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Abstract 

This thesis examines the problem of building primitive vision elements for the remote 

operation of heavy equipment using minimal supervision. The ultimate goal of the vision system 

is to provide the robot with a world view that is compatible with the operator's view such that the 

operator sets goals and the robot executes low level tasks needed to accomplish intermediate 

objectives. A system for perceiving shape is developed that allows the robot to identify the 

ground surface on which it moves and to recognize obstacles and simple objects within the 

workspace. Stereo vision is used for this purpose. 

Disparity between stereo images contains distance information about a scene. The 

information in stereo images and the recovery of dense disparity maps is studied. A procedure for 

matching stereo images is given. The disparity gradient is used as the fundamental evidence of 

shape perceived by stereo vision and the properties for shape are analyzed within disparity 

gradient space. These attributes are exploited for navigation and recognition of simple shapes. 

The techniques developed are used to recognize cylinders and to estimate their location, size and 

orientation within a robot workspace. 

The vision process includes three phases: (1) recovery of a dense disparity map that 

includes sub-pixel interpolation of local surfaces, (2) deciding the location of objects within the 

robot workspace, and (3) confirmation of a cylinder and determining its location, radius, and 

pose. Example of these procedures are provided for real images. 

The algorithm provides a means for navigation on plane surfaces and for recognition and 

pose estimation of cylinders within the robot workspace. Examples described here demonstrate 

the feasibility and reliability of this approach. Future work will consider improvements to the 

low-level processes and increasing the resolution of disparity surfaces. 
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Chapter 1 

Introduction 

/. 1 Motivation 

The motivation behind this research is to examine basic issues related to stereo vision 

interface for supervisory control interface of heavy machinery, like the excavator shown in Figure 

1.1. In this system, the human operator would assign tasks and oversee their execution and some 

low level task activities such as local navigation and primitive object recognition would be 

performed autonomously by the robot. This thesis investigates how stereo vision could be used in 

this application. The contributions made in this thesis result from the investigation of basic stereo 

vision problems and from studies of how stereo vision can be used for navigation and simple object 

recognition. 

Humans use stereo vision to manipulate objects within a 'personal work space' and these 

methods are studied within the excavator workspace where cylindrical objects such as trees and 

logs are to be manipulated. The task is to develop a means for the robot to visually interpret the 

world such that the operator and robot can cooperate in navigation, obstacle avoidance, object 

recognition, and pose estimation. A command such as "Pick up that log." does not require that the 

robot find a log in a visual scene. The operator points it out. However it does require that the robot 

be able to confirm the presence of an object and characterize that object as a log. To act as a semi-

autonomous agent and pick up the log, the robot must also be able to navigate to the log and then 

estimate the size and orientation of the log. 

An analogy for the motivation behind this thesis is the cooperation between man and 

animals (autonomous agents). Historically, humans worked with horses to accomplish heavy tasks 

however a horse is not driven like a truck or car; it is guided. One characteristic of this cooperation 
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between man and horse is, to some extent, a common perception of the world. For example, in 

plowing a field both the horse and the human can perceive the ground and agree on some common 

attributes of this visual surface. They can both locate themselves on this surface and can perceive 

obstacles. This agreement constitutes a primitive visual lexicon within which cooperative tasks are 

possible. At present, the level of performance achieved by biological vision systems eludes passive 

computer vision. However, in applications like remote supervisory control (often called 

teleoperation), a less sophisticated vision system can help the machine and operator to agree on 

objects and their location within the workspace. 

Figure 1.1: Excavator in the robotics laboratory. 

Manipulating objects by heavy machinery requires considerable operator skill (Stenz and 

Singh 1998). While human operators see their tasks as repetitious, in most cases, the work 

environment is unstructured and the operations are not repeated exactly. Grasping and lifting 
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operations occur within a ten meter radius from the operator and as an initial step the vision system 

needs to determine which data is within the workspace, distance of objects from an observer. Depth 

provides a low level cue by which distant objects, while plainly visible, can be eliminated from the 

data processing. 

This thesis builds two primitive visual elements to allow cooperation between a robot and 

a human operator. This is done through the paradigm of shape; global shape and local shape. 

Global shape defines a workspace such as a perception of the ground that is shared by the human 

and the robot. Local shape allows a human and robot to define objects within the workspace. There 

are several ways to perceive shape. This thesis studies how stereo vision can be used to perceive 

shape for supervisory control of semi-autonomous machinery. 

1.2 Stereo Vision 

In his book on vision, Marr (1981) suggests that an intermediate goal of vision systems is 

to identify surfaces and from this surface information one can proceed to identify objects. In 

binocular stereo, surfaces are usually identified in a two-step process. The first step is to find 

corresponding points in the stereo images and produce a disparity map. The second step recovers 

surfaces from the disparity map. 

Numerous algorithms for binocular stereo vision have been proposed to find corresponding 

points in stereo images. Some systems (Grimson 1982, Clark 1985) solve the correspondence 

problem by feature matching. These techniques seek to extract unambiguous features such as 

intensity edges. Features that are unique in both views can be matched unambiguously, however 

these features are localized in the images and result in sparse disparity maps. Blake and Zisserman 

(1987) argue that sparse disparity maps do not produce unique surfaces. Fua (1991) achieves a 

much denser disparity map using a correlation technique which matches blocks of image intensity 

data. This method performs the correlation twice, once from the left to right image and once from 
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the right to left image. False matches occur randomly whereas true matches are confirmed by both 

correlations. 

Other block matching techniques use phase irrformation rattier than intensity data. Sanger 

(1988) and Fleet (1990) use Gabor filters to determine phase shifts between regions in the left and 

right images. Disparity is estimated from the phase shift and the pass band of the Gabor filter. 

Bandari and Little (1991) use a cepstrum technique to estimate block displacements in images. 

While these techniques can produce dense depth maps, they require more computation and do not 

produce significantly better results than intensity correlation. 

Techniques to estimate disparity produce incomplete depth maps and some form of 

interpolation is used to recover continuous surfaces. Grimson (1982) proposed an elaboration of 

the relaxation algorithm to fit membrane surfaces to area boundaries defined by edge matching. In 

this technique, a mesh of points is introduced in the region. The points are asked to conform to the 

finite difference equation that describes a membrane surface. Each iteration of the process adjusts 

the mesh positions according to the membrane equation until the boundary conditions are satisfied. 

Terzopulos (1988) extended Grimson's method by using multi-grid techniques to speed up die 

relaxation. As an alternative to multi-grid techniques, Szeliski (1991) used conjugate gradient 

descent in conjunction with a hierarchical set of basis functions to provide fast surface 

interpolation. This work was extended by Pentland (1992) who achieved fast, approximate 

solutions by transforming the problem to a wavelet basis. It achieves its speed because 

transformation to the appropriate wavelet basis allows approximate calculations at different levels 

of resolution that run virtually independent of each other. 

Marr's theory of vision seeks to build a world model of smooth surfaces that are bounded 

by depth discontinuities (Marr 1981). Terzopulos, Szeliski, and Pentland all use the same basic 

technique to handle surface discontinuities. This method monitors stress in the membrane or thin 

plate that is fit to the data. When the stress exceeds a threshold, the process is interrupted and a 
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local discontinuity is introduced to relieve the stress and the smoothing regions are segmented to 

accommodate the discontinuities in further iterations. These methods have been demonstrated with 

both sparse and dense depth data. 

Two other techniques for surface recovery have been demonstrated to work with dense 

depth maps. Fua (1991) uses 'adaptive smoothing', an iterative process that varies the weighting of 

the smoothness constraint according to a piecewise linear function of the image intensity gradient 

(edges) and the depth gradient (strain). Fua does not report on convergence speeds or on the 

stability and accuracy of this technique. Blake and Zisserman (1987) developed the GNC 

algorithm that changes the form of the smoothness constraint as a function of the depth gradient. 

The algorithm allows surfaces to break by limiting the smoothing constraint so that large values of 

depth gradient can be accepted. Blake and Zisserman also modify the smoothing constraint 

according to different scales or level of detail in the image. The GNC algorithm and Fua's 'adaptive 

smoothing' both work with dense depth maps such as those produced from stereo correspondence 

by area correlation. 

Several hardware configurations have been used to build stereo vision systems. One 

configuration uses three cameras arranged in a triangle: 'trinocular stereo' (Point Grey Research). 

Binocular vision has only one baseline between the two cameras. Trinocular vision has three 

baselines. Any depth map that is recovered by a camera pair on one baseline must be confirmed by 

the other baselines. Steward and Dyer (1988) use a least squares technique to determine the depth 

map from the three baselines. Trinocular stereo has fewer errors at the cost of a more complicated 

camera system and more processing. Matthies and Okutomi (1989) propose a variable baseline 

camera to solve for depth maps. When the cameras are beside each other, the two views are almost 

identical and it is easy to find correspondence between the images. As the cameras gradually 

separate, the depth map is updated. This system is usually implemented with an series of cameras 

in fixed positions along a baseline and is subject to alignment and calibration problems. 
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Little work has been done using a zoom lens. Wiley and Wong (1990) show that a zoom 

lens introduces stable distortions that can be detennined during camera calibration. They 

demonstrate that a zoom lens can be used in computer vision applications. 

1.3 Object Identification and Pose Estimation 

Several techniques for object identification and pose estimation have been reported that 

work with monocular views and exploit the contour features of isolated objects. Karhunen-Loeve 

expansions (Sirovich and Kirby, 1987) and Fourier descriptors (Arbter 1989, 1991) have been 

used for object identification. Tensor based moment functions have been used by Cyganski and Orr 

(1985) to find the affine transformation relating projections of planar contour features. Faber and 

Stokely (1988) extended this method to study 3D medical images. Lo and Don (1989) developed 

3D moment forms that can be used for object identification and estimating orientation. The 

disadvantage of these techniques is that they require a view of the entire object boundary to 

determine either the contour Fourier coefficients or the area moments. This is difficult to achieve in 

environments where occlusion is common. 

Horn (1987, 1988) and Arun (1987) have proposed a least squares matrix method to 

recover the rotation and translation matrices relating two views of the same object. This technique 

does not require contours or an image of the whole object but it needs point correspondence to 

match the regions of unknown orientation with the same regions in the reference view. 

Wildes (1991), Jones and Malik (1992), and Devernay and Faugeras (1994) use the stereo 

disparity map to recover surface orientation. This technique is described in the next chapter. 

1.4 Contributions Made in this Thesis 

This thesis addresses the development of a primitive perception of the world in which a 

robot and a human operator can agree on some basic elements of a scene that serve to define simple 

6 



tasks. Stereo vision is applied to this problem and several issues are examined as part of this work. 

Some implementation issues such as camera calibration are well documented elsewhere (Devernay 

and Faugeras, 1996) and are not dealt with in this thesis. Instead, emphasis is placed on other 

questions like: "Why is there no discernable difference between SAD and SSD matching metrics?" 

and "Why do false matches occur during stereo correlation?". Ground plane stereo (Burt et al. 

1995) is used for navigation in this thesis and by other researchers (Williamson 1998), however in 

this thesis ground plane stereo is treated as a special case of a larger concept; a global shape 

model. With this approach it is possible to solve navigation problems not only in log sort yards but 

also in other specialized environments like hallways, city streets, and tunnels. 

1.4.1 SAD vs. SSD 

In Section 2.5 a justification is given for why the least absolute value (SAD) and least 

squares (SSD) matching metrics give virtually the same results when matching blocks of image 

data. In Section 2.6 a justification for linear interpolation methods that are commonly used on 

stereo depth maps is given. An equation is proposed based on linear interpolation to generate sub-

pixel disparity maps from the sum of absolute differences (SAD) matching metric. 

1.4.2 Sampling Noise and Image Matching 

Many signal processing applications significantly oversample the raw input signal, often 

by a factor often or more. It is pointed out in this thesis that practical images are not oversampled 

in that the point spread function of the lens is closely matched to the pixel size. A typical value for 

Gaussian blur in camera optics is given as cr= 0.6 pixels (Nalwa and Binford, 1986). The 

problems that can arise from this are discussed in Chapter 3 where a texture filter is proposed to 

resolve the conflicting requirements of high frequency information for matching and band limiting 

to reduce spatial sampling noise. It is shown that spatial sampling noise is systemic to sampled data 
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systems and this makes high frequency information unique to a single image and not useful for 

matching or object recognition, even in stereo pairs where there are few scale and orientation 

differences. Two strategies are suggested; upsampling the data to achieve higher resolution stereo 

and lowpass filtering to accept only image data that has a positive signal to noise ratio. A two 

dimensional recursive filter is developed for this second strategy. 

1.4.3 Mat chins over Occlusions 

Chapter 3 also provides a directional filter for matching stereo images with step 

discontinuities. A match surface is constructed and the behaviour of stereo information on this 

surface is examined. This results in a simple data staicture and two simple matching rules that 

conform to the visual information present in stereo images. 

1.4.4 Disparity Gradient Space 

Chapter 4 introduces disparity gradient space as a simple way to work out global shape 

models and the perception of planar surface elements in stereo vision. It is shown that planes map 

to a point in this space and that cylinders map to a curve in this space. Other environments like 

corridors, hallways, and tunnels have predictable signatures in this space and can be used for 

navigation in same way as a global plane model is presently used. 

1.4.5 Surface Energy 

Chapter 4 also introduces a technique using the energy in the surface nonnals on a local 

surface patch that achieves the viewpoint invariant membrane surface model proposed by Blake 

and Zisserman, 1987. Section 4.9 indicates how simple shapes can be recognized by the 

eccentricity of the eigenvalues of an energy matrix derived from the surface normals and how the 
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eigenvectors identify surface orientation. This is different from standard Gaussian curvature 

techniques and does not use a second derivative. 

1.4.6 Normalized Global Shape Models 

In Chapter 5, navigation and obstacle detection is seen in terms of a global shape model. 

Examples in Chapter 5 indicate that there is less foreground noise in the detection process when the 

disparity map is normalized with respect to the floor rather that when the floor is subtracted from 

the disparity map. A justification for this result is given and empirical evidence for work with log 

manipulators is shown in Section 5.1. A example is given in which the concept of a global model is 

extended to navigation in corridors where obstacles and hallways opening onto the corridor are 

made evident. 

1.4.7 Local Shape Estimation 

Chapter 5 develops the technique to characterize local shape without regular tesselation 

using the energy matrix formed from the surface normals. As mentioned in the proceeding 

paragraphs, this is different from standard Gaussian curvature techniques. It does not use a second 

derivative and the information normally available in the Hessian matrix is lost. Local patches are 

assumed to be planar and as such, the smallest eigenvalues of the their surface energy provide an 

estimate of the orientation noise in the surface normal measurements. This is used to improve the 

eigenvalue eccentricity estimates used to characterize the cylinder shapes. The eigenvector 

associated with the smallest corrected eigenvalue is taken as the orientation of the object. Since the 

energy matrix is different from the Hessian matrix, a technique to estimate radius is also given. 

This and the orientation vector can be used to work out how to pick up a tree or a drum. 

9 



The emphasis in this thesis is on some basic issues that arise in stereo vision. Using stereo 

vision, the world is perceived in certain ways and this is examined as a medium within which 

cooperative tasks can occur. Contributions made in this thesis reflect this principal emphasis but 

more work remains to address detailed implementation issues. 
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Chapter 2 

Binocular Vision 

This chapter examines and builds upon some basic principles underlying stereo vision and 

the relationship between three-dimensional object geometry and the visual surfaces that are 

extracted from stereo views. The goal is to examine basic mechanisms needed to implement a 

stereo vision system that can identify surfaces. These surfaces are used to classify objects as planes 

and cylinders. The emphasis is on low-level techniques that produce dense disparity maps. Three 

basic questions are asked: 

1. What information is needed to determine surface orientation. 

2. What matching metric is appropriate to recover this information. 

3. What form of sub-pixel interpolation can be used. 

Sections 2.1 and 2.2 introduce basic assumptions used in binocular vision. Section 2.3 

describes the epipolar constraint. Section 2.4 discusses the mechanism for perceiving surface 

orientation with stereo vision. Sections 2.5 explores why there is little or no difference between 

implementations of least absolute value and least squares matching techniques. Section 2.6 

examines a technique for sub-pixel disparity interpolation for surface reconstruction based on work 

from the field of high definition television (HDTV). Working assumptions about visual surfaces 

are introduced from which limits of stereo vision as a mechanism to recover surface orientation are 

derived. 

The description of stereo vision developed in this chapter begins with homogeneous 

coordinates as a way to describe projective camera geometry. The problems of determining 

position and surface orientation from stereo images are discussed using an ideal stereo camera. 

This simplifies the formulas to common expressions found in most papers on the subject. Some 
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aspects of camera alignment, and how it affects the perception of position, surface orientation and 

surface curvature, are reserved for the appendix. 

2.1 Camera Images 

A camera is a passive sensor that measures the reflectance of a scene. The brightness 

pattern on the image plane is formed by rays of light that, in a non-distorting medium, travel in 

straight lines from the surfaces of objects in the scene to the camera lens. An ideal pinhole in front 

of an image plane can model the projective geometry of a typical camera. Such an arrangement is 

shown in Figure 2.1 

Image P l a n e — • ) 

T 

P i n h o l e M a s k 

< f •! 

X 

.A 
CD 

Figure 2.1: Projective geometry of a pinhole camera. 

The image can be considered to be a mapping of points in the world onto a two 

dimensional surface. As Figure 2.1 shows, the projection onto the imaging surface does not 

correspond to unique world coordinates. All world positions along a particular line of sight are 

mapped onto the same point on the imaging surface. In other words, each pixel on an image can 

represent a line of sight stretching from the lens surface to infinity. Light reflected by an object and 
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imaged by the camera to a point on the image plane can be from any position on this line. It can be 

seen by simple projective geometry that the (x,y) position on the imaging surface is given by: 

* = /• 
X 

y = f 
Y 

(2.1) 
Z - - Z 

where/is the focal length of the camera, (x,y) is a position in the image plane, and (X,Y,Z) are 

world coordinates. 

A more convenient approach uses homogeneous coordinates (Roberts 1965) to describe 

this imaging process. 

X 
Y 
Z 
1 

The matrix is called the perspective projection transform. In homogeneous coordinates, the image 
Z 

vector and the world coordinate vector are augmented by a scale term, a ~ ~ ^ ' where/is the focal 

length of the camera lens. The image scale term describes the apparent size of the image in relation 

to the camera focal length and the distance of an object from the camera lens. In this example, the 

position of the pinhole lens is taken as the origin for measuring world coordinates, and the optical 

axis is defined by a line from the center of the imaging surface (x - 0 , y = 0 ) through the pinhole. 

ax 1 0 0 0 

ay 0 1 0 0 

a 0 0 1// 0 

2.2 Stereo Images 

Suppose a viewer stands on a highway so that his right eye looks exactly along the 

centerline of the road. The left eye would be somewhere over the left lane of the highway and 

objects in the left view, like the centerline of the road, would appear shifted to the right, depending 

on their distance from the observer. This apparent shift in the positions of objects is called the 

disparity between the stereo images. Objects at infinity have zero disparity while objects near the 
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observer have large disparities. Objects very close to the observer can be seen only in one view; 

their disparity is outside the stereo field of view. 

aRXR 1 0 0 0 
a

RyR 
= 0 1 0 0 

aR 0 0 VA 0 

In a stereo camera system, there are two views of the same scene. In most cases, the 

cameras emulate human vision, producing a left and right view. If we designate one camera as a 

right view and the other as a left view and specify that the world coordinates are measured with 

respect to the pinhole of the right camera then the two images can be described as follows. 

X 
Y 
Z 
1 

~X 
Y 
Z 
1 

The right camera is assigned the reference view of the world and the left camera is 

displaced with respect to the right camera and it may be rotated with respect to the orientation of 

the right camera (Appendix 1). The matrix, [T], transforms the world coordinates as defined by the 

right camera to the apparent positions seen by the left camera. If we can identify the same world 

<*LxL 
" l 0 0 0" 

aL)!L = 0 1 0 0 [T] 
0 0 1/A 0 
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point in both images and if [T] includes a displacement term then it is possible to recover the world 

coordinates. 

Left Image Plan e , 

L 

Right Image Plane 1 • T~X"1 

Figure 2.3: Projective geometry of stereo pinhole cameras. 

t 
X+b 

In its ideal form, both cameras have the same focal length and [T] is a one dimensional 

translation, as shown in Figure 2.3. The cameras are separated by a distance b; the stereo baseline. 

Objects seen in both cameras have the same vertical position but they appear to be shifted 

horizontally. The stereo image can be combined in a single expression: 

ClRXR 1 0 0 0 
a

RyR 

0 1 0 0 ~X 
aR 0 0 0 Y 

1 0 0 b Z 
a L y L 

0 1 0 0 1 
aL _ 0 0 0 

Translation terms put entries in the right hand column of the matrix; in this case a single 

translation b, along the X axis. This translation tenn makes the system invertable. When the two 

camera focal lengths are equal, fi =f^ and CIT, = <7̂ , the solution for the distance from the observer 
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is Z = = — where D is the image disparity; the apparent shift in an object's position in 
xL-xR D 

the two views. A normalized system for binocular stereo measures the location of objects as 

multiples of the stereo baseline. This baseline measurement defines the stereo field of view and it 

defines what objects are considered nearby; local to the observer. The stereo equations for tins 

ideal camera configuration are: 

X = —, Y = A Z = ̂  (2.2) 
D D D 

where X, Y, and Z are measured as multiples of the stereo baseline. 

Other forms of stereo cameras include trinocular stereo (Yachida et al. 1986, Point Grey 

Research) and motion stereo. These can be analyzed in the same way as binocular stereo. In 

trinocular stereo, there are three cameras; each located at the vertex of a triangle. This produces 

three views with three different baselines. The trinocular system is over-determined and the world 

positions can be found by least squares techniques (Hansen et al. 1988). Motion stereo is possible 

with a single, moving camera where the second, translated image is displaced in time, rather than 

space, from the first image. 

2.3 The Epipolar Constraint 

In this thesis the right image of the stereo pair is used as the reference view. Each pixel in 

the right image represents a line of sight that terminates at an object. Since the camera looks along 

this line of sight, it sees only a point. The pixel is, in effect, the cross section of this line of sight. 

Depth can be recovered with binocular vision because the other, translated view, can 'see' some of 

the line of sight of the reference camera. This provides a side view of the line of sight which can be 

traced as a line on the left image; the epipolar line. When an object is visible in both views, a pixel 

in the right view that is the termination of the line of sight at the surface of some object, has a 

corresponding pixel somewhere on the epipolar line in the left view. While there is no depth 
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information in the reference view, the second view allows us to 'see' where the object resides along 

the reference line of sight. The longer the base line, the better view we get of the reference camera's 

line of sight and the more accurately an object can be located along this line. If straight lines are 

not distorted in either view then for a given pixel in the right view, finding a corresponding pixel in 

the left view involves a one dimensional search along the epipolar line. This is called the epipolar 

constraint. In this thesis, the epipolar lines are horizontal lines in the stereo image pairs. 

