Defect Tolerance for Yield Enhancement of FPGA Interconnect
Using Fine-grain and Coarse-grain Redundancy
by
Anthony J. Yu

B.A.Sc., The University of British Columbia, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
" Master of Applied Science
in
THE FACULTY OF GRADUATE STUDIES

Electrical and Computer Engineering

The University of British Columbia
August 2005

© Anthony J. Yu, 2005

Abstract

Field programmable gate arrays (FPGAs) are integrated circuits (ICs) designed to imple-
ment, or be programmed with, any user circuit. This unique ability makes FPGA extremely
popular; however, it also introduces a significant amount of area and delay overhead to the
circuit. Fortunately, FPGA are typically manufactured in a process that is two to three gen-
erations ahead of the one used by application specific ICs. This allows some reclaiming
of area and delay lost due to the programmability. However, the problem with being this
far ahead is manufacturing defects appearing in immature technologies. The aggressive
scaling of feature sizes and the migration to new technologies makes the manufacturing
of perfect FPGAs increasingly unlikely. Utilization of defect-tolerant techniques is one
method of alleviating this growing problem. Defect-tolerance enable defective FPGAs to
appear as “perfect.” This thesis presents and compares two new approaches to FPGA defect-
tolerance: fine-grain redundancy (FGR) and coarse-grain redundancy (CGR). FGR has an
array-size-independent overhead of up 50%, and is capable of tolerating an increasing num-
ber of defects as array size grows. In constast, CGR, at low defect levels, demonstrates a
diminishing amount of area overhead as array size increases. At low defect levels, CGR
requires less area overhead than FGR; however, in situations where more than 2-3 defects
are expected, FGR requires less overhead.

Contents

Abstract ii
Contents iii
List of Tables vi
List of Figures v ' vii
1 Introduction . 1
1.1 Motivation and Objectives 3
1.2 Contributions R R 4
13 Outline e e 5

2 Background ' 6
2.1 FPGA Architecture e 6
22 Definitions e e e e 9
221 Defectsvs.Faults. 10

222 Testingvs.Diagnosis 11

2.3 Previous Redundancy Approaches, 11
2.3.1 Software Redundancy 11

23.2 HardwareRedundancy 14

233 RuntimeRedundancy 16

24 SUMMALY . . . ottt e e e e e e e e 19

iii

3 Fine-grain Redundancy (FGR)

3.1

3.2
33

Architectural and Implementation Details
3.1.1 Switch Block Changes
3.1.2 Connection Block Changes

3.1.3 Supported Defects
3.1.4 Modes of Operation

3.1.5 Detailed Transistor-level Design

3.1.6 Software Aspect of FGR Defect Avoidance

Limitations e e e e e

AreaandDelay Results L .

331 Area. . ..o e e e e e e

332 Delay e

3.3.3 Areaand Delay Recovery
3.34 Area and Delay Product

4 Coarse-grain Redundancy (CGR)

4.1

4.2
4.3

Architectural and Implementation Details
4.1.1 Switch Block Changes
4.1.2 Connection Block Changes

4.1.3 Multiple Spare Rows and Columns

4.1.4 Supported Defects

4.1.5 Detailed Transistor-level Design

Limitations v o v e e e e e e e e e e e e e

Estimated Results

431 Area. e
432 Delay e
433 ScalingFactors

v,

.20

20
20
23
24
29
30
32
33
34
34
35
36
37

5 Yield Comparison

5.1 Yield Model

5.1.1 Coarse-grain Model
5.1.2 Fine-grainModelo
5.2 Architectural Considerations
5.2.1 Switch Implementation Impacton Yield
5.2.2 Flexibility Impacton Yield
5.2.3 Array SizeImpacton Yield.
5.2.4 Wire Length Impacton Yield.
53 Limitations e e e e
54 Results. e
54.1 SwitchImplementation
54.2 SwitchFlexibility
543 Fixed Array Size, e
54.4 Increasing Array Size
545 WireLength

6 Conclusion

6.1 AreaandDelay

6.2 Yield. . ..

Bibliography

49
49
49
50
52
52
53
53
53
54
55
55
57
58
62
64

68
68
69
69

72

List of Tables

3.1 Defect-tolerant switch implementations. 32

6.1 Summary ranking of FGR defect-tolerant schemes w/E3M1 70

vi

List of Figures

1.1 Overview of Coarse-Grain Hardware Redundancy 2
1.2 Overview of Fine-Grain Hardware Redundancy e 3
2.1 Overview of Fine-Grain Hardware Redundancy 7
2.2 Island-style Architecture 8
23 Directional wire (L=3). e 8
2.4 Directional switchblock, 9
2.5 CLBiIinputconnection v v v v v v v v it e e e 10
2.6 Design shifting for defect correctiono L. 13
2.7 Switch block with spare connections 16
2.8 Triple-modular Redundancy 17
3.1 High-level defect-tolerant switchblock 21
3.2 Connectionblockdesign, 23
3.3 Single and Double-length defects 25
3.4 Embedding imuxtoavoid contention L. 27
3.5 Defect correction example (L=2) I 28
3.6 HSPICE schematic for delay characterization. 31
3.7 Flexibility exploration for non-fault tolerant architectures 35
3.8 Area of defect-tolerant implementations. 36
3.9 Delay of defect-tolerant implementations 37
3.10 Area-delay product comparison. 38

vii

4.1
4.2
4.3
4.4
4.5

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

6.1

Connection block changes for CGR 41

Multiple spare row and column architectures 42
Comparison between CGR implementations 45
Comparison between FGR implementations 46
CGR-Gl1 for increasing array sizes (spare row/column overhead only) . . . 47
Switch block with spare connections oL 51
Imux implementation (L=4, M =32) 56
Shifting abilities (L=4,M=32), 57
Flexibility (L=4, M =32) 58
Increasing number of global spares(M=32) 59
Increasing number of local spares (M =32) 60
Increasing number of global spares M =256) 61
Increasing number of local spares M =256) e 61
Increasing array sizefor FGR(L=4) 62

Area comparison between FGR and CGR at equal number of defects(L. =4) 63
FGR yield for different wire lengths M=32) 64
Area/delay overhead forclma L. 66
Area breakdown of c¢lma for different wire lengths at a very wide channel

widthof 224 tracks e 67

viii

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) are large integrated circuits comprised of pro-
grammable logic blocks and programmable routing. Their size, density requirements and
regular layout makes them attractive for aggressive tuning in the latest technology pro-
cesses. As such, they are also prone to manufacturing defects [5, 32, 33, 34].

The number of manufacturing defects is expected to increase as the density of FP-
GAs increases, or as the programmable logic paradigm migrates to new technologies such
as nano-technology [12]. This increase in defect rates severely impacts the viability of
programmable devices. It also highlights the importance of incorporating defect tolerance
strategies into FPGAs.

Modern FPGAs are predominantly programmable routing. Defects are thus more
likely to appear in the routing resources as opposed to the programmable logic blocks. This
makes the ability to tolerate defects in the interconnect extremely important. In this thesis,
two different approaches to interconnect defect-tolerance are presented and compared. The
interconnect encompasses the physical wiring, switch elements, configuration bits in both
the switch block and connection block.

Traditional methods of defect tolerance involve the use.of a spare row and column in
the FPGA architecture [18]. As shown in Figure 1.1, defects are tolerated by bypassing the

defective row/column, and shifting part of the design to the spare row/column. This coarse-

Defect

Row Decoder
Row Decoder

Spare vertical
wiring

b) Corrected

a) Original

Figure 1.1: Overview of Coarse-Grain Hardware Redundancy

grain approach is capable of tolerating defects in routing and logic blocks. However, the
consolidation of spare resources into a single row or column limits its ability to efficiently
tolerate multiple distributed defects.

This thesis presents a new architecture that embodies a fine-grain approach to de-
fect tolerance. Spare resources are distributed across the FPGA fabric. This allows the
architecture to tolerate multiple distributed defects in the interconnection of an FPGA. In
the proposed architecture, defect tolerance is based on shifting individual connections. As
shown in Figure 1.2, shifting allows signals to route around a defect. This is called fine-
grain redundancy.

A comparison between traditional coarse-grain redundancy (CGR) and fine-grain
redundancy (FGR) is also presented. The comparison will show that FGR provides a scal-
able solution that is better at tolerating more defects as larger FPGAs are made. CGR, with

its smaller area overhead at current FPGA dimensions, is adequate for now.

Defect

IIRyAII

| ' l_ |]*_‘ —

T e T

a) Original b) Corrected

-
1

Figure 1.2: Overview of Fine-Grain Hardware Redundancy

1.1 Motivation and Objectives

A marketable FPGA is one where it can be programmed with any user design. Defects
inhibit this ability and cannot typically be sold. Thus, yield lost due to defects represents
a lost of revenue for FPGA vendors. The desire to maximize revenue suggest the need to
minimize yield lost due to defects. This thesis explores one such way to improve yield; it
investigates the use of defect-tolerant architectures for yield enhancement.

A viable defect-tolerant architecture should be capable of a) efficiently tolerating
multiple random distributed defects in the interconnection, b) preserving the signal timing
characteristics of the original circuit, and ¢) computing defect corrections quickly. These
attributes are desirable for the following reasons. The first is important because random
distributed defects are expected to contribute to the highest yield loss [33], and that the
number of defects is expected to increase with the scaling of technology [5]. Next, to guar-
antee the correctness of a defect-corrected circuit, drastic changes to the routing solution
cannot be allowed as the changes can lead to unanticipated timing violations, race condi-
tions and skew. Lastly, the ability to apply defect correction in a timely manner is essential
in a manufacturing environment since multiple circuit boards must be quickly programmed
with the FPGA bitstream.

Unfortunately, a survey of current defect-tolerant approaches revealed that there is

no such architecture capable of handling all of the abovementioned features. This then sets
the stage for this thesis. The objective of this research is development and comparison of
defect-tolerant architectures that are capable of tolerating multiple defects, capable of rapid

defect correction and capable of not altering signal timing.

1.2 Contributions

This thesis proposes two defect-tolerant architectures that are capable of tolerating multiple
random distributed defects. The first architecture, fine-grain redundancy (FGR), is scalable
and can tolerate an increasing number of defects as chip density or area increases. Addition-
ally, defect correction can be applied quickly and does not affect signal timing. Although
not shown in this thesis, it is recognized that the architécture can also be used to repair
crosstalk type faults.

In contrast, the second proposed architecture embodies coarse-grain redundancy
(CGR) and utilizes multiple spare rows and'cplumns to attain defect-tolerance. Although
CGR has been published before [18], the framework for handling multiple spares is new.
The CGR redundancy scheme does not scale as well as FGR. However, it will be shown
later that the use of multiple spare rows and columns is better suited for current FPGA
dimensions.

FGR and the multiple spare rows and columns schemes are the first architectures
to address all of the aforementioned desired features of defect-tolerance. Namely, both are
capable of a) efficiently tolerating multiple random distributed defects in the interconnec-
tion, b) preserving the signal timing characteristics of the original circuit, and ¢) computing
defect corrections quickly.

Yield models for FGR, multiple spare rows and columns CGR and traditional CGR
are presented and compared. The comparison is based on 4 factors that influence yield:
switch implementation, switch flexibility, array size and wire length.

In summary, the major contributions of this paper include the following:

Presentation of a new fine-grain defect-tolerant architecture and its yield model,

Presentation of a new coarse-grain multiple spare row and column architecture and

its yield model,

A detailed study of the area and delay overhead required for hardware-based defect-

tolerant interconnect scheme in FPGAs, and

A comparison between fine-grain and coarse-grain redundancy.

This work has been published in two FRGA conferences [36, 37] and is currently be-
ing evaluated by the University-Industry Liaison Office of the Universfty of British Columbia

for patent opportunities.

1.3 OQOutline

This thesis is organized as follows. Chapter 2 presents an overview of modern FPGA ar-
chitectures and describes previous approaches to FPGA defect redundancy. Chapter 3 de-
scribes the new the fine-grain redundancy architecture (FGR). The traditional coarse-grain
redundéncy architecture (CGR) and a new multiple-spare rows and columns architecture
are presented in Chapter 4. A comparison between the yield of the FGR and CGR is shown

in Chapter 5. Finally, conclusions are given in Chapter 6.

