

existing A C E s granting partial rights to Gl are still in the A C L . Exactly such mistakes

46

were observed in the user study presented in Chapter 6.

O f course, as the above example shows, even if the user does not have direct

modification rights to the A C L of object Z , it may be possible to grant the access

requested. Due to the indirection implied by group membership, it may be possible to

grant the privilege Y by modifying the membership of an existing group that has this

privilege. Of course, this indirect grant wi l l have side effects (e.g., there may be other

objects that the group has rights to and the principal X does not) and the user should at

least be notified of these. In addition, if A C L inheritance is enabled in the system, it may

be possible to grant the privilege Y by modifying the inherited A C L , if permitted. This

may also cause side effects. Let us consider an example. If user A has the privilege to

read a document object Z , and he wants principal X , who does not have the read

privilege, to read this document. Unfortunately he finds he does not have the privilege to

modify the A C L of Z . If he does not know the indirect means of granting access

described above, he may just send the document Z to principal X as an email attachment.

From this point on, the access control system is essentially irrelevant (at least as far as

read access is concerned), since a copy of the file is now " in the wi ld . " As an alternative

to copying then, side effects may be acceptable.

So, even without considering A C L inheritance (which we wi l l ignore for the purposes of

the flow-chart analysis below), we have conflicts that should at least be noticed, and

potential side effects from trying to resolve an intention. Clearly resolving even these

simple intentions is not a trivial problem.

47

3.2.2 Algorithmic Analysis

G 1 : Principal X has privilege Y on object Z.

1
I yes -• no 1

Do nothing Create G1' with unresolved subset X' of X

Remove those denials
or

change to grants

Decide whether to remove
those principals from the

group if I have privilege to
modify this group

Add grants of

unresolved;pnncipals;
in-X'.to object Z}Cj

Figure 3.1: A possible decision process for determining how to implement G l : principal
X must have privilege Y on object Z

Figure 3.1 shows a decision process or algorithm that w i l l allow the user to resolve the

intention Gl or be given enough information to know why he or she was unable to do so.

48

The process begins with a query Ql ("Does principal X have access privilege Y on Z?")

to check i f the goal has already been achieved. If it has not been fully achieved, the user

can select all principals X ' in X who don't have privilege Y on Z for further processing.

The user then needs to check if he has the privilege to modify the A C L of object Z . If he

does, then he examines that A C L in the left branch. Even if he cannot modify the A C L ,

the process wi l l not end. The user can check i f some group X 2 exists such that X 2 has

privilege Y to object Z and that he has the privilege to modify X 2 . If the answer is "yes",

the user has to make a decision on whether to add X ' to this group, because this action

may cause side effects: as a member of X 2 , the principals in X ' may have all the

privileges group X 2 has and lose all the privileges group X 2 is denied. These side effects

are produced not only on object Z but also on other resources in the system. If instead the

user can modify the A C L , another process flow wi l l go on. If any of the principals in X '

are explicitly denied privilege Y to object Z , that means there are conflicts between the

current access control intent and whichever previous intents that caused the denial to be

added to the A C L . I wi l l consider the handling of such conflicts in Section 3.2.4.

The flowchart in Figure 3.1 does not have any loops, but it does have six branch points.

Combining it with the flowchart in Figure 3.2 (and Figure 3.3 below) we can enumerate

all of the branch points:

Q l : Does principal X have privilege Y on Z?

Q2: Do I have the right to modify the A C L of object Z?

Q3: Are any of the principals in X ' explicitly denied privilege Y to object Z?

Q3.1: Are those principals denied privilege Y to object Z individually or via some
group to which they belong?

49

Q4: Does group X 2 exist such that X 2 has privilege Y to object Z and I have the
privilege to modify group X2?

Q5: Do I have the privilege to create a new group?

Q6: Are those principals granted privilege Y to object Z individually or via some
group to which they belong?

Q7: Does group X 3 exist such that X 3 is denied privilege Y to object Z and I have the
privilege to modify group X3?

Note that these decision points all involve queries of the system state. If the user does not

deeply understand the A C L evaluation model, there is no reason to suppose that he or she

would be able to easily resolve these questions. Frankly, it is unlikely that most users

would even know to ask many of them.

For example, consider the query Q l "Does principal X have privilege Y on Z ? "

Answering this query involves evaluating the effective privileges for principal X . A s

described above, a principal's effective privileges are computed according to a formula

that sums the principal's explicit privileges granted by some A C E s (directly or indirectly

via group) and have not been denied by preceding A C E s in the A C L . Thus, users

managing access are forced to deal with the low-level A C E s , their ordering in an A C L ,

and the formulas for resolving overlapping A C E s .

Table 3.2 summarizes all the conditions that determine the answer to query Q l . It is clear

that by him- or herself a novice end-user cannot be expected to answer the query easily

and quickly.

50

Table 3.2: Summary of the conditions determining the answer to query Q l

Answer to Q l is "yes" when one of the
following A C E s is encountered first:

Answer to Q l is "no" when one of the
following A C E s is encountered first:

(1) Principal X is granted privilege Y (1) Principal X is denied privilege Y

(2) Some group to which principal X
belongs is granted privilege Y

(2) Some group to which principal X
belongs is denied privilege Y

(3) Principal X is granted an aggregate
privilege containing privilege Y

(3) Principal X is denied an aggregate
privilege containing privilege Y

(4) Some group to which principal X
belongs is granted an aggregate
privilege containing privilege Y

(4) Some group to which principal X
belongs is denied an aggregate privilege
containing privilege Y

(4) Some group to which principal X
belongs is granted an aggregate
privilege containing privilege Y

or

No matching A C E s

Then, consider the flowchart for intention G2, shown in Figure 3.2. This process flow has

a structure similar to that in Figure 3.1, where in each step "grant" is changed to "deny"

and vice versa. This is not surprising, since G2 is a negation of G l . However, there is no

branch point for the query "Are any principals in X ' explicitly granted privilege Y to

object Z ? " corresponding to Q3 in Figure 3.1, because the answer to this query is always

"yes" in this flow. This is due to the rule of the A C L model that all privileges should be

granted explicitly, and if a privilege is not granted explicitly it is denied by default.

51

G2: Principal X does not have privilege Y on object Z

Q6^Are-rhose principals granlea-pftvjigc
Y to object Z individually or via some

i to which they beJo_D

Ssgroup X3 exist sucfi
[are denied privilege Y to object Z and f

jnyilege to modify grgu

I individually- -via group

Remove those grants
or

change to denials

Decide whether to
remove those

principals from the
group if I have privilege

to modify the group

— y e s -

JL

-no-

Decide whether to add
X' to group X3 Fail

Do nothing
Add denials of privilege Y
for unresolved principals

in X' to object Z

Figure 3.2: A possible decision process for determining how to implement intention G2:
principal X must not have privilege Y on object Z

In this analysis of the decision process I did not consider administrative privileges that

can change the A C L (e.g., the write-acl privilege in the W e b D A V A C L model or change

permissions permission in the Windows N T F S A C L model). A n y user who has the write-

acl privilege can modify the A C L to grant anyone (including him- or herself) any

52

privilege. Taking this into account, any "deny" intention must resolve another intention,

"principal X must not have the write-acl privilege on object Z " , before resolving the

intention G2; otherwise principal X may still grant him- or herself privilege Y at any time

by modifying the A C L .

It should be clear from examining these two flowcharts and Table 3.2 that the process of

deciding how to implement a particular intention is neither simple in terms of algorithmic

complexity nor in terms of comprehension and examination of the system state. A user

must know what questions to ask of the A C L system and in what order, and then may be

forced to make some difficult decisions to achieve the desired goal. Thus, the task of

formulating changes to an A C L to achieve even these simple intentions is far from trivial.

Further, in addition to the difficulties the user may have in resolving the intention, the

lack of system support for answering these queries (e.g., an interface providing ready

access to needed information), or of user knowledge for properly asking and resolving

these queries, may lead to user errors. There are potential risks or errors associated with

each query. Errors can be classified into two types: errors of commission due to the user

establishing a wrong answer to a query; and errors of omission due to the user failing to

make a query. For example, let us consider Q l . If the user gets the wrong answer "yes" to

Q l due to either lack of information or mistaken evaluation, he may falsely conclude that

the intention is achieved and that nothing needs to be done (error of commission). If the

user does not know to ask G4, he may falsely conclude that the intention cannot be

achieved in any way (error of omission). Thus, tools designed to reduce the conceptual

load of users should not only make access control systems easier to use but also reduce

.53

the occurrence of these user errors.

In conclusion, the structure of the algorithm represents the complexity of the "gulf of

execution" for any interface to directly manipulate A C L s . The queries derived from the

decision points represent a minimal set of states to be presented by an interface to cover

the "gulf of evaluation".

Finally, this analysis reveals three important features of the problem that wi l l be

important in designing systems to interact with this model: side effects, conflicts and user

modeling decisions.

3.2.3 Side Effects

Any time a simple intention "principal X must have privilege Y on object Z " is resolved

by the addition of principal X to some group G , it is likely that this action wi l l have side

effects. Suddenly, principal X may be granted (or denied) other privileges that have been

associated with group G . A t a minimum, the user should be notified of these side effects.

Similarly, side effects may arise if the intention is resolved by the removal of principal X

from some group G .

In addition, if A C L inheritance is enabled and the intention G l is resolved by modifying

the inherited A C L , side effects may arise on any resource that inherits from the modified

A C L .

There are, however, two other possible complications. It is possible that one of these side

effects changes the results of a query in one of the previous branch points in the

flowchart. In this case, we do have a loop and must go back and re-examine these points.

54

The other possibility is that there may be a number of different groups with privilege Y

on object Z that the user could add principal X to. In that case, we must consider that

there are some decision points with multiple branches leading out of them, and we must

allow the user to decide which of these would be preferable. I call these decision points

modeling decisions.

3.2.4 Conflicts

Of course, there is no reason to have any sort of access control system in a single-user

environment, so we should not conclude our analysis without due consideration of other

users. Let us assume that all of the users of the W e b D A V repository are basing their A C L

implementations on similar intentional processes. As I pointed out above, it can be

important to detect situations in which it is likely that two users' intentions are in conflict

(i.e., one user acts to ensure a privilege Y for principal X on object Z and another user

acts to deny that same privilege for principal X) . In addition, because of the privilege

hierarchy (i.e., aggregate privileges contain other privileges), two users' intentions may

be in partial conflict, in which case the privileges in these two intentions do not exactly

match but overlap.

What sort of consequences should there be when such a conflict is detected? We could

adopt a "most-recent-change-wins" policy, in which case there is an obligation to at least

inform the source of the conflicting A C E that his or her intention has been superseded.

: A n alternative would be to disallow such supersessions and instead initiate a request to

the source of the first entry that they retract their intention or modify it to allow an

exception. This step could be augmented by an automatic process to suggest alternatives

55

for resolving the conflict, a process that would likely have to be analyzed as I have done

above.

Note that there are two kinds of conflict: the conflict between the A C E s and the conflict

between the user intentions. Users care about the conflicts between intentions. However,

even when two intentions do not conflict, it is possible that the resulting A C E s are in

conflict, i f the implementation of the previous intention causes some side-effects which

contradict with the latter intention. I wi l l not explore the issue in this thesis, but leave it

for future research.

3.2.5 Modeling Decisions

The above example exposed one kind of modeling decision, a choice of which of a set of

possible groups the user might expand or contract membership to in order to resolve an

intention. It is likely that a combination of the "identities" of the groups and the side

effects resulting from this change wi l l determine which group the user w i l l choose. A

user may want to know what the options are to make such a decision, or simply choose

the option with the fewest side effects. It may not be unreasonable to consider this

difference to be subject to a user preference.

Another kind of modeling decision may arise in the case where the user identifies a set of

principals in his initial intention. In that case, we have the modeling decisions shown in

Figure 3.3. We may be able to simply add individual grants directly, create a new group

for those principals and add a grant to that group, or even add all of the principals to an

existing group with the desired privilege. O f course, this last choice may cause side

effects.

56

To add grant of privilege Y for X' to object Z:

Add every principal in
X' to the ACL of object

Z with privilege Y

Create a group and
add it to ACL of object
Z with privilege Y; add

X' to this group

Add X' to this
group X2

Figure 3.3: Example of a user's modeling decisions for Gl

3.3 Discussions

3.3.1 Other Intentions

Consider also the "special" reflexive intention "I should have privilege Y on object Z " .

At first glance, this would seem to be just a variation on the intention G l ; however it has

very different implications. First, if it is possible for me to grant myself privileges that I

didn't previously have, then it could certainly be argued that the system state is insecure,

since no user should be able to grant him- or herself previously unavailable privileges in

a secure system. But with the mix of direct and indirect privilege granting that comes

from the addition of groups, it may be difficult to maintain this level of security

57

throughout. In addition, it is unavoidable in the Windows N T F S file system that I can

grant myself any privilege if I am the owner, because the owner of a file or folder in the

Windows N T F S system can always change permissions on it, regardless of existing

permissions protecting the file or folder.

Even in a secure system state it may be useful to submit this intention, since a conflict

identified by it w i l l point to the reason why the user has been denied access [43]. A

subsequent query could then be made: "Who can grant me access?" O f course, for the

intentions discussed previously, limited access to the A C L state of the system was not a

problem. For example, if the user cannot examine the membership or permissions of a

group, then it is irrelevant to the intention of using that group to grant a privilege, since

the user w i l l not be able to modify its membership anyway. With the "Who can grant me

access?" query, however, it may be necessary to be able to examine such states. In this

case, a list of people to ask would not necessarily violate the information hiding that

presumably has been done deliberately if it is only their identity that is being revealed. In

fact, if the intentions are transferable, then the user could effectively request access by

passing on a description of his intention to someone capable of granting it and then allow

them to decide whether and how to do so.

3.3.2 More Complex Cases

To this point, we have considered only simple intentions. Even for these simple cases, the

set of queries that a user needs and the system should support (Q1-Q7) are neither simple

nor small in number. They illustrate that even for simple intentions, the conceptual load

of users in constructing sequential and conditional queries and interacting with the system

58

for modeling decisions is relatively heavy compared to the simplicity of the intentions.

