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Abstract 

With increasing availability of camera-equipped cellular telephones, the demands for 

video transmissions over mobile networks are growing significantly. Third generation mobile 

networks such as l x E V - D O support data rates high enough for transmissions of compressed 

video, but reducing the power consumption of video compression in mobile devices is an 

ongoing challenge. The large number of computations required for motion estimation is the main 

cause for this consumption. In this research, we propose novel spatial and spatial-temporal based 

motion estimation methods, which sort the sums of absolute difference (SAD) according to 

specific threshold values to facilitate efficient searches for the local optimal motion vectors. The 

proposed methods drastically reduce the computation costs of the motion estimation process over 

the existing techniques. 

The proposed algorithm using only spatial correlation performs direct subtraction 

between the current and previous video frames to obtain a difference frame, which is then 

partitioned into macroblocks of 16x16 (256) pixels with each pixel having 256 grey levels. For 

each macroblock we compute the SAD by simply adding all grey levels of the 256 pixels. Next, 

the average and standard deviation of all macroblocks' SADs are calculated and all SADs are 

sorted in descending order. Based on thresholds calculated from the mean and standard deviation, 

the sorted SAD values are divided into three groups corresponding to different degrees of motion, 

and different computationally efficient scanning processes are applied to the respective 

macroblocks in each group to search for the motion vectors. To further reduce computations, 

only a subset of each macroblock is scanned. New types of subsets are proposed for this purpose. 

i i 



The proposed algorithm that uses both spatial and temporal correlations is similar to the 

above algorithm, except that the temporal correlations are taken into consideration in computing 

the difference frame, since each macroblock is highly correlated to the corresponding 

macroblock in the previous frame as well as the surrounding macroblocks in the same frame. 

Performance evaluations showed that, for the same picture quality, the proposed 

algorithms use only 0.5% of the computations of the full search method and are almost 19 times 

faster than 4SS, the best presently available conventional method. When compared to the most 

recently published non-conventional motion estimation method, which outperforms all the 

existing methods, our approach improves the computational speed by 7.5 times. 

i i i 
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Chapter 1. Introduction 1 

1 Introduction 

In the past few years, significant changes in video compression and wireless data 

communications have stirred an evolution in portable multimedia applications. However, the 

presence of video in mobile devices has become one of the most difficult challenges for real time 

high quality applications. 

Mobile communication standards such as 3GPP (3rd Generation Partnership Project), are 

specifically designed to support data communication between mobile and wired-networks or 

mobile networks only. Despite the existence of standards that support high speed data flow and 

real time video rates, the computational burden caused by the video compression process 

remains a technological challenge. Conventional video encoders spend up to 60% of the 

computational time on motion estimation (ME) [1]. Power consumption of video enabled mobile 

devices can be reduced by lowering the power consumption of the motion compensation process. 

There are three main different types of motion estimation algorithms, the pixel level [2], block 

level [3], and the global level [4] motion estimation. Among those schemes, the block based 

motion estimation is widely used by M P E G encoders. In this category, Spatial and Temporal 

Correlation of motion vectors is exploited in order to lower the computational costs over the 

conventional Full Search (FS) technique which scans the entire searching area [2]. Other 

conventional, motion estimation algorithms include the Prediction Model Search using Three 

Step Search (TSS) [5], New Three Step Search (NTSS) [6] [7], Four Step Search (4SS) [8] [9], 

Block based Gradient Descent Search (BBGDS) [10]-[12], Diamond Search [13]-[17], Recursive 

ME(RME) [18][19], The Prediction Search algorithm (PSA) [20][21], 2D Logarithm Search 

(LOGS) [22], One-at-a-time search (OTS) [23], and Cross Search [24]. Some other methods try 
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to match the picture quality of FS and still improve the computational speed of estimation search, 

but the achieved improvement is much less than the above conventional methods [25]-[33]. 

In most recent studies, more advanced non conventional methods have been developed, 

including the Prediction Model Four-Step Search (PM4SS) [34], the Adaptive Predicted 

Direction Search algorithm (APDSA) [35], and the Hybrid Search approach [46]. However, even 

these approaches have not resulted in speeds that are practical for low power, real-time 

realization of mobile devices. Hence, there is an immense interest in developing fast and 

efficient motion compensation techniques which will enable this new market. 

We have developed a novel motion estimation method which substantially improves the 

speed of the motion estimation process over all the existing techniques. Our proposed method 

makes use of spatial correlation or spatial-temporal correlation among neighbouring 

macroblocks, macroblock subsets, and a special search scanning pattern to reduce the 

computational time for finding the motion vectors. 

In Chapter 2, we give an overview of existing fast motion estimation algorithms. In 

Chapter 3, we describe our new method and in Chapter 4 we present the implementation of our 

algorithm in hardware and software. Performance evaluation results are presented in Chapter 5. 

The conclusions are presented in Chapter 6. 
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2 Overview Of Current Motion Estimation Algorithms 

2.1 Full Search Motion Estimation Algorithm 

The objective of the motion compensation process is to determine the amount of motion 

on a block by block basis which minimizes the difference between consecutive frames. The Full 

Search (FS) algorithm, which is one of the most well known methods, is based on an exhaustive 

testing of all the candidate blocks within the search window, giving the minimum block 

distortion position that corresponds to the best matching block. This method, however, involves 

a large number of computations. 

Figure 1 illustrates the motion estimation with searching window ± W. The macroblock 

in the current video frame is moved through every single point within the searching window in 

the previous video frame. When the searching range W is 7, the total number of searching points 

is 225. 
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Previous Frame Cerent F r a m e 

Figure 1 Motion Estimation with Search Window ± W pixels 

2.2 Traditional Fast Motion Estimation Algorithms 

2.2.1 Three Step Search 

In the Three Step Search (TSS) method, eight points around a centre point are tested and 

the position of minimum distortion becomes the centre point for the next step. For example, 

figure 2 illustrates one of the searching paths. During the first step, one filled circle at the centre 

and the 8 filled circles around the centre are tested for minimum distortion. Then this becomes 

the centre point for the next search step. The new eight points around this centre are located at 

half the distance of the first step. This process is repeated one more time and the point with the 

minimum distortion is the final motion vector (MV) [5]. For a maximum displacement of ± 7 , 
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the TSS always needs 25 block matches and this results in just 8% of the computational power 

needed for FS. 

-7 0 7 

-i H 

—i H 

-i H H 

Figure 2 Three Step Searching Path; Filled circles are the points in the first step, Filled squares are the points 

in the second step, Circles are the points in the third step 

2.2.2 New Three Step Search 

The New Three Step Search (NTSS) method differs from TSS in assuming a centre 

biased checking point pattern in its first stage and incorporating a half-way stop technique for 

low motion (stationary or quasi-stationary) block. In the first stage, in addition to the original 

checking points in TSS, eight extra points are used, shown as shaded squares in Figure 3. In case 

the minimum distortion occurs at centre points in the first step, the searching procedure stops and 

the resulting M V is set to be (0, 0). This completes the search process and it is known as the first 

step stop. If one of the eight neighbouring points around the centre is the minimum, the 

searching step will be performed only for the points around the minimum as shown with light-

shaded circles in Figure 3. The search stops after this point. This is called the second step stop. If 
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any of the outer 8 points is the minimum, then the search process is identical to the conventional 

TSS [6][7]. 

In the worse case, NTSS requires 33 block matches as compared to 25 matches needed in 

TSS. However, due to the fact that motion in low bit rate applications such as video conferencing 

and video phones is very slow and the background is almost stationary, the probability of the 

first step stop and the second step stop occurring is very high and this can help to speed up the 

performance of the motion compensation. However, in general, this approach has the same 

performance as the conventional TSS. 

-7 0 7 

Figure 3 New Three Step Search Path; Filled circles and the filled squares are the points in the first step, 

Circles are the points in the second step 

2.2.3 Four Step Search 

The Four Step Search (4SS) also makes use of the centre biased motion distribution 

characteristic of the video sequences. For maximum motion distributions of ± 7, this algorithm 
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utilizes a centre biased search pattern with 9 checking points in 5 x 5 window in the first step 

instead of 9 x 9 window in the TSS or NTSS. 

Step 1: A minimum distortion point is found from 9 checking points in 5 x 5 window. In 

case the minimum distortion point is located on the centre of the 5 x 5 window, go to the fourth 

step; otherwise go to second step. 

Step 2: The 5 x 5 search window is maintained but the centre of the search window is 

moved to the minimum distortion point from the step 1. In case the minimum distortion point is 

located on the centre of the 5 x 5 window go to the fourth step; otherwise go to third step. 