The epipolar constraint can also apply to structured light systems, which behave much like 

stereo vision run backwards. In these systems, a line of sight in the right view is replaced by the 

path of a laser beam which sends light out toward some object. In the left view, the illuminated 

spot on the surface can be located as a displacement along the epipolar line. Although it takes time 

to completely cover a scene, this arrangement simplifies the stereo correspondence problem. 

Structured light systems are also subject to alignment errors that are similar to those encountered in 

binocular vision. In some scenes, the laser can illuminate a spot that is hidden in the camera view 

by some obstacle or edge. In this case, the arrangement of objects in the scene occludes some 

regions from the observer. Such occlusions are a problem in stereo vision. 

2.4 The Perception of Planar Surfaces in Stereo Images 

A useful vision system is more than a mechanism for finding the distance to objects, such 

as described in the previous sections. A stereo vision system has the opportunity to work with a 

disparity image of the world. If a disparity value can be assigned to each pixel location defined by 

one of the stereo images then this becomes a disparity image of the scene. Finding disparity is a 

primitive step in stereo processing and it presents some advantages that are exploited in this thesis. 

Some characteristics of the disparity image are introduced in this section. These basic 

characteristics are known in computer vision and they are presented here as part of a framework 
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upon which a vision system can be built. This work is expanded in later chapters of this thesis 

where this section is referenced. 

2.4.1 The Perception of Surface Orientation 

The perception of shape is determined by the ability to detect different surface orientations. 

In stereo images, surface orientation is measured in terms of perceived depth changes which, in 

turn, are related to disparity changes. A vision system that recovers a dense disparity map assigns 

disparity values to most pixel locations in the reference image. Describing the disparity in some 

neighborhood of (x0, y0) by a first order Taylor expansion is equivalent to fitting a planar surface 

to the region. 

D = D0+Dx(x-x0) + Dy(y-y0) 

= Dxx + Dyy + (D0-Dxx0-Dyy0) 

where D0 is the disparity at the image position {xg, y0) and Dx and Dy are the disparity gradients in 

the x andy directions about the image position (XQ, y0). Dividing through by D and substituting the 

world coordinates from Equation 2.2; 

D X + D Y + —(D^-D x.-D yf?\Z = l (2.3) 
x y / v 0 x 0 y 0 J 

This is the equation of a plane in world coordinates X, Y, Z with surface normal 

n=Dxi+Dyj + j{D0-Dxx0-Dyy0)k (2.4) 

where i , j, and k are unit vectors in the X, Y, and Z world direction coordinates. It can be seen 

that the first two terms of the normal vector are the disparity gradients in the image coordinates x 

andy. The disparity gradients are projections of the surface normal onto the image plane. 

Higher order surfaces can have higher order Taylor expansions of stereo disparity 

(Devemay and Faugeras, 1994). These involve higher order derivatives of disparity. However, an 

estimate of the tangent plane that is fit to each point on a smooth surface follows the first order 
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expansion. The perceived orientation of points on a smooth visible surface is constrained by the 

ability to recognize changes in disparity as described by Equation 2.4. 

Estimation of surface orientation from stereo disparity gradients has been proposed by 

several researchers (Grimson 1981; Wildes 1991; Jones and Malik 1992; Devernay and Faugeras 

1994). 

2.4.2 The Disparity Gradient of Horizontal Ramp Surfaces 

An important surface for mobile robots is the floor or ground on which it moves. If a 

robot stands on a flat horizontal plane or if it rests on an inclined ramp then the ramp or plane will 

intercept the Z = 0 plane as defined by the pinhole mask of the camera system (Figure 2.4). 

Assuming this surface does not change in the X direction then it intercepts the Z = 0 plane at some 

constant value, Y 0 . This is substituted into Equation 2.3 with the values Z = 0 , Dx = 0. The result 

for any horizontal ramp isDyY0 = 1. In other words, all horizontal ramps that intersect the Z = 0 

plane at Y Q have the same disparity gradient: 

In Figure 2 .4, all of the ramp surfaces have the same vertical disparity gradient, Dy ; a 

value that is determined by where the ramps intercept the pinhole mask plane. However, the 

disparity value is unique along a particular line of sight since each ramp is intercepted at a different 

distance from the pinhole. Along the line of sight, the image coordinates are constant and the 

uniqueness of each surface normal (Equation 2.4) is determined by the different disparity values 

that correspond to the Z value of each point. Each ramp in Figure 2.4 has the same disparity 

gradient but each has a different disparity value, D0. When substituted into Equation 2 .4, each 

ramp will have a unique surface normal. 
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Figure 2.4: Side view of 5 planar ramps that intercept the Z = 0 plane at -YQ 

A robot on an infinite ramp surface would see disparity as a linear function of vertical 

position in the image. This has been used by (Burt et al. 1995) to differentiate between the floor 

and navigation obstacles. This section has shown that the disparity gradient is easily determined in 

terms of where the projected plane intercepts the Z = 0 plane. This is extended in Chapter 4 to 

provide an simple technique that relates shape and orientation with the intersection of surfaces and 

the Z = 0 plane. 

2.5 Producing Dense Disparity Maps 

The remainder of the chapter deals with aspects of producing dense disparity images. Most 

dense disparity maps are produced by matching blocks of pixels in the stereo image pair (Fua 

1991). Two matching metrics are usually used: sum of squared differences (SSD) and sum of 

absolute differences (SAD). Kanade (1995) reports that there is no discernible difference in 

performance between these matching metrics. This section asks if there should be a difference and, 

if so, why is there no difference? 
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2 5.1 The SSD and SAD Matching Metrics 

A common method to find the relative displacements in regions between two images is to 

compare blocks of image data . This technique is used in high definition television (HDTV) and it 

is used in some stereo vision algorithms to recover dense disparity maps. In both these 

applications, blocks of 'gray scale' data are compared rather than only matching certain features 

such as edges (Grimson 1981). Two popular metrics for matching blocks of image data are the 

sum of squared differences (SSD) and the sum of absolute differences (SAD). 

Matthies (1992) used an SSD of the form: 

J(d) = fj(lr(xi-d)-Il(xi))2 

<=i 

other researchers, such as Fua (1993), use a normalized score in which the average intensity data is 

removed from the window. 

fl((rr(x,-d)-ir)-(fl(xl)-i,)y 
j{d) = j 1 

^til^-d)-!^^^)-!^ 
This structure is similar to the linear correlation expression used in Numerical Recipes (Press et al. 

1992). In general, the SSD is a least squares metric of the form: 

R 

where ez- are the fit errors in matching the two regions. The minimum is found by searching over all 

possible ej in the region R. At the minimum the variation in J is zero. 

& / = 0 = 0 

R 

The SSD chooses a point where the mean matching error is zero and assigns this disparity 

value to the center of the window that defines the matching region, R. 

21 



On the other hand, the sum of absolute differences can be simpler to calculate but it is 

difficult to analyze. The simplest form of the SAD is: 

N 

A normalized SAD can be written as: 

Z | ( / r ( W W > f r ( * , ) - / , ) | 
J(d) 

N N 

1-1 V i - l 

The SAD chooses a point where the median matching error is zero as seen by the variation 

of the SAD matching metric. 

The SSD finds a solution where the mean error is zero while the SAD solution is where the median 

error is zero. 

Both the SAD and the SSD assign a constant disparity value to the center of the matching 

window. If the intensity information is not distributed symmetrically across the window, then the 

SSD will tend to give more weight to the region of the window with the most texture. When the 

disparity is constant across the window, this pulling effect is not a problem. The SAD, with it's 

median matching characteristic, is more resistant to outliers and wild points. Even so, Kanade 

reports that there is virtually no difference in performance between nearest pixel matching with 

SSD and nearest pixel matching with SAD (Kanade 1995). This behavior is examined in the next 

section. 

• / = Zhl = S e ' s i S n ^ ' ) 
R R 

<5J=0^2]sign(e j) = 0 
R 
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2.5.2 A Reason Wliy SSD and SAD Give the Same Results 

Most matching mechanisms that compare blocks of image intensity values attempt to find 

a constant disparity value between regions in a pair of stereo images even though the disparity may 

not be constant over the matching window. When the window size is small it is more probable that 

the actual depth values are nearly constant across the window indicating that the surface patch 

within the periphery of the window has little or no slope. The probability of perceiving a sloped 

surface with stereo vision can be estimated as follows: 

Figure 2.5: Orientation of Surface Patches 

For a flat surface which is tilted by an angle <f>xabout the Taxis, the disparity change over the 

image of the surface in the x direction varies as: 

dD__dD_dZ_dX___\m^x 

dX~~dZlx~dX~ Z~~ ' ' 

where —— = tan cf>x, the slope of the surface in the X direction. 
Cist 

Over some circular region in the image, the maximum disparity gradient is: 
dD 
dr 

tan^ 
Z 

where </> is the maximum angle between the surface normal and the line of sight. 

Points on a surface patch that face toward the observer are more visible than points on the 

surface that are not oriented toward the observer. If all surface orientations are equally probable, (a 

uniform distribution), the probability that a visible point on a surface is centered on a small patch 
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with orientation angle <f> depends on cos$, the dot product between the surface normal and the line 

of sight of the observer. The probability that the orientation is less than ^ (0 < </>Q < n/2) is: 

Jcos^ dtj> 

- sin <p0 

Jcos^ d<f> 

If the matching regions have a width W, then all the pixels in the window could be assigned 

a constant disparity if the disparity change across the window is small. For example, when 

W < —, the maximum disparity change across the window would be less than 1/2 pixel. How 
Ar 2 

likely this is depends the distance to the surface and the maximum slope of the surface, (fo. Using 
Z 

Equation 2.5 and a maximum disparity change of 1/2 pixel: 0O = tan - 1 and the probability 

that the disparity change across the window is less than 1/2 pixel is: 
f 

W< 
n = sin if)0 - sin 

f . z } 
W< = sin if)0 - sin tan" 

V Ar 2, 
= sin if)0 - sin 

2W) 
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Figure 2.6: Cumulative probability of disparity change in an image region. 
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The graph indicates that when block matching stereo images, most visible regions will be 

perceived as surface patches that are oriented toward the observer. Only nearby surfaces (Z < 20) 

are expected to have significant disparity gradients across the matching window. In most cases, a 

matching metric that assigns a constant disparity value over the data window conforms to the 

expected behaviour of the data. Within a small matching window, the expected disparity is 

virtually constant and non-stationary image intensities within the window do not introduce 

significant differences between SAD and SSD matching metrics. Even though regions with more 

texture have more weight in the matching window, when there is little or no disparity change across 

the window the solution will not be skewed. Most researchers assign a constant disparity to a 

matching window, Devernay et al. (1994) point out that higher order correlation surfaces are 

necessary to avoid matching bias, particularly when matching larger nearby regions. They also 

point out that this increased accuracy comes at a much higher computational cost. One result of 

this section is that a constant disparity matching model used by most researchers is acceptable. 

Another reason that SSD and SAD give the same results is that local image data is highly 

correlated and changes little over small windows. On average, image intensity is highly correlated 

across small image blocks and image texture does not change radically across the block. This 

indicates that there are few outliers in the data and even though the matching metrics use different 

statistics, the results are similar. This correlation between neighbouring samples is examined in the 

next section. In this section, the expected perception of surfaces using stereo was derived to 

explain why SSD and SAD matching metrics give the same solutions. It was later found that a 

similar expression for the expected perception of surfaces has been proposed as a stereo matching 

constraint (Arnold and Binford 1980; Ma et al. 1995) but this was not applied to study the similar 

performance in matching metrics. 
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2.6 Sub-Pixel Disparity 

To extract surface curvature from stereo images it is often necessary to interpolate 

disparity data. Most researchers use linear interpolation models for disparity (Matthies 1992). The 

final sections of this chapter asks why linear interpolation works as opposed to other interpolation 

techniques? An implementation of sub-pixel interpolation for the SSD and SAD matching metrics 

is described. 

2.6.1 Image Models 

There is considerable agreement on the form of general image models in the literature 

(Juang and Mumford, 1998). Various studies show that images conform to a Markov covariance 

model of the form e °M. Pratt (1978) quotes a horizontal correlation coefficient p = 0.953 and a 

slightly higher vertical correlation coefficient p = 0.965. On the diagonals, p = 0.938; higher than 

the product of the horizontal and vertical coefficients. In the Markov model, a= -\n(p). Clarke 

(1985), after testing many images, developed a nonseparable model: 

Clarke's model has been confirmed by Akansu and Haddad (1992) as being the most accurate 

although for most calculations Akansu and Haddad use a simple, isotropic value ofp = 0.95. 

These models indicate that, on average, images are dominated by low frequency information and 

that, statistically, there is little information extending out to the bandwidth allowed by the pixel 

sampling frequency. 

This body of work shows that, on average, neighbouring pixel intensity values are highly 

correlated and there is little expected difference between adjacent pixel values. In some small 

neighbourhood of the image field, the expected intensity value is nearly constant. A continuous 

26 



local model would be of the form e 0 0 5 ' J r ' « (l - 0.05|x|), which projects a linear intensity function 

across the pixel surface. The image models developed by Clarke and others indicate that when 

images are matched to the nearest pixel, we should expect the residual difference in intensities to 

change linearly on a sub-pixel basis. 

In high definition television many of the proposed transmission schemes involve block 

matching to sub-pixel resolution. HDTV studies such as Girod (1993) and Bellifemine etal. 

(1992), report that bilinear interpolation is superior to a sine interpolation filter. The bilinear 

interpolation filter is more closely matched to the average image spectrum predicted by the Markov 

image models. As a result, Girod finds that bilinear interpolation rejects noise better than sine 

interpolation however, Girod also finds that a Wiener interpolation filter matched to a individual 

images is superior to both bilinear interpolation and sine interpolation. 

The first order autoregressive image model and the experience of HDTV researchers both 

suggest that a sub-pixel matching can be treated as linear interpolation. Match scores from SSD 

and SAD can be expanded in terms of a linear intensity field across the pixel surface. The goal is 

to interpolate the lowest of the match scores in order to estimate where the minimum would be to a 

sub-pixel resolution. 

2.6.2 Sub-pixel mat chins with SSD 

The SSD matching metric evaluates the sum of the squared differences of pixel intensities 

in two blocks of data. Near the best match, the difference in intensities is expected to be linear with 

displacement along the epipolar line and the residual SSD value is expected to be quadratic. This 

can be interpolated with a parabolic interpolation algorithm such as can be found in Numerical 

Recipes (Press et. al.). The sub-pixel displacement is estimated using Newton-Raphson. Letting 
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J(n,k) be the SSD score for pixel n and disparity k where both n and k are integers. As k is varied 

on a sub-pixel basis, the model predicts that: 

J(n,k + A) = J{n,k) + ~ A + 
^ ^2 2 

= J(n,k) + e 

at the minimum: 

= 0 => A = -

dJ_ 
dk 

d2J 
dk2 

This is evaluated using the minimum value of J achieved by matching on integer pixel boundaries, 

J(b) and the two closest neighbours, J(a) and J(c). 

Note that the numerator is the symmetrical form of the first derivative. The second derivative in the 

denominator is also symmetric. Parabolic interpolation of the SSD matching metric, as used by 

Matthies (1992) and other researchers, conforms accepted image models. According to this model, 

near the best match the residual is linear with displacement. The SSD matching metric squares this 

to produce a quadratic function that can be interpolated as shown. 

2.6.3 A Technique for Sub-pixel Matching with SAD 

The SAD matching metric evaluates the sum of the absolute differences of pixel intensities 

in two blocks of data. Since the image model predicts that near the best match the difference in 

intensities is expected to be linear with displacement along the epipolar line, the residual SAD 

value is expected to vary as the absolute value of displacement from the minimum as shown in 

Figure 2.7. 

1/2 (7(c) -J(g)) 

J(a) + J(c)-2J(b) 
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a b c 

Figure 2.7: Sub-pixel interpolation of SAD matching. 

In Figure 2.7, the three best match scores occur for disparity values a, b, and c. Near the best 

match, the difference in intensities is expected to be linear with displacement such that the absolute 

slope of the SAD matching metric is equal about the minimum. The line between J(c) and the 

minimum goes through a point with the same value as J(b). The horizontal distance between J(c) 

and this point is 1-2A such that, with equal absolute slopes: 

J (a)-Jib) = J(c)-J(b) 
1 ~ 1-2A 

Notice that J(b) is the smallest of the three match scores and that the left side of the equation is the 

difference between the largest value and the smallest value. The largest value is either J(a) ovJ(c), 

depending on whether the sub pixel displacement is positive or negative about b. The general 

formula for sub-pixel displacement becomes: 

1 J(a)-J(c) (2.6) 
2MAX(J(c),J(a))-J(b) 

where M A X is a function that chooses the larger of the two values J(a) or J(c). 

The figure below shows the disparity surface of a cylinder recovered using SAD to match 

raw stereo images. Figure 2.8a is the integer disparity surface given by block matching and Figure 

2.8b is the inteqjolated surface using Equation 2.6. This result is in agreement with the proposition 
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that surface detail can be recovered by linear interpolation and that Equation 2.6 will interpolate 

disparity data from SAD matching. 

(a) nearest pixel disparity surface using SAD (b) sub-pixel interpolated surface using Eqn 2.6 

Figure 2.8: Using SAD to match raw stereo images and SAD interpolation 

2.7 Summary 

This chapter has reviewed some of the aspects of low level stereo vision. The emphasis has 

been on block matching techniques that can produce dense disparity maps. Section 2.4 shows that 

recovering surface infonnation involves a derivative of the disparity map. This is an noisy process 

and higher order surfaces imply higher order derivatives. The next chapter deals with these issues 

and with issues of false matches. Section 2.5 looks at how the disparity infonnation is extracted 

prior to surface recovery and how block matching can be affected by a combination of changing 

disparities and changing intensities. Specifically, an explanation of why least absolute differences 

and least squared differences do not produce significant difference in performance is offered. Most 

matching algorithms impose a constant disparity on the match window and the results in Section 

2.5 confirm this as an acceptable technique. 

Finally, in Section 2.6, sub-pixel matching is discussed. It is shown that interpolation 

methods are a function of the matching metric and local image data that, in the absence of other 

infonnation, confonns to general data models derived from a large ensemble of images. 
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Chapter 3 

Producing Dense Disparity Maps 

This chapter describes the algorithms and procedures used to extract stereo information 

from an image pair. The goal is to produce dense disparity maps that can be used to characterize 

visual surfaces as described in Chapter 4. Blake and Zisserman (1987) point out that dense range 

maps are needed to produce accurate surface data. For this application, 'gray scale' matching is 

preferred (Fua 1991, Matthies 1992, Devemay 1994) since it yields dense disparity maps and 

better estimates of the shape of the visible surface. This chapter builds on the methods described in 

these papers. The central questions in this chapter are: 

1. How are match errors generated and what is the useful information for producing a dense 

disparity map from a pair of stereo images? 

2. What are the mechanics of matching stereo images and how can occlusions be handled? 

Sections 3.1 and 3.2 examine where useful information for gray scale matching is expected 

in generalized images. An estimate is made of the number of unambiguous matches that can be 

expected across an epipolar line. This leads to a texture filter in Section 3.4. Later sections in this 

chapter use the energy surface that results when matching two horizontal lines from a pair of stereo 

images to determine how to match over occluded regions in stereo images. 

3.1 Structural Limitations in Image Matching 

A preliminary step in finding disparity surfaces is to identify the same features of a scene 

in each of the stereo images. This process is subject to error. The conditions necessary to reduce 

false matches restrict the minimum size of matchable regions in an ideal pair of stereo images. This 
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section studies two mechanisms that cause errors when matching the intensity values in blocks of 

pixels. These mechanisms are: 

1. Analog to Digital Converter (ADC) Quantization forces the pixel values to be integers 

between 0 and 2N-1. The entire scene must be translated into a limited number of ADC 

values. In practical images the number of pixels is much greater than the number of ADC 

states and so, unique matches can only be achieved by comparing groups of pixels. This 

limits the resolution of the matching process to be less than the resolution of the image. 

2. Stereo vision relies on the fact that scenes are sampled differently in the two images however 

corresponding features of an external scene are not imaged on integer pixel boundaries in 

each of the stereo images. As a result, the closest matching pixel locations in stereo images 

usually contain different information. This is illustrated in the sampled data system shown in 

Figure 3.1. 

x(0—• Low-pass 
Filler 

H A/D 
Dl(n) 

*f D/A 
Low-pass 

Filter ->Y(t) 

Data Clock 1 

A/D 
D2(n) 

D/A -A/D W D/A -

T 

Low-pass 
Filter ->Y(t) 

Data Clock 2 

Figure 3.1: Parallel systems with asynchronous sampling. 

The two sampled data systems shown in Figure 3.1 obey the Nyquist criteria. They sample 

the same data and achieve identical results at their respective outputs. In each system the signal 

path starts with a common low pass antialiasing filter followed by an A/D section that samples the 

input data and converts the signal to digital fonn. The data is converted back to analog form using 

32 



a D/A and identical reconstruction filters. However, the two systems sample the data 

asynchronously and the digital data stream is not the same in each system. The Nyquist criteria 

states that the information can be recovered exactly from the digital data but it makes no claim that 

the digital data is exactly the same in each of the parallel systems shown in Figure 3.1. The 

Nyquist criteria holds if the sampling frequencies are slightly different or, as in the case of ideal 

stereo cameras, exactly the same but with an with arbitrary phase difference. In each case, the 

digital data will be different in the parallel paths. Modern image analysis is based on digital 

processing and it is the digital data that is compared. 

3.1.1A Model for Image Matching 

Studies of real images show that neighbouring pixel values are, on average, highly 

correlated. Such images are usually modeled as first order Markov processes. Akansu and Haddah 

(1992) use p = 0.95 as an average correlation coefficient for typical images. Pratt (1978) quotes 

p= 0.953 as an average horizontal correlation coefficient and 0.965 as the vertical correlation 

coefficient for typical images. Clarke (1985) gives similar results. As discussed in Section 2.5, the 

autocorrelation function of such a process is: 

R(x) = rt(0)jcH = R(0)e^ln(p) * R(0)e-005 

This is an average statistic derived over an ensemble of images. In Clarke's work several thousand 

images were studied including photographs, X-ray images, and Fax documents. The statistical 

model places no conditions on the camera and electronics used to capture the images. According to 

Akansu and Haddah (1992), a one dimensional equation for this model driven by a random source 

is: 

x(n) = px(n-\) + {\-p)u{n) 

In an 8 bit system the random source, u, has the full ADC range (0 to 255). 
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When matching gray scales, a group of pixels in one image is compared to a similar group 

of pixels in the other stereo image. The four pixel values in a 2x2 window can be considered as a 4 

dimensional vector that points to a unique position in 4D space. The number of elements in this 

space is determined by the number of different ADC values each pixel can have raised to the power 

of the number of pixels in the window. Each element in this space can be considered as a unique 

state of the 2x2 window. If the number of distinct states is large, the probability that another group 

of 4 pixels will point to the same state within a finite search range is small. When noise is added to 

the ADC values, the 4 pixels values in the window no longer point to a single, unique element in 

4D space. Noise forces the vector to move in some volume of this space. 

