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Abstract 

Data mining and machine learning focus on inducing previously unknown, poten
tially useful, and ultimately understandable information from data. In this master's 
thesis, we propose a new learning approach called treatment learning. Treatment 
learning aims at mining a small number of control variables in a large option space 
that can lead to better system behavior. It addresses two central issues in data 
mining: (1) the understandability of learnt theories; (2) how can the learnt theories 
benefit decision making. 

We design and implement a novel mining algorithm and deliver two treatment 
learners that are freely downloadable from an online distribution. We describe 
the implementation details of both learners and compare them through algorithmic 
performance analysis. 

We conduct extensive data experiments and case studies to demonstrate the 
effectiveness of using treatment learner to seek a small number of control variables 
that constrain the option space to a tight, near-optimal convergence. 

We compare treatment learning with other learning schemes in the frame
work of feature subset selection for supervised classification. Our treatment learner 
selects smaller feature subsets than most other methods with minimal or no loss in 
classification accuracy. Treatment learner has been successfully applied to various 
research domains through a collaboration with other researchers. By presenting four 
examples, we show the general paradigms of using it for decision making. 
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Chapter 1 

Introduction 

We are living in an information age where powerful database systems for data col

lecting and managing are in use in virtually all companies, accumulating data on 

operations, activities and performance. The need for automated extraction of use

ful information (e.g., trends and patterns) from huge amounts of data has led to 

the rapid development of knowledge discovery and data mining techniques. Knowl

edge Discovery in Database (KDD) is defined as the non-trivial process of identify

ing valid, novel, potentially useful, and ultimately understandable patterns in data 

[UPSS96]. Data Mining is a step in the KDD process. It consists particular algo

rithms that, under some acceptable computational efficiency limitations, produce 

a particular enumeration of the required patterns. Although data mining gains its 

popularity only recently, the similar concept has been well researched in an arti

ficial intelligence area called machine learning. Machine Learning concentrates on 

induction algorithms and on other algorithms that can be said to "learn". Because 

both data mining and machine learning aim at inducing previously unknown, and 

potentially useful, information from data, we use the two terms interchangeably. 

Despite the explosion in the development of data mining, there remains two 

central issues: 

• Understandability of the learnt theory. 
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• How the knowledge gained from data actually benefit decision making? 

In this thesis, we introduce the concept of treatment learning. Treatment learning is 

a new learning approach that aims at identifying a small number of control variables 

in a large search space. In the rest of this chapter, we address the above issues 

respectively to bring in the distinguishing features of treatment learning. 

1.1 Simplicity First Methodology 

Theories learnt by different learners vary widely in term of their explanatory value. 

At one extreme, some learning algorithms output theories too intricate to be under

stood by human. For example, it is difficult to understand the prediction system of a 

neural network merely by studying the net topology and individual node weights. If 

a particular prediction is in some sense surprising to the end-user, it is harder to es

tablish any rationale for the value generated. By comparison, decision tree learners 

are commonly considered to be easily understandable. By explicitly enumerating 

rules used by the prediction system, such learners can lead to insights about the 

data. 

Improving both accuracy and simplicity is one of the goals of machine learn

ing research. In the past, researchers have designed learning algorithms with a 

strong bias toward short rules. One such bias is Ockham's Razor, a principle pro

posed by William of Ockham in the fourteenth century. It states that "entities 

should not be multiplied unnecessarily", which is normally interpreted as "keep it 

simple". In machine learning, when we face two theories with the same predictions 

and the available data cannot distinguish between them, Ockham's Razor favors the 

simplest one. 

There are always tradeoffs between simplicity and accuracy. Based on dif

ferent emphasis, two methodologies exist in parallel: 

• Traditional methodology encourages learning algorithm to search through very 
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large hypothesis space containing complex hypothesis. 

• Alternatively, a "simplicity first" methodology directs learning algorithm to 

search through a relatively small space containing only simple hypothesis. 

Although it is perfectly possible that simple hypothesis can be produced by using 

the traditional methodology, we emphasize that simplicity first approach offers at

tractive features. Firstly, systems designed using this methodology are guaranteed 

to produce theories that are near-optimal with respect to simplicity [Hol93]. Sec

ondly, accuracy of the simple theory provides a baseline for more complex ones. In 

other words, increased complexity must be justified by increased accuracy. 

Treatment learning adopts the simplicity first methodology. It produces min

imal model of the target domain. If the theory found by treatment learner is un

satisfactory, then there does not exist a simple satisfactory theory. As a result, the 

output of treatment learner is small, simple, understandable and easy to interpret. 

For example, figure 1.1 shows a decision tree learnt by C4.5 from the same 

HOUSING dataset. The dataset comes from the UC Irvine machine learning data 

repository [CEC98]. It contains 506 examples of high, mediumHigh, mediumLow, 

and low quality houses in the Boston area. The decision tree is a predicting system. 

Given a new housing record, the system can predict what quality this house might 

be classified. Although decision trees are one of the most explainable learners, the 

tree is still too complex for human to understand. If a person wants to find high 

quality houses in this area, giving him this tree doesn't provide intuitive guidelines 

for his house hunting process. The tree doesn't tell him what elements to watch 

for or what elements to avoid, which are the keys for human to make decisions. 

Treatment learning, on the other hand, gives this kind of information as we should 

see in the next section. 
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Figure 1.1: A decision tree learnt from HOUSING data set from UCI data repository 
http://www.i cs .uc i .edu/~ cmerz/mldb.tar.Z. 

1.2 C l a s s i f i c a t i o n v s . C l a s s C o m p a r i s o n 

In most domains, data are grouped into several comparable categories or classes. 

This resembles the natural way of human learning. Two different data mining tasks 

arise when understanding classes: classification and class comparison. Classification 

is one of the most well researched and widely used techniques. It analyzes the data 
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to construct one or a set of models, and attempts to predict the behavior of new 

data examples. Models usually take the form of decision trees, rules, neural nets 

or Beyesian belief networks. Class comparison focuses on mining descriptions that 

distinguish a target class from its contrasting classes. Intuitively, both techniques 

discover differences between classes. If an attribute is highly relevant with respect 

to a given class that it can be used to classify novel instances of that class, then 

it is likely that the values of the attribute can distinguish the class from others. 

However, classification and class comparison put quite different emphasis on the 

interpretation of discovered theories by human domain experts. Rubinstein and 

Hastie [RH97] argue that the goal of automatically finding classes differences can be 

approached from 2 points of view: 

1. discriminative: where the algorithm focuses on learning the class boundaries 

without regard to the underlying class densities. This way, it attempts to find 

differences that are useful for predictive classification with a high degree of 

accuracy. 

2. Informative: where the algorithm learns the class densities, and attempts to 

find significant differences in the class descriptions, some of which may also be 

highly predictive but are not necessarily so. 

Most classifiers are discriminative miners. The learnt theory can be thought 

as a black box: once the box is ready, all we care is whether it could output a correct 

classification when giving a new example. Unlike classifiers, treatment learner takes 

the informative approach. It learns the class distribution, and seeks for solutions 

(e.g., treatments) that could most change the distribution in a user preferred way. 

Theory learnt from treatment learner is more like a white box: we actually look into 

it and want to understand why this would lead to certain direction. By emphasizing 

on the understandability of the theory, treatment learning generates insights into 

the target domain and inspires decision making. Take the HOUSING example, 

treatment learner outputs a theory shown in figure 1.2. The left most plot in that 

figure shows the quality distribution of houses in that area: among the 506 houses, 
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21% is of poor quality while 29% is very good. For house hunting policy within the 

area, treatment learner offers two strategies (Visualized in the middle and the right 

plot of figure 1.2 respectively): 

rule 1 
IF : 6.7 <RM < 9.8 AND 12.6 < PTRATIO < 15.9 

THEN : 97% of the found houses will be high quality 

rule 2 
IF: 0.6 < NOX < 1.9 AND 17.16 < LSTAT < 39 

( THEN : 98% of the found houses will be low quality 

Despite any domain specific details, the above two rules are easy to interpret and 

helpful for people seeking houses in that area. 

Figure 1.2: Treatments learnt in the same domain 

baseline controllerH 
(i.e. best action) 

monltorH 
(i.e. diaster if..) 

Treatment nothing 6.7 < RM < 9.8 
A12.6 < PTRATION < 15.9 

0.6 < NOX < 1.9 
A17.16 < LSTAT < 39.0 

Results 

100-
7 5 -
5 0 -
2 5 -

n 2 1 29 29 

100-
7 5 -
5 0 -
2 5 -

97 

0 0 _3_ | 

100-
7 5 -
5 0 -
2 5 -
n 

98 

1 1 0 Results 

N 506 38 81 

Attributes used in the treatments: 
rm = number of rooms 

ptratio = parent-teacher ratio at local schools 
nox = nitric oxides concentration 

Istat = living standard 

1.3 Treatment Learning 

In summary, treatment learning addresses the understandability and decision mak

ing issues of data mining by providing two attractive features: 
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• It takes a simplicity first methodology. As a result, it seeks to generate minimal 

theories that are small, simple, easily understandable from the target domain. 

• It approaches learning in an informative way, emphasizing on the interpreta

tion of the learnt theory by human experts to inspire decision making. 

We present this novel learning approach, and advocate the use of treatment learning 

as an alternative to other, more elaborate learning algorithms. As shall be seen in 

the rest of the thesis, treatment learning has been successfully applied to numer

ous research domains such as software engineering, requirement optimization and 

attribute subset selection. Treatment learning contributes to the data mining com

munity a new learning concept, a readily accessible learner and a wide applicability. 

1.4 Organization 

This thesis discusses four main topics: 

1. Introduction of treatment learning in the context of machine learning and data 

mining. 

2. A detailed description of treatment learning by providing algorithm imple

mentation and performance comparison of two treatment learners. 

3. A evaluation of treatment learning with respect to other state-of-the-art tech

niques in the framework of Feature Subset Selection (FSS) for supervised clas

sification. 

4. Application of treatment learning in various research domains. 

The above topics are organized as follows: 

In chapter 2, we present a literature review that serves as background of this 

thesis. Two groups of concepts and techniques are outlined: one is supervised classi

fication in machine learning, the other is association rule mining in data mining. We 

also review some recent development in integration of classification and association 
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rule mining. Al l of them are closely relevant to the topics discussed in this thesis, 

and represent the state-of-the-art in each of these areas. 

In chapter 3, we first bring forward the concept of narrow funnel effect: an 

observation repeated in many researches, where most domain variables are controlled 

by a very small subset. We then introduce treatment learning as an ideal way to 

identify funnel variables: a lightweight learning approach that focuses on producing 

the minimal models to describe significant differences among groups of data. We go 

deep into the problem by presenting implementation details of a treatment learner 

TAR2. This is followed by two case studies illustrating the effectiveness of using 

treatment learner in practice for actionable decision making. Finally, we relate 

treatment learning to extensions of standard learning techniques and general change 

detecting algorithms to show their differences and the novelty of our approach. 

In chapter 4, we examines the algorithmic performance of the learner de

scribed in the previous chapter. We point out its efficiency limitation by reporting 

runtime curves with respect to parameters such as data size and treatment size. 

After analyzing the search procedure that leads to the problem, we solve it by em

ploying a series of strategies, including a random sampling algorithm. The improved 

learner TAR3 is evaluated through comparison experiments with TAR2 and a re

vised case study. The results show that TAR3 has made major improvement in 

efficiency: it can reach stable conclusions in linear time. 

In chapter 5, we further explore treatment learning in the framework of 

Feature Subset Selection for supervised classification. Feature subset selection is 

the process of identifying and removing as much of the irrelevant and redundant 

information from data as possible prior to learning. We use treatment learner as 

feature subset selector on ten commonly used datasets and compare the result with 

six standard techniques. Experiments show that our approach is the best overall 

feature subset selection method. It finds the smallest feature subsets with minimal 

or no loss in classification accuracy. 
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The test of any technique cannot be how much the inventor likes it. Rather, 

it is how much other people wants to use it. In chapter 6, we describe how other 

researchers have used the software developed in this thesis. We present real world 

applications of treatment learning to demonstrate how it can be integrated into 

different research frameworks to assist decision making. We present studies in four 

domains: 

1. Assessment of software development paradigm 

2. Project quality analysis using software metrics 

3. Study of software inspection policies 

4. Testability analysis of Finite-State Models 

Among them some are model-based while others are data-present. In either case, we 

give brief background and state the approach and goal of the study. Although each 

case is discussed from a domain-specific point of view, we emphasize the general 

applicability of treatment learning and the approach of modelling the problem such 

that we can make decisions by identifying minimal key factors in the domain. 

In chapter 7, we conclude this by reviewing the main contributions of our 

research and pointing out future research issues. 
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Chapter 2 

Literature Review 

We present in this chapter a literature review which is closely related to the topics 

discussed in this thesis. We also provide basic definitions associated with data 

mining and supervised machine learning. They serve as a background to the thesis 

and will be frequently used throughout it. Some of the definitions will be repeated 

or emphasized again if necessary, other additional, non-frequently used definitions 

will be given when required. 

Classification and association rule mining are two major topics in the review. 

Typical algorithms as well as other commonly used methods in each field are dis

cussed. Association based classification methods have attracted much attention in 

recent years, showing an increasing interest in integrating the two approaches for 

real world application. Our goal is to provide a representative sample of the research 

in each of these areas. 

2.1 Classification 

2.1.1 Introduction 

The problem of classification has been well studied and continued to be an important 

research topic in the fields of machine learning, pattern recognition, statistics over 
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decades, and recently in the database and data mining communities. Classification 

is defined as the process of finding a set of models(or functions) that describe and 

distinguish data classes or concepts, for the purpose of being able to use the model 

to predict the class of objects whose class label is unknown [JH01]. The derived 

model may be represented in various forms, such as classification (IF-THEN) rules, 

decision trees, mathematical formulae, or neural networks. 

Typically, a classification task consists of two steps: 

• The learning phase: In this phase, a model is constructed by analyzing data 

examples described by attributes. Each data example is assumed to belong to a 

predefined class(e.g., edible or poisonous, play or don't play), they collectively 

form the training data set. This step is also known as supervised learning, 

metaphor being that the learning of the model is "supervised" explicitly by 

the class label of each training example. 

• The testing phase: In this step, the accuracy of the learnt model is estimated 

on the test data set. If the accuracy is acceptable, the model is used to classify 

future data examples for which the class label is unknown. 

Two different learning strategies are employed for classification: eager learn

ing and lazy learning. Lazy learners [Aha97] (also called instance-based learning) 

defer processing of training examples until requests for classification of new data 

examples are received. They accomplish classification by combing their stored (e.g., 

training) data and discard the constructed answer as well as any intermediate re

sults. In contrast, eager learners greedily compile their inputs into an intensional 

concept model (e.g., rule set, decision tree, or neural network), and in this process 

discard the inputs. They then use this induced model for classification. 

Decision tree induction and neural networks are examples of eager learn

ing method, nearest neighbor classifiers are typical learners using the lazy learning 

strategy. In the following section, we outline 2 representative algorithms: C4.5 and 
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outlook temp(°F) humidity windy ? class 
sunny 75 70 true play 
sunny 80 90 true don't play 
sunny 85 86 false don't play 
sunny 72 95 false don't play 
sunny 69 70 false play 

overcast 72 90 true play 
overcast 83 88 false play 
overcast 64 65 true play 
overcast 81 75 false play 

rain 71 96 true don't play 
rain 65 70 true don't play 
rain 75 80 false play 
rain 68 80 false play 
rain 70 96 false play 

Table 2.1: A small training set. 

k-nearest neighbor. To show the diversity of approaches, other methods such as 

backpropagation, Naive Bayesian classifier and 1R are also discussed. 

2.1.2 Dec is ion Tree Induc t ion 

Ross Quinlan's work on ID3 [Qui86] and C4.5 [Qui92] is widely acknowledged to have 

made some of the most significant contributions to the development of classification. 

The idea originates from the concept learning systems(CLS) [HS66]. 

A decision tree is a tree structure, where each internal node denotes a test on 

an attribute, each branch descending from that node corresponds to one of the pos

sible values for this attribute, and leaf nodes represent classes [Qui92]. An instance 

is classified by starting at the root node of the decision tree, testing the attribute 

specified by this node, then moving down the tree branch corresponding to the value 

of the attribute. This process is then repeated at the node on this branch and so 

on until leaf node is reached. Table 2.1 is an example training data, and its corre

sponding decision tree is shown in figure 2.1. That tree has 100% accuracy on the 

14 training instances. Decision trees can easily be converted into a set of decision 

rules. 
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<=7 

play don't play play play don't play 

Figure 2.1: A decision tree corresponding to table 2.1. 

The basic algorithm for decision tree induction is a greedy algorithm that 

constructs decision trees in a top-down recursive divide-and-conquer manner. It 

involves determining the attribute which is most discriminatory and then splitting 

the training instances into groups, containing multi-class instances or single-class 

instances, categorized by this attribute. Next, the process is repeated to further 

partition each group until every subgroup contains data of one class only. The key 

to constructing a decision tree is how to choose an appropriate attribute to divide 

the data, and subsequently other attribute values for subgroups. 

ID3 [Qui86] uses an entropy-based measure known as information gain as 

a heuristic for selecting the attribute. The information theory underlying it states 

that: The information conveyed by a message depends on its probability and can 

be measured in bits as minus the logarithm to base 2 of that probability. Let S be 

a set containing s training examples, Cl(i = l..m) be one of m distinct classes. The 

entropy or expected information needed to classify a given sample is given by: 

where pi 

£ ( S ) = ~ I > l ° g 2 (Pi) 
i=l 

IS C'\ 
1 I ' e i ' 1 is the probability that an arbitrary sample belongs to class C, 

Consider a similar measurement after S has been partitioned in accordance with 
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the n distinct values of attribute A. The entropy based on the partitioning into 

subsets by A is the weighted sum over all subsets: 

n \S I m 

j=i
 1 1 i=i 

where p -̂ = 1 is the probability that a sample in Sj belongs to class d. The 

information gained by partitioning S in accordance with attribute A is: 

Gain(A) = E(S) - E(A) 

ID3 in its each iteration selects attribute to maximize this information gain criterion. 

The gain measure is biased in that it tends to prefer attributes with many 

values. To avoid this, C4.5 uses gain ratio which considers the probability of each 

attribute value: 

gain(A) 
gain ratio(A) 

split info(A) 
gain(A) 

Experiments show that gain ratio is robust and typically gives a consistently better 

choice of test than the gain criterion [Qui88]. However, it is reported to have the 

tendency to favor unbalanced splits in which one subset is much smaller than the 

others [Min89]. Various other selection measures have been proposed, including Gini 

index of CART [BFOS84], distance-based measures [deM91] and the T A R Z A N tree 

query language (also a prolog prototype of the TAR2 system described in the later 

chapters) [MK01]. 

Decision Tree 1R 

1R is a simple decision tree learner developed by Holte [?]. It reads in dataset and 

outputs 1-level decisions tree. The learning algorithm is straightforward: 
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• Divide the value range of continuous attribute into several disjoint intervals. 

• Treat missing value as a legitimate value. 

• For each attribute, construct a 1-level decision tree using that attribute by as

signing class membership for each of its value. Class C is assigned to attribute 

A value V such that most examples having value V of attribute A belong to 

class C (i.e., P(A.V\C) is maximum). 

• Choose the decision tree that has the highest accuracy on the training set. 

This is the final output of 1R. 

In summary, 1R ranks attributes according to the accuracy on the training set. The 

highest ranked attribute is selected to construct the 1-level decision tree. 

