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Abstract 

T h i s thesis provides an evaluation of the Redundant Discrete Wavelet Trans­
form wi th applicat ion to the removal of additive white or colored Gaussian noise on 
a synthetic G P R signal. Special attention is given to the parameter that controls the 
number of decomposition levels. Eva lua t ion is performed using a level-dependent 
threshold to estimate and remove noise. Results are presented using noisy synthetic 
G r o u n d Penetrat ing Radar pulses to compare Wiener filtering and thresholding 
the Redundant and Non-redundant Discrete Wavelet transform. A d d i t i o n a l results 
are presented on the effects of choosing a number of decomposition levels using 
signal-to-noise ratio measurements, which suggest the importance of choosing this 
parameter. Recommendations are made and supported which determine the order 
of thresholding before or after the practice of trace averaging. 

Us ing G P R images, an application of a novel 2D threshold model in the newly 
discovered curvelet domain is compared to average trace subtraction. P romis ing 
results are presented on both synthetic and actual landmine data, which shows 
thresholding as a viable method of clutter suppression. 
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Chapter 1 

Introduction 

There are mil l ions of landmines worldwide, which are difficult to find and remove. 

The concept of humanitarian demining, which is sometimes referred to as H u m D e m , 

is to provide simple, sustainable and affordable method of detection and removal of 

landmines. T h e groups that implement these programs are often non-governmental 

organizations who d id not place the mines and generally have l i t t le information on 

mine type or placement locations. T h e most common and highly visible aspect of 

demining are the activities that in poor countries devastated by war. T h e objective 

of H u m D e m groups in these countries are to develop programs wi th in that country 

that allows present and future landmines to be found and destroyed even after the 

H u m D e m group has left. 

The sustainability objective of many H u m D e m programs is cr i t ical to imple­

menting a method of landmine clearance that can be performed by locally trained 

demining groups. Previous estimations state that 100 mi l l ion or more landmines 

are currently laid in the world, however that number has been reduced to 60 mi l l ion 

or less [61]. T h e number of landmines, danger of detection and the removal proce­

dures increase the cost and t ime requirements to nearly impossible levels for poor 
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countries. The cost of detection and removal is also related to the amount of t ime a 

landmine is in the ground. Delays in landmine clearance causes vegetation coverage, 

which increases the challenge to detect minefields and mine locations. Due to the 

large amount of money and time required for a successful H u m D e m project, new 

technology is not well accepted. Therefore making simple, affordable and mature 

technology is necessary so that projects can continue even after external funding 

has ceased.' 

H u m D e m programs determine sui tabi l i ty of technology by the cost and status 

of development maturi ty. T h e most readily used and implemented technology is 

human protection devices, metal detectors and trained dogs. Other technologies 

that have been tested or evaluated wi th respect to H u m D e m are: 

• Explosives detection using chemical sensors, biological sensors and nuclear 

quadrupole resonance 

• Opt ica l sensors such as infrared, hyper-spectral, visible and laser ranging 

• Electromagnetic sensors including ultra-low frequency, microwave, S A R and 

ground penetrating radar 

• Acoust ic sensors such as water-jet echo [50], impulse and ultrasound 

Bruschin i and Gros discuss in detail most of the above technologies in [5]. 

In particular, the authors suggest that G P R is a mature technology and that it is 

"near ready" for use in H u m D e m programs. 

The H u m D e m field is not receptive to new technologies, regardless of the 

promises of detection improvements [3]. For example, estimates for C a m b o d i a sug­

gest that mine clearance is happening at a rate of 15 square kilometers per year 

wi th the possibil i ty of demining all land that is immediately in need for settlement, 
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(a) P M N Landmine (b) V S - 5 0 Landmine 

Figure 1.1: Anti-personnel landmines in situ, obtained from the Canadian Forces 
Landmine Action Database [20]. 

critical development or agricultural uses taking place in 5-10 years [2, 51]. Technol­

ogy proponents suggest that these numbers could be drastically reduced, but the 

reality is that field tested technology is a difficult and slow process. Specifically in 

Cambodia, heat and moisture can dramatically reduce the lifespan or functionality 

of any electronics making new and untested technology dangerous to deminers. 

Not all applications of demining take place in such demanding environments. 

The declining cost and size of GPR components, such as analog/digital converters, 

amplifiers and high speed switches contribute to the increasing interest to imple­

menting GPR as a landmine detection device. Additionally, technology improve­

ments in computer processors and specialized DSP chips allow additional realtime 

and field-based signal processing of GPR surveys. 

While the processing of GPR is maturing, the limited resolution of GPR 

systems make the task of landmine detection difficult and ambiguous. When using 

GPR for HumDem tasks, the standard method of expert interpretation is generally 

not available. Experts are too expensive to train and support in these situations. 

Offline processing of GPR data is an option, which can allow computationally diffi-
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cult algorithms such as imaging and feature discrimination to be done off the field. 

Offline processing, however, requires a thorough understanding of noise present in 

G P R data. 

Two aspects of G P R data are examined in this thesis. The first is the ability 

of ID wavelet thresholding to remove Gaussian noise from raw G P R data. The 

second is to suppress horizontal clutter present in G P R data using thresholding 

with a new transform, similar to wavelets, called curvelets. Both methods attempt 

to separate signal from noise by means of thresholding. 

The received data from G P R is a one-dimensional trace that contains re­

flections of a transmitted pulse. To study this, a G P R trace is synthesized from a 

reasonable physical model of a G P R pulse. The type of noise and amount of noise 

energy added is controlled allowing numerical measurements of wavelet thresholding 

performance. 

A separate case, in two-dimensions, applies to an image of received G P R 

traces. This image contains strong horizontal clutter events, which detract from im­

age understanding. The effect of thresholding clutter events in the curvelet domain 

is evaluated using an image formed from synthetic G P R traces and actual G P R data 

from the J R C Landmine Signatures database. 

1.1 Research Objectives 

While ID wavelet noise removal using thresholding is well established, the applica­

tion to G P R is minimal. The type of wavelet decomposition, specific parameters 

and the choice of a wavelet basis are difficult to understand and is not well estab­

lished. This research examines the most promising wavelet decomposition method 

for noise removal, which is the Redundant Discrete Wavelet Transform (RDWT) . 
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The hypothesis is that the method of level-constant thresholding and the number 

of decomposition levels used by the R D W T will have a direct effect on the ability 

to remove additive Gaussian white and colored noise. 

The second objective is to compare the ubiquitous method of subtracting 

an average trace from a G P R image to a proposed method that uses a threshold 

in the curvelet domain as a method of subtraction. This new method allows a 

simple noise model, like the average trace subtraction method, but without the 

drawbacks of global averages and subtraction. The hypothesis is that the lack of 

resilience of subtraction requires clutter models that are too complex, and that 

thresholding is more effective at suppressing horizontal clutter using a simple noise 

model. Additionally, both approaches to G P R processing take into account that 

noise removal and clutter suppression should be implemented with fast algorithms. 

The advantage of wavelets are that most implementations are reasonably fast. The 

R D W T can be implemented very easily in modern DSP chips, making it a candidate 

for on-line processing. 

1.2 Thesis Overview 

This thesis first introduces the basic mechanics of G P R technology and the unique 

obstacles along with a selection of signal processing techniques that have been ap­

plied to G P R data. A brief wavelet introduction precedes the two wavelet algorithms 

used in the methodology of this research. The first method, known as the redundant 

discrete wavelet transform has been demonstrated as a successful transform where 

noise can removed by the application of a simple threshold in the wavelet domain. 

The following section introduces a 2D "wavelet" transform, known as curvelets, 

which is a recent development in multi-resolution basis function decomposition and 
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similar to, but not strictly, a wavelet transform. The transform properties and con­

struction is described after a breif overview. The remainder of Chapter 2 introduces 

the threshold operator that is used to perform noise removal. 

The methodology is presented in Chapters 3 and 4, for A-scan noise removal 

and B-scan clutter suppression, respectively. Chapter 3 introduces a method for 

choosing bases, the parameter that controls the number of decomposition levels 

in the R D W T and threshold estimation. A description of the G P R trace model 

explains how a physical approximation of a G P R signal is made. At this point, the 

noise models is introduced, first additive Gaussian white noise or A G W N , and then 

a filtered form of A G W N , denoted as additive Gaussian colored noise (AGCN) . 

The clutter suppression methodology builds on the previous material, using 

the synthetic G P R pulse model to form a synthetic B-scan. A brief introduction to 

the landmine data is made, before a novel method of clutter suppression, inspired 

from the success of thresholding ID signals is introduced. The remainder of Chapter 

4 describes the method of evaluation and performance of the new algorithm. 

The results present a comparison between a proven wavelet denoising tech­

nique and the more successful R D W T method. Additionally, demonstrations show 

the difference in the optimal mean-square-error linear filtering technique and wavelets 

to remove either A G W N or A G C N . New results show the relationship of input noise 

energy and decomposition levels along with a demonstration of compatibility of the 

method to the current G P R processing method of stacking. Simulations of clutter 

suppression are presented for the synthetic G P R image data and followed by an ex­

periment on actual G P R landmine data before the thesis concludes with a discussion 

of results. 
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Chapter 2 

Background 

T h e topic of this thesis is evaluating the estimation of a threshold wi th respect to 

ground penetrating radar. T h e concepts that are needed to perform this evaluation 

are a basic physical understanding of the G P R data and how wavelets can be applied. 

T h e motivat ion is clear: addi t ional insight into G P R processing should serve to 

enhance the field of landmine detection. 

2.1 G r o u n d P e n e t r a t i n g R a d a r 

Radar operates on the principle that the range from the radar to the target can be 

determined by t iming the round t r ip of a t ransmit ted pulse reflected by a target. 

T h e assumption of radar is that the transmission medium is conducive to passing the 

frequency content of the pulse. T h e earth is not a homogeneous medium, therefore 

anticipating the frequency content to pass through the media of the earth is location 

dependent. G r o u n d penetrating radar overcomes this by using a wide range of 

frequencies, which, allows sub-surface targets to be "ranged". 

A pulse transmission from an antenna at a single spatial location is received 
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over the durat ion of receiver gating. T h i s resulting t ime-domain signal is called a 

trace, or A-scan. For G P R data to be meaningful, a G P R survey usually attempts 

to spatial ly sample a grid of points on the surface. T h e collection of traces from a 

G P R survey of several spatial locations forms a three-dimensional data set of two 

spatial coordinates and one of t ime called a GPR data cube. 

T h e method of conducting a G P R survey varies on the type of G P R . A 

G P R may be bi-static, mono-static or neither. In mono-static mode, the same 

antenna transmits and receives the G P R pulse. T h e burden falls on the transceiver 

electronics to properly gate the transmit and receive times and protect the receiver 

from the large in i t ia l radiated pulse. In bi-static mode, separate antennas are used 

for t ransmit and receive, but their spatial relationship is held constant. The analog 

in seismic jargon for this method of operation is called a common-offset gather. 

Each trace represents a constant angle between the transmitter and receiver. In 

bi-static mode, antenna polar izat ion relative to transmit and receive can improve 

target detectability [43]. Addi t iona l ly , common mid-point gathers can be used to 

determine velocity models of the subsurface. In this survey, the angle between 

transmit and receive antenna is increased after each pulse transmission. 

M a n y practical applications of G P R are being developed. H igh resolution 

G P R solutions are used to image the internal structure of roads and bridges for 

the appearance of cracks. M i l i t a r y and security applications have been suggested to 

image potential threats behind walls of caves and buildings [6]. Snow pack layers, 

internal ice structure and avalanche v i c t i m location have also been demonstrated 

using G P R [40, 42]. Geophysical scientists make extensive use of G P R for the study 

of near surface features [15, 58]. 
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2.1.1 Principles of Operation 

There are many variations of G P R systems, which are defined by the type of antenna 

and method of pulse generation. Impulse radar generates a pulse in the time domain 

and uses an antenna, which is non-dispersive. The other common G P R system 

creates a pulse in the frequency domain and may use either a dispersive antenna 

to transmit a "chirp" pulse or a non-dispersive antenna. This type of radar is 

called Frequency Modulated Continuous Wave ( F M C W ) or a popular variation in 

HumDem research is Stepped Frequency Continuous Wave (SFCW) [18, 53]. These 

radars usually fall into a broader category known as Ultra-Wideband (UWB) radar. 

A U W B radar has a ratio of bandwidth to center frequency that exceeds one. 

This is called the fractional bandwidth and is defined by [62] as 

A U W B impulse radar has several advantages, because it uses low average power 

and has a wide range of frequencies. This allows it to image the subsurface of a 

wide variety of materials. Research by Cherniakov [12] shows that as the fractional 

bandwith of a radar approached the theoretical limit of 2 it obtained maximal spec­

trum efficiency. Spectrum efficiency is defined as maximizing depth of penetration 

to enable detection of buried objects. It was also shown that a radar with Bp > 1.1 

has a high spectrum efficiency, making U W B - G P R radars an excellent choice for 

depth of penetration when searching for underground events. 

A n impulse G P R in commercial applications commonly uses a Gaussian pulse 

to excite an antenna, 

This pulse can be created by using a transistor in avalanche mode, with results in 

(2.1) 

(2-2) 
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Figure 2.1: P ic to r i a l representation of the F W H M parameter of a Gaussian bump. 

an output that is an approximation of an exponential charge and discharge cycle. A 

typical ly G P R specification is the F u l l W i d t h , Ha l f M a x i m u m ( F W H M ) of a pulse. 