In average images where local data tends to be highly correlated, the range of ADC states 

available to neighbouring pixels within a matching window is restricted. If a given pixel has a 

value of 100 then the image model restricts neighbouring pixels to values near 100. This decreases 

the volume of available states within a given matching window and so increases the ambiguity of 

the matching process. In an image with 256 gray levels, no noise, and p = 0.95, the amplitude of 

the source information becomes (l-p) x 256 = 13. The strong correlation between neighbouring 

pixels limits the average range of new information available to adjacent pixels. The number of 

states available for matching is 13^ where Wis the number of pixels in the window. Since 13 is 

almost the square root of 256, we should get almost the same matching performance as a random 

image when the number of pixels in the window is doubled. Experience has shown this not to be the 

case. The main problem in matching practical images that follow this auto regressive model is the 

presence of additive noise; rj(n) in the expression below. 

x(n) = px(n-\) + {\-p)it(n)+ r/(n) 

When there are only 13 states that describe information, additive noise hollows out a 

proportionally larger region of uncertainty in the matching space. With fewer states available due 

highly correlated data, and larger unambiguous state sizes defined by system noise, the effective 
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number of elements a given matching volume decreases. With an additive noise ±1 ADC count, a 

pixel can take on 3 values as the noise changes form +1 to 0 to -1. The number of distinct, non 

overlapping source states falls from 13 when the pixels were fixed in position to 4 and the window 

size must increase further (and the match resolution decrease) to provide unambiguous matching. 

The number of ambiguous matches across an epipolar line can be estimated by: 

where: Ng = number of matching errors across an epipolar line 

R = search range 

= number of unambiguous information states (N$ < 4) 

W= number of pixels in the matching window 

L = number of pixels in the epipolar line 

In practice, two dimensional matching windows greater than 7x7 pixels are used to get 

reasonable results (Fua 1993). Using to the above approximation (Equation 3.1), a 256x256 pixel 

image will have one matching error per line using a 50 pixel matching window over a search range 

of 20 pixels when the number of unambiguous information states between adjacent pixels is in the 

order of 1.3. According to the image model used in this section, this low number of distinct states 

between adjacent pixels corresponds to an additive noise that can range over +4.5 ADC counts. In 

terms of Gaussian noise, 95% of the noise values are with 2o of the mean. A range of ±4.5 ADC 

counts corresponds to noise with o = 2.3 ADC counts; a number that is not unreasonable. 

Random dot stereograms have flat spectra. Local regions are uncorrelated and have good 

characteristic for matching. Local regions in practical images are highly correlated and present 

limited texture for gray scale matching. This makes the matching process sensitive to noise. One 

would like to enhance useful image texture for matching, producing a flat spectrum but not amplify 

N, 
R-l 

(Appendix 2) 
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the image noise. Random noise is present in images but it is dependent on conditions that are 

difficult to estimate. Two systemic noise sources that can be estimated are ADC quantization noise 

and spatial sampling noise. The ADC quantization noise is described in text books with variance: 

_2 A 2 

<T = —, a* ±0.3 ADC counts 
12 

To achieve reasonable matching success, the variation between adjacent pixels should be large 

compared to noise fluctuations. This information can be enhanced by filtering however spatial 

sampling noise limits the high frequency data that can be used for matching stereo images. 

3.2 Why 'Good' Images Don't Match 

Visual surfaces appear in the stereo images as two differently sampled versions of the 

same intensity pattern. Such a system will not produce meaningful matches of all frequency 

components since each image would sample the visual surface using different pixel boundaries. If 

the signal of interest is a sine wave with frequency just slightly less than the half the sampling 

frequency, the relative phase of two sampled versions of the signal can be anywhere within a ± 90° 

range of each other at this frequency. As an extreme example, one camera could locally sample the 

peaks and valleys of the sine wave and the other system could sample the same data but almost 90° 

out of phase and see values near zero. These are the parallel sampled data systems described in 

Figure 3.1. Even though the Nyquist criteria is obeyed, sampling the same data asynchronously 

will produce different data streams. In robot stereo vision, this data is not reconstructed but 

remains in digital form where it is compared to recover depth information. 

At the highest frequency of interest, the sampling offset is assumed to be uniformly 

random between ± 90° with standard deviation of 52°. At half this frequency, the sampling offset is 

uniformly random between ± 45° with standard deviation of 26° etc. The standard deviation of 

signal phase due to ideal stereo sampling is approximately: 
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<fi&-^-— where cog is the sampling frequency and cok < (3.2) 
cos 7 2 

The difference ,s,between two sine waves with a sampling offset <j> is: 

£- = ̂ 4sin cokn + —\-As'm\cokn- — =2^sin[— cos(cokn)&0Acos(cokn)& ——Acos{a>kn) 
\ 2) \ 2) \2) 6)s 7 

Using the convention where the frequency of sampled signals varies between 0 and n, and 

cos =2n; the stereo sampling error of a signal A sm(cokri) is of the form: 

SK^^LAo,os{cokn), cok^n (3.3) 

Given a sine wave, the sampling noise appears as a cosine wave. The error introduced by 

stereo sampling is similar to a derivative operator. Since derivatives can be calculated as the 

difference between adjacent pixels, spatial sampling noise can be considered a subpixel difference 

between image elements and therefore follows a derivative-like frequency response. As with a 

derivative operator, the amplitude of the error is proportional to the amplitude and frequency of the 

signal component being matched. 

At the highest frequency allowed by Nyquist (co^.« K), the standard deviation of the 

sampling error is approximately 2TT/7 « 1. In other words, at the Nyquist limit the expected 

amplitude of spatial sampling noise is about equal to the signal magnitude. Since the distribution is 

taken to be uniform, the probability is about 60% that the sampling error is within the bounds of 

the standard deviation and there is approximately a 40% probability that the sampling error is 

greater than the signal information. An approximate upper bound to sampling noise is given by the 

worst case phase error induced by asynchronous sampling, </>< n^^. The worst case matching 
cos 

error is: 

s<—^Acos(cokn), ak^n 
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In a worst case, the sampling error can be about 1.5 times the signal information. The 

maximum error is about equal to the available signal at o\ « 2n/3 or one third the sampling 

frequency. Even signal frequencies less than n/2 (half Nyquist) can have significant sampling 

ambiguity and degrade the matching process. When combined with other noise sources the high 

frequency components do not provide reliable matching information yet these are the frequency 

components most emphasized in standard digital correlation formulas such as Pearson product-

moment correlation (Numerical Recipes, 1992). A similar matching metric, the SSD was 

introduced in Chapter 2. 

This expression evaluates local regions of data in which the average value within the window is 

subtracted. It acts like a high pass filter on the data within the window and emphasizes the 

frequency components that are most subject to stereo sampling errors. Large data windows will 

reduce the weighting of high frequency terms in the window at the cost of reducing the resolution of 

the matching process. The effects of sampling artifacts can also be reduced by lowpass filtering the 

data and not subsampling the result or by upsampling and interpolating the data. Data that is 

lowpass filtered before using the SSD effectively becomes bandpass filtered data in the SSD 

calculation. If the scene is lowpass filtered and then subsampled, it can be reconstructed but 

sampling artifacts can also be reintroduced by the subsampling process. This can make matching at 

coarse resolutions problematic if a strict Nyquist criteria is used at each scale. Unless each scale is 

oversampled, noise is needlessly introduced into the matching process. 

SSD = 
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3.3 A Wiener Filter Approach for Matching Sampled Data 

As pointed out in Section 3.1.1, high frequency information (visible texture) is important 

for matching local image regions. The amplitude of the image spectrum predicted by the 

autocorrelation model is of the form: 
1 

Vl + (20<y)2 

Sampling noise acts like a derivative and increases with signal frequency. In a Bode plot (Figure 

3.2), the sampling noise increases linearly in the region where the image spectrum is flat and is 

constant in the region after the first order pole of the image model. Spatial sampling noise sits on a 

pedestal of random noise + ADC noise. As mentioned in the previous section, by itself, spatial 

sampling noise reduces the noise margin for matching to zero at the high frequencies. Based on this 

approximation, one can develop a 'rule of thumb' for the usable image bandwidth available for gray 

scale recognition and matching. 

image spectrum 

Figure 3.2: Bode plot showing reduction of useful matching bandwidth by wideband noise. 

An interesting concept in the Bode plot approximation is that the actual 3dB bandwidth of 

the image spectrum is not important since the shape of the noise and signal Bode plots track each 

other and the high frequency intercept occurs at the same frequency in the Bode plot. Sampling 
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noise is derived from the signal and the relative slope between the signal and the sampling noise 

pedestal is fixed at +1 and the two will intercept at the same frequency regardless of the order and 

bandwidth of the input signal. However, the reduction of useful bandwidth by wideband noise 

depends on the slope of the image spectrum as shown in Figure 3.2. 

The basic idea in reducing matching ambiguity is similar to a Wiener filter where the 

signal is bandlimited at a point where noise masks useful information. Wideband noise is assumed 

to be uncorrelated with the spatial sampling noise. In the Bode plot of the first order model of the 

image spectrum, the high frequency components vary as 1/20© so that the change useful bandwidth 

due to the wideband noise pedestal in Figure 3.2 appears as: 

where rj, the estimate of wide band noise in the image and coc is the frequency where the signal 

information is equal to the stereo sampling error. For this calculation coc is taken as 27i/3, the 

frequency where the worst case sampling error is about equal to the signal amplitude. The factor of 

20 follows from the average image model. The 'rule of thumb' (rough approximation) for the 

degradation of useful image bandwidth with 8 bit quantization is: 

where a is the wideband noise in ADC counts in an average image ADC value of 128. In this 

equation, 40TI » 128; the number used as the average ADC value in this thesis. Expressing coc as a 

fraction of In is used to scale the noise to a value in ADC counts. In this case, to get a useful 

bandwidth of 7t/2, the wideband noise should not be much more than 2 to 3 ADC counts in an 

average ADC value of 128. Since the goal is to compare two pieces of image data, the wideband 

noise is the noise difference between the images and, on average, this will be larger than wideband 

noise in a single image. 

1 1 
{20coBJ- (20a)J 

(3.4) 
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The degradation of matching bandwidth will be different for images that do not conform to 

the image model. Raw images that contain more high frequency information will have a wider 

spectrum than depicted in Figure 3.2 and the factor of 20 in Equation 3.4 (from the average image 

model) might be replaced with values as low as 10 or 8. Images that agree with the average image 

model and that also suffer from more wideband noise will have lower useful bandwidths available 

for matching. 

Equations (3.3) and (3.4) indicate that average images should be over sampled by at least 

a factor of 2 before matching. Sampling uncertainty affects coarse to fine matching strategies, edge 

detector bandwidths, and it affects the bandwidth of filters used to extract image texture. 

3.4 A New Preprocessing Filter for Match ins Images 

Image texture along the epipolar line can be extracted by a symmetrical difference operator 

of the form: 

This directional operator is similar to the sin(co) function (0 < co < %); the symmetrical derivative. It 

acts as a bandpass filter with zeros at co = 0 and co = n and a maximum response at co = 7t/2. 

Deriche (1987) introduced a recursive edge detector which is analyzed in Appendix 3. It is 

shown that this implementation is equivalent to a low pass filtered symmetrical derivative. This 

concept is used to develop a texture filter that is better matched to the expected image parameters: 

Unlike Deriche's filter, which is used to extract edges, this one does not need tuning. The lowpass 

term is realized by a second order Butterworth filter run forward and then backward over the data, 

-1 0 1 
- 2 0 2 
-1 0 1 
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making it phase linear. A second order Butterworth lowpass filter is used in this way because it is 

virtually separable in two dimensions and it conforms to an accepted surface model (Appendix 4). 

The image is lowpass filtered in two dimensions and then the symmetrical differencee is taken of 

each horizontal scan line. This allows the texture to be efficiently extracted in one dimension, for 

matching along epipolar lines, while spatial sampling noise is removed in 2 dimensions. 

By itself, the symmetrical derivative filter is a good way to recover image texture. It 

ignores low frequencies with little useful texture for local matching and acts to cancel the first 

order pole in the image model and so flattens the spectrum, making the texture information more 

like a random signal and better for matching. The filter also has zero response at 7C and therefore 

attenuates spatial sampling noise. Even so, it still accepts signals with negative signal to noise ratio 

as can be seen in the lower right corner of Figure 3.3a. In this thesis the symmetrical difference 

operator is combined with the 2-D Butterworth lowpass filter that is set for a frequency of about 

OAn (Figure 3.3b). The recovered texture information shows positive signal to noise ratios. 

10' 

10" 

Symmetrical Difference Filter 

10' 

Texture Filter 

Image Model 

10" 10 10 

Figure 3.3a: Using the symmetrical difference Figure 3.3b: Using the thesis filter to recover 
to recover image texture. image texture. 

Figure 3.4a shows the test image used in this chapter. It has both large and small surfaces 

to test disparity resolution and it also contains shadows with very little visible texture. This makes 

stereo matching difficult and it makes the image useful for studying fundamental problems that 
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arise from poor texture and occlusions in vertical surfaces. Just as with human vision, the 

algorithm developed in this chapter solves aerial stereo images, stereo images with vertical surfaces 

such as drums and trees, and ground based stereo images used for navigating on plane surfaces. 

Figure 3.4a: Test image used in this chapter. 

The next figures show the disparity maps resulting from simple block matching of image 

texture recovered using a symmetrical derivative filter and texture recovered with the thesis filter. 

Left-Right confirmation is used to validate the matches (described later in this chapter). Black areas 

occur when no match is found. Bright white regions are false matches. 

Figure 3.4b: Disparity using image texture from Figure 3.4c: Disparity map using image texture 

symmetrical derivative: 13977 match failures from thesis filer: 11988 match failures 
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The black banded region on the extreme left in Figures 3.4b and 3.4c is difficult to match 

using simple block matching and it is not included when counting regions where Left-Right 

confirmation fails. A noticeable difference in the images can be seen in the lower left and in the 

upper right where the symmetrical difference filter fails to validate as many regions as recovered 

using the thesis filter. Overall the symmetrical difference filter has about 16% more match failures. 

Even though it attenuates signal frequencies greater than nil, it can accept data with negative 

signal to noise ratios as shown in Figure 3.3a. The filter used in this thesis is designed as a general 

purpose image filter to recover texture that has a positive signal to noise ratio for gray scale 

matching. It consists of two elements; a 1-D symmetrical difference operator to flatten the useful 

image spectrum along the epipolar line and a two-dimensional separable lowpass filter to reject 

spatial sampling noise. This is described in Appendix 3 and Appendix 4. 

3.5 Matching A long Epipolar Lines 

In this thesis, one image is designated as the reference image so that disparity values can 

be assigned to locations in this image. A match surface of two epipolar lines is constructed from 

the absolute difference of the pixel values in a line of the reference image WRT the corresponding 

epipolar line in the other image. In most stereo images, including those in this thesis, the epipolar 

lines are horizontal lines in the stereo image. A horizontal row of pixels from an image constitutes 

an epipolar line. 

A match surface can be constructed by comparing horizontal line 100 in the right image 

with horizontal line 100 in the left image. In Figure 3.5, the bottom row on the match surface is the 

zero shift absolute difference between the pixel values of the two image lines. The second row in 

the match surface is the absolute difference of a one pixel shift between the two lines, etc. This 

process forms an array of match scores. The number of horizontal elements in the array is 
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determined by the number of width of the images while the number of vertical elements is 

determined by the disparity search range. 

i t i i i i i i i i i i i i i r r r n 

Right Epipolar Line 

Left Epipolar Line to be Shifted and Matched 

Array of Match Scores for Corresponding Epipolar Lines 

Figure 3.5: Construction of an epipolar match surface. 

Using SAD (sum of absolute differences) as a matching metric, the overlapping regions in 

this matrix structure contain the absolute difference of the gray scale values for a particular pixel 

pair after the texture filter has been applied to the images. The match scores for a given position in 

the right (reference) epipolar line appear in a vertical column on the match surface. Match scores 

for a given position in the left epipolar line appear along a 45° line on the match surface. Ideally, 

match positions would be indicated by a contiguous line of zeros through the match surface. 

3.6 Surface Models and Correlation Windows 

In practical applications of machine vision, visual surfaces arise from physical surfaces 

and a physical surface model that describes how adjacent surface elements interact is used to 

constrain estimation of visible surfaces. A surface can be though of as a mosaic of infinitesimal 

planar surfaces. In most physical surfaces the orientation of neighbouring differential surface 

elements does not change quickly. One can always find exceptions, like the sea urchin, but walls, 
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cylinders, and other simple visual elements are relatively smooth and appear discontinuous only at 

the boundary of the visual surface. 

Blake and Zisserman deal with visual surface models in their book 'Visual Reconstruction'. 

They point out that "the higher order the model, the greater the range of interaction between 

cells, and the more intractable the problem of signal estimation becomes. In practice, anything 

above first order is more or less computationally infeasible". Their work favours the weak 

membrane model; a first order surface model, and the weak string model which is the one 

dimensional equivalent. The epipolar match scores in Figure 3.6 have been low pass filtered along 

the constant disparity lines using a simple first order recursive filter that conforms to the weak 

string model. In this way, the matching data is weighted according to the modeled local interaction 

between elements on the surface. 

0.5̂  

Disparity 0 n 

300 
200 

100 
Horizontal Pixel Position 

Figure 3.6a: Match surface formed from comparing horizontal line 100 in left and right images. 

Figure 3.6a shows a match surface for a pair of typical epipolar lines. The y axis has a 20 

pixel disparity range. The x axis is the pixel position in a 256 pixel epipolar line and the z axis is 

the match score. The best match appears as a minimum energy path though this surface. False 
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matches can occur in regions with little intensity texture and in regions with occlusions. The path is 

expected to be discontinuous over occluding surfaces. 

Figure 3.6b: Contour plot of Figure 3.6a with best match solution on match surface. 

3.7 Left-Right Match Confirmation 

Left-Right confirmation is often used to reject false matches (Prazady 1985, Fua 1991). In 

Figure 3.7, match scores for a given position on the right epipolar line appear in a vertical column 

on the match surface while match scores for a given position on the left (shifted) epipolar line 

appear along a 45° line on the match surface. Using Left-Right confirmation, a match is confirmed 

when the best score on a search along the vertical line is confirmed as the best match by a search 

along the intersecting 45° line. 
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Left Image Pixel 15 Scores 
< ^ n Right Image Pixel 10 Scores 

10 15 
Figure 3.7: Left-Right correspondence on match array occurs when both 

the vertical and diagonal search find a best match for a 5 pixel disparity. 

3.8 Matching Over Occlusions 

Occlusions occur when some region of the scene is visible in one view but is not visible in 

the other view. Regions on either side of the occlusion are visible in both views and, ideally, can be 

correctly matched. If there is a positive jump in disparity then the left view will contain some of the 

scene that is not visible in the right view. These extra pixels in the left view have no matching 

pixels in the right view. In the example below, a continuous solution that can match up to pixel 8 in 

the right (reference) image and also correctly match the next pixel must jump over some interval of 

pixels on the left epipolar line. The left view contains pixels that are not present in the right view. 

Valid matching information is locally continuous along the right epipolar line but it is 

discontinuous along the left epipolar line. 

Left Right 

unmatched pixels in left view 

Figure 3.8a: Positive distance step. Figure 3.8b: Corresponding pattern on match surface. 
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If there is a negative jump in disparity then the right (reference) view will contain some of 

the scene that is not visible in the left image. The match information is continuous on the left 

epipolar line and it is discontinuous on the right epipolar line. In the figure below, there is a correct 

match at position 6 on the right epipolar line and the next possible match lies along the 45° line 

that corresponds to the next contiguous pixel on the left epipolar line. 

Righ t 

Figure 3.9a: Negative distance step. 

•••• 

\ 

X s; s 11 t ! 
unmatched p ixe ls in right v iew 

Figure 3.9b: Corresponding pattern on match surface. 

These rules conform to the disparity gradient limit (Pollard et al. 1985). As pointed out in 

a following publication (Trivedi and Lloyd, 1985), the disparity gradient limit is a geometric 

constraint that results from camera geometry and the different information available in the two 

views of the scene. In the case of a positive disparity step, the match is continuous on the right 

epipolar line while in the case of the negative disparity step, the match is continuous on the left 

epipolar line. This constrains how the disparity changes across the occlusion gap and it also 

conforms to the monotonicity constraint (Geiger et al. 1995) which states that, except for very 

special illusions, a match discontinuity does not appear at the same location in both images. One 

view or the other will have continuous match data. 

When indexing across the match array using these rules, i f the previous match is known to 

be correct then the next correct one to one match is in the region defined by a disjointed line as 

shown. 
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r n e x t c a n d i d i a t e m a t c h e s 

c o r r e c t m a t c h e s ^ 

i n d e x d i r e c t i o n 

Figure 3.10: Search region when previous match is known to be correct. 

Figure 3.10 indicates the next possible candidates on the match surface. If there is no disparity 

change then the correct match is at the next horizontal element in the match surface . If there is a 

positive disparity change then the next match is on a vertical line above the previous correct match. 

If there is a negative disparity change then the next correct match is on the diagonal line below the 

previous match. 

If there is no information about previous correct matches then the score associated with the 

best match is in the triangular region indicated below. A pixel that is visible on both epipolar lines 

will have a correct match score in the vertical column at the index location. When the right index 

pixel is not visible in the left view the correct match is right of the index position. A pixel in the 

right view that is identified as being in an occlusion region can be assigned to the background 

disparity (Jones and Malik, 1992). This is the best match in the region to the right of the index 

position . 

.... ... 

.... 2. 
i n d e x l o c a t i o n 

Figure 3.11: Search region on match surface with no knowledge of previous match. 
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This illuminates two points: 

1. When no occlusion is present (no disparity step) or when there is a positive disparity step, 

information is continuous in the right view. The correct match is in a vertical column at the 

pixel index. This is a small search region. 

2. Only when there is a negative disparity step does the search region expand to include the 

triangular region shown. This is a lower probability event than that described in the previous 

situation (point 1 above ). 

Using the left view as the reference view, the conditions become reversed for the stated disparity 

changes. It is possible to achieve reasonable matching by ignoring the occlusions mentioned in 

Point (2) since half the disparity steps are automatically handled by (1). As described in Sections 

3.1.1, matching compares groups of pixels in some region of the image. To compare valid regions 

of the images it is best to match on each side of the occlusion boundary rather than across the 

occlusion. Such a delineation of matching regions is described in the next section. 

3.9 A Novel Technique using Directional Matching over Occlusions 

Blake and Zisserman (1987), Terzopolulos (1988), Fua (1991), and other researchers use 

a two step process to extract surfaces from stereo images. The first step is to extract range data by 

determining the disparity between the two stereo images. In the second step, this information is then 

smoothed according to some surface model; a process which also smoothes data across depth 

discontinuities. An energy score is calculated to measure how well the range or disparity data fits 

the surface model. In the region of a discontinuity, the energy is high and the smoothing is relaxed 

or abandoned in order to preserve the discontinuity. On each side of the discontinuity, smoothing 

remains in effect. 

