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A b s t r a c t 

Modern speech synthesizers use concatenated words and sub-word segments, 

such as diphones, to synthesize natural speech. Synthesizers available today can 

synthesize speech with only a limited selection of voices provided by the vendors. The 

voice segments (e.g. words & diphones) are often created using semi-manual processes 

that are prone to human error and make the segments non-uniform. 

The main goal of this thesis is developing an automatic method to segment and 

label a natural speech into words, diphones, and phonemes. To segment speech into 

words and sub-words, I use a speech recognition engine. The commercially available 

speech recognition engines do not provide all the necessary functionality to segment the 

speech into diphones accurately. As a result, I have developed an engine to segment 

speech. For developing the engine, I have employed H T K tools provided by Cambridge 

University, available for free. 
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C h a p t e r 1 

I n t r o d u c t i o n 

1.1 Motivation 

Modern speech synthesizers generate a synthesized speech by concatenating 

segments of natural speech. The segments of a speech can be phrases, words, or sub-

words that a speech synthesizer uses to create a speech. For concatenating words, a 

database that has an utterance for each word should be utilized. However, a database that 

keeps an utterance for every word in a language will be too big and too difficult to be 

implemented. As a result, synthesizers use sub-word segments in addition to common 

word segments to synthesize speech. 

Words are made up of phonemes, and there are a limited numbers of phonemes in 

each language. For example American English is made up of about 40 phonemes. As a 

result, instead of concatenating words, a synthesizer may use sub-words such as 

phonemes and diphones to create speech. Studies [1] have shown that speech synthesized 

by diphones, which are a sub-word division that begins from middle of a phoneme and 

ends in the middle of the adjacent phoneme, provides more natural speech. 

Segmenting and labeling diphones has, until now, been a manual and semi-

manual process that demands linguistic skills, and it is prone to human error. Besides, it 

is a difficult process. Consequently, the voices created by speech synthesizers are limited 

to a few that are provided by the vendors. To synthesize a variety of voices, a set of 
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speech automatically for any given voice can speed up and facilitate segmentation 

process. 

In my thesis research, I have developed an automatic method to segment and label 

natural speech into corresponding words and diphones. To segment speech into words 

and diphones accurately, a speech recognition engine with a specific Application 

Prograrnrning Interface is needed. However, the available commercial recognition 

engines do not provide such an interface. As a result, I have developed an engine to 

provide such functionalities. 

I have used two methods for diphone segmentation. In the first method, I have 

developed a speech recognition engine based on phoneme recognition, and I have used 

the engine to recognize phonemes. Then the adjacent phonemes are segmented into 

diphones. In this method, I have assumed that a diphone begins from middle of a 

phoneme and extends into the middle of the adjacent phoneme. However, this assumption 

dose not always yield appropriate results, because a diphone may start any where inside a 

phoneme and end any where inside the adjacent phoneme. 

To solve this problem, I have created a second method to segment natural speech 

into diphones directly. In this method, I have developed a diphone recognition engine by 

creating the acoustic model for each diphone and training the parameters of the model 

with diphone transcriptions of the training speech. Then the engine is employed to 

segment speech into diphones directly. 
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1.2 Implementation 

To segment the speech accurately, an accurate speech recognition engine is 

required. To develop an accurate speech recognizer, I have used H T K tools and followed 

a step-by-step procedure. In each step, the parameters of the model are evaluated and 

modified with different training cycles. Then the model that provides the most accurate 

recognition is selected and passed to the next section for further processing. 

First a mono-phoneme H M M for each phoneme is created, and the models are 

trained and tested. The model that provides the most accurate recognition is then passed 

to the next step. In that step, the mono-phoneme models are converted to triphone models 

to achieve more accurate modeling. They are then retrained and tested with different 

training cycles. Again, the model provided the most accurate recognition is passed to the 

next step of the process. In the final step, the parameters of the models are tied to create a 

compact model and are adapted with the voice of a person (Keith) as the test subject to 

achieve high accuracy. 

The engine is then employed to segment and label the diphones automatically. For 

segmenting diphones, I have followed two different approaches. In the first approach, I 

have developed a speech recognition engine based on phoneme recognition, and then I 

have employed the engine to segment the speech into words and phonemes. Then the 

adjacent phonemes are segmented into diphones. In the second approach, I have 

developed an engine to segment the speech into diphones directly. For this purpose, the 

acoustic models of the diphones are created and trained. Then the model is used to 

recognize and segment the speech into diphones directly. 
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In addition to the above engine, a program is developed to demonstrate other 

practical uses of the engine created in this project. This program uses the speech 

recognizer to search media files for occurrence of an utterance. The program is able to 

look for an utterance of a word or a phrase in a speech by listening to the media files. 

1.3 Outline of the Thesis 

Chapter 1 begins with introducing the main parts of a speech recognition system 

and the major problems of developing a speech recognition engine. Chapter 2 discusses 

the digital signal processing needed to prepare the speech signal for recognition. The 

acoustic model employed in this thesis is explained in Chapter 3, and the methods 

employed for training and recognition are discussed. 

The first part of implementation is explained in Chapter 4. This part consists of 

creating, modeling, and training the mono-phoneme models, and improving the models 

by converting them to triphone and tied models. The chapter ends by comparing the 

correctness and accuracy of the recognition achieved by different models. 

Chapter 5 explains the adaptation process employed in this thesis to adjust the 

parameters of the models to the voice of the test subject (Keith). Chapter 6 explains the 

methods used for segmentation and discusses the accuracy of each method. This chapter 

continues by discussing other practical uses of the engine such as searching for 

occurrences of an utterance in a media file. Chapter 7 concludes the thesis and discusses 

the future works. Some detailed information is discussed in Appendixes A through D. 

Finally, the references used in this project are listed at the end of the thesis. 
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1.4 Problem of Speech Recognition 

Automatic Speech Recognition is the process of mapping a speech signal to a 

sequence of discrete entities, for example, phonemes, words, and sentences. The major 

obstacle to accurate recognition is the large variability in speech signal characteristics. 

This variability in characteristics has three main components, Linguistic variability, 

Speaker variability, and Channel variability. Linguistic Variability includes the effects of 

phonetics and linguistic content of speech. Speaker Variability includes the effects of 

articulation, that is, the effects of neighboring sounds on the acoustic realization of a 

particular phoneme due to the continuity and motion constraints on the human 

articulatory apparatus [4]. Channel Variability includes the effects of background noise 

and the transmission channel, such as a microphone or telephone. A l l these variables 

impose layers of difficulty and uncertainty that must be addressed by the recognition 

process. 

1.4 Mathematical Model of Speech Recognition 

To discuss the process of speech recognition, we employ a mathematical model; 

then, an exact statement of the problem leads to decomposition of the problem into easier 

sub-problems. Our approach to designing a speech recognizer is statistical, so the 

mathematical model of our problem involves probabilities [5] [6]. 

Let A denote the data 

A = ava2,...,am at £ A (1.1) 

on the basis of which the speech recognizer will decide which words were spoken. The 

symbol a. is generated at time index I, and let 
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W = w., w. W(. £ CO (1.2) 

denote the string of n words, each belonging to a vocabulary co. 

If ¥(W\Jl)is the probability that the string W is spoken, given that the sequence of A is 

observed, then the corresponding mathematical formula is 

that the recognizer will pick the most likely string of words, given the observed acoustic data. 

Finding w in (1.3) is not feasible, because the permutation of possible words grows 

astronomically. For example, suppose our dictionary contains 4000 words, and w is the 

utterance of a sentence with only 3 words; then the formula (1.3) should be calculated for 

(4000)3 possible combinations. 

The well-known Bayes' formula [7] of probability theory allows us to rewrite the 

right hand side of (1.3) as (1.4): 

where P(W) is the probability of the word string W that will be uttered, and P(A|W) is the 

probability that the speaker says W and the evidence A is observed, and P(A) is the average 

probability that A will be observed. 

Since A is fixed, the recognition problem is limited to finding the word string W that 

a> = arg max P(W \ A) (1.3) 

P(W | A) = 
P(W)P(A\W) 

P(A) 
(1.4) 

<y = arg max P(W0P(A | WO (1.5) 

maximizes the product of P(W) P(A|W) 

1.5 Elements of a Speech Recognizer 
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Figure 1.1 is an overview of a speech recognition system. The main parts of the 

system are as follow. 

Acoustic Language 
Model Model 

Figure 1.1 An overview of a speech recognition system. 

1.5.1 Acoustic Processing 

First, it is necessary to process the input signal (e.g. wave sound) and transform it 

into the symbol a. that the recognizer deals with. The main requirement of speech 

recognition is the extraction of voice features, which may distinguish between different 

phonemes of a language. From a statistical point of view, this procedure is equivalent to 

finding sufficient statistical data to estimate phonemes. Furthermore, the process uses 

techniques to make the output data less sensitive to the speaker and the background noise. 

1.5.2 Acoustic Modeling 

Referring to formula (1.5), the recognizer needs to determine the value of P(A|W), 

the probability that the sequence A is observed, given that the word sequence W is 

uttered. Since the number of possible pairs for W and A are too large, it is not possible to 

create a simple lookup table. Thus, to compute the P(A|W), a statistical model is required. 

An acoustic model employed in speech recognition is the Hidden Markov Model (HMM). 

Acoustic 
Processing Recognizer -> W 



Chapter 1: Introduction 8 

Other models are also possible based on Neural Networks [3] [7] [8] and Dynamic Time 

Wrapping [2]. This project employs H M M , which is used most widely in modern speech 

recognition systems. 

1.5.3 Language Modeling 

The Formula (1.5) also requires P(W), the probability of string Wthat the speaker 

wishes to utter. The Bayes' formula allows us to decompose the P(W) as follows: 

P(W) = n P ( w l | w 1 , . . . , w M ) (1.6) 

Thus, the recognizer should determine the probability of P(wt \ w1w(._j) . It is logical to 

assume that the choice of Wi depends on the history of the previous words spoken. So (1.6) 

can be rewritten as 

/ W ) = n P ( w , |0(w p . . . ,w M ) ) (1.7) 
x=i 

The art of language modeling consists of determining the appropriate classification of and 

a method to estimate the probabilities of P(wi | < J > ( W j w M ) ) . 

There are many classifications in language modeling, such as Finite State 

Language^, Stochastic Models2, and Uniform Models. In this project we have chosen 

Uniform Model, so that every word is equiprobable and the probability of each word is 

where Vis the dimension of the vocabulary. 

A simplified artificial language that uses finite state network to model the allowed word seqences. 
Based on the joint probability of a word and its preceding words. 
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1.5.4 Recognition 

To find the transcription of W from the acoustic data A by Formula (1.5), the 

program must examine all possible word strings W. However, this is not possible, 

because the space of W is too huge to be calculated. To solve the problem, two more 

algorithms, Baum-Welch and Viterbi, will be introduced to make the search space 

feasible. 

1.6 Elements of Speech 

1.6.1 Phones and Phonemes 

Words are natural units for the modeling of a speech recognizer, particularly since 

there are many applications for which isolated words are an adequate form of input. 

However, using words as fundamental linguistic units is wasteful of training data, and 

ignores any commonality between sounds within different words [9]. Thus, sub-word 

units are always used in speech recognition systems with large vocabularies. 

Linguists have categorized the languages of the world into segments called 

phones, though not all linguists agree on the identity of these phones. Phones represent a 

base set of sounds that can be used to describe most languages. For instance, the word 

"spat" would be [s p ae t]. This indicates that the word is made up of an s, followed by an 

unaspirated p, a short vowel a, and an aspirated t. To determine if a consonant such as p 

or t is aspirated, one holds a hand in front of his or her mouth. If a breath of air is felt as 

the consonant in the word is uttered, then it is aspirated. For example compare "spat" 

versus "pat." In the latter case, because a larger amount of air is produced, the p is said to 

be aspirated, as opposed to the unaspirated p in "spat" [9]. The set of phones is designed 
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to cover all languages, and the inventory of them is quite large. As a result, every 

language uses only a subset of the phone set. The set of unique sounds that a language 

uses is called its phonemes. Two sounds are considered to be different phonemes if they 

make a distinction between two words; these words are called minimal pairs. 

There are two more sub-word segmentations defined in speech processing, 

diphones and triphones [10] [11]. Triphones are used in speech recognition systems while 

diphones are mainly used in speech synthesizers. Diphones are segments of speech that 

include the transition from a relatively stationary region of one phoneme to a similar 

region in an adjacent phoneme. Thus, diphones begin and end roughly in the middle of 

phonemes and span the transition between adjacent phonemes. For example, the word 

"spat" is made up of a set of three diphones [ s-p p-ae ae-t]. As a result, there will be V 2 

number of diphones in a language; however, all the diphones may not be included in a 

language. Furthermore, some combinations are used so rarely that they can be ignored. 

A triphone is a set of phones defined by the preceding and following phonemes. 

For example, the word "spat" is segmented into two triphones and two diphones [s+p s-

p+ae p-ae+t ae-t]. Thus, there will be V 3 number of triphones in a language[10]. 

1.6.2 Phonetic and Phonemic Alphabets 

Linguists have found that the alphabets of English and other languages are not 

optimal choices for linguistic description. For example, consider the two words "thing" 

and "that". In these words, the sounds made by the letters 'th' are different from each 

other. A way must be found to distinguish between them. The system that phoneticians 

have devised for this purpose is called the International Pronunciation Alphabet (IPA). 
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This alphabet has a base on 75 consonants and 25 vowels. In 1980, a speech database 

called TIMIT was created and manually labeled for English. The TIMIT phone set is 

smaller than IPA. This database is being used to train and test for speech analysis in 

English. 

In this thesis, I have used the C M U 3 dictionary and phoneme set. The stress marks 

are removed from the dictionary, because they are not suitable for speech recognition 

purposes [12]. Table 2.1 shows the C M U phoneme set. The two phonemes sil and sp that 

stand for silence and short-pause are added to the end of the table, sil marks the 

beginning and end of a sentence that usually begins and ends with a silence, and sp marks 

the boundaries of words in an utterance, which usually separates words in speech. 

Phoneme Example Transla t i o n 
AA Odd AA D 
AE at AE T 
AH hut HH AH T 
AO ought AO T 
AW cow K AW 
AY hide HH AY D 
B be B IY 
CH cheese CH IY Z 
D dee D IY 
DH thee DH IY 
EH ed EH D 
ER hurt HH ER T 
EY ate EY T 
F fee F IY 
G green G R IY N 
HH he HH IY 
IH i t IH T 
IY eat IY T 
JH gee JH IY 
K key K IY 
L lee L IY 
M me M IY 
N knee N IY 
NG ping P IH NG 
OW oat OW T 
OY toy T OY 

Carnegie Mellon University, 
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p pee P IY 
R read R IY D 
S sea S IY 
SH she SH IY 
T tea T IY 
TH theta TH EY T AH 
UH hood HH UH D 
UW two T UW 
V vee V IY 
W we W IY 
Y y i e l d Y IV L D 
Z zee Z IY 
ZH seizure S IY ZH ER 
Sp Short Pause 
Sil Silence 
Table 1.1 The C M U phoneme set used in the thesis. 
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C h a p t e r 2 

A c o u s t i c P r o c e s s i n g 

Despite differences in speaker and environment characteristics, the aim of signal 

processing in speech recognition is to find a relatively stable representation for different 

examples of the same speech sound. To prepare a signal for speech analysis, the signal is 

transformed by mathematical models such as FFT, LPC [13] [14] and M F C C (Mel 

Frequency Cepstral Coefficients) [15]. Although many different models have been used 

for speech recognition over the past few decades, more recently the majority of systems 

have converged to use MFCC. For this thesis, I have used M F C C , which has been 

employed by almost all of the recent speech recognition engines. Figure 2.1 shows the 

overall acoustic processing of input audio to be transformed to M F C C . 