Step 3: The search pattern is same as Step 2. However, it must go to the fourth step at 

last. 

Step 4: The search window is reduced to 3 x 3 and the direction of the motion vector is 

determined by the minimum distortion point of the nine checking points. 

Figure 4 illustrates one of the search paths. In the worse case, computational requirement 

of the 4SS is 27 block matches as compared to 33 block matches in the NTSS [8]. Experimental 

results show that this algorithm requires 8% of computational needs when compared to FS. 
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Figure 4 Searching Path for Four Step Search; Filled circles are in the first step, Filled squares are in the 

second step, Diamonds are in the third step, White circles are in the fourth step 

2.2.4 Diamond Search 

The Diamond Search (DS) algorithm employs two search patterns as shown in Figure 5. 

The Large Diamond Shaped Pattern (LDSP) comprises of 9 checking points to compose the 

diamond shape. The second pattern, called Small Diamond Shaped Pattern (SDSP), comprises of 

5 checking points. In the first step, LDSP is repeatedly used until the minimum block distortion 

occurs at the centre of the pattern. Figure 6 illustrates the overlapping of the checking points. 

When the minimum distortion is found in the any corners or edges of the diamond pattern, 

another three or five new checking points are required as shown in Figure 6 (a) and (b), 

respectively. When the search is switched to SDSP, the minimum distortion is also the final 

motion vector [14]. Figure 7 illustrates one of the example searching paths and the final M V is 

set to be (1,-3). 
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Experimental results show that for the same picture quality when compared to NTSS the 

DS algorithm reduces computational complexity by approximately 25-30%, which is equivalent 

to 6% of the computational needs of FS. 

]: Small Diamond Shaped Pattern 

, / \ 
( *> Large Diamond Shaped Pattern 
\ / 

Figure 5 Search pattern for the Diamond Search 
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Figure 6 Checking point overlapping when the minimum block distortion is found at (a) one of the corner, (b) 

one of the edge 
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-7 0 7 

Figure 7 Example of a Search Path for the Diamond Search 

2.3 Advanced Fast Motion Estimation Algorithms 

2.3.1 Fast Full Search Motion Estimation Algorithm 

For the purpose of reducing computational time and preventing miscalculation of motion 

vectors, fast full search (FFS) motion estimation algorithms are exploited. FFS algorithms 

eliminate candidate-checking points by using a boundary equation. The main idea of these 

algorithms is based on the successive elimination algorithm (SEA). SEA uses successive 

elimination to exclude a large number of possible search points. 

Although SEA excludes many search positions, it still finds the best matching block with 

respect to the used matching criterion. In order to reduce the number of search positions, an 

inequality is evaluated for every search position, using block properties that can be computed 

efficiently prior to the actual motion estimation, e.g., the sum of norms [36]. 
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The block-matching error is proportional to the complexity of the reference block with 

Taylor series expansion [37]. By using a modified form of the series expansion, we can express 

the matching distortion dl+l(p) in terms of the gradient magnitude of the reference block, as 

4+i (P) = ( P ) " / , (P + c m v ) \ 

«|/( (p + mv) -f(p + cmv)\ 

df(p + mv). . df.(p + mv) . . ' \ (cmvx - mvx) + — (cmvy - mvy) 
dx dy 

d/m(p + mv) t n ^ ^ dfl+l(p + mv) • (cmvx - mvx) + ' „ (cmvy - mvy) (2.1) 
dx dy 

where mv = (mvx,mvy) is the motion vector of p position and cmv - (cmvx, cmvy) 

stands for candidate motion vector corresponding to the matching distortion. 

Equation (2.1) indicates that the matching distortion at pixel p is proportional to the 

gradient magnitude of the reference block in the current frame, which corresponds to the 

complexity of the image data. This algorithm also adopts the concept of adaptive matching scan 

which has various scan directions including a top-to-bottom one. 

Other types of fast FS use decomposed mean square error (MSE) [38], sum of squared 

vertical projection [39], and partial distortion elimination [40]. The main advantage of the FSS 

algorithms is that they achieve the same picture quality as FS. However, the speed improvement 

obtained by FSS algorithms is only 25% of that of FS, making them significantly slower than 

other types of fast motion estimation approaches, and not fast enough for real-time 

implementation for mobile devices. 
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2.3.2 Rood based Motion Estimation Algorithm 

Figure 8 shows the search pattern of this algorithm. The main idea behind the rood search 

algorithm is that about 80% of the motion vectors are located within a central 5x5 square of the 

whole macroblock position. It has been shown that over 76% of the motion vectors are 

distributed within the centre biased rood which is used as the first step by this approach (Figure 

8) [41]. 

Rood based motion estimation differs from diamond search in that a rood-centre-biased 

search is performed in the first step, and halfway-stop strategy is employed for quasi-stationary 

or stationary candidate blocks. This process is summarized as follows: 

Rood-Shaped Pattern 

Figure 8 Search pattern for Rood shaped approach 

Step 1: The Minimum Block Distortion Measure (BDM) is found from the 9 search 

points shown in Figure 8. If this minimum occurs at the centre of the rood shaped pattern (RSP), 

then the search is stopped, otherwise, we continue with step 2. 
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Step 2: In this case, the DS process is employed. Assume the minimum occurs at the 

upper point of the rood pattern (see arrow in Figure 9). Then the large diamond search pattern 

(LDSP) is used to determine the minimum. Since it is expected that the minimum is located at 

the upper part of the rood shape, only two new points are searched of the possible 9 (new points 

are shown as shaded squares in Figure 9). 

Step 3: A new LDSP is formed by repositioning the minimum B D M found in the 

previous step as the centre of the LDSP (right hand side shaded square in Figure 9). If the new 

minimum B D M point is still at the centre of the newly formed LDSP, then go to Step 4, 

otherwise, repeat this step. 

Step 4: With the minimum B D M point in the previous step as the center, a small 

diamond search pattern (SDSP) is employed at this time. The minimum B D M point resulting 

from the new 4 candidate points is the final motion vector. 

In addition to the above described methods, there are several other modified rood based 

motion estimation algorithms, such as the Novel small-cross-diamond search algorithm [42], the 

Adaptive Rood Pattern Search [43] and Improved Adaptive Rood Pattern Search [44]. A l l of 

these methods are based on the same concept and yield comparable results to the original rood 

search algorithm. 

Experimental results show that the Rood based Motion Estimation Algorithm improves 

the search speed by a factor of two when compared with DS. This is equivalent to 4% of the 

computational complexity of FS. However, the assumption that all motion vectors are centre 

biased results in some degradation of the image quality compared to that of FS. 
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-7 0 7 

Figure 9 Example of the Search Path for the Rood Pattern Search 
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Figure 10 Search pattern for Hexagonal shaped Pattern 
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Another diamond based search method is the Hexagon based Motion Estimation 

Algorithm (HEXBS) [45]. This method is similar to DS with the only difference that the large 

diamond is replaced by a Hexagon (see Figure 10). Consequently, a more circular shaped search 

pattern is expected, in which minimum numbers of search points are uniformly distributed. The 

results of this algorithm show that the average speed improvement rate of H E X B S is not as good 

as that of the diamond search (DS), but the average of the mean of absolute distortion (MAD) is 

better than that of DS, resulting in better picture quality. 

2.3.3 Hybrid Motion Estimation Algorithm 

To reduce the number of search points and speed up motion estimation, some algorithms 

are using several different search patterns to compute motion vectors within one frame. A fast 

center-biased hybrid search algorithm (FCBHS) uses three different search patterns, the plus (or 

rood) shaped, X shaped and diamond shaped search patterns [46]. This algorithm can be 

summarized as follows: 

Step 1: The first pattern, which is called plus shaped search pattern, uses five checking 

points to determine the motion vector at the centre of the search window (See Figure 11 (a)). 

Step 2: If the minimum distortion is found on one of the vertexes of the plus pattern, X -

Shaped search is performed (See Figure 11 (b)). This search pattern determines whether the 

motion vector is within (±3, ±3) window around the centre area. If the minimum distortion is still 

the same as that of the first step, three new points (See circle 22 in Figure 11 (c)) around the 

minimum distortion position are calculated and the search is stopped. 

Step 3: If the minimum distortion occurs in one of the outer points (see circle 21 in 

Figure 11 (b)), then the third search pattern is employed, which is diamond shaped search 
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(Figure 11 (d)). The rest of the process follows the conventional DS approach (see Figure 11 (e) 

and (f)). 