Chapter 2

Background

This chapter presents the architectural detail and terminology needed in the discussion of
FPGA defect tolerance. First, a brief overview of modern FPGA architecture is presented.
This is followed with the defining of defect, fault, test and diagnosis. Finally, a summary of

past FPGA defect-tolerance approaches are presented.

2.1 FPGA Architecture

An FPGA is an integrated circuit composed of programmable routing resources and pro-
grammable logic resources. The programmable logic, called configurable logic blocks
(CLBs), are composed of k-input lookup tables and flip-flops. Each lookup table can im-
plement any k-input logic function, and connects with a designated flip-flop. Together, the
lookup table and flip-flop pair form a basic logic element (BLE). Figure 2.1 shows a CLB
with I inputs and IV BLEs.

Programmable routing can be further divided into three parts: the wires, the switch
blocks (S blocks) and the connection blocks (C blocks). Together, the logic blocks, wires,
S blocks and C blocks for modern commercial FPGAs are organized into an island-style
architecture as shown in Figure 2.2. This architecture has proven to be very successful in
modern FPGA architectures [10, 22]. As such, the island-style architecture was also used

as the foundation for the new defect-tolerant architecture.

I shared
inputs

SE_?M sy feedback connections
its

T ‘
SRAM bits SRAM bit
”

\
P 999

— oo/ | output
N BLES k inputs ' B _ P
' bypassable
BLE k-nput LUT register

a) A configurable logic block (CLB) b) A basic logic element (BLE)

Figure 2.1: Overview of Fine-Grain Hardware Redundancy

Wires within an FPGA reside in routing channels and are indexed by track numbers.
A channel; as shown in Figure 2.2, spans the width or height of the FPGA and has its
boundaries defined by the CLBs. A wire’s track number is based on its position relative to
the width of the channel. The convention of this paper is that wires at the bottom-most/left-
most position in each channel is assigned a track number of 0. Similarly, wires at fhe
top-most/right-most position are assigned a track number of channel width — 1.

Modern FPGAs utilize single-driver wiring [25], where each wire is driven by a
single tapered buffer connected to an input multiplexer. Figure 2.3 presents a wire that
spans 3 switch blocks and uses single-driver wiring. Note that this wire can only be driven
at its start point, hence a “directional” attribute is instilled upon the wire. To minimize
the effects of the single-driver wiring, wires are added in pairs, one for either direction.
The adopted convention in this thesis and [25] is that even tracks contain signals that move
left/down, and odd tracks contain signals that move right/up.

S blocks are formed at the intersection of horizontal and vertical channels. An S
block allows nets to turn corners or extend further down the channel. They also allow for

net fanouts. Figure 2.4 shows both a detailed and high-level representation of the directional

Wire Segments

Vertical
Channel

Horitzontat
Channel

Figure 2.2: Island-style Architecture

Wir
Input Wire start point L)

MUX
Wire endpoint
[o—-4
f— 4 =
w—
—3 —r
Tapered buffer

Wire midpoints

Figure 2.3: Directional wire (L = 3)

Y
b

4

A

T
T — X‘YD_,,
t<—(] < :

Y iR
-

A) Detailed Representation B) High Level Representation

Figure 2.4: Directional switch block

switch for length 1 wires. In the high-level representation, a group of wires and buffers are
replaced by single arrows.

The C block provides the interface between the CLB and the wires. Since wires can
only be driven from its start point, the outputs of the CLB must connect directly to the input
multiplexers of the wires which start nearby. The inputs of the CLB are also selected from
wires in the routing channel at designated taps. These taps connect to input multiplexers of
the CLB. Figure 2.5 shows an example of a C block for length 1 wiring. For clarity, only a

few S block connections are shown in the figure.

2.2 Definitions

This section introduces a few definitions of terms used throughout this thesis.

— _: — oy = m mm e ey P I T |
C Block
e PSR s N
>—r 1, Y g = N
<+
| | | | | — |
\ 4
| | | | | |
Yy v
I S Block | I I S Block I
| S] - fo Wl I_._—._.I
CLB Input MUX CLB output
connections
—_— et -
I cLB I
L - - — 4

Figure 2.5: CLB input connection

2.2.1 Defects vs. Faults

Processing and mask imperfections can create physical imperfections in silicon. These
imperfections can lead to variations in the electrical behaviour of wires and transistors [29].
In an extreme case, the imperfections can result in functional failure and unexpected circuit
behaviour. This thesis defines a defect as an imperfection that causes a functional failure.

Faults are not physical imperfections, but rather models that encapsulate the be-
haviour of defects. They mo&el defects at the highest level of abstraction [16]. Several
different types of defects can be modeled by a single type of fault, such as stuck-at-1 faults.
Abstraction simplifies test design by reducing the number of individual defects that must be
considered.

Unlike defects, faults can also be transient in nature. That is, faults can be used to
describe errors that occur during the operation of the FPGA. This includes errors caused
by single-event upsets (SEUs) [17] and crosstalk [15]. This thesis is not concerned with

transient faults, although FGR can be used to avoid some crosstalk problems.

10

2.2.2 Testing vs. Diagnosis

Testing is the process of determining if a circuit is operating as designed. This is typically
accomplished by applying some stimuli to the circuit input and observing its output. A
properly tested chip will produces a clear “yes, the circuit is working” and “no, the circuit
is not working” answer.

Testing requires time aﬁd money. To facilitate testing and reduce costs, specialized
test structures can be incorporated into the circuit. An example of this is built-in self test
(BIST) structures.

Diagnosis involves the identification (i.e., determining the type) and location of
defects [8]. When compared to test, diagnosis is a more complex and time-consuming
process. This is because diagnosis demands the identification and location of defects in
addition to a pass/fail result. Diagnosis for FPGAs is typically performed by exhaustively
exercising all resources, and observing its output [28, 30]. This thesis will assume that some
type of diagnosis can be done in a cost-efficient manner to identify all defects in a device.

Hence, each device is assumed to have a defect map. This map can be rather simple.

2.3 Previous Redundancy Approaches

Defect tolerant approaches for FPGAs can be loosely classified into 3 groups. Tiaese
are software redundancy, hardware redundancy and run-time redundancy. Each approach
has its advantages and typically trade off between time (critical path delay and process-
ing/application time) and resources (silicon area, external storage, etc.). In the following
subsections, examples from each redundancy approach will be presented, and its advantages

and disadvantages outlined.

2.3.1 Software Redundancy

In the software redundancy approach, CAD tools are used to map around defective re-

sources. This method typically has no hardware overhead; however, the application of

11

defect correction may take a long time. Furthermore, the effectiveness and efficiency of
defect correction is heavily dependent on the abilities of the CAD tools.

In general, software redundancy is impractical in a production environment for two
reasons. First, generating a unique placement and routing solution for each FPGA is a
time-consuming process. Second, it is impractical to fully verify timing for each solution
because the timing characteristics of the new placement and routing solutions will be differ-
ent. For some high-performance circuits, it may be impossible to meet very stringent timing
requirements with every new placement and routing solution. Despite these disadvantages,
software redundancy dées have some advantages, ndtabl& minimal hardware overhead and

the ability to efficiently tolerate more defects than most other approaches.

Swapping and Incremental Rerouting

The approach proposed by [24] addresses defects in two ways. For defects in CLBs, defec-
tive resources are swapped with unused resources. This approach is based on the premise
that the resources within an a CLB are never fully utilized, and that the logic within the
CLB can be permuted such that the defective resource is avoided. For defects in routing
wires, an incremental congestion-aware router is used to reroute the signals éffected by the
defects. By limiting the number of nets that are rerouted, the impact on signal timing is
minimized.

For high-performance designs, it may not always be possible to find a new routing
solution that meets the stringent timing requirements of the design. This is also the case for
defects in logic blocks. For dense designs, it may not be possible to find an unused resource
necessary for swapping. Despite these shortcomings, the approach is attractive because it

requires no area overhead and can potentially tolerate a large number of defects.

Design Shifting

Another method for defect avoidance requires the reservation of spare resources. By care-

fully avoiding the use of certain resources, it is possible to avoid defects by “shifting” the

12

Usable Resource Unused Resource

a) Fault Free b) Faulty

Figure 2.6: Design shifting for defect correction

entire design by one row or column in the array [14]. Figure 2.6 shows an example of defect
correction using this approach.

Design shifting can be applied in a short amount of time since it only requires
bitstream manipulation. However, without hardware support, the shifting results in a slight
variance in I/O timing. It can also be complicated by heterogeneous (memory or DSP)
blocks in the array. Furthermore, to support multiple defects, the defects must be perfectly

aligned with the spare locations.

Precomputing Designs

To reduce the time needed to correct defects, a number of placement and routing solutions
for the same design can be precomputed. Each solution differs in resource usage. When
programming a defective device, defect correction involves selecting the appropriate solu-
tion - one that does not use the defective resources(s) [20, 23].

The clear advantage of this approach is that it does not have any on-chip hardware

overhead and requires a relatively short defect correction time. The disadvantage is that

13

there are many possible design permutations. This approach requires a lot of computing
time (even if it is done beforehand) and a lot of storage space for the different design per-

mutations.

EasyPath

Xilinx, a major vendor of FPGA integrated circuits, has a unique approach for dealing with
defective parts. Customers are asked for their bitstream. In return, Xilinx provides the
customer with a set of FPGAs that are guaranteed to work with the provided bitstream. The
vendor can make this guarantee because they ensured that the customer design is not using
any defective resources on the device sold. In essence, rather than forcing the configuration
bitstream to avoid the defective resources, defects are forced to avoid the bitstream [35].

. .'This approach is advantageous in a sense that customers can purchase discounted
FPGAs that correctly implements their desigh. For mature designs, this translates to a
significant cost reduction. The same cannot be said about new designs. Since new designs
are subject to design revisions, when the place and route solutions is changed, it is unlikely

to work on the faulty chip.

2.3.2 Hardware Redundancy

Hardware redundancy requires the addition of extra or spare resources. These spare re-
sources facilitate defect correction by allowing the use of a defective resource to be shifted
over to a spare one. This shifting reduces correction time since the time needed for shifting
is typically less than the time needed to generate a new placement and routing solution.
The disadvantage of this approach is the need to incorporate redundancy at an early
design stage of the FPGA itself. Hardware redundancy also costs area overhead and typ-
ically tolerates fewer defects than the software counterpart. Despite this, the approach is
effectively used in industry [2, 3, 11]. This suggests the advantages outweigh the cost in
area overhead. It also suggests that tolerating a large number of defects is not yet required

in today’s technology!

14

Spare Rows and Columns

The spare row and column érchitecture is one of the first published FPGA defect-tolerant
architectures [18]. One spare row and one spare column are incorporated into the FPGA. If a
defect exists in one row or éolumn, the defective row/column is bypassed, and the following
row/column are shifted until they utilize the spare. This architecture can naturally tolerate
clusters of defects in the same row/column, but not if the cluster spans two rows/columns.
It has also been successfully applied in industry [2, 3, 11].

The weakness of this architecture lies in its coafse-grain nature. In the event of any
defect, an entire spare row/column is utilized for correction. Thus, this architecture cannot
tolerate multiple distributed defects. The advantage of this architecture is that it requires
very little correction time. Industrial designs typically implement the row/column decoder
such that rows/columns can be pefmenantly enabled and disabled (e.g., fuses can be blown).
This reconfiguration can be made transparent to the user so the original bitstream can still
be used on this defective FPGA.

A more in-depth analysis of this architecture will be presented in Chapter 4. In

particular, an extension will be shown to generalize this approach for multiple spares.

Spare Connections

The architecture proposed in [13] incorporates spare wires and switches into the switch
block design. As shown in Figure 2.7, the spare resources allow any defective transistor to
be bypassed. This architecture can tolerate one defective pass-transistor per switch block.
One problem with this architecture is its impact on signal timing. Because of its
length and heavy loading, the spare connections are slower than regular connections. As
a result, defect correction introduces a significant timing variance in the routing solution.
Another problem is the inability to tolerate bridging type faults between wires. The advan-
tage of this architecture is its fine-grain approach to defect correction. By repairing defects

at the transistor level, this architecture can tolerate multiple defects in the routing network.