1R was compared to C4 (the immediate ancestor of C4.5 [Qui86]) on 16 

commonly used machine learning datasets. The experiment showed that lR 's 1-

level trees, although much simpler, are only a few percentage points (3.1%) less 

accurate, on most of the datasets, than the decision trees produced by C4 [?]. The 

comparison offers two important implications: 

1. 1R provides a benchmark accuracy for other, more sophisticated classifiers. 

More complex systems must justify their additional complexity with improved 

accuracy. 

2. The comparison suggests that very simple learners can perform well in practice. 

2.1.3 k-Nearest Neighbors 

Nearest-neighbor methods are among the most popular for classification. They rep

resent the earliest general(nonparametric) methods proposed for this problem and 

were heavily investigated in the fields of statistics and pattern recognition [CH67]. 

Recently renewed interest in them has emerged in the connectionist literature and 

machine learning. Despite their basic simplicity and the fact that many more sophis

ticated alternative techniques have been developed since their introduction, nearest-

neighbor methods still remain among the most successful for many classification 
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problems. 

The nearest neighbor searching is: given a set of S of n points in a metric 

space X, the task is to preprocess these points so that, given any query point 

q G X, the data point nearest to q can be reported quickly. The intuition behind 

the k-nearest neighbor classification is that the class label of a test instance is most 

likely to be the class prevailing the k nearest training examples of the test instance. 

Training examples are described by n-dimensional numeric attributes. Each sample 

represents a point in an n-dimensional space. When given an unknown sample, 

the k-nearest neighbor classifier searches the n-dimensional pattern space for the k 

training examples that are closest to the unknown sample. "Closeness" is defined 

in terms of Euclidean distances, where the Euclidean distance between two points, 

X = (x1,x2,...,xn) and Y = (yi,y2,-,yn) is: 

The unknown sample is assigned the most common class among its k nearest neigh

bors. Specifically, when k = 1, the unknown sample is assigned the class of the 

training sample that is closest to it in pattern space. Nearest neighbor classifiers do 

not require categorical class attributes, they could return a real-valued prediction 

for a given unknown example. Therefore, thy can also be used for regression, in 

which case, the classifier returns the average value of the numeric labels associated 

with the k nearest neighbors of the unknown example. 

Recall that the eager learning classifiers such as C4.5 and backpropagation 

produce discriminating knowledge from training data before any individual decision 

is made, and maintain the knowledge unchanged unless new training instances are 

added. In contrast, nearest neighbor classifiers are lazy learners in the sense that 

they store all of the training examples and do not build a generalization model until 

a new sample needs to be classified. Since all the training is delayed to that time, 

lazy learners can incur expensive computational costs when the number of potential 
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Input Layer Hidden Layer Output Layer 

Figure 2.2: A sample multi-layer feed-forward neural network. Input (xi,X2,xz) is 
fed to the input layer. Weighted connections exist between each layer, where u>ij 
denotes the weight from a unit j in one layer to a unit i in the previous layer. 

neighbors (i.e., stored training examples) is great. These costs become a serious 

issue in applications where many objects are to be classified in a very short time. 

2.1.4 O t h e r C lass i f i ca t ion M e t h o d s 

In addition to decision tree and nearest neighbors, there are numerous other clas

sification methods. In this section, we briefly describe neural nets and naive baye's 

classifier. 

Neural Networks 

Neural networks [Ros62] were inspired by psychologists and neurobiologists who 

sought to develop and test computational analogues of neurons. Neural network is a 

set of connected input/output units where each connection has a weight associated 

with it. During the training phase, the network learns by adjusting the weights for 

each unit. After successful completion of training, the neural network architecture is 

frozen. When new instances traverse the network, they are multiplied by appropriate 
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weights and the products are summed up. The output from one node serves as input 

to another node following the connection. This process repeats until the neural 

network generates an output value which determines the instance's class. 

Different neural network models exist depending on how the units are con

nected: The network may be feed forward networks [Ros62] in which the output 

of one set of units is fed into another layer of units. Networks can be recurrent 

networks such as Boltzmann Machines [HS86] in which the output of a unit as well 

as being an input to other units is also an input to itself. Networks may either be 

fully connected (e.g., Hopfield networks [Hop82])or sparsely connected. 

The most widely used neural network learning algorithm is backpropagation. 

It performs learning on a multi-layer feed-forward neural network such as the one 

shown in figure 2.2. Backpropagation learns by iteratively processing a set of training 

examples. In each iteration (called epoch), the mean squared error between the 

network's prediction and the actual class is calculated and propagated backwards 

from the output layer through each hidden layer down to the first hidden layer. The 

weights are updated, using gradient descent, to minimize the error. Although it is 

not guaranteed, in general the weights will eventually converge, and the learning 

process stops [Fau94]. 

Neural networks involve long training times. They require a number of pa

rameters that are typically best determined empirically, such as the network topol

ogy. They have been criticized for their poor interpretability, since it is difficult for 

humans to interpret the semantics behind the learned weights [Hay99]. Advantages 

of neural networks, however, include their high tolerance to noisy data as well as 

their ability to classify pattern on which they have not been trained. Shavlik et. al., 

[SMT91] did extensive experiments comparing packpropagation with ID3. Their re

sults show that backpropagation is more accurate than ID3 with small training set, 

when data contains numerical-valued features, and when examples are noisy or have 

more missing values. Recent efforts in speeding up the algorithms and extraction 
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of rules from trained neural networks contribute towards the usefulness of neural 

networks for classification. 

Naive Bayesian Classifier 

Beyesian classifiers, originally presented by Duda and Hart [DH73] are statistical 

classifiers using Bayes' theorem to compute a probabilistic summary for each class. 

Beyes' theorem states that: the posterior probability of a hypothesis H conditioned 

on observation O is a function of the prior probability of the hypothesis H (i.e., 

the probability you would have assigned to the hypothesis before you made the 

observation). In mathematical formula, it is: 

the essence of the Bayesian approach is to provide a mathematical rule explaining 

how we should change our existing beliefs in the light of new evidence. In classifi

cation, we try to predict the class membership probability given the data examples. 

Naive Bayesian classifiers assume that the values of the attributes are con

ditionally independent of one another given the class label of the example, that is, 

there are no dependencies among the attributes. Despite the fact that the assump

tion is only made to simplify the computation, Naive Bayesian classifier is reported 

to be comparable in performance with decision tree and neural network classifiers 

[Koh96]. 

When the class conditional independence condition holds true, Naive Bayesian 

classifier has the minimum error rate in comparison to all other classifiers. In prac

tice however, dependencies can exist between variables. In this case, Bayesian belief 

networks which allow the representation of dependencies among subsets of attributes 

can be used instead. Bayesian classifiers are also useful in that they provide a theo

retical justification for other classifiers that do not explicitly use Bayes theorem. For 

example, under certain assumptions, many neural network and curve-fitting algo-
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rithms output the maximum likelihood hypothesis, just as naive Bayesian classifier 

does [D.H96] . 

2.2 Associat ion Rules 

Association rule discovery [TA93] [AS94] differs fundamentally from classification 

rule discovery paradigms. While the classification concentrates on finding rules that 

are predictive of a single, predefined class label, association rule discovery has been 

motivated by finding rules that predict increased frequency of an attribute value, 

or collection of attribute values, without limitation on the values that may appear 

in the consequent of a rule. Association rule discovery can be distinguished by the 

aims of [WebOO]: 

1. discovering all rules that satisfy a given set of constraints, 

2. an emphasis on processing large training sets, and 

3. allowing any available condition to appear as either an antecedent or conse

quent. 

As shown in the classification section, any machine learning system has its own bias. 

Since association rules do not filter through a machine learning system, it enables 

the user to identify the interesting rules rather than relying on a machine learner 

to determine the rules of interest. This makes association rule discovery a very 

valuable tool for discovering inter-relationships between variables in many different 

types of domains. 

2.2.1 Background and Formal Definitions 

Association rule discovery originates in basket (transactional) data analysis [TA93]. 

In transactional databases, the attributes are the names of merchandise such as 

bread, milk and butter. Such attributes are binary with the values of either 0 or 1. 

An attribute with the value 1 means that this merchandise was bought, otherwise it 
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was not. An item is an attribute-value pair. Table 2.2 is a natural representation 

of the real transactions. 

TID Transactions 
1 A,B,C 
2 B,C,E 
3 B,C,D,E 
4 B,D 

Table 2.2: A natural representation of transactions. 

Definition: Support of an itemset Given a database D and an itemset X, the 

support of X in D is the percentage of transactions in D containing X, 

support(X) = = P(X) 

Definition: Large or frequent itemset Given a database D and a real number 

6(0 < 6 < 1), and itemset X is defined as a large (or frequent) itemset if 

support(X) ^ 5. 

Definition: Association rules Given a database D, an association rule is an 

implication of the form X —> Y, where X and Y are two itemsets in D and 

X n Y = 0. The itemset X is the antecedent of the rule, and the itemset Y 

is the consequent of the rule. 

Definition: Support and confidence of an association rule Given a database 

D and an association rule X —* Y, the support of the rule is the percentage 

of the transactions in D that contain both X and Y. The confidence of the 

rule is the percentage of the transactions in D that contain X, also contain Y. 

support(X -» Y) = ^j^p = P(X A Y) 

confidence(X Y) = ^ y . ^ = P(Y\X) 
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For example, in table 2.2, the rule B,C —> E has a support of 50%, and a confidence 

of 66.7% 

Given a set of transactions D, the problem of mining association rules is to 

generate all association rules that have support and confidence greater than the 

user-specified minimum support (called minsup) and minimum confidence (called 

minconf ) respectively [TA93]. 

This problem can be decomposed into two subproblems: 

1. Generate all large itemsets with respect to the support threshold minsup. 

A naive approach is to generate all itemsets and test them. In a data set 

containing n items per transaction, this would result in 2™ — 1 itemsets (not 

including the empty set). 

2. Use the large itemsets to generate rules whose confidence satisfy the thresh

old minconf. Note that, if ABCD and AB are both large itemsets, we have 

confidence(AB —»• CD) = ^ u p p o H ^ ^ • Hence this problem is straightfor

ward. 

The efficiency issue of discovering all large itemsts has been extensively stud

ied in both the database and data mining communities. There exists two widely 

used algorithms, the APRIORI algorithm [AS94] and the M A X - M I N E R algorithm 

[Bay98]. 

2 . 2 . 2 T h e A P R I O R I A l g o r i t h m 

The basic idea in the APRIORI algorithm is to use the Apriori property of large 

itemset to narrow search space. The Apriori property states that: all non-empty 

subset of a large itemset is also large. In other words, if a fc-itemset is not large, all its 

supersets are not large either. The APRIORI algorithm generates large itemsets in 

a level-wise manner (e.g., generates large fc-itemset first, then large (A; + l)-itemset), 

following a two-step process: 
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• The join step: generating a collection of fc-itemset candidates Ck by joining 

the large (k — l)-itemsets Ck-i-

• The prune step: going through the database and calculating the supports of 

the candidates to get the large fc-itemsets £ k - In this step, the Apriori property 

is used to reduce the candidates before testing. 

We use an example ([AS94], APRIORI-GEN function) to illustrate the main 

point in candidate generation. Suppose the collection £3 of all the large 3-itemsets 

in some database be {{1,2,3},{1,2,4},{1,3,4},{1,3,5},{2,3,4}}. After a joint step, the 

candidate collection C4 will be {{1,2,3,4},{1,3,4,5}}. In the prune step, the itemset 

{1,3,4,5} will be removed f r o m C 4 because its subset {1,4,5} is not in £3 . As a result, 

only itemset {1,2,3,4} is a candidate and needs support calculation. 

The APRIORI algorithm achieves a good performance by reducing the size 

of candidate itemsets. However, in some situations where there exist long large 

itemsets or where a quite low support threshold is required, the APRIORI algorithm 

still suffers from heavy computational costs. 

2.2.3 T h e M A X - M I N E R A l g o r i t h m 

M A X - M I N E R Algorithm differs from APRIORI in both its output representation 

and prune strategy. Unlike APRIORI, the M A X - M I N E R algorithm doesn't explic

itly output all large itemsets, it outputs only those large itemsets whose proper 

supersets are not large. Those large itemsets are called maximal large itemsets. 

They can be seen as a frontier boundary to separate the large itemsets from non-

large ones. Because any subset of the maximal large itemsets is also large, this 

output implicitly and concisely represents all large itemsets. 

There are two prune strategies used in MAX-MINER: 

• superset-frequency pruning: if an itemset is large, then its subsets must also 

be large, hence there is no need to generate its subsets for support calculation. 
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• subset-frequency pruning: if an itemset is non-large, then its supersets must 

also be non-large and it's unnecessary to generate its supersets for support 

calculation. 

Those prune strategies of M A X - M I N E R are implemented in set-enumeration trees 

[Rym92] by incorporating some heuristic. This allows M A X - M I N E R for looking 

ahead to quickly identify long frequent itemsets and short non-frequent itemsets so 

that both pruning can be used simultaneously. Compared to APRIORI, which only 

uses the second pruning, M A X - M I N E R has been shown to perform two or more 

orders of magnitude better on some data sets , especially when support threshold is 

low or the data set is high dimensional [Bay98]. 

Related work close to M A X - M I N E R include PINCER-SEARCH [LK98] and 

M A X - C L I Q U E [ZPOL97]. 

2.3 Integration of Classification and Association Rule 

Mining 

A range of different types of classification algorithms, including decision tree in

duction, nearest neighbor methods, error back propagation, Bayesian learning, have 

been discussed in section 2.1. Those algorithms arrive at a classification decision 

by making a sequence of micro decisions, where each decision is concerned with one 

attribute only. In this section, we study classification approaches based on associa

tion rule mining concept by describing two classifiers, the C B A classifier [BLM] and 

JEP classifier [LDROO]. We also briefly discuss a concept called contrast set mining, 

that mines a special case of associations in classified data. 

2.3.1 T h e C B A Class i f ier 

Classification Based on Associations (CBA) [BLM] is a successful classification 

method using the dependency of association rules. The basic idea of C B A is to 
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discover a special type of association rule, called class association rules (CARs), 

satisfying the user-specified support and confience threshold requirements. The 

CBA classifier then selects the most interesting rules for classification. 

In CBA, a CAR is an association rule whose consequence (or RHSrRight 

Hand Side) is restricted to the class label. The algorithm consists of two parts, a 

rule generater and a classifier builder. 

1. Generating all CARs that satisfy user-specified support and confidence thresh

olds. 

2. Evaluating all CARs and selecting the subset that gives the least number of 

errors. 

In this step, CBA uses the following heuristic: Given two rules ry and 7-2, the rule 

r\ precedes 7-2 if 

1. the confidence of r\ is greater than that of r^\ or 

2. their confidence are the same, but the support of r\ is greater than that of r2\ 

or 

3. both the confidences and supports are the same, but r\ is generated earlier 

than 7*2. 

CBA was reported more accurate than C4.5 as it outperforms C4.5 on 16 

out of 26 datasets and decreases the average error rate [BLM]. 

A major disadvantage of CBA is that the number of discovered rules is usu

ally very large. In their 26 experimented data sets, the average rule limit is 80,000. 

It is ironic that they claim standard classification has an understandability problem 

because those systems use domain independent biases and heuristics to generate 

a small set of rules. However, their huge rule set, although may be complete, is 

clearly overwhelming. Secondly, CBA relies on user-specified support and confi

dence thresholds to mine rules (by default, they set support=l%, confidence=50%). 

This could be tricky, since a high support dramatically degrades the classification 
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accuracy while a low support results in long run times. Thirdly, CBA discretizes 

continuous attributes first, different discretization could lead to different collection 

of rules. 

2.3.2 The J E P Classifier 

The JEP classifier is based on the notion of emerging patterns (EPs). An EP is an 

itemset whose support increases significantly from one class of data to another. The 

ratio of the two supports is the growth rate of EP, i.e., 

growth rate(X) =  s uPP o r^D2^) 
support £)j (X) 

where D \ , D 2 are two different classes and X is an itemset. The JEP classifier 

exploits the discriminating power of a special type of EPs called jumping emerging 

patters (JEPs), whose support increases abruptly from zero in one class to non-zero 

in another-the growth rate being oo or 0. 

Suppose we have a training set containing 3 classes, the JEP classifier works 

as follows: 

• The training set T> is partitioned into T>\, T>2, T>z 3 subsets, each has only 1 

class. 

• Because the JEP works in pairs, the 3 subsets are combined into 3 pairs, i.e., 

Vi/V2 U P 3 ; V2jV\ U£>3; T>2,/V2 \JV\. This process is called extracting pair-

wise features. Then a border-based algorithm is used to identify the JEPs for 

each pair. 

• JEPs with largest support (the most expressive JEPs) are collected by taking 

the union of the left bounds of the borders for each pair. 

• When a test example is given, the classifier calculates the collective impacts in 

favor of 3 classes respectively, then the class with the largest collective impact 

is assigned to the test example. 
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The border-based representation of rules and the border manipulation algo

rithm are the distinct features of emerging patterns. Classifiers based on EPs are 

novel and fundamentally different from classic association rule mining. JEP classi

fier has been found very accurate: in 25 data sets where results of C B A and C4.5 

are available, JEP outperforms both of them on 15 data sets; C B A wins on 5, C4.5 

wins on 5. JEP classifiers also performs well on unbalanced data sets where the 

main class of interest is in minority. It scales up on data volume and dimensionality 

[LDROO]. 

Other classifiers based on emerging patterns is the C A E P classifier (classifi

cation by aggregating emerging patterns), which uses EPs with finite growth rates 

rather than JEPs. C A E P is considered complementary to JEPs, and is discussed in 

[DL99]. 

2 . 3 . 3 Contrast Set 

Contrast set is a term proposed by Bay and Pazzarni. A contrast set is a con

junction of attribute-value pairs (similar to itemsets in association rule) defined on 

groups(classes). The task of mining contrast sets is to find all contrast sets whose 

support differs meaningfully across groups[BP01]. That is: 

\P(X\y = ci)-P(X\y = cj)\>S;i^j 

where X is the contrast set, y is the class variable, 5 is a user defined threshold 

of minimum support difference. The discovery of contrast sets allows us to ask 

questions such as "what are the differences between people with Ph.D. and bachelor 

degrees?". 

Bay and Pazzarni designed a complete mining algorithm called STUCCO 

to search for contrast sets. STUCCO operates through a combination of search 

and summarization. In the search stage, a set enumeration tree is constructed. 

STUCCO searches the tree in a level wise manner. For each set, STUCCO counts 

its support to determine whether it should be pruned or not. STUCCO also keeps 
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careful track of a number of statistical tests made to check if a contrast set is 

significant[BP99]. In the summarization stage, STUCCO uses a filter algorithm to 

show user only a portion of the contrast sets discovered. The most general sets (those 

contain only single item) are shown first, then more complicated conjunctions. For 

example, it starts showing single sets: set! : sex = male, set2 : school = ECE, 

set3 : GPA > 4; it then shows: setA : sex = male A school = ECE; at last it 

shows: set5 : sex = female A school = ECE AGP A > 4. The conjunctions are only 

shown if their frequencies could not be predicted from the subsets using a log-linear 

modelpBPOl]. 

The concept of contrast set differs from both classification and association. It 

brings out the problem of detecting differences across groups or trends if the groups 

are temporal. STUCCO employs sophisticated statistical hypothesis testing in its 

search to find significant and insightful contrast sets. However, the "insightfulness" 

of a rule is extremely subjective. As a result, there is no apparent way to evaluate 

and benchmark patterns discovered by contrast set mining. 