Figure 12 illustrates examples of search paths using FCBHS. 

This algorithm results in significant speed improvements, requiring only 2.5% of the 

computational time needed for FS. 



Chapter 2. Overview Of Current Motion Estimation Algorithms 17 

(e) (f) 

Figure 11 FCBHS search patterns; (a) Plus shaped search pattern; (b) Next step along the vertex of the plus 

pattern(X shaped search); (c) X's final step; (d) Next step along the face of diamond (X's next step); (e) Next 

step along the vertex of diamond; (f) Next step of along the face of diamond 
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Figure 12 Example of search path using FCBHS, Each number depicts the each search step 

Figure 13 Mean Pyramid generation and multi-resolution motion estimation 
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2.3.4 Adaptive Motion Estimation Algorithms 

Adaptive motion estimation algorithms compute motion vectors by changing search 

window sizes adaptively, using several search patterns within a frame and finding motion 

correlation in both spatial and temporal domain. 

Content adaptive motion estimation [47] uses a new algorithm, which is called the multi 

resolution mean pyramid. This method scales computations by adaptively deciding on the 

number of candidate motion vectors (CMVs) to be passed from each level of the pyramid to the 

next step. In addition, the number of C M V s is dependent on context complexity. Figure 13 

depicts the process of generating the multi resolution mean pyramid and the corresponding 

motion estimation process. Each pixel on the number of levels is calculated as follows: 

j 0 0 

^ ( P ^ ) = t Z E ^ - i ( 2 ^ + " ' 2 ^ + v ) < 2 - 2 > 

4 „=- iv = _i 

l < L < 2 , l < p < | f , l < ^ < ^ 

where L denotes the pyramid level, k denotes the frame number, p and q are pixel 

positions and NH and Nv denote the horizontal and vertical frame size respectively. 

As we move from lower level (L=0) to top level (L=2), the computation involved in 

determining M V for one M B is decreased by a factor of 4 because the size of each frame is 

reduced by a factor of 2 in each direction. This also makes the size of MBs in each frame and the 

search range reduced by a factor of 4. In this algorithm, actual search procedure is performed 

from top level to bottom level and while passing each level, M V s are refined. 
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In Motion adaptive search [48], the search window size is changed adaptively. The size 

of the search window for each macroblock is based on both the motion activity at the 

macroblock position, which is called local motion activity (LMA) , and the overall frame level 

motion activity, which is called global motion activity (GMA). Two search patterns are used for 

this algorithm; a diamond search pattern (DSP) and an elastic search pattern (ESP) which is 

shown in Figure 14. If the motion activity of the present macroblock is smaller than the motion 

vectors of the neighbouring macroblocks, the motion search is performed around the centre of 

the search window using DSP. Otherwise, the search is done using ESP. The resulting minimum 

is chosen as the centre point, around which the search then is performed using DSP. 

Figure 14 Search pattern for the Elastic search approach 

In the Complexity-adaptive search algorithm [49], frame level complexity allocation and 

block level complexity allocation are used to dynamically adjust to maximize picture quality for 

a target computational complexity. This process takes advantage of slow and fast motion altering 

frames. The objective of the frame level complexity control is to determine the target complexity 
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for each frame in order to keep image quality high and constant. The objective of the block level 

complexity control is to maintain maximum quality under a target computational complexity. 

Diversity-based fast block motion estimation [50] proposed diversity in search strategy 

(DSS). For instance, it uses 4 decimating patterns as shown in Figure 15 and two search patterns, 

which are DS and TSS. Pattern A is the decimating pattern consisting of all a pixels. Pattern B, 

C and D are the decimating patterns consisting of b, c and d pixels, respectively. In other words, 

each pattern consists of quarter size of original macroblock and is reconstructed by choosing 

each corresponding pixels. DS is used with pattern A and D, and TSS is used with patterns B and 

C. 

When compared to FS and for ± 1 5 search window, these algorithms need up to 1.4% of 

computational complexity. 

a b a b a b 

c d c d c d 

a b a b a b 

c d c d c d 

a b a b a b 

c d c d c d 

Figure 15 Decimation patterns for Diversity-based fast block motion estimation 

2.3.5 Spatial-Temporal Motion Estimation Algorithm 

The temporal correlation of video sequence is usually very high and the absolute 

difference between two motion vectors which correspond to the same position within ±1 pixels 
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in two consecutive frames is about 94% of the total in case of 'foreman' sequence [25] . It has 

also been shown that the M V of a M B is also highly correlated to the M V s of neighbouring MBs, 

due to spatial correlation [26]. Some motion estimation algorithms use only one of the two 

correlations and others use both correlations in order to reduce computational time. 

The low power motion estimation algorithm [25] uses two modes to find the M V of the 

current frame, i.e, the fast M B mode and the normal M V mode. In the fast M B mode, the search 

operation is performed within the range of [-1, +1] using the M V of the previous frame as the 

initial search point. Figure 16 shows even sequence frame and odd sequence frame. In this 

algorithm, shaded MBs and transparent MBs in each frame are not calculated at the same time, 

but rather done in alternative fashion. For example, for even sequence frame or odd sequence 

frame, only the shaded MBs are used to find MVs . Therefore, only the half of MBs is checked. 

In [26], four previously calculated M V s are used to help determine the value of the 

present M B as shown in Figure 18. This algorithm divides the search range into three categories 

according to the flow of adjacent motion vector and the M V of the corresponding M B in the 

previous frame. The first category is that all M V s are equal, the second is that only spatial MVs 

are equal, and the last is that some of the M V s are equal or close, or all M V s have different 

directions. According to the criterion, the search area is decided and at the final step, M V is 

found when there is no correlation. 
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(a) (b) 

Figure 16 Fast MB mode candidate area (shaded); (a) Even frame; (b) Odd frame 

MV2 MV3 

MV1 MV MVp 

(a) • (b) 

Figure 17 Comparison block pattern; (a) Current frame; (b) Previous frame 

Adaptive motion tracking [27] locates an initial search point by exploiting the correlation 

of the motion field in both the temporal and spatial domains. An inertial based motion tracking 

(D3MT) method is used to provide a temporal prediction motion vector while a refined spatial 

motion prediction (RSMP) is used to find a predictive motion vector in the spatial domain. 

Motion estimation for low power video devices [28] and Algorithmic and architectural 

co-design [29] present the general rules to guide the design of efficient motion estimation 
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algorithm. Flexible frame-reordering and multi-temporal motion estimation for scalable M P E G 

encoding in mobile consumer equipment [30] and New flexible motion estimation technique for 

scalable M P E G encoding using display frame order and multi-temporal references [31] report 

the three stage display order multi temporal motion estimation algorithm which is based on 

recursive motion estimation (RME). Low-complexity motion estimation for V L B R video coders 

[32] proposes new context based B M E technique for prediction module and it applies spatial-

temporal prediction rules to generate prediction list which contains a set of candidate vectors for 

the estimation of the motion field. 

For a search area of ± 15 pixels, the number of searching points of these algorithms is 

just 1.2% for FS. 

2.3.6 Others 

Simplex minimization [51] proposes simplex minimization optimization method to solve 

block matching motion estimation algorithm. This search method explores directions other than 

that of the minimum distortion. Efficient multilevel successive elimination algorithms (EMSEA) 

[52] uses new algorithm based on SEA which is used for FFS. E M S E A is the improved version 

of multilevel successive elimination algorithm (MSEA) and advanced multilevel successive 

elimination algorithm (AMSEA). 

A Novel Block Motion Estimation Algorithm [53] and Adjustable partial distortion 

search algorithm [54] use adjustable partial distortion search (APDS) algorithm and this can help 

to control between the quality of image and the speed of performance. A new lower bound [55] 

proposes 8 bit partial sums. This idea is from the luminance value of a pixel in frame is of 8 bit. 

The original block of image is partitioned in a multi-stage multi-candidate algorithm [56] and 
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through the stages, a number of candidates are eliminated by evaluating the distortion. This 

algorithm also use spiral search pattern and this can reduce overhead for comparison in most 

search locations. 
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3 Proposed New Motion Estimation Algorithm 

In this thesis a new and novel motion estimation algorithm is introduced. Our objective is to 

separate macroblocks into classes with different search requirements. We base this classification 

on spatial and temporal correlation between macroblocks. The details of our method are 

described in the following subsections. 