In the first step, which extracts disparity, correlation scores are supported by a region of 

data determined by the shape of the correlation window. The correlation window acts as a filter 
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which weights and sums the match scores of individual image elements in the window. At this 

level, correlation matches individual pixels but, as discussed earlier, noise and poor image texture 

require that the individual scores be summed over some region before a decision can be made. In 

this respect, smoothing stereo range data according to a surface model and correlation use similar 

operations in that they form spatial weighted averages within the image space. In performing the 

second operation, smoothing depth data according to a surface model, the underlying information 

for depth is smoothed twice, once in the correlation process where the depth estimation is derived 

from an average match score over an image region and a second time when the depth data itself is 

smoothed over some region. An advantage of the second step is the ability to handle discontinuities 

where the range data does not conform to the surface model. However, since the surface model 

implies some spatial support for this decision, the correlation process can also use be adapted to 

detect discontinuities with respect to a surface model. This is done with directional correlation 

filters. 

Figure 3.11 shows the basic implementation of the correlation filters used with SAD 

matching in this thesis. In Section 3.5, a symmetrical correlation filter was used. In this section 

simple fonvard and backward first order recursive filters are used to average matching scores 

along the epipolar lines. This is a one dimensional search and the filters weight data according to 

the weak string surface model which can be formed from the addition of two first order 

Butterworth recursive filters. 

Figure 3.11: Forward and backward correlation filters on different surfaces. 
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When the filtered data is processed separately the storage requirements are doubled; yielding two 

matching surfaces, each similar to the one shown in Section 3.5 except that one surface is filtered 

in the forward direction and another surface filtered in the backward direction. 

At each pixel location, the forward and backward filters are compared. In Figure 3.12 the 

backward filter cannot fit on the surface and straddles the transition between two visible surfaces 

while the fonvard filter is continuous on a surface and has a better match score. At each pixel in 

Figure 3.12, the match algorithm decides which filtered surface to adopt. As the forward filter 

advances one pixel to the right, the backward filter retreats one pixel. Eventually only the 

backward filter can find a continuous surface and the forward filter begins to cross the 

discontinuity. At this point, the backward filter has a lower score and best represents the surface at 

that pixel location. 

The basic idea is that if the fonvard and backward filters agree on a disparity value then 

they are on a surface that conforms to the membrane model. If they disagree then they are near a 

discontinuity. In traveling across the match surface by increasing horizontal pixel number (from 

left to right), the best match in the region just before an occlusion region is on the forward filter 

surface. The best match in a region just after a disparity transition is on the backward filter 

surface. In effect, the backward filter surface looks ahead onto future surfaces whereas the forward 

t 
pixel 

position 

Figure 3.12: Matching over an occlusion 
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moving filter looks back over past data. If the forward filter data shows a good match score, the 

disparity value should be within ±1 pixel of the previous disparity value for the data to be part of a 

known surface. This can occur because: 

1. there has been no disparity transition. 

2. there has been a disparity transition but the fonvard filter is now settled on the new surface 

and the previous disparity values were obtained from the backward filter. 

These effects can be seen in Figure 3.13 below where a single symmetrical filter and Left-Right 

confirmation is used to match the surface in an aerial photograph. In scanning from left to right, 

the leading and trailing edges of the building appear as disparity steps. The symmetrical filter 

cannot find confirmed matches in these regions which appear black in the disparity image. Poor 

visual texture also limits matching but it is the effects of disparity steps and occlusions that 

asymmetrical filters address in this thesis. 

a: Right view of aerial photograph. b: Disparity recovered with symmetrical filter. 

Figure 3.13: Failure of symmetrical filters in regions with step changes in disparity. 
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Most of the scene in Figure 3.13 has continuous visible surfaces. 27% of the pixels in the disparity 

image cannot be matched using the symmetrical correlation filter and Left-Right confirmation (i.e. 

more than one quarter of the image). 

3.10 Matching with Asymmetric Correlation Filters 

Consider searching along a constant pixel position in the right view; the vertical line in 

each forward and backward match surface shown in Figure 3.14. Away from a discontinuity, both 

searches confirm a best match at the same disparity value. In case of a positive disparity step the 

backward filter will have the better match score and the disparity must be greater than the old 

forward disparity since only positive disparity steps are continuous in the right view. The only 

condition that is not handled correctly by this simple vertical search is a negative disparity step. 

In the left view, negative disparity steps are continuous. A search along a constant pixel 

position in the left view occurs along a 45° line on the match surface. At the boundary of a 

negative disparity step, the backward filter would be on a new surface and the forward filter (on 

the old surface) would be entering an occlusion region. In this case, the backward disparity is less 

than the old forward disparity and the backward disparity value is assigned to this pixel (which is 

visible only in the right view). This procedure of filling in of occlusion regions with the background 

disparity is discussed by Jones and Malak (1992). 
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Figure 3.14: Diagonal search line on Backward filtered match surface 
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Figure 3.14 illustrates a match surface generated by a ten pixel disparity search range, (i.e. 

there are ten vertical elements in the match surface.) With each increment of the pixel position in 

Figure 3.14, the triangular region moves to the right; ten new elements arrive and ten old elements 

leave. The discarded elements are the match scores for the previous constant pixel position in the 

right epipolar line. The new elements are the match scores for a constant pixel position in the left 

epipolar line. These appear on the 45° line in the triangular region. A search along this vector will 

identify the best match associated with a pixel on the left epipolar line that is 10 pixels away from 

the current position in the right view. 

As the index advances, only ten new elements need to be searched to record the best left 

match candidate. The two pieces of infonnation needed from this search are the value of the best 

match score along the 45° line and the position of the best match score along the line. A vector of 

the best left view solutions is maintained, shifted and updated with the new match candidate. In 

effect, this vector is the W T A solution (Winner Take A l l ; Little and Gillet, 1990) seen from the left 

view. The length of this vector is equal to the disparity search range. 
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Figure 3.15: Data vector of diagonal search results. 

In Figure 3.15, the latest best match score from the diagonal search and its vertical 

position are stored in the top locations of the data vector. The previous data has been shifted down 

one position in the vector. It can be seen that it is possible for the second top position to have a 

solution that points to the maximum disparity value; a region that is not part of the triangle. 

Similarly, the third top position in the data vector could have a solutions that point to the top two 
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disparity values; also outside the triangle. One criteria for valid matches becomes very simple: in 

the data vector, the correct match has a disparity value equal to its index position in the vector. For 

example, the top entry in the data vector might have a best match at position 8 along the diagonal 

search. After two shifts down (which occurs after two shifts to the right along the epipolar line), 

the index in the vector and the disparity value agree. This represents the best match seen from the 

Left view. If this match was to be confirmed in the Right view by a vertical search, it would also 

reside at position 8. A necessary condition for Left-Right confirmation is that the vector index and 

disparity value agree. A l l the elements in the vector where the disparity value and the index 

position agree meet this criteria for information that is visible in both views. 

p r e s e n t s u r f a c e 

f u t u r e s u r f a c e 

index location - T 

Figure 3.16: First evidence of a negative disparity step on diagonal search. 

An analogous situation holds for negative disparity steps where a search along the diagonal 

line would show a match at a position less than the current disparity value. Figure 3.16 shows the 

first evidence of this event on the diagonal search. This information is stored in the top of the data 

vector shown in Figure 3.15. As the index position advances along the epipolar line, the first 

evidence of the negative disparity step is shifted down in the data vector. The pointer to the future 

surface in the data vector coincides with the disparity value of the present surface when the present 

surface ends. By the time that the index location in Figure 3.16 had advanced to the end of the 

upper surface, the top four elements of the data vector would contain information about the new, 

lower disparity surface. The future surface is confirmed by continuity of disparity values in the top 

elements of the data vector which are the search results in the left view only. It cannot be confirmed 
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by data in the right view since a negative disparity step produces unmatchable pixels in the right 

view. 

Left-Right confirmation will fail at surface boundaries with step discontinuities such as 

those in the test image (Figure 3.13). Asymmetrical correlation filters and the diagonal search 

technique provides a look at future surfaces and effectively steps over information that is 

unmatchable in the reference image. When using the right view as the reference image, negative 

disparity steps generate unmatchable pixels in the reference image and Left - Right confirmation 

must fail in such regions of the reference view. When this happens, the technique adopted in this 

thesis is to look for future surface continuity and assign the corresponding disparity values to the 

unmatchable pixels in the reference image. 

3.11 The Match Rules 

Two match surfaces are constructed for each epipolar line in the right image as described 

in Section 3.5. One surface is filtered in the fonvard direction and the other surface is filtered in the 

backward direction as described in Section 3.9. For each pixel in the horizontal image line from the 

right view, each match surface is searched vertically and diagonally as described in the previous 

section and the best diagonal match scores are stored in a data vector as shown in Figure 3.15. The 

data vectors, designated Uf and Ub contain the energy and disparity values that result from the 

diagonal searches. 

Rule 1: 

The best vertical match score of the fonvard match surface, ef, and of the backward match 

surface, eb, are compared according to this rule: 

accept the disparity, df, that is associated with ef IF: 

(ef< eb) 
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AND UffdfJ) < Ub(dfJ) 

AND abs(Uf(df,2) - df) < 2 

In this case the best forward match score is less than the best backward match score, the disparity 

value associated with the forward match score is confirmed to be within +1 pixel of the best 

fonvard surface scores stored in the diagonal vector and the corresponding forward match score in 

the diagonal vector is less than the backward match score. 

ELSE 

accept the disparity, db, that is associated with eb IF: 

(eb<=ej) 

AND Ub(db,l) < Uf(db,l) 

AND abs(Ub(db,2) -db)<2 

This rule handles regions away from discontinuities and regions near a positive disparity step. In 

these regions the match data is continuous in the right view which is taken as the reference view in 

this thesis. 

Experience has shown that about 95% of the pixels in a typical stereo reference image can 

be assigned a disparity value using Rule 1. When this rule fails a solution is accepted that 

corresponds to a negative disparity step. In this case, some regions visible in the right image are not 

visible in the left image and cannot be matched. 

Rule 2: 

For pixels that fail Rule 1, a future surface with a disparity given by the average of the top 

elements in the diagonal search vector is taken as the solution. This corresponds to a continuous 

surface visible beyond the occlusion region and automatically fills in occluded regions with the 

background surface. 
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The results of this procedure are shown below. Two of the pictures (Figures 3.17a and 

3.17b) are simply reproduced from Figure 3.13. They show the right image of the stereo pair and 

the disparity recovered by a symmetric matching filter. The third and fourth pictures show the 

dense disparity map recovered using asjnimetric filters and the matching rules outlined above. 

Figure 3.17a: Right view of aerial photograph. Figure 3.17b: Disparity recovered with 

symmetrical filter. 

Figure 3.17c: Disparity map recovered using only Ride 1. 
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The disparity map in Figure 3.17c shows most unmatched regions near negative disparity 

steps. These are most evident along the back of buildings. The right view can see the backs of 

buildings whereas these regions are not visible in the left view and should remain unmatched in the 

right view. Figure 3.17c shows unmatched regions in the right view after Rule 1 is applied. All the 

unmatched regions in this figure are assigned disparity values according to Rule 2 outlined above. 

The result is shown in Figure 3.17d. 

Figure 3. J Id: Disparity map recovered with Rale 1 and Ride 2. 

The dense disparity map in Figure 3.17d is recovered in a single pass using the technique 

described in this chapter. There are few wild points. The most noticeable are in a white region in 

the lower left corner of the image. Comparing Figures 3.17c and 3.17d shows that this wild point 

passes left-right confirmation as described by the matching Rule 1 above. 

Figure 3.18 shows the result when the same code is applied to the Pentagon image. The 

Pentagon image shows the limitations of this technique in resolving small surfaces. The directional 

correlation filters can preserve step disparity changes between large surfaces but have trouble when 

the image has many small surfaces. Better results are obtained by Geiger et al. (1995) and by 
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Birchfield and Tomasi (1998). Both use dynamic programming however Geiger's algorithm is 

much more time consuming. In regions with little texture, Birchfield's results are much better than 

those achieved with the algorithm presented in this chapter. However, Birchfield's algorithm tends 

to be brittle and not well suited for sub-pixel interpolation of disparity surfaces. In the next 

chapter, sub-pixel interpolation will be shown to be essential for perceiving local shape with stereo 

vision. 

Figure 3.18: Right Pentagon image and recovered disparity map. 

3.12 Summary 

This chapter examines an implementation of gray scale matching stereo images. The 

emphasis is on solving problems that arise when dense disparity maps are extracted from images. 

Sections 3.1 and 3.2 investigate the statistical information that is presented in images. It is shown 

that, when matching regions in two images, there is a minimum region size necessary to find an 

unambiguous match and that, due to spatial sampling noise, high frequency information does not 

contribute to successful matching of these regions. 

Most signal processing systems intentionally oversample the input data. This is important 

in applications such as heart monitors that arc used to detect abnormalities. In contrast, most 
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images are not oversampled since, to humans, they would appear blurred or out of focus. Section 

3.2 shows that high frequency components in critically sampled data do not contribute to gray scale 

matching and identification. This can also affect some coarse to fine matching schemes where the 

coarse images are critically subsampled. Two strategies are proposed to use the available image 

data. The one outlined in this thesis is to achieve oversampling by using a lowpass filter. The other 

strategy is to upsample the image data prior to matching. This second strategy could be used to 

high resolution stereo information in local regions of interest where the region is visible in both 

views. This remains an area for future work. 

In Sections 3.4 and 3.5, a texture filter is introduced to extract the useful matching 

information in the images. Sections 3.6 to 3.10 introduced a match surface to study the interaction 

of occlusions and correlation windows. Forward and backward directional filters are introduced to 

match over occlusions. This information is combined in Section 3.11 in an algorithm to produce 

dense disparity maps. The match rules are not heuristic but are systematically developed from 

geometric constraints that result from camera geometry and the different information available in 

the two views of the scene. The result is a single pass algorithm (no post processing) used to 

extract dense disparity maps in this thesis. 

63 



Chapter 4 

Navigation, Recognition, and Orientation 

This chapter examines shape in stereo vision and develops teclmiques for robot navigation 

as a shape paradigm. Using the concept of a global shape model; in this case one that describes the 

floor on which a robot moves, (Burt et al. 1995), and other researchers (Kumar et al. 1994, Zhang 

et al. 1994), detect obstacles that arise in robot navigation problems. This technique identifies the 

floor as an object with global shape attributes whereas quantitative shape techniques measure local 

curvature in a scene and are more subject to noise. Navigation occurs within the context of a global 

shape whereas objects are recognized by local shape. 

The goal of this thesis is not only to determine how to navigate toward a log or cylindrical 

drum, but to determine how to recognize the object and its orientation with respect to the robot. 

Towards this end, Section 4.2 introduces disparity gradient space as the fundamental space in 

which stereo vision determines surface orientation; beginning by a description of planar surfaces in 

this space. In Section 4.3, this is extended to recognition of simple shape. In this case, cylinders are 

described in terms of their projection into this space. In Section 4.3 some real world examples are 

given and the limits of shape perception by stereo are discussed. 

The concluding sections of this chapter develop a formal mechanism to recognize local 

shape and the extract the orientation of simple objects using stereo vision. Previously, in Section 

2.4, surface normals were extracted by taking the derivative of disparity. In recognizing a curved 

surface, a vision system perceives changes in surface orientation which is equivalent to a second 

derivative of the disparity field. Section 4.5 develops a techniques to recognition based on the null 

space of the surface normals. 
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Recognition of objects by computer requires a model of the problem domain in which 

objects can be classified according to how their attributes conform to some stored model. In a 

robust recognition system, these attributes need to be invariant under translation and rotation, 

within the limits of the robot work space. This chapter uses concepts from Extended Gaussian 

Images (EGI) to develop a method for recognizing cylinders and estimating their size and 

orientation. The basic ideas are built on previous work by Little (1985), Boyle and Copper (1986), 

and Kang and Ikeuchi (1993). However, this chapter begins with the navigation problem which 

involves recognition of a surface on which a robot can move: a global plane. 

4.1 A Global Shape Model 

Burt et al. (1995) described mobile robot navigation on planar terrain where obstacles 

were made evident as deviations from the planar surface. The basis for this technique relies on the 

behaviour of planar surfaces in stereo vision as described in Section 2.4. For navigation, a global 

shape model is imposed on the scene; in this case a horizontal plane. The whole scene is organized 

in terms of the model but the floor is not explicitly recognized. This organization occurs in a 

disparity image of the scene. 

— Zmin 

Figure 4.1 Camera orientation for floor navigation 

The implementation in this thesis is designed for use indoors where the floor is flat such 

that the cameras coordinates do not roll with respect to the floor. The robot cameras are tilted 
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toward the floor so that, if the robot was situated on an infinite plane, the top row of the camera 

would just perceive the horizon. The bottom row of the image sees the floor a short distance away. 

Using fixed camera geometry, the disparity value of the bottom row is pre calibrated into the 

system and, if necessary, updated by the robot. When the robot can see the floor at the bottom row 

of the image, it can measure the disparity value of this row. In practice, the algorithm measures the 

median disparity value of the bottom 5 rows that have unobstructed views of the floor. If this value 

changes significantly from the precalibratcd value then a new disparity value for the top row can 

also be calculated in terms of the camera height above the floor and the camera's vertical field of 

view (FOV) as shown in Figure 4.1. 

Given that the disparity gradient of a planar surface is constant (Section 2.4) and knowing 

the disparity values for the top row and the bottom row, the disparity value of the floor is a straight 

line function of the image row number. Ideally, the top row of the image just perceives the horizon 

and the disparity value at this row is zero. The bottom shows the closest region of the plane where 

the disparity value is maximum. In Figure 4.2, the disparity image shows high values (white) where 

the disparity is highest. A side view of the disparity values associated with the infinite plane 

appears as a straight line. 

-+— Row 1 

Figure 4.2: Camera view of an infinite plane and Disparity Image ofplane. 

The global shape model is continuous and exists in the disparity image. When the disparity 

map of a scene is adjusted with respect to the model, obstacles are detected as regions that do not 
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conform to the model. Examples of this are shown in Chapter 5 where the technique is extended to 

navigation in hallways. In this case the global model becomes more complex. Such shape models 

can also be developed to navigate in a pipe or a tunnel. A mechanism for this is given in the next 

section. 

4.2 Disparity Gradient Space: a new way to evaluate shape 

In the previous section, the navigation problem was constrained to vehicles that travel on a 

flat surface such that the cameras coordinates do not roll with respect to the floor. A robot might 

need to navigate along a wall and find obstacles on the floor and doorways, hallways, and obstacles 

that protrude from the vertical wall. In other applications, it may be necessary to travel inside a 

pipe or tunnel. In some instances, the camera coordinates may not be aligned with the flat surface 

model. This section develops a space to facilitate working such problems (Burge et. al. 1998). 

4.2.1 The Disparity Gradient of Planar Surfaces 

Section 2.4 dealt with the disparity gradient of horizontal ramps. A robot that stands on an 

infinite plane can consider that the plane intercepts a virtual plane defined by the pinhole mask of 

the camera. Where this horizontal plane intercepts the Z = 0 plane, as defined by the pinhole mask, 

determines the perceived disparity gradient of the horizontal plane. A robot that looks off a tall 

building sees the ground with a disparity that changes slowly in the image. A robot that is very 

near the floor, glances along the floor and perceives a rapidly changing disparity over the surface 

of the floor. In both cases the disparity gradient is constant. 

The equations in Section 2.4 are symmetrical about the optical axis i.e. the basic 

characteristics of the plane do not change as the camera rotates about the optical axis. Visible 

planes that intercept the plane of the pinhole mask at a distance R from the pinhole aperture are all 

67 



tangent to a circle of radius R centered at the origin of the Z = 0 plane (the pinhole mask plane) as 

shown in Figure 4.3. 
l ine of intersection of plane 
with the pinhole mask 

sin 9 A , 

Figure 4.3: Line of intersection of a planar surface with the 2=0 plane. 

The point at which a plane intercepts the X and Y axis of the pinhole plane is: 

X - —^—• = —̂— and Y - ^ = —!— where 9 is the surface orientation with respect to the camera 
cos 0 Dx sin0 Dy

 F 

rotation about the optical axis. In the inverse space of the Z = 0 plane, Dx

2 + D 2 - -Xr , as shown 
y Rz 

in Figure 4.4. 

Figure 4.4: Disparity Gradient Space. 
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In Figure 4.4, disparity gradient space has 3 regions: 

1. Region A: nearly vertical surfaces like a wall; an observer looking directly at a notice board or 

poster. In this region, visible planes intersect the Z = 0 plane at large distances from the 

pinhole aperture and the resulting disparity gradients are almost zero. The disparity is constant. 

2. Region B: measurable non-zero disparity gradients. 

3. Region C: low visibility, grazing incident surfaces with large disparity gradients. 

Since all points on a given planar surface will have the same disparity gradient; in 

disparity gradient space, all points on a that planar surface will map to a single point. As shown in 

Section 2.4, this point is not unique. Many planes can map to the same point, however, all points 

on a given plane must map to the same point in the disparity gradient space. The location of the 

point is given by Dx

2 + Dy

2 = where R is the shortest distance between the pinhole and where 

the extended plane would intercept the Z = 0 plane (the pinhole mask plane). 

4.2.2 Reevaluating Surface Normals 

In Section 2.4, local disparity was described by a first order Taylor expansion; which is 

equivalent to fitting a planar surface to a local region in the image. This was used to derive the 

following expression for surface normals in terms of disparity gradients: 

An example of this expression is the geometry of a section through a vertical cylinder with respect 

to the pinhole plane as shown in Figure 4.5. The vertical disparity gradient, Dy is zero on the 

surface of a vertical cylinder. This simplifies the example to accommodate the limitations of the 

figure. 

(4.1) 
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Figure 4.5: Geometry of a Vertical Cylinder with respect to the Pinhole Mask Plane 

All points on the tangent plane have the same surface normal and therefore the same 

disparity gradients. A point where the plane intercepts the optical axis of the camera would have no 

x or y displacement in the image such that Equation 4.1 for the surface normal at this point 

simplifies to: 

planar surface patch at the center of the image in order to evaluate the Z component of the surface 

nonnal. It is interesting to note in Equation 4.2 that the Z component of the normal at the center of 

the image is a disparity divided by the focal length of the camera, producing a gradient term in the 

Z dimension. 
f 

Using the results of the previous section and the basic stereo equation, D - ^- s the surface 

nonnal becomes: 
n= DX,D £ . - _L 1 J_ 

/ IX'Y'Z, 
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where X, Y, and Z are the are the intercepts of the tangent plane on the world coordinates. These 

'world coordinates' are defined by the camera orientation. The Z axis is the optical axis of the 

camera and the X Y plane is defined by the pinhole mask. This shows that estimating surface 

orientation using Equation 4.1 is consistent with estimating where the tangent plane intercepts these 

axes. It agrees with definitions of planar surface given in geometry texts that show a plane as a 

triangular region with vertices on the X, Y, and Z axes. 

. Z 

Figure 4.6: Definition of a plane by axes intercepts. 

