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Abstract

Modern speech synthesizers use concatenated words and sub-word segments,
such as diphones, to synthesize natural speech. Synthesizers available today can
synthesize speech with only a limited selection of voices provided by the vendors. The
voice segments (e.g. words & diphoneé) are often created using semi-manual processes

that are prone to human error and make the segments non-uniform.

The main goal of this thesis is developing an automatic method to segment and
label a natural speech into words, diphones, and phonemes. To segment speech into
words and sub-words, I use a speech recognition eng'iné. The commercially available
speech recognition engines do not provide all the necessary functionality to segment the
speech into diphones accurately. As a result, I have developed an engine to segment

speech. For developing the engine, I have employed HTK tools provided by Cambridge

University, available for free.
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Chapter 1

Introduction

1.1 Motivation

Modern speech synthesizers generate a synthesized speech by concatenating
segments of natural speech. The segments of a speech can be phrases, words, or sub-
words that a speech synthesizer uses to create a speech. For concatenating words, a
database that has an utterance for each word should be utilized. However, a database that
keeps an utterance for every word in a language will be too big and too difficult to be
implemented. As a result, synthesizers use sub-word segments in addition to common

word segments to synthesize speech.

Words are made up of phonemes, and there are a limited numbers of phonemes in
each language. For example American English is made up of about 40 phonemes. As a
result, instead of concatenating words, a synthesizer may use sub-words such as
phonemes and diphones to create speech. Studies [1] have shown that speech synthesized
by diphones, which are a sub-word division that begins from middle of a phoneme and

ends in the middle of the adjacent phoneme, provides more natural speech.

Segmenting and labeling diphones has, until now, been a manual and semi-
manual process that demands linguistic skills, and it is prone to human error. Besides, it
is a difficult process. Consequently, the voices created by speech synthesizers are limited

to a few that are provided by the vendors. To synthesize a variety of voices, a set of
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speech automatically for any given voice can speed up and facilitate segmentation

process.

In my thésis research, I have developed an automatic method to segment and label
natural speech into corresponding words and diphones. To segment speech into words
and diphones accurately, a speech recognition engine with a specific Application
Programming Interface is ﬂeeded. However, the available commercial recognition
~ engines do not provide such an interféce. As a result, I have developed an engine to

pfovide such functionalities.

I have used two m‘ethéds for diphone segmentation. In the first method, I have
developed a speech recognition engine based on phoneme recognition, and I have used
the engine to recognize phonemes. Then the adjacent phonémés are segmented into
diphones. In this method, I have assumed that a diphone begins from middle of a
phoneme and extends into the middle of the adjacent phoneme. However, this assumption
dose ‘not always yield appropriate results, because a diphone may start any where inside a

phoneme and end any where inside the adjacent phoneme.

To solve this problem, I h;ive created a second method to segment natural speech
‘into diphones directly. In this method, I have developed a diphoné recognition engine by
creating the acoustic model for each diphoﬁe and training the parameters of the model
- with diphone transcfipfibns of the trair-ling speech.-Then the enginé is employed to

. segment speech into diphones directly.
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1.2 Implementation

To segment the speech accurately, an accurate speech recognition engine is

- required. To develop an accurate speech recognizer, I have used HTK tools and followed

a step-by-step procedure. In each step, the parameters of the model are evaluated and

modified with different training cycles. Then the model that provides the most accurate

recognition is selected and passed to the next section for further processing.

First a mono-phoneme HMM for each phoneme is created, and the models are

trained and tested. The model that provides the most accurate recognition is then passed

to the next step. In that step, the mono-phoneme models are converted to triphone models

to achieve more accurate modeling. They are then retrained and tested with different
training cycles. Again, the model prbvided the most accurate recognition is passed to the
néxt step of the process. In the final step, the parameters of the models are tied to create a
compact model and are adapted.with the voice of a person (Keith) as the test subject to

achieve high accuracy.

The engine is then employed to segment and label the diphones automatically. For
segmenting diphones, I have followed two different approaches. In the first approach, I
have developed a speech recognition engine based on phoneme recognition, and then I

have employed the engine to segment the speech into words and phonemes. Then the

- adjacent phonemes are segmented into diphones. In the second approach, I have

developed an engine to segment the speech into diphones directly. For this purpose, the

acoustic models of the diphones are created and trained. Then the model is used to

recognize and segment the speech into diphones directly.




Chapter 1: Introduction

In addition to the above engine, a program is developed to demonstrate other

 practical uses of the engine created in this project. This program uses the speech

recognizer to search media files for occurrence of an utterance. The program is able to

look for an utterance of a word or a phrase in a speech by Iistening to the media files.

1.3 Outline of the Thesis

Chapter 1 begins with introducing the main parts of a speech recanition system

-and the major problems of developing a speech recognition engine. Chapter 2 discusses

the digital signal processing needed to prepare the speech signal for recognition. The

acoustic model employed in this thesis is explained in Chapter 3, and the methods

employed for training and recognition are discussed.

The first part of implementation is explained in Chapter 4. This part consists of
creating, modeling, and training the mono-phonerhe models, and improving the models
by converting them to triphone and tied models. The chapter ends by comparing the

correctness and accuracy of the recognition achieved by different models.

Chapter 5 explains the adaptation proceSs employed in tlﬁs thesis to adjust the
parameters of the models to the voice of the test subject (Keith). Chapter 6 explains the
methods used for segmentation and discusses the accuracy of each method. This chapter
coﬁtinues by discussing other practical uses of the engine such as searching for
occurrences of an utterance ina medié file. Chapter 7 concludes the thesis and discusses
£he future works. Some detailed information is discussed in Appendixes A throﬁgh D.

Finally, the references used in this prdject are listed at the end of the thesis.
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14 Problem of Speech Recognition

Automatic Speech Recognition is the process of mapping a speech signal to a

sequence of discrete entities, for example, phonemes, words, and sentences. The major

“obstacle to accurate recognition is the large variability in speech signal characteristics.

This variability in characteristics has three main components, Linguistic variability,
Speaker variability, and Channel variability. Linguistic Variability includes the effects of

phonetics and linguistic content of speeCh. Speaker Variability includes the effects of

articulation, that is, the effects of neighboring sounds on the acoustic realization of a

particular phoneme due to the continuity and motion constraints on the human
afti(;ulatory apparatus [4]. Channel ‘Va'r'iability‘ includés the effects of background noise
and the transmission channel, such as a microphone or telephone. All these variables
impose layers of difficulty and uncertainty that must be addressed by the recognition

process.
1.4‘ Mathematical Model of Speech Recognition

To discuss the process of speech recognition, we employ a mathematical model;
then, an exact statement of the problem leads to decomposition of the problem into easier
sub-problems: Our approach to designing a speech recognizer is statistical, so the

mathematical model of our problem involves probabilities [5] [6]. .

Let A denote the data

i

‘A=a,,a,,..,a, acA _ (1.1)

-on the basis of which the speech recognizer will decide which words were spoken. The

symbol g is generated at time index I, and let
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W=w,w,,..w, W€ w a2
denote the string of n words, each belonging to a vocabulary w.

If P(w|4)is the probability that the string W is spoken, given that the sequence ofA is

observed, then the corresponding mathematical formula is
w = arg mv?x P(W | A) - 13)

that thevreco gnizer will pick the most likely string of words, given the observed acoustic data.
Finding w in (1.3) is not feasible, because the permutation of possible Words grows
astronomically. For example, suppose our dictionary contains 4000 words, and w is the |
utterance of a sentence with only 3 words; then the formula (1.3) should be calculated for
(4000 possible combinations. |
T he well-known Bayes’ formula [7] of probability t.h’eory allows us to rewrite the
right hand side of (1.3) as (1.4):

P(W)P(A|W)

PW|A)= P(A)

(1.4)

‘where P(W) is the probability of the word string W that Will be uttered, and P(A[W) is the
probability that the speaker says W and the evidence A is observed, and P(A) is the average
probability that A will be observed.

Since A is fixed, the recognition problem is limited to finding the word string W that
@ = arg max P(W)P(A|W) : (1.5)
maximizes the product of P(W) P(A|W).

1.'5 Elements of a Speech Recogniier

3
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Figure 1.1 is an overview of a speech recognition system. The main parts of the

system are as follow.

/\/\/L - Acoustic i_’ = . W
Processing ecognizer
Acoustic Language
Model Model

Figure 1.1 An overview of a speech recognition system.

1.5.1 Acoustic Processing

First, it is necessary to process the input signal (e.g. wave sound) and transform it
into the symbol 4 that the recbgnizer deals with. The main requirement of speech
recognition is the extraction of voice features, which may distinguish between different
phonemes of a language. From a statistical point of view, this procedure is equivalent to

finding sufficient statistical data to estimate phonemes. Furthermore, the process uses

- ‘techniques to make the output data less sensitive to the speaker and the background noise.

1.5.2 Acoustic Modeling

Referring to formula (1.5), the recognizer needs to determine the value of P(A|W),
the probability that the sequence A is observed, given that the word sequence W is

uttered. Since the number of possible pairs for W and A are too large, it is not-possible to

| create a simple lookup table. Thus, to compute the P(A[W), a statistical model is required.

An acoustic model employed in speech recognition is the Hidden Markov Model (HMM).
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Other models are also possible based on Neural Networks [3]-[7] [8] and Dynamic Time
. Wrapping [2]. This project employs HMM, which is used most widely in modern speech
récognition systems. |
1.5.3 Language Modeling

- The Formula (1.5) also requires P(W), the probability of ‘string W that the speaker
wishes to utter. The Bayes’ formula allows us to decompose the P(W) as follows:
P(W)=HP(W,. | Wy Wi y) _ _ - (1.6)
. i=l :

Thus, the recognizer should determine the probability of P(w, | w,,...,w,_,) . It is logical to

assume that the choice of W; depends on the history of the previous words spoken. So (1.6)

can be rewritten as
P(W)=l£[P(w,. | DWW, ) 1.7)
i=t

The art of language modeling consists of determining the appropriate classification of @ and

a method to estimate the probabilities of P(w, | ®(w,,...,w,_,)).

There are many classifications in language modeling, such as Finite State
Language1; Stochastic Models®, and Uniform Models. In this project we have chosen

Uniform 'Model, so that every word is equiprobable and the probability of each word is

: -‘—1/- where V is the dimension of the vocabulary.

1 A simplified artificial language that uses finite state network to model the allowed word seqences.

Based on the joint probability of a word and ‘its preceding words.
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1.5.4 Recognition

To find the transcription of W from the acoustic data A by Formula (1.5), the -

program must examine all possible word strings W. However, this is not possible,

because the space of W is too huge to be calculated. To solve the problem, two more

- algorithms, Baum-Welch and Viterbi, will be introduced to make the search space

feasible.

1.6 Elements of Speech

1.6.1 Phones and Phonemes

* Words are natural units for the modeling of a speech recognizer, particularly since
there are many apﬁlications for which isolated words are an adequate form of input.
However, usingA words as fundamental linguistic units is wasteful of training data, and
ignores any commbnality between sounds within differént words [9]. Thus, sub-word

units are always used in speech recognition systems with large vocabularies.

Linguists have categorized the languages of the world into segments called

phones, though not all linguists agree on the identity of these phones. Phones r¢present a

base set of sounds that can be used to describe most languages. For instance, the word

"spat " would be [s p ae t]. This indicates that the word is made up of an s, followed by an
unaspirated p, a short vowel a, and an aspiratedvt. To determine if a consonant such as p
or t is aspirated, one holds a hand in front of his or her mouth. If a breath of air is felt as
the consonant iﬁ the word is uttéred, then it is aspirated. For exampl¢ compare “spat”
versus “pat.” In the latter casé, because a larger amount of air is produced, the p is said to

be aspirated, as opposed to the unaspirated p in “spat” [9]. The set of phones is designed
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to cover all languages, and the inventory of them is quite large. As a result, every
language uses only a subset of the phone set. The set of unique sounds that a language
uses is called its phonemes. Two sounds are considered to be different phonemes if they

make a distinction between two words; these words are called minimal pairs.

There are two more sub-word segmentations defined in speech processing,

- diphones and triphones [10] [11]. Triphones are used in speech recognition systems while
diphones are mainly used in speechb synthesizers. Diphones are segments of speech that |
-inelude the transition from a relatively stationary region of one phoneme to a similar
fegien in an adjacent phoneme. Thus, diphoneé begin and end roughly in the middle of
pﬁonemes and span the transition between adjacent phonemes. For example, the word
“spat” is made up of a set of three diphones [ s-p p-ae ae-t]. As a result, there will be V2
number of diphones in a language; however, all. the diphones ﬁay not be included in a

language. Furthermore, some combinations are used so rarely that they can be ignored.

A triphone is a set of phones defined by the preceding and following phonemes.
For example, the word “spat” is segmented into two triphones and two diphones [s+p s-

‘p+ae p-ae+t ae-t]. Thus, there will be V> number of triphones in a lahguage[lO].

1.6.2 Phonetic and Phonemic Alphabets

~ Linguists have found that the alphabets of English and other languages are not
optimal choices for linguistic description. For example, consider the two words "thing"
and "that". In these words, the sounds made by the letters ‘th’ are different from each

other. A way must be found to distinguish between them. The system that phoneticians

have devised for this purpose is called the International Pronunciation Alphabet (IPA).
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This alphabet has a base on 75 consonants'an.d 25 vowels. In 1980, a speech database
called TIMIT was created and manually labeled for English. The TIMIT phone set is
smaller than IPA. This database is being used to train and test for speech ahalysis in

English.

In this thesis, I have used the CcMU® dictionary and phoneme set. The stress marks
are rémoved from the dictionary, because they are not suitable for speech recognition
purposes [12]. Table 2.1 shows the CMU phoneme set. The two phonemes sil and sp that
stahd for silence’ and shbrt—pause are added to the end of the table. sil marks the
beginning and end .‘of a séntence that usually bégins and ends with a silence, and sp marks

the boundaries of words in an utterance, which usually separates words in speech.

Phoneme Example Translation
AA : odd AA D
AE at AE T
AH hut HH AH T
AOQ ought AO T
AW cow K AW
AY hide HH AY D

1B be B IY

| CH : cheese CH IY Z
D - dee - D 1IY
DH thee DH IY
EH ed EH D
ER hurt ‘{HH ER T
EY ' ate EY T
F fee F Iy
G green G R IYN
HH he - HH 1Y
IH it IHT
1Y ' eat IY T
JH gee JH 1Y
K key K Iy
L lee L IY
M- me . M IY
N- knee N TIY
NG " | ping P IH NG
OW oat OWw T
oY . toy T 0y

3 Carnegie Mellon University,
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P pree P IY

R read R IY D

S sea S IY

SH " she SH IY

T tea T 1Y

TH theta TH EY T AH
UH hood HH UH D
uw two T UW

v vee v Iy

W we W TIY

Y yvield Y IYLD
Z zee Z IY

ZH seizure S 1Y ZH ER
Sp Short Pause
Sil Silence

Table 1.1 The CMU phoneme set used in the thesis.
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Chapter 2

Acoustic Processing

Despite differences in speaker and environment characteristics, the aim of signal
| processing in speech recognition is to find a relatively stable representation for different
examples of the same speech sound. To prepare a signal for speech analysis, the signal is
transformed by mathematical models such as FFT, LPC [13] [14] and MFCC (Mel
Frequency Cepstral Coefficients) [15]. Although many different models have been used
for speech recognition over the past few decades, more recently the majority of systems
have converged to use MFCC. For this thesis, I have used MFCC, which has been
employed by almost all of the recent speech recognition engines. Figure 2.1 shows the

overall acoustic processing of input audio to be transformed to MFCC.
2.1 Sampling

Digital speech processing is usually performed by frequency sampling, ranging
from 8000 samples/sec to 32000 samples/sec. Speech sampled at 16Khz contains all

necessary information needed for speech recognition [16] [17].