15

Long wire that connects
(via pass transistor) with

all S block I/O
o Y 4 X o
Y =3 3 ~L
<> m - < m -
I+ n[s
28 A
< >] | —
A& lI i f&
a) S block spare connections b) S block spare connections
(fault free) (faulty)

Figure 2.7: Switch block with spare connections

2.3.3 Run-time Redundancy

Run-time redundancy deals with errors that occur when the FPGA is in operation. These
errors include transient errors as well as permanent errors such as the ones resulting from
electromigration. Transient errors, also called SEUs, are not permanent defects. They
result when a radiation particle strike a memory element with sufficient energy to cause
a change in the memory’s stored value [17]. SEUs can be corrected by reprogramming
the memory element. In contrast, the errors cause by electromigration cannot be corrected
through reprogramming alone. It was observed in [19] that the stresses of carrying electrical
signals can cause breakages in interconnect. This phenomenon is called electromigration
and results in a permanent open circuits in the interconnect.

Run-time redundancy has the disadvantage of needing both hardware and software
overhead. Additional diagnosis circuitry is incorporated into the design to detect inconsis-

tencies arising from the errors. If an error is detected, CAD tools are used to correct the

16

X2)

> Redundant Y3
—> Logic 3
X—2> . Y > Redundant Y2 _|Majority Y
<1 togic 1 — Logic 2 “|voter
X1 : _——
> Redundant Y1 N
—>1 Logic 1
X1
a) Normal circuit b) TMR protected circuit

Figure 2.8: Triple-modular Redundancy

circuit (either by mapping around the defect or reprogramming the defective component).
The advantage of this approach is that defect diagnosis occurs during the operation of the
design. Defect correction can also occur during run-time as long as the underlying FPGA '
architecture supports partial reconfiguration. This reduces the impact of defect correction

and eliminates “down time”.

n-modular Redundancy

In n-modular redundancy, the circuit that desires defect protection is replicated n times!
and their outputs redirected to a voter circuit [6, 21]. The voter circuit performs a bit-wise
majority vote on the outputs of the replicated circuits. In a defect-free environment, the
outputs of the n circuits are identical, thus the output of the voter is identical to its input.
However, if the voter circuit detects an inconsistency in the replicated output values, for
example if the circuit experienced an transient error, the output will be that of the majority
input value. The use of odd values of n ensures than ties are not possible. The repli-
cation(s) that exhibited the inconsistency may be taken offline, reprogrammed, and then
reenabled [7]. Figure 2.8 shows an example of triple-modular redundancy.

The advantage of this approach is that defect detection and correction can occuf

while the circuit is still in operation. This approach can also be scaled. A higher level of

5 is usually odd, ie. n = 3,5,7. ..

protection can be attained simply by increasing the value on n. The clear disadvantage of
this architecture is its high area overhead. Defect correction also requires that the FPGA be-
ing used has the ability to perform partial reconfiguration. If not, defect correction requires
the reprogramming of the entire FPGA. Furthermore, it is unclear whether this approach

can be used to tolerate multiple permanent defects.

Roving STAR

Roving STAR addresses defects that occur during the lifetime of the FPGA [1]. This ap-
proach divides the FPGA into two areas, a spare area (STAR) and the working area. The
STAR is used for tests and diagnostics, while the working area contains the design. Each
area contains a number of spare unused resources. These spare resources are used for defect
correction.

During the operation of the FPGA, the STAR shifts across the FPGA by copying the
configuration and state of the perspective STAR location (pSTAR) into the current STAR
location (cSTAR), and enabling and disabling cSTAR and pSTAR respectively. The new
STAR location is then reprogrammed to run tests and diagnosis on itself. Defects are cata-
logued and saved in memory. When the next shift is about to takes place, the configuration
of the next perspective STAR location is manipulated so that spare unused resources are
used in place of the defective ones. The shifting process continues until the entire FPGA is
tested.

Like n-modular redundancy, Roving STAR requires that the underlying FPGA sup-
ports partial reconfiguration. It also requires the reservation of spare resources, and the
incorporation of a reconfiguration manager. The shifting of design blocks can also affect
signal timing for inter-block communication. Nevertheless, this approach is advantageous
because testing and diagnosis is performed during run-time, and that the reconfiguration

manager can dynamically change the configuration to avoid defects. The latter allows the

design to continue operating in the presence of unanticipated permanent defects.

2.4 Summary

FPGAs are composed of programmable logic and programmable routing. These structures
are arranged in a regular pattern and are susceptible to defects. FPGA manufacturers must
perform tests on FPGAs to ensure that the chips they sell are “defect-free.” Additionally,
diagnosis is sometimes required to apply defect correction (i.e., spare row and column).
Defect tolerant techniques have been developed to increase the number of usable
FPGAs. Each technique varies in both its ability to tolerate defects and the amount of over-
head needed. In one extreme‘, the software redundancy approach can tolerate a large number
of defects with little or no area overhead, but costs a significant amount of computing time
or storage space. In the other extreme, the hardware redundancy approach can perform de-
fect correction quickly, but costs area overhead. Further, hardware redundancy approaches
typically tolerate fewer defects than software redundancy approaches. The existence of the
two extremes suggest the presence of an architecture that can both tolerate a number of de-
fects in addition to the ability to preform defect correction quickly. The subsequent chapter

presents one such example.

19

Chapter 3
Fine-grain Redundancy (FGR)

Rather than consolidating the spare resources into rows and columns, the proposed fine-
grain redundant architecture (FGR) contains spare resources that are distributed evenly
across the FPGA. This approach to defect tolerance allows the architecture to tolerate mul-

tiple randomly distributed defects.

3.1 Architectural and Implementation Details

FGR builds upon the island-style directional wiring architecture described in [26]. The
original architecture is not defect-tolerant. This section will present the changes needed to

make it defect-tolerant.

3.1.1 Switch Block Changes

To add defect-tolerance to the original directional switch block, two layers of multiplexers
are wrapped around the switch block. This is shown as the two outer layers.in Figure 3.1.
The outer-most layer represents the shift-avoid layer of multiplexers (omux), and the middle
layer represents the shift-restore layer of multiplexers (imux).

The omux allows signals to “steer” away from a downstream defect. By means of
these multiplexers, signals routed on track t can be shifted up to tracks t+1 or t+2. When

there is a defect on track t, the defect is avoided by shifting up all signals routed on tracks

20

t t, t+/-1,
t+/-2

+2 +1 0 Bypdss

-2 -1 0

t, t+/-1,
t+/-2

Bypass

M N° =<

-2 -1 0

+2 +1 0 Bypaps

t, t+/-1,
t+/-2

Figure 3.1: High-level defect-tolerant switch block

21

/ N
= D " +1 t, te/-1,
0 t+/-2

/ o

> t. Signals on tracks < t remain in place. Clearly, the shifting requires that there be spare
routing tracks. As will be shown later, these spares incur about 10% area overhead for each
spare set. Be’éause this.is a fixed overhead amount, the percéntage tends to decrease as
FPGA dimensions (i.e., channel widths) are scaled up.

‘The imux is used to reverse or restore the shift-avoid action taken by an upstream
switch block. These multiplexers allow a signél on track t+1 or t+2 to shift down to track t,
thereby nullifying any upstream shifting action. To keep the effects of track shifting local-
ized, the switch block was designed such that any signal leaving a perturbed neighbourhood
can be restored to the original track number. This localization allows our architecture to tol-
erate multiple distributed defects.

To reduce the delay of long nets, a bypass path similar to [27] is introduced into the

switch block. This bypass path connects a straight-through wire endpoint directly with the

‘corresponding omux on the opposite side of the switch block. This reduces the multiplexer

depth per wire from 3 down to 1. Note that the bypass path is optional: it creates an alternate
path for signals travelling across the channel by skipping the imux and normal directional
switch.

In an attempt to reduce area and delay overhead, a reduction in switch block flexi-
bility, Fs, was considered. Fj is the number of other wires connected to a wire at a given
switch block [31]. By decreasing F, the number of potential connections available to a
signal is reduced. This in turn reduces the number of inputs on the input multiplexer and
thus improves both area and delay. With long wires, the flexibility at the end switch blocks
or endpoints can be different than at the middle switch blocks or midpoints. We considered

the following switch flexibilities:

1. The E3M2 switch is the directional switch described in [26]. It has F; = 3 for
endpoints and F; = 2 for midpoints. This allows endpoints to form connections
with interconnects on the left (left turn), right (right turn) and opposite side (straight-
through) of the switch block, and midpoints to form connections with interconnects

on the left and right side of the switch block respectively.

22

Spare Connections

< -
g > >
| = ¥ -

< Hl Vs.

A
$it1
]A

(=z

(Unoptimized) (Optimized)
a) Orginal C Block b) Fault Redundant C Block ¢) C Block Optimization

Figure 3.2: Connection block design

2. The E3M1 switch also uses F; = 3 at endpoints. However, midpoints are reduced to
F; = 1, meaning they can only turn either left or right (not both). The turn direction

alternates along the length of a wire.

3. The E2M1 switch has F; = 2 for endpoints and F; = 1 for midpoints. Endpoints
include the straight-through connections and a left or right turn, while midpoints can

only turn left or right. Turns are handled in the same manner as E3M 1.

3.1.2 Connection Block Changes

As a consequence of track shifting, signals that were once routed on track t can now reside
on tracks t+1 or t+2. To accommodate for this variability, the connection block must also
be modified. In FGR, the CLB outputs do not need to be modified because they are already
fully connected to all of the tracks. However, the CLB input connectivity must be increased
by adding the connections required to the shifted tracks. This modification is shown in
Figure 3.2ab.

Initially, the CLB inputs are connected to half of the routing tracks. This amount
of connectivity was shown to provide a suitable trade-off between routability, area and
delay [4, 26]. To adjust for the track shifting, for every track t that is originally connected
to a CLB input, tracks t+1 and t+2 must also be connected to the input (assuming these
connections don’t exist already). Thus, if a signal gets shifted up by 1 or 2, the CLB can

still extract the correct signal. Clearly, area overhead can be reduced by maximizing the

23

number of consecutive tracks that are connected to a particular CLB input, as shown in
Figure 3.2c. However, this optimization is left for future work. Ultimately, in FGR, the

CLB inputs are connected to slightly more that half of the routing tracks.

3.1.3 Supported Defects

The proposed scheme categorizes non-bridging interconnect defects into three disjoint classes:
single-length, double-length and intolerable defects. Depending on the underlying FGR ar-
chitecture, the number of defect classes for bridging defects can potentially increase to five:

single-length, double-length, triple-length, quadruple-length and intolerable defects.

Non-bridging Defects

If an open or stuck-at fault occurs on the wkire, or there is a stuck-at fault in the wire driver
or the output of the omux, the defect is a single-length defect. In this case, one switch bléck
avoids the defect and all adjacent “downstream” switch blocks do the restore. This kind
of defect is isolated to one wire length. Figure 3.3a illustrates how a single-length defect
is corrected. With single-length defects, the change is purely localized in the channel to a
group of wires with common start and ending points in the array. Such a group of wires is
called a trackgroup. To aécommodate shift, each trackgroup has one spare wire for each
direction.

If a defect is found in any of the multiplexers (aside from the output of the omux),
the defect is categorized as a double-length defect. Due to their location, these defects
actually impair the defect-correcting ability of the current switch block. To fix this, the
switch block of the adjacent “upstream” trackgroup is used to avoid the defect, and the
downstream switch blocks to the restore. Hence, this kind of defect requires two wire
lengths to correct.

Figure 3.3b indicates how a double-length defect spans two adjacent trackgroups:
the upstream trackgroup on the left, and the defective one on the right. In fact, for this

example there are additional upstream switch blocks (above and below) that reside in the

24

Defects

Equivalent

a) Single-length Defects

b) Double-length Defects

Equivalent
Defects

Figure 3.3: Single and Double-length defects

25

vertical channel. As shown in Figure 3.4a, this introduces contention when a straight-
through signal is shifted up onto a track that is expected to be available for turning signals.
To avoid contention, signals on tracks >t in the vertical channel must be shifted before
arriving.

The upstream pre-shifting just described is only one way to solve the conflict prob-
lem with double-length defects. A more robust solution is shown in Figure 3.4b. Here, the
imux is embedded within the switch block and the internal switch block multiplexers are
duplicated. This shrinks the réquisite defect-free area to just the two adjacent trackgroups.