Consider complex intentions such as the following: " A l l the members in the groups to

which my wife or I belongs except Bob have privilege Y on object Z . " Clearly it is not an

easy task for the user to transfer this intention to actual access control list settings. In the

worst case, there may be ambiguities in a user's intentions. The system may need to

detect such ambiguities and provide feedback to help the user make his or her intentions

clear.

Some access control systems may group the privileges in a privilege hierarchy. For

example, the privilege read may contain a sub-privilege read-acl that is the privilege to

read the A C L . Surely it w i l l complicate the decision process of the user to fulfill his/her

goals, in either assessing the system state or planning the implementation.

Further, the privileges I have discussed so far are low-level privileges that are

implementation-specific and can be set directly in the A C E s . However, the user,

especially the end-user, may often have high-level privileges in mind that are not

necessarily the same as the low-level privileges. In this case, the user has to understand

the semantics of these low-level privileges. He or she then has to translate the high-level

privileges to these low-level privileges before he or she can conduct a decision process

such as the one described above for determining how to implement this intention.

Therefore, the user has to construct a mapping between the high-level privileges and the

actual low-level privileges which can be applied in the system. This need not be a one-to-

one mapping. One high-level privilege may be mapped to a combination of multiple low-

level privileges. For example, in some systems, to have the high-level privilege to change

59

the membership of a group, you need to have both write-properties and write-content

low-level privileges on the resource representing the group. It is clear that such

translations increase the user's conceptual load further; a system that can perform these

translations automatically or semi-automatically is more usable.

The W e b D A V access control specification indicates that the server implementation may

support some A C L restrictions. For example, the "deny-before-grant" restriction specifies

that all non-inherited <deny> A C E s must precede all non-inherited <grant> A C E s . The

"grant-only" restriction indicates that A C E s with deny clauses are not allowed. In this

case, if the user wants to deny principal X the privilege Y , and principal X holds the

privilege Y by both an A C E granting him this privilege and an A C E granting a group of

which he is a member this privilege, just removing the former wi l l not fulfill his

intention. In addition, the W e b D A V access control specification also introduces some

A C L preconditions. For instance, the "no-inherited-ace-conflict" specifies that the A C E s

to be set must not conflict with the inherited A C E s on a resource. If such A C L

restrictions or preconditions must be enforced in the access control systems concerned,

the intentional analysis wi l l be more complex for the user, as discussed below in relation

to the Windows N T F S system.

3.3.3 Beyond the Algorithmic Analysis

There exist some well-known techniques for task analysis in human-computer

interaction, which include the Hierarchical Task Analysis (H T A) [46] [47], G O M S

(Goals, Operations, Methods, Selection rules) and its variants [10] [42]. However, in this

2 N.B. This is a restriction employed by the Windows NTFS, which will be discussed in Section 3.4.

60

thesis I chose a method of task flow analysis, since it is simple and straightforward for

qualitatively demonstrating the task complexity and the user's mental burden on the

decision processes for directly manipulating the A C L .

The G O M S model represents the procedural knowledge required to operate a system in

terms of the user Goals, basic actions or Operators, Methods, which are sequences of

operators that wi l l accomplish goals, and Selection rules, which determine which method

to apply to accomplish a goal. M y analysis has shown that a system only supporting

direct manipulation on the internal access control mechanism is less goal-directed and

thus may be inappropriate to apply G O M S . Further, the usability of the access control

system is not just an interface design problem. The simple user interface design

methodologies (e.g., G O M S) may miss some aspects of usability problem. To

demonstrate it, here a variant of G O M S , called N G O M S L [45] is employed for analyzing

the design of direct manipulation on A C L with feedback.

61

N G O M S L Statements

Method for goal: fulfill the intention G l : principal <X> must have privilege <Y> on object <Z>
Step 1. Locate effective privileges for principal <X>
Step 2. Decide: If principal <X> has privilege <Y>, then return with goal accomplished.
Step 3. Locate effective privileges for <myself>
Step 4. Decide: If I have the privilege modify-ACL, then accomplish goal: directly grant principal

<X> privilege <Y>, else accomplish goal: indirectly grant principal <X> privilege <Y>.
Step 5: Verify the intention fulfilled
Step 6. Return with goal accomplished.

Method for goal: directly grant principal <X> privilege <Y>
Step 1: Locate stated privileges for principal <X>
Step 2: Decide:

If <X> is denied <Y> by default, then accomplish goal: add grant of privilege <Y>.
If <X> is denied <Y> individually, then remove deny A C E or change deny A C E .
If <X> is denied <Y> via some group, then decide whether to remove <X> from the group.

Step 3. Locate effective privileges for principal <X>
Step 4. Decide: If principal <X> has no privilege <Y>, then accomplish goal: add grant of

privilege <Y> to principal <X>.
Step 5. Return with goal accomplished.

Method for goal: indirectly grant principal <X> privilege <Y>
Step 1: search for group <X2> that has privilege <Y> to <Z> and I have privilege to modify <X2>
Step 2: Decide:

If <X2> exists, then decide whether to add <X> to <X2>
If <X2> does not exist, then return with goal unaccomplished.

Step 3. Return with goal accomplished.

Selection rule set for goal: add grant of privilege <Y> to principal <X>
If <user-specified-conditionl>, Then add a new A C E including <X> and <Y>.
If <user-specified-condition2>, Then create a group having privilege <Y> and add <X> to that
group.
If <user-specified-condition3>, Then accomplish goal: indirectly grant principal <X> privilege
<Y>.
Return with goal accomplished.

Figure 3.4: An example of NGOMSL model for a system supporting direct
manipulation on ACL + feedback

Figure 3.4 shows an example of N G O M S L methods for fulfilling the intention G l

discussed above. Compared with the flowchart analysis, this G O M S model does not seem

to provide any more information. In addition, each mental step in the G O M S model is

treated as if it were equally demanding as one normal step that deemphasizes the

complexity and difficulty of the user's mental process, and may lead to wrong design

62

directions. Further, the selection rules concerning modeling decisions are not clear

because making that choice is left to the user (denoted by <user-specified-conditionl>,

<user-specified-condition2>, etc. in Figure 3.4).

G O M S techniques can provide an easier analysis and predictions (e.g., execution time)

on a user's interaction with an interface. However, they miss some aspects important to

access management tasks. For example, there is no the side-effect analysis as well as a

discussion of the system state as the result of a series of interactions by a set of users.

In the algorithmic analysis above, I deliberately chose simple cases. Most other access

control systems (e.g., policy-based, RBAC-based) are at least as complicated, and thus

likely more conceptually complex and potentially "unusable". The first finding we can

naturally derive from the above analysis is that any user interface that lets users

manipulate the embedded access control mechanism should provide enough and needed

information to users so that they can fulfill their tasks quickly and accurately. For

example, this analysis has exposed the views of system state necessary to effectively

manipulate the A C L in terms of the queries Q1-Q7. This claim is supported by the work

of Maxion and Reeder [53]. The Salmon interface [53] can provide answers to queries

Q l , Q2, Q3, Q6, partial answers to Q4 and Q7, but no answer to Q5. One consequence of

the analysis would thus be to refine the Salmon interface to better support the evaluation

of Q4, Q5 and Q7.

However, I suggest that manipulating the A C L directly is not the right goal for a user

interface design. Just visibility (i.e., good feedback) may not be going to work. Consider

the complexity revealed by the above analysis. The factors, including the ordering of

63

A C E s and its restrictions (e.g., deny-before-grant, no-inherited-ace-conflict), indirections

by group membership and A C L inheritance, the privilege hierarchy, and administrative

privileges, all complicate the decision processes for end-users. For an interface

representing the interactions of manipulating the A C L , it is necessary to expose such

complexity to end-users. The procedures and reasoning that are necessary to determine

how to manipulate the A C L for fulfilling the goals are left to the users. If the system does

not help/guide end-users to fulfill their goals according to the above analysis, end-users

have to learn and retain the procedures by themselves while they are only interested in

the system effects or results - effective privileges.

Therefore, I suggest that the next step is to consider the design of systems that limit the

need for the user to be exposed to such complexity. The above analysis has shown that

the translation between the A C L and user goals is just algorithmic and predictable.

Therefore, we may design systems that can support the expression of user intentions and

then resolve these intentions on the user's behalf, or at least provide significant

offloading of the conceptual load, which produces usable interfaces for these access

control systems. Such systems present a higher level of abstraction and can be regarded

as an incremental compiler that compiles down the high-level language (i.e., goals) to the

low-level assembly language (i.e., A C L implementation). More specifically, we need

support of visibility and manipulation in terms of effective access control as well as

reasoning support to deal with indirection issues and limited manipulation. In this sense,

the Salmon interface [53] can be taken as a front end of such systems while the input is

changed to effective permissions instead of stated permissions. I wi l l refer to such

systems as Intentional Access Management systems and discuss them in the next chapter.

64

3.4 Windows NTFS Access Control

A s indicated above, the basic W e b D A V access control model is derived from existing file

system practice such as Microsoft's N T file system (NTFS). N T F S has been widely used

in PCs running Microsoft Windows operating systems, including Windows 2000 and

Windows X P , which makes the usability of its access control mechanism more critical for

average end-users. Therefore, below I extend my analysis to the Windows N T F S access

control mechanism.

Figure 3.5 shows the Permissions dialog box in Windows 2000. It can be seen as a direct

representation of the internal access control list model. N T F S uses an access control list

model similar to the one embedded in W e b D A V for controlling file permissions. Thus

the intentional analysis described above can also be applied to it. However, there are

some additional features in the N T F S A C L model that make the model more complex

than the W e b D A V A C L model. Here I w i l l discuss two of the features complicating the

analysis of the N T F S A C L model. Readers interested in the details of the N T F S A C L

model can refer to the Microsoft TechNet article [54].

65

Mydoc.doc Properties

General Security Custom i Summary J

Name •

{JJ Administrators (Userl ^Administrators)

_ ! U serO ne (D 0 MAI N \user1)

SYSTEM

Add.. -

Remove

Permissions:
** / p

Allow Deny

Full Control 0 •
Modify El •
Read 8c Execute El •
Read El •
Write El •

Advanced.:

Î jj Allow inheritable permissions from parent to propagate to this
-•=J ob|ect ' , " i , 1" "•"

c OK, Cancel f

Figure 3.5: A screenshot of the File Permissions interface in Windows 2000

In the N T F S A C L model, non-inherited deny A C E s always take precedence over non-

inherited grant/allow A C E s (equivalent to the "deny-before-grant" restriction in the

W e b D A V A C L model). This means that the order of A C E s is simplified and not as

important as in the W e b D A V A C L model. If a user is a member of two groups, one that

is allowed a permission and another that is denied it, the user is denied that permission.

On the one hand, it is a beneficial constraint for assessing the system state. On the other

hand, it also complicates the decision process the user has to take for granting privileges.

Based on this rule, if the user is denied a permission explicitly by a non-inherited deny

A C E and you want to grant him the same permission, simply adding a new grant A C E for

66

file:///user1

the user at the top of the A C L wi l l not work, while it usually works for the W e b D A V

A C L model. In this case, one possible solution is to first remove the deny A C E , and then

add the grant A C E . But now side effects may arise if the permission in the removed deny

A C E is a sup-permission that contains the permission in the added grant A C E .

In N T F S systems every object has an owner. The owner of a file/folder can always

modify permissions on the file/folder and give other users the right to take ownership, no

matter what permissions exist on the file/folder. This means that the owner can grant

himself some permissions even he is explicitly denied these permissions by some deny

A C E s (by removing these deny A C E s first). Anyone or any group who has the take

ownership permission on the file/folder can take the ownership of the file/folder,

implying that any user having the take ownership permission can get all permissions on

the file/folder. Thus, when the user managing access wants to achieve the intention "user

X must not have permission Y on object Z " , before taking some similar processes as

described in Figure 3.2, he has to do some additional work to resolve another intention

"user X must not have the take ownership permission on object Z . "

Moreover, in N T F S users can perform certain actions on files or folders even if

permissions are set on a file or folder to prevent access to users. For example, groups or

users granted Full Control on a folder can delete any files in that folder regardless of the

permissions protecting the file. In this case, to ensure that a user having Full Control on a

folder does not have rights to delete some file in that folder, you must set permissions on

the file itself, and you must set permissions for the folder containing the file.

This discussion of the N T F S A C L model clearly shows that the decision processes

67

designed for the W e b D A V A C L model have to be extended to adapt to these new rules.

The result wi l l be more complex flowcharts, increasing the conceptual complexity of

access management tasks for end-users. The Intentional Access Management systems we

suggested previously are therefore more desirable in this context.

3.5 Summary

In this chapter, I have conducted an algorithmic analysis of the W e b D A V access control

mechanism from the point-of-view of an end-user trying to decide how to grant or deny

access to some resource to a third party. I have demonstrated that even for a simple

intention the task's conceptual complexity is too heavy for end-users. The usability of

access control can thus be improved by designing tools that can support user intentions

and reduce such complexity. This analysis also raised issues in resolving users'

intensions, such as side effects, conflicts, and design-time modeling decisions.

From the analysis, we can locate the main sources of complexity. The first is the ordering

of A C E s and its restrictions including deny-before-grant, grant-only, and no-inherited-

ace-conflict. The second is the indirections of groups and A C L inheritance. These

indirections make the assessment of system state complex, but also provide the

alternative ways to fulfill the user's goal that end-users often miss. The privilege

hierarchy that isn't transparent to the user wi l l complicate access management tasks.

Finally the complexity also comes from the administrative privileges, especially for

denying privileges.

