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Abstract 

This work is concerned with the modification of an existing industrial paper machine cross-

directional (CD) control law near spatial domain boundaries (paper sheet edges), taking 

into account relevant control engineering criteria: closed-loop stability, performance, and 

robustness. 

Paper machine C D control systems belong to a set of large, multivariable, spatially-

distributed control systems, having 30-300 control inputs and 200-2000 process outputs. 

The objective of C D control is to reduce the variations of a particular paper sheet property 

(basis weight - weight per unit area, moisture content, or thickness) in the cross-direction 

(the direction perpendicular to the sheet travel direction) as much as possible. C D control 

systems can properly be described as two-dimensional systems, with one time dimension 

and one spatial dimension (cross-direction). The state-of-the-art industrial C D controllers 

of interest in this work are designed assuming spatially-invariant C D processes. Indeed, 

a lot of recently developed techniques for the design of spatially-distributed control laws 

make use of the spatial-invariance assumption. However, very many of the real-life systems 

(including paper machine C D processes) are not spatially-invariant. 

Paper machine edges represent a clear disruption of the assumed spatial-invariance. 

As a result, initially designed spatially-invariant control laws must be modified before 

implementation on the real (spatially-variant) paper machines. The current industrial 

techniques for modifying C D control laws near spatial domain boundaries are based on 

techniques for extending finite-width signals, borrowed from the field of signal processing. 

As these techniques do not take into account relevant control engineering criteria, they 

can lead to very poor control near the edges, and potentially even destabilize the overall 

C D control system. 

The main contributions of this work are the three novel approaches to modifying 

the existing industrial C D control law that directly take into account important control 

engineering criteria. In addition, the newly developed closed-loop approach has also been 

successfully tested on a paper machine in a working paper mill . 

A developed closed-loop stability transfer approach is a straightforward perturbation 

technique for the spatially-invariant C D controller, that is guaranteed to stabilize a closed-

loop system with the actual (spatially-variant) C D plant. 

Next, the similarities between effects observed near spatial domain boundaries of the 

industrial C D control systems and the well-known Gibbs effect are illustrated. Subse­

quently, based on the techniques for mitigating the Gibbs effect, the so-called open-loop 

approach to modifying the existing C D control law is developed and illustrated with a 

closed-loop simulation example. 
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Finally, in a closed-loop approach to modifying the existing industrial C D controller, 

the objective is restated in terms of a block-decentralized static output feedback design 

problem. Static modifications of the existing controller's two constant matrix components 

are then sequentially computed by the use of a novel low-bandwidth static output feed­

back controller design algorithm. The relevant control engineering criteria (closed-loop 

stability, performance, and robustness) are all systematically taken into account with this 

approach. Since the resulting closed-loop system robustness margins near the sheet edges 

are directly considered, the possibility of C D control instability originating from the edges 

and 'creeping' into the rest of the system is eliminated with the new approach. The new 

approach has a clear economic benefit for the papermakers, since with a stable, robust, 

and performance improving control law near the sheet edges, the quality of the paper sheet 

near the edges can be significantly improved, thus resulting in less paper being trimmed 

off and more on-spec paper being produced from which the papermaker can extract his 

orders. 

The newly developed closed-loop approach to modifying the existing industrial C D 

control law near spatial domain boundaries is tested and verified on a paper machine in a 

working paper mill. The obtained closed-loop control results are presented. 
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Table of Contents 

Abstract i i 

List of Tables v i i 

List of Figures v i i i 

Acknowledgments x i i 

Chapter 1 Introduction 1 

1.1 Industrial Paper Making - The Paper Machine 1 

1.2 Paper Machine Cross-Directional (CD) Control Systems 5 

1.2.1 Basis Weight Control 5 

1.2.2 Moisture Control 6 

1.2.3 Caliper Control 7 

1.3 C D Process Attributes 8 

1.3.1 Approaches to C D Control 10 

1.4 Spatially-Distributed Control Systems 12 

1.5 Industrial Paper Machine C D Control Systems 14 

1.5.1 Problems Near the Sheet Edges (Spatial Domain Bound­

aries) 16 

1.6 Aims and Contributions of the Work 18 

1.7 Thesis Overview 19 

Chapter 2 Problem Statement 21 

2.1 Explicit and Implicit Boundary Conditions 21 

2.2 Paper Machine C D Control System 25 

2.2.1 Industrial C D Controller Tuning Technique: 

Two-Dimensional Loop Shaping 28 

2.3 Objective of the Work 29 

Chapter 3 A Closed-Loop Stability Transfer Between Systems 32 

3.1 Control Systems with Known Plant Deviations 32 

3.2 Relationships Between Plant Models 33 

3.3 Augmentation of Feedback Controllers 35 

3.4 Application of Theorem 1 to C D Control 37 

3.5 Other Applications of Theorem 1 39 

3.5.1 Actuator and Sensor Failures 39 

iv 



3.5.2 Smith Predictor 41 

3.5.3 Recycle Compensator 42 

3.6 Summary . 43 

Chapter 4 Open-Loop Approach to C D Controller Modifications 45 

4.1 Gibbs Phenomenon and Spatial Filtering 45 

4.2 C D Control Modifications Near the Boundaries 47 

4.3 Simulation Example 49 

4.3.1 Edge Filter Design 49 

4.3.2 Closed-Loop Simulations 51 

4.4 Summary 56 

Chapter 5 Closed-Loop Approach to C D Controller Modifications 57 

5.1 Static Output Feedback (SOF) Controller Synthesis 58 

5.1.1 Synthesis Algorithm 62 

5.2 Computation of C D Controller Modifications 62 

5.2.1 Modifications Near One Sheet Edge ( C e and De) . . . . 63 

5.2.2 Computation of Ce and De 66 

5.3 Hardware-In-The-Loop Simulator Example 67 

5.3.1 Process and Controller Parameters 68 

5.3.2 Controller Modifications and Closed-Loop Simulations . 69 

5.4 Stabilization Procedure (Rarely Required) 76 

5.4.1 Example 77 

5.5 Summary 80 

Chapter 6 Industrial Trial 81 

6.1 C D Control Setup in the M i l l 81 

6.2 Trial Setup and Procedure 83 

6.3 Trial Results 87 

6.3.1 Process and Controller Parameters 87 

6.3.2 Computed Controller Modifications 6C and SD . . . . . 87 

6.3.3 Closed-Loop Control Results: Data Set 1 91 

6.3.4 Closed-Loop Control Results: Data Set 2 95 

6.4 Summary 99 

Chapter 7 Concluding Remarks 100 

7.1 Summary of the Thesis 100 

7.2 Future Work 102 

v 



Bibliography 104 

Appendices 111 

Appendix A Proof of Theorem 1 111 
A . l Process Additive Perturbation (Case a) I l l 

A.2 Process Inverse Additive Perturbation (Case b) 112 

A.3 Process Multiplicative Input Perturbation 

(Casec) 112 

A.4 Process Inverse Multiplicative Input Perturbation (Case d) . . . 113 

A.5 Process Multiplicative Output Perturbation 

(Casee) 113 

A.6 Process Multiplicative Output Perturbation 

(Casef) 114 

Appendix B Matrix Optimization 115 

Appendix C Proofs of Theorems 4—5 118 
C . l Supporting Relationships 118 

C.2 Proof of Theorem 4 119 

C. 3 Proof of Theorem 5 119 

Appendix D Closed-loop transfer functions used for defining LFTs 120 
D. l Closed-loop transfer functions that make up Pe(z) in Figure 5.2 . 120 

vi 



List o f Tables 

2.1 Matrix coefficients in (2.6) resulting from the representation of spatial filters 

(order lh = 1) with various boundary conditions 24 

2.2 Stability of the system in (2.5) with lh = 1, n = 20, and filter coefficients 

h0 = 0.8, hi = 0.1, in case of various boundary conditions in Table 2.1. . . 25 

3.1 Closed-loop transfer functions in Figure 3.1b for the various configurations 

of Gp and Kp in Theorem 1 37 

4.1 Boundary layer coefficients of the controller matrix D in case of reflective 

boundary conditions and d = [do, • • • , c^], d-j = dj for j = 1, 2, 3 52 

4.2 2-norms of the steady-state process output and control signal profiles shown 

in Figures 4.4 - 4.6 55 

5.1 2-norm of the process output and control signal steady-state profiles shown 

in Figures 5.8 - 5.11 75 

6.1 2-norms of the process output and control signal profiles shown in Figures 

6.6 - 6.9 (Data Set 1) 95 

6.2 2-norms of the process output and control signal profiles shown in Figures 

6.10-6.13 (Data Set 2). . .,. 98 

vii 



List of Figures 

1.1 Schematic view of the paper machine showing typical positions of the scan­

ners) and various C D actuator arrays, as well as illustrating machine and 

cross directions (Figure courtesy of Honeywell Process Solutions - North 

Vancouver) 2 

1.2 Illustration of trim squirts, used for trimming-off of narrow paper sheet strips, 

in the sheet-forming section 3 

1.3 Illustration of the scanning sensor's measuring path (Figure courtesy of J . Fan 

[20]) 4 
1.4 Slice lip basis weight control: measured (thin line) and modelled (thick line) 

steady-state bump response shapes (lower figure) in the case of deflection 
of 3 out of 36 slice lip actuators (upper figure). Data obtained during the 
industrial trial described in Chapter 6 6 

1.5 Illustration of the two-dimensional characteristics of the C D processes: C D 
process model basis weight response to a slice lip actuator 9 

1.6 Steady-state singular values of a typical C D process model 10 

1.7 Simplified diagram of an industrial C D control system 15 

1.8 Data flow in an industrial C D control system; HR: High-Resolution (Scanner 

spatial resolution) L R : Low-Resolution (Actuator spatial resolution). . . . 16 

1.9 Illustration of the problems ('actuator picketing' in the lower portion of the 
screenshot) that often occur when implementing current C D control tech­
niques near the sheet edges 17 

2.1 The template structure and explicit boundary layer 50, (denoted by o for i = 0 

and i = n + 1) of a spatiotemporal filter with lh = 1 in (2.1)-(2.3). (The 

row of o at k == -1 indicates the initial conditions of the causal filter and 

are not important for the case being considered.) 22 

2.2 The non-zero elements of the matrix Ha in (2.7) (a); matrix Hc in (2.8) (b); 

and the difference AH — Hc - Hd (c). 24 

2.3 The industrial C D control system 26 

2.4 The industrial C D controller structure. (Compare with Linear time-invariant 

CD controller in Figure 1.8) 27 

2.5 Idealized cross-directional control system with periodic boundary conditions. . 28 

2.6 C D control system with control law modifications, 5C and 5D, near spatial 

domain boundaries 30 

2.7 Problem reformulated in terms of linear fractional transformation (LFT) . . . . 30 

vii i 



3.1 (a) Original and (b) modified closed-loop control systems 33 

3.2 Block diagrams for various Gp in terms of Go and A G - (a) Additive per­

turbation, (b) Inverse additive perturbation, (c) Multiplicative input per­

turbation, (d) Inverse multiplicative input perturbation, (e) Multiplicative 

output perturbation, (f) Inverse multiplicative output perturbation (com­

pare Figure 8.5 in [58]) 34 

3.3 Block diagrams indicating the various configurations oi Gp and Kp described 

in Theorem 1 . 36 

3.4 Position of the non-zero elements of: (a) the Toeplitz matrix Go = Gd(z); (b) 

the circulant symmetric matrix Gp = Gc(z); and (c) the difference between 

the two: A G = -AG{z) = Gd(z) - Gc{z) 38 

3.5 Paper machine cross-directional control system, initially computed with the 

two-dimensional loop shaping technique resulting in a spatially-invariant 

process and controller models G c (z ) , G c , Dc, stabilized by the use of Theo­

rem 1 39 

3.6 Location of the non-zero elements of (a) the nominal plant model Go, (b) 

the additive perturbation due to failure of the 7th sensor, and (c) the 

corresponding transfer matrix model Gp 40 

3.7 Smith-predictor design for plants with pure time delay (compare with Figure 

3.3a) 42 

3.8 Recycle compensator for plants with recycle dynamics (compare with Figure 

3.3b) 43 

4.1 Traditional illustration of Gibbs effect in Fourier analysis (a) and its reduction 

achieved by using Lanczos filter (b) 46 

4.2 Desired (full line) and achieved (dotted line) frequency responses 50 

4.3 Process output disturbance (at zero temporal frequency LU = 0) 53 

4.4 Steady state process output and actuator array in case of the reflective bound­

ary conditions in Table 4.1 • 54 

4.5 Steady state process output and actuator array when the controller with matrix 

Df, given with (4.2) and (4.7), is used 54 

4.6 Steady state process output and actuator array when the approach presented 

in Chapter 3 (controller with the structure illustrated in Figure 3.5) is used. 55 

5.1 Diagram of the lower linear fractional transformation J-~i(N, K) 58 

5.2 Isolating system inputs/outputs near one edge 64 

5.3 Transforming a sub-block into a full-block design problem. 65 

ix 



5.4 Illustration of the rapid decrease of the Hankel singular values of the closed-

loop transfer functions that define a generalized plant Pe(z) in Figure 5.2: 

Hankel singular values of Pi : de —> ye for the C D control system presented 

in Section 5.3 66 

5.5 Linear fractional transformations for computing (a) Ce and (b) De modifications. 66 

5.6 Schematic of the simulator trial setup 67 

5.7 Process output disturbance d (at zero temporal frequency u = 0) 69 

5.8 Steady-state process output (a) and control signal (b), using the current in­

dustrial technique - reflection padding 73 

5.9 Steady-state process output (a) and control signal (b), using the new technique 

- conservative tuning (kp = 300 and kp = 0.2 in (5.24)) 74 

5.10 Steady-state process output (a) and control signal (b), using the new technique 

- balanced tuning (kP = 1600 and kR = 0.2 in (5.24)) 74 

5.11 Steady-state process output (a) and control signal (b), using the new technique 

- aggressive tuning (kp = 2400 and kit = 0.5 in (5.24)) 75 

5.12 A gradual elimination of the process and controller circulant symmetric matri­

ces' 'ears' with the parameter A £ [0,1] 77 

5.13 Actuator array shape (upper figure) and the corresponding process steady-state 

response (lower figure) for the process model given with (5.37) 78 

6.1 Stevo Mijanovic near machine on which the industrial trial was carried out. In 

the background: machine's forming section (left photo), and the press and 

dryer sections (right photo) 82 

6.2 A simplified schematic of the mill's C D control setup 83 

6.3 A simplified schematic of the industrial trial setup 84 

6.4 The dataflow diagram between the Matlab prototype software and the indus­

trial software packages 85 

6.5 Model identification: The upper plot illustrates the shape of the actuator array 

used for process excitation. The middle plot shows the measured process 

output profile. The bottom plot illustrates the identified model, as given 

by the parameters bj, j = 0,1, 2 , 8 in (6.1) 88 

6.6 Data set 1 process output (a) and control signal (b), using the current industrial 

technique - average padding 93 

6.7 Data Set 1 process output (a) and control signal (b), using the new technique 

- conservative tuning (kP = 180 and kp = 0.2 in (6.3)) 93 

6.8 Data Set 1 process output (a) and control signal (b), using the new technique 

- balanced tuning (kP = 480 and kR = 0.2 in (6.3)) 94 

x 



6.9 Data Set 1 process output (a) and control signal (b), using the new technique 

- aggressive tuning (kp = 720 and kp = 0.4 in (6.3)) 94 

6.10 Data Set 2 process output (a) and control signal (b), using the current indus­

trial technique - average padding 96 

6.11 Data Set 2 process output (a) and control signal (b), using the new technique 

- conservative tuning (kp = 180 and ka = 0.2 in (6.3)) 97 

6.12 Data Set 2 process output (a) and control signal (b), using the new technique 

- balanced tuning (kp = 480 and kp, = 0.2 in (6.3)) 97 

6.13 Data Set 2 process output (a) and control signal (b), using the new technique 

- aggressive tuning (kp = 720 and kp = 0.4 in (6.3)) 98 

A . l Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (a) I l l 

A.2 Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (b) 112 

A.3 Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (c) 112 

A.4 Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (d) 113 

A.5 Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (e) 114 

A.6 Diagram used to analyze internal stability for the configuration given in The­

orem 1 - case (f) 114 

xi 



Acknowledgments 

This project has been carried out as a collaboration between the University of British 

Columbia and the industrial partner Honeywell Process Solutions - North Vancouver. I 

would like to thank my research supervisors Dr. Greg Stewart from Honeywell Process 

Solutions, and Profs. Guy Dumont and Michael Davies from the University of British 

Columbia (UBC) for their advice and guidance throughout the course of my graduate 

studies. Prof. Michael Davies admitted me into U B C graduate school and Prof. Guy 

Dumont encouraged me to do a PhD thesis.. Over the past few years, I have greatly 

benefited from the regular (weekly) meetings with my industrial supervisor Dr. Greg 

Stewart. Valuable discussions during these meetings have left an indelible impact on this 

work. 

This project would not have been possible without the technical and financial assistance 

of the industrial partner Honeywell Process Solutions - North Vancouver. I consider this 

industrial collaboration a particularly useful experience for myself. Numerous people from 

Honeywell have in or the other way contributed to this project. In particular, I would like 

to acknowledge the help of the following people: Cristian Gheorghe, Joyce Choi, Bijan 

Nazem, Paul Baker, Stephen Chu, Chuck Chung, Roger Chen, Amor Lahouaoula, Max 

Kean, Pengling He, Dan Stevens, Scott Morgan, Johan Backstrom, Rhonda Kieper, and 

Bob Vyse. 

The financial support of my research work, over the past few years, by the Natural 

Sciences and Engineering Research Council of Canada (NSERC) and the Science Council 

of British Columbia is also gratefully acknowledged. 

During my graduate studies at U B C , I have benefited from the technical discus­

sions/talks with a large number of people. Particularly useful have been the discussions 

with the past and present members of the U B C Pulp and Paper Centre: Junqiang Fan, 

Shiro Ogawa, Michael Chong Ping, Kayvan Najarian, Leonardo Kammer, Zoran Nesic, 

Mihai Huzmezan, Ahmed Ismail, Manpreet Sidhu, Stephan Bibian, Tatjana Zikov, Setareh 

Aslani, and David Yang. Also I would like to gratefully acknowledge the help of the Pulp 

and Paper Centre staff (past and present), in particular: Brenda Dutka, Brian MacMillan, 

Lisa Brandly, and Ken Wong. 

I would have never reached graduate school if there had not been a steady and con­

tinuous support of my parents, Savo and Slavojka Mijanovic, during my earlier education 

years. I owe a great deal to their love and support. In addition, the encouragement of my 

father and other immediate family from my native land, over the course of the last few 

years, has made my graduate school years much easier. 

Finally, I would like to specially acknowledge the help and support of my wife Mi la 

xi i 



Mijanovic. Her love and patience have tremendously helped me during my graduate 
studies over the last five years, as well as with all my endeavours since 1996. She provides 
a constant inspiration and feedback in my life, and helps me lead a good life. (The good 

life is one inspired by love and guided by knowledge - Bertrand Russell.) 

xiii 



Dedicated to the 

everlasting memory 

of my mother 



Chapter 1 

Introduction 

1.1 Industrial Paper Making - The Paper Machine 

Although the ancient Egyptians produced the world's first writing material, real paper 
making began in China about 1900 years ago. In the following centuries, it spread to 
Europe and North America through the Middle East. Paper continued to be made by 
hand until the beginning of the 19th century when the first paper machine was built 
in England. In the past two centuries, paper machines have been developed, making 
it possible to increase production, and to establish rigorous standards of quality. Today, 
paper making is a multi-billion dollar industry employing hundreds of thousands of people 
worldwide. 

The fibrous raw material for paper making is called pulp. Pulp fibers are usually of 
vegetable origin, but other types (mineral, animal, or synthetic fibres) have been used in 
some special applications as well [61]. The task of the paper machine is to transform a 
slurry of water and pulp fibres into a sheet of paper conforming to the required standards 
of quality. A typical fourdrinier-type paper machine is illustrated in Figure 1.1. After 
numerous stages of pulp pre-processing (not shown in Figure 1.1), a very dilute mixture of 
water and pulp fibres (approximately 99.5% water and 0.5% fibres) enters the headbox at 
the left of the figure. The dry paper is wound up on the reel (100-200 metres downstream 
from the headbox) at the right of the figure by which stage the composition has become 
about 95% fibre and 5% moisture. Today's paper machines are typically between 3-10m 
wide. The following is a very brief description of the modern paper making process; 
detailed descriptions can be found in [25, 61]. 

The overall machine is divided into four sections (Figure 1.1) [61]: 

• Sheet- forming section in the Wet end of the paper machine. The mixture of 
water and pulp fibres (with only ~0.5% fibres concentration) is delivered onto the 
moving forming fabric (in today's modern machines, almost exclusively, made of 
plastic web materials). The forming fabric is moving at speeds that could possibly 
be in excess of 100km/h, in the so-called machine direction (MD). By the use of 
various drainage elements (forming board, hydrofoil assemblies, table rolls, vacuum 
boxes, etc.), a significant amount of water is removed, resulting in formation of a 
paper sheet with ~20% fibres concentration leaving the machine's Wet end. 

1 
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W E T END 

slice lip 

dilution 
actuators 

Machine Direction 
(MD) 

infrared 
steam boxes heaters 

r e W e t Cross Direction 
showers (CD) 

Sheet-forming 
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J L 

Press 
section 

— r ~ 
Dryer 

section 

DRY END 

scanning 
sensor 

induction 
heating 

J L 

Post-drying 
operations section 

Figure 1.1: Schematic view of the paper machine showing typical positions of the scan­
ner^) and various C D actuator arrays, as well as illustrating machine and cross directions 
(Figure courtesy of Honeywell Process Solutions - North Vancouver). 

• Press section of the paper machine. In this section, the sheet is heated by steam 

boxes, before being pressed and further dewatered by the counter-rotating rolls, 

resulting in a sheet with approximately 40% fiber concentration just before the 

Dryer section. 

• In the D r y e r section, the sheet's water content is further reduced through evapo­
ration, by the use of a series of large-diameter, rotating, steam filled cans. The sheet 
leaving the Dryer section contains only 5-9% water content by weight (91-95% fiber 
concentration). 

• P o s t - d r y i n g operat ions section is the final section of the paper machine, where 

the paper sheet thickness (caliper) and surface properties (e.g. gloss) are being 

controlled. At the end of the paper machine, which is, as pointed out earlier, located 

100-200m away from the headbox, the sheet is finally wound up onto the reel. 

The direction of sheet travel is known in the paper making industry as the machine-

direction (MD). The direction perpendicular to machine-direction is called cross-direction 

(CD). The machine and cross directions are illustrated in Figure 1.1. 

It is also important to note that paper machines usually have high-pressure water jets, 
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located very near the end of the Sheet-forming section (in the machine-direction) and not 
far from the machine edges (in the cross-direction). These jets are called 'trim squirts' 
as they trim off narrow strips of the paper sheet, on both sides of the machine, before it 
enters Press section [61], as illustrated in Figure 1.2. 

WET END 
CD 

< 

Trim 

DRY END 

Figure 1.2: Illustration of trim squirts, used for trimming-off of narrow paper sheet strips, 
in the sheet-forming section. 

The most important paper sheet properties are: (1) the sheet weight per unit area 
(usually given in terms of grams per square meter - gsm), (2) the sheet moisture content 
(given in terms of a percentage of the sheet weight - %), and (3) the thickness (caliper) 
of the finished sheet (given in pm). These properties are measured by a scanning sensor, 
located near the end of the machine (in the Dry end), that traverses the moving sheet 
back and forth in the cross-direction (CD), measuring these properties at 200-2000 points 
(see Figure 1.3). The quality of the paper sheet is defined in terms of weight, moisture 
content, and caliper variations [1]. The smaller the variations are about the target values, 
the better the paper sheet. 

The scan time (the time required for the scanner to traverse the sheet once in cross-
direction) depends on the width of the sheet and the scanner's speed, and is usually 
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between 15 — ASseconds. If a roll of paper consists of m scans and the sheet properties 
are measured at n locations across the sheet, the sheet measurements are given by y(i,j), 
where i = 1,2,n and j = 1, 2 , m , and the average value is: 

= E E y(hj) 

= 1 j=l m • n 
(1.1) 

An important sheet quality factor is the variance of the measured property, known as 'two 
sigma' within the industry, defined by [1], 

2a 

\ E E 
i=i j=i 

(y(i,j) - y)2 

m • n — 1 ' (1.2) 

where y is given by (1.1). 
Since the scanning sensor traverses the moving sheet, it traces a diagonal path along the 

sheet (as illustrated in Figure 1.3), resulting in the measurement sheet profiles containing 
both MD and CD sheet variations. As a result of process design and the nature of the 
actuators, the industrial approach to paper machine control is to consider the MD and 
CD control problems separately. 

M D sheet travel direction 

C D 

Paper sheet 

Scanner head Measuring path 

Figure 1.3: Illustration of the scanning sensor's measuring path (Figure courtesy of J. Fan 
[20]). 

Machine-direction (MD) control deals with controlling the average value of each mea­
surement scan, and the resulting MD control loops are relatively simple Single-Input-
Single-Output (SISO) loops. Paper machine MD basis weight control isvusually realized 
by controlling the concentration of pulp fibres being delivered to the machine headbox. 
MD moisture control, on the other hand, is typically achieved by controlling the overall 
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steam flow into the machine's dryer section. Machine-direction (MD) control is outside 

the scope of this work, and no M D actuators are illustrated in Figure 1.1. 

1.2 Paper Machine Cross-Directional (CD) Control 
Systems 

Cross-direction (CD) control is concerned with controlling dynamically varying, but'zero-

mean measurement profiles, and is performed by an array of actuators distributed across 

the machine (in cross-direction). In most cases, paper machines have at least one actuator 

array for controlling each of the important sheet properties (weight, moisture, and caliper). 

Except for some of the most recent approaches to C D control [6, 7, 20], different sheet 

properties are controlled by separate and independent control systems. The most common 

ways of realizing industrial paper machine C D control are detailed in Sections 1.2.1-1.2.3 

below. 

1.2.1 Basis Weight Control 

Basis weight (weight per unit area), expressed in grams per square meter (gsm) or pounds 

per ream (lbs/ream)1, is a fundamental property of the paper sheet, and its variations 

cause variations in most other sheet properties [12]. The desired target values for basis 

weight vary from about 35gsm for a light weight 'telephone directory grade' paper sheet, 

45gsm - newsprint, 300gsm - book cover, to 450gsm for a cardboard sheet [65]. 