T h e F W H M is a common measurement of the w id th of a gaussian pulse and is 

defined by 

FWHM = 2 C T v / 2 1 o g e 2 (2.3) 

The w id th of a pulse indicates bandwidth , but usually the working bandwidth of a 

radar is l imi ted by the antenna. 

The response of an antenna to the input of (2.2) is to radiate a voltage 

wavefield which is the derivative wi th respect to t ime, 

V'(t) = ~ e - t 2 / 2 a \ (2.4) 

A n event is defined as the filtered form of (2.4) that occurs at some point in t ime 

of a received G P R trace. Th i s event corresponds is the reflection of the t ransmit ted 

pulse from a subsurface feature and can be related to depth if the velocity of the 

transmission media is known. In the case of a metall ic reflector the event is the 

second derivative of (2.2) because a metall ic reflector acts as a second t ransmit t ing 

antenna. 
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G P R antenna development is crucial to successful G P R applications. T h e 

antenna controls the interaction of the radiated waveform wi th the surface of the 

ground by impedance matching. T h e antenna also determines the frequency content 

of a radiated pulse, which dictates spectral efficiency thereby controll ing depth of 

penetration and target visibi l i ty. H u m D e m researchers have developed an antenna 

that exhibits excellent G P R performance wi th respect to spectral efficiency and 

ground coupling [59]. D a t a from this laboratory G P R and antenna is used to test 

the algori thm presented in Chapter 4. 

T h e characterization of an event in a G P R trace is determined by the t iming 

and ampli tude of the occurrence. Due to spherical spreading of the t ransmit ted 

wavefront and attenuation of the subsurface, the ampli tude of the received signal 

for a mono-static configuration is shown by "[17] to be proport ional to 

f 2adsec9 / o e\ 
a* sec* 0 6 • [ Z - b ) 

T h e distance, d, is the line, in meters, normal w i t h the top of the point reflector 

to the surface. A s the G P R survey is performed, the angle 9 increases, which 

further attenuates the signal. In practice, some commercial G P R systems attempt 

to compensate for this attenuation using an exponential gain applied dur ing or after 

data collection [39]. W h i l e it is the prerogative of the user interpreting the data 

to apply a gain, it is important that noise removal be done beforehand to avoid 

non-linear changes to the data statistics. 

T h e determination of t iming in a homogeneous medium is based on the hor­

izontal location, x, of the antenna relative to the target and the depth, d, of the 

target. For a point target, or a target size that is near the resolution l imi t of the 

radar, the round t r ip t ime is determined by twice the velocity of pulse propagation 
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times the line of sight distance to the target 

t= -Vx2 + d2. (2.6) 
v 

The velocity of propagation is determined by the speed of light scaled by the relative 

permittivity of the ground, e 

v = C-. (2.7) 

If the subsurface is a combination of media, the determination of velocity can be­

come intractable. Additionally, the influence of water on e is dramatic, capable of 

increasing the permittivity by an order of magnitude. 

2.1.2 Data formatting and visualization 

In order to process G P R data, there are three common formats for presentation 

of G P R data. Each format chooses a set of dimensions from the 3D cube of G P R 

data. The most common format to perform image processing and understanding is 

a B-scan. B-scans are are two dimensional images with time on the vertical axis 

and a spatial dimension on the horizontal. Most often the spatial dimension is 

the "down-track", which is the direction that the antenna traveled as each trace is 

collected. Specific spatial coordinates in a B-Scan represent an A-scan. A n A-scan 

is a time-domain waveform that is measured from the voltage on the antenna after 

an initial pulse is transmitted into the ground. Typically an A-scan is measured in 

milli-Volts, but may also be presented in a normalized amplitude. The amount of 

time measured in an A-scan varies with the G P R system in use, and depends on 

the center frequency of the system. A low frequency G P R can typically penetrate 

further into the ground and requires a longer time to allow the pulse to reflect back 

to the antenna. 
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Due to the nature of a G P R pulse containing mult iple events, an A-scan is 

described as "wiggly" and has many smooth oscillations. T h i s descriptive of A-scans 

also refers to a method of viewing B-scans called a wiggle plot, which is actual A -

scans vert ically oriented and plotted close together. T h i s method is used most often 

by human operators to make interpretations of G P R data. In Figure 2.2, a pixel 

intensity B-scan image is presented, where each pixel color is scaled based on the 

ampli tude in the A-scan . 

Occasionally C-scans are used in image processing. A C-scan is a "depth" 

slice, which takes the A-scan values over a l l spatial locations to form a intensity 

image. T h e C-scan contains both spatial dimensions for axes, which are the down-

track and cross-track. T h e cross-track dimension is the spatial direction that the 

antenna is moved after a down-track survey is completed. A C-scan'is a subset of a 

B-scan, because it is generated from the set of al l B-scans. Each B-scan is, in turn, 

a subset of A-scans. 

2.1.3 Sources of Noise 

There are many noise sources present in a G P R device. D u r i n g the creation of the 

in i t ia l source waveform, noise may be added by interference from external sources or 

poor high-frequency digi tal design of electronics. After a pulse is transmitted, cross-

coupling from the antennas may generate spurious, large ampli tude events prior to 

any reflection events. In addit ion, upon reception of a G P R signal, clock j i t ter, 

analog-to-digital quantization noise and amplifier noise determine a noise floor and 

the operating dynamic range. 

A t the resolution of G P R , the majori ty of signal energy comes from large 

impedance changes in the ground. Changes in soil water content w i l l dramatical ly 
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A-Scan at x=25cm and y=25cm B-Scan at x=25cm 

Amplitude y (cm) 

Figure 2 .2 : Selected Examples of different scan types. Each contains different per­
spectives of a G P R data cube. 
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attenuate the signal ampli tude as it propagates into the ground. Addi t iona l ly , if 

the subsurface contains large amounts of near wavelength objects, like glacial t i l l , 

depth of penetration and target localizat ion w i l l also decrease. Collectively, events 

that are due to actual reflections of the source waveform, but reduce target signal 

reflections are referred to as clutter. 

Positional Noise 

It is important to consider that the antenna is a physical object that is never precisely 

positioned. In the lateral sense, the antenna posit ion is cr i t ical if any transforms are 

taken on the data in the X - Y dimension. B o t h the wavelet and Fourier transforms 

expect data to be sampled on a fixed gr id . In order to correct this noise, antenna 

position must be recorded and the data interpolated onto a fixed gr id . In the 

application of landmine detection this becomes a problem wi th handheld detectors, 

which can be swung in arcs or irregular lines [32]. Mos t laboratory solutions use 

robots or antenna jigs to stabilize and accurately determine spatial location. 

In addit ion to lateral movement, it is important to consider vertical and 

angular antenna posit ion. B o t h angular and vertical posit ioning affect the coupling 

of energy into the ground. A s the coupling changes, the ampli tude of the received 

signal varies. T h e result is that algorithms must adapt to an unknown variance 

in amplitude. Addi t iona l ly , vertical posit ion uncertainty creates temporal variance 

of the received signal. Usua l ly this noise is minimized by allowing the antenna to 

travel flush to the ground, but as ground changes occur, the hyperbolic assumption 

of a target response can be invalidated. Often this issue is lessened by the durat ion 

of scans, which are taken over contours that can be considered flat. 
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Sys tem Noise 

The most well understood system noise is thermal noise. T h e r m a l noise can be mod­

eled by additive Gaussian noise. The noise is the cumulative effect of the antenna 

gain, amplifier noise figure and the transmission line. It can be quickly reduced by 

trace averaging or stacking of mult iple traces from the same spatial location. C o m ­

mercial G P R systems implement this in hardware and w i l l provide the user w i th 

the abi l i ty to average up to 32 traces. 

Other system noise, which is less understood and might not be well modeled 

by Gaussian noise comes from electronic design and susceptibility. For example, 

poor circuit board design of a transmitter can add noise to the generated pulse. 

Reception of external signals may also corrupt the signal. T h e quantization noise 

of the analog-to-digital converters also l imits the dynamic range of the system. T h e 

combination of al l sources of noise is very likely Gaussian, but not necessarily white. 

C l u t t e r noise 

Clut te r is defined by the user and s tr ic t ly speaking is not noise. Clu t te r is the 

cumulative effects of reflections from actual boundaries that are i l luminated by the 

G P R , but impede wi th analysis of the pr imary targets under study. T h e most 

common form of clutter in any G P R application is the ground. T h e occurrence of 

a reflection from the ground offers very li t t le information to a G P R image and may 

interfere wi th near-surface objects. Landmines are an example of a near surface 

target that can be impeded by the presence of an air-ground event. 

Other forms of clutter, w i th respect to landmines, are targets that have prop­

erties very close to the desired target and can result in a false positive determination 

of a pr imary target. These false positives can be metal fragments, stones and other 
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debris that produce events similar to a landmine event in either ampli tude, fre­

quency content and shape or a combination of the three. Generally, this form of 

clutter is filtered using discr iminat ion algorithms. A discr iminat ion algori thm w i l l 

use some unique feature of the desired target to suppress al l other possible targets 

that do not contain any such features. 

Another form of clutter, sometimes called background noise, appears as the 

por t ion of a signal, which does not necessarily represent a physical object, but ap­

pears as a slowly varying horizontal event in a B-scan. T h e most common form 

is mult iple reflection that occurs between the ground and antenna, often exacer­

bated by antenna r inging. Subsurface planar reflectors are sometimes grouped w i t h 

background noise, because of the typical ly large horizontal component. T h e terms 

background noise and clutter are used interchangeably in the literature and are 

problem specific. 

Clu t te r noise models are often considered additive, such that the subsurface 

can be represented by a t ra in of dirac functions, each of which represent either target 

or clutter temporal locations. The G P R signal is then convolved wi th the dirac t ra in 

to obtain a simulated received trace. Clu t te r is normal ly the l imi t ing noise i n G P R 

systems [18]. Besides target depth, clutter is the l imi t ing factor that determines the 

detectability of a subsurface target. 

2.2 Selected Review of G P R Signal Processing 

A l l G P R data is processed, whether by human or machine. In a simple case of u t i l i ty 

finding, it is usually enough for a human to interpret u t i l i ty location based on the 

existence of a hyperbola in an unprocessed B-scan. In the case for humani tar ian 

demining, it is usually necessary to perform addit ional machine-based processing 
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and discr iminat ion to perform accurate and reliable landmine detection. 

G P R processing can be divided into three categories, restoration, transfor­

mat ion and discr iminat ion. Restoration is concerned wi th the removal of noise, 

correction of system error or correction of the sensor degradation. Transformation 

is used as a functional tool to perform signal processing, but in the case of migrat ion 

is also an output. Discr iminat ion is a key aspect to landmine detection. Di sc r imi ­

nation uses a feature, hopefully unique, to separate noise and clutter from targets. 

For discr iminat ion clutter often refers to anything that is not a desired target. T h i s 

definition varies depending on the features used to discriminate. 

A typical signal processing chain for landmine detection may include sev­

eral restorative techniques, possibly a transformation and always a discr iminat ion 

step. T h e importance of developing an excellent understanding and usefulness of 

restoration tools is paramount to successful landmine detection. 

2.2.1 Review of A-scan Processing Methods 

W h e n processing a G P R A-scan, most methods focus on signal restoration. Restora­

tive methods include, DC-offset removal, Gaussian noise filtering and feature en­

hancement. W i t h the exception of DC-offset removal, which is sometimes performed 

by the equipment, most restorative techniques are chosen based on the remaining 

operations of the signal processing chain. 

Feature enhancement is usually done for the benefit of an expert interpreter. 

These techniques are often times carried out at the discretion of expert, where the 

various outputs are visual ly compared. For A-scans, these methods are frequency 

filtering, averaging and gain adjustment. Frequency filtering consists of applying a 

low, high or band-pass filter to select certain features. A s a G P R signal travels into 
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the earth it is dominated by the time-variant low pass effects, which reduces the 

high-frequency content of late t ime events. H i g h pass filtering is performed when 

it is necessary to dewow an A-scan. A "wow" signal is the low frequency effects of 

transmitter and receiver coupling, which produces a slow decaying signal into the 

A-scan [39]. 

Noise filtering is not a standardized process, nor is there a correct choice for 

all applications. T h e only ubiquitous noise removal that is performed on A-scans is 

stacking. Stacking, or in G P R jargon, trace averaging, is the average of repetitive 

scans from the same spatial location. Commerc ia l G P R systems often include this 

form of noise reduction as a pr imary parameter choice when performing a G P R 

survey. T h e purpose of stacking is to remove system noise. 

Other methods include Wiener filtering, which assumes the noise model is 

well understood and attempts to perform an inverse noise filter in the frequency 

domain . T h i s method is also called m i n i m u m square error filtering, because it seeks 

to minimize the error measure, E[/ — f]2. T h i s filter seeks to invert the degradation 

response, H(u) in the frequency domain using [28] 

1 \H{u)\2 

F(u G{to). (2.8) 
[H(uS) \ H { U J ) \ 2 + K_ 

T h e parameter K, assumes additive white Gaussian noise and can be estimated from 

the variance of the noise. T h e result is to suppress the noise and degradation in the 

corrupted signal, G(OJ) and produce an estimate of the signal. / . Wiener filtering 

has been applied for different special cases, which are described in [17]. 

