
Speech Recognition & Diphone Extraction for Natural Speech Synthesis

By

Hossein B. Darbandi

B.Sc. In Computer science, September 1999

BA.Sc. Electrical Engineering, January 1988

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF

THE REQUIREMENTS FOR THE D E G R E E OF

Master of Applied Science

In

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming

To the required standard

The University of British Columbia

February 2002

copyright Hossein B. Darbani, 2002

In presenting this thesis in partial fulfillment of the requirements for an advances degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying of

this thesis for scholarly purpose may be granted by the head of my department or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Electrical and Computer Engineering
The University of British Columbia ,
Vancouver, Canada.

April 18, 2002

A b s t r a c t

Modern speech synthesizers use concatenated words and sub-word segments,

such as diphones, to synthesize natural speech. Synthesizers available today can

synthesize speech with only a limited selection of voices provided by the vendors. The

voice segments (e.g. words & diphones) are often created using semi-manual processes

that are prone to human error and make the segments non-uniform.

The main goal of this thesis is developing an automatic method to segment and

label a natural speech into words, diphones, and phonemes. To segment speech into

words and sub-words, I use a speech recognition engine. The commercially available

speech recognition engines do not provide all the necessary functionality to segment the

speech into diphones accurately. As a result, I have developed an engine to segment

speech. For developing the engine, I have employed H T K tools provided by Cambridge

University, available for free.

ii

T a b l e o f C o n t e n t s

ABSTRACT II
T A B L E OF CONTENTS m
LIST OF FIGURES vi
LIST OF TABLES vn
ACBCNOWLEDGEMENTS Vffl

CHAPTER 1 1
INTRODUCTION 1

1.1 Motivation 1
1.2 Implementation 3
1.3 Outline of the Thesis 4
1.4 Problem of Speech Recognition 5
1.4 Mathematical Model of Speech Recognition 5
1.5 Elements of a Speech Recognizer 6

1.5.1 Acoustic Processing V
1.5.2 Acoustic Modeling 7
1.5.3 Language Modeling 8
1.5.4 Recognition 9

1.6 Elements of Speech 9
1.6.1 Phones and Phonemes 9
1.6.2 Phonetic and Phonemic Alphabets 10

CHAPTER 2 13
ACOUSTIC PROCESSING 13

2.1 Sampling 13
2.2 Pre-emphasize 14
2.3 Hamming Window 15
2.4 Fast Furrier Transformation (FFT) 16
2.5 Filter Bank 17
2.6 Log Energy Computation 18
2.7 Discrete Cosine Transform 18

CHAPTER 3 21
ACOUSTIC MODEL 21

3.1 Hidden Markov Model 22
3.2 Model of Phonemes 23
3.3 Speech Recognition Using HMM 26
3.4 Baum-Welch Algorithm 27
3.5 Viterbi Algorithm 28
3.6 Token Passing Method 29
3.7 Training of HMM 30
3.8 Baum-Welch or Forward-Backward Estimation 30
3.9 Forward-Backward Algorithm ; 31

iii

3.10 Adaptation 34
3.10.1 Model Adaptation Using MLLR 34

3.11 Language Model 36

CHAPTER 4 39

MODELING & TRAINING 3 9
4.0 Introduction 39
4.1 Acoustic Processing 40
4.2 Acoustic Modeling. • 41
4.3 Training 43

4.3.1 Mono-phone training 44
4.3.2 Triphone training 46

4.4 Evaluation Method 47
4.5 Experiments 48

4.5.1 Experiment conditions 49
4.5.2 Mono-Phoneme 49
4.5.3 triphone 52
4.5.4 Tied-Model 54

4.6 Comparison 55

CHAPTER 5 61

ADAPTATION 61
5.1 Triphone adaptation 61
5.2 Tied-model adaptation 64
5.3 Retraining... 65
5.4 Comparison 67

CHAPTER 6 69

DIPHONE & WORD SEGMENTATION AND EXTRACTION FOR NATURAL SPEECH SYNTHESIS
6 9

6.1 Diphone Segmentation 69
6.2 Indirect Method. 70

6.2.1 Evaluation 71
6.2.2 Method I 72
6.2.3 Method n 73

6.2.4 Diphone Segmentation 76
6.3 Direct Method 77
6.4 Speech Synthesizer 80

6.4.1 Program Options 80
6.4.2 Speech Output 1 81
6.4.3 Speech Output 2 82
6.4.4 Comparision 83

6.5 Word Segmentation 84
6.6 Word Spotting 85

CHAPTER 7 88

CONCLUSIONS 88
7.1 Summary 88

IV

7.2 Future work 90

APPENDIXES 92

APPENDIX A 9 2
Regression Class Tree 92

APPENDIX B 94
EM Algorithm 94
Example of the EM Algorithm 9 7

APPENDIX C 100
Tree-Based Clustering 100
Tied-state triphone 101

APPENDIX D 103
Question set employed for clustering 103

REFERENCES 108

v

L i s t o f F i g u r e s

Figure 1.1 Overview of a speech recognition system 7
Figure 2.1 Acoustic Processing 14
Figure 2.2 Mel Filter Bank 17
Figure 2.3 Part of the signal of phoneme "hh" 19
Figure 2.4 M F C C samples 19
Figure 3.1 A three-state Markov chain 21
Figure 3.2 A three-state Hidden Markov Model 22
Figure 3.3 Basic structure of a phonetic H M M 24
Figure 3.4 A modified network recognizes any permutation of Flip and Flop. 36
Figure 3.5 Word Internal Triphone Expansion of Flip-Flop Network 37
Figure 3.6 The modified version of Flip and 38
Figure 4.1 sil and sp model 43
Figure 4.2 The wave form of "Her hum became a gurgle of surprise." 44
Figure 4.3 The correctness of the mono-phone model recognizing Train data. 56
Figure 4.4 The correctness of the mono-phone model recognized Test data.... 56
Figure 4.5 The correctness of triphone model 57
Figure 4.6 The correctness of the tied-model 58
Figure 4.7a Comparing the triphone to the tied-triphone model 59
Figure 4.7b Comparing the Accuracy of the triphone and tied-triphone 59
Figure 4.8 The size of the models in k bytes 60
Figure 5.1 Correctness of the model before and after adaptation 63
Figure 5.2 Correctness of the tied-triphone model before and after adaptation. 65
Figure 5.3 Correctness and accuracy of the untied-triphone model 66
Figure 5.4 Accuracy and correctness of the tied-triphone model 67
Figure 6.1 Block diagram of Diphone segmentation 70
Figure 6.2 Calculating the accuracy of segmentation 71
Figure 6.3 Distribution and accuracy of segmented phoneme samples 72
Figure 6.4 Mapping the model to Normal Distribution 73
Figure 6.5 C correctness of segmenting phonemes 74
Figure 6.6 Distribution and correctness of segmented samples 75
Figure 6.7 Distribution and accuracy of the segmented samples 76
Figure 6.8 Correctness of diphones segmented using Indirect-Method 77
Figure 6.9 Correctness of diphones segmented using Direct-Method 79
Figure 6.10 Wave form of utterance "His head flopped back" uttered by Keith. 82
Figure 6.11 Synthesized utterance "His head flopped back." 82
Figure 6.12 The utterance synthesized with three methods 83
Figure 6.12 Distribution and accuracy of word segmentation 84
Figure 6.13 An instance of Word Spot program 86
Figure 6.14 Another instance of Word Spot program 87
Figure A. 1 A binary regression tree 92
Figure C l Decision tree-bases state tying 100

vi

L i s t o f T a b l e s

Table 1.1 The C M U phoneme set used in the thesis 12
Table 4.1 Accuracy and correctness of a mono-phoneme model without sp 50

Table 4.2 Accuracy and correctness of the mono-phoneme model with sp 51
Table 4.3 Accuracy and correctness of compound model 51
Table 4.4 Accuracy and correctness of the triphone model trained with WET... 53

Table 4.5 Accuracy and correctness of triphone model trained with WIT 53

Table 4.6 Accuracy and correctness of tied-triphone model trained with WIT... 55
Table 5.1 Accuracy and correctness of the adapted data for the triphone model 62
Table 5.2 Correctness of the adapted tied-triphone model 64

Table 5.3 A & C of the triphone model retrained after being adapted 65

Table 5.4 A & C of the tied-triphone triphone model retrained after adaptation... 66

Table DI The set of questions are used for clustering 103

vii

A c k n o w l e d g e m e n t s

I would like to thank all the people who have helped me in the accomplishment of

this work. I appreciate the help of my supervisor, Babak Hamidzadeh, who has supported

and guided me throughout my research. I am also grateful to my friends; especially to

Ramin and Keith for their contributions to this project. I am also indebted to George

Tasikin for his great help and advice throughout my education.

Finally, special thanks to my wife, who has supported me all this time, and to my brother

who has always encouraged me to pursue higher education.

Ffossein B. Darbandi

The University of British Columbia

February 2002

viii

1

C h a p t e r 1

I n t r o d u c t i o n

1.1 Motivation

Modern speech synthesizers generate a synthesized speech by concatenating

segments of natural speech. The segments of a speech can be phrases, words, or sub-

words that a speech synthesizer uses to create a speech. For concatenating words, a

database that has an utterance for each word should be utilized. However, a database that

keeps an utterance for every word in a language will be too big and too difficult to be

implemented. As a result, synthesizers use sub-word segments in addition to common

word segments to synthesize speech.

Words are made up of phonemes, and there are a limited numbers of phonemes in

each language. For example American English is made up of about 40 phonemes. As a

result, instead of concatenating words, a synthesizer may use sub-words such as

phonemes and diphones to create speech. Studies [1] have shown that speech synthesized

by diphones, which are a sub-word division that begins from middle of a phoneme and

ends in the middle of the adjacent phoneme, provides more natural speech.

Segmenting and labeling diphones has, until now, been a manual and semi-

manual process that demands linguistic skills, and it is prone to human error. Besides, it

is a difficult process. Consequently, the voices created by speech synthesizers are limited

to a few that are provided by the vendors. To synthesize a variety of voices, a set of

Chapter 1: Introduction 2

speech automatically for any given voice can speed up and facilitate segmentation

process.

In my thesis research, I have developed an automatic method to segment and label

natural speech into corresponding words and diphones. To segment speech into words

and diphones accurately, a speech recognition engine with a specific Application

Prograrnrning Interface is needed. However, the available commercial recognition

engines do not provide such an interface. As a result, I have developed an engine to

provide such functionalities.

I have used two methods for diphone segmentation. In the first method, I have

developed a speech recognition engine based on phoneme recognition, and I have used

the engine to recognize phonemes. Then the adjacent phonemes are segmented into

diphones. In this method, I have assumed that a diphone begins from middle of a

phoneme and extends into the middle of the adjacent phoneme. However, this assumption

dose not always yield appropriate results, because a diphone may start any where inside a

phoneme and end any where inside the adjacent phoneme.

To solve this problem, I have created a second method to segment natural speech

into diphones directly. In this method, I have developed a diphone recognition engine by

creating the acoustic model for each diphone and training the parameters of the model

with diphone transcriptions of the training speech. Then the engine is employed to

segment speech into diphones directly.

Chapter I: Introduction 3

1.2 Implementation

To segment the speech accurately, an accurate speech recognition engine is

required. To develop an accurate speech recognizer, I have used H T K tools and followed

a step-by-step procedure. In each step, the parameters of the model are evaluated and

modified with different training cycles. Then the model that provides the most accurate

recognition is selected and passed to the next section for further processing.

First a mono-phoneme H M M for each phoneme is created, and the models are

trained and tested. The model that provides the most accurate recognition is then passed

to the next step. In that step, the mono-phoneme models are converted to triphone models

to achieve more accurate modeling. They are then retrained and tested with different

training cycles. Again, the model provided the most accurate recognition is passed to the

next step of the process. In the final step, the parameters of the models are tied to create a

compact model and are adapted with the voice of a person (Keith) as the test subject to

achieve high accuracy.

The engine is then employed to segment and label the diphones automatically. For

segmenting diphones, I have followed two different approaches. In the first approach, I

have developed a speech recognition engine based on phoneme recognition, and then I

have employed the engine to segment the speech into words and phonemes. Then the

adjacent phonemes are segmented into diphones. In the second approach, I have

developed an engine to segment the speech into diphones directly. For this purpose, the

acoustic models of the diphones are created and trained. Then the model is used to

recognize and segment the speech into diphones directly.

Chapter 1: Introduction 4

In addition to the above engine, a program is developed to demonstrate other

practical uses of the engine created in this project. This program uses the speech

recognizer to search media files for occurrence of an utterance. The program is able to

look for an utterance of a word or a phrase in a speech by listening to the media files.

1.3 Outline of the Thesis

Chapter 1 begins with introducing the main parts of a speech recognition system

and the major problems of developing a speech recognition engine. Chapter 2 discusses

the digital signal processing needed to prepare the speech signal for recognition. The

acoustic model employed in this thesis is explained in Chapter 3, and the methods

employed for training and recognition are discussed.

The first part of implementation is explained in Chapter 4. This part consists of

creating, modeling, and training the mono-phoneme models, and improving the models

by converting them to triphone and tied models. The chapter ends by comparing the

correctness and accuracy of the recognition achieved by different models.

Chapter 5 explains the adaptation process employed in this thesis to adjust the

parameters of the models to the voice of the test subject (Keith). Chapter 6 explains the

methods used for segmentation and discusses the accuracy of each method. This chapter

continues by discussing other practical uses of the engine such as searching for

occurrences of an utterance in a media file. Chapter 7 concludes the thesis and discusses

the future works. Some detailed information is discussed in Appendixes A through D.

Finally, the references used in this project are listed at the end of the thesis.

Chapter 1: Introduction 5

1.4 Problem of Speech Recognition

Automatic Speech Recognition is the process of mapping a speech signal to a

sequence of discrete entities, for example, phonemes, words, and sentences. The major

obstacle to accurate recognition is the large variability in speech signal characteristics.

This variability in characteristics has three main components, Linguistic variability,

Speaker variability, and Channel variability. Linguistic Variability includes the effects of

phonetics and linguistic content of speech. Speaker Variability includes the effects of

articulation, that is, the effects of neighboring sounds on the acoustic realization of a

particular phoneme due to the continuity and motion constraints on the human

articulatory apparatus [4]. Channel Variability includes the effects of background noise

and the transmission channel, such as a microphone or telephone. A l l these variables

impose layers of difficulty and uncertainty that must be addressed by the recognition

process.

1.4 Mathematical Model of Speech Recognition

To discuss the process of speech recognition, we employ a mathematical model;

then, an exact statement of the problem leads to decomposition of the problem into easier

sub-problems. Our approach to designing a speech recognizer is statistical, so the

mathematical model of our problem involves probabilities [5] [6].

Let A denote the data

A = ava2,...,am at £ A (1.1)

on the basis of which the speech recognizer will decide which words were spoken. The

symbol a. is generated at time index I, and let

Chapter I: Introduction 6

W = w., w. W(. £ CO (1.2)

denote the string of n words, each belonging to a vocabulary co.

If ¥(W\Jl)is the probability that the string W is spoken, given that the sequence of A is

observed, then the corresponding mathematical formula is

that the recognizer will pick the most likely string of words, given the observed acoustic data.

Finding w in (1.3) is not feasible, because the permutation of possible words grows

astronomically. For example, suppose our dictionary contains 4000 words, and w is the

utterance of a sentence with only 3 words; then the formula (1.3) should be calculated for

(4000)3 possible combinations.

The well-known Bayes' formula [7] of probability theory allows us to rewrite the

right hand side of (1.3) as (1.4):

where P(W) is the probability of the word string W that will be uttered, and P(A|W) is the

probability that the speaker says W and the evidence A is observed, and P(A) is the average

probability that A will be observed.

Since A is fixed, the recognition problem is limited to finding the word string W that

a> = arg max P(W \ A) (1.3)

P(W | A) =
P(W)P(A\W)

P(A)
(1.4)

<y = arg max P(W0P(A | WO (1.5)

maximizes the product of P(W) P(A|W)

1.5 Elements of a Speech Recognizer

Chapter 1: Introduction 7

Figure 1.1 is an overview of a speech recognition system. The main parts of the

system are as follow.

Acoustic Language
Model Model

Figure 1.1 An overview of a speech recognition system.

1.5.1 Acoustic Processing

First, it is necessary to process the input signal (e.g. wave sound) and transform it

into the symbol a. that the recognizer deals with. The main requirement of speech

recognition is the extraction of voice features, which may distinguish between different

phonemes of a language. From a statistical point of view, this procedure is equivalent to

finding sufficient statistical data to estimate phonemes. Furthermore, the process uses

techniques to make the output data less sensitive to the speaker and the background noise.

1.5.2 Acoustic Modeling

Referring to formula (1.5), the recognizer needs to determine the value of P(A|W),

the probability that the sequence A is observed, given that the word sequence W is

uttered. Since the number of possible pairs for W and A are too large, it is not possible to

create a simple lookup table. Thus, to compute the P(A|W), a statistical model is required.

An acoustic model employed in speech recognition is the Hidden Markov Model (HMM).

Acoustic
Processing Recognizer -> W

Chapter 1: Introduction 8

Other models are also possible based on Neural Networks [3] [7] [8] and Dynamic Time

Wrapping [2]. This project employs H M M , which is used most widely in modern speech

recognition systems.