Figure 3.5 highlights the neighbourhood that must be defect-free to correct for a
double-length fault in an architecture with length 2 wires. The defect in question spans two
trackgroups and affects the same track number. The defective track is avoided by up-shifting
all the signals in the faulty trackgroup (highlighted in yellow). To localize the defect, all the
signals leaving the faulty trackgroups are restored to the original track number immediately.
The trackgroups containing these “fanout” signals include endpoint and midpoint connec-
tions, and are highlighted in blue. Highlighted in green are all the trackgroups with signals
that “fanin” to the defective trackgroups. As mentioned before, signals in these trackgroups
are pre-shifted by the same amount as the defective trackgroup to eliminate resource con-
tention. Pre-shifting guarantees that the arriving signals are on the correct and unoccupied
track.

The maximum number of trackgroups that can be affected by defect correction is
called the minimum fault-free radius or MFFR. The MFFR of a defect encompasses all the
trackgroups that needs (or potentially needs) to be up-shifted and down-shifted. In general,
trackgroups that contain shifted signals, or trackgroups that have had its signals recently
restored are included in a defect’s MFFR. The MFER of the previous example encompasses

all the yellow, green and blue trackgroups.

26

Jgf
=

MH lm S—— rllm III.“ m L 8 a 3
O DMV [AT = I [s s\
s i ! W
— \ s { o \ L a8 |/ F 3 T
e - o e e =
m “ V ./ n m ™M N] l|||m||
e T I I -
H ﬁ R | \ A AN
O _rlllnlwnl JMI..IIl III_ o) “ o f 3 N 8
@) T BT P z i
- !
|
s |
3 T ¥
NS
|
“ g%
|
T
|
L

i |
Yi.<l3

|

o g ud

i

|

|

|

———fe e

4
|
|
|
1
|

o

27

IMUX
re————— OMUX
| i
i
LHV
T

Embedded

/ IMUX
i
|

.

2

1

9

F[
L
OMUX

Figure 3.4: Embedding imux to avoid contention

a) Initial imux Design with Contention
e
b) Embedded imux Design Avoids Contention

Switch Block

(Portion of) Regular,
(Portion of) Enhanced

—t A

|

x |

S _ |

@ |

£ | & ﬁ_

S |

7] T]
L oy e

42 NN
w R ONENEN
- o] B
5 AR A] A
s LHE L E —— «m««-w:_,_,_,_, . o) CP SIS
5|8 IS <1 Kk
plamyIc WSS rmu\”.‘,_
A FE SISE I8 AT HIE o I A2
M HEE [2] FH N | S BR . LR B
A KR SISE 13 AL ER B AA00 Il Do
AR, % =4t %, . A B o)
B 2 2 MLl 202
b _ : 2 Nl SN2
R] e Y B A s
A e 1 1] 7 = N [l 9N
MY |8 WEN [3] E mw ”w«\u\\LXA/
CEEIR) NISPa I “Bir: ; e R
] — 1S) A — [
B~ ,”, —tiH u»»amu
mmruu.....”, . IS :Mu NI
-+ 17 N NS) Y >
Bt SIZH 1/ ISR IRE T EIR
SISEA] > D IR S o A Fk
N SIS o b o 5% X o A FE
g S Sms Sl CRILT T A A S Sy
T O Z, AN R | 2
0 M NP | Q00 Ak
b2 1 i
X [DRDRNRRNE R AN AN PR
4 o SIS ST 3) _nm T
< B NISES 3 Ak 3 : 3 ARESIR
| S S = 0| Y = N = iR |5 5| S
NS \ O 0y | S O a O A Ak
fe o, NIES lu m A
U &] S| T et L — [k ”1,__
LU m S| ,H,H,H,H,H,M,H e [R
el 57T HE _ B el L R
© %X £ S X q 510
H X)X) 222 A amy Y

-1 shift

Figure 3.5: Defect correction example (L=2)
28

Bridging Defects

Wire bridges and certain source-drain shorts have the potential to render two adjacent tracks
as unusable. To avoid such a defect, the upstream switch block(s) must shift tracks up by
2 and the downstream switch blocks must shift down by 2. If this is implemented using
+/-2 shifts, the defect is classified as a double-length defect. If this is implemented with
a combination of +/-2 and +/-1 shifts (i.e., one +2 shift followed by two -1 shifts), the
surrounding neighbourhood that must be defect-free can potentially be larger than that of a
double-length defect.-An architecture that only supports shifts by +/-1 require two +1 shifts
followed by two —i shifts to avoid bridging defécts or source-drain shorts. In this worst case

scenario, the defect is considered a quadruple-length defect.

Intolerable Defects

There exists a class of intolerable defects that has not been considered which includes
power/ground shorts and clusters of defects. The first type of defect cannot be tolerated.
However, it may be possible to tolerate the latter by complementing our architecture with a

spare row/column technique, i.e., [18].

3.1.4 Modes of Operation

FGR allows defect redundancy to be an option to the user. This means an FPGA can operate
in two modes: normal defect-tolerant mode and recovery mode.

The normal mode assumes the customer will buy imperfect, low-cost devices, and
utilize the underlying defect-tolerant architecture to avoid defects. In this mode, the routing
software reserves a spare routing track in each trackgroup.! This reduces the number of
routing tracks available to the application, but the spares are needed for defect correction.
For many applications which do not stress the routing network but require inexpensive

devices, this is an easy way to lower device cost.

'"Two spares are needed for devices with bridging defects, which may be sold at even lower cost.

29

The recévery mode assumes the customer will buy perfect devices at a price pre-
mium. In this mode, the routing software uses the additional imux and omux routing multi-
plexers to increase the flexibility of the interconnect. In essence, the router is using the re-
dundant rc;sourceé to recover some area/delay ‘efﬁc'iency that was sacrificed when they were
added. This mode is used for those few applications that have high interconnect demands
where the resulting increase in interconnect flexibility is even more helpful. However, in
this mode, there is no natural ability to tolerate defects.

Recovery mode is the true overhead cost of FGR. It is the additional cost imposed
on aggressive applications with high interconnect demands.

When normal mode is used, the overhead appears to be higher because spare tracks
are also counted as overhead. This is misleading! Applications with low interconnect
demands already have an abundance of unused routing tracks, so this extra capacity is
already built-in. The customer has already paid for these unused routing tracks, so there
is no real end-user cost to supplying them. The proposed redundancy scheme merely finds

a use for these free tracks by calling them spare tracks.

3.1.5 Detailed Transistor-level Design

The transistor circuit schematic used for HSPICE simulations is shown in Figure 3.6. The
components in the circuit (from left-to-right) are: input buffer, directional multiplexer,
strengthening buffer, shift-restore multiplexer (imux), shift-avoid multiplexer (omux), ta-
pered driver and the wire model with loads.

For area considerations, the directional multiplexer is implemented using a tree
of minimum-sized transistors. This allows the use of encoded control lines and reduced
SRAM usage. We also assumed both true and complemented outputs are available from a
6-transistor SRAM cell.

The omux is implemented using a decoded multiplexer with a single level of minimum-
width pass transistors. Each pass transistor is controlled by an independent SRAM cell. The

motivation for this is to reduce delay.

30

X

Bypass path

Directional
multiplexer

Figure 3.6: HSPICE schematic for delay characterization.

Three different implementations of the imux were considered: decoded, encoded
and embedded. The decoded multiplexer is identical in implementation as the omux. This
kind of multiplexer trades area for delay. The encoded imux is built like the directional
multiplexer. It trades delay for area.

As mentioned earlier in Section 3.1.3, it is also possible to embed the imux into
the directional multiplexer. This enhanced multiplexer is built by duplicating the inputs of
the directional multiplexer for track t+1 and t+2, and connecting them to the directional
multiplexer for track t. An embedded imux allows signals to turn and shift at the same time.
As will be shown later, this improves yield with double-length defects at the expense of
some area.

Seven different defect-tolerant implementations were considered in this study. These
implementations vary in the implementation of the imux and shifting ability of the multi-
plexers. The +/-2 shifts use addiFional area to improve yield of bridging defects. The
attrib'utés and differences between the switch implementations are summarized in Table

3.1

31

Arch. | imux impl. | imux “-2” shift | omux “+2” shift | imux/omux %1 shift
EM22 | embedded
EM12 | embedded
EM11 | embedded
FL.22 decoded
EN22 | "encoded
EN12 encoded
ENI11 encoded

2 7 <2z
Z |2
P R

Table 3.1: Defect-tolerant switch implementations.

The area and delay performance of the implementations are also sensitive to the
precise transistor-level circuit design of the multiplexers and buffers. The procedure used

for transistor sizing is the same as the one described in [25, 26], and is as follows:
1. Select a parameter to be optimized

2. Sweep the selected parameter across a range of values while holding all other circuit

parameters fixed

3. Determine the best parameter value based of the minimization of area-delay product

for the entire circuit
4. Reiterate steps 1 to 3 for remaining circuit parameters
5. Repeat steps 1 to 4 until the area-delay product stabilizes

The stabilization of circuit parameters and delay profiles was observed to take approxi-
mately 3 complete iterations. Delay results are computed from HSPICE simulations of

TSMC’s 180nm technology.

3.1.6 Software Aspect of FGR Defect Avoidance

To successfully correct a defect, the location of the defect must be known. One such way to
provide this information is through the use of a relatively unique list of defective resources
or defect map. These can be stored on-chip in non-volatile storage, or in an off-chip database

indexed using a unique on-chip serial number.

32

The aforementioned hardware changes provide an infrastructure for defect correc-
tion, but not the means to apply it. Defect correction for FGR is applied through bitstream
manipulation. When an FPGA is being programmed, the defect map specific to that FPGA
is called up and the appropriate modifications are made. The correction can be applied dur-
ing programming or bitstream generation. It can even be applied by means of an embedded
configuration processor within the FPGA or configuration memory or subsystem. With this

latter method, defect correction can be completely hidden from the user.

3.2 Limitations

The proposed architecture has a number of limitations. First, FPGA and VLSI testing
strategies capable of locating defects were assumed to be available. The defect information,
in a form of a defect map, may be provided by the vendor or generated by the user. The
defect map does not need to be overly detailed. For each defect, it must identify the wire
segment location in the array (%, y and track numbers) and type (single- or double-length).
Bridges are identified as adjacent defect pairs.

‘The method of dealing with bridging defects assumes that routing tracks within the
same channel are laid out beside one another. This may not be a realistic assumption since
there are many factors that influence the layout of an FPGA. This solution should only be
viewed as a general approach. To fully protect an FPGA from bridging defects, the final
FPGA layout must be considered.

As described earlier, defects must be surrounded by some defect-free resources
for successful repair. As a result, this approach cannot tolerate clusters or closely-spaced
defects. To reconcile this shortcoming, it is possible to complement FGR with a spare
row/column technique [18].

Finally, defects in the logic block have been ignored in this architecture. This issue
has been addressed in the past [20, 23, 24]. In these techniques, logic blocks are inten-
tionally left under-utilized (thereby creating the impression of having spare resources). In

the event of a defect, resource assignment within the logic block is manipulated so that the

33

logic on a defect resource is shifted to an unused resource. To achieve logic block defect
tolerance, these techniques, or a spare row/column technique, can be used to complement

FGR.

3.3 Areaand Délay Results

The new architectural features were incorporated into an enhanced version of the VPR place
and route tool, VPRx [26], which now suppofté directional wires [25']. VPRx was then used
to map the 20 largest MCNC benchmark circuits [9] into an island-style FPGA consisting
of directional length 4 wires and CLBs containing eight 4-input LUTs. The area and critical
path delay results reported by VPRx for each circuit is normalized; then a geometric average

across the circuits is computed.

3.3.1 Area

Routing experiments with non-defect-tolerant switch blocks indicated that the directional
switch E3M1 used 2% less area than E3M2 and E3M1. The average critical path delay
for E3M1 was also 3% lower than the other two architectures. In comparison, the average
channel width increased by 2% and 8% for E3M1 and E2M1, respectively. These results
are shown in Figure 3.7. Hence, the non-defect-tolerant E3M 1 was selected to be the basis
for all area and delay normalization (=1.0).

