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A B S T R A C T 

This thesis provides a framework for understanding and predicting the ex
pressive nature of devices. We introduce transparency, or the ease with which 
a device's mapping can be understood, as the main pillar of this framework. 
Transparency is a predictor for expressivity, the ease with which meaning or 
emotion can be communicated through the device. We explore the role of 
metaphor for improving the amount of expression possible with a device, and 
examine its use as both a design aid and an affordance during use. 

To validate this theory we built MetaMuse, a controller for a rain-sound 
synthesiser that employs water metaphors to obviate its use. MetaMuse uses 
physical props to embody three metaphors: pouring, rainfall, and landscape. 
These metaphors acted as a guide during MetaMuse's design, and aid users 
in the prediction of system operation and sound output. 

We performed a series of experiments comparing MetaMuse to two other 
interfaces to test our claim that metaphor can be used to improve expressiv
ity. The tests measured controllability with speed and accuracy of sound tar
get acquisition, and expressivity with qualities such as creativity. Accuracy 
was similar across all interfaces, and speed slightly improved for MetaMuse, 
but the controllability results lacked significance. Results for expressivity 
were significant, however: users preferred MetaMuse as more creative than 
two more traditional controllers (F=6.0, p<0.01). From these results we 
conclude that metaphor is a worthy design approach to creating expressive 
devices. 

This thesis also presents a novel form of synthesis combining techniques 
from real-time stochastic synthesis and granular synthesis. Finally, it includes 
a software library for simplifying the use of the Polhemus Fastrak magnetic 
sensor used in the project. 
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C H A P T E R 1 

I N T R O D U C T I O N 

Why is it so difficult to create a novel expressive musical device? This paper 
provides a framework for understanding and predicting the expressive nature 
of devices. We introduce transparency, or the ease with which a device's map
ping can be understood, as the main pillar of this framework. Transparency 
is a predictor for expressivity, the ease with which meaning or emotion can be 
communicated through the device. We explore the role of metaphor for im
proving the amount of expression possible with a device, and examine its use 
as both a design aid and an affordance during use. Metaphor depends on a 
literature — a common body of knowledge which forms a basis for improving 
transparency. 

To validate this theory we built MetaMuse, a controller for a rain-sound 
synthesiser that employs water metaphors to obviate its use. MetaMuse uses 
physical props to embody three metaphors: pouring, rainfall, and landscape 
(see Figure 1.1). These metaphors acted as a guide during MetaMuse's de
sign, and aid users in the prediction of system operation and sound output. 
Our experiments with MetaMuse support our claim that metaphor can be 
used to improve expressivity. Users significantly preferred MetaMuse as more 
creative than two more traditional controllers. 

1.1 Transparency of Device Mappings 
Our discussion centres around device mappings. We consider mappings to 
encapsulate the entire process of translating the player's control gestures into 
sound output. In the example of a piano, the mapping includes everything 
from the position and shape of the keys, through the physics of the hammers 
and strings, to the acoustic properties of the piano body itself. In Chap
ter 3, we explore those qualities of device mappings that are important to 
expression. Traditional instruments such as violins and pianos have direct, 
physical mappings from the player's gestural input to the sound output, and 
are therefore easily understood. In computer-based instruments, the map-
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Figure 1.1: MetaMuse. In the foreground, we see the watering can and landscape props 
used to control a rain sound synthesiser. In the background the props are rendered on the 
screen along with the virtual water that flows between them. 

ping is arbitrary. Many new instruments have non-obvious, or opaque, map
pings, which make it difficult for the player or the audience to understand 
the instrument, creating a barrier to expression. 

We introduce transparency as a quality of a mapping. Similar to Moore's 
notion of control intimacy [41], transparency provides an indication of the 
psychophysiological distance, in the minds of the player and the audience, 
between the player's input and the sound output of a device mapping. The 
more transparent the mapping is, the more expressive the device can poten
tially be. Since new technologies are often poorly understood they tend to 
produce opaque mappings. Metaphor is one technique that facilitates moving 
from an opaque mapping to a transparent mapping. 

Metaphor enables device designers, players, and audiences to refer to 
elements that are "common knowledge" or cultural bases which we call lit
erature. The Oxford Dictionary [19] defines literature as "books & written 
composition esp. of the kind valued for form & style, the production of these 
or their authors as a class, the realm of letters, the writings of a country or 
period, the books & c. treating of a subject, (colloq.) printed matter." We 
use the term in a broader sense, referring to all cultural common knowledge 
rather than just published works. By grounding a mapping in the literature, 
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it is made transparent to all parties. 
Metaphor restricts and defines the mapping of a new device. This can aid 

in the design process by providing a central theme around which the designer 
can build. As we shall in see Chapter 3 this theme can aid in matching exist
ing synthesis techniques to new controllers or vice versa, or can provide a new 
starting point for choosing both the controller and the synthesiser. Similarly, 
metaphor can provide the player and the audience with a better understand
ing of the device during performance, facilitating communication. Through 
metaphor, transparency increases, making the device more expressive. 

The framework of expressivity, transparency, and metaphor is presented 
in this thesis with respect to computer-based sound and music devices. It 
may also be applied to other fields of human interaction, including human-
human, human-computer, and human-machine interaction. 

1.2 MetaMuse 
We built MetaMuse, discussed in Chapter 4, to explore our theory of trans
parency. MetaMuse is a rain-sound synthesiser that is controlled by two 
props: a watering can to simulate pouring and a surface on which to pour 
(see Figure 1.1). The prop-based control of MetaMuse was designed and 
built based on metaphors of rainfall, which provide a cognitive match to the 
process used by the synthesis engine. These metaphors motivated the design 
and construction of the instrument and assist in learning to play it. 

MetaMuse is defined by three metaphors closely related to water or rain
fall: pouring, rainfall, and landscape. Virtual water droplets are created, fall 
due to simulated gravity, and make a sound when intersecting a surface. The 
pouring metaphor suggests how users create water droplets, while the rain
fall metaphor dictates how the droplets will behave. Finally, the landscape 
metaphor indicates that the sounds of the droplets change with the type of 
virtual surface the rain lands on. 

The props used to control the system were chosen to suggest and rein
force the metaphor. A small watering can supports the pouring metaphor, 
while a round palette provides the surface on which the virtual water pours. 
Magnetic sensors are used to measure the props' positions and orientations. 
This allows a graphical representation of the props and virtual water to be 
viewed on a computer monitor. 

The props control a parametric granular synthesiser based on a stochastic 
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real-time synthesis model. Granular synthesis is a technique that blends mul
tiple discrete sounds to create a single auditory effect. Rainfall's similarities 
to this process make it an excellent metaphor for such a synthesiser. Indeed, 
the match of metaphor to synthesiser motivated the design of the props used 
as controllers. 

1.3 Contributions and Lessons Learned 

In a series of user experiments, discussed in Chapter 5, we evaluate MetaMuse 
to explore the validity of our theory. The tests measured how controllable and 
expressive the system is compared to a baseline of graphical user interfaces 
controlling the same synthesiser. The results suggest that MetaMuse is an 
expressive instrument. In particular, users found MetaMuse to be more cre
ative than the other interfaces. Statistical trends supported the hypothesis 
that MetaMuse is no less controllable than the baseline interfaces, but these 
results were not significant. These non-significant trends indicate a need for 
further research. 

Users' comments during the post-experiment interview were telling. One 
user indicated that MetaMuse "just felt more intuitive," while another re
ported that "using the prop, the sounds sound like what you would expect." 
The metaphors embodied in the interface, for these users, offer a clear ad
vantage to understanding the device. 

The conclusion that MetaMuse is an expressive instrument is important. 
It implies that the metaphor-based design process and the embodiment of 
those metaphors in the interface were successful. From this we can conclude 
that metaphor is an important tool for designing and playing expressive 
instruments. 

Informal observations made during testing also support this conclusion. 
The primary difficulty users had with MetaMuse was in determining where 
on the landscape to find a certain sound. In retrospect, this result should 
have been predicted. The landscape metaphor implies that the sound will 
change as droplets are moved across the surface, but doesn't suggest how 
it will change. That transparency and metaphor can not only aid in creat
ing expressivity, but also predict how a device might fail to be expressive, 
strengthens the theory. 

A final contribution of this thesis is the Polhemus library. Created to 
facilitate communications with the Polhemus Fastrak magnetic sensor [14], 
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this library has found use in several other projects and has been modified to 
work with other sensing devices. Since it is not central to the thesis, it is 
discussed in more detail in Appendix C. 

To summarise, this thesis contributes the following: 

1. The theory of transparency, which provides a framework to predict and 
evaluate the expressivity of musical devices. 

2. The investigation of metaphor as a facilitator for designing expressive 
devices, and for learning and playing them, by increasing transparency. 

3. Demonstration of the above concepts in the form of MetaMuse, a novel 
expressive device based on metaphor. MetaMuse and its evaluation 
show that transparency and metaphor are useful constructs. 

4. Parametric granular synthesis, a novel form of synthesis combining 
techniques from real-time stochastic event modeling and granular syn
thesis. 

5. The Polhemus library, which provides simplified multi-threaded access 
to the Polhemus Fastrak and creates a standard framework that extends 
to other serial devices. 
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CHAPTER 2 

RELATED WORK 

To fully understand metaphor as a way to design and play expressive instru
ments, we must consider previous attempts at creating such instruments. 
Past computer-based musical instruments have been built based on many 
different principles. Some have been motivated by technology, and are based 
on either sensor and controller technologies, or current hardware or software 
synthesisers. Such systems tend to lack completeness — when the overriding 
design principle only takes into account one aspect of the instrument, its 
expressivity will suffer. Other systems are designed based on accepted HCI 
principles such as usability, learnability, and discoverability. While these are 
important design elements, they fail to address expression. 

Our approach to computer-based expressive devices focuses on the map
ping: the way in which the user's input gestures are mapped to sound output. 
Since the mapping extends from input interface to output interface, it takes 
both interfaces into account. When we apply our metaphor to this map
ping it encompasses the entire device, providing a vital central theme that 
guides both design and play of the device. To understand metaphor, we will 
consider previous systems that use it. 

In Chapter 4 we will see that MetaMuse is a prop-based controller to a 
rain-sound synthesiser. To complete our exploration of previous work we will 
explore both of these topics. 

2.1 Previous Approaches 
The problem of classifying musical instruments has been approached in many 
ways, with the classical approach being that of Hornbostel-Sachs [65]. In 
their system, instruments are classified based on the physical mechanism of 
sound production. The violin, for example, is classified as a chordophone, or 
stringed instrument, and subclassified as bowed. The clarinet is classified as 
aerophone > pipe aerophone > reed pipe instrument > single reed. Computer 
musical instruments are much more difficult to classify because of their lack 
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of physicality [59]. 
One approach is to categorise them by the input technology used [9]. Dif

ferent types of controllers affect the performance of the instrument; examples 
include free gesture sensing at various scales, biometric sensing, and varia
tions or extensions of input techniques for traditional musical instruments. 
Properties of the controller, such as its continuous or discrete nature, have a 
profound effect on the instrument. 

Output technology is also used to categorise new instruments. Different 
synthesis engines are used depending on whether the instrument is intended 
for performance, composition, or sound design. Once again, properties of the 
output technology fundamentally affect the resultant instrument. 

A third approach to the domain is from the field of computer-human 
interfaces [48]. The design of a usable interface is the primary aspect of 
this approach, with an emphasis on analysing discoverability, learnability, 
usability, controllability, and similar properties. For example, a drum has 
a very low barrier to novices — it is very easy to learn to hit a drum with 
a drumstick. Similarly, the drum has good controllability and usability as 
its interface is very straightforward. Transferring these properties to more 
complex computer-based musical instruments is a challenge that the field of 
HCI has many well-documented approaches for tackling. These properties 
are will be revisited in later sections. 

The approach taken herein focuses on the mapping used in the device. 
We consider mappings to encapsulate the entire process of translating the 
player's gestures into sound output. Since the mapping entails knowledge of 
both the input and the output interfaces, consideration of these aspects of 
the instrument are included in this approach. More importantly, mapping 
is one of the major challenges currently facing computer musical instrument 
practitioners [31]. 

As we shall see in the next section, computer musical instruments lack a 
physical connection between their control input and their sound output [46]. 
This is problematic for instrument designers, who lack guidelines for their 
creations, and for performers and their audiences, who are no longer able to 
share expression through the instruments. Many designers have based their 
devices on existing instruments to resolve this shortcoming, but this practice 
limits the designer to existing classes of instruments. 

We suggest metaphor as a way to create new classes of instruments based 
on different controllers and synthesis techniques. Metaphor provides a basis 
for understanding the mapping of a device, allowing novel devices to be more 
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Figure 2.1: In a traditional instrument, the physics of the device dictate the manner 
in which it is played. In the case of this guitar, the vibrating string is controlled by 
manipulating the variables of the wave equation, in particular string length and tension. 

easily understood. In particular, we examine the use of gestural controllers 
based on props to control granular synthesis. The following section motivates 
the mapping-oriented approach to the field of computer musical instruments 
that is used throughout this chapter and affects this thesis. 

2.2 The Importance of Mappings 

Traditional musical instruments have a clear connection between their control 
inputs and the sounds they produce [8, 46], as shown in Figure 2.1. This con
nectedness is entirely physical: from the standing wave on a guitar's plucked 
string to the column of air in a flute, the physics of the sound production 
mechanism dictates how the instrument is played. Physics also guides many 
aspects of instrument design, creating classes: bowed string, woodwind, per
cussion, and so on [65]. Within a class there is a limited number of ways to 
build an instrument and a limited number of ways to play it. 

Modern computer-based musical instruments lack the natural connection 
of traditional instruments [24, 46]. As shown in Figure 2.2, synthesis en
gines are controlled by a stream of numerical parameters. Input devices 
produce similar streams of parameters. The way in which these parameters 
are mapped from input to output can be completely arbitrary. While this 
arbitrariness infinitely expands the number of possible ways to build an in-
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F i g u r e 2.2: In computer-based instruments, there is no inherent connection between the 
control and the sound output. The signal from the controller is converted into a series 
of ones and zeros that can be arbitrarily transformed by the computer. In effect, the 
computer is a black box device. 

strument, it also creates an equal number of ways to play them. Additional 
classes of instruments can come at the expense of expressiveness. 

An example of this lack of connection is found in our own unpublished 
research. A precursor to MetaMuse attempted to control a synthesis en
gine based on the posture of the hand, as measured by a CyberGlove data-
glove [11]. Principle Component Analysis was used to match the input pa
rameter space to the output parameter space, so that gross hand movements 
corresponded to large changes in sound and fine movements to subtler nu
ances. This method has also been used in systems such as Glove-Talkll [15]. 
While our model was mathematically correct, it was meaningless to the player 
- hand movement caused changes in sound output, but it was unclear how 

the two were correlated. The resulting instrument proved impossible to play. 
Other instruments that suffer from similar problems are laptop bands, 

Expressive Footwear [51], and Musical Trinkets [52]. Laptop bands exem
plify opacity in computer music: one or more people on stage interacting 
with laptops to produce synthesised music. Because the audience knows 
nothing about the software running on the laptop or its control, expressivity 
is difficult. Even other musicians may have trouble determining the specific 
configuration of the laptop. Expressive Footwear uses instrumented shoes to 
control music, but the parameters of control (sole flex, heel pressure, etc.) 
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are very difficult for the audience to perceive. Musical Trinkets are based 
on passive magnetic tags built into small toy figures. While not intended to 
be complex, they remain confusing because of the difficulty in determining 
what synthesis effect each figure represents. 

In general, this non-connectedness results in instruments that are harder 
to learn and harder to play virtuosically [49, 66], or instruments that are so 
simplistic virtuosic performance is ruled out. Often they suffer from stability 
problems: Cook [10] discusses the infinitely customizable interface, which can 
never be learned because its mapping changes from one session to the next. 
Non-connectedness also causes problems for the audience, who no longer 
understand the correlation between what they see and what they hear [24]. 

Instrument designers have attempted to solve the problem of non-con
nectedness in many ways. Instruments have been made that are so simple it 
is very easy to perceive their mappings [5]; others use algorithms that force 
the music to sound good under any input. The simplest method, however, 
is to fall back on the known, physical connection that makes traditional 
instruments so expressive. 

2.2.1 Traditional Musical Instruments as a Basis for 
Creating New Instruments 

Attempts to re-establish the connection between input and output have 
mainly centred around recreating or extending traditional musical instru
ments. The most prolific example of this practice is the ubiquitous keyboard 
synthesiser, which imitates the piano in form and function. For many play
ers, the two are equivalent, though progress is still being made in duplicating 
the feel of the piano keyboard exactly [45]. Other instruments have been 
similarly duplicated to various degrees of success, including the violin [22], 
the clarinet [67], and the drum [13]. 

Other research has extended the functionality of an existing instrument 
by adding to it or changing its form. BoSSA [2, 63] decomposes the physi
cal components of the violin, allowing additional control in the form of neck 
bending. The Accordiatron [24] is a musical controller that duplicates the 
action of an accordion but allows control of different musical parameters. 
Jam-O-Drum [6] uses the basic interface of a hand-struck drum surface to 
create a collaborative social environment with both musical and visual com
ponents. 
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Recreating or extending traditional musical instruments in the electronic 
domain is clearly a worthwhile pursuit; many interesting and effective in
struments have been created. Relying solely on such techniques, however, 
inherently limits the instruments to classes that already exist — BoSSA still 
follows the bowed string interaction paradigm; Jam-O-Drum is still a per
cussion instrument. In order to create novel classes of instruments, other 
approaches must be pursued. 