4.3 Qualitative Shape 

Planar surfaces provide useful information in navigation problems, however higher order 

surfaces are usually needed to identify an object. When an object is modeled as a continuous tiling 

of small planar surface patches, shape will have some characteristic in disparity gradient space. In 

this section cylinders are recognized as curves in this space. 

4.3.1 The Disparity Gradient of Cylindrical Surfaces 

In Section 2.4, the perceived disparity gradient is shown to be the projection of the surface 

normal onto the Z = 0 plane as defined by the camera imaging surface. On the surface of a vertical 
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cylinder whose axis of symmetry is parallel to the Y axis; the projection of the surface normal can 

only vary in the X direction. Since the nonnal vectors will have no vertical component then, on the 

disparity gradient plane, the disparity gradients of this cylinder all map to points on a horizontal 

line that goes through the origin; the x axis. 

In the case of a horizontal cylinder whose axis of rotation is parallel to the X axis, the 

disparity gradients map to points on the y axis, a vertical line that goes through the origin. The 

disparity gradients on any cylinder that is parallel to the Z = 0 plane will map to points on a 

straight line that goes through the origin in the disparity gradient plane. In the case of vertical and 

horizontal cylinders, the disparity gradients map onto the x and y axes respectively. Figure 4.8 

shows the intuition behind this concept. 

Figure 4.7: Projection of surface normals of a vertical cylinder on the Z=0 plane 

Using Figure 4.7, a normal vector can be pictured as a perpendicular pin in a flat piece of 

cardboard. When placed on a cylinder, the cardboard becomes the tangent plane of the cylindrical 

surface and the pin is normal to the surface. As the cardboard is moved around the curve of the 

cylinder, the pin traces a straight line on the pinhole mask. In the disparity gradient plane, this line 

is independent of vertical position because the nonnal vector of this cylinder has no vertical 

component. The disparity gradient of any point on the cylinder must lie somewhere on a horizontal 
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line and since the surface normal has no vertical component (Dy = 0), all points lie on the x axis in 

the disparity gradient plane. 

Using this intuition, the normal to a vertical cylinder that is sloped away from the observer 

will trace a line on the disparity gradient plane that does not go through the origin. At some point 

as the piece of cardboard is moved around the cylinder, the pin will be oriented parallel to the x 

axis and the vertical component of the disparity gradient will be zero. When the cardboard is 

moved over the surface to face toward the pinhole aperture, the vertical component of the disparity 

gradient will be a maximum. 

Figure 4.8: Projection of surface normals of a non vertical cylinder on the Z=0 plane 

4.3.2 Identifying Cylinders in Disparity Gradient Space 

The previous sections have looked at how simple surfaces can be found using stereo 

vision. In Section 4.1, a plane was imposed on the disparity map. The differences from this model 

were identified as obstacles. In an alternate technique (Section 4.2), points are grouped in some 

space and then characterized as belonging to a surface depending on how the points group in this 

space. This technique is similar to a search in which the final decision depends on finding sufficient 

data points with which to unambiguously identify the grouping. 
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Stereo vision can perceive depth from disparity and determine shape from changes in 

disparity. A change in disparity is the fundamental evidence of shape in stereo vision and disparity 

gradient space is just this; a fundamental space in which stereo vision determines shape. The 

previous sections show how, in disparity gradient space, planes map to a single point and cylinders 

map to a curve in this space. Every point on a given planar surface, to which a disparity gradient 

can be assigned, will confirm the existence of the plane. A plane is singular in this space. Similarly, 

on a small scale, some section of a cylinder will appear like a planar surface. The existence of a 

cylinder is confirmed by a locus of points that trace out a curve in disparity gradient space. As 

such, the support for a cylinder is not as dense as that for a plane. 

Since any point on a cylinder will map onto a curve in disparity gradient space, the 

location of the point on the cylinder is not important providing that the surface is adequately 

sampled. Figure 4.9 shows the disparity gradients taken at random points on the surface of a 45 

gallon dram. 

Disparity Gradient Space of Vertical Drum 
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Figure 4.9 Disparity gradient at random points on a 45 gallon drum. 

The figure above shows a nearby 45 gallon dram and the disparity gradient measured on 

its surface. The dram is not exactly vertical and the line in disparity gradient space is slightly off 
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horizontal. In later sections, cylinders are identified in terms of their null space, indicated by the 

condition of an eigenvalue matrix. In this section a cylinder is mapped to a curve. It will be seen 

that the condition of the eigenvalue matrix is related to the width of the curve. In the limit, the 

width of the curve is zero; no noise exists and the curve has only length. It is length that 

distinguishes a curve from a point and hence a cylinder from a plane. The length of the curve 

depends on the ability of stereo vision to measure disparity gradients across the surface of the 

cylinder. 

Section 2.6 looked at expected disparity changes with respect to distance and surface 

orientation. On the vertical drum, 70% of the visible surface has a slope of less than 45° with 

respect to the optical axis of the camera. Accordingly, 70% of the information about the disparity 

gradients has a value: 
dD 
dr 

tan <b 1 
Z Z 

where Z is measured in baseline units. A common baseline used in this thesis is 10 cm. with a 

typical workspace greater than 2 meters (Z > 20). Figure 4.9 has very little noise, such that the line 

can be recognized over a horizontal disparity gradient of ± 0.1. ; an angle of 63° of the drum 

surface at Z = 20 or about 90% of the cylinder image. In order to estimate disparity derivatives 

over this surface, the cylinder must close to camera and be physically large; filling most of the 

image. In this example, where 90% of the surface can be used to estimate curvature, the remaining 

10% of the visible surface is close to the edge of the cylinder. The derivative estimate needs finite 

support and data in a region at the periphery of the cylinder is not always on the surface of the 

cylinder. For this reason, it is difficult to measure the curvature of small cylinders. The disparity 

gradient of a smaller cylinder is shown in the next image. 

In Figure 4.10, the cylindrical surface is smaller than the 45 gallon drum but the same 

distance away from the camera. The tree is sloped away from the observer and to the left, 

distorting the curve from a straight horizontal line. The measurable range of the disparity gradient 
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is less than that of the 45 gallon drum surface and noise becomes more of an issue. Even so, the 

surface is best characterized as a cylinder rather than a plane (a point) or a sphere (a symmetrical 

region on the disparity gradient plane). Figure 4.10 shows the disparity gradients of points chosen 

randomly on the surface of the tree. 

Disparity Gradient Space of Tree Surface Patch 

0.05 

S 

Figure 4.10 Disparity gradient at random points on a nearby tree surface. 

In comparison to the technique of forcing a continuous model on the disparity map, 

measurement of disparity gradients is less robust since it must search for data conforming to a 

model. This data can be ambiguous since more than one object can exist in the image. In forcing a 

continuous floor model on the disparity map, all the data in the disparity map can take part in the 

search. As shown in Section 2.4, many horizontal ramps can conform to this model but in practical 

circumstances only one surface in the image conforms to the global model. 

4.4 Shape and Orientation of Local Surface Patches 

As shape becomes more complicated, the characterization of shape becomes dependent on 

localized measurements. It was pointed out in the previous section that the disparity gradient is the 

fundamental evidence of shape in stereo vision. From the disparity gradient it is possible to 
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estimate a surface nonnal using the results from Section 2.3; a formulation that relies on a tangent 

plane approximation to the local surface. When a surface is smooth, without creases and folds, it 

has a tangent plane at every point; a condition for smoothness (Horn 1989). The orientation of the 

tangent plane describes the orientation of the surface at that point. Local shape can be determined 

by differences in tangent planes at different points on a surface patch (Horn 1989, Koenderick 

1990). 

In describing such surfaces, the basic notion is that tangent planes are like the first 

derivatives of shape; linear functions that approximate the surface. Using this heuristic, curvature 

is like the second derivative of shape (Koenderick 1990) and Gaussian Curvature is a measure of 

surface shape that is described by the divergence of the nonnal directions over a unit surface area 

(Koenderick 1990). In this respect, curvature is a two dimensional space that is orthogonal to the 

tangent plane. In a 3 dimensional world, curvature can be zero (a plane where the normals don't 

diverge), one dimensional (a cylinder), or two dimensional (an ellipsoid). In die following sections, 

local shape is determined by the way that unit normals on a surface patch diverge from a planar fit 

Local surfaces are identified by the asymmetry in surface curvature and orientation is determined 

by the principal direction of this asymmetry. 

Figure 4.11: surface patch with 3 normals 

As a point moves on a curved surface, the nonnal vector rotates about a vector that is 

tangent to the surface. In regions with high curvature, the local nonnal vectors are all rotated to 

point in slightly different directions. Each normal vector in a small surface patch can be described 
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by a component in the average normal direction and tangent components along the surface. In a 

simple example, normals on the cylindrical surface in Figure 4.12 diverge in a direction around the 

cylinder; not along it. There is no divergence of surface normals in a direction parallel to the 

cylinder's axis of symmetry. When traveling over this surface, the surface normals all rotate about 

a fixed direction which describes the orientation of the cylinder. In a stereo image of a cylinder, 

points in the image where the surface normals no longer conform to this model can be considered to 

be outside the cylinder boundary (not including the planar ends of the cylinder). 

n 
1 

Figure 4.12: Surface normals on a cylinder. 

4.5 Quadratic Surfaces 

On a locally smooth surface, the derivatives are continuous and well behaved. Such 

functions, with continuous second derivatives, are often treated like quadratics over a sufficiently 

small region (Scales 1987, Lewis 1986). In optimization and control problems, this local quadratic 

behavior is exploited in Newton-Raphson algorithms to find local minimums (Numerical Recipes). 

Such approximations are common over locally smooth regions of a function (Koenderick 1990). 

Using differential geometry, local surface curvature is determined by fitting a quadratic surface to 

a small surface patch (Scales 1987, Elber&Cohen, 1993). A quadratic surface centered on some 3 

space position, x0, can be written as: 

F = i ( x - x 0 ) T A ( x - x 0 ) + b T (x-x 0 ) + c (4.3) 
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The surface normal is the gradient of this function, 

g = A ( x - x 0 ) + b (4.4) 

and the Hessian matrix is A. 

In Equation (4.3), the quadratic surface is described in terms of: 

• a constant term, c; some average position of the points on the surface. 

• a planar term fit through the surface. 

• a curvature term that corrects the plane to better fit the surface. 

When x = x 0 , at the center of the patch, the surface normal, g, is equal to the normal of the 

tangent plane, b. The quadratic surface is symmetric such that the normals of a quadratic surface 

patch have a constant term and a term that changes as a point moves over the local surface. At 

different positions on the surface patch the tangent plane normal, b, is adjusted by the product of 

the Hessian and the displacement vector. How the surface normals behave in a region about x 0 is 

described by the Hessian matrix (which is sometimes called the curvature matrix (Numerical 

Recipes, Lewis 1986)). If the Hessian is unknown then the ensemble of normals on the surface 

patch contains information about the orientation of the tangent plane and about the quadratic 

curvature of the surface. This is the basis of gradient descent techniques (numerical recipes, Scales 

1987). 

4.6 Surface Curvature 

Noise and the effects of surface curvature cause the normals on the surface patch to point 

in slightly different directions. For simplicity, the surface normals in Equation (4.4) are considered 

to be perturbations of the unit normal to the tangent plane at the center of the surface patch. At 

different locations, the unit normal at the center of the patch, b, is modified by three vectors; one 

that reduces the component in the same direction as b and two that point along the surface in the 

directions of surface curvature. The dot product of b and a neighbouring unit normal, g, is the 
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cosine of the angle swept out by a radius of curvature in the direction (x - x 0 ) and the cross 

product of these vectors is the sine of the angle; the strain vector in the tangent plane. Figure 4.13 

shows a slice through a surface patch and two associated surface normals. The radius of curvature 

is a minimum when the slice is perpendicular to the longitudinal axis of the surface patch. 

Figure 4.13: Surface normals on a cylindrical section. . 

Figure 4.13 shows that an estimate of the distance between points on the surface is needed 

to determine the radius of curvature, R. A unit displacement on the surface as given by (x - x 0) 

will produce a change in the surface normal (as determined by the Hessian matrix) that reflects the 

radius of curvature. In figure 4.14, let g] and g 2 be the components of the vector g as shown such 

that g 2 « g]. For small angles, the radius of curvature is approximately |gi| / |g2|. In this case, 

where a 'unit displacement' is used, the radius of curvature is defined directly by the values in the 

Hessian matrix. Since all infonnation about the visible surface is derived from the image, what 

constitutes a unit displacement on the surface is image dependent. Unit displacements are measured 

in terms of pixels which are related to the world coordinates by stereo geometry. The perceived 

curvature of objects in the world is detennined by this conversion. 

4.7 Surface Energy 

On the surface described in Equation (4.3), the outer product of a local surface normal at 

some position in 3 space, x, is a 3x3 matrix. 
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gig? = [A(x 0 - ) + b][A(x 0 - x,.) + b] T 

= [A(x0 -x,.)][A(x0 - X / ) ] T +[A(x0 -x,)]bT +b[A(x0 -x,.)]T +bbT 

The autocorrelation matrix of the surface normals on a quadratic surface patch is the expected 

value of the outer products. 

R = E,Jg(j0 - x,.)g(x0 - x,)T] = - G G T 

Tliis expression measures the correlation between the 3 components of the surface normal over the 

visible surface. On a small surface patch, the surface normals all point in the same general 

direction such that the surface patch of a curved surface appears as a warped plane. 

If the columns of an mx3 matrix, G , are m unit surface normals, (m > 3), then G G T is a 

3x3 matrix that measures the average directional energy associated with the normal vectors. The 

eigenvectors of G G T form the basis that describes the principal directions of surface normals on 

the patch. 

For a point on a surface with corresponding unit normal g 7 , the directional cosine with 

respect to some unit test vector, u , is the inner product, g , T u . When m surface normals, (m > 3) 

make up the columns of a ;??x3 matrix, G , then G T u = e is a column vector of the m directional 

cosines of the surface normals with respect to the test vector u. The total energy in the directional 

cosines is E = eTe = u T G G T u where G G T is a 3x3 symmetric, positive definite matrix. G G T = 

SgigiT; the sum of the autocorrelation matrices for each surface normal. Regardless of the number 

of measurement vectors used, G G T is always a 3x3 matrix that can be updated as more surface 

normals become available. The vectors that have the largest and smallest directional energy are the 

eigenvectors of G G T . On a quadratic surface patch, the three eigenvectors describe the normal to 

the tangent plane, b , and the principal directions of curvature on the tangent plane respectively. 

The eigenvalues give the energy associated with each of these directions. 
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4.8 Surface Energy and the Membrane Model of Surfaces 

Finding the energy of the surface normals is consistent with the viewpoint invariant 

membrane surface model. In this model, the surface is described by the smooth shape of a 

membrane that has been stretched out of the tangent plane. In this respect, deformed membrane 

surface corresponds to the quadratic surface. The energy functional for a physical membrane over 

some small surface patch is (Blake & Zisserman 1987, Terzopoulos 1988, Whitten 1993): 

J = \\\hJ+W\dZdl (4-5) 

where £and n are vectors in the tangent plane and v is the displacement from the tangent plane; 

and are the components of the surface gradient that are in the tangent plane. The energy in the 

membrane when it is stretched out of the tangent plane is given by the energy of the components of 

the surface gradients that are in the tangent plane. Equation (4.5) measures this energy and this is 

the same energy expressed by two of the three eigenvalues found in Section 4.8. 

The membrane model is often used to smooth an image depth map d(x,y). The problem is 

usually formulated not in the tangent plane {£,,rj) but in the image coordinates (x,y). Each location 

in the image can be assigned a depth value and the membrane model is used constrain the solution. 

The membrane surface v(x,y) is the one that best satisfies: 

J = \\\{v-dy +A2[{vJ +(vyf]dxdy (4.6) 

When the problem is set in the image coordinates, the solutions favour surfaces that are parallel to 

the image plane. This is a good strategy for aerial photographs (Whitten, 1993) but, as suggested 

in section 2.4, a mobile robot will see the horizontal surface of the ground as the predominant 

plane. A constraint that favours solutions parallel to the image plane will fight a horizontal plane 

solution where the depth is continuously changing along the observers line of sight. Blake and 
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Zisserman (1987) show that the image plane constraint works well when the surface is oriented 

toward the observer, within some small angle. However they show much better results for cylinders 

and other curved shapes when a viewpoint invariant algorithm is used. The problem with this 

technique is to find the angle between the observers line of sight and the tangent plane normal on 

the surface patch. 

As Blake and Zisserman point out, a viewpoint invariant constraint needs an estimate of 

the orientation of the tangent plane since the membrane energy is described in terms of a deflection 

away from the tangent plane. Their technique is to estimate the orientation of the surface patch and 

compensate the apparent surface gradients accordingly. The method outlined in the previous 

section uses the autocorrelation matrix of the local surface.normals. One of the eigenvectors of this 

matrix is normal to the surface tangent plane and the other two eigenvectors are in the principal 

directions of the surface curvature. While the usual membrane constraint is formulated in the 

tangent plane (a two dimensional problem), using this three dimensional system automatically 

recovers the viewpoint invariant information. 

4.9 Simple Object Recognition using Surface Energy 

Three simple shapes, flat plates, cylinders, and spheres can be characterized by the three 

eigenvalues of the equation G G T x = X2x. On the surface of a flat plate, the surface normals point 

only in one direction and the null space of the surface normals is the two dimensional surface of the 

flat plate. The matrix G G T would have one large eigenvalue and two that, in the absence of noise, 

are equal to zero. On a cylindrical surface patch, one eigenvalue is zero and the other two are non 

zero. On a spherical patch, all eigenvalues would be non zero since the surface normals of a sphere 

point equally in all directions (but most of the visible surface energy will be directed toward the 

observer). In practice, noise will make all three eigenvalues non zero, however, a decision 

boundary to recognize simple shapes can be constructed from the ratios of the eigenvalues. 
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This can also be related to the classification of shapes in disparity gradient space as 

discussed in Section 4.3. The null space of the plane is 2 dimensional such that all points on the 

plane map to a single point in disparity gradient space. The null space of a cylinder is one 

dimensional such that all points on a cylinder map to a curve in disparity gradient space. Similarly, 

the spherical surface has no null space and points on a sphere map to a circular region in the 

disparity gradient plane. Recognizing these displacements of disparity derivatives is, in effect, a 

qualitative measure of the second derivative of disparity. 

(Strang 1988) points out that this eigenvalue problem defines an ellipsoid in three space. 

The eigenvalues define the dimensions of the ellipsoid along the axis defined by the eigenvectors. 

Since the eigenvalues are detennined by how the surface nonnals change with respect to each other 

in some region on the surface, the eccentricity of the ellipsoid is determined by the shape of the 

visible surface that produced the surface nonnals. Finding the space defined by the surface normals 

can determine the shape of visible surfaces without explicitly evaluating the directional derivatives 

of the surface nonnals. The ratio of the square roots of the eigenvalues determine the 

radius of curvatures in terms of'unit displacements' on the visible surface. 

4.10 Identifying Local Shape and Orientation using SVD 

This thesis needs to recognize at least two surfaces, planes (for navigation) and cylinders. 

Both of these are singular in disparity gradient space. Several successful techniques have been 

developed in course of this thesis to recognize the orientation of cylinders by their one dimensional 

null space. The routines are recursive and update estimates of the cylinder's null space as each new 

point is added. They can converge quickly (within a few samples) however they can have some 

problems with 2 dimensional null spaces and so the candidate nonnals used to evaluate the surface 

energy must be selected. A more robust estimator is provided by singular value decomposition 

(SVD). The original techniques appear in the appendix. 
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The SVD algorithm has several advantages in this application: 

• SVD is stable in systems with 1 and 2 dimensional null space in the presence of noise. This 

allows surface elements to be classified by the eccentricity of their eigenvalues 

• The teclmique for object recognition formulated in the previous section uses surface energy to 

characterize shape. This energy formulation has positive eigenvalues and the SVD produces 

only positive eigenvalues so nothing is lost in using SVD. 

• The matrix is 3x3 which is easy for SVD . Both matrices output from the SVD are equal. 

• SVD is readily available in software libraries. 

• Internally, the SVD routine is iterative and so it may be possible to update estimates as new 

data becomes available rather than re running the full routine each time a new data point 

becomes available. Press (Numerical Recipes) cautions against tinkering with the published 

SVD routine however, a recursive SVD would be a valuable algorithm in this application. This 

is reserved for future work. Even so, the SVD converges quickly (within a few data samples). 

Figure 4.14: SVD error in estimating cylinder orientation vs. number of measurements 

A minimum of 3 surface normals need to be accumulated in the energy matrix, G G T , in 

order to characterize a surface element. Experience has shown that more than 5 normal 
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measurements are needed in the energy matrix to get a useful estimate of the cylinder orientation. 

After this, a single application of the SVD algorithm can give information on the cylinder 

orientation. This is examined in Chapter 5. 

Figure 4.15 shows the normalized eccentricity given by the ratio of the smallest 

eigenvalues that is used to identify the cylinder. Even with such an obvious cylindrical shape that 

fills most the image, the local ratio in this example is about 9:1 indicating that there is significant 

noise in the null space and that most of the visible surface elements are oriented toward the 

observer and shown low disparity gradients. There are implementation issues that affect the signal 

and noise sources in perceiving shape with stereo. Chapter 5 shows how better results are achieved. 

0 10 20 30 40 

Figure: 4.15 Normalized eccentricity vs. number of measurements 

As shown in Section 2.5.2, even with a uniform distribution of oriented surface elements, 

most visible stereo surface elements appear oriented toward the observer. This limits the available 

'signal' for determining shape while no such limits are placed on noise. 
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4.11 Summary 

This chapter examined the role of shape in stereo vision. The concept of global shape has 

been used to solve navigation problems using stereo vision (Burt 1995), (Kumar 1994). This global 

shape model exists in the disparity image of the scene. In Section 4.2, disparity gradient space is 

introduced as the fundamental space for shape in stereo vision. It is shown that the perception of 

local and global shape can be predicted in this space. In this space planes map to a point. The 

concept of a global plane is robust because all of the image contributes to the continuous definition 

of a single point in disparity gradient space. Obstacles are detected as regions that do not conform 

with this model. It is then shown that cylinders map to a line in this space. A global cylinder such 

as the interior of a pipe will map to a line in this space. This is not as robust a shape as a global 

plane since the information in the image becomes distributed in this space. This line signature is 

shown to be able to characterize local cylinders in Section 4.3 however to estimate cylinder 

orientation one must fit an ellipse to this data. A more robust estimator uses the surface energy 

associated with local shape. 

Sections 4.4 and 4.5 discusses how the local behavior of surface normals are characteristic 

of shape. The curvature energy in a surface patch is used to characterize surfaces in Section 4.7. 

This is shown to provide a viewpoint invariant membrane model of the surface. This has been 

approximated by Blake and Zisserman but the technique in Section 4.7 provides this solution 

directly. 