Figure 3.8 presents the average area overhead for the defect-tolerant switch blocks.
The results have been normalized to the non-defect-tolerant E3M 1, the best alternative with-
out defect tolerance. When routing the design in normal mode, two spare sets of wires were
added in the channel for the 7 architectures that tolerate bridging defects. Only one spare
set of wires is inserted for the architectures that do not tolerate bridging defects (the 2 ar-
chitectures with -NB). These spare wires were not used during routing. The EN11-E3M1
architecture was the most area-efficient, having anl area overhead of 24% for non-bridging

defects and 34% for bridging defects. The difference in area cost (10%) is one set of spare

I ‘ E3M2
comenres
LR - E2M1
>
—
D — .
N 1 feceecnrecncans o eeeveereetiratets pAARKIGS ettt asttttatannattsne]
BRRS
KKK KK
. — SRRKK, 2R00RS
-] 351
30K 200KR
bosotatedt LIREA
XA XS
bodegetels Fodesote!
RIRKK badetotele!
batesetett 2]
bodeteele! KRS
Dotesetest 3R]
dereatere: esealetes
] Podesete!
odesedede; R
L potsgetest 025 J
RIKKK, R0
Baoosotent baseselels!
Josesereest LXK
SRR aSeatere!
Pasesetels otelodel!
SRS 228K
3] SR80
R SIKKS
Saoesetent Saseretels
odrsstate; odetotete!
desotadett Setotetets
oS setetes RS
dalegatele besetedese
R Patedotete!
XK]
L odesetetes aSetetete! .
dosetetede dassgetete
. dasesotete; adeseletet
RN doteleseds
Soderete: SRR
deteates detotatede
batetotele! Patetolete!
Setelatete baloratete
otegetete; oS tetetet
degeiotele Ltstotede
totetoete! RS
Setodetote dasotetese
LR KR
XX Saetesete
pasesesese otrerionss
ey atetes KR
S odetotele]
30K XS
dedotolene R0
eSrtetate! S
Pogateele SaSotetene
RS SRS
fodedetele 0]
tagstatete! DaSrtotete!
3R] Jadesedele
2RRR taSloetel
Pgtotele Jodasetels
5K QR
Sesesetes 3 05
"dete%e%e! N Fodetele!

Figure 3.7: Flexibility exploration for non-fault tolerant architectures

wires. Notice that the second-best area architecture, EM11-E3M1, needs +4% to embed the

imux, but it will be shown later that it tolerates more defects.

3.3.2 Delay

The average critical path delay for each architecture is shown in Figure 3.9. These numbers
were obtained by rerouting the 20 benchmark circuits using a channel width equal to the
minimum channel width obtained from the defect-tolerant area investigation plus one addi-
tional set of wires. Unlike the spare wires that are held in reserve, the router was aliowed
to use this new set of wires to relieve delay increases caused by congestion. The experi-
ment indicated that the EM11-E3M2 architecture gave the lowest average critical path delay
overhead of 15%. Overhead for the non-embedded version, EN11-E3M1 was 24%.

Figure 3.9 also shows the importance of the bypass path for delay reduction. The

35

= 1.5
(&)
G
8o 14
<3
82 13
N o
gE 1.2
LE
= 1.1 |
w :
1 .
Al (qV} -~ (qV} QY] (aV] — m a0
d 5 5 3 8 3z = Z Z
U W w YL w w w s Z
w L
Implementation + Architecture
1 E3M2-NRST 7 E3BM1-NRST o E2M1-NRST
s E3M2-Normal 2 E3M1-Normal = E2M1-Normal

mmmmm E3M2-Recovery m E3M1-Recovery wmmmmsx E2M1-Recovery

Figure 3.8: Area of defect-tolerant implementations.

-NRST results (no route on straight through) show significantly higher delay when the

router is forced to avoid using the bypass path.

3.3.3 Area and Delay Recovery

To explore the true area and delay overhead, the routing tool was put into recovery mode.
In general, it was observed that the router needs lower channel widths for defect-tolerant
architectures in recovery mode than non-defect-tolerant architectures. Hence, the additional
multiplexers do help improve interconnect flexibility.

Figure 3.8 shows the true area overhead for the defect-tolerant implementations in
recovery mode. The EN11-E3M1 architecture demonstrated the lowest area overhead of
11%. Overall, recovery model saves a significant amount of area.

The critical path delay overhead in recovery mode is shown in Figure 3.9. Here, the

36

15 <

Normalized Delay
(E8M1 w/ no redundancy)

EN-NE B¢

QA A = QA QA 9V} v—' om
S s s 4 2 z = Z
U W w Y w w uw =
w
Implementation + Architecture
1 ESM2-NRST iz E3M1-NRST o E2M1-NRST

2 E3M1-Normal w E2M1-Normal

Exzzesd E3M2-Normal
E3M1-Recovery wmmssax E2M1-Recovery

mmmmm E3M2-Recovery

Figure 3.9: Delay of defect-tolerant implementations

EM11-E3M2 architecture demonstrated the lowest delay overhead of 5%.

3.3.4 Area and Delay Product

Using the delay and area results obtained from the previous two experiments, the area-delay
product for each architecture in recovery mode was computed. Figure 3.10 shows that the
EM11-E3M1 architecture produced the lowest area-delay product.

When comparing yield later in this thesis, EM22-E3M1 will be selected as the best
FGR variation. Although it has the highest area overhead, it tolerates the largest number of

defects and has among the lowest delay.

37

Normalized Delay x
Normalized Area

1.8

1.6

1.4

1.2
1 R

N N - N N N - m m

S 5 s d 2 z % z =

U W W Y w w w s Z

w w
Implementation + Architecture

1 E3M2-NRST ot E3M1-NRST 11110 E2M1-NRST
e E3M2-Normal ez E3M1-Normal s E2M1-Normal

mmmmm E3M2-Recovery pr— E3M1-Recovery mmssssm E2M1-Recovery

Figure 3.10: Area-delay product comparison.

38

Chapter 4

Coarse-grain Redundancy (CGR)

In a traditional coarse-grain redundancy (CGR) scheme, one spare row and one spare col-
umn is used to correct defects. This approach can tolerate clusters of defects within the
same channel. However, the consolidation of spare resources into a single spare row/column
severely restricts this architecture’s ability to tolerate randomly distributed defects. In this
chapter, two schemes for adding multiple spare rows and columns to tolerate these types of

defects are considered.

4.1 Architectural and Implementation Details

Traditional CGR adds one spare row and one spare column to the existing FPGA layout.
This architecture is limited to defect correction for one row and one column, but it can
naturally tolerate clusters of defects within the same channel. In the event of such defect
clusters, the row or column containing the defects is bypassed and the spare row or column
is used. This architecture can in fact tolerate multiple defects within the same channel.
However, as array size grows, it becomes increasingly unlikely that multiple defects will lie
in the same row/column. To increase yield, a scheme is needed to add additional spare rows
and columns to the architecture. However, traditional CGR does not clearly indicate how
multiple spare rows/columns can be added. How to support multiple spare rows/columns in

an island-style FPGA architecture is considered below.

39

4.1.1 Switch Block Changes

CGR requires modification to the existing detailed switch block design. To allow one
row (and column) to be bypassed, all interconnect wires are extended in length by one
row/column. Figure 1.1a highlights these track extensions in green. These track extensions
are not used or needed in a defect-free FPGA. In the presence of a defect(s), the exten-
sions allow signals that would have terminated at the defective row/column to reach the
subsequent defect-free row/column. An example of row bypassing is shown in Figure 1.1b.
Notice that the track extensions are enabled only for the wires that traverse the defective
row/column or for wires that start at a shifted row/column. The impact of these extensions
on the S block is shown in Figure 4.1. These detailed changes have been documented by

previous papers in the area.

4.1.2 Connection Block Changes

The bypassing of a row/column also necessitates changes in the connection block design.
These changes are highlighted in Figure 4.1. In addition to the original connections, notice
that the CLB inputs now accept connections from the wire extensions, and that the CLB
outputs connect to wire starts in the original switch block and the switch blocks one channel
over. The duplication of input and output connections are fequired to make the row/column

bypassing transparent to the CAD tools.

4.1.3 Multiple Spare Rows and Columns

There are two ways to construct a multiple spare rows and columns architecture. The first
method adds global spare rows and columns to the array. These global spares can be used
to correct defects anywhere in the FPGA. This architecture can tolerate as many defective
rows/columns as there are spares. The added cost of this approach is the increased length
of the routing wires, the spare rows/columns, plus the extra multiplexing needed within the
S and C block to accomplish the bypass. The additional switching adds significant area

overhead, and the wire extensions add significant capacitance which increases both delay

40

CLB CLB

a) S and C block input modifications
CB output extensions

C block | | S block H C block
| l {e]e) L- O L-I OC]

i------

id!
...

..... A

A

- - -
r 8 block
:

CLB cLB

b) S block input and C block output modifications

Figure 4.1: Connection block changes for CGR

41

|
= i o w A

Wire

t . - Subdivision
extension
o L o) -
e]
|
7 :
3 1
g '
, 3] 1
(9} 1
a '
L}
’d z '
5 ~
Q L}
s} '
]
Q
- 3
g o]
& o
i 8
pgare Rw
|]
2
&% R

a) CGR-G2 b) CGR-L1-52

Figure 4.2: Multiple spare row and column architectures

and power.

The second method of implementing a multiple spare rows and columns architecture
is by distributing spare rows/columns evenly among subdivisions of the chip. The FPGA is
divided into smaller subdivisions. Each subdivisions has dedicated local spare resources.
Defect correction is handled locally within each subdivision. This approach has a smaller
area overhead for a given total number of spares because the spare wire extensions are
shorter and switch overhead is reduced.

For conciseness, the multiple global spare rows and columns architecture and the
multiple local spare rows and columns architecture will be denoted as CGR-Gn and CGR-
Ln-Sp, respectively. CGR-Gn has exactly n global spare rows/columns that can be used to
repair any defective row/column. CGR-Ln-Sp is divided into 2p subdivisions, p subdivi-
sions for rows and p subdivisions for columns. Each subdivision has n spares. Overall, this

architecture has 2pn spare rows/columns. Figure 4.2 presents CGR-G2 and CGR-L1-S2.

42

4.1.4 Supported Defects

In CGR, all defects are essentially treated equal. A channel containing defects is always
replaced with an entire spare row or column. This simplifies the correction process, but has
the drawback of being inefficient with resource usage.

Since there is only one spare row and one spare column, traditional CGR can only
tolerate defects in one row and one column. Within that row/column, multiple defects can
be tolerated. This gives the architecture the natural ability to tolerate clusters of defects
within the same channel. CGR can also tolerate defects in both routing resources and logic
blocks; but like FGR, it cannot tolerate power/ground shorts. Also, some types of defects
may render both row and column unusable because it happens at a turning switch (i.e., a

horizontal wire is shorted with a vertical wire).

4.1.5 Detailed Transistor-level Design

Unfortunately, published research does not present the delicate circuit details needed to
perform the bypass. Altera patents provide some insight [3] and indicate that additional
circuitry is required for bypassing. Without a detailed design, it will be demonstrated in

Section 4.3 that the switch overhead alone for CGR-G1 and CGR-L1-Sp is similar to FGR.

4.2 Limitations

Although the area overhead of spare rows/columns appears to be very clear, the additional
circuitry required within each S block and C block to bypass a faulty row/column is non-
trivial and is not reported in previous work. To account for this additional overhead, esti-
mations are use in place of detailed transistor models.

An underlying assumption of traditional CGR is that defects are isolated to one
row/column. This assumption allows defect-avoidance through row/column bypasses. How-
ever, some types of defects (i.e., shorts between wires in two different rows/columns) may

render two rows or two columns unusable. Such defects cannot be tolerated in traditional

43

CGR since there is only one spare row/column.

4.3 Estimated Results

The following area and delay estimates are based upon the CGR model shown in Figure 4.3
in comparison with the FGR model in Figure 4.4. This figure highlights the architectural
changes needed to convert a non-defect tolerant switch block into a CGR-G1 and CGR-G2
switch block. The architectural changes needed for a CGR-Ln-Sp architecture is compari-

ble to that of a CGR-Gn architecture for the same n, but more spares are needed.

4.3.1 Area

Figure 4.5 shows the spare row/column area increases needed for CGR-G1. These results
do not include the additional switch area, only the overhead resulting from the addition of
one spare row and column. Notice that the area overhead decreases as the FPGA area size
grows. In a 32x32 FPGA, the area overhead for one spare row and column is approximately
6% (2 x 1/32). The area overhead reduces to approximately 1% for a 256x256 FPGA.