2.2.2 Other Approaches to Creating New 
Instruments 

There have been a multitude of approaches to new musical instruments that 
don't involve traditional instruments as their basis. New sensors and synthe
sisers have allowed many new classes of instruments to be created. Some of 
these approaches are presented in this section. 

Whereas traditional musical instruments have, by necessity, involved a 
one-gesture, one-output relationship, the decoupling afforded by electronic 
instruments allows different structures. Composed instruments [57] blur the 
boundary between performance and playback, with the performer controlling 
individual sounds as well as affecting precomposed scores. 

Tooka [18] is a two-person musical instrument based on breath control. 
While it is very similar to a recorder, the lack of a vibrating column of air 
allows the players to blow into both ends of the device. The primary control 
parameter is the pressure in the tube, creating a new class of instruments. 

2Hearts [40] also extends instruments into two-person interactions, but 
in this case the instrument doesn't exist per se. In 2Hearts, musical flow is 
controlled by the interaction of the two players' heartbeats. Since one has 
little control over one's own heart rate, the instrument played by each of the 
participants becomes the other participant. 

By instrumenting different vessels, Tangible Sound 2 [39] turns the flow 
of water into a musical instrument. By directing a stream of water into 
various vessels, different sounds and sound combinations can be created. 
This approach produces an instrument for which the number of players is 
limited only by the physical space available. 

Several instruments, such as Piano Cubes [54] or Musical Trinkets [50], 
make the creation of music accessible to anyone. Piano Cubes are small 
cubes whose position and orientation affect the properties of pre-scored piano 
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music. Musical Trinkets are toys that affect synthesised music in complex 
ways. Both instruments are easily approachable by novices. 

Many of these instruments have been successful, but some have prob
lems that relate directly to standard HCI principles. Cook's infinitely cus
tomizable interfaces, discussed earlier, present a lack of interface consistency. 
Piano Cubes and Musical Trinkets oversimplify their control, making the de
vice easy to learn but lacking in long-term engagement. Other instruments 
have interfaces that are too obscure, lacking discoverability and usability and 
therefore making it difficult for both player and audience to understand the 
instrument (this issue will be revisited in greater depth in Chapter 3). These 
and other difficulties have been discussed by Cook and Wessel [66], among 
others. 

A consistent metaphor is one way to overcome these obstacles and design 
complex, understandable instruments. 

2.2.3 Metaphor as a New Basis for Creating New 
Instruments 

One way to create a connection between the control input and sound output 
of an instrument is to use metaphor. Metaphor allows the player and the 
audience to create a mental model of the system by likening it to something 
that is already understood. This is formalised in semiotics, where the term 
signifier denotes the device in question and the signified is the concept to 
which it refers [36]. Those who are familiar with the signified will also un
derstand the signifier. In other words, if the metaphor matches the system 
appropriately the new instrument will be understood. In this way metaphor 
allows us to create new classes of instruments by referring to things other 
than existing musical instruments. 

Metaphor has provided a basis for non-musical systems, and its strengths 
and shortcomings are well known [1, 29, 44]. One well-known example is 
the desktop metaphor used by most modern personal computers. In order 
to help new users make the transition from the real world to the computer, 
the screen is modeled as a desktop. Documents and folders are modeled as 
objects on the desktop surface, and open applications appear as overlapping 
sheets of paper. Where the desktop metaphor falls short, however, is in 
applications that don't fit that metaphor, such as online shopping. There 
is no desktop analogue to the Internet, so the metaphor must be broken 
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to provide this ability. This example reinforces the idea that metaphors are 
inherently restrictive. This is less of an issue when designing a single-purpose 
device such as a musical instrument than it is for an extensible system such 
as a general-purpose computer. However, it must be taken into consideration 
when designing a system around a metaphor. 

Metaphor has also been used in sound-based systems with mixed success. 
Sound Sculpting [42] makes use of metaphor by presenting a virtual rubber 
sheet, which can be stretched and pulled to modulate a sound as it played. 
Some aspects of this mapping are properly explained by the metaphor — 
moving the surface left to right pans the sound, for example. Interestingly, 
the sound change caused by physically "stretching" the sheet, though difficult 
to describe, also fits the metaphor well. Other aspects of the mapping, such as 
volume or reverberation, have no equivalent in the signified, and are therefore 
non-obvious and difficult to learn. The rubber sheet metaphor is successful 
where it matches the required control but is not successfully extended to 
other controls. 

Another system that uses metaphor is the tymbalimba [58]. This system's 
controller duplicates the cicada's sound-producing mechanism to control a 
synthesiser. In this case, the attempted range of control does not extend 
beyond the metaphor's explicative abilities, and the resulting instrument is 
quite engaging. 

We have explored several instruments whose mappings make use of meta
phor. We consider the mapping to be the main component of musical devices, 
and will expound on its relevance in Chapter 3. Also important to the device 
are the input and output interfaces, which specify how the user interacts 
with the mapping, and how the mapping produces sound output. In the 
following sections we will examine props and free gesture, which are relevant 
to our input interface, and the synthesis techniques used to create the output 
interface. 

2.3 Props and Free Gesture 

MetaMuse uses props to help define the input interface to the mapping. 
Prop-based interfaces are similar to those using free gesture, with the props 
providing a frame of reference that improves the usability of the interface. 
Free gesture and props have been used in previous systems, both expressive 
and practical. We will examine free gesture, its shortcomings, and the use of 
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props to resolve those shortcomings. 

2.3.1 Free Gesture and Its Shortcomings 
Free gesture is a common method for interhuman communication. It has 
been applied to computer interfaces, and computer music interfaces specif
ically, because it allows the simultaneous control over multiple parameters. 
However, it lacks precision [49], making expressive musical timing difficult. 

One example of a free-gesture instrument is the Imaginary Piano [61]. 
This instrument uses optics to determine the player's hand positions in space, 
and triggers notes when the hands enter certain zones. By setting the zones 
in the form of a piano keyboard, the Imaginary Piano is created. 

Glove-Talkll, first discussed in Section 2.2, is a gestural controller that is 
not musically-oriented. The absolute position and shape of the hand control a 
formant synthesiser, turning free gesture into human vocal sounds. It allows 
speech and singing, but is limited by a lack of pre-audio feedback. 

Both of these devices suffer from the same problem: they are bound to 
an external frame of reference. This makes timing and selection difficult to 
do accurately, as the player has no feedback from the device until its audio 
output is heard. One way to improve on gestural interfaces is to obviate the 
frame of reference. 

In Section 2.2.3 we discussed Sound Sculpting as a metaphor-based con
troller. Sound Sculpting uses a relative framework — the player's hand posi
tions are determined relative to one another. This, coupled with the system's 
compelling metaphor of object manipulation, allows the user to create more 
accurate positions. These are sufficient for the system's purpose of sound 
exploration rather than musical performance. 

2.3.2 Props: Providing a Frame of Reference 
One way to provide a frame of reference is to use props. Though force 
feedback is lacking, props help the user to orient about a frame of refer
ence. Guiard [23] showed that people use the non-dominant hand to create 
a working reference for the dominant hand. Balakrishnan [3] extended this 
research to determine the importance of matching the kinesthetic and visual 
reference frameworks. In other words, the frame of reference set up by the 
non-dominant hand will be successful if it is matched by the system's visual 
feedback. 
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Props have been successfully demonstrated in non-musical devices such 
as a neurosurgical visualization tool [25] and the ToolGlass [4, 35]. In the 
former system, a doll's head prop in the left hand sets the context for the 
cutting plane prop in the right hand, allowing the user to specify the slice of 
volumetric data he wishes to view on screen. In ToolGlass, a second mouse 
is used in a drawing program to create a frame of reference for the primary 
mouse, effectively creating a tool set that is positioned with the non-dominant 
hand. 

Clearly, props provide a referential framework that is not present in free-
gesture interfaces. Before determining whether props can be used to create 
an expressive device in the following chapter, we need to consider the output 
interface for such a system. 

2.4 Synthesis Techniques for New Musical 
Interfaces 

MetaMuse is based on a granular synthesiser that uses a real-time stochastic 
synthesis process instead of pre-recorded samples. Granular synthesis was 
the genesis of the project, motivating the choice of metaphor and thus the 
rest of the system design. Once the system was constructed, the synthesiser 
was found to be insufficient for the metaphor because of its use of discretely-
selected pre-recorded samples, so the sound source was replaced with a real
time stochastic synthesiser. 

2.4.1 Granular Synthesis 
Granular synthesis, first described by Truax [62], creates a continuous sound 
by playing short, prerecorded samples, overlapping and in quick succession. 
The sound creation process is similar to that of hand-held percussive in
struments such as maracas and shakers: a series of small, discrete sounds 
("granules") that blend together to create a larger effect. Whereas mara
cas tend to provide sounds in bursts, granular synthesis allows a continuous 
sound that could be likened to a cabasa being steadily rotated. However, 
the possibility of basing the granules on any sound sample or combinations 
of samples greatly increases the scope of the synthesiser. There is potential 
here for new classes of instruments depending on the discrete sounds used. 
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Previous controllers for granular synthesis have been purely statistical. 
These include the controller used by Truax himself and an implementation 
of granular synthesis used in jMax [12]. These implementations are based 
on a relatively lengthy prerecorded sound sample, from which the shorter 
granules are played. The controllable parameters include the starting point, 
duration, and playback rate of the granules and the number of granules played 
per second. In these implementations, these parameters are set according to 
simple statistical processes with means and standard deviations. While this 
method proves the concept of granular synthesis, it affords little in the way of 
expressive control. In Chapter 4 we shall see how these statistical processes 
were replaced with more expressive controls. 

Since MetaMuse was first published [20, 21], two systems, Pebblebox and 
Crumblebag, have been developed to use real granules to control granular 
synthesis [47]. In these systems, the sound made by physically manipulating 
several small items is analysed to extract quantities such as number of col
lisions and collision intensity. These parameters are then used to control a 
granular synthesiser using arbitrary sound samples. Effectively, the sound of 
the physical objects interacting is modified by the computer. This is a very 
tangible interface that makes its interaction paradigm clear at a glance. 

2.4.2 Physical Synthesis 
Once MetaMuse was constructed, a mismatch was found between the granu
lar synthesiser and the control techniques used. This mismatch is described 
in greater detail in Section 4.3.2. In short, MetaMuse affords continuous con
trol, but the underlying process for granular synthesis discretely selects the 
originating sound sample. A new synthesiser was required to sit underneath 
the granular synthesis process. 

The Synth ToolKit [56] (STK) by Perry Cook provided the needed syn
thesiser. STK includes "PhlSEM," Physically Informed Stochastic Event 
Modelling. This synthesis technique uses stochastic processes to excite a 
filter bank, producing a variety of possible sounds. STK's P h l S E M can re
produce the sounds of maracas, bamboo wind chimes, tambourine, and other 
such instruments fairly accurately, and uses continuous parametric control. 
It was used as a starting point for our own synthesiser. 

Physical synthesis is also used in van den Doel's liquid sounds synthe
siser [64]. This synthesiser identifies bubbles as the primary cause of sound 
in water environments. It uses a stochastic model to simulate the sounds of 
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many bubbles, and is reported to be fairly accurate for a wide range of rain 
sounds. Unfortunately it was not developed until after the MetaMuse system 
was completed. 

This foundation of previous work provides a launching pad for the rest 
of the thesis. We will now examine the MetaMuse project in greater detail, 
starting with its theoretical basis. 
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C H A P T E R 3 

T R A N S P A R E N C Y , 
E X P R E S S I V I T Y , A N D 
L I T E R A T U R E 

We consider expression to be an act of communication, in which the player 
and the listener are both responsible for determining to what extent a per
formance is expressive. Expression is the act of communicating meaning or 
feeling. Both player and listener are involved in an understanding of the 
mapping between the player's actions and the sounds produced. The map
ping, and the ease of understanding it, are therefore critical to determining 
the success of an instrument. 

Both player and listener understand device mappings of common acoustic 
instruments such as the violin. This understanding is possible because the 
instrument's physical nature obviates the control mechanism and its form 
factor allows the instrument to be learned. Both participants are able to 
make a clear cognitive link between the player's control effort and the sound 
produced, facilitating the expressivity of the performance. We recognise that 
expressivity is not guaranteed: expression is complex, having dimensions 
apart from transparency that contribute to it. For example, the mapping of 
a tuning fork is transparent, but few would argue that such a simple device 
is particularly expressive. Worded formally, transparency is not a sufficient 
condition for expression. 

For many instruments, the cognitive link is sufficiently integrated into 
the culture as to make it bi-directional. In this situation, observing either 
the sound or the effort provides access to the other. For example, one can 
picture the vigorous sawing of a virtuoso violinist while listening to an audio-
only recording of a particularly exuberant performance. Likewise, watching a 
good pantomime of a vigorously sawing virtuoso violinist evokes an expressive 
sound performance. Together, the effort and the sound reinforce one another, 
increasing the expressivity of the performance. 
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Instruments with a strong link between control effort and sound are more 
likely to become part of the literature. Here we are distinguishing the concept 
of literature from its literal definition of that which is written. What we 
intend is the more general definition of that body of knowledge understood 
and accepted as part of a culture. It is common knowledge and is used as 
a referent rather than being explained by reference to something else. For 
example, scents are often compared to that of a rose, but the scent of a rose 
is rarely identified by comparison to something else1. Literature in this sense 
has a cultural basis that the designer must be aware of when considering 
users of the device. 

3.1 Transparency of Device Mappings 

One of the key attributes of instruments required for adoption into the liter
ature is expressivity; this is a necessary condition for acceptance. We argue 
that the expressivity of an instrument is in part dependent on the trans
parency of the mapping, or the ease with which the device's mapping can be 
understood by both the player and the audience. With this factor in mind, 
we can attempt to identify how an instrument, based on a new technology, 
can make its way into the literature and become a referent. This course 
depends in large part on the mapping from control to sound. 

The mapping component is placed within the larger context of the in
strument or device in Figure 3.1. The device itself is composed of three 
parts: the input interface, the mapping, and the output interface. The input 
interface consists of the set of control gestures used to control the device. 
This is different from the physical input device, which can restrict or suggest 
certain control gestures but also interprets them, so-has a mapping aspect. 
The output interface consists of the possible range of sound outputs that 
the device can make, as distinct from the actual synthesis engine used. The 
mapping defines how the control gestures translate into sound output and 
comprises the whole system, from the input interface to the output interface. 
This is important because understanding of the mapping is critical to the 
expressivity of the device. 

In the case of traditional acoustic musical instruments, physics drives the 
mapping between control and sound. Traditional instruments are typically 

'One notable exception: rose scents are identified by comparison to other things when 
differentiating scents between breeds of roses. 
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Figure 3.1: The instrument has an input interface and an output interface. The two are 
related by the mapping. 

implemented with mechanical systems. As such, the mapping usually is easily 
understood by the player. Further, the physical form factor makes learning 
to play the instrument possible on a reasonable human time scale. These two 
factors make the mapping between instrument control and sound production 
psychophysiologically transparent for the player. Similarly, the audience's 
understanding of the instrument benefits from the physical nature of the 
mapping. The audience also benefits from a long cultural association with 
traditional instruments, expecting certain inputs to result in certain outputs. 
Both of these factors make the mapping transparent for the audience. Trans
parency for both the player and the audience makes expressivity possible. 

As an example, the acoustic guitar is a well-known instrument. The lay 
audience understands the manner in which the player's control gestures map 
to sound output, even if they lack the physical proficiency to play the guitar 
themselves. This common understanding makes the guitar's mapping trans
parent to the audience. With enough practice, it also becomes transparent 
to the player. Under these (common) conditions, the guitar is an expressive 
instrument. 

The advent of electronic musical instruments complicates the understand
ing of wdiether a musical instrument is expressive. This complication arises 
because such instruments allow the separation of control from sound [30, 33, 
68]. Most modern synthesis engines are controlled by time-varying sets of nu
merical parameters. These parameters can be produced in many ways and by 
using many different mappings. This physical separation requires an effort on 
the part of the designer to avoid a corresponding cognitive separation. Many 
instruments based on these engines have arbitrary mappings, which can make 
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the mapping very opaque to both player and listener. Learning an opaque 
mapping is difficult for both parties, making expressivity problematic. 

The synthesiser keyboard provides an excellent example of how control 
and sound can become separated. One of the presets for many synthesiser 
keyboards maps key presses to a variety of percussion sounds. However, 
the standard mapping, in which pitch increases to the right, is not valid for 
percussion instruments. This means that the different sounds are mapped 
somewhat arbitrarily to the keys. While it may be apparent that individual 
key presses map to individual sounds, the specific mapping is opaque to both 
the player and the audience. Learning to play percussion on the synthesiser 
keyboard is very difficult, as is understanding such a performance. 

These examples suggest a two-dimensional continuum of mapping trans
parency, with one axis for the player and one for the audience. We arbitrarily 
set the range of each axis to be from 0 (opaque) to 1 (transparent), as shown 
in Figure 3.2. The transparency of the mapping depends on different factors 
for the player and the audience. 

The transparency of a mapping for the player depends both on cognitive 
understanding and on physical proficiency. Cognitive understanding requires 
that a player must be familiar with the expected effects of the control param
eters on the sound output. Such familiarity can be improved by exposure to 
performances with the instrument. Proficiency is the level of dexterity that a 
player has with the controls, and therefore can improve with practice. Thus, 
familiarity and practice make a mapping more transparent for the player. 
This concept is very similar to Moore's [41] concept of control intimacy: 

The best musical instruments are ones whose control systems 
exhibit an important quality that I call "intimacy". Control in
timacy determines the match between the variety of musically 
desirable sounds produced and the psychophysiological capabili
ties of a practiced performer. 