A sampler and an A/D converter are usually included inside a computer audio
card. The signal is sampled in a window and pre-emphasized. Narrow windows have
been proposed to estimate the rapidly varying parameters of the vocal tract, while large

windows are used to estimate the fundamental frequency. A 20-30 ms long window is

generally a good compromise. In our implementation the audio signal is sampled at every




Chapter 2: Acoustic Processing

14

Speech Signal

Windowing
v
Pre-emphasis
v
FFT
v
Mel Filter Bank

v
log(] )
v

DCT

MFCC l

Derivatives’

ooy

Output Vector

| Figure 2.1 Overall picture of Acoustic Processing.
10 ms over a window of 25 ms. then its DC mean is removed and passed to the next
module to be pre-emphasized.
2.2 Pre-emphasizé

High frequency formants have smaller amplitude than low frequency formants.

. Pre-emphasis ‘is therefo_re required to obtain similar amplitude for all formants. Such
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processing is usually obtained by filtering the speech signal with a first order FIR filter,

-whose transfer function in the z-domain is

H(z)=1-az' 0<a<l | @
ais the empﬁasis parameter [18]. In the time‘domajn, the pre-emphasized signal is related to
the input signal by this relation: |

x'(n)=x(n)—ax(n-1)

A typical value fdr ais 0.95.

2.3 Hamming Window

The simplest window has a rectangular shape. This window is implicitly used

when a sequenée of N samples is retrieved from a signal:

1 0<n<sN-1
w(n) = -
0 otherwise

‘The presence of a window provokes a distortion on the estimated spectrum, since

the windowed signal is the convolution of the spectrum of the signal x’(n), and of the
Fourier transform of a rectangular Windovs) w(n). The spectrum of w(n), W (e’”)is
composed of a higher energy Iﬁain lobe, centered at zero freqxienéy, and lower energy

| side lobes centered at higher ffequencies.’The main lobe spreads out in a wider frequency

range than the narrow band powér of the signal"x’(n) répresehted by the formant, so the

side lobes.of the spectfum of the window swap energy from different and distant

| frequencies of x’(n). This problem is called leakage.




Chapter 2: Acoustic Processing o 16

To reduce leakage,x(ri) is multiplied by a properly shaped window, w(n). In this
thesis, I have einployed the Hamming Window [17], which has an impulse response as

-follows:

Py 0. N-1
N-1

0.54-0.46cos
w(n) = » ‘

0 otherwise

The side lobes of this window are much lower than those of the rectangular
_wbindow,r and fhé leakage eff¢ct is decreased. The resolution of the Hamming window is
less than the resolution éf the rectangular window, because the main lobes of the
Hamming window are wider than the main loﬁes of the rectangular window [19]. A
Hamming window is a good choice for épeech recognition, because a high resolution is
not reqﬁired. As indicated in Figure 2.1 the hex_t block is FFT, and it integrates all the

closest frequency lines.
2.4 Fast Furrier Transformation (FFT)

The standard methods for spectral analysis rely on the Fourier transformation of
~ Xx(n). The Discrete Fourier T;ansform (DFT) of all frames of the signal is obtained by the

following:

5 » |
X(K=XE V) k=0.,N-1

If thé number of samples, N, is a i)ower of 2, N=2° with p as an infeger, then the
computational complexity can be reduced to an order of nlog(n), resorting to the Fast
Fourier Transform algorithm (FFT ) ‘[18]. Note that the phase information of the DFT
samples of each frame is discarded. This is consistent with the fact that the phase does not

carry useful information. Experiments have proven that the perception of a signal




Chapter 2: Acoustic ProcéSsing 17

reconstructed with random phases is almost indistinguishable from the original, if the

phase continuity between successive frames is preserved [17].

2.5 Filter Bank

Human ears resolve non-linearly across the audio spectrum, and empirical
evidence suggests that designing a front-end to operate in a similar non-linear manner
improves recognition performance [20]. A straightforward route to obtaining the desired

non-linear frequénéy resolution requires a filter bank.

Gain
A

11

» Mel Scale

Figure 2.2 Mel Filter Bank.

~ Figure 2.2 illustrates the general form of a Mel-Filter bank. The filters are

-triangular and spaced equally along the mel-scale by the following:
Mel(f)=2595log (1+——
. el(f) glO( 700)

To implement this filter bank, the speech data is transformed using Fourier

transformation, the magnitude coefficients are then multiplied by corresponding filter
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gain, and the results are accumulated. In our project, I have used 22 filters equally spaced

along the mel-scale [19]. '
2.6 Log Energy Computation

The previous proeedure has the role of smoothing the spectrum performing
processing; which is similar to that executed by the human ear. The next step is to
- compute the logarithm of the square magnitude of the signal obtained from the filter
bank. Relevanf beneﬁts of this procedure are noted that‘the magnitude and logarithmic
processing are performed by the ear as well. Furthermore, squaring the magnitude
discards useless phase information, and calculating the logarithm of the result is a method
of dyhamic compression that makes feature extraction less sensitive to the variations of

speech.

2.7 Discrete Cosine Transform

The final procedure for the Mel frequency cepstrum computation (MFCC)
consists of .performing a Discrete Cesine Transformation, DCT [17]. The DCT has the
property of producing highly un—eorrelated features [18]. The zero order MFCC
eoefﬁcient is approximately equivalent to the energy of the frame [21]. The DCT also has
the effect of smoothing the spectrum, but only if the ﬁrsf coefficients are retained. The
number of MFCC coefficients is generally lower than 15 in speech recognition. Typical
values are from 9 to 15 coefficients. In.Figure 2.3 and Figure 2.4 some partial resﬁlts of

MFFC computation are displayed.

A further improvement in recognition is obtained by considering that the

Cepestral parameters do not take into account the dynamic evolution of the speech signal.
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As the result, the first and second order differences of the MFCC may be used to capture
such information. Hence, given vector U the in the time domain, the i-th order time

differences can be computed as [11] :

Nfw)= A u, )-8 ), Afw)=u,

Part of phonem “hh" after Pre-emphasing

aonf T T T - Y 1-‘
600 | : .
4o} ' ] : |

200} | - -

I 1 . 1 1

0 50 100 150 200 ' 250

The same signhl after applying Hamming Window

0 50. 100 150 200 250

Figure 2.3 Part of the signal of phoneme “hh”

FFT of the same sample (hh)
15000 T T T T ] T R

10000 ' ]

5000

- 1

0 50 100 - 150 200 250
First 12 samples of MFCC followd by its derivatives

*

. Figure 2.4 (Up) FFT of the signal at Figure2.3, (Down) The first
- 12 MFCC samples of the same signal are followed by its
- differences.
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In this project the output vector for each frame, 25 ms, is composed of 13 first

coefficients known as static parameters of MFCC, followed by first and second order

differences, known as delta and acceleration coefficients respectively. So each frame is

transferred to a vector of 39 elements of dat_a.
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Chapter 3

Acoustic Model

The Acoustic Model used in almost all advanced speech recognition systems is
based on the Markov Chain. A Markov Chain consists of a number of states with

transitions among them. A probability is associated with each transition and a symbol is

Figure 3.1 A three-state Markov chain.

associated with each state. Figure 3.1 shows a three-state Markov chain with transition
probability a, between states i and j. The symbols A, B, and C are associated with states 1,
2, and 3 respectively. If a transition occurs from 1 fo 2, symbol B will be produced as an
output, or a transition from 3 to 1 will produce symbol C. Note that in a Markov Chain

the transition between states are probabilistic, while the production of the output symbols
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~ are deterministic. For example, the transitions (1 2232 1) will produce symbols BBCBA

~-as output [22].

3.1 Hidden Markov Model

A Hidden Markov Model (HMM) is the szime as a Markov Chain, with one

difference. In HMM, the output symbols are probabilistic too. Thus, instead of |

associating a symbol with each state, all symbols can be produced within all states with a

different prbbability, and a probability distribution of all the output symbols is associated
with each state. The probability associated with each state is known as the output

probability.

Figure 3.2 shows a three state HMM. It has the same transition probabilities as the
Markov Chain defined in Figure 3.1, but a probability distribution is associated with

output symbols [A B C D E]. Now, when a transition occurs from one state to another
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state, an output symbol is generated according to the probability distribution of the
corresponding state. Given a sequence of symbols generated by the HMM of Figure 3.2,
it is not possible to know for certain what state sequences have generated the observed

| éutput. For example, if the output symbols are “A B B E C,” there is no way to know for
certain which sequenéés have prodhced them. In fact, every sequence of states with the
same length of output symbols is a possible sequence with a different probability. It is
‘said that the sequenées of the symbols are hidden from the observer if the output symbols
are tﬁe éﬁly thmgs an observer sees. This is Why this model is called a Hidden Markov |

Model [22].

Instead of having a discrete number of output symbols, a probability density

function may be defined over all possible values of the output vectors.
3.2 Model of Phonemes

Figure 3.3 shows an example of a tﬁee state HMM for a single phoneme. This
model has only three states with two null states, one in the start and one at the end of the
model. The null states are only used as moderators to connect HMM models to each

~ other, and they have no-active role. The HMM is not limited to three states as shown in
our example; it can be any size,l and its use is not limited to speech applications. For
instance, image recognition [23] [24], control systems [25], segmentation of DNA

sequences, and gene recognition [26], are among the interesting topics conducted recently

using HMM.
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Figure 3.3 Basic structure of a phonetic HMM.

Now, let us examine how HMM works. We start with state 0. The first franie_ is
read from the in_put éﬁd a't_ransition:is ma_de from state 0 to state _1. The Oy , infcc of the
frame is c.omputed. Then P(O)), the probability of the observation O, from states 1,is

-calculated. Then the next frame is read from the input, and if we assume that a transition
is made frpm state 1 to state 2, the previohs probability is multiplied by the transition
probability from state 1 to state 2, that is P(O1) * P(Ti2). Then, the mfcc of the frame is
computed and the probability of the observed O, , P(O5), from state 2 is calculated and
multiplied with the previous product, P(Oy) * P(T12) *P(O,). The process is continued

A until the model is exited through T30. At this point we can as'sumc_a that the phoneme
modeled by the given HMM is pronounced. Multiplying the sequence of output and
transition probabilities gives the total probability that the input speétral sequences were
génerated by the HMM, using a spéciﬁc sequence of states. For every 'sequénce of states,
a different probability value results. For recognition,}the'prdbabi]jty computatioh just
described is calculated for all possible phoneme models and all possible state sequences.
The 'sequencé that provides the highest probability value is assumed to be the recognized

sequence of states and phonemes. However, this approach is not totally realistic because

of the very large number of sequences involved. In general, there will be (N)T sequences,
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where N is thehumbér of states in the model and T is the number of frames in the
observed sequence. For example, if there are n states in the model, then the numbér of
‘probable sequences for speech that lasts only one second will be equal to N'% with the
- parameters we have used in this project. To overcome this obstacle, we will introduce

two common algorithms, Baum-Welch and Viterbi algorithms, and an alternative

approach to deal with this problem.

The HMM shown in Figure 3.3 is known as the first order left-to-right Hidden
Markov Mbdel. Mathématically, ifl,2,... ,' N is the number of the fra_imes observed and

01, 02,..., Oy are the observed outputs, then [27],

- P(o,=jlo, =i0_,=k.)=Po,=jlo_=i) (3.1)
That means the output at time j depends only on the value at the preceding time and on
nothingbthat went on before. Also,
P(0, = 10,2 =) = P(0, = |0y =1) )

indicates that the Markov Chain is time invariant.

This model is adopted for speech modeling because in speech, time flows in a
forward direction. The first node at the left-side of the phoneme stands for the beginning
of a phoneme, the middle is where the phoneme reaches a steady state, and the thifd is
the last transition of ‘the phoneme. Transitions from any state back to itself serve to model
the vaﬁabiﬁty of ti]e speech, since different utterances made by different people, or by the

- same person in different contexts, have different duration.
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3.3 Speech Recognition Using HMM

Mathematically speaking, each HMM model M;, i=1, 2,...m, is defined by a
' - parameter set M=[A, B, 1] where
fi={m} .is a column vector denoting the initial state—-thé probability of the
model of starting at state i.
A={ a5} is a square matrix indicating the probability of transition from state i
-at time ¢ to siat_ej at time #+1. |
B% {by} | is é column vector indicating the probability of the model emitting
| oufput Ok at state j.
. The likelihood of eabh model M; having produced the observation O is obtained by
computing P;{OJM;}; that is the probability of observing sequence O, given model M. Then
the recognized phoneme is given by

P= ArgMaxB{O, | M) - (33)

i=1,2,...m

where ArgMax denotes the value of the argument that maximizes the expression.

The obvious way to calculate P is to consider all possible state sequences and then
select the sequence that produces the maximum probability. As discussed above, this
approach is not feasible, if there are N states and P frames then the total number of the
possible states will be NF. Fortunately, there are two recursive algorithms to reduce

computation to a tractable amount.



Chapter 3: Modeling

27

3.4 Baum-Welch Algorithm

The Baum-Welch algorithm is based on calculating Forward Probability.
Forward probability, ¢, (), is the probability of observing the partial sequence (o;,
02,...,0¢) and béing in state j at time 7.

a,(j) = P(0,,0,,...,0,,4, = J) 3.4

Thus, the total probability of observing O, P{O|M} can be obtained by summing

a, (j)across all N states. When P{O|M} is calculated in this way, it is called the Baun-

Welch prbbability.
N . ‘
Py = ), 0(J) i - @35)
o 4

_T_o calculate Pgw, suppose that { @, (j), j=1, 2,...N} has been calculated at some

time instance t. Then the probability of observing sequence (o1, 02,...,0;) and being at

state i at time ¢ and transferring to state j at time #+1/ is equal to ¢, (i).q; . Thus, the

probability of being at state j at time ¢+ and observing seqﬁence (01, 02,...,0r) may be

“obtained by summing &, (i).a; over all states, and the equation 3.5 changes to

N A ,
Py = Y. (i) | (3.6)
i=1
Consider that the observation o is produced by state j at time ¢+ 1, so we have -

N . .
o, (j)= {2 a,(i)a; }.b (0,1, t=12,.,T-1 3.7
i=1

- where b;(0,,,) is the probability of producing o from state j. The recursionin -

(3.6) is initialized by computing the @, (j) in (3.7);
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() =n{jlb;,(0) - o (3.8)
is the probability of observing the fisrt output and being in state j at ¢=1.
3.5 Viterbi Algorithm

‘In computing Pgw in recursion 3.5, the forward probabilities of all states are

accumulated at time ¢. In the Viterbi Algorithm, Py, only the likelihood of the most likely

' state sequence emitting the observation O is calculated.

()= Max{p,()a, 1b,0,).  1=12,...T~1 39
& () =7{j}b;(0) | (3.10)

This equation is identical to (3.7), except that the summation is replaced by the
Max operator and the algorithm is initialized using (3.10), where « is replaced by ¢.

Thus, the probability of observing sequence O is given by

P, = Max{¢; (j)} ' (.11

j=1,2,.N

In practice, all the probabilities are on a logarithm base. Having the probability in
log base reduces the multiplicatioﬁ to addition, which is faster and prevents the results

from falling too low, causing an under flow problem. Multiplying numbers smaller than 1

- will result in even smaller numbers. Thus (3.9) becomes

Pa()= j}gaxN{sb, (i)+1og(a;) }+10g(b, (0,,1)) t=12,.,T-1 (3.12)
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3.6_'Tc'>ken‘ Passing Method

The token passing method is based on the Viterbi algon'tﬁm. A token represents a
partial path through the network, extended from time zero to time ¢ {20]. At time zero, a .
téken is placed in every possible start node. Then for_ each frame, tokens are moved to the
next node along connected transitions. Wﬁen there are multiple exits from a node, the
token is copied to explore all possible paths. As the token passes through the transitioné
and nodes, its log probability increases accbrding to the cofre’sponding transition and

emission probabilities. An HMM can have at most N tokens. Hence, at the end of each

_time ‘step, all but N best tokens in each HMM are discarded. Each token has a history that

records its path as it propagates through the nodes. The token that has the highest

probability will be declared the winner, and its path will become a recognized route.