Discr imina t ion can also be performed on A-scans using parametric target 

models, frequency features, or t ime features. Discr imina t ion using t ime features is 

done wi th matched filtering and is usually not well suited to G P R , because of the 

t ime variant filtering of the subsurface. Frequency features can be discriminated by 
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using the unique spectral content of a target to suppress other events [37]. M c C l u r e 

and C a r i n explored the idea of compactly representing G P R waveforms using a 

matching pursuits a lgori thm in [52]. T h i s method attempted to find compact atoms 

that represented fundamental structures of radiated and reflected electromagnetic 

waveforms wi th success in approximating t ime and frequency parameters of G P R 

signals in noise, which proved useful for discr iminat ion. 

2 . 2 . 2 Review of B-scan Processing Methods 

T h e majori ty of B-scan processing is focused w i t h clutter suppression and discr im­

inat ion. Clu t te r suppression is a difficult and subjective topic that requires careful 

definition of what is clutter. Horizonta l clutter is well studied, w i th current research 

showing moderate success at removing the air-ground event and other persistent 

horizontal events. 

A common form of horizontal clutter reduction is to use average trace sub­

tract ion ( A T S ) . Given a collection of traces located spatially at points in x and y. 

A T S uses an average trace for a part icular B-scan located at posit ion y, 

1 N 

fy = ~N z\2 fxy (2.9) 
x=l 

to perform a subtract ion for a given B-scan, 

fx,y — fx,y fy (2.10) 

T h i s is effective in enhancing the hyperbolas or any non-horizontal event in G P R 

data. T h e drawback is that a l l horizontal events are removed or attenuated, there­

fore i f a target contains horizontal information A T S is not suitable. Other examples 

focus only on the air-ground event, such as W u [68], where the air-ground event is 
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adaptively estimated using a shifted and scaled reference signal to perform subtrac­

t ion. 

T h e nature of subtract ion is that A T S is not robust to phase changes or 

ampli tude changes. If a clutter event decays to zero, A T S w i l l continue to use the 

same static ampli tude calculated from the average to subtract. For computat ional 

cr i t ical applications, it can be a useful method and is used in some discr iminat ion 

algorithms in [69]. Gader et. al uses a variat ion that calculates the derivative in 

x instead of the average, which is used in the signal processing chain previous to 

discr iminat ion and is highly sensitive to noise [25, 26]. 

T h e major problem of A T S is the instabi l i ty when subtracting coherent noise. 

T h i s can lead to artifacts that can decrease the usabil i ty of a data set. U l r y c h et. al 

studied this method of clutter suppression wi th respect to other competing methods. 

In part icular, the a - t r immed mean was suggested as a way to handle variable clutter, 

but at the addi t ional cost of careful expert decisions to choose a. T h e median was 

also studied, which led to [66], a s tudy on the robustness of L-moments as estimators. 

New research was presented on the possibil i ty of using a James-Stein estimate for 

noise and clutter suppression on a B-scan. T h i s method uses a shrinkage parameter 

to adjust an local observation based on the global mean [65]. 

After B-scan processing, G P R data is often times used to form a 3D image. 

T h i s is referred to as migration and is the process of focusing a B-scan or G P R data 

cube into a coherent image. T h i s technique is sometimes performed in landmine 

detection, but due to computat ional complexity and resolution it is not popular. 

It does present the most understandable output for human understanding, because 

the hyperbolas are collapsed and the t ime axis is recast to depth [71, 46, 27, 43]. 
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2.3 Review of Wavelet Transforms 

Wavelets and Wavelet transforms are an excit ing topic of research, which was in­

spired by the collaboration of Mor le t and Grossmann [30]. T h e principle of wavelets 

is that a signal can be represented by its frequency and temporal content. T h e re­

lationship between t ime and frequency, necessarily, is a tradeoff of min ima l support 

in one domain demanding max ima l support in the other. In the world of signals, 

transient events present a challenge to estimation and compactly representation [48]. 

If a t ime series contains a mixture of signals w i th varying amount of support in both 

domains, there is a fundamental l imi t to the determination of a precise t ime location 

and frequency content for each component. T h e elegance of wavelets is an efficient 

representation that attempts to balance the inherent uncertainty between time and 

frequency. 

Wavelets are often introduced as a continuous transform, which underlies the 

fact that each discrete representation of wavelets makes a unique sacrifice to obtain 

efficient algorithms and signal representations. T h e continuous wavelet transform, 

qualitatively, is the par t i t ioning of a signal into t ime and frequency atoms by the 

application of translated bandpass filters. These atoms, ideally, attempt to maximize 

frequency and time localizat ion. 

Us ing the notat ion of Ma l l a t [48], a wavelet has a zero average such that 

/

+ o o 

i/j{t)dt = 0. (2.11) 
-oo 

To obtain localization i n time, the wavelet is translated by u and scaled by s, 

l M 0 = ^ ( ~ ) • (2-12) 

T h e scale parameter is usually greater than zero. T h e wavelet transform can now 
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be defined as the convolution of the wavelet with the function under study, or 

The sampled continuous wavelet transform should not be confused with the 

discrete wavelet transform. Creative solutions to use the sampled continuous wavelet 

transform attempt to characterize the type of discontinuity. Mallat used the wavelet 

modulus maxima to estimate the Lipschitz exponent to classify a singularity [47]. 

Hsung extended this work by approximating signals without directly identifying 

the singularity [38]. The author uses a modified form of wavelet modulus maxima 

detection to estimate an inter-scale ratio and inter-scale difference of the sampled 

continuous wavelet transform coefficients to estimate the signal in noise. 

A wavelet transform can be described as a multi-resolution decomposition of 

a function. Resolution may not be precisely correct in the continuous domain, but 

is certainly applicable in the discrete. When the continuous wavelet transform is 

discretized, the scale parameter defines the time/frequency resolution of the cor­

responding decomposition. This discrete multi-resolution decomposition will allow 

efficient signal processing to approximate, compress and estimate signals. 

2.3.1 Discrete Wavelet Transform 

The orthogonal discrete wavelet transform is a well studied implementation of 

wavelets in the discrete domain. It became popular amongst applied scientists when 

a fast filter bank approach was introduced. Alongside the fast computation and the 

ability of the D W T to compactly represent mixed signal functions, researchers were 

also able to derive many analytical results that suggested profound implications not 

accessible before. 

(2.13) 
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Amongst these discoveries was the work that influenced the field of signal 

processing by Donoho that suggested non-linear thresholding could achieve near 

opt imal signal estimation in white noise [23]. T h e substance of that c la im relies on 

the orthogonality of the discrete wavelet transform. 

T h e continuous wavelet transform is far from orthogonal and offers no imme­

diate discrete solutions. To solve this problem the discrete wavelet transform makes 

two dramatic changes to the choice of the scale and translation parameters s and 

u. T h e first change is to choose s by choosing the number of scales dyadically. T h e 

new discrete parameter, j is 

s = 2j, j eZ (2.14) 

and the discrete translation parameter, k is dependent on the scale 

u = 2jk, keZ. (2.15) 

Th i s choice of discretization of the continuous parameters is motivated by a fast 

implementation algori thm, but solidly rooted in sampling and information theory. 

Intuitively, the dyadic part i t ion of the scale parameter in the D W T allows a higher 

localization in low frequency, where t ime localizat ion is necessarily min ima l . T h e 

dependence of k on the discrete scale parameter, j balances this uncertainty at 

higher frequencies when signals become highly localized in time. 

T h i s choice of scaling and translation forms a set of wavelet basis functions. 

T h e dyadic choice of j and k results in N basis functions, which is equal to the 

length of the signal f[n]. T h e index, m is related to each translat ion and di la t ion 

of the discrete wavelet basis to form g[m\. T h e discrete wavelet transform can be 

represented by 

F[m} = (f,gm), (2.16) 
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G ] - F i + 1 (fe) 

Intialize the i teration wi th : 

A°(k) = f(n) 

H = Scaling F i l t e r 

G = Wavelet F i l te r 

T h e wavelet coefficients are FJ for j = 1 , . . . , J and the scaling coefficients are 
FJ+1(k) = AJ{n). 

Figure 2.3: T h e D W T is implemented by an iterative application of high pass and 
low pass filters that are constructed by the wavelet and scaling function. 

where gm is an orthogonal set of basis functions, 

(9m-, 9n) = C m n S m n . (2-17) 

Often, wavelet bases are chosen such that Cmn = 1, which makes a basis orthonor­

mal . However, the D W T is better understood as an implementation of cascaded 

digi ta l filters, which is shown in Figure 2.3. 

T h e l imi ta t ion of the D W T is the lack of shift invariance. For an intuit ive 

understanding, consider the second coarsest scale, which only contains two coeffi­

cients that represent the signal frequency and temporal content at this part icular 

scale. These two coefficients are sufficient for perfect reconstruction of the signal 

using the D W T , but if approximations or estimations in noise are made the lack of 

shift invariance becomes evident. Signal estimations can be performed by thresh-
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olding which chooses a part icular coefficient based on the coefficients ampli tude. 

Shift invariance implies that a shifted version of the signal under study w i l l produce 

a shift in the wavelet coefficients, while not significantly changing the ampli tude 

of the coefficients. W i t h o u t shift invariance, the success of thresholding the D W T 

coefficients to remove noise w i l l depend on the signal's location in t ime. 

2.3.2 Redundant Discrete Wavelet Transform 

T h e Redundant Discrete Wavelet Transform ( R D W T ) is a fast, convenient method 

of obtaining shift invariance. T h e term R D W T is ambiguous, because the nature 

of obtaining coefficient redundancy is not unique. A literature review suggests that 

the undecimated version of the discrete dyadic wavelet transform is the R D W T . 

T h i s is equivalent to other names, such as the Shift-Invariant Discrete Wavelet 

Transform ( S I D T W ) [45], Undecimated Wavelet Transform ( U D W T ) , Stat ionary 

Wavelet Transform ( S W T ) [54, 56] and the original method Algorithme a Trous by 

Ma l l a t . These methods are not equivalent to the Cyc leSpin [13] or Shifted Orthog­

onal Wavelet Transforms, which obtain redundancy by means of shifting the input 

signal and re-calculating the wavelet transform. 

A diagram of the R D W T in Figure 2.4 shows the s imilar i ty to the D W T . Each 

level, j , is a bandpass filter of the original signal. T h e bandwidth of each filter is 

chosen dyadically, which is identical to the D W T . In the orthogonal D W T , the signal 

is decimated at each stage of decomposition, because the exact location at lower 

frequencies is ambiguous. However, without decimation the R D W T coefficients fully 

represent the uncertainty of low frequency events w i th the same sampling resolution 

of the signal, thus producing l inearly dependent coefficients. 

T h e choice to use a redundant representation is a double-edged sword. Proven 
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Gj 

Hi, CP A T 2 j Gi+1 

Intialize the i teration wi th : 

A°(k) = f (n) 

H° = Scal ing Fi l te r 

G° = Wavelet F i l t e r 

The wavelet coefficients are. F- 7 for j = 1 , . . . , J and the scaling coefficients are 
FJ+1(k) = AJ{n). 

Figure 2.4: Rather then decimating the signal at the output of the filters, the filters 
are up-sampled which preserves the frequency resolution at al l wavelet scales. 
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results for the D W T do not transfer to the R D W T , though experiments suggest that 

the results are similar. T h e nature of a redundant transform is that the approx­

imat ion of the signal is no longer unique. Therefore, the complexity of choosing 

the smallest set of coefficients for a given quali ty of reconstruction becomes N P -

complete. 

Current research by Donoho [22] and Gr ibonva l [29] suggest that if certain 

conditions for sparsity are met, a set of coefficients can be chosen by the min imiza t ion 

of a linear program. Her rmann [34] has demonstrated these results by using linear 

programming to mainta in high quali ty reconstruction using a sparsity constraint 

when choosing a set of redundant coefficients. Tropp [64] has instead used a greedy 

algori thm to choose a set of coefficients. Another method used by P i z u r i c a [57] uses 

the redundancy of the R D W T to estimate a local spatial indicator. T h i s indicator 

allows coefficients to be chosen across scales, exploi t ing the similarities that are 

present at different scales. 

2.3.3 Curvelet Transform 

Curvelets provide an excellent representation of G P R events in B-scans for signal 

processing. T h e nature of curvelets is that they efficiently represent a piecewise 

smooth curve which contain singularities normal to the direction of smoothness. 

T h i s property is the precise nature of G P R data, which suggests that curvelet co­

efficients can provide a localized sparse representation where non-linear operations, 

such as thresholding, can be performed. T h e same arguments that apply in the 

I D wavelet case work in this 2D representation, namely that op t imal linear denois-

ing methods, in the sense of m i n i m u m risk, can be further improved by non-linear 

estimators using curvelets [7]. 

28 



The seminal curvelet papers [7] and [8] describe the nature of curvelets and 

their properties. A n approach to an intuit ive understanding is to compare the shape 

of the curvelet atoms. T h e separable 2D wavelet bases are nearly isotropic and well 

contained wi th in a the support of the scale, j. However, curvelets are designed such 

that width = length2. T h i s makes a curvelet anisotropic and requires an addi t ional 

orientation parameter, 9. Curvelets also require a scale parameter, j , and posit ion 

vector, fc, to represent the location and frequency content. 