Moore's control intimacy, however, refers to the entire device, whereas trans
parency refers specifically to the mapping between the input and output in
terfaces. The player's degree of transparency provides one axis for evaluating 
and predicting the expressivity of the device. 

The audience's degree of transparency provides an orthogonal axis. How
ever, the audience does not require physical proficiency with the interface. 
Instead, they only need to have an understanding of how the instrument 
works to appreciate the proficiency of the player. For the lay audience, this 
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Figure 3.2: The graph created by mapping transparency for the player and for the 
audience. 
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understanding is derived from cultural knowledge, including percepts of phys
ical causal relationships, which we have called the literature. Interestingly, 
this model would predict that it is possible for the audience to increase the 
expressivity of the instrument. This could be accomplished by studying the 
theory of the instrument or by learning to play the instrument, both of which 
would increase the transparency of the mapping. Increased transparency con
tributes to the audience's appreciation of the player's proficiency, leading to 
increased expressivity. 

3.2 A Framework for Expressivity 
We have defined orthogonal axes representing mapping transparency for both 
the player and the audience. Though the axes are continuous, for referential 
convenience we roughly divide the square into four quadrants corresponding 
to opaque or transparent for player or audience. Then "transparent/opaque" 
refers to the region that is transparent for the player but opaque for the 
audience, and so on. Some existing instruments can be seen on this graph in 
Figure 3.3. 

Most traditional instruments lie in the transparent/transparent quadrant, 
transparent for both the player and the audience. The violin, for example, 
is well known to both player and audience due to cultural exposure. The 
mapping of control gestures to sound output is embodied in the mechanical 
construction of the instrument. This embodiment, along with the form factor 
of the instrument, makes the affordances [44] of control apparent to the player 
and the audience. Because the violin is a culturally familiar instrument, the 
gestures that control it affect the output in known, predictable ways. These 
gestures include string choice, finger position, and bowing parameters. The 
violin's form factor and control predictability also make it learnable on a 
reasonable human time scale, though many young students may complain 
to the contrary. These attributes make the violin's mapping transparent for 
both the player and the audience. 

On the other end of the spectrum, many new technologies fall in the 
opaque/opaque quadrant, opaque for both the player and the audience. New 
controllers require both parties to learn the mapping from unfamiliar control 
gestures to existing output interfaces. New synthesiser engines frequently 
attempt to create novel sound output spaces, which must be mapped from 
an existing input interface. The worst-case scenario, new controller mapping 
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F i g u r e 3.3: The transparency gradient showing the approximate positions of several 
instruments: violin (A), piano (B), scratch turntable (c), synthesiser keyboard in percus
sion mode (D), Iamascope (E), Very Nervous System (F), and laptop bands (G). Viol in , 
Iamascope, Very Nervous System, and laptop bands are discussed in the text. Piano is 
shown slightly less transparent to the audience because parts of the sound production 
mechanism are hidden inside the body of the instrument. The scratch turntable is largely 
transparent but has modes that are hidden to the audience (choice of disk) and the player 
(exact position on disk). The hidden modes of the synthesiser keyboard, coupled with the 
non-intuitive mapping of keys, make it even more opaque than the turntable. 
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to new synthesis engine, is increasingly common. In all these cases, there 
is a gap in familiarity for both player and audience. Neither party knows 
what output to expect based on a given input. The player can improve on 
this situation by gaining physical proficiency, but this is difficult when the 
mapping is not clear. 

The Very Nervous System (VNS) [55], a gestural controller, is an exam
ple of an opaque/opaque instrument. It uses Fourier analysis to determine 
the frequency components of video input, mapping these to musical param
eters. The mapping is so complex, however, that it is extremely difficult for 
either the player or the audience to understand what is happening. Another 
opaque/opaque instrument is the Iamascope [16], in which unseen zones in 
front of a video camera correspond to strings on an imaginary instrument. 
Movement in a zone maps to plucking of its string, but the link is non-obvious. 
This, coupled with the fact that the zones themselves are impossible to per
ceive, makes Iamascope difficult to play expressively even for those who do 
understand its mapping. 

There are two common ways to move a new technology out of the opaque/-
opaque quadrant. The first is to make the instrument simple; the second is 
to add desirable functionality. These methods tend to move instruments in 
different directions, to opaque/transparent and transparent/opaque respec
tively. Simplifying an instrument tends to make it easier for the audience 
to understand, but doesn't necessarily make it easier to play. Often sim
plifications reduce the dynamic range of the output, lowering the expressive 
capacity. Adding functionality creates a motivation for early adopters [43] to 
learn the instrument but provides no explanation of the instrument's map
ping to the audience. 

The common problem that both of these methods share is that neither 
of them relates to existing literature. This displacement from a common 
reference point causes opacity for both player and audience. A new mapping, 
based on reference to the literature, would avoid such drawbacks. Metaphor 
can be used to relate new technology to the known, cultural basis of the 
literature. The literature may be from any culture, and metaphors from two 
or more literatures can be combined in a device. In the following section, we 
present metaphor as a way to increase the transparency for both the player 
and the audience. 
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Figure 3.4: The categories of instruments formed by the intersection of temporal and 
spatial multiplexing, and examples of instruments in each category. 

3.3 Increasing Expressivity Using Metaphor 
The application of a metaphor to an interface has the effect of increasing 
the transparency for both the player and the audience. However, depending 
on the mapping type, metaphor is effective through different mechanisms. 
Depending on whether the mapping is modal or non-modal, or is conver
gent, one-to-one, or divergent, six possible mapping types exist [7]. Modal 
mappings are those in which the input is multiplexed temporally. That is, 
depending on the active mode, a given input can produce one of multiple 
outputs. Convergent, one-to-one, or divergent mappings are based on the 
amount of spatial multiplexing — the degree to which groups of gestures 
are mapped to groups of simultaneous sounds. The six possible mapping 
combinations are shown in Figure 3.4 along with examples. 

Modal mappings can benefit from metaphor as a way to obviate the in
strument's current mode. Convergent, divergent, and one-to-one mappings 
can all use metaphor to explain their behaviour. The following sections dis
cuss examples of convergent non-modal, convergent modal, and one-to-one 
non-modal mappings. Finally, metaphor is presented as a design tool. 

3.3.1 Convergent Non-Modal Mappings 
Convergent, non-modal mappings generalise groups of control gestures into 
common outputs. An example from the literature of musical instruments is 
the piano. Many finger positions activate the same key, sounding the same 
note. There are no internal modes2, so the note played is the same each time 
the key is pressed. Metaphor can be used to cognitively group the control 

2 W e can safely ignore the piano's pedals, which arguably don't change the meanings of 
the finger positions and therefore don't create internal modes. 
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gestures associated with one sound output. In the case of the piano, a range 
of finger positions is understood to activate a single key. This metaphor 
has been used in instruments that use a key model but don't have explicit 
keyboards, such as in the Virtual Piano created by Leonella Taraballa and 
Graziano Bertini at the C N U C E in Pisa in 1997. The Virtual Piano removes 
the keyboard entirely, relying on the familiar gestures of a pianist without 
the physical keys. 

3.3.2 Convergent Modal Mappings 
Modal mappings use internal modes to choose which sound output will result 
from each single gesture. For example, the synthesiser keyboard uses different 
modes to map convergent key presses to different outputs. Pressing the 
same key in the same way can, in different modes, produce the sound of 
a piano, a tuba, a raindrop, or any other arbitrary sound. In this case, 
the piano keyboard metaphor, which has pitch increasing to the right, can 
be maintained if the sounds produced contain a pitch element. However, 
the mode selection is arbitrary, hidden from the audience. Furthermore, it is 
often poorly indicated to the player, usually consisting of a set of buttons with 
some indicator light, or a menu system. This interface could be improved 
with the application of an appropriate metaphor defining and explaining the 
mode selection process. One rather simplistic solution would be to use a 
tangible interface [32] based on small figurines of actual instruments. These 
would be placed on the keyboard to indicate mode selection to the player and 
the audience. The obvious problem with this metaphor is that it requires 
the player to find the correct figurine in order to switch modes during a 
performance. This may be too time-consuming, especially in instruments 
with many tens or hundreds of possible modes. 

3.3.3 One-to-One Non-Modal Mappings 
One-to-one mappings exemplify a direct relationship between control and 
output. With a complex instrument, it can be difficult to remember what 
the relationship is. Metaphor can be used to provide a control framework for 
the mapping. This framework creates relationships to the individual control 
gestures. BoSSA, for example, bases its control gestures on those of the 
violin. Instead of directly affecting a vibrating string, the BoSSA player 
bows a set of force-sensing-resistor-based vanes, while fingering a pressure-
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sensitive fingerboard on an attached neck. In this way he directly interprets 
the violin metaphor. BoSSA then builds on that base by allowing gestures 
not normally useful on the original instrument, such as changing the angle 
of the neck relative to the body of the instrument. 

One interesting offshoot of this approach is the possibility of combined 
mapping types. The acoustic guitar, for example, is similar to a violin in its 
control gestures. However, it also incorporates components of a convergent 
mapping through the inclusion of frets. Frets allow many finger positions 
on the strings to be mapped to one string length, which produces a single 
sound output. The use of frets improves the transparency of the instrument 
by making it more apparent which finger positions will produce which notes. 
Novice violinists spend a long time learning the correct finger positions for 
each note, while frets ease this process for novice guitarists. This increase in 
transparency comes at the expense of expressivity3. Guitarists can no longer 
create glissandos, trills, or vibratos using the same gestures as violinists. 
However, guitarists have found ways to regain this expressivity that would 
not be possible without the frets. Pitch bends are accomplished on a guitar by 
sliding the string sideways on the fret, thereby stretching the string. Vibrato 
can also be achieved by varying finger pressure behind the fret, also stretching 
the string. Such gestures are not possible on a violin because they require 
frets, and because the cocked wrist position of a violinist doesn't provide a 
strong enough grip to affect the strings in these ways. 

As an aside, one variation for the guitar, suggested by this comparison to 
the violin, would be to remove the frets after the player has learned the correct 
note positions. In this case, the frets would act as training wheels for the 
guitarist. Removed when no longer needed, the guitarist could then return to 
the more transparent one-to-one mapping of a fretless guitar. Indeed, there 
is a growing community devoted to the subculture of fretless guitar. 

3.3.4 Metaphor as a Design Tool 
We have seen that metaphor can be applied to new technologies in many 
ways in the previous sections and in [38] and [60]. Metaphor can also be 
used as a design tool when creating new instruments. If a new synthesis 
engine is implemented, it may suggest a metaphor that encompasses its main 

3 This demonstrates the idea that transparency is a necessary but not sufficient condition 
for expression. In this case, increasing transparency has decreased the dynamic range of 
the instrument, which decreases its expressivity. 
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characteristics. The metaphor may then dictate an appropriate controller for 
the device, so that the entire device is self-consistent. 

One example given in Section 3.2, Iamascope, used the metaphor of pluck
ing strings to determine how movement in front of a video camera would 
control the music. Movement in each of ten zones would pluck the string 
corresponding to that zone. While this is a reasonable metaphor, two factors 
mitigate its usefulness in creating an expressive instrument. First, the com
puter automatically chose chords on the ten strings. The user could choose 
which string to pluck, but the note corresponding to that string might have 
changed due to an internal mode switch. This factor alone reduced the con
trollability and learnability of the interface, creating an opaque mapping. 
Second, the metaphor depends on the user recognizing the ten zones and be
ing able to consistently select between them. Since the zones were unmarked 
and were in an external frame of reference, the gestures required to trigger 
them were very difficult to reproduce. One lesson learned from Iamascope is 
that metaphor alone is not sufficient: the metaphor must be represented in 
the interface for it to be meaningful to the user. 

In the next chapter we will examine how MetaMuse is designed around 
metaphors appropriate for granular synthesis. The discrete event-based na
ture of granular synthesis suggested the rainfall metaphor used in the device, 
which then indicated a watering can as an appropriate controller. In Meta
Muse, the synthesiser suggested the metaphor, which suggested the con
troller. This design strategy can also be reversed: a new controller may 
suggest a metaphor, which may then dictate an appropriate synthesis engine 
for the device. Finally, an instrument can be based on an original metaphor, 
from which both the input and the output interfaces are drawn. By apply
ing these design strategies to the mapping types discussed above, metaphor 
can lead to more transparent instrument mappings, which in turn create 
expressive devices. 
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C H A P T E R 4 

T H E M E T A M U S E S Y S T E M 

From our discussion in the previous chapter, we predict that metaphor is 
a valuable tool for both designing and playing expressive instruments. We 
built MetaMuse, a metaphor-based instrument, to explore this theory. In 
this chapter we will see how MetaMuse centres on specific metaphors which 
guided critical decisions during the system's design. In the next chapter we 
see how MetaMuse was evaluated as an expressive device for players. 

MetaMuse is a rain-sound synthesis device based on metaphors of pouring 
water, falling rain, and changing landscape. The device, shown in Figure 4.1, 
uses two props, a watering can and a flat landscape, to control a real-time 
granular synthesiser. The three system metaphors provided the central theme 
for MetaMuse's design. Originally chosen to match the synthesis engine 
used, the metaphors guided the design of the prop paradigm used for the 
controllers and the mapping from control gesture to synthesis parameters. 
Ultimately the metaphor-based design came full circle, prompting significant 
modifications to the synthesis engine itself to provide a better cognitive fit. 

MetaMuse is rooted in its metaphors, so elucidating them is important 
to explaining the system. Once we examine the metaphors we can discuss 
their impact on the system design, from the choice of props to the mapping 
and synthesis model. We begin with an examination of the metaphors. 

4.1 The use of Metaphor in the MetaMuse 
System 

The MetaMuse system is centred around three metaphors: pouring water, 
falling rain, and a virtual landscape. The pouring metaphor encompasses the 
act of pouring and the control implied therein. The concept of falling rain 
includes the fall of water particles and their striking a surface. The virtual 
landscape metaphor implies the ability to change the surface on which the 
rain falls, and therefore the resultant sound. The ensuing discussion of these 
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F i g u r e 4.1: MetaMuse. In the foreground, we see the watering can and landscape props 

used to control a rain sound synthesiser. In the background the props are rendered on the 

screen along with the virtual water that flows between them. 

me taphor s inc ludes fo rward references to the p rops used; these p rops are 

d iscussed i n greater d e t a i l i n c o m i n g sect ions. 

4.1.1 Pouring Metaphor 
T h e p o u r i n g m e t a p h o r is based on the act o f p o u r i n g wa te r f rom a vessel. 
M o r e speci f ica l ly , i n M e t a M u s e i t is based o n the w a t e r i n g can found i n 
m a n y gardener ' s sheds. O n e e x a m p l e of such a w a t e r i n g c a n is dep i c t ed i n 
F i g u r e 4.2. 

T h e m e t a p h o r comes f rom the l i t e r a t u r e of g a r d e n i n g too ls , bu t i t a lso 
d raws f rom other , more genera l exper ience . A n y l i t e r a tu re t ha t involves 
p o u r i n g water f rom a vessel, i n c l u d i n g such every-day ac t i v i t i e s as s e rv ing 
d r i n k s at d inner , can be i n v o k e d to e x p l a i n the p o u r i n g used i n M e t a M u s e . 
T h e rose is s i m i l a r l y genera l i sed , as mos t people w h o m i g h t use M e t a M u s e 
have exper ience e i ther w i t h showers, a n d therefore shower heads, or w i t h 
s i m i l a r a t t achments for ga rden hoses. 

T h e m e t a p h o r i m p l i e s t h a t the w a t e r i n g c a n , w h i c h embod ie s the me ta 
phor , w i l l c o n f o r m to specif ic b e h a v i o u r s . T i l t i n g the c a n fo rward produces 
a flow of water f rom the spou t , w h i c h is b roken i n t o i n d i v i d u a l d rop le t s by 
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Rese rvo i r 

F i g u r e 4.2: A typical watering can. A n open hole is used to fill the reservoir from the 

top, and a spout emerges upwards from near the base of the reservoir. The rose at the 

end of the spout causes the stream of water to break into individual droplets. 

the rose. T h e far ther the c a n is t i l t e d , the m o r e wa te r flows f rom the spou t . 

T i l t i n g i n o ther d i r ec t i ons reduces the flow of wa te r or, i n the case of t i l t i n g 

abou t the ax i s o f the spou t , has no effect. 
O u r i n t e r p r e t a t i o n of th i s m e t a p h o r has two no t i ceab le inaccurac ies , a n d 

one less-not iceable one. T h e greater p a i r are t ha t the wate r leve l never 
changes, a n d tha t wa te r c anno t be p o u r e d f r o m open ings o ther t h a n the 
spout . H a v i n g an u n c h a n g i n g wa te r level is by des ign , i n t ha t i t is des i rable to 
have a c o n t i n u i n g flow of wa te r for any l e n g t h of t i m e w i t h o u t the user h a v i n g 
to s top t o " r e f i l l " the c a n . T h i s depa r tu re f r o m the expec ted b e h a v i o u r of 
a w a t e r i n g c a n is acceptab le because i t is eas i ly u n d e r s t o o d . In a l l bu t the 
smal les t w a t e r i n g cans , the reservoi r o f wa te r is large enough tha t the change 
i n water leve l d u r i n g the first few m o m e n t s of p o u r i n g has l i t t l e effect on the 
water flow. T h e d u r a t i o n is l o n g enough t h a t we c a n cons ider the l i t e r a tu re 
to i n c l u d e a cons tant -pressure p o u r f rom a reservoir . T h e p o u r i n g m e t a p h o r 
refers to t ha t aspect o f the l i t e r a t u r e on ly , a n d user t e s t ing , d iscussed i n 
C h a p t e r 5, suggests t ha t the d i s t i n c t i o n is accep ted . 