2.4 S u m m a r y 

The reviews presented here concentrate on the fields of classification and association 

rule mining. We provided both basic definitions and algorithms for each task. The 

learning systems being described can be summarized into three groups: 

• Classical algorithms that usually serve as benchmark for new methods emerged 

recently. For classification, such algorithms include C4 .5 decision tree classi

fier, K-nearest neighbor lazy learner, backpropogation neural net and naive 

bayes classifier. For association rule mining, there are APRIORI algorithm 

and Max-Miner algorithm. These systems have been well studied in literature 

and widely applied in practice. They represent the state-of-the-art in each of 

their fields. 
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• Extensions to standard methods described above. This includes classifiers 

based on association rule mining concept. We presented two such classifiers, 

the C B A classifier and the JEP classifier. They are accurate classifiers con

structed using new K D D patterns known as class based association and emerg

ing patterns respectively. 

• We also include two non-standard learning systems in our review: the 1R 

decision tree learner and the contrast set mining algorithm. Holte's 1R decision 

tree is a successful example of classifiers designed using the simplicity first 

methodology. Bay et.al. bring forward the concept of detecting differences 

cross contrasting classes. They stress two essential elements on which our 

research is based. More precisely, treatment learning is a system that designed 

under the simplicity first methodology to identify class differences. 

The review has shown how the standard learners work in classification and 

association rule mining. In the following thesis, we will introduce our own approach 

to learning. We will compare it to some of the related systems within this frame

work. 
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C h a p t e r 3 

Treatment Learning and The 

T A R 2 Treatment Learner 

3.1 The Narrow Funnel Effect 

Improving both accuracy and simplicity is one of the goals of machine learning 

research. There are always tradeoffs between the two criteria, yet we have seen in 

history that the pursuit of high accuracy has attracted dominant attention. This 

research methodology encourages learning systems to search in very large hypothesis 

space containing, among other things, very complex hypotheses. However, when is 

just enough learning enough? Are complex hypotheses always necessary with respect 

to accuracy? 

There are in literature some indications that many domains lack complex 

relationships. In other words, a small number of critical variables control the re

maining others within a system. As a result, these domains can be "easy to learn" 

using lightweight approaches and can be adequately described by simple models. 

For example: 

• In the experimental comparison of symbolic and neural learning algorithms, 

Shavlik et.al. investigated sensitivity of the algorithms to the number of fea-
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tures. They observe that randomly dropping half the features only slightly im

pairs performance of perceptron, ID3 and backpropagation. For some cases, 

performance even improves when a small number of features are dropped. 

They were surprised to notice the apparent redundancies in several domains 

and concluded that extra features could degrade inductive learning algorithms 

[SMT91]. Another result of their experiments is how well the simple percep

tron algorithm (the simplest neural network) performs. Despite its inher

ent limitations, the accuracy of perceptron is hardly distinguishable on most 

datasets from the more complicated learning algorithms [SMT91]. 

• In decision tree classification, Holte reports the results of experiments measur

ing the performance of a very simple decision tree learner 1R on 16 datasets 

commonly used in machine learning research [Hol93]. The 1-level decision 

trees produced by 1R are only a few percentage points less accurate than the 

more elaborated decision trees produced by C4 [Qui92]. He also examined 

whether or not the datasets used in his study have been particularly engi

neered to make induction easy. The investigation has shown that most of 

them are representatives of datasets in practice. 

• In data engineering, Kohave and John studied a specific feature subset se

lection method. Their experiments show that, on 8 real world datasets, an 

average 81% features can be ignored. Further, ignoring those features doesn't 

degrade the learner's classification accuracy, on the contrary, it results an av

erage increase of 2.14% [KJ97] (see table 3.1). 

In summary, the above experiments are saying that within a very large space 

of attributes, there are a few key values that matter most. A similar effect has been 

seen outside the machine learning literature. For example, in an application of sat

isfiability algorithms to scheduling problems, Crawford and Baker [CB94] compared 

T A B L E A U , a depth-first search backtracking algorithm, to ISAMP, a randomised 

sampling algorithm. Both algorithms assign a value to one variable, then infer some 
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dataset before after retain accuracy change 
breast cancer 10 2.9 0.29% +0.14% 
cleve 13 2.6 0.2% +5.89% 
crx 15 2.9 0.19% +4.49% 
DNA 180 11 0.06% +3.63% 
horse-colic 22 2.8 0.13% +1.63% 
Pima 8 1 0.13% +0.79% 
sick-euthyroid 25 4 0.16% +0.38% 
soybean 35 12.7 0.36% +0.15% 
average 38.5 4.99 0.19% +2.14% 

Table 3.1: Feature subset selection results from Kohavi and John, [KJ97] 

consequences with forward checking. After the checking, if a contradiction was de

tected, T A B L E A U backtracks while ISAMP simply starts over and re-assigns other 

variables randomly (giving up after MAX-TRIES number of times). Otherwise, they 

continue looping till all variables are assigned. Table 3.2 shows the relative perfor

mance of the two algorithms on a suite of scheduling problems based on real-world 

parameters. Surprisingly, ISAMP took less time than T A B L E A U to reach more 

scheduling solutions using just a small number of TRIES. Crawford and Baker offer 

a speculation why ISAMP was so successful: the variables in scheduling problems 

can be grouped into control variables that define a solution and dependent variables 

whose values are derived from the control variables [CB94]. They further hypothe

sized that the solutions are not uniformly distributed throughout the search space. 

The depth-first search sometimes wonders into the deserts containing no solutions 

by making an early unlucky choice. On the other hand, randomized sampling ef

fectively searches in a smaller space since it restarts on every contradiction [CB94]. 

Systems containing such features are not difficult to find solutions and a few key 

tests are sufficient to set the control variables. 

We call this class of phenomena narrow funnel effect, the metaphor being that 

within the decision space, all pathways connecting inputs to desired goal run down 

the same narrow funnel [MENW99]. The core intuition in this term is that: what 

happens in the total space of a system can be controlled by a small critical region. 
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T A B L E A U : 
full search 

IS A M P : 
partial, random search 

% Success Time (sec) % Success Time (sec) Tries 
A 90 255.4 100 10 7 
B 100 104.8 100 13 15 
C 70 79.2 100 11 13 
D 100 90.6 100 21 45 
E 80 66.3 100 19 52 
F 100 81.7 100 68 252 

Table 3.2: Average performance of T A B L E A U vs ISAMP on 6 scheduling problems 
(A..F) with different levels of constraints and bottlenecks. From [CB94]. 

Where the narrow funnel exists, the space of options within a large space reduces 

to just the range of a few variables within the narrow funnel. Machine learning 

in such domains could be very simple: an adequate theory needs only comment on 

assignments to the variables inside the funnel. By definition, any reasoning pathway 

to goals must pass through the funnel if it exists. Hence, one way to find the funnel 

is to find input variables that are associated with desired goals. Treatment learning 

is a machine learning method aims at seeking funnel variables. It is designed using 

the "simplicity first" methodology: treatment leaner searches through a relatively 

small space containing only simple hypothesis. Treatment learning is both a test 

and an application of narrow funnel effect. In domains containing narrow funnels, 

treatment learner will find them and generate very small, simple theories that are 

easier to understand. A unsatisfactory simple theory learnt by treatment learner 

suggests that the domain contains complex relations, hence other, more elaborate 

learning scheme should be tried. 

3.2 Treatment Learning 

In the context of data mining, treatment learning mines minimal contrast set with 

weighted classes. Conceptually, a treatment Rx is a conjunction of attribute-value 

pairs. Given a classified data set, treatment learner seeks a treatment Rx that 
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returns a subset of the training set D' C D with higher frequency of preferred 

classes and lower frequency of undesired classes than in D. Here, D' contains all 

examples that don't contradict the treatment; i.e. D' = {D n Rx}- In the following 

sections, we discuss treatment learning by provide the implementation details of a 

specific learner TAR.2. 

3.2.1 Problem Specification: Input/Output 

TAR2 takes classified data sets such as the one shown in figure 3.1: 

occupation age city gender salary 
sales 45 Calgary male medium 
engineer 29 Toronto male medium 
cashier 22 Victoria female low 
manager J±2 Vancouver male high 

Figure 3.1: A example data set. 

The sample data set contains 4 attributes, among which 3 take categorical values, 1 

(e.g. age) takes continuous values. The class label takes on categorical values from 

set {low, medium, high}. 

Before showing the output form, we state the following assumptions and 

concepts: 

Assumption There exists a partial ordering among the classes, where one class is 

considered superior than the others and referred to as the best class. Similarly, 

there exists a worst class which is the least desirable. A scoring function 

returns weights for each class, denoted by Score(class). The scoring function 

models the domain-specific view of the relative merits of the classes. 

Definition Let A\, A%, ...Ak be a set of k attributes. Each Ai takes on values from 

the set {Vii, Vi2, ...Vim}(continuous values are discretized before process). A 

treatment Rx is a conjunction of attribute-value pairs that have different levels 

of confidence with respect to each class. 
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Definition The confidence of a treatment Rx with respect to a particular class 

C is the conditional probability of that class given the treatment is true.i.e., 

confidence(Rx w.r.t. C) = P(C\Rx) 
=#=of examples where C & Rx are true 

#of examples where Rx is true 

The general rule form of the output is: 

H IF RX : Attrx = Val A Attr2 = Va2 A ... 
THEN class(Ci) : confidence(Rx w.r.t. Ci) 

where R is a set of rules containing treatments that have significant higher confidence 

in best class and significant lower confidence in worst class compared to the raw 

data set. (Note that the best and the worst class is defined by the scoring function 

according to the user's preference.) The number of pairs appeared in the conditional 

of a treatment(i.e., in the IF statement) is called the treatment size. When applying 

the treatment, it constrains the original data set so that only a subset of examples 

in which the treatment holds is returned. This subset is referred to as treated. The 

rule set indicates an improvement in class distribution in the treated subset. For 

the example data set shown above, the output could be: 

Rx IF occupation =" manager" 
THEN salary = "low" :0 

salary= "medium":20% 
salary="high":80% 

Rule R\ returns a treatment of size 1: occupation =" manager". The change of 

class distribution caused by this treatment is visualized in figure 3.2. Rule Ri is 

also called a controller rule as it favors the best class. Rules that favor worst class 

are called monitor rules, which point out things we want to avoid. 

Treatment Assessment 

We use the notion of lift to numerically evaluate the merit of each treatment. 
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base line after treatment 
class distribution (occupation=manager) 

l-i 

-I i — r 
0 1 2 3 4 0 1 2 3 4 

Figure 3.2: class distribution seen in the original salary data set and the subset af
ter applying the treatment [occupation=manager]. Three bars correspond to 3 classes 
("low","medium","high") respectively. Height of each bar indicates the percentage of ex
amples fallen into that class. The original data set contains 100 examples while the treated 
subset contains only 25. 

Definition The worth of a dataset D in terms of class distribution is defined as a 

weighted probability sum across all classes in the dataset: 

worth(D)= Score(Ci) * P(d) 
classes 

Definition The lift of a treatment Rx is the ratio of the worth of the treated subset 

to the worth of the baseline dataset D. i.e., 

= ^rth(DARx) 
worth(D) 

where (D A Rx) is the treated subset, i.e., in which Rx is true for all the 

examples. 

Note that if lift(Rx) > 1 indicates an improvement of the class distribution. The 

goal of treatment learning is to find treatments that generate a large lift. The notion 

of lift distinguishes a treatment from decision rules. Take rule Ri for example: treat

ment occupation = "manager" does not implies salary = "high". It actually means: 

in the subset where the treatment occupation = "manager" is true , the percentage 

of examples whose salary = "high" is much higher than those in the original data 

set while the percentage of examples whose salary = "low" is significantly lower. In 

other words, treatments are constrains that change the original class distribution 

in the resulting subset. Class distribution favors the better classes after applying 

controller rules. 
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3.2.2 The Algori thm 

Treatment learning involves a combination of search and attribute utility estima

tion. It produces item ranking which demonstrates the relative merit of individual 

attribute-value pair for changing the class distribution. 

Discretization 

TAR2 accepts both categorical and continuous attributes. Internally, it treats all the 

attributes uniformly. For a categorical attribute, all the possible values are mapped 

to a set of consecutive positive integers. For a continuous attribute, its value range is 

discretized into intervals, and the intervals are then mapped to consecutive positive 

integers. With these mappings, a data example is treated as a set of (attribute, 

integer-value) pairs (also called items) along with a class label. 

TAR2 uses Equal Width Interval Binning to discretize continuous attributes 

[DKS95]. In this procedure, TAR2 first sorts the observed values of a continuous 

attribute, and then divides them into k equally sized bins, where k is a configurable 

parameter. 

Confidencel Measure 

TAR2's core strategy is the confidencel measure. With ordered classes, TAR2 

associates each class with a score (weight). The highest scoring class is the best class 

Chest i others are non-best classes Cj, (j ^ best). The Scoring function could be 

customized to reflect user preference. Let: 

• a.r: attribute a takes value r. (if a is a continuous attribute, r denotes one of 

its possible ranges.) 

• \a.r\: the number of examples in which attribute a takes value r 

• \a.r,Cbest\: the number of examples in which attribute a takes value r and 

belong to class Cbest-
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• I a.r, Cj\: the number of examples in which attribute a takes value r and belong 

to class Cj, where j f^ best. 

• S(Cbest), S(Cj): Score of class Cbest a n d Cj respectively, returned by the scor

ing function. 

The confidencel measure A a r for &n attribute value pair d.v is: 

Zj(S(Cbest) - 5(C j ) ) ( |a . r ,C 6 e s t | - \a.r,Cj\) 
A = 

[a.r| 

The attributes in our "salary" example has a confidencel histogram shown in figure 

3.3 
3-
2-
1-
0-

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 

Figure 3.3: confidencel histogram seen in "salary" data. Each bar denotes a particular A 
value. Height of each bar indicates how many attribute value pairs have that A value 

confidencel is a heuristic that measures the weighted difference of an item's 

confidence on non-best classes with respect to the best class. It differs from the 

standard association rule confidece definition in that: 

1. it only studies an single item at a time (hence the name confidencel). 

2. it focuses on the confidence difference of an item between classes than the 

item's confidence value itself. 

3. it weights the difference according to the comparative score of each class. 

Reporting Treatments 

After getting that confidencel distribution, TAR2 explores subsets of items whose 

confidencel value are above a certain threshold using a depth-first search. Each 

treatment is then evaluated by its lift, lift > 1 indicates an improvement. TAR2 

only reports treatments with lift(Rx) above a certain threshold. Display of treat

ments takes the visualization form, as shown in figure 3.2. 
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Cross Validation 

Cross validation is a standard method for estimating generalization error based on 

"re-sampling". TAR2 comes with a N-way cross validation facility that allows user 

to divide the data into N subsets of approximately equal size, with each subset's 

class distribution as uniform as possible [Qui86]. TAR2 is then run N times, in each 

run, one subset is used as the test set and the other N - l subsets are put together to 

form a training set. TAR2 learns treatments from the training set and tests them on 

the test set. After the validation, N output files and one summary file are generated, 

recording treatments learnt from each run. In this procedure, each example appears 

exactly once in the test set. N is commonly set to 10. 

Configuration File 

TAR2 encourages user's interference of the learning process by providing a configu

ration file for data processing. In that file, there are several optional sections: 

• NOW section: NOW specifies the current status of the data, i.e., only at

tributes satisfying NOW criteria will be read in and processed by TAR2. User 

could always use other tools to pre-process the dataset instead of configuring 

the NOW section. 

• CHANGES section: CHANGES represents some desired zone within the data 

set that the user wishes to approach. Only attribute values specified in 

CHANGES would appear in the treatments. 

• SCORE section: SCORE encodes user's preference of the classes. User can 

assign a specific score (weight) to a class. Without the specification, TAR2 

scores the classes according to a default scoring function: score(C) = 2", 

where n is the order of the class C. 

Those three sections restrict the data processing scope of the input dataset. A little 

language is designed to specify attribute ranges in NOW and CHANGES sections, 

for example: 
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A t t r i b u t e l : t r u e — a l l p o s s i b l e values are acceptable 
A t t r i b u t e 2 : i g n o r e — none values are acceptable 
A t t r i b u t e 3 : a , b , c — f o r c a t e g o r i c a l a t t r i b u t e , only values 

a, b , c are acceptable 
A t t r i b u t e d [-;10), [20;30], [50;-) — f o r continuous a t t r i b u t e , 

the acceptable ranges are : x<10 OR 20<=x<=30 OR x<=50 

3.2.3 The T A R 2 Software Package 

Treatment learner TAR2 (current version 2.2) is coded in C and distributed un

der the GNU free software license. The TAR2 (and TAR3, described later) sys

tem is accessible online at: h t t p : / / w w w . e c e . u b c . c a / t w i k i / b i n / v i e w / S o f t e n g / 

TreatmentLearner. The system is a complete package including the following con

tents: 

• / b i n : folder containing all executables 

• /doc: folder containing the user manual and several related publications 

• / s r c : folder containing all C source code 

• /samples: folder containing sample data sets and corresponding output files. 

• readme.txt: file containing general information of the software 

• C0PYRITE.txt: file containing the GPL-2 copy policy 

We have actively maintained the online distribution of the TAR2/TAR3 system. 

The easy access has encouraged a wide application of treatment learning on various 

domains (described in chapter 6). 

3.3 Case Study 1: Risk Assessment 

This section presents a case study to demonstrate how treatment learning can benefit 

decision making when dealing with uncertainties. 
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3.3.1 Modell ing 

In the model-based requirements engineering ( M B R E ) 1 , models are built, or bor

rowed (from previous projects), to assist in early life cycle decision making. Often 

at requirements time, much is unknown about a project. 

KC-1 
ranges now change 

prec = 0..5 precedentness 0, 1 
flex = 0..5 development flexibility 1, 2, 3, 4 1 

Scale drivers resl = 0..5 architectural analysis or risk resolution 0, 1, 2 2 
team = 0..5 team cohesion 1, 2 2 
pmat = 0..5 process maturity 0, 1, 2, 3 3 
rely = 0..4 required reliability 4 

Product data = 1..4 database size 2 
attributes cplx = 0..5 product complexity 4, 5 

ruse = 1..5 level of reuse 1, 2, 3 3 
docu = 0..4 documentation requirements 1, 2, 3 3 
time = 2..5 execution time constraints ? 

Platform attributes stor = 2..5 main memory storage 2, 3, 4 2 
pvol = 1..4 platform volatility 1 
acap = 0..4 analyst capability 1, 2 2 
pcap = 0..4 programmer capability 2 

Personnel attributes peon = 0..4 programmer continuity 1, 2 2 
aexp = 0..4 analyst experience 1, 2 
pexp = 0..4 platform experience 2 
ltex = 0..4 experience with language and tools 1, 2, 3 3 

Project tool = 0..4 use of software tools 1, 2 
attributes site = 0..5 multi-site development 2 

seed = 0..4 time before delivery 0, 1, 2 2 

Table 3.3: COCOMO-II parameters. Scale drivers are listed first. The cost drivers are 
union of the product, platform, personnel, and project attributes. Last two columns show 
values known within one NASA software project. 