1.5.3 Language Modeling

The Formula (1.5) also requires P(W), the probability of string Wthat the speaker

wishes to utter. The Bayes' formula allows us to decompose the P(W) as follows:

P(W) = n P (w l | w 1 , . . . , w M) (1.6)

Thus, the recognizer should determine the probability of P(wt \ w1w(._j) . It is logical to

assume that the choice of Wi depends on the history of the previous words spoken. So (1.6)

can be rewritten as

/ W) = n P (w , |0(w p . . . ,w M)) (1.7)
x=i

The art of language modeling consists of determining the appropriate classification of and

a method to estimate the probabilities of P(wi | < J > (W j w M)) .

There are many classifications in language modeling, such as Finite State

Language^, Stochastic Models2, and Uniform Models. In this project we have chosen

Uniform Model, so that every word is equiprobable and the probability of each word is

where Vis the dimension of the vocabulary.

A simplified artificial language that uses finite state network to model the allowed word seqences.
Based on the joint probability of a word and its preceding words.

Chapter 1: Introduction 9

1.5.4 Recognition

To find the transcription of W from the acoustic data A by Formula (1.5), the

program must examine all possible word strings W. However, this is not possible,

because the space of W is too huge to be calculated. To solve the problem, two more

algorithms, Baum-Welch and Viterbi, will be introduced to make the search space

feasible.

1.6 Elements of Speech

1.6.1 Phones and Phonemes

Words are natural units for the modeling of a speech recognizer, particularly since

there are many applications for which isolated words are an adequate form of input.

However, using words as fundamental linguistic units is wasteful of training data, and

ignores any commonality between sounds within different words [9]. Thus, sub-word

units are always used in speech recognition systems with large vocabularies.

Linguists have categorized the languages of the world into segments called

phones, though not all linguists agree on the identity of these phones. Phones represent a

base set of sounds that can be used to describe most languages. For instance, the word

"spat" would be [s p ae t]. This indicates that the word is made up of an s, followed by an

unaspirated p, a short vowel a, and an aspirated t. To determine if a consonant such as p

or t is aspirated, one holds a hand in front of his or her mouth. If a breath of air is felt as

the consonant in the word is uttered, then it is aspirated. For example compare "spat"

versus "pat." In the latter case, because a larger amount of air is produced, the p is said to

be aspirated, as opposed to the unaspirated p in "spat" [9]. The set of phones is designed

Chapter 1: Introduction 10

to cover all languages, and the inventory of them is quite large. As a result, every

language uses only a subset of the phone set. The set of unique sounds that a language

uses is called its phonemes. Two sounds are considered to be different phonemes if they

make a distinction between two words; these words are called minimal pairs.

There are two more sub-word segmentations defined in speech processing,

diphones and triphones [10] [11]. Triphones are used in speech recognition systems while

diphones are mainly used in speech synthesizers. Diphones are segments of speech that

include the transition from a relatively stationary region of one phoneme to a similar

region in an adjacent phoneme. Thus, diphones begin and end roughly in the middle of

phonemes and span the transition between adjacent phonemes. For example, the word

"spat" is made up of a set of three diphones [s-p p-ae ae-t]. As a result, there will be V 2

number of diphones in a language; however, all the diphones may not be included in a

language. Furthermore, some combinations are used so rarely that they can be ignored.

A triphone is a set of phones defined by the preceding and following phonemes.

For example, the word "spat" is segmented into two triphones and two diphones [s+p s-

p+ae p-ae+t ae-t]. Thus, there will be V 3 number of triphones in a language[10].

1.6.2 Phonetic and Phonemic Alphabets

Linguists have found that the alphabets of English and other languages are not

optimal choices for linguistic description. For example, consider the two words "thing"

and "that". In these words, the sounds made by the letters 'th' are different from each

other. A way must be found to distinguish between them. The system that phoneticians

have devised for this purpose is called the International Pronunciation Alphabet (IPA).

Chapter 1: Introduction 11

This alphabet has a base on 75 consonants and 25 vowels. In 1980, a speech database

called TIMIT was created and manually labeled for English. The TIMIT phone set is

smaller than IPA. This database is being used to train and test for speech analysis in

English.

In this thesis, I have used the C M U 3 dictionary and phoneme set. The stress marks

are removed from the dictionary, because they are not suitable for speech recognition

purposes [12]. Table 2.1 shows the C M U phoneme set. The two phonemes sil and sp that

stand for silence and short-pause are added to the end of the table, sil marks the

beginning and end of a sentence that usually begins and ends with a silence, and sp marks

the boundaries of words in an utterance, which usually separates words in speech.

Phoneme Example Transla t i o n
AA Odd AA D
AE at AE T
AH hut HH AH T
AO ought AO T
AW cow K AW
AY hide HH AY D
B be B IY
CH cheese CH IY Z
D dee D IY
DH thee DH IY
EH ed EH D
ER hurt HH ER T
EY ate EY T
F fee F IY
G green G R IY N
HH he HH IY
IH i t IH T
IY eat IY T
JH gee JH IY
K key K IY
L lee L IY
M me M IY
N knee N IY
NG ping P IH NG
OW oat OW T
OY toy T OY

Carnegie Mellon University,

Chapter 1: Introduction 12

p pee P IY
R read R IY D
S sea S IY
SH she SH IY
T tea T IY
TH theta TH EY T AH
UH hood HH UH D
UW two T UW
V vee V IY
W we W IY
Y y i e l d Y IV L D
Z zee Z IY
ZH seizure S IY ZH ER
Sp Short Pause
Sil Silence
Table 1.1 The C M U phoneme set used in the thesis.

13

C h a p t e r 2

A c o u s t i c P r o c e s s i n g

Despite differences in speaker and environment characteristics, the aim of signal

processing in speech recognition is to find a relatively stable representation for different

examples of the same speech sound. To prepare a signal for speech analysis, the signal is

transformed by mathematical models such as FFT, LPC [13] [14] and M F C C (Mel

Frequency Cepstral Coefficients) [15]. Although many different models have been used

for speech recognition over the past few decades, more recently the majority of systems

have converged to use MFCC. For this thesis, I have used M F C C , which has been

employed by almost all of the recent speech recognition engines. Figure 2.1 shows the

overall acoustic processing of input audio to be transformed to M F C C .

2.1 Sampling

Digital speech processing is usually performed by frequency sampling, ranging

from 8000 samples/sec to 32000 samples/sec. Speech sampled at 16Khz contains all

necessary information needed for speech recognition [16] [17].

A sampler and an A/D converter are usually included inside a computer audio

card. The signal is sampled in a window and pre-emphasized. Narrow windows have

been proposed to estimate the rapidly varying parameters of the vocal tract, while large

windows are used to estimate the fundamental frequency. A 20-30 ms long window is

generally a good compromise. In our implementation the audio signal is sampled at every

Chapter 2: Acoustic Processing 14

Speech Signal

i
Windowing

Pre-emphasis

+
F F T

I
Mel Filter Bank

log(| I2)

DCT

MFCC MFCC MFCC
Derivatives

MFCC

1 1
Output Vector

Figure 2.1 Overall picture of Acoustic Processing.

10 ms over a window of 25 ms. then its DC mean is removed and passed to the next

module to be pre-emphasized.

2.2 Pre-emphasize

High frequency formants have smaller amplitude than low frequency formants.

Pre-emphasis is therefore required to obtain similar amplitude for all formants. Such

Chapter 2: Acoustic Processing 15

processing is usually obtained by filtering the speech signal with a first order H R filter,

whose transfer function in the z-domain is

H(z) = \-a.z'x 0<a<\ (2.1)

a is the emphasis parameter [18]. In the time domain, the pre-emphasized signal is related to

the input signal by this relation:

x\n) = x(n) - ax(n -1)

A typical value for ais 0.95.

2.3 Hamming Window

The simplest window has a rectangular shape. This window is implicitly used

when a sequence of N samples is retrieved from a signal:

fl 0<n<N-l)
w(n)= \

[0 otherwise J

The presence of a window provokes a distortion on the estimated spectrum, since

the windowed signal is the convolution of the spectrum of the signal x'(n), and of the

Fourier transform of a rectangular window w(n). The spectrum of w(n), W(eJto)is

composed of a higher energy main lobe, centered at zero frequency, and lower energy

side lobes centered at higher frequencies. The main lobe spreads out in a wider frequency

range than the narrow band power of the signal x'(n) represented by the formant, so the

side lobes of the spectrum of the window swap energy from different and distant

frequencies of x'(n). This problem is called leakage.

Chapter 2: Acoustic Processing 16

To reduce leakage, x(n) is multiplied by a properly shaped window, w(n). In this

thesis, I have employed the Hamming Window [17], which has an impulse response as

follows:

win) =
0.54 - 0.46 cos(—^-) n = 0 , . . . ,W- l

N-l
0 otherwise

The side lobes of this window are much lower than those of the rectangular

window, and the leakage effect is decreased. The resolution of the Hamming window is

less than the resolution of the rectangular window, because the main lobes of the

Hamming window are wider than the main lobes of the rectangular window [19]. A

Hamming window is a good choice for speech recognition, because a high resolution is

not required. As indicated in Figure 2.1 the next block is FFT, and it integrates all the

closest frequency lines.

2.4 Fast Furrier Transformation (FFT)

The standard methods for spectral analysis rely on the Fourier transformation of

x(n). The Discrete Fourier Transform (DFT) of all frames of the signal is obtained by the

following:

X,ik) = Xt(e /n) k = 0,...,N-l

If the number of samples, N , is a power of 2, N=2P with p as an integer, then the

computational complexity can be reduced to an order of nZog(n), resorting to the Fast

Fourier Transform algorithm (FFT) [18]. Note that the phase information of the DFT

samples of each frame is discarded. This is consistent with the fact that the phase does not

carry useful information. Experiments have proven that the perception of a signal

Chapter 2: Acoustic Processing 17

reconstructed with random phases is almost indistinguishable from the original, if the

phase continuity between successive frames is preserved [17].

2.5 Filter Bank

Human ears resolve non-linearly across the audio spectrum, and empirical

evidence suggests that designing a front-end to operate in a similar non-linear manner

improves recognition performance [20]. A straightforward route to obtaining the desired

non-linear frequency resolution requires a filter bank.

Figure 2.2 Mel Filter Bank.

Figure 2.2 illustrates the general form of a Mel-Filter bank. The filters are

triangular and spaced equally along the mel-scale by the following:

Mel(f) = 25951og 1 0(l+-^-)
1 0 700

To implement this filter bank, the speech data is transformed using Fourier

transformation, the magnitude coefficients are then multiplied by corresponding filter

Chapter 2: Acoustic Processing 18

gain, and the results are accumulated. In our project, I have used 22 filters equally spaced

along the mel-scale [19].

2.6 Log Energy Computation

The previous procedure has the role of smoothing the spectrum performing

processing, which is similar to that executed by the human ear. The next step is to

compute the logarithm of the square magnitude of the signal obtained from the filter

bank. Relevant benefits of this procedure are noted that the magnitude and logarithmic

processing are performed by the ear as well. Furthermore, squaring the magnitude

discards useless phase information, and calculating the logarithm of the result is a method

of dynamic compression that makes feature extraction less sensitive to the variations of

speech.

2.7 Discrete Cosine Transform

The final procedure for the Mel frequency cepstrum computation (MFCC)

consists of performing a Discrete Cosine Transformation, DCT [17]. The DCT has the

property of producing highly un-correlated features [18]. The zero order M F C C

coefficient is approximately equivalent to the energy of the frame [21]. The DCT also has

the effect of smoothing the spectrum, but only if the first coefficients are retained. The

number of M F C C coefficients is generally lower than 15 in speech recognition. Typical

values are from 9 to 15 coefficients. In Figure 2.3 and Figure 2.4 some partial results of

MFFC computation are displayed.

A further improvement in recognition is obtained by considering that the

Cepestral parameters do not take into account the dynamic evolution of the speech signal.

Chapter 2: Acoustic Processing 19

As the result, the first and second order differences of the M F C C may be used to capture

such information. Hence, given vector U the in the time domain, the i-th order time

differences can be computed as [11] :

A' {« , } = A'"1 [uM} - A M {uM}, A 0 {« , } = u,

Part of phonem "hh" after Pre-emphasing

The same signal after applying Hamming Window

Figure 2.3 Part of the signal of phoneme "hh"

FFT of the same sample (hh)

0 5 10 15 20 25 30

Figure 2.4 (Up) FFT of the signal at Figure2.3, (Down) The first
12 MFCC samples of the same signal are followed by its
differences.

Chapter 2: Acoustic Processing 20

In this project the output vector for each frame, 25 ms, is composed of 13 first

coefficients known as static parameters of MFCC, followed by first and second order

differences, known as delta and acceleration coefficients respectively. So each frame is

transferred to a vector of 39 elements of data.

21

C h a p t e r 3

A c o u s t i c M o d e l

The Acoustic Model used in almost all advanced speech recognition systems is

based on the Markov Chain. A Markov Chain consists of a number of states with

transitions among them. A probability is associated with each transition and a symbol is

Figure 3.1 A three-state Markov chain.

associated with each state. Figure 3.1 shows a three-state Markov chain with transition

probability a., between states imdj. The symbols A, B, and C are associated with states 1,

2, and 3 respectively. If a transition occurs from 1 to 2, symbol B will be produced as an

output, or a transition from 3 to 1 will produce symbol C. Note that in a Markov Chain

the transition between states are probabilistic, while the production of the output symbols

Chapter 3: Modeling 22

are deterministic. For example, the transitions (1 2 2 3 2 1) will produce symbols B B C B A

as output [22].

3.1 Hidden Markov Model

A Hidden Markov Model (HMM) is the same as a Markov Chain, with one

difference. In H M M , the output symbols are probabilistic too. Thus, instead of

associating a symbol with each state, all symbols can be produced within all states with a

different probability, and a probability distribution of all the output symbols is associated

with each state. The probability associated with each state is known as the output

probability.

Figure 3.2 shows a three state H M M . It has the same transition probabilities as the

Markov Chain defined in Figure 3.1, but a probability distribution is associated with

output symbols [A B C D E] . Now, when a transition occurs from one state to another

A B C D E

A B C D E

Figure 3.2 A three-state Hidden Markov Model.

Chapter 3: Modeling 23

state, an output symbol is generated according to the probability distribution of the

corresponding state. Given a sequence of symbols generated by the H M M of Figure 3.2,

it is not possible to know for certain what state sequences have generated the observed

output. For example, if the output symbols are " A B B E C," there is no way to know for

certain which sequences have produced them. In fact, every sequence of states with the

same length of output symbols is a possible sequence with a different probability. It is

said that the sequences of the symbols are hidden from the observer if the output symbols

are the only things an observer sees. This is why this model is called a Hidden Markov

Model [22].

Instead of having a discrete number of output symbols, a probability density

function may be defined over all possible values of the output vectors.

3.2 Model of Phonemes

Figure 3.3 shows an example of a three state H M M for a single phoneme. This

model has only three states with two null states, one in the start and one at the end of the

model. The null states are only used as moderators to connect H M M models to each

other, and they have no active role. The H M M is not limited to three states as shown in

our example; it can be any size, and its use is not limited to speech applications. For

instance, image recognition [23] [24], control systems [25], segmentation of D N A

sequences, and gene recognition [26], are among the interesting topics conducted recently

using H M M .

Chapter 3: Modeling 24

O , o 2 o 3

Figure 3.3 Basic structure of a phonetic H M M .

Now, let us examine how H M M works. We start with state 0. The first frame is

read from the input and a transition is made from state 0 to state 1. The O i , mfcc of the

frame is computed. Then P(Oi), the probability of the observation Oi from states 1, is

calculated. Then the next frame is read from the input, and if we assume that a transition

is made from state 1 to state 2, the previous probability is multiplied by the transition

probability from state 1 to state 2, that is P(Oi) * P(Ti 2). Then, the mfcc of the frame is

computed and the probability of the observed O2, P(C»2), from state 2 is calculated and

multiplied with the previous product, P(Oi) * P(Ti2) *P(C>2). The process is continued

until the model is exited through T30. At this point we can assume that the phoneme

modeled by the given H M M is pronounced. Multiplying the sequence of output and

transition probabilities gives the total probability that the input spectral sequences were

generated by the H M M , using a specific sequence of states. For every sequence of states,

a different probability value results. For recognition, the probability computation just

described is calculated for all possible phoneme models and all possible state sequences.

The sequence that provides the highest probability value is assumed to be the recognized

sequence of states and phonemes. However, this approach is not totally realistic because

T
of the very large number of sequences involved. In general, there will be (N) sequences,

Chapter 3: Modeling 25

where N is the number of states in the model and T is the number of frames in the

observed sequence. For example, if there are n states in the model, then the number of

1 on

probable sequences for speech that lasts only one second will be equal to N with the

parameters we have used in this project. To overcome this obstacle, we will introduce

two common algorithms, Baum-Welch and Viterbi algorithms, and an alternative

approach to deal with this problem.

The H M M shown in Figure 3.3 is known as the first order left-to-right Hidden

Markov Model. Mathematically, if 1, 2,..., N is the number of the frames observed and

oi, 02,..., o n are the observed outputs, then [27],

P(ot = j | = i, o,_2 = *,...) = P(o, = j | ot_x = i) (3.1)

That means the output at time j depends only on the value at the preceding time and on

nothing that went on before. Also,

P(o, = j | = i) = P(ot+l = j | o l + M = i) - (3.2)

indicates that the Markov Chain is time invariant.