T h e second i n a c c u r a c y i n o u r i n t e r p r e t a t i o n involves t i l t angles t h a t are 
not used d u r i n g n o r m a l p o u r i n g . Fo r e x a m p l e , a r ea l w a t e r i n g c a n has a 
hole at the t o p for filling; i f the c a n were i nve r t ed the wate r w o u l d p o u r 
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out of the hole in a stream. Similarly, most watering cans have spouts that 
emerge from the base of the can as in Figure 4.2. Tilting such a can greater 
than 90°actually causes a reduction in the spout water pressure. Neither of 
these behaviours is modeled by the system, but they are not required for its 
operation. They would, however, greatly complicate its implementation, so 
we have left these behaviours for future work (see Section 6.5). As we shall see 
in Chapter 5, many users tried to test this aspect of the metaphor, apparently 
not because this behaviour was expected but because they were curious to 
see if it had been implemented. In some cases, users seemed to by trying to 
"break" the system by using it in a way they thought was unexpected. Users 
generally had no issue with the restriction on this behaviour once they'd 
determined it wasn't possible in our system. 

The more minor inaccuracy in our interpretation of the metaphor has to 
do with how the flow of water from the watering can's spout is calculated. 
The correct calculation of the amount of water flowing from the spout would 
take into account the shape of the reservoir at the current angle of tilt to 
determine the water pressure in the spout, then consider the cross-section 
of the spout to calculate the resultant flow of water. Similarly, calculating 
the correct velocity of the water from the spout should take into account 
the flow, the spout's orientation, and the velocity of the watering can itself. 
Instead, the amount of water produced at the spout, and its initial velocity, 
are calculated simply based on the downward component of the spout. This 
simplification means that certain interactions, such as sloshing the water 
to vary the throw from the spout, are not possible. Unlike the inaccuracies 
noted above, this issue was not commented on by our users. It did not appear 
to affect the operation of the device. 

4.1.2 Rainfall Metaphor 
The rainfall metaphor is based on a water droplet falling from some height 
and hitting some surface. When the droplet hits the surface a splash is 
heard, its properties depending on the velocity of the droplet. The splash 
itself, evoking a certain surface composition, is determined according to the 
landscape metaphor described in the following section. The rainfall metaphor 
specifically refers to the way in which the water droplets fall separately from 
one another, the velocity of their impact, and the fact that they splash on 
striking the landscape. It is the cumulation of many splashes that makes the 
sound of rainfall. 
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The literature for the rainfall metaphor is a combination of rainfall it
self and other water sounds. Most people have experienced the sound of 
rainfall and know what to expect when many water droplets fall onto a sur
face. Variations of this effect are common to many literatures, including the 
shower present in most North American bathrooms and the sprinklers on 
many North American lawns. It is the group of all of these processes that 
provides the expectation of droplets' behaviours and their sounds given the 
surface type. 

Being based on a group of processes rather than one process specifically, 
the rainfall metaphor is open to interpretation in some ways. Two ways 
in which the metaphor used in MetaMuse differ from real-world rainfall are 
terminal velocity and distance effects. 

When rain falls from the sky, it falls far enough to reach terminal velocity. 
In ideal conditions, rain will always hit the ground with the same velocity. 
Other sources of water are closer to the ground and can also vary in veloc
ity. Our system operates by the latter model, allowing the user to vary the 
strength of the droplets hitting the surface. Due to wind effects, rain falling 
from the sky doesn't fall with constant velocity, and can hit harder or softer 
as the wind gusts. By allowing the user to control the droplets' velocity, 
wind-related rainfall effects can be created. 

The sound of rain is a cumulative sound, with many raindrops' splashes 
heard together. In particular, some raindrops hit the ground closer to the 
observer, while some hit farther away. This results in a variation in volume 
over the accumulation, shown in Figure 4.3, that is not modeled in the sys
tem. Section 4.3.3 discusses the limitations imposed on the system due to 
finite computing resources, and the methods by which these limitations were 
mitigated. 

As with the watering can metaphor, there is an inaccuracy in our in
terpretation of the rainfall metaphor: no runoff, pooling, or other surface 
effects are modeled. For the same reason as the constant water level in the 
watering can metaphor, the effect is not required to provide consistency with 
the metaphor. Specifically, rainfall has an initial stage, before enough water 
has fallen to form pools, in which the droplets land on a dry surface. It is 
reasonable to draw the metaphor from that period alone. 
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Figure 4 . 3 : Droplets at different distances contribute different amounts to the total 
sound. The number of droplets, N , increases exponentially with distance away from the 
listener in the centre. Meanwhile, the volume of the individual droplets, D , attenuates to 
zero. The total contributed volume with distance is estimated as curve V . 

4.1.3 Landscape Metaphor 
The landscape metaphor implies the ability to vary the surface on which 
the droplets land. Whereas the rainfall metaphor, described previously, indi
cates that there will be a splash heard when the droplet hits, the landscape 
metaphor describes the possibility of different surface compositions and there
fore different splashing sounds. The metaphor is based on landscape maps, 
where a large area of land is represented on a smaller scale. However, its 
representation is abstracted to avoid giving incorrect preconceptions. 

The literature for different surfaces producing different sounds is as var
ied as the literature for the rainfall metaphor. The primary source for this 
metaphor is, of course, rainfall: people's experiences with rainfall under dif
ferent conditions provide an expectation for different sounds depending on 
surface composition. One such experience may be a person's walking from 
a grassy area to a paved area while it is raining. The person will experi
ence a change in the sound of the rain as he or she moves. While this type 
of experience necessitates a certain time separation between the perception 
of the different sounds, it generalises to quickly-changing sounds. Indeed, 
other water experiences will provide that experience directly; spraying a gar
den hose on various surfaces is one. Other water sounds, such as running 
a shower in different shower stalls at different times or sitting in a car as it 
moves through an automatic car wash, provide additional background from 
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which a user of MetaMuse can draw. 
To evoke the varying landscape metaphor, the surface of the palette prop 

represents a landscape, with areas of trees, grass, rock, and pond, as well as 
transitions between these areas. However, the depiction of this landscape is 
very abstract, as seen on the landscape in Figure 4.5. Though the sound of 
rain is a common one that many people have heard, depending on a user's 
background she may expect rain on a certain surface type to sound in a 
certain way. MetaMuse intentionally avoids providing a grounding point for 
these expectations by its lack of specific landscape features. For example, 
a person who grew up near a forest may expect rain over trees to sound a 
particular way depending on the makeup of that forest. Since the palette 
has an abstract pattern of colour rather than being specifically illustrated, 
the user will have more general expectations - green may represent foliage, 
but no particular foliage is implied. 

4.2 P r o p s 

MetaMuse is controlled by manipulating two hand-held props. As the input 
interface to the system, the props define the range of valid control gestures 
available to the user. They are also designed to embody the metaphors 
present in the system so that they give the user appropriate expectations 
regarding the use of the system. The two props used in the system are the 
watering can and the landscape, shown in Figures 4.4 and 4.5. 

Recall in Section 3.1 we defined the input interface of a device mapping 
as the set of control gestures used to control the device. The input interface 
of MetaMuse consists of gestures that result in water pouring from watering 
can and impacting the surface some way. By using a watering can prop to 
embody the pouring metaphor, and an abstract landscape to embody the 
landscape metaphor, the input interface is clearly implied. In Norman's [44] 
framework, the watering can affords pouring from, and the landscape affords 
pouring onto. 

The following subsections discuss the props, their affordances, and their 
embodiment of the three metaphors discussed in the previous section. 
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F i g u r e 4.4: The watering can prop. It is plastic, about 20 cm high. 

4.2.1 Watering Can 
The watering can prop is composed of a small plastic watering can, shown 
in Figure 4.4. The can is small enough to use comfortably with one hand -
about 20 cm high. 

The can's handle and spout afford the act of pouring. It is natural for 
a new user to try tilting the can in a pouring motion to see what happens. 
The part of the input interface embodied by the watering can matches this 
affordance well, as control with this prop consists entirely of normal pouring 
actions. As such, the watering can embodies the pouring metaphor. 

Note, however, that the watering can prop does not include the physical 
representation of the rose discussed in Section 4.1.1. User reactions during 
the first pilot experiment, discussed in Section 5.4.1, indicated that it was 
not necessary — users had no expectation of a single stream of water as the 
spout might imply. Since it was not a concern, no rose was added to the 
prop. 

4.2.2 Landscape 
The landscape prop is composed of a large wooden circle with a handle glued 
to the bottom and a pattern overlaid on paper, as shown in Figure 4.5. An 
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Figure 4.5: The landscape prop. It is made of thin wood, covered in paper printed in a 
colour gradient. Nearly circular, it is about 70 cm across. 

earlier version of the landscape was smaller, based on a painter's palette with 
a hole for grasping. In Section 5.4.1 we discuss why it was discarded in favour 
of a larger palette. 

The purpose of the landscape prop is not as obvious as that of the wa
tering can. It certainly affords holding, presenting itself as something to be 
positioned horizontally, but its use could be confused. However, placed in 
context with the watering can its use becomes clear — it is the obvious sink 
to the watering can's source. 

The abstract colour pattern on the landscape presents a placeholder 
for the user, indicating that position on the landscape is important. As 
such, it affords varied droplet placement, thereby embodying the landscape 
metaphor. As discussed in Section 4.1.3, the colour pattern was purposefully 
left abstract to avoid false expectation. 

The final metaphor used in MetaMuse is that of rainfall. This metaphor 
is not embodied in the props because it describes the behaviour of the virtual 
water that mediates their interaction. Just as the purpose of the landscape 
becomes clear with experimentation, however, so does the use of the rainfall 
metaphor. For both of these issues new users are aided by the visualisation 
of the system, shown in Figure 4.6. 

The watering can, landscape, and their interactions together define the 
input interface. The interpretation of these actions takes place in the map
ping. 
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Figure 4.6: The graphics scene, rendered in OpenGL. The watering can and landscape 
are represented directly, while the virtual water seen flowing between them has no physical 
analogue. 

4.3 Mapping 
As described in Section 3.1, the mapping defines the interpretation of the 
user's input gestures and their conversion to sound output. In MetaMuse, the 
device mapping consists of the physical model, which mediates the pouring of 
virtual water between the props; the synthesiser, which converts the virtual 
droplets to sound output; and the link between these components. 

4.3.1 Physical Model 
The physical model provides the mechanism for the interaction between the 
two props, partially defining the mapping from input interface to output 
interface. It consists primarily of a particle model that creates particles at 
the spout of the virtual watering can, updates their positions to fall freely 
under simulated gravity, and tests for collisions with the virtual landscape. 
It also includes a Tcl /Tk interface to manipulate configurable parameters so 
that they match the physical props' sizes and locations to the virtual model, 
as well as OpenGL code to render the virtual model on the screen. 

The particle model consists of the prop positions and a set of droplets, 
called "sprinks"1. The prop positions are updated by Polhemus magnetic 

'So called because they are sprinkled. 



CHAPTER 4. THE METAMUSE SYSTEM 40 

w> . ' - . . i 
M Stream 

3 fixes 

J Mhrnr z axis 
W DjspJay graphics 

Restart graphics 

graphics j 

Swap sound source | 

M Stream 

3 fixes 

J Mhrnr z axis 
W DjspJay graphics 

Restart graphics 

graphics j 

Swap sound source | 

onsets 

v Spout v landscape v Watartng Can » WW 

Ws v n n n P n n ni' 
I 1 3 J l p 5 J , J M | j r 

.»! i -'"LI ""'P • j |J J j 
Position Orientation Scale 

M Stream 

3 fixes 

J Mhrnr z axis 
W DjspJay graphics 

Restart graphics 

graphics j 

Swap sound source | 

' ' _ J 

Scales 

v- Row Diree lion Scale 
v ; Sprlnk Stze * 10 

v How Amount Scate 
* Time Factor 

v Landscape Texture Rotation 

li 

Figure 4.7: The configuration interface for MetaMuse. The bank of vertical sliders 
allows the model to be positioned relative to the Polhemus. The horizontal slider along 
the bottom adjusts model parameters such as a flow gain control and rendered droplet size. 
The controls on the top left perform system tasks such as turning Polhemus streaming on 
and off. 

sensors, and new sprinks added to the system based on the position and 
tilt of the watering can. New sprinks have an initial position and velocity, 
with a small random velocity added to ensure a slight spread of flow when 
many droplets fall. Droplets are updated based on simulated gravity. As 
each droplet is updated, it is tested against the current landscape position. 
Droplets that intersect the landscape initiate synthesiser events based on 
their position and velocity relative to the landscape. The consumption of 
these events by the synthesiser is discussed in Section 4.3.4. 

The other two components of the physical model are the Tc l /Tk configu
ration interface and the OpenGL graphical visualisation. The configuration 
interface, shown in Figure 4.7, provides access to Polhemus calibration and 
physical model tuning. Adjustments with this interface were made during 
development, but the interface was not exposed to the test subjects so it will 
not be discussed further. 

The graphics in MetaMuse are not complex, as rendering is not the focus 
of this thesis. Basic OpenGL commands are used to create a scene with the 
three required elements: watering can, landscape, and sprinks. The full scene 
is shown in Figure 4.6. Users were encouraged to view the scene to help cali-



CHAPTER 4. THE METAMUSE SYSTEM 41 

brate themselves to such parameters as amount of flow and exact placement 
of sprinks of the landscape. However, we believe that an experienced user 
would not require visual feedback to competently manipulate the interface. 
This belief is not tested, and the graphics are not discussed further. 

As discussed above, each time a sprink intersects the landscape a droplet 
event is sent to the synthesiser. The event consists of six variables: position 
and velocity in three dimensions, relative to the landscape. Before discussing 
how these variables are converted to synthesiser parameters we will describe 
the synthesis engine itself. 

4.3.2 Sound Synthesis 
The MetaMuse synthesis engine uses a combination of granular synthesis 
and real-time synthesis. As described in the introduction to this chapter, 
granular synthesis provided the genesis of the system metaphors, which then 
prompted the modification of the synthesis engine. In granular synthesis, 
short sound samples are extracted from a sound source and played one over 
another, blending to create an overall effect. Normally, one or more longer 
pre-recorded sound samples are used as the sound source, so that the samples 
are selected discretely. MetaMuse is a continuous instrument, so the sound 
source was replaced with a real-time synthesiser that allowed continuous 
parametric control over the sound produced. The sound output of the real
time synthesiser was then blended and layered in the manner of a granular 
synthesiser, creating a new type of synthesis with aspects of both. We call 
this new synthesis technique "parametric granular synthesis". 

Granular Synthesis 

Granular synthesis, as described by Truax and summarised in Section 2.4.1, 
blends and overlaps many short-duration sound samples to create a gestalt 
sound different from the original samples. These short samples are selected 
from one or more lengthier prerecorded sounds. Because of this underlying 
selection of existing sounds, granular synthesis has an inherent discreteness 
to it: to change the underlying sound, a new sound file must be loaded. 

While the underlying sound sample can only be changed discretely, the 
MetaMuse controller provides a continuously variable input. Therefore the 
underlying sound source was replaced while the overall structure of granular 
synthesis was maintained. Instead of using a pre-recorded sample as the 
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sound source, we used the output of a parametric real-time synthesiser that 
produced short-duration sounds, then blended its output using the layering 
effect for which granular synthesis is known. 

Real-Time Synthesis 

The real-time synthesiser used for MetaMuse is based on the Synthesis Toolkit 
(STK) [56]. STK is a set of audio synthesis classes written in C++ that in
cludes a stochastic event model called Shakers. By modifying the Shakers 
class, a water droplet "Instrument" was built. Several such Instruments were 
used in parallel to synthesise the sound of rain. The Shakers class, its modi
fications, a heuristic filter, and the mapping from physical model parameters 
to synthesiser parameters are discussed in this section. 

The Shakers class provides Ph lSEM, the Physically Informed Stochastic 
Event Model, which simulates collisions of multiple sound-producing objects. 
Effectively, a real-time stochastic excitation process provides input to a bank 
of resonant filters. By varying such parameters as the initial excitation en
ergy, reverberation, decay, and gains at various points in the system, and 
filter characteristics such as centre frequency and resonance, a variety of in
struments can be simulated. These include maracas, bamboo wind chimes, 
and tambourine. The P h l S E M system is summarised in Figure 4.8. 

Several changes were made to the Shakers class to provide a water droplet 
synthesiser. Foremost of these was the replacement of the stochastic processes 
with pseudo-random signals. In Shakers, exciting the model with identical 
parameters can result in varying sounds, depending on the random signal 
generated at runtime. This results in an inconsistent sound, inappropriate 
for an instrument where repeatability is a desirable quality. Therefore, the 
random function was pre-generated and saved, to be used as the "random" 
input every time the instrument is excited. 

Similarly, the excitation function was a random process in the Shakers 
class. It was replaced with a recorded excitation function obtained from 
recording a water droplet landing on a non-resonant surface. This provides 
the basic excitation for our water droplet synthesiser. Other changes to the 
Shakers class were for programming purposes and did not affect the sound. 
A l l changes are discussed in greater detail in Appendix B. 