The goal of this thesis is to develop a technique to identify a log; to navigate towards it; 

and the find the orientation of the log so that it can be picked up. Section 4.10 identifies an 

estimator for shape and orientation of cylinders. This is combined with the global plane model for 

navigation to stereo vision can be used in this task. 
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Chapter 5 

Implementation Issues and Results 

This chapter examines the primitive vision elements developed in earlier chapters for 

remote supervisory control (teleoperation). Robot recognition and navigation should be as 

autonomous as possible but in this application they are used more for confirmation; providing 

terms for communication about the world upon which both the operator an remote robot agree. 

Both need to recognize a navigable plane and locate obstacles and both need to recognize a target; 

in this case cylinders. This chapter tests the stereo vision process and the extraction of shape 

elements that allow the robot to cooperate with a remote operator. 

5.1 Navigation and Obstacle Detection 

This section examines the implementation of global models for navigation. Two models are 

used, a global plane to solve part of the problem posed in this thesis, and a model of a hallway. The 

hallway example is introduced by a synthetic image to show how the ideal global model concept 

can be extended to more complex environments. The basic technique is similar to the principles of 

perspective in art, namely the intersection of lines and planes that radiate from a vanishing point. 

5.1.1 Navigation on an Infinite Plane 

Modem log sort yards are concrete surfaces upon which large machines move about, 

picking up logs and moving then to designated piles. In this outdoor, industrial environment the 

concrete surface is marked with dirt and bark strips giving it a better visual texture than a clean 

indoor surface. Such visual texture helps reduce noise in estimating the concrete floor as a surface. 
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The following example detects a log as an obstacle on a indoor concrete surface using the global 

plane model. It does not attempt to characterize it as a log. 

Figure 5.1: Log on concrete floor. 

2 0 0 1 5 0 1 0 0 5 0 0 

Figure 5.2: Side view and top surface of disparity map of a log on concrete surface. 

Figure 5.2 shows a mostly side view of a disparity surface in which a log rests on the floor 

about 5 meters in front of the camera (between rows 50 and 100 in Figure 5.2). In this region, it is 

evident that the log violates the downward slope of the flat surface of the floor. This particular 

disparity map was obtained in real time (~10Hz rate) using a commercial stereo camera system 

from Point Grey Research. The camera works extremely well however there are often holes and 

spikes in the disparity map, particularity on this concrete surface. Part of the reason for using this 
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image was to examine the technique of assigning unmatched regions into the model of the floor 

rather than assigning them a disparity of value of -1. It was felt that, for this task, forcing unknown 

disparities to conform to the floor model made few assumptions and simplified processing. The 

cement floor has poor visual texture and Figure 5.2 shows the perceived disparity surface of the 

flat cement floor has noise and noise spikes. Some top rows are noisy and appear as a small ridge 

even though no obstacles were present at this location in the image. The back wall is also visible in 

this disparity surface as a second region that also violates the floor model. Notice the back wall 

appears as a flat horizontal region where the disparity values are small. The wall is vertical and has 

constant disparity and appears as a flat horizontal region in Figure 5.2. Visual artifacts in the roll-

up door and featureless concrete surfaces of the back wall also generated disparity spikes. 

When the disparity map is adjusted with respect to the floor model, obstacles are detected 

by values greater than some threshold. It has been reported that obstacle detection was very 

dependent on model errors and on the detection threshold (Zhang et al. 1994, Burt et al. 1995). 

The problem is that noise can distort the estimate of the floor model or appear as false obstacles. 

A one dimensional section of the disparity map is used in Figure 5.3 to examine the problem of 

estimating the floor and finding obstacles in the presence of noise. Two techniques are used to 

detect obstacles. In Figure 5.3a, the floor model is subtracted from the disparity map and in Figure 

5.3b, the disparity map is divided by the floor model. 

In their simplest form, obstacles appear as constant disparity surfaces that violate the 

disparity gradient model of the floor. This simple obstacle (a vertical surface facing toward the 

camera) has a constant disparity value whereas the disparity model of the floor decreases linearly 

as the row number (Figure 5.2). At the base of the obstacle, the object disparity and the model 

disparity have the same value and there is no height difference between the floor and the point at 

which the obstacle joins the floor. Working directly with the disparity infonnation, the obstacle is 
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Figure 5.3a: Residual after floor subtraction. Figure 5.3b: Residual after floor normalization. 

detected as a deviation from the floor model. In the case of a constant disparity surface, the signal 

to be detected is u = ay. Specifically: 

1. subtracting the floor: 

(obstacle + noise) - model = (k+ n) - (k- ay) -ay+n 

where k is the constant disparity of a vertical obstacle, y is the vertical displacement in the image 

and a is slope of the floor disparity model. 

As expected, the signal increases linearly with the obstacles height from the floor. In this 

expression, noise is assumed to be independent of position in the disparity map. To be detected, the 

signal must exceed the uniform global noise, 77. A low object near the middle of the screen can be 

masked by foreground noise as in Figure 5.3a since detection thresholds tend to be global. 

Assuming that it is more important to detect nearby obstacles than objects in the background, 

normalizing with respect to the floor model can improve navigation. 

2. normalizing the floor: 

(obstacle + noise) k + n _ (k- ay) + ay+ 77 _ ^ + ay n 
model k- ay k- ay k-ay k-ay 
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If disparity noise is considered to be random and independent of position in the disparity map then 

normalization of noise by the floor model can be simplified by considering a noise spike at a given 

row position in the image. Assuming that the model disparity of the image is approximately zero: 

(obstacle + noise) 
model 

1 + + (4.1) 
k orrow# 

where k is the constant disparity of a vertical obstacle and a is slope of the floor disparity model. 

In this expression, k and arow# are equal at the horizontal position where the obstacle meets the 

floor. In Figure 5.3b, k is approximately half the row number at which the obstacle joins the floor 

{i.e. a « 0.5). An obstacle is appears when the normalized value is greater than 1. 

If the signal to noise ratio of floor subtraction is designated, iS7v7?0 = — then for a 

Disparity noise spikes in the foreground appear at a large row# and do not as easily mask obstacles 

in the background. Using normalization, an obstacle near the middle of the screen is less likely to 

be masked by disparity noise generated in the bottom of the screen (Figures 5.3a & 5.3b). A real 

obstacle in the center of the image is less likely to by masked by nearby disparity noise. 

Since the disparity of nearby objects is larger than the disparity of distant objects, nearby 

mole hills can have the same disparity as distant mountains. It makes sense to normalize the 

disparity image with respect to the floor model. This restores the relative size of the obstacles. In 

this respect, normalization is similar to working in world coordinates of height (Zhang et al. 1994) 

but it does not require the extra step of conversion into this. As the row number decreases, the 

sensitivity to noise increases and it becomes more difficult to detect the point at which the obstacle 

normalized floor, the SNR with respect to SNR0 is: 

SNR _ arow# 
SNR0 k ^ J 
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joins the floor. The figure below shows the log and part of the back wall detected using threshold = 

1.1. 

50 

100 

150 

200 

50 100 150 200 250 300 

Figure 5.4: Log and back wall in Figure 5.1 detected by floor normalization. 

In Figure 5.4, the back wall had poor visual texture and the disparity surface is not well defined, 

nevertheless it appears as a significant obstacle in the image. In another example, the log is 

oriented directly toward the observer. The disparity along the 2 black lines in Figure 5.5a is shown 

in the next figures. 

Figure 5.5a: Log oriented toward observer to examine disparity along the vertical lines. 
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In Figure 5.5a, one vertical line lies along the floor and the other runs along the top of the 

log. Using the method in Chapter 3, the disparity that is associated with these lines is shown in 

Figure 5.5b. The floor line shows noise associated with poor texture but the disparity follows a 

straight line until it hits the back wall. In the second line, the vertical face of the log closest to the 

observer is very evident. This is the flat, constant disparity region at the top end of the line. 

Figure 5.5b: Raw disparity along 
vertical lines shown in Figure 5.5a. 

Figure 5.5c: Disparity after subpixel 
interpolation using method in Section2.6.3. 
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As expected, the line associated with the floor shows a constant disparity gradient. Ideally, all 

points on the floor will map to a single point in disparity gradient space. 

Figure 5.7: Contour plot of interpolated disparity image. 

Figure 5.8: Normalized obstacle map using threshold of 1.1. 

For simple navigation and obstacle detection the disparity map need not be interpolated. The 

obstacle map in Figure 5.8 is virtually the same in both cases. Instead of an obstacle map, an 

elevation contour map (Chauvin et. al. 1998) can be created by simply varying the normalization 

threshold. This can form a topographical map of the local environment. 
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5.1.2 Navigation in a Corridor 

In this application of global shape models, a corridor is defined by the intersection of 3 or 

4 planar surfaces. It can be an interior hallway or an urban street defined by a horizontal road 

surface and the vertical surface of buildings. When these surfaces are projected into the distance, 

they converge to a point. 

A simpler problem is robot navigation along a vertical wall which is the intersection of two 

planar surfaces. The horizontal floor has only vertical disparity gradient and the vertical wall has 

only horizontal disparity gradient. Along a line that marks the intersection of the wall and the floor, 

the disparity of the floor and the disparity of the wall must agree. When the disparity gradients on 

each plane are measured then , in tenns of image row and column coordinates, the description of 

the floor disparity can be given as D = a row + a, and the description of the wall disparity be D = 

ficol + b. The intersection of the wall and floor is a.line in the image given by: 

P i b-a row = — col H 

a a 

This defines a line that is the intersection of two planes by row and column coordinates in the 

image. It does not rely on an edge algorithm that detects the image intensity changes at this 

boundary. All points on the planes can contribute to this estimate. 

In a corridor model, the image is segmented using intersecting planes in the disparity 

image. Previously, the robot expected to find itself on a geometric plane and could use this 

information to define obstacles in tenns of this model. It rejected walls as not conforming to the 

expected model and so walls became obstacles with respect to the horizontal plane. Possessing a 

model for a wall and floor, the robot can define obstacles in the floor segment while doorways are 

defined in tenns of the wall segment. Similar image segmentation is possible with 3 surfaces 

defining a maze or 4 surfaces defining a hallway. The visual image is segmented according to 

models imposed on the disparity image. 
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Figure 5.9 shows a synthetic image of a hallway. Figure 5.10 shows the disparity image of 

the hallway where the planes that make up the hallway intersect at a point. Since all points on a 

given plane have the same disparity gradient, it is straight forward to segment the image according 

to the planes of the hallway. Obstacles and doorways become evident using the same techniques 

described in Section 5.1.1. 

Figure 5.9: Synthetic Hallway Image 

Figure 5. JO Obstacle Detection in Hallway 

In Figure 5.10, the ceiling is not detected since is not used as a target surface. Hallways are evident 

as negative obstacles and protrusions from the floor and walls are shown as obstacles. 
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5.2 Recognizing Logs 

n 
1 

Figure 5.11: Cylinder geometry. 

If points on a log's surface can be located in an image then the surface normals at these 

points can be estimated from the stereo disparity gradient. Let «, and n2 be two different vectors 

that are normal to the surface at visible points P\ and Pj on the log. The unit vector which gives 

the direction of the axis of the log is perpendicular to both these vectors. 

«, x n2 r , -. r 
Wo = i - - . = < ¥ + boJ+cok 

K x,h\ 

Given that points P\{X\,Y\,Z\) and i ^ O ^ ^ z ^ ) n e o n m e 1°§ s u r f a c e a n ( l m a t w, and 

« 2 are their outward unit normals then (P, - ) and (P2 - Rn2) define two points on the log's 

axis where R is the radius of the log. Using the vector n0 defined above, the straight line 

connecting these two points along the log axis satisfies the relationship: 

AX _ A7 _ AZ 
ao bo co 

If we write nl = aj + bj + cxk and n2 = a2i + b2j + c2k then the log radius, R, is: 

R_b0(X]-X2)-a0(Yl-Y2) 

In ideal teleoperation, identifying two points on the log surface provides the information 

needed to estimate the orientation and radius of the log. In practice, noise does not allow this. 
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5.2.1 Wliat to Measure. 

In this thesis, cylinders are identified by the eccentricity of the surface normal eigenvalues. 

The orientation of the cylinder corresponds to the eigenvector associated with the smallest 

eigenvalue. The signal of interest is the surface energy that is evident in the divergence of the 

surface normals. Noise, on the other hand, exists in all components of the surface normals and 

serves to mask surface curvature on a scale where the curvature is small with respect to noise. The 

technique for measuring surface normals has been shown to be an approximation to the tangent 

plane at some point on a visual surface. Normals gathered on a small enough surface patch will 

appear oriented in the same direction and will offer little evidence of an object's shape. If the 

surface patch is small then the smallest eigenvalues associated with the nonnals on the small patch 

are more a measure of isotropic noise than an indication of shape. The technique proposed is not to 

measure shape as the divergence of three (or more) nonnals defined by points on the surface but to 

measure shape as the divergence of three (or more) nonnals defined by patches on the surface. 

5.2.2 Simulation of Noise Effects 

A measure of apparent curvature is developed from the ratio of the largest eigenvalue to 

the sum of the other two eigenvalues. This will be largest for a planar surface. In the presence of 

noise the smaller eigenvalues can be well populated making it difficult to distinguish shape. When 

the small surface patches are treated as planar elements then a noise estimate can be derived and 

the shape estimate corrected for noise. In the following examples the SVD was run on three 

simulated surface patches each of which used five sample nonnals. The final estimate of shape 

used all fifteen nonnals. This is compared to a single SVD of three nonnals where each nonnal is 

the sum of the five normals measured on a patch (five times the average of the normals on the 

patch). 
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1 three patches on a plane with normals: n = [(rand - .5) (rand - .5) , (1 + rand -5)] 
SVD 1 SVD 2 SVD 3 SVD of all no noise SVD ofav. 

eigenvalue 1 .14 .22 .35 .85 0 .22 
eigenvalue 2 .54 .68 .41 1.78 0 1.24 

eigenvalue 3 4.28 4.10 4.24 12.37 15 61.4 
apparent curvature 6.29 4.55 5.57 4.7 oo 42.0 
eigenvalues(l+2) .68 .90 .76 2.63 
eigenvalues( 1 +2)-noise 0 0 0 .29 
corrected curvature 42.6 00 

Table 5.1: Eigenvalues associated with surface energies on a plane in the presence of noise. 

In the example, noise populates the minimum eigenvalues of the surface energy in each of 

the three patches such that each patch appears curved. The total surface energy of all fifteen 

normals shows the accumulation of this effect. When each patch is treated as a plane, the smallest 

eigenvalues should be zero. The total energy in the two smallest eigenvalues is a measure of the 

noise in the surface estimates and is subtracted from the sum of the two smallest eigenvalues in the 

SVD of total column. The result is that the curvature of the planar surface is much better defined. 

2. three patches on a cylinder with surface nonnals: 

nl = [(rand - .5), (rand - .5), (1 + rand - .5)] 

n2 = [(.5 + rand - .5), (rand - .5), (.866 + rand - .5)] 
n3 = r(-.5 + rand - .5). (rand - .5). (.866 + rand - .5)1 

SVD 1 SVD 2 SVD 3 SVD of all no noise SVD ofav. 
eigenvalue 1 .28 .22 .10 .62 0 .03 
eigenvalue 2 .52 .41 .20 3.98 2.5 15.49 
eigenvalue 3 4.20 4.37 4.70 10.40 12.5 50.67 
apparent curvature 5.25 6.94 15.66 2.26 5.0 3.26 
eigenvalues(l+2) .80 .63 .30 4.6 

eigenvalues( 1+2)-noise 0 0 0 2.87 

corrected curvature 3.62 5.0 

Table 5.2: Eigenvalues associated with surface energies on a cylinder in the presence of noise. 
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3. three patches on a sphere with surface nonnals: 
nl = [(rand - .5), (.5 + rand - .5), (.866 + rand - .5)] 
n2 = [(.433 + rand - .5), (-.25 + rand - .5), (.866 + rand - .5)] 

SVD 1 SVD 2 SVD 3 SVD of all no noise SVD ofav. 
eigenvalue 1 .80 .03 .09 3.31 1.87 5.23 
eigenvalue 2 .45 .54 .53 2.17 1.87 12.23 
eigenvalue 3 3.75 4.43 4.38 9.52 11.25 44.99 
apparent curvature 3.0 7.77 7.06 1.73 3.0 3.26 
eigenvalues(l+2) 1.25 .57 .62 5.48 
eigenvalues( 1 +2)-noise 0 0 0 3.04 
corrected curvature 3.13 3.0 

Table 5.3: Eigenvalues associated with surface energies on a sphere in the presence of noise. 

The tables for the sphere and cylinder show how the ratio of the smallest eigenvalues is 

used to distinguish between a sphere and a cylinder. These shapes are differentiated from a plane 

which has very little energy in the smallest eigenvalues when compared to the largest eigenvalue. 

The effect of SVD on each surface patch (SVD 1 etc.) is a least squares value for the 

surface nonnal which corresponds to the average of surface nonnals on a planar patch. Since only 

five normals are used in each estimate, the residual noise in the three estimates prevents the 

corrected curvature of the plane from reaching infinity and distorts the corrected curvature of the 

sphere and cylinder. Similar noise improvements are obtained by directly averaging the 5 surface 

normals evaluated on each surface patch. In this case, the SVD calculation is run once using the 

three average surface normals. The noise estimate is the total noise in all three surface patches. 

Each surface patch is assumed to be small enough to be planar and the noise is estimated by how 

the five local normals on a patch deviate from this model. This total noise in all three surface 

patches is used to correct the smallest eigenvalues in the SVD and recover their ratio for 

characterizing a shape. 
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5.3 Where to Measure 

All visible points on a plane equally support the identification of the plane since, in 

disparity gradient space, all points on a plane map to a single point. There is no a priori 

information that says one point has a better signal to noise ratio than another in recognizing a 

plane. This is not the case for cylinders and spheres. As pointed out in Section 2.5.2, most surface 

elements appear oriented toward the observer and contribute little evidence of shape. 

Characterization of shape as the divergence of surface normals will show good signal to noise ratio 

when the divergence is large. On a cylinder, this occurs when comparing the surface orientation on 

one side with the orientation of surface elements on the other side. In the previous section the 

cylinder normals were located at -30°, 0° , and +30°. Half the visible surface of a vertical cylinder 

is within ±30° of a normal vector oriented toward the observer. Within this range the normal 

component oriented toward the observer varies from 1 to 0.866 indicating that normals vectors 

clustered in this region will not yield strong curvature signatures. Larger signals would be derived 

from comparing locations at ±45° on the cylinder surface where the vertical and horizontal 

components of the surface normal are equal. The highest signal to noise ratio lies along 2 lines at ± 

45° on the cylinder surface and parallel to the axis of the log. The projection of the null space of 

the log on the image plane is the preferred search direction and displacements in the direction of 

curvature will locate measurement points with high signal to noise ratio. On the surface of a sphere 

the highest signal to noise ratio is in circle at 45° to the normal oriented toward the observer. 

5.4 How to Measure 

Global shape models, such as the floor, can be used to organize a scene. Regions that do 

not conform to the model can be evaluated in terms of local shape models. In teleoperation, it is 

assumed that the operator will point to the object of interest and the robot will be expected to 

recognize the object. Such a scenario does not require that the robot autonomously locate cylinders. 
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A location on the visible surface is used to find two other nearby locations with similar 

disparity. These three locations are used to estimate the directions of minimum and maximum 

curvature associated with the two smallest eigenvalues in the surface energy. Along the direction of 

maximum curvature a new point is found that is closest to the observer. This is indicated by a 

maximum disparity value. This location and two on each side of it in the direction of maximum 

curvature are used in a second estimate of shape. The third set of measurements are taken in the 

direction defined by the minimum curvature. These surface energies are added to the previous set 

and new estimate is generated by SVD. A radius estimate is also generated. The process is repeated 

as permitted. 

In the case of logs and cylinders, estimates of the radius, the orientation vector, and the 

point closest to the observer allows the log to be outlined without finding its actual boundaries, 

some of which can be occluded by other obstacles. 

5.5 Drum Image 

Figure 5.12: Drum image at 2.5 meters, f= 400 pixels, b =17.4 cm. 

This image was used in Chapter 4 to demonstrate cylindrical signatures in disparity 

gradient space and to show uncorrected surface energies in the presence of noise. In this example, 

noise is estimated and the eigenvalues show a better definition of shape. Even with such a well 

defined image, a mesh plot of the disparity surface shows that only a few pixels of disparity 
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information are available. This shows the limits of the ability of stereo vision to determine shape 

and highlights the importance of subpixel interpolation in characterizing shape. 

30\ 

0 0 

Figure 5.13: Mesh plot of disparity surface shows only a few pixels change over the drum. 
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Figure 5.14: Convergence of estimated drum orientation vs. number of iterations. 

Figure 5.14 plots the length of the residual in the orientation estimate. Both the known 

orientation and the estimated orientation are nonnalized and the residule error vector is calculated 

as the difference. The pose estimate for the drum as given by the eigenvector associated with the 
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smallest eigenvalue. This orientation vector points in the direction of least curvature provides 

information to orient a gripping arm to pick up the drum. 

Radius Estimate in Units of Camera Separation 
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Figure 5. J 5: Running average of drum radius estimate in 

camera baseline units vs. number of iterations. 

The estimated radius of the drum is about 1.9 baseline units. With a camera separation of 

17.4 cm. this corresponds to a diameter of 66 cm. (26 inches). The measured diameter of the 45 

gallon drum is 61 cm. (24 inches). 
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Figure 5.16: Cylindrical signature of drum using 

running average of eigenvalue ratio vs. number of iterations. 
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5.6 Tree Images 



0 0 

Figure 5.19: Section of tree disparity surface. 

Figure 5.19 shows a mesh plot of the tree disparity surface. It also shows the limit of 

stereo in the perception of shape. At a distance of 2 meters only about 3 or 4 pixels are available to 

describe shape. This makes the process dependent on subpixel interpolation and vulnerable to noise 

and surface smoothness. 
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Figure 5.20: Convergence of tree orientation estimate vs. number of iterations. 
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Figure 5.21: Running average of tree radius estimate in 
camera baseline units vs. number of iterations. 

The estimated radius of the tree is about 0.6 baseline units. With a camera separation of 

17.4 cm. this corresponds to a diameter of 21 cm. The measured diameter of the tree approximately 

23 cm. and varies over the surface of the tree. 
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Figure 5.22: Cylindrical signature of tree using 
running average of eigenvalue ratio vs. number of iterations. 
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Figure 5.23: Tree image 

Figure 5.24: Stereo detail of tree; distance =2.5 meters,/ = 400 pixels, b = 17.4 cm. 
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Figure 5.25: Section of tree disparity surface. 
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Figure 5.26: Convergence of tree orientation estimate vs. number of iterations. 
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Figure 5.27: Running average of tree radius estimate in 
camera baseline units vs. number of iterations. 

The estimated radius of this tree is about 2.5 baseline units. With a camera separation of 

17.4 cm. this corresponds to a diameter of 87 cm. The measured diameter of the tree approximately 

82 cm. and varies over the surface of the tree. 
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Figure 5.28: Cylindrical signature of tree using 

running average of eigenvalue ratio vs. number of iterations. 