Figure 4.3a presents a non-defect tolerant switch block. To make this a CGR-G1
switch block, wire extensions are needed for CLB inputs and outputs and routing tracks.
Figure 4.3b highlights the necessary extensions in green. Notice that the number of inputs
for the CGR-G1 directional multiplexer roughly doubles. This actually makes it similar in
size to the EM11 embedded imux shown in Figure 4.4a. In addition, EM11 requires an
additional 2:1 multiplexer (omux).

The necessary changes for CGR-G?2 are shown in Figure 4.3c. This architecture has
two spare rows/columns, thus wire extensions span two switch blocks. The first extension
is highlighted in green, while the second in red. This switch block is comparable to the
EM22 switch block shown in Figure 4.4b.

The similarity between the switch blocks allows for a rough approximation of area

overhead. For CGR-G1, the area overhead is approximately that of EM11 which is about

44

CLB

c©) CGR-G2

45

CLB

Figure 4.3: Comparison between CGR implementations

Iﬁ 4 4
My LN
I —
5m \M\ W 1 #«-_ km.l-'l e
IHIE N
2 H
luw_w " ﬂ “ ~\. Ww_ A V/VJJ
e by G n I.T . -y " "M /r.
-] 8 -
e 1 TS N — g _ v !
‘m— _ M —l-ll-l-ll-ll l.InI—
i o 3| ° ,
ol » H iy (RN W S N S——
A N I A F ~ el | |
|
A
Os
] _
ity min o ety —_—
] N\
- H
it AR L Tl
oI Fi1 frr
m 8 PR 4 g
= -~ PN | .
s _] |
g ' ' .
= i 3 Lt L
ko] | i |
L o 4
gl i - EH U O) O I S
- : I
_ \ 'c _ m k.
Ie i 2l
|'_~ T .m m_
ST I | s“__ c_
o
z e o — w f— - — — — — — P w m—m x e—
[[l 3
i I
A 81 3
CH H -~
r.l.._l.l..l.ll..l.l..l_ .

i
4
! ! I g
: A A : ! ’
! I Vo | o I I | I H :
i1 [= - IRIRDZ l
i L 2 i i (22 i -,l : _________ I
Il-,:/_ i Enbedded imux I}-F/— i Tﬂ

cLs cLs

a) FGR - EM11 b) FGR - EM22

Figure 4.4: Comparison between FGR implementations

40%. CGR-G2, which is similar to EM22, has an area overhead of approximately 50%.
The switch block area overhead for CGR-G1 and CGR-G2 will be slightly less than that
of EM11 and EM22 respectively since the FGR approach requires the addition of omux
multiplexers. However, for architectures where there are more than 2 global spares, the

CGR area overhead will be significantly greater than that of FGR.

4.3.2 Delay

Again, the similarity between switch block implementations allows for a gross approxima-
tion of delay overhead. EM11 and EM22 have delay overheads of approximately 20%. The
delay overhead for CGR-G1 and CGR-G2 architectures are likely to be slightly less than
the FGR archtectures since CGR has one fewer multiplexer level. For architectures with
more than 3 spare rows/columns, the delay overhead will increase beyond FGR as there are

significantly more inputs (and thus levels) to the directional multiplexer itself.

46

47

Array size (M)

' ' ' ! Bzzxz E3M1
S
B
1.05 —
C
83
<5
58 m :
N Ll 1 freesreccccrcens KXE o e vaennnpORRRKLLL e 0000000 ol lRPLLRLRNH 0 00000000 dRNREKLLLLA e veosvoveraes .
T 2 ;
€<
53
Z>
X 095 =
2
0.9 ' 10%%
32 64 128 256

Figure 4.5: CGR-G1 for increasing array sizes (spare row/column overhead only)

4.3.3 Scaling Factors

To approximate area for CGR, the area of an NxN! FPGA is multiplied by a constant scaling
factor of 1.5. The value of 1.5 is used because the S block for CGR-G2 is similar to EM22,
which has an area overhead of 50%. Similarly, switch area overhead for CGR-G1 and CGR-
L1-Sp is less than this, being similar to EM11. In this case, a scaling factor of 1.3 is used.
Since architectures with more than 2 spare rows/columns will likely be significantly larger
than EM22, this approximated area represents the lower bound area overhead for CGR with
more than 2 spare rows/columns.

Similarly, a scaling factor of 1.2 can be used for the approximation of delay over-

head. However, delay results for CGR is not presented in this thesis.

IN =M + n, where M is the base array size and n is the number of required spare rows/columns.

48

Chapter 5

Yield Comparison

This chapter presents a yield comparison between FGR and CGR. The comparison is based
on four factors that influence yield: switch implementation, switch flexibility, array size and

wire length. First, however, a yield model is presented for both CGR and FGR.

5.1 Yield Model

For the subsequent yield analysis, all faults are assumed to be bridging defects (worst case).
Logic faults, which are intolerable in the present FGR architecture, are not considered.
5.1.1 Coarse-grain Model

A number of simplifications and assumptions are made for the CGR yield model. The

model assumes the following:

o All channels have identical routing resources and thus have an equal probability of

being defective;

o The vertical and horizontal channels are disjoint routing networks (defects are as-

sumed to be isolated to just a row or just a column);

o MxM FPGAs are perfectly symmetrical; and

49

e A spare row and column are added in tandem to retain the square shape.

To inject a random defect, a random row or column is selected, and the defect count
for that row/column is incremented. For CGR-G1, a failure occurs when there are defects
in two different rows or two different columns. A failure is represented as a non-zero defect
count for two different rows or two different columns. Architectures with multiple global
spare rows and columns are evaluated in a similar manner. A failure occurs when there are
more defective rows or columns than there are spare rows/columns.

In CGR-Ln-Sp, each subdivision has exactly n designated spare rows/columns.
This architecture can tolerate at most n defective rows/columns per subdivision. Figure 5.1

highlights the differences in terms of defect correction between CGR-G2 and CGR-L1-S2.

5.1.2 Fine-grain Model

To model the behaviour of defect correction for FGR, state variables are assigned to every
trackgroup within the FPGA. A trackgroup can have one of three states: perfect, faulty,
or must be perfect. The faulty state indicates the presence of a defect in that particular
trackgroup. The must be perfect state is used to mark the MFFR of a defect. As mentioned
before, the MFFR of a defect defines the region needed for shifting to avoid and restore
around the defect. To guarantee that a defect can be correctable? the MFFR of a defect must
be defect-free. The must be perfect state facilitates the enforcement of this requirement.
Defects are injected into the model by randomly selecting a trackgroup and setting
its state to faulty. The neighbouring trackgroups as defined by the MFFR are marked as
must be perfect. The MFFR will vary depending on the defect type and the underlying

routing architecture. Chip failure occurs when any of the following conditions are violated:

e A faulty trackgroup overlaps with another faulty trackgroup — only one defect per

trackgroup can be tolerated; or

e A faulty trackgroup overlaps with a must be perfect trackgroup — the defect may

inhibit the ability to correct the other defect; or

50

~
g
by gt
M o
| of L
&l .
: g
I
Bypassed g
~
a) CGR-G2 - Correctable b) CGR-L1-S2 - Correctable
Uncorrectable
Defect

W

Bypas'sed . -3('.
()]
| 1] E
A
¢ Bypaiised B
” 2
3
o
= P 4 o
= =
= S
A
\l &
o Spard Row%
¢) CGR-G2 - Correctable d) CGR-L1-S2 - Uncorrectable

Figure 5.1: Switch block with spare connections

51

e A must be perfect trackgroup overlaps with another must be perfect trackgroup — the

defect corrections may interfere with one another.

The yield approximation for FGR is pessimistic in two ways. First, the approx-
imation only considers the injection of bridging defects. Second, MFFR overlap is not
allowed. In reality, not all faults are of the bridging category, and thus have a significantly
smaller MFFR. Next, the avoidance and correction of certain defects can in fact be over-
lapped. However, without real manufacturing defect information, the worst case position is
assumed. It is suspected that the accounting of these two factors would appreciably improve

the yield for FGR.

5.2 Architectural Considerations

Several factors can affect yield. This section discusses a few important ones. Results will

follow in the next section.

5.2.1 Switch Implementation Impact on Yield

As mentioned in Chapter 3, the switch block in fine-grain redundancy can either have an
embedded or extracted imux. Of the two, the embedded imux has the highest area overhead
but also the greatest connectivity. The additional connections in an embedded imux allows
signals to turn and shift at the same time. As will be shown in the next section, the ability
to turn and shift improves yield by reducing the number of trackgroups that must be pre-
shifted.

It was also noted that the shifting ability of the switch block can be varied. If the
ability to shift by two is eliminated, the size of the switch will decrease. Bridging defects
and source-drain shorts can still be tolerated, but avoiding them will require two “+1” shifts
followed by two “-1” shifts. In fact, any combination of shifts, a “+2” followed by two “-17,
two “+1” followed by a “-2” is acceptable. As noted in Section 3.1.3, changing the shifting

ability of the multiplexers can potentially increase both the number of defect categories and

52

the MFFR.

5.2.2 Flexibility Impact on Yield

The number of wires connected to a given switch block wire is defined as its flexibility,
F, [31]. F; can be used to describe both end switch blocks or endpoints and middle switch
block or midpoints. With long wires, the flexibility at the endpoints and midpoints can
differ. Lower F} values equate to fewer connections, and thus smaller MFFRs. Thus, lower

F values actually help improve yield.

5.2.3 Array Size Impact on Yield

It was shown in Chapter 4 that CGR-G1 demonstrates a decreasing amount of area overhead
as array size increases. Unfortunately, as array size grows, it also becomes increasingly
unlikely that multiple defects will lie in the same row/column. Thus, to maintain a fixed
yield for growing array sizes, it is necessary to increase the number of spare rows and
columns.

In FGR, spare resources are distributed across the FPGA. Increasing the array size
increases the number of trackgroups in the FPGA, and thus the amount of available spare
resources. Since the amount of spare resources naturally grows with size, the architecture

tolerates more and more defects.

5.2.4 Wire Length Impact on Yield

In CGR, the routing network within the rows and columns are assumed to be identical and
disjoint. Since all rows and columns contain the same routing resources, the ability to re-
place a defective row/column containing wires of any wire length with a spare row/column
is guaranteed. This eliminates the dependency of wire length on defect correction for the
spare row'and column architecture.

For FGR, increasing wire length increases both the fanout and fanin of all routing

wires. These increase because long wires naturally have a greater number of midpoint

53

locations. This increases the MFFR and negatively impacts yield.

Current FPGA routing architectures utilize multiple wire lengths within their rout-
ing architecture. In FGR, wires of different lengths are modelled as disjoint routing net-
works!. Each routing network will have its own unique set of spare resources. Defect
correction is restricted to the individual routing networks. Of course, these disjoint net-
works “join together” at the connection blocks which have been modified to correct for

defects in aﬂy of them.

5.3 Limitations

The yield model does not account for switch area or total die area changes. The area of
the switch is an important consideration because larger circuits have a greater probability
of being defective than smaller ones. For example, CGR-Gn and CGR-Ln-Sp have signif-
icantly larger switch areas because of the necessary bypass circuitry. This is not modelled,
so the presented yield for CGR is over-estimated. This is also true for the vaﬁqus FGR
implementations.

Power/ground shorts have been ignored in the fault simulation. These defects can-
not be tolerated in either architectures. Defects in the logic blocks have also been ignored
because of lack of real-life manufacturing data and because this thesis is only concerned
with interconnect faults, which are more difficult to tolerate.

Routing tracks within the same channel are assumed to be laid out beside one an-
other. When bridging defects are injected into the model, two adjacent tracks are made
unusable. This assumption allows FGR to bypass bridging defects by performing shifts by
2. Larger faults (i.e., 3 wires) would not be tolerable in FGR.

The FGR model assumes that there can be at most one defect per trackgroup. How-
ever, certain types of single and double-length faults can in fact be overlapped with one

another. For example, two defects can be overlapped if the underlying fault redundant ar-

IThis is mostly a limitation of academic routing architectures which treat the routing networks
of different wire lengths as disjoint networks.

chitectures supports bridging defects, the faults themselves are not bridging defects, and the
defects do not reside on adjacent tracks. Provided that these conditions are met, the defect
on the lower track can be avoided using a'“+1” shift while the one on the higher track can
be avoided with a “+2” shift. Also, defects in the same tracks should be tolerable.

When computing yield, the delay bypass path of the omux is assumed to be not
used. If it is utilized, either signal timing must be perturbed when correcting a defect or
device defects must be limited to one-per-channel.