2.1 Sampling 

Digital speech processing is usually performed by frequency sampling, ranging 

from 8000 samples/sec to 32000 samples/sec. Speech sampled at 16Khz contains all 

necessary information needed for speech recognition [16] [17]. 

A sampler and an A/D converter are usually included inside a computer audio 

card. The signal is sampled in a window and pre-emphasized. Narrow windows have 

been proposed to estimate the rapidly varying parameters of the vocal tract, while large 

windows are used to estimate the fundamental frequency. A 20-30 ms long window is 

generally a good compromise. In our implementation the audio signal is sampled at every 
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Speech Signal 

i 
Windowing 

Pre-emphasis 

+ 
F F T 

I 
Mel Filter Bank 

log(| I2) 

DCT 

MFCC MFCC MFCC 
Derivatives 

MFCC 

1 1 
Output Vector 

Figure 2.1 Overall picture of Acoustic Processing. 

10 ms over a window of 25 ms. then its DC mean is removed and passed to the next 

module to be pre-emphasized. 

2.2 Pre-emphasize 

High frequency formants have smaller amplitude than low frequency formants. 

Pre-emphasis is therefore required to obtain similar amplitude for all formants. Such 
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processing is usually obtained by filtering the speech signal with a first order H R filter, 

whose transfer function in the z-domain is 

H(z) = \-a.z'x 0<a<\ (2.1) 

a is the emphasis parameter [18]. In the time domain, the pre-emphasized signal is related to 

the input signal by this relation: 

x\n) = x(n) - ax(n -1) 

A typical value for ais 0.95. 

2.3 Hamming Window 

The simplest window has a rectangular shape. This window is implicitly used 

when a sequence of N samples is retrieved from a signal: 

fl 0<n<N-l) 
w(n)= \ 

[0 otherwise J 

The presence of a window provokes a distortion on the estimated spectrum, since 

the windowed signal is the convolution of the spectrum of the signal x'(n), and of the 

Fourier transform of a rectangular window w(n). The spectrum of w(n), W(eJto)is 

composed of a higher energy main lobe, centered at zero frequency, and lower energy 

side lobes centered at higher frequencies. The main lobe spreads out in a wider frequency 

range than the narrow band power of the signal x'(n) represented by the formant, so the 

side lobes of the spectrum of the window swap energy from different and distant 

frequencies of x'(n). This problem is called leakage. 
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To reduce leakage, x(n) is multiplied by a properly shaped window, w(n). In this 

thesis, I have employed the Hamming Window [17], which has an impulse response as 

follows: 

win) = 
0.54 - 0.46 cos(—^-) n = 0 , . . . ,W- l 

N-l 
0 otherwise 

The side lobes of this window are much lower than those of the rectangular 

window, and the leakage effect is decreased. The resolution of the Hamming window is 

less than the resolution of the rectangular window, because the main lobes of the 

Hamming window are wider than the main lobes of the rectangular window [19]. A 

Hamming window is a good choice for speech recognition, because a high resolution is 

not required. As indicated in Figure 2.1 the next block is FFT, and it integrates all the 

closest frequency lines. 

2.4 Fast Furrier Transformation (FFT) 

The standard methods for spectral analysis rely on the Fourier transformation of 

x(n). The Discrete Fourier Transform (DFT) of all frames of the signal is obtained by the 

following: 

X,ik) = Xt(e /n) k = 0,...,N-l 

If the number of samples, N , is a power of 2, N=2P with p as an integer, then the 

computational complexity can be reduced to an order of nZog(n), resorting to the Fast 

Fourier Transform algorithm (FFT) [18]. Note that the phase information of the DFT 

samples of each frame is discarded. This is consistent with the fact that the phase does not 

carry useful information. Experiments have proven that the perception of a signal 
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reconstructed with random phases is almost indistinguishable from the original, if the 

phase continuity between successive frames is preserved [17]. 

2.5 Filter Bank 

Human ears resolve non-linearly across the audio spectrum, and empirical 

evidence suggests that designing a front-end to operate in a similar non-linear manner 

improves recognition performance [20]. A straightforward route to obtaining the desired 

non-linear frequency resolution requires a filter bank. 

Figure 2.2 Mel Filter Bank. 

Figure 2.2 illustrates the general form of a Mel-Filter bank. The filters are 

triangular and spaced equally along the mel-scale by the following: 

Mel(f) = 25951og 1 0(l+-^-) 
1 0 700 

To implement this filter bank, the speech data is transformed using Fourier 

transformation, the magnitude coefficients are then multiplied by corresponding filter 
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gain, and the results are accumulated. In our project, I have used 22 filters equally spaced 

along the mel-scale [19]. 

2.6 Log Energy Computation 

The previous procedure has the role of smoothing the spectrum performing 

processing, which is similar to that executed by the human ear. The next step is to 

compute the logarithm of the square magnitude of the signal obtained from the filter 

bank. Relevant benefits of this procedure are noted that the magnitude and logarithmic 

processing are performed by the ear as well. Furthermore, squaring the magnitude 

discards useless phase information, and calculating the logarithm of the result is a method 

of dynamic compression that makes feature extraction less sensitive to the variations of 

speech. 

2.7 Discrete Cosine Transform 

The final procedure for the Mel frequency cepstrum computation (MFCC) 

consists of performing a Discrete Cosine Transformation, DCT [17]. The DCT has the 

property of producing highly un-correlated features [18]. The zero order M F C C 

coefficient is approximately equivalent to the energy of the frame [21]. The DCT also has 

the effect of smoothing the spectrum, but only if the first coefficients are retained. The 

number of M F C C coefficients is generally lower than 15 in speech recognition. Typical 

values are from 9 to 15 coefficients. In Figure 2.3 and Figure 2.4 some partial results of 

MFFC computation are displayed. 

A further improvement in recognition is obtained by considering that the 

Cepestral parameters do not take into account the dynamic evolution of the speech signal. 
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As the result, the first and second order differences of the M F C C may be used to capture 

such information. Hence, given vector U the in the time domain, the i-th order time 

differences can be computed as [11] : 

A' {« , } = A'"1 [uM} - A M {uM}, A 0 {« , } = u, 

Part of phonem "hh" after Pre-emphasing 

The same signal after applying Hamming Window 

Figure 2.3 Part of the signal of phoneme "hh" 

FFT of the same sample (hh) 

0 5 10 15 20 25 30 

Figure 2.4 (Up) FFT of the signal at Figure2.3, (Down) The first 
12 MFCC samples of the same signal are followed by its 
differences. 
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In this project the output vector for each frame, 25 ms, is composed of 13 first 

coefficients known as static parameters of MFCC, followed by first and second order 

differences, known as delta and acceleration coefficients respectively. So each frame is 

transferred to a vector of 39 elements of data. 
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C h a p t e r 3 

A c o u s t i c M o d e l 

The Acoustic Model used in almost all advanced speech recognition systems is 

based on the Markov Chain. A Markov Chain consists of a number of states with 

transitions among them. A probability is associated with each transition and a symbol is 

Figure 3.1 A three-state Markov chain. 

associated with each state. Figure 3.1 shows a three-state Markov chain with transition 

probability a., between states imdj. The symbols A, B, and C are associated with states 1, 

2, and 3 respectively. If a transition occurs from 1 to 2, symbol B will be produced as an 

output, or a transition from 3 to 1 will produce symbol C. Note that in a Markov Chain 

the transition between states are probabilistic, while the production of the output symbols 
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are deterministic. For example, the transitions (1 2 2 3 2 1) will produce symbols B B C B A 

as output [22]. 

3.1 Hidden Markov Model 

A Hidden Markov Model (HMM) is the same as a Markov Chain, with one 

difference. In H M M , the output symbols are probabilistic too. Thus, instead of 

associating a symbol with each state, all symbols can be produced within all states with a 

different probability, and a probability distribution of all the output symbols is associated 

with each state. The probability associated with each state is known as the output 

probability. 

Figure 3.2 shows a three state H M M . It has the same transition probabilities as the 

Markov Chain defined in Figure 3.1, but a probability distribution is associated with 

output symbols [ A B C D E ] . Now, when a transition occurs from one state to another 

A B C D E 

A B C D E 

Figure 3.2 A three-state Hidden Markov Model. 



Chapter 3: Modeling 23 

state, an output symbol is generated according to the probability distribution of the 

corresponding state. Given a sequence of symbols generated by the H M M of Figure 3.2, 

it is not possible to know for certain what state sequences have generated the observed 

output. For example, if the output symbols are " A B B E C," there is no way to know for 

certain which sequences have produced them. In fact, every sequence of states with the 

same length of output symbols is a possible sequence with a different probability. It is 

said that the sequences of the symbols are hidden from the observer if the output symbols 

are the only things an observer sees. This is why this model is called a Hidden Markov 

Model [22]. 

Instead of having a discrete number of output symbols, a probability density 

function may be defined over all possible values of the output vectors. 

3.2 Model of Phonemes 

Figure 3.3 shows an example of a three state H M M for a single phoneme. This 

model has only three states with two null states, one in the start and one at the end of the 

model. The null states are only used as moderators to connect H M M models to each 

other, and they have no active role. The H M M is not limited to three states as shown in 

our example; it can be any size, and its use is not limited to speech applications. For 

instance, image recognition [23] [24], control systems [25], segmentation of D N A 

sequences, and gene recognition [26], are among the interesting topics conducted recently 

using H M M . 
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O , o 2 o 3 

Figure 3.3 Basic structure of a phonetic H M M . 

Now, let us examine how H M M works. We start with state 0. The first frame is 

read from the input and a transition is made from state 0 to state 1. The O i , mfcc of the 

frame is computed. Then P(Oi), the probability of the observation Oi from states 1, is 

calculated. Then the next frame is read from the input, and if we assume that a transition 

is made from state 1 to state 2, the previous probability is multiplied by the transition 

probability from state 1 to state 2, that is P(Oi) * P(Ti 2). Then, the mfcc of the frame is 

computed and the probability of the observed O2, P(C»2), from state 2 is calculated and 

multiplied with the previous product, P(Oi) * P(Ti2) *P(C>2). The process is continued 

until the model is exited through T30. At this point we can assume that the phoneme 

modeled by the given H M M is pronounced. Multiplying the sequence of output and 

transition probabilities gives the total probability that the input spectral sequences were 

generated by the H M M , using a specific sequence of states. For every sequence of states, 

a different probability value results. For recognition, the probability computation just 

described is calculated for all possible phoneme models and all possible state sequences. 

The sequence that provides the highest probability value is assumed to be the recognized 

sequence of states and phonemes. However, this approach is not totally realistic because 

T 
of the very large number of sequences involved. In general, there will be (N) sequences, 
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where N is the number of states in the model and T is the number of frames in the 

observed sequence. For example, if there are n states in the model, then the number of 

1 on 

probable sequences for speech that lasts only one second will be equal to N with the 

parameters we have used in this project. To overcome this obstacle, we will introduce 

two common algorithms, Baum-Welch and Viterbi algorithms, and an alternative 

approach to deal with this problem. 

The H M M shown in Figure 3.3 is known as the first order left-to-right Hidden 

Markov Model. Mathematically, if 1, 2,..., N is the number of the frames observed and 

oi, 02,..., o n are the observed outputs, then [27], 

P(ot = j | = i, o,_2 = *,...) = P(o, = j | ot_x = i) (3.1) 

That means the output at time j depends only on the value at the preceding time and on 

nothing that went on before. Also, 

P(o, = j | = i) = P(ot+l = j | o l + M = i) - (3.2) 

indicates that the Markov Chain is time invariant. 

This model is adopted for speech modeling because in speech, time flows in a 

forward direction. The first node at the left-side of the phoneme stands for the beginning 

of a phoneme, the middle is where the phoneme reaches a steady state, and the third is 

the last transition of the phoneme/Transitions from any state back to itself serve to model 

the variability of the speech, since different utterances made by different people, or by the 

same person in different contexts, have different duration. 
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3.3 Speech Recognition Using HMM 

Mathematically speaking, each H M M model Mi , i=l,2,...m, is defined by a 

parameter set M=[A, B , 7t] where 

71 = {7tj} is a column vector denoting the initial state-the probability of the 

model of starting at state i. 

A={ flij} is a square matrix indicating the probability of transition from state i 

at time t to state j at time t+1. 

B={ bjk} is a column vector indicating the probability of the model emitting 

output Ok at state j. 

The likelihood of each model Mi having produced the observation O t is obtained by 

computing Pi{Ot|Mj}; that is the probability of observing sequence O t given model Mi. Then 

the recognized phoneme is given by 

:p = ArgMax[Pl{0,\Min (3.3) 

i=l,2 m 
where ArgMax denotes the value of the argument that maximizes the expression. 

The obvious way to calculate P is to consider all possible state sequences and then 

select the sequence that produces the maximum probability. As discussed above, this 

approach is not feasible, if there are N states and P frames then the total number of the 

p 

possible states will be N . Fortunately, there are two recursive algorithms to reduce 

computation to a tractable amount. 
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3.4 Baum-Welch Algorithm 

The Baum-Welch algorithm is based on calculating Forward Probability. 

Forward probability, at(j), is the probability of observing the partial sequence (oi, 

02,... ,ot) and being in state j at time t. 

= P(,ox,o2,...,ot,qt = j) (3.4) 

Thus, the total probability of observing O, P{0|M} can be obtained by summing 

aT (j) across all N states. When P{0|M} is calculated in this way, it is called the Baun-

Welch probability. 

^ = | > r O " ) ( 3 - 5 ) 

To calculate PBW, suppose that {aT(j),]=\, 2,...N} has been calculated at some 

time instance t. Then the probability of observing sequence (01, 02,.. .,ot) and being at 

state i at time t and transferring to state j at time t+1 is equal to at (i).atj. Thus, the 

probability of being at state j at time t+1 and observing sequence (01, o2,...,o t) may be 

obtained by summing a, (i).atj over all states, and the equation 3.5 changes to 

^ w = I > , 0 K (3.6) 
1=1 

Consider that the observation o t + i is produced by state j at time t+1, so we have 

«. + lO') = |E f l f r ( , 'K | i »y (o , + , ) , t = l2,...,T-l (3.7) 

where bj (o ( + 1) is the probability of producing o t + i from state j . The recursion in 

(3.6) is initialized by computing the a, (j) in (3.7); 
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ccl(j) = K{J}bj(ol) (3.8) 

is the probability of observing the fisrt output and being in state j at t=l. 

3.5 Viterbi Algorithm 

In computing PBW in recursion 3.5, the forward probabilities of all states are 

accumulated at time t. In the Viterbi Algorithm, Pv, only the likelihood of the most likely 

state sequence emitting the observation O is calculated. 

<f>l+lU)=M^l(0aiji.bj(ol+l), t = \X..J-l (3.9) 

hU) = *{J}bJ{oiy (3.10) 

This equation is identical to (3.7), except that the summation is replaced by the 

Max operator and the algorithm is initialized using (3.10), where a is replaced by $. 

Thus, the probability of observing sequence O is given by 

Pv =Max{<t>T(j)} (3.H) 
j=l,2 N 

In practice, all the probabilities are on a logarithm base. Having the probability in 

log base reduces the multiplication to addition, which is faster and prevents the results 

from falling too low, causing an under flow problem. Multiplying numbers smaller than 1 

will result in even smaller numbers. Thus (3.9) becomes 

. ^ O ' ) = ^ % k ( 0 + log(fl f f)j+log(^(o,+1)), t=\,2,...,T-\ (3.12) 
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3.6 Token Passing Method 

The token passing method is based on the Viterbi algorithm. A token represents a 

partial path through the network, extended from time zero to time t [ 2 0 ] . At time zero, a 

token is placed in every possible start node. Then for each frame, tokens are moved to the 

next node along connected transitions. When there are multiple exits from a node, the 

token is copied to explore all possible paths. As the token passes through the transitions 

and nodes, its log probability increases according to the corresponding transition and 

emission probabilities. An H M M can have at most N tokens. Hence, at the end of each 

time step, all but N best tokens in each H M M are discarded. Each token has a history that 

records its path as it propagates through the nodes. The token that has the highest 

probability will be declared the winner, and its path will become a recognized route. 