This model is adopted for speech modeling because in speech, time flows in a

forward direction. The first node at the left-side of the phoneme stands for the beginning

of a phoneme, the middle is where the phoneme reaches a steady state, and the third is

the last transition of the phoneme/Transitions from any state back to itself serve to model

the variability of the speech, since different utterances made by different people, or by the

same person in different contexts, have different duration.

Chapter 3: Modeling 26

3.3 Speech Recognition Using HMM

Mathematically speaking, each H M M model Mi , i=l,2,...m, is defined by a

parameter set M=[A, B , 7t] where

71 = {7tj} is a column vector denoting the initial state-the probability of the

model of starting at state i.

A={ flij} is a square matrix indicating the probability of transition from state i

at time t to state j at time t+1.

B={ bjk} is a column vector indicating the probability of the model emitting

output Ok at state j.

The likelihood of each model Mi having produced the observation O t is obtained by

computing Pi{Ot|Mj}; that is the probability of observing sequence O t given model Mi. Then

the recognized phoneme is given by

:p = ArgMax[Pl{0,\Min (3.3)

i=l,2 m
where ArgMax denotes the value of the argument that maximizes the expression.

The obvious way to calculate P is to consider all possible state sequences and then

select the sequence that produces the maximum probability. As discussed above, this

approach is not feasible, if there are N states and P frames then the total number of the

p

possible states will be N . Fortunately, there are two recursive algorithms to reduce

computation to a tractable amount.

Chapter 3: Modeling 27

3.4 Baum-Welch Algorithm

The Baum-Welch algorithm is based on calculating Forward Probability.

Forward probability, at(j), is the probability of observing the partial sequence (oi,

02,... ,ot) and being in state j at time t.

= P(,ox,o2,...,ot,qt = j) (3.4)

Thus, the total probability of observing O, P{0|M} can be obtained by summing

aT (j) across all N states. When P{0|M} is calculated in this way, it is called the Baun-

Welch probability.

^ = | > r O ") (3 - 5)

To calculate PBW, suppose that {aT(j),]=\, 2,...N} has been calculated at some

time instance t. Then the probability of observing sequence (01, 02,.. .,ot) and being at

state i at time t and transferring to state j at time t+1 is equal to at (i).atj. Thus, the

probability of being at state j at time t+1 and observing sequence (01, o2,...,o t) may be

obtained by summing a, (i).atj over all states, and the equation 3.5 changes to

^ w = I > , 0 K (3.6)
1=1

Consider that the observation o t + i is produced by state j at time t+1, so we have

«. + lO') = |E f l f r (, 'K | i »y (o , + ,) , t = l2,...,T-l (3.7)

where bj (o (+ 1) is the probability of producing o t + i from state j . The recursion in

(3.6) is initialized by computing the a, (j) in (3.7);

Chapter 3: Modeling 28

ccl(j) = K{J}bj(ol) (3.8)

is the probability of observing the fisrt output and being in state j at t=l.

3.5 Viterbi Algorithm

In computing PBW in recursion 3.5, the forward probabilities of all states are

accumulated at time t. In the Viterbi Algorithm, Pv, only the likelihood of the most likely

state sequence emitting the observation O is calculated.

<f>l+lU)=M^l(0aiji.bj(ol+l), t = \X..J-l (3.9)

hU) = *{J}bJ{oiy (3.10)

This equation is identical to (3.7), except that the summation is replaced by the

Max operator and the algorithm is initialized using (3.10), where a is replaced by $.

Thus, the probability of observing sequence O is given by

Pv =Max{<t>T(j)} (3.H)
j=l,2 N

In practice, all the probabilities are on a logarithm base. Having the probability in

log base reduces the multiplication to addition, which is faster and prevents the results

from falling too low, causing an under flow problem. Multiplying numbers smaller than 1

will result in even smaller numbers. Thus (3.9) becomes

. ^ O ') = ^ % k (0 + log(fl f f)j+log(^(o,+1)), t=\,2,...,T-\ (3.12)

Chapter 3: Modeling 29

3.6 Token Passing Method

The token passing method is based on the Viterbi algorithm. A token represents a

partial path through the network, extended from time zero to time t [2 0] . At time zero, a

token is placed in every possible start node. Then for each frame, tokens are moved to the

next node along connected transitions. When there are multiple exits from a node, the

token is copied to explore all possible paths. As the token passes through the transitions

and nodes, its log probability increases according to the corresponding transition and

emission probabilities. An H M M can have at most N tokens. Hence, at the end of each

time step, all but N best tokens in each H M M are discarded. Each token has a history that

records its path as it propagates through the nodes. The token that has the highest

probability will be declared the winner, and its path will become a recognized route.

To reduce the number of tokens and hence speed up processing, only the tokens

that have a chance of being among the winners are propagated, and others are deleted

from memory, known as pruning. Pruning is implemented at each time step by removing

all tokens whose probabilities fall below a beam-width4 [2 0] . Setting the beam-width is

crucial; if it is too small, then the most likely path might be pruned before its token

reaches the end of the utterance. If it is too large, the processing time will be long.

The extension to continuous speech recognition simply involves connecting

models of phonemes together in a sequence. The reason for including the null nodes at

the entry and exit states should now be evident; these nodes provide the glue needed to

join the models together.

The Beam-width is the distance of the log probability of the nodes from the node that has the highest probability.

Chapter 3: Modeling 30

3.7 Training of HMM

Now we have reached the practically difficult problem; how to estimate the H M M

parameters in the first place. Before discussing the parameter estimation in detail, let us

clarify the output distribution probability, P(b} (o,)). The following formula is used to

calculate the output probability.

bj(ol) = N(o,juj,Xj) (3-13)

Where N(o, / / ,£) is a multivariate Gaussian with mean vector Uj and covariance matrix Ej

[20], and n is the dimension of the output vector, O.

N(o,Mj,2j)= i e> 1 ' (3.14)
V (W | £ y l

3.8 Baum-Welch or Forward-Backward Estimation

If there were only one state j , then the H M M parameter estimation would be a

simple average (3.15).

=̂4x°. (3-i5)

i t=i

In practice, there are multiple states and no direct assignment of observation

vectors to the individual states. However, equations 3.15 are used to make an initial

estimation of the parameters.

Now, let Lj(t) denote the probability of being in state j at time t, that is,

Chapter 3: Modeling 31

Lj(t) = P(q, = j\0) (3.16)

Then, the equations (3.15) become

Mj=-*$ (3.17)

and

^LjitXo.-jUjM-fij)'
± = J1 - (3.18)

Equations 3.17 and 3.18 are Baum-Welch estimation formulae for the means and covariance

of a H M M . These equations can be applied if the Lj(t) is known for state j. The Lj(t) is

calculated using the Forward-Backward algorithm

3.9 Forward-Backward Algorithm

We have discussed Forward probability before, however, we repeat it here for

context cohesion. The forward probability is defined as,

aj(t) = P(ol,o2,...,ol,ql =j) (3.19)

otj (t) is the joint probability of observing the first t frame vectors (oi, 02, . . . ot) and being in

state j at time t. The forward probability can be calculated with the following recursion:

a ; (0 = [£ a , (' - l) a #] V o () <3-20)

1=2
Note that the first and Na, states are null nodes, non-emitting nodes. Initial conditions are

0,(1) = !, «,(!) = V>,(°i) <3-21>

Chapter 3: Modeling 32

and the final condition is

aw(r) = f>,(T-l)a w (3.22)

i=2
as we have shown before. Comparing (3.22) and (3.6) indicates that the calculation of the

forward probability also yields the total likelihood P(0|M).

Backward Probability, fij(t) is the probability of observing (ot+i,.. .,OT) and being

at state j at time t.

0J(t) = P(oM,...,ar\qt = j) (3.23)

The backward probability is named as a conditional probability, and can be computed using

the following recursion,

N-l
A(0 = 2>A(°mW'+1) <3-24>

with the initial condition given by

6i(T) = aiN Ki<N (3.25)

and, the final condition is

A(D = S a i A (° 2) ^ (2) (3-26)

This symmetric definition is deliberate, since it allows the probability of the state occupation

to be determined by production of the two probabilities. Thus,

P(.0,ql=j) = aJ(t)fiJ(t) (3.27)

is the joint probability of observing O and being at state j at time t.

Referring to the definition L ; it), we have

Lj(t) = P(qt=j\0,M) (3.28)

Chapter 3: Modeling 33

Hence5

P(0,qt = j\M)
P(0\M)

(3.29)

By substituting from equation (3.27) in (3.29), we have

Lj(t) = (3.30)
BW

where PBw=P(0|M).

The training of the H M M model involves assuming an initial estimate of the

model, M=[A, B , n], and re-estimating it with known training sequences. For each

sequence O, the parameters of a new model Mnew are re-estimated from those of the old

model Moid, until

At each iteration, the old model is replaced by a new model, Mnew, and another re-estimation

takes place, while equation 3.31 is satisfied. According to the Baum-Welch algorithm, the

transition matrix {ay} is calculated as follows:

where Ay represents the total number of transitions from state i to state j.

In this style of training, a set of training observations, O, is used to estimate the

parameters of a single H M M . The basic formula for the re-estimatibn of the transition

probabilities is

P{0\Mnew}>P{0\Mold) (3.31)

Ay (3.32)

k=2

The conditional probability rule: P(A \ B) —
P(AB)
P(B)

Chapter 3: Modeling 34

T-l
(3.33)

t=i

For details of formula and proof of convergence of the algorithm, refer to [20] [28].

3.10 Adaptation

To achieve accurate recognition, the parameters of the model should be trained by

a specific user. However, providing enough training data for each user to tailor the

system to his or her voice is difficult in practice. To achieve an accurate recognition

engine, a huge amount of training data has to be provided for each user. An alternative to

this training strategy is adaptation. In this case, the system is trained with different voices

as a user independent system; then the parameters of the model are tuned to a specific

user. In this training system, the amount of adaptation data is much less than the data

needed to train the system from the start as mentioned in the first case.

3.10.1 Model Adaptation Using MLLR

Maximum Likelihood Linear Regression or M L L R computes a set of

transformations that will reduce the mismatch between an initial model set and the

adaptation data. More specifically, M L L R is a model adaptation technique that estimates

a set of linear transformations for the mean and variance parameters of the Gaussian

mixture of the H M M system. The effect of these transformations is to shift the

component means and alter the variances in the initial system, so each state in the H M M

is more likely to generate the adaptation data. M L L R uses a Transform-Sharing method,

known as a Regression Class Tree, to adapt the parameters of the model. This method

Chapter 3: Modeling 35

provides a means of dealing with the small amount of adaptation data. Under this scheme,

the system adapts even the parameters for speech not presented in the adaptation data. As

a result, the system is able to adapt its parameters with only a small amount of adaptation

data. For more information about Regression Class Tree, refer to Appendix A.

The transformation matrix used to give a new estimate of the adapted mean is

given by

p=W£ (3.34)

Where W is a n x (n+1) transformation matrix and ^ is the extended mean vector (n is the

dimension of the vector).

4 = [wMlJu2...pJ (3-35)

w is the bias offset whose value is fixed and is usually equal to 1. As a result W can be

written

W = [b A] (3.36)

The A represents an [n x n] transformation matrix, and b a bias vector. The

transformation matrix, W, is obtained by solving a maximization, using the Expectation-

Maximidation (EM) algorithm. This technique is also used to compute the variance

transformation matrix. The same rules, with some modifications, apply to finding the

variance transformation matrix.

I = BTHB (3.37)

Where H is the linear transformation to be estimated and B in the inverse of the Choleski

factor of S" 1 ,

Z _ 1 = CCT (3.38)

Chapter 3: Modeling 36

B = Cl (3.39)

For details of the E M algorithm and an example of calculation adapted data refer to Apendix

B.

3.11 Language Model

One of the recognition components is the language model. The language model is

a network of words arranged according to some rules, for example, grammar rules of the

language to be recognized. The simplest word-network model is a list of parallel nodes

connected by arcs. The nodes represent words and the arcs represent the transitions

between words. Figure 3.4 shows a simple network. The top figure is used to recognize

the "Flip Flop," or "Flop Flip," while the bottom diagram can be used to regonize any

combination of the two words, such as "Flip Flip FlipFlop."

Start

Start

Figure 3.4 (Top) A simple network recognizes "Flip Flop" or "Flop Flip."
(Bottom) A modified network recognizes any permutation of "Flip" and "Flop."

Chapter 3: Modeling 37

A probability factor may be assigned to each arc to indicate the probability of the

word sequences. However, the simplest and most common form is a network in which

each word has the same possibility of being pronounced. The network may contain any

number of words; however, increasing the number of words will increase the processing

time and decrease the accuracy of recognition. The probability of selecting the correct

word from the words listed in the network will decrease as the network grows.

Start

Figure 3.5 Word Internal Triphone Expansion of Flip-Flop Network.

For the recognition process, the recognizer loads the network and creates the

H M M equivalent of the network. Then it employs the algorithms defined previously to

find the best possible route as recognized speech. Figure 3 .5 shows the same network as

indicated in Figure 3.4, expanded to its tri-phone equivalent by the recognizer for the

recognition process.

The Network is stored in SLF format. For example, the network shown in Figure

3 .5 is stored as follows:

Define size of network: N=num nodes and L=num arcs
N=4 L=8
Lis t Nodes: I=node-number, W=word
1=0 W=start
1=1 W=end
1=2 W=Flip
1=3' W=Flop
Lis t arcs: J=arc-number, S=start-node, E=end-node
J=0 S=0 E=2
J=l S=0 E=3

Chapter 3: Modeling 38

J=2
J=3
J=4

S=3
S=2
S=2

J=5 S=3
J=6 S=3
J=7 S=2

E=l
E=l
E=3
E=3
E=2
E=2

The first line defines the size of the network. The Start node is a node without a

predessor and the End node is a node without a successor. There should be one, and only

one, Start and End node in a network.

Figure 3.6 The modified version of the network shown in the bottom of
the last figure.

To simplify the network, a N U L L node is itroduced. For example, the network

defined in the bottom of Figure 3.4 is modified in Figure 3.6 and its equivalent SLF file is

as follows:

Define size of netword: N=num nodes and L=num arcs
N=6 L=7
Lis t Nodes: I=node-number, W=word
1=0 W=start
1=1 W=end
1=2 W=Flip
1=3 W=Flop
1=4 W=!NULL
1=5 W=!NULL
List arcs: J=arc-number, S=start-node, E=end-node
J=0 S=0 E=4
J=l S=4 E=2
J=2 S=4 E=3
J=3 S=2 E=5
J=4 S=3 E=5
J=5 S=5 E=4
J=6 S=5 E=l

39

C h a p t e r 4

M o d e l i n g & T r a i n i n g

The goal of this thesis is to develop a speech recognizer. Then the recognizer will

be employed to develop a search engine to spot and play words in an A V I file. The

recognizer will also be used to develop a Diphone extractor program to segment the

speech into diphones.

To develop a speech recognizer, I have followed a step-by-step procedure. First, a

simple mono-phoneme model has been developed and trained with different training

cycles; the best model is then transformed into a triphone model and retrained. Finally,

the best triphone model is tied and adopted to the speech of the test speaker to get the best

possible accuracy. For developing the speech recognizer, I have employed H T K tools,

provided by Cambridge University. The tools are available in C source code. I have

modified some parts of the code to fit the project, and also developed some tools as

needed. H T K tools are used for preparing the speech files, modeling the acoustic data,

training the H M M , and testing the system. Modifications of the tools are made for

recognition. Finally, a program is developed to demonstrate some applications of the

system, such as word spotting, word and diphone segmenting.

4.0 Introduction

To develop an accurate speech recognizer, I have set different experiments. In

each set of experiments, the model that results in the best recognition output has been

chosen and the experiments continue with the new model. Experiment begins by defining

Chapter 4: Modeling & Training 40

and training a set of mono-phoneme HMMs. It continues by selecting the best mono-

phoneme model, converting it to triphone H M M , and retraining. The model that results

the best recognition output is chosen and the parameters of the H M M are tied and adapted

to a subject's (Keith's) voice. The results of each step are compared with the previous

step's results, and the best model is chosen to continue. It is noted that all of these

experiments are based on previous experiments that I have set and tested for this project,

and the set of experiments shown here are employed to indicate the logical flow of the

project.

4.1 Acoustic Processing

The project employs the speech utterances provided by T IMIT and one student,

Keith, as the subject of the experiment. The data provided by Keith is in A V I format. The

W A V E part of the file is extracted and used for processing and recognition. Each audio

file, both TIMIT and Keith's utterances, passes through the following process to create its

M F C C equivalent.

1. Sample each file for every 10 ms in the window of 25 ms, so each sampled

frame overlaps with the adjacent frames for a duration of 15 ms.

2. Pre-emphasize the sample according to section (2.1) with a = 0.95

3. Apply Hamming Window to each frame.

4. Find the Furrier Transform of each frame.

5. Pass each vector through a Mel-filter bank with gain equal to 1 and the

number of filters equal to 22.

6. Calculate the Log Energy of each vector as described in section (2.6)

Chapter 4: Modeling & Training 41

7. Find the DCT of each vector and discard all except the first 13 coefficients,

and then add its first-order and second-order derivatives to the end of the

vector.

8. Store the output in the same file name with an "mlf' extension.

According to the process described above, each frame of each sample, 25 ms, is

converted to a vector of 39 elements and each second of speech is converted to 100

vectors, which are stored in a file with an "mlf' extension.

H T K provides a flexible tool, HCopy, for converting files to different formats,

such as converting W A V E to MFCC. For detailed information and the parameter list

needed for such transformations, refer to the H T K manual.