T h e bui ld ing blocks for sparse representation of curves can be made using 

these three parameters: scale, spatial location and orientation. To insure sparsity, 

the curvelets are constructed using a parabolic law scaling law, which provides a 

natural extension to smooth curves. Therefore, unlike 2D wavelets, which tend to 

represent a curve as a collection of points i n the wavelet domain, curvelets minimize 

the number of coefficients needed to represent the curve by adapting to the scale of 

the curve. 

T h e most important result presented in [7] is the rate of energy decay, in 

an L-2 sense, of a incomplete reconstruction of a signal, / , using the m largest 

ampli tude coefficients of a a curvelet decomposition is 

| | / - / £ | | B C m - 2 ( l o g n ) 3 . (2.18) 

T h e strength of this statement is that adaptive methods, which are not necessarily 

tractable can approach m~2 as m —> oo, whereas wavelets approach TO-1. Despite 

the log term, a curvelet representation approaches the adaptive l imi t . T h e benefit 

is that curvelets are not adaptive and do not require the iterative computations nec­

essary to adapt to a signal. W i t h the results in [9], a new technique of constructing 

curvelets has introduced a tight frame, which is used in this work, and the same 

approximation rates hold . 
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Tight frames will preserve the energy in both domains, known as Parseval's 

relation for the Fourier domain and echoed here in the curvelet domain as 

E K / ' ^ > | 2 = H / I I M M 2 ) < V / e L 2 ( ] R 2 ) , ( 2 . 1 9 ) 
m 

which makes reconstruction straight forward by using the adjoint. As expected, 

the reconstruction is the same for curvelets as for wavelets, which is the sum of 

coefficients in the curvelet domain projected onto the basis functions, 

f = }^(f;lrn)lm. ( 2 . 2 0 ) 

m 

The partitioning of curvelets has some similarity to wavelets in terms of 

scale and translation, but not in orientation. When wavelets are extended to two 

dimensions, the frequency partitioning does not represent the fullness of the extra 

dimension. In a ID signal, a singularity can be described by a point in time. Two 

dimensional wavelets operate under the same premise, that singularities occur at 

localized points in an image. However, edges are singularities that are oriented 

.on a line. The angular partitioning of curvelets allows these singularities to be 

represented by a location and orientation. Wi th a wavelet representation, this edge 

would be represented by a collection of points rather than a smooth line. 

Curvelets overcome this inefficient representation through a frequency par­

tition that includes not only dyadic frequency partitioning, but also a doubling of 

angular partitions at every other scale. Angular localization with respect to fre­

quency is subject to the same uncertainty as temporal localization. Therefore, the 

angular parameter, 6, provides finer resolution at higher frequencies. The result is 

a partitioning, which allows a piecewise-smooth edge containing a singularity to be 

represented by a sparse set of coefficients. 
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Figure 2.5: A n image of a single curvelet is shown. The curvelet is directional and 
localized wi th a definite angular component. 

These new atoms can be described as "needle-like" at fine scales [9], whose 

rectangular dimensions follow the parabolic scaling law of width = length2. W h e n 

these functions overlap an edge that follows a smooth curve, they produce large 

coefficients. T h i s produces a sparse representation for edges, which can be adapted 

to the hyperbolic events of G P R data. 

2.4 Noise Removal using Threshold Estimations 

T h e foundation for wavelets is la id and the extensions to various discrete imple­

mentations are described. T h e next step explores the application of wavelets and 

curvelets to the estimation of a signal in the presence of noise. Statisticians refer to 

this problem as non-parametric regression, or in engineer speak: denoising. 

T h e goal of noise removal w i l l be to estimate a signal, / from a noisy obser­

vation d. T h e model is additive so d = f + n , where n is the noise present in the 

data observation. If the data is transformed into the wavelet domain using a set of 



orthogonal basis functions gm, by 

D[m] = (d,gm), (2.21) 

then the under lying model is also transformed such that 

D[m} = (f,gm) + (n,gm). (2.22) 

If it was possible to know the value of N(m) it would be a simple matter of sub­

traction. Instead, a decision operator is introduced, fi[m], which w i l l shrink each 

wavelet coefficient of the data. The application is 

f = }~2n{m}D[m}gm, (2.23) 
771 

which produces an estimate, / that can be measured wi th reference to / by the the 

risk: 

Mf) = E[\\f - / | | 2 ] . (2.24) 

T h e m i n i m u m risk can be obtained if the nature of the noise is known in the wavelet 

domain using oracle estimation [48] w i th a decision operator defined as 

n[m] = 2 . (2.25) 
1 ' \D[m]\2 + a2 

T h i s holds only if the noise is Gaussian and white w i th a zero mean. T h e remark­

able result shown by Donoho [23] was that the decision operator defined in (2.26) 

produces a risk which is nearly min ima l w i th respect to oracle estimation. T h i s non­

linear threshold operator would instead make a decision to either keep a coefficient 

that is above a threshold, T , or k i l l i t , by mul t ip ly ing wi th a zero. More formally, 

hard thresholding is, 

r 
if \D[m]\>T, 

(2.26) 

if \D[m]\ < T 
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T h i s produces a lower risk in the estimate / , but higher amounts of spurious os­

cillations, where / contains transients. A n alternative to hard thresholding is soft 

thresholding. Soft thresholding applies the same principle of keep or k i l l , but re­

moves the sharp discontinuities of hard thresholding by shr inking coefficients above 

T. Soft thresholding is defined as 

0 \{\D[m]\<T, 

n[m] = { D[m] -T i f D[m] > T • (2-27) 

D[m} + T i f D[m]<-T 

Donoho showed in [23] that T could be chosen by s imply knowing the stan­

dard deviation of the noise and the number of points, 

T = a^2logeN. (2.28) 

T h i s result is coupled wi th the abi l i ty to estimate the standard deviation from the 

finest scale coefficients of D[m]. If the wavelet coefficients are arranged, such that 

0 < m < N/2 then an estimate of the standard deviation is 

a = median|D[m]| /0.6745, for 0 < m < 7V/2[48]. (2.29) 

These results led to a surge of research in the application of threshold estima­

tors. T h e results were promising, but a nagging problem remained: shift invariance. 

T h e above results hold for additive Gaussian white noise thresholded from the D W T . 

Due to the lack of shift invariance, the resulting estimations were excellent in the 

sense of risk, but lacking in smoothness. 

In [45, 44], L a n g et. al were inspired by R . Coifman to threshold a shift invari­

ant wavelet transform to remove additive Gaussian white noise. Us ing the R D W T , 

they d id a performance comparison on several of the I D and 2D signals. Compar ing 
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these results to Donoho's work [21] w i th soft thresholding they were able to show 

that as the energy of the additive noise decreased, thresholding the R D W T began 

to outperform soft thresholding of the D W T . These results were demonstrated by 

fixing a number of the parameters available in the algori thm. Donoho and Coifman 

also attempted their own versions of a shift-invariant wavelet threshold algori thm. 

In [13], the authors introduced the Sp inCycle a lgori thm which used the results from 

[1] to produce a set of redundant coefficients to threshold. These results also out­

performed classic D W T thresholding methods. 

Thresholding in the wavelet framework is summarized by theoretical and ex­

perimental results present in current research. T h e questions that have not been 

answered in present research are the significance of choosing the number of decom­

posit ion levels and i f R D W T thresholding can be applied to colored Gaussian noise 

using a threshold estimator. T h e next two chapters address an aspect of these ques­

tions by exploring methods of evaluating and apply ing a threshold estimator to G P R 

data. 
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Chapter 3 

Removing Noise from a G P R 

A-scan 

The objective of the following methodology is to evaluate and understand specific 

practical questions that have not been addressed in the application of wavelet noise 

removal to G P R signals. Current research suggests that wavelet denoising can be 

effectively performed by redundant transforms, but it is still unclear how to choose 

a threshold estimator, scale parameter or basis. It is beyond the scope of this thesis 

to explore exhaustively each choice, but instead focus is placed on an the scale 

parameter after a wavelet basis and threshold estimator is chosen. The hypothesis 

is a level-constant threshold estimator applied to the R D W T transform of a G P R 

signal is a suitable method for removing white and colored Gaussian noise if the 

scale parameter is properly chosen. 

There are four ingredients, which are necessary to test the suitability of the 

thresholded R D W T for G P R signals. Each of the following sections discusses the 

specific choices based on the following questions: 
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• How can a synthetic G P R pulse be generated? 

• How can a threshold be estimated and applied to the R D W T ? 

• How can a wavelet basis be chosen? 

• How will the scale parameter affect Gaussian noise removal of the thresholded 

R D W T ? 

In order to evaluate the suitability of R D W T thresholding a direct compar­

ison to the existing theoretical results is made. The performance is juxtaposed to 

the choice of thresholding the R D W T and Wiener filtering on G P R signals. The 

metrics provide comparisons can be made to the existing literature. Specifically, the 

theoretical results of wavelet literature focus on the use of a risk metric, introduced 

in (2.24). Proven results in wavelet denoising show the decrease in a normalized risk 

metric, 

11/-/II2 r(f) 
TVa 2 ~ Na2' [ 6 ' 

This metric assumes that zero-mean Gaussian noise, has been added to the signal 

/ . The difference of the signal and its estimate / are normalized by the length, N 

of the signal and the variance cr2 of the Gaussian noise. 

Evaluation of the maximum scale parameter, J is presented in the familiar 

engineering metric of signal-to-noise ratio, 

SNR = 101og 1 0 ( )̂ . (3.2) 
° V I I / - / I I 2 / 

When comparing the signal, / to the estimate, / , emphasis is placed on the improve­

ment of the output signal-to-noise ration, SNR0Ut relative to the signal-to-noise ratio 

of the noisy input data, 

S N R i m p = S N R o u t - S N R i n . (3.3) 
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T h i s emphasizes the changes i n performance when experimental parameters are 

chosen. 

T h e experiments are conducted in M A T L A B using R ice Univers i ty ' s i m ­

plementation of the R D W T from the Rice Wavelet Toolbox [31] and the wavelets 

are generated wi th Wavelab [24]. A description of the ingredients to the R D W T 

thresholding process w i th a discussion of the rationale and relevance follows. T h e 

parameters of R D W T thresholding are explained before the G P R and noise model 

is described. 

3.1 Determining a Basis for A-Scan Approximation 

In Ma l l a t ' s Wavelet Tour of Signal Processing he labels a chapter: E S T I M A T I O N S 

A R E A P P R O X I M A T I O N S . A m o n g the properties of the wavelet transform, one ele­

gant result is that signals are sparsely represented for a given wavelet basis function. 

T h i s property makes estimation of a signal in noise simple, because the correlation 

of the signal to the wavelet basis provides high ampli tude coefficients, which are 

easily chosen v i a a threshold. T h e foundation of successful estimation relies on a 

small number of coefficients being an effective approximation of the signal. 

A basis function should be chosen such that the decomposition presents a 

sparse set of coefficients and the signal is well approximated wi th a smal l number of 

coefficients. D a t a adaptive methods [14, 49] choose a "best" basis from a dict ionary 

of bases using a sparsity measure to make a decision. Rather than form a best-basis, 

this work instead uses the log-energy dis t r ibut ion measure, 

N 

E | F [ m ] | 2 l o g | F H | 2 . (3.4) 
m—l 

to choose a part icular mother wavelet. 
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When picking a basis function, the support of the bases affect sparsity, but 

usually at a trade-off in the smoothness of reconstruction. This trade-off is related to 

the to wavelet construction, which demands that the wavelet support is determined 

by the number of vanishing moments. The wavelet has p vanishing moments if 

/

+oo 
tvip{t)dt = 0. (3.5) 

-oo 

A n intuitive understanding of vanishing moments is that a wavelet acts a differentia­

tor. If a singularity is differentiable q times, then a wavelet will be able to "detect" 

it when the vanishing moments, p is greater. If a wavelet is chosen for the number 

of vanishing moments, then the minimum support is 2p — 1. 

For G P R signals, the underlying signal is highly differentiable and it is more 

important to produce large amplitude coefficients, which make signal estimation 

possible. Using (3.4) as a guide to determine the best choice for a basis, minimal 

support should increase sparsity. Table 3.1 verifies that the Daubechies wavelet 

with 2 vanishing moments produces the sparsest representation with a log-entropy 

metric. 

Basis Entropy 
Daubechies4 -302.3 
Symmlet4 -294.6 
Coiflet2 -290.1 
Batt lel -289.5 
Symmlet6 -273.5 
Coiflet3 -272.6 
Daubechies6 -270.4 
Coifletl -268.5 
Symmlet5 -266.2 
Battle3 -225.8 

Table 3.1: Summary of entropy measurements on selected basis functions. 

Table 3.1 is generated by decomposing a 2048 point synthetic G P R trace 
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with one reflection event. Each entry represents a particular basis for decomposition 

calculated with the Wavelab function MakeONFilter. 

The sparsity of a decomposition does not guarantee the ability to approx­

imate a signal. However, the alternative to using a sparsity metric is to find the 

smallest set of coefficients for a given approximation rate. Searching for this optimal 

set of coefficients which satisfies a certain quality of reconstruction is an NP-complete 

problem. Therefore, the sparsity property becomes an efficient and reasonable as­

sumption for choosing a wavelet basis. 