The result of the modifications is an Instrument class that uses 26 pa
rameters plus activation energy to define the output sound. Different regions 
in that sound space are used to synthesise different instruments, with one 
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F i g u r e 4.8: The sound generation process. The input energy is set to an initial value 
when a droplet is initiated, and decays with each iteration. Based on a random process, the 
input energy is sometimes added to the system energy, which decays similarly. A random 
excitation process perturbs the system energy before it is input to the resonant filter bank. 
Finally, the filter outputs are fed into a delay line and three delays are summed to form 
the sound output. For MetaMuse, the random processes were replaced with pre-recorded 
sequences to ensure consistency across droplets. 
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region producing water droplet sounds. Several such Instruments are used in 
parallel to allow multiple concurrent droplets to sound. Each time a droplet 
event is received, the next Instrument is set up with the appropriate parame
ters and excited. The sum of all Instruments' output produces the rain sound 
output. 

4.3.3 Heuristics in the Synthesis Engine 
The above synthesis method creates an Instrument that produces a convinc
ing range of single water-droplet sounds. However, when many such sounds 
are combined to create rainfall sounds, the synthesiser sounds "flat". There 
is a noticeable difference between the sound of rain and the sound of the 
synthesiser, the most prominent effect being a lack of bass. 

One of the main causes of this difference is the limited processing power 
of the hardware used for the synthesiser. Rainfall inherently consists of many 
thousands of droplets landing nearly simultaneously in audible range. Our 
PC hardware was only able to synthesise ten to fifteen concurrent instruments 
before the sound degraded with the processor running at full capacity. To 
compensate for this shortcoming, heuristics are employed to give the illusion 
of more rain. 

Three heuristics were introduced: bass boost, low-pass filtering, and gain 
control. These are shown in Figure 4.9. All three are based on the number of 
currently-active Instruments, or the instantaneous frequency. As the number 
of concurrent droplets increases, the gain is increased on the bass filters of 
each Instrument, filling in the sound. A low-pass filter is employed as more 
droplets become active, slurring the sounds together to make them less dis
tinct. Finally, the overall system gain is increased, raising the volume of the 
system. These three heuristics greatly improve the sound of the synthesiser. 

4.3.4 Converting Sprinks to Droplets 
With the synthesiser creating such a broad sound space, the mapping from 
the physical model's sprinks to the synthesiser's droplets is very important. 
It must restrict the synthesiser's parameter space to a meaningful subset 
of the available sounds, yet provide enough freedom to allow a fairly broad 
range of rain sounds. 

The large sound space of the synthesiser was reduced to a controllable re
gion by restricting navigation to a plane in that space. Specifically, three pa-
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Figure 4.9: Three heuristics were employed to improve the quality of the synthesiser's 
output. All three were based on the number of currently-sounding droplets. As the number 
of droplets increased, the gain on two low-frequency niters in the filter bank of Figure 4.8 
was increased; the amount of low-pass filtering on the sound output was increased; and 
the overall synthesiser volume was increased. These heuristics helped simulate the sound 
of a greater number of droplets. 

rameter sets producing very different-sounding droplets were defined. These 
are virtually "positioned" on the rim of the landscape, equidistant from one 
another. The three droplets then define a plane in parameter space that 
covers the landscape, and all sprinks' positions are mapped to synthesiser 
parameters by interpolation. 

This method results in a sound space that does not include all water-
droplet sounds. However, it does provide a wide range of such sounds, and 
more importantly it excludes all sounds that are too far removed from water-
droplet sounds to be used. 

This chapter provided an overview of the MetaMuse system. Appen
dices B and C provide further details on the sound synthesiser and the Polhe
mus libraries respectively. In the following chapter we discuss the evaluation 
of the system. 
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C H A P T E R 5 

S Y S T E M E V A L U A T I O N A N D 
U S E R T E S T I N G 

Having used metaphor to aid in the design of the MetaMuse system, we per
formed a series of user experiments to evaluate its expressivity. In Chapter 3, 
we posited that metaphor provides guidance in both designing and playing 
a novel device. By the mechanism of metaphor, the device's mapping is 
made more transparent, increasing the expressivity of the device. In this 
chapter we will describe how MetaMuse was tested and the effectiveness this 
approach verified. 

Since metaphor was an integral part of the design process and is imbued 
in the system, we expect that it will aid users in playing MetaMuse, and that 
the device will be more expressive than similar devices not using metaphor. 
Our approach to testing MetaMuse, therefore, is a comparative one. Three 
typical graphical user interfaces (GUIs) were built, using increasing levels of 
abstraction to control the same synthesiser. We evaluated MetaMuse and 
these GUIs in a series of experiments designed to measure the controllability 
and expressivity of the different interfaces. 

Three pilot experiments were run to validate and refine our experimental 
process. The final experiment was a formal user test consisting of a sound 
target matching exercise and a questionnaire. Our hypotheses were: 

1. MetaMuse is more expressive than a typical GUI controller. 

2. MetaMuse is more controllable than a typical GUI controller. 

The results confirm that metaphor is a valuable tool for designing and un
derstanding novel devices. In particular, users found MetaMuse to be more 
creative than the non-metaphoric interfaces, confirming the expressivity hy
pothesis. The experiments also found some support for the second hypothe
sis. Our results are summarised in the following section, which provides an 
overview of the experiments run. The remainder of the chapter will describe 
the experiments in greater detail. 
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5.1 Overview 
Four experiments were run to evaluate MetaMuse. These were a pilot exper
iment, a just-noticeable difference (JND) experiment, a second pilot exper
iment, and the final, formal user test. These experiments, and the lessons 
learned from them, will be introduced in this section. First, here is a sum
mary of the experiments. 

1. Pilot I 

Purpose Validate use of comparative target-matching task with typ
ical GUIs for measuring controllability. 

Results Validated basic approach. Exposed some system reliability 
issues. Prompted adjustment of experimental process to reduce 
learning effects. Indicated need for refinement of target distance 
metric. Obviated significant controllability deficiency in one GUI, 
motivating its removal from further experiments. 

2. Just-noticeable difference experiment 

Purpose Determine an appropriate metric for measuring subjects' ac
curacy in the target-matching task. 

Results Indicated that the number of significant variables in the ac
curacy calculation could be reduced to two while increasing the 
perceived accuracy of the metric. 

3. Pilot II 

Purpose Validate the systemic and procedural changes made since 
the first pilot. Verify the questionnaire. 

Results System and procedure verified. Fine-tuning of questionnaire 
indicated. 

4. Formal Experiment 

Purpose Compare the controllability and expressivity of MetaMuse 
to that of the typical GUIs, per the two hypotheses introduced in 
the previous section. 
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Results Users consider MetaMuse more "creative" than the GUIs, a 
result that is statistically significant. MetaMuse tends to be better 
in other aspects of expression and in target acquisition speed, 
but without significance. We can therefore claim support for the 
expressivity hypothesis, but not for the controllability hypothesis. 

The experiments were based on comparisons between MetaMuse and two 
or three traditional GUIs. The GUIs allowed parameter-level control over 
synthesiser parameters, primarily using sliders. They are referred to herein 
as "parametric interfaces", and described in more detail in later sections. 

The pilot experiment involved subjects listening to a target sound, then 
matching that sound by controlling the synthesiser with either the MetaMuse 
interface or one of the parametric interfaces. The test was run semi-formally, 
with the expectation that refinement would be required before the system 
was ready for formal experiments. 

The primary result of the pilot was that it showed that the target-
matching approach is a valid way to test controllability. Other revelations led 
to several modifications to the testing procedure and infrastructure. Most 
important of these was the identification of a number of reliability issues 
exposed during the pilot, which resulted in some components of the evalu
ation system being re-implemented more robustly. Also, it became obvious 
that one of the parametric interfaces offered significantly less control than 
MetaMuse or the other two GUIs. This interface was dropped from further 
testing. 

Another result of the pilot test was the realization that the accuracy 
metric was poorly defined. The pilot had been using Euclidean distance in 
synthesiser parameter-space to determine subjects' accuracy in acquiring the 
target. However, it became apparent from subject feedback that this metric 
was inconsistent. This problem motivated the second experiment, which 
tested the just-noticeable difference for the various synthesiser parameters. 

The just-noticeable difference for a parameter is the minimum change in 
that parameter's value that produces a perceptible difference in the sound. 
By determining which parameters have the greatest impact on the perceived 
sound, the metric can be tuned to measure the subjects' perceived accuracy. 
Testing JND involved constructing a new interface which allowed incremental 
changes of individual synthesiser parameters. Subjects were asked to listen to 
two sounds and indicate whether they perceived a difference between them. 
By changing a parameter varying amounts from various base values and 
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repeating for all parameters, a map of auditory sensitivity against parameter 
was made. 

The most significant result of the JND experiment was that certain as
pects of the sound had surprisingly low significance when varied alone. The 
primary one of these was the number of droplets per second: varying this 
parameter by large amounts produced little difference to the untrained ears 
of the JND experiment's subjects. Other parameters were found to vary to
gether at about the same rate. This, coupled with the correlation between 
some parameters due to the three-droplet landscape layout discussed in Sec
tion 4.3.4, allowed the number of parameters used in the distance calculation 
to be reduced to two. 

With the performance metric and other issues resolved, the system was 
ready for further user testing. At this stage, the timeline and required re
sources for additional testing were examined. Based on limited available 
resources, it was decided that the next experiment should test expressiv
ity in addition to controllability. A set of questionnaires was added to the 
target-matching test to gain insight into the expressive nature of the system. 

A second pilot was run to ensure that the modified experimental process 
was valid and all systemic issues were resolved. This pilot was run by several 
subjects who had done the first pilot, and verified the experimental process 
to be used in the formal user test. A number of minor issues were identified 
and some refinements were made. The questionnaire was modified slightly 
to ensure the appropriate information would be obtained, and the layout of 
the testing area finalised. 

The formal experiment run next was the final experiment of the series. 
Twelve subjects were run through the procedure; technical problems resulted 
in one of those subjects being dropped from the final analysis. The data were 
then analysed to evaluate the controllability and expressivity of MetaMuse 
compared to the other interfaces. We hypothesised that MetaMuse is more 
expressive than the parametric interfaces, and that it is more controllable 
than the parametric interface. We found significant support for the expres
sivity hypothesis. While trends were evident supporting the controllability 
hypothesis, these results were not significant. 

The expressivity hypothesis was supported by the experimental results. 
After using each interface, subjects were asked to rate their agreement with 
several statements on a scale of 1 ("Strongly Disagree") to 6 ("Strongly 
Agree"). For the statement "I felt creative while making rain sounds with 
this interface", subjects' responses averaged 5.22 for MetaMuse, compared to 
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3.78 for the highest-ranked parametric interface. This represents an increase 
of 38.2%, and was a statistically significant result. 

The controllability hypothesis was loosely supported by the experimental 
results. Using MetaMuse, subjects acquired their targets about 7% and 12% 
faster than with the two parametric interfaces. Subjects' accuracy perfor
mance was about the same on all interfaces — within 2%. However, statis
tical analysis of variance indicated that these results were not significant. 

The four experiments and their results will be discussed in greater detail 
in the remainder of this chapter. The next section will lay out the general 
approach taken to evaluating MetaMuse, motivating the following discussion 
of the experiments themselves. 

5.2 Approach to Evaluating MetaMuse 

Our goal in evaluating MetaMuse was to determine how well it allows ex
pressive playing. This indicates the success of the system's metaphors, and 
by extension the metaphor-based design process. Recall from Chapter 3 our 
definition of expression as the act of communicating meaning or feeling. Our 
approach to evaluating MetaMuse, then, was centred around determining if 
the instrument enables a player to communicate meaning or feeling. 

There are two components to evaluating the expressivity of MetaMuse. 
The first is to test whether users can control the instrument - without basic 
control over the sounds produced, expression is impossible. Proving basic 
control also ties in to the transparency of the mapping, indicating that users 
were able to grasp the connection from their input actions to the system's 
output sounds. The second component is to measure expressivity itself; as we 
shall see in the following sections this is a more difficult task. Both of these 
components are evaluated by comparison to some "standard" user interfaces. 

5.2.1 Evaluation by Comparison 
It is common in statistical studies to measure performance against a set of 
control conditions. With MetaMuse, no control conditions existed — there 
were no existing systems against which to compare performance. However, 
it is difficult to show meaningful results without such a comparison. We 
therefore created the control condition in the form of a set of graphical user 
interfaces that control the same synthesiser. 
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The traditional interface for computer programs is a point-and-click inter
face, also called a graphical user interface or GUI. Such an interface would 
act well as the control condition, as it is the standard way in which peo
ple normally control computers. In the case of MetaMuse, we created three 
such interfaces, with decreasing levels of abstraction. These interfaces se
quentially remove the props that embody the system metaphors, then the 
metaphors themselves, then all amalgamation of parameters. They create a 
set of baselines against which to compare MetaMuse when evaluating both 
controllability and expressivity. These parametric interfaces will be discussed 
in greater detail in Section 5.3. 

5.2.2 Measuring Controllability 
We measured controllability using a sound matching task with pre-recorded 
target. This approach allows performance to be measured in a predictable 
way, and ensures that all users are performing comparable tasks. Other 
experimental approaches, such as composition tasks or free-form improvisa
tion, allow subjects more freedom and are therefore appropriate to measuring 
expression. However, such tasks are much more difficult to measure, both 
within each subject and across subjects. For measuring controllability a more 
controlled task is preferable. 

The primary factors considered for a target-matching task are target se
lection, target presentation, and performance measurement. We expound on 
these factors in the following sections. 

Target Selection 

Targets for the sound-matching task were generated by recording MetaMuse 
in a variety of static positions. A selection of watering can and landscape 
positions was used, and a 30 second recording was made in each position. 
Care was taken to ensue the entire spectrum of possible sounds was covered. 
In all, 30 samples were recorded, and these were used as targets for all the 
controllers. In the formal experiment, a subset of fifteen targets was used, as 
described in Section 5.4. 
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Target Presentation 
The presentation of a sonic target requires separation of the target sound from 
the controlled sound. There are several possible approaches to creating this 
separation, based on two concepts: temporal separation or spatial separation. 
Targets can be temporally separated by presenting them at the beginning 
of the task only, or throughout the task with a toggle switch to alternate 
presentation of the target sound and the controlled sound. Targets can be 
spatially separated by presenting them in separate channels of, for example, 
stereo headphones. 

We consider the latter approach to confound the matching task with the 
subject's ability to separate two sounds in his head, while the first approach 
confounds the task with the subject's memory abilities. Therefore, we chose 
to present the target sound alternately with the controlled sound, providing 
a toggle switch so that the user can select which sound is presented at any 
time. 

Performance Measurement 
The final consideration for measuring controllability in a target-matching 
task is actually taking the measurement. This is also the least clear-cut 
factor in this part of the evaluation, as there are a number of ways to do 
it. Several metrics are possible, including parametric distance from target, 
length of time to acquire target, self-assessed perceptual distance either after 
each trial or on review at the end of the test, self-assessed satisfaction, or 
perceptual distance as judged by a third party after the experiment. The 
measurement is further clouded by the question of when the subject has 
acquired the target. Target acquisition can be recognised when the subject 
comes within a certain parametric distance of the target, after a specified 
length of time, or when the subject explicitly indicates they have acquired 
the target. 

In order to make the measurements as consistent as possible, we elim
inated metrics that require personal judgement, either on the part of the 
subject herself or on the part of a third party. Instead, we measured those 
parameters that were objective: parametric distance from target and length 
of time to acquire target. In order to allow both to be measured, we required 
subjects to explicitly indicate when they had acquired each target. 

The distance metric is based on a subset of the synthesiser parameters. 
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These parameters provide a weighted contribution to the total distance, 
which is measured in Euclidean coordinates. The time metric was deter
mined by the subjects' indication of target acquisition. The remainder of 
this section explains the distance metric in more detail. 

For the first pilot experiment, all parameters contributed equally to the 
Euclidean distance calculation. The results of that pilot, discussed in Sec
tion 5.4.1, motivated the JND experiment, detailed in Section 5.4.2. Based 
on that experiment's results, the second pilot and the final experiment used 
only two of the synthesiser parameters to calculate distance from the target. 

The use of Euclidean coordinates for the distance metric was questionable 
for the first pilot. The many parameters were likely correlated in perception-
space, so the independent-axes assumption of Euclidean geometry was not 
met. The pilot results and JND trials helped to simplify the calculation to 
use only two parameters. These were more clearly independent, so we felt 
the Euclidean distance was a reasonable metric for the final experiment. 

5.2.3 Measuring Expressivity 
We measured expressivity by soliciting user responses to a questionnaire be
tween tasks. Questionnaires have the benefit of being relatively easy to ad
minister compared to other techniques. The questionnaire was employed as 
a supplement to other experiments. 

We considered a number of ways to measure expressivity, such as using a 
target-matching experiment, where the target is perceived emotive content, 
or using a questionnaire to glean subjects' emotional reactions to the system. 
These options are explored in some detail in this section. 