4.2 Acoustic Modeling

Each phoneme is modeled using a three state left-to-right H M M , as shown in

Figure 3.3, and each observation probability distribution is represented with a mixture of

Gaussian density as described in formula (3.14). For each phoneme listed in Table 1.1

except for sp, which stands for short pause, a similar model is created, and the parameters

of each model are stored separately.

~h "hmml"
<BeginHMM>
<NumStates> 5
<State> 2
<Mean> 3 9

0

<Variance> 3 9
1

<State> 3
<Mean> 3 9

0

<Variance> 3 9
1 1 1 1 1 . 1' 1

<State> 4
<Mean> 3 9

Chapter 4: Modeling & Training 42

0

< V a r i a n c e > 39
1

<TransP> 5
0 . 0 1.0 0 .0 0 . 0 0 . 0
0 . 0 0 .6 0 .4 0 . 0 0 . 0

' 0 . 0 0.. 0 0 . 6 0 .4 0 . 0
0 .0 0 . 0 0 . 0 0 .7 0 .3
0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

<EndHMM>

This is a H M M prototype model used by H T K tools. The first symbol in the

model is ~h, followed by a phoneme name, hmml. Then the H M M definition is

bracketed by the symbols <BeginHMM> and <EndHMM>.

<NumStates> defines the number of states in the H M M . In our project the

number of states is equal to 5, with the first and last states set to N U L L states. For each

emitting statey, a single vector p.j is introduced by the keyword <Mean>, and a diagonal

variance vector Zj is introduced by the keyboard <Variance>. Finally, the definition

ends with the transition matrix {atj}, introduced by the keyword <TransP>.

I modified the sil model by adding two extra transitions, one from state 2 to state

4, and another from state 4 back to state 2. The idea here is to make the model more

robust by allowing individual states to absorb the noise in the training data. Also, at this

point, a one state short pause (sp) model is added to the list of HMMs. This model is

called Tee-Model and makes a direct transition from the entry node to the exit node. The

emitting parameters of the sp model are set to the emitting parameters of state 2 of the sil

model. Figure 4.1 shows the modified sil model and sp model. The definition of the sp

model is shown below:

Chapter 4: Modeling & Training 43

Figure 4.1 sil and sp model.

~h "sp"
<BeginHMM>

<NumStates> 3
<State> 2

<Mean> 39
0
<Variance> 3 9
l

<TransP> 5
0.0 0.5 0.5
0.0 0.5 0.5
0.0 0.0 0.0

<EndHMM>

4.3 Training

The Mean and Variance values, set to 0 and 1 respectively, are only for

demonstration purposes. In fact, to begin the training process, the mean and variance of

all the models are set to the global mean and variance, computed by scanning the set of

training data. HTK provides a tool HcompV, for computing the global mean and variance

by scanning *.mlf files. The details of how to use the tool are not provided here;

interested readers should refer to the HTK manual for detailed information.

Chapter 4: Modeling & Training 44

4.3.1 Mono-phone training

The training process needs both *.mlf files and their phonetic equivalents. The

phonetic equivalent of each utterance is extracted from the dictionary and a sp is inserted

between word boundaries to separate words in a sentence. For example, the utterance

"Her hum became a gurgle of surprise" (file sil837.1ab from SI training

list of TIMIT) is converted to the following phonetic equivalent:

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g er g
ah 1 sp ah v sp s er p r ay z s i l

The sentence begins and ends with a sil (silence) and a sp is inserted to indicate

the boundaries of each word. Inserting sil and sp could be clarified by referring to Figure

• I I I • I I • I • I I I I I I I I I I I I I I | I I I I I I I I I I I I !
10 0 1 0 2 0 3 0 4 0 5 O S 0 7 0 8 0 9 1 0 _1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 7 0 2 1 2

Figure 4.2 The wave form of "Her hum became a gurgle df surprise."

4.2, which shows the wave form of the same sentence uttered by a male in the New

England region in the United states. As indicated in the audio file, the speech begins and

ends with a silence and each word is separated by a short pause, sp. Notice that the sp

may have a zero duration, which means there is no short pause between the words. This is

why we have created a direct transition from the first node to the last node in the sp

model.

Chapter 4: Modeling & Training 45

The training module creates the HMM equivalent of each utterance by sticking

the HMMs as indicated to the equivalent label file. Then it employs a forward-backward

algorithm, described in section (3.9), to calculate the parameters of the model, and

replaces the old model with a new one, and stores the result. HTK provides a very

flexible tool, HRest, for training purposes. This tool accepts different parameters for

training. In this project I have employed HRest with the following parameters "-t f

[a b] ".

Selecting the parameters for "-t f [a b] " is very important, because without

setting them, the cycles consumed by the processor for training become enormous, -t f

sets the pruning level to f. The default value for the pruning level is zero; that means no

pruning at all. During the backward probability calculation, at each time all (log) values

falling more than f below the maximum value, at that time, are ignored. During the

subsequent forward pass, the log values are only calculated if there are corresponding

valid values. Tight pruning results in failing to process an utterance, and a high value for

f requires more processing time. If a and b options are given, then a pruning error

results in the threshold being increased by a and utterance processing restarts. If the error

continues, this procedure will be repeated until the limit b is reached. In this project the f,

a, and b are set to 250, 150, and 1000 respectively.

This project employs the dictionary provided by the Carnegie Mellon University by removing the stress marks that
are not suitable for speech recognition [12].

Chapter 4: Modeling & Training 46

4.3.2 Triphone training

In this step the set of mono-phone HMMs will be converted to a context

dependent triphone model by converting the mono-phone transcription of the data to

triphone transcription and creating a set of triphone models by copying the mono-phones.

Then the model is retrained to tune the triphone model. For example, the mono-phone

transcription of the file SI1837.1ab,

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g e r g
ah 1 sp ah v sp s er p r ay z s i l

will be converted to its equivalent triphone transcription,

s i l hh+er hh-er sp hh+ah hh-ah+m ah-m sp b+ih b-ih+k
ih-k+ey k-ey+m ey-m sp ah sp g+er g-er+g er-g+ah g-
ah+1 ah-1 sp ah+v ah-v sp s+er s-er+p er-p+r p-r+ay
r-ay+z ay-z s i l

This style of triphone transcription is referred to as Word Internal Transcription

(WIT). Note that some diphones are also generated as a result of word boundaries

marked by sil and sp, because the context reduces to only two phonemes next to the word

boundaries. For example, the mono-phone transcription of " s i l hh er sp" is

converted to " s i l hh+er hh-er sp"; sil marks the beginning of an utterance and

sp marks the boundary of the words. The '-' and '+' represent predecessor and successor

respectively. For example, hh+er means the hh phoneme followed by er, and hh-er

means the phoneme er that is preceded by the phoneme hh.

This conversion continues for all training data, and in the next step all

combinations of triphones and diphones appearing in the transcription are created by

duplicating the model of each corresponding mono-phoneme model. For example, a

triphone model s-er+p will be created by duplicating the model of er in the H M M file.

Chapter 4 : Modeling & Training 47

The diphones are duplicated by following the predecessor and successor signs as

explained earlier. For example, the hh+er will be created by duplicating the model of

hh, and h h - e r will be created by duplication of the model of e r .

There is another triphone transcription known as Word External Transcription

(WET). In this transcription, the word boundaries are not marked, or if they are marked,

they are neglected. For example, the word external transcription of the file SI1837.1ab

without marking word boundaries is

s i l hh+er hh-e r+hh e r -hh+ah hh-ah+m ah-m+b m-b+ih b -
ih+k i h - k + e y k-ey+m ey-m+ah m-ah+g ah-g+er g -e r+g e r -
g+ah g-ah+1 a h - l + a h 1-ah+v ah-v+s v - s + e r s -e r+p e r -
p+r p - r + a y r - a y + z a y - z s i l

As the final step, the converted transcriptions and the M F C C equivalent of each

utterance are used to retrain the triphone models, exactly the same way as described for

the mono phoneme model in section (4.3.1).

4.4 Evaluation Method

The final goal of modeling and training is recognition. To recognize an utterance,

the preprocessed speech, along with the H M M and language model, are needed by the

recognizer. For this project I have employed a Token-Passing method, with one token per

model, and a parallel word-network as a language model with an equal probability for

each word, as described in Figure 3.3. For this section I have used the HVite tool,

provided by HTK. The correctness and accuracy of the recognition is evaluated by

comparing the recognized speech with the true transcription of the speech. For

correctness and accuracy, the following formulas have been defined.

Correctness = N ~ D ~ S * 100%
N

Chapter 4: Modeling & Training 48

Accuracy = ————-—- * 100% .
N

N is the total number of labels in the reference transcription, D is the number of deletion

errors, S is the number of substitution errors, and I is the number of insertion errors. For

example, if the true transcription is

AGAIN THESE BLOCKS WERE SET I N RESIN SATURATED G L A S S
CLOTH AND NAILED.

and the recognised text is

AGAIN THESE BLOCKS WERE SET INTO THE RESIN SATURATED
CLOTH AND NAILED.

there is one substitution error, UNTO for IN, one insertion error, THE, and one deletion error,

GLASS, in the recognised text, then

Correctness = l 2 ~ l ~ l *100% = 83.33%
12

Accuracy = 1 2 ~ 1 ~ 1 ~ 1 * 100% = 75.00%
12

4.5 Experiments

This experiment focuses on the modeling and training process, the most important

part of developing a speech recognition system. Correctness and accuracy, however, also

depend on the word-network that is provided to the recognizer (the bigger the network the

less correctness and accuracy). In spite of the importance of the selection of the word-

network, network selection plays a secondary role in accurate recognition. The most

important component, and in fact the most challenging part, is the modeling and training.

Chapter 4: Modeling & Training 49

4.5.1 Experiment conditions

In all the following experiments the models are trained with male utterances of all

SI and S X training data, provided by the TIMTT database (equal to 2608 utterances), plus

Keith's training speech (97 utterances), for a total of 2705 sentences and 4170 distinct

words. The recognition data, selected from Keith's speech, is grouped into two

categories, Train-Data and Test-Data. Train-Data is the data used in the training process

and employed for recognition too, but the Test-Data is the speech not used in the training

process and is employed only for recognition. The language model is selected as a

parallel word-network from all words (550 distinct words) that appear in both Keith's

Train-Data and Test-Data.

4.5.2 Mono-Phoneme

In the following experiments the H M M for each phoneme listed in Table 1.1 is

created and trained with TIMIT and Keith's training data, after which the correctness and

accuracy of the model is tested by recognizing both Keith's Train- and Test- Data.

4.5.2.1 Training without SP model

In this experiment, the models are trained without inserting the sp model between

the word boundaries. For example, the utterance "Her hum became a gurgle o f

surprise" selected from file SI1837.1ab (SI training list of TIMIT), is converted to the

following phonetic equivalent:

s i l hh er hh ah m b i h k ey m ah g er g ah 1 ah v s
er p r ay z s i l

Table 4.1 shows the number of iterations used for training and the correctness and accuracy

of the recognition.

s

Chapter 4: Modeling & Training 50

Number of training
iterations

Correctness % Accuracy % Number of training
iterations Train Test Train Test

1 9.15 9.09 ^5.07 -17.17
2 • 20.42 23.23 -95.07 -55.56
3 21.83 27.27 -53.52 -26.26
4 27.46 27.27 -40.11 -22.22
5 26.76 27.27 -35.51 -16.16
6 25.35 28.28 -35.92 -13.13
7 24.65 28.28 -35.92 -13.13
8 25.35 27.27 -35.92 -14.14
9 24.65 27.27 -34.51 -14.14
10 24.65 27.27 -33.80 -14.14

Table 4.1 Accuracy and correctness of a mono-phoneme model without sp as word boundaries.

As shown in Table 4.1, increasing the number of iterations does not increase the

correctness and accuracy of the model as may be expected. In fact, after a few iterations

the model reaches a condition known as over-training, after which the model is

corrupted, and the correctness and accuracy of the model decreases, employing more

training iterations. For this model iteration 6 is optimum. After that the accuracy and

correctness of the model decreases. It is worth mentioning that for each training iteration

all 2705 utterances of T IMIT and Keith's TranvData are employed.

4.5.2.2 Training With sp Model

In this experiment the system is trained by inserting the sp model between the

word boundaries. For example, the utterance in the previous experiment is converted to

the following phonetic equivalent:

s i l hh er sp hh ah m sp b i h k ey m sp ah sp g er g
ah 1 sp ah v sp s er p r ay z sp s i l

Table 4.2 shows the number of iterations used for training and the correctness and accuracy

of the model for recognition.

Chapter 4: Modeling & Training 51

Number of training
iterations

Correct tness % Accuracy % Number of training
iterations Train Test Train Test

1 7.04 9.09 -38.73 -14.14
2 21.83 24.24 -96.48 -59.60
3 22.54 26.26 -57.04 -27.27
4 24.65 25.25 -42.96 -24.24
5 24.65 26.26 -38.73 -18.18
6 24.65 26.26 -36.62 -15.15
7 25.35 27.27 -35.92 -14.14
8 26.06 28.28 -33.80 -15.15
9 25.35 27.27 -30.99 -15.15
10 25.35 27.27 -30.99 -15.15

Table 4.2 Accuracy and correctness of the mono-phoneme model with sp as word boundaries.

As indicated in Table 4.2, the best results occur in iterations 7 and 8. Another

important fact is that the accuracy and correctness of this model, with sp between word

boundaries, do not differ from the accuracy and correctness of the previous model,

without sp as word boundaries.

4.5.2.3 Compound Model

In this experiment, the five first iterations are trained exactly as described in

section 4.5.2.1, without sp as word boundaries. Then the transcription is modified by

inserting sp as word boundaries (section 4.5.2.2), and the training process continues for

five more iterations. Table 4.3 shows the number of iterations used for training and the

correctness and accuracy of the recognition. The first five rows are omitted since they

are exactly the same as in Table 4.1.

Number of training
iterations

Correct. tness % Accuracy % Number of training
iterations Train Test Train Test

6 26.76 28.28 -32.39 -13.13
7 26.76 26.26 -33.80 -16.16
8 26.76 26.26 -33.10 -16.16
9 26.26 24.24 -31.69 -18.18
10 26.06 24.24 -31.69 -18.18

Table 4.3 Accuracy and correctness of compound model.

Chapter 4: Modeling & Training 52

As shown in Table 4.3, the model is not improved with this method and the same

scenario recurs when the number of training iterations increases.

4.5.3 triphone

The following experiments further the experiments in the previous section. In

these experiments, the models created by the mono-phoneme model in iteration 6 of

Tables 4.1 and 4.2 are converted to the triphone model by making copies of the models,

as described in section (4.3.2). Then, the mono-phoneme transcriptions are also converted

to the triphone equivalent, and the models are retrained. The training and test data and

word-network are exactly the same as in the previous section, described in 4.5.1

4.5.3.1 Training with Word External Transcription

In this section, the trained model of iteration 6 of section 4.5.2.l(The Training

Without sp Model) is converted to the triphone model and retrained without sp forming

the boundaries of words. For example, the mono-phoneme transcription of utterance

" H e r hum b e c a m e a g u r g l e o f s u r p r i s e " , wil l be converted to the following

equivalent triphone transcription from iteration 7:

s i l h h + e r h h - e r + h h e r - h h + a h h h - a h + m ah-m+b m - b + i h b -
i h + k i h - k + e y k -ey+m ey -m+ah m-ah+g a h - g + e r g - e r + g e r -
g+ah g - a h + 1 a h - l + a h 1 -ah+v a h - v + s v - s + e r s - e r + p e r -
p + r p - r + a y r - a y + z a y - z s i l

Table 4.4 shows the number of iterations used for training and the correctness and accuracy

of the model for recognition.

Chapter 4: Modeling & Training 53

Iteration of re-training with
triphone model

Correctness % Accuracy % Iteration of re-training with
triphone model Train Test Train Test

6 7

 + l 49.03 24.24 16.09 -2.02
6 + 2 49.30 25.25 15.49 -9.09
6 + 3 49.30 23.23 14.08 -9.09
6 + 4 49.30 22.22 15.49 -9.09
6 + 5 48.59 24.24 . 18.31 -6.06

Table 4.4 Accuracy and correctness of the triphone model trained with WET.

As indicated in Table 4.4, both the correctness and accuracy of the model is

improved when compared with the correctness and accuracy obtained with the mono-

phOneme model, tested with the same data in the same conditions.

4.5.3.2 Training with Word Internal Transcription

In this section, the trained model of iteration 6 of section 4.5.2.2 (The Training

With sp Model) is converted to a triphone model and retrained with sp as the boundary

of words. For example, the mono-phoneme transcription of utterance " H e r hum

b e c a m e a g u r g l e o f s u r p r i s e " , is converted to the following Word Internal

Transcription:

s i l h h + e r h h - e r s p h h + a h h h - a h + m a h - m s p b + i h b - i h + k
i h - k + e y k -ey+m e y - m s p a h s p g + e r g - e r + g e r - g + a h g -
ah+1 a h - 1 s p ah+v a h - v s p s + e r s - e r + p e r - p + r p - r + a y
r - a y + z a y - z s p s i l

The Table 4.5 shows the number of iterations used for retraining and the correctness and

accuracy of the model for recognition.