3.2 De te rmin ing the N u m b e r of Levels of Decompos i ­

t ion 
e 

In addition to determining a basis function, it is important to determine a useful 

number of decomposition levels. The maximum number of decomposition levels, 

J , determines how many different wavelet scales are calculated. It is possible to 

decompose a signal using the Redundant Discrete Wavelet Transform to a maximum 

of J = log 2 N levels. However, it is not clear if a signal should be decomposed to the 

maximum scale. As the parameter J increases, the support of the wavelet increases 

to a maximum of TV when J = log 2 N. Because the efficiency of a median operator 

increases with N and the advantage of thresholding decreases with sparsity, it is 

expected that the optimal value of J is less then log 2 N. 

There appears to be no research that suggests an appropriate value of J . The 

choice of scale parameter depends on the signal, noise and wavelet basis function. 

The wavelet basis controls the balance between frequency and temporal localization. 

The amount of energy that the noise and signal under study have at particular scale, 
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j determines if threshold estimation and application is appropriate. 

T h e evaluation of the scale parameter compares the signal-to-noise improve­

ment calculated from (3.3). T h e number of levels, additive white noise and colored 

noise, and the energy of the noise is varied to il lustrate the scale parameter effect. 

T h e measurements are performed on a synthetic G P R trace. 

Eva lua t ion of scale parameter experiment: 

1. Generate noisy data from the addit ion of a model and Gaussian Noise. 

2. Decompose to J levels using the R D W T . 

3. Est imate a threshold and apply. 

4. Reconstruct the signal and measure SNRimp-

5. Repeat steps 1-4 for a new realization of noise w i t h larger SNRin. 

6. Repeat steps 1-5 to obtain an average SNR^mp. 

T h e reference model is a synthetic G P R pulse that models an approximation 

of a physically realistic version of equation (2.4). T w o different experiments are 

conducted, one to examine the effects of Gaussian white noise and the second for 

Gaussian colored noise. T h e coloration of the noise is described in Section 3.4.2, 

which assumes the difficult case where the noise has nearly the same characteristics 

as the signal. 

The input noise is measured wi th (3.2) and varies from -9dB up to 30dB in 

3dB increments. T h e range of SNRin is representative of the signal attenuation as 

it propagates into the ground, which makes late t ime reflection events decay into 

the noise floor of the receiver. For each value of SNRin, the number of levels is 
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varied from the m i n i m u m of one to the m a x i m u m of l o g 2 N. Each experiment is 

conducted twenty times and the average SN-Rimp is calculated wi th the mean. 

The result form a surface where an op t imal number of levels can be chosen 

for the part icular signal and noise type. However, because choosing the number of 

levels is equivalent to bandpass filtering, a more generalized understanding can be 

implied based on the frequency content of the signal and the noise under study. 

3.3 Estimation of a Threshold from Noisy Data 

T h e choice of a threshold estimator should only suppress a coefficient i f it is below 

a predicted value of noise. For the D W T a global threshold estimator can approxi­

mated for al l coefficients. T h i s global threshold is val id, because the noise remains 

white in the wavelet domain wi th a constant standard deviation. W h e n thresholding 

the R D W T , the noise does not remain white and a threshold should be estimated 

for each coefficient individual ly . 

Donoho proposes in [23] that the opt imal threshold for the D W T is, 

T = c V 2 1 o g e / Y , (3.6) 

which, for certain classes of signals, achieves nearly min imax risk wi th respect to 

the opt imal non-linear decision operator. T h i s result makes the removal of white 

noise in the D W T domain a simple matter of estimating the standard deviat ion of 

the noise. Us ing the equation (2.29), an estimate of a is reasonable i f the signal is 

sparse relative to the noise. For the D W T , the finest scale provides N/2 coefficients 

to estimate the standard deviation. T h e support of the wavelet at the fine scale is 

very narrow, which makes the signal sparse relative to the noise. For the R D W T , 

each scale provides JV coefficients to make an estimate, but the sparsity of the signal 
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coefficients decreases wi th j. Therefore to generate a threshold estimator requires 

either, advance knowledge of the noise behavior or mult iple realizations of a signal 

wi th iden t ica l noise distributions. 

Us ing a hybr id method, which neither sets a threshold for each coefficient, 

nor uses a global threshold for al l coefficients w i l l be called a level-constant threshold. 

T h i s threshold is constant for a given level and is calculated from an estimate of the 

standard deviation of the coefficients at level j, 

Tj = ajy/logeN. (3.7) 

Th i s is applied to the wavelet coefficients using a hard thresholding technique given 

in equation (2.26) to the matching level of coefficients. T h e assumption is that the 

decomposition is reasonably sparse and an estimate of a w i l l remove the majori ty of 

noise without being too aggressive. T h i s assumption is tested by the scale parameter 

experiments outl ined above and a calculation of risk w i t h respect to the competing 

methods. T h e expectation is that the scale parameter has a direct effect on the 

abil i ty to remove noise. A s the J increases, the decreasing sparsity introduces more 

bias in the coefficients making the median estimator too aggressive. 

T h e alternative, which is to estimate a global threshold from only the finest 

coefficients is sufficient and successful' for white noise. The results of L a n g [44], 

Ma l l a t [48] and Donoho [21] justify this method of thresholding. However, i n the case 

of colored noise, the average standard deviat ion w i l l vary drastically for each level, 

j. Therefore, a global threshold does not apply. Thus , a level-constant threshold 

should prove to be a reasonable signal estimator i n the presence of colored noise. 

T h e verification of the level-constant threshold is tested against the perfor­

mance of classic wavelet denoising using the D W T and Wiener filtering. A calcula­

t ion of the normalized risk for the three methods is presented as increases. T h i s 
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Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 

Figure 3 .1: Using the D W T , a global threshold is estimated, but is ineffective for 
removing colored noise, which is clearly above the green threshold. A level-constant 
threshold approximates a threshold that is calculated for each coefficient, which 
adapts to the noise coloration. 
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allows a direct comparison of the proven D W T thresholding results in [48] to the 

R D W T level-constant threshold method. 

3.4 G P R A-Scan Model 

A G P R A-scan can be measured as a voltage, Vrx from a receive antenna. T h e result 

is a convolution of several impulse responses from the environment and the system 

wi th a source function, Vs, 

Vrx = Vs(t)*hrx(t)*htx{t)*hc{t)*hg(t)*ht{t) + n{t). [18] (3.8) 

T h e impulse response from cross-coupling, hc(t) is described in [18] and is one source 

of horizontal clutter in a B-scan. 

T h e impulse response of the ground, hg(t) is quite complicated as it depends 

on the material , moisture content and granularity. Due to the variat ion wi th time, 

accurate ground models should be considered uniquely for specific applicat ion. A 

simplification of the ground model can be constructed using a constant attenuation 

for a time-invariant frequency response. T h i s methodology assumes the ground 

is constant for al l frequencies. Refer to the work of I rv ing [41] for a frequency 

dependent inversion of simple ground cases. 

The target impulse response, ht(t) is also complex, but simple reflectors such 

as the ground or point reflectors can be roughly approximated as specular. T h e 

input signal, V s is modeled as the derivative of a Gaussian bump like in (2.4). T h i s 

is a simplification, because a real pulse tends to be asymmetric and long-tailed, but 

depends upon the transmitter design and operating characteristics. 

T h e impulse responses of the receiving and t ransmit t ing antenna are the same 

for a G P R in mono-static operation, which makes hrx(t) = htx(t). T h e development 

44 



of a synthetic antenna model, hn(t) is described in Section 3.4.1. Us ing the antenna 

model , the source pulse is filtered by hn(t) to form a synthetic t ransmit ted pulse. 

T h e reflection events are specular, which corresponds to a dirac function in t ime 

making the final G P R pulse model, 

Vrx = Vs{t) * hn{t) * hn{t) * 8{t - U). (3.9) 

T h e target locations are located at the times in the array i j , which is the round 

t r ip t ime from the antenna. T h e pulse must be filtered twice by the antenna, once 

dur ing transmission and once upon reception, thus the two antenna responses in 

(3.9). 

T h e physical parameter, F W H M , used to construct Vs is 100ns, which is 

approximately the F W H M of the experimental G P R demonstrated by the Be lg ium 

Roya l M i l i t a r y Academy H u m D e m research group [59]. T h i s compliments the an­

tenna model, which is a simulation of the same experimental G P R . 

The simplifications and assumptions made to produce the G P R impulse 

model are based on method of noise removal. Wavelets can be thought of as a sin­

gulari ty detector. W i t h i n l imits , the singularity can undergo linear filtering without 

dramatical ly affecting the abil i ty of a wavelet to efficiently represent i t . There­

fore, the simplification of the ground and target to specular reflectors is reasonable. 

Addi t ional ly , ignoring the cross-coupling term is justified, because it should have 

similar frequency and temporal support as reflection events making the results on 

the air-ground event transferable. 

45 



3.4.1 Antenna Model 

Bart Scheers, in his doctoral thesis [60], developed a normalized antenna impulse 

response 

hN.tx — \ ~—7=htx and hN>rx = W ——T==KX (3.10) 
V Z « V h V

 a V h 

which describes the frequency dependent effects of the ground, fg, impedance of the 

system and antenna Zc, Za and the transmission coefficient T t x , r r x . 

The goal of the synthetic antenna model is to simulate a reasonable G P R 

pulse in the time domain. For the purpose of determining the suitability of the 

R D W T for noise removal it is not critical to understand each parameter of the 

model. Instead, the experiment results from an antenna gain plot from Fig. 4-11 in 

Scheers' ([60]) thesis are used to calculate hpj directly. Using points that estimated 

by sight from the gain response of Antenna 2 of the referenced figure, a piecewise 

model of GI(UJ) is generated. The normalized frequency response, HN(LU) is related 

to the gain by 
4-7T 

Gt(u) = -^\HN(u>)\2. (3.11) 

To find a the coefficients for a digital filter to approximate hpj, the piecewise model 

is fed into a Yule-Walker regression estimator to generate the coefficients bi, cn of a 

digital filter, 

HN(z) = • (3.12) 

Using (3.12) it is straight forward to find the normalized impulse response 

and consequently filter coefficients of the theoretical pulse. In Figure 3.2 the Yule-

Walker fit is compared to the piece-wise estimation. 

The final assumption is that h,Ntix(t) = hpf.rx(t) a n d notation is simplified to 

hn(t). Using this model a M A T L A B script is created to filter the synthetic input 
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Simulated Antenna Gain 

Frequency, ui (Ghz) 

Figure 3.2: Us ing the Yule-Walker method to estimate an example antenna response. 

pulse by the simulated antenna response. Figure 3.3 shows the result of the physical 

approximat ion of the G P R pulse. 

3.4.2 Noise Model 

T h e noise model, n(t) is straight forward to model in M A T L A B . To produce Gaus­

sian white noise, the M A T L A B function r andn generates an arbi t rary mat r ix values 

which is normal ly distr ibuted, zero mean and has a standard deviation of one. T h i s 

is referred to as the additive Gaussian white noise, or A G W N model . T h e A G W N 

model is used to verify the performance of the R D W T level-constant threshold 

method to the classic method using discrete wavelet thresholding. 

T h e colored noise model is created using the antenna model from the previous 

section and G W N . T h e additive Gaussian colored noise, or A G C N is filtered white 
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Figure 3.3: T h i s pulse shows an typica l pulse that might be received wi th only one 
reflector at 1000ns. 

noise and is represented as an operator on the additive noise model, 

d(t) = f(t) + hn(t)*n(t). (3.13) 

The antenna model ensures that the G C N is "in-band", meaning that the noise has 

a similar frequency content as the signal, / . T h i s presents a challenging case for the 

verification of the level-constant thresholding of the noisy data, d. 

T h e A G C N model is not unique and therefore does not represent an ex­

haustive study of A G C N noise removal. Conceptually, an A G W N model has a flat 

spectrum. In the context of thresholding, a flat spectrum means that if the spec­

tral content of the signal is less then the noise, it is thresholded to zero. For the 

A G C N , the spectral content is similar to the signal. T h i s makes the estimation and 

suppression much more difficult. These two cases should garner a general intuit ive 

understanding, which w i l l allow an extension to other cases. 
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3.5 Summary 

T h i s chapter introduced the methodology for testing the R D W T in the presence 

of Gaussian colored noise. The next chapter w i l l introduce the methodology for 

suppressing clutter in B-scans before the final results are presented. T h e main 

points from this chapter are: 

• A simulated G P R pulse is the signal under study. 

• A level-constant threshold is defined. 

• A wavelet basis is chosen based on sparsity. 

o A risk and signal-to-noise metric is used to evaluate results. 

• A noise model for both colored and white Gaussian noise is shown. 

T h e experimental results use these bui ld ing blocks to evaluate the effect of 

choosing the m a x i m u m number of decomposition levels on the abil i ty of the R D W T 

to estimate a G P R signal in white or colored noise. In order to establish a baseline 

performance, experiments are designed to compare the D W T and R D W T in the 

presence of white noise, before a performance evaluation on colored noise. 
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Chapter 4 

Clutter Suppression in G P R 

B-Scans 

Clut ter suppression is a common step in the signal processing chain towards the 

goal of landmine detection. T h e purpose is to minimize damage of the target signal 

event, while suppressing anything that is not related to the target. There are several 

reasonably successful methods of clutter reduction present in current literature. For 

a general overview the book wri t ten by D . Daniels, Surface-Penetrating Radar [18] 

and a more comprehensive review in the recent book edited by the same author, 

•Ground Penetrating Radar [19] are recommended. A brief overview of clutter sup­

pression methods w i l l be presented here to develop a motivat ion for the proposed 

method. 