The role of C D basis weight actuators is to distribute pulp fibers evenly across the 

machine width (in the cross-direction) so that variability of the basis weight C D profile 

is minimized. Weight actuators are located at the headbox (at the far left in Figure 1.1), 

furthest upstream from the scanning sensor. As a-result, a.significant delay (dead time) 

is a dominant characteristic of industrial C D weight control systems. 

Two main types of actuators are used for controlling C D weight profiles: slice lip 

actuators and dilution actuators. The traditional way of achieving C D weight control is 

by the use of slice lip actuators. A mixture of water and pulp fibres exits the headbox 

through a gap (slice), which is between l -6cm tall depending on the type of paper being 

produced, and as wide as the paper machine. The slice has an adjustable top lip and a 

fixed apron or bottom lip. The upper lip, in addition to being adjustable up or down as a 

unit, can also be locally bent (moved up or down) by the use of C D actuators. The larger 

the actuator opening, the more fibres are delivered, thus resulting in a heavier sheet in the 

localized area around that actuator. As an illustration, a possible steady-state response 

11 [ream] = 3000 [square feet] = > 1 [lbs/ream] = 1.6289 [gr/m2] 
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of the basis weight profile to slice lip actuators is shown in Figure 1.4. The actuator 

15 20 25 

•ACTUATOR NUMBER 

50 100 150 

CD LOCATION [measurement point] 

Figure 1.4: Slice lip basis weight control: measured (thin line) and modelled (thick line) 
steady-state bump response shapes (lower figure) in the case of deflection of 3 out of 36 
slice lip actuators (upper figure). Data obtained during the industrial trial described in 
Chapter 6. 

spacing (xa) and a total number of actuators (n) can vary significantly, depending on 

the installation, and can be anywhere between xa =70-200mm and n =30-118 or more 

actuators [65]. 

A more recent approach to C D basis weight control is by the use of dilution actuators 

[74], located across the back of the paper machine headbox (see Figure 1.1). These actu­

ators locally alter the concentration of pulp fibres in the headbox by injecting a stream of 

low consistency white water. Obviously, an increase in the low consistency stream locally 

reduces the concentration of fibres, thus resulting in a local decrease of basis weight. The 

most important advantage of dilution actuators, in comparison to slice lip actuators, is 

a significantly smaller actuator spacing (xa = 35mm) and a narrower spatial response, 

which translates into better C D controllability characteristics. 

1.2.2 Moisture Control 
The three main types of C D moisture actuators are: steam boxes, rewet showers, and 

infrared heaters [12]. Steam box arrays, in two possible locations, and one array of rewet 
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showers as well as an array of infrared heaters, are illustrated in Figure 1.1. 
Steam showers improve water removal (through the principle of hot pressing) by locally 

increasing the sheet temperature [12, 61]. In the hot pressing procedure, steam is applied 
to the sheet structure, where it condenses, giving up its heat, and thus resulting in an 
increase of the sheet temperature. The higher sheet temperature increases water fluidity, 
thus making the water removal by the presses easier and more efficient. An important 
economic benefit resulting from the use of steam showers before or in the press section (see 
Figure 1.1), is a subsequent dryer load reduction. It has been found that improved water 
removal before the dryer section leads to overall net energy (steam) savings [12]. The 
location of steam shower actuators mainly depends on the type of paper being produced. 
In case of heavier grade papers, steam showers located on the fourdrinier forming table 
tend to work better, while steam showers located in the press section give better results 
in the case of light grade papers [12]. The number of steam box actuators can be as high 
as n — 171, and the actuator spacing is usually between xa =75-150mm. Steam boxes 
are generally slow actuators with a time constant of approximately 200-250sec [62]. 

In the case of the appearance of (over)dry streaks in the paper sheet, these are re-
moisturized by the use of rewet showers (water sprays). Rewet shower actuators apply 
an atomized water spray directly to the sheet, thus increasing the moisture content in 
the localized area. The spacing between these actuators is usually in the range xa =70-
150mm, and the number can be as high as n = 120 in some wider machine applications. 
In contrast to steam boxes, rewet showers are very fast actuators with the time constant 
comparable to scan time (Ts = 15 — 45sec) and the dynamics is mainly dominated by the 
transport delay (dead time) [62]. 

1.2.3 Caliper Control 

In the final section of the paper machine (Dry end), the paper sheet is fed to a vertical 
stack of rotating rollers, known as a calender stack. The rollers exert pressure onto the 
sheet with the objective of smoothing and evening the sheet thickness (caliper). Cross-
directional caliper variations are modified by the use of CD caliper actuators which locally 
change the pressure exerted onto the paper sheet. 

While early CD caliper control was done mainly by the use of hot and cold air showers, 
modern CD caliper control systems almost exclusively use induction heaters. High fre­
quency electric current induces eddy currents in a calender roll made of ferrous materials. 
Such induced eddy currents cause a local heat build up, resulting in a temperature in­
crease which also causes the roll diameter to increase. This, in turn increases the pressure 
locally exerted onto the sheet causing the caliper (thickness) to be reduced. A decrease 
of the roll's diameter, achieved through temperature reduction, has clearly the opposite 
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effect, i.e. the sheet's caliper will increase. The number of induction heaters, on a typical 

paper machine can be as high as n = 150, and the usual actuator spacing is xa — 75mm 

[62]. 

Of all the actuators considered in this chapter, induction heaters are by far the slowest. 

The response time generally varies from very slow to almost an integrating processes. 

Considering the location of inductions heaters (in the Dry end, near the scanning sensor), 

the delay of these systems, in contrast to weight and moisture control systems, is usually 

quite negligible. It is interesting to note, from a historical point of view, that the first 

computer controlled paper machine C D control systems were actually C D caliper control 

systems, bought and installed in 1973 (see graphs in Figure 612 in [12]). 

1 . 3 C D P r o c e s s A t t r i b u t e s 
As demonstrated in Sections 1.1-1.2, paper machine C D processes are large, multivariable, 

spatially-distributed processes with 30-300 inputs (actuators) and 200-2000 outputs (mea­

surement points). In the C D control literature, C D processes are most often considered 

to have separable dynamic and spatial responses [18, 20, 23, 45, 62, 65], 

y(z) = G(z).u(z), G(z)=g(z)-G0 (1.3) 

where y(z) € Cm, u(z) 6 Cn are the Z-transforms of the output (measurement) profile 

and the input (actuator) profile respectively (200 < m < 2000 and 30 < n < 300), g(z) is 

a -Z-transform of the process time response, and Go € 7Zmxn is a constant, process spatial 

response matrix. 

The temporal response g(z) is usually modelled as a stable, first-order-plus-deadtime 

(FOPDT) scalar transfer function, 

9(*) = - i (1-4) 
1 — CIQZ 1 

where d is the process delay in samples and ao is a process pole (determined by the 

process time constant and control system's sampling time). Depending on the property 

being controlled and the type of actuators being used, process time constant and delay can 

vary significantly. As pointed out in Section 1.2, some actuators have a very fast, almost 

instantaneous, response (e.g. rewet showers modifying moisture profiles), while some 

others are extremely slow, almost integrating processes (e.g. induction heaters affect on 

caliper profiles). On the other hand, the process delay (dead time) d is mainly determined 

by the distance between the actuators and a scanning sensor and machine speed. As a 

result, it can vary from less than one scan (caliper control by the use of induction heating 
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actuators) to up to 9 scans (basis weight control by the means of slice lip or dilution 

actuators). In terms of their spatial responses, modelled by the matrix Go in (1.3), C D 

processes can also vary significantly. Spatial response to a single actuator can be as narrow 

as a few centimetres (basis weight control by the use of dilution actuators) or as wide as 

a few metres (slice lip basis weight control on a heavy grade paper) [62]. 

As an illustration of the spatiotemporal nature of C D processes, a typical C D process 

model response, in the case of a spatial impulse and temporal step input signal (i.e. one 

actuator 'bumped' to a predetermined value and kept at that value), is illustrated in 

Figure 1.5. It is a model of basis weight response to a slice lip actuator. 

CD [SPACE] CD [SPACE] 

Figure 1.5: Illustration of the two-dimensional characteristics of the C D processes: C D 
process model basis weight response to a slice lip actuator. 

Another very important characteristic of C D process models is their inherent severe 

ill-conditioning [23, 33, 45, 62]. In other words, the singular values of the matrix Go in 

(1.3) vary significantly. The ratio between the largest and the smallest singular value 

(condition number 7): 

l(Go) = ^ » 1 , (1-5) 
QL(C0) 

and can reach into thousands. As an example, the singular values of a basis weight 

control process model with 36 slice lip actuators, at steady-state (cu = 0), are given in 

Figure 1.6. The maximum singular value, for this particular model, is 1.674 • 10~ 2, and 

the minimum 5.101 • 10~6, resulting in a condition number y{G(z)z=i) = 3281.71. As a 

result of the process model separability (1.3)—(1.4), ill-conditioning is present across all 

dynamic frequencies since the condition number remains unchanged (and very large) with 

frequency u: j(G(eju>)) = 7 (G 0 ) , 0 < u < n. 

Significant process model uncertainty is another important attribute of industrial C D 

control systems. C D process models are usually identified from noisy input/output data, 

and there are numerous sources of model uncertainty. Uncertainty can arise, for example, 
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Figure 1.6: Steady-state singular values of a typical CD process model. 

from (1) wandering of the paper web, (2) paper shrinkage characteristics, (3) flow pat­
tern of extruded liquid paper stock in the initial stage of the paper making process (on 
the forming wire) [32]. Al l of these factors generally change with time, depend on the 
paper grade being made, machine speed, etc. As a result, it has become recognized, that 
industrial CD control systems must deal systematically with the inherent process model 
uncertainty [9, 10, 18, 19, 45, 62, 65, 73]. 

To summarize, some of the most important characteristics of the CD control systems 
are: large-scale (30-300 inputs and 200-2000 outputs), ill-conditioning (condition number 
potentially in the order of thousands across all dynamical frequencies), and a significant 
process model uncertainty. Some of the approaches developed for addressing these char­
acteristics are outlined in Section 1.3.1 below. 

1.3.1 Approaches to CD Control 

Major advances in the cross-directional control of web forming processes were achieved 
in [18]. Therein, controllability of the cross-directional processes, in terms of the spatial 
Fourier components of the process output y(t), was analyzed, and it was shown that, for 
control purposes, it is enough to identify only those spatial frequency components of the 
CD profile that are controllable. After this, the parametrization of CD process received a 
lot of attention [20, 21, 22, 38, 42, 45, 62]. Parametrization describes the compact repre­
sentation of the system input, output, and the resulting interaction matrix with a certain 
set of basis functions. The Fourier transform [18, 20, 62], Gram polynomials [38, 42], 
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and singular value decomposition (SVD) [18] represent different ways of parameterizing 
the CD control system. The main objective of parametrization is to identify compactly 
those components that can be controlled. System parametrization leads to problem size 
reduction, which in turn leads to a substantial computational load reduction [21, 22, 42]. 

In [18] for the first time, the robustness of CD control systems was thoroughly an­
alyzed. In that thesis, the author gave some very important insight about the robust 
stability of CD control systems for web forming processes with the controller C(z) = 
c(z)[GlG0\-1Gl = c(z)C, where G0 € K m x n is the plant model from (1.3), the scalar 
transfer function c(z) contains dynamical response of the controller, and the constant ma­
trix C G !f t n x m contains the spatial response of the controller. Results were compared 
using analysis in an artificial case of infinite width web with infinite actuator array. In 
both cases robustness was analyzed in cases of additive uncertainty in the process plant. 
In the analysis of the actual control system with controller C(z) — c(z)C, robustness 
in case of the process spatial response (C70) additive uncertainty A , with limited maxi­
mum singular value (<r(A) < Q), was investigated. The analysis considered closed-loop 
singular values, in which case the analysis of the MIMO system with a given stabilizing 
controller can be carried out as the analysis of a set of n (n - is the number of actuators) 
SISO loops. It was found that robust stability can be guaranteed through detuning either 
the dynamic response or the spatial response of the controller. However, these methods 
have the drawback that all controllable modes will be detuned and not only the poorly 
controllable ones. 

Further advances in the analysis and design of robust controllers were made in [19, 45]. 
In [45], the paper machine CD control problem was analyzed from the robust performance 
point of view. The analysis was done for the case of a square interaction matrix. A 
continuous time model was used, separability of dynamic and spatial responses assumed, 
and model uncertainty Gn was expressed in terms of ranges on the elements of interaction 
matrix G and the parameters of the common dynamic part g(s). Two design techniques 
were presented, one with decentralized controller structure with C(s) = c(s)S, where S 
is a diagonal matrix and the other with model-inverse-based controller C(s) = c(s)G~1. 
The former technique can be applied only in the case of a positive definite spatial response 
process interaction matrix G. If G is not positive definite then the model-inverse-based 
controller has to be used. In case of decentralized controller design, circulant symmetric 
matrix theory was used to obtain bounds on the plant within which robust performance 
is guaranteed. Closed-loop robustness was achieved through detuning of the controller 
dynamics c(s). This would usually lead to a conservative control design since all the 
controllable modes are detuned. Main drawback of these techniques is that neither the 
decentralized nor model-inverse control is suitable for ill-conditioned plants. 
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In [19], a robust design procedure was developed for separable controllers, given with 
C(s) = c(s)C. Singular value decomposition of the system was performed and the set 
of n SISO systems was analyzed. Analysis was done both for the case of simultaneous 
uncertainties in the spatial response part of the interaction matrix (limited maximum 
singular value uncertainty) and for the dynamical part (parameter uncertainty). Detuning 
of the controller in order to achieve robustness can be done either by detuning its dynamics 
c(s) or by detuning the pre-compensator matrix C = [GTG + Q,I\~lGT. In both cases 
there is a degradation of the performance of well-controllable modes of the system but 
this occurs to a lesser extent in the case of detuning the pre-compensator matrix C. The 
problems can also arise if, due to uncertainty, the sign of the process gain at high spatial 
frequencies changes. In that case, the closed-loop system might be destabilized. 

In [9] a larger class of uncertainty structures was allowed which included: additive, mul­
tiplicative input, multiplicative output, inverse multiplicative input and inverse multiplica­
tive output uncertainties. The analysis in case of controller structure C(s) = VT,(s)cUT, 
with process matrix G(s) = g(s)UY,VT = UT,(s)VT where £(s) is a matrix with pseudo 
singular values <Tj(s) was performed. A modification of the DK-iteration (p synthesis) 
algorithm was presented where K-step of the design procedure was reduced to the design 
of n independent robust SISO controllers, where n is the number of actuators. The major 
advancement of this approach is its ability to handle a larger set of model uncertainties, 
but the controller design technique remains fairly complex. However, further refinements 
of this approach were presented in [73]. 

Robustness of CD control systems with respect to different basis functions used for 
system representation was analyzed in [10]. The comparison was made between mini­
mum variance controllers designed using representation based on orthogonal polynomials, 
Fourier methods, singular value decomposition, splines and wavelets. The comparison was 
performed by analyzing the condition number (ratio of maximum and minimum singular 
value) of the system models obtained using different methods. It was found that in all 
of these cases robustness is practically the same except in the case of representation with 
splines. For spline representation, the system was found to be significantly less robust 
with respect to uncertainties in actuator response shape. Therefore, the choice of system 
representation (except in case of representation with splines) can be left to considerations 
other than robustness. 

1 . 4 S p a t i a l l y - D i s t r i b u t e d C o n t r o l S y s t e m s 
As illustrated in previous sections, paper machine CD control systems clearly belong to 
a broader class of spatially-distributed control systems that, in turn, form an important 
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subset of large, multivariable, coupled industrial control systems. In addition to flat 
sheet forming industries (including paper, steel, and plastics making processes), spatially-
distributed control systems arise in various other applications. For example: flow control, 
control of vehicular platoons, microelectromechanical systems (MEMS), space telescopes, 
systems described by partial differential equations with constant coefficients and spatially-
distributed actuation and measurements, all belong to a set of spatially-distributed control 
systems. As a result of an increasing interest of the control engineering community in these 
systems, there have been many new tools developed recently for the analysis and controller 
synthesis of spatially distributed control systems [8, 15, 31, 34, 35, 46, 62, 66], some of 
which are discussed below. 

First, it should be noted that an important assumption, usually necessary for the 
application of the above mentioned techniques, is spatial invariance. Spatial invariance 

means that process dynamics are (assumed) invariant with respect to translation in some 
spatial coordinates(s). As a result of this assumption, the subsequent controller synthesis 
procedure can be significantly simplified [8]. The systems analyzed in [8] are infinite-
dimensional. The analysis and controller synthesis for such systems (see for example 
[11]), in general, is significantly more complex than for finite-dimensional systems. How­
ever, with the spatial invariance assumption, it was shown [8] that quadratically optimal 
controllers can be synthesized by solving a parameterized (over spatial frequency) family 
of finite-dimensional problems. It was also shown in [8] that controllers computed via 
quadratic optimal techniques, including LQR, Ti.2, and TLoo optimization, preserve the 
spatially invariant characteristics of the process. In addition, it was demonstrated that 
such optimal controllers have a degree of localization similar to that of the plant, justifying 
implementation of localized controllers in the case of localized processes (plants). 

Distributed control of spatially-invariant systems, by the use of linear matrix inequal­
ities (LMIs), was investigated in [13, 15]. Therein, a state-space approach is used on 
continuous-time and spatially-discrete systems with spatial coordinates Si E Di, where D, 
is a set of integers Z or some finite set {1, 2 , N i } . As a performance criterion, the I2-
induced norm is used, with the space I2 being a set of functions mapping D\ x • • • x DL to 
R*, where L is a number of spatial coordinates and M* is a set of real valued finite vectors. 
Applications of the proposed approach, based on LMIs, were presented in [14, 24]. It was 
demonstrated in [24], that a distributed control approach yields far superior results in 
comparison to the decentralized control techniques, and results comparable to centralized 
control techniques at a fraction of required computational time. 

However, very often, practical control systems (including CD control systems) are not 
spatially-invariant, and the above techniques can not be implemented without further 
modifications. Even more, because of the idealized boundary conditions (spatial invari-
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ance) assumed in the design process, there is no guarantee of performance (not even stabil­
ity) around the boundaries. In other words, there exist destabilizing boundary conditions. 
A class of bounded, spatially distributed systems with associated boundary conditions, for 
which stability and performance are guaranteed after implementing a controller designed 
under process spatial invariance assumption is presented in [44]. 

The importance of boundary conditions is also very well known in the theory of partial 
differential equations (PDE) [68]. The class of PDEs in which boundary conditions are 
specifically taken into account are the so called boundary value problems (BVP). In PDE 
theory, there are three types of boundary conditions that are most often implemented: 
Dirichlet, Neumann, and Robin boundary conditions. In the case of Dirichlet boundary 
conditions (BC), the finite-width signals are extended with a constant (predefined) value. 
In the case of Neumann BC, the signal extension is defined such that its first derivative 
(with respect to the spatial coordinate in question) remains constant, and in the case of 
Robin boundary conditions such that a linear combination of the signal extension and its 
first derivative has a predefined value. 

In addition to the theory of PDEs, the importance of boundaries has also long been 
recognized in the field of signal processing, where the boundaries of a signal typically 
require modification to the filtering. Temporal (causal) filters require initial conditions to 
be specified, and noncausal filters (e.g. image processing) may require both initial and 
final conditions to be specified [16]. 

As illustrated in Section 1.3 above, paper machine CD processes belong to an important 
class of filters that are causal in one direction (time), but noncausal in space. It is 
illustrated in Section 2.2 below, that industrial CD controllers, of particular interest in 
this work, belong to the same class of spatio-temporal filters. These filters (systems) carry 
the additional risk of instability due to incorrect design of boundary conditions. These 
boundaries may be interpreted as points of discontinuity in the signal. The effect of the 
boundaries on the filtered signal is clearly influenced by the way the filtering is modified 
to handle these. 

1 . 5 I n d u s t r i a l P a p e r M a c h i n e C D C o n t r o l S y s t e m s 
This work is concerned with modifying a particular realization of the industrial paper 
machine CD control law - a Honeywell CD controller - around spatial domain bound­
aries. The controller structure, tuning technique, and implementation are presented in 
[62, 64, 65, 66]. Industrial CD control systems with the specific controller structure un­
der consideration in this work are currently installed on more than 4200 paper machines 
worldwide. 
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A simplified diagram of the industrial CD control system relevant to this work is illus­
trated in Figure 1.7. Industrial CD controller software resides on a PC that is connected 
by network to the paper machine's actuator array and scanning sensor (the scanner is 
sometimes connected to the PC via serial connection). Based on the measurements y(t) 
obtained from the scanning system and the desired target value r(i), the controller al­
gorithm generates a control signal u(t), that is subsequently sent to the actuator array. 

INPUT SIGNAL, u(t) 
LAN connection 

| LAN (or Serial) connection | 

OUTPUT SIGNAL, y(t) 

Figure 1.7: Simplified diagram of an industrial CD control system. 

A more detailed block diagram, indicating data flow in this industrial CD control 
system, is given in Figure 1.8. The scanning sensor measures the sheet properties at 200-
2000 points, thus generating the so called high-resolution (scanner's spatial resolution) 
vector profile yHR.{t)- After the each scan, this vector of measurements is delivered to 
the industrial controller's measurement processing section. The measured signal is then 
dynamically filtered in order to separate machine-direction (MD) and cross-direction (CD) 
components of the profile. As pointed out earlier, the MD component is controlled by a 
separate control loop, not illustrated in Figures 1.7-1.8. Since the M D / C D separation 
involves the use of a dynamic filter, it clearly introduces additional dynamics into the CD 
control loop. 

As the number of CD actuators (30-300) is usually ~3-10 times smaller than the 
number of measurement points, the high-resolution CD profile is spatially low-pass filtered 
(spatial anti-alias filtering), before being downsampled to the actuator resolution (spatial 
low-resolution) yz,fi(0- Finally, the error between the measurement profile and the desired 
profile is passed to the linear time-invariant CD controller algorithm. 

The industrial linear time-invariant CD controllers are essentially 2D (spatio-temporal) 
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Figure 1.8: Data flow in an industrial CD control system; HR: High-Resolution (Scanner 
spatial resolution) LR: Low-Resolution (Actuator spatial resolution). 

filters, causal in time and noncausal in the spatial domain [31, 50, 66]. They consist of 
three blocks (1) a spatial decoupling algorithm, (2) a Dahlin controller, and (3) a set-
point smoothing algorithm, connected in cascade as illustrated in Figure 1.8. In current 
industrial practice, these blocks (i.e. CD controller) are most often tuned using a two-
dimensional loop shaping technique [62, 65, 66]. A spatial invariance approximation is 
central to this technique, which is an extension of traditional loop shaping and addresses 
the closed-loop performance and robust stability criteria in terms of the spatial and tem­
poral frequency domains. 

The output of the linear time-invariant CD controller passes through the Actuator 
setpoint maintenance section, a nonlinear block that does constant checking/verification 
to ensure the setpoints do not violate physical constraints, before the setpoints are finally 
delivered to the actuator array. 

1.5.1 P r o b l e m s N e a r the Sheet Edges (Spat ia l D o m a i n B o u n d ­

aries) 

The two-dimensional loop shaping technique has been successfully implemented on more 
than 100 paper machines worldwide to date. However, as the process characteristics near 
the sheet edges are clearly different from those in the centre of the sheet, the spatially-
invariant CD controllers (spatio-temporal filters) are modified at the edges on a real paper 
machine [50]. The current industry practice uses methods (that extend the signal beyond 
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the sheet edges) based on the techniques in the field of signal processing. These will be 
described in detail in Section 2.1 and include: zero padding, signal average padding, and 
reflection padding [67]. Unfortunately, often these approximations then lead to unsatis­
factory control at the edges, and control systems can even be destabilized [50, 63]. One 
such example is illustrated in Figure 1.9. 

a a - i | g i i * Iffm |B|m i|ini,.. arm | •»». | »c&..| j j t i . l >» Igw. IB-* I H ^ l !!«• I >.»C.B6<SP MBW 

Figure 1.9: Illustration of the problems ('actuator picketing' in the lower portion of the 
screenshot) that often occur when implementing current CD control techniques near the 
sheet edges. 

Figure 1.9 is a screenshot of the Honeywell hard ware-in-the-loop paper machine simu­
lator. It illustrates the behavior of a simulated CD moisture control system, with process 
output (CD moisture) and actuator array profiles shown. It can be seen that the process 
output profile is very good (fiat). However, the actuator array, while being very-well be­
haved (smooth) away from the edges, shows clear signs of instability near the edges. The 
edge actuators are moving in the opposite directions, developing a well-known mode of 
instability referred to as 'actuator picketing' by paper makers, because of the picket fence 
appearance of the actuator profile. Such a control signal is most likely not reducing paper 
sheet profile variations as CD processes are essentially spatial low-pass filters [17, 18], but 
it is also indicative of a low stability margin on a(Tuci) - the maximum singular value of 
the closed-loop transfer matrix gain from the process output disturbance d to the control 
signal u. 
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'Actuator picketing', originating from the edges, often 'creeps' into the rest of the 
system, finally destabilizing the whole control system. In order to prevent instability, in 
practice the edge actuators of the paper machine CD control systems very often are placed 
in open-loop [63]. 

1 . 6 A i m s a n d C o n t r i b u t i o n s o f t h e W o r k 
The spatial invariance assumption is central to the two-dimensional loop shaping tech­
nique, used for tuning the industrial paper machine cross-directional control systems. As 
a result of the assumed periodic (idealized) boundary conditions, the control laws are 
modified near the spatial domain boundaries (paper sheet edges) before implementation 
on a real paper machine. The current industrial techniques for extending the finite-width 
signals are borrowed from the field of signal processing, and do not take into account rele­
vant control engineering criteria or physical reality. As a result CD controller performance 
near the edges can be very poor. 

The objective of this work is to modify the existing industrial CD control law, ini­
tially designed with the process spatial-invariance assumption, so that important control 
engineering criteria, such as: closed-loop stability, performance, and robustness are taken 
into account. At the same time, the structure and complexity of the existing control law 
are to be unchanged. 