To reduce the number of tokens and hence speed up processing, only the tokens

“that have a chance of being among the winners are propagated, and others are deleted

from merhory, known as pruning. Pruning is implemented at each time step by removing
all tokens whose probabilities fall below a beam-width* [20]. Setting the beam-width is
cruéial; if it is too small, then the most likely path might be pruned before its token

reacties the end of the utterance. If it is too large, the processing time will be long.

The extension to continuous speech recognition simply involves connecting
models of phonemes together in a sequence. The reason for including the null nodes at
the entry and exit states should now be evident; these nodes provide the glue needed to

join the models together.

4 The Beam-width is the distance of the log probability of the nodes from the node that has the highest probabilify.
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3.7 Training of HMM

Now we have reached the practically difficult problem; how to estimate the HMM
parameters in the first place. Be_fore‘discussing the parameter estimation in detail, let us

clarify the output distribution probability, P(b;(o,)). The following formula is used to

calculate the output probability.
by(0,)=N(0,1;,%)) | (3.13)

Where N(o,4,Z) is a multivariate Gaussian with mean vector p;and covariance matrix %;

[20], and n is the dimension of the output vector, O.

1 e—;(a—/lj)lxl--l(o—ﬂj) .

N(o,u;, %) =——e—
(o,u;,%;) r——(2ﬂ)n|2j|

3.8 Baum-Welch or Forward-Backward Estimation

(3.14) .

If there were only one state j, then the HMM parameter estimation would be a

simple average (3.15).

K== o0, (3.15)

T

-1 ;
2= 200,10, - 1)

In practice, there are multiple states and no direct assignment of observation
vectors to the individual states. However, equations 3.15 are used to make an initial
estimation of the parameters.

Now, let I{(t) denote the probability of being in state j at time ¢, that is,
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L()=P(q,=jl0) | | A (3.10)

Then, the equations (3.15) become

T

Y.L, (), |
u, = - (3.17)

y L.(?)

J
t=t

and

X L), — )0, ~ 1)
3 =L (3.18)

YL@

Equations 3.17 and 3.18 are Baum-Welch estimation formulae for the means and covariance
of a HMM. These equations can be applied if the Li(t) is known for stétej. The Li(t) is

calculated using the Forward-Backward algorithm.

3.9 Forward-Backward Algorithm

We have discussed Forward probability befdre, however, we repeat it here for

context cohesion. The forward probability is defined as,

a;(t) = P(o,,0,,...,0,,4, = J) (3.19)

«;(t)is the joint probability of observing the first ¢ frame vectors (01, 02,... 0¢) and being in

-state j at time t. The forward probability can be calculated with the following recursion:
' N-1 :
;) =Y, e,(t~Da,1b,;(0,) - (G20
i=2

- Note that the first and Ny, states are null nodes, non-emitting nodes. Initial conditions are

aO=1, qO=ab0) | (321)
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and the final condition is

oy (T) = Niq (T -Da, (3.22)

as we have shown before. Comparing (3.22) and (3.6) indicates that the calculation of the

. forward probability also yields the total likelihood P(O[M).

Backward Probability, 8 (D) iS tﬁe probability of bbserving (Ot+1,--.,0T) and being
at state j at time ¢.
| 'ﬁ,-'(t)%P(o,ﬂ,v-.-,oT la, =7 6
The backward probability is named as a éonditional probability, and can be complited using

the following recursion,
: N1 ' .
B.)= ab(0,)B,¢+1) (3.24)
Jj=2

with the initial condition given by

5.(T)=a, 1<i<N | (325)
aad, the final condition is
B0 =Y a,b,(0,)8,2) (26
. J=2 o . e . . -

This symmetric definition is deliberate, since it allows the probability of the state occupation

to be determined by production of the two probabilities. Thus,
P(O,q, =j):aj(t)ﬂj(t) , ' (327)
is the joir'lt‘probability of observing O and being at state j at time ¢.

Refern'ng to the definition L;(z) , we have

Ly(t)=P(g, = j|O.M) | (3.28)
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Hence®

L) = P(0,q,=j|M) (3.29)

: P(O|M)
By substituting from equation (3.27) in (3.29), we have |
a. (t)p;¢
L= _A_)M (3.30)
BW

where Pgw=P(O|M).

. The training of the HMM model involves assuming an initial estimate of the
model, M=[A, B, n], and re-estimating it with known training sequences. For each
ééquence O, the parameters of a new model M., are re-estimated from those of ;he old
model Mg, until

P{O|M,,,}2 P{O| M} — (331)

At each iteration, the old model is replaced by a new model, M,,,,, and another re-estimation
takes place, while equation 3.31 is satisfied. According to the Baum-Welch algorithm, the

transition matrix {a;} is calculated as follows:

- A,
) N -

DA

k=2

- (332)

where A;; represents the total number of transitions from state i to state j.

In this style of training, a set of training observations, O, is used to estimate the
parameters of a single HMM. The basic formula for the re-estimation of the transition

probabilities is

P(AB)

5 The conditional probability rule: P(A | B)=

P(B)
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> @ (0a,5,(0,,)8,¢ +1

(3.33)

a,.j=

T-1 .

PAGYAG)

=1

* For details of formula and proof of convergence of the algorithm, refer to [20] [28].

3.10 Adaptation

To achieve aécurate recognition, the parameters of the model should be trained by
a specific user. However, providing enough training data for each user to tailor the
system té his or her voice is difficult in practice. To achieve an accurate recognition
engine, a huge amount Qf training data has to be provided for each user. An alternative to
this t;aining' strategy is adaptation. In this case, the system is trained with different voices
és a user independent system; then the parameters of the model are tuned to a speciﬁc
user. In this training system, the amount of adaptation data is much less than the data

needed to train the system from the start as mentioned in the first case.

3.10.1 Model Adaptation Using MLLR

Maximum Likelihood Linear Regression or MLLR computes a set of
transformations that will reduce the mismatch between an initial model set and the
adaptation data. More speciﬁcélly, MLLR is a model adaptation technique that estimates
a set of linear transformations for the mean and variance parameters of the Gaussian
mixture of the HMM system. The effect of these transformations is to shift the

"component means and alter the variances in the initial system, so each state in the HMM

is more likely to geherate the adaptation data. MLLR uses a Transform-Sharing method,

known as a Regression Class Tree, to adapt the parameters of the model. This method
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provides a means of dealing with the small amount of adaptation data. Under this scheme,
the system adapts even the parameters for speech not presented in the adaptation data. As
- aresult, the system is able to adapt its parameters with only a small amount of adaptation

data. For more information about Regression Class Tree, refer to Appendix A.

The transformation matrix used to give a new estimate of the adapted mean is
giVen by

u=wé : (3.34)
Where W is a n x (n+1) transformation matrix and ¢ is the extended mean vector (n is the

djmension of the vector).

C E=wu,.u ¥ ' _ (3.35)
w is the bias offset whose value is fixed and is usually equal to 1. As a result W can be
written

w=[p | Al | : (3.36)

The A represents an[n x n] transformation matrix, and b a bias vector. The
-traﬁsformation matrix, W, is obtained by solving a maximization, using the Expectation-
' Maximidation (EM) algorithm. This technique is also used to compute the variance
transformation matrix. The same rules, with some modifications, apply to finding the
van'anCe‘transformation matrix.
>=B"HB | | 3.37)
_ Wheré H s the Iineaf transformation to be estimated and B in the imérse of the Choleski

factor of 27,

st =ccT ,_ | (3.38)
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B=C" (3.39)
For details of the EM algorithm and an example of calculation adapted data refer to Apendix

B.

3.11 Language Model

~ One of -the fecogm'tion components is the language model. The language model is
a network of words arranged according to some rules, for example, grammar rules of the
language to be ‘recogni‘zed. The simplest word-network médel isa ijst of parallel nodes
connected by arcs. The nodes represent words and the arcs repreéent the transitions
between words. Figure 3.4 shows a simple network. The top figure is used to recognize
the “Flip Flop,” or- “Flop Flip,” while the bottom diagram can be used to regonize any

combination of the two words, such as “Flip Flip FlipFlop.”

. Figure 3.4 (Top) A simple network recognizes “Flip Flop” or “Flop Flip.”
(Bottom) A modified network recognizes any permutation of “Flip” and “Flop.”
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A probability factor maylbe assigned to eaoh arc to indicate the probability of the
" word sequences. However; the simplest and.most common form is a network in which
each word has the same possibility of being pronounced. The network may contain any
numbor of words; however, increasing the number of words will increase the prooessing
time and decrease the 'accvuracy of recognition. The probability of selecting the correct

word from the words listed in the network will decrease as the network grows.

" Figure 3.5 Word Internal Triphone Expansion of Flip-Flop Network.

For the recognition process, the recognizer loads the netWork an.d creates the
- HMM equivalent of the oetwork. Then it employs the zalgorithms defined previously to
find the best possible route as recognized speech. Figufe 3.5 shows the same network as
indicated in Figure 3.4, expanded to its tri-phone equivalent by the recognizer for the
‘ _lre.cognition'-prooess.
The Neiwork is stored in SLF format. For example, the network shown in Figure
3.5 ‘is stored as follows: | | |
| efine size ’of network: N=num nodes and L=num arcs
'isé‘:I\?odes: I=node-number, W=word
. W=start
W=end

0

1

2 W=Flip
3 W=Flop
L

0

1

% H
e g

ist arcs: J=arc-number, S=start-node, E=end-node

#
I
I
I
I
K
J
J
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J=2 S=3 E=1
J=3 S=2° E=1
J=4 S=2 E=3
J=5 S=3 E=3
Jd=6 S=3 E=2
J=7 S=2 E=2

The first line defines the size of the network. The Start node is a node without a
predessor and the End node is a node without a successor. There should be one, and only

one, Start and End node in a network.

Figure 3.6 "The modified version of the network shown in the bottom of
the last figure.

To simplify the network, a NULL node is itroduced. For example, the network

defined in the bottom of Figure 3.4 is modified in Figure 3.6 and its equivalent SLF file is

as follows:
Define size of netword: N=num nodes and L=num arcs
=6 L=7 A
List Nodes: I=node-number, W=word
=0 W=start :
=1 W=end
=2 W=Flip
=3 W=Flop.
=4 W=!NULL
=5 W=INULL
List arcs: J=arc- number, S=start-node, E=end-node
=0 S=0 E=4
=1 S=4 E=2
=2 S=4 E=3
=3 §=2 E=5
=4 S=3 E=5
=5 S=5 E=4
=6 S=5 E=1
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Chapter 4

Modeling & Training

The goal of this thesis is to develop a speech recognizer. Then the recognizer will
be employed to develop a search engine to spot and play words in an AVI file. The
recognizer will also be used to develop a Diphone extractor program to segment the

speech into diphones.

To develop a speech recognizer, I have followed a step-by-step procedure. First, a
simple monb—phoneme model has been developed and trained with different training
cycles; the best model is then transformed into a triphone model and retrained. Finally,
the best triphone model is tied and adopted to the speéch of the test speaker to get the best
possible accuracy. For developing the speech recognizer, I have employed HTK tools,
provided by Cambridge University. The tools are available in C source code. I have
modified some parts of the code to fit the project, and also developed some tools as
needed. HTK tqols are used for preparing the speech files, modeling the acoustic data,
training the HMM, and testing the system. Modifications of the tools are made for
recognition. Finally, a program is developed to demonstrate some applications of the

system, such as word spotting, word and diphone segmenting.

4.0 Introduction
To develop an accurate speech recognizer, I have set different experiments. In
each set of experiments, the model that results in the best recognition output has been

chosen and the experiments continue with the new model. Experiment begins by defining
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and training a set of mono-phoneme HMMs. It continues by selecting the best mono-
phonemé model, converting it to triphone HMM, and retraining. The model that results
the best regsognition output is chosen and the parameters of the HMM are tied and adabted
to a subject’s (Keith;s) voice. The results of each step are compared with the previous
Step’s results, and the best model is chosen to continue. It is noted that all of these
_experiinc’nts are based on previous experiments that I have set and tésted for this project,
and the set of experiments shown here are employed to indicate the logical flow of the
projec't.
4.1 Acoustic Procéssing '

The project employs the speech utterances provided by TIMIT and one student,
Keith, as the subjécf of the experirrient. The data provided by Keith is in AVI format. The
WAVE part of the file is extracted and used for processing and recognition. Each audio
file, both TIMIT and Keith’s utterances, passes through the following process to create its

MFCC equivalent.

1. Sample each file for every 10 ms in the window of 25 ms, so each sampled

frame overlaps with the adjacent frames for a duration of 15 ms.
2. Pre-¢mphasize the sample according to section (2.1) with a =0.95
3. Apbly Hamming Window to each frame.
4. Find the Furrier Tfansform of each frame.

5. Pass each vector through a Mel-filter bank with gain equal to 1 and the

number of filters equal to 22.

6. Calculate the Log Energy of each vector as described in section (2.6)
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7. Find thé DCT of each vector and discard all except the first 13 coefficients,
and then add its first-order and second-order derivatives to the end of the

vector.
8. Store the output in the same file name with an “mif” extension.

According to the process described above, each frame of each sample, 25 ms, is
converted to a vector of 39 elements and each second of speech is converted to 100

vectors, which are stored in a file with an “mlf” extension.

| HT K provides a flexible tool, HCopy, for converting files to different formats,
such as converting WAVE to MFCC. For detailed information and the parameter list

needed for such transformations, refer to the HTK manual.

4.2 Acoustic Modeling

Each phoneme is modeled using a three state left-to-right HMM, as shown in
Figﬁre 3.3, and each observation probability distribution is represented with a mixture of
Gaussian density as described in formula (3.14). For each phoneme listed in Table 1.1
except. for sp, which stands for short pause, a similar model is created, and the parameters
of each model are stored separately. -

~h "hmml*®

<BeginHMM>

<NumStates> 5

<State> 2
<Mean> 39 .
000000000000000000000000000000000000000
<Variance> 39
1111111111111111111111111111111111‘11111

~<State> 3
<Mean> 39 '
0000000000000000CO0D0Q0Q0O0000D0C0ODO00O0DO0D0DO0OO0D0O0DO0DODODOODOODO
<Variance> 39
111111111111111111111111111111111111111
‘<State> 4
<Mean> 39
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00000000D00000000O0DO0O0ODOCOO0OO0OODOOOCOOOODOOODOOOO
<Variance> 39 '
-lll1111111111ll111111111111111111111111'
<TransP> 5 :

0.0 1.0 0.0 0.0 0.0

0.0 0.6 0.4 0.0 0.0

0.0 0.0 0.6 0.4 0.0

0.0 0.0 0.0 0.7 0.3

0.0 0.0 0.0 0.0 0.0
<EndHMM>

This is a HMM prototype model used by HTK tools. The first symbol in the

| model is ~h, followed by a phoneme name, hmml. Then the HMM definition is

bracketed by the symbols <BeginHMM> and <EndHMM>.

<NumStates> défines the number of states in the HMM. In our project the
number of states is équal to 5, with the first and last states set to NULL states. For each

emitting state j, a single vector ,u ; is introduced by the keyword <Mean>, and a diagonal
variance vector X is introduced by the keyboard <Variance>. Finally, the definition

ends with the transition matrix {aij }, introduced by the keywt)rd <TransP>.