68

Based on these complicating factors, this chapter has analyzed the "gulf of execution" for

users and systems to manipulate the A C L . During the analysis, it exposes the difference

in semantics between the goal and the A C E , as well as the views of system state

necessary to effectively manipulate the A C L which can be used to bridge the "gulf of

evaluation." The analysis also demonstrates that the simple UI design (e.g., G O M S)

misses aspects of the problem concerning mental processes in the access management. It

suggests that providing direct manipulation of A C L to end-users is not the right goal for a

UI design of a security system, considering the task complexity and the low interest and

expertise of end-users. Since the relationship between the goal and the A C L

configuration has been shown to be algorithmic, it is feasible to design an access

management tool representing a higher level of abstraction (i.e., the user intention) to

end-users with feedback support as in Salmon, without abandoning the existing internal

access control mechanism (i.e., the A C L) . In this way, it w i l l be more usable for end-

users to manage access, while expert administrators can still work on the low-level A C L

which fits their expertise.

Note that the flowchart analysis examines the steps an ideal user would take to implement

his desired access constraints given the system model and state. These flowcharts thus

convey the inherent complexity of the task. However, as indicated before, some specific

users may take different steps, whether correct or not, to implement their intentions based

on their own limited mental model of the access control system. Here I refer to the

"mental model" as a set of beliefs about how a system works and how humans interact

with the system based on these beliefs [15] [56]. I investigate this issue further in the user

study described in Chapter 6.

69

In my analysis, I simply take the complexity of the flowchart algorithm as an indicator of

the conceptual load of the user. For this analysis, it is sufficient to demonstrate the

complexity qualitatively in terms of the branch points and user mental processes. A

similar but more complicated concept is the cognitive complexity of the user's mental

model or cognitive load [60]. In the literature, various approaches have been proposed for

measuring cognitive complexity. For example, four different quantitative metrics for

cognitive complexity were compared in [60]. Investigation of such metrics to measure

cognitive complexity in Human-Computer Interaction for security management tasks

may be an interesting topic for further research.

70

Chapter 4

Intentional Access Management (IAM)

The previous chapter thoroughly analyzed the complexity of certain access management

tasks for W e b D A V and Windows N T F S , and concluded that the burden on end-users to

execute these tasks is too great, especially in view of their low interest in access control

itself. As an alternative approach, I proposed intentional access management systems

(IAMs) that separate end-user interactions from the internal access control mechanisms.

In this chapter, I develop the design details of such systems.

4.1 Design Principles

Before describing intentional access management systems, it is important to consider a

number of design constraints. I do so by interpreting the existing literature on usability of

both general systems and security systems in terms of these intentional analyses and

systems [3] [56] [69] [71] [93].

It must be emphasized that users of privacy/security systems view them as means to an

71

end and not an end in themselves [85] [4]. The systems are always peripheral to a user's

primary task. Therefore, users of security management systems have little or no interest

in solving "puzzles" to be able to use them. The analysis in Chapter 3 exposed some of

these "puzzles". Reluctance to solve them is especially true of end-users, since they

usually have limited expertise and interest in security systems compared to

administrators. In this context I wish to extend the design principles of Clarity and

Visibility from Yee [90] [91] (see Chapter 2 for a brief introduction) and recast them into

a form specific to the analysis I have just completed. In general, for systems that involve

risky or critical decisions (such as security systems), I claim that:

User decisions should be made/requested in an environment where

1. the user has access to essential information needed to make the decision
reliably; and

2. the system is responsible for predicting and presenting such information
when it can.

The translation of these principles into a system that takes user intentions as input and

attempts to resolve them in a way that formulates access control rules that fulfill these

intentions wi l l result in what I refer to as an Intentional Access Management system.

I define an intentional access management system (IAM) as any system in which the

following are true:

1. The user initiates interaction with the system by expressing an intention in terms

of an output constraint on the access control system;

2. The system translates these intentions into implementation;

72

3. The system follows Yee's principles of clarity and visibility in informing the user

of the consequences of actions not directly implied by their intentions; and

4. The system informs the user of modeling variations as well as detected

ambiguities and conflicts in intentions.

User's Mental Model

Existing Access Control Systems

. t Q „ t - „ i . . j Enforcement , .

Intention k—H s t a t e m e n t H M
UI

Access Control
Mechanism

User's Mental!
(New)

Intention k-

Model

Intentional
UI Access

Management

Proposed Access
Control System

Figure 4.1: Two access control system models and the corresponding user's mental
models

In interacting with a computer system, users form internal, mental models of the system

73

with which they are interacting [56]. The more mental models a task requires, and the

greater the complexity of these model(s), the poorer the user's performance wi l l be [67].

To use existing access control systems, the user must translate his or her intentions into

enforcement statements (access control rules) and input these statements to the system

through a user interface (UI). The access control mechanism then enforces the statements.

As shown in Figure 4.1, in such systems the user needs to understand the access control

mechanism and construct a complex mental model containing all involved blocks. In

Norman's terms, the "gulf of execution" includes the problems of translating task-related

needs into access-control privileges, of formulating a set of configuration changes to the

access control rules that w i l l fulfill these privileges, and then of using the system UI to

effect these changes.

B y contrast, I A M systems separate access management from the access control

mechanism so that the user only needs to identify and express his or her intentions to the

system, without requiring direct knowledge of the access control mechanism (e.g., the

assembly language-like A C L) . The gulf of execution is thus reduced to one of expressing

the intended privileges with the I A M user interface, with the rest of the configuration

issues automated. The user w i l l construct a much simpler mental model containing only

his or her intentions and the intentional access management model. The user should find

such access control systems more usable.

"Direct" interface for manipulating the internal mechanisms makes the system effects

simple and immediate, but neither in terms of user interest/intention nor addressing the

gulf of execution. Invisibly bridging the gulf of execution without adequate feedback

74

might decrease trust in the system by making it appear "magical" or unpredictable. B y

ensuring visibility at the same time (i.e. addressing the gulf of evaluation) we allow the

system to appear predictable and tool-like. Inspired by the concept of user-centered

security [93], what I design are goal-driven systems with feedback on effects in terms of

user intentions. Such systems provide a higher level of abstraction from direct

manipulation of the internal mechanisms, which better fits end-users' expectations.

I identify three possible levels of support for intentional access management: the wizard

model, the full I A M model, and the multi-backend I A M model.

4.2 The IAM Wizard

One of the simplest ways to achieve the I A M model is to allow a user to express an

intention and then use a "wizard" to walk the user through the process of creating an

implementation of that requirement. This approach is similar to the various wizards used

to allow some end-user system management in Windows environments. Wizards

essentially walk a user through the decision process and request him or her to make

choices when necessary.

Such a wizard for access management can be implemented by simply following the

flowchart for implementing a goal and changing the "wizard window" whenever a

modeling decision that refines the goal must be made. This window should at minimum

provide access to some representation of the side effects of the modeling decisions

75

(visibility), and some description of the conflicts found as well as possible ways to

resolve them. It must also make clear what the actions taken were and what the side

effects of these actions are (clarity).

The interruption inherent in the wizard model may be mitigated by adopting the Surprise-

Explain-Reward strategy. Derived from psychology literature and brought into software

development in the context of "End-User Software Engineering" [88], the Surprise-

Explain-Reward methodology has great potential for general notification strategies and

developing adaptive user-interaction modes. This methodology suggests that the wizard

should: (1) surprise users with evidence that their current practice isn't working as well as

they thought and that there is an "information gap" or a hole in their understanding that

wi l l make them curious; (2) explain the information that w i l l f i l l this hole; and (3) reward

them with immediately perceivable benefits for using the technique.

One problem with the pure wizard approach, however, is in detecting and resolving

conflicts. This model assumes that intentions are expressed incrementally and that

incremental changes are made to the system state to fulfill these intentions. Ultimately,

the current system state is derived from a series of intentions expressed by a variety of

users. Without some record of who made a change and what their intention was in doing

so, it becomes very difficult for the system to do more than just notice that conflicts exist

(e.g., between an existing grant and an intent to deny a privilege). If we wish to be able to

actually resolve these conflicts, we need a system that maintains a record of intentions on

a per-user basis and relates these to the current system state.

76

4.3 Full IAM

Figure 4.2 presents a model that can deal with conflicts intelligently. It shows a full

intentional access management system that, in addition to the requirements for basic

I A M , includes:

1. the maintenance of intentions for each user;

2. the ability to retract previous intentions (like "undo" in direct manipulation);

3. the maintenance of connections between intentions and implementation actions;

and

4. the management of conflicts by initiating user interactions to resolve conflicts.

Figure 4.2: Ful l intentional access management (IAM) model

77

Taking these requirements into account, as depicted in Figure 4.2, I propose a full

intentional access management model aimed at further increasing the usability of access

management. In an intention management system built upon this model, users can present

their intentions based on their own conceptual access control model. The Constraint

Manager module wi l l then interpret these intentions and transfer them into appropriate

access control implementation.

The Constraint Manager deals with constraint satisfaction and conflict resolution. Some

set of intentions/goals {G} exists, and an access control system is configured to fulfill

them. Constraint satisfaction creates and maintains the dependency D(S, G) on an access

control statement S that helps to achieve an intention/goal G (i.e., is produced as a result

of introducing intention/goal G).

A conflict occurs when a new intention/goal G ' is introduced that contradicts an existing

intention/goal G . If G ' and G are both generated by the same user, then G ' has priority

over G , but the user should be notified. If user U ' introduced G ' and user U introduced G ,

then we have an inter-user conflict and need some strategy of notification and conflict

resolution. Note that here I do not introduce any new complexity to access control

systems, but expose the inherent complexity of the systems in the multi-user

environment.

78

4.4 Multi-Backend IAM

Finally, it becomes feasible to expand this model to one in which there may be a variety

of different implementation models available as the backend, depending on the storage

repository being used. If done correctly, the intentional model may be able to present the

user with a unified conceptual model and interface independent of the means being used

to implement the access control. Thus through the multi-backend I A M , end-users can

control multiple systems embedding various access control mechanisms, while

administrators can still manage the systems through their traditional way. O f course this

wi l l raise a challenging issue of mapping the administrators' administrative actions to

their intentions, if we want to detect and resolve the conflicts between the intentions of

administrators and end-users.

To achieve such security interoperability, a Consensus Model needs to be constructed as

a mediator between the Constraint Manager and the security backend implementations, as

shown in Figure 4.3. The consensus model w i l l abstract access control out of the concrete

implementations such as simple A C L , R B A C (role-based access control) -based, and/or

policy-based systems. In this way, a general constraint manager can be maintained no

matter what access control mechanism is implemented in the backend.

Validation of the proposed intentional access management models is a concern. However,

we can confidently claim that the proposed models can be implemented, because the

basic intentions G l ("Principal X must have privilege Y on object Z") and G2 ("Principal

X must not have privilege Y on object Z") represent the semantics embedded in the

access matrix lying at the heart of most access control models (as discussed in Chapter 1).

In essence then, the goal statements are simply modeling the same access matrix as

traditional access control systems, except as constraints on the effective privileges.

Absent conflicts then (which I argued should primarily be resolved outside the access

control system), both I A M and traditional access control are constraining the same

resource. Therefore, i f an access control system is sufficiently powerful to describe any

potential access matrix (and the intentional model clearly is), the problem of deriving an

access control implementation from a set of intentional constraints is simply algorithmic.

To demonstrate the applicability and inherent usability of intentional access management

designs, in the following chapters I apply the proposed principles and models to an access

management prototype for W e b D A V access control. I then conduct a preliminary user

80

study on this system and report the results.

4.5 Summary

In this chapter, I have presented new conceptual designs for making access control more

usable. The core idea is to clearly separate access management from access control so

that end-users can focus on security goals while the system models/interprets these goals,

translates them to implementation, and then provides feedback to users. In this way, end-

users are isolated from the actual access control mechanisms, which they usually are not

interested in and find difficult to manipulate.

There are potential pros and cons for these designs. The pros include: no need to change

deployed back-ends/enforcement models; ability to resolve conflicts and reflexive needs

(i.e., "self-grant"). A s for the cons, the Ful l I A M model implies tracking intentions per

user, which may put an extra burden on users associated with managing these intentions

over time. There are also unaddressed difficulties. For example, some access control

systems support privilege hierarchy, but how to match it with task needs is not clear

through these models.

I wi l l now test the designs and predictions discussed above by implementing a simple

wizard interface and then test it to ensure that it is at the right level of abstraction for end-

users. The details wi l l be described in the following chapters.

81

Chapter 5

Implementation: IAM for WebDAV

In Chapter 3, I made a thorough analysis of the W e b D A V access control list model,

mainly focusing on the conceptual complexity for the end-user of fulfilling some security

goals. I graphically depicted this analysis in two flowcharts showing the decision

processes involved and discussed concepts such as side effects, conflicts, and modeling

decisions. Chapter 4 proposed design principles and three levels of intentional access

management models to reduce the algorithmic complexity of such security tasks. To

demonstrate the applicability of these new designs, based on the results of the intentional

analysis in Chapter 3, I then developed an access management prototype for W e b D A V .

In this chapter, I w i l l discuss implementation details and address some issues raised in the

implementation.

5.1 Related WebDAV Applications

W e b D A V has been implemented in various open-source and commercial products (for a

82

list of projects and software that support W e b D A V , please refer to the section "Projects

and Software" in [81]). But not all the software supporting W e b D A V provides the

functionality for managing W e b D A V access control. For example, Windows X P supports

access to W e b D A V servers by Web Folders, but it does not provide a way for users to

change the permissions on the resources in the server. The W e b D A V Access Control

Protocol is currently implemented by S A P Netweaver, Xythos WebFile Server and

Oracle X M L D B , on the server side, and by Xythos WebFile on the client side.

Properties

Permissions.jSharingj LinkJoJE-mailTo

'Name " • Permissions Inherited From •
tilrobbt '
S franp RWADNMRLIGS \User\franp\

;_'.J ;>"l

,j Add • .;.Remove

p" Inherftpermissions ftorrvparem '

P" Replace permissions on all clhild objects'with entiles shown heie

- Fl IS/FO id e r pe rmis sio ne't--^-

l p Re ad/D own la a d fi le s .'