Defects in CGR are assumed to require either a spare row or a spare column to be
tolerated. Some defects require both, hence the yield for this architecture is over estimated.

Lastly, when computing the MFFR for FGR, defects are assumed to be injected into
the middle of an infinitely sized FPGAZ. This results in worst-case MFFRs for the defects.
Since the trackgroups near the edge of the FPGA have lower connectivity than those in the

center, the use of the worst-case MFFR value for all defects is overly pessimistic.

5.4 Results

The yield estimates for CGR and FGR were obtained through Monte Carlo simulations. For
a given number of defects, randomly located faults were injected into the interconnect for
100,000 different FPGA dies. The presented results do not account for intolerable defects

such as power/ground shorts.

5.4.1 Switch Implementation

An embedded imux allows certain signals to shift and turn at the same time. This attribute
relieves the need to pre-shift certain signals. Reducing the number of wires affected by
defect correction results in a lower MFFR and improved yield.

Figure 5.2 shows the comparison between the EM11 and the EN11 architecture

for both single-length and bridging fault correction. These architectures differ by imux

2 Actually, it assumes a torus where the edges wrap around.

" EM11-E3M1, SLF e
EN11-E3M1, SLF - -0
EM11-E3M1, BF 8- -

S .'; e, CGR-G1 —+—
\ Yo, “eq EN11-E3M1, BF ---x---
0.8]‘3 Q "o, -
L
QL 06]
>_
04 .
02 -
0 L hid----5i3 Sla Dl —Di—Dia-pig-Diab SR e
1 10 100

Number of Defects (log scale)

Figure 5.2: Imux implementation (L=4, M = 32)

implementation. The EM11 architecture uses an embedded imux, while the EN11 uses an
extracted imux. The embedded imux demonstrates better yield for multiple defects.

The shifting ability of the switches also affects the length of the repair region. With
a shorter the repair length, fewer trackgroups need to be pre-shifted and restored. This
reduces the MFFR and improves yield. Figure 5.3 shows that the architectures with the
greatest degree of shifting ability (EM22, FL.22 and EN22) have the highest yield. Note
also that architectures EN11-E3M1 has slightly lower yield than the spare row and column
technique. The reason for this is that bridging faults require an increased repair length due to

its restrictive shifting abilities, producing a large MFFR. The resulting MFFR is sufficiently

large that it makes tolerating more than 2 defects within a 32x32 FPGA (with L=4) very
difficult.

T | S BN S B BN T

EM22-E3M1, BF —+—
EN22,FL22-E3M1, BF ---x---
EM12-E3M1, BF ---%--- -
EM11-E3M1, BF &
EN12-E3M1, BF --m--
CGR-G1 ---o~-
EN11-E3M1, BF --o---

10 100

Number of Defects (log scale)

Figure 5.3: Shifting abilities (L=4, M = 32)

5.4.2 Switch Flexibility

The flexibility of the switches also has a significant impact on yield. When the flexibility is
increased, the number of fanin and fanouts increased. As mentioned before, this increases
the MFFR and reduces yield. Figure 5.4 shows that the architecture with the lowest Fj,
E2M1, demonstrates the best yield for both single length faults (SLF) and bridging faults
(BF). The reduction in midpoint flexibility improves yield more than the reduction in end-
point flexibility because there are more midpoint than endpoint connections for length 4

wires.

57

0.8 % *
v S

0.6

Yield

0.4

0.2

1 10
Number of Defects (log scale)

Figure 5.4: Flexibility (L=4, M = 32)

Baseline Architecture

Taking the above results and the area/delay results from Chapter 3, the EM22-E3M1 archi-
tecture was selected to be the baseline fine-grain redundancy architecture. This architecture
is capable of shifts by +/-2 and +/-1, and has endpoint and midpoint flexibilities of 3 and 1

respectively. In all subsequent results , EM22-E3M1 will simply be denoted as FGR.

5.4.3 Fixed Array Size

FGR versus Global Spares

Figure 5.5 presents the yield for an 32x32 FPGA with a number of additional global

rows/columns. The yield for CGR-Gn remained at 100% until the defect count became

58

EN11-E2M1, SLF —+—
EN11-E3M1, SLF -----
EN11-E3M2, SLF ---%---

CGR-G1 &
EN11-E2M1, BF --m-
EN11-E3M1, BF ---o--
EN11-E3M2, BF - -e---

100

Number of Defects (log scale)

Figure 5.5: Increasing number of global spares (M = 32)

greater than n, the number of the number of spare rows/columns in the architecture’. After
this threshold, the yield decreases dramatically. Yield for this particular architecture is espe-
cially sensitive to the number of spare rows/columns in the system. The figure also shows
that there is a significant yield improvement when the number of global spares increase
from one to two, and that FGR produces similar yields as CGR-G4. This can be observed
by noting that both architectures fall below the 80% yield threshold at approximately the

same number of defects.

FGR versus Local Spares

The CGR-Ln-Sp architecture demands that defects are spaced far apart from one another. If
too many defects reside in the same subdivision, chip failure occurs. The impact of this re-
striction is shown in Figure 5.6. The figure shows the yield of a 32x32 FPGA with the indi-
cated number of local subdivisions. Each subdivision contains one local spare row/column.

Notice that the yield decreases almost immediately and is significantly less than the global

3In the worst case, all defects are located in rows/columns: Since there are n spares
rows/columns, CGR-Gn can always tolerate n defects.

59

Legend

FGR ——
CGR-L1-832 --->---
CGR-L1-S16 ---%---
CGR-L1-88 &
CGR-L1-S4 --»—
CGR-L1-82 ---o---
CGR-L1-§1_----e---

Yield

¢

1 I . 10 100
Number of Defects (log scale)

Figure 5.6: Increasing number of local spares (M = 32)

approach. The CGR-L1-S16 produces similar yields to FGR and CGR-G4. It should be
noted that CGR-L1-S16 with 1 spare in each subdivision (16 spare rows and 16 spare
columns total) is more practical to implement than the amount of additional multiplexing
needed by CGR-G4 with 4 global spare rows and columns. Although easier to implement,
CGR-L1-S16 more than doubles the area of then FPGA (from 32x32 to 32+16x32+16 or
48x48), making it significantly larger than FGR.

Figures 5.7 and 5.8 presents the yield curves for CGR-Gn and CGR-Ln-Sp, but a
larger array size of 256x256 is used. At this array size, the number of defects tolerated by
FGR increases and CGR slightly decreases (both local and global). FGR is now approxi-
mately equivalent to the yield of CGR-G16 and has higher yield than all implementations
of CGR-L1-Sp. Note that more than two global spare rows/columns is impractical (and
potentially infeasible) because the necessary wire extensions significantly increase switch
area and signal timing. Although the local spare approach avoids this by having only one
spare per subdivision, the CGR-L1-S256 architecture has 300% overhead in spare rows
and columns and cannot tolerate as many defects as FGR. In comparison, the FGR area

overhead is only 50%.

60

Yield

Yield

Number of Defects (log scale)

Legend

FGR ——
CGR-G32 ---%---
CGR-G16 ---%---
CGR-G8 &
CGR-G4 --®»--
CGR-G2 --o--
CGR-G1_----e--

1 10 100

Figure 5.7: Increasing number of global spares (M = 256)

Legend

CGR-L1-5256 ---x---
CGR-L1-5128 ------
CGR-L1-564 &
CGR-L1-§32 =
CGR-L1-516 --o--

FGR —+—

CGR-L1-S8 -~
CGR-L1-S4 &+
CGR-L1-§2 -4
CGR-L1-S1 —v—

10 100
Number of Defects (log scale)

Figure 5.8: Increasing number of local spares (M = 256)

61

Legend
CGR-GT (M=32) ——

=g CGR-G4 (M = 32; R
° CGR-G4 gM = 256) ---¥--
= CGR-G16 (M = 256) ~-&-
FGR (M = 32) —-m-—

FGR (M=64) --o--

FGR (M = 128) -

@
FGR (M = 256) -8 --

1 T 100
Number of Defects (log scale)

Figure 5.9: Increasing array size for FGR (L = 4)

5.4.4 Increasing Array Size

CGR can tolerate multiple defects in the channel. However, as array size grows, it be-
comings increasingly unlikely that randomly occurring defects will lie in the same channel.
Hence, the yield for CGR with a fixed number of spare rows and columns was observed to
be largely independent of array size. The only way to increase yield is through the addition
of spare resources. This can be observed in Figure 5.9 where the yield is shown to be similar
for CGR-G4 at M=32 and M=256.

For the FGR architecture, the amount of spare resources increases naturally as array
size grows. Since the amount of resources needed for defect correction is constant, increas-
ing the number of spare resources translates into the ability to tolerate more defects. This is
demonstrated in Figure 5.9 where FGR is shown to tolerate an increasing number of defects
as array size grows. To reach a similar level of defect tolerance as FGR at M=256, CGR
requires 16 global spares, which is completely infeasible!

Figure 5.10 presents a rough area comparison between FGR and CGR for different
values of M. For FGR, the reported area includes all necessary shifting multiplexers and

spare wires for the given value of M. For CGR-Gn and CGR-Ln-Sp, the “n” and “p” values

62

6 | | l I
-~) FGR
< s cohen
g x ---%--- CGR-L1-S
© N £ cants Sp
T S5F e UCGR.GY
[
e
C
3
©
© 4}
Mg |
es < 7
C 3 = EI
2
....... -
8
8o -
i I — -
g | l I .
g i , : |
~ . L l I I l

32 64 128 256
(5 defects) (10 defects) (19 defects) (39 defects)

Array size (M)

Figure 5.10: Area comparison between FGR and CGR at equal number of defects(L = 4)

were chosen to tolerate the same number of defects as FGR at the 80% yield. The reported
CGR-Ln-Sp area includes the base MxM FPGA plus the additional spare rows/columns.
To account for the additional bypass circuitry, the scaling factor noted in Section 4.3.3 is
used to adjust the area results for both CGR approaches. The figure shows that CGR-Gn,
CGR-L1-Sp and CGR-L2-Sp all requires more area overhead to tolerate the same number
of defects as FGR can tolerate at 80% yield.

The figure also shows the area overhead for CGR-G1. However, CGR-G1 can only
tolerate 1 defect for the different array sizes. A scaling factor of 1.3 is used to approximate
CGR-G1 area. Note that the area overhead between CGR-G1 and FGR are similar, and that

at large values of M, CGR-G1 has a lower overhead.

63

Yield

1 10 100
Number of Defects (log scale)

Figure 5.11: FGR yield for different wire lengths (M=32)

5.4.5 Wire Length

Long wires have a greater number of fanins and fanouts. This results in a larger MFFR and,
consequently, a yield reduction. Figure 5.11 shows how much the yield for FGR decreases
as wire length increases. Also note that the yield for mixed wire length is lower than the
yield of the individual wire lengths it is composed of. This is largely the consequence of
how mixeﬂ wires are implemented and modelled. In the fine-grain architecture, the routing
network for different length wires are disjoint.

To put this yield into perspective, area and delay results were computed for the
largest MCNC benchmark circuit, clma. The results for separate FGR architecture of length
4, 8 and 16 wires are presented in Figure 5.12. The reported numbers have been normalized
to an architecture without redundancy at L=4. The channel width was fixed at 224 for all
wire lengths because 224 is the minimum channel width needed to route clma using length

16 wires. The figure shows that delay increases and area decreases as wire length increases.

64

The use of the E3M1 architecture can be the potential caused of the alarmingly large
delay overhead for length 16v wiring. It is possible that the reduced midpoint flexibility
forces nets to take longer (thus slower) and less direct paths. Also, the wires are much
longer than needed, slowing nets down. Lastly, routing with L=16 wires at 224 tracks is
highly congested, and this increases delay.

In Figure 5.13, the area overhead for clma is broken down into the CLB (logic)
area, the C block area, the S block area, the spare resources area (includes the spare wires
and associated imux and omux) and the shifting multiplexers area (imux and omux for
non-spare wires). The CLB and C block have fixed area overhead because array size and
channel width are constant respectively. C block represents a large part of circuit area
because a wide channel width is used. The S block and shifting multiplexers area shrink
as the length of wire increases because longer wires have fewer switching elements at fixed
channel widths. Lastly, the spare resources area grows because longer wires have fewer
wires per trackgroups, hence the addition of a spare wire is an increasing function of the

overall routing area.