I modified the sil model By adding two extra trénsitions, one from state 2 to state
4, and another from state 4 back to state 2. The idéa here is to make the model more
robust by allowing individual states to absorb the noise in the training data. Also, at this
point, a one state short pause (sp) model is“ added to the list of HMM:s. This model is
called Tee-Model and makes a direct transition from the entry node to the exit node. The
emitting parameters of the sp model are set to the emitting parameters of state 2 of the sil
model. Figure 4.1 shows the modified sil model and sp model. The definition of the sp

model is shown below:
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”-\/\’-\
I3 \ 4 ‘\
1 { '
1 0 0
A “l \ 7
\\_¢’ \‘—”

Figure 4.1 sil and sp model.

~h " Sp n

<BeginHMM>
<NumStates> 3
<State> 2
<Mean> 39 . ;
000000000000000000000000D0D0000000O00CO0OO0O0O
<Variance> 39 : .
i111121211111112111111111111111111111111111
<TransP>
0.0 0.
0.0 0.
0.0 0.
<EndHMM>

5
5 0.5

5 0.5

0 0.0

4.3 Training

- The Mean and Variance values, set to 0 and 1 respectively, are only for

demonstration purposes. In fact, to begin the training process, the mean and variance of
all the models are set to the global mean and variance, computed by scanning the set of

training data. HTK provides a tool HcompV, for computing the global mean and variance

by scanning *.mlf files. The details of how to use the tool are not provided here;

interested readers should refer to the HTK manual for detailed information.
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4.3.1 Mono-phone training

The training process needs both *.mlf files and their phonetic equivalents. The
phonetic equivalent of each utterance is extracted from the dictionary® and a sp is inserted
.between word boundaries to separate words in a senience. For example, the utterance
“Her hum became a gurgle. of surprise” (file si1837.1ab from SI training

list of TIMIT) is converted to the following phonetic equivalent:

sil hh er sp hh ah m sp b ih k ey m sp ah sp g er g
ah 1 spahv spserprayz sil

The sentence begins and ends with a sil (silence) and a sp is inserted to indicate

the boundaries of each word. Inserting sil and sp could be clarified by referring to Figure

Figure 4.2 The wave form of “Her hum became a gurgle of surprise.”

4.2, which shoWs the wave forrn of the same sentence uttered by a male in the New
England region in the United states. As indicated in the audio file, the speeeh begins and
ends with a silence and each word is separated by a short pause, sp. Notice that the sp
may have a zero duration, which means there is no short pause .between the words. This is
why we have creeted a direct transition from.the first node to the last node in the sp

model.
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The training module creates the HMM equivalent of each utterance by sticking
the HMMs as indicated to the equivalent label file. Then it employs a forward-backward
algorithm, described in section (3.9); to calculate the parameters of the model, and

“replaces the old model with a new one, and stores the result. HTK provides a ‘very'
ﬂexible tool, HRest,. for training purposes. This tool accepts different parameters for
training. In this project I have employed HRest with the following parameters “-t f

[a bl".

Selecting the parameters for “~t £ [a Db] " is very important, because without
setting them, the cycles consilmed.vby the processor for tréinjng become enormous. -t £
vsets the pruning level to £. The default value for the prunmg level is zero; fhat means no
pruning at all. During the backward probablhty calculation, at each time all (log) values
falling more than £ below the maximum value, at that time, are ignored. During the
subsequent forward pass, the log values are only calcﬁlated if there are correspondihg
valid values. Tight pruning results in failing to process an utterance, and a high value for
£ requires more processing time. If @ and b options are given, then a pruning error
results iﬁ the threshold being increased by aand uttefance processing restarts. If the error
continués; this procedure will be repeated until the limit b is reached. In this project the f,

a, and b are set to 250, 150, and 1000 respectivély.

6 This project employs the dictionary brovided by the Camnegie Melldn University by removing the stress marks that
are not suitable for speech recognition [12]. '
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4.3.2 Triphone training

In this step the set of mono-phone HMMs will be converted to a context
dependent'triphone model by converting the mono-phone transcription of the data to

triphone transcription and creating a set of triphone models by copying the mono-phones.

_ Then the model is retrained to tune the triphone model. For example, the mono-phone

transcription of the file SI1837.1lab,

sil hh er sp hh ah m sp b ih k ey m sp ah sp g er g
ah l spah v spserprayz sil

will be converted to its equivalent triphone transcription,

sil hh+er hh-er sp hh+ah hh-ah+m ah-m sp b+ih b-ih+k
‘ih-k+ey k-ey+m ey-m sp ah sp g+er g-er+g er-g+ah g-

"ah+1l ah-1 sp ah+v ah-v sp s+er s-er+p er-p+r p-r+ay

r-ay+z ay-z sil

This style of triphone transcription is referred to as Word Internal Transcription
(WIT). Note that some diphones are also generated as a result of word boundaries
marked by sil and sp, because the context reduces to only two phonemes next to the word
boundaries. For example, the mono-phone transcription of “sil hh er sp”is

converted to “sil hh+er hh-er sp”; sil marks the beginning of an utterance and

: Sp'mar_ks the boundary of the words. The ‘-’ and ‘+* represent predecessor and successor

-respec'tively.’ For example, hh+er means the kh phoneme followed by er; and hh-er

means the phoneme er that is preceded by the phoneme hh.

This conversion continues for all training data, and in the next step all

- combinations of triphonés and diphones appearing in the transcription are created by

dupﬁcatiﬁg the model of each corresponding mono-phoneme model. For example, a

triphone model s-er +p will be created by duplicating the model of er in the HMM file.
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The diphones are duplicated by following the predecessor and successor signs as
explained earlier. For example, the hh+er will be created by duplicating the model of

hh, and hh-er will be created by duplication of the model of er.

Thére is another tﬁphone transcription known as Word External Trariscription
(WET). In this transcription, the word boundaries are not marked, or if they are marked,
.they are neglected. For example, the word external transcription of the file SI1837.lab
| without marking word boundaries is |
'éil'. hh+ér i’lh—er+hh er-hh+ah hh-ah+m ah-m+b m—b+-ih .b—
"ih+k ih-k+ey k-ey+m ey-m+ah m-ah+g ah-g+er g-er+g er-

g+ah g-ah+l ah-l+ah l-ah+v .ah-v+s v-s+er s-er+p er-
p+r p-r+ay r-ay+z ay-z sil

As the final step, the converted transcriptions and the MFCC equivalent of each
utterance are used to retrain the triphone models, exactly the same way as described for

the mono phoneme model in section 4.3.1).

4.4 Evaluation Method

The final gpal of modeling and traihing is recognition. To recognize an utterance,
the preprocc_:ssed speech, along with the HMM and language rﬁod_el, are needed by the
reco gniz'er; For thxs ptojeéit I have erhployed a Token—Passirig‘ method, with one token per
modell,: and a parallel wbrdéﬁefWofk as a language model wifh an equal probability for |
each word, as described in Figure 3.3. For this section I have used the HVite tool,
prbvided by HTK The correctness and accuracy of the recognition is evaluated by
comparing the recogmied speech w.ith the true transcription of the speech. For

correctness and accuracy, the following formulas have been defined.

Correctness = *100%

N-D-§
N
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Accuracy = l—_——qj\;—s_l *100% .

N is the total number of labels in the reference transcription, D is the number of deletion

" errors, S is the number of substitution_ errors, and I is the number of insertion errors. For

example, if the true transcription is

AGAIN THESE BLOCKS WERE SET IN RESIN SATURATED GLASS
-CLOTH AND NAILED.

and the recognised text is

AGAIN THESE BLOCKS WERE SET INTO THE RESIN SATURATED
CLOTH AND NAILED. : : '

there is one substitution errdr, INTO for IN, one insertion errbr, THE, and one deletion error,
GLASS, in the recognised text, then .

Correctness = %:1* 100% = 83.33%

Accuracy = %1 *100% = 75.00%

4.5 Experiments.

- This experiment focuses on fhe modeling and training process, the .IInost .irnportant
part of deyeloping a speech recognition system. Correctness and accuracy, however, also
depend on the word-network fhat is provided to the recognizer (the bigger the network the
less correctness and accuracy). In spite of the importance of the selection of the word-

network, network selection plays a secondary role in accurate recognition. The most

important component, and in fact the most challenging part, is the modeling and training.
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4.5.1 Experiment conditions

In é_ll the following experiments the models are trained with mﬂe utterances of all
SI and SX training daté, provided by the TIMIT database (equal to 2608 utterances), plus
Keith’s training speech (97 utterances), for a total of 2705 sentences and 4170 distinct
words. The recognition data, selected from Keitﬁ’s speech, is grouped into two
categories, Train-Data and Test-Data. Train-Data is the data used in the training procéss
and employed for recognition too, but the Test-Data is the speech not used in the training
process and is empl'oyed only for recognition. The language model is selected as a
parallel word-network from all words (550 distinct words) that appear in both Keith’s

Train-Data and Test-Data.

4.5.2 Mono-Phoneme

In the following experiments the HMM for each phoneme listed in Table 1.1 is
created and trained with TIMIT and Keith’s training data, after which the correctness and

accuracy of the model is tested by recognizing both Keith’s Train- and Test- Data.

4.5.2.1 Training without SP médel
In this experiménf, the models are trained without inserting the sp model between
-the word boundaries. For example,.the utterance “Her hum became a 'gurgl'e 6f
surprise” selected from file SI1837.1ab (SI training list of TIMIT), is converted to the |
following phonetic equivalent:

sil hh er hh ahmb ih k eymah ger gah 1l ah v s
er pr ay z sil '

Table 4.1 shows the number of iterations used for training and the correctness and accuraéy

of the recognition.
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¢

Number of training Correctness % Accuracy %

iterations Train Test Train Test
1 9.15 9.09 -45.07 -17.17
2 20.42 23.23 -95.07 -55.56
3 21.83 - 27.27 -53.52 -26.26
4 - 2746 27.27 -40.11 2222
5 26.76 27.27 3551 | -16.16
6 25.35 28.28 -35.92 -13.13
7 24.65 2828 | -35.92 -13.13
8 25.35 27.27 -35.92 -14.14
9 24.65 27.27 -34.51 -14.14
10 24.65 27.27 -33.80 -14.14

Table 4.1 Accuracy and correctness of a mono-phoneme model without sp as word boundaries.

As shown in Table 4.1, increasing the number of iterations does not increase the
correctness and accurécy of the model as may .be expected. In fact, after a few iterations
" the model reaches é condition known as over-training, after which the model is |
corrupted, and the correctness and accuracy of the model décréases, employing more
training iterations. For this model iteration 6 is optirnufn. Aftér tﬁét the accuracy and
correctness of the model decreases. It is §vorth mentioning that for each training iteration

all 2705 utterances of TIMIT and Keith’s Train-Data are employed.

4.5.2.2 Training With sp Model
In this experimeﬁt the system is trained by inserting the sp model between the
. word boundaries. For exampie, the utterance in the previous experiment is converted to
the following phonetic equivalent:

sil hh er sp hh ah m sp b ih k ey m sp ah sp g er g
ah 1 sp ah v sp s er pr ay z sp sil

Table 4.2 shows the number of iterations used for training and the correctness and accuracy

of the model for recognition.
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Number of training Correctness % Accuracy %
iterations " Train Test Train " Test -
1 7.04 9.09 -38.73 -14.14
2 21.83 24.24 -96.48 -59.60
3 22.54 26.26 -57.04 -27.27
4 24.65 25.25 -42.96 -24.24
5 24.65 26.26 -38.73 -18.18
6 24.65 26.26 -36.62 -15.15
7 25.35 27.27 3592 | -14.14
8 26.06 28.28 -33.80 -15.15
9 2535 2727 | -30.99 -15.15
10 25.35 27.27 -30.99 -15.15

~ Table 4.2 Accuracy and correctness of the mono-phoneme model with sp as word boundaries.

As indicated in Table 4.2, the best results occur in iterations 7 and 8. Another
important fact is that the accuracy and correctness of this model, with sp between word
boundaries, do not differ from the accufacy and correctness of the previous model,

without sp as word boundaries.

~ 4.5.2.3 Compound Model

In this expen'xhent, ihe five bﬁrst iterations are trained ej(actly as described in
seétion 4.5.2.1, without sp as word boundaries. Then the transcription is modified by |
inserting sp as word boundaries (section 4.5.2.2), and the training process continues for
five more iteratibns. ‘Table 4.3 shows the number Qf ,-iteratiéns used for training and the
- correctness and accuracy of the recognitioh. The first five rows are omitted since they

are exactly the same as in Table 4.1.

Number of training Correctness % Accuracy %
iterations Train Test - Train Test
6 26.76 28.28 -32.39 -13.13
7 26.76 26.26 -33.80 -16.16
8 26.76 2626 | -33.10 -16.16
9 26.26 2424 | -31.69 -18.18
10 ©26.06 24.24 -31.69 | -18.18

Table 4.3 Accuracy and correctness of compound model.
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As shown in Table 4.3, the model is not irhpr()ved with this method and the same

-scenario recurs when the number of training iterations increases.

4.5.3 triphan_e

The following experirhents fuﬁher the experiments in the previous séction. In
: these exﬁeriments, the models created by the »mono-phoneme model in iteration 6 of
Tables 4.1 and 4.2 are _convéned to the tﬁphbne model by making copies of the models,
as described in section (4.3.2). Then, the mono-phoneme transcriptions are also converted
to the triphone eqqivalent, and the models are retraingd. The t;ainjng and test data and |

word-network are exactly the same as in the previous section, described in 4.5.1

4.5.3.1 Training with Word External Transcription
In this section, the traihed model of iteration 6 of section 4.5.2.1(The Training

Without sp Model) is converted to the tﬁpﬁone model and retrained without sp forming
the boundaries of words. For example, the moﬂo-phqneme transcription of utterance
“Her hum became a , gurgle of sur_prise”, will be convgrted to the foﬂowing
gquiva_lent triphone transcription from itetation 7:

sil hh+er hh-er+hh er-hh+ah hh-ah+m ah-m+b m-b+ih b-

ih+k ih-k+ey k-ey+m ey-m+ah m-ah+g ah-gter g-er+g er-

g+ah g-ah+l ah-l1l+ah l-ah+v ah-v+s v-s+er s-er+p er-
p+r p-r+ay r-ay+z ay-z sil

Table 4.4 shows the number of iterations used for ttainirig and the correctness and accuracy

of the model for recognition.
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Iteration of re-training with Correctness % Acéuracy %

triphone model Train Test | Train Test
6’ +1 4903 | 2424 | 1609 | -2.02
6+2 4930 | 2525 | 1549 | 9.09
6+3 4930 | 2323 14.08 9.09
6+4 4930 | 2222 15.49 9.0
6+5 4859 | 2424 | 1831 -6.06

" Table 4.4 Accuracy and correctness of the triphone model trained with WET.

As indicated in Table 4.4, both the correctness and accuracy of the model is

improved when compared with the correctness and accuracy obtained with the mono-

phoneme _rnodcl, tested with the same data in the same conditions.

- 4.5.3.2 Training with Word Internal Transcription

In tﬂis section, the trained model of iteration 6 of section 4.5.2.2 (The Training
With sp Mddel) is converted to a triphone model and retrained with sp as the boundary
of words. For example, the mono-phoneme transcription of utterance “Her hum
became a gurgle of surprise”, is converted to the following Word Internal

Transcription:

sil hh+er hh-er sp hh+ah hh-ah+m ah-m sp b+ih b-ih+k
ih-k+ey k-ey+m ey-m sp ah sp g+er g-er+g er-g+ah g-

ah+l ah-1 sp ah+v ah-v sp s+er s-er+p er-p+r p-r+ay

r-ay+z ay-z sp sil

The Table 4.5 shows the number of iterations used for retraining and the correctness and

accuracy of the model for recognition.