3.1 Basic Idea Behind Our Algorithm 

3.1.1 Motion Estimation Based on Spatial Correlation 

During the first step, the difference between the current and previous frame is calculated 

by direct subtraction. The resulting difference frames are subdivided into 16x16 macroblocks 

and the sum of the absolute difference (SAD) for each macroblock is calculated. These SAD 

values are sorted in descending order and the mean and standard deviation of each macroblock 

are derived. 

Current methods search for the best matching macroblock by scanning the search 

window from left to right. In our case, the scanning process follows the sorted SAD values. 

Smaller SAD values indicate that the corresponding motion vector will also be smaller. 

Therefore, macroblocks that correspond to larger SADs have higher priority and their motion 

vectors are computed first. Appendix A lists the SAD and M V values of two frames taken from 

different video streams. We observe that the SAD and M V values are highly correlated with each 

other and that below a certain SAD value almost all of the M V s are zero. Our objective here was 

to separate the macroblocks into groups with different search requirements, i.e., those which 

require more calculations and more accuracy than others. 
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Although our main goal is to reduce the amount of calculations involved in the motion 

estimation process, we also need to ensure that we do not compromise the image quality. In 

order to achieve both objectives, we divide the macroblocks of each frame into three categories 

as shown in Table 1. 

Table 1 List of methods used for each category 

Sorted SAD values Used Method for calculating motion vectors 

Category 1 

Down to 

m + <y 

Using any combination of two of the new subsets 

shown in Figure 18 and 19 

Category 2 

Between 

m and m + a 

Using one of new subset shown in Figure 18 and 

19. If motion vectors of several successive MBs 

are (0,0), the rest of the motion vectors are also 

set to (0,0). 

Category 3 

Less than m Using one of new subset shown in Figure 18 and 

19 and taking into account spatial correlation. If 

motion vectors of several successive MBs are 

(0,0), the rest of the motion vectors are also set to 

(0,0). 

Several different thresholds were tested in order to find the best classification which 

results in the least number of motion estimation calculations. Some of these thresholds include a 

combination of the mean (am) and standard deviation (a), such as mean+a/4, mean+a/2, mean+a 
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and mean. Tables 2 to 4 show that, for the same SNR and bit rate, the sum of the mean and 

standard deviation yields the smallest number of points for all the tested video streams. 

Table 2 Total number of searching points 

Seq. Mean+a Mean+o/2 Mean+o/4 Mean 

akiyo 24130 35472 42184 46881 

claire 21725 30854 41010 47068 

container 24298 41363 43152 45079 

grandma 22085 44260 59067 70279 

miss_am 24091 34819 42670 49843 

news 18775 32299 43237 54661 

salesman 18026 35066 48779 64039 

silent 17152 25837 34890 49709 

suzie 25611 38059 49384 61083 
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Table 3 Average Bit Rate Obtained 

Seq. Mean+o" (kbps) Mean+o/2 (kbps) Mean+o74 (kbps) Mean (kbps) 

akiyo 28.63 28.02 27.76 27.78 

claire 27.48 27.21 27.03 26.85 

container 44.25 43.51 43.39 43.39 

grandma 26.67 25.63 25.41 25.30 

miss_am 30.16 28.73 28.33 28.21 

news 66.36 65.08 64.23 64.00 

salesman 41.09 40.43 40.22 40.25 

silent 62.09 60.98 60.18 59.55 

suzie 84.67 79.31 76.07 74.15 
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Table 4 Average SNR of Y component of 100 Frames 

Seq. Mean+rj (dB) MeanW2 (dB) Mean+o/4 (dB) Mean (dB) 

akiyo 34.23 34.31 34.32 34.32 

claire 35.98 35.98 36.01 36.03 

container 32.49 32.51 32.51 32.51 

grandma 33.17 33.20 33.22 33.24 

miss_am 36.77 36.92 36.96 36.98 

news 32.38 32.40 32.42 32.43 

salesman 31.67 31.68 31.69 31.70 

silent 32.15 32.17 32.19 32.20 

suzie 33.62 33.64 33.73 33.84 

We choose this to be the threshold for the first category of macroblocks, which includes 

SAD values that lie between the highest SAD value and the sum of the mean and standard 

deviation. Similar performance evaluations led us to choose the mean SAD value as the second 

threshold, which separates the second from the third category. Thus, the second category 

includes macroblocks whose corresponding SAD values lie between the mean SAD value and 

the sum of the mean and the standard deviation. Finally, the third category includes all the 

macroblocks with SAD values smaller the mean SAD value. 

Performance evaluations have shown that in order to maintain high image quality, the 

search algorithm for the first and second category should not take into consideration any spatial 

or spatial/temporal correlation between motion vectors. 
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In addition to classifying the macroblocks into three categories, we derived a scheme that 

allows us to determine the motion vector using only a subset of the total 256 pixels available in 

each 16x16 macroblock. The chsosen subset patterns shown in Figures 18 and 19 (shaded 

blocks) resulted from performance evaluations over a large number of pattern combinations. This 

process can be expanded to 16x16 macroblocks in a similar fashion. 

Performance evaluations have shown that a combination of any two subsets provides 

enough information for accurate and efficient calculation of motion vectors for macroblocks that 

belong to the first category. The Diamond Search pattern is used for estimating the motion 

vectors in this category as well as the other two. 

SAD values that are between the sum of the mean and standard deviation and the mean 

SAD values (i.e., category 2) indicate that there is little or no disparity between the macroblocks 

of the two consecutive frames. For this category, only one 16 pixel subset is needed for the 

calculation of the motion vector. Using this macroblock subset reduces the estimation 

complexity by up to 75%. 
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(a) (b) 

(c) (d) 

Figure 18 Four types of new subsets for motion estimation 

m 1U 

m 

(a) (b) 

f 
f 

(c) (d) 

Figure 19 Four types of new subsets for motion estimation 
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Finally, for category 3, we take the spatial correlation into consideration. Using values of 

already known motion vectors around the target macroblock (shaded areas in Figure 20), we 

calculate the corresponding motion vector as the mean of the surrounding motion vectors. This 

vector becomes the initial search point for the macroblock. This is different from the 

conventional motion estimation algorithms, which use the center of each macroblock as the 

initial search point. 

For the second and third categories, we further improve the search speed by assuming 

that if the motion vectors of several successive macroblocks are (0,0), then the rest of the 

macroblocks are stationary or quasi-stationary and their motion vectors are also (0,0). 

MV2 

MV1 MV 

MV3 

Figure 20 Target vector calculated as the average of already known motion vectors (shaded areas) around it 

The following subsection describes in detail our algorithm. 



Chapter 3. Proposed New Motion Estimation Algorithm 34 

3.1.2 Our basic Algorithm 

Figure 21 shows the flowchart of our algorithm. 

Our algorithm could be summarized in the following steps; 

Step 1: Assume using a QCTF (176x144) frame. If P is the previous frame and C is the 

present frame, we can calculate the new difference N frame as follows: 

,=175;=143 

;=0 j=0 

where Ptj and Cy are the luminance values of the (i,j) pixel of the previous and current 

frames, respectively. 

Step 2: Frame N is divided into 16x16 macroblocks. Each macroblock can be indexed 

by Mnm and the sum of absolute difference of the pixels of each macroblock can be represented 

as SADnm, where n and m represent rows and columns respectively. 

Let the mean value of SADnm to be m and the standard deviation of SADnm to be a. 

Step 3: Sort SADnm in descending order and store the value and the order in an 1-

dimensional structure array D , . The array Dt contains the values of SADnm and the positions of 

the macroblock (m, n.) Figure 22 illustrates an example of the order of the macroblocks for one 

frame. 
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Figure 21 Flowchart for the first proposed motion estimation algorithm 
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10 15 27 19 49 48 

11 20 16 2 4 41 

30 7 1 6 3 17 

9 8 5 12 14 13 

18 21 79 60 54 58 

79 80 76 31 28 25 

Figure 22 Order of macroblocks 

Step 4: Let the motion vector of this frame to be MV(n,m). Initialize the number of 

repetitions of successive motion vectors to zero (r=0). 

r = 0 

While D, has SAD values 

If Di > m + a then 

Find the exact motion vector using two of new subsets (Figure 18 and 19) of a 

macroblock using diamond search (DS) algorithm 

Else if Di <m + cr and Dj > m then 

Find the exact motion vector using only one of new subset of a macroblock 

using diamond search (DS) algorithm 

If MV =(0,0) and r>3then 

Set rest of MV to (0,0) 

Break while loop 

Else if MV =(0,0) and r < 3 
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r = r + l 

Else 

r = 0 

End if 

Else if Z> < m then 

If neighbouring MV s' values exist then 

Predict motion vector using method described in subsection 3.3 

End if 

Find exact motion vector using one of new subset of a macroblock using a 

combination of DS and prediction method described in section 3.3. 