Matching against an emotive target has similar concerns to matching 
a sonic target, described above: target selection, target presentation, and 
measurement. Possible emotive targets are photographs or pictographs with 
high emotive content, some examples of which are shown in Figure 5.1. Such 
pictures have been made available by some parties as standardised sets of 
emotion-evoking images. Other possible targets include video clips, abstract 
shapes or patterns such as those used in Rorschach tests, and, of course, 
sounds. Matching to a video has the additional benefit of allowing subjects 
to explore MetaMuse's dynamic capabilities, while complicating the measure
ment of their success. Matching emotional content of sonic targets has the 
additional complication of the sound itself, rather than its emotional content, 
influencing subjects' output. Presenting any of the above targets depends, 
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Figure 5.1: Possible emotive targets for an expressivity test. Images range from pho

tographic on the left to abstract on the right. The leftmost pair of images evoke more 

visceral responses, while the rightmost image requires symbolic interpretation. 

of course, on the particular type of target chosen, though visual targets do 
not present the channel interference problems with respect to sonic targets 
discussed in Section 5.2.2. 

Measuring a subject's performance when matching an emotive target is 
non-trivial. A good first step is to classify the targets themselves by having 
them ranked in advance by an independent panel of judges to classify their 
emotional content. Ranking targets on separate scales for different basic 
emotions (joy, anger, etc.) would provide a baseline for the test. Then 
having subjects rank each target on the same scale would give an indication 
of the consistency of perceived emotional content across all subjects. 

Once the subject had identified the emotional content of a target, he 
would proceed to attempt to match that emotional content using the Meta
Muse system. Such a match could be restricted to unvarying sounds only, 
or the subject could be permitted to create a varying sound to make her 
match. Finally, the resultant sound could be judged for its emotional con
tent, with its ranking compared to that of the original target, or the sound 
could be presented concurrently with the original target and the match be
tween them judged. This judging of the sound produced could be performed 
by either the subject or an independent panel of judges. If subjects were able 
to consistently produce sounds that matched the emotional content of the 
corresponding targets, we would conclude that MetaMuse is an expressive 
instrument. 

Unfortunately, an experiment such as the one just described is fraught 
with pitfalls. Measuring or ranking emotional content in any medium is a 
complex task, as emotions are not well understood. The high variance likely 
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in an emotion-ranking experiment would necessitate a large subject pool to 
produce significant results; it would also require considerable Psychology-
based resources and commitment to complete such an experiment. Such 
experimentation lies outside the scope of this research. 

We explored less ambitious means to explore the expressivity of our sys
tem, such as the use of questionnaires. Questionnaires allow us to get a sense 
of subjects' appreciation for the system, and can supplement the controllabil
ity experiment described previously. Supplementing an existing experiment 
with a questionnaire allows us to acquire additional information from our 
existing subject base with minimal additional resources. The only caveat 
to this approach is to ensure that the questionnaire is not so lengthy that 
it impedes the progress of the subject through the experiment, nor tires or 
frustrates the subject. 

Given these caveats, we decided to solicit answers to a questionnaire 
after subjects had done all their trials on a particular interface. This way, 
subjects answer questions about an interface only once. The drawback to this 
approach is that feedback on individual trials, such as a subject's satisfaction 
with his match for each target, is not available. However, it does allow us to 
acquire feedback on each interface as a separate system. This will provide us 
with a first approximation of the expressivity of the system. 

5.3 Parametric Interfaces 

Three graphical user interfaces were created against which to compare Meta
Muse, designed to incrementally reduce the complex elements that comprise 
the MetaMuse interface. These parametric interfaces use sliders and buttons 
to provide control over the same sound space without the addition of props, 
metaphor, or control amalgamation. The first interface removes the props 
and the pouring metaphor; the second replaces the landscape with a set of 
sliders to mix three droplet sounds; and the third removes even the control 
amalgamation of the droplet, requiring users to manipulate the synthesiser 
parameters directly. The three interfaces are described below. 

5.3.1 GUI with Landscape Metaphor 
The first GUI is closest to MetaMuse in control construction, lacking only 
the props. The watering can has been converted into two sliders, one repre-
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Figure 5.2: The first parametric interface uses a version of the landscape metaphor in 

the circle on the right but removes the props. Number of droplets and droplet energy are 

controlled by the two horizontal sliders. 

senting its height, the other its amount of tilt. Meanwhile, the landscape is 
represented as a circle, with a cursor indicating the current point of action. 
A screenshot of this GUI is shown in Figure 5.2. 

The sliders used to replicate the control of the watering can eliminate 
the particle model described in Section 4.3.1. In particular, in MetaMuse 
there is a delay between the time at which a droplet is created at the spout 
of the watering can and the time at which it intersects the landscape — if 
it does. Recall that there are also some random timing effects generated 
by slight differences in the initial velocities of the droplets. With the props 
eliminated, this GUI requires an equivalent process to provide similar control. 
This process is described in Appendix B. Based on subjects' lack of difficulty 
or comment during the user tests, the new process is indistinguishable from 
the MetaMuse droplet generation process. 

The circle in this GUI, seen on the right in the figure, behaves exactly 
as does the landscape discussed in Section 4.3.4. In short, parameter sets 
for three droplets are defined, and are "placed" on the rim of the circle 
equidistant from one another. The parameter set for a given point within 
the circle is given by interpolating the parameter sets from the three droplets 
based on the point's distance from their locations on the rim. By dragging 
the cursor across the circle with the mouse, or clicking anywhere within 
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the circle, the user can control parameters just as she could by moving the 
watering can over the landscape. 

This GUI makes use of the landscape metaphor in the targeted circle 
and the pouring metaphor in the tilt and height sliders. The metaphors are 
not as explicitly presented as in MetaMuse - there are no props to embody 
and suggest these interaction metaphors. However, the sliders are labeled 
"Number of droplets" and "Energy in each droplet", which does imply the 
water metaphor. No specific attempt was made with this interface to obviate 
the metaphors, though they are present in the way the controls are grouped. 
Instead, users are permitted to draw associations as they like: the two sliders 
can be seen as a replacement for the watering can, in which they imperfectly 
embody the pouring metaphor, or they can be considered simply parameters. 

5.3.2 GUI with Proportional Droplet Control 
The second GUI is a further step removed from MetaMuse in that the land
scape metaphor is discarded. Here, three sliders are used to represent pro
portions of the droplets that were found on the rim of the landscape in 
MetaMuse and the GUI of Section 5.3.1. The user uses the interface, shown 
in Figure 5.3, to blend the parameters of the three droplets. With the land
scape metaphor eliminated, the watering can reduced to a pair of sliders, 
and the control delay of the particle model gone, metaphor is not a feature 
of this interface. 

To match the control of the landscape prop and the landscape GUI, the 
three sliders are constrained to always sum to one. When one slider is ad
justed, the other two move proportionately to maintain that sum. This allows 
the user to isolate the sound of a single droplet by sliding its slider to the 
top - the other sliders will move to the bottom automatically. This interface 
removes the metaphor used in the landscape GUI, but keeps the amalgama
tion of control. The concept of blending three droplets allows the synthesiser 
parameters to be manipulated as a group. 

5.3.3 Full-Parameter Control GUI 
In the third GUI, the synthesis parameters are exposed in full. A slider is 
used to manipulate each parameter in the synthesiser, as well as the droplet 
frequency parameter from the particle model replacement, which was present 



CHAPTER 5. SYSTEM EVALUATION AND USER TESTING 58 

Number of dro&lets I SELECT DROPLET PROPORTlQttS | 
. Dnp fclanuaHv 

<m> : 1 
0.0 Droplet 1 Drop* It Z On.|itet 3 ! 

6Ut ®oiw«S active | 
<spaqe>.. . I 

Energy in each droplet 
5.0 

Confirm target 
<etiter> 

0.334 0.334 0.333 
gestart aVoptetmcti1 \ 

m drop*et_ctri 

F i g u r e 5.3: The second parametric G U I removes the metaphor but maintains aggregation 

of the parameters. Users can select proportions of three droplets with the three vertical 

sliders. Number of droplets and droplet energy are controlled by the two horizontal sliders 

as in the first parametric G U I . 

in the previous two GUIs . The resultant G U I , wi th twenty sliders (some 
Instrument parameters are fixed to zero), can be seen in Figure 5.4. 

This G U I removes metaphor entirely. It also remove the control amalga
mation offered by grouping parameters into three known points and interpo
lating between them. Interpolating between three points in the parameter 
space reduced that space to a plane (see Section 4.3.4); removing that amal
gamation frees the system from the plane and increases the available sound 
space. This interface proved to provide far too much fine control over the 
synthesiser. A s discussed in Section 5.4.1, this G U I was eliminated from the 
user tests after the first pilot for this reason. 

5.4 Experiments and Their Results 

Having motivated the experimental approach and introduced the parametric 
interfaces used for comparison, we can now describe in greater detail the 
experiments outlined in Section 5.1. 
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F i g u r e 5.4: The full-parameter control G U I exposes all the parameters available in the 

synthesiser and allows the user to adjust them individually. Users performed significantly 

slower on this interface in the first pilot, prompting it to be dropped from further evalua

tion. 
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5.4.1 First Pilot Experiment: Measuring 
Controllability 

The first experiment was an informal pilot intended to verify the experimental 
procedure. The choices of interface presentation order, target presentation 
order, and other experimental decisions were tuned based on the results of 
this experiment. Several other lessons were learned, including the recogni
tion of some system deficiencies as well as a need to revise the experimental 
procedure to reduce learning effects. The procedure itself, and the lessons 
learned, are described in the following two sections. 

Experimental Procedure 

As discussed in Section 5.2.2, we chose a target-matching task. We had three 
factors in mind when setting our experimental order: experimental duration, 
provision for practice time, and ordering to avoid knowledge transfer be
tween interfaces. In this section we discuss how these factors resulted in the 
experimental procedure used. 

Our goal in setting the duration of the experiment was to have subjects 
work as long as possible without tiring. By having subjects do many trials, 
we collect as much data as possible from the minimum number of subjects. 
However, once a subject starts to tire, his performance likely drops, so our 
accuracy depends on not overworking the subjects. Our target time for the 
experiment was 1.5 hours. We estimated that 20 trials on each of MetaMuse 
and two parametric interfaces, plus practice time on each interface, would 
meet that goal. We followed standard experimental practices of randomizing 
task order between subjects and randomizing trial order between tasks. 

MetaMuse and the three parametric GUIs are all newly invented inter
faces, and the synthesis engine is a newly invented sound space. These facts 
guarantee that all users will be novices. Ideally we would bring users in for 
repeated practice sessions to bring them to expert skill level, but this is im
practical given our resources. Instead, we aimed for comfortable familiarity, 
and instructed users to "practice until they felt comfortable with the inter
face." If users spent more than ten minutes practicing, we encouraged them 
to continue with the experiment to avoid fatigue. In practice this was rarely 
a concern. 

In deciding the order of task presentation, our primary goal was to avoid 
knowledge transfer as much as possible. That is, we wanted users to have 
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as little experience with interfaces B and C while testing interface A. We 
therefore had users practice on one interface, then do the trials for that 
interface, before continuing to the next interface. One example of knowledge 
transfer that this technique avoids is the application of metaphors learned 
in MetaMuse to the metaphor-free second parametric interface. As we shall 
see in the next section, this approach lead to other problems in our data 
analysis. 

Results 

The first pilot allowed some interesting observations to be made about the 
way users use MetaMuse and the other interfaces. It also exposed several 
problems with the system and provided insight into the experimental pro
cedure. The systemic issues caused reliability problems during testing and 
prompted significant reprogramming of several software modules. The pro
cedural issues were less severe, but required revision of the experimental 
process. One issue, the distance metric used, spanned both categories and 
will be discussed after the other problems are explained. 

It was very educational to see how users explored the different interfaces. 
Some users approached the new interfaces very systematically, exploring the 
axes of movement or GUI sliders in sequence to try to understand the in
terfaces. Many users tried to explore the limits of MetaMuse, pouring and 
catching droplets in unusual ways. They would tilt the watering can back
wards or invert it to see if they could pour from the filling hole, or turn the 
landscape upside down to see what sounds the back side made. As described 
in Section 4.1.1, several of these explorations weren't implemented and there
fore caused behaviours that fell outside the system metaphors. However, 
users were universally able to recognise the boundaries of the system and 
return to the expected range of behaviours without difficulty. From these 
observations we conclude users are able to recognise those parts of the sys
tem metaphor that are not important to "normal" operation. We therefore 
had no concerns leaving these behaviours unimplemented for the remainder 
of the experiments. 

One exploratory behaviour many users performed was to move the droplets 
along the perceived axes of the landscape, evidently assuming that the map
ping decomposed on these axes. In fact it does not: the metaphor and 
mapping for the landscape rely on the interpolation technique described in 
Sections 4.1.3 and 4.3.4. Though we didn't recognise it at the time, this 
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behaviour indicates that the system behaviour is under-determined by the 
system metaphors. Specifically, though the landscape metaphor suggests 
that the sound will change with position on the landscape, it fails to spec
ify how it will change. This issue continued to be a problem throughout 
the experiments, but was only recognised after the formal experiment. In 
retrospect, the theory of transparency described in Chapter 3 predicted this 
shortcoming: the component of the mapping that is not addressed by the sys
tem metaphor was arbitrarily designed and resulted in the least understood 
part of the interface. 

Several bugs in the testing system's software (as opposed to the MetaMuse 
software, which had no issues) were exposed by the user testing. These 
resulted in occasional system crashes during testing, as well as random failure 
to output log files. The primary cause was improper parsing of messages in 
the communication subsystem. Other problems identified included an off-by-
one error in a data array. Once these problems were resolved the system was 
quite reliable: no further crashes or data loss occurred during the remainder 
of the experiments. 

The target matching approach itself was, overall, validated by the pilot. 
Useful data was acquired during the pilot, though due to the data logging bug 
not enough was acquired for formal analysis. Some minor adjustments were 
made to the process, such as reducing the number of targets to 15 to correct 
the over-long duration of the experiments. Users reported that the landscape 
was too diminutive compared to the watering can, so a larger landscape was 
created. 

A major concern from the pilot was the learning effect. The data acquired 
indicated that users were learning a great deal from interface to interface, 
so that their performance often depended on order rather than interface. 
This made it difficult to determine performance relative to the interface and 
superseded our earlier concern for knowledge transfer issues. We decided to 
alter the experimental order, providing subjects with practice time on all 
three interfaces before beginning their recorded trials. This makes it difficult 
to consider the parametric interfaces to be completely lacking in metaphor, 
as users are able to transfer skills and abstractions between interfaces. For 
example, the pouring metaphor learned in MetaMuse may be transferred 
to the two sliders used to control number of droplets and droplet energy. 
However, learning effects make the statistical analysis impossible barring a 
much larger sample set, so this restriction must be accepted. 

One unsurprising result of the pilot was that the third parametric inter-
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face, which offered full control over twenty parameters, was so fine-grained 
that users' performance with it was consistently much poorer than with the 
other interfaces. The performance difference was so marked that the low-
level interface was eliminated from further consideration and was not used 
in subsequent experiments. 

The accuracy metric was an issue that spans both experimental and sys
temic categorization. As discussed in Section 5.2.2, the original accuracy met
ric used all synthesiser parameters, equally weighted, in a Euclidean distance 
calculation to determine subjects' distance from target. In the pilot, many 
subjects commented that the performance feedback they received seemed 
both inaccurate and inconsistent. In particular, sounds audibly quite differ
ent from their target sounds would occasionally be rated as very close, while 
those nearly indistinguishable were sometimes rated as distant. It became 
apparent that additional experimentation would be required to determine 
the link between the perceptual space and the parameter space. 

5.4.2 Just-Noticeable Difference Experiment 
With the first pilot indicating that the accuracy metric was faulty, an ex
periment was performed to determine the just-noticeable difference of the 
various parameters. The purpose of the JND experiment was to ascertain 
the perceptive effect of each synthesiser parameter. Subjects were given two 
sounds with a possible parametric difference between them, and were asked 
to indicate if they sounded different. The results showed that some parame
ters had significantly less effect on the perceived sound than did others, and 
the distance metric was changed to take these differences into account. 

Exper imenta l Procedure 

The basic approach of this experiment was to present the subject with two 
sounds and ask them to judge whether they differed. Pairs of sounds were 
created by choosing one of several starting points in parameter space, then 
varying a single parameter some amount. In some cases, the sounds were 
purposefully identical; subjects were instructed that some pairs were the 
same and some different, but not the proportions thereof. The experiment 
was run using a modified version of the the parametric GUIs described in 
Section 5.3. 



CHAPTER 5. SYSTEM EVALUATION AND USER TESTING 64 

Results 
The results of the JND test were surprising: some parameters had very little 
bearing on the perceived sound. In particular, subjects had difficulty distin
guishing between sounds with different droplet rates, except at frequencies 
so low that individual droplets could be distinguished. Droplet frequency 
and several other non-significant parameters were therefore dropped from 
the accuracy calculation. 

We then revisited the mapping to explore the correlations between the 
remaining sounds. In Section 4.3.2 we described how the sound-space was 
made navigable by restricting motion to a plane in that space. That restric
tion meant that some sets of parameters were directly or inversely correlated. 
By removing the less-significant parameters of these correlated sets, we re
duced redundancy in the accuracy calculation. 

After removing non-significant and redundant parameters, only two pa
rameters remained. These were combined in a calculation similar to the 
original Euclidean distance calculation to produce an accuracy metric that 
was used for the remainder of the experiments. 

5.4.3 Second Pilot Experiment: Comparing 
Controllability and Expressivity 

With the issues of the first pilot resolved, and the new metric based on 
the JND results incorporated into the code, we performed a second pilot to 
validate our changes. Before doing so, however, we added a questionnaire 
component to the experiment to collect expressivity data. The second pilot 
verified our changes before we moved on to the formal user test. 