Iteration of re-training with Correctness % Accuracy %
triphone model | Train | Test Train Test
6+1 67.61 31.31 50.00 4.04
6+2 69.01 34.34 51.41 4.04
6+3 7042 | 3232 | S2.11 0
6+4 - 69.72 |. 32.32 48.59 3.03
6+5 68.31 31.31 46.48 0

Table 4.5 Accuracy and correctness of triphone model trained with WIT.
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As indicated in Table 4.5, the correctness and accuracy of this model is much |

better than the accuracy and correctness of the triphone model trained with WET.

4.5.4 Tied-Model

The model discussed in the previous section suffers from low performance in

‘ fecdgrnizmg Keith’s Test-Data, compared with its relatively high performance in

_recognizing his Train-Data. This is because the previous model is not tailored suitably for

dat-a not provided in the training lisf. To solve this problem, we employ an algorithm

known as Tree-Based Clustering [Appendix C] to classify, and tie the triphone to reduce

the number of parameters, so the remaining parameters can be estimated more robustly.

The model created is called the tied-model, and the previous models are now known

collectively as the untied-models.

4.5.4.1 Training Tied-Model

The last model, the model ttained with WIT, provided the best acqufacy and
corréctncss compared with the 'other models. As a result, the_ néxtéxperﬂent will be built
on top Qf this Iﬁodel. In this experiment, the result of iteration 9 of Table 4.5 is converted
to the tied-triphone model‘ and Aretrained. The data and word-ngtwork are exactly the same

as described in section (4.5.1).

It is worth mentioning that the transcriptions provided for training the tied-
triphone model and triphone model are not different, and that only the parameters of the

HMMs are tied to create a compact model. The transcription provided for iraining the

6 indicates that this iteration begins from the 6% iteration of the referenced experience, section (4.4.1.3).



Chapter 4: Modeling & Training g .55
tied-triphone model is WIT. Table 4.6 shows the number of iterations used for retraining

and the correctness and accuracy of the recognition.

Number of re-training Correctness % Accuracy %
iterations with tied-triphone | Train Test Train Test

model - '

941 3169 | 2121 | -21.13 | -20.20
9+2 ‘ 50.70 4747 9.15 14.14
9+3 54.93 4747 18.31 14.14
9+4 55.63 | 4747 19.01 14.14
9+5 | 55.63 47.47 18.31 13.13

Table 4.6 Accuracy and correctness of tied-triphone model trained with WIT.

As indicated in the Table 4.6, the correétness and accuracy of recognizing the
Train—Data decreases, while the correctness and accuracy of recognizing the Test-Data
increases. For. a general rééognition system, such as .a dictation program, it is not possible
“to provide all tfaining data to cover all possible utterances of récognition, so it is clear

| that f§r such ‘a system, a tied-triphone model is a better choice compared with a triphone
model. However, .for systems that will be used fof recognizing limited utterances, the

- triphone mod_élvseems sﬁperior éompared to .the. tied-trii)hone model®. Another difference
between the tied-triphone models and triphone modeis is size. We will discuss this in the

next section.

' 4;6 _Comparisbn
Figure 4.3 compares the correctness and accﬁracy of the recognition of Keitﬁ’s
traiﬁ-déta with mono-phoneme models (with sp, wifhput sp, and a compound model).
| Figure 4.4 s_héws the sémc experiments with Keith’s test-data, the data that was not used

in training.

8 9 indicates that this iteration begins from the 9% jteration of the referenced experience, section (4.4.2.3).

9, These experiments are conducted with only 2705 utterances. In the case of greater availability of training data,
however, the conclusions may be different; this possibility has yet to be explored.
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Correctness of the monophone model for train data
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Figure 4.3 The correctness of the mono-phone model recognizing Train data.
Correctness of the monophone model for test data
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Figure 4.4 The correctness of the mono-phone model recognized Test data.

Both figures indicate that increasing the number of training iterations does not

improve the model parameters as may be expected; instead it reveals the fact that extra
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training may even decrease the correctness and accuracy of the models. Furthermore, both
figures indicate that there are no significant differences in correctness between the three
mono-phoneme models. The same result is achieved for accuracy in the three mono-phoneme

models, and there is no significant difference between them.

Correctness of the triphone model
80
70.42 %\ 6+3
70 A — —
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6 30 --» - with sp
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Figure 4.5. The correctness of triphone model in recognizing train and test

To achieve better accuracy, the mono-phoneme model is converted to a triphone
model and retrained from iteration 6 of the mono-phoneme models. Figure 4.5 shows the

correctness of the triphone models in recognizing the train and test data.

As indicated in Figure 4.5, the correctness of recognition is different between the
two models trained with WIT and WET. Furthermore, the correctness of recognizing both
train-data and test-data is significantly improved in the model trained with WIT. As
indicated in the figures, the model has achieved 70.42% correctness in recognizing train-
data, and 34.34% correctness in recognizing test-data, which shows an improvement

compared with precious models.
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Correctness of the tied-mode! based of "sp* as boundaries of the words
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Figure 4.6. The correctness of the tied-model in recogﬁjzing train and test data.

Figures 4.6 and 4.7a shows the corréctm:ss of the tied-triphone model. The model
is converted to a tied-triphone model from iteration 9 of the triphone model trained with
WIT (Table 4.5), then the system is retrained. Comparing Figures 4.5 and 4.6 indicates
that although fhe correctness of recognition of the train-data decreases from 70.42% in
the triphone model to 55% in the tied-triphone model (-15%), the correctness of
recognition of the test data increases from 34.34% in the triphone model to 47.5% in the

tied-triphone model (+13%).

The same differences can be seen when comparing the accuracy of the two
models. For example, Figure 4.7b compares the accuracy of the triphone mo-del and the
tied—tn'phone model for both. train and test data. As indicated in the bar-charts, the
accuracy in recognizing the train-data decreases from 52.11% in the triphone model to

19.01% in the.tied-triphone model, while the accuracy of reéogniziﬂg the test data

increases from 4.04% in the triphone model to 14.14% in the tied-triphone model.
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Comparing the Correctness of Tied and Untied Models
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Figure 4.7a Comparing the Correctness of the triphone model to the
tied-model.
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Figure 4.7b Comparing the accuracy of the triphone model to the tied-model.
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Size of the each model in Kb
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Figure 4.8 The size of the models in k bytes.

The size of the memory needed by each model is also different. Figure 4.8
compares the size of the models in Kbytes for each model. As indicated in Figure 4.8, the
size of the model trained with WET is about 218 Mb, while the size of models trained
with WIT and tied-triphone model are about 64Mb and 2.5 Mb respectively. As a result,
while the correctness and accuracy of the system increases for recognizing test data with

a tied-triphone model, the memory needed for the tied-triphone model decreases.
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Chapter 5

Adaptation:

The models developed so far are known as user-independent systems in that the
models are trained with the utterances of 439 different speakers from different regions of
the United States. To increase the correctness and accuracy of the system, the model
should be converted to a user-dependent system by adjusting the parameters of the model
to the voice of a specific user. There are two methods for adjusting the parameters of
HMM to a specific user, known as the direct method and the adaptation method. The
direct method involves training the model with just a single speaker’s speech, the speaker
with whom the system will be tested. Training the model, however, requires a lot of
training data that may not be available in most cases. For example, in this project I have
used 2705 different utterances to train the HMMs. As a result, I have adapted an

alternative method known as an adaptation method, discussed in section (3.10).

5.1 Triphone adaptation

The model discussed in section (4.5.3.2) is being adapted with Keith’s train data
from iteration 8 (refer to table 4.5). In this experiment I used a regression class tree with
32, 64, 96, and 128 nodes to classify the acoustic models [Appendix A]. Then the models

are adapted for a maximum of 4 iterations. The results of the correctness and accuracy of

recognition in each model, for both test and train data, are shown in Table 5.1.
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~ Adapted with 32 nodes
Iteration Correctness % Accuracy %
Train Test Train Test
1 81.69 43.43 70.42 10.1
2 80.99 41.41 68.31 5.05
-3 81.69 41.41 69.72 7.07
4 81.69 41.41 69.72 7.07
Adapted with 64 nodes
Iteration Correctness % Accuracy %
Train Test Train Test
1 81.69 43.43 7113 9.09
2 82.39 41.41 69.72 5.05
3 82.39 4.4 70.42 6.06
4 83.10 39.39 7113 4.04
Adapted with 96 nodes
Iteration Correctness % Accuracy %
Train . Test Train Test
1 81.69 43.43 7113 - 9.09
2 82.39 41.41 69.72 5.05
3 83.10 41.41 71.13 6.06
4 83.10  .39.39 7113 4.04
. ‘ Adapted with 128 nodes
iteration Correctness % Accuracy $
Train Test Train |Test
1 81.69 43.43 71.13 9.09
2 . 82.39 41.41 69.72 5.05
3 83.10 41.41 7113 6.06
4 83.10 39.39 7113 3.03

Table 5.1 The correctness and accuracy of the adapted data for the triphone model.

As indicated in the table, increasing in the number of adaptation iterations does

not necessarily increase the correctness and accuracy of the model; the model seems

-adapted after third iteration, and the accuracy and correctness of the model do not change.
Table 5.1 also indicates that there is no significant difference in recognition achieved by

selecting different nodes for the regression class tree. However, close inspection of Table

5.1 shows that the tree with 32 nodes shows slightly better results for the test data, while

the tree \yith more no_des has better output for train data. This is because more acoustic

‘information will result in better classification of the regression tree. Therefore, if we
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provide more training data to cover more test space, the tree with more nodes will
provide better acoustic classification. However, if the test space is too huge to be covered
by the training data, the tree with less nodes will provide better classification results. The
selection of the number of nodes for the regression class tree will depend on the

availability of training data.

Correctness of the model before adaptation and after adaptation
90

81.69
80 - a

70 69.01

60

50

43.43 OWithout Adaptation
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30

20

10

Train data ‘Test data

Figure 5.1 The correctness of the model before and after adaptation.

Figure 5.1 compares the correctness of the model before and after adaptation for
the model with a regression tree with 32 nodes. As indicated in the figure, the correctness
of the model increased from 69.01% to 81.89% in recognizing train-data, and from

34.34% to 43.43% for recognizing test-data.
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5.2 Tied-model adaptation
The same adaptation process is repeated for the tied-triphone model, and the
results are indicated in Table 5.2. The model is adapted from iteration 9+4 in section

4.5.4.1 (Training Tied-triphone model) table 4.6.

Adapted with 32 nodes
iteration Correctness % Accuracy %
Train - |Test Train Test
1 78.87 52.53 61.27 29.29
2 79.58 51.52 64.08 29.29
Adapted with 64 nodes _
Iteration Correctness % Accuracy %
- | Train Test Train Test
1 78.87 48.48 60.56 29.29
2 80.28 49.49 64.08 29.29
Adapted with 96 nodes
|Iteration Correctness % Accuracy 5
Train Test Train Test
1 78.87;. . 48.48 60.56 29.29
2 80.28 49.49 64.08 29.29
Adapted with 128 nodes
iteration Correctness % Accuracy %
Train Test Train Test
1 78.87|  48.48 60.56 29.29
2 80.28 49.49 64.08 29.29

Table 5.2 Correctness of the adapted tied-triphone model.

Figure 5.2 compares the correctness of the tied-triphone model before and after
adaptation. As indicated, the correctness of recognizing train-data is increased from

55.63% to 78.87% after adaptation, and the correctness of recognizing the test-data is

increased from 47.47% to 52.53% after applying adaptation.
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Correctness of the tied-model before adaptation and after adaptation
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Correctness %
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Figure 5.2 The correctness of the tied-triphone model before and after adaptation.

5.3 Retraining

I have selected the first iteration of the adapted model with 32 nodes of the
triphone model and tied-triphone model, and retrained them with Keith’s train-data. Then

the model is tested by recognizing Keith’s test and train data, as in previous experiments.

Table 5.3 shows the correctness and accuracy of recognition of the triphone model
retrained after adaptation. Table 5.3 indicates that the best result is achieved in the 4"
iteration. Comparing this result with the results achieved before retraining (Table 5.1)

indicates that although the correctness and accuracy for recognizing train-data is

Iteration Correctness % Accuracy %
Train Test Train Test
1 95.07 40.4 88.03 -2.02
2 96.48 42.42 88.73 1.01
3 96.48 42.42 89.44 5.05
4 96.48 42.42 90.14 5.05
5 96.48 42.42 90.14 3.03

Table 5.3 Correctness and accuracy of the triphone model (triphone) retrained after being

adapted.
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increased, the same parameters are decreased for recognizing test-data. Figure 5.3 compares

the correctness and accuracy of the model before and after retraining.

Comparing the correctness and accuracy of triphone model before and after retraining

O Adapted
& Adapted & Retrained

Correctness or Accuracy %

Correcness Accuracy
TestData -wu—p

Correcness Accuracy
<4—————_ Train Data >l

Figure 5.3 The correctness and accuracy of the untied-triphone model
before and after retraining.

Figure 5.3 shows that both the correctness and accuracy of the model in
recognizing the train-data increases with the model retrained after adaptation, while the

same parameters decrease for recognizing the test-data with the same model.

Table 5.4 shows the correctness and accuracy of the tied-triphone model, retrained

after being adapted, and Figure 5.4 compares the correctness and accuracy of the model

Iteration |Correctness % Accuracy %
Train Test Train Test
1 91.55 53.54 80.99 30.3
2 92.95 52.53 83.1 32.32
3 92.25 52,53 83.8 31.31
4 92.25 52.53 84.51 32.32
5 92.25 51.52 84.51 28.28

Table 5.4 Correctness and accuracy of the tied-triphone triphone model retrained after

adaptation.
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before and after retraining. As indicated in Figure 5.4, the model is improved for
recognizing training and test data after retraining. Although there is no significant

improvement for recognizing training data, the result is better than in the untied triphone

model.
Comparing the cofmectness and accuracy of tied-triphone model before and after retraining
100
92.25

90

80 -
°\° 70 -
>
Q
©
§ 60 -
< 50 O Adapted
2 M Adapted & Retrained
(724
£ w0l
2
8 301-

20 +-

10 A

0 Co Act C A y
n‘ecng_fasin Data Ccuracy < orrecn%gss‘ Data ccurac’
Figure 5.4 Accuracy and??correctness of the tied-triphone model before
and after retraining.
5.4 Comparison

The bar-charts in Figures 5.3 and 5.4 indicate that the models are improved when
retrained after adaptation, except for the recognition of test data in the untied-triphone
model. The reason may be an insufficient amount of retraining data and number of
triphone models in the untied-triphone modeAlA. If we had more of Keith’s training data
instead of only 97 utterances, then the values of the chart might be different from the ones

shown in Figure 5.3.
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- Another fact we may notice when comparing the two charts, is the superiority of
the tied-triphone modél compared with the triphone model. Both the correctness and
abcuracy in recognizing the test-data are better than with the untied-triphone model
(gang 10% to 25%). However, the correctness and accuracy of the model obtained for
recognizing train-data in thé tied-triphone model is slightly less than the correctness and
accuracy of recognizing the same data in the tﬁphone model (losing 3.5% to 5.5%), but

the memory needed for the tied-triphone model is only 2452/64896 = 3.8% of the

: ,mémory needed for the triphone model. Comparing the loss of a maximum of 3.5% to

5.5% in correctness and accuracy, with saving 96.2% of memory in the tied-triphone

. model, reveals the advantage of the tied-triphone model.
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Chapter 6

Diphone & Word Segmentation and Extraction for
Natural Speech Synthesis

In this section, I have used the speech recognizer developed in the previous
sections to create a program to demonstrate the functionality of the system. This program
has many capabilities, such as diphone and word segmenting and word spotting in a
multimedia file. The diphone and word segmenting programs can be employed to prepare
the sub-words needed by a natural speech synthesizer. A natural speech synthesizer can
recreate the speech of a person by concatenating words and sub-words, to create a talking
machine. A word-spotting program can be employed to search a multimedia file for an

utterance of a word.