To reduce the number of tokens and hence speed up processing, only the tokens 

that have a chance of being among the winners are propagated, and others are deleted 

from memory, known as pruning. Pruning is implemented at each time step by removing 

all tokens whose probabilities fall below a beam-width4 [ 2 0 ] . Setting the beam-width is 

crucial; if it is too small, then the most likely path might be pruned before its token 

reaches the end of the utterance. If it is too large, the processing time will be long. 

The extension to continuous speech recognition simply involves connecting 

models of phonemes together in a sequence. The reason for including the null nodes at 

the entry and exit states should now be evident; these nodes provide the glue needed to 

join the models together. 

The Beam-width is the distance of the log probability of the nodes from the node that has the highest probability. 
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3.7 Training of HMM 

Now we have reached the practically difficult problem; how to estimate the H M M 

parameters in the first place. Before discussing the parameter estimation in detail, let us 

clarify the output distribution probability, P(b} (o,)). The following formula is used to 

calculate the output probability. 

bj(ol) = N(o,juj,Xj) (3-13) 

Where N(o, / / ,£) is a multivariate Gaussian with mean vector Uj and covariance matrix Ej 

[20], and n is the dimension of the output vector, O. 

N(o,Mj,2j)= i e> 1 ' (3.14) 
V ( W | £ y l 

3.8 Baum-Welch or Forward-Backward Estimation 

If there were only one state j , then the H M M parameter estimation would be a 

simple average (3.15). 

=̂4x°. (3-i5) 

i t=i 

In practice, there are multiple states and no direct assignment of observation 

vectors to the individual states. However, equations 3.15 are used to make an initial 

estimation of the parameters. 

Now, let Lj(t) denote the probability of being in state j at time t, that is, 
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Lj(t) = P(q, = j\0) (3.16) 

Then, the equations (3.15) become 

Mj=-*$ (3.17) 

and 

^LjitXo.-jUjM-fij)' 
± = J1 - (3.18) 

Equations 3.17 and 3.18 are Baum-Welch estimation formulae for the means and covariance 

of a H M M . These equations can be applied if the Lj(t) is known for state j. The Lj(t) is 

calculated using the Forward-Backward algorithm 

3.9 Forward-Backward Algorithm 

We have discussed Forward probability before, however, we repeat it here for 

context cohesion. The forward probability is defined as, 

aj(t) = P(ol,o2,...,ol,ql =j) (3.19) 

otj (t) is the joint probability of observing the first t frame vectors (oi, 02, . . . ot) and being in 

state j at time t. The forward probability can be calculated with the following recursion: 

a ; (0 = [ £ a , ( ' - l ) a # ] V o ( ) <3-20) 

1=2 
Note that the first and Na, states are null nodes, non-emitting nodes. Initial conditions are 

0,(1) = !, «,(!) = V>,(°i) <3-21> 
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and the final condition is 

aw(r) = f>,(T-l)a w (3.22) 

i=2 
as we have shown before. Comparing (3.22) and (3.6) indicates that the calculation of the 

forward probability also yields the total likelihood P(0|M). 

Backward Probability, fij(t) is the probability of observing (ot+i,.. .,OT) and being 

at state j at time t. 

0J(t) = P(oM,...,ar\qt = j) (3.23) 

The backward probability is named as a conditional probability, and can be computed using 

the following recursion, 

N-l 
A(0 = 2>A(°mW'+1) <3-24> 

with the initial condition given by 

6i(T) = aiN Ki<N (3.25) 

and, the final condition is 

A(D = S a i A ( ° 2 ) ^ ( 2 ) (3-26) 

This symmetric definition is deliberate, since it allows the probability of the state occupation 

to be determined by production of the two probabilities. Thus, 

P(.0,ql=j) = aJ(t)fiJ(t) (3.27) 

is the joint probability of observing O and being at state j at time t. 

Referring to the definition L ; it), we have 

Lj(t) = P(qt=j\0,M) (3.28) 
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Hence5 

P(0,qt = j\M) 
P(0\M) 

(3.29) 

By substituting from equation (3.27) in (3.29), we have 

Lj(t) = (3.30) 
BW 

where PBw=P(0|M). 

The training of the H M M model involves assuming an initial estimate of the 

model, M=[A, B , n], and re-estimating it with known training sequences. For each 

sequence O, the parameters of a new model Mnew are re-estimated from those of the old 

model Moid, until 

At each iteration, the old model is replaced by a new model, Mnew, and another re-estimation 

takes place, while equation 3.31 is satisfied. According to the Baum-Welch algorithm, the 

transition matrix {ay} is calculated as follows: 

where Ay represents the total number of transitions from state i to state j. 

In this style of training, a set of training observations, O, is used to estimate the 

parameters of a single H M M . The basic formula for the re-estimatibn of the transition 

probabilities is 

P{0\Mnew}>P{0\Mold) (3.31) 

Ay (3.32) 

k=2 

The conditional probability rule: P( A \ B) — 
P(AB) 
P(B) 
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T-l 
(3.33) 

t=i 

For details of formula and proof of convergence of the algorithm, refer to [20] [28]. 

3.10 Adaptation 

To achieve accurate recognition, the parameters of the model should be trained by 

a specific user. However, providing enough training data for each user to tailor the 

system to his or her voice is difficult in practice. To achieve an accurate recognition 

engine, a huge amount of training data has to be provided for each user. An alternative to 

this training strategy is adaptation. In this case, the system is trained with different voices 

as a user independent system; then the parameters of the model are tuned to a specific 

user. In this training system, the amount of adaptation data is much less than the data 

needed to train the system from the start as mentioned in the first case. 

3.10.1 Model Adaptation Using MLLR 

Maximum Likelihood Linear Regression or M L L R computes a set of 

transformations that will reduce the mismatch between an initial model set and the 

adaptation data. More specifically, M L L R is a model adaptation technique that estimates 

a set of linear transformations for the mean and variance parameters of the Gaussian 

mixture of the H M M system. The effect of these transformations is to shift the 

component means and alter the variances in the initial system, so each state in the H M M 

is more likely to generate the adaptation data. M L L R uses a Transform-Sharing method, 

known as a Regression Class Tree, to adapt the parameters of the model. This method 
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provides a means of dealing with the small amount of adaptation data. Under this scheme, 

the system adapts even the parameters for speech not presented in the adaptation data. As 

a result, the system is able to adapt its parameters with only a small amount of adaptation 

data. For more information about Regression Class Tree, refer to Appendix A. 

The transformation matrix used to give a new estimate of the adapted mean is 

given by 

p=W£ (3.34) 

Where W is a n x (n+1) transformation matrix and ^ is the extended mean vector (n is the 

dimension of the vector). 

4 = [wMlJu2...pJ (3-35) 

w is the bias offset whose value is fixed and is usually equal to 1. As a result W can be 

written 

W = [b A] (3.36) 

The A represents an [n x n] transformation matrix, and b a bias vector. The 

transformation matrix, W, is obtained by solving a maximization, using the Expectation-

Maximidation (EM) algorithm. This technique is also used to compute the variance 

transformation matrix. The same rules, with some modifications, apply to finding the 

variance transformation matrix. 

I = BTHB (3.37) 

Where H is the linear transformation to be estimated and B in the inverse of the Choleski 

factor of S" 1 , 

Z _ 1 = CCT (3.38) 
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B = Cl (3.39) 

For details of the E M algorithm and an example of calculation adapted data refer to Apendix 

B. 

3.11 Language Model 

One of the recognition components is the language model. The language model is 

a network of words arranged according to some rules, for example, grammar rules of the 

language to be recognized. The simplest word-network model is a list of parallel nodes 

connected by arcs. The nodes represent words and the arcs represent the transitions 

between words. Figure 3.4 shows a simple network. The top figure is used to recognize 

the "Flip Flop," or "Flop Flip," while the bottom diagram can be used to regonize any 

combination of the two words, such as "Flip Flip FlipFlop." 

Start 

Start 

Figure 3.4 (Top) A simple network recognizes "Flip Flop" or "Flop Flip." 
(Bottom) A modified network recognizes any permutation of "Flip" and "Flop." 
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A probability factor may be assigned to each arc to indicate the probability of the 

word sequences. However, the simplest and most common form is a network in which 

each word has the same possibility of being pronounced. The network may contain any 

number of words; however, increasing the number of words will increase the processing 

time and decrease the accuracy of recognition. The probability of selecting the correct 

word from the words listed in the network will decrease as the network grows. 

Start 

Figure 3.5 Word Internal Triphone Expansion of Flip-Flop Network. 

For the recognition process, the recognizer loads the network and creates the 

H M M equivalent of the network. Then it employs the algorithms defined previously to 

find the best possible route as recognized speech. Figure 3 .5 shows the same network as 

indicated in Figure 3.4, expanded to its tri-phone equivalent by the recognizer for the 

recognition process. 

The Network is stored in SLF format. For example, the network shown in Figure 

3 .5 is stored as follows: 

# Define size of network: N=num nodes and L=num arcs 
N=4 L=8 
# Lis t Nodes: I=node-number, W=word 
1=0 W=start 
1=1 W=end 
1=2 W=Flip 
1=3' W=Flop 
# Lis t arcs: J=arc-number, S=start-node, E=end-node 
J=0 S=0 E=2 
J=l S=0 E=3 



Chapter 3: Modeling 38 

J=2 
J=3 
J=4 

S=3 
S=2 
S=2 

J=5 S=3 
J=6 S=3 
J=7 S=2 

E=l 
E=l 
E=3 
E=3 
E=2 
E=2 

The first line defines the size of the network. The Start node is a node without a 

predessor and the End node is a node without a successor. There should be one, and only 

one, Start and End node in a network. 

Figure 3.6 The modified version of the network shown in the bottom of 
the last figure. 

To simplify the network, a N U L L node is itroduced. For example, the network 

defined in the bottom of Figure 3.4 is modified in Figure 3.6 and its equivalent SLF file is 

as follows: 

# Define size of netword: N=num nodes and L=num arcs 
N=6 L=7 
# Lis t Nodes: I=node-number, W=word 
1=0 W=start 
1=1 W=end 
1=2 W=Flip 
1=3 W=Flop 
1=4 W=!NULL 
1=5 W=!NULL 
# List arcs: J=arc-number, S=start-node, E=end-node 
J=0 S=0 E=4 
J=l S=4 E=2 
J=2 S=4 E=3 
J=3 S=2 E=5 
J=4 S=3 E=5 
J=5 S=5 E=4 
J=6 S=5 E=l 
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C h a p t e r 4 

M o d e l i n g & T r a i n i n g 

The goal of this thesis is to develop a speech recognizer. Then the recognizer will 

be employed to develop a search engine to spot and play words in an A V I file. The 

recognizer will also be used to develop a Diphone extractor program to segment the 

speech into diphones. 

To develop a speech recognizer, I have followed a step-by-step procedure. First, a 

simple mono-phoneme model has been developed and trained with different training 

cycles; the best model is then transformed into a triphone model and retrained. Finally, 

the best triphone model is tied and adopted to the speech of the test speaker to get the best 

possible accuracy. For developing the speech recognizer, I have employed H T K tools, 

provided by Cambridge University. The tools are available in C source code. I have 

modified some parts of the code to fit the project, and also developed some tools as 

needed. H T K tools are used for preparing the speech files, modeling the acoustic data, 

training the H M M , and testing the system. Modifications of the tools are made for 

recognition. Finally, a program is developed to demonstrate some applications of the 

system, such as word spotting, word and diphone segmenting. 

4.0 Introduction 

To develop an accurate speech recognizer, I have set different experiments. In 

each set of experiments, the model that results in the best recognition output has been 

chosen and the experiments continue with the new model. Experiment begins by defining 
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and training a set of mono-phoneme HMMs. It continues by selecting the best mono-

phoneme model, converting it to triphone H M M , and retraining. The model that results 

the best recognition output is chosen and the parameters of the H M M are tied and adapted 

to a subject's (Keith's) voice. The results of each step are compared with the previous 

step's results, and the best model is chosen to continue. It is noted that all of these 

experiments are based on previous experiments that I have set and tested for this project, 

and the set of experiments shown here are employed to indicate the logical flow of the 

project. 

4.1 Acoustic Processing 

The project employs the speech utterances provided by T IMIT and one student, 

Keith, as the subject of the experiment. The data provided by Keith is in A V I format. The 

W A V E part of the file is extracted and used for processing and recognition. Each audio 

file, both TIMIT and Keith's utterances, passes through the following process to create its 

M F C C equivalent. 

1. Sample each file for every 10 ms in the window of 25 ms, so each sampled 

frame overlaps with the adjacent frames for a duration of 15 ms. 

2. Pre-emphasize the sample according to section (2.1) with a = 0.95 

3. Apply Hamming Window to each frame. 

4. Find the Furrier Transform of each frame. 

5. Pass each vector through a Mel-filter bank with gain equal to 1 and the 

number of filters equal to 22. 

6. Calculate the Log Energy of each vector as described in section (2.6) 
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7. Find the DCT of each vector and discard all except the first 13 coefficients, 

and then add its first-order and second-order derivatives to the end of the 

vector. 

8. Store the output in the same file name with an "mlf' extension. 

According to the process described above, each frame of each sample, 25 ms, is 

converted to a vector of 39 elements and each second of speech is converted to 100 

vectors, which are stored in a file with an "mlf' extension. 

H T K provides a flexible tool, HCopy, for converting files to different formats, 

such as converting W A V E to MFCC. For detailed information and the parameter list 

needed for such transformations, refer to the H T K manual. 

4.2 Acoustic Modeling 

Each phoneme is modeled using a three state left-to-right H M M , as shown in 

Figure 3.3, and each observation probability distribution is represented with a mixture of 

Gaussian density as described in formula (3.14). For each phoneme listed in Table 1.1 

except for sp, which stands for short pause, a similar model is created, and the parameters 

of each model are stored separately. 

~h "hmml" 
<BeginHMM> 
<NumStates> 5 
<State> 2 
<Mean> 3 9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

<Variance> 3 9 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

<State> 3 
<Mean> 3 9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

<Variance> 3 9 
1 1 1 1 1 . 1' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

<State> 4 
<Mean> 3 9 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

< V a r i a n c e > 39 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

<TransP> 5 
0 . 0 1.0 0 .0 0 . 0 0 . 0 
0 . 0 0 .6 0 .4 0 . 0 0 . 0 

' 0 . 0 0.. 0 0 . 6 0 .4 0 . 0 
0 .0 0 . 0 0 . 0 0 .7 0 .3 
0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 

<EndHMM> 

This is a H M M prototype model used by H T K tools. The first symbol in the 

model is ~h, followed by a phoneme name, hmml. Then the H M M definition is 

bracketed by the symbols <BeginHMM> and <EndHMM>. 

<NumStates> defines the number of states in the H M M . In our project the 

number of states is equal to 5, with the first and last states set to N U L L states. For each 

emitting statey, a single vector p.j is introduced by the keyword <Mean>, and a diagonal 

variance vector Zj is introduced by the keyboard <Variance>. Finally, the definition 

ends with the transition matrix {atj}, introduced by the keyword <TransP>. 

I modified the sil model by adding two extra transitions, one from state 2 to state 

4, and another from state 4 back to state 2. The idea here is to make the model more 

robust by allowing individual states to absorb the noise in the training data. Also, at this 

point, a one state short pause (sp) model is added to the list of HMMs. This model is 

called Tee-Model and makes a direct transition from the entry node to the exit node. The 

emitting parameters of the sp model are set to the emitting parameters of state 2 of the sil 

model. Figure 4.1 shows the modified sil model and sp model. The definition of the sp 

model is shown below: 
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Figure 4.1 sil and sp model. 