In Section 5.2.3, we discussed possible ways to measure expressivity. The 
more comprehensive experiments we explored in that section required re
sources beyond our means, so we had decided to use a questionnaire. Before 
we began this pilot, we evaluated our time-line and decided that a separate 
experiment involving the questionnaire would not be possible, so we decided 
to add the questionnaire to this experiment. 

We constructed a questionnaire with components before, during, and after 
the experiment. Before the experiment, basic demographic questions relating 
to qualities such as gender and previous musical experience were asked on 
a paper questionnaire. After the set of trials for each interface, questions 
were asked pertaining to the subjects' experience with that interface, again 
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on paper. Finally, at the end of the experiment an oral exit interview was 
performed, covering a predetermined set of topics. The second pilot was run 
on a small set of subjects who had also participated in the first pilot. 

The pilot validated the experimental procedure and verified the changes 
we had made after the first two experiments. The system was in good working 
order, and the experiment acquired the data we desired in a manageable 
time-frame. We also determined that the questionnaire worked well in the 
context of the existing experiment; some questions were tweaked and a few 
demographic questions added to fine-tune the questionnaire. 

With the experiment prepared and verified, we were now ready to under
take the formal test. 

5.4.4 Formal User Experiment 
After the second pilot, the experimental process was finalised with the changes 
discussed in the previous section. The experiment was run on twelve sub
jects, though the data for one subject was discarded due to technical prob
lems. The final set of data consisted of time and accuracy measurements, 
and users' responses to the questionnaire. The data contained non-significant 
results for the controllability part of the experiment, and both significant and 
non-significant results for the expressivity part of the experiment. 

We performed analysis of variance (ANOVA) on the data. Our control
lability hypothesis is: MetaMuse is more controllable than a typical GUI 
controller. We formalised this into the following null hypotheses: 

1. Subjects' distance from target will be no different using MetaMuse than 
using either GUI. 

2. Subjects' target acquisition time will be no different using MetaMuse 
than using either GUI. 

The top and bottom value of each measurement was discarded, and the 
remaining values averaged. These results can be seen in Figure 5.5. The 
A N O V A tables for these null hypotheses are shown in Figures 5.6 and 5.7. 
The results show a trend indicating that the MetaMuse interface is somewhat 
faster than the other interfaces — 7% to 12% faster — but has about the 
same accuracy. However, these results fail to show significance (F=0.693 for 
distance; F=2.9068 for time; F=3.49 needed for p<0.05). Therefore we are 
unable to reject the null hypotheses. 
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i 3 
Task 

F i g u r e 5.5: Mean distance and mean time for the middle nine subjects, where MetaMuse 
is Task 1. Lower is better in both tables. Distance from target was similar across all 
interfaces, but time to acquire target was better for MetaMuse. 

ANOVA for distance 
Source SS df MS F 
Levels 1.965E-05 2 9.826E-06 0.0693 

Subjects 6.468E-03 10 6.468E-04 
Residual 2.836E-03 20 1.418E-04 

TOTAL 9.324E-03 32 

F i g u r e 5.6: The A N O V A table for distance. The F value is 0.0693; 3.49 or greater is 

required for p<0.05. The distance result, therefore, shows no significance. 

ANOVA for Time 
Source SS df MS F 

Levels 262.8 2 131.4 2.9068 
Subjects 7611.2 10 761.1 
Residual 903.9 20 45.2 

TOTAL 8777.9 32 

F i g u r e 5.7: The A N O V A table for time. The F value is 2.9068; 3.49 or greater is required 

for p<0.05. The time result, therefore, shows no significance. 
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MetaMuse's improvement for statement vs. GUI 1 vs. GUI 2 
Enjoyable? 36.1% 28.9% 
Adequate control? 30.3% 2.38% 
Difficult to understand? 25.0% 14.3% 
Creative? 38.2% 46.8% 
Satisfied with performance? 0% 14.7% 

Table 5.1: Percent that average response for MetaMuse showed improvement over those 
for the other two interfaces. In every case but one, users preferred MetaMuse. Note that, 
except for creativity, these results are not significant. They indicate trends, but do not 
allow us to draw formal conclusions. 

We performed A N O V A on the five task-specific questionnaire answers. 
Our null hypotheses took the form: subjects' responses to question N will be 
no different for MetaMuse than for the other GUIs. The questions asked after 
each trial were answered on an integer scale, so responses could be averaged 
and A N O V A applied. As in the controllability case, the top and bottom 
values for each case were discarded before averaging. The averages for the 
five questions are shown in Figure 5.8, and the A N O V A tables in Figure 5.9. 

The only question to show significance was "I felt creative using this inter
face." On a scale of 1 ("strongly disagree") to 6 ("strongly agree"), subjects 
agreed with this statement with an average score of 5.22 for the MetaMuse 
interface, compared to 3.78 and 3.56 for the two parametric interfaces. These 
results are significant (F=6.008, p<0.01). In other words, whereas subjects 
were on average neutral or slightly positive about the parametric interfaces, 
they were convincingly positive about feeling creative on the MetaMuse in
terface. Therefore we can reject the null hypothesis for this question and 
conclude that subjects felt considerably more creative using MetaMuse. 

The other questions did not show significant results. We do see trends 
indicating a preference for MetaMuse on all questions, as shown in Table 5.1. 

Subjects were also given an informal interview at the end of the experi
ment, and many comments made during these interviews support our find
ings. One subject reported that "the prop interface was way more expressive" 
in the rhythms that could be made. This subject also indicated "definitely 
the prop interface had a big advantage in . . . the continuum, being able to 
control simultaneously all [five] parameters." This feedback indicates that 
the subject preferred MetaMuse both for expressivity and for controllability. 
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"Using this interface was enjoyable." 

"The interface was difficult to 
understand." 

"I had adequate control over the sounds 
I made." 

"I felt creative while making rain sounds 
with this interface:" 

"1 am satisfied with my performance in 
this set of tasks." 

F i g u r e 5.8: Mean questionnaire responses for the middle nine subjects, where Meta
Muse is Interface 1. Possible responses ranged from 1 ("disagree strongly") to 6 ("agree 
strongly"). In most cases, higher is better; in the case of the question on difficulty lower is 
better. MetaMuse generally performed better than the other interfaces. In particular, for 
the statement "I felt creative using this interface," the middle nine user responses averaged 
5.22 for MetaMuse compared to 3.78 and 3.56 for the other interfaces. 
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ANOVA: enjoyable ANOVA: adequate control 
Source SS dt MS F Source SS df MS F 
Levels 10,424 2 5.212 2.679 Levels 5.091 2 2.545 1.647 

Subjects 12.909 10 1.291 Subjects 13.636 10 1.364 
Residual 38.909 20 1.945 Residual 30.909 20 1.545 

TOTAL 62.242 32 TOTAL 49.636 32 

ANOVA: difficult to understand ANOVA. felt creative 
Source SS df MS F Source SS df MS F 
Levels 2.364 2 1.182 0.747 Levels 17.515 2 8,758 6,008 

Subjects 38.182 10 3.818 Subjects 19.576 10 1.958 
Residua! 31.636 20 1.582 Residual 29.152 20 1.453 

TOTAL 72.182 32 TOTAL 66.242 32 

ANOVA: satisfied with performance 
Source SS df MS F 
Levels 1.697 2 0.848 0.645 

Subjects 17.515 10 1.752 
Residual 26.303 20 1.315 

TOTAL 45.515 32 

F i g u r e 5.9: The A N O V A table for the questionnaire responses. A n F value of 3.49 is 
required for p<0.05 significance. The only significant result is for the statement "I felt 
creative using this interface" (F=6.008, p<0.01). 

Another subject indicated that MetaMuse "just felt more intuitive" and 
said it was the easiest interface to use. The subject's use of the word "intu
itive" is telling. For this subject, the system metaphor shone through clearly, 
making MetaMuse easy to understand and therefore easy to use. 

Another subject offered similar sentiments, saying, "using the prop, the 
sounds sound like what you would expect." Again, the use of metaphor 
has made the device easy to understand. This subject referred to their own 
literature: "you learn as a child how much you're going to pour; it just makes 
sense." 

This feedback confirms the conclusion that MetaMuse is more expressive 
than the other interfaces and affirms that it is the use of metaphor that makes 
it so. 
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CHAPTER 6 
CONCLUSIONS AND 
FUTURE WORK 
In this thesis we presented metaphor as a tool for designing and playing ex
pressive instruments. We introduced the concept of the transparency of a 
device mapping as a facilitator for expressivity, and metaphor as an approach 
to improving transparency. The MetaMuse system was presented to demon
strate the use of metaphor to increase expressivity. Finally, MetaMuse was 
evaluated in a user study to determine its controllability and expressivity. 

The five major contributions of this thesis are: 

1. The theory of transparency, which provides a framework to predict and 
evaluate the expressivity of musical devices. 

2. The investigation of metaphor as a facilitator for designing expressive 
devices, and for learning and playing them, by increasing transparency. 

3. Demonstration of the above concepts in the form of MetaMuse, a novel 
expressive device based on metaphor. MetaMuse and its evaluation 
show that transparency and metaphor are useful constructs. 

4. A novel form of synthesis combining techniques from real-time stochas
tic synthesis and granular synthesis. 

5. The Polhemus library, which provides simplified multi-threaded access 
to the Polhemus Fastrak and creates a standard framework that extends 
to other serial devices. 

6.1 Transparency and Metaphor 

We introduced transparency to provide an indication of the ease with which 
the mapping of a device's input to its output is understood by its player. This 
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understanding facilitates expressivity. It can be improved by the application 
of metaphor, which refers the player to a literature of common knowledge. 

Metaphor is applicable to the design of new devices, in that it can obviate 
the appropriate controller for a synthesiser or vice versa. It is also applicable 
to performance with such devices, where it helps the player and audience 
understand the instrument mapping. Both of these applications facilitate 
expressivity. 

6.2 MetaMuse 

We presented MetaMuse as a device based on metaphor. MetaMuse uses 
three metaphors from the literature of water — pouring, rainfall, and land
scape. These metaphors guided the design of the device from the incep
tion of the rain-sound synthesiser to the matching of the prop-based control 
paradigm and the mapping that connects them. 

6.3 Evaluation 

MetaMuse was evaluated in a series of user tests to evaluate the success of 
the metaphor-oriented design approach. Two qualities were measured: 

Express iv i ty to validate the system as a demonstration of the transparency 
theory in practice, measured by questionnaire; and 

Cont ro l lab i l i ty to verify that the device provided users with the basic abil
ity to navigate to specific sounds, measured by performance data. 

The results of the experiments were positive. Users indicated that the 
MetaMuse interface was more creative to use than the other two interfaces. 
It was rated at 5.2 on a six-point scale, where the comparator interfaces were 
rated 3.8 and 3.6. This result was significant (F=6.008, p<0.01). 

Other areas of the expressivity component did not show significance, but 
did show trends that preferred MetaMuse as generally more enjoyable, con
trollable, understandable, and satisfying than the other interfaces. Similarly, 
the controllability component did not show statistical significance, but it did 
indicate a trend that MetaMuse is as controllable as, or more controllable 
than, the parametric GUIs to which it was compared. 
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Users' feedback during the informal interviews also support our results. 
One user said that MetaMuse "just felt more intuitive" than the other in
terfaces, confirming the value of the system metaphor. Another was more 
explicit: "using the prop, the sounds sound like what you would expect." 
Clearly the metaphor-based design approach, and the embodiment of those 
metaphors in the interface, provide a distinct advantage. 

The results of our work demonstrate that using metaphor is a valid ap
proach to increasing the expressivity of an instrument. The theoretical frame
work of transparency is a valuable contribution that provides the context for 
this work. We believe that this direction of research remains fertile, and 
present suggestions for future work in Section 6.5. 

6.4 Publications Based on Thesis 
Contributions 

Contributions from this thesis have also been published in several peer-
reviewed publications, including the A C M Special Interest Group on Com
puter Human Interaction, 2002 [20], New Interfaces for Musical Expression, 
2002 [21], and Organised Sound: an International Journal of Music and Tech
nology, 2003 [17]. 

6.5 Future Work 

Additional research can be done in three areas: further testing of MetaMuse, 
further development of the system, or development of new systems based on 
transparency and metaphor. 

6.5.1 Further experimentation 
There are several ways in which the experimentation described in the pre
vious chapter could be extended. Both the controllability and expressivity 
experiments could be modified to improve their significance and offer stronger 
conclusions; different experiments could be performed to further delve into 
the expressivity of the system; and the expressivity with respect to audiences 
could also be tested. 
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The primary drawback to the controllability experiment was the lack of 
significance. This issue could be remedied simply by running additional sub
jects through the same controllability trial to gather more data. Ideally, such 
an experiment would provide solid evidence to support the trends identified 
in Section 5.4.4. 

While the expressivity component of the experiment provided a valuable 
conclusion, it did not meet its potential. Several other questions were asked 
in the questionnaire, but only one resulted in a significant conclusion. Ad
ditionally, the question that was significant considered creativity, which is 
peripheral to the specific question of expressivity. The questionnaire could 
be modified to provide more appropriate questions, then run on more sub
jects to improve significance. 

A further extension to the measurement of expressivity was introduced 
in Section 5.2.3. Measuring expressivity would be better accomplished using 
targets designed to evoke emotions. More generally, expressivity is better 
studied in an established framework. More research into the psychology of 
expression and emotion is required to design an appropriate test plan. 

Finally, in Chapter 3 we defined expressivity as the act of communicating 
meaning or feeling. In our experiments with MetaMuse we have focussed 
on the design and playing of expressive devices, but have not considered ex
pression from the audience perspective. It is valid to test whether the player 
feels expressive while using the device, but it would also be instructive to 
determine what meaning or feeling the audience perceives during a perfor
mance. Such an experiment would require significant investment for a player 
to become highly proficient for a performance, but would provide stronger 
conclusions about the efficacy of metaphor as a design tool. 

6.5.2 Further development 
Further research could be performed with incremental changes to the Meta
Muse system. Improvements can be made to the metaphor embodiment of 
the landscape prop. However, the greatest benefits could be made by im
proving the synthesiser. 

As discussed in Section 5.4.4, the landscape metaphor does not fully con
strain the sound of the synthesiser. In particular, while the metaphor implies 
that the sound will change as the droplets move across the landscape, it does 
not suggest how this might happen. Exacerbating this problem is the lack 
of discernible logic to the landscape mapping: there is no guiding principle 
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to help the user understand how the sound changes. Consequently users are 
forced to use trial and error to find specific sounds on the landscape. 

This problem could be resolved in one of two ways. First, the landscape 
could be given a simple logical mapping, such as perpendicular axes of, say, 
pitch and timbre. Then it is clear that a specific perceptual parameter is 
varied based on a specific movement. However, this may restrict the sound 
space, as there are not two clear perceptual parameters to be presented in 
this way. 

The other solution would be to extend the metaphor in some way. One 
way to do so would be to remove the abstraction of the landscape and present 
certain areas as specific surface elements — rocks, trees, grass, or water. By 
careful mapping, droplets that match each surface type would be mapped to 
that type. If care were taken with the original mapping, a consensus of the 
"correct" sound for a visible surface element might be attained. However, 
the sound would still be under-constrained within a region. How should the 
sound of water on grass change, for example, as the droplets move from the 
centre of that region towards the rocky region? More investigation needs to 
be done into this problem. 

The synthesiser itself would benefit greatly from further work. While 
the individual droplets sound reasonably accurate, their variation could be 
expanded. Most of the droplets in the sound space have a sharp sound 
as though they're hitting a hard surface. Increasing the variety of sounds 
available would add expressive depth to the device. Additional improvement 
could be done to the multi-droplet sound. 

As discussed in Section 4.3.2, the synthesiser deviated from natural rain 
sounds as the droplet rate increased. While heuristics were introduced to 
improve the sound, it still fell short of expectations. One way to improve 
the sound would be to optimise the Instrument code to attain better per
formance. This would allow a larger number of droplets to be synthesised 
simultaneously. A second way would be to explore other heuristics, and a 
third way would be to explore synthesis techniques that provide the aggregate 
sound directly, such as that developed recently by van den Doel, discussed 
in Section 2.4.2. 

Research beyond these methods requires investigation into new systems 
using metaphor. We would especially like to see this research extended to 
musical systems, as we received comments from users suggesting that music 
would be a more accessible medium. Finally, we believe that these ideas are 
transferable to other fields of human interaction, including human-human, 
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human-computer, and human-machine interaction, and would welcome such 
research. 

6.6 Conclusion 

This thesis provides a framework for understanding and predicting the ex
pressive nature of devices. We introduce transparency, or the ease with which 
a device's mapping can be understood, as the main pillar of this framework. 
Transparency is a predictor for expressivity, the ease with which meaning or 
emotion can be communicated through the device. We explore the role of 
metaphor for improving the amount of expression possible with a device, and 
examine its use as both a design aid and an affordance during use. 

To validate this theory we built MetaMuse, a controller for a rain-sound 
synthesiser that employs water metaphors to obviate its use. MetaMuse uses 
physical props to embody three metaphors: pouring, rainfall, and landscape. 
These metaphors acted as a guide during MetaMuse's design, and aid users 
in the prediction of system operation and sound output. 

We performed a series of experiments comparing MetaMuse to two other 
interfaces to test our claim that metaphor can be used to improve expressiv
ity. The tests measured controllability with speed and accuracy of sound tar
get acquisition, and expressivity with qualities such as creativity. Accuracy 
was similar across all interfaces, and speed slightly improved for MetaMuse, 
but the controllability results lacked significance. Results for expressivity 
were significant, however: users preferred MetaMuse as more creative than 
two more traditional controllers (F=6.0, p<0.01). From these results we 
conclude that metaphor is a worthy design approach to creating expressive 
devices. 