This chapter begins by introducing the methods developed to segment the words
and sub-words and discuss the accuracy and correctness of the segmentation. It then
continues by demonstrating the speech synthesized with diphones segmented using
different methods, and discusses the accuracy of the synthesized speech. Next, a very
important functionality of the program for ﬁndihg an utterance in a media file is

demonstrated.

6.1 Diphone Segmentation

Diphones are sub-word elements mainly used in speech synthesizers. As

mentioned in the first chapter of this thesis, segmenting of diphones is a semi-manual
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process. This section of the thesis attempts to employ the speech recognizer developed in

the previous section to segment speech into diphones automatically.

To segment speech into diphones, I have developed two methods, an indirect
methbd and a direct method. In the indirect method, the diphones are segmented from the
middle node of a triphone to the middle node of the adjacent triphone. In the Vdirect

| method, the speech recognizer is modeled and trained by diphones instead of by
triphones, and thé speech recognizer recognizés diphones directly. In both methods, we

assume that both speech and the equivalent text are available for segmentation.

6_.2 Indirect Method

In this method, first the triphones are recognjzed; Then the program segments

— Equivalent Network s .
Text transformer Piggit;;mg
Speech Triphone Diphone .
Speech — > Recognizer »|  Extractor » Diphones

- Figure 6.1 Block diagram of Diphone segmentation.

triphones into diphoﬁes by segmenting the middle node of one triphone to the middle
node of its adjacent triphone. As shown in Figure 6.1, the speech and its equivalent text
are provided to the segmenting-Program. The program trﬁnsfonﬁs the text into equivalent
word-networks and provides the speech and the word-network to the recognizer. The
recognjzef recognizes the provided text uttered by the speaker; then the recognized

. triphones are passed fo the diphone extractor to be segmented into di‘phones., as described

in section 1.3.1. Finally, the output is stored in a database to be accessed by a speech

synthesizer program.
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The model uéed for recognition is the tied-triphone model without adaptation,
trained with WIT band sil at the beginning and ending of the transcription. The appearance
. of sil and sp inb the odtput are not mandatory; it depends on whether the recognizer finds
frames that stand for sp or sil. As a result, there are many possible oﬁtput transcriptions -
for the speech, evén though the equivalent text is provided for the module. The fotal
possible output for each utterance is equal to the permutations of sp and sil in the

transcription.

6.2.1 Evaluation

To evéluate the accuracy of tHe diphones segmented with this method, first the
- accuracy of segmén_ting the triphones is .stuc‘iied.‘For tiﬁs purpose, I simply provide the
utterance available in fhe TIMIT database to the program and compare the segmented
results with the segmentation provided by the TIMIT for the same utterance. However,
there is no method to evaluate the correctness and ﬁc;:uracy of the segmented phonemes.

To address this, I introduce two comparison methods.

Accuracy% = 2X A et x100
ATreference + ATrecogﬂized
., ATintersecticm ‘
ATrefere ice
| W //%% Refe}rence
< Recognized
recognized ‘

Figure 6.2 Calculating the accuracy of segmentation.
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6.2.2 Method |

The accuracy of segmentation is set to the ratio of the intersection of the

recognized segments and reference segments, TIMIT, as shown in Figure 6.2.

Correctness of Phoeneme Segmentation

7%

Number of Samples Compared = 1203

Correctness of Samples :

45%

B Above 80 %
50 - 80 %
1-50%

O zero %

Distribution of Samples

Figure 6.3 Distribution??and accuracy of segmented phoneme samples.

Figure 6.3 shows the results of the experiments that calculated the accuracy of the
phonemes segmented with this formula. As indicated in Figure 6.3, 45% of the phonemes
are segmented with an accuracy above 80%; 33% of the phonemes are segmented with an
accuracy of between 50% and 80%, and 15% of the phonemes are segmented with an
accuracy of less than 50%. The pie chart indicates that 7% of the phonemes are
segmented with zero accuracy, meaning there is no intersection between the segmented
and reference phonemes. The accuracy evaluated here is the result of the recognition
model without adaptation, so the result is expected to improve with a model adapted for

the speech of a specific user.
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6.2.3 Method Il
In the previous method, I have assumed that all parts of a phoneme are equally
signiﬁcant,.' but studies show that the middle node of a phoneme stands for its steady state

has a more important role in identifying a phoneme than the two transient nodes. As a

SIS

Figure 6.4 Mapping the model to Normal Distribution.

'result, the two transient nodes are less significant, when compared to the middle node.

Therefore, I have employed another method of evaluating the correctness of a segmented

phoneme, by modeling its duration with Normal Distribution.

- 6.2.3.1 Correctness

In this method, I modeled a phoneme duration with a Normal Gaussian
distribution, and compared the correctness of the segmented triphone with the boundary

of the same phoneme in the same utterance provided by TIMIT. In this method, I

Figure 6.5 An example of calculating the correctness of segmenting phonemes.
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cbnsidere(i the fact that the mid(ile node of a phoneme is its mest significant part, while
the two other nodes, which stand for the transition'paits of the phoneme, are its less

, signiﬁcant parts. Figure 6.4 shows the mapping method used. As indicated in Figure 6.4,
~ the center point of the curve is mapped to the middle of the phoneme and the standard

: deviation of the model is set to half the duration of the middle node. Figure 6.5 shows an

example of calculating the correctness of the segmentation using this model.

The top line in Figure 6.5 Shows the boundaries of the phonemes as provided by
TIMIT; and the bottom line shows the boundaries of the recognized phenemes. As
indicated in the figure, the segmented phoneme m begins from a and ends at d, and the

duration of the reference phoneme M begins at b, and ends at ¢, so that a<b,c<d.

Therefore, the correctness of segmenting phoneme m, compared with the reference M, is
100%. The correctness of the segmented phoneme Y in the same utterance is equal to the

shaded area of distribution Y. However, phoneme m is extended from its boundary,

cempared with the reference, and has overlapped with the two adjacent phonemes. The
error is calculated against the correctness of the adjacent phonemes, so the error is
considered only once in the calculation. Note that this calculation only shows the
correctness of the segmentation and it does not indicate the accuracy of the method. In

fact, this method cannot be used to evaluate the accuracy of the segmentation.

Figure 6.6 shows the results of this method. As indicated in the pie-chart, 69% of
the segmented phonemes are more than 80% correct. 11% of the samples are between 50

and 80% correct, 14% of the segmented phonemes are less than 50% correct, and finally,
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Correctness of Phoneme Segmentation Modeled
by Normal Distribution

6% Number of Samples = 1203

14% Correctness of Samples

B Above 80%
N50-80%
B1-50%
OZero %

69%

Distribution of Samples
Figure 6.6 Distribution and correctness of segmented samples.

6% of the segmented phonemes are completely outside of the reference boundaries, at

zero percent correct.

6.2.3.2 Accuracy

In evaluating correctness, I have discarded the effects of the intersection of the
segmented phoneme with its adjacent reference phonemes. For example, the phoneme m
shown in Figure 6.5 is segmented 100% correctly, even though it is extended beyond its
boundaries and overlaps with the X and ¥y phoneme boundaries. However, this is

considered an error in calculating the accuracy of the segmentation. The accuracy of the

segmentation is calculated as

Correctness
Correctness + Left _ Error + Right _error

Accuracy =

In this formula, correctness is calculated from the previous section and
Left_error is equal to the area between a and b

Right_Error is equal to the area between ¢ and d
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Accuracy of Phoneme Segmentation Modeled by Normal Distribution

9%

\ Accuracy of Samples
| Ml Above 80%
45% B 50-80%
1-50
X Zero

29%

Figure 6.7 Distribution and accuracyv of the segmented samples.

Figure 6.7 shows the result of calculating the accuracy with the above formula. As
indicated in the figure, 45% of the phonemes are segmented with an accuracy above 80%,
29% of the phonemes are segmented with an accuracy between 50 and 80%, 17% of the
phonemes are segmented with an accuracy below 17%, and finally, 9% of the samples are

segmented with an accuracy equal to zero.

Comparing Figures 6.7 and 6.3 reveals that the accuracy we have calculated with
the two methods are very close. However, the second method shows that 9% of the
samples are segmented with.zero accuracy, while this amount in the first method is equal
to only 7%. The reason for the difference (9-7= 2%) is the error inducted to the

calculation by modeling the reference models using a Normal Distribution function.

6.2.4 Diphone Segmentation

When evaluating the correctness of the diphone segmentation, I considered the

fact that a diphone should begin from somewhere inside a phoneme and end somewhere
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inside an adjacent phoneme. The result of comparing the beginning and end points of the
phonemes, with the reference phoneme provided by TIMIT, is indicated in Figure 6.8.
Figure 6.8 shows that 80% of the segmented diphones are confined to the defined
boundaries and only 20% of the segmented diphones have either their start or end, or both

start and end points, outside of the defined boundaries.

Correctness of Diphone Segmentation

Correct
Wrong

Figure 6.8 Correctness of diphones segmented using the Indirect-Method,
compared with the TIMIT phoneme segmentation.

It is important to note that the model used for segmentation is not an adapted
model, so if we adapt the model to a specific user and then segment the phonemes and

diphones, we will gain much better results than those shown in Figures 6.8 and 6.7.

6.3 Direct Method
In the previous method, it was implicitly assumed that the phonemes were
symmetrically balanced in their middle nodes, and that the frame times of rising and

falling phoneme tone in the middle node were equal. As a result, the diphones were
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»_segmented from theif middleé in the nﬁddle nodes.. However, this assumption was
incbrrect, because the rivsir.lg and fallirig time of a phoneme may not be equal. To addréss
thls problem, in.stead.of segmenting triphones first and extracting diphones from them, I
modeled and trained thé system with diphonés from the beginﬁing, forcing the recognizer

to directly recognize diphones.

In this method I have modeled and trained the system with diphones with sp as
“word boundaries and sil at the beginning and at the end of each utterance. For examplé,
the utterance “Her huxh became a gurgle of surprise”, selected from file
SI1837.lab, SI training list of TIMIT, is converted to the following phonetic equiValent:
sil-hh hh-er er-sp sp-hh hh-ah ah-m m-sp sp-b b-ih
‘ih-k k-ey ey-m m-sp _sp—ah ah-sp sp-g g-er er-g g-ah
ah-1 l1l-sp sp-ah ah-v v-sp sp-s s-er er-p p-r r-ay ay-
z z-sil ' :
The dictionary used for this section is also transformed to the diphone equivalent. For
example, the entries

A ah

ABBREVIATE ah b r iy v.iy ey t

ABILITY ahvb ih 1 ah t iy

from the CMU dictionafy change to

A _ sp-ah ah-sp
ABBREVIATE sp-ah ah-b b-r r-iy iy-v v-iy iy-ey ey-t t-sp
ABILITY : sp-ah ah-b b-ih ih-1 1-ah ah-t t-iy iy-sp

Here the speech recognizer provides diphone transcription of the speech directly

in the output as recognized speech, and the Diphone Extractor uses the information
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provided to extract the diphones from the media file. A comparison of the correctness of
segmented diphones using this method with the segmentation provided by the TIMIT
database is indicated in Figure 6.9. As indicated in the pie chart, the boundaries of only
59% of the segmented diphones are in the expected region, and either the start or end
points, or both, of 41% of the segmented diphones are beyond the boundaries of the

phonemes provided by TIMIT.

Distribution of Samples

Correct

Figure 6.9 Correctness of diphnes segmented with the Direct-Method
compared with TIMIT phoneme segmentation.

Comparing Figures 6.9 and 6.8 indicates that the correctness of segmenting the
diphones with the indirect method is about 80 —59 = 21% more than the correctness of
segmenting the diphones with the direct method. The difference is probably due to
insufficient training data. In fact, the training method for the triphone model begins with
calculating the parameters of only 41 distinct phonemes, and then the training extends to
the triphone model. The training for diphones, however, begins with calculating the same
parameters for about 1600 distinct models, and it clearly needs much more data to adjust

the parameters of all the models correctly.
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Although the indirect method provides better correctness as compared to the
correctness of the direct. method, the accuracy of segmented diphones in the indirect
' ‘method is questiouable. To have a sense of the accuracy of segmentation, I have
developed a speech synthesizer progtam to pronounce a text by concatenating the

segmented diphones, provided by both direct and indirect methods.

" 64 Speech Synthesizer

- Concatenatioh of the diphones does not provide high quality synthesized speech;

| irtstead, s'ynthesizers use different methods of coupling and filtering to create a smooth
voice [29] [30]. However, these details are beyond the scope of th'is.thesis.. For evaluution
of the accuracy of the segmentation, I simply join the diphones to synthesme the speech

It is obvious that the quality of the synthesized speech will be poor but the output
prov1des a sense of the accuracy of the diphones that are segmented accordmg to the

» above-mentioned methods. Curious readers may refer to ‘[3.1] for practical methods of

speech syuthesis.

- 6.4.1 Program Options

~ For synthesizing a text, the program converts the te).(t to its equivalent diphones
' W.ith st‘l at the beginning and ending of the text and st inserted in between the words; the
" same as WIT but for diphones. For example, the utterance “His head flopped back” is

converted to

sil- hh hh-ih ih- sp sp-hh hh-eh eh-d d-sp sp £ £-1 1—
aa aa-p p-t t-sp sp-b b- ae ae-k k-sil

The program then looks into the diphones database and copies the 'diphones’ binary file into a

- buffer and saves it as a WAVE format file.
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In this program, I have developgd two notations (M and D) for two different
versions of speech synthesis using diphones.
M This notation stands for synthesizing speéch from the diphones segmented with the
indirect method. It uses M database.
D This notation stands for synthesizing speech frém the diphones segmented with the

‘direct method. It uses D database.

- 6.4.2 Speech Output 1

Figure 6.10 shows the original wave form of “His head flopped back” that is
uttered by Kei;h. The Top picture of the Figure 6.-11 shows the synthesized wave form of
the same utterance from diphones segmented with the Indirect Method, and the bottom -
one shows the same utterance synthesized from the diphones segmented with the Direct

Method.

As indicated in both figures, the four words are marked with circles; arrows show
the corresponding words in each waveform. Furthermore, the two synthesized wave files
indicate that the diphones segmented with the direct method create a waveform closer to

the original wave file than the diphones segmented with the indirect method.
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Figure 6.1¢ Ori

Figure 6.11 Synthesized utterance “His head flopped back.” (Top) From diphones segmented with
Indirect Method. (Bottom) From diphones segmented with Direct Method.

6.4.3 Speech Output 2
This is the same experiment as the previous one, but the test speech, “this is not
really me, ” was not used either in training or in the segmentation process. As shown in

~Figure 6.12, the utterance “this is not really me” is synthesized with two methods.
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Comparing the two waveforms, except at the beginning and end of the
waveforms, the method shows a more natural appearance for method D than method M.

'Fufthermore, the speech created by method D has a more natural sound.

Figure 6.12 The utterance “this is not really me” synthesized with three methods.
(Top) version M, (Bottom) Version D.

6.4.4 Comparision

Both Figures 6.11 and 6.12 indicate that speech synthesized by diphones
segmented with the direct méthod has a more ﬁatural appearance and smoother tone than
speech synthesized by thé diphones segmented with the indirect method. However, my
experiment with lab-mates indicates that the quality of the speech provided by Model D

is limited to some words and in most cases, Model M shows a better quality of speech.

- The reason méy reside in the accuracy and correctness of the two models. In fact,
the indirect method provides more correct segmentation than the direct method, but the
direct method segments the diphones more accurately than the indirect method. Further,

~ if there were enough training data to set the parameters of the diphones in the direct
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Distribution of Samples

2% Number of Compared Samples = 1225

Correctness of Samples:

B Above 90%
75 - 90%

@ 50 - 75%

= 1-50%

O Zero %
54%

Figure 6.12 Distribution and accuracy of word segmentation.

method, the results might show the superiority of this method as compared with the
indirect method for segmenting diphones. This is a possibility worth exploring if enough

data were available to train the diphone model.