If MV =(0,0) and r>3then 

Set rest of MVs to (0,0) 

Break while loop 

Else if MV =(0,0) and r < 3 

r = r + l 

Else 

r = 0 

End if 

End if 

End While 
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3.2 Basic Idea Behind New Advanced Algorithm 

In the previous section we build our algorithm on spatial correlation in a macroblock. 

However, it is only natural to try to take advantage of the temporal correlation present in 

video streams as well. 

3.2.1 Motion Estimation Based on Spatial-Temporal Correlation 

As in the previous section, sum of the absolute difference (SAD) was calculated for 

macroblocks resulting from direct subtraction of the present and previous frames. However, in 

addition to that, we also take advantage of the temporal correlation between two consecutive 

frames. The motion vectors of the previous frame are used to determine the predicted motion 

vector of the corresponding macroblocks in the current frame. Then the difference between 

macroblocks from the current frame and the corresponding search area is calculated taking into 

consideration the temporal correlation from the previous frame. The new difference frame is 

subdivided into 16x16 macroblocks and the sum of the absolute difference (SAD) for each 

macroblock is calculated. 

We compare the two SAD values that we obtained for each macroblock and since the 

smaller one will yield a better approximation for the motion vector, we generate a new SAD 

array using the smallest of the two values. 

The rest of the process for finding the motion vectors is very similar to the one described 

in the previous section. The SAD array is sorted and the macroblocks are divided into three 

categories. For the first two categories, the motion vector is calculated in a similar manner as in 

the previous section. 
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However, in this case, i.e., for category 2 and 3, when the SAD value is smaller than the 

sum of the mean and the standard deviation, if several successive motion vectors are (0, 0), we 

can assume that the rest of macroblocks are stationary or quasi-stationary and for this reason 

their motion vectors are also set to (0,0). In addition to the above, for the same two categories, 

temporal correlation between motion vectors is used to reduce motion estimation calculations. 

For the same categories, if several successive motion vectors are the same as the corresponding 

vectors from the previous frame, the rest of the macroblock vectors are set to have the values 

from the previous frame as well. 

For category 3, when the SAD is smaller than the mean, the initial search point is set as 

explained in Section 3.3 and the same process as in previous case is used. 

3.2.2 New Advanced Algorithm 

Figure 23 shows the flowchart of new algorithm. 

Step 1: Assume using a QCIF (176x144) frame. If P is the previous frame and C is the 

present frame, we can calculate the new difference Nnc frame as follows: 

/=175j=143 

i=0 y'=0 

If there are previous motion vectors, we can generate another frame as follow, 

1=175 j=143 

1=0 j'=0 

where Py and Ctj are the luminance values of the (i,j) pixel of the previous and current 

frames, respectively. 
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Figure 23 Flowchart for the second proposed motion estimation algorithm 
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Step 2: Frame Nnc and Ncis divided into 16x16 macroblocks. Each macroblock can be 

indexed by Mnc(n,m) and Mc(n,m)and the sum of absolute difference of the pixels of each 

macrobloack can be represented as SADnc(n,m) and SADc(n,m) . Let the mean value of 

SADnc(n,m) to be m and the standard deviation of SADnc(n,m) be cr. 

If there are both SADnc(n,m) and SADc(n,m), the new SAD(n,m)can be generated as 

follow, , 

If SADnc(n,m)>=SADc(n,m) then 

SAD{n,m) = SADc{n,m) 

Else 

SAD(n, m) = SADnc (n, m) 

End if 

Step 3: Sort SAD(n,m) in descending order and store the value and the order in an 1-

dimensional structure array D, . The array Di contains the values of SAD(n,m) and the 

positions of the macroblock (m, n.) in addition to the information whether it is from SADnc{n,m) 

or SADc(n,m). 

Step 4: Let the motion vector of previous frame be MV'(n,m) and the current frame's 

motion vector of this frame to be MV(n,m). Initialize the number of repetitions of successive 

motion vectors to zero (r=0). 
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r = 0 

While D, has SAD values 

If Dt > m + a then 

If D, is from SADnc then 

Find the exact motion vector using two of new subsets (Figure 18 and 19) 

of a macroblock using diamond search (DS) algorithm 

Else 

Find the exact motion vector using two of new subsets (Figure 18 and 19) 

of a macroblock using diamond search (DS) algorithm with initial search 

point of MV 

End if 

Else if £>, <m + cr and Dt > m then 

If £> is from SADnc then 

Find the exact motion vector using only one of new subset of a 

macroblock using diamond search (DS) algorithm 

Else 

Find the exact motion vector using only one of new subset of a 

macroblock using diamond search (DS) algorithm with the initial search 

point moved toMV" 

End if 

If (MV =(0,0) or MV = MV) and r > 3 then 
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Set rest of MV to (0,0) or MV depending on whether £> is from 

SADnc or SADn 

Break while loop 

Else if (MV =(0,0) or MV = MV) and r < 3 

r = r + l 

Else 

r = 0 

End if 

Else if D, < m then 

Find exact motion vector using one of new subset of a macroblock using a 

combination of DS and prediction method described in section 3.3. 

If (MV =(0,0) or MV = MV) and r > 3 then 

Set rest of MV to (0,0) or MV depending on whether Di is from 

SADnc or SADn 

Break while loop 

Else if (MV =(0,0) or MV = MV) and r < 3 

r = r + l 

Else 

r = 0 

End if 

End if 

End While 
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3.3 Determining Initial Search Position for Our Algorithm 

Figure 24 illustrates the real motion vectors of two consecutive frames of the news (qcif) 

stream using full search method. The shaded areas are showing the non-zero motion vectors and 

their corresponding temporal motion vectors in the previous frame. We observe that the 

correlation between these vectors is very high. Experimental results from a large set of video 

streams yielded similar results. Based on this observation, we developed a simple algorithm for 

predicting motion vectors and therefore starting search point using information of neighbouring 

vectors and the previous frame vector. 

Because our method sorts the macroblocks according to their SAD values, we need to 

design a process for predictiong the initial value of the motion vector for each macroblock. In 

case that the SAD value of the specific macroblock is derived from spatial correlation only (i.e., 

direct subtraction of two frames), then the following two steps are executed. 

If all the surrounding motion vectors have not been calculated (e.g., first macroblock 

used in a frame), then the initial value is set to (0,0). 

If one or more of the surrounding motion vectors is known, then the mean value of the 

known motion vectors is used as the initial M V values. 

In case that the SAD value of the specific macroblock results from temporal correlation, 

then the following two steps are used. 
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If all the surrounding motion vectors have not been calculated (e.g., first macroblock 

used in a frame), then the initial value is set to be equal to the motion vector value of the 

previous frame. 

If one or more of the surrounding motion vectors is known, then the procedure can be 

described as follows: 

Let the previous motion vector be MVp {xp, yp) and the neighbouring motion vectors be 

MVn(xn, yn). In general, if there are n known motion vectors, we can simply obtain the predicted 

motion vector MV(x, y) of a macroblock as follows: 

1 " 
SPATIAL (XSPATIAL » >SPATIAL ) = ~ E M V * <** ' ) ^ 

n k=i 

(Case 1) MVp(xp,yp) = MVSPATIAL(xSPATIAL, ySPATIAL) 

MV(x,y) = MVp(xp,yp) (4-2) 

(Case2) MVP(xP) = MVSPATIAL(xSPATIAL) and MVP(yP)*MVSPATIAL(ySPATIAL) 

MV(x) = MVp(xp) (4-3) 

M\r(y) - M V r { y » ) + MVSPATlALiy SPATIAL ) ( 4 4 ) 

(Case3) MVP(xp) *MVSPATIAL(xSPATIAL) and MVP(yP) = MVSPATUL(ySPAmL) 

M y { x ) = MVp(xp) + MVSPATIAL(xSPATIAL) ( 4 5 ) 
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MV(y) = MVp(yp) 

(Case4) MVp(xp,yp)* MVSPATIAL(x 

SPATIAL ' ySPATIAL ) 

v MV (x ,y ) + MVSPATIAL(xSPATIAL,ySPATIAL) 
MV (x, y) = —-—-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

1 1 0 0 0 0 111) 0 0 0 0 0 0 0 0 0 0 

0 0 . 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(a) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1) 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0-7 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

(b) 

Figure 24 Motion vector of news.qcif stream: (a) Motion vector of 71st frame, (b) Motion vector of 72nd frame 
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(4.6) 

(4.7) 
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4 Implementation of Our ME Algorithm 

A variety of conventional M P E G encoders is used for different multimedia applications. 