The main contributions of this work are: 

1. The introduction of a straightforward technique for achieving a stabilizing controller 
for a known plant by modifying a controller that is known to stabilize a second, 
related plant. The technique can be applied to a broad class of systems with mul-
tivariable linear time-invariant transfer matrix models and controllers, including 
industrial paper machine cross-directional control systems. Although the main ob­
jective of this technique is closed-loop stability transfer, in certain circumstances, a 
successful controller design in terms of closed-loop performance can also be achieved. 

2. The development of a novel stability-preserving method for modifying boundary 
conditions (BCs) of a spatially-distributed controller, initially computed assuming 
idealized spatially-invariant BCs. An analogy between the effects observed when 
implementing such controllers, with various boundary conditions, on the actual (i.e. 
finite, non-periodic) processes and the well-known Gibbs phenomenon is observed. 
Stability-preserving modifications, based on a method for reducing the Gibbs effect, 
are developed. The technique is demonstrated in the case of the industrial paper 
machine CD controller. 
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3. A new approach to the redesign of industrial paper machine cross-directional (CD) 
controllers near spatial domain boundaries is presented. The method directly takes 
into account relevant control engineering criteria, such as closed-loop stability, per­
formance, and robustness. The new approach modifies the CD control law near 
the paper sheet edges (spatial domain boundaries) by sequentially applying a novel 
low-bandwidth static output feedback design algorithm on two matrix components 
of the existing industrial controller. The existing industrial CD controller structure 
or complexity are not changed with the new approach. 

4. A successful implementation of the above approach has been tested on an industrial 
paper machine. It is demonstrated that with the new approach a trade-off between 
the final product quality (paper sheet smoothness) and controller aggressiveness can 
be achieved. When compared against the existing industrial practice, the imple­
mentation of the new technique resulted in improved paper sheet quality and lower 
actuator usage (i.e. smaller control signal magnitudes). 

1 . 7 T h e s i s O v e r v i e w 
The remainder of the thesis is organized as follows. The concept of explicit and implicit 
boundary conditions (BCs), in terms of spatio-temporal filters of interest in this work, 
is introduced in Chapter 2. The spatio-temporal filters under consideration are the key 
element in defining paper machine cross-directional (CD) process and controller models. 
The main characteristics of industrial paper machine CD control systems and the two-
dimensional loop shaping technique (tuning tool for the industrial CD controllers) are also 
presented in Chapter 2. The objective of this work is specified at the end of this chapter. 

In Chapter 3, a novel and straightforward closed-loop stability preserving perturba­
tion technique, for CD controllers initially designed under the idealized process spatial-
invariance assumption, is presented. The technique is simple and requires no additional 
computation on the part of the designer, and, as illustrated in Chapter 3, can be imple­
mented on a broad class of linear time-invariant systems with known plant perturbations. 
However, in terms of the objectives of this work, performance requirements other than 
closed-loop stability are not addressed with this approach. 

The similarities between the effects observed in the industrial paper machine CD con­
trol systems and the well-known Gibbs phenomenon in Fourier analysis are summarized in 
Chapter 4. Next, CD controller modification technique, inspired by a method for reduc­
ing the Gibbs effect is presented. The proposed technique guarantees the stability of the 
resulting CD controller. A closed-loop simulation example of this controller modification 
technique is also presented in Chapter 4. 
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In Chapter 5, the objective of modifying paper machine CD control law is stated in 
terms of a block-decentralized static output feedback (SOF) design problem via appro­
priately defined linear fractional transformation (LFT). The subsequent design approach 
is based on a novel low-bandwidth static output feedback design algorithm, sequentially 
implemented on two constant matrix components of the existing industrial CD controller. 
This approach systematically takes into account all objectives of this work, and important 
control engineering criteria: closed-loop stability, performance, and robustness. At the end 
of this chapter, a closed-loop simulation example with the Honeywell hardware-in-the-loop 
paper machine simulator is presented. 

The new approach to CD control near the paper sheet edges, presented in Chapter 
5, has been tested on a paper machine in a working paper mill. The industrial trial 
procedure and results are given in Chapter 6. Three different sets of the CD control law 
modifications (conservative, balanced, and aggressive) were computed and implemented. 
The results are then compared with the results achieved by current industrial practice. 

Finally, conclusions and suggestions for future research are given in Chapter 7. 



Chapter 2 

Problem Statement 

Considering the two-dimensional nature of CD control systems, CD controllers (of interest 
in this work) and CD processes can be viewed as 2-D (spatiotemporal) filters. Further tak­
ing into account the main focus of the thesis (CD control near spatial domain boundaries), 
boundary conditions (BC) of such filters are clearly of particular importance here. 

Section 2.1 introduces the concept of explicit and implicit boundary conditions in 
terms of the class of spatiotemporal filters that are the basic building block for the paper 
machine cross-directional process and controller models of interest in this work. Industrial 
CD process and controller models under consideration are detailed in Section 2.2. The 
main characteristics and tasks of the industrial cross-directional control systems, including 
an overview of the CD controller tuning method (two-dimensional loop shaping technique 
[65, 66]), are also presented in Section 2.2. Finally, the objective of this work is specified 
in Section 2.3. 

2.1 E x p l i c i t a n d I m p l i c i t B o u n d a r y C o n d i t i o n s 
A well known problem in engineering is the filtering of signals with discontinuities. We 
can find examples of this problem related to temporal as well as spatial filters. In the 
temporal domain, it is well known that it is of particular importance to handle sudden 
changes of the variables that define the state of such systems. The transients that occur as 
a consequence of those abrupt changes (i.e. discontinuities) can pose significant problems, 
and engineering systems have to be able to withstand such transients. An analogous effect 
occurs with spatial filters. The unwanted consequences of such filtering are spatial ripples 
(equivalent to temporal transients), for example edge blurring in image processing [28]. 
The importance of spatial filters' ability to handle input signal discontinuities is even 
greater in cases where spatial filters are placed in a feedback loop (see Figure 2.4). In 
such cases, the unwanted effects of signals' discontinuities can be magnified as the filtered 
discontinuous signal is being brought back to the filter's input. 

In order to place our problem in a familiar context, we will consider the issue of spatial 
boundary conditions as appearing in partial differential equations and image processing. 

21 
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Consider the update equation of a two-dimensional signal, 

ih 
y(i,k + 1) = ^2 hi • y(i + j, k),i E ft = {i : 1 < i < n} (2.1) 

j=-ih 

where y 6 7Z (7Z - set of real numbers), and (2.1) represents the implementation of a 
non-causal FIR filter in the first index (spatial dimension), and a causal, first-order IIR 
filter in the second index (temporal dimension), with scalar filter coefficients hj G 7Z, and 
j = —lh,. •. ,lh- We will consider filtering of a signal y(i,k) that is defined on a finite 
spatial domain consisting of n discrete locations i — 1,..., n. Immediately it can be seen 
that the relation (2.1) is incomplete as it requires information from y(i, k) on a boundary 
layer 

50. = {i : 1 - lh < i < 0 U n + 1 < i < n + lh) (2.2) 

as illustrated in Figure 2.1. 

3 

0 I 

o 
o 
o 
o 
o 

_L_ 

• X X X • • 

• • • • • • 
o o o o o o 

J I I I I L_ 

• • O 

• • O 

• • o 
• • o 
o o o 

_! I l_ 

1 2 n 

Figure 2.1: The template structure and explicit boundary layer 8Q (denoted by o for i = 0 
and i = n + 1) of a spatiotemporal filter with lh = 1 in (2.1)-(2.3). (The row of o at k = 
-1 indicates the initial conditions of the causal filter and are not important for the case 
being considered.) 

The need for such auxiliary conditions arises in numerical solutions to partial dif­
ferential equations [68] and image processing [16]. The three most important kinds of 
boundary conditions in PDEs are Dirichlet, Neumann, and Robin conditions [68]. In the 
case of Dirichlet boundary conditions (BC), the finite-width signals are extended with a 
constant (predefined) value, while in the case of Neumann BC, the signal extension is 
defined such that its first derivative (with respect to the spatial coordinate in question) 
remains constant. Finally, in the case of Robin boundary conditions a linear combination 
of the signal extension and its first derivative has a predefined value. Image processing 
[67] provides another set of filter modifications for boundary conditions, often referred 
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to as edge padding. Common padding techniques include reflection, zero, average, and 
periodic padding. Each of the above boundary conditions may be represented by creating 
an explicit boundary layer on 50 by executing: 

n 

y(i,k + l) = ^2gij-yU,k+l) + w(i,k-rl), ie50 (2.3) 
3 = 1 

with corresponding scalar constants g^, exogenous signal w(i,k), and 50 as defined in 
(2.2), following the update in (2.1). However, as we are concerned only with the values of 
y(i,k) within the spatial domain for i 6 0 we can eliminate the explicit boundary layer 
by solving (2.1) and (2.3) obtaining1 the implicit form 

n 
y(i,k + l) = J2hv-yti,k), i£0 (2.4) 

3 = 1 

As a result, the relation (2.1) along with any one of the boundary conditions is imple-
mentable with the matrix equation, 

Y(k + 1) = H-Y(k), Y(k) = [y(l,k),...,y(n,k)}T (2.5) 

where H £ fZnxn [s a constant matrix whose elements are given by 

{ hj-i, \j-i\<lh and lh + l < i < n - l h 

0, \j — i\>lh and lh + l < i < n — lh (2-6) 

5hij, 1 < i < lh and n — lh + 1 < i < n 

where j ' = 1, • • • ,n, and the coefficients 5hij determine the implicit boundary conditions. 
Examples are presented in Table 2.1 obtained by solving in (2.4) for the common 
BCs (assuming a spatially symmetric filter in (2.1) with lh = 1, i.e., hj = h-\).2 It is 
illustrated in Section 2.2 that both CD process and industrial CD controller represent a 
slight generalization of the system given by (2.5). 

Since two cases of BCs will be used often throughout the thesis, we introduce a short­
hand notation. The matrix H in (2.5) defining a spatial filter with Dirichlet BCs, corre-

1 We are considering the homogeneous form of each, as it is general enough to include all the cases of 
interest in CD control. 

2 The parameter b that appears in Table 2.1 in case of Robin boundary conditions is a predefined 
function of spatial and temporal domains. 
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Boundary Cond. Coefficients bh^ in (2.6) 
1. Dirichlet 5hu = ho 5h\2 = h\ 

2. Neumann 5h\\ = ho + hi 5hi2 = hi 
3. Robin 5hn = ho + b • hi 6hi2 = hi 
4. Reflection Shn = h0 

5. Zero 5h\\ — ho Shi2 = hi 
6. Average Shn=ho + ^ 5h12 = hi + ^ 5hlj = ^ 

7. Periodic 8h\\ — ho 5hi2 = hi 5hin = hi 

Table 2.1: Matrix coefficients in (2.6) resulting from the representation of spatial filters 
(order lh = 1) with various boundary conditions. 

sponding to a Toeplitz matrix Ht, given by 

T(h, n) = Hd := •j-i, -h < j - i < h 
otherwise 

(2.7) 

with h = [h-ih, • • • ,hih]. The matrix arising from the imposition of periodic BCs on a 
spatial filter, corresponding to a circulant matrix Hc, given by 

C(h,n) = Hc:= I 

hj—i, 

hj—i—ni 

hj—i+m 
0, 

-k< j -i < k 
n-lh< j - i 
j - i < -(n - lh) 
otherwise 

(2.8) 

The non-zero elements of the Toeplitz and circulant matrices Ht and Hc, as well as the 
difference between the two AH 
Figure 2.2. 

Hc — Ht, in case n = 36 and lh — 4 are illustrated in 

Figure 2.2: The non-zero elements of the matrix Hd in (2.7) (a); matrix Hc in (2.8) (b); 
and the difference AH = Hc — Hd (c). 
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Boundary Conditions Stability 
1. Dirichlet Stable 
2. Neumann Marginally stable 
3. Robin (with 6 = 1.1) Unstable 
4. Reflection Stable 
5. Zero Stable 
6. Average Marginally stable 
7. Periodic Marginally stable 

Table 2.2: Stability of the system in (2.5) with lh = 1, n = 20, and filter coefficients 
ho = 0.8, hi — 0.1, in case of various boundary conditions in Table 2.1. 

The stability of the system given in (2.5) is completely determined by the eigenvalues 
of the matrix H. The system in (2.5) is stable (marginally stable) if and only if all the 
eigenvalues of H are in the open (closed) unit circle. The implementation of the various 
boundary conditions in (2.6) requires modification of the first and last lh rows of H in 
(2.5). As such, it affects the locations of the eigenvalues and possibly the stability of the 
system. An illustrative example, in case of filter in (2.1) with lh = 1, n = 20, and filter 
coefficients ho = 0.8, hi = 0.1, is presented in Table 2.2, demonstrating that the BCs of 
the filter can influence the stability of the system given in (2.5). 

2.2 P a p e r M a c h i n e C D C o n t r o l S y s t e m 
Paper machine CD control systems usually have a significantly greater number of mea­
surements (200-2000) than the number of actuators (30-300). In industrial systems the 
measurement array is typically low-pass filtered and downsampled to the number of ac­
tuators (see Figure 1.8 in Section 1.5) thus permitting the use of square transfer matrix 
models. The standard model of a paper machine CD control system shown in Figure 2.3, 
subject to process output disturbances, is given by: 

y(z) = G(z)-u(z)+d(z), u(z) = K(z)-y(z) (2.9) 

where y(z),u(z) G Cn (C - set of complex numbers) are the 2-transforms of the output 
(measurement) profile and the input (actuator) profile respectively, and d(z) € Cn is 
the 2-transform of the process output disturbance. The objective of the CD controller 
K(z) G Cnxn is rejection of disturbances d(z). 

The transfer matrix G(z) G Cnxn can be written as: 

G(z) = [I- Az~lYxBz-d (2.10) 
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O(z) O(z) >6 
d(z) 

y(z) 

Figure 2.3: The industrial CD control system. 

where the constant matrices A and B G 1Znxn represent spatial filters with Dirichlet BCs 
(2.7): 

A d = T ( a , n ) B d = T ( b , n ) 

a = a 0 b= [b-tb,--- A l (2-H) 

where the coefficients modelling the spatial response [ b ~ i b , • • • , bib], the discrete time pole 
a 0 , and the process model delay d are identified from input-output data, e.g. using com­
mercial software described in [32]. Typically the paper sheet response to an actuator is 
symmetric with = bj in (2.11) and much narrower than the paper sheet so that lb <C n . 
This structure and the use of a band-diagonal Toeplitz matrix B d in (2.10) is standard in 
the modelling of CD processes [23]. 

The structure of the industrial CD controller of interest in this work (illustrated in Fig­
ure 2.4) has been obtained through the years of theoretical analysis and industrial testing. 
Presently, there are more than 4200 installations of this particular controller perform­
ing CD control on paper machines worldwide. The controller structure, detailed below, 
represents a specific realization of the L i n e a r t i m e - i n v a r i a n t C D c o n t r o l l e r , illustrated in 
Figure 1.8 in Section 1.5, with its three distinctive sections (Decoupling window, Dahlin 
controller, and the Setpoint smoothing section) connected in cascade. Decoupling window 
is represented with a static matrix, Dahlin controller with a scalar transfer function, and 
a Setpoint smoothing section with a static matrix in a local dynamic feedback loop. 

The industrial controller K ( z ) in (2.9) of interest in this work (and illustrated in Figure 
2.4) is given by [49, 50, 52, 53, 62, 63, 64, 65]: 

K ( z ) = [ I - D z - 1 } - l D - C - c ( z )
 1 (2.12) 
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Decoupling window Dahlin controller Setpoint smoothing 

Figure 2.4: The industrial CD controller structure. (Compare with Linear time-invariant 
CD controller in Figure 1.8) 

where the matrices (spatial filters) C and D G TZnxn are defined as 

Cij 

Cj-i, \ j - i\<lc and lc + l<i<n — nci 

0, \ j ~i\> lc and ncj + 1 < i < n — nci 

Scij, 1 < i < nci and n — nc\ + 1 < i < n 

\ j — i \< Id and rapi + 1 < i < n — nm 
\ j - i\> Id and no\ + 1 < i < n — npj 
1 < i < n£,\ and n — UD\ + 1 < i < n 

and j = 1, • • • , n. The coefficients collected in: 

(2.13) 

(2.14) 

c = c. (2.15) 

with c_/t = Cfc for fc = 1, • • • , / c and d_j = dj for j = 1, • • • , l& are determined by controller 
tuning. Typically, the elements dj are greater than zero, i.e. d > 0. The size of the implicit 
boundary layer must be at least as large as the corresponding filter order (nci > lc and 
n>D\ > Id)- The scalar transfer function c(z) in (2.12) is a standard deadtime compensator 
known as the Dahlin controller in the process industries [62], given by: 

c(z) = 
(1 - a)(l - aoz-1) 

^d-l ( l -ao)[l + ( l - a ) E L i z ~ 
(2.16) 

where a 0 and d are process dynamic parameters, defined in (2.10)—(2.11), and a € [0,1] 
is a closed-loop control system tuning variable. 
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2.2.1 Industrial CD Controller Tuning Technique: 
Two-Dimensional Loop Shaping 

State-of-the-art method for tuning the above industrial CD controller (i.e. determining 
the values for c, d, and a in (2.15)—(2.16)) is the two-dimensional loop shaping technique 
[62, 65, 66]. Spatial invariance assumption is central to this technique, as detailed below. 

The two-dimensional loop shaping approach to CD controller tuning is as follows. First, 
the boundary conditions of the process model are changed from Dirichlet to periodic by 
substituting B = Bc in (2.10), where • • 

Bc = C(b, n) (2.17) 

is a symmetric circulant matrix in (2.8). This imposes spatial shift invariance on the plant 
model G(z) in (2.9). A CD controller is then synthesized based on the spatially invariant 
plant model using the two-dimensional loop shaping technique described in [62, 66]. This 
generates the coefficients c and d in (2.15) for the matrices C and D in (2.12) with periodic 
BCs, 

Cc = C(c,n), Dc = C(d,n) (2.18) 

This design technique results in a stable controller, stable closed-loop, and desired closed-
loop performance assuming all boundary conditions are periodic. Such an idealized cross-
directional system is illustrated in Figure 2.5. 

c(z) 
u(z). 

1-%Z~ 

d(z) 

y(z) 

Figure 2.5: Idealized cross-directional control system with periodic boundary conditions. 

However, the controller must be implemented on the system modeled with Dirichlet 
BCs given by B = Bd in (2.11). From (2.10)-(2.11) and (2.17), it can easily be seen that 
the difference between the true (Toeplitz symmetric) and idealized (circulant symmetric) 
CD process models is given by: 

AG(z) = T[C(6,n) - T(b,n)} = Gc(z) - Gd(z), (2.19) 
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and contains the 'ears' of the circulant symmetric transfer matrix Gc(z). (Figure 2.2 
illustrates the location of non-zero entries of the corresponding Toeplitz and circulant 
matrices as well as the difference between the two.) 

Similarly, the difference between the controller resulting from periodic and Toeplitz 
symmetric matrices is given by, 

AC = C{c,n)-T(c,n), AD = C(d, n) - T(d, n), (2.20) 

and contains the 'ears' of the controller circulant symmetric matrices Cc and Dc. 
Current industrial practice for modifying idealized CD control law, given with (2.12) 

and (2.18), before implementation on a real paper machine, consists of replacing con­
troller's idealized (periodic) BCs with the corresponding Dirichlet, Average, or Reflection 
boundary conditions. As these techniques do not take into account relevant closed-loop 
control engineering criteria, they can lead to poor control (even instability) near spatial 
domain boundaries (paper sheet edges). One such example was illustrated in Figure 1.9 
in Section 1.5.1. 

2.3 Objective of the Work 

Briefly stated, the objective of this work is to modify the existing CD control law - initially 
computed assuming process spatial invariance using a two-dimensional loop shaping tool -
near spatial domain boundaries in a way that satisfies controller performance requirements. 

Let us define the modifications to existing controller matrices in (2.12) in terms of 
additive matrix perturbations SC,SD G TZnxn in Figure 2.6. The elements of 5C and 5D 
are given by, 

nc\ + 1 < i < n 
nC2 + 1 < j < n (2.21) 

!

5dij, 1 < i < noi and n — noi + 1 <i <n 
1 < j < no2 and n — nm + 1 < j < n (2.22) 

0, otherwise 

with lc < nci < n/2, Id < noi < n/2, and 1 < nc2,nD2 < n. However, normally 
nci: nC2, n,D\, n£>2 <C n, resulting in only upper-left and lower-right corners of the matrices 
5C and 5D being different from zero. The parameters lc and ld are the respective widths of 
the matrix bands of C and D in (2.13)-(2.14). Also, nci and n^i represent the length of 
the implicit boundary layers of the spatial filters C and D respectively. It should be noted 

fi<kj > 1 < i < ^ c i and n • 
[5C]ij = | 1 < j < nc2 and n • 

0, otherwise 
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-*cA c(z) l+Q D r>Ch G(z) 

P(z) 

Figure 2.6: CD control system with control law modifications, SC and SD, near spatial 
domain boundaries. 

that the existing industrial controller modifications near paper sheet edges (based on zero, 
average, and reflection padding) can be represented with the perturbation matrices SC 
and SD in (2.21)-(2.22), with nci = lc, r̂>i = 1 < nc2,nr)2 < n. 

By factoring out controller perturbations SC and SD as shown in Figure 2.6, a lower 
linear fractional transformation (LFT) as illustrated in Figure 2.7, can be defined. The 
generalized plant P(z) in Figure 2.7 consists of the closed-loop transfer functions that can 
be obtained, after some straightforward algebra, from the system shown in Figure 2.6. 

Figure 2.7: Problem reformulated in terms of linear fractional transformation (LFT). 

As pointed out in Section 2.2, the modifications SC and SD currently used in industrial 
CD control systems do not take into account relevant control engineering criteria and can 
lead to very poor control near spatial domain boundaries. The objective of this work is 
to find a compensator E in Figure 2.7, such that: 

1. 5D,SC € 1Znxn are static matrices with nci , nc2, nrn, ^ D 2 < f i i n (2.21) and (2.22). 
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2. The resulting closed-loop system in Figure 2.7 is stable. 

3. The closed-loop performance of the system, as measured by the 2-norm of the process 
output vector at low frequencies, is improved: 

\\y(e^,E)\\2 < ||y(e^,0)|| 2, V \u\ < oob, (2.23) 

for some Uh > 0. 

4. The gain M(e J W , £") : d —> u is limited across all the frequencies, i.e 
weight W{e^): 

a(M(ej",E)) < W(ejuJ), Vw, 

where CT(-) denotes the maximum singular value. 

The first requirement above is a consequence of the main objective of this work: designing 
a localized modification of the existing industrial control law near the paper sheet edges 
without changing the controller structure. The need for the second requirement is obvious. 
The third requirement is in accordance with the main objective of CD control: the reduc­
tion of process output variations as measured by their 2-norm [1]. The fourth requirement 
is a result of the desired limit on control action, so that robustness characteristics of the 
system (as measured by \\K[I — GK]-1^) are preserved. In the two-dimensional loop 
shaping procedure, the process model uncertainty is modelled as additive uncertainty, and 
consequently \\K[I — G i ^ ] - 1 ^ is a measure of system robustness. 

for a given 

(2.24) 



Chapter 3 

A Closed-Loop Stability Transfer Between 
Systems 

In this chapter, a novel and straightforward perturbation technique is developed for mod­
ifying the spatially-invariant CD controller, in a manner that is guaranteed to stabilize a 
closed-loop control system with the true (spatially-variant) CD process model. The tech­
nique is based on the known difference between the idealized (spatially-invariant) and the 
true (spatially-variant) paper machine cross-directional process models and requires no 
further computation on the part of the designer. Closed-loop stability (requirement 2 in 
Section 2.3) is maintained in an efficient and straightforward manner with this technique, 
however, the other requirements from Section 2.3 are not considered at this stage. 

It was demonstrated in [51] that this technique can also be implemented on a broad 
class of linear control systems with known plant perturbations. In Section 3.2, the set of 
transfer matrix models under consideration in this chapter is presented. A straightfor­
ward controller perturbation technique, guaranteeing closed-loop stability for the class of 
systems in question, is given in Section 3.3. The application of the technique to industrial 
paper machine cross-directional control systems is illustrated in Section 3.4. Another three 
examples of the use of the presented technique, taken from very different applications, are 
demonstrated in Section 3.5. In that regard, Section 3.5 strays from the main object of 
this work - paper machine CD control near the sheet edges - but examines some familiar 
controller design techniques in terms of the controller perturbation technique from Section 
3.3. 

3 . 1 C o n t r o l S y s t e m s w i t h K n o w n P l a n t D e v i a t i o n s 
A control engineer is often faced with implementing a controller for a plant Gp that 
is different from the plant Go for which a feedback controller KQ has been designed. 
The deviation of the true plant from its mathematical model can be separated into two 
categories - unknown and known. While a practical control system will often contain both 
types of deviations, this chapter focuses on the known deviations. 

It is not uncommon in control engineering for the plant model used for controller 
synthesis to differ from the true plant by a known amount. In many cases, the use of all 
knowledge of a plant model may overly complicate the synthesis of the feedback controller. 

32 
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Figure 3.1: (a) Original and (b) modified closed-loop control systems. 

Deliberate model simplifications, prior to controller design occur, for example: 

• to replace spatially-distributed plant models with more convenient spatially-invariant 
models [8, 15, 17, 34, 45, 49, 65, 66], 

• to eliminate time delay from plant models [58, 59, 60], 

• to eliminate the recycle dynamics in certain chemical processes [57, 70], 

• to remove complicated high-order dynamics [58], 

• to replace a multivariable process model with a diagonal process model in order to 
facilitate the design of a decentralized controller [54, 58, 75]. 

Deliberate model approximation is not the only source of known faults in a plant model. 
Factors whose influence is potentially known include: 

• failure of actuators or sensors [37, 40, 58, 77], 

• multiple models for various operating points [29, 56], 

• model changes resulting from re-identification of all or part of the transfer matrix. 

While there already exist various control strategies for many of the examples listed 
above (see, for example, references in [51]), the contribution of this work is a straightfor­
ward perturbation technique for the modification of a controller KQ, originally designed 
for G 0 , such that closed-loop stability is guaranteed for the known plant Gp. 

3 . 2 R e l a t i o n s h i p s B e t w e e n P l a n t M o d e l s 
In this section we present the class of transfer matrix models under consideration. We 
consider relationships between transfer matrix models in six standard configurations taken 
from [58]. 