Adapt ive methods, such as the one introduced by Brooks et. al [4] uses a 

linear time-invariant model to perform a non-parametric regression of the system 

response to separate clutter. Another adaptive method of clutter suppression at­

tempts to suppress mult iple reflection events, where the author uses an L - l weighted 
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estimator instead of the t radi t ional least squares filter to derive a clutter model [33]. 

V a n K e m p e n et. al examines the data for a set of features to form a model and 

suppresses clutter w i th a modified Wiener filter [67]. 

A non-adaptive method is presented in [63] where a pr inc ipal component 

decomposition is used wi th linear estimation. T h e assumption is that the target is 

contained wi th in the largest principle components and a linear approximat ion w i l l 

achieve clutter suppression. A n alternative to regression models, is discr iminat ion, 

where clutter is suppressed by choosing a target, which forces al l other data to be 

accepted as clutter. Zhao proposes a successful method of discr iminat ion using a 

discrete hidden Markov model, which finds both metal and non-metal landmines in 

G P R data [70]. 

T h i s work is derived from the results of Her rmann in the seismic realm [36]. 

Her rmann uses the parsimonious curvelet representation of seismic data to itera­

tively suppress mult iple target reflections. Herrmann's work tackles the difficult 

problem of selectively removing events that are nearly identical to the target, but 

smaller in ampli tude and later in t ime [34]. Herrmann's method has also been ex­

tended to removing temporal clutter using mult iple data sets from the same location, 

but several years apart [16] and reducing the dimensionali ty of the seismic imaging 

problem [35]. 

T h e method proposed in this work also supplements the results presented 

by Nuzzo and Quar t a [55], which compares r-p and wavelet transforms for effec­

tive horizontal clutter suppression. Nuzzo et. al used the 2D D W T to selectively 

threshold only the horizontal components. T h e two main features presented in their 

method are: 

• Identify the wavelet scales that clutter appears in . 
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Or ig ina l Curvelets: 41.6 d B Wavelets: 38.4 d B 

Figure 4.1: T h i s example demonstrates reconstruction of a simulated hyperbola wi th 
only 0.5% of the curvelet and wavelet coefficients. Notice how curvelets maintain 
the smoothness of curve and st i l l reproduce the discontinuity across the curve. 

• Suppress horizontal wavelet coefficients at identified scales. 

T h e algori thm proposed makes several important changes to this general 

approach. Fi rs t , the curvelet transform is used, instead of the 2D wavelet transform. 

Figure 4.1 demonstrates the motivat ion of using curvelets to approximate G P R 

reflection events in B-scans. Second, a noise model is generated using features from 

the data set, which intr insical ly define the wavelet scales and horizontal clutter 

features. Addi t iona l ly , the noise model forms the threshold operator, which puts the 

algori thm into the well researched and understood domain of wavelet thresholding. 

L ike clutter, the noise model should be determined for each applicat ion. 

52 



Therefore, a synthetic clutter and target model is formed from actual landmine 

data. To verify the noise model , the synthetic B-scan is generated using the physical 

approximation of A-scans developed i n Chapter 3. 

T h e description of clutter suppression methodology begins wi th the syn­

thetic B-scan model . Afterwards, the clutter and target models are described and 

the proposed algori thm is introduced. T h e chapter concludes wi th a discussion of 

performance metrics for evaluation of the proposed method. 

4.1 B-scan Model using Synthetic G P R Pulse 

T h e synthetic B-scan is carefully modeled such that reasonable clutter and target 

approximations are made. T h i s allows a careful s tudy of the efficiency and l imi ta ­

tions of the proposed method of clutter suppression. 

In order to create a B-scan, targets are placed into a time vector and con­

volved wi th the impulse response of a G P R pulse. T h e target trace is a vector of 

dirac functions scaled by the predicted target amplitude. For example, the ground 

might be a dirac function wi th unit ampli tude occurring at lOOOps. Due to the 

F W H M of lOOps, the sampling rate is lOps, and an index of 100 would contains the 

target. 

4.1.1 C lu t t e r M o d e l 

T h e clutter model used for simulation is an approximation of clutter types that exist 

in a real G P R scan. Figure 4.2 shows a real G P R survey of soil w i th no targets. 

T h e synthetic clutter model reflects the three highlighted events of 4.2. 

T h e clutter is scaled to unit ampli tude for al l events. Each event is s imilar 

to the physical events present in Figure 4.2. The specific t ime locations of clutter 
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Figure 4.2: Th i s G P R B-scan contains examples of clutter without targets. A n ­
notation A shows the air-ground event, the clutter in oval B is a highly variable 
ampli tude event and C shows a clutter event that does not exist for the duration of 
the scan. 
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are not cr i t ical and arbi t rar i ly defined as: 

• Synthetic Event, EA' Ground , at lOOOps wi th constant ampli tude 

• Synthetic Event, E ^ : C lu t t e r at 1250ps wi th varying ampli tude 

• Synthetic Event, Ec'- C lu t te r at 1500ps which does not persist 

T h e ampli tude of each event is defined by a function, before it is convolved 

wi th the synthetic pulse, 

EA=1 (4.1) 

• ' EB =cos(2vr0.02x), 1 > x < 50 (4.2) 

0, 1 > x < 24 

EC = < e (x-25 ) / e 4 ) 25 > X < 29 ' (4-3) 

1, 30 > x < 50 

4.1.2 Target M o d e l 

T h e target model is generated by calculat ing a spatial hyperbola attenuated by an 

exponential attenuation function dependent on the distance from the antenna to 

the target center. T h e spatial hyperbola is calculated by creating an array of t ime 

shifts, 

t(x) = -^Z2 + (x- xt)2. for x = 0 , 0 .01 , . . . , 0 . 25 cm. (4.4) 
v 

T h e velocity is defined in (2.7), the target center, xt, is 25 cm and the target depth, 

Z, is the difference between target depth and ground, which is 5 cm. The target t ime 

is converted to a M A T L A B vector index by scaling (4.4) w i th the t ime sampling 

rate, lOps and rounding to the nearest integer, 

i d x = round ( ^ 1 0 ^) . (4.5) 
V l 0 x l 0 1 2 y V ; 
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(a) Point Target (b) Large Target 

Figure 4.3: Example of synthetic targets used in the experiments. 

In M A T L A B , the image is indexed by, i d x and the attenuation is calculated by (2.5) 

and assigned to the image array, 

2 e - 2 a d 
B(iebc) = - - ^ - . (4.6) 

T h e attenuation coefficient, a was chosen to represent sandy soil, which has a low 

attenuation of around l O d B / m . T h e distance from the antenna to the target is 

found by d = \J Z2 + (x — xt)2 and the target gain function, 

p-2aZ 
G = ~ ^ n (4-7) 

normalizes the peak of the the hyperbola to unit amplitude. T h e normalizat ion puts 

the clutter, target and ground on similar ampli tude scales, which is often the case. 

Th i s represents a reasonable model for a point target. A n addit ional target 

is used, which has larger dimensions. T h i s w i l l result in a horizontal component 

that facilitates testing of the average trace subtraction method. It is calculated i n 

the same manner, except the center of the hyperbola is extended horizontally, as 

presented in Figure 4.3. 
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4.2 Proposed Method of Clutter Suppression 

A new method is proposed for suppressing horizontal clutter. T h e foundation is 

that the existing prevalent method, average trace subtraction ( A T S ) is often times 

sufficient for highlighting hyperbolas in G P R data for reasons of computat ional 

complexity. Therefore, new methods must be reasonably fast or especially successful 

in suppressing clutter. T h e new wrapped curvelet transform, which is released in 

CurveLab [10] is sufficiently fast to consider as an application clutter suppression. 

Addi t ional ly , because the curvelet domain is efficient at representing G P R traces, 

thresholding should prove to be competing method to A T S . 

The act of thresholding "mutes" an event, which meets the cri ter ia of the 

threshold. Unl ike subtraction, thresholding does not add energy, therefore eliminat­

ing the possibil i ty of constructive interference. If an appropriate threshold can be 

calculated that represents the clutter contained in the B-scan then a simple scaled 

threshold can be applied in the curvelet domain. Th i s w i l l suppress events that are 

clutter like and ignore events that do not match the estimated model . T h e clutter 

model becomes the key to successful implementation of the proposed method. 

T h e clutter model for A T S is the average trace, which has two major as­

sumptions. T h e first is that the resulting average ampli tude is representative of al l 

traces. T h i s is usually not possible for a G P R system. A m p l i t u d e varies as a result 

of posit ional noise and subsurface material changes. T h e second assumption is that 

the phase remains the same. Th i s is usually true, however, not al l horizontal clutter 

events are present over the window of a-B-scan." If a clutter event only exists in a 

port ion of a B-scan the resulting subtraction w i l l actually place an event where none 

exists. Th i s would be a similar case i f the clutter event changed phase 180 degrees 

resulting in constructive interference. 
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T h e proposed method overcomes the pit-falls of A T S by adding ampli tude 

and phase resilience, but retaining a simple noise model . If a quasi-accurate clutter 

model is generated, the phase and ampli tude resilience of the method comes from 

the parsimonious representation of clutter. T h i s enables clutter to be muted w i t h 

a high probabil i ty that the target is preserved. T h e amount of mut ing comes from 

a shr inking parameter, A, which must be empirical ly discovered, or controlled by 

an expert user to determine the tradeoff between clutter removal and target signal 

preservation. 

T h e clutter model must be quasi-accurate, which is the same assumption that 

A T S uses. In the average trace case, the clutter is assumed to be stationary in phase 

and ampli tude over the spatial dimension of the B-scan window. A n alternative 

clutter model is dubbed the edge model. T h e edge model uses the average of only 

two traces located at the edges of the B-scan. If there are M traces in a B-scan, 

which are column vectors, then the 1-D edge noise model is 

To form the threshold operator, the noise model is first transformed into an 

image. T h e noise model image has dimensions identical to the B-scan under study, 

for t ime and M for space. For each trace in the 2-D noise model image, Q, is the 

calculated edge model trace mul t ip l ied by a length-M vector of ones, 

There are several reasons that make a noise model calculated from the edge 

traces a reasonable attempt to model horizontal clutter. T h e first is that the clutter 

is highly likely to be present in the edge of a B-scan, while the target is not. T h e 

second is that a large target w i l l have a significant horizontal energy that would 

hedge = ~ ( b l + b M ) • (4.8) 

(4.9) 
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be detected by an noise model calculated from the average trace. However, if the 

clutter is not present at the edges, the edge trace model does not work. 

T h e proposed method of clutter suppression is summarized: 

1. Take the curvelet transform of the data B-scan. 

2. Calculate the edge noise model and form a B-scan noise model . 

3. Take the curvelet transform of the noise model B-scan. 

4. Use the noise model in the curvelet domain as a threshold. 

5. Scale the threshold and apply to the data curvelet coefficients. 

6. Inverse transform the thresholded data. 

In notation, the set of curvelet basis vectors, gm produces a set of coefficients 

from the data, d and noise model, Q, 

dm=(d,gm) (4.10) 

Clm={n,gm). (4.11) 

T h e threshold operator formed from the noise model and the scaling parameter, A, 

{0 if \x\ < A | Q m | , 
(4.12) 

1 if | i | > A | f i m | . 

A n estimate of the the clutter free data, d is made from thresholding wi th F, and 

reconstructing, 

d = }^F{dm)gm. (4.13) 
m 

T h i s method has the advantage of being quite easy to visualize the result. 

T h e noise model is "muted" from the data by zeroing only the coefficients that are 
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estimated to belong to noise. T h e phase of the data is not important , because the 

absolute value of the coefficients is considered when thresholding. T h i s is allows 

incoherent estimation, because the noise model only provides a spatial location and 

approximate ampli tude. Coherent estimation, such as subtraction, requires careful 

alignment of phase and ampli tude to prevent constructive interference. T h e am­

pli tude resilience of thresholding comes from control of the A parameter. A large 

value increases the tolerance for ampli tude variation at the cost of damaging closely 

spaced events. 

4.3 Method of Performance Evaluation 

To verify that the proposed method is successful, several means of verification are 

presented. Us ing the synthetic data, numerical results are presented by calculating 

T h e t radi t ional image processing definition of P S N R uses A = 255, which is the 

difference between the m a x i m u m and m i n i m u m values of a 255 intensity level image. 

To calculate A in this applicat ion, the difference of the max imum and m i n i m u m 

amplitudes are taken from the input data, 

Numer ica l metrics are useful for comparing the amount of energy removed 

from the noisy data, but visual quali ty is not well represented. Therefore, the 

numerical results are presented to verify that clutter suppression is successful in 

removing the clutter energy, but visual experiments are conducted to demonstrate 

the difference i n artifacts. 

the P S N R , 

(4.14) 

A = max|ct| — min |d | . (4.15) 
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T h e visual experiments allow a direct comparison of the proposed method 

and A T S . Image artifacts, like target energy damage, are best viewed by comparison 

of the input and output images of each algori thm. A residual image, d — d is also 

calculated, which emphasizes the artifacts either created, or not removed by each 

method. 
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Chapter 5 

Experimental Results and 

Discussion 

The results presented in this chapter are from two separate methods. T h e first set 

of results show the sui tabi l i ty of a level-constant thresholded R D W T for removing 

white or colored Gaussian noise. T h e second set of results are generated by the 

application of clutter suppression on real and synthetic data. A discussion follows 

each experimental section. 