6.5 Word Segmentation

The same function shown in Figure 6.2 is employed to determine the accuracy of
the program to segment words. Figure 6.12 shows the distribution and accuracy of the
segmented words. As indicated in the figure, 54% of the words are segmented with an
accuracy above 90%, 26% of the samples are segmented with an accuracy above 75%,
and 18% of the words are segmented with an accuracy below 50%. However, 2% of the
words are segmented completely wrongly, compared to the segmentation provided by

TIMIT. These words are of very short duration, such as ‘a’, ‘at’, and similar words.

It is important to note that the TIMIT database, which is being used as a
reference, is segmented manually and is prone to human error. Furthermore, the model

used for all of the previous segmentations is not adapted. It is clear that the model, which
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| will eventually be used for this process, will be adapted to the speech of a specific user to

achieve better accuracy.

6.6 Word Spotting

Other potential uses for the speech recognizer developed in the previous chapters
are speech search applications. Because of the increasing use of multimedia to store and
file data, tools that search and index media files without involving humans will be in high
demand in the near future. The following simple application shows the functionality of
~ sucha system for searching and retrieving a word in an AVI file, without having the

equivaleht text of the media file.

The program shown in Figure 6.13 is a dialog designed to find the occurrence of
Words in AVI files. Tﬁe dialog accepts a text and uses the speech recognizer developed so
far to fmd,. load, and play the occurrence of a text in the media file. The program is
invoked by typing a word in the Query Edit box and pushing the Submit Query button.
Then, the program processes the media file to find the occurrence of the input text. If the
text is found, the part of speech containing the text appears in the Display box at the
Eottom of the dialog, and the queried text is highlighted. The AVI file containing that part
of speech is displayed in the File box, and the program is then ready to play the AVI file,
‘which utters the requested text. Otherwise, the phrase “Not found” will be displayed in
the Response box. The recognition process takes considerable time, so I have developed

an ODBS' to accelerate processing and decrease the response time of the program.

10 Open Database System
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The first time the program wants to search a media file, it separates the speech
section of the AVI file and passes it to the speech recognizer developed in the previous
section'". Then it indexes and stores the recognized text into the database. The next time
a user inputs a text, the program looks into the database and matches the input text with
the recognized speech. This process is much more efficient because the program has to

process each media file only once.

Query Edit box

Response box

File box

track a eleven resolved that the and at slavery sentiment at is becoming ripe for
resolute action track twelve all the your wishful thinking won't change that track
hirteen so he understood her and a track fourteen larvae are kept form so track
ourteen the larvae kept warm by the queen are full grown in about ten days pani¢ |
rack fifteen the single kick made it spring open shuddering

Display box

Figure 6.13 The dialog was asked to look for the occurrence of the word “wishful”.

Figure 6.13 shows an instance of the dialog. In this dialog, the program is asked to

find the word “wishful”, by typing the word in the Query Edit box and pushing the

Submit Query button. The program finds the word in the file OUT11-15.AVI and

B This program uses the adapted tied-model developed in the previous section.



Chapter 6: Diphone & Word Segmentation 87

highlights the word in the paragraph found by the speech recognizer. The program then

loads the AVI file and is ready to play the media file to utter “wishful”.

The recognized text is not completely correct. As indicated in the Display Box at
the bottom of the dialog, the recognized text begins with “track a eleven” while the
speech was “track eleven,” and the speech “all your wishful thinking” has been
recognized as “all the your wishful thinking.” It is clear that the accuracy of the
application for retrieving text is dependent upon the accuracy of the speech recognizer
developed in the previous section. Figure 6.14 shows another instance of the program that
is asked to look for occurrences of the word “family” in the media files. As indicated in
the figure, the program finds the word in the file OUT01-04.AVI, highlights the word

“family” in the Display box, and it is then ready to play and utter the word.

f Word Spotter

track again these blocks were set in resin saturated glass flopped and nailed trac|
© his head flopped back track three the shot reverberated in diminishing
iplashes of sound to track four have a test run on of fgfr\tly first to be sure
ming and seasoning are right the track shotthe back are in be be in three be of i
and one these to in a2 and on set setintestain

Figure 6.14 The dialog was asked to look for the occurrence of the
word “family”.
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Chapter 7
Conclusions
7.1 Summary

The primary contribution of this thesis is to develop methods and to extend
speech recognition technology to segment natural speech into words and diphones, so

that the segments can be recombined to synthesize speech based on user input.

In this thesis, I used the MFCC method to preprocess speech signals, and uses
HMM to model speech. However, there are a variety of methods for preparing speech

signals for recognition and different methods for speech modeling and recognition.

The language model used in this project is a parallel network with the same
probability for all words used, although, the possibility of uttering a word depends on the

context and logical flow of the speech in each sentence.

For segmenting speech into diphones, the speech recognition engine is provided
with both the speech to be recognized and its equivalent text. In this approach, the engine

is able to recognize and segment the speech more accurately.

I have introduced two methods to evaluate the correctness and accuracy of
phoneme segmentation. The discussion of correctness and accuracy of phoneme
segmentation is introduced in this thesis for the first time. In the first method, the
accuracy of segmentation is set to the ratio of the intersection of the recognized segments

and reference segments provided by TIMIT. In the second method, I modeled a phoneme




Chapter 7: Conclusion 89

duration with a Normal distribution, and compared the correctness of the segmented

_ phbneme with the boundaries of the same phoneme in the same u.tterance provided by
| TIMIT. The decision to set the standard deviation of the model to half of the duration of
~ the middle node of the acoustic model, was based on the fact that the middlé node of a
phoneme has a more important role in identifying a phoneme than the two transient
nodes.

I-ha\/e developed two methods to segment speech into dipﬁones. In the first
" method (Indirect method), I have employed a phoneme-based speech recognition engine
fb sc':gm‘ent} speech into phonemes, andb then adjacent phonemeé are ségmented into
diphones. In the second method (Direct method), I have developed a speegh recognition
éngine trained based on diphone recognition. In this method, input speech is segmented

into diphones directly.

By considering the fact that a diphone begins some whefe inside a phoneme and
vends somewhere inside the adjacent phoneme, I have compared the correctness of
diphone segmentation, segmented with the two methods. Experiments show that 80
percent of the diphones segmented with the first method have both their start and end
points located inside the defined boundaries, while only 59 percent of the diphones
segmented with the second rhethod have their both start and end points located inside the
3 expected regions. This indicates that the Indirect method segments the diphones more
corrgctly than the Direct method. The reason may be that the training process of the first
method begins with estimating parameters of only 41 phonemes, while the same training
~data is employed to estimate the parameters of about 1300 diphones. This means thai, on |

average, only 3.1 percent of the training data that is used to estimate the parameters of a
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phoneme in the first method is employed to estimate the parameters of the diphones in
the second method. In fact, the result may me different if the same amount of data per

model are used to estimate the parameters of models in both methods.

To evaluate the accuracy of segmentation, I concatenate the diphones to
synthesize speech with the diphones segmented with both methods. By exarnirﬁng the
wave form of the synthesized speech, I noticed that the speech synthesized with the

| diphones segmented with second method is'smoother thﬁn the speech synthesized with
the diphonés segmented with the first method. Furthermore, the speech created by second
Iﬁethod has a more natural sound. It seems that, although the correctness of segmentation
Qvith the Direct method is less than the correctness of the segmentation with Indirect
fnethod, fhe boundaries of the correctly segmented diphonés are more accurate in Direct

method than the boundaries of the diphones segmented with Indirect method.
7.2 Future work

The main challenges facing speech recognition engines are speed and accuracy.
Processing speed depends on the size of vocabulary being recognized and the speed of
the processor that the program is running. However, the accuracy of recognition is a

matter of software.

A dynamic word network is a good subject for further work. As recognition
moves forward, the system changes the word network and modifies its transition
probability to fit the contents recognized so far. Another possibility for improving

accuracy is to model phonemes with different states and transitions, as we did for sp and

sil in this project. This is a possibility worth exploring.
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| Diphone recognition engine is first introduced in this thesis, and each diphone is
modeled with three left-right Markov Chain. However, studying acoustic behavior of
each diphone and modeling each diphone with more accurate number of states and

transitions can be a topic of further projects.

Uscr—indépen_dent speech recognition will be a necessity in the future. As
indicated in the project, to achieve better recognition, the model should be adjusted and
tailored to the voice of a specific user. Howevér, this may not be practical for a speech
recognizer installed for public use; for example, a banking machine. As a _result, a main
| goal of sbeeéh récognition is the de\)elopr'nent.of a system tﬁat is able to recognize the
speech of different users with the same, high accuracy. One possible approach to such a
system would involve classifying different users into different groups, and loading
models that most appropriately reflect the speech of the user. The main difficulty of
developing such a system is classifying users and dynamically adapting the parameters of

models to achieve better accuracy.



92

Appendixes
Appendix A

Regression Class Tree

A common approach using a binary regression class tree is shown below.

-

Figure A.1 A binary regression tree

The leaves of the tree are termed the base regression classes, and each Gaussian
mixture component of a model set belongs to a single base class. For example, the class
in Figure A.1. has four base classes, C4, C5, C6, and C7. During adaptation, occupation
counts are accumulated for each of the base classes. The solid lines in the figure indicate
that there are sufficient data for adaptation, and the dotted lines show the insufficiency of
the data for the adaptation process. For example, neither nodes 6 nor 7 has sufficient data

for adaptation. However, when they pool at node 3, there is enough data. The amount of

data that determines sufficiency is definable.
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The regression class tree is built using a centroid splitting algorithm, which yields

clusters that lie in a similar portion of the acoustic space. The follbwing algorithm

provides a method to cluster and create a Regression Class Tree.

1.

Select a terminal node that is to be split.

Calculate the mean and variance from the mixture components clustered at

this node.

Create two children. Initialize their means to the parent mean perturbed in

opposite directions for each child by a fraction of the variance.

For each component at the parent node assign the component to one of the

children by using Euclidean distance, to which the mean is closer.

Once all the components have been assigned, calculate the new means for the

children.

This algorithm is repeated until the desired number of child nodes is found.
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Appendix B

EM Algorithm
EM determines the estimated parameters of a model such that

fM,,)zf(M,,) (B.1)

where M is the parameter of the model.
For implementing the EM algorithm, an auxiliary function is required. For speech

recoghition systems the function typically used is [32]

Q(Mold’Mnew)::Zq(O’SIMold)log{O’sanew) (B'2)

seS
where S contains all possible state sequences leading to the recognition of the O.

The equation (B.2) expands to

T T
oM ;.M,,,)= q9(0,s|M,, )(2 log(¢ransition _ prob.)+ Y logb, (o, )] (B.3)
t=1

seS§ t=1
Since we are interested only in the transformation matrix, we can ignore the first part of the

right hand side of the equation, and (B.3) reduces to

Q(Mold ’Mnew) = Z zq(O’ s I Mold ) lOg b.\', (01) (B4)

se§ t=1
After substituting (3.14) and (3.34) into (B.4), and the state occupancy count from (3.30),
differentiate the Q(M iz, M) With respect to W and the right hand side equal to zero, and

group the terms of W. We will then have the following12:

12 The details are too many to be referenced in this thesis; curious readers should refer to [20] [32] [33] [34] [35] for
details.
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iL(z)z“o(t)ff =2T:L(t)2"0(t)W§§T | o ®B.5)
t=1 =1

Here £ is the extended mean vector and X is the covariance matrix. If W is shared by R

states, then the general form expands to this:

T R

T R
DY LOLo0E =YY, LOT, oeWEE! ®.6)

t=1 r=1 t=1 r=1

Where L, (t), is the occupation likelihood, defined as described in (3.28)
L(@®=Pq,0|0,M) - ®B.7)
and ¢, (?) indicates the Gaussin component at time ¢, Or={0(1),...,0(T)} is the adaptaion

data. The equation (B.6) is rewritten, thus:

YN L, o) =Y, Y. V,WD, B.8)

t=l r=i t=1 r=1 )
Where

V.= ET:.L, oz, | B.9)

=1 :
and
L T
D,=Y¢¢ (B.10)

t=1
Let’s define Z: the right hand side of (B.8) to be a n X (n +1) matrix; then
T R . . ’ - ‘ .
Z=YY L@®OL o), | (B.11)
t=1 r=1
Also let the elemehts ofZ, V, W, and D, be z;, Vij, wj;, and djrespectively, then the formula

(B.11) céh be rewritten this way

n n+l R

o =3 3w Supay ®.12)

pt=1 g=1 r=1
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A Since D, is symmetrical, equatidn (B.12) can be rewritten, thus:

. n+l R
— ) g
z; —ZWME;VI.,. d (B.13)
9= r=
setting
) & (r) 3(r
8jq =Zl-.vii djq (B.14)
yields
n+l . »
Z; = 2} w,.qgﬁ.;’ ' (B.15)
po

where Z and G can be computed from the observation vectors and model parameters. So we
will have this:

W = (G(k))‘l z | (B.16)
where w; and z; are the i rows of W and Z respectively.

The use of a regression class tree to generate classes dynamically does not introduce a

problem into the above formulation; instead, if the parent node R has children {R1,..., Rc}

then
C
zZ=27, (B.18)
c=1 '
and
C
G=Y G, (B.18)
c=1

The same rules with some modifications apply to finding a variance transformation matrix.

X=B"HB | | (B.19)
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where H is the linear transformation to be estimated and B is the inverse of the Choleski

_factbr of 27!, so

l=cct (B.20)

‘and

B=C" (B.21)

By employing the same auxiliary function as defined in (B.4)

T _ .
OM i M,,,) =Y, >,4(0,5| M,,)logh, (0,) (B.22)
se§ t=1
After expanding logb; (o, ) and differentiating oM ,, |M,,,) with respect to H and
eqiiéting it to zero [32] we will have this:
3 L een -1 )ow-u)k,
H== (B.23)
L)

Example of the EM Algorithm

Assume that the following defines a single state in a recognition system using the two-

dimensional acoustic space with diagonal covariance

(2 E_'4 0
HZ a0 'lo 9

41] o _[002 -002
347002 002

Now let us assume that we have two frames of adaptation data, thus

4 42
“%350%7|33]

Recalling (B.16), we will solve the set of functions:
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w =(G") 'z

T R

7 = ZZ Lz o), &7

=1 r=1

where w,-';lﬁd % are. the z"f rows of Wand Z réspectively)

If we set offset equal to 1, then the extended mean vector will be
p=lt 2 3]

and 1f we assume L;(1) = 0.3, and L(2)=0.8 then

~Jo2s o0 T4 025 0 42
Z=03 b 2 3]+08 L 2 3]
- 0 0.111]35 0 0.111(33

Then

[1r14 228 342
~10.4096 0.8192 1.2288

For a diagonal covariance, we define the elements of G; , thus:

R .
84 = v dsy, ge (l,...,n+1)
r=1
' 3 » 025 0 ]  [025 0
V, =Y LML, =03 7 |+o8
= 0 0.111 | 0 o0.111
g 1 1 2 3]
D,=%¢¢& =21 2 3]=|2 4 6
- 3 36 9]

,_[o215 0
o 01221

At this point, we have what we need to solve G; :
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1.2 3

3 69

12 3

3609

1.855E-2
(G)'=|3.711E-2
5.566E -2

4.179E -2
(G, =|8.357E-2
1.254E -2

0.275 0.550 0.825
G,=02752 4 6|=/0.550 1.100 1.650
0.825 1.650 2475

| 0.122 0244 0.366
G,=11221{2 4 6|=[0.244 0488 0.733
0.366 0.733 1.099

3.711E-2
1421E -2
1.113E-1

8357TE-2
1.671E-1
2.507E -1

By substituting Ginto (B.16) we get this:

5.566E -2
1.113E-1
1.669E -1

1.254E -1
2.507E -1
3.761E -1 |

T _
w =

[1.855E -2
3.711E-2
| 5.566E —2

(4.179E -2

3.711E-2
7421E-2
1.113E-1

8357TE-2

5.566E —2]

1.113E -1
1.669E -1

1.254E —1]

[1.147 [0.2961
2.28 |=|0.5922
342 [0.8883

[0.40961 [0.2396

1.671E -1
2507E -1

w; =|8.357E-2

| 1.254E-2

2.507E -1 0.8192 |=| 0.4792
3.761E-1] 1.2288 | |0.7188

We can now co’nipute the adapted means:

10.2961 0.5922 0.8883
' 7102396 0.4792 0.7188

0.2961 0.5922 0.8883
M ="Vl51 =

1
5| _[4145
02396 04792 07188 | |3.355

~ As indicated, the mean has moved closer to the observed mean. A similar process is used to

calculate the adapted covariance matrix.
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Tree-Based Clustering

A Tree-Based clustering is a binary tree in which a yes/no phonetic question is
attached to each node [36], and according to the route a triphone traverses, it ends up in a

leaf node. Then all the nodes in the leaf node are considered phoneticglly similar and they

n-x+p
m-X+i

-Figure C1 Decision tree-bases state tying
can be grouped to share parameters For example, 'Fig_’llre C1 shows a case of tying the
in thie lower shaded tiode, bécause its right is “Stop” and its left is “Nasal”.
To ciedte a tree, the phonétic questions that categorize the phonétic context of a
triphone state must be deﬁnéd. The assumption behind the choice of phonetic questions is
that phonéfriés that belong to the same phonetic class have a similar influence on the

pronunciation of a phorieine. The sét of questions defined for this project is copied from
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the set of questions developed at Cambridge University. However, the questions are
modified to fit the phoneme set employed in this project (phoneme set used by CMU).