IT" V1/rite/Upload files .

i f 3 AppendyReplscefiles-' •'.

if*. Delete flies •

if™ Rename lites ' • •'

'• ''J""'; Create subdirectories ..

f - Remove subdirectories

p!; Can view directory listings

p*!"Apply rights to subdirectories

i p .View permissions. _ ,'

\ p. Modify ''pa rrntssions-•••'• ,

Select All Clear All'

• :.. OK • ; Cancel " j Apply ; j

Figure 5.1: A screenshot of the File Permissions interface in GroupDrive Client

83

file:///User/franp/

To enable end-users to manage access to resources, current W e b D A V systems provide

only a command-line interface, or a simple G U I similar to the File Permissions interface

in Windows 2000 or Windows X P . These interfaces function as some kind of A C L

editors. They present A C L s to end-users, and allow them to modify those A C L s , both in a

direct way.

The GroupDrive Collaboration Suite [35], a commercial product developed by South

River Technologies, provides a good example of such systems. It is a typical W e b D A V

application supporting collaboration. This software suite includes: GroupDrive Server, a

secure W e b D A V server for storing and collaborating on files; GroupDrive Client, a client

that maps a drive letter to the GroupDrive server, enabling users to save files and

collaborate on documents from within any Windows application; and GroupDrive Web

Interface, a simple interface that allows users to connect to the GroupDrive server from

anywhere. The use of W e b D A V enables real-time file collaboration among users in

multiple locations. The GroupDrive Client provides a simple G U I (shown in Figure 5.1)

to let users define the access control list (permissions) for the file object. A s discussed in

Chapter 3, it is difficult for end-users to manage access through this kind of interface. For

instance, when considering groups, the end-user cannot easily determine a given user's

effective permissions on a resource. Also because of the addition of groups, if the end-

user wants to deny someone certain permissions, simply unchecking the corresponding

permissions on that user may not work. When the end-user cannot modify the A C L

directly, he or she cannot easily know if some of the alternatives I indicated in Chapter 3

exist. In addition, since this system does not support <deny> A C E s , the end-user w i l l not

84

know if there are conflicts when he or she wants to grant another user certain

permissions.

5.2 System Design

The I A M prototype for W e b D A V was developed using the Java programming language.

The Java Foundation Classes (JFC) Swing packages were used to build the graphical user

interfaces (GUIs). In the current implementation, an I A M wizard was built into the

W e b D A V client, so that end-users can use this client to easily manage access to the

W e b D A V server.

A n y server supporting W e b D A V may be used for this system; I chose Slide server [39].

Slide is a content repository that can serve as a basis for a content management

system/framework and other purposes. It features full W e b D A V support and flexible

control over permissions at a per file level via support for the W e b D A V A C L .

Slide only includes a command-line based W e b D A V client, so I chose D A V Explorer

[14] as the client, whose user interface is similar in look and functionality to the Explorer

program provided by the Windows operating system. D A V Explorer supports W e b D A V

Access Control Protocol and provides listing of access control information, adding and

modification of A C L s , and A C L reports. Figure 5.2 shows the interface for viewing A C L

and Figure 5.3 shows that for adding/modifying A C L .

85

localhost:8880/slide/Tiles/book 1 /ChapteM.doc ,
!~ "Principals' I "~ Privileges""-' C I'GrahUDehy ' Inherited From

felide/roles/ProjectA write-content Grant

/slide/roles/user all Grant /slideffiles/bookV

owner read-acl Grant /slide/files

un authenticated all Grant /slide/files

/slide/roles/user write Grant /slide/files

/slide/roles/root all Grant /slide/

all read-acl, write-acl. unlock Deny /slide/

all read Grant /slide/

Add Principal. , Delete Principal Save Close

Figure 5.2: A screenshot of the View A C L interface in D A V Explorer

localhost:8080/slide/Tiles/book1 /Chapter1 .doc

Principal^!' Privileges " Grant iDeny

Principal: /users/test'

href: /slide'users/test

OK aaiCanceLfii

Figure 5.3: A screenshot of the Add/Modify A C L interface in D A V Explorer

Both Slide and D A V Explorer are open-source software. I was therefore able to integrate

a new I A M module that I developed into the D A V Explorer. This module implemented

86

the I A M Wizard model proposed in Chapter 4, as well as other UI features designed to

improve usability. The current implementation supports basic intentions of who must /

must not have what privileges on the object. I also incorporated a module for managing

group membership into the D A V Explorer.

Launch DialogA to obtain
the user's intention

yes

Launch
DialogB for
the user's
decision

yes

Check for
conflicts

Launch
DialogB for
the user's
decision

Modify the system
state according to the

user's decision
no

Launch DialogC to
display the result

Figure 5.4: The program flow for fulfilling the user's intention

87

I based the program flow of the I A M wizard on the decision processes derived from the

intentional analysis in Chapter 3, but all reasoning work is now performed by the I A M

instead of the user. To fulfill the user's intention, the system state wi l l be changed by

adding/removing/modifying A C E s or adding/removing principals into/from groups,

automatically or according to the modeling decision the user chooses. Figure 5.4

illustrates the flow details. Three main dialog windows (DialogA, DialogB, DialogC)

were designed to accomplish this flow.

^Wizardfor, Setting IntentipB.

Intention of Access C o n t r o l -

belected resource: lacalhost:8080/sl ideff i lesjuook1/Chapter 1.doc

Please sex your intention:

Principal: pis|r| i t 'Bsjp^|. |^|]

href : /s l ide/users/ lest
O Must Have ® Must Not Have

Currently, /users/test has privi leges:

[bind, read, read-current-user-prrvilege^set, unbind, writs-content]

Currently, /users/test Is a member of:

[/slide/roles/guest, /slide/roles/projector, /slide/roles/ProjectA] .

PrMlege:

inc ludes:
all
bind

The current access contro l s ta tus : Check ACL

User/Group Privileges

all

read-

read-acl

+

• read-current-user

-privilege-set

write-

write-acl write-properties write-content-

' bind unbind

unlock

C /slide/users/Tux X y? n v * X

fi /slide/users/test X y f X v * J X
B /slide/users/|ohn (Yourself) y f

/ / I A, y f y f y? y f

B /slide/users/root ./< K rante'dltbu itTsdrhe'of its' s'ub-pr Sieges are'denie 3 explicitly|
y» y f y»

S2S unauthenticated J' 4 v f J J y f y f

JJB an others •4 X y f X X

I Back

Figure 5.5: A screenshot of DialogA obtaining the intention from the user and showing
the current access control state

DialogA (Figure 5.5) is split into two panes, upper and lower. The upper pane lets the

88

user specify his or her intention regarding who must/must not have what privilege. Once

a principal is selected, the pane also shows the privileges that principal currently has, and

the groups that principal is a member of. In addition, the lower pane in the dialog window

shows the current access control status by listing the effective privileges for each

principal. Such information helps the user to construct a clear and correct view of the

system state.

i Wizard for Setting Intention,

Analyzing the Intention'

Selected resource: localhost:8080/slide/fflesjbook1/Chapter1.doc
Vour intention: [/usersitest) has no privilege [write content]
conflicts with the following existing settings: Check Side Effects

BE
User/Oroup Grant/Deny Privileges Inherited From Set By Action You Can Choose

/sllde/roles/ProjectA grant Remove this etttryfrom A - | Idelails...

Change this entry from 'Brant' to 'deny
Remove /users/test from group JslidefrolesiProjectA

Please select the action which you want for each conflict from the column 'Action You Can Choose'.
Note some actions will cause side effects. You can move the mouse on the column 'Side Effects' to see them.

I do N.QT want any side effects

Please press 'Next' button to continue...
If you dont want to set this intention, please press 'Back' to change your intention, or
'Cancel'to quit the wizard without saving the intention. •

Figure 5.6: A screenshot of DialogB showing the conflicts and modeling decisions

The content of DialogB may change according to different branches in the program flow.

When the system detects that the intention conflicts with existing effective A C E s (those

not preceded by relevant A C E s) , this dialog wi l l present all the conflicting A C E s to the

89

user with the information of who set those A C E s . If the user has the privilege to modify

the A C L , it w i l l also provide possible solutions (modeling decisions) for the user to

resolve the conflicts, as shown in Figure 5.6. O f course, some solutions may have side

effects. The conflicting A C E wi l l be highlighted if the user chooses the solution that has

side effects. B y default the system wi l l choose the solution without side effects. The user

can always click the "I do N O T want any side effects" button to reset to the default

solution.

^Wizard for; Setting Intention

Analyzing the Intention

Selected resource: localhost:8080/slide/files/projec1Data2.txt
Your intention: [wsers/john2] has privilege [wntc-content] .
conflicts with the following existing setluujs:

'US/slide/roles/user

User/Oroup Grant/Deny . • Privileges •Inherited From
[deny

Unfortunately, you have no prrvilegesto modify the Access Control List (ACLi.
But we find an alternative wayfor you: i
You can add [/usersf)ohn2] to a group which has this privilege on the resource.
However, this action will cause the side effects that |/usersi]ohii2] may get/lose the privileges that have been granted/denied to that group:
Which action in the following list do you want to lake?

Add/usersiIohn2togroup/slide/roles.iProiectA|».| r Check Side Effects \] ' "

Do Nothing ' '" . . i it,
r Add:/UsBrsĵ n2|ti>yg'i o'up Vsiidiil oles Pro)i'ctA l JVi
|' ' I do NO I want any side effects j 1 ~~

Please press'Next'button to continue...
If you d o n t want to set this intent ion, please p ress 'Back' to change your intention, or
'Cancel ' to quit the wizard without saving the intention. •

Next I I teSi Cancel

Figure 5.7: Another screenshot of DialogB showing the alternatives when the user has no
privileges to modify the A C L

If the user does not have the privilege to modify the A C L , the I A M system wi l l

90

automatically search for alternatives and present them in DialogB for the user to choose.

Also , the user can check the side effects associated with each solution. This case is shown

in Figure 5.7.

DialogC is the final window showing the task result. If the intention cannot be fulfilled, it

w i l l display error information and explanations. If the intention is successfully fulfilled, it

w i l l list all the actions the system has taken, in order.

; Wizard for Setting Intention

'reoperation Result

Now we are coming to the final step..

Intention: [/rolesJProjectB] has no the privilege [write]
is set successfully by performing the following actions:

* Remove the ACE entry.' grant /slideftisersJJohn the privilege [write-acl]'
• Add a new ACE entry:' deny ZroIesiProjectB the privilege [write)'

If you want to set another intention on resource 1ocaihost:808Q/slideflles.iprojectData2.txt', please press 'Next';
To quit the intention setting wizard, please press 'Finish'. •

Figure 5.8: A screenshot of DialogC showing the task result

5.3 Interface Design

This I A M module can be seen as a combination of a reasoning engine and a G U I . To

make the W e b D A V access control more usable for end-users, I introduced additional

91

features into the interface of the I A M module. These features are:

5.3.1 Security Context Displayed When Any Resource Selected

.;#,•>• Intentional Access Management for, WebDAV

File Edit Versioning Access Control View Help

I S 1 1 1 1 H i l l f i i&Jaay
5$ Wir.ll |localhost:8080.<slide/

[p i DAV Explorer

f-E3 http://localhost:8080/slide

«-f3 users

o-[3 roles

o- E3 actions

?-E3 files

I | - E 3 b S k l]
I «-£3book2
o- £3 projector

»• (3 histon/

o- O workspace

°-[r3workingresource
£3 C:t

iLockiVersions! Name Display
Cnapterl .doc • ; cnapterl -doc Type I

Last Modifled

Chapter2.doc
C-hapter3.doc
comrnents.txt

Chapter2.doc
Chapter3.doc
comments.M

^appjc^ation/insworcr.
applicatiorVmsword
application/msword

text/plain

Tue Sep 27 09:45:22 PDT 2005
TueSep2? 10:41:08 PDT2005
Tue Sep 2712:51:11 PDT2005

Principal: uusers/test

http:Mocalhost:8080/sliite.1iles*ook1Chapter1.doc

Set Access Intention '
h a s p r iv i leges : [b ind, r e a d , r e a d - c u r r e n t - u s B r - p r i v l l e g e - s e i , u n b i n d , wr l te -cor t ten t l

Figure 5.9: A screenshot of the interface showing the security context

Here the security context refers to the current effective privileges each principal has on

that resource. As shown in Figure 5.9, the security context pane is located at the bottom

of the main window of D A V Explorer. The pane displays in real time all the privileges

the specified principal has on the selected resource, if the current user has the privilege to

view such information (in Slide, the user should have the read-acl privilege to read the

A C L , but knowing his or her own privileges only requires the user to have the read-

current-user-privilege-set privilege). The user can choose which principal to see from a

combo box. In this way, the user can easily know what privileges a principal has so that

92

http://Wir.ll
http://localhost:8080/slide

he or she can decide whether to launch the I A M or the Add/Modify A C L module to

grant/deny some privileges to that principal. This pane can be turned on/off at any time.

5.3.2 Needed Information Shown to the User When His Setting
Intention

A s indicated above, DialogA (Figure 5.5) shows the privileges and group information of

the specified principal in the upper pane. The lower pane has a table listing all the

principals with their effective privileges. In addition, tool tips are extensively used to

present explanations when the mouse pauses over preset components. For example, when

the mouse pauses over the table's header, the description of the privilege the mouse

points to comes up. The table's header also presents the hierarchy of the privileges. These

features help the user understand the privileges and their relationships. Icons with

different colours, together with the tool tips, are used in the table to illustrate the status of

each privilege (e.g., "explicit denied, but some of its sub-privileges are granted

explicitly").

5.3.3 User Notified Only When Necessary

If the user's intention does not conflict with any existing settings, it w i l l be fulfilled

automatically without intervention from the user.

When there are conflicts, the system wi l l provide information about the conflicting A C E s

and who set them (retrieved from a M y S Q L database that stores information about the

author of every A C E) in DialogB (Figure 5.6). Possible solutions (modeling decisions)

are presented to the user for his or her selection. If a solution the user chooses has side

effects, the conflicting A C E wi l l be highlighted. The user can click to see the details of

93

the side effects.