Table 3.3 shows a NASA software project KC-1 scored on the 22 parameters 

of the COCOMO-II software cost estimation model [ACDC+98]. The Madachy 

extension of COCOMO-II model allows one to estimate the cost, effort and schedule 

when planning a new software development activity. Based on parameter values, 

the model generates STAFF and WORRIES values. STAFF is the number of staff 

required to get person months of work done in the recommended number of months: 

STAFF = p™n?h°eJhS- WORRIES is a numeric effort-risk index representing how 
1This case study is published on the First International Workshop on Model-based Re

quirements Engineering, http://www .bfsng.com/mbre01/ 
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concerned an experienced analyst might be about a particular software project. The 

column labelled now in table 3.3 shows the current applicable parameter settings of 

the K C - 1 project. The analysts interviewed for this case study are uncertain about 

some aspects of this project in requirement time. Where somewhat uncertain, they 

used ranges; e.g. it was unclear if developers had ever seen this kind of application 

before so prec = {0,1}. When totally uncertain, they just used a question mark; 

e.g. no knowledge about execution time constraints was available so time =? = 

{2,3,4,5} where {2,3,4,5} is the complete range of possible values for time. The 

column labelled changes in table 3.3 shows eleven proposed changes to the current 

situation. 

3 . 3 . 2 S imu la t i on 

We ran the model repeatedly with random selected parameter values from their 

possible ranges shown in table 3.3's now column. The model also takes another 

argument S L O C (Source Lines Of Code) as input. Since some uncertainty also 

existed in the size estimates, the S L O C was taken to be 75K, 100K, 125K. The model 

was run 30,000 times (10,000 times for each S L O C setting). Model computes and 

outputs the STAFF and WORRIES values to assess each combination of parameter 

settings. Figure 3.4 shows the results as a percentile matrix, i.e. it shows what 

percentage of the 30,000 runs falls into a particular range. The percentiles matrix 

is color-coded: the darker the cell, the larger the percentage of the runs falling in 

that cell. There is a large variance in the simulation results. 

3 . 3 . 3 Resu l t s and Va l i da t i on 

T A R 2 was used to identify the critical changes capable of reducing both STAFF level 

and WORRIES index about the project. We firstly configured the configuration file 

so that T A R 2 only explored the proposed changes listed in table 3.3's "changes" 

column. After running on the simulation dataset, it gave a best treatment: 

acap = 2 A seed = 2 A pmat = 1 
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Figure 3.4: Simulation outputs using inputs spec- Figure 3.5: Re-simulation results after con-
ined in KC-1 project. straining the model using the treatment. 

• acap=2: using analysts with a middle-range of ability (fall between the 45th 

to 65th percentile); 

• sced=2: ensuring that the project was at least in the upper-half of CMM1, 

but don't go to C M M process level 2. 

• pmat=l: increasing the time to delivery to 100% of the time proposed by the 

project- i.e. no pressure for an early delivery; 

To validate the treatment, we used re-simulation. Re-simulation is a val

idation method, by which the experimental results are feed back into the model. 

Compared to cross validation, it is robust in that the result is assessed through a 

outside device, eliminating the effect of training data (e.g., small data size or noisy 

data examples). In this case, the input values for pmat,acap,sced were set as above, 

and the rest of the inputs were left randomized as before. After generated another 

30k data, the constrained simulation results are shown in figure 3.5. Compared to 

figure 3.4, it is evident that the proposed treatment has greatly reduced the variance 

in the model's behavior and improved the mean values (decreased both the STAFF 

level and WORRIES index). The three items found in the treatment are proved to 

be the critical changes that could benefit the KC-1 project among all the possible 
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propositions. 

3.4 Case Study 2: Requirement Optimization 

This example illustrates the application of treatment learning on requirement opti

mization via an iterative learning cycle. 

Planning for the optimal attainment of requirements is an important early life 

cycle activity. Such planning is difficult when dealing with competing requirements, 

limited resources, and the incompleteness of information available at requirements 

time. The pilot study discussed here is an evaluation of a promising piece of research-

quality spacecraft technology. The purpose of the evaluation is to identify the risks 

that would arise in maturing this technology to flight readiness, and what mitigation 

could be identified to address those risks in a cost-effective manner. 

3.4.1 The Requirement Interaction Mode l 

For the pilot study, NASA experts built,a real-world model developed in the Defect 

Detection and Prevention (DDP) framework [CFH01]. The model is a network 

connecting 32 requirements, 69 risks and 99 mitigations. Risks are quantitatively 

related to requirements, to indicate how much each risk, should it occur, impacts 

each requirements. Mitigations are quantitatively related to risks, to indicate how 

effectively each mitigation, should it be applied, reduces each risk. A set of mit

igations achieves benefits, but incurs costs. The main purpose of the model is to 

facilitate the judicious selection of a set of mitigations, attaining requirements in a 

cost-effective manner. This kind of requirements analysis seeks to maximize benefits 

(i.e., our coverage of the requirements) while minimizing the costs of the risk miti

gation actions. Optimizing in this manner is complicated by the interactions inside 

the model - a requirement may be impacted by multiple risks, a risk may impact 

multiple requirements, an action may mitigate multiple risks, and a risk may be 

mitigated by multiple actions. 
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3.4.2 T h e I terat ive Lea rn i ng C y c l e 

Data examples 
Requirements 
Interaction Model 

Treatment 
Learner 

Critical decision 
selection o iterative 

cycle Critical decision 
alternatives 

Human experts 

Figure 3.6: The iterative cycle of Simulation/Summarization/Decision. 

Our approach is to follow the iterative cycle of simulation, summarization 

and decision shown in figure 3.6. The requirements interaction model is used to 

grow dataset representing the space of options, treatment learner summarizes the 

data and gives critical decision alternatives (e.g., the control variables and their 

corresponding settings), the domain experts review the alternatives and make final 

decisions. This way, experts make more effective use of their skill and knowledge 

by focusing their attention on the relatively small number of most critical decision 

alternatives. Repeating this cycle leads the iterative approach to the optimal (or 

near optimal) decision within the options space. 

Baseline Simulation 

The model was initially executed by selecting risk mitigations at random. This 

generated 30,000 instances of combinations from the 99 risk mitigations actions. 

Each instance of the combinations was evaluated by the numerical cost and benefit 

values automatically computed based on domain data. The study needs to identify 

the optimal solutions that attain high benefit (approximately 250) while remaining 

a relative low cost limit(around $600,000). The option space is huge: 2 9 9 « 10 3 0 
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sets of decisions are to be explored. Figure 3.7 shows the initial output of the cost-

benefit distribution from the model. The wide spread dots indicate a large variance 

in the possible cost and benefit ranges. 

300 

250 

200 

I 150 
ca 

100 

50 

0 

400,000 700,000 1,000,000 
Cost 

Figure 3.7: Initial result from executing the model of pilot domain. 

Combining Cost and Benefit Values 

TAR2 takes dataset containing one single discrete class attribute. We must combine 

the cost and benefit values into a single score before applying TAR2 on the simulation 

data. This domain-specific process was proceeded as follows: 

• Partitioning cost value into 4 regions: below $600,000 (most desirable region); 

$600,000 to $649,999; $650,000 to $699,999; at or above $700,000 (least desir

able region). 

• Partitioning benefit value by subdividing it into quartiles, i.e., putting the 

lowest 25% of the benefit figures into the lowest benefit range, the next 25% 

into the next, etc. 

• Ranking the 16 possible pairings of cost and benefit according to a balanced 

scheme which yielded a combined score of "goodness". The scheme is shown 

in table 3.4.2. 
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score < $600K [$600if, $650iQ [$650K, $700K) > $700K 
high 25% 16 14 11 7 

mid high 25% 15 12 8 4 
mid low 25% 13 9 5 2 

low 25% 10 6 3 1 

Table 3.4: Balanced score combination of cost and benefit values 

Learning Iterations 

We used TAR2 as a knowledge acquisition tool to summarize the simulation dataset. 

After ran it on the examples, a set of treatments was discovered and the best was 

selected by the domain experts. We then imposed the treatments on the model, i.e., 

some mitigations were to be performed and some were not; others were kept random. 

Simulating the constrained model again gave us another example set. The whole 

process was repeated, each run of TAR2 resulted in a new set of constraints, which 

were then imposed on the model before the next simulation. After five iterations, 

TAR2 found 30 out of 99 decisions (6 per run. 6 was the maximum size for which 

it successfully terminated) that significantly effected the cost/benefit distribution. 

Figure 3.8 shows the model output following the 5 t h iteration. Compared to figure 

3.7, the variation among the cost-benefit figures is relatively small. Since the model 

represents human experts' estimates, the computed cost-benefit figures should not 

be misinterpreted to have high precision. At the point where the figures are so 

tightly clustered, it is appropriate to stop. 

The entire series is shown in 3.9. The first percentile matrix (called round 

0) summarizes figure 3.7. The round 4 corresponds to the dot plotting in figure 

3.8, in which a compact set of points concentrated at the upper end of the benefit 

range (around 250), and at a cost of approximately $6000. From round 0 to round 

4, the variance was reduced and the mean values improved. 
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Figure 3.8: Result from executing the model of pilot domain when it was constrained 
by treatments after the 5 t h iteration. 

3.4.3 Compared to Simulated Annealing 

Parallel to treatment learning, a simulated annealing algorithm (SA) was also ap

plied to the same requirement analysis task [FM02b]. Simulated Annealing is a 

commonly used search algorithm for optimization problem. It combines random 

selection and hill climbing to find global maxima. In particular, it does a random 

walk, choosing neighbors at random and deciding at random whether to visit that 

neighbor. The randomness is a function of a "temperature" variable. When T = oo, 

it chooses neighbors at random; in the limit as T approaches zero, it chooses only 

neighbors that improve the value. If the temperature is reduced slowly enough, this 

guarantees to find the global optimal result. 

Figure 3.10 compares TAR2 and simulated annealing. At each round X 

(shown on the x-axis), simulated annealing or TAR2 was used to extract key de

cisions from a log of runs of the model. A new log is generated, with the inputs 

constrained to the key decisions found between round zero and round X . Further 

rounds of learning continue until the observed changes on costs and benefits stabi

lizes. The comparisons show that: 

• As seen in Figure 3.10, simulated annealing and TAR2 terminate in (nearly) 

the same cost-benefit zone. 
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round 0: 

round 1: 

round 2: 

round 3: 

Cost 
Benefit 400K 600K 800K1,000K Totals 

250 6 15 5 26 
200 1 22 27 4 
150 
100 
50 

1 6 5 
3 3 
1% 

1 13 
6 
1 

Totals 2 38 50 10 1 100 

Cost 
Benefit 400K 600K 800K1,000K Totals 

250 1 13 1 «5 
200 12 22 1 
150 
100 
50 

Totals HI <;T 
14 1 w o 

Cost 
Benefit 400K 600K 800K1,000K Totals 

250 9 8 24 
200 18 — m 
150 
100 
50 

Totals 
27 n i 7 I i d 

Cost 
Benefit 400K 600K 800K1,000K Totals 

250 K B 7 1 1 11 1 90 
200 
150 
100 
50 

3 7 10 

Totals 
12 Hi 11 1 ioo 

Cost 
Benefit! 400K 600K 800KL000KI Totals 

round 4: 

250 
200 
150 
100 
50 

Totals 

I 

17 

Figure 3.9: Percentile matrices showing^ur rounds of treatment learning for the 
pilot study. 
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Figure 3.10: Comparison of TAR.2 and simulated annealing. 

• Simulated annealing did so using only 40% of the data needed by TAR2; 

• However, while TAR2 proposed constraints on 33% of the mitigations, each 

SA solution specifies whether a mitigation should be taken or not for all 99 

mitigations. Hence there was no apparent way to ascertain which of them are 

the most critical decisions. This loses the main advantage of TAR2; i.e. no 

drastic reduction in the space of options. 

3.4.4 Discussion 

The iterative treatment learning on the pilot study has successfully arrived at a near-

optimal attainment of requirements. By identifying only one-third of the mitigations 

(30 out of 99), we are able to significantly narrow the widely spread cost/benefit 

distribution. 

This case study also demonstrated an incremental use of TAR2: At each 

iteration, users are presented with list of treatments that have most impact on a 

system. They select some of theses and the results are added to a growing set of 

constraints for a model simulator. This approach has two advantages: Firstly, it 

narrows down the solutions one step at a time, giving a clear statement on which 

attributes are most important; Secondly, the domain experts found this approach 

user-friendly, since it provided the opportunities for them to inject their knowledge 

into the process, and allowed them to focus on only a small number of the most 
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critical alternatives. 

3 . 5 Relation To Other Techniques 

3.5.1 Extension to Standard Machine Learning 

Treatment learning closely relates to both classification and association rule min

ing, yet significantly differs from them. Classification analyzes the data in order 

to construct one or a set of models, and attempts to predict the class member

ship of new data examples. Standard classifier algorithms such as C4.5 [Qui92] or 

CART [BFOS84] treat each class equally. Treatment learning, however, mines de

scriptions that distinguish a target class from its contrasting classes. It has a notion 

of class weighting. Such learners can filter their learnt theories to emphasize the 

location of the good classes or bad classes. 

Some association rule learners such as MINWAL [CW98], explore weighted 

learning in which some attributes are given a higher priority weighting that others. 

This is a generalization of the association rule mining problem. In this case, the 

APRIORI property of the support measure no longer exists and can not be applied. 

[CW98] et.al., proposed two algorithms based on the support bounds. Such weighted 

learning can focus the learning onto issues that are of particular interest to some 

audience. Unlike association rule mining where data contains no pre-defined classes, 

treatment learning deals with multiple classes. The weights are associated with each 

class to represent the level of user preference of that particular class. One approach 

to directly use association rule mining algorithm to find treatments would be to 

mine frequent itemset for each class separately and then combine them in a post 

analysis. However, this is a poor idea as it won't push confidence into the search 

process thus lose the prune opportunity. Further, the resulting rules are difficult to 

interpret because the rule learner does not enforce consistent contrast [DB96] i.e., 

using the same attributes to separate classes. 

Another difference between treatment learning and association rule mining 
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lies in the prune strategies they employ. Most association rule learners use support 

based pruning to mine frequent itemsets first, and then use confidence to construct 

association rules. Instead, treatment learner uses confidence based pruning to shrink 

the search space. One problem with support based pruning is that most rules with 

high support are obvious and well-known. It is the rules of high-confidence that 

provide interesting new insights. The task of mining association rules without sup

port requirement was recently considered in [KW01] and [ECOO]. With only the 

confidence requirement available, [KW01] exploited a certain monotonicity of confi

dence, called the universal-existential upward closure. This property yields a level-

wise candidate generation with a confidence-based pruning and was implemented in 

a disk-based environment. Different from them, Cohen et.al. [ECOO] developed a 

family of algorithms for solving this problem, employing a combination of random 

sampling and hashing techniques. However, a major restriction in their work is that 

they only deal with pairs of columns. It is not clear whether their techniques could 

be extended to the identification of more complex rules. 

3.5.2 R e l a t i o n to Change De tec t i ng A l g o r i t h m s 

Concurrent with our work, Bay and Pazzarni propose the concept of contrast set 

[BP99]. Our work's variant is to combine contrast sets with weighted classes with 

minimality. That is, treatments can be viewed as the smallest possible contrast sets 

that distinguish highly weighted classes from lowly weighted classes. Further, the 

confidencel heuristic aims at maximizing: 

\P(y = C\\X) — P(y = C2|X)| (y is the class label, X is a itemset) 

while contrast sets aims at maximizing: 

\P(X\y = Cl) - P{X\y = c2)\ 

Note that the two equations can be relate with Bayes Rule: 

P{y\X)*P(X) 
P(x\y) P(y) 
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Thus we can always convert from one to the other. Although the forms can be made 

equivalent, the difference is that the X that optimizes/maximizes one equation is 

not necessarily the same as the X that is best for another. 

Another promising change detecting method is the mining of emerging pat-

ierns(EP), introduced by Dong and L i [DL99]. EPs are associated with two datasets 

and are used to describe significant differences or trends between the two datasets. 

EPs have been used to construct powerful classifiers, which are more accurate than 

C4.5 and C B A [BLM] for many datasets [LDROO]. But there are several drawbacks 

with the E P approach. Firstly, their algorithm must mine the data multiple times 

for different base supports. Secondly, it is not clear if the method can be extended 

to handle more than two classes. Thirdly, there is a problem of displaying the large 

volume of results. For example, on the Mushroom data set they found 299811 bor

ders, each representing about 2 1 8 sets. This is far too many results to show to an 

end user. In fact, the result itself might be a source for further data mining in order 

to provide understandable knowledge. 

3.6 Conclusion 

We have pointed out the repeated observation of the narrow funnel effect. Although 

there is no conclusive proof of its existence, empirical evidences suggest that narrow 

funnels are common. In domains containing narrow funnels, a small number of 

variables are enough to control the others in the option space. 

We propose treatment learning as both a test and an application of the 

narrow funnel effect. Treatment learning is a machine learning method for finding 

items associated with desired classes. It uses confidencel measure to evaluate merit 

of individual items and output treatments that capture difference between classes. 

We conducted two case studies to explore this approach. In model-based 

domains, our uncertainty about the domain or over the parts of the model usually 

results in a wide spread of output possibility. However, when models contain nar-

53 



row funnels, there exist key decisions which can condense the possibility. In both 

studies, treatment learner has successfully identified funnel variables that reduced 

the variance and improved the mean of values within the output distribution. 
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Chapter 4 

Algorithmic Evaluation and 
Improvement 

This chapter examines the algorithmic performance of TAR2 and present an im

proved learner TAR3. Before introducing TAR3, we first offer some baseline mea

surements on TAR2. In summary, while TAR2 is practical for many datasets, there 

exists situations where its runtimes can grow exponentially. TAR3 fixes this prob

lem. On the datasets where TAR2 is exponential, TAR3 runs in linear time. 

4.1 Algorithm Performance of TAR2 

We have experimented TAR2 on many domains, some of which come from the UCI 

machine learning data repository [CEC98], others come from real world application 

domains. Table 4.1 reports TAR2 runtimes(sec) on 11 data sets of different sizes. 

Experiments are conducted on a 333 MHz Windows machine with 200MB of ram. It 

shows TAR2 is suitable for handling small to medium sized data set. For example, 

the algorithm learnt treatments in 23 seconds from a dataset containing 250,000 

examples: see the reachness2 domain in table 4.1. 

4.1.1 Runtime vs. Data Size 

To examine the runtime with respect to data size, we generated data set of different 

sizes from the COCOMO risk estimation model [ACDC+98]. By simulating the 
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domain #example #continous ^discrete #class size(T) time(sec) 
iris 150 4 0 3 1 < 1 
wine 178 13 0 3 2 < 1 
car 1,728 0 6 4 2 < 1 
autompg 398 6 1 4 2 1 
housing 506 13 0 4 2 1 
pageblocks 5,473 10 0 5 2 2 
circuit 35,228 0 18 10 4 4 
cocomo 30,000 0 23 4 1 2 
pilot 30,000 0 99 9 5 86 
reacheness 25,000 4 9 4 2 3 
reacheness2 250,000 4 9 4 1 23 

Table 4 . 1 : Runtimes for TAR2 on different domains. First 6 data sets come from the 
UC Irvine machine learning data repository; "cocomo" comes from the COCOMO 
software cost estimation model [MHOlb]; "pilot" comes from the NASA Jet Propul
sion Laboratory [FM02a]; "reachness" and "reachness2" come from other source 
[ M H 0 2 ] . 

Figure 4 . 1 : Runtime vs dataset size. Datasets are generated from COCOMO risk estima
tion model [ACDC+98]. 

Figure 4.1 shows TAR2's runtimes with respect to dataset size measured 

in megabytes. Three curves correspond to three different treatment size setting, 

treatment size equals 1,2,3 respectively. It can be seen that for a fixed treatment 

size, runtimes are linear in dataset size. However, bigger treatment size results in 
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bigger slope, indicating a decrease in efficiency. 