Refer to Appendix D for the list of questions used for this project.
‘Tied-state triphone

In this step, similar acoustic states of the triphones are tied to redece the number
of parameters and ensure that all state distributions can be robustly estimated. As a result,
triphone states whose emission probabilities are very similar are tied together. These tied
states share the parameters evaluated by all observations assigned to the set. The tied
-model is much smaller that the untied model, so it can vbe implemented more efficiently,

- compared with the untied one.

Initially, all the selected models are grouped into the root node AB. Then this
node is split using the phonetic question from the set of questions that yields the biggest

likelihood of improvement A(A, B) for the child nodes A and B [20]:

A(A, B) =|L(A)L(B) - L(AB)|

' ' 2 2
1 - 04,48 2 0448
~A(A,B)=| —(n, Y log| =% | +n, Y log —=
: 2 d=t o d=1

4,4 O4p

Where n_ is the number of observations for node x, D dimentionality of the

feature vector and o, , the variance of component d of node x.

This process is repeated until the increase in log likelihood falls below the

threshold specified for A(A, B). As a final stage, the decrease in log likelihood is
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calculated for merging terminal nodes with different parents. Any pair of nodes for which

this decrease is less than the threshold used to stop splitting are then merged.

In this project all the states of each triphone model are clustered as

(“X" , u'*_x_‘_*n , "X+*“. , n*_.xn) .State[i]

where X is a phoneme and i is the state of the model. This process is implemented for

each X € phoneme_set and i= [2 3 4] .

The HTK provides a tool, HHed, for clustering purposes. I have used the question

set in Appendix D With a threshold equal to 3'50.
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Question set employed for clustering

The Questions provided are copied from the set of questions developed at

University of Cambridge, but modified to fit the phoneme set we adapted in this project,

the CMU phoneme set.

R_Silence *+sil

R_Pause *+sp

R_Stop *+p, *+b, *+t, *+d, *+k, *+g

R_Nasal *+m, *+n, *+ng

R_Fricative *+s5, *+gh, *+z, *+zh, *+f, *+v, *+ch, *+jh, *+th, *+dh

R_Liquid *+1, *+r, *+w, *+y, *+hh

R_Vowel *+eh, *+ih, *+ao, *+aa, *+uw, *+ah, *+er, *+ay, *+oy, *+ey, *+iy
, *+ow

R_C-Front *+p, *+b, *+m, *+£, *+v, *+w

R_C-Central *+t,*+d, *+n, *+s, *+z, *+zh, *+sh, *+th, *+dh, *+1, *+r

R_C-Back *+gh, *+ch, *+jh, *+y, *+k, *+g, *+ng, *+hh

R_V-Front *+iy, *+ih, *+eh .

R_V-Central *+eh, *+aa, *+er, *+ao

R_V-Back *+uw, *+aa, *+uh

R_Front *+p, *+b, *+m, *+£f, *+v, *+w, *+iy, *+ih, *+eh

R_Central *+t,*+d, *+n, *+s, *+z, *+zh, *+sh, *+th, *+dh, *+1, *+r, *+eh, *
+aa, *+er, *+ao

R_Back *+gh, *+ch, *+jh, *+y, *+k, *+g, *+ng, *+hh, *+aa, *+uw, *+uh

R_Fortis *+p, *+t, *+k, *+£, *+th, *+s, *+sh, *+ch

R_Lenis *+bh, *+d, *+g, *+v, *+dh, *+z, *+zh, *+sh, *+jh

R_UnFortLenis

*+m, *+n, *+ng, *+hh, *+1, *+r, *+y, *+w

R_Coronal

*+t, *+d, *+n, *+th, *+dh, *+s, *+z, *+zh, *+sh, *+ch, *+jh, *+1,
*+r

R_NonCoronal

*+p, *+b, *+m, *+k, *+g, *+ng, *+£, *+v, *+hh, *+y, *+w

R_Anterior

*+p, *+b, *+m, *+t, *+d, *+n, *+£, *+v, *+th, *+dh, *+s, *+z, *+zh
Al K

R_NonAnterior

*+k, *+g, *+ng, *+sh, *+hh, *+ch, *+jh, *+r, *+y

R_Continuent

*+m, *+n, *+ng, *+f, *+v, *+th, *+dh, *+s, *+z, *+zh, *+sh, *+hh,
*+1,%+r, *+y, *+w

R_NonContinuent

*+p, *+b, *+t, *+d, *+k, *+g, *+ch *+jh

R_Strident

*+s5,*+2z,*+zh, *+sh, *+ch, *+jh

R_NonStrident

*+f,*+v, *+th, *+dh, *+hh

R_UnStrident

*+p, *+b, *+m, *+t, *+d, *+n, *+k, *+g, *+ng, *+1, *+r, *+y, *+w

R_Glide

*+hh,*+1,*+r,*+y,*+w

R_Syllabic

*+m, *+1, *+er

R_Unvoiced-Cons

*+p, *+t, *+k, *+s, *+sh, *+f, *+th, *+hh, *+ch

R_Voiced-Cons

*+jh,*+b,*+d,*+dh,*+g,*+y,*+l,*+m,*+n,*+ng,*+r,*+V,*+W
 *+z,*+zh

R_Unvoiced-aAll

*+p, *+t, *+k, *+s, *+sh, *+f, *+th, *+hh, *+ch, *+sil, *+sp

R_Long

*+iy, *+aa, *+ow, *+ao, *+uw, *+m, *+1
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R_Shért

*+eh, *+ey, *+aa, *+ih, *+ay, *+oy, *+ah, *+uh

R_Dipthong *t+ey, *+ay, *+oy, *+aa, *+er, *+m, *+1
R_Front-Start *iey, *+aa, *+er

R_Fronting *+ay, *+ey, *+oy

R_High *+ih, *+uw, *+aa, *+iy,

R_Medium *+oy, *+er, *+aa, *+eh, *+m, *+1
R_Low *+eh, *+ay, *+aa, *+aw, *+ao, *+oy
R_Rounded *+ao, *+uw, *+aa, *+oy, *+w

R_Unrounded

*t+eh, *+ih, *+aa, *+er, *+ay, *+ey, *+1iy, *+aw, *+ah, *+m, *+hh,
*+l, *4r, F4y

R_NonAffricate

*+g,*+sh, *+z, *+zh, *+f, *+v, *+th, *+dh

R_Affricate

*+.Ch, *+jh .

R_IVowel *+ih, *+iy

R_EVowel *+eh, *+ey

R_AVowel *+eh, *+aa, *+er, *+ay, *+aw
R_OVowel *+a0, *+0y, *+aa

R_Uvowel *taa, *+m, *+1, *+uw

R_Voiced-Stop

*+b, *+d, *+g .

R_Unvoiced-Stop

*+p, *+t, *+k

R_Front-Stop *+p, *+b
R_Central-Stop *+t, *+d
R_Back-Stop *+k, *+g

R_Voiced-Fric

*+z, *+2h, *+sh, *+dh, *+ch, *+v

R_Unvoiced-Fric

*+s,*+sh, *+th, *+f, *+ch

R_Front-Fric

K+f, x4y

R_Central-Fric

*+s5,*+z,*+zh, *+th, *+dh

R_Back-Fric:

*+sh, *+ch, *+jh

R_aa . *+aa
R_ae *t+ae
R_ah *+ah
R_ao *+a0
R_aw *+aw
R_ay *+ay
R_b *+b
R_ch *+ch
R_d *+d
R_dh *+dh
R_eh *+eh
R_er *+er
R_ey *t+ey
R_f *+f
R_. *+g
R_hh *+hh
R_ih "*+ih
R_iy - *+iy
R_jh *+3ih
R_k- *+k
R_1 *4]
R_m *4+m
R n *+n
R_ng *+ng
R_ow *+ow
R_oy *+0y -
R_p *+p
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R r . *+r

R_s *+g

R_sh *+sh

R t *+t

R_th *+th

R_uh *+uh

R_uw *+uw

R v *+v

R w *tw

R.vy * 4y

R_z *t+z

R_zh *+2zh
L_NonBoundary *_*
‘L_Silence sil-*
L_Pause sp-*

L_Stop p-*,b-*,t-*,4-*,k-*,g-*
L_Nasal -*,n-*,ng-*

L_Fricative

s-*,sh-*,z-*,zh-*, f-*,v-*,ch-*,jh-*,th-*,dh-*

L_Liquid 1-*,r-*,w-*,y-* hh-*

L_Vowel eh-*,ih-*, ao-*,aa-*,uw-*,ah-*,ax-*,er-*,ay-*,oy-*, ey-
*,iy-*,ow-*

L_C-Front p-*,b-* m-*, f-* v-* w-*

L_C-Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,1-* ,r-*

L_C-Back sh-*,ch-*,jh-*,y-* k-*,g-*,ng-*,hh-*

L_V-Front iy-*,ih-*,eh-*

L_V-Central eh-*,aa-*,er-*,ao-*

L_V-Back ' uw-*,aa-*,uh-*

L_Front p-*,b-* ,m-*,f-* yv-* w-*, iy-*, ih-*, 6 eh-*

L_Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,1-*,r-*, eh-
*, aa-*,er-*,ao-*

1, Back sh-*,ch-*, jh-*,y-* , k-*,g-*,ng-*, hh- *,aa—* uw-*,uh-*

L_Fortis p-*,t-*,k-*,f-*, th-*,s-*,sh-*,ch-*

L_Lenis b-*,d-*,g-*,v-*,dh-*,z-*,zh-*,sh-*, jh-*

L_UnFortLenis

m_*,n_*'ng_*'hh_*ll_*lr_*ly_*,w_*

L_Coronal

t-*,d-*,n-*, th-*,dh-*,s-*,z-*,zh-*,sh-*,ch-*,jh-*, 1-
*)r_*

I._NonCoronal

p-*,b-*,m-*,k-*,g-*,ng-*,f-*,v-*,hh-*,y-*,w=-*

L_Anterior

p-*,b-*,m-*,t-*,4-*,n-*, f-*,v-*,th-*,dh-*,s-*,z-*, zh-
*,1-%, w-t :
I ’

I._NonAnterior

k_*lg_*lng_*lSh_*lhh-*ICh-*ljh—*lr_*ly_*

L_Continuent

m-*,n-*,ng-*, £-*,v-*,th-*,dh-*,s-*,z-*, zh-*,sh-*,hh-
L lok, pok gk woF

L_NonContinuent

p_*lb_*lt"*ld—*lk-*lg-*ICh—*ljh_*

L_Strident

s-*,z-*,zh-*,sh-*,ch-*,jh-*

L_NonStrident

f-*,v-*,th-*,dh-*,hh-*

L_UnStrident

p_* -b- *Im_* t-* d *'n_* k * g_* ng_* 1- *,r_ Iy_* w-*

L_Glide

hh-*,1-*%, r-*,y-*%* w-*

I, Syllabic

m-*,1-*, er-*

I_Unvoiced-Cons

p-*,t-*,k-*,s-*,sh-* f *, th-*,hh-*,ch-*

L_Voiced-Cons

h * b * d_* dh *'g_* y_* 1 *,m_* n_* ng_* r_* V_* w-
*,z-%,zh-=*

p-*,t-*, k-*,s-*,sh-*, f-* th * hh-*,ch-*,sil-*,sp-*

L_Unvoiced-All
L_Long

iy-*,aa-*,ow-*,ao-*,uw-*,m-*,1-*

I,_Short

eh-*,ey-*,aa-*,ih-*,ay-*,oy-*,ah- *,uh *
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I,_Dipthong

ey-*,ay-*,0y-*,aa-*, er-*, m-*,61-*
I,_Front-Start ey-*,aa-*,er-*
I._Fronting ay-*,ey-*,oy-*
L_High ih-*,uw-*,aa-*,iy-*
I,_Medium ey-*,er-*,aa-*,eh-* m-*,1-*
L_Low eh-*,ay-*,aa-*,aw-*,ao-*,oy-*
L_Rounded ao-*,uw-*,aa-*,oy—-*,w-*

L. Unrounded

eh-*,ih-*,aa-*,er-*,ay-*,ey-*,iy-*,aw-*,ah~*, m-*, hh-
*11-*Ir—*ly-*

L_NonAffricate

s-*,sh-*,z-*,zh-*,f-*,v-*,th-*,dh-*

L_Affricate- ch-*,jh-*

L_IVowel ih-*,iy-*

L_EVowel eh-*,ey-*

L_AvVowel eh-*,aa-*,er-*,ay-*,aw-*
L_OVowel ao-*,oy-*,aa-*

‘L_UVowel - aa-*,m-*,1-*, uw-*

L_Voiced-Stop

b-*,d-*,g=*

L_Unvoiced-Stop

p¥*,t-*,k—*

I_Front-Stop p-*.b-*"
1L_Central-Stop t-*,d-*
L_Back-Stop k-*,g=*

L_Voiced-Fric

z-*,zh-*,sh-*,dh-*,ch-*,v-*

| L_Unvoiced-Fric

s-*,sh-*,th-*, f-*, ch-*

I,_Front-Fric

f-*,v-* '

I_Central-Fric

S—*,z-*,zh-*,th-*,dh-*

I._Back-Fric

sh-*,ch-*, jh-*

I._aa aa-* -
L_ae ae-*
L_ah ah-*
L_ao ao-*
L_aw aw-*
L_ay ay-*
L_b b-*
L_ch ch-*
L_d d-*.
L_dh dh-*
L_eh eh-*
L_er - er-*
L_ey ey-*
L_f - *
L g g-*
L_hh hh-*
L_ih ih-*
L_iy iy-*
L_jh jh-*
L_k k-*
L1 1-*
L_m m-%*
L n n-*
L_ng ng-*
L_ow ow-*
I_oy oy-*
L_p p-*
L_r r-*
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/7]
wul.
t
*

L_

L_sh sh-*
L_t - t-*
L_th th-*
L_uh uh-*
L_uw uw-*
L_v v-*
L_w w-*
Ly y-*
L_z ) ' Z-%
L_zh ' zh-*

. Table D1 The set of questions are used for clustering.
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