~h "sp" 
<BeginHMM> 

<NumStates> 3 
<State> 2 

<Mean> 39 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
<Variance> 3 9 
l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 

<TransP> 5 
0.0 0.5 0.5 
0.0 0.5 0.5 
0.0 0.0 0.0 

<EndHMM> 

4.3 Training 

The Mean and Variance values, set to 0 and 1 respectively, are only for 

demonstration purposes. In fact, to begin the training process, the mean and variance of 

all the models are set to the global mean and variance, computed by scanning the set of 

training data. HTK provides a tool HcompV, for computing the global mean and variance 

by scanning *.mlf files. The details of how to use the tool are not provided here; 

interested readers should refer to the HTK manual for detailed information. 
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4.3.1 Mono-phone training 

The training process needs both *.mlf files and their phonetic equivalents. The 

phonetic equivalent of each utterance is extracted from the dictionary and a sp is inserted 

between word boundaries to separate words in a sentence. For example, the utterance 

"Her hum became a gurgle of surprise" (file sil837.1ab from SI training 

list of TIMIT) is converted to the following phonetic equivalent: 

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g er g 
ah 1 sp ah v sp s er p r ay z s i l 

The sentence begins and ends with a sil (silence) and a sp is inserted to indicate 

the boundaries of each word. Inserting sil and sp could be clarified by referring to Figure 

• I I I • I I • I • I I I I I I I I I I I I I I | I I I I I I I I I I I I ! 
10 0 1 0 2 0 3 0 4 0 5 O S 0 7 0 8 0 9 1 0 _1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 7 0 2 1 2 

Figure 4.2 The wave form of "Her hum became a gurgle df surprise." 

4.2, which shows the wave form of the same sentence uttered by a male in the New 

England region in the United states. As indicated in the audio file, the speech begins and 

ends with a silence and each word is separated by a short pause, sp. Notice that the sp 

may have a zero duration, which means there is no short pause between the words. This is 

why we have created a direct transition from the first node to the last node in the sp 

model. 
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The training module creates the HMM equivalent of each utterance by sticking 

the HMMs as indicated to the equivalent label file. Then it employs a forward-backward 

algorithm, described in section (3.9), to calculate the parameters of the model, and 

replaces the old model with a new one, and stores the result. HTK provides a very 

flexible tool, HRest, for training purposes. This tool accepts different parameters for 

training. In this project I have employed HRest with the following parameters "-t f 

[a b] ". 

Selecting the parameters for "-t f [a b] " is very important, because without 

setting them, the cycles consumed by the processor for training become enormous, -t f 

sets the pruning level to f. The default value for the pruning level is zero; that means no 

pruning at all. During the backward probability calculation, at each time all (log) values 

falling more than f below the maximum value, at that time, are ignored. During the 

subsequent forward pass, the log values are only calculated if there are corresponding 

valid values. Tight pruning results in failing to process an utterance, and a high value for 

f requires more processing time. If a and b options are given, then a pruning error 

results in the threshold being increased by a and utterance processing restarts. If the error 

continues, this procedure will be repeated until the limit b is reached. In this project the f, 

a, and b are set to 250, 150, and 1000 respectively. 

This project employs the dictionary provided by the Carnegie Mellon University by removing the stress marks that 
are not suitable for speech recognition [12]. 
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4.3.2 Triphone training 

In this step the set of mono-phone HMMs will be converted to a context 

dependent triphone model by converting the mono-phone transcription of the data to 

triphone transcription and creating a set of triphone models by copying the mono-phones. 

Then the model is retrained to tune the triphone model. For example, the mono-phone 

transcription of the file SI1837.1ab, 

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g e r g 
ah 1 sp ah v sp s er p r ay z s i l 

will be converted to its equivalent triphone transcription, 

s i l hh+er hh-er sp hh+ah hh-ah+m ah-m sp b+ih b-ih+k 
ih-k+ey k-ey+m ey-m sp ah sp g+er g-er+g er-g+ah g-
ah+1 ah-1 sp ah+v ah-v sp s+er s-er+p er-p+r p-r+ay 
r-ay+z ay-z s i l 

This style of triphone transcription is referred to as Word Internal Transcription 

(WIT). Note that some diphones are also generated as a result of word boundaries 

marked by sil and sp, because the context reduces to only two phonemes next to the word 

boundaries. For example, the mono-phone transcription of " s i l hh er sp" is 

converted to " s i l hh+er hh-er sp"; sil marks the beginning of an utterance and 

sp marks the boundary of the words. The '-' and '+' represent predecessor and successor 

respectively. For example, hh+er means the hh phoneme followed by er, and hh-er 

means the phoneme er that is preceded by the phoneme hh. 

This conversion continues for all training data, and in the next step all 

combinations of triphones and diphones appearing in the transcription are created by 

duplicating the model of each corresponding mono-phoneme model. For example, a 

triphone model s-er+p will be created by duplicating the model of er in the H M M file. 
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The diphones are duplicated by following the predecessor and successor signs as 

explained earlier. For example, the hh+er will be created by duplicating the model of 

hh, and h h - e r will be created by duplication of the model of e r . 

There is another triphone transcription known as Word External Transcription 

(WET). In this transcription, the word boundaries are not marked, or if they are marked, 

they are neglected. For example, the word external transcription of the file SI1837.1ab 

without marking word boundaries is 

s i l hh+er hh-e r+hh e r -hh+ah hh-ah+m ah-m+b m-b+ih b -
ih+k i h - k + e y k-ey+m ey-m+ah m-ah+g ah-g+er g -e r+g e r -
g+ah g-ah+1 a h - l + a h 1-ah+v ah-v+s v - s + e r s -e r+p e r -
p+r p - r + a y r - a y + z a y - z s i l 

As the final step, the converted transcriptions and the M F C C equivalent of each 

utterance are used to retrain the triphone models, exactly the same way as described for 

the mono phoneme model in section (4.3.1). 

4.4 Evaluation Method 

The final goal of modeling and training is recognition. To recognize an utterance, 

the preprocessed speech, along with the H M M and language model, are needed by the 

recognizer. For this project I have employed a Token-Passing method, with one token per 

model, and a parallel word-network as a language model with an equal probability for 

each word, as described in Figure 3.3. For this section I have used the HVite tool, 

provided by HTK. The correctness and accuracy of the recognition is evaluated by 

comparing the recognized speech with the true transcription of the speech. For 

correctness and accuracy, the following formulas have been defined. 

Correctness = N ~ D ~ S * 100% 
N 
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Accuracy = ————-—- * 100% . 
N 

N is the total number of labels in the reference transcription, D is the number of deletion 

errors, S is the number of substitution errors, and I is the number of insertion errors. For 

example, if the true transcription is 

AGAIN THESE BLOCKS WERE SET I N RESIN SATURATED G L A S S 
CLOTH AND NAILED. 

and the recognised text is 

AGAIN THESE BLOCKS WERE SET INTO THE RESIN SATURATED 
CLOTH AND NAILED. 

there is one substitution error, UNTO for IN, one insertion error, THE, and one deletion error, 

GLASS, in the recognised text, then 

Correctness = l 2 ~ l ~ l *100% = 83.33% 
12 

Accuracy = 1 2 ~ 1 ~ 1 ~ 1 * 100% = 75.00% 
12 

4.5 Experiments 

This experiment focuses on the modeling and training process, the most important 

part of developing a speech recognition system. Correctness and accuracy, however, also 

depend on the word-network that is provided to the recognizer (the bigger the network the 

less correctness and accuracy). In spite of the importance of the selection of the word-

network, network selection plays a secondary role in accurate recognition. The most 

important component, and in fact the most challenging part, is the modeling and training. 
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4.5.1 Experiment conditions 

In all the following experiments the models are trained with male utterances of all 

SI and S X training data, provided by the TIMTT database (equal to 2608 utterances), plus 

Keith's training speech (97 utterances), for a total of 2705 sentences and 4170 distinct 

words. The recognition data, selected from Keith's speech, is grouped into two 

categories, Train-Data and Test-Data. Train-Data is the data used in the training process 

and employed for recognition too, but the Test-Data is the speech not used in the training 

process and is employed only for recognition. The language model is selected as a 

parallel word-network from all words (550 distinct words) that appear in both Keith's 

Train-Data and Test-Data. 

4.5.2 Mono-Phoneme 

In the following experiments the H M M for each phoneme listed in Table 1.1 is 

created and trained with TIMIT and Keith's training data, after which the correctness and 

accuracy of the model is tested by recognizing both Keith's Train- and Test- Data. 

4.5.2.1 Training without SP model 

In this experiment, the models are trained without inserting the sp model between 

the word boundaries. For example, the utterance "Her hum became a gurgle o f 

surprise" selected from file SI1837.1ab (SI training list of TIMIT), is converted to the 

following phonetic equivalent: 

s i l hh er hh ah m b i h k ey m ah g er g ah 1 ah v s 
er p r ay z s i l 

Table 4.1 shows the number of iterations used for training and the correctness and accuracy 

of the recognition. 



s 
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Number of training 
iterations 

Correctness % Accuracy % Number of training 
iterations Train Test Train Test 

1 9.15 9.09 ^5.07 -17.17 
2 • 20.42 23.23 -95.07 -55.56 
3 21.83 27.27 -53.52 -26.26 
4 27.46 27.27 -40.11 -22.22 
5 26.76 27.27 -35.51 -16.16 
6 25.35 28.28 -35.92 -13.13 
7 24.65 28.28 -35.92 -13.13 
8 25.35 27.27 -35.92 -14.14 
9 24.65 27.27 -34.51 -14.14 
10 24.65 27.27 -33.80 -14.14 

Table 4.1 Accuracy and correctness of a mono-phoneme model without sp as word boundaries. 

As shown in Table 4.1, increasing the number of iterations does not increase the 

correctness and accuracy of the model as may be expected. In fact, after a few iterations 

the model reaches a condition known as over-training, after which the model is 

corrupted, and the correctness and accuracy of the model decreases, employing more 

training iterations. For this model iteration 6 is optimum. After that the accuracy and 

correctness of the model decreases. It is worth mentioning that for each training iteration 

all 2705 utterances of T IMIT and Keith's TranvData are employed. 

4.5.2.2 Training With sp Model 

In this experiment the system is trained by inserting the sp model between the 

word boundaries. For example, the utterance in the previous experiment is converted to 

the following phonetic equivalent: 

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g er g 
ah 1 sp ah v sp s er p r ay z sp s i l 

Table 4.2 shows the number of iterations used for training and the correctness and accuracy 

of the model for recognition. 
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Number of training 
iterations 

Correct tness % Accuracy % Number of training 
iterations Train Test Train Test 

1 7.04 9.09 -38.73 -14.14 
2 21.83 24.24 -96.48 -59.60 
3 22.54 26.26 -57.04 -27.27 
4 24.65 25.25 -42.96 -24.24 
5 24.65 26.26 -38.73 -18.18 
6 24.65 26.26 -36.62 -15.15 
7 25.35 27.27 -35.92 -14.14 
8 26.06 28.28 -33.80 -15.15 
9 25.35 27.27 -30.99 -15.15 
10 25.35 27.27 -30.99 -15.15 

Table 4.2 Accuracy and correctness of the mono-phoneme model with sp as word boundaries. 

As indicated in Table 4.2, the best results occur in iterations 7 and 8. Another 

important fact is that the accuracy and correctness of this model, with sp between word 

boundaries, do not differ from the accuracy and correctness of the previous model, 

without sp as word boundaries. 

4.5.2.3 Compound Model 

In this experiment, the five first iterations are trained exactly as described in 

section 4.5.2.1, without sp as word boundaries. Then the transcription is modified by 

inserting sp as word boundaries (section 4.5.2.2), and the training process continues for 

five more iterations. Table 4.3 shows the number of iterations used for training and the 

correctness and accuracy of the recognition. The first five rows are omitted since they 

are exactly the same as in Table 4.1. 

Number of training 
iterations 

Correct. tness % Accuracy % Number of training 
iterations Train Test Train Test 

6 26.76 28.28 -32.39 -13.13 
7 26.76 26.26 -33.80 -16.16 
8 26.76 26.26 -33.10 -16.16 
9 26.26 24.24 -31.69 -18.18 
10 26.06 24.24 -31.69 -18.18 

Table 4.3 Accuracy and correctness of compound model. 
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As shown in Table 4.3, the model is not improved with this method and the same 

scenario recurs when the number of training iterations increases. 

4.5.3 triphone 

The following experiments further the experiments in the previous section. In 

these experiments, the models created by the mono-phoneme model in iteration 6 of 

Tables 4.1 and 4.2 are converted to the triphone model by making copies of the models, 

as described in section (4.3.2). Then, the mono-phoneme transcriptions are also converted 

to the triphone equivalent, and the models are retrained. The training and test data and 

word-network are exactly the same as in the previous section, described in 4.5.1 

4.5.3.1 Training with Word External Transcription 

In this section, the trained model of iteration 6 of section 4.5.2.l(The Training 

Without sp Model) is converted to the triphone model and retrained without sp forming 

the boundaries of words. For example, the mono-phoneme transcription of utterance 

" H e r hum b e c a m e a g u r g l e o f s u r p r i s e " , wil l be converted to the following 

equivalent triphone transcription from iteration 7: 

s i l h h + e r h h - e r + h h e r - h h + a h h h - a h + m ah-m+b m - b + i h b -
i h + k i h - k + e y k -ey+m ey -m+ah m-ah+g a h - g + e r g - e r + g e r -
g+ah g - a h + 1 a h - l + a h 1 -ah+v a h - v + s v - s + e r s - e r + p e r -
p + r p - r + a y r - a y + z a y - z s i l 

Table 4.4 shows the number of iterations used for training and the correctness and accuracy 

of the model for recognition. 
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Iteration of re-training with 
triphone model 

Correctness % Accuracy % Iteration of re-training with 
triphone model Train Test Train Test 

6 7

 + l 49.03 24.24 16.09 -2.02 
6 + 2 49.30 25.25 15.49 -9.09 
6 + 3 49.30 23.23 14.08 -9.09 
6 + 4 49.30 22.22 15.49 -9.09 
6 + 5 48.59 24.24 . 18.31 -6.06 

Table 4.4 Accuracy and correctness of the triphone model trained with WET. 

As indicated in Table 4.4, both the correctness and accuracy of the model is 

improved when compared with the correctness and accuracy obtained with the mono-

phOneme model, tested with the same data in the same conditions. 

4.5.3.2 Training with Word Internal Transcription 

In this section, the trained model of iteration 6 of section 4.5.2.2 (The Training 

With sp Model) is converted to a triphone model and retrained with sp as the boundary 

of words. For example, the mono-phoneme transcription of utterance " H e r hum 

b e c a m e a g u r g l e o f s u r p r i s e " , is converted to the following Word Internal 

Transcription: 

s i l h h + e r h h - e r s p h h + a h h h - a h + m a h - m s p b + i h b - i h + k 
i h - k + e y k -ey+m e y - m s p a h s p g + e r g - e r + g e r - g + a h g -
ah+1 a h - 1 s p ah+v a h - v s p s + e r s - e r + p e r - p + r p - r + a y 
r - a y + z a y - z s p s i l 

The Table 4.5 shows the number of iterations used for retraining and the correctness and 

accuracy of the model for recognition. 

Iteration of re-training with 
triphone model 

Correctness % Accuracy % Iteration of re-training with 
triphone model Train Test Train Test 

6+1 67.61 31.31 50.00 4.04 
6 + 2 69.01 34»34 51.41 4.04 
6 + 3 70.42 32.32 52.11 0 
6 + 4 69.72 32.32 48.59 3.03 
6 + 5 68.31 31.31 46.48 0 

Table 4.5 Accuracy and correctness of triphone model trained with WTT. 
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As indicated in Table 4.5, the correctness and accuracy of this model is much 

better than the accuracy and correctness of the triphone model trained with WET. 