The cylindrical signature of this second tree was not as definite as with the previous 

example in Figure 5.22. This is expected since this tree is larger in diameter and does not exhibit as 

much curvature with respect to the residual noise in the smallest (minimum curvature) eigenvalue. 

5.7 Summary 

This chapter examined implementation and performance issues associated with navigation 

and recognition of cylinders using stereo vision. Section 5.1 demonstrates obstacle detection where 

the robot workspace is nonnalized with respect to a global shape model; an infinite plane. This is 

similar to work by Burt (1995) and Zhang (1994). In this thesis, navigation is considered in terms 

of global shape, hi Section 5.1.2 a global shape model for corridors is introduced. This can be used 

for navigation in hallways and urban streets where vertical walls are known entities and can be 

included in the robot's global shape model of the environment. The four planar surface of a 

corridor map to four points in disparity gradient space. This facilitates prediction of the robot 

111 



environment and detection of obstacles and passages. Future work could include other models to 

detect passages and obstacles in cylindrical environments like the pipes and tunnels found on space 

stations or in sewer systems. 

Section 5.2 deals with noise issues in characterizing shape. It is shown that noise can be 

measured and that shape information obtained by singular value decomposition (SVD) can be 

corrected for noise. This increases the effective signal to noise ratio in shape detection. Example 

are given of the technique's performance in characterizing drums, trees, and logs. 

The goal of this thesis is to develop a primitive visual interpretation that is shared by a 

human operator and a mobile robot for a specific task; manipulation of cylinders. A command such 

as "Move that log." does not require that a robot find a log in a visual scene since such a command 

requires that the operator point out the log. However it does require that the robot be able to 

confinn the presence of an object and then characterize that object as a log. To pick up the log, the 

robot must also be able to estimate the orientation and size of the log. This chapter demonstrates 

that the techniques developed in this thesis can accomplish this task. 
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Chapter 6 

Summary and Future Work 

6.1 Summary 

This thesis addresses the development of a primitive perception of the world. The ultimate 

goal is a remote supervisory control system (teleoperation) in which a robot and a human operator 

can agree on some basic elements of a scene and cooperate in obstacle detection, navigation, object 

identification, and pose estimation. Stereo vision was applied to this task and mechanisms were 

developed to organize a scene in tenns of a global shape model and to characterize objects as local 

shape that exists within the larger context of the global shape model. 

This thesis solves problems of navigation, pose estimation and object recognition at a low 

level; working in the disparity image. Disparity gradients are fundamental to this process and 

provide evidence of shape in stereo vision. In disparity gradient space, all points on a visible plane 

map to a single point in this space; which makes the recognition of a plane a robust proposition. 

On the other hand, all points on a cylinder map onto a curve in this space and the data becomes 

more difficult to characterize. All points on a plane support the singular character of the plane in 

this space whereas the character of a cylinder is distributed in this space. 

A formulation where stereo disparity can be used to recognize local surfaces; planes and 

cylinders was developed. Given a disparity map, the complexity of the recognition task was related 

to the null space of the surface normals. The method introduced in this thesis takes advantage of 

this null space. Shape is characterized by the eccentricity of the eigenvalues of the surface energy 

matrix and orientation is given by the eigenvectors. The technique relies on high resolution 

disparity surfaces and makes use of sub-pixel interpolation to calculate the surface normals. The 
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largest stereo baseline used in this thesis is 17.4 cm. In outdoor environments the baseline can be 

increased to 50 cm. and so increase the resolution of the disparity surfaces. 

Other techniques for the perception of shape include photometric stereo and shape from 

shading. The method used in this thesis and these other methods all work best with large images of 

simple shapes. They all have resolution limitations. Even so, it is possible to characterize complex 

surfaces using an extended Gaussian image (EGI) however the simple local shapes associated with 

logs, trees, and drums can avoid this complexity and work at a low level without the regular 

tesselation and mesh relaxation associated with EGI techniques. The method worked out in this 

thesis has been shown to be usable in applications where the operator might say "Move this log." In 

such a case the robot can be equipped with the primitive vision elements capable of locating the 

indicated object in its workspace, identifying it as a log, and deciding how to pick it up. 

6.1.1 Contributions 

This thesis emphasizes some basic issues that arise in stereo vision. The motivation is to 

find primitive visual elements that can allow a robot to share some of the same understanding of 

the world as that held by a remote operator. Using stereo vision, the world can be perceived in 

certain ways and this was examined as a medium for cooperative tasks. The contributions made in 

the course of this work reflect this emphasis but do not stress some implementation issues. 

/. Matching Metrics 

In Section 2.5 a justification is given for the similarity in performance when block 

matching stereo images using sum of squared differences (SSD) and sum of absolute differences 

(SAD). This justification is based on published image models and on the expected behaviour of 

visual surfaces in stereo vision. The reasons given are: 
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1. Most surface patches appear oriented toward the observer and have constant disparity across a 

small patch so that SSD and SAD give the same result independent of texture distribution 

within a small block of image data. 

2. On average, image intensity is highly correlated across small image blocks and image texture 

does not change radically across the block. There are few outliers in the data and even though 

the matching metrics use different statistics, the results are similar. 

2. Surface Interpolation 

In Section 2.6 a justification for linear interpolation methods that are commonly used on 

stereo depth maps is given. An equation (Equation 2.6) is proposed based on linear interpolation to 

generate sub-pixel disparity maps from the sum of absolute differences (SAD) matching metric. 

Figure 2.8 shows the interpolated disparity surface of a cylinder using Equation 2.6. 

3. Spatial Sampling Noise 

Sections 3.1 and 3.2 examine the fundamental problems in comparing gray scale images. It 

is shown that spatial sampling noise is systemic to sampled data systems and this makes high 

frequency infonnation unique to a single image and not useful for matching or object recognition, 

even in stereo pairs where there are few scale and orientation differences. In fact, high frequency 

data acts as noise that interferes with stereo matching. It is shown that stereo matching can be 

improved by a texture filter that enhances the useful image data. A rule of thumb is provided to 

estimate the useful bandwidth available for matching image data. Two strategies are suggested; 

upsampling the data to achieve higher resolution stereo and lowpass filtering to accept only image 

data that has a positive signal to noise ratio. A two dimensional recursive filter is demonstrated for 

this second strategy. 
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The analysis in Section 3.3 shows that there is little or no useful matching information 

beyond a 7c/2 bandwidth and that the preprocessing filter used in this thesis gave approximately 

15% matching improvements in Figure 3.4. 

4. Matching Rules for Directional Filters 

Chapter 3 also introduces a directional filter for matching stereo images with step 

discontinuities. A match surface is constructed and the behaviour of stereo information on this 

surface is examined. This results in two simple matching rules that conform to the visual 

information present in stereo images. The results of this process are shown in Figure 3.17 and 

Figure 3.18. 

5. Disparity Gradient Space 

Chapter 4 introduces disparity gradient space as a simple way to work out global shape 

models and the perception of planar surface elements in stereo vision. It is shown that planes map 

to a point in this space and that cylinders map to a curve in this space. Other environments like 

corridors, hallways, and tunnels have predictable signatures in this space and can be used for 

navigation in same way as a global plane model is used. It was difficult to determine the orientation 

of cylinders in this space. Pose information was more readily provided by considering the surface 

energy of local shape. 

6. Viewpoint Invariant Membrane Model 

Chapter 4 shows that finding the energy in the surface normals on a local surface is 

consistent with the viewpoint invariant membrane surface model. Two of the three eigenvectors of 

the autocorrelation matrix made up of the local normals are the principal strain vectors of the 
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membrane model. Section 4.9 indicates how simple shapes can be recognized by the eccentricity of 

the eigenvalues of the energy matrix and how the eigenvectors identify surface orientation. 

7. Normalized Obstacle Detection and Corridor Models 

In Chapter 5, navigation and obstacle detection is seen in terms of a global shape model. 

Experiments in Chapter 5 indicate that there is less foreground noise in the detection process when 

the disparity map is normalized with respect to the floor rather that when the floor is subtracted 

from the disparity map. A justification for this result is given and empirical evidence for work with 

log manipulators is shown in Section 5.1. A example is given in which the concept of a global 

model is extended to navigation in corridors where obstacles and hallways opening onto the 

corridor are made evident. 

8. Characterization of Shape and Orientation using Surface Energy 

Chapter 5 shows the practical application of the energy matrix formed from the surface 

normals for identifying local shape and orientation. Local patches are assumed to be planar and as 

such their smallest eigenvalues provide an estimate of the orientation noise in the surface normal 

measurements. This is used to improve the eigenvalue eccentricity estimates used to characterize 

the cylinder shapes. The eigenvector associated with the smallest eigenvalue is taken as the 

orientation of the object. The examples in Chapter 5 show reasonably fast convergence of the 

orientation estimate to the true orientation. Since the energy matrix is different from the Hessian 

matrix, a technique to estimate radius is also given. This and the orientation vector can be used to 

work out how to pick up a tree or a drum. 
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6.2 Future Work 

One topic for future work is the sampling noise that appears when matching stereo images 

and other digitized information. Coarse to fine matching has been used for finding stereo disparity 

but in many implementations the scales are critically sampled and follow Nyquist's criteria. This 

will introduce sampling noise at each scale. Instead, each scale should be oversampled in 

accordance with the useable bandwidth for matching sampled data given in Section 3.2. 

Most multiscale image operations are designed for decomposition and reconstruction. 

Reconstruction is not necessary for image matching and, once free of this constraint, each scale can 

be configured to minimize matching noise. In addition, it was proposed that upsampling could 

allow all the information in the original image to be used for matching. This is interesting for 

increasing the relatively coarse resolution of disparity maps and for recovering shape in regions of 

interest in the image. For this application an FIR filter might preferable to the recursive 

Butterworth lowpass filter used in this thesis. 

Another topic for future work is to develop a recursive SVD algorithm. The calculation is 

iterative and if the previous state could be preserved then the algorithm could proceed from the 

previous state and incorporate a new measurement into the eigenvalue and eigenvector estimates. 

Global shape models can be investigated to detect obstacles and passageways in cylindrical 

environments such as the pipes and tunnels in space stations and in sewer systems. Such structured 

environments can be analyzed in terms of global shape and its signature in disparity gradient space. 

In Section 2.3 it was suggested that structured light systems are similar to stereo. Using this 

analogy, the concepts of navigation by global shape using structured light systems can be 

investigated. 
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Appendix 1 

Camera Errors 

A single line of sight in the reference view is visible only as a fixed pixel location (xRyR) 

in the reference image plane. The epipolar line in the left view can be determined by solving for the 

allowed x^ and yr. values that can correspond to a position in the reference view which is fixed by 

some world position as defined in Equation 2.2. This requires knowledge of the focal length of each 

camera and the relative orientation of the cameras. 

~aLxL "1 0 0 0" 
aLyL = 0 1 0 0 [T] 

0 0 V / L 0 

aRxR 

aRyR 

z 
1 

'(a.l) 

The scale factor for points in the reference image is aR = — . The [T] matrix can be formed from 
/R 

the product of a displacement matrix, [D] and a rotation matrix, [R]; [T] = [D] [R] . 

1 0 0 1 
0 1 0 
0 0 1 
0 0 0 1 

cos a -sin a 0 0 cos/J 0 -sin/J 0 " l 0 0 0 
sin a cos a 0 0 0 1 0 0 0 cos y - s i n / 0 

0 0 1 0 sin/J 0 cos/J 0 0 svay cosy 0 
0 0 0 1 0 0 0 1 0 0 0 1 

When a stereo camera with geometry as shown in figure 2.2 is constructed with minimum 

alignment errors then the rotation angles a (roll), P (yaw), and y (pitch) are small and the 

displacement errors sy and ez are small. In the displacement matrix, the horizontal baseline, b, has 

119 



a value of one unit and all world distances are measured as multiples of this value. The [T] matrix 

uses the small angle approximation such that cos(a) « 1 and sin(a) « a. Higher order terms, 0(e2), 

are neglected such thatrsin(«) sin(/J) « 0 and ey sin(a) « 0. The [T] matrix is approximately: 

[ T ] , 

1 -a -p 1 

a 1 -y sy 

P Y \ sz 

0 0 0 1 

In evaluating xL and V/, as defined in Equation a. 1, terms like: 

1 + g ; + g 2 a r e e v a j u a t e ( j a s + + £ - 2 ) ( i _ ( £ - 3 + f 4 ) ) « l + f j + f 2 - ( f 3 + f 4 ) . 
1 + f3 + £4 

Substituting: £> = « fR{l + Sf), the approximate values for x^ andj^ are: 

xL*xR+D-pfR +{xR+D) 
V fli /R) 

-ayR 
(a.2) 

yL*yR+yR £f-P^-r^r +ccxR + syD-7fR (a.3) 
JR JRJ 

With reasonable care, the cameras can be positioned to within a millimeter on a baseline of 10 cm. 

This gives sy and sz values on the order of 1%. We are interested in Z values greater than 10 so the 

term — is omitted in (a.2) and in (a.3). 

The values for y^ are considered independent of Z when eyD < 1. When this condition is 

valid then, for a given pixel in the reference image, the numbers for_V£ are all constant. The 

epipolar search is along a horizontal line in the left image whose y position can change with XR but 

for any given pixel in the reference image, the search is along a horizontal line in the left image. 

The approximation for x^ shows that the disparity effects in xr, can be canceled by the yaw 

angle, p. This is the basis of vergence where the line of sight of one or both cameras is rotated to 
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fixate on an object. In this case, P~ — and, in general, y^ changes with distance and the epipolar 

lines are no longer horizontal. 

The Effects of Camera Alignment Errors 

Estimating the position of visible objects requires accurate estimates of stereo disparity, 

however, camera alignment errors cause the apparent stereo disparity, D, to be different from the 

ideal disparity, D. Equation a.4 approximates the horizontal position in the left image as: 

xL*xR+D-l3fR +(xR+D) 
/R JRJ 

ayR 
(a.4) 

Z 

approximately: 

where D = ̂ — is the ideal disparity and fifR is the vergence error term. The apparent disparity is 
Z-4 

D = xL - xR « D + XD WR -PfR (a.5) 
IR /R . 

Alignment errors cause gain and offset errors in D, the measured difference in horizontal position 

between the left and right images. 

Errors in the apparent disparity are simplest in a region near the center of the image where 

the values for xR and.y^ divided by the focal length are small. This region corresponds to a small 

field of view of the scene. Alternately, i f a camera has a long focal length such that the entire field 

of view is small then the pixel position divided by the focal length is also small. With this long 

focal length / narrow field of view assumption, the apparent disparity given in (a.5) can be further 

approximated as: 

D «(l + ef)D+efxR -ayR-/3fR 
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Even with the long focal length approximation for the uncalibrated disparity, useful estimates of 

the world position using the ideal stereo equations would be dependent on pixel position and 

require estimates of the camera alignment errors, ay, a, and p. 

In section 2.3, the equation for the estimated surface normal is: 

n = DJ + Dy] + j (D0 - DxxR - DyyR ) k 

Substituting the long focal length approximation of D for D in this equation, the estimated surface 

normal, h is approximately: 

«« (1 + sf)h + [sf,-a, -/J] 

In the case of the surface orientation estimate, the long focal length approximation makes the offset 

in the surface normal estimates almost constant, independent of pixel position. 

When the curvature of visual surfaces is measured, the vision system estimates how the 

surface orientation changes in some region of the image. The long focal length approximation has 

an almost constant error in the estimated surface normal over the whole image. Since curvature 

estimates are concerned with changes in the surface normal, this constant orientation error does not 

affect estimates of surface curvature. However, the magnitude error term is still present. 
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A p p e n d i x 2 
Matching Random Images 

A procedure that matches gray scale values in images compares the ADC values assigned 

to individual pixels. This process can be studied by considering the problems in matching random 

dot stereograms which are a synthetic stereo images of a uniformly random intensity distribution 

where regions are shifted on exact pixel boundaries. In this image all 2N ADC states are equally 

probable so that single pixel value exists among 2 -̂1 other values. The smallest element that can 

be matched is a l x l window (a single pixel). Over a limited search range of R pixels there is one 

target pixel and R-l chances for false matches. The probability of finding no ambiguous matches in 

R-l pixels is: 

P(e = 0) = 1 R-l 
2N 

For random stereogram images with an 8 bit resolution (2^ = 256 gray values) and a 

search range of R = 20 pixels, the probability of an unambiguous match is approximately 93% 

when matching single pixels. Across an epipolar line of 255 pixels, single pixel matching over this 

search range has a probability of no matching errors: 

P(e= 0) = 0.93255 « 0 

Matching is improves when groups of two adjacent are compared. The values in 2 adjacent pixels 

presents a unique code in 2562 possible states. The probability of finding no ambiguous matches in 

a 20 pixel search range across a 255 pixel epipolar line is: 

P(e = 0 ) « 
s x255 
( 1 9 ^ 
1 ,2 = 0.93 

( 2 5 6 ) 2 

A 2x2 pixel window (containing 4 pixels) would give almost zero errors (P(e = 0) = l) . Since the 

value of neighbouring pixels cannot be predicted, random images have the highest possible 

information content and, in this ideal environment, a 2x2 pixel window is the smallest square 

window that gives nearly no matching errors. 
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The four pixels in a 2x2 window can be considered as a 4 dimensional vector that points to 

a unique position in 4D space. The number of elements in this space is determined by the number 

of different ADC values each pixel can assume raised to the power of the number of pixels in the 

window. Each element in this space can be considered as a unique state of the 2x2 window. Since 

the number of distinct states is large, the probability that another group of 4 pixels will point to 

the same state within a finite search range is small. When noise is added to the ADC values, the 4 

pixels values in the window no longer point to a single, unique element in 4-D space. Noise forces 

the vector to move in some volume of this space. 

The presence of additive white noise causes the ADC to overflow its boundaries and the 

values attained by the pixels in the window point to a high dimensional region of some radius 

determined by the standard deviation of the noise. Matching becomes ambiguous when theses 

regions overlap. When the l x l (single pixel) window is considered, a the target pixel has a larger 

'footprint' than when no noise is present and it is easier to find a second match for this pixel. The 

probability of finding only one match over a search of R pixels is: 

P(e = 0) = \ 1 + 21̂ *-'̂  (l + 2|7p(*-l) 
2N 2N 

where rj is the additive noise in the system in terms of ADC counts. If the noise is small such that 

individual pixel values vary within a range of ±1 ADC count then an unambiguous pixel state 

would occupy 3 ADC counts. Its nearest non-overlapping neighbour would be 3 ADC counts 

away. In a gray scale range of 256 values, there would be 85 distinct pixel values. 

Pixel values are quantized on fixed boundaries where as Gaussian noise models distribute noise 

continuously. The calculations are simpler if the noise is considered as range of ADC counts within 

which the matching pixel exists such that: 
, . , . . , number of accessible ADC states 

number of unambiguous states per pixel « r—. 
l + 2|//j 

where 77 = ±1, ±2, etc. 

124 



Estimating the Number of Matching Errors on and Epipolar Line 

This section began with the probability of finding no ambiguous matches over a search 

range, R. In making a single comparison, the probability of finding the same value is: 
1 

oo-
where Ns is the number of unambiguous ADC states after noise is taken into account and w is the 

number of pixels in the window. The first expression then becomes: 

P(e = 0 ) = 1-
1 

.R-l 

O O " 
1- R-l 

O O " 

Across an epipolar line of L pixels, the probability of no errors is approximately: 

R-l P(e = 0 ) 
\ R-l^ 

1- -L 

The probability of an error is approximately R-l 

far 
matching errors on an epipolar line is: 

R-l 

(N.Y 

L and a rough estimate of the number of 

L2 
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Appendix 3 

Recursive Edge Detectors 

(Deriche 1987) developed an optimal recursive edge detector that is based an Canny's 

design criteria. Canny's optimum edge detector is /(x) = ae~a^ sin(yx) which has a Fourier 

transform: 

k 
F(co) - ico 

(a2 + y2j2+2co2(a2-y2) + co4 

According to Deriche, Canny's final form for the operator had a = / in which case the Fourier 

transform becomes: 

F(co) = ico 
(a 2 + y2)2 + coA 

= JCO-
K 

1 + CO 

(Or 

the derivative of a second order Butterworth function. In practice, Canny chose to implement the 

edge detector as the first derivative of a Gaussian. 

Deriche achieves a higher overall performance figure using a bandpass filter of the form 

f{x) = axe~a^ which has a Fourier transform: 
Jr 

F(co) = ico-f ( \ 2\ 

1+ CO 1+ 
V ) 

the derivative of the square of a first order Butterworth function. Deriche constructed this filter as 

the sum of a forward recursive filter and a backward recursive filter. Using Deriche's notation, the 

filter is of the form: 

F(Z) = F.(Z) + F+(Z->) 

OO 

where: F+{Z~l) = YJAe~azrl e~a7rx ar1 

«=o 
and F_(Z): -aZ 

\ + b\Z + b2Z 
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F+(Z']) is the forward filter, shown in the usual form of a recursive filter. FJZ) is the backward 

filter. The numerators show that one filter is one sample in the past from which is subtracted the 

other filter located one sample in the future. This can be rewritten as the symmetrical difference of 

two low pass filters, one run fonvard and the other run backward where the symmetrical difference 

operator is of the form y(n) = x(n+l) - x(n-l). This is the basis of the Sobel filter. 

The edge detector can be realized as the symmetrical difference of two low pass filters or 

as a symmetrical difference operator followed by a low pass filter. The filters can be a second 

order Buttenvorth function or the square of a first order Buttenvorth function. Also in this 

appendix is a demonstration of the second order Buttenvorth function which is nearly separable in 

two dimensions and gives better symmetry than the square of a first order Butterworth function. 

Second Order Buttenvorth Edge Detector 
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Appendix 4 

An Approximately Separable 2D Recursive Filter 

The recursion formula for a second order Buttenvorth filter is: 

y(n) = 2by{n -1) - cy(n - 2) + K(x(n) + 2x(n -1) + x(n - 2)) 

The filter uses only past and present data points. This asymmetry produces phase distortions in the 

output that are removed when the filter is run forward and then backward over the same data 

segment. The result of this fonvard and backward filtering is the square of the absolute value of the 

transfer function. In the case of a second order Butterworth, this squared transfer function 

corresponds to the kernel of the Euler equation for a bending beam. In 2 dimensions, the squared 

2nd order Buttenvorth filter corresponds to the plate constraint model for surface recovery in 

images. The stiffness of the plate is related to the lowpass cutoff frequency of the filter. A plate 

structure is more self supporting than an membrane structure and is a candidate for a 2D separable 

filter. 

The impulse response and contour plots indicate a useful 2D filter can be realized from 

two independent one dimensional filters. The figures show useful radial symmetry in the point 

spread function of the two separate filters. 