Let the original or nominal plant model be the linear, time-invariant transfer matrix 
Go 6 cmxn. Consider a linear, time-invariant transfer matrix KQ 6 Qnxm r ep r esenting 
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(a) (b) 

-H Af 

-> G0 

(d) 

O-

(e) 

Figure 3.2: Block diagrams for various Gp in terms of Go and A G . (a) Additive perturba­
tion, (b) Inverse additive perturbation, (c) Multiplicative input perturbation, (d) Inverse 
multiplicative input perturbation, (e) Multiplicative output perturbation, (f) Inverse mul­
tiplicative output perturbation (compare Figure 8.5 in [58]). 

a feedback controller such that the closed-loop system in the configuration illustrated in 
Figure 3.1a is internally stable. 

Now denote a second linear, time-in variant transfer matrix plant model by Gp 6 Cmxn 

where Gp ^ Go- In general, there are many ways to represent the difference between two 
matrices, but here we will restrict the study to six standard configurations, illustrated in 
Figure 3.2: 

(a). GP = G 0 + A G 

(b) GP = ( I - G „ A G ) -
(c) GP = G 0 ( / + A G ) 
(d) GP = G 0 ( I - A G ) -

(e) GP = (/ + A G ) G 0 

(/) GP = ( J - A G ) " 1 G 

L G n 

(3.1) 

Although the presentation of Figure 3.2 is reminiscent of the representation of model 
uncertainty (see for example [58, 76]), for the purposes of this work we will assume full 
knowledge of the perturbation A G . 

The problem at hand is to replace the original feedback controller KQ with a feedback 
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controller Kp, resulting in the closed-loop control system illustrated in Figure 3.1b, such 
that: 

1. Internal stability is guaranteed for the closed-loop system defined by Kp and Gp. 

2. Modifications to the existing controller KQ are straightforward and require less work 
than would a full redesign of Kp for Gp. 

Section 3.3 presents results that may be used for modifying the original feedback 
controller K0 to achieve a new controller Kp such that the closed-loop system in Figure 
3.1b is internally stable. 

3.3 A u g m e n t a t i o n o f F e e d b a c k C o n t r o l l e r s 
In this section we present a controller perturbation technique that allows the straight­
forward generation of a stabilizing controller Kp for Gp in Figure 3.1b, given a known 
stabilizing controller K0 for the plant Go in Figure 3.1a. 

Theorem 1 (Stability Transfer) If the system in Figure 3.1a with (Go, K0) is internally 

stable, then the system in Figure 3.1b with (Gp,Kp) is internally stable if is stable, 

AK = —AQ, and 

(a) KP = (I - KOAK)-1^; GP = G 0 + A G 

(b) KP = K0 + AK; GP = (/ - G 0 A G ) - 1 G 0 

(c) KP = {I-AK)-LKQ- GP = G 0 ( / + A G ) with stable (I + A G ) _ 1 

(d) KP = (I + AK)K0; GP = G 0 ( / - A G ) - 1 with stable (I — A G ) _ 1 

(e) KP — K0(I - AK)*1; GP = (/ + A G ) G 0 with stable (I + A G ) _ 1 

(/) KP = K0(I + AK); GP = (I - A G ) - J G 0 with stable (I — A G ) _ 1 

Proof. Given in Appendix A. 
Remark 1: The only restriction placed on the design of the controller KQ is that 

it stabilizes Go in Figure 3.1a. Theorem 1 then transfers only the stability to the per­
turbed system in Figure 3.1b. The issue of closed-loop performance in either system is 
not addressed by Theorem 1. 

Remark 2: In [71, 72], the nominal plant-controller pair has been written in terms 
of stable coprime factors as Go = ND~l and KQ = XY~l. Subsequently, it has been 
shown that the family of controllers Kp = [X + DQ]\Y — NQ\~l stabilizes the set of 
perturbed plants Gp = [N + YS][D — XS}-1 if and only if the perturbations (S, Q) form 
a closed-loop stable pair. In light of this result, Theorem 1 is equivalent to providing -
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(a). 

Kg h~CH~ 

(b) 

X A G « 

G0 ~ 

r K0 « 

AK « 

G0 

! Ir 

(e). 

>C^rn 

K„ k 
n n f ! 

(f). 

i rL=Gj 
r^\~Go~U<)— 

KAf<-C>4 

Figure 3.3: Block diagrams indicating the various configurations of Gp and Kp described 
in Theorem 1. 

without any additional computation - a controller perturbation Q that stabilizes the given 
plant perturbation S for each of the cases (a)-(f). So closed-loop stability is recovered by 
providing a stabilizing design for the problem in [71, 72] and without the use of the 
restrictive assumption that (Gp,K0) is a stable pair as in the double-Youla formulation 
[3]. On the other hand [3] and [71, 72] provide an additional degree of freedom to allow 
design for performance, while our proposed technique does not. 

Remark 3: The additional requirement on stability of (I + A G ) - 1 or (I — A Q ) - 1 in the 
cases (c)-(f) in Theorem 1 is necessary to avoid cancellation of unstable modes between 
the plant and controller. 

Remark 4: Theorem 1 does not necessarily require stability of the transfer matrices 
Go, Gp, KQ, or Kp. However the various restrictions on the stability of A G , (I + A c ) - 1 , 
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and/or (I — A G ) - 1 may indirectly place stability restrictions on Kp or Gp. 
Remark 5: The closed-loop systems corresponding to each of the cases in Theorem 

1 are illustrated in Figure 3.3. There is an easily-recognized pattern relating the configu­
ration of Kp (expressed in terms of KQ and A K ) to the configuration oi Gp (expressed in 
terms of Go and A G ) . This duality arises from the fact that the blocks are configured so 
that for Ax = — A G , the controller perturbation will partially 'cancel' the plant pertur­
bation. As a result, some of the closed-loop transfer functions of the perturbed systems 
will be identical to the corresponding closed-loop transfer functions of the original systems 
(see Table 3.1). 

As pointed out in Remark 1 above, the issue of closed-loop performance is not addressed 
by Theorem 1. However, in certain circumstances this technique may also achieve a 
successful controller design in terms of closed-loop performance. For example, the Smith 
predictor [54, 59, 60] and the recycle compensator [57, 70] are shown to be special cases 
of this method that have been applied in industrial situations without a need for further 
modification. More details about various applications of Theorem 1 can be found in [51] 
and its references. 

Table 3.1: Closed-loop transfer functions in Figure 3.1b for the various configurations of 
Gp and Kp in Theorem 1. 

wo to u WJ to y wo to y W] to u 
case M = (I — KG)~1K M = (I — GK)~1G M = (I - GK)-1 M = (I - K G ) - 1 

(a) MP = M0 [M0 + AG(I - K0Go)-L}- (I + AGK0)Mo Mo(I + K0AG) 
(I + K0AG) 

(b) MP = [M0-AG(I-G0K0)-1]- M0 Mo'I - GoAG) (I-AGGo)M0 

(I - G0AG) 
(c) MP = (7 + A G ) - 1 M 0 M0(I + AG) M0 (7 + A G ) - 1 M 0 ( / + A G ) 

(d) MP = ( / - A G ) M 0 Moil-Ac)-" M0 (I-AG)M0(I- A G ) - 1 

(e) MP = Moil + Ao)'1 (I + AG)Mo (I + AG)M0(I + A G ) - 1 M0 

(f) MP = M0 (I - AG) {I- A G ) - l M 0 (I-AG)-lMo(I-Ac) M0 

3 . 4 A p p l i c a t i o n o f T h e o r e m 1 t o C D C o n t r o l 
Let the nominal plant Go G CNXN be the idealized CD process model with periodic bound­
ary conditions, 

Go = " d ^(b,n) = Z d

 XBC (3.2) 
1 — aQz 1 1 — a0z 1 

and KQ G CNXN a corresponding spatially-invariant controller obtained by the two-dimensional 
loop shaping technique and defined with (2.12) and (2.18). Also, let the actual (spatially-
variant) CD process model be denoted with Gp G C n x n , 

lT(b,n) = - (3.3) 
1 — CIQZ 1 1 — CIQZ 1 
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As pointed out earlier, in Section 2.2, the difference between the two plants AG(z) = 
Gc(z) — Gd(z) = Go(z) — Gp(z) is the 'ears' of the circulant symmetric matrix Go(z), 
given with (2.19). 

Based on Theorem 1, a stabilizing controller for the actual CD process model with 
Dirichlet boundary conditions Gp is given by Kp = (I — KQAK)~1KQ configured as in 
Figure 3.3a with AK = — A G = AG(z) in (2.19). Such a modified controller may be 
represented as, 

u = K0 (y + Atf • u) = K0 (y + AG • u) (3.4) 

Note the necessary structure of a stabilizing controller for Gp. In general, the controller 
Kp is an n x n transfer matrix with n2 elements. However, a consequence of Theorem 
1 is that, if one begins with a stabilizing spatially-invariant controller KQ = Kc(z) for 
a spatially-invariant process model Go = Gc(z), then the closed-loop with the actual 
(spatially-variant) CD process model may be stabilized with an n x n transfer matrix 
AK in (3.4) with only It, • (lb + 1) nonzero elements, (where lb « n is the process spatial 
response parameter in (2.11)) - independent of the large size of the original problem. 

Figure 3.4 illustrates the location of non-zero entries in Gp, Go, and Ac = AG(z) 
for a typical industrial example with n = 54 actuators and the process spatial response 
parameter lb = 7. The brute-force design of a multivariable controller would require the 
synthesis of all n 2 = 2916 transfer matrix elements in Kp. However if one begins with the 
controller KQ, then one may achieve a stabilizing controller via AK in (3.4) by designing 
only I • (I + 1) = 56 transfer matrix elements of - fewer than 2% of the full design. 

Figure 3.4: Position of the non-zero elements of: (a) the Toeplitz matrix Go = Gd{z); 
(b) the circulant symmetric matrix Gp =-Gc(z); and (c) the difference between the two: 
AG = -AG{z) = Gd{z)-Gc{z). 

Paper machine cross-directional control system with the actual (spatially-variant) pro-
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cess model Gd(z) in (2.10)—(2.11) and the initially designed spatially-invariant controller 

KQ = [I — DcZ'^Dc • Cc • c(z) modified based on the results of Theorem 1, is illustrated 

in Figure 3.5. 

KP(z) = [I-K0(z)AG(z)]1K0(z) GP=GJz) = Gc(z)-AG(z) 

Figure 3.5: Paper machine cross-directional control system, initially computed with the 
two-dimensional loop shaping technique resulting in a spatially-invariant process and con­
troller models Gc(z), Cc, Dc, stabilized by the use of Theorem 1. 

Even as the required spatially-invariant controller perturbation is straightforward and 

the resulting closed-loop system stability guaranteed by Theorem 1, the other three re­

quirements from Section 2.3 are not directly taken into account with this approach. How­

ever, the issue of performance of C D control systems based on this approach will be briefly 

revisited in Section 4.3.2 in Chapter 4. 

3.5 Other Applications of Theorem 1 

This section will stray from the main topic of this work (paper machine C D control), as 

three additional examples of the use of Theorem 1, drawn from very different applications, 

are presented. A n application in the case of actuator and/or sensor failure in a multivari-

able control system is presented in Section 3.5.1. Finally, two familiar industrial controller 

design techniques - the Smith predictor and the recycle compensator - are examined in 

terms of Theorem 1 in Sections 3.5.2 and 3.5.3. 

3.5.1 Actuator and Sensor Failures 

A n application in which the deviation of the true plant from the nominal plant model 

may potentially be known arises in the study of closed-loop control systems with actuator 

and/or sensor failures. If the failure is diagnosed and the effect is known, then Theorem 



Chapter 3. A Closed-Loop Stability Transfer Between Systems 40 

1 provides a simple technique that may be used to reconfigure the controller to guarantee 
closed-loop stability. For example, the so called fault-tolerant sensor configuration (see 
Figure 7b in [40]) is equivalent to the modifications illustrated in Theorem 1 (case (a)). 

Consider a linear open-loop stable transfer matrix plant model Go and a feedback 
controller KQ forming an internally stable system in Figure 3.1a. Now consider the same 
control system but with failed sensors and/or actuators. Let J denote the set of indices 
of failed sensors. Let J denote the set of indices of failed actuators. The plant with 
failed sensors and actuators may be modelled using an additive matrix perturbation to 
the original model Go: 

GP 

A G (z , j ) 

Figure 3.6 illustrates this for a plant with 20 sensors and 20 actuators where the 7th sensor 
has failed. In other words, 1 = {7} and J = 0 (the empty set) in (3.5). A failed actuator 
would result in a column of non-zero entries in A G . 

= G 0 + A G , 
| -G0(i,j), ielorjej 
1 0, otherwise 

(a) 

10 

20 
a a • « • • • • • • • • « » • • • • « • 
e o a a a a a a a a a a a a a a a a a a 
• e « e » * a « a « a a e a e a o « « « 

10 
G„ 

20 

(C) 

10 

20 

«««•«•«•••••*•««»«• 
a e a a a a a a a a s a o a a a v a a 

O B « « o a o « » « » f « « a « » a o 
a a a a a a a a a a a a a a a a o a a a 

10 20 

Figure 3.6: Location of the non-zero elements of (a) the nominal plant model Go, (b) 
the additive perturbation A G due to failure of the 7th sensor, and (c) the corresponding 
transfer matrix model Gp. 

Closed-loop stability is not guaranteed in general for the plant with actuator and/or 
sensor failures Gp in (3.5) and the original controller KQ. However, modification of the 
controller as in Figure 3.3a 

KP = (I- KQAK^KQ, (3.6) 

and setting A# = — A G in (3.5) leads to an internally stable closed-loop (Gp,KP) if A G 

is stable according to Theorem 1. In the case of sensor failure, effectively replacing the 
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failed sensor signals with their modelled response, so that the control law is modified to 
u = K0{y - A G • u). 

Note that while no guarantees are provided for closed-loop performance, Theorem 1 
allows the recovery of closed-loop stability without the need to perform any new controller 
synthesis. A fact that makes it attractive in practical fault-tolerant schemes such as in 

3.5.2 Smith Predictor 
One of the earliest examples of the intentional simplification of the plant model for con­
troller design is the well-known Smith predictor controller. The controller structure was 
proposed in 1950's by Otto Smith [59, 60] in order to improve control of the plants with 
dead-time dynamics, 

where g/(s) is a finite-dimensional transfer function. 
The basic idea of the Smith predictor scheme is initially to design a controller ko(s) 

for the plant g/(s) in (3.7) with no delay, and afterwards modify the controller to account 
for the delay in gp(s) in (3.7). A detailed analysis of the Smith predictor controller 
characteristics, as well as a modern interpretation of this design technique (via the internal 
model control principle), can be found in [29, 54]. The results in Section 3.3 can be 
interpreted from an IMC standpoint, and used with gp(s) in (3.7) present an alternative 
derivation of the Smith predictor. 

First, the transfer function gp(s) in (3.7) may be factored into an additive perturbation 
as g P ( s ) = g0(s) + Ag(s) with 

where go(s) is a finite-dimensional transfer function and A g ( s ) contains the deadtime of 
the original transfer function gp(s) in (3.7). Then using a typically low-order stabilizing 
controller ko(s) for the stable transfer function go(s) in (3.8), applying Theorem 1 for the 
configuration in Figure 3.3a yields the controller, 

[40]. 

9P(S) = g f ( s ) e (3.7) 

9o(s) = g f ( s ) , and A g ( s ) = g f ( s ) { e - 9 a - 1) (3.8) 

k P ( s ) = 
k Q ( s ) 

Afc(s) = g0(s)(e 1) (3.9) 
1 - k 0 ( s ) A k { s ) 

and is equivalent to the Smith predictor illustrated in Figure 3.7. (The difference in sign 
where AK(S) = A G in (3.9) is due to negative feedback in Figure 3.7, but AK = — A G in 
Theorem 1, due to the positive feedback.) 
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kP(s) 
r(s) : 

gP(s) 

K>—H kn(s) 

g0(s)(e-9 s-D 

go(s) - o 

go(s)(e-es-D 

Y(s) 

Figure 3.7: Smith-predictor design for plants with pure time delay (compare with Figure 
3.3a). 

A word regarding closed-loop performance is needed here. While Theorem 1 was not 
necessarily developed for use as a controller design technique, it is well known that the 
Smith predictor can be designed to provide acceptable closed-loop performance as a dead-
time compensator. In general, the modification of k0('s) to kp(s) with the configuration 
in Figure 3.3a or Figure 3.7 will move the poles of the controller and potentially alter the 
closed-loop performance. For example, if ko(s) is designed with integral action, then the 
perturbation configuration kp(s) in Figure 3.3a could potentially eliminate it. However, 
the Smith predictor in Figure 3.7 is a special case since the perturbation |AG(JW)| —* 0 as 
LU —> 0 in (3.8) meaning that gp(jto) —> go(jto) and kp(juj) —> k0(jco) as to —> 0. Thus the 
behaviour of the perturbed loop approaches that of the nominal loop at low frequencies 
important for performance. 

As a final comment, it is noted in [54] that - internal stability and steady-state per­
formance notwithstanding - the design of the nominal controller ko(s) is important for 
closed-loop performance for u > 0 where |AG(JW)| ^ 0 in (3.8). Incautious designs of 
ko(s) that disregard the delay in gp(s) in (3.7) will not lead to good performance of the 
Smith predictor system in Figure 3.7. 

3.5.3 Recyc le Compensa to r 

Recycle streams in chemical industries are used to feed back some of the process output 
for further processing [43]. For economical and environmental reasons (e.g. saving energy 
and materials), plants with recycle streams are becoming more common [57]. It has been 
shown in [55] that the overall dynamics of such plants can be very different from those of 
plants having no recycle streams and should be taken into account in the controller design 
procedure. 

A chemical process with a recycle stream can be described in terms of a plant model 
with an inverse additive perturbation given in Figure 3.2b, where go(s) and A s (s ) are the 
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r(s): 
kP(s) gP(s) 

* 0 w k0(s) +2 
gr(s) e" 

gf(s) e -es 

gr(s) eH 

y(s) 

Figure 3.8: Recycle compensator for plants with recycle dynamics (compare with Figure 
3.3b). 

models of the process forward path and recycle path respectively, 

g0(s) = gf{s)e-ti\ and Ag(s) = gr(s)e-*s (3.10) 

and <7/(s) where gr(s) are stable (often first-order) transfer functions. One of the controller 
design procedures for the processes with recycle streams, explained in [43, 55, 57], can be 
presented in terms of the results given in Section 3.3. First one synthesizes a stabilizing 
controller fcn(s) for the forward path go(s) in (3.10) (possibly using the Smith predictor 
of Section 3.5.2 above). Since Ag(s), as defined in (3.10), is a stable transfer function, 
the controller modification procedure outlined in Theorem 1 (case (b)) and illustrated in 
Figure 3.3b is used in the second step. A block diagram of the closed-loop control system 
with a recycle compensator is illustrated in Figure 3.8. 

As in the case of Smith predictor, the controller modification is A*, = A f l (as opposed 
to Afc = — Ag in Theorem 1) due to the negative feedback being used in the recycle 
compensation in Figure 3.8. 

As with the Smith predictor, the recycle compensator will typically be used as illus­
trated in Figure 3.8 without further modification due to the fact that for this particular 
configuration the complementary sensitivity function is unchanged by the perturbations, 

[1 + gpkp]~lgPkp = [1 + gako}"1 gQkQ (3.11) 

and thus the nominal performance is recovered. 

3.6 Summary 

A novel and straightforward modification technique with which a controller that stabilizes 
one plant may be modified so that it stabilizes a second (related) plant has been presented 
in this chapter. In addition to paper machine CD control, the presented technique can also 
be implemented on a broad class of multivariable linear time-invariant control systems. 
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Some of the well-known industrial controller design methods have been shown to be special 
cases of the presented technique. 

Although the technique guarantees only the resulting system closed-loop stability, in 
certain industrial applications (e.g. Smith predictor and recycle compensator), it does 
achieve a successful design in terms of closed-loop performance as well. 

In terms of CD controllers initially designed under the (idealized) spatial-invariance 
assumption, a developed technique is guaranteed to stabilize a true (spatially-variant) 
process models in a straightforward and efficient manner. However, the other require­
ments (closed-loop performance and robustness), specified in Chapter 2, are not directly 
considered with this approach. 



Chapter 4 

Open-Loop Approach to CD Controller 
Modifications 

The effects that arise in paper machine CD control systems near spatial domain boundaries 
(see Figure 1.9 in Introduction) have qualitative similarities with the Gibbs phenomenon 
encountered in Fourier analysis. The Gibbs effect is a well-known consequence of ap­
proximating a discontinuous function with a truncated Fourier series. Unavoidably, this 
reconstruction exhibits overshoots and undershoots around the point (s) of discontinuity. 
Even though a truncated Fourier series is equivalent to filtering a signal with an ideal 
low-pass filter, overshoot and undershoot near discontinuities are evident in all forms of 
signal filtering. As described in Chapter 2, the paper machine CD controllers are essen­
tially spatial and temporal low-pass filters. Also, the paper sheet edges are process spatial 
domain discontinuities. 

Considering the above similarities, the methods used for reducing the Gibbs phe­
nomenon [41] are used as an inspiration for the CD control modifications proposed in 
this chapter. An overview of Gibbs phenomenon and its relation to paper machine cross-
directional control near the sheet edges is presented in Section 4.1. Proposed CD controller 
modifications are given in Section 4.2, and a closed-loop simulation example in Section 
4.3. 

The proposed modifications meet the first requirement in Section 2.3 (the requirement 
for static modifications of the existing industrial CD control law). The second requirement 
(closed-loop stability) is subsequently checked and confirmed. The last two requirements 
from Section 2.3 are not addressed with the approach presented in this chapter. 

4.1 Gibbs Phenomenon and Spatial Filtering 

The Gibbs phenomenon is an effect of a special case of discontinuous signal filtering that 
has been very well studied. It occurs when a discontinuous input signal is filtered with 
the ideal low-pass filter, which has an impulse response in the original domain (e.g. 1-D 
spatial domain x) as: sinc{x) = . The ideal low-pass filters cannot be implemented in 
practice as they are infinite order filters. The infinite order constraint would be impossible 
to satisfy for either temporal or spatial filters. 

To illustrate the Gibbs phenomenon, consider the original signal given as a function 

45 
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f(x), which is defined as: 

/(*) = 
1 for 0.25 < x < 0.75 
0 otherwise 

(4.1) 

The function f(x) (shown in Figures 4.1a and 4.1b with dotted lines) obviously has two 
points of discontinuity, at x = 0.25 and x = 0.75. After modifying the Fourier coefficients 
of the original signal f(x) by setting high frequency coefficients to zero while keeping the 
low frequency coefficients unchanged (which is equivalent to filtering f(x) with the ideal 
low-pass filter) and doing inverse Fourier transform with such modified Fourier coefficients, 
the modified signal fi(x) is obtained. The signal fi(x) is shown in Figure 4.1a with full 
line. The oscillating error effects of the original signal discontinuities, at points x = 0.25 
and x = 0.75, are clearly seen in Figure 4.1a. This error is called Gibbs phenomenon. 

1 
0.8 

0.6 

0.4 

0.2 
o 

I 1 1 1 1 1 1 1 1 

(a)-

- ^ 
1 1 1 

|Vw^—-~-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.1: Traditional illustration of Gibbs effect in Fourier analysis (a) and its reduction 
achieved by using Lanczos filter (b). 

Various methods for reducing and eliminating the Gibbs phenomenon are presented 
in [41] and its references. One of the proposed methods is based on the Lanczos filtering. 
In this method, the modified signal fi(x) (a signal obtained by setting high frequency 
Fourier coefficients of the original discontinuous signal f(x) to zero) is further filtered 
with a Lanczos filter. The Lanczos filter is a low-pass filter whose frequency response is 
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denned by the sinc(u) function in frequency domain. More details on Lanczos filter, shape 
of its magnitude response, and its use in this work are given in Section 4.3. The original 
signal f{x) and modified signal filtered with Lanczos filter fi(x) are given in Figure 4.1b. 
By comparing the signals f\(x) and fi(x) given in Figures 4.1a and 4.1b respectively, it can 
clearly be seen that Lanczos filter has substantially reduced overshoots and undershoots 
around points of discontinuity x = 0.25 and x = 0.75. 

Paper machine CD controllers act as spatial and temporal low-pass filters and the paper 
sheet edges can be understood as the points of discontinuity. Taking this into account, the 
analogy between the Gibbs phenomenon (briefly illustrated above) and spatial filtering as 
realized by CD controllers around the edges can be observed. As mentioned earlier, paper 
machine CD control systems exhibit overshoots and undershoots when implemented near 
the sheet edges, which is also in accordance with the Gibbs phenomenon. 

4 . 2 C D C o n t r o l M o d i f i c a t i o n s N e a r t h e B o u n d a r i e s 
As pointed out in Section 2.2, two-dimensional loop shaping technique [62, 66] typically 
produces a controller K(z) in (2.12) with the periodic boundary conditions (2.18) and 
coefficients d > 0. Theorem 2 states that, in such a case, replacing the periodic boundary 
conditions with the corresponding Dirichlet boundary conditions, will not destabilize the 
controller. 

Theorem 2 The controller K(z) given with (2.12)-(2.15) is stable with Cd = T(c, n) 
and Dd = T(d,n) if K(z) is stable with Cc — C(c,n) and Dc = C(d,n) and d > 0 with 

d„j = dj for j = 1, • • • ,ld-

Proof. A necessary and sufficient condition for controller stability (marginal stability) is 
that all the eigenvalues of D in (2.12) are in the open (closed) unit circle. The spectral ra­
dius of the matrix corresponding to periodic BCs is given as [36]: p(Dc) = <io + X3 p =i — 

1. The eigenvalues of the equivalent Toeplitz symmetric matrix Dd (corresponding to 
Dirichlet BCs) are bounded [36] by a function: 

/ ( A ) = d0 + J22dPcos(Px)> AG [0 ,2TT) 
P=I 

Finally, p(Dd) <d0 + £'d

=1 2dp = p(Dc) < 1.0 
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Consider further modifying the boundary conditions of Dd in Theorem 2 by multiplying 
it by a real nx n matrix, 

Df = F • Dd F = (4.2) 

where f\ and f2 are each n/ x nf real constant matrices and I is the identity matrix of 
order n — 2-nf. Note that each of the matrices Df, Dd, and Dc has elements defined by 
(2.14), the only difference being those elements 6dij in the first and last no\ = nf rows 
that define the implicit boundary layer. 