5.3.4 Side Effects Shown to the User

The user can choose to see the side effects caused by the selected solution, as shown in

Figure 5.10. However, as discussed in the next chapter, how to present the side effects to

the end-user in an easy-to-understand way is a challenging problem.

f . View Side Effects

Checked resource: localhost:8080/slide.<files*ook1/Chapter1.doc

four intention: [/Users/test] has no privilege [write-contervt] on resource
localhost:808G7slideffiles/book 1 Chapter 1 .doc

Current action: remove the user [ftisersrtest] from group [/slide/rolesjProjectA]

The side effects are:
User/Group Has Privileges

G /slide/users/test original bind, read, read-current-user-privilege-set, unbind, write-content
after read, read-current-user-privilege-set

... III.-

N.B.: In the above table, the privileges that the specified principal will lose are shown in blue, and the
new privileges that the specified principal will get are shown in red.

Close

Figure 5.10: A screenshot of the interface showing side effects

5.3.5 User Cannot Lock Him- or Herself Out of Own Folder
and File

In Slide, the owner does not have special privileges like in the Windows NTFS system. It

94

Change Resource

is possible that the owner is denied all access to the resource or denied privileges to

modify the A C L , if an A C E that denies such privileges to a group of which the owner is a

member is added to the A C L . To avoid this situation, the principal name in the

conflicting A C E is highlighted i f the principal is the current user. The system wi l l warn

the user when the specified actions wi l l change the user's own privileges. This design

reduces the possibility of the owner locking him- or herself out of his or her own folder

and file. The interface is shown in Figure 5.11.

Analyzing the Intention
A ,

T~"
M .1,

"1 \ i

Selected resource: localhost:8080jslidetfi lesipru]ectData1.txt

Your intention: [frolesiProjectB] has no privilege [wr i te]

conf l icts with the fol lowing exist ing sett ings: Shock Side Effects

User/Group Grant/Denv Privileges Inherited From ' Set BY Action You Can Choose Side Effects

S2s /slide/roles/ProjectA grant write-content root Do nothing no

G isiide/usersljohn (Yourself)," (. j • . . g ran t . writeracl •". " " .•• slfoot - n" " Do n o t h i n g ' , . " n o , • " '.

W a r n i n g , , „ • '^:fi - ; \ , , ,• , i . ; . ' '.. •• - • . • - . f l

The act ion: Add a new ACE ent ry : ' deny /roles/ProjectB the privilege [w r i t e] ' can change your own privileges.

Do you really want to per form th is act ion?

Yes No] Check Side-effects
Please select the

Yes No] Check Side-effects
Please select the

Uio JHOT want any side ef fects

Please press 'Next' button to continue..
rf you don't want to set th is intention, please press 'Back' to change your intention, or

'Cancel ' to quit the wizard without saving the intention.

Figure 5.11: A screenshot of the interface showing a warning when the action wi l l cause
the user's own privileges to be changed

95

5.4 Discussion

This I A M prototype is a preliminary implementation of the new conceptual designs

proposed in Chapter 4. Some of its limitations are discussed here.

The current I A M wizard was implemented on the client side. This means that what the

I A M wizard can do with the server is limited by the privileges the user using the client

has on that server. For example, if the user does not have the privilege to read the A C L ,

the I A M wizard has no way of fulfilling his or her intention because it cannot check the

system state by retrieving and interpreting the A C L . Also if the user does not have the

privilege to read the membership or permissions of a group, the I A M wizard may not be

able to find alternative ways of fulfilling the user's intention. Although this

implementation provides limited functionality to the user, it can be regarded as an

advantage since it removes the potential that the user may obtain some information he or

she is not allowed to see by using this system. On the other hand, if the I A M support is

installed on the server side with full privileges, it w i l l have more power for checking the

system state, reasoning, and answering queries such as "who can grant me access"

discussed in Section 3.3.1, whether the user has the privilege to read the A C L or not.

However, this feature may also increase the potential security risk if the user can exploit

it to obtain some information he or she is not permitted to know.

In the current implementation, I adopted the M y S Q L database to store information about

who set which A C E at what time. When there are conflicts between the intention and the

effective A C E s , the I A M system can show conflicting A C E s and who set them. However,

96

in the I A M system, the user's concern is the conflicts between intentions. Therefore, a

system that can store the history of intentions in the database and check for intention

conflicts would be desirable. It is also the requirement of the full I A M model.

There are some issues concerning the generalization of the I A M model. The I A M system

only supports basic intentions. Users cannot specify an intention involving multiple

principals and/or multiple privileges. For example, the principal in the user's intention

may be "al l users in group Y except user X " . The system also does not support high-level

privileges discussed in Section 3.3.2. Interpreting such intentions may involve advanced

intention modeling.

5.5 Summary

This chapter describes the implementation of an access management prototype system for

W e b D A V . The system is based on the I A M Wizard model and the intentional analysis

presented in Chapter 3. Although it provides limited functionality to users as discussed

above, it is a good starting point for demonstrating the usability improvement brought by

the proposed I A M models.

97

Chapter 6

User Study

Research has shown that what engineers expect to work and what users actually make to

work are two different things [89]. Therefore, to evaluate the usability of the proposed

I A M system, a carefully designed laboratory user study3 was conducted. Two modules

for managing W e b D A V access control were compared: the simple A C L editor like

module in the original D A V Explorer (referred to as A C L Editor in the study, whose

interfaces are shown in Figure 5.2 and Figure 5.3), and the I A M wizard, a new module

for managing access, implemented based on the I A M models. The current user study is

preliminary. I do not claim that the I A M is the best approach to making access control

usable for end-users. The goal of this study is to demonstrate that the proposed design is

feasible and usable for end-users while it doesn't upset user expectations or cause

confusion. In other words, the study was designed to expose failures in the conceptual

model of the user interaction rather than to test specific claims of its efficiency.

3 This study has been reviewed and approved by the Behavioural Research Ethics Board (file number B05-
0922). See Appendix 1 for the Certificate of Approval.

98

6.1 Study Design

6.1.1 Participants

Table 6.1: Description of participants' backgrounds

Specialty
Frequency of
using
computers

Frequency of
setting file
permissions

Familiarity
with A C L and
its evaluation

ParticipantA Business Daily
A few times a
month or less

Don't know at
all

Participant!? Business Daily
A few times a
month or less

Know a little

ParticipantC Arts
A few times a
week

Never
Don't know at
all

ParticipantD Arts
A few times a
week

Never
Don't know at
all

ParticipantE Engineering Daily
A few times a
month or less

Know a little

ParticipantF Engineering Daily
A few times a
month or less

Know a little

ParticipantG Engineering Daily
A few times a
month or less

Know a little

ParticipantH Engineering Daily
A few times a
month or less

Average

ParticipantI
Computer
Science

Daily
A few times a
month or less

Know a little

ParticipantF
Computer
Science

Daily
A few times a
week

Average

Ten people participated in the study. Participants were recruited randomly and had

various backgrounds from business to engineering. Table 6.1 shows the details of each

participant's background. A l l used computers at least a few times a week. Eight reported

having some experience setting file permissions on Windows or another operating

system, while two reported having no experience setting file permissions whatsoever.

Two reported they were averagely familiar with the A C L and how it is evaluated prior to

99

the study, and five reported knowing a little about the A C L , while three did not know the

A C L at all. None knew how A C L s were implemented in W e b D A V before the study.

6.1.2 Task Descriptions

To simulate real access management conditions, a hypothetical scenario was designed in

which the participants at different sites collaborated to jointly author documents which

were stored on a W e b D A V server, and had to restrict access to these shared files. The

hypothetical collaborative environment was created and populated with individual users,

groups, files, and folders on the W e b D A V server. The environment included 8 individual

users, plus one user named John who represented the participant her/himself. The

environment also includes 7 groups. No group contained another group as a member.

[DAV:, a l l] (aggregate)
I

+-- [DAV:, read] (aggregate)

+-- [DAV:, read-acl]
+-- [DAV:, read-current-user-privilege-set]

I
+-- [DAV:, write] (aggregate)

I
+-- [DAV:, write-acl]
+-- [DAV:, write-properties]
+-- [DAV:, write-content] (aggregate)

+-- [DAV:, bind]
+-- [DAV:, unbind]

I
+-- [DAV:, unlock]

Figure 6.1: A tree of supported privileges in the Slide server

The W e b D A V server was implemented by Apache Slide. Figure 6.1 illustrates the

privilege hierarchy implemented in the Slide server. Participants were asked to perform

access management tasks involving these privileges.

100

Two sets of tasks were given to each participant. These two sets were identical except

that they targeted different resources. Each set of tasks included one training task which

gave participants experience with the module used, and four other tasks (Taskl , Task2,

Task3, and Task4). A detailed description of the tasks is presented in the appendices.

The task statements for the five tasks in one set are shown below:

Y o u (user name)ohn, password John) are co-authoring a book named " b o o k l "

with some collaborators. The chapters of this book are stored in /files/bookl/ on

the W e b D A V server.

Training Task: Jack (username: users/Jack) is an independent reviewer, and you

want him make some comments on this book. Please make sure that Jack can read

and change the content of the file files/bookl/comments.txt.

Task 1: Test (username: users/test) is your co-author for Chapter 1

(files/bookl/Chapterl.doc). Please make sure that Test can read and change the

content of files/bookl/Chapterl.doc.

Task 2: Because of personal reasons, now Test (username: users/test) has no time

to continue working on Chapter 1. Please make sure that effective now, Test can

read files/bookl/Chapterl.doc, but cannot change its content.

Task 3: Please make sure that the user Projector (username: users/projector) can

read files/bookl/Chapter2.doc, but cannot change its content.

Task4: John2 (username: users/john2) becomes your co-author for Chapter 3

101

(files/bookl/Chapter3.doc). Please make sure that effective now, John2 can read

and change the content of files/bookl/Chapter3.doc.

The tasks in the other set were identical except " b o o k l " was changed to "book2".

The training task simply required the participant to add an A C E granting users/Jack the

privilege write-content, since all users had had the privilege to read the file.

Task l was introduced to check if the participant could determine that the task

requirements were already fulfilled and no action was needed.

The task statement for Task2 was identical to that for Task3 except for the names of

specific files and users. However, the tasks differed in the way they were initialized. In

both of these tasks, there was one group that was already on the A C L for the file, and the

target user was a member of that group. However, in Task2, users/test had only inherited

the write-content (the privilege to change file content) privilege from group ProjectA,

while in Task3, user/projector had inherited the write privilege from group ProjectB

which contained both write-content and write-acl (the privilege to modify the A C L)

privileges.

The simple solution to Task2 was to add an A C E denying users/test the write-content

privilege (the privilege to change file content); he already had the privilege to read the

file content. However, this simple solution could not work for Task3, since user/projector

had inherited the write-acl privilege from group ProjectB. If user/projector was denied

the write-content privilege, but not explicitly denied the write-acl privilege, he would

have been able to restore his write-content privilege. The task statement presented to

102

users did not mention this nuance; it was left to users to decide that user/projector's

write-acl privilege had to be removed.

Note that Task2 and Task3 are similar to the Wesley and Jack tasks in Maxion and

Reeder's study [53] on the Windows X P File Permissions interface and their Salmon

interface.

The purpose of Task4 was to check i f participants could find an alternative way to grant

privileges (adding user users/john2 to group roles/ProjectC) when they did not have the

privilege to modify the A C L .

In order to collect their feedback on the I A M wizard, a short interview with each

participant was performed after the participant finished all the tasks.

6.1.3 Procedure

Participants were asked to use the A C L Editor to fulfill one of the two sets of access

management tasks and use the I A M wizard to fulfill the other set of tasks. For T a s k l ,

Task2, and Task3, eight used the A C L Editor first, and then the I A M wizard, and two

used them in the reversed order. For Task4, they all used the A C L Editor first, and then

the I A M wizard. Before participants used the A C L Editor to fulfill tasks, they were

required to learn how the A C L is evaluated. Participants were told that they could "think

aloud" throughout the course of the experiment. Participants were shown how to view

W e b D A V system users, groups, group memberships, and the owner of a resource. After

each task was completed, participants were asked to rate their confidence on a 1-7 scale

(7: very confident) that the task had been completed correctly.

103

6.1.4 Rules for Determining Task Success or Failure

To determine task success or failure, participants' final A C L settings were examined. For

Task l and Task 4, a task instance was deemed successful if the target user (users/test or

users/johnl) had effective privileges allowing him read (with the read-acl privilege

denied or not) and write-content privileges. The Task l or Task 4 instance was deemed a

failure i f the target user had effective privileges denying him read or write-content

privilege. For Task2 and Task3, a task instance was deemed successfully if the target user

(users/test or users/projector) had effective privileges allowing him read privilege (with

the read-acl privilege denied or not) and denying him write-content and write-acl

privileges. The Task2 or Task 3 instance was deemed a failure i f the target user had

effective privileges allowing him write-content and/or write-acl privileges, or denying

read privilege.

6.2 Results

This section presents the results of the study, including speed, accuracy, user confidence

and satisfaction for each of the two modules under scrutiny. The results show that the

I A M wizard performed better than the A C L Editor did.

6.2.1 Speed

For accomplishing the tasks by using the A C L Editor, all participants had to first learn

the A C L and how it is evaluated. The average time for them to understand the A C L

evaluation is about 8 minutes. On the contrary, the two participants who fulfilled the

104

tasks by using the I A M wizard first spent no time learning the A C L evaluation before the

tasks but still got 100% accurate task completion.

Taskl Task2 Task3 Task4

• All ACL Editor users

• All IAM users

• Successful ACL Editor
users only

• Successful IAM users
only

Figure 6.2: Average time to complete T a s k l , Task2, Task3, and Task4.

Figure 6.2 illustrates the average task completion times for each of the two modules and

four tasks. The solid bars show times for all participants, whether they succeeded or

failed in the task; the striped bars show times only for participants who completed the

tasks accurately. For using the I A M wizard, since all tasks were successful, the average

times for all and for successful participants were the same for each task. Note that the

difference between Task4's average completion times for all participants and only

successful participants using the A C L Editor is large. For this task, 9 of 10 participants

using the A C L Editor thought they could not complete the task and gave up while one

went on to check the Group Manager.