Iteration of re-training with
triphone model

Correctness % Accuracy % Iteration of re-training with
triphone model Train Test Train Test

6+1 67.61 31.31 50.00 4.04
6 + 2 69.01 34»34 51.41 4.04
6 + 3 70.42 32.32 52.11 0
6 + 4 69.72 32.32 48.59 3.03
6 + 5 68.31 31.31 46.48 0

Table 4.5 Accuracy and correctness of triphone model trained with WTT.

Chapter 4: Modeling & Training 54

As indicated in Table 4.5, the correctness and accuracy of this model is much

better than the accuracy and correctness of the triphone model trained with WET.

4.5.4 Tied-Model

The model discussed in the previous section suffers from low performance in

recognizing Keith's Test-Data, compared with its relatively high performance in

recognizing his Train-Data. This is because the previous model is not tailored suitably for

data not provided in the training list. To solve this problem, we employ an algorithm

known as Tree-Based Clustering [Appendix C] to classify, and tie the triphone to reduce

the number of parameters, so the remaining parameters can be estimated more robustly.

The model created is called the tied-model, and the previous models are now known

collectively as the untied-models.

4.5.4.1 Training Tied-Model

The last model, the model trained with WIT, provided the best accuracy and

correctness compared with the other models. As a result, the next experiment will be built

on top of this model. In this experiment, the result of iteration 9 of Table 4.5 is converted

to the tied-triphone model and retrained. The data and word-network are exactly the same

as described in section (4.5.1).

It is worth mentioning that the transcriptions provided for training the tied-

triphone model and triphone model are not different, and that only the parameters of the

HMMs are tied to create a compact model. The transcription provided for training the

6 indicates that this iteration begins from the 6 iteration of the referenced experience, section (4.4.1.3).

Chapter 4: Modeling & Training 55

tied-triphone model is WIT. Table 4.6 shows the number of iterations used for retraining

and the correctness and accuracy of the recognition.

Number of re-training
iterations with tied-triphone

model

Correctness % Accuracy % Number of re-training
iterations with tied-triphone

model
Train Test Train Test

9 8 + l 31.69 21.21 -21.13 -20.20

9 + 2 50.70 47.47 9.15 14.14
9 + 3 54.93 47.47 18.31 14.14
9 + 4 55.63 47.47 19.01 14.14
9 + 5 55.63 47.47 18.31 13.13

Table 4.6 Accuracy and correctness of tied-triphone model trained with WIT.

As indicated in the Table 4.6, the correctness and accuracy of recognizing the

Train-Data decreases, while the correctness and accuracy of recognizing the Test-Data

increases. For a general recognition system, such as a dictation program, it is not possible

to provide all training data to cover all possible utterances of recognition, so it is clear

that for such a system, a tied-triphone model is a better choice compared with a triphone

model. However, for systems that will be used for recognizing limited utterances, the

triphone model seems superior compared to the tied-triphone model9. Another difference

between the tied-triphone models and triphone models is size. We will discuss this in the

next section.

4.6 Comparison

Figure 4.3 compares the correctness and accuracy of the recognition of Keith's

train-data with mono-phoneme models (with sp, without sp, and a compound model).

Figure 4.4 shows the same experiments with Keith's test-data, the data that was not used

in training.

9 indicates that this iteration begins from the 9th iteration of the referenced experience, section (4.4.2.3).
9

These experiments are conducted with only 2705 utterances. In the case of greater availability of training data,
however, the conclusions may be different; this possibility has yet to be explored.

Chapter 4: Modeling & Training 56

C o r r e c t n e s s of the m o n o p h o n e m o d e l for train da ta

Figure 4.3 The correctness of the mono-phone model recognizing Train data.

Correctness of the monophone model for test data
30 -i ~

0 -I 1 1 1 1 1 ; 1 1 1 1 I
1 2 3 4 5 6 7 8 9 1 0 Training Iteration

Figure 4.4 The correctness of the mono-phone model recognized Test data.

Both figures indicate that increasing the number of training iterations does not

improve the model parameters as may be expected; instead it reveals the fact that extra

Chapter 4 : Modeling & Training 57

training may even decrease the correctness and accuracy of the models. Furthermore, both

figures indicate that there are no significant differences in correctness between the three

mono-phoneme models. The same result is achieved for accuracy in the three mono-phoneme

models, and there is no significant difference between them

80 -

70 -

60 -

to 50 -
to
Q) c
0

40 -
Q)
O 30 -
O

30 -

20 -

10 -

0 -

C o r r e c t n e s s of the t r i phone m o d e l

70.42 % ^ - - * . 6+3

Tra in d a t a

— without sp

— with sp

34.34 6+2 - -*• - without sp

- -» - with sp

T e s t da ta

T ra in ing Iteration

Figure 4.5. The correctness of triphone model in recognizing train and test

To achieve better accuracy, the mono-phoneme model is converted to a triphone

model and retrained from iteration 6 of the mono-phoneme models. Figure 4.5 shows the

correctness of the triphone models in recognizing the train and test data.

As indicated in Figure 4.5, the correctness of recognition is different between the

two models trained with WIT and WET. Furthermore, the correctness of recognizing both

train-data and test-data is significantly improved in the model trained with WIT. As

indicated in the figures, the model has achieved 70.42% correctness in recognizing train-

data, and 34.34% correctness in recognizing test-data, which shows an improvement

compared with precious models.

Chapter 4: Modeling & Training 58

C o r r e c t n e s s of the t i ed -mode l b a s ed of "sp" as b o u n d a r i e s of the words

9 + 1 9 + 2 9+3 9 + 4 9 + 5 Training Iteration

Figure 4.6. The correctness of the tied-model in recognizing train and test data.

Figures 4.6 and 4.7a shows the correctness of the tied-triphone model. The model

is converted to a tied-triphone model from iteration 9 of the triphone model trained with

WIT (Table 4.5), then the system is retrained. Comparing Figures 4.5 and 4.6 indicates

that although the correctness of recognition of the train-data decreases from 70.42% in

the triphone model to 55% in the tied-triphone model (-15%), the correctness of

recognition of the test data increases from 34.34% in the triphone model to 47.5% in the

tied-triphone model (+13%).

The same differences can be seen when comparing the accuracy of the two

models. For example, Figure 4.7b compares the accuracy of the triphone model and the

tied-triphone model for both train and test data. As indicated in the bar-charts, the

accuracy in recognizing the train-data decreases from 52.11% in the triphone model to

19.01% in the tied-triphone model, while the accuracy of recognizing the test data

increases from 4.04% in the triphone model to 14.14% in the tied-triphone model.

Chapter 4: Modeling & Training 59

Comparing the Correctness of Tied and Untied Models

co
co
o
c
o
£
o
O

80

70

60

50

40

30

20

10

0

70.42

34.34

55

47.5

Untied Model Tied Model

Figure 4.7a Comparing the Correctness of the triphone model to the
tied-model.

Figure 4.7b Comparing the accuracy of the triphone model to the tied-model.

Chapter 4: Modeling & Training 60

250000

200000

150000
CD

CD

100000

50000

Size of the each model in Kb

218010

Triphone model without
°sp" as word boundary

64896

Triphone model with
"sp" as word boundary

2452

Tied-triphone
model

Figure 4.8 The size of the models in k bytes.

The size of the memory needed by each model is also different. Figure 4.8

compares the size of the models in Kbytes for each model. As indicated in Figure 4.8, the

size of the model trained with WET is about 218 Mb, while the size of models trained

with WIT and tied-triphone model are about 64Mb and 2.5 Mb respectively. As a result,

while the correctness and accuracy of the system increases for recognizing test data with

a tied-triphone model, the memory needed for the tied-triphone model decreases.

61

C h a p t e r 5

A d a p t a t i o n

The models developed so far are known as user-independent systems in that the

models are trained with the utterances of 439 different speakers from different regions of

the United States. To increase the correctness and accuracy of the system, the model

should be converted to a user-dependent system by adjusting the parameters of the model

to the voice of a specific user. There are two methods for adjusting the parameters of

H M M to a specific user, known as the direct method and the adaptation method. The

direct method involves training the model with just a single speaker's speech, the speaker

with whom the system will be tested. Training the model, however, requires a lot of

training data that may not be available in most cases. For example, in this project I have

used 2705 different utterances to train the HMMs. As a result, I have adapted an

alternative method known as an adaptation method, discussed in section (3.10).

5.1 Triphone adaptation

The model discussed in section (4.5.3.2) is being adapted with Keith's train data

from iteration 8 (refer to table 4.5). In this experiment I used a regression class tree with

32, 64, 96, and 128 nodes to classify the acoustic models [Appendix A] . Then the models

are adapted for a maximum of 4 iterations. The results of the correctness and accuracy of

recognition in each model, for both test and train data, are shown in Table 5.1.

Chapter 5: Adaptation 62

Adapted with 32 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 81.69 43.43 70.42 10.1
2 80.99 41.41 68.31 5.05
3 81.69 41.41 69.72 7.07
4 81.69 41.41 69.72 7.07

Adapted with 64 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 81.69 43.43 71.13 9.09
2 82.39 41.41 69.72 5.05
3 82.39 41.41 70.42 6.06
4 83.10 39.39 71.13 4.04

Adapted with 96 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 81.69 43.43 71.13 9.09
2 82.39 41.41 69.72 5.05
3 83.10 41.41 71.13 6.06
4 83.10 39.39 71.13 4.04

Adapted with 128 nodes
Iteration Correctness % Accuracy $

Train Test Train Test
1 81.69 43.43 71.13 9.09
2 82.39 41.41 69.72 5.05
3 83.10 41.41 71.13 6.06
4 83.10 39.39 71.13 3.03

Table 5.1 The correctness and accuracy of the adapted data for the triphone model.

As indicated in the table, increasing in the number of adaptation iterations does

not necessarily increase the correctness and accuracy of the model; the model seems

adapted after third iteration, and the accuracy and correctness of the model do not change.

Table 5.1 also indicates that there is no significant difference in recognition achieved by

selecting different nodes for the regression class tree. However, close inspection of Table

5.1 shows that the tree with 32 nodes shows slightly better results for the test data, while

the tree with more nodes has better output for train data. This is because more acoustic

information will result in better classification of the regression tree. Therefore, if we

Chapter 5: Adaptation 63

provide more training data to cover more test space, the tree with more nodes will

provide better acoustic classification. However, if the test space is too huge to be covered

by the training data, the tree with less nodes will provide better classification results. The

selection of the number of nodes for the regression class tree will depend on the

availability of training data.

90

80

70

60

50

40

30

20

10

Correctness of the model before adaptation and after adaptation

81.69

69.01

43.43

34.34

• Without Adaptation

• Adapted

Train data Test data

Figure 5.1 The correctness of the model before and after adaptation.

Figure 5.1 compares the correctness of the model before and after adaptation for

the model with a regression tree with 32 nodes. As indicated in the figure, the correctness

of the model increased from 69.01% to 81.89% in recognizing train-data, and from

34.34% to 43.43% for recognizing test-data.

Chapter 5: Adaptation 64

5.2 Tied-model adaptation

The same adaptation process is repeated for the tied-triphone model, and the

results are indicated in Table 5.2. The model is adapted from iteration 9+4 in section

4.5.4.1 (Training Tied-triphone model) table 4.6.

Adapted with 32 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 78.87 52.53 61.27 29.29
2 79.58 51.52 64.08 29.29

Adapted with 64 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 78.87 48.48 60.56 29.29
2 80.28 49.49 64.08 29.29

Adapted with 96 nodes
Iteration Correctness % Accuracy 5

Train Test Train Test
1 78.87 48.48 60.56 29.29
2 80.28 49.49 64.08 29.29

Adapted with 128 nodes
Iteration Correctness % Accuracy %

Train Test Train Test
1 78.87 48.48 60.56 29.29
2 80.28 49.49 64.08 29.29

Table 5.2 Correctness of the adapted tied-triphone model.

Figure 5.2 compares the correctness of the tied-triphone model before and after

adaptation. As indicated, the correctness of recognizing train-data is increased from

55.63% to 78.87% after adaptation, and the correctness of recognizing the test-data is

increased from 47.47% to 52.53% after applying adaptation.

Chapter 5: Adaptation 65

Correctness of the tied-model before adaptation and after adaptation
90

80

70

60

w 8 50
c
t3
£ 40
o

O

30

20

10

0

78.87

"55:63 •

Train data

. - _ 47.47-
52.53

Test data

• Before Adaptation
• Adapted

Figure 5.2 The correctness of the tied-triphone model before and after adaptation.

5.3 Retraining

I have selected the first iteration of the adapted model with 32 nodes of the

triphone model and tied-triphone model, and retrained them with Keith's train-data. Then

the model is tested by recognizing Keith's test and train data, as in previous experiments.

Table 5.3 shows the correctness and accuracy of recognition of the triphone model

retrained after adaptation. Table 5.3 indicates that the best result is achieved in the 4 t h

iteration. Comparing this result with the results achieved before retraining (Table 5.1)

indicates that although the correctness and accuracy for recognizing train-data is

Iteration Correctness % Accuracy %
Train Test Train Test

1 95.07 40.4 88.03 -2.02
2 96.48 42.42 88.73 1.01
3 96.48 42.42 89.44 5.05
4 96.48 42.42 90.14 5.05
5 96.48 42.42 90.14 3.03

Table 5.3 Correctness and accuracy of the triphone model (triphone) retrained after being

adapted.

Chapter 5: Adaptation

increased, the same parameters are decreased for recognizing test-data. Figure 5.3 compares

the correctness and accuracy of the model before and after retraining.

66

Comparing the correctness and accuracy of triphone model before and after retraining

so 4-

81.691

o
«
5 6 0 + H 8 <
O 5 0 - | 1
CO
CO
<u
% 4 0
<D

o
" 3 0

90.14

70.421

Correcness Accuracy
A Train Data

43.43 4 2 . 4 2
• Adapted
• Adapted & Retrained

Correcness Accuracy
Test Data •

Figure 5.3 The correctness and accuracy of the untied-triphone model
before and after retraining.

Figure 5.3 shows that both the correctness and accuracy of the model in

recognizing the train-data increases with the model retrained after adaptation, while the

same parameters decrease for recognizing the test-data with the same model.

Table 5.4 shows the correctness and accuracy of the tied-triphone model, retrained

after being adapted, and Figure 5.4 compares the correctness and accuracy of the model

Iteration Correctness % Accuracy %
Train Test Train Test

1 91.55 53.54 80.99 30.3
2 92.95 52.53 83.1 32.32
3 92.25 52.53 83.8 31.31
4 92.25 52.53 84.51 32.32
5 92.25 51.52 84.51 28.28

Table 5.4 Correctness and accuracy of the tied-triphone triphone model retrained after

adaptation.

Chapter 5: Adaptation 67

before and after retraining. As indicated in Figure 5.4, the model is improved for

recognizing training and test data after retraining. Although there is no significant

improvement for recognizing training data, the result is better than in the untied triphone

model.

Comparing the correctness and accuracy of tied-triphone model before and after retraining
100

92.25

• Adapted
• Adapted & Retrained

Correcness Accuracy Correcness Accuracy .
< Train Data *—• « Test Data *•

Figure 5.4 Accuracy and??correctness of the tied-triphone model before
and after retraining.

5.4 Comparison

The bar-charts in Figures 5.3 and 5.4 indicate that the models are improved when

retrained after adaptation, except for the recognition of test data in the untied-triphone

model. The reason may be an insufficient amount of retraining data and number of

triphone models in the untied-triphone model. If we had more of Keith's training data

instead of only 97 utterances, then the values of the chart might be different from the ones

shown in Figure 5.3.

Chapter 5: Adaptation 68

Another fact we may notice when comparing the two charts, is the superiority of

the tied-triphone model compared with the triphone model. Both the correctness and

accuracy in recognizing the test-data are better than with the untied-triphone model

(gaining 10% to 25%). However, the correctness and accuracy of the model obtained for

recognizing train-data in the tied-triphone model is slightly less than the correctness and

accuracy of recognizing the same data in the triphone model (losing 3.5% to 5.5%), but

the memory needed for the tied-triphone model is only 2452/64896 = 3.8% of the

memory needed for the triphone model. Comparing the loss of a maximum of 3.5% to

5.5% in correctness and accuracy, with saving 96.2% of memory in the tied-triphone

model, reveals the advantage of the tied-triphone model.

69

Chapter 6
Diphone & Word Segmentation and Extract ion for

Natural Speech Synthesis

In this section, I have used the speech recognizer developed in the previous

sections to create a program to demonstrate the functionality of the system. This program

has many capabilities, such as diphone and word segmenting and word spotting in a

multimedia file. The diphone and word segmenting programs can be employed to prepare

the sub-words needed by a natural speech synthesizer. A natural speech synthesizer can

recreate the speech of a person by concatenating words and sub-words, to create a talking

machine. A word-spotting program can be employed to search a multimedia file for an

utterance of a word.

This chapter begins by introducing the methods developed to segment the words

and sub-words and discuss the accuracy and correctness of the segmentation. It then

continues by demonstrating the speech synthesized with diphones segmented using

different methods, and discusses the accuracy of the synthesized speech. Next, a very

important functionality of the program for finding an utterance in a media file is

demonstrated.

6.1 Diphone Segmentation

Diphones are sub-word elements mainly used in speech synthesizers. As

mentioned in the first chapter of this thesis, segmenting of diphones is a semi-manual

Chapter 6: Diphone & Word Segmentation 70

process. This section of the thesis attempts to employ the speech recognizer developed in

the previous section to segment speech into diphones automatically.