The proposed design of the matrices fi and f2 in (4.2) is inspired by research on 
the Gibbs phenomenon. To mitigate the effect of the Gibbs ripples, a straightforward 
technique is to locally filter the jump discontinuities for smoothness. 

Approximating a function by a truncated Fourier series is equivalent to performing a 
convolution of the function with an ideal low pass filter (usually referred to as a 'sine' 
function). However, overshoot and undershoot are not limited to sine functions and may 
occur in other types of non-ideal filtering. 

Thus we propose to design the matrices f\ and f2 in (4.2) to provide local low-pass 
filtering that mitigates the effect of the transition induced by the implicit boundary con­
ditions. The following Theorem provides a conservative result for directing the design of 
the matrices f\ and f2 in (4.2) such that controller stability is preserved. 

Theorem 3 If the controller K(z) given with (2.12)-(2.15) is stable with Cd = T(c,n) 

and Dd = T(d,n) (with d_j = dj for j = 1, • • • ,ld) then it is stable with Df = F • Dd, if 

&(F) < 1; where a(F) is the maximum singular value of F. 

Proof. For the symmetric matrix Dd we have 

p(FDd) < o(FDd) < a(F)a{Dd) = a(F)p(Dd) < 1 

where the final inequality is implied by stability of K(z) with D = Dd.() 

Note that for the block-diagonal matrix F in (4.2), we need only to ensure that <T(/I) < 

1 and ^(fi) < 1 for the nf x nf matrices to satisfy Theorem 3. This can lead to a much 
easier calculation if nf <C n. This is fortunate since the number of actuators is potentially 
as large as n = 300 for some cross-directional control systems. 

It is not difficult to see from (4.2) and (2.20) that the above proposed modifications 
can be represented with the controller matrices' additive perturbations 8C and 6D in 
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(2.21)-(2.22) denned as, 

6C = -AC, 

5D = -AD + (F - I) • Dd, (4.3) 

where AC and A D are the 'ears' of the controller circulant symmetric matrices, defined 
in (2.20), matrix F € 5f n x n as given in (4.2), and Dd a controller's matrix (spatial filter) 
D in (2.12), corresponding to Dirichlet boundary conditions. 

The next section contains an example where a standard finite impulse response (FIR) 
filter is used in the design of fc and fc in (4.2) to modify the spatial boundary conditions 
of a cross-directional controller K(z) in (2.12). 

4 . 3 Simulation Example 

4.3.1 Edge Filter Design 

Based on the techniques used for the reduction and elimination of the Gibbs phenomenon 
presented in [41], and the theorems given in Section 4.2, a modification of CD controller 
boundary conditions is proposed. Modifying the control law includes smoothing the con­
trol signal around paper machine edges with a low-pass filter computed based on the 
techniques presented in [41]. As will be shown below, the proposed control law modifica­
tions preserve controller stability while also maintaining closed-loop stability. Controller 
stability is proved using Theorem 3 in Section 4.2, and closed loop stability is checked and 
confirmed. It will also be shown that in contrast to the original (unmodified) control law 
(computed implementing reflection edge padding, as defined in Section 2.1), the actuator 
array obtained with a modified control law does not contain high spatial frequency con­
tent. The gradual development and buildup of the high spatial frequency content in the 
actuator array often leads to control system instability in CD control applications. 

The smoothing filter, proposed here, is based on the Lanczos filters [41], used for the 
reduction of Gibbs phenomenon exhibited in truncated Fourier series. The original Fourier 
series of a signal f(x), with discontinuities, is given as: 

n 

(4.4) 
fc=i 

where ak and bk are the Fourier coefficients of the signal, and is modified as: 

n 
sin(/c7r/n) 

fn(x) = a0 + ̂ 2 kir/n [ak cos(kx) + bk sin(fcx)] (4.5) 

fc=i 
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The factor Cfc = s ' ° | * " ^ in (4.5) has a smoothing influence on the Fourier series repre­
sentation [41] and reduces the Gibbs effect exhibited at signal discontinuities. This was 
illustrated in Section 4.1 with the example shown in Figures 4.1a and 4.1b. It is also inter­
esting to notice that the filter (k can be cascaded for even better convergence of the series 
(i.e. smaller overshoots and undershoots around discontinuities). However, in that case, 
the transition of such a representation from one level to the other around discontinuity is 
less sharp [41]. Using this factor m times simply means using £™ instead of £fc in (4.5). 
In the example shown in Figures 4.1a and 4.1b, in Section 4.1, Q was used. 

A finite impulse response (FIR) digital filter that is equivalent to the above Lanc­
zos filter with a smoothing factor has been designed using M A T L A B function firls 
[47]. Based on the Lanczos filter used for the Fourier series in [41] and shown in (4.5), 
the target and achieved (using the above mentioned M A T L A B function) frequency re­
sponses are shown in Figure 4.2. The frequency response, shown in Figure 4.2 with 

,1 1 !_ , , , C 
0 0.5 1 1.5 2 2.5 3 

Normal ized f requency 

Figure 4.2: Desired (full line) and achieved (dotted line) frequency responses 

dotted line, is the least square approximation to the Lanczos filter and has been ob­
tained with a symmetric fourth order FIR filter whose impulse response coefficients are 
[h0,h1,h2,h3,h4\ = [ho,huh2,hitho] = [-0.0306,0.2149,0.6148,0.2149,-0.0306]. Based 
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on this, the edge filtering matrix H is defined as follows: 

h2 h h0 
0 0 0 0 . . 0 0 

h h2 
h0 0 0 0 . . 0 0 

h0 h2 
h h0 0 0 . . 0 0 

0 h0 hi h2 h h0 0 . . 0 0 
0 0 0 0 1 0 0 . . 0 0 
0 0 0 0 0 1 0 . . 0 0 
0 0 0 0 0 0 1 . . 0 0 

0 0 . . 1 0 0 0 0 0 0 
0 0 . . 0 1 0 0 0 0 0 
0 0 . . 0 0 1 0 0 0 0 
0 0 . . 0 h0 h h2 hi h0 0 
0 0 . . 0 0 h0 hr h2 

hi h0 

0 0 . . 0 0 0 h0 hi h2 hi 

0 0 . . 0 0 0 0 h0 hi h2 

Hi 

Ho 

(4.6) 

which can be written in a block diagonal form as H = diag(Hi,I, H 2 ) . It is important to 
notice that in order to obtain a block-diagonal structure, in addition to the matrix rows 
on which edge filtering is being implemented, two additional rows (because there are two 
non-zero off-diagonal elements in H i and H 2 ) are being included in blocks H i and H 2 . 
Also, the block H 2 is obtained just by flipping the block H i twice, first its rows and then 
its columns. 

4.3.2 Closed-Loop Simulations 
The process model and feedback controller, used in this chapter, were obtained from an 
industrial paper machine. This particular system was described in detail in [64]. An 
array of n = 54 slice lip actuators is used to control the basis weight profile of a sheet of 
light weight 'telephone directory grade' paper. The parameters of the process model in 
(2.10)—(2.11) were identified using software described in [30, 32] as It — 7 and 

{bQ, h , b 7 } = {0.0713, 0.0337, -0.0167/-0.0200, -0.0050,0.0006,0.0005,0.0001} 

a0 = 0.8311 , d = 3 

The feedback controller K(z) in (2.12)—(2.15) is designed using the two-dimensional loop 
shaping technique [62, 66]. We first replace the Dirichlet boundary conditions of the 
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Coeffs. Sdij in (2.14) with nd = 3 and reflective BCs 
5du = d0 + 2(da + d2 + d3) 8d12 = 0 Sd13 = 0 
8d2i = d1 + 2(d2 + d3) Sd22 = do - d2 8d23 = di - d3 

8d3X = d2 + 2d3 8d32 — di — dz 8d33 = 0 

Table 4.1: Boundary layer coefficients of the controller matrix D in case of reflective 
boundary conditions and d = [do, • • •. , d3], d_j = dj for j = 1,2,3. 

process Bd = T(b, 54), with a model using periodic boundary conditions Bc = C(b, 54), 
then the controller matrices Cc — C(c, 54) and Dc = C(d, 54) with lc — 5 and ld = 3 with 

{c 0 ,c a , ...,c5} 

{d0,di,d2,d3} 

{-10.4708, -3.5297,1.4841, -0.0042,0.0017,0.0006} 

{0.9860, 0.0046,0.0020,0.0004} 

The parameters of the Dahlin controller c(z) in (2.12) are also produced by the design, 
but are not central to the spatial boundary condition issue and may be found in [64]. 

The current industrial practice for modifying the controller coefficients is to replace 
the periodic boundary conditions with reflection conditions as given in Table 4.1. 

The proposed design technique involves first replacing the periodic boundary conditions 
with Dirichlet conditions D = T(d, 54), according to Theorem 2. Next, a matrix F in 
(4.2) is designed for further modification of the control near the sheet edges. As discussed 
earlier, the submatrices fi and f2 in (4.2) are synthesized based on a finite impulse response 
(FIR) digital filter, computed as an approximation to the Lanczos filter. The resulting 
symmetric fourth order FIR filter has impulse response coefficients [8f2,8fi,8f0,8fi,8f2] — 
[-0.0306,0.2149,0.6148,0.2149,-0.0306]. The matrices fi and f2 with nf = 5, in (4.2), 
are then given by: 

fi = 0.9595 • 

Sfo 5fi 8f2 0 0 
Sfi 5fo Sfi 8f2 0 
Sf2 Sfi 8f0 8fi 8f2 

0 0 0 1 0 
0 0 0 0 1 

f2 = 0.9595 • 

1 0 0 0 0 
0 1 0 0 0 

5f2 8fi 5fQ 5fi 5f2 

0 8f2 8fi Sf0 8fi 

. 0 0 8f2 5fi 5f0_ 

(4.7) 

The coefficient 0.9595 in (4.7) has been introduced in order to satisfy the requirement of 
Theorem 3 (a(F) < 1). As a result, the stability of the controller with the matrix Df as 
defined in (4.2)-(4.7) is guaranteed by Theorem 3. 

Although the proposed design is mainly concerned with stability of the controller, 
we will present simulation results of the closed-loop behaviour. In order to compare the 
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1.5 

0 5 10 15 20 25 30 35 40 45 50 
Cross-direction 

Figure 4.3: Process output disturbance (at zero temporal frequency to = 0). 

standard industrial approach with the proposed design, closed-loop simulations have been 
performed with the steady state process output disturbance, d(z) in (2.9), as shown in 
Figure 4.3. The disturbance has been constructed to allow comparison of the closed-loop 
performance at the sheet edges and also away from the spatial boundaries. The same 
localized disturbance is introduced at the edge and also near the middle of the sheet, as 
illustrated in Figure 4.3. 

The closed loop simulation results are shown in Figures 4.4 and 4.5. Figure 4.4 i l ­
lustrates the closed-loop steady state process output and actuator profiles obtained with 
controller K(z) using the reflection boundary conditions given in Table 4.1. It can be seen 
that control signal at the edges has significant high frequency content with maximum and 
minimum values varying between -4.85 and 4.4. At the same time, the control signal away 
from the edges has significantly smaller high frequency component with the maximum and 
minimum values varying between -2.1 and 2.1. Such actuator profile at the edges would 
be unacceptable in real life paper machine CD control systems. 

In Figure 4.5, the steady state values of the process output and control signal are 
shown in case when the controller using Df matrix, in (4.2)-(4.7), is used. Compared 
with the results achieved using reflective boundary conditions, the control is significantly 
less active at the sheet edges while, as expected, the performance away from the edges is 
unchanged. From Figure 4.5, it can be seen that the proposed control modifications at the 
edges result in the less active (more conservative) control than the control away from the 
edges. Figure 4.4 illustrates that the control designed with reflective boundary conditions 
is more active at the sheet edges, indicating a reduced robust stability margin compared 
to the original design. However, the obtained control signal at the edges is significantly 
more acceptable than the signal obtained using the current industrial practice (see Table 
4.2 below). At the end of this chapter, the approach to modifying CD control law near 
spatial domain boundaries developed in Chapter 3 is briefly revisited. As pointed out 
earlier, the approach to modifying CD control developed in Chapter 3 (detailed in Section 
3.4) guarantees only the resulting system closed-loop stability. However, for comparison 
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Figure 4.4: Steady state process output and actuator array in case of the reflective bound­
ary conditions in Table 4.1. 
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Figure 4.5: Steady state process output and actuator array when the controller with 
matrix Df, given with (4.2) and (4.7), is used. 
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Figure 4.6: Steady state process output and actuator array when the approach presented 
in Chapter 3 (controller with the structure illustrated in Figure 3.5) is used. 

reasons, closed-loop simulations with the process and controller parameters given above 
and the controller structure illustrated in Figure 3.5 (based on Theorem 1) are shown in 
Figure 4.6. As expected, given controller's circulant symmetric matrices Cc and D c , a 
non-zero disturbance near only one edge (Figure 4.3), results in non-zero control signal at 
the both edges. This would, of course, be unacceptable in the industrial setting. 

Finally, the results obtained with all three approaches (current industrial practice and 
the approaches from Chapters 3 and this chapter) are summarized in Table 4.2. 

Current 
technique 

(Reflection padding) 

S T T 
approach 
(Chapter 3) 

Open-loop 
approach 
(Chapter 4) 

Process output \\y\\2 2.5297 2.5772 2.6928 
Actuator array \\u\\2 8.9678 6.0388 4.47 
Output y and control 
signal u near left edge 
l | y ( i : io) | | 2 

1.7629 1.8244 1.9899 
| K 1 : 10)||2 7.8876 3.9402 1.3327 

Table 4.2: 2-norms of the steady-state process output and control signal profiles shown in 
Figures 4.4 - 4.6. 
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4.4 Summary 
In this chapter, a novel technique for modifying CD controllers near spatial domain bound­
aries, based on the method for mitigating the well-known Gibbs effect, has been developed. 
A closed-loop simulation example has also been presented at the end of the chapter, where 
the new approaches (developed in Chapters 3 and 4) to modifying CD control law near 
the sheet edges have been compared against the existing industrial practice. 

Considering that CD controllers are spatial (and temporal) low-pass filters and that 
paper sheet edges represent clear spatial domain discontinuities, the observed similarities 
between the effects occurring in CD control systems near the edges and the well-studied 
Gibbs phenomenon are no surprise. Based on a Lanczos filter, used for mitigating the 
Gibbs effect, a CD controller stability-guaranteeing modification technique has been de­
veloped. While, the proposed technique does not alter the structure/complexity of the 
industrial CD controller (the first requirement in Chapter 2), the closed-loop performance 
and robustness requirements are not directly considered with this approach. 



Chapter 5 

Closed-Loop Approach to CD Controller 
Modifications 

In this chapter, a method for modifying the existing industrial paper machine CD control 
law is presented directly taking into account all of the requirements from Section 2.3. 
The proposed modifications to the existing controller's static matrices (requirement 1 in 
Section 2.3), and the resulting closed-loop system stability, performance, and robustness 
(requirements 2-4 in Section 2.3) are directly and systematically considered with this 
approach. 

There are a few important observations that should be made about the problem defined 
in Section 2.3 and illustrated in Figure 2.7. Since the desired compensator E is a (block-
diagonal) static matrix, the problem is a static output feedback (SOF) design problem. 
While such a problem is very easy to state, a wide variety of SOF problems are still 
unsolved and represent a significant design challenge (see [69] and references therein). In 
this work the design of 5D and SC in Figure 2.7 will be performed sequentially as it is 
very difficult to design a static output feedback compensator E with the additional block-
diagonal structure constraint. A low-bandwidth static output feedback controller design 
algorithm, used for computing 5D and 5C, is outlined in Section 5.1. 

The generalized plant P(z), in Figure 2.7, consists of the CD control system closed-
loop transfer functions. Considering the CD control system size (the number of actuators 
30 < n < 300), and high-order dynamics introduced by the process delay d in (2.10) 
and Dahlin compensator c(z) in (2.12), the number of states included in these closed-
loop functions can easily be of the order ~10 3. This renders implementation of most of 
the existing controller design algorithms, including the efficient one presented in Section 
5.1, practically intractable. However, knowing that the desired controller modifications 
(2.21)-(2.22) are localized to a small fraction of the total matrices, the order of the re­
sulting generalized plants used for computing modifications 5C and 5D can be reduced 
significantly, as detailed in Section 5.2. 

Implementation of the low-bandwidth static output feedback (SOF) compensator de­
sign algorithm, to be presented in Section 5.1, presumes stable systems. Based on numer­
ous simulation and industrial data, replacing the process and controller circulant symmet­
ric matrices with the corresponding Toeplitz symmetric matrices (which is the first step 
of the computation of CD controller modifications procedure, presented in Section 5.2) 

57 
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typically results in closed-loop stable systems. This is not surprising considering that the 
original (spatially-invariant) controllers are obtained by the two-dimensional loop shaping 
technique, in which system robustness, with respect to the unstructured process additive 
perturbations, is a requirement [65, 66]. However, if the closed-loop system, with pro­
cess and controller Toeplitz symmetric matrices, happens to be unstable (very rarely), a 
stabilization algorithm, outlined in Section 5.4, has to be implemented. 

In preparation for an industrial trial, the simulation studies, presented in Section 5.3, 
were carried out using the Honeywell hardware-in-the-loop paper machine simulator and 
the industrial identification and controller tuning software detailed in [32, 65]. Newly 
developed Matlab prototype software, based on the approach presented in this chapter, 
was used for computing CD control law modifications 5D and SC in Figure 2.7. The 
results obtained with the new approach are subsequently compared against the existing 
industrial practice. 

A novel static output feedback compensator design algorithm, used for computing CD 
controllers modifications in Sections 5.2-5.4, is detailed in Section 5.1. The algorithm is 
presented in full generality, independent of CD control problem. However, in order to 
address performance and robustness conditions (requirements (3) and (4) in Section 2.3), 
a generalized plant N(z) with two exogenous outputs, wa(z) for performance and Wb(z) 
for robustness, is considered in Section 5.1, as illustrated in Figure 5.1. Transfer functions 
that make up the generalized plant N(z) will be made explicit in Sections 5.2-5.4. 

Figure 5.1: Diagram of the lower linear fractional transformation J-~i(N, K). 

5 . 1 Static Output Feedback (SOF) Controller Syn­
thesis 

The static output feedback problem considers the linear, time-invariant plant 

x(k + 1) = A0x(k) + B0u(k), y(k) = C0x(k) + DQu{k) (5.1) 
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with the controller 
u(k) = K0y(k) (5.2) 

where KQ is a constant matrix of appropriate dimensions. In general, the SOF problem 
is concerned with designing KQ such that various closed-loop properties of the control 
system given by (5.1)—(5.2) are satisfied [69]. 

In this work, we are concerned with a stable, finite-dimensional generalized plant N(z): 

N(z) = 
'Nn(z) N12(z) 
N21(z) N22(z) 
N31(z) N32{z) 

(5.3) 

illustrated in Figure 5.1. The signal d(z) represents the exogenous input into the control 
system, wa(z) and Wb(z) represent the exogenous outputs, y(z) represents the feedback 
signal, and u(z) represents the control signal. 

Let the generalized plants Na(z) and Nb(z) be defined as, 

Na(z) = 
Nu(z) N12(z) 
N3l(z) N32(z) 

Nb(z) = 
N21(z) . N22(z) 
N31{z) N32(z) 

(5.4) 

then the input-output transfer functions, d(z) —> wa(z) and d(z) —> wb(z), are given by 
lower linear fractional transformations (LFTs): 

Tt(Na(z),K(z)) = 7V11(z) + 7V 1 2(z)^(z)(/-iV3 2(z)^(z))- 17V3i(z) 

^(Nb{z),K(z)) = N ^ + N^Kiz^I-N^Kiz))-1^^) (5.5) 

Our objective is to design a compensator such that: 

(a) the controller K(z) = KQ is a static matrix, 

(b) the feedback system in Figure 5.1, with K(z) = KQ is stable, 

(c) the compensator improves the closed-loop performance as measured by the Frobenius 
norm, 

\mNa{en,Ko)\\F < \\Tt(Na(en,0)\\F, V \u\ < ujb, (5.6) 

for some tob > 0, 

(d) the performance at higher frequencies is not overly degraded. In other words, a 
constraint, 

\\HNb(z), KQ) < 1, (5.7) 

is satisfied. 



Chapter 5. Closed-Loop Approach to CD Controller Modifications 60 

It can be seen that the above requirements (a)-(b) completely correspond to the require­
ments (l)-(2) in Section 2.3. Also, the requirement (c) above is closely related to the 
requirement (3), as the Frobenius norm is equal to the sum of all singular values [5, 58]: 

WH\\F = /El^l 2 = JY,°l(H), (5-8) 

where hij indicates the element in the ith row and jth column, and Ofc(-) denotes the kth 

singular value. 
Since N(z) in (5.3) is stable, the internal stability of the closed-loop system in Figure 

5.1 is equivalent to the input-output stability of K(z)(I — N32(z)K(z))~x in (5.5). We 
can then write down the familiar parametrization of stabilizing controllers K(z) for the 
feedback system in Figure 5.1, 

K(z) = Q(z)(I + N32(z)Q(z))-1 (5.9) 

for stable Q(z) (see for example [76]), leading to the convenient form of the LFTs in (5.5), 

Ti(Na(z),K(z)) = Nu(z) + N12(z)Q(z)N31{z) (5.10) 

^(Nb(z),K(z)) = N21(z) + N22(z)Q(z)N31(z) (5.11) 

Consider the low-frequency requirement on the Frobenius norm in (5.6). Using (5.10) 
we can write the LFT at steady-state (LU = 0), 

HNatf0), K{ei°)) = Nn(e>°) + N12(e>°) • Q(e>°) • N ^ 0 ) (5.12) 

Now consider the following optimization problem motivated by (5.12), 

Q0 = argmmJ(iV a(e i 0),^,Q) 

J(Na(e>°),PiQ) = ||A^n(eJ'°) + iV 1 2 (^ 0 ) .g -7V3 1 (e^) | | ; + p | |Q | | F (5.13) 

A closed-form solution to this optimization problem for a real static matrix Q0 is given 
in Appendix B. Subsequently, the resulting Qo from (5.13) is used to form the static 
controller KQ (requirement (a) above), 

K0 = Q0(I + Nviet^Qo)-1 (5.14) 

The first term in optimization (5.13) is intended to address the above specified perfor­
mance requirement (5.6), while the second term is intended to limit the magnitude of the 
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synthesized matrix Q0. Allowing the optimization weight p —> 0 in (5.13) would produce 
the static matrix K0 in (5.14) such that the matrix norm \\Fi(Na(ej0), i^o)||f is globally 
minimized. 

The conditions on p and generalized plant N(z), such that the stability condition (b) 
and the dynamical condition (d) above are satisfied, are determined by Theorem 4 below. 

Theorem 4 (Stability and Full Bandwidth Performance Limit) If N(z) in (5.3) 
is stable, a(Fi(Nb(ejuJ), 0)) < 1 for all LO, and p > (5 in (5.13) where 

fi=Vw^ • 5(A'i2(eJ 0))<>(Af3,(eJ 0))5(A'1 1(e*0))^ 

{ | | ^ M - W a ( ^ ) | | . + " ^ » - J ^ W » - } (5.15) 

with the integers r\2 and r 3 1 denoting the number of nonzero singular values of iV^e-?0) 

and iV 3 1 (e j 0 ) ; respectively. Then KQ synthesized from (5.13)-(5.14) stabilizes the feedback 

system in Figure 5.1 and 

a{Fi'Nb{e?u\KQ)) < 1, for all co (5.16) 

where a(-) denotes the maximum singular value. 

Proof. Given in Appendix C. 
Note that since 1 > \\Fi(Nb(z), 0)11̂  = | | A ^ i ( - 2 ) | | 0 0 in Theorem 4, the denominator in 

(5.15) is always greater than 0. 
The closed-loop performance improvement, as defined in (5.6), with the CD controller 

designed using the above outlined algorithm is guaranteed by Theorem 5. 

Theorem 5 (Low Frequency Performance Improvement) If N(z) in (5.3) is stable, 
then for any KQ 7̂  0 constructed from (5.13)-(5.14) that stabilizes the system in Figure 

5.1, there exists a frequency Ub > 0 such that 

• \\n'Na(e>u),K0)\\F< I I ^ A ^ e ^ O ) ^ (5.17) 

for all \ui\ < u>b-

Proof. Given in Appendix C. 
The value for the weight p in (5.13) is determined through bisection on p to produce a 

KQ in (5.14) such that the requirements (b)-(d) are successfully traded off, and is initialized 
with the value computed based on Theorem 4. Subsequently, the bisection continues as 
long as the stability and full bandwidth requirements are satisfied, and until the difference 
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between the two consecutive values of the weight p in (5.13) is smaller than some specified 
value of the tolerance e > 0. A more detailed outline of the static compensator synthesis 
algorithm is given in Section 5.1.1 below. 

5.1.1 Synthesis A l g o r i t h m 

The overall algorithm for determining the weight p in the optimization (5.13) and 
computing the corresponding static compensator K0, satisfying all the requirements 
(a)-(d) above, is given as follows: 

1. INITIALIZATION 
Set pi = 0 and specify tolerance e > 0. Based on Theorem 4, find ph > 0 that is 
guaranteed to satisfy the stability condition (b) and the performance condition (d). 

2. Set p = ph and compute the corresponding Qo and K0 based on (5.13) and (5.14) re­
spectively. (Theorems 4 and 5 guarantee that so computed compensator KQ satisfies 
all the requirements (a)-(d) above.) 

3. IF ph - pi < e GOTO STEP 7. 

4. Find p = £ h ^ £ i and compute the corresponding Q* and K* based on (5.13) and 
(5.14) respectively. 

5. (Verifying conditions (b) and (d) for the system with the above computed compen­
sator K*). 
IF either one of the requirements (b) and (d) is not satisfied THEN set pi = p and 
GOTO STEP 3. 

6. Set KQ = K* and ph = p. 

GOTO STEP 3. 

7. END 

The above algorithm converges to a non-zero K0 satisfying all the requirements (a)-(d) 
above, for every tolerance e > 0. 