4.1.2 Runtime vs. Treatment Size 

Figure 4.2 reports one study where the size of the data set was held constant(3MB), 

and the size of treatment(size(Rx)) was increased. The result is a line on the loga

rithm Y-axis coordinate, showing that TAR2's runtimes are exponential in treatment 

size. 

Figure 4.2: Runtime vs treatment size. Data set size is fixed to 3MB. Datasets are generated 
from COCOMO model. Note the Y-axis is the logarithm of the runtime. 

Recall that treatments are generated by exploring subsets of pairs whose 

confidencel value are greater than a threshold. For treatment size=r, if N pairs 

occurring above the threshold, TAR2 will explore ) such pairs. To find treatments 

of different sizes, there are total 

candidates to explore. We have used the value exclusion property of dataset to 

preliminarily shrink the search space, value exclusion ensures that items of the 

same attribute e.g. A l = a and A l=b can never be contained by the same instance. 

Hence, it is unnecessary to produce candidates with more than one value for the 

10000 setup time 
total time 

1.5 2 2.5 3 3.5 4 4.5 5 
treatment size 
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same attribute. Even so, the search is still intractable when N is large and will 

incur exponential runtime. 

4.1.3 R u n t i m e in P r a c t i c e 

The exponential impact of increasing treatment size demands small treatments in 

application. We argue that this is not necessarily a reason to reject TAR2. Firstly, if 

very large treatments are required, an iterative learning approach, such as described 

in the "pilot" case study in chapter 3, may suffice. 

Secondly, one of the goals of treatment learning is to identify funnel vari

ables. For domains containing narrow funnels, large treatments are not necessary. 

Unsatisfactory output from TAR2 could be a good indication that narrow funnels do 

not exist. In that case, more elaborate learning approach must be applied. Among 

the domains we have explored using TAR2, narrow funnels appear to be very com

mon. Those domains exhibit the following property: a small number of variables 

exert large influence on the overall behavior of the system. Figure 4.3 shows the 

confidencel distributions seen in eight example datasets. We could observe a small 

right tail in all the confidencel distributions. As a result, TAR2 was able to find 

effective treatments with treatmentsHze < 6. 

4.2 TAR3: The Improvement 

Algorithmic analysis of TAR2 has shown that although it works well for many 

datasets, there exists situations where the runtime can grow exponentially. TAR3 

is our solution to the problem. In summary, TAR3 uses a novel random sample 

method of the confidence distribution to find treatments. One drawback with such 

random sampling methods is that the resulting conclusions are unstable or fail to 

explore all the interesting parts of a theory. We show below that, for TAR3, this is 

not the case. In fact, despite the use of random sampling, TAR3 usually generates 

the same solutions as the non-random search of TAR2. 
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4.2.1 Random Sampling 

In TAR2, confidencel measure (A) is a heuristic assessing the contribution each 

attribute-value pair makes toward changing the class distribution. If we think of 

confidencel values as weights associated with attribute-value pairs, those with 

larger weights have higher probability to be selected into treatments than those 

with smaller weights. Let: 

a.i = attribute-value pair in the data set 

A j — confidencel value associated with cn 

What we need is to sample a* from a multinomial distribution with discrete weights 

A j . This strategy is employed in TAR3 and is done as follows: 

1. Place ai in increasing order according to A j . 

2. Compute the CDF(Cumulative Distribution Function) value of A»: 

CDF(i) = ^ = 1 x (N = the total number of A ; ) 

3. Sample a uniform value u in the interval [0,1]. 
4. The sample is the least O i such that u < CDF(i) 

The above process is repeated until we get a treatment Rx of a given size. As a 

side effect, random sampling also eliminates the necessity to specify the confidencel 

threshold. 

4.2.2 Treatment size 

TAR2 requires treatment size be specified by the user as an input parameter. 

Each run of TAR2 returns treatments of that fixed size. In TAR3, treatment 

size is a uniform value sampled from the interval [L.tnaxTreatmentSize], where 

maxTreatmentSize is the maximum treatment size user interested. The upper 

bound of maxTreatmentSize is the total number of attributes in the data set. This 
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allows us to obtain treatments of different sizes in one run. In practice, we found 

that maxTreatmentSize seldom exceeds half the number of attributes - a strong 

empirical evidence for narrow funnel effects. 

4.2.3 lift(Rx) evaluation 

TAR2 evaluates a treatment candidate Rx by calculating lift(Rx). Treatment Rx 

is qualified only if lift(Rx) > certain threshold. We eventually abandoned this 

approach. Instead, treatment Rx is reported if and only if it is among the top N 

treatments found whose lift(Rx) > 1 (lift(Rx) > 1 ensures the treatment indeed 

makes improvement on class distribution), where N is the maximum number of 

treatments user wants. 

4.2.4 lift(Rx) penalization 

For treatment Rx, size(Rx) has noticeable impact on worth of the treated data set 

(and hence lift(Rx)). Usually treatments of larger sizes tend to achieve higher lift 

than those of smaller sizes. In the association rule mining community, Ke Wang 

et.al. [WZHOO] found that the confidence of a rule holds a property known as 

the universal-existential upward closure. To illustrate the property, consider the 

following association rules: 

RI: Age.young —> Salary.low 

R2: Age.young, Gender.M —• Salary.low 

R3: Age.young, Gender.F —> Salary.low 

Suppose that RI has confidence of 0.6, that is, 60% young people have low salary. 

Since the condition Gender.M and Gender.F are exhaustive and mutually exclusive, 

if one condition impacts confidence negatively, the other must impact confidence 

positively. Consequently, at least one of R2 or R3 has at least as much confidence 

as RI . Also, if none of R2 and R3 is confident, then RI must also be non-confident. 

This property indicates that long rules tend to have high confidence than short rules. 

61 



In treatment learning, the evaluation criterion lift(Rx) is a function of the 

treatment's confidence with respect to classes. It exhibits a similar property. Con

sider one extreme example where a dataset has total 5 attributes. A treatment of 

size 5 might select only one example and this example belongs to the best class. 

This treatment has the highest lift(Rx): on the class distribution graph, 100% of 

examples(in this case, only 1 example) in the treated subset belong to the best class. 

In other words, treatments of very large size tend to have high lift values. However, 

they usually select so few examples that lack statistical significance. 

This problem is solved by introducing in the Best Class Support sup(Rx) 

parameter. sup(Rx) is defined as ratio of examples belonging to the best 

class in the treated set to those in the original set. i.e., 

in \ \Gbest,Rx\ P{Cbest\Rx) 
sup(Rx) = —— — = ———— 

\^best\ ^K^best) 

minSup specifies the minimum sup(Rx) ratio a treatment Rx must achieve. For 

instance, assuming a data set contains 500 examples, among which only 50 belong 

to the best class. With minSup = 80%, if applying a treatment Rx results in a 

treated set containing 100 examples, among which 45 belong to the best class. Then 

we have sup(Rx) = % = 90% > minSup, thus Rx is considered qualified. In fact, 

500 Rx is a very good treatment, as it raises the best class percentage from = 10% 

t o ^ = 45%. 
In TAR3 implementation, we didn't simply reject treatments that do not 

meet the minSup. Instead, we use the minSup as a regularizer that penalizes 
lift(Rx): 

i-r / r > x worth'D A Rx) , 
hft'Rx) = — * penalty 

worth(D) 
I 1 (sup(Rx) > minSup) 

penalty =| {supiRx) Z minSup) 

Penalization ensures some'potehtially highly predictive treatments still be reported 

even though their sup(Rx) are slightly below the threshold. 
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4.2.5 Stopping point 

A theoretical drawback with any random search is that such random exploration 

can miss significant parts of the option space. TAR3 addresses this issue by taking 

the following strategy: To generate N treatments, TAR3 makes multiple iterations. 

Each iteration, X new treatments are generated and checked. Only qualified top N 

are remained in the treatment set. If the current iteration doesn't contribute any 

new treatments to the top N set, it is called a failure iteration. The next iteration, 

more treatments (X+N) are generated. The procedure stops after M failure runs 

in a row. In practice we found that M=[5..10] was often sufficient to return stable 

results. 

4.2.6 Usability 

TAR3 was originally designed as an experiment in reducing certain exponential time 

processing within TAR2. A happy side-effect is that TAR3 is actually more user-

friendly than TAR2. TAR2 requires the manipulation of certain arcane parameters 

that must be fiddled with many times. On the other hand, TAR3's parameter set 

is much more succinct and, often, need not be modified from run to run. 

Table 4.2 lists parameters required by TAR2 and TAR3 excluding those 

common to both. The replacement of threshold parameters with upper-bound ones 

makes parameter setting easier and more intuitive. While thresholds are domain 

specific, upper-bounds are less sensitive. We normally use default values or set 

them to some larger values, the controlling strategy employed in TAR3's random 

process(e.g., the stopping point) was able to accommodate domains accordingly. 

Further, we no longer have to run it several times to get treatments of different 

sizes. 
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TAR2 TAR3 
1. A threshold 1. maxTreatmentNumber 
2. worth threshold 2. maxRandomlterations 
3. treatmentSize 3. maxTreatmentSize 

Table 4.2: Different parameters required by TAR2 and TAR3. 

domain ^example #continous ^discrete #class maxSize(Rx) TAR2(sec) TAR3(sec) 
iris 150 4 0 3 2 1 < 1 
wine 178 13 0 3 2 1 < 1 
car 1,728 0 6 4 4 3 < 1 
autompg 398 6 1 4 4 3 < 1 
housing 506 13 0 4 4 4 1 
pageblocks 5,473 10 0 4 2 2 1 
circuit 35,228 0 18 10 6 18 6 
cocomo 30,000 0 23 4 3 104 28 
pilot 30,000 0 99 9 7 2842 195 
reacheness 25,000 4 9 3 4 28 4 
reacheness2 250,000 4 9 4 4 293 42 

Table 4.3: Runtimes for TAR3 on different domains (on a 333 MHz Windows machine with 
200MB of ram). 

4 . 3 Performance Improvement 

4.3.1 Runtime In Different Domains 

Table 4.3 compares TAR2 and TAR3 runtimes on the same datasets seen in table 

4.1. Column 6 lists the maximum treatment size returned by TAR3 on each do

main. Column 7 lists TAR2's runtimes with respect to maximum treatment size. 

In domains where size(Rx) is small (e.g., the first 6 datasets), TAR2's runtimes are 

comparable to TAR3's. However, when size(Rx) is large(e.g. the pilot domain), 

TAR3 is significantly faster than TAR2 (195sec vs 2842sec). The comparison shows 

that TAR3's random sampling is able to scale when TAR2's exponential search 

becomes intractable. 
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Figure 4.4: Runtime vs attributes. Datasets come from the pilot domain 
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Figure 4.5: Runtime vs instances. Datasets come from the pilot domain 

4.3.2 Runtime vs. Data Size 

Figure 4.4 and figure 4.5 report TAR3 runtimes with respect to the number of 

attributes and the number of instances respectively. The datasets used in both ex-
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periments come from the pilot domain (discussed in chapter 3 case study 2) because 

of its high dimensionality. In figure 4.4, we kept the number of instances to 20,000 

and randomly chose 10, 20, 30, ... up to all 99 attributes for each trial. Similarly, 

in figure 4.5, the number of attributes was kept constant (using total 99 attributes) 

while the number of instances increased from 5,000 to 50,000. Curve in figure 4.4 

fits a linear trend line with r2 = 0.88361; curve in figure 4.5 fits a linear trend line 

with r2 = 0.9436. In summary, TAR3's runtime is linear in the size of training data. 

4.3.3 Runtime vs. Treatment Size 

Figure 4.6 shows TAR3 runtime with respect to treatment size. The datasets used 

in this study are the same in the TAR2 runtime evaluation experiments (77250 

instances * 23 attributes). Normally, one run of TAR3 returns treatments of different 

sizes. For this study we forced it to return only treatments of fixed size each run. 

The runtime curve shown in figure 4.6 is no longer exponential, in fact it fits a 

logarithmic trend line with r2 — 0.9441. Compared to figure 4.2, TAR2 spent near 

1000 seconds for treatments of size 5 while TAR3 only needs less than 100 seconds 

for treatments of size 8. It is clear that TAR3's algorithm runs much more efficiently. 

4.4 Experiment Result Comparison 

This study aims at examining TAR3's stability in terms of the returned treatments. 

We wanted to know whether and to what extent would the randomness introduced 

in TAR3 effect its results. Our concern was that TAR3's random search would 

introduce an element of unreliability in the learnt theories. However, this pre-

experimental fear was not realized in practice. In fact, TAR3 generates nearly the 

same treatments as TAR2. 

Firstly, we ran TAR3 on a domain and recorded the size of the best treat

ment returned. We then configured TAR2 so that it would return treatments of 
1r2 value is the square of the correlation coefficient 
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Figure 4.6: Runtime vs instances. Datasets come from the cocomo domain 

that size on the same domain. We compare both the lift(Rx) and the individual 

attribute-value pairs appeared in the best treatments returned by TAR2 and TAR3 

respectively. Table 4.4 lists the results from 10 domains. In each domain, the best 

treatment returned by TAR3 has both the same lift value and the same itemsets 

as returned by TAR2. (The notation [X..Y) means a test of X <= attribute < Y). 

In other words, the best treatment found by the two learners for each domain is 

identical. Table 4.5 compares results from the more complex "pilot" domain, which 

contains 30k examples and 99 attributes. TAR3 found a best treatment of size 10, 

whereas TAR2 can only handle a max size of 6. The larger treatment has higher 

lift value than the short one, and the two treatments have 5 items in common. In 

summary, for 10 out of 11 cases, TAR3 found identical treatments as TAR2. For 

the remaining domain, TAR3 found a better treatment of larger size. Baselined on 

TAR2, TAR3's output is quite stable. We offer two explanations: 

• Treatment learning involves a combination of search and attribute merit eval

uation. Replacement of depth-first search with random sampling only changes 
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the search strategy, resulting an improvement in efficiency. The treatment 

generation is still based on the underlying confidencel distribution. Theoret

ically, as long as this evaluation process remains untouched, the two learners 

should return the same results. 

• To control the randomness introduced by the CDF sampling method, we have 

designed the stopping point controlling strategy. The experiments have shown 

that it is empirically effective for small to medium sized datasets. However, 

for very large, high dimensional dataset, TAR3 may return similar, yet not 

identical outcomes. 

4.5 Case Study: The Pilot Domain Again 

The above studies dealt with small to medium sized datasets. This section describes 

an experiment with a very large dataset in which TAR3's treatments, while similar, 

were not identical. 

We have discussed the "pilot" case in requirement optimization domain (see 

chapter 3). To compare both the performance and experimental results, we ran 

TAR2 and TAR3 on the same "pilot" domain again. The model used this time is 

a revised version of the original one, which contains fewer details. The data set 

obtained after simulation has 58 attributes instead of 99. Each example is also eval

uated by a pair of cost and benefit figures. According to the domain experts, we 

combined cost and benefit into a single attribute using the same balanced scheme 

but with different dividing thresholds. The combination resulted in 16 classes rep

resenting 16 levels of "goodness". 

Figure 4.5 shows the initial cost-benefit distribution from the baseline simu

lation. The data points are widely spread across the possible cost and benefit ranges. 

Further, most low cost points correspond to low benefit level and high benefit points 

have high cost values. The desired low-cost high-benefit points are very few: less 

than 3% of the entire data. 
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domain attribute range TAR3 TAR2 
petal width [1..1.6) x X 

iris petal length [3.5..4.6) X X 

lift: 1.71 1.71 
at t r l l [0.4874) X X 

wine attrl2 [1.27..1.78) X X 
lift: 1.81 1.81 

buying low X X 
car safety high X X 

lift: 2.21 2.21 
cylinders [4..5) X X 

auto-mpg horsepower [46..75) X X 
weight [1613..2223) X X 

lift: 1.97 1.97 
rm [6.65..9.78) X X 

housing ptration [12.6. .15.9) X X 

lift: 2.35 2.35 
page-block blackand [493.. 46113] X X 

height [9.. 804] X X 
p_black [0.052287) X X 
eccen [0.007..2.889) X X 
area [660.. 143993] X X 

lift: 9.28 9.28 
circ B3c ok X X 

(30k examples) Sw2c off X X 
Swlc on X X 

lift: 9.07 9.07 
cocomo pcap [3..4] X X 

(30k examples) ruse [1..2) X X 
acap [3-4] X X 
seed [3..4] X X 

lift: 1.53 1.53 
readiness orpMean [6..8) X X 

(25k examples) andfMean 0.1 X X 
noMean [0..8) X X 

lift: 1.65 1.65 
reachness2 orpMean [9.. 10] X X 

(250k examples) noMean [0..8) X X 
andfMean 0.1 X X 

lift: 1.65 1.65 

Table 4.4: Best treatment returned by TAR3 and TAR2 on various domains. 
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domain attribute range TAR3 TAR2 TAR3(best) 
pilot P44 Y x 

(50k examples) P317 N X 
P755 N X X X 

P1066 N X X X 
P706 Y X X X 
P688 Y X 

P2160 X 
P761 N X X X 

P1065 N X 
P690 Y X 

P1069 N X 
P2111 N X 
P1971 Y X 
P704 N X 

lift: 5.93 5.84 8.16 

Table 4.5: Best treatment returned by TAR3 and TAR2 on the pilot domain. 
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Figure 4.7: The cost-benefit distribution of the initial simulation from the pilot 
domain. 

We followed the same incremental learning approach as discussed in the last 

chapter, namely the following steps: 

1. Ran TAR2 and TAR3 on the baseline (initial simulation) data, and generated 
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two set of treatments. 

2. The top ranked treatment was chosen from each treatment set. For the pur

pose of comparison, we didn't ask domain experts to examine the individual 

treatments, we simply chose the top one. 

3. We then imposed the 2 chosen treatments (1 from TAR2, 1 from TAR3) on the 

model respectively; simulated it again and got another 2 sets of data examples. 

4. Step 1-3 were repeated until the resulting distribution was so tightly clustered 

that domain experts agreed to stop. 

4.5.1 Comparison of the Cost-Benefit Distr ibution 
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Figure 4.8: The cost-benefit distribution from executing the model of pilot domain 
when it was constrained after the 5 t h iteration of TAR2. 

Figure 4.8 shows cost-benefit distribution after the 5 t h iteration of TAR2. 

Compared to figure 4.5, the variation is relatively small. Most of the data points 

are grouped at the upper-left corner of the graph, indicating a tight cluster of low-

cost high-benefit results. Figure 4.9 is the result from TAR3 experiments following 

the 4 t h iteration. The two graphs are visually the same, indicating very similar 

results. 

TAR2 Final * 
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Figure 4.9: The cost-benefit distribution from executing the model of pilot domain 
when it was constrained after the 4 £ / l iteration of TAR3. 

4.5.2 Comparison of the Best 3 Class Distr ibution 

For a closer comparison, table 4.6 records the best 3 class distribution of each 

round. The best 3 out of total 16 classes correspond to a region of desired zone in 

which domain experts interested. TAR2 reaches the stopping point after 5 rounds, 

fixing total 19 attributes; TAR3 reaches the stopping point after 4 rounds, fixing 

total 20 attributes. At the stopping point, both TAR2 and TAR3 achieved a similar 

class distribution. Further learning didn't offer significant improvement (i.e., further 

distribution improvement is less than 5% ). 