H.263 is widely used for low-bit rate multimedia delivery in wireless environments. The H.323 

communication standard supports both H.261 and H.263 video codecs and it includes several 

other protocols, such as the multimedia control protocol H.245, signaling protocols H.225.0. 

In this study, we implemented our new motion estimation algorithm on the H.263 standard 

to show how our approach improves the computational speed of a real video compression 

scheme. H.263 is presently the codec of choice for the mobile devices. H.264 is the emerging 

video standard, but at present its complexity is a challenge for low power consumption 

applications such as cell phones and PDAs. Implementing our algorithm on the H.264 standard is 

the next logical research step. Some H.264's advanced features such as different macroblock 

sizes and multi-frame predictions must be taken into consideration. 

We implemented our algorithm on H.263 that runs on a PC platform as well as video 

enabled PDA. The details of the two implementations and specifications of the devices are 

described in the following section. 

4.1 Specification of Hardware and Software used for Implementing Our M E 

Algorithm 

This section describes the specifications of the hardware and software used to design and 

implement our new algorithm. Even though the new motion estimation algorithm is focused on 

mobile devices, such as PDAs and cell phone, we first developed and tested our algorithm on a 

PC platform and then we imported to a video enabled PDA. 
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4.1.1 Hardware 

For the design and implementation of our method, we used an HP Pavilion ze4430us 

which is powered by A M D Athlon X P - M 2400+. Table 5 shows the specifications of the PC. A l l 

the coding was completed on this laptop and the complied code was uploaded to an HP iPAQ 

h4150 handheld device through USB cradle. This HP iPAQ h4150 was to test our algorithm. 

This uses a 400MHz Intel® XScale™ processor and includes 64MB internal R A M and 32MB 

integrated R O M . Its 3.5" Transflective TFT L C D display uses 64,000 colors and has maximum 

resolution of 240x320 pixels. 

Table 5 Specification of HP Pavillion ze4430us 

Processor 1.80-GHz Athlon X P - M 2400+ 

Operating system Microsoft® Windows® 2003 Standard Edition 

Memory 512 M B RAM(SDRAM) 

HDD 40GB Hard Drive 

Display 15.0" TFT (1024-by-768) 

Video Card ATI MOBILITY R A D E O N 4x A G P graphics with 64MB of shared 

memory 

Expansion PC Card Slot, FireWire Port, Parallel Port, Serial Port, S-Video Out 

Port 

Modem Integrated 56k v.92 Data/Fax Modem 

Network 10-/100-Mbps Ethernet 

Integrated wireless Integrated W L A N 802.1 l g 

The 400MHz Intel® XScale processor PXA255 outperforms Intel's StrongARM 

processor by a factor of 2 and is currently used by iPAQ, Zaurus and Dell. PXA255 is a highly 

integrated, 32-bit RISC processor utilizing advanced Intel 0.18u process for high core speeds at 
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low power that combines the efficiency of Intel design with the A R M V.5TE instruction set 

architecture. This process is able to support games, movies and richer music as well as many of 

the latest applications being developed for the home and workplace. It also complements the 

Intel StrongARM SA-1110 applications processors, the leading platform for Pocket PC devices 

today, and sets the stage for a new class of high-performance, low-power wireless 

communications devices. 

Table 6 summarizes the specifications of the HP iPAQ h4150 PDA. 

Table 6 Specification of HP iPAQ h4150 

Processor 400MHz Intel® XScale™ processor 

Operating system Microsoft® Windows® Mobile 2003 Premium for Pocket PC 

Memory 64MB S D R A M (55MB user accessible), 32MB Flash R O M 

Display 3.5" Transflective TFT display with 64,000 colors 

Expansion Integrated SD slot - supports S D / M M C type standard, SDIO ready 

Integrated wireless Integrated W L A N 802.11b, Bluetooth®, IrDA 

4.1.2 Software 

Microsoft Visual C++ 6.0 (with Service Pack 6) which is widely used in academic and 

industrial fields was used to implement our PC based H.263 Encoder on Microsoft Windows 

Server 2003 Standard Edition. This tool makes use of a wide range of Microsoft Window 

applications and is ideal for designing and implementation for the most proficient and efficient 

applications. 

Microsoft eMbedded Visual C++ 4.0 (with Service Pack 3) is appropriate for developing 

the H.263 Encoder for Pocket PC 2003 platform application such as HP iPAQ h4150. The 
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Software Development Kit for Windows Mobile 2003-based Pocket PCs is also required. The 

Microsoft eMbedded Visual C++ 4.0, which is used to implement applications running on 

Windows CE.NET 4.0, 4.1, 4.2 and PocketPC 2003, is a powerful development tool that 

provides significant benefits to companies which are building "native" executables for the next 

generation of Windows CE-based devices. 

http://CE.NET
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5 Experimental Results 

The Telenor H.263 encoder 1.7 with variable bitrate, quantization parameter of 10, 0 frame 

skip, reference frame rate of 30 was used for our tests. The macroblock size was fixed at 16x16 

pixels and the maximum value of motion vector displacement was set to + 7 pixels in both rows 

and columns. Variable bit rates were used, which means that the network usage changes in order 

to ensure that the image quality is within a certain range. 

5.1 Performance Evaluation of Proposed Motion Estimation Algorithm 

In our tests we used thirteen QCIF file video sequences, which are known to be very 

good content representation for mobile applications. These sequences are "Akiyo", "Carphone", 

"Children", "Claire", "Container", "Foreman", "Grandma", "Miss America", "News", 

"Salesman", "Silent", "Suzie" and "Trevor". 

At first we compare our method against four conventional, widely used algorithms, the 

Full Search (FS), Diamond Search (DS), Four Step Search (4SS) and New Three Step Search 

(NTSS), in terms of SNR, average bit rates and computational complexity. 

Table 7 and Table 8 show the SNR and the average bit rates for all the tested methods. 

Figures B - l to B-13 in Appendix B show the M S E values of all the encoded frames of the video 

sequences, indicating that the picture quality of each video stream remains constant. For 

subjective comparisons, Figures 25 a, b, c, d, e, f, g show the 72 n d frame of the "salesman" video 

sequence, obtained by each of the tested motion estimation methods. We observe that the visual 

quality of all these frames is the same. From above observations (subjective quality, M S E and 

SNR values and the bit rates) we can conclude that the picture quality is kept the same for all our 
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tests. Table 9 shows the average number of processed points per macroblock and Table 10 shows 

the total number of processed points used by every method to determine the motion vectors for 

100 frames. The last two columns show the results obtained by our method when only spatial 

correlation is used and when spatial and temporal correlation are combined (last column). It is 

clear that the performance of our method improves significantly when spatial and temporal 

correlations are used. 

When compared with all the other methods, we observe that our approach drastically 

improves the motion estimation search speed. In particular, our algorithm has on average only 

0.5% of the computational complexity of the Full Search (FS) method and is almost 19 times 

faster than 4SS, the best among the conventional methods. 



5? 