4.5.4 Tied-Model 

The model discussed in the previous section suffers from low performance in 

recognizing Keith's Test-Data, compared with its relatively high performance in 

recognizing his Train-Data. This is because the previous model is not tailored suitably for 

data not provided in the training list. To solve this problem, we employ an algorithm 

known as Tree-Based Clustering [Appendix C] to classify, and tie the triphone to reduce 

the number of parameters, so the remaining parameters can be estimated more robustly. 

The model created is called the tied-model, and the previous models are now known 

collectively as the untied-models. 

4.5.4.1 Training Tied-Model 

The last model, the model trained with WIT, provided the best accuracy and 

correctness compared with the other models. As a result, the next experiment will be built 

on top of this model. In this experiment, the result of iteration 9 of Table 4.5 is converted 

to the tied-triphone model and retrained. The data and word-network are exactly the same 

as described in section (4.5.1). 

It is worth mentioning that the transcriptions provided for training the tied-

triphone model and triphone model are not different, and that only the parameters of the 

HMMs are tied to create a compact model. The transcription provided for training the 

6 indicates that this iteration begins from the 6 iteration of the referenced experience, section (4.4.1.3). 
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tied-triphone model is WIT. Table 4.6 shows the number of iterations used for retraining 

and the correctness and accuracy of the recognition. 

Number of re-training 
iterations with tied-triphone 

model 

Correctness % Accuracy % Number of re-training 
iterations with tied-triphone 

model 
Train Test Train Test 

9 8 + l 31.69 21.21 -21.13 -20.20 

9 + 2 50.70 47.47 9.15 14.14 
9 + 3 54.93 47.47 18.31 14.14 
9 + 4 55.63 47.47 19.01 14.14 
9 + 5 55.63 47.47 18.31 13.13 

Table 4.6 Accuracy and correctness of tied-triphone model trained with WIT. 

As indicated in the Table 4.6, the correctness and accuracy of recognizing the 

Train-Data decreases, while the correctness and accuracy of recognizing the Test-Data 

increases. For a general recognition system, such as a dictation program, it is not possible 

to provide all training data to cover all possible utterances of recognition, so it is clear 

that for such a system, a tied-triphone model is a better choice compared with a triphone 

model. However, for systems that will be used for recognizing limited utterances, the 

triphone model seems superior compared to the tied-triphone model9. Another difference 

between the tied-triphone models and triphone models is size. We will discuss this in the 

next section. 

4.6 Comparison 

Figure 4.3 compares the correctness and accuracy of the recognition of Keith's 

train-data with mono-phoneme models (with sp, without sp, and a compound model). 

Figure 4.4 shows the same experiments with Keith's test-data, the data that was not used 

in training. 

9 indicates that this iteration begins from the 9th iteration of the referenced experience, section (4.4.2.3). 
9 

These experiments are conducted with only 2705 utterances. In the case of greater availability of training data, 
however, the conclusions may be different; this possibility has yet to be explored. 



Chapter 4: Modeling & Training 56 

C o r r e c t n e s s of the m o n o p h o n e m o d e l for train da ta 

Figure 4.3 The correctness of the mono-phone model recognizing Train data. 

Correctness of the monophone model for test data 
30 -i ~ 

0 -I 1 1 1 1 1 ; 1 1 1 1 I 
1 2 3 4 5 6 7 8 9 1 0 Training Iteration 

Figure 4.4 The correctness of the mono-phone model recognized Test data. 

Both figures indicate that increasing the number of training iterations does not 

improve the model parameters as may be expected; instead it reveals the fact that extra 
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training may even decrease the correctness and accuracy of the models. Furthermore, both 

figures indicate that there are no significant differences in correctness between the three 

mono-phoneme models. The same result is achieved for accuracy in the three mono-phoneme 

models, and there is no significant difference between them 
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Figure 4.5. The correctness of triphone model in recognizing train and test 

To achieve better accuracy, the mono-phoneme model is converted to a triphone 

model and retrained from iteration 6 of the mono-phoneme models. Figure 4.5 shows the 

correctness of the triphone models in recognizing the train and test data. 

As indicated in Figure 4.5, the correctness of recognition is different between the 

two models trained with WIT and WET. Furthermore, the correctness of recognizing both 

train-data and test-data is significantly improved in the model trained with WIT. As 

indicated in the figures, the model has achieved 70.42% correctness in recognizing train-

data, and 34.34% correctness in recognizing test-data, which shows an improvement 

compared with precious models. 
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C o r r e c t n e s s of the t i ed -mode l b a s ed of "sp" as b o u n d a r i e s of the words 

9 + 1 9 + 2 9+3 9 + 4 9 + 5 Training Iteration 

Figure 4.6. The correctness of the tied-model in recognizing train and test data. 

Figures 4.6 and 4.7a shows the correctness of the tied-triphone model. The model 

is converted to a tied-triphone model from iteration 9 of the triphone model trained with 

WIT (Table 4.5), then the system is retrained. Comparing Figures 4.5 and 4.6 indicates 

that although the correctness of recognition of the train-data decreases from 70.42% in 

the triphone model to 55% in the tied-triphone model (-15%), the correctness of 

recognition of the test data increases from 34.34% in the triphone model to 47.5% in the 

tied-triphone model (+13%). 

The same differences can be seen when comparing the accuracy of the two 

models. For example, Figure 4.7b compares the accuracy of the triphone model and the 

tied-triphone model for both train and test data. As indicated in the bar-charts, the 

accuracy in recognizing the train-data decreases from 52.11% in the triphone model to 

19.01% in the tied-triphone model, while the accuracy of recognizing the test data 

increases from 4.04% in the triphone model to 14.14% in the tied-triphone model. 
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Comparing the Correctness of Tied and Untied Models 
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Figure 4.7a Comparing the Correctness of the triphone model to the 
tied-model. 

Figure 4.7b Comparing the accuracy of the triphone model to the tied-model. 
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Figure 4.8 The size of the models in k bytes. 

The size of the memory needed by each model is also different. Figure 4.8 

compares the size of the models in Kbytes for each model. As indicated in Figure 4.8, the 

size of the model trained with WET is about 218 Mb, while the size of models trained 

with WIT and tied-triphone model are about 64Mb and 2.5 Mb respectively. As a result, 

while the correctness and accuracy of the system increases for recognizing test data with 

a tied-triphone model, the memory needed for the tied-triphone model decreases. 
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C h a p t e r 5 

A d a p t a t i o n 

The models developed so far are known as user-independent systems in that the 

models are trained with the utterances of 439 different speakers from different regions of 

the United States. To increase the correctness and accuracy of the system, the model 

should be converted to a user-dependent system by adjusting the parameters of the model 

to the voice of a specific user. There are two methods for adjusting the parameters of 

H M M to a specific user, known as the direct method and the adaptation method. The 

direct method involves training the model with just a single speaker's speech, the speaker 

with whom the system will be tested. Training the model, however, requires a lot of 

training data that may not be available in most cases. For example, in this project I have 

used 2705 different utterances to train the HMMs. As a result, I have adapted an 

alternative method known as an adaptation method, discussed in section (3.10). 

5.1 Triphone adaptation 

The model discussed in section (4.5.3.2) is being adapted with Keith's train data 

from iteration 8 (refer to table 4.5). In this experiment I used a regression class tree with 

32, 64, 96, and 128 nodes to classify the acoustic models [Appendix A] . Then the models 

are adapted for a maximum of 4 iterations. The results of the correctness and accuracy of 

recognition in each model, for both test and train data, are shown in Table 5.1. 
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Adapted with 32 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 81.69 43.43 70.42 10.1 
2 80.99 41.41 68.31 5.05 
3 81.69 41.41 69.72 7.07 
4 81.69 41.41 69.72 7.07 

Adapted with 64 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 81.69 43.43 71.13 9.09 
2 82.39 41.41 69.72 5.05 
3 82.39 41.41 70.42 6.06 
4 83.10 39.39 71.13 4.04 

Adapted with 96 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 81.69 43.43 71.13 9.09 
2 82.39 41.41 69.72 5.05 
3 83.10 41.41 71.13 6.06 
4 83.10 39.39 71.13 4.04 

Adapted with 128 nodes 
Iteration Correctness % Accuracy $ 

Train Test Train Test 
1 81.69 43.43 71.13 9.09 
2 82.39 41.41 69.72 5.05 
3 83.10 41.41 71.13 6.06 
4 83.10 39.39 71.13 3.03 

Table 5.1 The correctness and accuracy of the adapted data for the triphone model. 

As indicated in the table, increasing in the number of adaptation iterations does 

not necessarily increase the correctness and accuracy of the model; the model seems 

adapted after third iteration, and the accuracy and correctness of the model do not change. 

Table 5.1 also indicates that there is no significant difference in recognition achieved by 

selecting different nodes for the regression class tree. However, close inspection of Table 

5.1 shows that the tree with 32 nodes shows slightly better results for the test data, while 

the tree with more nodes has better output for train data. This is because more acoustic 

information will result in better classification of the regression tree. Therefore, if we 
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provide more training data to cover more test space, the tree with more nodes will 

provide better acoustic classification. However, if the test space is too huge to be covered 

by the training data, the tree with less nodes will provide better classification results. The 

selection of the number of nodes for the regression class tree will depend on the 

availability of training data. 
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Figure 5.1 The correctness of the model before and after adaptation. 

Figure 5.1 compares the correctness of the model before and after adaptation for 

the model with a regression tree with 32 nodes. As indicated in the figure, the correctness 

of the model increased from 69.01% to 81.89% in recognizing train-data, and from 

34.34% to 43.43% for recognizing test-data. 
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5.2 Tied-model adaptation 

The same adaptation process is repeated for the tied-triphone model, and the 

results are indicated in Table 5.2. The model is adapted from iteration 9+4 in section 

4.5.4.1 (Training Tied-triphone model) table 4.6. 

Adapted with 32 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 78.87 52.53 61.27 29.29 
2 79.58 51.52 64.08 29.29 

Adapted with 64 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 78.87 48.48 60.56 29.29 
2 80.28 49.49 64.08 29.29 

Adapted with 96 nodes 
Iteration Correctness % Accuracy 5 

Train Test Train Test 
1 78.87 48.48 60.56 29.29 
2 80.28 49.49 64.08 29.29 

Adapted with 128 nodes 
Iteration Correctness % Accuracy % 

Train Test Train Test 
1 78.87 48.48 60.56 29.29 
2 80.28 49.49 64.08 29.29 

Table 5.2 Correctness of the adapted tied-triphone model. 

Figure 5.2 compares the correctness of the tied-triphone model before and after 

adaptation. As indicated, the correctness of recognizing train-data is increased from 

55.63% to 78.87% after adaptation, and the correctness of recognizing the test-data is 

increased from 47.47% to 52.53% after applying adaptation. 



Chapter 5: Adaptation 65 

Correctness of the tied-model before adaptation and after adaptation 
90 

80 

70 

60 

w 8 50 
c 
t3 
£ 40 
o 

O 

30 

20 

10 

0 

78.87 

"55:63 • 

Train data 

. - _ 47.47-
52.53 

Test data 

• Before Adaptation 
• Adapted 

Figure 5.2 The correctness of the tied-triphone model before and after adaptation. 

5.3 Retraining 

I have selected the first iteration of the adapted model with 32 nodes of the 

triphone model and tied-triphone model, and retrained them with Keith's train-data. Then 

the model is tested by recognizing Keith's test and train data, as in previous experiments. 

Table 5.3 shows the correctness and accuracy of recognition of the triphone model 

retrained after adaptation. Table 5.3 indicates that the best result is achieved in the 4 t h 

iteration. Comparing this result with the results achieved before retraining (Table 5.1) 

indicates that although the correctness and accuracy for recognizing train-data is 

Iteration Correctness % Accuracy % 
Train Test Train Test 

1 95.07 40.4 88.03 -2.02 
2 96.48 42.42 88.73 1.01 
3 96.48 42.42 89.44 5.05 
4 96.48 42.42 90.14 5.05 
5 96.48 42.42 90.14 3.03 

Table 5.3 Correctness and accuracy of the triphone model (triphone) retrained after being 

adapted. 



Chapter 5: Adaptation 

increased, the same parameters are decreased for recognizing test-data. Figure 5.3 compares 

the correctness and accuracy of the model before and after retraining. 

66 
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Figure 5.3 The correctness and accuracy of the untied-triphone model 
before and after retraining. 

Figure 5.3 shows that both the correctness and accuracy of the model in 

recognizing the train-data increases with the model retrained after adaptation, while the 

same parameters decrease for recognizing the test-data with the same model. 

Table 5.4 shows the correctness and accuracy of the tied-triphone model, retrained 

after being adapted, and Figure 5.4 compares the correctness and accuracy of the model 

Iteration Correctness % Accuracy % 
Train Test Train Test 

1 91.55 53.54 80.99 30.3 
2 92.95 52.53 83.1 32.32 
3 92.25 52.53 83.8 31.31 
4 92.25 52.53 84.51 32.32 
5 92.25 51.52 84.51 28.28 

Table 5.4 Correctness and accuracy of the tied-triphone triphone model retrained after 

adaptation. 
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before and after retraining. As indicated in Figure 5.4, the model is improved for 

recognizing training and test data after retraining. Although there is no significant 

improvement for recognizing training data, the result is better than in the untied triphone 

model. 

Comparing the correctness and accuracy of tied-triphone model before and after retraining 
100 

92.25 

• Adapted 
• Adapted & Retrained 

Correcness Accuracy Correcness Accuracy . 
< Train Data *—• « Test Data *• 

Figure 5.4 Accuracy and??correctness of the tied-triphone model before 
and after retraining. 

5.4 Comparison 

The bar-charts in Figures 5.3 and 5.4 indicate that the models are improved when 

retrained after adaptation, except for the recognition of test data in the untied-triphone 

model. The reason may be an insufficient amount of retraining data and number of 

triphone models in the untied-triphone model. If we had more of Keith's training data 

instead of only 97 utterances, then the values of the chart might be different from the ones 

shown in Figure 5.3. 
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Another fact we may notice when comparing the two charts, is the superiority of 

the tied-triphone model compared with the triphone model. Both the correctness and 

accuracy in recognizing the test-data are better than with the untied-triphone model 

(gaining 10% to 25%). However, the correctness and accuracy of the model obtained for 

recognizing train-data in the tied-triphone model is slightly less than the correctness and 

accuracy of recognizing the same data in the triphone model (losing 3.5% to 5.5%), but 

the memory needed for the tied-triphone model is only 2452/64896 = 3.8% of the 

memory needed for the triphone model. Comparing the loss of a maximum of 3.5% to 

5.5% in correctness and accuracy, with saving 96.2% of memory in the tied-triphone 

model, reveals the advantage of the tied-triphone model. 
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Chapter 6 
Diphone & Word Segmentation and Extract ion for 

Natural Speech Synthesis 

In this section, I have used the speech recognizer developed in the previous 

sections to create a program to demonstrate the functionality of the system. This program 

has many capabilities, such as diphone and word segmenting and word spotting in a 

multimedia file. The diphone and word segmenting programs can be employed to prepare 

the sub-words needed by a natural speech synthesizer. A natural speech synthesizer can 

recreate the speech of a person by concatenating words and sub-words, to create a talking 

machine. A word-spotting program can be employed to search a multimedia file for an 

utterance of a word. 

This chapter begins by introducing the methods developed to segment the words 

and sub-words and discuss the accuracy and correctness of the segmentation. It then 

continues by demonstrating the speech synthesized with diphones segmented using 

different methods, and discusses the accuracy of the synthesized speech. Next, a very 

important functionality of the program for finding an utterance in a media file is 

demonstrated. 

6.1 Diphone Segmentation 

Diphones are sub-word elements mainly used in speech synthesizers. As 

mentioned in the first chapter of this thesis, segmenting of diphones is a semi-manual 
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process. This section of the thesis attempts to employ the speech recognizer developed in 

the previous section to segment speech into diphones automatically. 