5.2 Computation of CD Controller Modifications 

The process spatial invariance assumption, given with (2.17), significantly facilitates CD 
controller design and is central to the two-dimensional loop shaping technique [66]. How­
ever, the implementation of the controller with circulant symmetric matrices in (2.18) 
would mean a computation of the control signal near one paper machine edge based on 
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the measurements and previous control signal near the other edge (for a typical paper ma­
chine that is between 3 and 11 metres away). This is clearly unwarranted considering that 
the actual process model (2.10) is characterized by actuators with a localized response on 
the paper sheet. As a result, the first step in the proposed CD controller modification is 
a replacement of the initially computed spatially-invariant (circulant) controller matrices 
Cc and Dc in (2.18) with their corresponding Toeplitz symmetric matrices. Next, the final 
controller modifications are computed using the SOF algorithm, presented in Section 5.1, 
in turn on the SD and SC matrices in Figures 2.6 and 2.7. Since the SOF algorithm 
presumes stable systems, the closed-loop stability of the system with Toeplitz symmetric 
process and controller models, is assumed. Based on numerous industrial data, as well 
as simulation studies, this is not a restrictive assumption and is only violated in certain 
pathological examples. However, if the system with Toeplitz symmetric process and con­
troller models is not stable, then a stabilization procedure is required. Such a stabilization 
procedure is presented in Section 5.4. 

Based on the above, the overall algorithm for computing CD controller modi­
fications SC and SD is given as follows: • •• . 

1. Replace the controller circulant symmetric matrices Cc and Dc in (2.18) with their 
corresponding Toeplitz symmetric matrices Cd and Dd, respectively, and check sta­
bility of the resulting closed-loop system. 

2. IF Toeplitz system is stable GOTO 4. 

3. (Rarely required) Use the stabilization procedure given in Section 5.4. 

4. Compute SC and SD modifications (for performance) as detailed in Sections 5.2.1-
5.2.2. 

5. END. 

Since the two edges of the paper machine are modelled to be identical, it is enough to 
retune the controller at one edge only, e.g. upper left corners of the matrices SC and SD. 
Subsequently, the corresponding modifications at the other edge can easily be found by 
symmetry arguments. 

5.2.1 Modi f i ca t ions N e a r One Sheet Edge ( C e and De) 

Factoring out of the control system inputs and outputs near one edge, based on the closed-
loop system in Figure 2.7, is performed with rectangular weights Wi, i = 1,2,... ,7, as 
illustrated in Figure 5.2. 
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PJz) 

Figure 5.2: Isolating system inputs/outputs near one edge. 

The rectangular weighting matrices i = 2, 3, 4, 5 are defined as: 

W2 = [ I n o i O n D i x ( n - n D i ) ] i ^ 3 = [If ici ®nC\ X ( n - n c i ) ] ) 

W4 = [I„y O n ! / X ( n - n y ) ] , 

n c i x n 

^ 5 [In„ 0 n u X ( n — n u ) ] , (5.18) 

and the rectangular weighting matrices Wi, i = 1,6, 7: 

wx = 
P(n-nd)xnd_ 

, w6 = I n D 2 

P(n-nD2)xnD2_ 

, w7 = InC2 

P(n-nC2)xnc2_ 

nxn<i nxn.02 nxnc2 

(5.19) 

The matrices W2, W3, W7 are used to convert the matrix sub-block design into a 
full-block design problem, as illustrated in Figure 5.3. From (5.18)—(5.19) and Figure 5.3, 
it can be seen that the elements are given by: 

[De]ij = Sdij, 1 < i < n m and 1 < j < nD2, 

[Celtj = Scij, 1 < i < nCi and 1 < j < nC2, (5.20) 

where Scij and Sd^ are the same as those elements in (2.21)-(2.22). In other words, 
Ce € TZnciXnc2 and De £ fcnmXn°2 are the non-zero, upper-left elements of the matrices 
5C and SD in (2.21)-(2.22), respectively. 

The matrices W i , W 4 , W 5 , on the other hand, are used to isolate the sheet edges for 
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w6> 5D -+ W2

T 4 
M w6> 5D W2

T 

M 

SC W3

T SC W3

T 

Figure 5.3: Transforming a sub-block into a full-block design problem. 

consideration in the performance design. Al l the closed-loop transfer functions that define 
Pe(z) in Figure 5.2 are given in Appendix D. 

However, elimination of inputs/outputs with the matrices Wi,i = 1,2,... ,7 does not 
necessarily reduce the number of states of the corresponding closed-loop transfer functions. 
As a result, the order of the transfer matrix Pe(z) in Figure 5.2, in typical CD control 
systems, can easily reach into the thousands. Fortunately, most of these states have very 
little impact on input/output behavior of the corresponding closed-loop transfer functions. 
This is the case because many of the states are mainly related to the inputs/outputs located 
in the middle of the sheet and other machine edge, i.e. those inputs/outputs that were 
eliminated with the rectangular weights Wj. 

The (in)significance of the states, in terms of the corresponding transfer function in­
put/output behavior, can be quantified using Hankel singular values [2, 5, 26, 58, 76]. For 
example, in the case of the system to be presented in Section 5.3, out of 144 Hankel singu­
lar values of the closed-loop transfer function Px : de —> ye, 80 are smaller than 2.2 -10~ 1 6, 
105 smaller than 10 - 9 , and 125 smaller than 10 - 3 (as illustrated in Figure 5.4). Such a 
rapid decrease of the Hankel singular values is quite representative of these systems and 
not surprising, considering the localized nature of the CD processes and controllers. 

The order reduction procedure, based on Hankel singular values, has two important 
characteristics [4, 5]: 

1. Stability preservation (stability of Pe(z) implies stability of Pr(z)), 

2. An apriori computable upper bound of the approximation error Ji^ norm: 

||Pe(,z) — P r (z)| |oo < 2 * y^^discarded Hankel singular values) (5-21) 
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Figure 5.4: Illustration of the rapid decrease of the Hankel singular values of the closed-
loop transfer functions that define a generalized plant Pe(z) in Figure 5.2: Hankel singular 
values of Pi : de —> ye for the CD control system presented in Section 5.3. 

5.2.2 Computation of Ce and De 

Based on the diagram given in Figure 5.2, the linear fractional transformations (LFT's) for 
computing modifications Ce and De in Figure 5.3 can be defined. They are presented in 
Figures 5.5a and 5.5b. The design of Ce and De is performed by alternately synthesizing 
one matrix component while holding the other fixed, as detailed below. The synthesis 
procedure is the low-bandwidth procedure of Section 5.1. 

(a) (b) 

Pc(z) PJz) 

Figure 5.5: Linear fractional transformations for computing (a) Ce and (b) De modifica­
tions. 

The algorithm for computing Ce and De is given as follows: 
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1. Compute De by the use of the static compensator synthesis procedure in Section 
5.1.1, based on the linear fractional transformation given in Figure 5.5b. 

2. Based on (5.20), find the corresponding controller modification 5D in (2.22) and 
update the controller matrix D. 

3. Compute Ce by the use of the static compensator synthesis procedure in Section 
5.1.1, based on the linear fractional transformation given in Figure 5.5a. 

4. Based on (5.20), find the corresponding controller modification 5C in (2.21) and 
update the controller matrix C. 

It should be noticed here that this sequential static output feedback (SOF) controller 
design procedure does not increase the order of the resulting system Pe(z), unlike conven­
tional sequential decentralized control (see discussion and references in [39]). This is, of 
course, a consequence of the designed compensator being a static matrix at each iteration 
of the design and so does not contribute to the number of states. 

5.3 Hardware-In-The-Loop Simulator Example 

In preparation for testing the new technique on a real paper machine, the simulation 
studies presented in this section were carried out using the industrial identification and 
controller tuning software detailed in [32, 65] (residing on one computer), and a hardware-
in-the-loop simulator (residing on another computer), as illustrated in Figure 5.6. 

5. END. 

INDUSTRIAL 
IDENTIFICATION AND TUNING 

and 

Honeywell L A N 

t Honeywell L A N 

Figure 5.6: Schematic of the simulator trial setup. 

The industrial controller algorithm, implemented in the simulator, was modified to 
accommodate the control law changes according to Figure 2.6. The process simulator was 
set up with parameters to correspond to those of the actual paper machine on which the 
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real testing was afterwards carried out (Chapter 6). The simulator testing procedure was 
as follows. The open-loop 'bump test', with three actuators stepped up (down) for 150 
microns, was carried out for identification purposes. Process identification and controller 
tuning were performed using the industrial software presented in [32, 65]. Next, the 
design for various controller modifications De and Ce in Figure 5.5 was completed, and 
these parameters were transferred over the L A N into the correct database location for use 
by the industrial controller (the information flow between the Matlab prototype software 
and the industrial software packages is given in Figure 6.4 in Chapter 6). Finally, the 
performance of the resulting closed-loop systems was observed, recorded, and is presented 
below. This is the same procedure that was followed in a working paper mill (Chapter 6). 

5.3.1 Process and Con t ro l l e r Paramete rs 

The CD control system, presented below, describes an array of n = 36 slice lip actuators 
being used to control the paper sheet basis weight profile. More details about basis weight 
control using slice lip actuators were given in the Introduction. The parameters of the 
process model in (2.10)—(2.11) were identified using software described in [32] with the 
size of the matrix B band lb = 6 in (2.11) and 

{60, & i , . . . , b6} = 10~3 • {0.1652,0.2044,0.0789, -0.0382, -0.0169, -0.0009,0.0001} 

a 0 = 0.855, d = 2 (5.22) 

The feedback controller K(z) in (2.12) was designed using the standard two-dimensional 
loop shaping technique [65, 66]. First, the process Toeplitz symmetric matrix Bd in (2.11) 
is replaced with the corresponding circulant symmetric matrix Bc in (2.17), resulting in 
a (spatially-invariant) controller with circulant symmetric matrices (2.18). The controller 
parameters obtained had matrix band sizes lc = 4,Z<j = 1, with: 

{c0,Cl,C2,c3,c4} = {-0.2089,-0.2129,-0.0487,0.0856,0.0481} 

{d 0,di} = {0.9878,0.0061} (5.23) 

The tuning parameter a of the Dahlin controller c(z) in (2.12) was also produced by the 
two-dimensional loop shaping design, a = 0.8506. 

Subsequently, the initially computed circulant-symmetric controller matrices are re­
placed with the corresponding Toeplitz symmetric matrices. After confirming stability of 
the system with the process and controller Toeplitz symmetric matrices, the procedure 
for modifying CD control near the edges, presented in Section 5.2, can be implemented. 
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5.3.2 Controller Modifications and Closed-Loop Simulations 
The closed-loop simulations have been performed with the steady-state process output 
disturbance, d(z) in (2.9), as shown in Figure 5.7. Near one edge (left side), the disturbance 
has a significant high spatial frequency content, and near the other (right side), has a 
smoother appearance. The first type of disturbance very often leads to system instabilities 
in real life CD systems as the actuator array is trying to remove the uncontrollable (high 
frequency) modes of the process output disturbance. The second type of disturbance 
(introduced near the right edge) is usually successfully attenuated by the control systems. 

Cross -d i rec t i on 

Figure 5.7: Process output disturbance d (at zero temporal frequency u = 0). 

The closed-loop simulation results are shown in Figures 5.8-5.11, and summarized in 
Table 5.1. Figure 5.8 illustrates the closed-loop steady-state process output and actuator 
profile using the reflection padding (one of the techniques currently used in industry). It 
can be seen that, in spite of excessive control action near left edge, the process output 
profile is not particularly good, with maximum and minimum varying between 1.176 and 
-1.235. 

Simulation results, with the controller tuned in turn conservatively, balanced, and 
aggressively using the new approach presented in Sections 5.1 and 5.2, are given in Figures 
5.9 - 5.11. 

In all three cases, the sizes of the rectangular weights Wj, i = 1,..., 7 in (5.18)—(5.19) 
were chosen as, nci — 5 , n c 2 = 8, nm = 3,nr>2 = 8, nu = 8,n<2 = 8,ny = 8. The output 
vectors wa(z) and Wb(z) in Figure 5.1 were chosen as: 

wa(z) = [kP • y(z) u(z)]T, wb(z) = \ • u(z), (5.24) 
1 + kR 

where y(z) and u(z) are the process output and control signal respectively, and coefficients 
kp and k^ are the tuning variables. 
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Parameter kp is a closed-loop performance tuning variable, as it affects the gener­
alized plant iVQ in (5.6). The point of reference for kp is the inverse of the process 
maximum singular value at steady-state. For the CD process model given with (5.22), 
<T(G(eJ' 0)) = 00043

 = 232.56, where cf(-) denotes the maximum singular value. Variable 
kR, on the other hand, is a closed-loop robustness tuning variable, since it affects the 
generalized plant iVj, in (5.7). Parameter kp is determined considering a maximum al­
lowed performance degradation at higher frequencies (requirement (d) in Section 5.1). 
For example, a maximum allowed degradation of 10% corresponds to kp = 0.1. 

In the case of conservative tuning (Figure 5.9), the tuning variables kp and kp in 
(5.24) were chosen as kp = 300, = 0.2. The computed controller modifications 5C 
and SD are given with (5.25)-(5.26) respectively1. 

SC = 

0.01284 
-0.02690 
-0.05871 
-0.07497 
-0.04865 

0.01139 
0.02531 
0.02930 
0.06390 

-0.07756 

-0.02907 -0.03857 
0.06664 0.02755 
0.11821 
0.22949 
0.04778 

0.05045 
0.20296 
0.19367 

0.01151 
-0.00872 
-0.03373 
0.11884 
0.19066 

0.03860 
-0.05851 
-0.11619 

0.07592 0.06971 
-0.07427 -0.02425 
-0.15091 -0.05849 

-0.05596 -0.17865 -0.10772 
0.17263 0.03482 -0.07492 

(5.25) 

SD = 
-0.08934 -0.00653 0.01573 0.00946 -0.02752 
-0.05200 -0.04448 0.00710 0.02074 -0.01803 
0.00926 -0.01185 -0.06767 0.02585 0.01692 

-0.00943 0.01168 
-0.01664 0.00547 
-0.01097 -0.01788 

0.00885 
0.00188 

-0.00230J 
(5.26) 

The resulting upper left sections of the resulting control law matrices Cd+5C and Dd+SD, 
in the case of conservative tuning, are given in (5.27)-(5.28). 

Cd(l : nciA • nC2) + 5C = 
-0.19606 -0.20151 -0.07777 0.04703 0.05961 
-0.23980 -0.18359 -0.14626 -0.02115 0.07688 
-0.10741 -0.18360 -0.09069 -0.16245 -0.08243 
0.01063 0.01520 0.01659 -0.00594 -0.09406 

-0.00055 0.00804 -0.00092 -0.01923 -0.01824 

0.03860 0.07592 0.06971 
-0.01041 -0.07427 -0.02425 
-0.03059 -0.10281 -0.05849 
-0.10466 -0.09305 -0.05962 
-0.04027 -0.01388 0.01068 

(5.27) 

1 A l l the computed matrix modifications in this Chapter and Chapter 6 are given with the precision 
10 - 5, as that level of accuracy has been achieved in the communication link between the Matlab prototype 
software and the industrial software packages. 
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Dd(l : ri£)i, 1 : nm) + SD = 

' 0.89846 -0.00043 0.01573 0.00946 

-0.04590 0.94332 0.01320 0.02074 

0.00926 -0.00575 0.92013 0.03195 

-0.02752 -0.00943 0.01168 0.00885 

-0.01803 -0.01664 0.00547 0.00188 

0.01692 -0.01097 -0.01788 -0.00230. 

(5.28) 

In the case of balanced tuning (Figure 5.10), the tuning variables kp and kp, in 
(5.24) were chosen as kp = 1600, k^ = 0.2, and the computed controller modifications 
are given with (5.29)-(5.30). 

5C = 

0.01067 

-0.01959 

0.01019 

0.02468 

-0.01064 

-0.02047 

0.03168 

-0.02143 

-0.00089 

0.01550 

0.01566 

-0.02330 

0.02107 

-0.05615 

0.01087 

0.00062 

0.00434 

-0.00808 

0.05064 

-0.03997 

-0.00071 

-0.00675 

0.00353 

-0.02132 

0.04554 

-0.00375 

0.00885 

-0.00198 

-0.00315 

-0.02272 

-0.00422 

0.00482 

0.00041 

0.00791 

-0.00035 

0.01422 

-0.01655 

0.00169 

-0.00904 

0.00431 

(5.29) 

SD = 
0.00605 

-0.00448 
0.00050 

-0.00394 -0.00041 0.00139 -0.00233 0.00171 0.00080 

0.00721 -0.00421 -0.00348 0.00467 0.00016 -0.00390 

-0.00497 0.00906 -0.00781 0.00025 0.00459 -0.00274 

-0.00154 

-0.00085 

-0.00299. 

(5.30) 

The upper left sections of the resulting control law matrices Cd + SC and Dd + SD, in 
the case of balanced tuning, are given in (5.31)-(5.32). 

Cd(l: nc-i.1 :nC2)+5C = 

-0.19823 -0.23337 -0.03304 0.08622 0.04739 -0.00375 -0.00422 

-0.23249 -0.17722 -0.23620 -0.04436 0.07885 0.05695 0.00482 

-0.03851 -0.23433 -0.18783 -0.22098 -0.04517 0.08362 0.04851 

0.11028 -0.04959 -0.26905 -0.15826 -0.23422 -0.05185 0.09351 

0.03746 0.10110 -0.03783 -0.25287 -0.16336 -0.23562 -0.04905 

0.01422 

-0.01655 

0.00169 

0.03906 

0.08991 

(5.31) 
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Dd{l •• nDi, 1 : nm) + SD = 

"0.99385 0.00216 -0.00041 0.00139 
0.00162 0.99501 0.00189 -0.00348 
0.00050 0.00113 0.99686 -0.00171 

-0.00233 0.00171 0.00080 -0.00154 
0.00467 0.00016 -0.00390 -0.00085 
0.00025 0.00459 -0.00274 -0.00299. 

(5.32) 

Finally in the case of aggressive tuning, the tuning parameters kp and kp in (5.24) 
were chosen as kp = 2400, k^ = 0.5, and the computed controller modifications SC and 
SD are given with (5.33)-(5.34). 

SC-. 
0.00139 
0.09924 
0.14139 
0.36969 

-0.22865 

-0.09556 
-0.06312 
-0.08458 
-0.09298 
0.36187 

0.12427 
-0.26003 
-0.14097 
-0.65551 
0.15454 

-0.04591 
0.32070 
0.12526 
0.56045 

-0.50466 

0.01286 
-0.21818 
-0.09832 
-0.37441 
0.44304 

0.02910 
0.07590 
0.02563 
0.00775 

-0.25590 

0.00224 
0.07775 
0.10160 
0.29926 

-0.10725 

0.07400 
-0.21568 
-0.06081 
-0.18947 

0.28026 

(5.33) 

6D = 

0.00854 
-0.00493 
0.00013 

-0.00446 
0.00907 

-0.00532 

-0.00089 0.00142 
-0.00418 -0.00462 

-0.00233 0.00238 
0.00518 0.00051 

0.01133 -0.00892 -0.00022 0.00504 

0.00097 
-0.00436 

-0.00290 
-0.00067 

-0.00275 -0.00288J 
(5.34) 

The upper left sections of the resulting control law matrices Cd + SC and Dd + SD, in 
the case of aggressive tuning, are given in (5.35)-(5.36). 

Cd(l : nciA : nC2) + SC = 

-0.20751 -0.30846 0.07557 0.03969 
-0.11366 -0.27202 -0.47293 0.27200 
0.09269 -0.29748 -0.34987 -0.08764 
0.45529 -0.14168 -0.86841 0.35155 

-0.18055 0.44747 0.10584 -0.71756 

0.06096 
-0.13258 
-0.14702 

0.02910 
0.12400 
0.11123 

-0.58731 -0.04095 

0,00224 
0.07775 
0.14970 
0.38486 

0.23414 -0.46880 -0.15595 

0.07400 
-0.21568 
-0.06081 
-0.14137 

0.36586 

(5.35) 
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Figure 5.8: Steady-state process output (a) and control signal (b), using the current 
industrial technique - reflection padding. 

Dd{l •• nDi, 1 : nD2) + 5D = 

"0.99634 0.00164 -0.00089 0.00142 

0.00117 0.99687 0.00192 -0.00462 

0.00013 0.00078 0.99913 -0.00282 

-0.00233 0.00238 0.00097 -0.00290 

0.00518 0.00051 -0.00436 -0.00067 

-0.00022 0.00504 -0.00275 -0.00288. 

(5.36) 

It can be seen from Figures 5.9 - 5.11 and Table 5.1 that, by using the approach 
presented in Sections 5.1 and 5.2, a successful trade-off between performance (a flat CD 
profile) and the corresponding control signal magnitude, can be achieved. From Table 5.1, 
it can be noticed that in case of all three tunings based on the new approach, the output 
profile has been improved in comparison to the result achieved with the current industrial 
technique. Also, in the cases of conservative and balanced tunings, such a result has been 
achieved with less actuator usage. 
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Figure 5.9: Steady-state process output (a) and control signal (b), using the new technique 
- conservative tuning (kp = 300 and kp = 0.2 in (5.24)). 

10 15 20 25 30 35 

15 20 
C ross -d i r ec t i on 

Figure 5.10: Steady-state process output (a) and control signal (b), using the new tech­
nique - balanced tuning (kp = 1600 and kp = 0.2 in (5.24)). 
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Figure 5.11: Steady-state process output (a) and control signal (b), using the new tech­
nique - aggressive tuning (kp = 2400 and kR — 0.5 in (5.24)). 

Current industrial New 
technique technique 
Reflection Conservative Balanced Aggressive 
padding tuning: tuning: tuning: 

kP = 300 kP = 1600 kP = 2400 
kR = 0.2 kR = 0.2 kR = 0.5 

Process output [gsm] 1.9913 1.8305 1.4467 1.0577 
Control signal [microns] 3307 2376 2974 4436 

Table 5.1: 2-norm of the process output and control signal steady-state profiles shown in 
Figures 5.8 - 5.11. 
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5.4 Stabilization Procedure (Rarely Required) 

Modification of process and controller matrices from circulant into Toeplitz symmetric, 
as proposed in the overall algorithm presented in Section 5.2, clearly represents a one-
step elimination of the corresponding circulant matrices' 'ears' AC and AD in (2.20). As 
pointed out earlier, it has been established (based on numerous industrial and simulation 
data analyzed) that, except in some pathological cases, the resulting closed-loop systems 
with Toeplitz symmetric process and controller matrices are nominally stable. However, 
if that is not the gradual elimination of the circulant symmetric matrices' 'ears' 
AGc(z),AC, and A D in (2.19)-(2.20) is proposed. This is illustrated in Figure 5.12 with 
the parameter A 6 [0,1]: A = 0 corresponds to periodic boundary conditions (circulant 
symmetric process and controller models), and A = 1 corresponds to Dirichlet boundary 
conditions (Toeplitz symmetric process and controller models). Further controller mod­
ifications SC and SD in Figure 5.12, to be computed in accordance with the algorithm 
below, are defined with (2.21)-(2.22). 

The overall stabilization algorithm is given as follows: 

1. Find the maximum.value of A € [0,1] for which the system is closed-loop stable. 
IF A = 1 GOTO STEP 6. 

2. Based on the diagram in Figure 5.2, with Wi: i = 1,2,3,5,6,7 given with (5.18)— 
(5.19) and W4 = 0nyXn, define linear fractional transformations (LFT's) for comput­
ing modifications Ce and De in Figure 5.3 
(Note: W 4 = 0, i.e. process output y is not a part of the LFT's exogenous output 
vector, as in the stabilization procedure we are exclusively interested in reducing the 
gain d —> u). 

3. Using the algorithm from Section 5.2.2, compute modifications De and Ce and find 
the corresponding controller modifications SC and SD in (2.21)-(2.22). 

4. Update the controller matrices C and D with the above obtained SC and SD - as 
illustrated in Figure 5.12. 

5. GOTO STEP 1. 

6. END. 

At the end of the above algorithm, the process and controller 'ears' AG(z), AC and A D 
in (2.19)-(2.20) are eliminated, and further controller modifications, that optimize the 
gain from the process output disturbance d to process output y and control signal u, as 
detailed in Section 5.2, can be carried out. 
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Figure 5.12: A gradual elimination of the process and controller circulant symmetric 
matrices' 'ears' with the parameter A € [0,1]. 

5.4.1 E x a m p l e 

As pointed out above, the stabilization procedure, when going from periodic to Dirichlet 
boundary conditions, is very rarely (practically never) required for the actual CD control 
systems designed with the two-dimensional loop shaping technique. However, after exten­
sive simulation studies, one CD control system, destabilized by the change of the boundary 
conditions from periodic to Dirichlet (as defined in Section 2.1), was found. The simulated 
system had 36 actuators, with the fabricated but realistic process parameters resulting in 
a very wide bi-modal spatial response, illustrated in Figure 5.13. The specific parameters 
of the process model in (2.10)—(2.11) are given as, 

{60, & i , . . . , b12} = 10~3 • {0.56966,0.85783,0.8600,0.010764, -0.63285, -0.47079, 

-0.091566, 0.047077,0.029923,0.0053444, -0.00039524, -0.00027924, 

-0.00001078} 

a 0 = 0.916, d = 3 (5.37) 

Next, the corresponding feedback controller K(z) in (2.12) was intentionally designed 
with (unacceptably) small stability margins, 

{c0, ci, ca, c3, c4, c5} = {-0.14168, -0.15141, -0.11392, 0.0046317,0.090511,0.068683} 

{do.di} = {0.9998,0.00010119}, (5.38) 

and the tuning parameter a of the Dahlin controller c(z) in (2.12), a = 0.88959. The 
resulting circulant (spatially-invariant) closed-loop system (corresponding to A = 0, SC — 
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Figure 5.13: Actuator array shape (upper figure) and the corresponding process steady-
state response (lower figure) for the process model given with (5.37). 

0,6D = 0 in Figure 5.12) is (barely) stable1 with the maximum closed-loop pole magnitude 
equal to 0.99997. 

However, the system with the same parameters (5.37)-(5.38), and Dirichlet boundary 
conditions (i.e. process and controller Toeplitz symmetric matrices, corresponding to 
A = 1,8C = 0,5D = 0 in Figure 5.12) is unstable - the maximum pole magnitude equal 
to 1.0004. 

Using the stabilization algorithm in Section 5.4, it was possible to stabilize the above 
system. 