4.5.3 Comparison of Each Round 

At the beginning of this experiment, TAR2 and TAR3 started from the same point 

(i.e. the first baseline data) and came up with different treatments. They later 

followed their own path toward the final destination. Figure 4.10 compares their 

performance on each round in terms of the mean and standard deviation of the cost 

figure. Each round, TAR3 achieved lower mean cost and smaller deviation, allowing 

it to reach the stopping point one iteration earlier. Figure 4.11 compares the benefit 

figure. Again, TAR3's deviation is smaller at each round. It is interesting to notice 

TAR3 Final + 
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TAR2 baseline runl run2 run3 run4 run5 
size(Rx) 0 4 4 4 4 3 
Class14 3% 33% 68% 22% 7% 2% 
Class15 0% 1% 7% 38% 19% 5% 
Class16 0% 0% 4% 28% 74% 93% 
Total 3% 34% 79% 88% 100% 100% 
TAR3 baseline runl run2 run3 run4 run5 
size(T) 0 6 6 5 4 
Class 14 3% 47% 50% 11% 0% 
Classl5 0% 2% 19% 27% 7% 
Classl6 0% 1% 13% 60% 93% 
Total 3% 50% 82% 98% 100% 

Table 4.6: Comparison of the best 3 class distributions for TAR2 and TAR3 exper
iments. 
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Figure 4.10: The mean and standard deviation of cost at each round. 

the dip in the TAR2 curve, which indicates a slowing down of the progress. But it 

eventually catches up in round 4 and round 5. 

4.5.4 C o m p a r i s o n of the F i n a l T rea tments 

TAR2 gave a final treatment of size 19 after 5 iterations, TAR3's final treatment is 

of size 20 after 4 iterations. Although in each run, they generated quite different 
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Figure 4.11: The mean and standard deviation of benefit at each round. 

No. Attribute TAR2 TAR3 No. Attribute TAR2 TAR3 
1 [P63=N] / / 12 [P1310=Y] / / 
2 [P70=N] / / 13 [P529=N] / / 
3 [P72=N] / / 14 [P544=N] / 
4 [P73=Y] / / 15 [P551=N] / / 
5 [P74=N] / / 16 [P555=Y] / / 
6 [P126=Y] / / 17 [P575=N] / 
7 [P135=N] / / 18 [P960=N] / 
8 [P137=N] / / 19 [P1047=N] / / 
9 [P145=Y] / 20 [P1260=Y] /• / 
10 [P154=Y] / / 21 [P1287=N] / / 
11 [P166=N] / / Total 19 20 

Table 4.7: Comparison of the final treatments found by TAR2 and TAR3, respec
tively. 

treatments, the combined final treatments are almost the same. Table 4.7 compares 

the two final sets attribute by attribute, showing that they have 18 items in common. 

4.5.5 Comparison of Runtimes 

The data size we used is 20,000 examples x 58 attributes at each round. Table 

4.8 compares their runtimes. For reference reasons, column 3 and 5 list the size of 
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best treatment found at that round. The average runtimes of TAR3 is only ^ to | 

TAR2's runtime. That is, TAR3 ran much faster even with larger treatment size. 

Round TAR2(sec) size(T) TAR3(sec) size(T) TAR3/TAR2 
1 1243 4 320 6 25.8% 
2 1170 4 348 6 29.7% 
3 927 4 235 5 25.3% 
4 650 4 126 4 19.4% 
5 103 3 — — — 

Table 4.8: Comparison of the runtimes of each round. 

4.5.6 Summary 

From the above case study, we have the following observations: 

• In this domain, TAR3 achieved a better class distribution than TAR2 each 

run, and generated a slightly larger treatment. 

• Their own path ended up with a similar yet not identical solution, both in 

terms of the cost-benefit distribution and the treatment produced. 

• TAR2 reached the same final distribution after more runs, but with total less 

attributes fixed (i.e., the size of the final treatment is smaller in TAR2's case). 

• In this domain, TAR3's runtime is much shorter than TAR2, average ^ to | 

TAR2's runtime. 

4.6 Conclusion 

The algorithmic evaluation on TAR2 pointed out situations where its runtimes can 

grow exponentially. Our solution to this problem is a better learner TAR3. By 

adopting random sampling together with other strategies, TAR3 has made major 

improvement in algorithmic efficiency. Experiments have shown that on the datasets 

where TAR2 is exponential, TAR3 runs in linear time. We have also conducted 

extensive comparison to survey the stability of TAR3's treatments. It has been 

seen that TAR3 usually returns identical treatments as TAR2 on small to medium 
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datasets. On high dimensional dataset, TAR3 followed a faster path to goal. The 

resulting distribution is better, while the final treatment is slightly different. 

Specifically, the key idea to treatment learning is the confidencel evaluation 

of individual attributes. A different search strategy should not change results but 

only affect efficiency. The sampling method brings in a certain degree of randomness. 

Still, we have shown that the controlling method we implemented is effective in 

practice. Given that confidencel distribution represents the probability an item 

could be picked up in the treatment, there could be other ways to control the 

random process: For example, some functions could added to the distribution when 

computing the CDF value. 
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Chapter 5 

Evaluation Of Treatment 
Learning Through Feature 
Subset Selection 

5.1 Introduction 

In previous chapters we have discussed that treatment learning is closely related to 

yet significantly different from both classification and association rule mining. This 

difference makes it not easy to directly compare treatment learner to other learning 

schemes. For classification, the predictive accuracy is of the main interest to most 

researchers. Therefore, classifiers are normally evaluated by their classification accu

racy on commonly used datasets. Association rule mining are formulated as solutions 

to the same problem, i.e., to generate all association rules that have support and 

confidence greater than a user-defined minimum support and minimum confidence 

respectively. As a result, association rule miners are compared by their algorithmic 

performance, such as efficiency and scalability. Treatment learning, however, does 

not have a widely accepted assessment criterion. Treatments are neither models that 

predict the class membership of unseen data examples nor complete set of associ

ation rules that satisfy a certain conditions. To provide a benchmark comparison 

with other learning methods, we approach treatment learning in the framework of 

feature subset selection (FSS) technique. 
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Figure 5.1: Feature subset selection as a pre-process prior to learning. 

In machine learning applications, real world datasets usually include irrel

evant, redundant and noisy attributes. To achieve best possible performance, a 

learning algorithm must select a relevant subset of features upon which to focus its 

attention. Feature subset selection is the process of identifying and removing as 

much of the irrelevant and redundant information as possible [HH02]. As a data 

engineering technique, feature subset selection is generally considered a pre-process 

prior to learning. Figure 5.1 illustrates the usual application approach. In the pro

cedure, a feature subset selector takes in the original training set and outputs one 

with reduced dimensionality. The learning algorithm then constructs classification 

model using the reduced training set. The test set containing all attributes later 

evaluates the model and gives estimated accuracy. 

Feature subset selection benefits learning in the following ways: 

1. It can drastically reduce the dimensionality of the data, thus allows the learn

ing algorithms to run faster in a smaller search space. 

2. It helps the learner to ignore irrelevant, redundant and noisy features and 

focus on only relevant, highly predictive ones to improve its performance. 

3. It results in more compact, easily understandable representation of the under

lying concept. 

We believe, the success of feature subset selection improving learning is an applica

tion of narrow funnel effect in the field of machine learning. For domains containing 

78 



narrow funnels, features inside the funnel are much more important than those out

side with respect to understanding the domain. Consequently, ignoring features 

outside the funnel and concentrating on those inside is sufficient, in some cases, 

beneficial to learning. 

As discussed before, treatment learning is in fact a lightweight learning ap

proach dedicated to identifying funnel variables. This characteristic makes it suit

able for the feature subset selection task. The following sections describe an experi

mental evaluation of treatment learning in the framework of feature subset selection. 

We conducted feature subset selection using treatment learner and compared the 

result to conclusions seen in a recent state-of-the-art survey of FSS methods (Hall 

and Holmes, [HH02]). For commonly used machine learning datasets, our approach 

out-performs the standard FSS methods by selecting the fewest features. 

5.2 The Feature Subset Selection Experiment 

5.2.1 Feature Subset Selection Methods 

Most feature selection techniques involve a combination of search and attribute 

utility estimation. Some of them use general characteristics of the data to evaluate 

attributes (referred to as "filters") while others evaluate attributes by using accu

racy estimates provided by the target learning algorithm (referred to as "wrappers" 

[Koh96]). In either case, they produce attribute ranking which demonstrates the 

relative merit of individual attribute for the target learning algorithm. 

Hall and Holmes [HH02] provided a survey of attribute selection methods. It 

includes five major developments in attribute selection over the last decade as well 

as a classical statistical technique for dimensionality reduction. Before comparing 

our approach to those methods, we briefly describe them here. 
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Information Gain Attribute Ranking(IG) 

Information Gain Attribute Ranking measures the entropy of the dataset before 

and after observing a feature. The difference in the entropy, called information 

gain [Qui92], gives a measure of the additional information about the class gained 

because of that attribute. Detail on this method has been explained in Chapter 2: 

Decision Tree Induction. This is one of the simplest and fastest method for feature 

ranking [SJDM98]. 

Relief(RLF) 

Relief is an instance based learning scheme [I.K94]. It first randomly samples one 

example within the dataset. It then locates the nearest neighbor for that example 

from the same and the opposite class. The values of the nearest neighbor features are 

then compared to the sample and the feature scores are maintained and updated 

based on this. The earliest Relief algorithm could only handle two-class dataset. 

But it was later extend for multi-class problems by finding nearest neighbors from 

each different class and weighting their contributions according to each class's prior 

probability [I.K94]. Relief can also handle noisy data and other data anomalies by 

averaging the values for K nearest neighbors instead of just one. 

Principle Components Analysis (PC A) 

Principal component analysis is a statistical technique that reduces the dimensional

ity of the data by transforming the original feature space. It extracts the eigenvectors 

of the covariance matrix of the original features [HH02]. The eigenvectors, called 

principle components, define a linear transformation from the original feature space 

to a new uncorrelated space. Eigenvectors can be ranked according to the amount 

of variation in the original data that they account for. The first few transformed 

attributes are considered to account for most of the variation in the data and are 

selected. Principal components makes no use of the class attribute. It can only 

handle numeric attributes. To handle k-valued categorical attribute, one must first 
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convert the attribute into k binary attributes, using "1" to denote the occurrence 

of the k-th value, and "0" for all other values. 

Correlation-based Feature Selection(CFS) 

Correlation-based Feature Selection evaluates subsets of features [M.A98]. The tech

nique relies on a heuristic merit calculation that assigns high scores to subsets with 

features that are highly correlated with the class and poorly correlated with each 

other. Merit can find the redundant features since they will be highly correlated 

with the other features. Those features are ignorable for classification as they will 

be poor predictors of any class. To do this CFS informs a heuristic search for good 

subset of features via a correlation matrix. 

Consistency-based Subset Evaluation(CBS) 

Consistency-based Subset Evaluation is in fact a set of methods that use class con

sistency as an evaluation metric. The specific CBS studied by Hall and Holmes 

method finds the subset of features whose values divide the data into subsets with 

high class consistency [HT91] [HR96]. 

Wrapper Subset Evaluation(WRP) 

Kohavi and John [Koh96] wrapped a target learner in the selection procedure to 

grow subsets of the available features from size 1. At each step in the growth, the 

target learner was called to estimate the accuracy of the model learned from the 

current subset. Subset grow was stopped when the addition of new features did 

not improve the accuracy. In their experiments, average 83% of the features in a 

domain could be ignored with only a minimal loss of accuracy. Wrapper tailors the 

search to. specific target learners and usually gives better results than filters. Its 

main problem is overfitting and the large amounts of C P U time required. 
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5.2.2 The Methodology 

Datasets 

We used ten datasets included in Hall's experiment, all of which are from the UCI 

data repository [CEC98]. The datasets have a wide range of categorical and numeric 

features. Their sizes vary from 148 to 2310 examples. Table 5.1 summarizes these 

datasets. 

DATA SET INSTANCES NUMERIC NOMINAL CLASSES 
anneal 898 6 32 5 
breast-c 286 0 9 2 
credit-g 1000 7 13 2 
diabetes 768 8 0 2 
horsecolic 368 7 15 2 
ionosphere 351 34 0 2 
lymph 148 3 15 4 
segment 2310 19 0 7 
soybean 683 0 35 19 
Vote 435 0 16 2 

Table 5.1: Datasets used in the benchmark experiment, all from UCI data repository 
[CEC98]. 

Target Learning Algorithms 

For each dataset in table 5.1, classification accuracy was averaged over 10-way cross 

validation before and after attribute selection with respect to a target learning al

gorithm. Both C4.5 decision tree learner and Naive Bayes classifier were used to 

test the effectiveness of attribute selection. They are both widely used algorithms 

representing two fundamentally different approaches to learning. Introduction of 

them can be found in the "Literature Review" chapter. 

We used the W E K A (Waikato Environment for Knowledge Analysis) imple

mentation of C4.5 release 8 (called J4.8) and Naive Bayes. W E K A 1 is a powerful 

open-source Java-based machine learning workbench that brings together many ma-
1Weka is freely available at http://www.cs.waikato.ac.nz/~ml 
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chine learning algorithms and tools under a common framework with a friendly GUI 

[WF99]. 

Using Treatment Learner as Attribute Selector 

To accomplish feature subset selection, we followed the following steps: 

1. We ran a target learner on the original dataset and obtained the initial clas

sification accuracy by averaging over 10-way cross validation. 

2. If a dataset has N classes, TAR2 was run on it N times, each time we change 

the class ordering in a round robin manner, e.g., each class was given the 

highest priority in turn. The attribute included in the top treatment was 

recorded for each run. 

3. After N runs, we took the union of the attribute obtained in each run to get 

the final attribute subset of that dataset. 

4. Ran the target learner on the reduced dataset containing only attributes se

lected by TAR2. Accuracy was again obtained by averaging over cross valida

tion. 

5. The above steps were repeated for each dataset and each target learner (namely 

J4.8 and Naive Bayes). 

5.2.3 The Results 

Table 5.2 shows the classification accuracy on ten datasets before and after attribute 

selection with J4.8 and Naive Bayes. In the J4.8 case, accuracy decreases on six 

datasets, remains the same on two and increases on two, average difference is a drop 

of 0.97%. In the Naive Bayes case, accuracy decreases on four datasets and increases 

on six, average difference is a rise of 0.87%. The largest accuracy drop is 4.05%, 

and the iargest accuracy improvement is 6.5%, all occurred when the target learner 

is Naive Bayes. On average, accuracies change is less than 1%. 

Table 5.3 compares the size (measured by the number of nodes) of decision 

trees produced by J4.8 with and without attribute selection. After selection, tree 
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DataSet 
J4.8 Naive Bayes 

DataSet Original After TAR2 Diff Original After TAR2 Diff 
anneal 98.2 98.2 0 86.6 84.3 -2.3 
breast-c 75.2 75.2 0 74.1 75.2 1.1 
credit-g 73.9 72.3 -1.6 75.9 74.3 -1.6 
diabetes 74.5 72.8 -1.7 76 74.6 -1.4 
horsecolic 85.3 81.5 -3.8 78.8 79.6 0.8 
ionosphere 88.6 87.8 -0.8 82.9 87.5 4.6 
lymph 76.4 74.3 -2.1 81.8 77.7 -4.1 
segment 97.1 96.6 -0.5 79.8 86.3 6.5 
soybean 92.4 93 0.6 92.7 93 0.3 
vote 95.9 96.1 0.2 90.1 94.9 4.8 

Average -0.97 Average 0.87 

Table 5.2: Classification accuracy of J4.8 and Naive Bayes before and after using 
TAR2 as attribute subset selector 

DATA-SET Before After Diff Diff 
Before 

anneal 47 55 8 17.02% 
breast-c 6 6 0 0 
credit-g 140 33 -107 -76.43% 
diabetes 43 5 -38 -88.37% 
horsecolic 6 3 -3 -50.00% 
ionosphere 35 5 -30 -85.71% 
lymph 34 11 -23 -67.65% 
segment 77 81 4 5.19% 
soybean 93 92 -1 -1.08% 
vote 11 9 -2 -18.18% 

Table 5.3: Size of trees (number of nodes) produced by J4.8 with and without 
attribute selection 

size increased on two datasets, remained the same on one and decreased on the rest 

seven. For five datasets, the resulting trees are at least 50% smaller than the original 

ones. 

Table 5.4 and 5.5 show the number of attributes selected by different selection 

schemes for each target leaner respectively. Column 2 lists the original number of 

attributes of each dataset, column 2-7 list the results of 6 standard methods seen in 

Hall and Holmes' report [HH02]. In their experiment, they used the target learner 

as part of the attribute subset evaluation and averaged the result over ten 10-way 
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DATA-SET ORIG IG CFS CNS R L F W R P P C TAR2 TAR2 nmc: 
anneal 38 16.6 21.3 15.5 20.4 18.2 36.4 7 18.4% 
breast-c 9 4.4 4 6.6 6.9 3.98 4.4 2 22.2% 
credit-g 20 7.8 6.7 8.1 9.1 7.7 3.9 5 25% 
diabetes 8 3.2 3.4 3.6 3.9 3.8 5.9 1 12.5% 
horsecolic 22 3.8 3.7 2.2 3.3 4.8 2.9 2 9.1% 
ionosphere 34 12.2 6.9 9.3 8.7 7.2 10.2 2 5.9% 
lymph 18 6.8 5.3 4 4.5 5.9 9.2 3 16.7% 
segment 19 16.4 11.9 9.5 12.6 9.2 16.4 4 21.1% 
soybean 35 29.5 23.7 35 32.4 19.2 30.2 16 45.7% 
vote 16 11.6 9.6 6.5 10.6 8.6 11.2 6 37.5% 

Table 5.4: Number of features selected for J4.8 

DATA-SET ORIG IG CFS CNS R L F W R P P C TAR2 TAR2 
ORIG 

anneal 38 10.1 3.7 5.4 38.9 7.1 25.4 7 18.4% 
breast-c 9 3.8 7.4 5.7 5.2 2.7 3.2 2 22.2% 
credit-g 20 13.2 14.3 13.6 19.9 12.4 10.7 5 25% 
diabetes 8 2.7 3.6 4 5.9 2.8 4.1 1 12.5% 
horsecolic 22 5.8 4.1 3.9 22.8 5.8 6.2 2 9.1% 
ionosphere 34 7.9 8.1 10.5 18.1 12.6 11.7 2 5.9% 
lymph 18 16.6 13.1 14.3 15.3 15 13.1 3 16.7% 
segment 19 11 11.1 5 15.2 7.9 9.2 4 21.1% 
soybean 35 30.9 31.3 32.7 36 25.8 20.8 16 45.7% 
vote 16 1 1.7 2.6 14.9 1 3 6 37.5% 

Table 5.5: Number of features selected for Naive Bayes 

cross validation. Consequently, those methods gave different results with respect 

to different learners. Also as a side effect, the number of attributes selected by 

those methods is not an integer. Instead, TAR2's attribute selection is completely 

independent of the target learner, hence the number of attribute selected relies only 

on each dataset itself. For decision tree learner, TAR2 selected fewest attributes 

for all datasets while for the Naive Bayes, TAR2's selections are the smallest in 

eight out of ten datasets. In summary, TAR2 was the best overall feature selection 

methods studied here; i.e. it found the smallest feature subsets and those subsets 

resulted in minimal or no loss in classification accuracy. 
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5 . 3 D i s c u s s i o n 

As mentioned earlier, feature subset selection techniques can be broadly categorized 

into "wrappers" and "filters" depending on their interaction with the target learn

ing algorithms. In Hall's benchmark experiment [HH02] comparing sfx attribute 

selection methods, five of them are considered "filters". "Filters" accomplished 

dimensionality reduction following two steps: 

• "Filters" produced ranked lists of attributes either unassisted or by using a 

modified forward selection hill climbing search. This procedure is independent 

of the target learner. 