To segment speech into diphones, I have developed two methods, an indirect

method and a direct method. In the indirect method, the diphones are segmented from the

middle node of a triphone to the middle node of the adjacent triphone. In the direct

method, the speech recognizer is modeled and trained by diphones instead of by

triphones, and the speech recognizer recognizes diphones directly. In both methods, we

assume that both speech and the equivalent text are available for segmentation.

6.2 Indirect Method

In this method, first the triphones are recognized. Then the program segments

Text

Speech

Equivalent Network
transformer

Segmenting
Program

Speech
Recognizer

Triphone Diphone
Extractor Diphones

Figure 6.1 Block diagram of Diphone segmentation.

triphones into diphones by segmenting the middle node of one triphone to the middle

node of its adjacent triphone. As shown in Figure 6.1, the speech and its equivalent text

are provided to the segmenting-Program. The program transforms the text into equivalent

word-networks and provides the speech and the word-network to the recognizer. The

recognizer recognizes the provided text uttered by the speaker; then the recognized

triphones are passed to the diphone extractor to be segmented into diphones, as described

in section 1.3.1. Finally, the output is stored in a database to be accessed by a speech

synthesizer program.

Chapter 6: Diphone & Word Segmentation 71

The model used for recognition is the tied-triphone model without adaptation,

trained with WIT and sil at the beginning and ending of the transcription. The appearance

of sil and sp in the output are not mandatory; it depends on whether the recognizer finds

frames that stand for sp or sil. As a result, there are many possible output transcriptions

for the speech, even though the equivalent text is provided for the module. The total

possible output for each utterance is equal to the permutations of sp and sil in the

transcription.

6.2.1 Evaluation

To evaluate the accuracy of the diphones segmented with this method, first the

accuracy of segmenting the triphones is studied. For this purpose, I simply provide the

utterance available in the TIMIT database to the program and compare the segmented

results with the segmentation provided by the TIMIT for the same utterance. However,

there is no method to evaluate the correctness and accuracy of the segmented phonemes.

To address this, I introduce two comparison methods.

Accuracy% =
2xAT„ int er sec tion xlOO
reference + AT recognized

ATI, intersection

recognized

Figure 6.2 Calculating the accuracy of segmentation.

Chapter 6: Diphone & Word Segmentation 72

6.2.2 Method I

The accuracy of segmentation is set to the ratio of the intersection of the

recognized segments and reference segments, TIMET, as shown in Figure 6.2.

Correctness of Phoeneme Segmentation

Distribution of Samples

Figure 6.3 Distribution??and accuracy of segmented phoneme samples.

Figure 6.3 shows the results of the experiments that calculated the accuracy of the

phonemes segmented with this formula. As indicated in Figure 6.3, 45% of the phonemes

are segmented with an accuracy above 80%; 33% of the phonemes are segmented with an

accuracy of between 50% and 80%, and 15% of the phonemes are segmented with an

accuracy of less than 50%. The pie chart indicates that 7% of the phonemes are

segmented with zero accuracy, meaning there is no intersection between the segmented

and reference phonemes. The accuracy evaluated here is the result of the recognition

model without adaptation, so the result is expected to improve with a model adapted for

the speech of a specific user.

Chapter 6: Diphone & Word Segmentation 73

6.2.3 Method II

In the previous method, I have assumed that all parts of a phoneme are equally

significant, but studies show that the middle node of a phoneme stands for its steady state

has a more important role in identifying a phoneme than the two transient nodes. As a

Figure 6.4 Mapping the model to Normal Distribution.

result, the two transient nodes are less significant, when compared to the middle node.

Therefore, I have employed another method of evaluating the correctness of a segmented

phoneme, by modeling its duration with Normal Distribution.

6.2.3.1 Correctness

In this method, I modeled a phoneme duration with a Normal Gaussian

distribution, and compared the correctness of the segmented triphone with the boundary

of the same phoneme in the same utterance provided by TIMIT. In this method, I

Recognized
Figure 6.5 An example of calculating the correctness of segmenting phonemes.

Chapter 6: Diphone & Word Segmentation 74

considered the fact that the middle node of a phoneme is its most significant part, while

the two other nodes, which stand for the transition parts of the phoneme, are its less

significant parts. Figure 6.4 shows the mapping method used. As indicated in Figure 6.4,

the center point of the curve is mapped to the middle of the phoneme and the standard

deviation of the model is set to half the duration of the middle node. Figure 6.5 shows an

example of calculating the correctness of the segmentation using this model.

The top line in Figure 6.5 shows the boundaries of the phonemes as provided by

TIMIT, and the bottom line shows the boundaries of the recognized phonemes. As

indicated in the figure, the segmented phoneme in begins from a and ends at d, and the

duration of the reference phoneme M begins at b, and ends at c, so that a<b,c <d.

Therefore, the correctness of segmenting phoneme m, compared with the reference M, is

100%. The correctness of the segmented phoneme y in the same utterance is equal to the

shaded area of distribution Y. However, phoneme m is extended from its boundary,

compared with the reference, and has overlapped with the two adjacent phonemes. The

error is calculated against the correctness of the adjacent phonemes, so the error is

considered only once in the calculation. Note that this calculation only shows the

correctness of the segmentation and it does not indicate the accuracy of the method. In

fact, this method cannot be used to evaluate the accuracy of the segmentation.

Figure 6.6 shows the results of this method. As indicated in the pie-chart, 69% of

the segmented phonemes are more than 80% correct. 11% of the samples are between 50

and 80% correct, 14% of the segmented phonemes are less than 50% correct, and finally,

Chapter 6: Diphone & Word Segmentation 75

Correctness of Phoneme Segmentation Modeled
by Normal Distribution

6% Number of Samples = 1203

11%

Correctness of Samples

69%

• Above 80%
1 5 0 - 8 0 %

• 1 -50 %
• Zero%

Distribution of Samples
Figure 6.6 Distribution and correctness of segmented samples.

6% of the segmented phonemes are completely outside of the reference boundaries, at

zero percent correct.

6.2.3.2 Accuracy

In evaluating correctness, I have discarded the effects of the intersection of the

segmented phoneme with its adjacent reference phonemes. For example, the phoneme m

shown in Figure 6.5 is segmented 100% correctly, even though it is extended beyond its

boundaries and overlaps with the X and y phoneme boundaries. However, this is

considered an error in calculating the accuracy of the segmentation. The accuracy of the

segmentation is calculated as

In this formula, correctness is calculated from the previous section and

Left_error is equal to the area between a and b

Right_Error is equal to the area between c and d

Chapter 6: Diphone & Word Segmentation 76

Figure 6.7 Distribution and accuracy of the segmented samples.

Figure 6.7 shows the result of calculating the accuracy with the above formula. As

indicated in the figure, 45% of the phonemes are segmented with an accuracy above 80%,

29% of the phonemes are segmented with an accuracy between 50 and 80%, 17% of the

phonemes are segmented with an accuracy below 17%, and finally, 9% of the samples are

segmented with an accuracy equal to zero.

Comparing Figures 6.7 and 6.3 reveals that the accuracy we have calculated with

the two methods are very close. However, the second method shows that 9% of the

samples are segmented with zero accuracy, while this amount in the first method is equal

to only 7%. The reason for the difference (9-7= 2%) is the error inducted to the

calculation by modeling the reference models using a Normal Distribution function.

6.2.4 Diphone Segmentation

When evaluating the correctness of the diphone segmentation, I considered the

fact that a diphone should begin from somewhere inside a phoneme and end somewhere

Chapter 6: Diphone & Word Segmentation 11

inside an adjacent phoneme. The result of comparing the beginning and end points of the

phonemes, with the reference phoneme provided by TIMIT, is indicated in Figure 6.8.

Figure 6.8 shows that 80% of the segmented diphones are confined to the defined

boundaries and only 20% of the segmented diphones have either their start or end, or both

start and end points, outside of the defined boundaries.

Correctness of Diphone Segmentation

^ T ^ « r o f samples compared :1057

Figure 6.8 Correctness of diphones segmented using the Indirect-Method,
compared with the TDMiT phoneme segmentation.

It is important to note that the model used for segmentation is not an adapted

model, so if we adapt the model to a specific user and then segment the phonemes and

diphones, we will gain much better results than those shown in Figures 6.8 and 6.7.

6.3 Direct Method

In the previous method, it was implicitly assumed that the phonemes were

symmetrically balanced in their middle nodes, and that the frame times of rising and

falling phoneme tone in the middle node were equal. As a result, the diphones were

Chapter 6: Diphone & Word Segmentation 78

segmented from their middles in the middle nodes. However, this assumption was

incorrect, because the rising and falling time of a phoneme may not be equal. To address

this problem, instead of segmenting triphones first and extracting diphones from them, I

modeled and trained the system with diphones from the beginning, forcing the recognizer

to directly recognize diphones.

In this method I have modeled and trained the system with diphones with sp as

word boundaries and sil at the beginning and at the end of each utterance. For example,

the utterance "Her hum became a g u r g l e o f s u r p r i s e " , selected from file

SI1837.1ab, SI training list of TIMIT, is converted to the following phonetic equivalent:

s i l - h h hh-er er-sp sp-hh hh-ah ah-m m-sp sp-b b-ih
ih-k k-ey ey-m m-sp sp-ah ah-sp sp-g g-er er-g g-ah
ah-1 1-sp sp-ah ah-v v-sp sp-s s-er er-p p-r r-ay ay-
z z - s i l

The dictionary used for this section is also transformed to the diphone equivalent. For

example, the entries

A ah

ABBREVIATE ah b r i y v i y ey t

ABILITY ah b i h 1 ah t i y

from the C M U dictionary change to

A sp-ah ah-sp

ABBREVIATE sp-ah ah-b b - r r - i y i y - v v - i y iy -ey ey-t t -sp

ABILITY sp-ah ah-b b - i h i h - 1 1-ah ah-t t - i y i y - sp

Here the speech recognizer provides diphone transcription of the speech directly

in the output as recognized speech, and the Diphone Extractor uses the information

Chapter 6: Diphone & Word Segmentation 79

provided to extract the diphones from the media file. A comparison of the correctness of

segmented diphones using this method with the segmentation provided by the TIMIT

database is indicated in Figure 6.9. As indicated in the pie chart, the boundaries of only

59% of the segmented diphones are in the expected region, and either the start or end

points, or both, of 41% of the segmented diphones are beyond the boundaries of the

phonemes provided by TIMIT.

Comparing Figures 6.9 and 6.8 indicates that the correctness of segmenting the

diphones with the indirect method is about 80 -59 = 21% more than the correctness of

segmenting the diphones with the direct method. The difference is probably due to

insufficient training data. In fact, the training method for the triphone model begins with

calculating the parameters of only 41 distinct phonemes, and then the training extends to

the triphone model. The training for diphones, however, begins with calculating the same

parameters for about 1600 distinct models, and it clearly needs much more data to adjust

the parameters of all the models correctly.

59%

0 Correct
HI Wrong

Figure 6 . 9 Correctness of diphones segmented with the Direct-Method
compared with TIMIT phoneme segmentation.

Chapter 6; Diphone & Word Segmentation 80

Although the indirect method provides better correctness as compared to the

correctness of the direct method, the accuracy of segmented diphones in the indirect

method is questionable. To have a sense of the accuracy of segmentation, I have

developed a speech synthesizer program to pronounce a text by concatenating the

segmented diphones, provided by both direct and indirect methods.

6.4 Speech Synthesizer

Concatenation of the diphones does not provide high quality synthesized speech;

instead, synthesizers use different methods of coupling and filtering to create a smooth

voice [29] [30]. However, these details are beyond the scope of this thesis. For evaluation

of the accuracy of the segmentation, I simply join the diphones to synthesize the speech.

It is obvious that the quality of the synthesized speech will be poor, but the output

provides a sense of the accuracy of the diphones that are segmented according to the

above-mentioned methods. Curious readers may refer to [31] for practical methods of

speech synthesis.

6.4.1 Program Options

For synthesizing a text, the program converts the text to its equivalent diphones

with sil at the beginning and ending of the text and sp inserted in between the words; the

same as WIT, but for diphones. For example, the utterance "His head flopped back" is

converted to

s i l - h h hh-ih ih-sp sp-hh hh-eh eh-d d-sp sp-f f-1 1-
aa aa-p p-t t-sp sp-b b-ae ae-k k - s i l

The program then looks into the diphones database and copies the diphones' binary file into a

buffer and saves it as a W A V E format file.

Chapter 6: Diphone & Word Segmentation 81

In this program, I have developed two notations (M and D) for two different

versions of speech synthesis using diphones.

M This notation stands for synthesizing speech from the diphones segmented with the

indirect method. It uses M database.

D This notation stands for synthesizing speech from the diphones segmented with the

direct method. It uses D database.

6.4.2 Speech Output 1

Figure 6.10 shows the original wave form of "His head flopped back" that is

uttered by Keith. The Top picture of the Figure 6.11 shows the synthesized wave form of

the same utterance from diphones segmented with the Indirect Method, and the bottom

one shows the same utterance synthesized from the diphones segmented with the Direct

Method.

As indicated in both figures, the four words are marked with circles; arrows show

the corresponding words in each waveform. Furthermore, the two synthesized wave files

indicate that the diphones segmented with the direct method create a waveform closer to

the original wave file than the diphones segmented with the indirect method.

Chapter 6: Diphone & Word Segmentation 82

Figure 6.11 Synthesized utterance "His head flopped back." (Top) From diphones segmented with
Indirect Method. (Bottom) From diphones segmented with Direct Method.

6.4.3 Speech Output 2

This is the same experiment as the previous one, but the test speech, "this is not

really me, " was not used either in training or in the segmentation process. As shown in

Figure 6.12, the utterance "this is not really me" is synthesized with two methods.

Chapter 6: Diphone & Word Segmentation 83

Comparing the two waveforms, except at the beginning and end of the

waveforms, the method shows a more natural appearance for method D than method M.

Furthermore, the speech created by method D has a more natural sound.

Figure 6.12 The utterance "this is not really me" synthesized with three methods.
(Top) version M , (Bottom) Version D.

6.4.4 Comparision

Both Figures 6.11 and 6.12 indicate that speech synthesized by diphones

segmented with the direct method has a more natural appearance and smoother tone than

speech synthesized by the diphones segmented with the indirect method. However, my

experiment with lab-mates indicates that the quality of the speech provided by Model D

is limited to some words and in most cases, Model M shows a better quality of speech.

The reason may reside in the accuracy and correctness of the two models. In fact,

the indirect method provides more correct segmentation than the direct method, but the

direct method segments the diphones more accurately than the indirect method. Further,

if there were enough training data to set the parameters of the diphones in the direct

Chapter 6: Diphone & Word Segmentation 84
Distribution of Samples

Figure 6.12 Distribution and accuracy of word segmentation.

method, the results might show the superiority of this method as compared with the

indirect method for segmenting diphones. This is a possibility worth exploring if enough

data were available to train the diphone model.

6.5 Word Segmentation

The same function shown in Figure 6.2 is employed to determine the accuracy of

the program to segment words. Figure 6.12 shows the distribution and accuracy of the

segmented words. As indicated in the figure, 54% of the words are segmented with an

accuracy above 90%, 26% of the samples are segmented with an accuracy above 75%,

and 18% of the words are segmented with an accuracy below 50%. However, 2% of the

words are segmented completely wrongly, compared to the segmentation provided by

TIMIT. These words are of very short duration, such as 'a', 'at', and similar words.

It is important to note that the TIMIT database, which is being used as a

reference, is segmented manually and is prone to human error. Furthermore, the model

used for all of the previous segmentations is not adapted. It is clear that the model, which

Chapter 6: Diphone & Word Segmentation 85

will eventually be used for this process, will be adapted to the speech of a specific user to

achieve better accuracy.

6.6 Word Spotting

Other potential uses for the speech recognizer developed in the previous chapters

are speech search applications. Because of the increasing use of multimedia to store and

file data, tools that search and index media files without involving humans will be in high

demand in the near future. The following simple application shows the functionality of

such a system for searching and retrieving a word in an A V I file, without having the

equivalent text of the media file.

The program shown in Figure 6.13 is a dialog designed to find the occurrence of

words in A V I files. The dialog accepts a text and uses the speech recognizer developed so

far to find, load, and play the occurrence of a text in the media file. The program is

invoked by typing a word in the Query Edit box and pushing the Submit Query button.

Then, the program processes the media file to find the occurrence of the input text. If the

text is found, the part of speech containing the text appears in the Display box at the

bottom of the dialog, and the queried text is highlighted. The A V I file containing that part

of speech is displayed in the File box, and the program is then ready to play the A V I file,

which utters the requested text. Otherwise, the phrase "Not found" will be displayed in

the Response box. The recognition process takes considerable time, so I have developed

an O D B S 1 0 to accelerate processing and decrease the response time of the program.

Open Database System

Chapter 6: Diphone & Word Segmentation 86

The first time the program wants to search a media file, it separates the speech

section of the A V I file and passes it to the speech recognizer developed in the previous

section11. Then it indexes and stores the recognized text into the database. The next time

a user inputs a text, the program looks into the database and matches the input text with

the recognized speech. This process is much more efficient because the program has to

process each media file only once.

Woid Spotter

Finish

Erttef«Wo[dfotQu«s>: j ___

. Si&mit Quay

0UT11-

; a eleven resolved that the and at slavery sentiment at is becoming ripe for
i action track twelve all th* your wishful thinking wont change that track

lirteen so he understood her and a track fourteen larvae are kept form so track
i the larvae kept warm by the queen are full grown in about ten days panic

ack fifteen the single kick made it spring open shuddering

Query Edit box

Response box

File box

Display box

Figure 6.13 The dialog was asked to look for the occurrence of the word "wishful".