To segment speech into diphones, I have developed two methods, an indirect 

method and a direct method. In the indirect method, the diphones are segmented from the 

middle node of a triphone to the middle node of the adjacent triphone. In the direct 

method, the speech recognizer is modeled and trained by diphones instead of by 

triphones, and the speech recognizer recognizes diphones directly. In both methods, we 

assume that both speech and the equivalent text are available for segmentation. 

6.2 Indirect Method 

In this method, first the triphones are recognized. Then the program segments 

Text 

Speech 

Equivalent Network 
transformer 

Segmenting 
Program 

Speech 
Recognizer 

Triphone Diphone 
Extractor Diphones 

Figure 6.1 Block diagram of Diphone segmentation. 

triphones into diphones by segmenting the middle node of one triphone to the middle 

node of its adjacent triphone. As shown in Figure 6.1, the speech and its equivalent text 

are provided to the segmenting-Program. The program transforms the text into equivalent 

word-networks and provides the speech and the word-network to the recognizer. The 

recognizer recognizes the provided text uttered by the speaker; then the recognized 

triphones are passed to the diphone extractor to be segmented into diphones, as described 

in section 1.3.1. Finally, the output is stored in a database to be accessed by a speech 

synthesizer program. 
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The model used for recognition is the tied-triphone model without adaptation, 

trained with WIT and sil at the beginning and ending of the transcription. The appearance 

of sil and sp in the output are not mandatory; it depends on whether the recognizer finds 

frames that stand for sp or sil. As a result, there are many possible output transcriptions 

for the speech, even though the equivalent text is provided for the module. The total 

possible output for each utterance is equal to the permutations of sp and sil in the 

transcription. 

6.2.1 Evaluation 

To evaluate the accuracy of the diphones segmented with this method, first the 

accuracy of segmenting the triphones is studied. For this purpose, I simply provide the 

utterance available in the TIMIT database to the program and compare the segmented 

results with the segmentation provided by the TIMIT for the same utterance. However, 

there is no method to evaluate the correctness and accuracy of the segmented phonemes. 

To address this, I introduce two comparison methods. 

Accuracy% = 
2xAT„ int er sec tion xlOO 
reference + AT recognized 

ATI, intersection 

recognized 

Figure 6.2 Calculating the accuracy of segmentation. 
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6.2.2 Method I 

The accuracy of segmentation is set to the ratio of the intersection of the 

recognized segments and reference segments, TIMET, as shown in Figure 6.2. 

Correctness of Phoeneme Segmentation 

Distribution of Samples 

Figure 6.3 Distribution??and accuracy of segmented phoneme samples. 

Figure 6.3 shows the results of the experiments that calculated the accuracy of the 

phonemes segmented with this formula. As indicated in Figure 6.3, 45% of the phonemes 

are segmented with an accuracy above 80%; 33% of the phonemes are segmented with an 

accuracy of between 50% and 80%, and 15% of the phonemes are segmented with an 

accuracy of less than 50%. The pie chart indicates that 7% of the phonemes are 

segmented with zero accuracy, meaning there is no intersection between the segmented 

and reference phonemes. The accuracy evaluated here is the result of the recognition 

model without adaptation, so the result is expected to improve with a model adapted for 

the speech of a specific user. 
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6.2.3 Method II 

In the previous method, I have assumed that all parts of a phoneme are equally 

significant, but studies show that the middle node of a phoneme stands for its steady state 

has a more important role in identifying a phoneme than the two transient nodes. As a 

Figure 6.4 Mapping the model to Normal Distribution. 

result, the two transient nodes are less significant, when compared to the middle node. 

Therefore, I have employed another method of evaluating the correctness of a segmented 

phoneme, by modeling its duration with Normal Distribution. 

6.2.3.1 Correctness 

In this method, I modeled a phoneme duration with a Normal Gaussian 

distribution, and compared the correctness of the segmented triphone with the boundary 

of the same phoneme in the same utterance provided by TIMIT. In this method, I 

Recognized 
Figure 6.5 An example of calculating the correctness of segmenting phonemes. 
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considered the fact that the middle node of a phoneme is its most significant part, while 

the two other nodes, which stand for the transition parts of the phoneme, are its less 

significant parts. Figure 6.4 shows the mapping method used. As indicated in Figure 6.4, 

the center point of the curve is mapped to the middle of the phoneme and the standard 

deviation of the model is set to half the duration of the middle node. Figure 6.5 shows an 

example of calculating the correctness of the segmentation using this model. 

The top line in Figure 6.5 shows the boundaries of the phonemes as provided by 

TIMIT, and the bottom line shows the boundaries of the recognized phonemes. As 

indicated in the figure, the segmented phoneme in begins from a and ends at d, and the 

duration of the reference phoneme M begins at b, and ends at c, so that a<b,c <d. 

Therefore, the correctness of segmenting phoneme m, compared with the reference M, is 

100%. The correctness of the segmented phoneme y in the same utterance is equal to the 

shaded area of distribution Y. However, phoneme m is extended from its boundary, 

compared with the reference, and has overlapped with the two adjacent phonemes. The 

error is calculated against the correctness of the adjacent phonemes, so the error is 

considered only once in the calculation. Note that this calculation only shows the 

correctness of the segmentation and it does not indicate the accuracy of the method. In 

fact, this method cannot be used to evaluate the accuracy of the segmentation. 

Figure 6.6 shows the results of this method. As indicated in the pie-chart, 69% of 

the segmented phonemes are more than 80% correct. 11% of the samples are between 50 

and 80% correct, 14% of the segmented phonemes are less than 50% correct, and finally, 
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Correctness of Phoneme Segmentation Modeled 
by Normal Distribution 

6% Number of Samples = 1203 

11% 

Correctness of Samples 

69% 

• Above 80% 
1 5 0 - 8 0 % 

• 1 -50 % 
• Zero% 

Distribution of Samples 
Figure 6.6 Distribution and correctness of segmented samples. 

6% of the segmented phonemes are completely outside of the reference boundaries, at 

zero percent correct. 

6.2.3.2 Accuracy 

In evaluating correctness, I have discarded the effects of the intersection of the 

segmented phoneme with its adjacent reference phonemes. For example, the phoneme m 

shown in Figure 6.5 is segmented 100% correctly, even though it is extended beyond its 

boundaries and overlaps with the X and y phoneme boundaries. However, this is 

considered an error in calculating the accuracy of the segmentation. The accuracy of the 

segmentation is calculated as 

In this formula, correctness is calculated from the previous section and 

Left_error is equal to the area between a and b 

Right_Error is equal to the area between c and d 
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Figure 6.7 Distribution and accuracy of the segmented samples. 

Figure 6.7 shows the result of calculating the accuracy with the above formula. As 

indicated in the figure, 45% of the phonemes are segmented with an accuracy above 80%, 

29% of the phonemes are segmented with an accuracy between 50 and 80%, 17% of the 

phonemes are segmented with an accuracy below 17%, and finally, 9% of the samples are 

segmented with an accuracy equal to zero. 

Comparing Figures 6.7 and 6.3 reveals that the accuracy we have calculated with 

the two methods are very close. However, the second method shows that 9% of the 

samples are segmented with zero accuracy, while this amount in the first method is equal 

to only 7%. The reason for the difference (9-7= 2%) is the error inducted to the 

calculation by modeling the reference models using a Normal Distribution function. 

6.2.4 Diphone Segmentation 

When evaluating the correctness of the diphone segmentation, I considered the 

fact that a diphone should begin from somewhere inside a phoneme and end somewhere 
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inside an adjacent phoneme. The result of comparing the beginning and end points of the 

phonemes, with the reference phoneme provided by TIMIT, is indicated in Figure 6.8. 

Figure 6.8 shows that 80% of the segmented diphones are confined to the defined 

boundaries and only 20% of the segmented diphones have either their start or end, or both 

start and end points, outside of the defined boundaries. 

Correctness of Diphone Segmentation 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ T ^ « r o f samples compared :1057 

Figure 6.8 Correctness of diphones segmented using the Indirect-Method, 
compared with the TDMiT phoneme segmentation. 

It is important to note that the model used for segmentation is not an adapted 

model, so if we adapt the model to a specific user and then segment the phonemes and 

diphones, we will gain much better results than those shown in Figures 6.8 and 6.7. 

6.3 Direct Method 

In the previous method, it was implicitly assumed that the phonemes were 

symmetrically balanced in their middle nodes, and that the frame times of rising and 

falling phoneme tone in the middle node were equal. As a result, the diphones were 
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segmented from their middles in the middle nodes. However, this assumption was 

incorrect, because the rising and falling time of a phoneme may not be equal. To address 

this problem, instead of segmenting triphones first and extracting diphones from them, I 

modeled and trained the system with diphones from the beginning, forcing the recognizer 

to directly recognize diphones. 

In this method I have modeled and trained the system with diphones with sp as 

word boundaries and sil at the beginning and at the end of each utterance. For example, 

the utterance "Her hum became a g u r g l e o f s u r p r i s e " , selected from file 

SI1837.1ab, SI training list of TIMIT, is converted to the following phonetic equivalent: 

s i l - h h hh-er er-sp sp-hh hh-ah ah-m m-sp sp-b b-ih 
ih-k k-ey ey-m m-sp sp-ah ah-sp sp-g g-er er-g g-ah 
ah-1 1-sp sp-ah ah-v v-sp sp-s s-er er-p p-r r-ay ay-
z z - s i l 

The dictionary used for this section is also transformed to the diphone equivalent. For 

example, the entries 

A ah 

ABBREVIATE ah b r i y v i y ey t 

ABILITY ah b i h 1 ah t i y 

from the C M U dictionary change to 

A sp-ah ah-sp 

ABBREVIATE sp-ah ah-b b - r r - i y i y - v v - i y iy -ey ey-t t -sp 

ABILITY sp-ah ah-b b - i h i h - 1 1-ah ah-t t - i y i y - sp 

Here the speech recognizer provides diphone transcription of the speech directly 

in the output as recognized speech, and the Diphone Extractor uses the information 
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provided to extract the diphones from the media file. A comparison of the correctness of 

segmented diphones using this method with the segmentation provided by the TIMIT 

database is indicated in Figure 6.9. As indicated in the pie chart, the boundaries of only 

59% of the segmented diphones are in the expected region, and either the start or end 

points, or both, of 41% of the segmented diphones are beyond the boundaries of the 

phonemes provided by TIMIT. 

Comparing Figures 6.9 and 6.8 indicates that the correctness of segmenting the 

diphones with the indirect method is about 80 -59 = 21% more than the correctness of 

segmenting the diphones with the direct method. The difference is probably due to 

insufficient training data. In fact, the training method for the triphone model begins with 

calculating the parameters of only 41 distinct phonemes, and then the training extends to 

the triphone model. The training for diphones, however, begins with calculating the same 

parameters for about 1600 distinct models, and it clearly needs much more data to adjust 

the parameters of all the models correctly. 

59% 

0 Correct 
HI Wrong 

Figure 6 . 9 Correctness of diphones segmented with the Direct-Method 
compared with TIMIT phoneme segmentation. 
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Although the indirect method provides better correctness as compared to the 

correctness of the direct method, the accuracy of segmented diphones in the indirect 

method is questionable. To have a sense of the accuracy of segmentation, I have 

developed a speech synthesizer program to pronounce a text by concatenating the 

segmented diphones, provided by both direct and indirect methods. 

6.4 Speech Synthesizer 

Concatenation of the diphones does not provide high quality synthesized speech; 

instead, synthesizers use different methods of coupling and filtering to create a smooth 

voice [29] [30]. However, these details are beyond the scope of this thesis. For evaluation 

of the accuracy of the segmentation, I simply join the diphones to synthesize the speech. 

It is obvious that the quality of the synthesized speech will be poor, but the output 

provides a sense of the accuracy of the diphones that are segmented according to the 

above-mentioned methods. Curious readers may refer to [31] for practical methods of 

speech synthesis. 

6.4.1 Program Options 

For synthesizing a text, the program converts the text to its equivalent diphones 

with sil at the beginning and ending of the text and sp inserted in between the words; the 

same as WIT, but for diphones. For example, the utterance "His head flopped back" is 

converted to 

s i l - h h hh-ih ih-sp sp-hh hh-eh eh-d d-sp sp-f f-1 1-
aa aa-p p-t t-sp sp-b b-ae ae-k k - s i l 

The program then looks into the diphones database and copies the diphones' binary file into a 

buffer and saves it as a W A V E format file. 
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In this program, I have developed two notations (M and D) for two different 

versions of speech synthesis using diphones. 

M This notation stands for synthesizing speech from the diphones segmented with the 

indirect method. It uses M database. 

D This notation stands for synthesizing speech from the diphones segmented with the 

direct method. It uses D database. 

6.4.2 Speech Output 1 

Figure 6.10 shows the original wave form of "His head flopped back" that is 

uttered by Keith. The Top picture of the Figure 6.11 shows the synthesized wave form of 

the same utterance from diphones segmented with the Indirect Method, and the bottom 

one shows the same utterance synthesized from the diphones segmented with the Direct 

Method. 

As indicated in both figures, the four words are marked with circles; arrows show 

the corresponding words in each waveform. Furthermore, the two synthesized wave files 

indicate that the diphones segmented with the direct method create a waveform closer to 

the original wave file than the diphones segmented with the indirect method. 
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Figure 6.11 Synthesized utterance "His head flopped back." (Top) From diphones segmented with 
Indirect Method. (Bottom) From diphones segmented with Direct Method. 

6.4.3 Speech Output 2 

This is the same experiment as the previous one, but the test speech, "this is not 

really me, " was not used either in training or in the segmentation process. As shown in 

Figure 6.12, the utterance "this is not really me" is synthesized with two methods. 
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Comparing the two waveforms, except at the beginning and end of the 

waveforms, the method shows a more natural appearance for method D than method M. 

Furthermore, the speech created by method D has a more natural sound. 

Figure 6.12 The utterance "this is not really me" synthesized with three methods. 
(Top) version M , (Bottom) Version D. 

6.4.4 Comparision 

Both Figures 6.11 and 6.12 indicate that speech synthesized by diphones 

segmented with the direct method has a more natural appearance and smoother tone than 

speech synthesized by the diphones segmented with the indirect method. However, my 

experiment with lab-mates indicates that the quality of the speech provided by Model D 

is limited to some words and in most cases, Model M shows a better quality of speech. 

The reason may reside in the accuracy and correctness of the two models. In fact, 

the indirect method provides more correct segmentation than the direct method, but the 

direct method segments the diphones more accurately than the indirect method. Further, 

if there were enough training data to set the parameters of the diphones in the direct 
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Distribution of Samples 

Figure 6.12 Distribution and accuracy of word segmentation. 

method, the results might show the superiority of this method as compared with the 

indirect method for segmenting diphones. This is a possibility worth exploring if enough 

data were available to train the diphone model. 

6.5 Word Segmentation 

The same function shown in Figure 6.2 is employed to determine the accuracy of 

the program to segment words. Figure 6.12 shows the distribution and accuracy of the 

segmented words. As indicated in the figure, 54% of the words are segmented with an 

accuracy above 90%, 26% of the samples are segmented with an accuracy above 75%, 

and 18% of the words are segmented with an accuracy below 50%. However, 2% of the 

words are segmented completely wrongly, compared to the segmentation provided by 

TIMIT. These words are of very short duration, such as 'a', 'at', and similar words. 

It is important to note that the TIMIT database, which is being used as a 

reference, is segmented manually and is prone to human error. Furthermore, the model 

used for all of the previous segmentations is not adapted. It is clear that the model, which 
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will eventually be used for this process, will be adapted to the speech of a specific user to 

achieve better accuracy. 