• Each ranked list was cross validated with respect to the current learner to 

estimate the worth of the subset of the ranked attributes. That is, cross 

validated on the training part of each dataset to estimate the worth of the 

highest ranked attribute, the first two highest ranked attributes, the first three 

highest ranked attributes and so on. 

There exists a problem in step two: the evaluation procedure still relied on the 

learner to make the final selection of attribute subsets, thus unavoidably made any 

selector partially a "wrapper". Because wrappers use the learner in the search pro

cess to evaluate features, they generally give better results in terms of classification 

accuracy. Unfortunately, the added computational cost is inevitable: wrappers have 

to invoke the target learner for every attribute subset considered during the search. 

Kohavi and John [KJ97] report that their Wrapper method can take up to thou

sands of seconds to terminate. Our treatment learner approach, on the other hand, 

takes a pure "filter" approach. Both the search and evaluation relied on the data 

itself without interference of the learning algorithm. As a result, the procedure is 

very fast: the total runtime for any of the domains shown in the experiment is less 

than ten seconds. 
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5.4 Conclusion 

We have examined treatment learning in the framework of feature subset selection 

for supervised classification. The result shows that: in general, our approach can 

reduce the dimensionality drastically with minimal or no loss in accuracy. In some 

cases, it helps to improve learner's performance. We also compared it to six standard 

feature subset selection methods. It has been seen that features selected by TAR2 

was nearly always smaller than features selected by other methods. 

This study is also a supportive piece of evidence of the narrow funnel effect. 

The ten datasets on which we based our experiments were collected in real world 

domains. They are neither synthesized nor particularly engineered to make learning 

easy. Instead, they were representative of problems that naturally arise in practice. 

In other words, narrow funnel effect is common in practice. For those domains, 

a few attributes serve as good class indicators and simple models are adequate to 

describe the underlying concept. The study of using treatment learning as feature 

subset selector suggests that treatment learning is an ideal approach to identify 

funnel variables should the target domain contain any. 

87 



Chapter 6 

Application Of Treatment 
Learning 

In the 21th century, we are deluged by data: transaction data, scientific data, medical 

data and financial data. Unless we can process the mountain of information, we are 

likely to be buried by irrelevant data. Ironically, many data mining tools try to 

generate intricate theories that are too overwhelming to understand. For example, 

it is difficult to understand the prediction system of a neural network merely by 

studying the net topology and individual node weights. As another example, on the 

Mushroom data set (8124 examples, 22 attributes, 2 classes, available from UCI data 

repository [CEC98]), the recent border-based Emerging Pattern mining algorithm 

found 299811 borders, each representing about 2 1 8 item sets [DL99]. Although 

the algorithm is efficient enough to find that huge number of patterns in about 30 

minutes, this is far too many results to show to an end user. In fact, the result 

itself might be a source for further data mining in order to provide understandable 

knowledge. We believe that the essence of data mining does not (only) reside on 

what patterns can be identified, or how efficient a miner can discover all the patterns. 

Rather, it is the promise to benefit decision making that makes data mining so 

extraordinary. The premise of treatment learning, and the reason why we use it, is 

that 

showing the differences between outcomes can be much clearer than de-
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scribing each separate outcome for an actionable decision. 

Treatment learner quickly identifies the key factors that most change (or influence) 

a situation instead of merely list the description of the current situation. 

This chapter shows examples of how others have integrated treatment learn

ing into various research frameworks to assist decision making ( [DO02] [Sm02] 

[ M S C M 0 2 ] [MRoS+02]). Please note that the applications were conducted through 

a collaboration between the author of this thesis and other researchers. The author 

provided implementation of treatment learner, user manuals and actively main

tained the download website. Other researchers led investigations in the examples 

described here. We thank all the domain experts for their knowledge and insights. 

It is this aggregate effort that facilitated the adoption of treatment learning, and 

led to rewarding research discoveries in return. 

6.1 Application Approach 

In application domains, depending on what kind of knowledge we have, there are 

two scenarios: 

1. We have access to some historical data about a domain. Information is hidden 

in the data and needs to be extracted. 

2. A model expressing what is known within a domain is available. However, 

our knowledge about the model is usually incomplete: we may be uncertain 

over parts of that model or uncertain about the domain itself. Uncertainty 

takes the form of parameter ranges. Stochastic simulation of the model with 

uncertain parameters results in an option space, or a data cloud visually. 

In the first scenario, Data mining + Validation + Decision is our general 

approach. Using treatment learner as the data miner, we summarize and extract 

knowledge from the data set to give new insights about the domain. Other miners or 

algorithms might also be experimented for comparison purposes. Validation takes 

the form of N-way cross validation to ensure stable treatments. 
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In the second scenario where we have access to a domain model, Simulation 

+ Sensitivity Analysis + Decision is applied. Simulation is based on both categor

ical and continuous values. Categorical simulations draw their inputs from known 

operational profiles of system inputs. For continuous variables, inputs are selected 

at random. In a sensitivity analysis, the key factors that most influence a model 

are isolated. Also, recommended settings for those key factors are generated. The 

settings can be validated by feedback and re-simulation. Before the sensitivity anal

ysis can be performed, there must exist a domain-specific evaluation function that 

can assess the simulation records. 

6.2 Feasibility of Agile Process 

• Domain: assessment of software development paradigm 

• Data Source: simulation through the Miiller/Padberg model 

• Goal: to assess the advantage of adopting the agile process based on pair 

programming. 

• Reference: "Should NASA embrace Agile Processes?" [Sm02] 

• Collaborators: Menzies, Smith 1, Hu (support role) 

6.2.1 Agile Process and Pair Programming 

Agile Process (AP) is an alternate paradigm to the conventional waterfall approach 

to software development. It is a collection of software design practices and techniques 

that diverge from the heavily structured methodologies in favor of a less structured, 

more adaptive approach [eaOl]. A P values: 

• Individuals and interactions over processes and tools; 

• Working software over comprehensive documentation; 

• Customer collaboration over contract negotiation; 

• Responding to change over following a plan. 
xWest Virginia University 

90 



Among the broad and diverse A P movements, Kent Beck's extreme program

ming is one of the most popular AP approaches [BecOO]. According to Beck, extreme 

programming has twelve key practices, among which pair programming (PP) plays a 

key role. PP is the concept of two developers working together at a single machine, 

designing and writing code cooperatively. PP proponents claim that by working in 

pairs, developers produce code at a faster rate with fewer errors. But the idea of 

developer pairs leads to two scenarios, each with their own issues: 

• Pool: If additional developers are added to a project from a pool of devel

opers to create the more pairs, does the time/error advantage outweigh the 

additional developer costs? 

• NoPool: If additional developers are not available, and instead, the current 

developers are divided into groups of two, then does the time/error advantage 

outweigh the additional programming time resulting from the fewer number 

of tasks that can be worked on at one time? 

6.2.2 M u l l e r / P a d b e r g M o d e l 

To answer the above questions, Miiller and Padberg derived a model to compare 

the economics of PP with those of conventional methods [MP02]. Their model 

calculated the Net Present Value (NPV) of the software project as a general criterion 

to assess both programming methods. The NPV is calculated based on a series 

equations. Miiller and Padberg used 8 fixed parameters and 4 parameters that 

they considered to be key features, for which they systematically varied their values 

(Table 6.2.2). They used these values to calculate the NPV for the conventional and 

the PP method, with each of them in two situations: Pool - when the conventional 

method is using n developers, the PP method is using n pairs, or 2n developers; and 

NoPool - when the conventional method is using n developers, the PP method is 

using j pairs. 

Their study found that PP is advantageous when the number of pairs is 
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Parameter 
PairSpeedAdvantage 
PairDefect Advantage 
DefectRemovalTime 
DiscountRate 

10% 20% 30% 40% 50% 
5% 10% 15% 20% 25% 30% 
5h lOh 15h 
0% 25% 50% 75% 100% 

Table 6.1: Parameters systematically varied by Muller and Padberg 

equivalent to the number of developers (scenario P o o l ) . In other words, n developers 

are more efficient than ^ pairs. They also found that PP is advantageous in this 

situation under three conditions: 

1. the project is of small to medium size (ProductSize is not large) 

2. the project is of high quality (AssetValue is high) 

3. the need for a rapid time to market is present (DiscountRate is high) 

6.2.3 Menzies/Smith Studies 

The problem with MuTler-Padberg economic model is that by only varying 4 pa

rameters, a large number of the model's attributes were left out. To correct this, 

Menzies and Smith re-implemented the model for a wider range exploration. Ran

dom values within appropriate ranges (see Table 6.2.3) were generated for a larger 

set of attributes. In stead of the absolute N P V value, they used the N P V ratio to 

compare the two methods: 

R N p y = CQSt(PP) 
Cost(Conventional) 

when RNPV > 1, pair programming is at an advantage over conventional approaches. 

They generated 10,000 examples from random simulation and calculated their RNPV 

accordingly. TAR2 was then run through the data looking for parameter ranges that 

lead to the largest RNPV value. Based on different configurations, they conducted 

several groups of experiments: 
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Parameter Min Max 
PairSpeed Advant age 10% 50% 
PairDefect Advantage 5% 30% 
DefectRemovalTime (hours) 5 15 
DiscountRate 0% 100% 
ProductSize (LOC) 10000 250000 
DeveloperSalary ($) 45000 65000 
ProjectLeaderSalary ($) 60000 90000 
Asset Value ($) 200000 2000000 
DeveloperProductivity (LOC/month) 100 500 
NumberofDevelopers 4 20 
DefectsPerKLOC 4 100 
DefectsNotEliminated 10% 80% 

Table 6.2: Parameters and ranges used by Smith and Menzies 

Group 1 

In study SI, TAR2 explored every attribute for both NoPool and Pool scenar

ios. This study found three attributes that had the greatest impact on the ratio: 

PairSpeedAdvantage,PairDefectAdvantage and DefectRemovalTime. The re

sult makes perfect sense since: 

1. Pair Speed Advantage and Pair Defect Advantage represent advantages that 

P P has over conventional methods; 

2. a high DefectRemovalTime would result in conventional developers working 

significantly more than developer pairs given the assumption that conventional 

methods are more defect-prone. 

Group 2 

Considering the above three attributes may not be changeable in practice, study S2 

ignored them for other possible features. In S2 /Pool three items were found to be 

most important: 

1. A high DiscountRate ( > 0.42) 

2. A small ProductSize (10,000 to 60,000 LOC) 
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baseline simulation 

5000 
y values, sorted 

10000 

With max. developer productivity With max. pair speed & defect advantage 

5000 
y values, sorted 

10000 5000 
y values, sorted 

Figure 6.1: Raw data plots of a) completely random cases, b) cases with 
Developer Productivity set to maximum ( T l ) , and c) cases with Pair Speed Advantage 
and Pair Defect Advantage set to maximum ( T 2 ) . The vertical line indicates the point 
where PP is no longer advantageous 

3. A high AssetValue ( « $1.6M to $2.0M) 

In S2/NoPool, no significant treatments were found, indicating that, when a pool 

of developers is not present, PP does not have an advantage over conventional 

methods. Both conclusions are consistent with MuTler/Padberg study described in 

section 6.2.2. 

Group 3 

To examine the effects of some particular attributes, two additional tests were con

ducted: 

• Tl:DeveloperProductivity was set to the maximum value, 500 LOC/month, 

to see the distribution when developers are being the most productive. 
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• T 2 : Pair Speed Advantage and PairDefectAdvantage were set to their max

imum values, 50% and 30% respectively, to see the distribution when pairs are 

operating at their greatest rate of advantage over individuals. 

Results of these tests are shown in Figure 6.1. The vertical line in each plotting 

indicates the point where P P is no longer advantageous. In the baseline graph (Fig

ure 6.1.a), PP is advantageous in only 8% examples. This low percentage increases 

to 20% When Developer Productivity was set to maximum (Figure 6.1.b). However, 

even when the two attributes that most favor P P are at their highest values, the 

greatest PP advantage percentage we've found is only 37%. 

6.2.4 Discussion 

By exploring a wide range of model simulation and summarizing using treatment 

learner, Menzies and Smith found pair programming only advantageous over con

ventional methods in a relatively small and specialized set of cases; i.e. when: a)the 

project is relatively small; b) an abundance of developers exists; and c)a rapid de

velopment time is demanded. 

However, their results, showing consistency with the Miiller/Padberg study, 

does not conclude the infeasibility of A P in practice. Rather, it indicates that a 

convincing case for A P cannot be based on the only factors encoded in this model. 

Other possible factors could include (e.g.) increased performance in rapid chang

ing environments, decreased cost due to conventional requirements reworking to 

accommodate changes, or A P methods that do not rely on pair programming. 

6.3 S o f t w a r e M e t r i c s 

• Domain: project quality analysis using software metrics 

• Da ta Source: software metrics collected on NASA KC2 project. 

• Goal: to identify metrics that are superior error predictors 

• Reference: "Metrics That Matter" [MSCM02] 
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Metric Type Metric Definiton 
McCabe v(G) Cyclomatic Complexity 

ev(G) Essential Complexity 
iv(G) Design Complexity 
L O C Lines of Code 

Halstead N Length 
V Volume 
L Level 
D Difficulty 
I Intelligent Content 
E Effort 
B Error Estimate 
T Programming Time 

Line Count LOCode Lines of Code 
LOComment Lines of Comment 
LOBlank Lines of Blank 
LOCodeAndComment Lines of Code and Comment 

Operator/Operand UniqOp Unique Operators 
UniqOpnd Unique Operands 
TotalOp Total Operators 
TotalOpnd Total Operands 

Branch BranchCount Total Branch Count 

Table 6.3: Metric Groups. 

• Collaborators: Menzies, Di Stefano, Chapman, McGi l l 2 , Hu (support role) 

6.3.1 Background 

Software metrics are attributes of software which can describe numerous things, 

including, but not limited to, complexity, effort, quality and reliability. Aiming at 

improving NASA's mission software regardless of the source, the NASA Independent 

Verification and Validation (TV&V) Facility creates and maintains a master reposi

tory of software metrics. Metrics are collected by reviewing requirements, code, and 

test results from NASA's most critical projects. A primary purpose of the repository 

is to identify early life cycle measures which may predict for error prone software 

modules. Figure 6.3 outlines metrics being extensively used in NASA IV&V and 

in the study discussed here. Among them the McCabe complexity metrics [McC76] 

and Halstead metrics [Hal77] are two most popular ones that are used as a basis for 

predicting code errors. 
2 West Virginia University 
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6.3.2 The Experiment 

NASA project KC2 is a C++ program containing over 3000 modules.3 Among 

them, 521 modules were built by NASA developers and others are Commercial Off 

The Shelf software. Of those 521 modules, 106 were found to have various numbers 

of errors, ranging from 1 to 13. Software metrics information is gathered on the 

project especially the 512 modules to analyze the software quality. To isolate key 

metrics that predict for more/less errors, Stefano et.al. divided the 512 modules 

into two groups according to their error rating: the 20% of modules with errors and 

the 80% of modules without errors. Thus, data set for this analysis contains 512 

examples classified into two categories. 

After performing treatment learning and 10-way cross validation on this data 

set, they found 2 best treatments, i.e., the best error indicators: the metrics indi

cating the least error was: 

L > 0.35 

and the metrics indicating most error was: 

~LOC > 118 

The effects of these treatments are shown in Figure 6.2, along with the results 

from the customary McCabe metrics v(G) > 10 and ev(G) > 4. At the top of 

Figure 6.2 is the baseline class distribution. Compared to the baseline, v(G) > 10 

and ev(G) > 4 are both good error indicators, in that they significantly alter the 

distribution from the baseline. It is interesting to note that ev(G) actually performs 

better for KC2 than the more widely used v(G), altering the baseline distribution by 

an additional 5%. However, neither of them are the strongest metrics to be using, 

since LOG and L (Halstead's Program Level) both have much better distributions. 

With a distribution of 97% error-free modules to 3% error-prone, L > 0.35 is actually 

a very strong one in this domain. For comparison purposes, a curve fitting algorithm 
3 A module, for the purposes of our tests, is the equivalent of a C function. 
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Defect frequency in 521 modules: 
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Figure 6.2: Results 

was also applied to each metric. If it is correlated to the error rate, the R2 value 

should be high (> 0.8). The first column of figure 6.2 includes the regression curves4. 

In this particular project, none of the attributes were highly correlated to error rates. 

The strongest indicator L was the least correlated attribute (R2 = 0.0685). This 

is a good indication that simplistic regression is ineffectual in finding decent error-

predicting attributes. In summary, the study has shown three things which hold 

true in this particular domain: 

• McCabe complexity metrics are not bad error-predictors, but others are better. 

4 R is the correlation between output and input variables while R2 is the coefficient of 
determination. R2 represents the proportion of variability of the outputs that is accounted 
for by the inputs. Normally, R2 is a measure of fit of a trend to a data series. 
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• LOC, a relatively cheap and easy-to-collect metric, is one of the best all-around 

error predictors. 

• The least correlated metric, L, turned out to be the strongest error-free code 

indicator. 

6 . 3 . 3 Discussion 

This study uses treatment learner to seek best error-predict metrics on a particular 

software project. Given the complexity of correlations between metrics and module 

quality, treatment learner successfully found superior predictors while liner regres

sion failed. Based on the results, it is obvious that good error predictors are project 

specific. 

It is interesting to note that although McCabe complexity metrics are usually 

considered the most popular metrics, the experiment result shows that the cheap 

and easy to collect LOC metric performs exceptionally well as both a selector for 

error-prone and error-free modules. It has been suggested by other researchers that 

LOC may be a better metric to use when evaluating for error-prone code; the most 

notable example of this is Martin Shepperd's research [SI94]. Shepperd claimed that 

...[Cyclomatic Complexity] is based upon poor theoretical foundations 

and an inadequate model of software development. The argument that 

the metric provides the developer with a useful engineering approxima

tion is not borne out by the empirical evidence. Furthermore, it would 

appear that for a large class of software it is no more than a proxy for, 

and in many cases outperformed by, lines of code (LOC). 

This case study provided strong supportive evidences to Shepperd's opinion that 

v(G) is often outperformed by LOC. 

6.4 Software Inspec t ion Po l i c ies 

• Domain: study of software inspection policies 
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• Da ta Source: simulation through SE model 

• Goal : to find the best inspection policy for a particular software development 

organization. 

• Reference: "Model-based Tests of Truisms" [MRoS+02] 

• Collaborators: Menzies, Raffo5, Hu 

6.4.1 Modell ing and Simulation 

Software process modelling is a technique for understanding the interactions within 

a software development. The software process model used in this study has been 

extensively tuned and validated to a leading software development firm. It can 

accurately predict the impact of process changes. For example, for one very complex 

sub-system, the model predicted that development would take approximately double 

the normal development schedule. This result was initially ignored by management 

as it was too long. However, months later, it was found that the model predictions 

corresponded quite accurately with this company's actual experience. 

The model captures the phases of the company's software development pro

cess as well as the defect inspections being carried out at each phase. Each inspec

tion is characterized by the number of staff involved which is a number drawn from 

distributions known to the model. There are four inspection policies: 

1. do nothing; 

2. do the companies current informal inspection method; 

3. do a somewhat more-structured inspection process; 

4. do a full formal inspection of the kind originally advocated by Micheal Fagan 

[Fag86]. 

These inspections can be conducted at various stages of the life cycle during 

1. the initial functional specification; 

2. after the high level design; 
5 Portland State University 
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3. after the low level design; 

4. or after the code is written. 