First (following Step 1 of the stabilization algorithm), the maximum value of A 6 [0,1] 
for which the system remains stable was found to be A = 0.46 (resulting in a maximum 
closed-loop pole magnitude: 0.9999). Next, following Steps 2—4, the sizes of the rectan­
gular weights Wj, z = 1,2,3,5,6, 7 in (5.18)—(5.19) were chosen as, ric\ = 5, n G 2 = 8, nD1 = 
3,nx)2 = 8, n u = 8, rid = 8, and the output vector ujb(z) in Figure 5.2 as uib{z) = 0.5u(z). 

to 
rr 
O 

o < 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

•"The controller (5.38) should certainly never be implemented on a real paper machine having CD 
process parameters (5.37) as the stability margins are unacceptably small for industrial implementation. 
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Subsequently, the controller modifications SC and SD were computed1, 

6C(1: nCi, 1 : nC2) = 

0.03229 -0.04907 

0.00116 

-0.01859 

0.24680 

0.10920 

-0.00029 

0.02756 

-0.05612 

-0.03441 

0.01572 

0.00011 

-0.00887 

-0.06934 

-0.01601 

-0.00013 

0.00905 

-0.01706 

-0.04335 -0.02383 

-0.00609 

-0.00088 

0.00379 

-0.01454 

-0.01608 

0.02133 

0.00062 

-0.01221 

0.02257 

0.02055 

-0.00397 

0.00072 

0.00192 

0.09182 

0.06249 

-0.01116 

0.00018 

0.00615 

0.09304 

0.05152 

(5.39) 

5D(1 : n m , 1 : nD2) = 

-1.00632 0.11875 

0.00024 -0.81129 

0.00020 0.10728 

-0.26057 1.07935 

-0.49785 1.90570 

-1.28327 1.75901 

-1.12241 0.35009 0.11752 -0.89432 

-1.58477 0.22826 0.94664 -1.75554 

-0.94426 -0.25715 0.98224 -1.00001. 

(5.40) 

The resulting upper left sections of the controller matrices CC+5C and DC + SD, in Figure 
5.12, are given with (5.41)-(5.42). 

Cc(l:nCi,l:nc2) + SC = 

-0.10939 -0.20048 -0.09820 -0.01138 0.08442 0.09001 -0.00397 

-0.15025 -0.14197 -0.15130 -0.11405 0.00375 0.09113 0.06940 

-0.13251 -0.12385 -0.15055 -0.14236 -0.11013 -0.00758 0.09243 

0.25143 -0.17004 -0.22075 -0.15874 -0.16595 -0.09135 "0.09645 

0.19971 -0.02978 -0.15727 -0.17524 -0.15776 -0.13086 -0.05143 

-0.01116 

0.00018 

0.07483 

0.18355 

0.05616 

(5.41) 

£> c (l : UDi, 1 : n D 2 ) + 5D = 

-0.00652 0.11885 -0.26057 1.07935 -1.12241 

0.00034 0.18851 -0.49775 1.90570 -1.58477 

0.00020 0.10738 -0.28347 1.75911 -0.94426 

0.35009 0.11752 

0.22826 0.94664 

-0.25715 0.98224 

-0.89432 

-1.75554 

-1.00001. 

(5.42) 

Finally, following Step 5 of the stabilization algorithm, it can be found that a complete 
elimination of the 'ears' of the matrices C c , Dc, and Gc(z) can be done (i.e. A set to 1), 
without destabilizing the system, as the resulting maximum closed-loop pole magnitude 

1Note the magnitude of SD being significantly larger in this case of modification for stabilization than 
in the cases of modifications for performance illustrated in Section 5.3.2. 
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is 0.99978. In other words, with the above stabilization algorithm, the maximum closed-
loop pole magnitude has been reduced from 1.0004 (unstable system) to 0.99978 (stable 
system). However, it should be stressed again that the above stabilization procedure is 
practically never needed for the practical CD control systems, designed with the reasonable 
(practically acceptable) stability margin. 

5.5 Summary 

A novel method for modifying a CD control law near spatial domain boundaries that sys­
tematically takes into account all the requirements from Chapter 2 has been developed in 
this chapter. A simulation example, with the use of Honeywell hardware-in-the-loop paper 
machine simulator, comparing the newly proposed technique with the current industrial 
practice has also been presented. 

The objective of modifying the industrial CD controller near spatial domain bound­
aries has been posed, in this chapter, in terms of a block-diagonal static output feedback 
(SOF) compensator design problem. The problem has been solved and the control law 
modifications computed by implementing a novel low-bandwidth SOF controller design al­
gorithm. The algorithm is implemented sequentially on the existing industrial controller's 
two constant matrix components. The newly proposed approach systematically takes into 
account all the closed-loop requirements (stability, performance, and robustness) specified 
in Chapter 2. 



Chapter 6 

Industrial Trial 

The method for designing CD edge controllers presented in Chapter 5 has been evaluated 
in an industrial setting. Three different control law modifications (conservative, balanced, 
and aggressive), 5C and 5D in Figure 2.7 were computed and implemented during the 
trial. The mill was producing the paper grade on which the tests were carried out for 
about 15 hours on the day of the trial. During this period, the trial setup was arranged 
and the controller testing carried out. 

The newly developed approach provides a systematic way of modifying the existing, 
industrial, CD control law near the sheet edges, guaranteeing the resulting closed-loop 
system stability, robustness margins, and performance improvement. Considering that 
the resulting closed-loop system robustness margins near the sheet edges are directly 
taken into account, the possibility of CD control instability originating from the edges (as 
illustrated in Figure 1.9) and 'creeping' into the rest of the system is eliminated with the 
new approach. The new technique has a clear economic benefit for the papermakers, since 
with a stable, robust, and performance improving control law, the quality of the paper 
sheet near the edges can be significantly improved. In some papermaking situations, 
the 'trim squirts' (Figure 1.2) can be moved outward, thus resulting in less paper being 
trimmed off and more on-spec paper is being produced from which the papermaker can 
extract his orders. 

Two photos of the author taken in the mill where the trial was completed are given in 
Figure 6.1. 

Details regarding the paper machine used for testing, as well as the mill's existing CD 
control setup, are given in Section 6.1. The overall trial procedure and setup are detailed 
in Section 6.2. In Section 6.3, the results obtained during the industrial trial are presented. 

6.1 CD Control Setup in the Mill 

The inaugural test site for the Matlab prototype tuning tool was selected to be a Canadian 
mill producing a wide variety of paper grades. During the site visit, the mill was producing 
a 66[lbs/ream] grade paper1. The particular paper machine, on which the testing was 
done, uses slice lip actuators to reduce the variations of the paper sheet cross-directional 

t l [lbs/ream] = 1.6289 [gr/m2] 

81 
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Figure 6.1: Stevo Mijanovic near machine on which the industrial trial was carried out. In 
the background: machine's forming section (left photo), and the press and dryer sections 
(right photo). 

dry weight1 profile, as discussed in the Introduction. The machine has 36 actuators 
spaced on xa = 95.6mm centres and distributed across the machine width of 3.44m. The 
total number of scanner measurement points was 216. High-pressure water jets ('trim 
squirts' - illustrated in Figure 1.2 in Section 1.1), in the sheet-forming section of the paper 
machine, were located approximately two actuator zones (or 12 measurement points or 
191.2mm) from the machine edges. As a result of this trimming in the sheet-forming 
section, of 191.2mm wide sheet strips, on both sides of the machine, only the measurement 
points 13-205 were actual paper sheet measurements (so called 'on-sheet' measurements). 
Accordingly the actuators 3-34, corresponding to the 'on-sheet' measurements, are called 
'on-sheet' actuators. The 'off-sheet' actuators (actuators 1-2 and 35-36) were in open-
loop (at constant values) throughout the whole trial. The exact setpoint values for the 
'off-sheet' actuators are given in Section 6.3 below. (An illustration of the 'on-sheet' and 

P a p e r sheet d r y we igh t is de f ined as t he sheet bas is we igh t r e d u c e d b y t he wa te r (mo is tu re ) con ten t . 
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Figure 6.2: A simplified schematic of the mill's CD control setup. 

'off-sheet' actuators locations is also given in Figure 1.2.) 
The period over which the scanner was making one set of measurements (the control 

system sampling time) was Ts = 30s. A simplified schematic of the mill's CD control 
system is shown in Figure 6.2 (compare with Figure 1.7 given in Introduction). Slice 
lip actuators are connected via local L A N connection to a PC with the industrial CD 
controller software, while the scanning sensor is serially connected via RS-485 connection 
through a RocketPort interface to a RS-232 connection to computer. 

6.2 Trial Setup and Procedure 

A simplified schematic of the industrial trial setup is given in Figure 6.3. The mill's ex­
isting PC with the industrial CD controller software had to be replaced with the laptop 
on which the modified industrial controller software had been loaded (Laptop 1 in Figure 
6.3). The industrial controller software was modified in order to accommodate the control 
law changes according to Figure 2.6. The existing control law modifications were com­
puted, based on the approach presented in Chapter 5, using a newly developed Matlab 
prototype tuning tool. Proper dataflow between the Matlab prototype tuning tool and 
the industrial software packages (outlined in Figure 6.4), as well as correct implementa­
tion of the computed modifications by the industrial control software had previously been 
thoroughly tested and verified [48]. 
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Figure 6.3: A simplified schematic of the industrial trial setup. 

The overall procedure followed for the field trial is outlined as follows: 

1. Al l the system parameters, for the particular paper grade being tested, were copied 
from the mill's PC with the industrial CD controller algorithm (PC in Figure 6.2) 
onto the laptop computer (Laptop 1 in Figure 6.3) with the specially modified con­
troller algorithm. 

2. The control system actuators were placed in open-loop and left at the positions 
assumed just before taking them out of the closed-loop. 

3. The scanner was disconnected from the mill's PC and connected (through a RS485-
RS232 adapter) to Laptop 1. It was subsequently confirmed that the communication 
link between the paper machine scanner and Laptop 1 was working properly and 
that controller on Laptop 1 was receiving the scanner measurements. 

4. The actuator array of the controller on Laptop 1 was verified to be in Manual 
mode so that a smooth transition from the mill's existing PC to Laptop 1 control 
software could be ensured. The mill's PC was disconnected from the mill's L A N , 
thus detaching the paper machine's actuator array from the existing control software 
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Figure 6.4: The dataflow diagram between the Matlab prototype software and the indus­
trial software packages. 

residing on the PC. Afterwards, Laptop 1 (previously having been assigned the same 
TCP-IP address as the above mentioned PC) was connected onto the local L A N . 

5. The communication link between the paper machine actuator array and Laptop 1 
control software was checked and confirmed to be working properly. The modi­
fied industrial controller software on Laptop 1 was receiving the actuators' current 
position information. 

6. The actuator array was put on control (i.e. in closed-loop) with Laptop 1 controller 
settings the same as on the mill's industrial controller PC (the setting had been 
previously copied as outlined in Step 1 above). The control system was left in closed-
loop for about an hour, to ensure it operated correctly with Laptop 1 controller 
software. 

7. A local TCP-IP address was assigned to the second laptop computer (Laptop 2 
in Figure 6.3) with the industrial CD process identification and controller tuning 
software [32, 65], as well as the Matlab prototype software for computing controller 
modifications near the paper sheet edges, as detailed in Chapter 5. Laptop 2 was 
successfully connected onto the local L A N . 

8. The control system actuator array was put in open-loop (off control), and the stan­
dard process identification procedure [32] was initiated from Laptop 2. The open-
loop 'bump test', with three actuators stepped up (down) for 200 microns, was 
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carried out and process identification and controller tuning completed using the 
industrial software presented in [32, 65] (see Figure 6.5). 

9. The design for various modifications De and Ce in Figure 5.5 was completed accord­
ing to the algorithm outlined in Section 5.2.2, and these parameters were transferred 
by the modified identification and tuning software on Laptop 2 over the L A N into the 
correct database location, for use by the modified industrial controller software on 
Laptop 1. (The dataflow between the Matlab prototype software and the industrial 
software packages is outlined in Figure 6.4.) 

10. The trial control system was put on closed-loop with one of the existing indus­
trial techniques for CD control near the paper sheet edges - average padding. The 
resulting closed-loop data were logged over the course of about an hour. 

11. The three sets of controller modifications (referred to as conservative, balanced, and 
aggressive), computed in Step 9 above, were implemented in turn (each one over the 
course of about an hour). 
The data logged in Step 10, with the current industrial technique, and in this step 
with the three sets of tuning numbers obtained with the new technique are called 
Data Set 1 in Section 6.3 below. 

12. The steps 10-11 above were repeated once more. This logged data are called Data 
Set 2 (Section 6.3). 

13. The control system actuators were put back in open-loop so that a smooth transition 
back to the mill's existing industrial controller system on the PC could be carried 
out. 

14. The scanner was disconnected from Laptop 1 and connected back to the mill's PC 
with the industrial CD controller software. Subsequently, Laptop 1 was also dis­
connected from the local L A N , and the mill's PC connected back thus enabling the 
communication between the paper machine actuators and the PC with the industrial 
controller software. 

15. After it was confirmed that the communication link between the paper machine and 
PC was working properly, the control system was put back in closed-loop with the 
original settings found upon arrival at the mill. 

The closed-loop data obtained during the trial procedure, outlined above, are presented 
and analyzed in Section 6.3. 
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6.3 Trial Results 

In Section 6.3.1, the process and controller parameters, as obtained by the industrial 
identification and tuning software [32, 65], are presented. The subsequently computed 
controller modifications 8C and 5D in (2.21)-(2.22), based on the approach outlined in 
Chapter 5, are given in Section 6.3.2. Finally, the closed-loop control data obtained during 
the trial are presented and analyzed in Sections 6.3.3 and 6.3.4. 

6.3.1 Process and Controller Parameters 

As detailed in Step 8 of the field test trial procedure in Section 6.2, an open-loop 'bump 
test' with three actuators stepped up (down) for 200 microns was carried out. The system 
scan time (sampling period), as pointed out in Section 6.2, was Ts = 30s. The parameters 
of the process model in (2.10)—(2.11) were identified using software described in [32] with 
the size of the matrix B in (2.11) band lb = 8 and 

{ r j 0 , 6 8 } = 10~2 • {0.1362,0.1033,0.0216,-0.0364,-0.0302, 

-0.0073,0.0005,0.0005,0.0001} 

a 0 = 0.759, d = 2 (6.1) 

The process model spatial response identification results are illustrated in Figure 6.5. 
Subsequently, the feedback controller K(z) in (2.12) was designed using the standard 

two-dimensional loop shaping technique [65, 66]. The controller parameters obtained had 
matrix band sizes lc = 4, Id = 1, with: 

{c0, ci, c2, c3, c4} = {-0.338689, -0.232651, -0.024331,0.070768, -0.002905} 

{d 0,di} = {0.991399,0.004301} (6.2) 

The tuning parameter a of the Dahlin controller c(z) in (2.16) was also produced by the 
two-dimensional loop shaping design: a = 0.8506. • 

6.3.2 Computed Controller Modifications 5C and 5D 

Next, the design for various controller modifications (conservative, balanced, and aggres­
sive tuning) De and Ce in Figure 5.5 and described by the algorithm in Section 5.2.2 was 
completed and these were transferred over the L A N into the correct database location for 
use by the industrial controller software on Laptop 1 (see Figures 6.3 and 6.4). 

In all three cases (conservative, balanced, and aggressive tuning), the sizes of the 
rectangular weights Wi,i — 1,...,7 in (5.18)-(5.19) were chosen as, nci = 5,nc 2 = 
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Figure 6.5: Model identification: The upper plot illustrates the shape of the actuator 
array used for process excitation. The middle plot shows the measured process output 
profile. The bottom plot illustrates the identified model, as given by the parameters bj, 
3 = 0,1, 2,...,8 in (6.1). 

8, nm = 3, nm = 8, nu = 8,na = 8, ny = 8. Also, the output vectors wa(z) and wb(z) in 
Figure 5.1 were chosen as: 

wa(z) = [kP • y(z) u(z)}T, wb(z) = 1 • u(z), (6.3) 
1 + kp 

where y(z) and u(z) are the process output and control signal respectively, and coefficients 
k p and k^, are the t u n i n g v a r i a b l e s . As explained in more detail in Section 5.3.2, kp 
is a closed-loop performance tuning variable, and kp is a a closed-loop robustness tuning 
variable. For the CD process model given with (6.1), inverse of the process' maximum 

I singular value at steady-state (i.e. the point of reference for choosing kp) is =(G(eJ°)) 

= 59.74. 0.01674 

In the case of c o n s e r v a t i v e t u n i n g , the tuning variables kp and kp in (6.3) were cho­
sen as k p = 180, kR, = 0.2. Subsequently, using Matlab prototype software, the industrial 
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controller modifications SC and SD given with (6.4)-(6.5) respectively were obtained. 

SC = 
0.03849 

-0.15373 

0.01922 

-0.03055 

0.03328 

0.03452 

-0.00357 

-0.03630 

-0.02833 

-0.08007 

0.00158 

0.10040 

-0.00537 

0.11562 

-0.03483 

-0.00733 

0.01442 

0.02771 

0.15004 

0.08597 

0.00579 

-0.08664 

-0.00198 

0.00179 

0.08674 

0.00955 

-0.03759 

-0.03342 

-0.11406 

-0.00287 

0.08151 

0.00068 

-0.04143 

-0.03174 -0.10293 

-0.01349 

0.11252 

0.05602 

0.09988 

-0.05167 

(6.4) 

6D = 
-0.04205 

0.00652 

0.01487 

0.03983 -0.03423 0.00459 -0.00329 0.00521 -0.00765 

-0.05617 0.05445 -0.02583 0.00602 -0.01773 0.02016 

-0.00503 -0.04141 0.03139 -0.00380 -0.00736 -0.01085 

0.00119 

-0.00059 

0.01548 

(6.5) 

The upper left sections of the resulting control law matrices Cd + SC and Dd + SD, in 
the case of conservative tuning, are given in (6.6)-(6.7). 

Cd(l:nci,l ••nC2)+5C = 
-0.30020 -0.19813 -0.02275 0.06343 0.00288 0.00955 -0.00287 

-0.38639 -0.34226 -0.13226 -0.00992 -0.01588 -0.04049 0.08151 

-0.00511 -0.26895 -0.34406 -0.20494 -0.02631 0.03735 -0.00223 

0.04021 -0.05266 -0.11703 -0.18865 -0.23086 -0.13839 0.02934 

0.03038 -0.00930 -0.05916 -0.14668 -0.25195 -0.26439 -0.12726 

-0.01349 

0.11252 

0.05602 

0.09697 

0.01910 

(6.6) 

Dd(l : nm, 1 : 7 i D 2 ) +5D = 

"0.94935 0.04413 -0.03423 0.00459 

0.01083 0.93523 0.05875 -0.02583 

0.01487 -0.00073 0.94999 0.03569 

-0.00329 0.00521 -0.00765 0.00119 

0.00602 -0.01773 0.02016 -0.00059 

-0.00380 -0.00736 -0.01085 0.01548 . 

(6-7) 

In the case of balanced tuning, the tuning variables kp and kp in (6.3) were chosen 
as k p = 480, k R = 0.2. Subsequently computed modifications SC and SD are given in 
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(6.8)-(6.9), respectively. 

SC = 
-0.02680 

0.04499 

0.03625 

0.10985 

0.05526 

0.01935 

-0.09894 

0.02275 

0.02207 

0.07139 

0.00090 

0.01944 

-0.02307 

-0.00882 

-0.01473 

-0.03639 

0.13122 

-0.00725 

0.07469 

-0.01478 

0.02692 

-0.12908 

0.03103 

0.01370 

0.08206 

0.01608 

-0.04844 

-0.00458 

-0.02780 

0.00500 

-0.02549 

0.11027 

-0.01791 

0.01941 

-0.04921 

-0.01109 

0.04539 

-0.00541 

0.01187 

-0.01843 

(6.i 

6D = 
0.00116 

-0.00272 

0.00228 

0.00256 

-0.00109 

-0.00449 

-0.00724 

0.00979 

0.00189 

0.00569 

-0.02097 

0.00140 

-0.00653 

0.02342 

-0.00597 

0.00641 

-0.02121 

0.00740 

-0.00604 

0.01315 

-0.00971 

0.00284 

0.00105 

0.00802_ 

(6.9) 

The upper left sections of the resulting control law matrices Cd + 8C and Dd + SD, in 
the case of balanced tuning, are given in (6.10)-(6.11). 

Cd(l:nci,l:nC2)+SC = 

-0.36549 -0.21330 -0.02343 0.03438 0.02402 0.01608 -0.02549 

-0.18767 -0.43763 -0.21321 0.10689 -0.05831 -0.05134 0.11027 

0.01192 -0.20990 -0.36176 -0.23990 0.00669 0.06619 -0.02081 

0.18062 -0.00226 -0.24147 -0.26400 -0.21895 -0.05213 0.09018 

0.05235 0.14216 -0.03906 -0.24743 -0.25663 -0.22765 -0.07355 

-0.01109 

0.04539 

-0.00541 

0.00897 

0.05234 

(6.10) 

Dd{l • nm, 1 : nD2) + SD -
0.99256 0.00687 -0.00724 0.00569 -0.00653 

0.00158 0.99031 0.01409 -0.02097 0.02342 

0.00228 -0.00019 0.99329 0.00570 -0.00597 

0.00641 -0.00604 0.00284 

-0.02121 0.01315 0.00105 

0.00740 -0.00971 0.00802 

(6.11) 

Finally, in the case of aggressive tuning, the tuning variables kp and kp in (6.3) 
were chosen as k P = 720, k R = 0.4, and the resulting controller modifications SC and 
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SD are given in (6.12)-(6.13), respectively. 

6C = 
-0.09772 

0.29758 

0.01688 

0.20798 

-0.00883 

0.05064 

-0.24731 

0.06060 

0.02322 

0.15726 

0.05991 

-0.16736 

-0.02607 

-0.13026 

0.00132 

-0.06116 

0.27843 

-0.05450 

0.02426 

-0.13232 

0.02286 

-0.08941 

0.01129 

-0.02241 

0.02982 

-0.00860 

0.01597 

0.00495 

0.02265 

0.00226 

-0.04174 

0.09766 

0.03017 

0.11865 

0.02909 

0.04844 

-0.21222 

0.03833 

-0.02289 

0.09746 

(6.12) 

SD 
0.00528 

-0.00359 

0.00102 

-0.00122 -0.00434 0.00568 -0.00692 

0.00428 0.00522 -0.02034 0.02512 

-0.00439 0.00599 -0.00146 -0.00618 

0.00658 -0.00586 0.00297 

-0.02162 0.01246 0.00124 

0.00881 -0.00960 0.00731. 

(6.13) 

The upper left sections of the resulting control law matrices Cd + SC and Dd + SD, in 
the case of aggressive tuning, are given in (6.14)-(6.15). 

Cd{\ : n Q i , l :nC2)+SC = 

-0.43641 -0.18201 0.03558 0.00961 0.01995 -0.00860 -0.04174 

0.06493 -0.58600 -0.40001 0.25409 -0.01864 0.01307 0.09766 

-0.00745 -0.17205 -0.36476 -0.28715 -0.01304 0.07572 0.02726 

0.27875 -0.00111 -0.36291 -0.31443 -0.25507 -0.00169 0.18941 

-0.01173 0.22803 -0.02301 -0.36497 -0.30886 -0.23039 0.00476 

0.04844 

-0.21222 

0.03833 

-0.02580 

0.16822 

(6.14) 

Dd(l : nD1,l : nD2) + 5D = 

0.99668 0.00308 -0.00434 0.00568 -0.00692 

0.00071 0.99567 0.00952 -0.02034 0.02512 

0.00102 -0.00009 0.99738 0.00284 -0.00618 

0.00658 -0.00586 0.00297 

-0.02162 0.01246 0.00124 

0.00881 -0.00960 0.00731. 

(6.15) 

6.3.3 C losed -Loop C o n t r o l Resu l t s : D a t a Set 1 

The Data Set 1 results (Steps 10-11 in the procedure outlined in Section 6.2) are illustrated 
in Figures 6.6-6.9 and Table 6.1. The closed-loop results obtained using the current 
industrial practice (with average padding) are shown in Figure 6.6, and the results obtained 



Chapter 6. Industrial Trial 92 

with the new technique (conservative, balanced, and aggressive tuning in turn) in Figures 
6.7-6.9. 

Al l the plots in Figures 6.6-6.9 were obtained using Honeywell software for paper 
machine cross-directional control systems data analysis. As detailed in Section 6.2, the 
closed-loop data was logged over the course of 40-60 min for each set of tuning numbers 
(the existing industrial technique - average padding and the three sets of tuning numbers 
obtained with the new technique). In other words, between 80-120 scans (as the system 
sampling time was Ts = 30s as specified in Section 6.3.1) of the closed-loop data in each 
case. In order to avoid transient effects in changing controller tuning, the data analysis 
software was used to average the last 20 scans in each case. In each figure, in addition to 
maximum, minimum, and average signal value, the 2-norm of the corresponding signal is 
given. Note that in the case of the actuator array profile, only the 2-norm of the on-sheet 
actuators is given as the off-sheet actuators (2 on each side u(l : 2) and u(35 : 36)) were 
in open-loop and at constant positions throughout the trial: [it(l); it(2); u(35); u(36)] = 
[-444.2; -296.4; -271.2; -370.8]. 

From Figures 6.6-6.9 and Table 6.1, it can be seen that in the cases of the balanced and 
aggressive tunings with the new technique, the paper sheet variations are smaller than with 
the existing industrial technique and this improvement was achieved with smaller control 
signals (i.e. actuator usage). For example, in the case of balanced tuning, the paper 
sheet dry weight variations are reduced by 5.8% with the overall control signal 
magnitude reduced by 9.4%. The difference between the control signal magnitudes is 
even more dramatic if only the first (and last) 5 on-sheet actuators are compared (u(3 : 7) 
and u(30 : 34) respectively in Table 6.1) since these are the actuators directly modified with 
the new technique1. In the case of conservative tuning, as expected, the sheet variations 
are larger than those obtained with the existing technique. This is not surprising since a 
significantly smaller actuator usage is invoked, particularly near the left edge (see u(3 : 7) 
in Table 6.1). It can also be noticed that, in the case of aggressive tuning, the sheet 
variations are the same as those obtained with the balanced tuning. Obviously for the 
particular process model and process output disturbance encountered during the trial, 
making the CD controller modifications near the sheet edges more aggressive than those 
obtained with the balanced tuning (given with (6.8)-(6.9)) is not warranted. 