These results show that those completed the tasks successfully took less time using the

105

I A M wizard than using the A C L Editor. For Task2 and Task3, the difference between

times for the two modules is not statistically significant (one-sided Welch's r-test for

Task2: t = 0.3511, df = 7, p = 0.3679; for Task3: t = 1.6482, df = 2, p = 0.1205).

However, for Task l , successful users using the I A M wizard spent, on average,

significantly less time than the successful users using the A C L Editor did. A one-sided

Welch's Mest showed this difference to be statistically significant at the 0.05 level (t =

3.3789, df = 18, p =0.0017). This is because many users using the A C L Editor still added

new A C E s into the A C L although the task requirements had already been fulfilled, while

the I A M wizard directly told them the fact and then no action was needed. For Task4, the

time difference is also significant. The only one who successfully completed this task

using the A C L Editor took 187 seconds (he first used the A C L Editor and then the Group

Manager), while the users using the I A M wizard took less time (Mean = 91.6, Standard

Deviation = 31.3).

6.2.2 Accuracy

Table 6.2 shows the percentages of participants who successfully (accurately) completed

the tasks by using the A C L Editor and the I A M wizard. The I A M wizard outperformed

the A C L Editor on all tasks. Especially, for Task4, using the A C L Editor, only 1

participant who remembered his prior experience of adding users to a group to get

privileges completed the task successfully, while all participants completed the task

successfully by using the I A M wizard.

106

Table 6.2: Percent of accurate completions for the four tasks by using the A C L Editor
and the I A M wizard

Using A C L Editor (%) Using I A M wizard (%)

Task l 100 100

Task2 70 100

Task3 30 100

Task4 10 100

Note that by using the I A M wizard, more users correctly completed the tasks while

taking less time on average, suggesting that I A M ' s accuracy gains were not due simply to

a speed-accuracy tradeoff.

A s indicated above, Task2 and Task3 are similar to the Wesley and Jack tasks in Maxion

and Reeder's study [53]. In that study, their proposed Salmon interface which only

provided needed information to the user for setting file permissions recorded 83% and

100% accurate task completions for the Jack and Wesley tasks, respectively. The I A M

wizard with both 100% accurate task completions demonstrates superior performance.

Actually, these results are natural and predictable, because the I A M is designed to

directly accommodate user goals. It eliminates human errors in the goal implementation.

In such a system, the only source of error is in expressing the intention/goal. For

example, it is possible that the representation of some complex intentions in the system

does not match the user's mental model, and this may lead to confusion and failure to

express such intentions to the system. Therefore we need to study the users' real security

intentions and represent them more accurately in the system. One doctoral student in my

107

group is working on modeling user privacy needs for information sharing. Her work

should be useful for extending the current system to support more user intentions

accurately.

6.2.3 User Confidence and Satisfaction

The participants were asked to state their confidence in their work. O f course, they gave

the highest confidence rating (i.e., 7) to all tasks when using the I A M wizard, because the

system accomplished most work for them, and provided enough feedback so that they can

check the results in the end. When using the A C L Editor, as shown in Table 6.3, their

confidence was lower.

Table 6.3: Average confidence ratings for the four tasks by using the A C L Editor and the
I A M wizard

Using A C L Editor
(Mean, Standard Deviation)

Using I A M wizard

Task l 6.9, 0.3 7 ,0

Task2 6.4, 0.7 7 ,0

Task3 6.3,0.8 7 ,0

Task4 1.6, 1.8 7 ,0

Note the mismatch between the high confidence and poor performance on Task 2 and

Task 3 when using the A C L Editor. This is a recipe for security failures and frustration.

Users think that they have correctly configured the security system to protect their

resources, but they are mistaken. Moreover, it is unlikely that this mistake would be

noticed until a security breach demonstrates that the system is misconfigured (assuming

108

that they are made aware of the breach). Since the I A M design addresses both the gulf of

execution and the gulf of evaluation, the user's confidence is a good match to goal

success even though the system hides many of the details of the mechanism. In essence,

because the system is careful to show the user the effects of their actions, the "magical"

connection between the intention and the mechanism seems natural and predictable.

In the interview, all participants expressed their preference of the I A M wizard over the

A C L Editor. Most of them explicitly indicated that this level of expressing goals seemed

natural to them, and the hiding of the internal security mechanism (i.e., the A C L) did not

confuse them, or upset their expectations. The most common feedback was that the new

module was straightforward for accomplishing the tasks. For example, ParticipantC said,

" A C L looks like an alien to me and I have no interest in learning it. If I have to control

access to my files, of course I want to choose I A M - l i k e tools. I really hope that the whole

computer system can be designed in this way so that I can use it easily."

6.3 Discussion

Let us consider the five quantities for measuring usability listed in Chapter 1. From the

results shown above, we can conclude that the I A M wizard is more usable than the A C L

Editor from all aspects of ease of learning, efficiency of use, error frequency and severity,

and subjective satisfaction. Memorability has not been studied. One possible way to

explore it is to ask the participants to return after 2-3 months for retesting. It may be

irrelevant, however, because of the lack of learning curve for the I A M wizard.

109

In the study, it was observed that when using the A C L Editor, participants tended to add

new A C E s for accomplishing the privilege-setting tasks. Simply adding an A C E without

checking existing A C E s may introduce redundancy. For example, even though the

requirements for Task l were already fulfilled, 6 participants still added an A C E granting

users/test the read privilege, and 4 participants also added an A C E granting users/test the

write-content privilege. When they were asked to deny users/test the privilege to change

the file's content in Task2, 2 of these 4 simply removed the new added A C E granting

users/test the write-content privilege and thought the task was completed, which was in

fact not true.

In addition, this observation supports the claim that non-expert end-users often confuse

their intentions with the actual A C E s (ignoring the rest of the A C L context) so that they

read A C E s as intentions and assume that adding an A C E is the same as fulfilling an

intention. This misunderstanding seems to be a primary source of error in using this

traditional interface, and the I A M has eliminated this possibility.

110

= i View Side Effects

Checked resource: Iocalhost:8080/slide.iflles/rfc2518.pdf
Vour intention: [/users/test] has ho privilege [write-content] on resource
Iocalhost:8u80/slide/files«c2518.pdf
Current action: remove the ACE entry' grant /slide/users/test the privilege [write]' from the ACL

Pi

The aggregate side effects are:

User/Group .. Has Privileges

12 /slide/usersrtest oriqinal bind, read, read*current-user-privilege-set, unbind, write, write-acl, wr

before bind, read, read-current-user-privilege-set, unbind, write, write-acl, wr

after read, read-current-user-privilege-set

If no other actions which will also cause side effects are performed, the side effects are:

User/Group !• '. " ' Has Privileqes

"E /slide/users/test original bind, read, read-current-user-privilege-set, unbind, write, write-acl, wr

after bind, read, read-current-user-privilege-set, unbind, write-content

N.B.: In the above table, the privileges that the specified principal will lose are shown in blue, and the new
privileges that the specified principal will get are shown in red.

| Close |

Figure 6.3: A screenshot of the interface showing the side-effects that caused by multiple
actions

Some design principles for usability emphasize the importance of giving feedback to the

user. For example, the principle of Clarity from Yee [90] states that the effect of any

security-relevant action must be clearly apparent to the user before the action is taken.

However, there remains a challenge in balancing the need to show details against

simplicity which may involve hiding details. Too many or too few details may make it

hard for users to understand, or even confuse them. For example, in the test 80% of

participants expressed that they had difficulty interpreting the side effects as shown in

Figure 6.3, though they admitted that they did want to know such information. In

addition, they also indicated that most of the difficulties came from the privilege

hierarchy. One possible approach to improving the understandability may be to show in

some way the semantic meaning of every privilege and their relationships instead of just

showing the privileges implemented in the system.

I l l

6.4 Summary

In this chapter, the results of a user study comparing the I A M wizard and the simple A C L

Editor are presented. Although this study is simple, it does yield evidence for the

usability advantages of the proposed I A M model. The improvements in successful task

completion, the reduction in time to task completion, better correlation of confidence to

actual success, and the increase in user satisfaction were due primarily to the isolation of

users from the internal security mechanisms and the direct support of users' intentions.

Simply, the study indicates the feasibility and usability of the I A M design, and

demonstrates that this design doesn't upset user expectations or cause confusion.

112

Chapter 7

Conclusion

The following sections present the conclusions of the research conducted in this thesis,

and propose future research topics and directions that have to be further studied to enrich

the access management for information sharing.

7.1 Summary of Research

Hassell and Wiedenbeck [36] argued for the assumption that "changing the way people

conceptualize information systems security wi l l change the way people act. In turn, this

wi l l create a culture of security." This thesis advocates such conceptual changes for

making security usable for end-users. I reject the claim (more often implicit than explicit)

that security interfaces must force end-users to understand and directly manipulate the

internal security mechanisms. Instead, I propose that these systems should be able to

accommodate their users' task-oriented goals and translate these intentions into

implementations automatically or semi-automatically. For access control systems, this

113

can be achieved by separating access management from access control and enhancing the

access management based on users' intentions as I proposed in this thesis. A n access

management system wi l l interpret users' intentions, formulate the access control rules for

fulfilling those intentions, and provide users with enough feedback, while leaving the

access control mechanism intact. In this way, end-users can be isolated from access

control mechanisms and concentrate instead on effects (e.g., effective permissions). The

security control interfaces wi l l thus be a kind of support system serving to resolve their

security goals.

This conceptual design came from a thorough algorithmic analysis of the decision

processes that users have to perform to determine how to implement their security

intentions in current access control systems. The W e b D A V access control was chosen

because of its potential to facilitate information sharing and its similarity to the Windows

N T F S access control (which is the most widely used A C L system). This analysis revealed

that even for this simple system the conceptual complexity of managing access is too

high for end-users compared with their low interest and limited technical capacity for

such tasks.

In analyzing users' run-time intentions, some issues such as side effects, conflicts, and

modeling decisions were identified and discussed in detail.

Based on this analysis, a set of design principles and three levels of intentional access

management system model (wizard, full, and multi-backend) were proposed. These levels

of model convey the concept of separation of access management and access control.

114

Although it remains a challenge to develop implementations for all current access control

systems based on this model, a positive demonstration has been presented. A real system,

an access management system for W e b D A V , has been implemented to embody such

I A M levels and principles. Integrated with other new interface features, in a user study,

this system yielded a considerable improvement of usability in terms of speed, accuracy,

and user satisfaction compared with a traditional A C L editor.

In conclusion, I have proposed a conceptual model for usable access control and

developed an access management prototype system for W e b D A V based on this model.

The work in this thesis has shown promising results and excellent potential to allow

flexible, safe end-user oriented control of system security and privacy.

7.2 Further Directions

As I discussed in Chapter 1, security is usually a secondary goal for end-users. In an

information management environment, an end-user focuses on the sharing of information

rather than access control and its implementation. Integrating this concern with the

current analysis, it is possible to further design a security management system model for

end-user controlled information sharing. In Table 7.1, I compare this with the traditional

model. Instead of explicitly identifying the resources to protect and making the

enforcement statements by him- or herself, the user can identify and express his

intentions to share or make private. The system determines possible enforcement

statements to fulfill these intentions. Then there may be two choices for the system. One

115

is that it selects the enforcement automatically and informs the user (or not). Here,

Surprise-Explain-Reward strategy [88] can be adopted. Another choice is that the system

presents these enforcement possibilities with consequences to the user and requests a

decision from the user (the strategy we have initially taken with the I A M wizard).

Table 7.1: Comparison of the two security management models

Existing Model Alternative Model

Resources

T

Resources

T

Security
E n f o r c e m e n t

System

Security
E n f o r c e m e n t

Sys tem

Security
Tools

Sharing
Tools

The user identifies resources - The user identifies an intention to share
resources with others or restrict sharing

- The user makes a statement guiding
security enforcement of resources

- The system determines possible
enforcement statements to fulfill the
intention.

The system enforces - The system automatically chooses the
enforcement and informs (or not) the user
by Surprise-Explain-Reward [88].
O R
- The system presents alternative
enforcement possibilities with
consequences to the user and requests a
decision.

B y using a system implementing this model, users need not think about security, but only

about their needs for sharing or privacy. This should clearly facilitate collaboration

116

among users.

In such systems as well as the I A M systems proposed above, some advanced techniques

for interpreting users' intention are desired. Although simple intentions like those

discussed in Chapter 3 are easy to support, capturing and interpreting a user's complex

intentions remains a challenge. Two issues need further research. One is to develop a

mechanism that lets the user express his or her intentions in a natural but formal way to

the system. Another is to design algorithms to translate the formal intentions to the

enforcement rules accepted by other backend access control systems. I suggest that the

initial step wi l l be to investigate users' behavior in collaborative work and model their

goals or intentions.

To improve the current I A M implementation, some issues may be considered, as briefly

discussed below.

Users often have intentions which must be translated into multiple privileges used in the

system, while they often lack the capacity to do such translations easily. Also it has been

observed that users often feel confused about the privileges and their relationships in the

system (e.g., the privilege hierarchy). Better presentation of privileges in task-oriented

terms and an interface that associates each privilege with its semantic meaning could

improve the understandability of the access control system to end-users.

Detecting and resolving conflicts between users' intentions is clearly important yet

difficult to manage in a collaborative environment. The server-side implementation with

database support (as opposed to the wizard approach examined here) is necessary but

117

insufficient to achieve this. It can facilitate tracking intentions; however, we still need a

mechanism to compare intentions to detect conflicts and then manage the user-to-user

interaction necessary to resolve these conflicts. A t this point, some of the work on policy

management systems may help [52] [38].

The current implementation is based on the I A M wizard model. To demonstrate the high

potential of I A M for usable access control, the full I A M and multi-backend I A M models

need to be developed. In addition to the resolution of conflicts, and the presentation and

exploration of side effects, such future I A M systems should support interactions with

multiple systems and with system administrative actions.

118

Bibliography

[1] Adams, A . and Sasse, M . A . Users are not the enemy: why users compromise
security mechanisms and how to take remedial measures. Comm. ACM, vol . 42, no.
12, 1999, 41-46.