T h e experimental results for A-scan noise address these issues: 

• Performance when additive noise is Gaussian and white. 

• Performance when additive noise is Gaussian and colored. 

• Evalua t ion of scale parameter and input noise energy. 

• Compa t ib i l i t y of proposed method to trace stacking. 

In addit ion to the I D results, experimental results for B-scan clutter sup­

pression w i l l compare two methods, the proposed curvelet thresholding method and 
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average traces subtraction. T h e experiments present: 

• V i s u a l performance for synthetic data. 

• Residual images for synthetic data. 

• Peak S N R results for synthetic data. 

• V i s u a l performance for real data. 

5.1 Experimental Results of Noise Removal in A-scans 

T h e main results of this section are presented in Table 5.1'. T h i s experiment uses the 

best choice for a scale parameter determined a priori. T h e input noise is additive 

wi th a signal-to-noise ratio of 6dB. T h e signal is a simulated G P R pulse at lOOOps 

containing 2048 points. 

Table 5.1: Summary of the average SNRirnp of the level-constant thresholded 
R D W T and global thresholded D W T wi th respect to white noise and colored noise. 

T h e results show that the global thresholded D W T can not effectively remove 

colored noise, while the R D W T makes significant improvements. T h i s establishes 

the sui tabil i ty of level-constant R D W T thresholding as a method of noise removal. 

The next set of experiments evaluate the specific choice of parameters and the 

influence on this method. 

W h i t e Noise Colored Noise 
R D W T 
D W T 

17.8 d B 13.9 d B 
13.5 d B 0.1 d B 
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Or ig ina l wi thout noise 

Or ig ina l w i t h A G W N : 5 d B Or ig ina l w i t h A G C N : 6 d B 

R D W T and A G W N : 18 d B R D W T and A G C N : 14 d B 

D W T and A G W N : 14 d B D W T and A G C N : 1 d B 

Figure 5.1: T h e R D W T visual ly removes the noise and preserves the signal using a 
level-constant threshold. T h e D W T wi th a global threshold can effectively remove 
the white noise, but not colored noise. 
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5 . 1 . 1 P e r f o r m a n c e o f G a u s s i a n W h i t e N o i s e R e m o v a l 

T h i s experiment uses the normalized risk measure from equation (3.1) to evaluate 

the performance of the R D W T to the D W T and Wiener filtering. Th i s normalized 

risk, | | / — f\\2/Na2, is used i n the wavelet literature to show that thresholding 

exceeds linear methods of noise removal as the signal length, N, increases. 

T h e experiment sets a constant value for a and generates the input Gaussian 

white noise for a simulated G P R signal w i th increasing values of N. T h i s makes 

SNRin of the noise lower as N increases, because the energy of white noise is deter­

mined by HiVcr21|. T h e normalized risk is similar to a signal-to-noise measurement, 

but measures remaining noise energy on a scale of 0 to 1. A normalized risk mea­

surement of one means that no noise energy is removed and a zero means a l l noise 

is removed, while preserving the integrity of the signal. 

For each value of N, the experiment is conducted 20 times and the average 

risk is calculated according to (3.1). T h e D W T thresholding method is performed by 

estimating a global threshold from the noise variance of the finest scale coefficients. 

Wiener filtering is performed by the function included w i t h Wavelab [24]. T h e 

R D W T threshold is determined by the level-constant method using an estimate of 

each level w i th J — 8. 

The results show a decay for D W T thresholding which exceeds Wiener filter­

ing, confirming the results presented in wavelet literature [48]. T h e R D W T removes 

more noise ini t ial ly, but decays slightly slower then the D W T . T h i s shows that the 

R D W T is more effective then the D W T at smal l values of when using a level-

constant threshold. 
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Figure 5.2: Level-constant thresholding of the noisy R D W T coefficients is effective 
even when the signal length is short. Level-constant thresholds are less effective 
when the signal length is large. 
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Figure 5.3: G l o b a l thresholding of the D W T removes no measurable noise, thus 
producing no risk decay. Wiener filtering is marginal ly effective for low noise, but 
level-constant thresholding is successful at removing colored noise. 
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5.1.2 Performance of Gaussian Colored Noise Removal 

T h i s experimental result demonstrates the noise removal abi l i ty of each competing 

method in the presence of "in-band" colored Gaussian noise. The experiment uses 

the normalized risk metric so that a comparison can be made to the previous results 

of A G W N noise removal. 

T h e experiment is conducted in the same manner as the previous section 

using a synthetic G P R pulse wi th an increasing amount of points. T h e value of 

a remained constant, while N increased. T h i s choice reduces the amount of noise 

energy as the number of points increased. T h e noise is colored by the antenna 

model, hn, and generated randomly for each t r ia l . T h e results represent the average 

normalized risk for 20 trials. 

There are three outstanding results in Figure 5.2. F i r s t , the D W T method of 

global thresholding appears to by unable to reduce the amount of noise, regardless 

of the number of points available. T h e R D W T method, however, s t i l l produces 

a decay in risk as increases in the presences of G C N . Final ly , Wiener filtering 

produces marginal results, while the risk for R D W T thresholding remains effective, 

though five times larger wi th respect to A G W N performance. 

5.1.3 Dependencies of Number of Decomposition Levels 

T h i s experiment evaluates the dependence of the scale parameter and SNRin using 

the SNRimp metric. For Figure 5.4, the 2048 point simulated G P R signal is used 

to test the performance of the R D W T level-constant thresholding method in the 

presence of white noise. 

T h e results show that as SNRin decreases to zero, decomposing to a higher 

number of levels yields sl ightly better results. In the case of min ima l noise, like 39dB, 
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Figure 5.4: T h e thick black line shows the m a x i m u m S N R improvement for a given 
number of levels of decomposition and additive G W N . A notable feature of the figure 
is the sharp drop of S N R improvement when the noise energy is small . 

the coefficients are not sparse at high levels and show a negative improvement at 

high values of J for A G W N . 

T h e same test is performed on A G C N using the simulated G P R signal. T h e 

results are quite different for the larger values of SNRin. T h e opt imal choice of J 

remains the same, but the metric SNRimp falls off as noise energy increases. T h e 

choice of in-band colored noise influences this drop, because the large noise events 

have similar characteristics to the G P R signal and thresholding becomes ambiguous. 

However, it is important to note that if clutter is modeled as in-band noise, then it 

would be suppressed by approximately l O d B . 
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Figure 5.5: A s the input S N R of the colored noise reaches OdB, the abi l i ty to dis­
tinguish noise from signal diminishes, because noise events appear nearly identical 
to signal events, however the opt imal choice of J remains the same. 

5 . 1 . 4 T h r e s h o l d i n g M u l t i p l e A - s c a n s b e f o r e S t a c k i n g 

The first experiment is designed to test the efficacy of operator order. Thresholding 

is a non-linear operator, which means the order of operations w i l l likely produce dif­

ferent results. T h e ubiquitous nature of stacking suggests that the order of thresh­

olding and stacking should be examined. Figure 5.6 demonstrates the difference 

between the three different cases: 

• Perform no wavelet thresholding, just stack. 

• Perform wavelet thresholding before stacking. 

• Perform wavelet thresholding after stacking. 

T h e noise is A G W N applied to a 2048 synthetic G P R signal. Wavelet denoising 

is performed using a level-constant R D W T threshold. T h e input noise is 9dB and 
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Thresholding performs better after stacking 
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Figure 5.6: Stacking scales the input noise a by 1/VT, however, this scaling is 
diminished by stacking before thresholding. Regardless of the order, wavelet noise 
removal s t i l l provides a significant improvement. 

J = 8, which corresponds to the opt imal scale parameter from Figure 5.4. T h e 

SNRimp metric is chosen to determine the amount of noise energy removed. 

T h e results indicate that level-constant thresholding should be performed 

after stacking. Th i s is an important and fortunate feature, because most G P R data 

is only available post-stack. T h e experiment does not test the assumption that 

each trace is aligned in time and phase, which is a basic assumption of stacking. 

However, if only one trace is available the results show that wavelet thresholding 

can s t i l l provide noise removal, whereas stacking cannot be performed. 

T h e second experiment confirms that the number of points, - N, of a trace 

and the noise coloring has l i t t le effect on the results presented in Figure 5.6. T h i s 

set of experiments tested four cases: A G W N wi th 2 and 32 input traces and A G C N 

wi th 2 and 32 traces. Each case was tested as the number of points in the input 
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Figure 5.7: Stacking before thresholding is the better. If stacking is performed in 
the wavelet domain, the median is an improvement over the mean when T = 32. 

signal varied from 256 to 32,768. In addi t ion to testing the order of stacking and 

thresholding, a modification to the stacking operator was made. T h e median opera­

tor is used to perform a different estimate of a mean trace after thresholding in the 

wavelet domain. T h e median operator is more suitable to determining the mean i f 

a probabil i ty dis t r ibut ion function is skewed. T h e nature of thresholding suggests 

that the efficiency of median stacking should be tested. 

T h e results in Figure 5.7 show that as the number of points decreases the 

difference between pre-stacking and post-stacking shrinks. T h e median stacking 

operator offers no advantage for a small number of traces, but 3dB of improvement 
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in large stacks. M i n o r differences aside, noise coloring has no effect on the order of 

operations. Even in the presence of colored noise it is better to pre-stack G P R data. 

5.2 Discussion of Noise Removal Results 

T h e results show that the level-constant thresholded R D W T is useful for denois-

ing a synthetic G P R signal in Gaussian noise. Several aspects are tested and the 

scale parameter, J , is shown to have a dramatic effect on the abil i ty to perform 

noise removal. Noise coloring is shown to reduce the performance of level-constant 

thresholding, although performance s t i l l exceeds other methods tested. T h e order of 

operations is shown to be best performed by finding the stacked trace before wavelet 

denoising. 

The performance difference of the level-constant thresholded R D W T between 

white and colored noise is due to the abi l i ty to estimate the noise in the redundant 

wavelet domain. Us ing the redundant transform, a different estimate of a is obtained 

at each level. In Figure 5.3, we can see that this allows the threshold to adapt to the 

coloring of the noise. W i t h the understanding that the R D W T is the application of 

bandpass filters, the level-constant threshold is an estimate of the standard deviation 

for a part icular frequency band of the additive colored noise, which allows it to adapt 

to the coloring of the noise. 

T h i s choice of level-constant thresholding has l imitations, because i f the es­

t imat ion is wrong, the corresponding threshold w i l l not be effective. T h e results 

from testing the scale parameter imp ly that when the noise is especially low, the 

threshold operator removes more signal energy then noise. The extreme case is in 

Figure 5.4, where the result of denoising makes the corresponding signal worse then 

the input . 
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W h e n comparing R D W T denoising to Wiener filtering and D W T thresh­

olding in Figure 5.2, the normalized risk of the R D W T shows better performance 

in i t ia l ly then either method. A s N increases, the difference shrinks and D W T denois­

ing overtakes the R D W T method. T h i s is at t r ibuted to the choice of level-constant 

thresholding of the R D W T . T h e median, which is used to estimate the threshold 

for each level, is no longer efficient for low noise and large N. T h e level constant 

threshold attempts to estimate the standard deviation of the noise at the low fre­

quency levels where the sparsity property no longer holds. T h i s means the threshold 

predicts a large value for dj, which removes more signal then noise at that level. For 

white noise, it would be better to use a global threshold estimated from the finest 

scale coefficients of the R D W T for very low noise applications. 

W h e n applying thresholding techniques to G P R data, results show that 

thresholding should be performed after trace averaging. T h e reason is that an 

estimate of a for pre-stacked traces w i l l be larger then post-stack. Because the 

threshold is dependent on a, it w i l l be larger and remove large amounts of signal 

energy. W h e n the traces are averaged the value of a is reduced by a factor of 1/VT. 

T h e corresponding estimate of a is smaller and the threshold is smaller. T h i s only 

holds when the dis t r ibut ion is Gaussian, because the mean is an excellent point 

estimator. 

W h e n N is increased the difference between pre- and post-stacking is re­

duced, especially when T = 32. T h i s is because the estimation of the threshold is 

improved and quali ty of noise removal increases. However, the difference can not 

overcome the tremendous gain of pre-stacking, which makes thresholding more ef­

fective. However, this result does not take into account that a threshold could be 

estimated for each coefficient in the redundant domain. A level-constant threshold 
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assumes all coefficients at a part icular level have a similar standard deviation. W h e n 

only one trace is available this assumption is reasonable, but as the number of traces 

increases better estimations of am are possible. 

T h e benefits of level-constant thresholding seem to outweigh the negatives. 

Signals w i th small number of points are better estimated by the R D W T method 

then either D W T or Wiener filtering. Often for real G P R systems the number of 

points is under 2048, which increases the advantage of level-constant thresholding 

in the R D W T domain. T h i s implies the level-constant R D W T threshold would be 

a candidate for the removal of Gaussian noise, white or colored of G P R A-scans. 

5.3 Simulation of Clutter Suppression in B-scans 

The following experimental results compare the baseline method of average trace 

subtraction ( A T S ) to a the proposed method of thresholding in the curvelet domain. 

T h e methods are compared on synthetic data to establish an understanding of the 

proposed method and l imitat ions. Rea l da ta is then tested to see the visual effects 

of the proposed method. 