6.6 Word Spotting 

Other potential uses for the speech recognizer developed in the previous chapters 

are speech search applications. Because of the increasing use of multimedia to store and 

file data, tools that search and index media files without involving humans will be in high 

demand in the near future. The following simple application shows the functionality of 

such a system for searching and retrieving a word in an A V I file, without having the 

equivalent text of the media file. 

The program shown in Figure 6.13 is a dialog designed to find the occurrence of 

words in A V I files. The dialog accepts a text and uses the speech recognizer developed so 

far to find, load, and play the occurrence of a text in the media file. The program is 

invoked by typing a word in the Query Edit box and pushing the Submit Query button. 

Then, the program processes the media file to find the occurrence of the input text. If the 

text is found, the part of speech containing the text appears in the Display box at the 

bottom of the dialog, and the queried text is highlighted. The A V I file containing that part 

of speech is displayed in the File box, and the program is then ready to play the A V I file, 

which utters the requested text. Otherwise, the phrase "Not found" will be displayed in 

the Response box. The recognition process takes considerable time, so I have developed 

an O D B S 1 0 to accelerate processing and decrease the response time of the program. 

Open Database System 
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The first time the program wants to search a media file, it separates the speech 

section of the A V I file and passes it to the speech recognizer developed in the previous 

section11. Then it indexes and stores the recognized text into the database. The next time 

a user inputs a text, the program looks into the database and matches the input text with 

the recognized speech. This process is much more efficient because the program has to 

process each media file only once. 

Woid Spotter 

Finish 

Erttef«Wo[dfotQu«s>: j ___ 

. Si&mit Quay 

0UT11-

; a eleven resolved that the and at slavery sentiment at is becoming ripe for 
i action track twelve all th* your wishful thinking wont change that track 

lirteen so he understood her and a track fourteen larvae are kept form so track 
i the larvae kept warm by the queen are full grown in about ten days panic 

ack fifteen the single kick made it spring open shuddering 

Query Edit box 

Response box 

File box 

Display box 

Figure 6.13 The dialog was asked to look for the occurrence of the word "wishful". 

Figure 6.13 shows an instance of the dialog. In this dialog, the program is asked to 

find the word "wishful", by typing the word in the Query Edit box and pushing the 

Submit Query button. The program finds the word in the file O U T l l - 1 5 . A V I and 

11 This program uses the adapted tied-model developed in the previous section. 
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highlights the word in the paragraph found by the speech recognizer. The program then 

loads the A V I file and is ready to play the media file to utter "wishful". 

The recognized text is not completely correct. As indicated in the Display Box at 

the bottom of the dialog, the recognized text begins with "track a eleven" while the 

speech was "track eleven," and the speech "all your wishful thinking" has been 

recognized as "all the your wishful thinking." It is clear that the accuracy of the 

application for retrieving text is dependent upon the accuracy of the speech recognizer 

developed in the previous section. Figure 6.14 shows another instance of the program that 

is asked to look for occurrences of the word "family" in the media files. As indicated in 

the figure, the program finds the word in the file OUT01-04.AVI, highlights the word 

"family" in the Display box, and it is then ready to play and utter the word. 

Word Spotter 

Finish 

Submit Query 

•M. | m . "j |OUT01-04,AV1 

track again these blocks were set In resin saturated glass flopped and nailed track 
to his head flopped back track three the shot reverberated in diminishing 
whiplashes of sound to track four have a test run on of family first to be sure 
timing and seasoning are right the track shot the back are In be be in three be of In | 
and one these to in a and on set set in test a in 

Figure 6.14 The dialog was asked to look for the occurrence of the 
word "family". 
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C h a p t e r 7 

C o n c l u s i o n s 

7.1 Summary 

The primary contribution of this thesis is to develop methods and to extend 

speech recognition technology to segment natural speech into words and diphones, so 

that the segments can be recombined to synthesize speech based on user input. 

In this thesis, I used the M F C C method to preprocess speech signals, and uses 

H M M to model speech. However, there are a variety of methods for preparing speech 

signals for recognition and different methods for speech modeling and recognition. 

The language model used in this project is a parallel network with the same 

probability for all words used, although, the possibility of uttering a word depends on the 

context and logical flow of the speech in each sentence. 

For segmenting speech into diphones, the speech recognition engine is provided 

with both the speech to be recognized and its equivalent text. In this approach, the engine 

is able to recognize and segment the speech more accurately. 

I have introduced two methods to evaluate the correctness and accuracy of 

phoneme segmentation. The discussion of correctness and accuracy of phoneme 

segmentation is introduced in this thesis for the first time. In the first method, the 

accuracy of segmentation is set to the ratio of the intersection of the recognized segments 

and reference segments provided by TIMIT. In the second method, I modeled a phoneme 
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duration with a Normal distribution, and compared the correctness of the segmented 

phoneme with the boundaries of the same phoneme in the same utterance provided by 

TIMIT. The decision to set the standard deviation of the model to half of the duration of 

the middle node of the acoustic model, was based on the fact that the middle node of a 

phoneme has a more important role in identifying a phoneme than the two transient 

nodes. 

I have developed two methods to segment speech into diphones. In the first 

method (Indirect method), I have employed a phoneme-based speech recognition engine 

to segment speech into phonemes, and then adjacent phonemes are segmented into 

diphones. In the second method (Direct method), I have developed a speech recognition 

engine trained based on diphone recognition. In this method, input speech is segmented 

into diphones directly. 

By considering the fact that a diphone begins some where inside a phoneme and 

ends somewhere inside the adjacent phoneme, I have compared the correctness of 

diphone segmentation, segmented with the two methods. Experiments show that 80 

percent of the diphones segmented with the first method have both their start and end 

points located inside the defined boundaries, while only 59 percent of the diphones 

segmented with the second method have their both start and end points located inside the 

expected regions. This indicates that the Indirect method segments the diphones more 

correctly than the Direct method. The reason may be that the training process of the first 

method begins with estimating parameters of only 41 phonemes, while the same training 

data is employed to estimate the parameters of about 1300 diphones. This means that, on 

average, only 3.1 percent of the training data that is used to estimate the parameters of a 
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phoneme in the first method is employed to estimate the parameters of the diphones in 

the second method. In fact, the result may me different if the same amount of data per 

model are used to estimate the parameters of models in both methods. 

To evaluate the accuracy of segmentation, I concatenate the diphones to 

synthesize speech with the diphones segmented with both methods. By examining the 

wave form of the synthesized speech, I noticed that the speech synthesized with the 

diphones segmented with second method is smoother than the speech synthesized with 

the diphones segmented with the first method. Furthermore, the speech created by second 

method has a more natural sound. It seems that, although the correctness of segmentation 

with the Direct method is less than the correctness of the segmentation with Indirect 

method, the boundaries of the correctly segmented diphones are more accurate in Direct 

method than the boundaries of the diphones segmented with Indirect method. 

7.2 Future work 

The main challenges facing speech recognition engines are speed and accuracy. 

Processing speed depends on the size of vocabulary being recognized and the speed of 

the processor that the program is running. However, the accuracy of recognition is a 

matter of software. 

A dynamic word network is a good subject for further work. As recognition 

moves forward, the system changes the word network and modifies its transition 

probability to fit the contents recognized so far. Another possibility for improving 

accuracy is to model phonemes with different states and transitions, as we did for sp and 

sil in this project. This is a possibility worth exploring. 
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Diphone recognition engine is first introduced in this thesis, and each diphone is 

modeled with three left-right Markov Chain. However, studying acoustic behavior of 

each diphone and modeling each diphone with more accurate number of states and 

transitions can be a topic of further projects. 

User-independent speech recognition will be a necessity in the future. As 

indicated in the project, to achieve better recognition, the model should be adjusted and 

tailored to the voice of a specific user. However, this may not be practical for a speech 

recognizer installed for public use; for example, a banking machine. As a result, a main 

goal of speech recognition is the development of a system that is able to recognize the 

speech of different users with the same, high accuracy. One possible approach to such a 

system would involve classifying different users into different groups, and loading 

models that most appropriately reflect the speech of the user. The main difficulty of 

developing such a system is classifying users and dynamically adapting the parameters of 

models to achieve better accuracy. 
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A p p e n d i x e s 

Appendix A 

Regression Class Tree 

A common approach using a binary regression class tree is shown below. 

Figure A . l A binary regression tree 

The leaves of the tree are termed the base regression classes, and each Gaussian 

mixture component of a model set belongs to a single base class. For example, the class 

in Figure A . l . has four base classes, C4, C5, C6, and C7. During adaptation, occupation 

counts are accumulated for each of the base classes. The solid lines in the figure indicate 

that there are sufficient data for adaptation, and the dotted lines show the insufficiency of 

the data for the adaptation process. For example, neither nodes 6 nor 7 has sufficient data 

for adaptation. However, when they pool at node 3, there is enough data. The amount of 

data that determines sufficiency is definable. 
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The regression class tree is built using a centroid splitting algorithm, which yields 

clusters that lie in a similar portion of the acoustic space. The following algorithm 

provides a method to cluster and create a Regression Class Tree. 

1. Select a terminal node that is to be split. 

2. Calculate the mean and variance from the mixture components clustered at 

this node. 

3. Create two children. Initialize their means to the parent mean perturbed in 

opposite directions for each child by a fraction of the variance. 

4. For each component at the parent node assign the component to one of the 

children by using Euclidean distance, to which the mean is closer. 

5. Once all the components have been assigned, calculate the new means for the 

children. 

This algorithm is repeated until the desired number of child nodes is found. 
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Appendix B 

EM Algorithm 

E M determines the estimated parameters of a model such that 

Wnew)>f(Mold) (B.l) 

where M is the parameter of the model. 

For implementing the E M algorithm, an auxiliary function is required. For speech 

recognition systems the function typically used is [32] 

QWM M^) = 5>(CU | M o W ) l og{0 , s I M _ ) (B.2) 
seS 

where S contains all possible state sequences leading to the recognition of the O. 

The equation (B.2) expands to 

T 

seS \ t=l t=l 

QWold, Mnew ) = J q(0, s | MM { J ^(transition _ prob.) + £ l o g ^ (o,) (B.3) 

Since we are interested only in the transformation matrix, we can ignore the first part of the 

right hand side of the equation, and (B.3) reduces to 

T 

I 
seS 1=1 

Q(Mold, Mnew) = J E 4<P, s | MM) log bh (o,) (B.4) 

After substituting (3.14) and (3.34) into (B.4), and the state occupancy count from (3.30), 

differentiate the Q(M0id,Mnew) with respect to Wand the right hand side equal to zero, and 

group the terms of W. We will then have the following : 

The details are too many to be referenced in this thesis; curious readers should refer to [20] [32] [33] [34] [35] for 
details. 



Appendix B: EM Algorithm 95 

X LWMt)? =£ WWoitW^7 (B.5) 

Here t, is the extended mean vector and 2 is the covariance matrix. If W is shared by R 

states, then the general form expands to this: 

r=l r=l 1=1 r=l 

Where Lr (t), is the occupation likelihood, defined as described in (3.28) 

Lr(t) = P(qr(t)\0„M) (B.7) 

and qr (t) indicates the Gaussin component at time t, OT={O(1),. . .,o(T)} is the adaptaion 

data. The equation (B.6) is rewritten, thus: 

t t hWLMtf =HvrWDr (B.8) 
1=1 r=l 1=1 r=l 

Where 

Vr=^LrWr-1 (B.9) 

and 

D r = ^ r C (B.10) 
i=i 

Let's define Z: the right hand side of (B.8) to be a n x (n +1) matrix; then 

Z = ̂ L r ( O X > U / (B.ll) 

Also let the elements of Z, V, W, and D, be zy, vy, wy, and dy respectively; then the formula 

(B.ll) can be rewritten this way 

n n+1 R 

p/=l q=l r=\ 
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Since D r is symmetrical, equation (B.12) can be rewritten, thus: 

n+l R 

z^SXEW (B.13) 

setting 

^=Evf4)
 (B.14) 

yields 

z»=2>i.** (B.15) 
n+l 

9=1 

where Z and G can be computed from the observation vectors and model parameters. So we 

will have this: 

wl=(G(i)rlzl (B.16) 

where vi>, and zi are the f1 rows of W and Z respectively. 

The use of a regression class tree to generate classes dynamically does not introduce a 

problem into the above formulation; instead, if the parent node R has children {RI,... , Rc} 

then 

Z = JX (B.18) 

and 

G = | X (B.18) 

The same rules with some modifications apply to finding a variance transformation matrix. 

£ = BTHB (B.19) 
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where H is the linear transformation to be estimated and B is the inverse of the Choleski 

factor of 2T 1, so 

IT1 =CCT 

and 

B = C" 1 

(B.20) 

(B.21) 

By employing the same auxiliary function as defined in (B.4) 

Q(Mold >Mnew) = ^jYj Q(0> S I MoU ) log \ (fl, ) (B.22) 
seS t=l 

After expanding log bj (o,) and differentiating Q(M old \ Mnew) with respect to H and 

equating it to zero [32] we will have this: 

n _ £ ^ g ^ ( 0 ( o ( o - ^ x o ( o - ^ r ) r k 
4(0 

(B.23) 

Example of the EM Algorithm 

Assume that the following defines a single state in a recognition system using the two-

dimensional acoustic space with diagonal covariance 

2 4 0 
Mi — 

0 9 Mi 
3 0 9 

"4,1" r o.o2 -0.02 
Mo 3.4 -0.02 0.02 

Now let us assume that we have two frames of adaptation data, thus 

4 

3.5 

4.2 

3.3 

Recalling (B.16), we will solve the set of functions: 
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T R 

where w, and z, are the f1 rows of W and Z respectively. 

If we set offset equal to 1, then the extended mean vector will be 

M = i 2 3] 

and if we assume Lj(l) = 0.3, and Li(2)=0.8 then 

Z = 0.3 
0.25 0 4 
0 0.111 3.5 

[l 2 3]+0.8 
0.25 0 
0 0.111 

4.2 
3.3 

[l 2 3] 

Then 

Z = 
1.14 2.28 3.42 

0.4096 0.8192 1.2288 

For a diagonal covariance, we define the elements of G;, thus: 

r=l 

V r = jly(f)Zr-,=0.3 »=i 

0.25 0 
0 0.111 

+ 0.8 
0.25 0 
0 0.111 

[1 2 3]= 
1 2 3 
2 4 6 
3 6 9 

Vr = 
0.275 0 

0 0.1221 

At this point, we have what we need to solve G/ 
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1 2 3 0.275 0.550 0.825 
G, =0.275 2 4 6 = 0.550 1.100 1.650 

3 6 9 0.825 1.650 2.475 

1 2 3 0.122 0.244 0.366 
G 2 =1.1221 2 4 6 - 0.244 0.488 0.733 

3 6 9 0.366 0.733 1.099 

(G2r = 

1.8553-2 3.71 IE -2 5 . 5 6 6 £ - 2 
3.711E-2 7.421E-2 1.113E-1 
5.566E-2 1.113E-1 1.669E-1 

"4.179E-2 8.357E-2 1.254E-1 
8.357E-2 1.671E-1 2 . 5 0 7 £ - l 
1 .254£-2 2 . 5 0 7 £ - l 3 .761£-1 

By substituting G into (B.16) we get this: 

1.855£- 2 3.7'1'1E- 2 5.566E - 2 1.14" "0.2961" 
T 

w, = 3 .711£- 2 7.421E- 2 1.113E -1 2.28 -•- 0.5922 
5.566E- 2 1.113E- 1 1.669£ -1 3.42 0.8883 

"4.179£- 2 8 .357£- 2 1.254E -1" "0.4096" "0.2396" 
T 

™2 = 8.357£- 2 1.61 IE- 1 2.507 E -1 0.8192 = 0.4792 
1.254£- 2 2.507£--1 3.761E -1 1.2288 0.7188 

We can now compute the adapted means 

0.2961 0.5922 0.8883 
0.2396 0.4792 0.7188 

0.2961 0.5922 0.8883 

0.2396 0.4792 0.7188 

IT 4.145 
2 — 

_3.355_ 
-1 3 

As indicated, the mean has moved closer to the observed mean. A similar process is used to 

calculate the adapted covariance matrix. 
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Appendix C 

Tree-Based Clustering 

A Tree-Based clustering is a binary tree in which a yes/no phonetic question is 

attached to each node [36], arid according to the route a triphone traverses, it ends up in a 

leaf node. Then all the nodes in the leaf node are considered phonetically similar and they 

n-x+p 
m-x+i 

R Stop ?fjw^ 

Yes / \ No 
L Vowel ? $M 

Y e s ^ / VNO 
L_Nasal? 