1 Partitioning the process output in the same way would not be appropriate since considering the 
identified process model given with (6.1), 5 edge actuators on each side directly influence the process 
output across 13 zones on the corresponding side. As a result, a total of 26 (out of 32) zones are directly 
affected by the modified actuator zones. 
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Figure 6.6: Data set 1 process output (a) and control signal (b), using the current indus­
trial technique - average padding. 
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Figure 6.7: Data Set 1 process output (a) and control signal (b), using the new technique 
- conservative tuning (kp = 180 and kp_ = 0.2 in (6.3)). 
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Figure 6.8: Data Set 1 process output (a) and control signal (b), using the new technique 
- balanced tuning (kp = 480 and kp = 0.2 in (6.3)). 
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Figure 6.9: Data Set 1 process output (a) and control signal (b), using the new technique 
- aggressive tuning (kp — 720 and kp — 0.4 in (6.3)). 
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Current technique New approach 
Average Conservative Balanced Aggressive 
padding tuning: tuning: tuning: 

kP = 180 kP = 480 kP = 720 
kp = 0.2 kp = 0.2 kp = 0.4 

||y||2 [lbs/ream] 2.706 3.151 2.548 2.548 
\\u(3 : 34)112 [microns] 556.10 498.89 503.63 540.40 
On-sheet actuator 
array sections 
||w(3 : 7)||2 [microns] 226.91 140.38 182.44 205.42 
||«(8 : 29)||2 [microns] 478.16 456.06 444.26 473.00 
||u(30 : 34)||2 [microns] 169.22 145.61 151.64 161.58 

Table 6.1: 2-norms of the process output and control signal profiles shown in Figures 6.6 
- 6.9 (Data Set 1). 

6.3.4 Closed-Loop Control Results: Data Set 2 
The Data Set 2 results (Step 12 in the procedure outlined in Section 6.2) are illustrated 
in Figures 6.10-6.13 and Table 6.2. The closed-loop results obtained using the current 
industrial practice (with average padding) are illustrated in Figure 6.10, and the results 
obtained with the new technique (conservative, balanced, and aggressive tuning in turn) 
in Figures 6.11-6.13. 

The data is analyzed in the same way (using the Honeywell cross-directional control 
data analysis software) as Data Set 1 (Section 6.3.3). The off-sheet actuators were again 
in open-loop and at the constant positions: [u(l);u(2); u(35); u(36)] = 
[-444.2; -296.4; -271.2; -370.8]. 

From Figures 6.10-6.13 and Table 6.2, it can be noticed that the results are similar to 
those from Data Set 1, presented in Section 6.3.3. The paper sheet dry weight variations 
are again reduced by using the new technique with balanced and aggressive tunings in 
comparison to the existing industrial practice. In this data set, the sheet variations 
are reduced by 8.7% with a reduction of the control signal magnitude by 5.5% 
by using the balanced tuning in comparison to the existing industrial practice (see Table 
6.2). However, while smaller than the variations resulting from the use of the existing 
industrial technique, the variations obtained with the aggressive tuning are larger than 
those obtained with the balanced tuning. This confirms as has been stated in Section 6.3.3, 
that for the particular process and disturbance characteristics encountered on the day of 
trial, making the CD control law modifications near the sheet edges more aggressive than 
those obtained with the balanced tuning (given with (6.8)-(6.9)) is not warranted. Also, 
as expected, in the case of conservative tuning, the sheet dry weight variations are larger 
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Figure 6.10: Data Set 2 process output (a) and control signal (b), using the current 
industrial technique - average padding. 

in comparison to the existing technique, although the actuator usage level is significantly 
lower (Table 6.2). 
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Figure 6.11: Data Set 2 process output (a) and control signal (b), using the new technique 
- conservative tuning (kp = 180 and kp = 0.2 in (6.3)). 
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Figure 6.12: Data Set 2 process output (a) and control signal (b), using the new technique 
- balanced tuning (kp = 480 and kR = 0.2 in (6.3)). 
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Figure 6.13: Data Set 2 process output (a) and control signal (b), using the new technique 
- aggressive tuning (kp = 720 and kp = 0.4 in (6.3)). 

Current technique New approach 
Average Conservative Balanced Aggressive 
padding tuning: tuning: tuning: 

kP = 180 kP = 480 kP = 720 
kp = 0.2 kp = 0.2 kp = 0.4 

| | 7 / | | 2 [lbs/ream] 2.953 2.962 2.695 2.887 
||u(3 : 34)||2 [microns] 543.51 494.05 513.72 526.21 
On-sheet actuator 
array sections 
||ti(3 : 7)||2 [microns] 214.79 111.12 166.98 183.46 
||u(8 : 29)||2 [microns] 473.39 455.90 456.7 458.29 
||tf(30 : 34)||2 [microns] 158.65 155.34 165.67 182.24 

Table 6.2: 2-norms of the process output and control signal profiles shown in Figures 6.10 
- 6.13 (Data Set 2). 
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6.4 Summary 

A novel technique for modifying the industrial CD controllers near spatial domain bound­
aries, developed in Chapter 5, has been successfully tested in a working paper mill and 
the results are presented in this chapter. The trial was carried out on a paper machine 
CD control system with slice lip actuators controlling the paper sheet dry weight profile. 

This trial demonstrates that with the new approach it is possible to achieve a successful 
trade-off between the CD control system closed-loop performance and the required control 
signal magnitude. In other words, the level of the resulting CD control law 'aggressiveness' 
near the sheet edges can be chosen with the new approach. 

The new technique was also compared with the existing industrial practice, and a 
better performance with smaller control signal magnitude was achieved by implementing 
the newly developed technique. 

Paper sheet quality improvement, achieved with a stable and robust control law near 
the sheet edges (as provided with the newly developed technique), has a clear economic 
benefit for the papermakers. In some papermaking situations, the 'trim squirts' (Figure 
1.2) can be moved outward, thus resulting in less paper being trimmed off and more 
on-spec paper is being produced from which the papermaker can extract his orders. 
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Concluding Remarks 

This work has focused on modifying an existing industrial paper machine cross-directional 
control law near spatial domain boundaries (paper sheet edges). As the process spatial-
invariance assumption (i.e. neglecting of paper sheet edges) is central to the current 
industrial controller tuning technique, thus computed CD control laws have to be modified 
near spatial domain boundaries before implementation on a paper machine. A brief review 
of the motivation, objectives, approaches, and results presented in this thesis is given 
below. 

7.1 Summary of the Thesis 

It is illustrated in Chapter 1, that paper machine CD control systems belong to a set 
of large, multivariable, spatially-distributed control systems. The task of a particular 
cross-directional actuator array, on a paper machine, is to reduce the variations of the 
corresponding paper sheet property (weight, moisture content, or caliper) as much as 
possible in the cross-direction. Depending on the installation, the number of CD actuators 
(inputs) in an array is between 30-300 and the number of measurement points (outputs) 
200-2000. The most frequently used types of CD actuators, various CD control techniques, 
and the problems encountered near the sheet edges are illustrated in Chapter 1. 

In Chapter 2, it is shown that the CD process and industrial controller models can 
be viewed as two dimensional (spatio-temporal) filters, causal in temporal and non-causal 
in spatial (cross-direction) domain. The two-dimensional loop shaping technique (briefly 
outlined in this Chapter 2), being used for tuning the industrial CD control systems, as­
sumes idealized spatially-invariant CD process characteristics. As a result, the computed 
CD control law is also spatially-in variant. Indeed the spatial-invariance assumption is 
common to many of the recently developed techniques for the analysis and controller syn­
thesis of spatially-distributed systems. The controllers obtained by the implementation of 
these techniques are generally spatially-invariant. In the case of paper machine CD con­
trol, spatial invariance is equivalent to assuming that a paper machine produces a tube 
rather than a sheet of paper. Since the paper machine edges represent a clear disruption 
of the assumed spatial-invariance, the control laws obtained by the two-dimensional loop 
shaping technique must be modified near the sheet edges before being implemented on the 
paper machine. Current industrial practice addressing these issues is based on techniques 

100 
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for extending finite-width signals, that have been borrowed from signal processing. Such 
methods very often result in poor control near the edges. The object of this work, dis­
cussed in Chapter 2, is a modification of the existing industrial CD control law near spatial 
domain boundaries, considering relevant control engineering criteria (closed-loop stabil­
ity, performance, and robustness), without a change in the controller structure and/or 
complexity. 

In Chapter 3, a straightforward perturbation technique with which a controller stabi­
lizing one plant may be modified so that it stabilizes a second, related, plant is presented. 
The technique is based on the known difference between the two plants, and it is shown 
that various application examples (other than CD control) can be viewed in terms of this 
result. While the implementation of the proposed technique, in the case of the initially 
designed spatially-invariant CD control law, is very simple, and the resulting closed-loop 
stability guaranteed, it does not, however, address other important requirements - perfor­
mance, robustness, and the desired preservation of the existing CD controller structure. 

Considering that CD controllers are essentially two dimensional low-pass filters and 
the paper sheet edges are clear spatial domain discontinuities, a similarity between the 
effects occurring near the sheet edges in the industrial CD control systems and the well-
known Gibbs effect, is observed in Chapter 4. Subsequently, a CD control law modification 
technique, based on methods for reducing the Gibbs effect, is presented. The technique, 
which does not change the structure of the CD controller, guarantees the resulting CD 
controller stability. As illustrated in a simulation example in Chapter 4, the approach 
eliminates the 'actuator picketing' near the sheet edges. However, the resulting closed-
loop performance and robustness are not systematically considered with this approach, 
and closed-loop stability has to be verified after the modifications have been carried out. 

Modification of the CD control law, while taking into account relevant control engi­
neering criteria (closed-loop stability, performance, and robustness), and without changing 
the controller structure or complexity, is presented in Chapter 5. Al l the requirements 
from Chapter 2, have thus been taken into account with this approach. Modifications 
to the two constant controller matrices are computed by the sequential implementation 
of a novel low-bandwidth static output feedback design algorithm. It is demonstrated, 
using the Honeywell hardware-in-the-loop simulator example, that a successful trade-off 
between the performance and the corresponding actuator array signal magnitude can be 
achieved using the newly proposed approach. 

The technique presented in Chapter 5 was successfully tested in a paper mill on a 
paper machine. The trial was carried out at a Canadian mill, with the slice lip actuator 
array being used for controlling the paper sheet CD weight profile. Based on the algorithm 
developed in Chapter 5, Matlab prototype software was developed for computing the CD 
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controller modifications near the sheet edges. The industrial controller algorithm was also 
modified so that the computed control law modifications could be implemented and tested. 
The field trial results are given in Chapter 6. As predicted by the hardware-in-the-loop 
simulator example, it was possible to achieve a trade-off between the performance and the 
corresponding control signal magnitude during the industrial trial. Also, the final prod­
uct (paper sheet) quality was improved and the actuator usage reduced, with the new 
technique in comparison to the results obtained with the industrial state-of-the-art prac­
tice. It is also particularly important to notice that, in contrast to the existing industrial 
techniques, the developed approach provides a systematic way of modifying the existing 
CD control law near the sheet edges, taking into account important control engineering 
criteria. The new approach guarantees the resulting closed-loop system stability, as well 
as robustness margins, as measured by the H.^ norm of the gain from the process output 
disturbance to control signal. The performance improvement, as measured by the Frobe­
nius norm of the gain from the process output disturbance to the process output, at low 
frequencies, is also guaranteed with the new approach. 

7 . 2 F u t u r e W o r k 
Some of the possible research directions directly related to the work presented in this 
thesis are outlined below. 

Modelling of CD processes near the sheet edges with the CD process parameters from 
the centre of the sheet and Dirichlet boundary conditions is currently accepted industrial 
practice. Obviously, a more accurate identification of CD processes near spatial domain 
boundaries would allow for even better CD control. In particular, the use of more accurate 
process models in conjunction with the closed-loop approach technique presented here 
should result in a better CD control. 

The transfer functions that define linear fractional transformation used in the closed-
loop approach initially have a lot of insignificant states (related to the centre of sheet), 
subsequently eliminated by the use of Hankel singular values. Since state elimination (i.e. 
dynamical order reduction) could require a considerable computational effort (particularly 
in the case of very wide paper machines), a better way of eliminating (or even not including 
in the first place) insignificant states would be of clear benefit. 

As pointed out in Chapters 5 and 6, two tuning variables (kp and kp) were used 
in the newly proposed closed-loop approach to modifying industrial CD controller near 
spatial domain boundaries. This work provided guidelines for choosing the values of 
these variables. Further analysis of the influence kp and kp have on the resulting closed-
loop system behavior in case of various industrial CD process and controller parameters 
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would certainly be beneficial. An interesting question would be, for example, the point 
of reference for kp. In this work, the process maximum singular value at steady-state 
was used as the point of reference. An additional analysis and research in this direction 
should result in the development of more exact guidelines for choosing the values of tuning 
variables, which would particularly be useful for non-expert users. This, in turn, would 
make the new approach (i.e. tuning tool based on it) easily implementable on the existing 
CD control systems worldwide. 
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Appendix A 

Proof of Theorem 1 

Internal stability of the perturbed systems is established by the stability of the transfer 
functions between the disturbance inputs (di, i = 1, 2, 3, 4) inserted in front of each block 
in the corresponding block diagram, and the outputs (?/,, i = 1,2,3,4) of each of the blocks. 
The corresponding closed-loop system is stable if and only if all 16 transfer functions from 
di to fji (i = 1,2,3,4) are stable. 

In all the cases below, closed-loop transfer functions S0 and Si are defined as S0 = 
[/ - GK]~\ Si = [I- KG]-1, and [yx y2 y 3 VA]t = T-[d1 d2 dz d4]T. It can easily 
be confirmed that, subject to the conditions given in Theorem 1, the systems in Figures 
A.1-A.6 are stable. 

A . l Process Additive Perturbation (Case a) 

Y4 

d 2 

r 

d 4 id, 

K 

u 3 

l a 

Figure A . l : Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (a). 

Tn = 

S0G S0GKAG S0GK 

AGSiKG AGS%KAG + AG AGSZK 

S,KG SiKAG SiK 

-AGSJ<G —AGSiKAG -AGSiK 

-S0GKAG 

-AGSiKAG 

—SiK AG 

-AG + AGStKAG 

(A.l) 
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|d 2 

1*0*-
id4 

<du—iAj£r-
Mj*Cr> G 1 1 »C» K 

13 

Figure A.2: Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (b). 

A . 2 Process Inverse Additive Perturbation (Case b) 

S0G S0GAG S0GK -S0GAG 

AGS0G AGS0GAG + A G AGSQGK - A G S 0 G A G 

KS0G KS0GAG KS0 -KS0GAG 

- A G S 0 G - A G S 0 G A G AGS0GK AGSQGAG - AG 

(A.2) 

All the closed-loop transfer functions in this case can easily be obtained from (A.l) by 
simultaneously swapping G and K, and A G and — A G . 

A.3 Process Multiplicative Input Perturbation 
(Case c) 

| d 3 

c-

y 2 

iyi 

Figure A.3: Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (c). 



A. Proof of Theorem 1 113 

S 0 G [I + A G ) - L A G K S 0 G K S 0 G - [ I + A G } - L A G K S 0 G 

S 0 G A G [I + A G ] ~ 1 A G K S 0 G A G + A G K S 0 G A G — [I + A G \ ~ 1 A G K S 0 G A G 

S 0 G K [I + A G ^ A G K S O K S 0 - [ I + A G ] - L A G K S 0 

— S 0 G A G - { I + A G ] - L A G { - K S 0 G A G + I ) - A G — K S 0 G A G - [ I + A G ] - L A G ( ~ K S 0 G A G +1) 

(A.3) 

A . 4 Process Inverse Multiplicative Input Perturba­
tion (Case d) 

jd4 

l d 3 

^64 K 

A ; y4 y2 Ac 

|d2 

Mi yi 

Figure A.4: Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (d). 

TR F = 

S 0 G S 0 G [ I — AG]~1G[I — A G ] _ 1 A G S 0 G K - S 0 G [ I - AG]-HG 

A G K S 0 G ( A G K S 0 G + I)[I-AG]AG AGKSa (-AGKS0G[I - AG]~l + I - [I - AG]-l)AG \ 

K S 0 G K S „ G [ I - Ac}-1 AG K S A - K S A G [ I - A G J - ' A G 

A G K S 0 G 6 g K S 0 G [ I - A G ] A G - A G K S 0 AGKS0G[I — AG]AG — AG 

(AA) 

A . 5 Process Multiplicative Output Perturbation 
(Case e) 

S 0 G S 0 G K [ I + A G } - 1 A G S 0 G K - S A G K [ I + A G ] ~ L A G 

T = A G S A G A G S 0 G K [ I + A G } - L A G + A G A G S 0 G K — A G S 0 G K [ I + A G ] ~ 1 A G 

K S 0 G K S A [ I + A G } - 1 A G K S 0 - K S 0 G K [ I + A G ] _ 1 A G 

— A G S 0 G — A G S 0 G K [ I + A G ] _ 1 A G — A G A G S A G K A G S A G K [ I + A G ] _ 1 A G 
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y4 •Ac 

• 
K G K G 

l u 4 l u 2 

| d 3 Idi 
•64 

Figure A.5: Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (e). ' ' 

A.6 Process Multiplicative Output Perturbation 
(Case f) 

"3 

y4 Ac 

• 

j d 4 i d 2 

wo 

y2 

K yi 

Figure A.6: Diagram used to analyze internal stability for the configuration given in 
Theorem 1 - case (f). 

SiK —[I — AG]~1AGGSiK GSiK [I - Aa^^oGSiK 
SiKAG [I-AG]~iAGGSlKAG-AG -GSlKAG -[I - Ac^AcGSiKAc 
SiKG -[I-Ac^AcGSi GSt [I — Ac]~1AaGSi 

SiKAG [I- A G ] - 1 A G ( G S i . f Y A G + /) + A G GSlKAG [I — AG]~1AG(GSiKAG + I) 
(A.6) 



Appendix B 

Matrix Optimization 

Given matrices A e Kmxn, B <E Hkx l, C G 1Zmxl, and scalar p > 0. Consider the static 
matrix optimization problem, 

Q* = argmin(||^Q5 - C\\2

F + p\\Q\\2

F) (B.l) 

with respect to matrix Q £ TZnxk. The Frobenius norm ||-| | F of a matrix is given in (5.8). 
Write the standard singular value decomposition, 

A = UAY,AVj, B = UBEBVi (B.2) 

where the m x m matrix UA and the n x n matrix VA are unitary and the rn x n matrix 
S A is given by, 

S 4 = 
0 

m> n (B.3) 

S A = [Ex 0], m < n (BA) 

where 

Si = diag{cri(^),... ,ap(A)}, p = min(m, n) (B.S) 

Similar expressions apply to the matrices and VB in (B.2). 
Now form the new matrices, 

X = VjQUB, Y = UT
ACVB (B.6) 

then the sum of matrix norms on the right hand side of (B.l) may be rewritten as the 
equivalent expression, 

\\AQB - C\\2

F + p \\Q\\2

F = \\XAXZB - Y\\2

F + p \\X\\2

F (B.7) 

by substituting (B.6) in (B.l) and due to the fact that multiplication by unitary matrices 
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does not affect the Frobenius norm [27, 58]. 
We can expand the Frobenius norms in (B.7) as 

\ Z A X Z B - Y \ \ 2

F 

J^Y/(^(A)aJ(B)xlj-ylJ)2+ £ J>5 + E £ V% (B.8) 
i = l j = l I=TA+1 3=1 *=1 J=»"B+1 

and 

n A: 

P P * = E E ' - 4 = 
1=1 i=l 

M n k n k 

EX > 4 + E E^-4 + E E *>-4 (B-9) 
i = l 7 = 1 1 = ^ + 1 j=l i—1 j = r g - f - l 

Then the expression in (B.7) can be rewritten as the sum over terms, 

\\EAXEB-Y\\2

F + P\\X\\F = 

E E (ai(A)ai(B)XiJ ~ Vijf + P • xij 
i=l j=l 

n k n k 

+ E E^'4 + E E 
i = 7 \4+ l j = l i = l j—rB+l 

m l m l 

+ E E 4 + E E 4 (B.IO) 
1=^+1 j=l i=l j=rB+l 

We can minimize the right hand side of (B.IO) by noting that each term in the sum­
mation (B.IO) contains at most one distinct element xi3- of the matrix X in (B.6). This 
allows the overall optimization to be decoupled in terms of the individual matrix elements. 
Optimizing term-by-term in (B.IO) is straightforward and leads to the solution, 

xh=i^mh-y^ l < ^ < r , and ! < , < r B ^ 
[ 0, otherwise 

so that the n x k matrix X* optimizing (B.7) has only rArB nonzero elements, where 
rA < min(m, ri) and rB < min (A;, I) are the number of nonzero singular values of matrices 
A and B respectively. 

Finally the nx k matrix Q* that minimizes (B.l) can be obtained from the expression 
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for X in (B.6), 

Q* = VAX*Ul (B.12) 

So the solution of the optimization problem (B.l) for the matrix Q involves taking the 
SVD of two matrices in (B.2), computing two matrix products in (B.6), an element-by-
element construction in (B. l l ) , and computing a final matrix product in (B.12). 



Appendix C 

Proofs of Theorems 4-5 

First a few supporting relationships, used in proving Theorems 4-5, are given in Section 
C . l . Next, the proofs are given in Sections C.2-C.3. 

C.l Supporting Relationships 
Given a static compensator K0, the feedback system in Figure 5.1 is internally stable if 
and only if the dynamic transfer matrix given by, 

R(z) = K0(I - N32(z)K0) - l (C.l) 

is stable. The stability of R(z) can be computed easily in state-space. First define the 
factors, 

R(z) = 
Dr 

N32(z) = 
A32 B32 

C32 D32 

then Ar can be written in terms of (C.l) and (C.2) as, 

Ar = A32 + B32K0(I - D32KQyYC, 32 

(C.2) 

(C.3) 

and closed-loop stability is equivalent to the stability of all eigenvalues of the matrix Ar 

in (C.3). 
A conservative (sufficient) stability result can be obtained by substituting KQ from 

(5.14) into (C.l) to obtain 

R(z) = Q0[I- (N32(z) - N32(eJ°))Q0] 1 (C.4) 

Then since QQ is static and N32(z) is stable, small gain arguments lead to the result that 
R(z) in (C.4) is stable if, 

\\(N32(z)-N32(e>°))-Q0\\oQ<l (C.5) 

The following relationship indicates that the optimization weight p may be used to 
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govern the size of the resultant matrix QQ in (5.13), 

s m £ ] ] q 4 f £ y ^ - W ^ M ^ ) ) ( a 8 ) 

where a(-) denotes the maximum singular value, the integers r\2 and r 3 1 denote the number 
of nonzero singular values in N12(e:'0) and A r31(e j 0) respectively. The first inequality is 
standard for any matrix and may be found in, for example [27, 58]. The second inequality 
in (C.6) holds for Q0 in (5.13) and may be verified using (5.13) and (B.11)-(B.12). 

C.2 Proof of Theorem 4 
Let, 

T = V^rTi • °{N12{e^)) a{N31{ei0)) a(Nn(ej0)) • \\N32(z) - N32(ej0)L (C.7) 

Substituting p > V in (C.7) into (C.6) results in Q0 satisfying (C.5), i.e. the system is 
stable. Since, by comparing (C.7) and (5.15), ft > T then p > ft in (5.13) will result in an 
internally stable system also. 

Using Ko in (5.14) we can write 

where A(e^) = N32(e?u) - N32{ej0). Then substitute (C.6) into (C.8) with p > (5 to 
obtain (5.16). 0 

C.3 Proof of Theorem 5 
First prove (5.17) for ui = 0. Note that if QQ optimizes J(iV a(e j 0),p,Q) in (5.13), then 
J(Na(e>°),p,Q0) < J(Na(e>°),p,0) = \\Ti(Na(eP°),0)||F and since Q0 ^ 0 then \\Q0\\F > 0 
and using (5.14) we get | |^(iV a(e J ' 0), / Y O ) | | F < J(Na(ej0), p, Q0) leading to the steady-state 
result \\Ti{Na(eja),KQ)\\F < \\Jri(Na(ei°),0)||F. Then it follows there exists some e > 0 for 
which | | | ^ ( J V a ( e i O ) , 0 ) | | F _ \\^Na(ePQlKQ)\\F | > e , and since ^(N^z), K0) is a stable, 
finite-dimensional transfer matrix, there will exist u)b > 0 for which | \\Jri(Na(e:'0J), i \o) | | F — 
\\Fi(Na(ej0),K0)\\F | < e for -ub < u < cub and (5.17) follows. 0 



Appendix D 

Closed-loop transfer functions used for 
denning L F T s 

D . l Closed-loop transfer functions that make up P e ( z ) 
in Figure 5.2 

Closed-loop transfer functions of interest in case of optimization for performance: 

de -~* Ve Pi = WA[I - G(z)K(z)]-1Wi 

de * Vce Pla = W3[I - G(z)K(z)]~1Wi 

de - ue P 2 
= W5K(z)[I - G^Kiz^Wi 

de ' -> Vde Ps = W2[I - Dz-1 - c(z)CG{z)D]-1c(z)CWi 
Ude -> ue PA = W5[I - Dz-1 - c(z)DCG(z)]- 1iy 6 

Ude Ve P 5 
= W4G(z)[I - Dz-1 - c(z)L»CG(z)]- 1 W 6 

Ude -> Vce Pha = W3G(z)[I - Dz-1 - c(z)DCG(2)]-1W6 

Ude —> Ude P, = W2[I - Dz'1 - c{z)CG{z)D]-1-
[c(z)CG{z) + z-1I]W6 

Uce ~> Ve Pi = WA[I -G(z)[I - Dz-^-cMC]-1-
G(z)[I - Dz-1)-1c{z)W7 

Uce -> Vce P?a = W3[I-G(z)[I - Dz-1)-1^^)-1-
G(z)[I - Dz-1]-1c(z)W7 

Uce —> ue 
ps = W5[I -[I- Dz-^c^CGiz)}-1-

[I - Dz-1}-1c(z)W7 

Uce 2Afe p9 = W2[I - Dz'1 - c(z)CG(z)D}-1W7 

(D.l) 

The rectangular matrices Wi} i = 1,2,... ,7 are defined in (5.18)—(5.19). 
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