Figure 6.13 shows an instance of the dialog. In this dialog, the program is asked to

find the word "wishful", by typing the word in the Query Edit box and pushing the

Submit Query button. The program finds the word in the file O U T l l - 1 5 . A V I and

11 This program uses the adapted tied-model developed in the previous section.

Chapter 6: Diphone & Word Segmentation 87

highlights the word in the paragraph found by the speech recognizer. The program then

loads the A V I file and is ready to play the media file to utter "wishful".

The recognized text is not completely correct. As indicated in the Display Box at

the bottom of the dialog, the recognized text begins with "track a eleven" while the

speech was "track eleven," and the speech "all your wishful thinking" has been

recognized as "all the your wishful thinking." It is clear that the accuracy of the

application for retrieving text is dependent upon the accuracy of the speech recognizer

developed in the previous section. Figure 6.14 shows another instance of the program that

is asked to look for occurrences of the word "family" in the media files. As indicated in

the figure, the program finds the word in the file OUT01-04.AVI, highlights the word

"family" in the Display box, and it is then ready to play and utter the word.

Word Spotter

Finish

Submit Query

•M. | m . "j |OUT01-04,AV1

track again these blocks were set In resin saturated glass flopped and nailed track
to his head flopped back track three the shot reverberated in diminishing
whiplashes of sound to track four have a test run on of family first to be sure
timing and seasoning are right the track shot the back are In be be in three be of In |
and one these to in a and on set set in test a in

Figure 6.14 The dialog was asked to look for the occurrence of the
word "family".

88

C h a p t e r 7

C o n c l u s i o n s

7.1 Summary

The primary contribution of this thesis is to develop methods and to extend

speech recognition technology to segment natural speech into words and diphones, so

that the segments can be recombined to synthesize speech based on user input.

In this thesis, I used the M F C C method to preprocess speech signals, and uses

H M M to model speech. However, there are a variety of methods for preparing speech

signals for recognition and different methods for speech modeling and recognition.

The language model used in this project is a parallel network with the same

probability for all words used, although, the possibility of uttering a word depends on the

context and logical flow of the speech in each sentence.

For segmenting speech into diphones, the speech recognition engine is provided

with both the speech to be recognized and its equivalent text. In this approach, the engine

is able to recognize and segment the speech more accurately.

I have introduced two methods to evaluate the correctness and accuracy of

phoneme segmentation. The discussion of correctness and accuracy of phoneme

segmentation is introduced in this thesis for the first time. In the first method, the

accuracy of segmentation is set to the ratio of the intersection of the recognized segments

and reference segments provided by TIMIT. In the second method, I modeled a phoneme

Chapter 7: Conclusion 89

duration with a Normal distribution, and compared the correctness of the segmented

phoneme with the boundaries of the same phoneme in the same utterance provided by

TIMIT. The decision to set the standard deviation of the model to half of the duration of

the middle node of the acoustic model, was based on the fact that the middle node of a

phoneme has a more important role in identifying a phoneme than the two transient

nodes.

I have developed two methods to segment speech into diphones. In the first

method (Indirect method), I have employed a phoneme-based speech recognition engine

to segment speech into phonemes, and then adjacent phonemes are segmented into

diphones. In the second method (Direct method), I have developed a speech recognition

engine trained based on diphone recognition. In this method, input speech is segmented

into diphones directly.

By considering the fact that a diphone begins some where inside a phoneme and

ends somewhere inside the adjacent phoneme, I have compared the correctness of

diphone segmentation, segmented with the two methods. Experiments show that 80

percent of the diphones segmented with the first method have both their start and end

points located inside the defined boundaries, while only 59 percent of the diphones

segmented with the second method have their both start and end points located inside the

expected regions. This indicates that the Indirect method segments the diphones more

correctly than the Direct method. The reason may be that the training process of the first

method begins with estimating parameters of only 41 phonemes, while the same training

data is employed to estimate the parameters of about 1300 diphones. This means that, on

average, only 3.1 percent of the training data that is used to estimate the parameters of a

Chapter 7: Conclusion 90

phoneme in the first method is employed to estimate the parameters of the diphones in

the second method. In fact, the result may me different if the same amount of data per

model are used to estimate the parameters of models in both methods.

To evaluate the accuracy of segmentation, I concatenate the diphones to

synthesize speech with the diphones segmented with both methods. By examining the

wave form of the synthesized speech, I noticed that the speech synthesized with the

diphones segmented with second method is smoother than the speech synthesized with

the diphones segmented with the first method. Furthermore, the speech created by second

method has a more natural sound. It seems that, although the correctness of segmentation

with the Direct method is less than the correctness of the segmentation with Indirect

method, the boundaries of the correctly segmented diphones are more accurate in Direct

method than the boundaries of the diphones segmented with Indirect method.

7.2 Future work

The main challenges facing speech recognition engines are speed and accuracy.

Processing speed depends on the size of vocabulary being recognized and the speed of

the processor that the program is running. However, the accuracy of recognition is a

matter of software.

A dynamic word network is a good subject for further work. As recognition

moves forward, the system changes the word network and modifies its transition

probability to fit the contents recognized so far. Another possibility for improving

accuracy is to model phonemes with different states and transitions, as we did for sp and

sil in this project. This is a possibility worth exploring.

Chapter 7: Conclusion 91

Diphone recognition engine is first introduced in this thesis, and each diphone is

modeled with three left-right Markov Chain. However, studying acoustic behavior of

each diphone and modeling each diphone with more accurate number of states and

transitions can be a topic of further projects.

User-independent speech recognition will be a necessity in the future. As

indicated in the project, to achieve better recognition, the model should be adjusted and

tailored to the voice of a specific user. However, this may not be practical for a speech

recognizer installed for public use; for example, a banking machine. As a result, a main

goal of speech recognition is the development of a system that is able to recognize the

speech of different users with the same, high accuracy. One possible approach to such a

system would involve classifying different users into different groups, and loading

models that most appropriately reflect the speech of the user. The main difficulty of

developing such a system is classifying users and dynamically adapting the parameters of

models to achieve better accuracy.

92

A p p e n d i x e s

Appendix A

Regression Class Tree

A common approach using a binary regression class tree is shown below.

Figure A . l A binary regression tree

The leaves of the tree are termed the base regression classes, and each Gaussian

mixture component of a model set belongs to a single base class. For example, the class

in Figure A . l . has four base classes, C4, C5, C6, and C7. During adaptation, occupation

counts are accumulated for each of the base classes. The solid lines in the figure indicate

that there are sufficient data for adaptation, and the dotted lines show the insufficiency of

the data for the adaptation process. For example, neither nodes 6 nor 7 has sufficient data

for adaptation. However, when they pool at node 3, there is enough data. The amount of

data that determines sufficiency is definable.

Appendix A : Regression Class Tree 93

The regression class tree is built using a centroid splitting algorithm, which yields

clusters that lie in a similar portion of the acoustic space. The following algorithm

provides a method to cluster and create a Regression Class Tree.

1. Select a terminal node that is to be split.

2. Calculate the mean and variance from the mixture components clustered at

this node.

3. Create two children. Initialize their means to the parent mean perturbed in

opposite directions for each child by a fraction of the variance.

4. For each component at the parent node assign the component to one of the

children by using Euclidean distance, to which the mean is closer.

5. Once all the components have been assigned, calculate the new means for the

children.

This algorithm is repeated until the desired number of child nodes is found.

94

Appendix B

EM Algorithm

E M determines the estimated parameters of a model such that

Wnew)>f(Mold) (B.l)

where M is the parameter of the model.

For implementing the E M algorithm, an auxiliary function is required. For speech

recognition systems the function typically used is [32]

QWM M^) = 5>(CU | M o W) l og{0 , s I M _) (B.2)
seS

where S contains all possible state sequences leading to the recognition of the O.

The equation (B.2) expands to

T

seS \ t=l t=l

QWold, Mnew) = J q(0, s | MM { J ^(transition _ prob.) + £ l o g ^ (o,) (B.3)

Since we are interested only in the transformation matrix, we can ignore the first part of the

right hand side of the equation, and (B.3) reduces to

T

I
seS 1=1

Q(Mold, Mnew) = J E 4<P, s | MM) log bh (o,) (B.4)

After substituting (3.14) and (3.34) into (B.4), and the state occupancy count from (3.30),

differentiate the Q(M0id,Mnew) with respect to Wand the right hand side equal to zero, and

group the terms of W. We will then have the following :

The details are too many to be referenced in this thesis; curious readers should refer to [20] [32] [33] [34] [35] for
details.

Appendix B: EM Algorithm 95

X LWMt)? =£ WWoitW^7 (B.5)

Here t, is the extended mean vector and 2 is the covariance matrix. If W is shared by R

states, then the general form expands to this:

r=l r=l 1=1 r=l

Where Lr (t), is the occupation likelihood, defined as described in (3.28)

Lr(t) = P(qr(t)\0„M) (B.7)

and qr (t) indicates the Gaussin component at time t, OT={O(1),. . .,o(T)} is the adaptaion

data. The equation (B.6) is rewritten, thus:

t t hWLMtf =HvrWDr (B.8)
1=1 r=l 1=1 r=l

Where

Vr=^LrWr-1 (B.9)

and

D r = ^ r C (B.10)
i=i

Let's define Z: the right hand side of (B.8) to be a n x (n +1) matrix; then

Z = ̂ L r (O X > U / (B.ll)

Also let the elements of Z, V, W, and D, be zy, vy, wy, and dy respectively; then the formula

(B.ll) can be rewritten this way

n n+1 R

p/=l q=l r=\

Appendix B: EM Algorithm 96

Since D r is symmetrical, equation (B.12) can be rewritten, thus:

n+l R

z^SXEW (B.13)

setting

^=Evf4)
 (B.14)

yields

z»=2>i.** (B.15)
n+l

9=1

where Z and G can be computed from the observation vectors and model parameters. So we

will have this:

wl=(G(i)rlzl (B.16)

where vi>, and zi are the f1 rows of W and Z respectively.

The use of a regression class tree to generate classes dynamically does not introduce a

problem into the above formulation; instead, if the parent node R has children {RI,... , Rc}

then

Z = JX (B.18)

and

G = | X (B.18)

The same rules with some modifications apply to finding a variance transformation matrix.

£ = BTHB (B.19)

Appendix B: EM Algorithm 97

where H is the linear transformation to be estimated and B is the inverse of the Choleski

factor of 2T 1, so

IT1 =CCT

and

B = C" 1

(B.20)

(B.21)

By employing the same auxiliary function as defined in (B.4)

Q(Mold >Mnew) = ^jYj Q(0> S I MoU) log \ (fl,) (B.22)
seS t=l

After expanding log bj (o,) and differentiating Q(M old \ Mnew) with respect to H and

equating it to zero [32] we will have this:

n _ £ ^ g ^ (0 (o (o - ^ x o (o - ^ r) r k
4(0

(B.23)

Example of the EM Algorithm

Assume that the following defines a single state in a recognition system using the two-

dimensional acoustic space with diagonal covariance

2 4 0
Mi —

0 9 Mi
3 0 9

"4,1" r o.o2 -0.02
Mo 3.4 -0.02 0.02

Now let us assume that we have two frames of adaptation data, thus

4

3.5

4.2

3.3

Recalling (B.16), we will solve the set of functions:

Appendix B: EM Algorithm 98

T R

where w, and z, are the f1 rows of W and Z respectively.

If we set offset equal to 1, then the extended mean vector will be

M = i 2 3]

and if we assume Lj(l) = 0.3, and Li(2)=0.8 then

Z = 0.3
0.25 0 4
0 0.111 3.5

[l 2 3]+0.8
0.25 0
0 0.111

4.2
3.3

[l 2 3]

Then

Z =
1.14 2.28 3.42

0.4096 0.8192 1.2288

For a diagonal covariance, we define the elements of G;, thus:

r=l

V r = jly(f)Zr-,=0.3 »=i

0.25 0
0 0.111

+ 0.8
0.25 0
0 0.111

[1 2 3]=
1 2 3
2 4 6
3 6 9

Vr =
0.275 0

0 0.1221

At this point, we have what we need to solve G/

Appendix B: EM Algorithm 99

1 2 3 0.275 0.550 0.825
G, =0.275 2 4 6 = 0.550 1.100 1.650

3 6 9 0.825 1.650 2.475

1 2 3 0.122 0.244 0.366
G 2 =1.1221 2 4 6 - 0.244 0.488 0.733

3 6 9 0.366 0.733 1.099

(G2r =

1.8553-2 3.71 IE -2 5 . 5 6 6 £ - 2
3.711E-2 7.421E-2 1.113E-1
5.566E-2 1.113E-1 1.669E-1

"4.179E-2 8.357E-2 1.254E-1
8.357E-2 1.671E-1 2 . 5 0 7 £ - l
1 .254£-2 2 . 5 0 7 £ - l 3 .761£-1

By substituting G into (B.16) we get this:

1.855£- 2 3.7'1'1E- 2 5.566E - 2 1.14" "0.2961"
T

w, = 3 .711£- 2 7.421E- 2 1.113E -1 2.28 -•- 0.5922
5.566E- 2 1.113E- 1 1.669£ -1 3.42 0.8883

"4.179£- 2 8 .357£- 2 1.254E -1" "0.4096" "0.2396"
T

™2 = 8.357£- 2 1.61 IE- 1 2.507 E -1 0.8192 = 0.4792
1.254£- 2 2.507£--1 3.761E -1 1.2288 0.7188

We can now compute the adapted means

0.2961 0.5922 0.8883
0.2396 0.4792 0.7188

0.2961 0.5922 0.8883

0.2396 0.4792 0.7188

IT 4.145
2 —

3.355
-1 3

As indicated, the mean has moved closer to the observed mean. A similar process is used to

calculate the adapted covariance matrix.

100

Appendix C

Tree-Based Clustering

A Tree-Based clustering is a binary tree in which a yes/no phonetic question is

attached to each node [36], arid according to the route a triphone traverses, it ends up in a

leaf node. Then all the nodes in the leaf node are considered phonetically similar and they

n-x+p
m-x+i

R Stop ?fjw^

Yes / \ No
L Vowel ? $M

Y e s ^ / VNO
L_Nasal?

Yes ; (\NO
('"''•)

n-x+p

Figure C l Decision tree-bases state tying

can be grouped to share parameters. For example, Figure C l shows a case df tying the

center states of a triphone of phoneme X. In this example, the triphone n-x+p will end up

in the lower shaded node, because its right is "Stop" arid its left is "Nasal".

To create a tree, the phonetic questions that categorize the phonetic context of a

triphone state must be defined. The assumption behind the choice of phonetic questions is

that phonemes that belong to the same phonetic class have a similar influence on the

pronunciation of a phoneme. The set of questions defined for this project is Copied from

Appendix C: Tree Based Clustering 101

the set of questions developed at Cambridge University. However, the questions are

modified to fit the phoneme set employed in this project (phoneme set used by CMU) .

Refer to Appendix D for the list of questions used for this project.

Tied-state triphone

In this step, similar acoustic states of the triphones are tied to reduce the number

of parameters and ensure that all state distributions can be robustly estimated. As a result,

triphone states whose emission probabilities are very similar are tied together. These tied

states share the parameters evaluated by all observations assigned to the set. The tied

model is much smaller that the untied model, so it can be implemented more efficiently,

compared with the untied one.

Initially, all the selected models are grouped into the root node A B . Then this

node is split using the phonetic question from the set of questions that yields the biggest

likelihood of improvement A(A,B) for the child nodes A and B [20]:

A(A, B) = \L(A)L(B) - L(AB)\

V
A(A,B) =

1 D

- (» A £ 1 O S
£ d=\

d,AB

'd,A
+ »BE l og

d=\

d,AB

'.d,B

2\

Where nx is the number of observations for node JC, D dimentionality of the

feature vector and ad xthe variance of component d of node x.

This process is repeated until the increase in log likelihood falls below the

threshold specified for A(A, B). As a final stage, the decrease in log likelihood is

Appendix C: Tree Based Clustering 102

calculated for merging terminal nodes with different parents. Any pair of nodes for which

this decrease is less than the threshold used to stop splitting are then merged.

In this project all the states of each triphone model are clustered as

("x", "*-x+*", "x+*", " *-x") . state [i]
where X is a phoneme and i is the state of the model. This process is implemented for

each X e phoneme _ set and i = [2 3 4] .

The HTK provides a tool, HHed, for clustering purposes. I have used the question

set in Appendix D with a threshold equal to 350.

103

Appendix D

Question set employed for clustering

The Questions provided are copied from the set of questions developed at

University of Cambridge, but modified to fit the phoneme set we adapted in this project,

the C M U phoneme set.