- 65

EXXR Area
| mmmmm Delay

1.8 | -

16 -

1.2 -

Area/Delay
(normalized non-fault redundant arch., L
>

Wire Length

Figure 5.12: Area/delay overhead for clma

66

40
' feee ' Shifting Muxes
BRI Spare Routing Resources 1
35 k [\ Switch Block
I Connection Block
eZzz2a Configurable Logic Block 1
30 -
NA
S
3 25 i %]
©
[}
Z 0 AR B
| \ _____ -
2
<
IS 15
(]
|_
10 - -
5 - -
0
4 8 16
Wire Length

Figure 5.13: Area breakdown of clma for different wire lengths at a very wide channel
width of 224 tracks

67

Chapter 6

Conclusion

This thesis presents a new defect-tolerant switch block and connection block architecture,
called Fine-grain Redundancy (FGR), that can tolerate an increasing number of permanent
manufacturing defects as the FPGA array size scales up. FGR is capable of handling tens
of distributed random defects. FGR is compared to a more traditional approach employing
coarse-grain redundancy (CGR). The results indicate that CGR does not scale well beyond

2 distributed defects unless significant area overhead is employed.

6.1 Area and Delay

The proposed FGR approach has a true area o?erhead of approximately 11% and delay
overhead of 4% on aggressive applications that do not wish to be defect-tolerant.

When defect-tolerance is desired, it is conventional to include the cost of reserving
a spare track. This increases area overhead to 35-50% and delay overhead to 5-20%.
However, it should be noted that less aggressive applications will already have these spare
(unused) routing tracks available for free, so the actual cost is much closer to the true area
dverhead. o .

A range of FGR impleméntation options that ilave a range of area and delay costs
was also presented. Of these options, EN11-E3M1 has the lowest area, EM11-E3M2 has
the lowest delay, and EM22-E3M1 Has the highést yield. More detailed rankings of E3MI,

68

the best flexibility option, are shown in Table 6.1 and presented visually in Figure 6.1.

6.2 " Yield

This thesis also presents a compaﬁson between CGR and FGR. Both approaches embody
the idea of replaéing a defective resource with a spare unused one; however the investigation
indicates that the choice of defect tolerant architecture has a significant impact on yield and
area overhead.

At low defect levels, CGR has a lower area overhead than FGR. Further, for suf-
ficiently low defect levels, the area overhead for CGR diminishes as array size increases.
This is not the case for FGR, where the area overhead for this approach is fixed at up to
50% for all array sizes.

Despite the fixed cost of redundancy, FGR demonstrated the ability to tolerate an
increasing number of defects as array size grows. This is extremely important as the ex-
pected number of defects increase as die size grows and technology feature size shrinks.
When comparing CGR and FGR at equal defect levels, CGR actually requires more area
overhead to tolerate the same number of defects as FGR.

Other factors that influenced yield are wire length and switch implementation. This
study showed that the yield for the FGR approach decreases as wire length or flexibility
increases, and if the switch’s shifting ability is reduced. These factors were found to in-
crease the MFFR of defects, and thus reduced the number of tolerable defects. This is not
so for CGR. Using spare rows and columns for defect correction is wire length and switch

implementation independent.

6.3 Future Work

In terms of architectural improvements, future work includes the optimization of of C block
design for FGR and the incorporation of the extra circuitry needed for row/column bypasses

for CGR. The first is important as careful design of the C block can lead to a significant

69

Area or Delay Overhead (%)

Arch | Area | Delay | Area Recovery | Delay Recovery | Yield
EM22 7 3 7 3 1
EN22 4 7 4 7 2
FL.22 6 6 5 6 2
EM12 5 2 6 1 4
EMI11 2 1 2 2 5
EN12 3 5 3 5 6
EN11 1 4 1 4 7

Table 6.1: Summary ranking of FGR defect-tolerant schemes w/ E3M1

1] | I 1
S , o EM22 i
FL22
o EM12 H EN22
40 |- g EN12 -
EM11 m EN22
o EN11
30 -
EN12
n m FL22
" ENT1
20 .
m EM22
" e = EM12
10 -
O . areaoverhead
m delay overhead
O i 1 1 1 }
0 2 4 6 8 10 12

Tolerable Defects with Yield >50% (M = 32, BF)

Figure 6.1: Summary of area/delay overhead vs defect tolerance of FGR

reduction in area overhead. The accounting of the extra bypass circuitry is useful as it
provides a more accurate area and delay comparison between FGR and CGR.

Future, work in the software domain can be further divided into two categories:
support software and yield model improvements. To provide a complete defect tolerant so-
lution, it is necessary to develop a suite of support tools. The functionality of these tools
includes strategies for defect diagnosis, defect map generation, defect maps management
and the application of defect correction. To better estimate yield, chip area should be incor-
porated into the yield model. Additionally, different kinds of defects should be injected into
the model (as oppose to the current implementation where only worst-case bridging defects
are used). Ideally, the model should be supplemented with manufacturing data to produce

the most accurate estimates.

71

(1]

(2]
(3]
(4]

(5]

(6]
(71

[8]
9]
[10]

[11]

Bibliography

Miron Abramovici, John M. Emmert, and Charles E. Stroud. Roving STARs: An
integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in
adaptive computing systems. In Proc. of the The 3rd NASA/DoD Workshop on Evolv-
able Hardware, pages 73-92. IEEE Computer Society, 2001.

Altera Corp. Altera’s patented redundancy technology dramatically increases yields
on high-density APEX 20KE devices. In Press Release, Nov. 27, 2000.

Altera Corp. In United states patents‘ #6,034,536, #06,166,559, #6,337,578,
#6,344,755, #6,600,337 and #6,759,871, 2000-2004.

Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, Boston, 1999.

Nicola Campregher, Peter Y.K. Cheung, George A. Constantinides, and Milan
Vasilko. Analysis of yield loss due to random photolithographic defects in the in-
terconnect structure of FPGAs. In Int’l. Symp. FPGA, pages 138-148, February 2005.

C. Carmichael. Triple module redundancy design techniques for Virtex FPGAs. In
Xilinx Application Notes, XAPP197 (vi.0), 2001.

C. Carmichael, M. Caffrey, and A. Salazar. Correcting single-event upsets through
Virtex partial configuration. In Xilinx Application Notes, XAPP216 (v1.0), 2000.

Wu-Tung Cheng. Silicon diagnosis. In International Test Conference, 2003.

Collaborative Benchmarking Laboratory. Lgsynth93 benchmark set: Version 4.0.
Technical report, North Carolina State University, 1993.

Altera Corp. Stratix II device handbook, vol. 1. 2005.

Crosspoint Solutions Inc. FPGA redundancy. In United states patents #5,777,887,
1998.

72

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

Andre DeHon and Michael J. Wilson. Nanowire-based sublithographic programmable
logic arrays. In FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th International
symposium on Field Programmable Gate Arrays, pages 123-132, New York, NY,
USA, 2004. ACM Press.

Abderrahim Doumar and Hideo Ito. Design of switching blocks tolerating de-
fects/faults in FPGA interconnection resources. In Proc. 15th IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems, pages 134-142. IEEE
Computer Society, 2000.

Abderrahim Doumar, Satoshi Kaneko, and Hideo Ito. Defect and fault tolerance FP-
GAs by shifting the configuration data. In Int’l Symp. on Defect and Fault-Tolerance,
pages 377-385. IEEE Computer Society, 1999.

Mohamed A. Elgamel, Kannan S. Tharmalingam, and Magdy A. Bayoumi. Crosstalk
noise analysis in ultra deep submicrometer technologies. In ISVLSI *03: Proceedings
of the IEEE Computer Society Annual Symposium on VLSI (ISVLSI’03), page 189,
Washington, DC, USA, 2003. IEEE Computer Society.

Rudy Garcia. Rethink fault models for submicron-IC test. Test & Measurement World,
October 2001.

Scott Hareland, Jose Maiz, Mohsen Alavi, Kaizad Mistry, Steve Walstra, and
Changhong Dai. Impact of CMOS process scaling and SOI on the soft error rates
of logic processes. In Proc. of the IEEE Nuclear and Space Radiation Effects Confer-
ence, pages 7374, 2001. » .

FE Hatori, T. Sakurai, K. Nogami, K. Sawada, M. Takahashi, M. Ichida, M. Uchida,
I. Yoshii, Y. Kawahara, T. Hibi, Y. Saeki, A. Muroga, A. Tanaka, and K. Kanzaki.
Introducing redundancy in field programmable gate arrays. In Proc. IEEE Custom
Integrated Circuits Conference, pages 7.1.1-7.1.4, 1993.

C.K. Hu and J.M.E. Harper. Copper interconnect: Fabrication and reliability. In
International Symposium on VLSI Technology, Systems, and Applications, 1997.

W.-J. Huang and E.J. McCluskey. Column-based precompiled configuration tech-
nique for FPGA fault tolerance. In Proc. IEEE Symp. Field Programmable Custom
Computing Machines, 2001,

Xilinx Inc. Quintuple modular redundancy for high reliability circuits implemented
in programmable logic devices. In United states patents #6812731, 2004.

73

[22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

Xilinx Inc. Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data sheet,
version 4.3. 2005.

John Lach, William H. Mangione-Smith, and Miodrag Potkonjak. Efficiently sup-
porting fault-tolerance in FPGAs. In Int’l Symp. on Field Programmable Gate Arrays,
pages 105-115. ACM Press, 1998.

Vijay Lakamraju and Russell Tessier. Tolerating operational faults in cluster-based
FPGAs. In Int’l Symp. on FPGAs, pages 187-194, 2000.

Guy Lemieux, Edmund Lee, Marvin Tom, and Anthony Yu. Directional and single-
driver wires in FPGA interconnect. In Int’l Conf on Field-Programmable Technology,
2004.

Guy Lemieux and David Lewis. Design of Interconnection Networks for Pro-
grammable Logic. Kluwer Academic Publishers, Boston, 2004.

David Lewis, Elias Ahmed, Gregg Baeckler, Vaughn Betz, Mark Bourgeault, David
Cashman, David Galloway, Mike Hutton, Chris Lane, Andy Lee, Paul Leventis, Sandy
Marquardt, Cameron McClintock, Ketan Padalia, Bruce Pedersen, Giles Powell, Boris
Ratchev, Srinivas Reddy, Jay Schleicher, Kevin Stevens, Richard Yuan, Richard CIliff,
and Jonathan Rose. The Stratix II logic and routing architecture. In Int’l. Symp. FPGA,
pages 14-20, February 2005.

J. Liu and S.J. Simmons. BIST-diagnosis of interconnect fault locations in fpga’s. In
Canadian Conference on Electrical and Computer Engineering, 2003.

Sani R. Nassif. Within-chip variability analysis. IEEE Int. Electron Devices Meeting,
December 1998.

M.Y. Niamat, R. Nambiar, and M.M. Jamali. A BIST scheme for testing the inter-
connects of SRAM-based FPGAs. In Midwest Symposium of Circuits and Systems,
2002.

Jonathan Rose and Stephen Brown. Flexibility of interconnection structures in field--
programmable gate arrays. Journal of Solid State Circuits, 26(3):277-282, 1991.

R. Singh, V. Parihar, K.F. Poole, and K. Rajkanan. Semiconductor manufacturing in
the 21st century. Semiconductor Fabtech 9th Edition, pages 223-232, 1999.

C. H. Stapper. Modeling of integrated circuit defect sensitivities. IBM Journal of
Research and Development, vol. 27, pages 549-557, 1983.

74

[34]

(35]

[36]

(37]

J. H. Stathis. Physical and predictive models of ultrathin oxide reliability in CMOS de-
vices and circuits. In Proceedings of the 2001 IEEE International Reliability Physics
Symposium, pages 132-149, 2001.

Xilinx, San Jose, CA. EasyPath Solutions, 2005.

http://www.xilinx.com/products/easypath/.

AJ. Yu and G.G.F. Lemieux. Defect-tolerant FPGA switch block and connection
block with fine-grain redundancy for yield enhancement. In to appear in Int’l. Conf.
on Field Programmable Logic and Applications, 2005.

AJ. Yu and G.G.F. Lemieux. FPGA defect tolerance: Impact of granularity. In ro
appear in Int’l. Conf. on Field-Programmable Technology, 2005.

75

http://www.xilinx.com/products/easypath/