Table 7 Average SNR of Y component of 100 Frames <§ 

Seq. FS (dB) NTSS (dB) 4SS (dB) DS (dB) Proposed (Spatial only) (dB) Proposed (dB) 
akiyo 34.34 34.26 34.28 34.28 34.19 34.22 
earphone 33.42 33.07 33.12 33.15 32.97 33.08 
children 30.54 30.55 30.54 30.55 30.47 30.42 
claire 36.17 36.07 36.06 36.06 35.94 35.94 
container 32.51 32.51 32.51 32.51 32.48 32.48 
foreman 31.92 31.29 31.39 31.43 31.20 31.36 
grandma 33.27 33.25 33.25 33.25 33.17 33.18 
miss_am 37.14 36.76 36.87 36.90 36.79 36.83 
news 32.46 32.43 32.43 32.43 32.37 32.38 
salesman 31.71 31.71 31.71 31.71 31.67 31.67 
silent 32.25 32.27 32.27 32.25 32.19 32.19 
suzie 34.25 33.98 34.09 34.07 33.90 33.94 
trevor 32.62 32.56 32.61 32.59 32.46 32.35 

SO 



Table 8 Average Bit Rate 

Seq. FS (kbps) NTSS (kbps) 4SS (kbps) DS (kbps) Proposed (Spatial only) (kbps) Proposed (kbps) 

akiyo 27.48 28.50 28.05 27.78 28.86 28.55 

earphone 82.72 100.94 94.99 93.13 97.98 95.15 

children 230.29 247.53 250.57 248.23 251.67 243.81 

claire 26.91 27.70 27.16 26.99 27.25 27.38 

container 43.51 43.81 43.75 43.82 44.53 43.98 

foreman 111.84 207.14 193.33 189.75 208.40 192.53 

grandma 25.04 25.42 25.20 25.13 26.29 26.22 

miss_am 27.56 34.08 31.37 30.54 31.40 31.15 

news 62.91 65.03 64.55 63.88 66.22 65.89 

salesman 39.98 40.83 40.12 40.02 40.63 40.79 

silent 57.03 60.18 58.68 58.51 61.20 60.63 

suzie 64.98 85.56 79.97 79.43 82.23 85.44 

trevor 96.72 109.94 106.25 105.48 112.63 129.19 



Table 9 Average number of processed points per macroblock 

Seq. FS NTSS 4SS DS Proposed (Spatial only) Proposed 
akiyo 183.5 19.7 11.1 11.4 1.25 1.11 

earphone 183.5 20.3 11.4 12.5 2.05 1.91 

children 183.5 20.5 11.3 12.2 1.52 1.08 

claire 183.5 19.5 11.1 11.5 1.17 1.16 

container 183.5 19.7 11.7 11.4 1.22 1.04 

foreman 183.5 20.8 11.6 13.3 2.36 1.71 

grandma 183.5 19.7 11.1 11.5 1.17 1.15 

miss_am 183.5 19.9 11.2 11.8 1.53 1.31 

news 183.5 19.7 11.1 11.5 1.01 0.98 

salesman 183.5 19.7 11.1 11.5 0.99 0.90 

silent 183.5 20.1 11.3 11.9 1.05 0.93 

suzie 183.5 20.5 11.6 12.9 2.35 1.71 

trevor 183.5 20.0 11.3 12.1 1.58 1.25 



Table 10 Total number of processed points 

Seq. FS NTSS 4SS DS Proposed (Spatial 

only) 

Proposed 

akiyo 1817200(100%) 194612(10.7%) 109526(6.0%) 113267(6.2%) 12460(0.7%) 11019(0.6%) 

earphone 1817200(100%) 201333(11.1%) 113160(6.2%) 124147(6.8%) 20336(1.1%) 18882(1.0%) 

children 1817200(100%) 202956(11.2%) 111918(6.2%) 121033(6.7%) 15077(0.8%) 10658(0.6%) 

claire 1817200(100%) 192929(10.6%) 109814(6.0%) 113719(6.3%) 11574(0.6%) 11503(0.6%) 

container 1817200(100%) 194812(10.7%) 109575(6.0%) 113228(6.2%) 12053(0.7%) 10287(0.6%) 

foreman 1817200(100%) 205713(11.3%) 114971(6.3%) 131938(7.3%) 23394(1.3%) 16923(0.9%) 

grandma 1817200(100%) 194844(10.7%) 109712(6.0%) 113712(6.3%) 11632(0.6%) 11402(0.6%) 

miss_am 1817200(100%) 197052(10.8%) 110565(6.1%) 116481(6.4%) 15142(0.8%) 13011(0.7%) 

news 1817200(100%) 195368(10.8%) 109787(6.0%) 114192(6.3%) 9993(0.5%) 9743(0.5%) 

salesman 1817200(100%) 195054(10.7%) 109748(6.0%) 113763(6.3%) 9773(0.5%) 8944(0.5%) 

silent 1817200(100%) 199035(11.0%) 111388(6.1%) 118102(6.5%) 10410(0.6%) 9211(0.5%) 

suzie 1817200(100%) 203142(11.2%) . 114693(6.3%) 127771(7.0%) 23277(1.3%) 16908(0.9%) 

trevor 1817200(100%) 197547(10.9%) 111495(6.1%) 119339(6.6%) 15663(0.9%) 12374(0.7%) 
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(g) 

Figure 25 Decoded 72 n d frame for the "salesman" sequence: (a) Original, (b) FS, (c) DS, (d) NTSS, (e) 4SS, (f) 

Proposed (Spatial only) Algorithm, (g) Proposed Algorithm 
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We also compared our method with a non conventional motion estimation approach 

known as Adaptive Motion Estimation (AME) method, which recent studies have shown that 

outperforms all the existing motion estimation methods [26]. 

Table 11 shows the M S E values for two conventional methods (TSS and 4SS), the non 

conventional A M E method and our method obtained for 3 different video streams. Table 12 

shows the average number of search points per macroblock for the above motion estimation 

methods. We observe that our spatial-temporal based method outperforms A M E , resulting in 

search speed that is 7.5 times faster than that of A M E . 

Table 11 Average MSE per Frame 

TSS 4SS A M E Proposed (Spatial only) Proposed 

Akiyo 36.91 36.41 36.34 30.52 30.28 

Foreman 84.413 81.78 81.03 80.45 78.11 

Stefan 160.16 158.27 153.37 150.28 152.19 

Table 12 Average Number of Search Points per Macroblock 

TSS 4SS A M E Proposed (Spatial only) Proposed 

Akiyo 25 33 11.38 1.31 1.11 

Foreman 25 33 13.99 2.49 1.71 

Stefan 25 33 12.99 3.28 1.73 
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6 Conclusion 

The focus of this thesis is on the development of novel motion estimation algorithms for 

video compression, which are computationally very efficient without sacrificing the quality of 

the video, as required for low bit rate video coding in battery powered mobile devices such as 

personal digital assistants and cellular telephones. The proposed methods are mainly based upon 

the spatial correlation among neighbouring macroblocks, or spatial-temporal correlation among 

neighbouring and previous frame's macroblocks. 

The main features of the proposed motion estimation algorithms are: (1) methods to 

classify macroblocks according to the amount of motion as indicated by the SAD of each 

macroblock compared the SAD statistics among all the macroblocks; (2) different efficient 

search methods for each class of macroblocks; and (3) searching over a subset of the pixels in 

each macroblock for further speed-up. The proposed algorithms have been implemented using 

the diamond search pattern that is widely used and studied in conventional search algorithms. 

However, the proposed algorithms are independent of the search pattern and other search 

patterns can easily be adopted. To further reduce computations, all the remaining motion vectors 

in a frame are set to (0,0) if the motion vectors of several successive macroblocks are found to be 

(0,0). 

We have evaluated the performance of the proposed algorithms and compared with 

several existing methods. We have presented the results of the performance evaluations, which 

clearly show that the proposed algorithms significantly reduce the number of computations for 

motion estimation without degrading picture quality. For the same picture quality, the proposed 

algorithms are about 200 times faster than the full search method, and almost 19 times faster than 

4SS, the best presently available conventional method. When compared to the most recently 
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published non-conventional motion estimation method, which outperforms all the existing 

methods, our approach improves the computational speed of motion estimation by 7.5 times. 

In this thesis, we only explore the possibility of speed-up of H.263 standard. It is, 

however, imperative to look for a way to implement the proposed algorithm on the emerging 

H.264 multimedia communication standard. In addition, since H.264 uses several new operations 

that are computationally intensive, such as intra frame estimation, macroblock partitioning, multi 

reference in motion estimation and quarter-pel motion estimation, we might need to find new 

solutions to improve the efficiency of video compression and reduce power consumption in 

mobile devices employing this new standard. 
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Table A-1 Relation between SAD and M V for the 26th frame in news.qcif. Average SAD and standard 

deviation are 1065 and 724, respectively 

X y SAD M V 

6 2 4608 1,0 

6 3 3788 1,1 

4 3 2757 - 1 , 0 

6 4 2744 1,0 

6 1 2644 1,0 

7 2 2109 0 , 0 

8 5 1881 0 , 0 

2 6 1842 0 , 0 

2 5 1831 0 , 0 

8 3 1828 0 , 0 

3 4 1813 0 , 0 

8 4 1786 0 , 0 

2 4 1780 0 , 0 

2 7 1742 0 , 0 

7 4 1716 0 , 0 

4 4 1713 2 , 0 

9 8 1602 0 , 0 

7 1 1548 0 , 0 

1 7 1479 0 , 0 

4 2 1467 0 , 0 

3 3 1407 0 , 0 

8 6 1406 0 , 0 

7 8 1343 0 , 0 

9 5 1319 0 , 0 
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2 8 1304 0 , 0 