R_Silence *+ s i l
R_Pause *+sp
R_Stop *+p,*+b,*+t,*+d,*+k,*+g
R_Nasal *+m,*+n,*+ng
R_Fricative *+s,*+sh,*+z,*+zh,*+f,*+v,*+ch,*+jh,*+th,*+dh
R_Liquid *+r,*+w,*+y,*+hh
R_Vowel *+eh,*+ih,*+ao,*+aa,*+uw,*+ah, *+er,*+ay,*+oy,*+ey,* + i y

, *+ow
R_C-Front *+p,*+b,*+m,*+f,*+v,*+w
R_C-Central *+t,*+d,*+n,*+s,*+z,*+zh,*+sh,*+th,*+dh,*+l,*+r
R_C-Back *+sh,*+ch,*+jh,*+y,*+k,*+g,*+ng,*+hh
R_V-Front *+iy,*+ih,*+eh
R_V-Central *+eh,*+aa,*+er,*+ao
R_V-Back *+uw,*+aa,*+uh
R_Front *+p,*+b,*+m,*+f,*+v,*+w,*+iy,*+ih,*+eh
R_Central *+t,*+d,*+n,*+s,*+z,*+zh,*+sh,*+th,*+dh,*+l,*+r,*+eh,*

+aa,*+er,*+ao
R_Back *+sh,*+ch,*+jh,*+y,*+k,*+g,*+ng, *+hh,*+aa,*+uw,*+uh
R_Fortis *+p,*+t,*+k,*+f,*+th,*+s,*+sh,*+ch
R_Lenis *+b,*+d,*+g,*+v,*+dh,*+z,*+zh,*+sh,*+jh
R_UnFortLenis *+m,*+n,*+ng,*+hh,*+r,*+y,*+w
R_Coronal *+t,*+d,*+n,*+th,*+dh,*+s,*+z,*+zh,*+sh,*+ch,*+jh,*+l,

*+r
R_NonCoronal *+p,*+b,*+m,*+k,*+g,*+ng,*+f,*+v,*+hh,*+y,*+w
R_Anterior *+p,*+b,*+m,*+t,*+d,*+n,*+f,*+v,* + th,*+dh,*+s,*+z,*+zh

,*+l,*+w
R_NonAnterior *+k,*+g,*+ng,*+sh,*+hh,*+ch,*+jh,*+r,*+y
R_Continuent *+m,*+n,*+ng,* + f,*+v,*+th, *+dh, *+s,* + z,* + zh,*+sh,*+hh,

+r,+y,*+w
R_NonContinuent *+p,*+b,*+t,*+d,*+k,*+g,*+ch,*+jh
R_Strident *+s,*+z,*+zh,*+sh,*+ch,*+jh
R_NonStrident *+f,*+v,*+th,*+dh,*+hh
R_UnStrident *+p,*+b,*+m,* + t,*+d,*+n,*+k, *+g,*+ng,*+l,*+r,*+y,*+w
R_Glide *+hh,*+l,*+r,*+y,*+w
R_Syllabic * + m , * + e r
R_Unvoiced-Cons *+p,*+t,*+k,*+s,*+sh,*+f,*+th,*+hh,*+ch
R_Voiced-Cons *+jh,*+b,*+d,*+dh,*+g,*+y,*+l,*+m,*+n,*+ng,*+r,*+v,*+w

,*+z,*+zh
R_Unvoiced-All *+p,*+t,*+k,*+s,*+sh,*+f,*+th,*+hh,*+ch,*+sil,*+sp
R_Lohg *+iy,*+aa,*+ow,*+ao,*+uw,*+m,*+l

Appendix D : Table of Clustering 104

R_Short *+eh,*+ey,*+aa,* + ih,*+ay,*+oy,*+ah,*+uh
R_Dipthong *+ey,*+ay,*+oy,*+aa,*+er,*+m,*+l
R_Front-Start *+ey,*+aa,*+er
R_Fronting *+ay,*+ey,*+oy
R_High *+ih,*+uw,*+aa,*+iy,
R Medium *+ey,*+er,*+aa,*+eh,*+m,*+l
R_Low *+eh,*+ay,*+aa,*+aw,*+ao,*+oy
R_Rounded *+ao,*+uw,*+aa,*+oy,*+w
R_Unrounded *+eh, *+ih,*+aa,*+er,*+ay,*+ey,* + iy,*+aw,*+ah,*+m,*+hh,

+l,+r,*+y
R_NonAffricate *+s,*+sh, *+z,* + zh,* + f,*+v,*+th,*+dh
R_Affricate *+ch,*+jh
R_IVowel *+ih,*+iy
R_EVowel *+eh,*+ey
R_AVowel *+eh,*+aa,*+er,*+ay,*+aw
R_OVowel *+ao,*+oy,*+aa
R_UVowel *+aa,*+m,*+l,*+uw
R_Voiced-Stop *+b,*+d,*+g
R_Unvo i c ed-S t op *+p,*+t,*+k
R_Front-Stop *+p,*+b
R_Central-Stop *+t,*+d
R_Back-Stop *+k,*+g
R_Voiced-Fric * + z,* + zh,*+sh,*+dh,*+ch,*+v
R_Unvoiced-Fric *+s,*+sh,*+th,*+f,*+ch
R_Front-Fric *+f,*+v
R_Central-Fric *+s,* + z,*+zh,*+th,*+dh
R_Back-Fric *+sh,*+ch,*+jh
R_aa *+aa
R_ae *+ae
R_ah *+ah
R_ao *+ao
R_aw *+aw
R_ay *+ay
R_b *+b
R_ch *+ch
R_d *+d
R_dh *+dh
R_eh *+eh
R_er *+er
R_ey *+ey
R_f * + f
R_g *+g
R_hh *+hh
R_ih *+ih
R_iy *+iy
R_jh *+jh
R_k *+k
R_l * + l
R m *+m
R_n *+n
R_ng *+ng
R_ow * +OW

R_oy *+oy
R_P *+p

Appendix D : Table of Clustering 105

R_r *+r
R_s *+s
R sh *+sh
R_t *+t
R_th *+th
R_uh *+uh
R_uw *+uw
R_v *+v
R_w *+w
R-X *+y
R_z *+z
R_zh *+zh
L_NonBoundary *-*
L_Silence s i l - *
L_Pause sp-*
L_Stop p-*,b-*,t-*,d-*,k-*,g-*
L_Nasal m-*,n-*,ng-*
L _ F r i c a t i v e s-*,sh-*,z-*,zh-*,f-*,v-*,ch-*,jh-*,th-*,dh-*
L_Liquid l-*,r-*,w-*,y-*,hh-*
L_Vowel eh-*,ih-*,ao-*,aa-*,uw-*,ah-*,ax-*,er-*,ay-*,oy-*,ey-

,iy-,ow-*
L_C-Front p-*,b-*,m-*,f-*,v-*,w-*
L_C-Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,l-*,r-*
L_C-Back sh-*,ch-*,j h-*,y-*,k-*,g-*,ng-*, hh-*
L_V-Front i y - * , i h - * , e h - *
L_V-Central eh-*,aa-*,er-*,ao-*
L_V-Back uw-*,aa-*,uh-*
L_Front p-*,b-*,m-*,f-*,v-*,w-*,iy-*,ih-*,eh-*
L_Central t-*,d-*,n-*,s-*,z-*,zh-*,sh-*,th-*,dh-*,l-*,r-*,eh-

,aa-,er-*,ao-*
L_Back sh-*,ch-*,jh-*,y-*,k-*,g-*,ng-*,hh-*,aa-*,uw-*,uh-*
L_ F o r t i s p-*,t-*,k-*,f-*,th-*,s-*,sh-*,ch-*
L_Lenis b-*,d-*,g-*,v-*,dh-*,z-*,zh-*,sh-*,jh-*
L_UnFortLenis m-*,n-*,ng-*,hh-*,l-*,r-*,y-*,w-*
L_Coronal t-*,d-*,n-*,th-*,dh-*,s-*,z-*,zh-*,sh-*,ch-*,jh-*,l-

* , r - *
L_NonCoronal p-*,b-*,m-*,k-*,g-*,ng-*,f-*,v-*,hh-*,y-*,w-*
L_Anterior p-*,b-*,m-*,t-*,d-*,n-*,f-*,v-*,th-*,dh-*,s-*,z-*,zh-

,l-,w-*
L_NonAnterior k-*,g-*,ng-*,sh-*,hh-*,ch-*,jh-*,r-*,y-*
L_Continuent m-*,n-*,ng-*,f-*,v-*,th-*,dh-*,s-* (z-*,zh-*,sh-*,hh-

,l-,r-*,y-*,w-*
L_NonContinuent p-*,b-*,t-*,d-*,k-*,g-*,ch-*,jh-*
L_Strident s-*,z^*,zh-*,sh-*,ch-*,jh-*
L_NonStrident f-*,v-*,th-*,dh-*,hh-*
L_UnStrident p-*,b-*,m-*,t-*,d-*,n-*,k-*,g-*,ng-*/l-*,r-*,y-*,w-*
L_Glide hh-*,l-*,r-*,y-*,w-*
L _ S y l l a b i c m-*,1-*,er-*
L_Unvoiced-Cons p-*,t-*,k-*,s-*,sh-*,f-*,th-*,hh-*,ch-*
L_Voiced-Cons jh-*,b-*,d-*,dh-*,g-*,y-*, l-*,m-*,n-*,ng-*,r-*,v-*,w-

,z-,zh-*
L_Unvoiced-All p-*,t-*,k-*,s-*,sh-*,f-*,th-*,hh-*,ch-*,sil-*,sp-*
L_Long iy-*,aa-*,ow-*,ao-*,uw-*,m-*,1-*
L_Short eh-*,ey-*,aa-*,ih-*,ay-*,oy-*,ah-*,uh-*

Appendix D : Table of Clustering 106

L_Dipthong ey-*,ay-*,oy-*,aa-*,er-*,m-*,1-*
L_Front-Start ey-*,aa-*,er-*
L_Fronting ay-*,ey-*,oy-*
L_High ih-*,uw-*,aa-*,iy-*
L Medium ey-*,er-*,aa-*,eh-*,m-*,1-*
L_Low eh-*,ay-*,aa-*,aw-*,ao-*,oy-*
L_Rounded ao-*,uw-*,aa-*,oy-*,w-*
L_Unrounded eh-*,ih-*,aa-*,er-*,ay-*,ey-*,iy-*,aw-*,ah-*,m-*,hh-

* , l - * , r - * , y - *
L_NonAffricate s-*,sh-*,z-*,zh-*,f-*,v-*,th-*,dh-*
L A f f r i c a t e ch-*,jh-*
L IVowel i h - * , i y - *
L_EVowel eh-*,ey-*
L_AVowel eh-*,aa-*,er-*,ay-*,aw-*
L_OVowel ao-*,oy-*,aa-*
L_UVowel aa-*,m-*,l-*,uw-*
L_Vbiced-Stop b-*,d-*,g-*
L_Unvoiced-Stop p-*,t-*,k-*
L_Front-Stop p-*,b-*
L_Central-Stop t-*,d-*
L_Back-Stop k-*,g-*
L Voiced-Fric z-*,zh-*,sh-*,dh-*,ch-*,v-*
L_Unvoiced-Fric s-*,sh-*,th-*,f-*,ch-*
L_Front-Fric f-*,v-*
L C e n t r a l - F r i c s-*,z-*,zh-*,th-*,dh-*
L_Back-Fric sh-*,ch-*,jh-*
L aa aa-*
L_ae ae-*
L_ah ah-*
L_ao ao-*
L_aw aw-*
L_ay ay- *
L_b b-*
L_ch ch-*
L_d d-*
L_dh dh-*
L_eh eh-*
L er er-*
L_ey ey- *
L_f f-*
L_g g-*
L hh hh-*
L_i h i h - *
L _ i y i y - *
L_jh j h - *
L_k k-*
L I 1-*
L m m-*
L_n n-*
L_ng ng-*
L_ow O W - *

L_oy oy-*
L_P p-*
L_r r - * .

Appendix D : Table of Clustering 107

L _ S S - *

L_sh sh-*
L _ t t-*
L _ t h t h - *
L_uh uh-*
L_uw U W - *

L _ V V - *

L _ W W - *

L_y y-*
L_z Z - *

L_zh zh-*
Table DI The set of questions are used for clustering.

108

R e f e r e n c e s

[1] T. Dutoit, "An Introduction to TTS Synthesis," Kluwer Academic Publishers, 1994

[2] F.J. Owens, "Signal Processing of Speech," Mcmillan New Electronics.

[3] K Torkkola, "Astochastic Models and Artificial Neural Networks for Sutomatic Speech

Recognition," Istitut Dalle Molle dTntelligence Artifielle Perceptive (IDIAP), C P . 609, CH-

1920 Martigny, Switzerland.

[4] D.B. Roe, J.G. Wilpon, "Voice Communication Between Humans And Machine,"

National Academy of Sciences, Washington D.C. 1994

[5] R.L. Scheaffer, 'Introduction to Probability and its Applications," Second Edition,

Duxbury Press, 1995.

[6] S. Katz, "Estimation of probabilities from sparse data for the language model component

of a speech recognizer," IEEE Transactions on Acoustics, Speech and Signal Processing, vol.

35, no. 3, pp.400-01, March 1987

[7] H. Ney, R. Kneser, U . Essen, " On the estimation of small probabilities by leaving one

out," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAM1-17,

no. 12, pp. 1202-12, December 1995.

[8] G. Chollet, "Automatic Speech and Speaker Recognition: Overview, Current Issues and

Perspectives," Istitut Dalle Molle dTntelligence Artifielle Perceptive (IDIAP), C P . 609, CH-

1920 Martigny, Switzerland, and CNRS, U R A 820,46 rue Barrault, F-75634 PARIS

CEDEX, France.

[9] B. Gold, "Speech and Audio Signal Processing," Massachusetts Institute of Technology,

Lincoln Laboratory. Nelson Morgan, University of California at Berkeley, International

Computer Science Institute

[10] P. Bhaskararao, "Sub-phonemic Segment Inventories for Concatenative Speech

Synthesis," Deccan College, PUNE 6, India and ILCAA, Tokyo University of Foreign

Studies, TOKYO, Japan.

References 109

[11] D.H. Klatt, "Review of text-to-speech conversion for English," JASA, 82:3,737-93,.

1987.

[12] 'Project of SPHINX," http://www.speech.cs.cmu.edu, Carnegie Mellon University.

[13] L.C. Oliveira, "Text-to-Speech Synthesis with Dynamic Control of Source Parameters,"
DSTESC/IST, Portugal, 1997.

[14] M.E. Beckman, "Speech Models and Speech Synthesis," Ohio State university,
Department of Linguistics, USA, 1996.

[15] S. Furui, "Cepstral Analysis Techniques for Automatic Speaker Verification," IEEE
Tran. On ASSP, 29, No.2, pp.254-272,1981.

[16] L.R. Rabiner, R.W. Shafer, "Digital Processing of Speech Signal," Prentice Hall, 1978

[17] C. Becchetti, F.U. Bordoni, L.P. Ricotti, "Speech Recognition, Theory and C++
Implementation," Rome, Italy

[18] A. Oppenheim, "Signal and Systems," Englewood Cliffs, N.J.: Prentice-Hall, cl983.
[19] L.B. Jackson, " Digital Filters and Signal Processing," Third Edition, Kluwer Academic
Publisher, 1996.

[20] "HTK Tool kit," Cambridge University, 2000

[21] N.O.S. Jayant, P. Noll, "Digital Coding of Waveforms," Prentice Hall, 1984.

[22] J. Makhoul, R. Schwartz, "State of the Art in Continuous in Speech Recognition,"
National Academy of Science, Washington, D.C.1994.

[23] F.S. Samaria, "Face recognition using Hidden Markov Model," Engineering

Department, Cambridge University.

[24] F.R. Chen, L.D. Wilcox, D.S. Bloomberg, "Word spotting in scanned images using
Hidden Markov Models," proc. ICASSp, 5, p. 1 (1993)

[25] B. Hannaford, "Hidden Markov Model analysis of manufacturing process information,"
IROS 1991, Osaka, Japan (Nov 1991)

http://www.speech.cs.cmu.edu

References 110

[26] J. Henderson, S. Salzberg, K Fasman, "Finding genes in human DNA with Hidden
Markov Model," Journal of Computational biology, 4, No. 2. Pp. 127-142 (1997)

[27] T. Kanungo, "Hidden Markov Models," Center for Automation Research, University of

Maryland, www.cfar.umd.edu/~kanungo

[28] L.R. Rabinder, "A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition," IEEE, Vol. 77, No. 2, February 1988.

[29] AD. Conkie, S. Isard, "Optimal Coupling of Diphones," Center for Speech Technology
Research, University of Edinburgh, Scotland, 1977.

[30] G. Richard, C.R. d' Alessandro, 'Modification of the Aperiodic Component of Speech
Signals for Synthesis," Center for Computer Aids for Industrial Productivity, Rutgers
University, USA and LIMSI-CNRS, Orsay, France.

[31] V. Santen, Sproat, Olive, Hirschberg "Progress in Speech Synthesis," Springer, Verlag
New York, 1997.

[32] J. Picone," Special topics in Speech Recognition," Department of Electrical
Engineering, Mississippi State University, 2000.

[33] C. J. Leggetter, P. C. Woodland, "Flexible Speaker Adaptation Using Maximum
Likelihood Linear Regression," Proceedings of the ARPA Spoken Language Technology
Workshop, Barton Creek, 1995.
[34] M. Gales, P.C. Woodland, "Variance Compensation Within the MLLR Framework,"
Technical Report CUED/F-INFENT/TR242, Cambridge University Engineering
Department, February 1996.
[35] P. Zhan, M. Westphal, M. Finke, Alex Waibel, "Speaker Normalization and Speaker
Adaptation - A Combination for Conversational Speech Recognition," Proceedings of
Eurospeech 1997, Rhodes, Greece, September 1997.
[36] L. Yi, P. Fung, "Decision Tree-based Triphone are Robust and Practical for Mandarin
Speech Recognition," Human Language Technology Center, University of Science and
Technology, Hong Kong.

http://www.cfar.umd.edu/~kanungo