Yes ; ( \NO 
('"''•) 

n-x+p 

Figure C l Decision tree-bases state tying 

can be grouped to share parameters. For example, Figure C l shows a case df tying the 

center states of a triphone of phoneme X. In this example, the triphone n-x+p will end up 

in the lower shaded node, because its right is "Stop" arid its left is "Nasal". 

To create a tree, the phonetic questions that categorize the phonetic context of a 

triphone state must be defined. The assumption behind the choice of phonetic questions is 

that phonemes that belong to the same phonetic class have a similar influence on the 

pronunciation of a phoneme. The set of questions defined for this project is Copied from 
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the set of questions developed at Cambridge University. However, the questions are 

modified to fit the phoneme set employed in this project (phoneme set used by CMU) . 

Refer to Appendix D for the list of questions used for this project. 

Tied-state triphone 

In this step, similar acoustic states of the triphones are tied to reduce the number 

of parameters and ensure that all state distributions can be robustly estimated. As a result, 

triphone states whose emission probabilities are very similar are tied together. These tied 

states share the parameters evaluated by all observations assigned to the set. The tied 

model is much smaller that the untied model, so it can be implemented more efficiently, 

compared with the untied one. 

Initially, all the selected models are grouped into the root node A B . Then this 

node is split using the phonetic question from the set of questions that yields the biggest 

likelihood of improvement A(A,B) for the child nodes A and B [20]: 

A(A, B) = \L(A)L(B) - L(AB)\ 

V 
A(A,B) = 

1 D 

- ( » A £ 1 O S 
£ d=\ 

d,AB 

'd,A 
+ »BE l og 

d=\ 

d,AB 

'.d,B 

2\ 

Where nx is the number of observations for node JC, D dimentionality of the 

feature vector and ad xthe variance of component d of node x. 

This process is repeated until the increase in log likelihood falls below the 

threshold specified for A(A, B). As a final stage, the decrease in log likelihood is 
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calculated for merging terminal nodes with different parents. Any pair of nodes for which 

this decrease is less than the threshold used to stop splitting are then merged. 

In this project all the states of each triphone model are clustered as 

("x", "*-x+*", "x+*", " *-x") . state [i] 
where X is a phoneme and i is the state of the model. This process is implemented for 

each X e phoneme _ set and i = [2 3 4] . 

The HTK provides a tool, HHed, for clustering purposes. I have used the question 

set in Appendix D with a threshold equal to 350. 
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Appendix D 

Question set employed for clustering 

The Questions provided are copied from the set of questions developed at 

University of Cambridge, but modified to fit the phoneme set we adapted in this project, 

the C M U phoneme set. 

R_Silence *+ s i l 
R_Pause *+sp 
R_Stop *+p,*+b,*+t,*+d,*+k,*+g 
R_Nasal *+m,*+n,*+ng 
R_Fricative *+s,*+sh,*+z,*+zh,*+f,*+v,*+ch,*+jh,*+th,*+dh 
R_Liquid *+r,*+w,*+y,*+hh 
R_Vowel *+eh,*+ih,*+ao,*+aa,*+uw,*+ah, *+er,*+ay,*+oy,*+ey,* + i y 

, *+ow 
R_C-Front *+p,*+b,*+m,*+f,*+v,*+w 
R_C-Central *+t,*+d,*+n,*+s,*+z,*+zh,*+sh,*+th,*+dh,*+l,*+r 
R_C-Back *+sh,*+ch,*+jh,*+y,*+k,*+g,*+ng,*+hh 
R_V-Front *+iy,*+ih,*+eh 
R_V-Central *+eh,*+aa,*+er,*+ao 
R_V-Back *+uw,*+aa,*+uh 
R_Front *+p,*+b,*+m,*+f,*+v,*+w,*+iy,*+ih,*+eh 
R_Central *+t,*+d,*+n,*+s,*+z,*+zh,*+sh,*+th,*+dh,*+l,*+r,*+eh,* 

+aa,*+er,*+ao 
R_Back *+sh,*+ch,*+jh,*+y,*+k,*+g,*+ng, *+hh,*+aa,*+uw,*+uh 
R_Fortis *+p,*+t,*+k,*+f,*+th,*+s,*+sh,*+ch 
R_Lenis *+b,*+d,*+g,*+v,*+dh,*+z,*+zh,*+sh,*+jh 
R_UnFortLenis *+m,*+n,*+ng,*+hh,*+r,*+y,*+w 
R_Coronal *+t,*+d,*+n,*+th,*+dh,*+s,*+z,*+zh,*+sh,*+ch,*+jh,*+l, 

*+r 
R_NonCoronal *+p,*+b,*+m,*+k,*+g,*+ng,*+f,*+v,*+hh,*+y,*+w 
R_Anterior *+p,*+b,*+m,*+t,*+d,*+n,*+f,*+v,* + th,*+dh,*+s,*+z,*+zh 

,*+l,*+w 
R_NonAnterior *+k,*+g,*+ng,*+sh,*+hh,*+ch,*+jh,*+r,*+y 
R_Continuent *+m,*+n,*+ng,* + f,*+v,*+th, *+dh, *+s,* + z,* + zh,*+sh,*+hh, 

*+r,*+y,*+w 
R_NonContinuent *+p,*+b,*+t,*+d,*+k,*+g,*+ch,*+jh 
R_Strident *+s,*+z,*+zh,*+sh,*+ch,*+jh 
R_NonStrident *+f,*+v,*+th,*+dh,*+hh 
R_UnStrident *+p,*+b,*+m,* + t,*+d,*+n,*+k, *+g,*+ng,*+l,*+r,*+y,*+w 
R_Glide *+hh,*+l,*+r,*+y,*+w 
R_Syllabic * + m , * + e r 
R_Unvoiced-Cons *+p,*+t,*+k,*+s,*+sh,*+f,*+th,*+hh,*+ch 
R_Voiced-Cons *+jh,*+b,*+d,*+dh,*+g,*+y,*+l,*+m,*+n,*+ng,*+r,*+v,*+w 

,*+z,*+zh 
R_Unvoiced-All *+p,*+t,*+k,*+s,*+sh,*+f,*+th,*+hh,*+ch,*+sil,*+sp 
R_Lohg *+iy,*+aa,*+ow,*+ao,*+uw,*+m,*+l 
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R_Short *+eh,*+ey,*+aa,* + ih,*+ay,*+oy,*+ah,*+uh 
R_Dipthong *+ey,*+ay,*+oy,*+aa,*+er,*+m,*+l 
R_Front-Start *+ey,*+aa,*+er 
R_Fronting *+ay,*+ey,*+oy 
R_High *+ih,*+uw,*+aa,*+iy, 
R Medium *+ey,*+er,*+aa,*+eh,*+m,*+l 
R_Low *+eh,*+ay,*+aa,*+aw,*+ao,*+oy 
R_Rounded *+ao,*+uw,*+aa,*+oy,*+w 
R_Unrounded *+eh, *+ih,*+aa,*+er,*+ay,*+ey,* + iy,*+aw,*+ah,*+m,*+hh, 

*+l,*+r,*+y 
R_NonAffricate *+s,*+sh, *+z,* + zh,* + f,*+v,*+th,*+dh 
R_Affricate *+ch,*+jh 
R_IVowel *+ih,*+iy 
R_EVowel *+eh,*+ey 
R_AVowel *+eh,*+aa,*+er,*+ay,*+aw 
R_OVowel *+ao,*+oy,*+aa 
R_UVowel *+aa,*+m,*+l,*+uw 
R_Voiced-Stop *+b,*+d,*+g 
R_Unvo i c ed-S t op *+p,*+t,*+k 
R_Front-Stop *+p,*+b 
R_Central-Stop *+t,*+d 
R_Back-Stop *+k,*+g 
R_Voiced-Fric * + z,* + zh,*+sh,*+dh,*+ch,*+v 
R_Unvoiced-Fric *+s,*+sh,*+th,*+f,*+ch 
R_Front-Fric *+f,*+v 
R_Central-Fric *+s,* + z,*+zh,*+th,*+dh 
R_Back-Fric *+sh,*+ch,*+jh 
R_aa *+aa 
R_ae *+ae 
R_ah *+ah 
R_ao *+ao 
R_aw *+aw 
R_ay *+ay 
R_b *+b 
R_ch *+ch 
R_d *+d 
R_dh *+dh 
R_eh *+eh 
R_er *+er 
R_ey *+ey 
R_f * + f 
R_g *+g 
R_hh *+hh 
R_ih *+ih 
R_iy *+iy 
R_jh *+jh 
R_k *+k 
R_l * + l 
R m *+m 
R_n *+n 
R_ng *+ng 
R_ow * +OW 

R_oy *+oy 
R_P *+p 
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R_r *+r 
R_s *+s 
R sh *+sh 
R_t *+t 
R_th *+th 
R_uh *+uh 
R_uw *+uw 
R_v *+v 
R_w *+w 
R-X *+y 
R_z *+z 
R_zh *+zh 
L_NonBoundary *-* 
L_Silence s i l - * 
L_Pause sp-* 
L_Stop p-*,b-*,t-*,d-*,k-*,g-* 
L_Nasal m-*,n-*,ng-* 
L _ F r i c a t i v e s-*,sh-*,z-*,zh-*,f-*,v-*,ch-*,jh-*,th-*,dh-* 
L_Liquid l-*,r-*,w-*,y-*,hh-* 
L_Vowel eh-*,ih-*,ao-*,aa-*,uw-*,ah-*,ax-*,er-*,ay-*,oy-*,ey-

*,iy-*,ow-* 
L_C-Front p-*,b-*,m-*,f-*,v-*,w-* 
L_C-Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,l-*,r-* 
L_C-Back sh-*,ch-*,j h-*,y-*,k-*,g-*,ng-*, hh-* 
L_V-Front i y - * , i h - * , e h - * 
L_V-Central eh-*,aa-*,er-*,ao-* 
L_V-Back uw-*,aa-*,uh-* 
L_Front p-*,b-*,m-*,f-*,v-*,w-*,iy-*,ih-*,eh-* 
L_Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,l-*,r-*,eh-

*,aa-*,er-*,ao-* 
L_Back sh-*,ch-*,jh-*,y-*,k-*,g-*,ng-*,hh-*,aa-*,uw-*,uh-* 
L_ F o r t i s p-*,t-*,k-*,f-*,th-*,s-*,sh-*,ch-* 
L_Lenis b-*,d-*,g-*,v-*,dh-*,z-*,zh-*,sh-*,jh-* 
L_UnFortLenis m-*,n-*,ng-*,hh-*,l-*,r-*,y-*,w-* 
L_Coronal t-*,d-*,n-*,th-*,dh-*,s-*,z-*,zh-*,sh-*,ch-*,jh-*,l-

* , r - * 
L_NonCoronal p-*,b-*,m-*,k-*,g-*,ng-*,f-*,v-*,hh-*,y-*,w-* 
L_Anterior p-*,b-*,m-*,t-*,d-*,n-*,f-*,v-*,th-*,dh-*,s-*,z-*,zh-

*,l-*,w-* 
L_NonAnterior k-*,g-*,ng-*,sh-*,hh-*,ch-*,jh-*,r-*,y-* 
L_Continuent m-*,n-*,ng-*,f-*,v-*,th-*,dh-*,s-* (z-*,zh-*,sh-*,hh-

*,l-*,r-*,y-*,w-* 
L_NonContinuent p-*,b-*,t-*,d-*,k-*,g-*,ch-*,jh-* 
L_Strident s-*,z^*,zh-*,sh-*,ch-*,jh-* 
L_NonStrident f-*,v-*,th-*,dh-*,hh-* 
L_UnStrident p-*,b-*,m-*,t-*,d-*,n-*,k-*,g-*,ng-*/l-*,r-*,y-*,w-* 
L_Glide hh-*,l-*,r-*,y-*,w-* 
L _ S y l l a b i c m-*,1-*,er-* 
L_Unvoiced-Cons p-*,t-*,k-*,s-*,sh-*,f-*,th-*,hh-*,ch-* 
L_Voiced-Cons jh-*,b-*,d-*,dh-*,g-*,y-*, l-*,m-*,n-*,ng-*,r-*,v-*,w-

*,z-*,zh-* 
L_Unvoiced-All p-*,t-*,k-*,s-*,sh-*,f-*,th-*,hh-*,ch-*,sil-*,sp-* 
L_Long iy-*,aa-*,ow-*,ao-*,uw-*,m-*,1-* 
L_Short eh-*,ey-*,aa-*,ih-*,ay-*,oy-*,ah-*,uh-* 
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L_Dipthong ey-*,ay-*,oy-*,aa-*,er-*,m-*,1-* 
L_Front-Start ey-*,aa-*,er-* 
L_Fronting ay-*,ey-*,oy-* 
L_High ih-*,uw-*,aa-*,iy-* 
L Medium ey-*,er-*,aa-*,eh-*,m-*,1-* 
L_Low eh-*,ay-*,aa-*,aw-*,ao-*,oy-* 
L_Rounded ao-*,uw-*,aa-*,oy-*,w-* 
L_Unrounded eh-*,ih-*,aa-*,er-*,ay-*,ey-*,iy-*,aw-*,ah-*,m-*,hh-

* , l - * , r - * , y - * 
L_NonAffricate s-*,sh-*,z-*,zh-*,f-*,v-*,th-*,dh-* 
L A f f r i c a t e ch-*,jh-* 
L IVowel i h - * , i y - * 
L_EVowel eh-*,ey-* 
L_AVowel eh-*,aa-*,er-*,ay-*,aw-* 
L_OVowel ao-*,oy-*,aa-* 
L_UVowel aa-*,m-*,l-*,uw-* 
L_Vbiced-Stop b-*,d-*,g-* 
L_Unvoiced-Stop p-*,t-*,k-* 
L_Front-Stop p-*,b-* 
L_Central-Stop t-*,d-* 
L_Back-Stop k-*,g-* 
L Voiced-Fric z-*,zh-*,sh-*,dh-*,ch-*,v-* 
L_Unvoiced-Fric s-*,sh-*,th-*,f-*,ch-* 
L_Front-Fric f-*,v-* 
L C e n t r a l - F r i c s-*,z-*,zh-*,th-*,dh-* 
L_Back-Fric sh-*,ch-*,jh-* 
L aa aa-* 
L_ae ae-* 
L_ah ah-* 
L_ao ao-* 
L_aw aw-* 
L_ay ay- * 
L_b b-* 
L_ch ch-* 
L_d d-* 
L_dh dh-* 
L_eh eh-* 
L er er-* 
L_ey ey- * 
L_f f-* 
L_g g-* 
L hh hh-* 
L_i h i h - * 
L _ i y i y - * 
L_jh j h - * 
L_k k-* 
L I 1-* 
L m m-* 
L_n n-* 
L_ng ng-* 
L_ow O W - * 

L_oy oy-* 
L_P p-* 
L_r r - * . 
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L _ S S - * 

L_sh sh-* 
L _ t t-* 
L _ t h t h - * 
L_uh uh-* 
L_uw U W - * 

L _ V V - * 

L _ W W - * 

L_y y-* 
L_z Z - * 

L_zh zh-* 
Table DI The set of questions are used for clustering. 
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