1 5 1 

10-

0 0 
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Impulse Response for coc = 0.03 n 

20 40 60 80 100 120 

Contour Plot of Impulse Response with 5% Resolution 

2nd Order Buttenvorth Filter 

1. The normalized 2nc* order Butterworth filter is given in terms of the low frequency cutoff, 
coc. 

1 
H{S): 

s2+42s+l 
where s = — 

2. frequency warping of normalized cutoff frequency is needed so that the s —> Z bilinear 
approximation will work for large values of coc. The cutoff frequency, fc is given in terms of the 
sampling frequency, fs, where 0 < fc < fs/2. 

coc = — tan 

bilinear transformation 

s = • 
2 1-Z - l 

2 
tan 

T 

- l 

f ,0</< l 
J 

T 1 + Z~l ' a 1 + Z 

Z transform of 2nc* order Butterworth filter 

H(Z) = 

s = — -—^-y where a = tan(—/) 

a2(\ + r1)2 

(1 - Z _ 1 ) 2 + f2o(\ - Z _ 1 )(1 + Z _ 1 ) + a2 (1 + Z _ 1 ) 2 
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_ Y(Z) 1 + 2Z" 1 +Z" 2 

where: 0= t a n ( j / ) b = 
l + fla + a1 

\-2brx+cZ~2 

_ l-42a + a2 

\ + 42a + a2 
K = 

l + Jla+a2 

a 
,2 

in the data domain: 
y(n) = 2by(n -1) - cy(n - 2) + K(x(n) + 2x(n -1) + x(n - 2 •)) 

If the filter is used to smooth a relative functions such as the difference energy between 
two shifted images and if the cutoff frequency remains constant then the filter gain, K can be set to 
unity to slightly simplify the calculation. 

Pseudo Code of '2D'Buttenvorth Filter 

I* this routine overwrites input data in array u(row,col) with filtered data. 
input: 0<w<0.99 lowpass frequency as a ratio of half the sampling frequency */ 

pi=3.14159; 
a=tan(pi/2*w); 
b=(l-a*a)/(l+sqrt(2)*a+a*a); 
c=( 1 -sqrt(2)*a+a*a)/( l+sqrt(2)*a+a*a); 
K=a*a/( 1+sqrt(2) *a+a*a); 

/* 1. process data horizontally */ 
for col=l:Num_of_Cols /* get initial conditions in filter */ 

temp(col)=u( 1 ,col); 
endfor(col) 

for row=l:Num_of_Rows 
for col=3 :Num_of_Cols /* forward pass */ 

temp(col)=2*b*temp(col-l)-c*temp(col-2)+K*(u(row,col)+2*u(row,col-l)+u(row,col-2)); 
endfor (col) 

for col=Num_of_Cols-2:-l: 1 /* backward pass */ 
u(row,col)=2*b*u(row,col+l)-c*u(row,col+2)+K*(temp(col)+2*temp(col+l)+temp(col+2)); 

endfor (col) 
temp(l)=u(row,l); 
temp(2)=u(row,2) 

endfor (row) 

/* 2. process data vertically*/ 
forrow=l:Num of Rows 
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temp(row)=u(row, 1); 
endfor(row) 

for col=l:Num_of_Cols 
for row=3 :Num_of_Rows /* forward pass */ 

temp(row)=2*b*temp(row-l)-c*temp(row-2)+^ 
endfor (row) 

for row=Num_of_Rows-2:-l: 1 /* backward pass */ 
u(row,col)=2*b*u(row+l,col)-c*u(row+2,col)+K*(temp(rovv)+2*temp(row+l)+temp(row+2)); 

endfor (row) 
temp(l)=u(l,col); 
temp(2)=u(2,col); 

endfor (col) 

endproc 
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Appendix 5 

Other Estimators for Cylinder Orientation 

Two techniques to recover this information from the disparity map are compared. 

Convergence is tested against the LMS algorithm. One of the disadvantages of the LMS filter is its 

slow convergence. This is because it operates on the average characterization of the data rather 

than the actual data acquired. An advantage of the LMS algorithm is that it can be very stable and 

will eventually approach an optimum solution. 

LMS Filter 

This approach recursively estimates « 0 , the null space vector, by formulating an adaptive 

filtering problem using the least mean squares (LMS) algorithm. In this configuration, ni is the 

surface normal, « 0 is the current estimate of the cylinder orientation (orthogonal to the surface 

normal), and n0 • hi - et is the projection of the orthogonal estimate onto a measured surface 

normal (which should be zero). Some fraction of the measured surface normal provides an 'average' 

correction to the estimate. Using the LMS algorithm, the update equation for the orientation of the 

log axis is nok = - aeknk. 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 
0 50 100 150 200 250 300 

Orientation residual with LMS vs. number of measurements 
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Each iteration of the LMS filter subtracts some fraction, a, of the projection of a new 

surface normal vector, hk on the previous orthogonal estimate, nQ. The LMS algorithm expects to 

converge to a stationary residule that is evenly distributed among all components of the orientation 

vector. An initial estimate of « 0 is given by the cross product of the first two normal vectors as 

described in Section 5.2.1. The rate of convergence and the residual of the estimate is related to a. 

It is possible to make a large at the beginning and then decrease as the number of samples 

increases but this is not done in this thesis. 

The LMS algorithm provides an easy mechanism to reject invalid data. The orientation 

residual is a single number that, when large, can be rejected and the algorithm can continue. 

A Novel Recursive Estimate for Loss 

The basic methodology in this estimator is to find a unique characteristic of the surface 

and exploit that characteristic in a detection scheme. Cylindrical surfaces have a null space which 

means that a matrix description of these surfaces should be poorly conditioned such that the inverse 

acts like a singularity. The idea is to take advantage of this and to recognize such surfaces in terms 

of their null space. 

Any vector in 3 space can be constructed from a linear combination of the eigenvectors of 

a symmetrical, positive definite 3x3 matrix, U , whose columns are linearly independent. If A, \ is an 

eigenvalue of U then the matrix [U-A-II] only spans two space and the eigenvector associated with 

A-i lies in the null space of [U-A-II]. For any vector, y, the expression [U-A-iI]"ly effectively 

divides by zero any eigenvector component of y associated with X\. If we perturb X\ by a small 

amount, 6, then [U-(Aq+e)I] is ill-conditioned but not singular. [U-(A.i+s)I]"ly will not blow up 

but will amplify the eigenvector component of y that is associated with X\. This works like a 

matched filter that extracts the desired eigen direction from the vector y. 
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Consider the equation Ux = Xx. Multiplying both sides by the inverse of U and dividing by 

A,, we get TJ_1x = — x . The gain of the operator TJ'l is l/X. When we consider an arbitrary vector, 
X 

y= axj+bx2+cx3 that is a linear combination of the eigenvectors {x ,̂X2,X3} of U then 

T T - 1 a b c U y = — X J + — x 2 + — x 3 

/1| ^3 

The eigenvector associated with the smallest eigenvalue is amplified the most. When the 

eigenvalues are distinct and well separated, the vector component with the minimum energy of the 

system will dominate recursive operations. The gain of each operation is increased when U is 

poorly conditioned or when TJ is made nearly singular. 

[ U - al]x - Ux - ax = (X - a)x 

[U-aI]- 1 x = - ^ — x 
X-a 

For the general vector y= axj+bx2+cx3 , 

T T T T I - I a b c [ U - a l ] y = - X l + - x 2 + - x 3 

/I, - a X2-a X3-a 

This technique can be used to get a recursive least squares estimate of the log orientation. 

As more surface normal measurements are incorporated into U, better estimates of the log 

orientation become available. For fast convergence an initial estimate of the minimum eigenvalue 

and a good candidate vector for the log orientation is needed. When the first 2 surface normals are 

available, their cross product provides the best estimate of the log orientation. Since only 2 vectors 

are available, the 3x3 correlation matrix, U will be singular and the eigenvalue associated with the 

initial estimate of log orientation will be zero. When a third, noisy surface normal measurement is 

incorporated into U, the matrix will no longer be singular but the minimum eigenvalue will be 

small, near the initial estimate of zero. The recursion formula is: 
vk=?[Uk-ak_,l]" lyk_ 1 
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where the new estimate of the orientation vector is then normalized y k = 

At every step the goal is to find a vector y such that Uy = A-iy. The equation [U-aI]y ; 

(A,i-a)y is satisfied by the recursion equation [U-aI]v = y if (k\-a)vjt= y^ . Since y^ is 

normalized, this leads to the eigenvalue update: 

1 
v k -y k- l 

When a new normal vector, n^ becomes available: 

U k = U k _ , + n X 

0 5 10 15 20 25 30 35 

Recursive Eigenvector estimation vs. number of measurements 

A Comparison with Recursive Least Squares 

The least squares recursion formula is 

x(0 = x(r -1) + P(f)a(0[y, - a T (r)x(f -1)] 

where x is the estimate of the log orientation, a(t) is the latest surface nonnal measurement, the 

desired output, yj- = 0, and P = i H . Rearranging the tenns gives 

x(0 = x(r- l ) -a (0 [P(Ox(r- l ) ] T a (0 

135 



The term P(r)x(r-1) acts as a filter to refine the estimate of the minimum eigenvalue. In poorly 

conditioned systems the gain in this operation can be large. This vector is projected on the latest 

surface normal measurement. Since x should be orthogonal to a(t), the component of x in the 

direction of a(t) is subtracted off. This follows the Gramm-Schmidt process for finding orthogonal 

basis vectors. P(t)x(t -1) finds the vector that minimizes the energy of the system. 

Convergence of Recursive Least Squares (RLS) can be slow for two reasons: 

• The algorithm does not normalize the eigenvalue filter. When the matrix is poorly conditioned, 

the value is amplified by a factor The m § b initial gain can force the estimate into a 

poor state. 

• As more data becomes available, the total energy in U increases, the total noise energy in the 

orientation vector represented by increases and the gain of the eigenvector filter 

decreases. This makes it difficult to recover from a poor state estimates that are generated 

earlier. This can be corrected by a forgetting factor. 

If the eigenvalue is tracked as in the previous section then the gain of the filter can be held 

constant or confined to a small range. This serves a similar function to the usual forgetting factor 

that is introduced to track non-stationary parameters. 

Handling Invalid Data 

The estimates of the orientation vector, n0 should be stationary. If a point is 

selected that is not on the log surface then the orientation filter will see a discontinuity and 

that data point is discarded. To evaluate surface points, it is necessary to keep an estimate 

of the error variance. Points with error values greater than 2 or 3 a can be discarded. An 

easy estimate of a is: 

ojfc = o*-i + a ( k | - o i t - i ) 
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Appendix 6 

Comparison of Signal Matching with Power Cepstrum and SSD 

Many stereo vision systems use Sum of Square Differences (SSD) to find corresponding 

regions in stereo images. The Power Cepstrum is sometimes used to estimate disparity between 

stereo images, although it is not as popular as SSD. As a disparity estimator, the Cepstrum is 

most sensitive when the data windows are perfectly aligned and it's sensitivity decreases as the 

windowed data is shifted. Yeshurun and Swartz suggest that the power Cepstrum has superior 

signal to noise properties when compared to standard correlation techniques. This should be most 

evident when the Cepstrum is used as a zero shift disparity detector because this produces the 

largest peaks in the power Cepstrum. More recently, Smith and Nandhakumar (1996) have 

proposed using the zero shift power Cepstrum as a stereo matching detector. This section examines 

the mechanics of the power Cepstrum as a zero shift disparity detector and compares it's 

performance to the SSD. 

The Cepstrum used in stereo matching is usually of the form: 

Ceps = FFT- ,[log|FFT(s)|] 

The technique proposed by Yeshurun and Swartz selects data from two stereo images using 

windows N samples wide. These two data segments, si and S 2 , are concatenated to make a single 

data structure that is 2N pixels long. One can view this as the sum of two 2N wide data segments 

each of which has N samples of zero padding. 

SJ 

SI S2 + 
s i 
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Since each segment is padded with N zeros, the FFT of each segment will be interpolated 

to 2N complex components. Segment 2 has zero padding in first half and image data is shifted to 

the second half of the segment. The FFT of this second segment is: 

e-ik"S2(cok) = {-\fSJ<ok) 

The FFT of the concatenated data is: (Banadari) 

S = S,{tok) + e-ik"S2(cok ) = S](o>k) + (-1)* S2 K ) 

For matching, S2 is modeled as a noisy version of ŝ  shifted by x pixels. 

S = Sl(cok) + (-\f[e-i^Sx(cok)+ ricok)] 

Each of the original data samples is N pixels that have been zero padded to 2N data points 

such that the spectrum of the concatenated signals has 2N components. When x equals zero, the 

odd components of the interpolated spectrum cancel except for the noise terms. The result is a 

picket fence effect; signal + noise for the even components, and just noise for the odd components. 

Suppose we ignore the noise term and try to match ideal random signals that have flat power 

spectra. When T equals zero, the power spectrum of the concatenated ideal signals appears as a 

large square wave with a period of 2 pixels. Even terms add, and odd terms cancel, approaching 

zero. After taking the log of this power spectrum, the odd terms approach negative infinity. This 

greatly amplifies the picket fence effect. The FFT (or inverse FFT) of this new situation, results in 

a new spectrum (the Cepstrum) that is dominated by a single high frequency peak that measures 

the average peak to peak amplitude of the amplified picket fence effect. Since the odd values 

approach log(O), the peak to peak amplitude is very large. This value is the zero shift peak of the 

Cepstrum. 

The mechanics of the second FFT in the Cepstrum calculation calculates the highest 

frequency component as the sum of the differences between the even samples and the odd samples. 

It adds up all the even samples and then adds up all the odd samples and then subtract the two 

results. This gives us a number for the highest frequency component. In the Cepstrum, these 
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sample values are logarithms. The additions are equivalent to multiplications and the subtraction is 

equivalent to a division. If the logarithm operation is postponed; multiply all the even terms 

together and then divide by the product of all the odd tenns and then take the logarithm of this 

result, we get the same value for the zero shift peak as does the nonnal Cepstrum calculation. The 

difference is that the second FFT is not calculated and only a single logarithm is used in the 

calculation; but even this single logarithm is not needed to detect the correlation peak. In fact, 

noise rejection is improved by not taking this logarithm. Evaluating logarithms has been an 

expensive part of cepstrum calculations and may be unnecessary for some applications. The rest of 

this appendix section looks at the details of this process and compares this detector to other zero 

shift detection criteria. 

The Zero Shift Cepstrum Peak 

The goal is to analyze the cepstrum process and identify it's advantages as a zero shift 

disparity detector. At the beginning of the process the signals are concatenated as described earlier. 

One signal is modeled as a noisy, shifted version of the other so that the concatenated signals have 

a Fourier transform of the form: 

5 = 5 , K ) + ( - l ) i [ ^ K ) ] + ^ ) 

In its simplest form, this expression models the original signals as having constant 

magnitude Fourier coefficients that slowly rotate with respect to each other as the data windows 

become displaced. In practical applications, the local magnitude of the Fourier coefficients changes 

with window position. To be accurate, the noise tenn should represent both additive noise and how 

the signal changes as the window moves. The noise magnitude increases as the data windows 

share less and less signal infonnation. 

The next step is to separate the spectrum of the concatenated signals into even and odd 

coefficients. 
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for k = even 

S(k) = S(a)k)(l + e ) = 2S(cok)e 

for k+1 = odd 

S(k +1) = S(cok+l )(l - e****) + n(<oM ) = 2iS(aM )e 
T 

= 2iS(ojk+l)e 

It is assumed that, on average, the noise terms are uncorrelated with the signal components 

in a region where T — » 0. The normal Cepstrum calculation determines the absolute value of the 

neighboring coefficients and then takes the logarithm. To calculate the zero shift term, the final 

FFT subtracts one log value from the neighboring log value. This is equivalent to dividing one 

coefficient by its neighbor and then taking the log of the result. If we postpone the log operation, 

the result of the division is: 

The effect of zero padding is to interpolate the spectrum. This tends to produce frequency 

coefficients that are averages of their neighboring coefficients. For most images, S(cok+1) and S((ay) 

are not too different in value. As expected, the trigonometric tenns disappear when x = 0 except for 

a residual term that is related to the signal to noise ratio. The cepstrum calculation takes the log of 

tins value which greatly amplifies the sensitivity of this zero detector. Since the magnitude of the 

logarithm is the same for the inverse (i.e. log(l/x) = - log(x)), we can divide the even coefficients 

'S(cok)\ 
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by the odd coefficients. As x—» 0, this inverse expression acts like a cotangent function of the shift 

term. 

r 

S(k) = 2S(cok)e 2cos(a)k-) + n(a)k) 

-i<a t + 1-/ < T T T T "\ 

= 2S(a>k)e 2\cos(cok+x - ) c o s ( o - r ) + s i n ( f i > f c + I - ) s i n ( © , - ) J + « ( « * + , ) 

Dividing the even components by the odd components: 
Sk \S(cok) 

jk+\\ \S(a>k+l)\ 
f T\ T T 

cot (k + \)cox— cos(a>,— ) + sin(« 1— ) + rk V 2 J 2 2 

As T — > 0, this expression produces a large peak that doesn't rely on the log(0) effect. 

When we take the logarithm of the cotan peak, we compress it and get the corresponding Cepstrum 

term. In effect, the final FFT operation that calculates the zero shift peak is behaves like: 

Elog|S(*)|-2>g|S(*)| = log 
odd 

Ylsck) 

Y[s(k) 
odd 

log n 
: k even 

\S(k)\ 
|.ST*+ 1)| r-+0 log Y\ cot(n</>) 

nodd 

It can be seen that, as x—> 0, the Cepstrum evaluates a function similar to the log of the 

product of the cotan terms. It doesn't matter for this calculation if tangent functions or cotan 

functions are used. The final step in the Cepstrum calculation takes the absolute value of the log 

and this yields a positive peak of the same value. If tangent terms are evaluated, then the internal 

mechanics of the Cepstrum behaves like a null detector that measures how well the two image 

segments match. The SSD also behaves as a null detector and it shares some characteristics with 

the Cepstrum. 

When cotan terms are evaluated, the effect of the logarithm is to compress the dynamic 

range of the data. To detect a peak in a noise field, compressing the dynamic range of the data is 

not necessarily the best strategy. By not using any logarithms in the calculation, we can build a 
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zero shift detector that more efficient than the usual Cepstrum calculation. For this particular 

application, the final FFT and all the log calculations can be eliminated. 

A Tariff) Zero Shift Detector 

To simulate the zero shift Cepstrum, a tan(cj)) detector without a concatenated data 

structure can be built. Using two N pixel data windows Sj and s2 such that s 2 is a shifted version 

of S] , we can evaluate the FFT of the sum and difference of these signals and then divide the 

magnitude of one set of coefficients by the other to get tan(cj)) terms. 

F (s, - s2) = (1 - e-"")Sx {co) = 2/<r'W 2 sin(ffl-)5,0) 

F (5, + s2) = (1 + e-im)S, O) = 2e~M2 cos( co^)S, (co) 

Tests 

The following forms of correspondence detectors are compared with the zero shift 

Cepstrum peak. 

log(tan((|))) detector = log-
nis>K)+s2(^)i 

2 

multCotan = = 7 i inverse SSD = — ; 

k 

In the following figures the different fonns of correspondence detectors are used to find the 

alignment of two, one dimensional first order Guass-Markov process with no additive noise. A 

small constant, 8, in the calculations protects against overflow and limits the peak values. The 

search windows are 32 pixel wide. In a noise free environment, all the detectors perform well and 

the log(tan(((>)) detector performance is very similar to the zero shift Cepstrum detector. 
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Noise is modeled as the cause of false matches; a combination of added disturbance and 

the effect of how the signals change locally when the window moves. When external added noise is 

about the same magnitude as the signals to be matched then false matches become more likely. The 

residual at zero shift is due only to the added noise which can be greater than the residual at some 

other shift. This depends on, how the signal changes when shifted, the effect of noise terms added 

to the shifted signal, and on the matching metric. 

The figures below show how the different detectors react when the added noise energy is 

about the same as the signal energy. The zero shift Cepstrum detector and the log(tan(<j>)) perform 

about the same . 
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These peaks are compressed by the logarithm. The next figure shows that the multCotan 

detector produces well defined peaks even in large noise fields. It is this property that makes the 

Cepstrum attractive for matching signals. For the remainder of this section, the performance of the 

inverse SSD and the multCotan detector are compared. 

x - | g 1 3 Cotan(phi)Zero Shift Detector Inverse SSD Detector 

10 20 30 
window position 

40 10 20 30 
window position 

40 

The figures below show how the inverse SSD and the multCotan respond to noise; uniform 

noise (rand(N)) and exponential noise (-alog(rand(N)). Exponential noise can model unexpected 

disturbances like that caused by specularities and occlusions in images. The figures below use 16 

pixel, one dimensional data windows where the correct match is centered on pixel 8. The SSD and 

multCotan were tested with identical data sets. In both cases, the SSD outperforms the multCotan 

detector. Similar results were obtained using the zero shift Cepstrum detector. 
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While the multCotan produces well defined peaks for matching, it does not appear to be as 

robust as the SSD. This is because the multCotan detector is a product of terms while the SSD is a 

sum of terms. In the presence of noise, this makes the product detector more susceptible to errors. 

If chance makes one term in a finite series nearly zero then the product of the terms will be close to 

zero and the inverse will produce a large peak. However, the sum of the series will be more 

resistant to a spurious zero term. When noise is added to the series, a false zero is more likely to 

mask the correct match in the product rather than in the sum. 
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Most test images have little visible noise yet false matches are frequent. Real images also 

exhibit self similarity under translation. This combined with occlusions and illumination changes 

act like burst of noise in some part of the image that can obscure correct matches. 

The performance of the multCotan detector in matching one dimensional segments a real 

image is tested. Below is a stereo image pair of Pepsi cans in which the disparity is between 1 and 

4 pixels. The stereo matching test uses windows of 32 contiguous horizontal pixels centered on 

random locations in the one image. A 16 pixel window is taken from the other image, centered on 

the same location. All matches should be within 4 horizontal pixels. Before running the stereo 

matching we test self matching where all matches should be centered on zero. 

In this test, we don't know if a match that gives a disparity between 1 and 4 pixels is the 

correct match but matches outside this region are known to be incorrect. These spurious errors 

appear like shot noise. 

run # run # 
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All matches less than zero and greater than 4 are known to be false matches. The tests 

indicate that the SSD produces fewer false matches. The SSD and the multCotan detector have 

about the same ratio of false matches as that shown with the exponential noise model. 

Conclusion 

There are several versions of SSD detectors reported in literature. The version tested 

would produce false matches about 6% of the time. The zero shift power Cepstrum produced false 

matches about 15% of the time and the multCotan about 18% of the time. The Cepstrum is 

calculated using an interpolated spectrum. This averages neighbouring terms and it may be the 

reason that the power Cepstrum was found to be more noise resistant than the multCotan detector 

(see Section 3.1.2). The tests indicate that the SSD is a better detector, having has less than half 

the error rate of others. 

The second FFT in the power Cepstrum calculation can be viewed as a weighted sum of 

logarithms. In this respect, the Cepstrum belongs to a class of product detectors whose output is 

the product of terms in a series. These results indicate that product detectors in a noisy 

environment are vulnerable to conditions that will produce a null at some point in the data series 

whereas summation detectors, like least squares, are not as vulnerable to this effect. 
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