[2] Balfanz, D . Usable access control for the World Wide Web. In Proceedings of the
19th Annual Computer Security Applications Conference. I E E E Computer Society,
Los Alamitos, C A , 08-12 December 2003, 406-415

[3] Balfanz, D . , Durfee, G . , Smetters, D . K . , and Grinter, R . E . In search of usable
security: five lessons from the field. IEEE Security & Privacy Magazine, vol . 2, no.
5, 2004, 19-24.

[4] Berkun, S. Why I switched to Firefox. Berkun's Blog, September 12, 2005.
http: //www. scottberkun. com/blo g/? p= 115

[5] Besnard, D . and Arief, B . Computer security impaired by legitimate users.
Computers & Security, vol. 23, no. 3, 2004, 253-264.

[6] Bishop, M . U N I X security: threats and solutions. Presentation to S H A R E 86.0,
Anaheim, C A , March 1996.
http://seclab.cs.ucdavis.edu/proiects/vulnerabilities/scriv/1996-share86.pdf

[7] Blakley, B . , Heath, C , and members of the Open Group Security Forum. Security
design patterns. Technical Report G031, The Open Group, Apr i l 2004.
http://www.opengroup.org/publications/catalog/g031 .htm.

[8] Brostoff A . Improving password system effectiveness. Ph.D. Dissertation.
University College London, 2004.

[9] Brostoff, S. and Sasse, M A . Safe and sound: a safety-critical design approach to
security. In Proceedings of the A C M New Security Paradigms Workshop, New
Mexico, September 10-13, 2001, 41-50.

[10] Card, S.K., Moran, T.P., and Newell , A . The Psychology of Human-Computer
Interaction. Lawrence Erlbaum, Hillsdale, N.J . , 1983.

119

http://seclab.cs.ucdavis.edu/proiects/vulnerabilities/scriv/1996-share86.pdf
http://www.opengroup.org/publications/catalog/g03

[11] Clemrn, G . , Reschke, J., Sedlar, E . , and Whitehead, J. Web Distributed Authoring
and Versioning (WebDAV) Access Control Protocol. R F C 3744. May 2004.
http://www.ietf.org/rfc/rfc3744.txt.

[12] Costantine, L . L . and Lockwood, L . A . D . Software For Use - A Practical Guide to
the Models and Methods of Usage-Centered Design. Reading M A : Addison-
Wesley, 1999.

[13] C R A Conference on "Grand Research Challenges in Information Security and
Assurance". November 16-19, 2003.
http://www.cra.org/Activities/grand.challenges/security/.

[14] D A V Explorer, http ://www. ics.uci.edu/~webdav/

[15] Davidson, M . J . , Dove, L . , and Weltz, J. Mental models and usability. Depaul
University, Cognitive Psychology 404, November 15, 1999.
http://www.lauradove.info/reports/mental%20models.htm

[16] DiGio ia , P. and Dourish, P. Social navigation as a model for usable security. In
Proceedings of the 2005 Symposium on Usable Privacy and Security, Pittsburgh,
Pennsylvania, July 06 - 08, 2005, 101-108.

[17] de Paula, R., Ding, X . , Dourish, P., Nies, K . , Pillet, B . , Redmiles, D.F . , Ren, J.,
Rode, J .A. , and Filho, R.S. In the eye of the beholder: A visualization-based
approach to information system security. International Journal of Human-Computer
Studies, vol . 63, 2005, 5-24.

[18] de Paula, R., Ding, X . , Dourish, P., Nies, K . , Pillet, B . , Redmiles, D.F. , Ren, J.,
Rode, J .A., and Filho, R.S. Two experiences designing for effective security. In
Proceedings of the 2005 Symposium on Usable Privacy and Security, Pittsburgh,
Pennsylvania, July 06 - 08, 2005, 25-34.

[19] Dewan, P. and Shen, H . Controlling access in multiuser interfaces. ACM
Transactions on Computer-Human Interaction, vol. 5, no. 1, 1998, 34-62.

[20] Dewan, P. and Shen, H . Flexible meta access-control for collaborative applications.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work,
1998, 247-256.

[21] Dix , A . , Finlay, J., Abowd, G . , and Beale, R. Human-Computer Interaction.
Herfordshire U K : Prentice Hal l Europe, 1998

[22] Dourish, P., Grinter, R., Delgado de la Flor, J., and Joseph, M . Security in the wild:
user strategies for managing security as an everyday, practical problem. Personal
and Ubiquitous Computing, vol. 8, no. 6, 2004, 391-401.

[23] Dourish, P., de la Flor, J.D., and Joseph, M . Security as a practical problem: some
preliminary observations of everyday mental models. Presented at the C H I 2003

120

http://www.ietf.org/rfc/rfc3744.txt
http://www.cra.org/Activities/grand.challenges/security/
http://www.lauradove.info/reports/mental%20models.htm

Workshop on Human-Computer Interaction and Security Systems, Ft. Lauderdale,
Apr i l 2003.

[24] Dourish, P. and Redmiles, D. A n approach to usable security based on event
monitoring and visualization. In Proceedings of the ACM New Security Paradigms
Workshop, Virginia Beach, V A , 2002, 75-81.

[25] Dussault, L . W e b D A V benefits for the enterprise and its denizens. DM Direct
Newsletter, Dmreview.com, June 27, 2003.
http://www.dmreview.com/article sub.cfm?articleID=6971.

[26] Edwards, W . K . , Grinter, R . E . At home with ubiquitous computing: seven
challenges. In Proceedings of the International Conference on Ubiquitous
Computing (UBICOMP 2001), Atlanta, G A , September 30-October 2, 2001. Berlin:
Springer Verlag, L N C S 2201, 256-272.

[27] Edwards, W . K . , Newman, M . W . , Sedivy, J.Z., Smith, T.F. , Balfanz, D . , Smetters,
D . K . , Wong, H .C. , and Izadi, S. Using speakeasy for ad hoc peer-to-peer
collaboration. In Proceedings of the ACM Conference on Computer Supported
Cooperative Work, 2002, 256-265.

[28] Foster, I. and Kesselman, C. (eds.) The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[29] Garfinkel, S.L. Design principles and patterns for computer systems that are
simultaneously secure and usable. Ph.D. Dissertation, Massachusetts Institute of
Technology, 2005.

[30] Gates, C. and Slonim, J. Owner-controlled information. In Proceedings of the ACM
New Security Paradigms Workshop, Ascona, Switzerland, August 18-21, 2003, 103-
111.

[31] Goland, Y . , Whitehead, E . , Faizi , A . , Carter, S.R., and Jensen, D . HTTP Extensions
for Distributed Authoring - WEBDAV. R F C 2518. Feb. 1999.
http://www.ietf.org/rfc/rfc2518.txt.

[32] Good, N .S . and Krekelberg, A . Usability and privacy: a study of Kazaa P2P file-
sharing. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2003), Ft. Lauderdale, Florida, Apr i l 5-10, 2003, 137-144.

[33] Greenberg, S. and Marwood, D . Real time groupware as a distributed system:
concurrency control and its effect on the interface. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work, A C M Press, Chapel H i l l ,
N C , 1994, 207-217.

[34] Grinter, R . E . and Smetters, D . K . Three challenges for embedding security into
applications. Presented at the Workshop on Human-Computer Interaction and

121

http://Dmreview.com
http://www.dmreview.com/article
http://www.ietf.org/rfc/rfc2518.txt

Security Systems, part of A C M Conference on Human Factors in Computing
Systems (CHI 2003), Fort Lauderdale, Florida.

[35] GroupDrive Collaboration Suite, South River Technologies.
http://www.southrivertech.com/index.php?pg=./products/groupdrive/index#

[36] Hassell, L . , and Wiedenbeck, S. Human factors and information security. Draft,
2004. http://clam.rutgers.edu/~birget/grPssw/hasselSue.pdf

[37] Holmstrom, U . User-centered design of security software, In Proceedings of the
17th Symposium on Human factors in Telecommunications, Copenhagen, Denmark,
M a y 1999.

[38] Jaeger, T., Zhang, X . , and Edwards, A . Policy management using Access control
spaces. ACM Transactions on Information and System Security, vol. 6, no. 3,
August 2003, 327-364.

[39] Jakarta Slide project, http://jakarta.apache.org/slide/

[40] Jendricke, U . and torn Markotten, D . G . Usability meets security - the identity-
manager as your personal security assistant for the internet. In Proceedings of the
16th Annual Computer Security Applications Conference, 2000, 344-353.

[41] Jendrock, E . , Bodoff, S., Green, D. , Haase, K . , Pawlan, M . , and Stearns, B . The
J2EE Tutorial, I S B N 0-201-79168-4, Addison Wesley, 2002.

[42] John, B . E . and Kieras, D .E . Using G O M S for user interface design and evaluation:
Which technique? ACM Transactions on Computer-Human Interaction, vol . 3, no.
4, Dec. 1996, 287-319.

[43] Kapadia, A . , Sampemane, G. , and Campbell, R. Know why your access was denied:
regulating feedback for usable security. In Proceedings of the 11th ACM conference
on Computers and Communications Security (CCS), Washington D C , Oct 25-29
2004.

[44] Kazaa. http://www.kazaa.com/

[45] Kieras, D . E . Guide to G O M S model usability evaluation using N G O M S L . In The
Handbook of Human-Computer Interaction, M . Helander and T. Landauer Eds. 2nd
ed. North-Holland, Amsterdam, 1996.

[46] Kirwan, B . A Guide to Practical Human Reliability Assessment. Taylor and Francis,
London, U K , 1994.

[47] Kirwan, B . and Ainsworth, L . K . (Eds.) A Guide to Task Analysis. Taylor and
Francis, London, U K , 1992.

122

http://www.southrivertech.com/index.php?pg=./products/groupdrive/index%23
http://clam.rutgers.edu/~birget/grPssw/hasselSue.pdf
http://jakarta.apache.org/slide/
http://www.kazaa.com/

[48] Lampson, B . Protection. In Proceedings of the Fifth Princeton Symposium on
Information Sciences and Systems, Princeton University, March 1971, 437-443.

[49] Landwehr, C. Protection (security) models and policy. The Computer Science and
Engineering Handbook, Tucker, A . B . (editor), C R C Press, 1997, 1914-1928.

[50] Levine, A . , Prevelakis, V . , Ioannidis, J., Ioannidis, S., and Keromytis, A .
W e b D A V A : an administrator-free approach to Web file-sharing. In Proceedings of
the Twelfth I E E E International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, W E T I C E 2003, 9-11 June, 2003, 59-
64.

[51] Long, A . C . , Moskowitz, C , and Ganger, G . A prototype user interface for coarse
grained desktop access control. Technical Report CMU-CS-03-200 , Computer
Science Department, Carnegie Mel lon University, Pittsburgh, P A . 2003.

[52] Lupu, E . and Sloman, M . Conflicts in policy-based distributed systems
management. I E E E Transactions on Software Engineering, Special Issue on
Inconsistency Management, vol . 25, no. 6, Nov./Dec. 1999, 852-869.

[53] Maxion, R . A . and Reeder, R . W . Improving user-interface dependability through
mitigation of human error. International Journal of Human-Computer Studies, vol.
63, 2005,23-50.

[54] Microsoft. Microsoft TechNet: Security descriptors and access control lists technical
reference. 2003.
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef
/0b340511-024f-43d0-86d7-17ada2f5b4f4.mspx

[55] Nielsen, J. Usability Engineering. Academic Press, 1993.

[56] Norman, D . A . The Design of Everyday Things. Basic Books, New York, 2002.

[57] Patrick, A . S . , Kenny, S. From privacy legislation to interface design: implementing
information privacy in human-computer interactions. In Proceedings of the Privacy
Enhancing Technologies Workshop (PET 2003), Dresden, Germany. March 26-28,
2003.

[58] Pocock, S., Harrison, M . , Wright, P., Johnson, and P. Thea: a technique for human
error assessment early in design. In Proceedings of Eighth IFIP TCI3 Conference
on Human-computer Interaction (INTERACT'01), Tokyo, Japan, 09-13 July 2001.
247-254.

[59] Probst, S. and Kung, J. The need for declarative security mechanisms. In
Proceedings of the 30th Euromicro Conference, 2004, 526 - 531.

[60] Rauterberg, M . How to measure cognitive complexity in human-computer
interaction. In Proceedings of the 13th European Meeting on Cybernetics and

123

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef

Systems Research, Vienna: Austrian Society for Cybernetic Studies, Apr i l 9-12,
1996, 815-820.

[61] Reeder, R. Comparing interfaces for setting N T F S file permissions. Abstract,
DIMACS Workshop on Usable Privacy and Security Software, Piscataway, NJ , July
7-8, 2004. http://dimacs.rutgers.eduAVorkshopsAV"GTools/abstracts.html#reeder

[62] Saltzer, J .H. and Schroeder, M . D . The protection of information in computer
systems. In Proceedings of the IEEE, vol. 63, no. 9, 1975, 1278-1308.

[63] Sampemane, G . , Naldurg, P., and Campbell, R . H . Access control for active spaces.
In Proceedings of the 18th Annual Computer Security Applications Conference,
I E E E Computer Society, Los Alamitos, C A , 09-13 December 2002, 343-352.

[64] Sandhu, R.S. , Coyne, E.J . , Feinstein, H . L . , and Youman, C . E . Role-based access
control models. IEEE Computer, vol. 29, no. 2, February 1996, 38-47.

[65] Sasse, M . A . , Brostoff, S., and Weirich D . Transforming the "weakest l ink" - a
human-computer interaction approach to usable and effective security. BT
Technology Journal, vol. 19, no. 3., July 2001, 122-131.

[66] Sasse, M . A . Computer security: anatomy of a usability disaster, and a plan for
recovery. Presented at the C H I 2003 Workshop on Human-Computer Interaction
and Security Systems, Ft. Lauderdale, Apr i l 2003.

[67] Sasse, M . A . Elicit ing and describing users' models of computer systems. Ph.D.
Thesis, School of Computer Science, University of Birmingham, Apr i l 1997.