T h e results of the synthetic tests are summarized by Table 5.2. Th i s experi­

ment compares the effectiveness of A T S to the proposed method using both a point 

target and a large target. W h i l e a P S N R metric is not a visual indicator of quality, 

it shows the amount of noise energy removed. T h e results is that the proposed 

method removes more clutter energy then the A T S does. 

T h e remaining experiments focus on visual quality. T h e output of each 

algori thm and the residuals for the synthetic data are compared. Fol lowing the 

synthetic test, a test on real landmine data is presented. 
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Orig ina l Average Trace Subtract ion Proposed 
Point Target 17.6 21.8 40.2 
Large Target 17.6 21.3 40.1 

Table 5.2: T h e p e a k - S N R of A T S shows an improvement, but much less then the 
proposed method for both targets. 

5.3.1 Synthetic B-scan Experiments 

T h e visual synthetic experiments are conducted to establish an understanding of 

the method. T h e first experiment explores the effect of choosing a noise model . The 

average trace subtract ion method assumes a noise model that is an image containing 

the average trace at every spatial point. T h i s experiment compares visual output 

of A T S and then performs the proposed method also using an average trace ( A T ) 

model. A s a comparison, the edge noise model is also presented and the results are 

shown for the proposed method. 

T h e experiment uses a large target, which penalizes the use of an average 

noise model . F igure 5.8(b) shows that the target energy has been damaged, and ad­

di t ional artifacts have been introduced. T h e average noise model is not a good choice 

for the proposed method either. Target energy is also damaged by the thresholding, 

but no addi t ional artifacts are introduced. 

T h e next experiment in Figure 5.9 uses a point target and the same clutter 

model to compare A T S and the the residuals. T h e residuals emphasize that A T S 

cannot remove clutter which varies in ampli tude or phase. However, thresholding 

is not subjected to that l imi ta t ion and effectively removes al l clutter events. T h e 

residual of the proposed method contains only artifacts at the sharp edges of the 

clutter. T h e ground, having constant ampli tude, is easily removed by both methods. 

T h e final synthetic experiment compares the large target to both methods. 
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(a) Input Noisy Model (b) Target Model 

(c) Avg Trace (AT) Noise Model (d) Proposed Method with AT model 

(e) Edge Noise Model (f) Proposed Method with edge model 

Figure 5.8: In 5.8(a) the original data w i th clutter is presented, but the result should 
be just the target as in 5.8(b). T h e proposed method is calculated wi th an average 
noise model , 5.8(d) and edge noise model , 5.8(f). To understand the output of the 
proposed method, the noise model used for the threshold estimation is shown in 
5.8(c) and 5.8(e). 
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(a) Target Model (b) Input Noisy Model 

(c) Proposed Method Result (d) Proposed Method Residual 

(e) Average Trace Subtraction Result (f) Average Trace Subtraction Residual 

Figure 5.9: In 5.9(d) the proposed method leaves v i r tua l ly no clutter energy and the 
target is s t i l l present. A T S leaves tremendous artifacts, but does manage to remove 
the ground clutter. 
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T h i s provides results for common subsurface targets, which are larger than point 

targets. W i t h these common targets, using A T S shows that significant artifacts 

are introduced, seen in Figure 5.10(e). T h e proposed method in Figure 5.10(c) 

demonstrates similar results for the large target as the point target. T h e method 

provides near complete removal of a l l clutter and very l i t t le change to the target 

energy. 

5.3.2 Landmine B-scan Experiments 

T h i s experiment uses landmine data from the J R C landmine signatures database. 

T h e B-scan under study represents a physical location at 25cm from a survey that 

done on 50cm X 50cm area wi th 1cm resolution. T h e landmine is a P M N - t y p e 

anti-personnel device buried at 5cms in loamy soil. T h e data can be obtained from 

[11] and the system is described i n [59]. 

T h e results of clutter suppression are shown in Figure 5.11, which use the 

edge noise model shown in 5.11(b) to create a threshold operator. F igure 5.11(b) is 

the edge noise model calculated from the data domain. A n y event that is strongly 

horizontal and exists near the edge w i l l be shown in the noise model . T h e result from 

the proposed method w i l l be to remove any events that are approximated by the 

calculated noise model . The result is Figure 5.11(c), which indeed shows superior 

clutter suppression to the average trace subtraction method. 

A s demonstrated before, targets that are large suffer when A T S is used to 

suppress clutter. There are artifacts introduced around the target as a result of the 

average noise model . Th i s does not occur w i th the proposed method. T h e large 

target remains intact and becomes the prominent feature in the result. A l so note 

the ground clutter is not completely removed by either method. 
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(a) Target Model (b) Input Noisy Model 

(c) Proposed Method Result (d) Proposed Method Residual 

(e) Average Trace Subtraction Result (f) Average Trace Subtraction Residual 

Figure 5.10: T h e large target does not effect the abil i ty of the proposed method to 
remove clutter. Average trace subtraction removes a port ion of target energy, adds 
artifacts near the target and does not remove the amplitude varying clutter. 
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Source Noise M o d e l 

(a) Input Data (b) Edge Noise model 

Adap t ive Subtract ion Average Trace Subtract ion 

(c) Proposed Method (d) Average Trace Subtraction 

Figure 5.11: T h e clutter is suppressed i n the proposed method, whereas significant 
artifacts are introduced in the A T S method. The noise model in 5.11(b) shows what 
likely events w i l l be suppressed in the result of the proposed method. 
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5.4 Discussion of Clutter Suppression Results 

Developing an understanding of clutter is a difficult problem, therefore simple solu­

tions are sought. The computational complexity and simplicity of ATS is low, which 

has led to the widespread use of ATS as an initial signal processing step. Also, ATS 

is effective at removing the air-ground event and other strong horizontal events. In 

a usual G P R B-scan, the horizontal clutter is the dominant visual feature and can 

often impede interpretation of the data. The largest horizontal event is the ground, 

but multiple reflections of the ground, antenna ringing and horizontal reflectors are 

also significant. 

The advantage of using the proposed method is that events only need to be 

roughly approximated. This is similar to the ATS assumption that clutter can be 

represented by an average of all traces. The drawback of simple noise models is that 

they are likely to fail if the broad assumptions are invalidated. In particular, the 

edge noise model used in the proposed method suffers if the clutter does not exist 

in the edge trace. The edge model also can not handle temporal changes in the 

clutter. In Figure 5.11, an example where slight variation in the temporal location 

of the ground begins to challenge the assumptions of the edge noise model. However, 

the proposed method is visually more successful at removing horizontal events and 

minimizing artifacts then the ATS method. 

The point target, in Figure 5.9 is well fit to ATS clutter suppression because 

the horizontal component is minimal. The advantage of the noise edge model and 

the proposed method are evident in Figure 5.8(f) and Figure 5.10(c). The proposed 

method does not require the use of an average trace noise model, therefore no target 

damage occurs in Figure 5.10(c). When the average trace model is used on the same 

example, in Figure 5.8(f), no additional artifacts are introduced. The ATS method 
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struggles wi th this, because the subtraction operator is b l ind to any changes i n data. 

T h e proposed method uses a threshold operator, which provides a quasi-adaptive 

method. Th i s prevents the proposed method from adding artifacts even when the 

estimation of the noise model is wrong. 

T h e drawback of using the proposed method is that the scaling parameter 

A must be expert ly controlled to balance the weighting of the noise model . T h e 

results presented here used a weight of 2.8, which corresponds to thresholding any 

coefficients that exceed 3 times the noise model coefficients. It was found in these 

experiments that the scaling parameter only required rough adjustments and was 

easy to understand and control. In the case of the landmine data, a much less 

aggressive setting was used. Sufficient clutter suppression was obtained by only 

scaling the noise model 1.8 times. 
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Chapter 6 

Conclusions 

This thesis made two primary contributions, which furthered an understanding of 

thresholding in the wavelet and curvelet domain. The first contribution is an evalua­

tion of level-thresholding the R D W T coefficients for noise removal in a G P R A-scan. 

The second evaluates the use of thresholding curvelets for clutter suppression in a 

G P R B-scan. 

There are four secondary contributions that stemmed from the results of 

the evaluation of removing noise using level-constant thresholding in the R D W T 

domain: 

• R D W T level-constant thresholding is suitable for use on the synthetic G P R 

signal presented here, and likely suitable for most G P R signals. 

• The scale parameter, which controls the number of decomposition levels is 

critical to the performance of a level-constant threshold method. 

• The amount of noise energy present in the noisy signal affects the performance 

and choice of the scale parameter. 
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• T h e order of operations, if stacking is performed, is to stack first and threshold 

afterwards. 

T h i s work has buil t on the success of previous work in wavelet threshold­

ing. Previous achievements presented results on global thresholding the R D W T to 

remove white noise. These results have extended the use of R D W T to perform non-

parametric signal regression using very li t t le a priori information. T h e threshold is 

determined by the data, but the scale parameter must be estimated by other means. 

T h i s work has also presented a reasonable physical model for a G P R A -

scan. Us ing this model and other pract ical aspects of G P R technology the results 

can interpreted and applied to real data. Specifically, the knowledge of stacking 

before thresholding is useful, because the R D W T denoising can be applied direct ly 

to current G P R data. 

In the realm of clutter suppression, there are three secondary contributions 

that stemmed from evaluating the proposed method of thresholding an edge noise 

model in the curvelet domain: 

• Clu t te r suppression can be performed by thresholding in the curvelet domain. 

• A n approximation of clutter using a simple model, such as the edge noise 

model is sufficient when using thresholding. 

• A m p l i t u d e and phase resilience was demonstrated using thresholding. 

T h i s work uses the well established theory of thresholding in the wavelet 

domain to re-position the problem of clutter suppression as threshold estimation 

problem. Because of the phase and ampli tude resilience of thresholding effective 

clutter suppression can be achieved by only estimating an approximate model of 
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clutter. This enables users to arbitrarily design a clutter model that suits a specific 

need. 

6.1 Future Work 

This work can be extended in three different ways. The first is to perform a physical 

evaluation of level-constant thresholding to accurate backscatter models. Second, 

complex clutter models could be created to enhance the effectiveness of clutter 

thresholding. Finally, combining both level-constant thresholding and clutter sup­

pression in the curvelet domain to perform noise' removal and clutter suppression 

simultaneously. 

The most important extension is the combination of noise removal and clutter 

suppression. The suitability of methods has been evaluated, therefore the combi­

nation seems quite natural and exciting: Because the curvelet domain functions in 

generally the same way as the redundant discrete wavelet domain, this extension 

should be quite natural. The scale parameters will have to be carefully chosen such 

that signal preservation and noise removal is balanced. 

The evaluation of physical data with respect to an accurate radar backscatter 

model is important to determine if the critical features of the signal are being pre­

served when noise removal takes place. In addition, a physical analysis of random 

clutter would allow the possibility of extending the idea of colored Gaussian noise 

to clutter models. 

The development of complex clutter models could allow temporal clutter 

variance to be accounted for. The possibility of an interactive noise model could 

allow an operator to "select" features for removal. A clutter feature could be first 

identified by a user and then the angle and area of influence is then chosen to create 
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a noise model and suppress the clutter feature using thresholding. 
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Appendix A 

Image Plot t ing Function 

Due to the subjectivi ty of plot t ing intensity images, a detailed description of the 

plot t ing function which was used to generate B-scan plots is described. T h e im­

portant features are the color scaling, image scaling and image translation. T h e 

function used to re-scale and translate is called r e l _ i m , shortened from, relative 

image. T h e purpose was to allow results to be plotted at the same intensity scale 

as the input . 

M A T L A B includes a image plot t ing function called image, which interprets 

an entry in a mat r ix as an index to a colormap: T h e colormap used in this thesis for 

plot t ing B-scans is white at the middle index of the colormap mat r ix and l inearly 

scales in shades of gray to black at the beginning and end of the array using the 

code: 

function [cmap] = seisgray; 

i f nargin <1, 

ncolor = 32; 

end 

tmpl = [[0:(ncolor-1)]/(ncolor-1) ; ... 

[0:(ncolor-1)]/(ncolor-1) ; ... 

[0:(ncolor-1)]/(ncolor-1)]'; 
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tmp2 = [[(ncolor-l):-1:0]/(ncolor-1) ; ... 

[(ncolor-1):-l:0]/31 ; ... 

[(ncolor-1):-l:0]/3i]'; 

cmap = [tmpl ; tmp2]; 

T h i s choice of color mapping makes no dist inct ion between negative and 

positive events i f the image array is translated such that the zero indexes the middle 

index of the colormap. T h i s is the purpose of the r e l _ i m function, which scales and 

translates an input image array relative to a second input: 

7, Image something relative to another image 

'/. Usage: 

'/. rel_im(source, image) 

function im = rel_im(source, im) 

scale = .5/max(max(abs(source))); 

im = im.*scale; 

image(round(im.*64+32)) 

T h e purpose is to compare images at a common scale relative to a part icular 

source image. T h i s thesis uses the input image as the base scale and all other images 

are scaled accordingly. If the input to the function is an array, it takes the m a x i m u m 

value and normalizes the second argument to this value. Otherwise, a simple scalar 

can be used as the first argument to choose an arbi t rary scale. 

Note there are only 16 levels of gray to choose from, between pr int ing and 

the dynamic range of the color scale, some smal l ampli tude information w i l l be lost. 

The choice to plot the images this way was carefully made i n order to convey useful 

information that is not biased. It is a difficult topic to present results fairly, but 

every effort was made to remove this bias. 
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