10 2 1302 0 , 0 

7 5 1283 0 , 0 

7 3 1270 0,-1 

6 6 1244 0 , 0 

9 6 1238 0 , 0 

9 4 1217 0 , 0 

9 7 1213 0 , 0 

9 2 1211 0 , 0 

0 7 1207 0 , 0 

3 7 1188 0 , 0 

10 8 1182 0 , 0 

10 6 1160 0 , 0 

10 7 1151 0 , 0 

2 3 1127 0 , 0 

3 5 1123 0 , 0 

0 6 1087 0 , 0 

5 6 1079 0 , 0 

5 4 1074 0 , 0 

3 1 1061 0 , 0 

5 1 1053 0 , 0 

4 1 1012 0 , 0 

8 7 1004 0 , 0 

3 2 961 0 , 0 

8 8 944 0 , 0 

5 3 942 - 1 , 0 

7 6 938 0 , 0 

0 5 936 0 , 0 

10 5 900 0 , 0 

7 7 897 0 , 0 
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9 3 888 0 , 0 

6 5 880 0 , 0 

3 6 852 0 , 0 

3 8 832 0 , 0 

10 4 830 0 , 0 

1 8 815 0 , 0 

1 5 780 0 , 0 

6 8 776 0 , 0 

10 3 760 0 , 0 

0 4 748 0 , 0 

5 2 741 0 , 0 

1 4 737 0 , 0 

5 7 733 0 , 0 

6 7 696 0 , 0 

10 0 665 0 , 0 

1 6 664 0 , 0 

4 6 662 0 , 0 

0 8 596 0 , 0 

5 8 572 0 , 0 

5 0 556 0 , 0 

4 5 554 0 , 0 

4 0 551 0 , 0 

0 0 532 0 , 0 

5 5 509 0 , 0 

2 1 505 0 , 0 

9 0 503 0 , 0 

6 0 492 0 , 0 

2 2 491 0 , 0 

8 0 482 0 , 0 

2 0 474 0 , 0 
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3 0 462 0 , 0 

1 3 409 0 , 0 

0 3 408 0 , 0 

1 0 407 0 , 0 

7 0 394 0 , 0 

8 1 381 0 , 0 

4 7 354 0 , 0 

4 8 337 0 , 0 

8 2 317 0 , 0 

10 1 239 0 , 0 

0 2 116 0 , 0 

1 1 92 0 , 0 

1 2 79 0 , 0 

9 1 62 0 , 0 

0 1 52 0 , 0 
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Table A- 2 Relation between SAD and M V for the 52th frame in silentqcif. Average SAD and standard 

deviation are 1384 and 1024, respectively 

X y SAD M V 

3 4 6695 2 , -7 

4 3 5724 2 , 1 

3 3 5503 -1,-3 

4 4 4778 -1,-7 

2 4 3691 1,-2 

4 5 2748 -1,-2 

3 5 2482 0 , -2 

5 5 2082 0 , 0 

6 2 1985 0 , 0 

3 6 1896 0 , 0 

2 2 1852 0 , 0 

1 6 1841 0 , 0 

2 3 1806 0 , 0 

6 1 1759 0 , 0 

5 4 1742 0 , 0 

6 3 1706 0 , 0 

2 5 1674 0 , 0 

1 4 1610 0 , 0 

2 6 1604 0 , 0 

5 1 1562 0 , 0 

5 2 1541 0 , 0 

8 2 1493 0 , 0 

0 5 1472 0 , 0 

6 4 1467 0 , 0 

9 3 1444 0 , 0 

1 3 1431 0 , 0 
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1 2 1430 0 , 0 

0 3 1400 0 , 0 

3 2 1384 0 , 0 

0 2 1365 0 , 0 

9 6 1358 0 , 0 

10 6 1358 0 , 0 

0 4 1345 0 , 0 

2 1 1343 0 , 0 

4 1 1340 0 , 0 

7 5 1340 0 , 0 

1 1 1330 0 , 0 

3 1 1322 0 , 0 

5 3 1319 0 , 0 

10 4 1310 0 , 0 

6 5 1293 0 , 0 

10 3 1260 0 , 0 

10 2 1259 0 , 0 

7 2 1248 0 , 0 

9 4 1244 0 , 0 

9 5 1223 0 , 0 

2 8 1214 -3 ,0 

5 0 1207 0 , 0 

7 1 1193 0 , 0 

10 5 1193 0 , 0 

7 8 1193 0 , 0 

3 8 1175 0 , 0 

3 7 1166 0 , 0 

7 4 1141 0 , 0 

4 2 1140 0 , 0 

8 3 1131 0 , 0 
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10 1 1130 0 , 0 

4 0 1123 0 , 0 

0 6 1110 0 , 0 

8 4 1107 0 , 0 

10 7 1105 0 , 0 

0 1 1095 0 , 0 

8 6 1080 0 , 0 

8 1 1070 0 , 0 

2 7 1054 0 , 0 

9 1 1039 0 , 0 

9 2 1030 0 , 0 

7 7 1024 0 , 0 

7 3 1007 0 , 0 

8 8 1006 0 , 0 

8 7 994 0 , 0 

6 8 978 0 , 0 

0 7 894 0 , 0 

9 7 889 0 , 0 

6 6 871 0 , 0 

7 6 868 0 , 0 

8 5 825 0 , 0 

10 0 806 0 , 0 

5 8 800 0 , 0 

10 8 797 0 , 0 

1 7 794 0 , 0 

6 0 792 0 , 0 

4 8 789 0 , 0 

6 7 780 0 , 0 

1 0 775 0 , 0 

2 0 679 0 , 0 
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1 5 669 0 , 0 

8 0 631 0 , 0 

9 0 622 0 , 0 

7 0 593 0 , 0 

0 0 584 0 , 0 

0 8 578 0 , 0 

1 8 553 0 , 0 

5 6 523 0 , 0 

4 7 472 0 , 0 

9 8 445 0 , 0 

5 7 436 0 , 0 

3 0 433 0 , 0 

4 6 400 0 , 0 



Appendix B 76 

Appendix B 

A K I T O 

11)1,111,11,11,1111,11,1 U U U I , 

1 15 29 43 57 71 85 99 

FRAMES 

Proposed 
(SpatalO nV) 
Proposed 

Figure B-l MSE values of encoded frame of akiyo.qcif 

CARPHONE 

40 
35 
30 
25 

w 
w 20 
S3 

15 
10 

5 
0 

I lllltHIIIIIIIII 

15 29 43 57 71 85 99 

FRAMES 

FS 

DS 

- - - NFS 

• - - NTS 

Proposed 
(SpatalO nV) 
Proposed 

Figure B-2 MSE values of encoded frame of carph.one.qcif 

http://carph.one.qcif


Appendix B 

CHIJDREN2 

70 

60 

50 

W 40 

g 30 

20 

10 

0 IH1HIIIIII IIIIIIIIIHIIIIM11I llllllHIIIIHIIMHItUllllllllllHlllltllllllll 

1 15 29 43 57 71 85 99 

FRAMES 

FS 

DS 

NFS 

NTS 

Pioposed 
(SpatalO nV) 
Proposed 

Figure B-3 MSE values of encoded frame of children.qcif 

C L A H E 

20 

15 

m 
w 10 
g 

Q Ii ii ii H in ii H mi inn ii mu mi mi l m m i m m ill im 11 

1 15 29 43 57 71 85 99 

FRAMES 

• - - F S 

••••DS 

- - - NFS 

- - - NTS 

Proposed 
(SpatalO nV) 
Proposed 

Figure B-4 MSE values of encoded frame of claire.qcif 



Appendix B 

C O N T A U E R 

W 2 5 

S3 2 0 

1 5 

1 0 

5 

0 j i i m i i i i m i m i n i m m i n i i i inn).mi.{ m i m i 

1 5 2 9 4 3 5 7 7 1 8 5 9 9 

F R A M E S 

F S 

• D S 

N F S 

N T S 

P ID p o s e d 

( S p a t a l O nV) 

P ID p o s e d 

Figure B-5 MSE values of encoded frame of container.qcif 

Figure B-6 MSE values of encoded frame of foreman.qcif 



Appendix B 

G R7ANDM A 

F R A M E S 

Figure B-7 MSE values of encoded frame of grandma.qcif 
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Figure B-9 MSE values of encoded frame of news.qcif 
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Figure B-12 MSE values of encoded frame of suzie.qcif 
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