[68] Satyanarayanan, M . Pervasive computing: vision and challenges. IEEE Personal
Communications, vol. 8, no. 4, Aug . 2001, 10-17.

[69] Schneiderman, B . and Plaisant, C. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. 3 r d ed. Addison-Wesley, 1998.

[70] Schneier, B . Secrets and Lies: Digital Security in a Networked World. John Wiley &
Sons, 2000.

[71] Schuler, D . and Namioka, A . (eds.) Participatory Design, Principles and Practices.
Hillsdale, N J : Lawrence Erlbaum Associates, 1993.

[72] Schultz, E .E . , Proctor, R .W. , Lien, M . - C , and Salvendy, G . Usability and security
an appraisal of usability issues in information security methods. Computer &
Security, vol. 20, no. 7, 2001, 620-634.

[73] Schumacher, M . Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer, 2003. L C N S 2754.

124

http://dimacs.rutgers.eduAVorkshopsAV%22GTools/abstracts.html%23reeder

[74] Sheehan, K . Towards a typology of Internet users and online privacy concerns. The
Information Society, vol. 18, 2002, 21-23.

[75] Shen, H . and Dewan, P. Access control for collaborative systems. In Proceedings of
the ACM Conference on Computer-Supported Cooperative Work. A C M , New York,
1992,51-58.

[76] Shneiderman, B . Direct manipulation: a step beyond programming languages. In
IEEE Computer, vol. 16, no. 8, August 1983, 57-69.

[77] Smetters, D . K . and Grinter, R . E . Moving from the design of usable security
technologies to the design of useful secure applications. In Proceedings of the ACM
New Security Paradigms Workshop, September 2002, 82-89.

[78] Spencer, R., Smalley, S., Loscocco, P., Hibler, M . , Andersen, D . and Lepreau, J.
The flask security architecture: system support for diverse security policies. In
Proceedings of the 8th USENTX Security Symposium, Washington, D .C . , U S A ,
August 23-26, 1999.

[79] Tsui, E . Technologies for personal and peer-to-peer (P2P) knowledge management.
CSC Leading Edge Forum (LEF) Technology Grant report, July 2002.
http://www.knowledgeboard.com/cgi-bin/library.cgi? action=detail&id=l 170.

[80] Usability: Usability Basics. U S Department of Health and Human Services, 2004.
http://www.usability.gov/basics/.

[81] W e b D A V Resources, http://www.webdav.org/

[82] Weirich D . and Sasse, M A . Pretty good persuasion: a first step towards effective
password security in the real world. In Proceedings of ACM New Security
Paradigms Workshop, September 2001, 137-143.

[83] Whitehead J. W e b D A V : versatile collaboration multiprotocol. IEEE Internet
Computing, vol. 9, no. 1, 2005, 75-81.

[84] Whitten, A . and Tygar, J .D. Usability of security: a case study. Technical Report
CMU-CS-98-155 , Carnegie Mel lon University School of Computer Science,
December 1998.

[85] Whitten, A . and Tygar, J .D. Why Johnny can't encrypt: a usability evaluation of
P G P 5.0. In Proceedings of 8th Usenix Security Symposium, Usenix Assoc., 1999,
169-184.

[86] Whitten, A . and Tygar, J. Safe staging for computer security. Presented at the
Workshop on Human-Computer Interaction and Security Systems, part of A C M
Conference on Human Factors in Computing Systems (CHI 2003), Fort Lauderdale,
Florida.

125

http://www.knowledgeboard.com/cgi-bin/library.cgi
http://www.usability.gov/basics/
http://www.webdav.org/

[87] Whitten, A . Making security usable. PhD Thesis. School of Computer Science,
Carnegie Mel lon University, 2004.

[88] Wilson, A . , Burnett, M . , Beckwith, L . , Granatir, O., Casburn, L . , Cook, C , Durham,
M . , and Rothermel, G . Harnessing curiosity to increase correctness in end-user
programming. In Proceedings of ACM Conference on Human Factors in Computing
Systems, Ft. Lauderdale, F L , Apr i l 2003.

[89] Yan , J., Blackwell , A . , Anderson, R., and Grant, A . Password memorability and
security: empirical results. IEEE Security & Privacy, vol . 2, no. 5, Sept.-Oct. 2004,
25-31.

[90] Yee, K . - P . User interaction design for secure systems. In Proceedings of 4th
International Conference on Information and Communications Security, Deng R. et
al., eds., L N C S 2513 Springer, 2002, 278-290; http://zestv.ca/sid.

[91] Yee, K . - P . Aligning security and usability. IEEE Security & Privacy Magazine, Sep
2004,48-55.

[92] Yurcik, W . Better tools for security administration: enhancing the human-computer
interface with visualization. Abstract, D I M A C S Workshop on Usable Privacy and
Security Software, Piscataway, NJ , July 7-8, 2004.
http ://dimacs. rutger s. edu/W orkshops/W GTools/abstracts. html#yurcik

[93] Zurko, M . E . and Simon, R. T. User-centered security. In Proceedings of the ACM
New Security Paradigms Workshop, 1996, 27-33.

[94] Zurko, M . E . , Simon, R., and Sanfilippo, T. A user-centered, modular authorization
service built on an R B A C foundation. In Proceedings of the IEEE Symposium on
Security and Privacy, 9-12 May 1999, 57-71.

[95] Zurko, M . E . , Kaufman, C , Spanbauer, K . and Bassett, C . D i d you ever have to
make up your mind? What notes users do when faced with a security decision. In
Proceedings of 18th Annual Computer Security Applications Conference,
December, 2002, 9-13.

126

http://zestv.ca/sid

Appendices

Appendix 1 UBC Research Ethics Board's Certificate of

Approval

127

Appendix 2 Introduction to WebDAV Access Control

for User Study

1. Privileges: Access Control Lists are used to manage permissions on systems such as
W e b D A V , Microsoft Windows N T and Sun's Networked File System (NFS v4). In
W e b D A V , privileges represent the ability to execute certain actions on a resource (e.g., a
file or directory). These privileges are organized in a tree structure so that branches on the
tree (called aggregate privileges) include all of the basic priviliges on the leaves and
branches below them. The tree below represents the privileges for the W e b D A V system
we wi l l use on this test. For example, the read privilege includes the read-acl and read-
current-user-privilege-set privileges.

a l l] (aggregate)

[DAV:
1

, read] (aggregate)
1
+ -- [DAV:, read-acl]
+ -- [DAV:, read-current-user-privilege

[DAV: , write] (aggregate)

+ -- [DAV:, write-acl]
+ -- [DAV:, write-properties]
+ -- [DAV:, write-content] (aggregate)

+ -- [DAV:, bind]
+ -- [DAV:, unbind]

[DAV: , unlock]

2. Users and Groups: Users are identified by an entry in the users directory (e.g.,
users/test denotes the user test). A group is identified by an entry in the roles directory
(e.g., roles/user denotes the group user). The members of such a group are listed in the
property 'group-member-set of this entry and may include both users and other groups.
Whenever we want to refer to either a user or a group, we can use the term principal. In
order to create a user or group, you need to have the write privilege on the respective
directory. In order to change the membership of a group, you need to have both write-
properties and write-content privileges on the group entry.

3. ACL: A n Access Control List (A C L) is a list of access control elements (ACEs)
attached to each file or directory in the system. The A C L is evaluated to determine
whether or not access w i l l be granted or denied for a particular W e b D A V action on that

129

file or directory. Each A C E consists of a user or group (a principal), a grant or deny, and
a set of privileges. Each A C E should be read as "grant/deny the specified principal the
following privileges."

Terminology

Some terms need to be clarified for this test:

Conflict

Two A C E s in an A C L are said to conflict with each other when the principals and
privileges in these A C E s are matched, but one A C E grants and the other one
denies the privileges.

Redundancy

A n A C E has redundancy with another A C E when the principals and privileges in
these two A C E s are matched, and both of these A C E s grant or deny the
privileges.

Side-effect

A peripheral or secondary effect caused by some actions to accomplish a goal.
Particularly, in the access management task, it includes that the principal
gets/loses more privileges than desired, or more principals besides the desired one
get/lose the specified privilege. For example, if the goal is to ensure user A has
privilege B , and the action is adding user A to group C which has that privilege,
then user A may get not only the privilege B but also all privileges that group C
has.

130

Appendix 3 User Study Questionnaire

1. How frequent did you use computers?

a) Daily b) A few times a week c) A few times a month d) Rarely

2. How frequent did you set file permissions in your computer system?

a) Nearly daily b) A few times a week c) A few times a month or less d) Never

3. Are you familiar with Access Control List (A C L) and how it is evaluated?

a) Very familiar b) Familiar c) Average d) Know a little e) Don' t know at all

4. Are you familiar with the way A C L s are implemented in W e b D A V (Web-based
Distributed Authoring and Versioning) standard?

a) Very familiar b) Familiar c) Average d) Know a little e) Don't know at all

5. Additional information about your academic background, knowledge of computers,
file-systems and computer security systems:

131

Appendix 4 Description of Tasks Using the ACL Editor

for User Study

ACL Evaluation: A C E s are maintained in a particular order in the A C L . When
permission is requested for a certain action or set of actions on a file or directory, the
A C E s are tested in order until all of the permissions required by the current request have
been granted, at which point the access is granted. If, at any point, an A C E that denies
any of the requested actions that have not already been granted is seen, then the entire
request is denied. Failure to have all requested privileges granted results in access being
denied.

Below is an example of how an A C L is evaluated.

The A C L attached to fi le/bo has four ordered A C E s :
1. "Deny users/test the write-acl privilege";
2. "Grant roles/user the write privilege";
3. "Deny all principals the read-acl privilege", which is inherited from its parent
directory;
4. "Grant all principals the read privilege", which is inherited from its parent directory.

users/test and users/john are two members of the group roles/user. According to A C E 2 ,
users/john can modify the A C L of foo. But users/test cannot modify the A C L though he
is also a member of roles/user, because the preceding A C E 1 explicitly denies him the
write-acl privilege. Neither users/test nor users/john can read the A C L of foo (ACE3) ,
but they can read all other properties and content of foo (ACE4) . In addition, because
there are no A C E s explicitly granting them the unlock privilege, users/test and users/john
have no privileges to k i l l the lock on file foo i f this file is locked and they are not the lock
owner.

Y o u (user name John, password john) are co-authoring a book named " b o o k l " with
some collaborators. The chapters of this book are stored in / f i les /book l / on the W e b D A V
server.

Using the A C L Editor or Group Manager in D A V Explorer, you should complete the
following tasks:

132

Training Task

User users/Jack is an independent reviewer, and you want him make some comments on
this book. Please make sure that users/Jack can read and change the content of the file
files/bookl/comments.txt.

Task 1

Start Time:

User users/test is your co-author for Chapter 1 (files/bookl/Chapterl.doc). Please make
sure that users/test can read and change the content of files/bookl/Chapterl.doc.

End Time:

Answer the following questions:

Your action:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

Task 2

Start Time:

Because of personal reasons, now users/test has no time to continue working on this
chapter. Please make sure that effective now, users/test can read
files/bookl/Chapterl.doc, but cannot change its content.

End Time:

Answer the following questions:

Your action:

133

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

Task 3

Start Time:

Please make sure that user users/projector can read files/bookl/Chapter2.doc, but
cannot change its content.

End Time:

Answer the following questions:

Your action:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

Task4

Start Time:

User users/john2 becomes your co-author for Chapter 3 (files/bookl/Chapter3.doc).
Please make sure that effective now, users/john2 can read and change the content of
files/bookl/Chapter3.doc.

End Time:

Answer the following questions:

134

Your action:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

135

Appendix 5 Description of Tasks Using the IAM

Wizard for User Study

Y o u (user name John, password john) are co-authoring a book named "book2" with
some collaborators. The chapters of this book are stored in /files/book2/ on the W e b D A V
server.

Using the I A M wizard in D A V Explorer, you should complete the following tasks:

Training Task

User users/Jack is an independent reviewer, and you want him make some comments on
this book. Please make sure that users/Jack can read and change the content of the file
fiIes/book2/comments.txt.

Taskl

Start Time:

User users/test is your co-author for Chapter 1 (files/book2/Chapterl.doc). Please make
sure that users/test can read and change the content of files/book2/Chapterl.doc.

End Time:

Answer the following questions:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does this goal conflict with previous A C L settings?

Actions the system has taken:

Do the actions cause any side-effects?

Do the new settings have any redundancy with previous A C L settings?

136

Task 2

Start Time:

Because of personal reasons, now users/test has no time to continue working on this
chapter. Please make sure that effective now, users/test can read
fi!es/book2/Chapterl.doc, but cannot change its content.

End Time:

Answer the following questions:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does this goal conflict with previous A C L settings?

Actions the system has taken:

Do the actions cause any side-effects?

Do the new settings have any redundancy with previous A C L settings?

Task 3

Start Time:

Please make sure that user users/projector can read files/book2/Chapter2.doc, but
cannot change its content.

End Time:

Answer the following questions:

Your action:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

137

Task4

Start Time:

User users/john.2 becomes your co-author for Chapter 3 (files/book2/Chapter3.doc).
Please make sure that effective now, users/john2 can read and change the content of
files/book2/Chapter3.doc.

End Time:

Answer the following questions:

Your action:

Rate your confidence on that the task has been completed correctly (1-7, 7: very
confident):

Does your setting conflict with previous A C L settings?

Does your setting have any redundancy with previous A C L settings?

Does your setting cause any side-effects?

Please describe your impressions of this UI design for conflict handling:

Under standab i l ity:

Clarity:

Usability:

138

Appendix 6 User Study Interview Questions

1. What were the particular difficulties or confusions you found in the test?

2. Were there any aspects of the I A M wizard that you found particularly helpful?

3. What particular aspect(s) of the I A M wizard did you like)

4. What particular aspect(s) of the I A M wizard did you dislike!

5. If you are asked to choose from the A C L Editor and the I A M wizard to control access
to your resources, which one wi l l you prefer?

6. Is there any functionality that you think can be added to enhance the usability for
such access management tasks?

7. Are there any other comments you'd like to make at this time?

139