After the number of staff involved in the inspections and the inspection policy at 

each stage are determined, the model predicts three main performance measures 

of cost, quality, and schedule using multiple regression. The output is assessed 

according to a domain-specific utility function. The final output is a number of 

defects estimated to be remaining in the software[Raf95]. 

6.4.2 Sensitivity Analysis 

The model contains four phases of development and four inspection types at each 

phase. Each configuration was executed 50 times, resulting in 50 * 4 4 = 12800 

runs. The utility value of each run was calculated using the utility function and was 

further discretized into ten classes. The utilities are shown sorted as the baseline 

plot of Figure 6.3. Note the huge range of output values: 5,000 to 15,000. 

17500 

15000 

£, 12500 

1 

10000 

7500 

5000 
0 4000 8000 12000 

Figure 6.3: Sorted utilities generated 

After using TAR2 to explore the simulation data, The best treatment found 

contains the following configuration: 

• No functional specifications inspections; 

• Full Fagan for low level design and code reviews. 
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• Baseline inspections for high level design; i.e. no change from current practice; 

Given this configuration, TAR2 gave the distribution of utility values seen as the best 

plot of Figure 6.3. This preferred inspection policy increases the mean utility values 

seen in the baseline curve by a factor of 1.35 while reducing the standard deviation 

of those utilities by a factor of 2.5. This treatment was assessed via 10-way cross 

validation. The best plot of Figure 6.3 was observed to be the average improvement 

seen under cross validation. 

6.4.3 Discussion 

When a decision tree learner was working on this complex domain, it generated 

a tree containing 7,206 nodes, which was far too large to understand. Instead of 

producing a tree, TAR2's output only mentioned the best inspection policy. Be

sides the succinct result, this study provides prescriptive guidance by identifying 

the ranges to which certain input parameters (such as inspection efficiency) must 

be restricted in order to achieve desired levels of performance. The paradigm of 

decisions = modelling + simulations + sensitivity gives us the ability to examine 

the conditions under which the performance of a given system may be dramatically 

improved. Hence, it is optimistic to extend the current study to assessing standard 

automated software engineering methods. 

6.5 Testability of Finite-State Models 

• Domain: testability analysis of Finite-State Models 

• Da ta Source: testability data gathered by a partial random search over FSMs 

• Goal : identifies attributes that characterize easiest-to-test F S M models, there

fore helping to understand what makes the FSM more or less testable. 

• Reference: "What Makes Finite-State Models more (or less) Testable" [DO02] 

• Collaborators: Menzies, Owen6, Hu 
6 West Virginia University 
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6.5.1 F S M and Testability 

Software systems with individual concurrent processes are often modelled as com

posite communicating Finite State Machines representing all possible interleavings 

within the system. Using a model mutator, Menzies, Owen and Cukic generated 

over 15,000 F S M models semi-randomly. Each FSM had parameter values drawn at 

random from possible ranges. The model parameters were selected to ensure that 

the ranges cover FSMs from real-world, and several sanity checks were imposed to 

block the generation of bizarre FSMs [MOC02]. Examples of sanity checks included 

things like each variable needed at least two settings and a F S M needed at least two 

states per machine. 

T i m e 

Figure 6.4: Intuitive testability interpretation of search results 

A type of direct AND-OR graph could represent all possible interleavings of 

the individual FSMs in the original system [DO02]. In this representation, testing 

can be done by searching the AND-OR graph. Figure 6.4 illustrates the executable 

definition of testability. Given some input, if the number of unique outputs found 

as a result of that input rises quickly to a level plateau, a small number of tests will 

likely find everything it would be possible to find. Such a F S M represents a program 

that is easy to test. If the search never reaches a plateau, then even after many tests 

more tests might still give new information, so the program is very difficult to test. 

Menzies et.al, have built an inference engine to process the 15,000 generated FSMs. 
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The testability was assessed via the percentage of F S M nodes reached in each run. 

This engine is nondeterministic in that, when there are two or more contradictory 

nodes to be added to the output set, the choice of which node to add is random. 

6.5.2 Summarizing the Search 

0 20 40 60 80 100 
Percentage of Graph (unique OR-nodes) Reached 

Figure 6.5: Plateau height results for 15,000 models. 
height=69.39% 

Average plateau 

After searching over 15,000 semi-randomly generated models, the time-to-

plateau parameter was calculated for each model. The result shows that plateaus 

were reached quickly for nearly all models, regardless of plateau height. If some 

method can increase the plateau height, that method would have increased the 

chances the odds of finding unique outputs. So the key distinction, in terms of 

testability, is plateau height. Figure 6.5 shows a summary of plateau height from 

the search data. The average plateau height is 69.39%. The task is to analyze 

how F S M models yielding high search plateaus are different from those yielding low 

search plateaus. Specifically, what ranges of the attributes characterize the models 

with high plateaus? 

After a series experiment with TAR2 on the search data, the treatments are 

summarized in table 6.4. Each treatment contains 4 attributes. It is interesting to 

notice that the three top parameters are low for both highly testable graphs and 

those difficult to test. In the real world, they would resemble the "risk factors" that 
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polarize the outcome. For example, if somebody spent all his money buying lottery 

tickets he would end up either rich or poor, compared to his original situation. 

The bottom half of table 6.4 shows which attributes have the greatest affect on 

testability, given that the top three are held low. They are state inputs, followed 

by message inputs and message outputs. The result indicates that smaller FSMs 

are not necessarily more testable. Larger, more complex FSMs are likely to fall in 

the middle-to-high testability range; and simpler FSMs are likely to be either very 

testable or very difficult to test. It is the connectedness (the number of transition 

inputs and outputs), not size that is most important for testability. 

6.5.3 Apply ing Gained Knowledge 

To verify the results, another 10,000 input models were generated by setting the 

mutator's parameters according to TAR2's recommendation: 

1. 2-5 FSMs. 

2. 4-49 states. 

3. 0-43 transitions. 

4. 0-247 transition inputs that are states from other machines. 

5. 0-10 unique consumable messages. 

6. 0-229 transition inputs that are consumable messages. 

7. 0-241 transition outputs that are consumable messages. 

Figure 6.6 shows the search result of the new data. Compared to figure 6.5, 

the average plateau height was increased from 69.39% to 91.34%. 

6.5.4 Discussion 

In this example, learning is manifested in the process of data summarization and 

knowledge acquisition. In the case when testability is assessed via plateau height, 

treatment learning enables the automatical learning of the features that most ef

fect FSM's testability. Given the availability of an automatic testability assessment 
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<— Better Treatments 
Machines lowest 

(2-4) 
lowest lowest 

States lowest 
(4-49) 

lowest lowest 

Transitions low 
(0-109) 

low low 

State Inputs high 
(443-737) 

Messages 
Message Inputs 

(not significant) 
high 

(389-647) 
Message Outputs high 

(432-719) 

Worse Treatments 
Machines lowest 

(2-4) 
lowest lowest 

States lowest 
(4-49) 

lowest lowest 

Transitions lowest 
(0-54) 

lowest lowest 

State Inputs lowest 
(0-147) 

Messages 
Message Inputs 

(not significant) 
lowest 
(0-129) 

Message Outputs lowest 
(0-143) 

Table 6.4: Best and worst treatments learned by TAR2. 

method, this approach is easy to generalize to other representations and other def

initions of testability. The model features (parameters and their values) found by 

treatment learning could always be fixed and tested, resulting a verifiable feedback. 

Another possibility that arises from this work is that researchers can iden

tify design parameters that make nondeterministic FSM-based systems more or less 

testable. For example, given two implementations of the same requirement, re

searchers could favor the implementation that results in a more testable system. In 

other words, it is possible to design for testability, even for nondeterministic systems. 
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Figure 6.6: Search data for input models generated according to TAR2's 
suggestions—average plateau height = 91.34%. 

6.6 conc lus ion 

The examples shown here have demonstrated, in real world domains, the capability 

and effectiveness of exploiting treatment learning. Treatment learner seeks mini

mal summaries of large data sets and shows the differences between outcomes. In 

model-based domains , the paradigm of decision = simulations + sensitivity analysis 

provides a fast and cheap way to assist decision making, since it: 

• reduces the cost of elaborate modelling. Essential information can be extracted 

from even hastily built models containing much uncertainty. 

• reduces the cost of extensive data collection. It is possible to grow data in 

data starve domain by simulation, and harvest by sensitivity analysis. 

In data-present domains, the paradigm of decisions — data mining + validation 

proposes a novel and succinct K D D process to report contrasts between classes that 

could make a difference. 

We believe treatment learning has a general applicability, and by presenting 

the few successful cases, we hope to stimulate wider interest in its adoption. 
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Chapter 7 

Conclusion 

7.1 Main Contributions 

In this thesis, we have proposed a new learning approach called treatment learning. 

It addresses two central issues in data mining: (1) the understandability of learnt 

theories; (2) how can the learnt theories benefit decision making. We have studied 

this approach from the following four aspects: 

• We have described the implementation detail of two treatment learners. We 

have compared them through algorithmic performance analysis. 

• We have demonstrated, through both UCI [CEC98] data experiments and case 

studies, the effectiveness of using treatment learner to seek a small number 

of control variables that constrain the option space to a tight, near-optimal 

convergence. 

• We have compared treatment learning with other learning schemes in the 

framework of feature subset selection for supervised classification. The results 

show that treatment learner selects smaller feature subsets than most other 

methods with minimal or no loss in classification accuracy. 

• We have presented four real world applications of treatment learning, both in 

model-based domains and in data-present domains. The examples suggest two 

general paradigms of using treatment learning to assist decision making. 
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We list below the principal contributions of this research to the field of machine 

learning and data mining: 

1. We introduce in the concept of treatment learning. Treatment learning aims 

at mining a small number of control variables in a large option space that can 

lead to better system behavior. It offers two distinguishing features to the 

community: 

• It produces minimal theories that are small, simple and easily under

standable from the target domain. 

• It emphasizes on the interpretation of the learnt theory by human experts 

to inspire decision making. 

2. We designed and implemented a novel mining algorithm based on the heuristic 

of Confidencel measure. 

3. We continuously work on the optimization of the initial design. The latest 

implementation presents an algorithm that runs in linear time in cases the 

original version runs exponentially. 

4. We delivered a complete package of treatment learner and actively maintained 

a free online distribution. This package has been used extensively by other 

researchers (see chapter 6). 

5. We point out the non-trivial observation of narrow funnel effect and provide 

treatment learning as both an evidence and an application. 

6. We propose the use of treatment learner as feature subset selector and present 

a benchmark comparison with other standard FSS techniques. 

7. We successfully applied treatment learning to various research domains and 

demonstrated the applicability of different approach. 
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.2 Future Work 

ur major topics of interest for future research are as follows: 

1. Our current treatment learner uses a straightforward discretisation method, 

namely the Equal Width Interval Binning[DKS95] to discretize continuous 

attributes. This method divides the values into N intervals where N is pre-

specified by the user. In the future, we would like to try other schemes such as 

the supervised discretisation developed by Fayyad and Iraini [FK93]. It com

bines an entropy based splitting criterion with a minimum description length 

stopping criterion. The best cut point is the one that makes the subintervals 

as pure as possible, i.e. where the information value is smallest. This split

ting is essentially the same as the one used by the C4.5 decision tree learner 

[Qui86]. In that case, the best split is where the information gain, defined as 

the difference between the information value without the split and that with 

the split, is largest. The discretisation is then applied recursively to the two 

subintervals until it is time to stop. This method has an advantage of not 

requiring the number of intervals to be pre-specified. It is considered to be 

the state-of-the-art. 

2. Based on our feature subset selection experiment, we are optimistic to use 

treatment learner as a pre-processor prior to any target learners for supervised 

classification. However, the current approach involves a non-trivial procedure 

of alternating class ordering and combining the result together. This process 

can be easily automated by adding a wrapper around the learner. It will in

voke the learner's core procedure for each class ordering and output the final 

set of selected features instead of individual treatments. This will give us a 

permutation that can be readily in use as feature subset selector. As a result, 

we'd like to experiment with more datasets (especially ones with high dimen

sionality) and different target classifiers to further explore the applicability of 
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using treatment learner as feature subset selector. 

3. Treatment learner involves a combination of search and attribute utility esti

mation. Adoption of different search techniques and estimation schemes will 

result in many permutations. To try other estimation schemes such as the in

formation gain attribute ranking ,Relief [I.K94], we need to modify them such 

that they can reflect the domain-specific preference of classes (e.g., the weights 

of each class) since treatment learning is a different task from classification. 

Another possibility to the current confidencel scheme would be to produce 

subset ranking instead of individual attribute ranking. This way, treatment 

learner operates more like standard association rule miners, in which APRI

ORI property [AS94] could be exploited. Also, the increased search space 

dictates more sophisticated search strategy such as simulated annealing that 

evaluates the better nodes more times. One drawback of this approach is 

that it assumes complex hypothesis and makes treatment learner no longer a 

lightweight tool. 

The first two ideas aim at enhancing some aspects of the existing treatment 

learner. They are straightforward to realize with the current implementation. The 

third idea makes some radical changes to the core algorithm. Most likely it will result 

in essentially different learners in the framework of treatment learning. Nevertheless, 

in the future we would like to promote both wider application of the current learner 

and some breakthroughs in the concept of treatment learning. 
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Appendix A 

User Manual for T A R 3 
Treatment Learner 

A . l Getting TAR3 

The TAR3 treatment learner is distributed under the GNU General Public License 

and is freely available at the online distribution1. For installation, simply download 

the newest TAR3 package (dispatchTAR3.zip) and unzip it to your local computer. 

The whole package contains the following file structure: 

• /bin: folder where all the executables reside 

• /doc: related publications and user manual 

• /sample: sample data sets and their configuration files 

• /source: C source code 

A . 2 Configuration File 

Table A . l lists the parameters used in the configuration file (xx.cfg). Note that the 

order of the parameters are not important, and if a parameter is missing, TAR3 will 

take the default value as listed in table A . l . 

•^ttp://www.ece.ubc.ca/~yingh/ 
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Table A . l : Parameters seen in the configuration file. 

Name Meaning Default 
granularity how many intervals should a continuous 

attribute be divided 
3 

maxNumber maximum number of treatments wanted 30 
minSize minimum treatment size expected in 

a single treatment 
1 

maxSize maximum treatment size allowed in 
a single treatment 

5 

randomTrials maximum random trials tried before stop 1 
futileTrials number of successive futile trials to 

be completed before stop 
5 

bestClass percentage of best class examples expected 
to be remained in the treated set 

50% 

TAR3 adopts a random sampling algorithm to draw treatments from the 

underlying distribution. Parameter randomTrials and f u t i l e T r i a l s are part of 

the randomness control. Suppose we set: 

maxNumber = 100 
randomTrials = 50 
f u t i l e T r i a l s = 10 

In each random trial, TAR3 generates a set of treatments and maintains a list of 

100 top ranked treatments. If a random trial doesn't contribute new treatments 

into that list (e.g., treatments generated in that trial have lower rank than those 

already in the list), it is called a futile trial. The process stops after completing 50 

random trials or after 10 successive futile trials are reached. Empirically, setting 

randomTrials between 30 to 60 and f u t i l e T r i a l s between 5 to 10 are usually 

sufficient to get stable treatments. 

A .3 Name File 

The .names file consists of a series of sections, each of which has restrictions and 

format. Blank lines, spaces, and tabs may be used to make the file more readable 
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and have no significance. The vertical bar character(|) appearing anywhere on a line 

causes the rest of that line to be ignored, and can be used to incorporate comments 

in the file. 

A.3 .1 N a m e Res t r i c t i on 

1. A name cannot be the single character "?" 

2. The special characters comma(,), colon(:), vertical bar(|), and backslash have 

particular meanings and must be escaped (preceded by a backslash character) 

if they appear in a name. 

3. A period(.) may appear in a name provided it is not followed by a space. 

4. Embedded spaces are also permitted in a name, but multiple white-space 

characters (spaces and tabs) are replaced by a single space. 

A . 3 . 2 C lass Fo rma t 

1. The first entry in the names file gives the class names, separated by commas. 

2. There must be at least two class names. 

3. Classes are ordered from the domain-specific point of view, with the worst 

first, the best last. 

A . 3.3 A t t r i b u t e Fo rma t 

1. An attribute entry begins with its name followed by a colon, and then a 

specification of the values it can take. 

2. continuous: indicates that the attribute has numeric values, either integer or 

floating point. 

3. A list of names separated by commas: indicates that the attribute has discrete 

values and specifies them explicitly. The order of attribute values is arbitrary. 

123 



A.3 .4 O p t i o n a l Sect ions 

TAR2 takes the three sections as inputs to restrict the data processing scope of a 

particular data set. 

• NOW section: NOW specifies the current status of the data, i.e., only those 

satisfy NOW criteria will be read in and processed. This data pre-process 

could always be obtained by using other tools. 

• CHANGES section: CHANGES represents some desired zone within the data 

set that the user wishes to approach. Only attribute ranges specified in 

CHANGES could appear in the treatments. 

• SCORE section: SCORE encodes user's preference of the classes. User can 

assign a specific score (weight) to a class. Without user specification, TAR3 

scores the classes according to a default scoring function. 

The above three sections are optional, but once they appear, their relative order is 

important, e.g., CHANGES section must be after NOW section and SCORE section 

must be the last. 

A.3 .5 L i t t l e Language 

A little language is designed to specify attribute ranges in NOW and CHANGES 

sections, for example: 

• A t t r i b u t e l : t r u e : 

all possible values are acceptable 

• A t t r i b u t e 2 : i g n o r e : 

none values are acceptable 

• A t t r i b u t e 3 : a , b, c: 

for categorical attribute, only values a, b, c are acceptable 
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• A t t r i b u t e d [-; 10), [20;30] , [50;-): 

for continuous attribute,the acceptable ranges are: x < 10 OR 20 <= x <= 30 

OR x <= 50 

A.4 Command Line 

Suppose the data set to use is c : / tar3 /data /myDatase t . data. The following files 

are required to be placed into the same folder: 

• data file: c : / tar3/data/myDataset .data 

• name file: c : / tar3/data/myDataset .names 

• configuration file: c : / tar3 /data /myDataset . c f g 

To invoke TAR3, issue the command: (suppose t ar3 . exe resides in c : / t a r 3 / b i n ) 

cd c : / t a r 3 / d a t a 
c : / t a r 3 / b i n / t a r 3 myDataset 

A. 5 Cross-Validation 

TAR3 also comes with a cross-validation facility ( / b i n / x v a l .exe). This program is 

compatible with both TAR2(v2.2) and TAR3. To invoke it, use one of the following 

three commands: 

• x v a l tar2 fileName N: 

N-way cross validation with tar2 on f i l eName.data 

• x v a l tar3 fileName N: 

N-way cross validation with tar3 on f i l eName.data 

• x v a l -p fileName N: 

perform file-split on fileName .data 
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The current directory must be the one where the data files reside. If t arX.exe 

and x v a l . exe are in different folders from the current directory, full path must be 

specified. For example, to perform 10-way cross validation on myDataset .data, we 

issue the command: 

cd c : / t a r 3 / d a t a 
c : / t a r 3 / b i n / x v a l c : / t a r 3 / b i n / t a r 3 myDataset 10 

xva l . exe first splits the data file in to N .data file and N . t es t files, resulting in: 

X D F [ 0 . . N - l ] . d a t a 
X D F [ 0 . . N - l ] . t e s t 

Then it invokes tar2 or tar3 N times, generating N output files plus one summary 

file. After done, it automatically delete XDF*.data and XDF*. tes t 

126 