We believe that there is considerable fruit to be borne in continued re
search into metaphor as a facilitator for expressivity. The results of our work 
show a clear benefit to metaphor's use in this way in MetaMuse. We ex
pect this benefit is scalable to more complex systems than that presented 
herein, and to highly expressive computer-based musical instruments in par
ticular. We look forward to continued exploration of metaphor leading to 
the emergence of new expressive instruments supporting virtuosic playing. 
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APPENDIX A 
USER TESTING SYSTEM 
DETAILS 
This appendix provides additional detail on the system used to evaluate 
MetaMuse. It also provides specific information about the questionnaire 
used. 

A . l System configuration 

The user testing experiments are set up with two computers: the primary 
one for the subject and another the experimenter. The primary computer 
hosts MetaMuse and the parametric interfaces, along with a small-footprint 
server to launch and close the interfaces. The secondary comptuter hosts a 
controller client that allows the experimenter to control which experiment is 
currently being run; it also hosts target playback. 

Parametric data from the synthesiser is captured from the primary com
puter as the experiment runs. This data is used to measure the subjects' 
performance after each trial, as discussed in Chapter 5. It is also logged to 
allow review and statistical analysis to be performed after the experiments. 

The system architecture and data logging for the experiments are de
scribed in the following sections. 

A . 1.1 System architecture 
The configuration GUI for MetaMuse, described in Section 4.3.1, is reused as 
the server application on the primary computer. That section describes the 
Tel client/server library that is used for communication between the config-
uraiton GUI and the main application. The same library is used to set up 
the GUI as a server which can launch the parametric GUIs as client subpro-
cesses. Similarly, the controller client on the secondary computer connects 
to the configuration GUI as a client. 
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Commands to launch and close MetaMuse and the parametric interfaces 
originate at the controller and are sent to the server. This allows the ex
perimenter to script the experiment, presenting the appropriate interface for 
a set of targets. The scripts specify which interface to present, along with 
a series of targets. The experimenter can load a script from the controller 
interface to start an experiment. 

Target sounds are produced on the secondary computer to reduce proces
sor load on the primary machine. This is important in light of the computa
tional restrictions on the synthesiser, discussed in Section 4.3.3. Additionally, 
the subject's sound output can be recorded by the secondary computer for 
future analysis. This provides the ability to run experiments using post-trial 
judging, but for the experiments described in this research such recordings 
were not employed. 

The target sound is routed to the primary computer by way of the sound 
card line in. There, it is multiplexed with the synthesiser output using a 
software mixer. The subject presses a button to switch between the two 
sounds, and visual feedback is given by the interface currently in use. In 
MetaMuse, the droplets displayed on screen change colour from blue to dull 
grey; in the compartor interfaces a button widget toggles its colour and text. 

Subjects also press a button to indicate when they have reached each 
target to their satisfaction. Data logging and performance measurement is 
performed at this time and is described in the following section. 

A.1.2 Data capture 
As the subject performs a task, the synthesiser's data is stored for perfor
mance measurement after the trial and further analysis after the experiment. 
As discussed in Section 4.3.2, a set of parameters is used to instantiate each 
droplet the synthesiser produces. This set of parameters, along with the time 
at which the droplet event occurred, is used for the real-time analysis and 
saved to file for additional investigation. 

Performance measurement involves determining the distance from the 
subject's sound to the target after the trial is complete. The distance is 
calculated in Euclidian parameter space with a subset of the total number 
of parameters: "nObjects" and "reverb". This subset was chosen using the 
just-noticeable-difference trial described in Section 5.4.2. 

Since there are random effects in the droplet creation, measuring the 
accuracy of the last single droplet introduces random error to the performance 
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measurement. Therefore, the last ten droplets are averaged to determine the 
subjects' performance. However, more than the last ten droplets are stored 
in memory during the trial. 

To provide analysis options post-experiment, the data from the entire 
trial is saved if possible. Due to performance concerns, though, this data 
cannot be logged to a file in real time. Therefore, droplet data is stored in a 
buffer in memory and saved to file at each trial's completion. The buffer is 
pre-allocated for performance reasons, and can store data from 6000 droplets. 
This is long enough to store one minute of data in the worst case scenario, 
or an expected four to six minutes of normal use. The buffer is circular, 
allowing the last 6000 droplets to be stored if the trial runs longer than the 
buffer allows. 

A.2 Questionnaire 

The purpose of the questionnaire is to determine the expressive qualities 
of the MetaMuse interface, on its own and as compared to the parametric 
interfaces. It also had a secondary purpose: to gather any demographic in
formation that may have a bearing on the results. The questionnaire is com
prised of three parts: a demographic pre-experiment written questionnaire; a 
written questionnaire soliciting subjects' opinions on their experiences with 
each interface, which was administered after each task was completed; and a 
post-experiment verbal interview intended to draw out additional discussion 
in a semi-structured manner. 

The three components are discussed in greater detail. 

A.2.1 Demographic questionnaire 
The demographic questionnaire is intended to identify possible confounding 
qualities of individual participants that may make them unsuitable for the 
experiment. Basic demographic information such as age, gender, and hand
edness was obtained, as was level of computer literacy. Finally, subjects 
were asked if they played any musical instruments or had any experience 
with computer-based musical instruments. 

Questions with limited choices presented possible answers, and subjects 
were instructed to circle the appropriate choice. The questions asked, with 
their choices and in the order presented, are: 
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1. With which hand do you normally write? (Left/Right) 

2. Have you used a computer before? (Yes/No) 

(a) How often do you use a computer? (Daily/Weekly/Monthly/ 
Rarely) 

(b) Have you used a mouse? (Yes/No) 

(c) What is your primary use? 

3. Do you play a musical instrument? (Yes/No) 

(a) What type(s)? 
(b) How do you rate your proficiency? (Novice/Intermediate/ Expe

rienced) 

4. Have you used computer-based musical instruments? (Yes/No) 

Questions without provided answers had space indicated for subjects to 
write in their responses. Space was also left at the bottom for comments, 
though few were expected at this stage of the experiment. 

A.2.2 Post-task questionnaire 

The post-task questionnaire is designed to solicit feedback related to the user 
experience and, especially, the expressivity of each interface. The question
naire was given after the user completed all trials for each interface. The 
same questions were asked for all interfaces. Subjects were asked to cir
cle a number corresponding to their level of agreement with each of several 
statements: 

1. Disagree strongly 

2. Disagree 

3. Disagree somewhat 

4. Agree somewhat 

5. Agree 

6. Agree strongly 
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The questions, in their order of presentation, are: 

1. Using this interface was enjoyable. 

2. I had adequate control over the sounds I made. 

3. The interface was difficult to understand. 

4. I felt creative while making rain sounds with this interface. 

5. I am satisfied with my performance in this set of tasks. 

Once again, space was left after the questions for users to write comments. 
This questionnaire is critical to gaining insight into the subjects' experi

ences with the interfaces. However, it had to be repeated three times - once 
for each interface - and by necessity takes place after an extended period of 
concentration. Therefore conscious effort was made to keep the questionnaire 
as succinct as possible, balance between relatively straightfo 

A.2.3 Exit interview 
To garner further feedback on the interfaces and, more generally, the experi
ment itself, a oral interview was conducted after each subject had completed 
all tasks. The interview was intentionally informal, allowing subjects to relax 
and discuss their experiences without having to conform to specific wording 
or structure that may be imposed by a formal interview. Interviews were 
recorded with a standard "shoebox" recorder. 

To ensure that certain specific aspects of the experience were explored, 
the experimenter had a list of questions which acted as a guide for topics of 
conversation. Subjects were encouraged to talk as much or as little as they 
liked on each topic, and conversation was allowed to flow naturally from one 
topic to another when possible. Topics were generally discussed in the order 
below, with the earlier topics generally taking up the bulk of the interview's 
duration. 

The guiding questions, along with some discussion on why the questions 
were asked and how they were introduced during the intervew, were: 

• W h a t was the most enjoyable part of the test? The intention of 
this question was to solicit which aspect of the test was most enjoyable, 
not necessarily which interface. This distinction was made clear when 
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the topic was raised. The expectation was that certain parts of the 
test, such as the act of control or the pleasure of exploring the sounds, 
would be mentioned. 

• What was the easiest part of the test? The hardest? Again, this 
question's intent is not to rate interfaces, but aspects of the experiment. 

• Which was your favourite interface? Why? How about your 
least favourite? Unlike the previous two questions, this question 
specifically deals with the subjects' preferences in interface. 

• How expressive do you feel rain sounds are? Do you feel this 
was a valid experiment for expression? An underlying assumption 
in MetaMuse is that rain sounds are expressive. This question aimed 
to validate that assumption. 

• How accurate was the sound produced by the rain synthesiser? 
In Section 4.3.2 we discussed some of the limits of the synthesiser. This 
question ties in with the previous one to determine the validity of the 
experiment. In order to compare expressivity of interfaces, we must 
ensure that the interfaces themselves are producing sounds that can be 
considered expressive. If our target sound space is that of rainfall, we 
must ensure that we met that target adequately. 

• How would you suggest we improve the synthesiser? As an 
extension to the previous question, we hoped to solicit ideas for possible 
improvements to the sound synthesiser. However, we recognised that 
some users would not have the background to provide meaningful input 
to the problem of rain sound synthesis, so the topic was approached 
obliquely and allowed to pass if the subject was not inclined to discuss 
it. 

• How would you suggest we improve the prop-based interface? 
Whereas the previous question may require some technical knowledge 
or experience in sound or music production, this question is more re
lated to general usability. We hoped that users would have specific 
suggestions about the strengths and shortcomings of the MetaMuse 
interface. 

• Do you have any other suggestions? This question allowed sub
jects with other thoughts to voice them. 
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• Do you have any questions or concerns you'd like to address? 
Finally, we solicited feedback on the process. By raising this topic sub
jects could voice any concerns about experimental method or, generally, 
any aspect of the test that confused or concerned them. 
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B . l Introduction 

The sound synthesis module of MetaMuse determines how the six droplet 
parameters - dx, dy, dz, vx, vy, and vz - plus frequency of droplets produce 
sound output. Interaction effects are also possible as droplets fall close to
gether in time. The mapping is constrained by the three metaphors used in 
the system. 

Two techniques were used to create the synthesis module. The first is 
a sample-based system, implemented in jMax, that uses granular synthesis 
to produce the sound output. It was found that the use of pre-recorded 
samples made it difficult to smoothly vary the sound with landscape position, 
so a second paradigm was explored. Based on a liberal interpretation of 
the concept of granular synthesis, the second technique uses a parametric 
synthesizer to dynamically create the individual granules. It proved to be 
more successful than the sample-based version and is the technique used in 
the evaluated system. 

B . l . l Parameter Mapping 
Of the three system metaphors, two constrain the sound output of the sys
tem. The rainfall metaphor implies that each droplet creates a distinct sound. 
The landscape metaphor provides several constraints on how droplets pro
duce sound, the primary of which is that the position of the droplet on the 
landscape, given by dx and dy, determines the quality of the sound produced. 
These constraints and some others are summed up in Table B . l . 

Within these constraints there is latitude. For example, while the quality 
of a droplet changes with (dx, dy) position, how it changes is left to inter
pretation. As discussed in Section 5.4.1, the under-constrained nature of 
the metaphor was problematic in that users couldn't easily predict how the 
sound would change with position. 
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Parameter Effect 
dx, dy quality/timbre 
- distinctness 
V energy 
frequency blurring, volume, bass 

Table B .1 : Overview of the mapping from droplet parameters to audible qualities. Dis
tinctness is a result of the discrete nature of droplet initiation, so doesn't have an explicit 
droplet parameter. 

B.1.2 Two Methods for Synthesis 
The two methods used for synthesis were granular synthesis, then parametric 
granular synthesis. The former was first controlled by specifying 64 square 
regions on the landscape. Each region was assigned a pre-recorded sample, 
so the user could choose which sample to play. However, the discrete nature 
of this method was undesirable as it didn't match the continuous landscape 
metaphor. An interim solution was to position three droplets on the rim 
as discussed in Section 4.3.4 and volume-mix between them. However, the 
blending of three distinct rain sounds does not produce a single rain sound, 
so a parametric synthesiser based on STK was used instead. 

B.1.3 Other Mapping Parameters 
We considered many other ways in which to interpret the seven parameters. 
The tilt of the landscape, indicated by the off-vertical velocity of the droplets, 
can be used for parameter control, dz, the distance into the landscape that 
the droplet has penetrated during the update cycle in which it is detected, is 
a function of update rate and can be used to create randomness in the sound 
output. 

These controls were tested briefly during prototyping and were found 
undesirable. Tilt control (over pitch, in the case of our testing) breaks the 
metaphor - rain is not perceived to sound different on varying slopes. Adding 
randomness using dz makes droplets inconsistent - droplets coming from the 
same controller positions may sound different, depending on the microsecond 
differences of their timing. This inconsistency is undesirable. 

Ultimately, these variations proved undesirable in MetaMuse and were 
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discarded. Since their implementation was trivial and they were tested on 
very early prototypes they will not be discussed further herein. 

B.2 Granular Synthesis in j M a x 

The granular synthesis engine was built in jMax [12]. It is based on "voxels," 
or voice elements, reading samples from sample tables. As several voxels read 
samples in round robin fashion, multiple playback channels can be combined 
to create the overlapping sound of granular synthesis. Since this method is 
described by Truax [62] and is no longer used by MetaMuse, it will not be 
discussed further. However, the two mappings are of interest. 

The first mapping used was a discrete mapping based on an 8x8 grid 
superimposed on the landscape. Each grid position was assigned a sample 
from the table, and each time a droplet hit that position the respective sample 
would play. The samples themselves were created by recording the sound of 
water dripping onto a wide variety of surfaces, from tissue to foliage to stone. 

While the discrete sample selection technique worked as a simplistic con
troller, the discrete nature made it very difficult to create meaningful sounds. 
The controller may as well have been a 64-key keyboard. Of particular note 
was the awkward transition between grid positions. Since the stream of 
droplets had some width to it, the playback would overlap two or more un
related samples, giving the device a very disjoint sound. 

We experimented with a simplistic modification to alleviate this prob
lem. Instead of assigning samples to grid positions, we positioned samples 
on three equidistant points on the rim of the landscape. When a droplet 
landed, its distance from each sample position would determine that sam
ple's volume, so that the three samples were mixed together. While this 
proved less disjoint than the discrete mapping, the sample mixing was not a 
good solution. Instead of sounding like one droplet, it sounded like three. We 
turned to parametric synthesis to resolve this problem, ultimately dispensing 
with jMax entirely and moving to a solution based on the Synth Toolkit. 

B.3 Use of the Synth Toolkit 

The second synthesis module, and that which was ultimately used, is a real
time resonance filter bank based on the Synth Toolkit (STK). STK provides 
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a variety of synthesis methods. Of interest to us is the Shakers class of 
instruments, which provides the parametric resonance model we used. 

Shakers uses a set of random processes throughout the model. In partic
ular, the excitation function is a random function, which was not suitable for 
our purposes. To enable expression a consistent sound must be available. 

Many parameters, such as the number of resonant frequencies and their 
values, are encapsulated in the instruments in Shakers. For example, the 
Maracas instrument uses 4 different centre frequencies, while other instru
ments may have more or less centre frequencies of different values. To change 
the timbre of the instrument, STK must reinitialize it to new values. We cre
ated a new instrument that provided real-time access to these parameters. 
This enables MetaMuse to change the timbre of the instrument while playing. 

The architecture of the parametric synthesis module has two important 
features. First, multiple instruments are instantiated and iterated in parallel, 
their outputs summed. This allows multiple droplets to sound concurrently, 
which is important for the granular layering effect required for the instrument. 
Second, the instruments are iterated in a single, separate thread. A condition 
variable and a protected, shared memory block are used to pass information 
from the physics model. 

The mapping from droplet parameters to synthesis parameters follows the 
same principles as the sample-based synthesizer. In short, droplet velocity is 
mapped to filter excitation energy, while position maps to centre frequencies 
and timbral parameters. The mapping uses three pre-defined parameter sets 
on the circumference of the landscape and interpolates between them for 
positional mapping as discussed in Section B.2. 

The system described thus far exceeded the processing power available 
to us when more than 10-15 instruments were instantiated. This limited 
the number of concurrent droplets the system could support. Some heuristic 
methods were used to improve the sound quality and simulate greater droplet 
numbers. A running estimate of the number of concurrent droplets is calcu
lated. This value is used to adjust the overall volume of the system. It also 
affects the gain on a low-frequency resonator to fill in the sound. Finally, 
at greater droplet numbers a low-pass filter is used to blend the droplets 
together. 

The base STK Shakers class, our modifications to it, and the system 
architecture, mapping, and heuristics will be discussed in greater detail in 
the following sections. 
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B.3.1 STK: a foundation for real-time synthesis 
The Synth Toolkit is a freely available package implementing a variety of 
methods for real-time synthesis. The Toolkit consists of the source code for 
a hierarchy of C++ classes for synthesis methods, along with a supporting 
set of classes performing incidental tasks such as sound output. STK also 
includes a controller program that implements SKINI , a variation of MIDI 
providing a familiar message structure for synthesizer control. Of interest to 
us are the Ph lSEM (Physically Informed Stochastic Event Modelling) class 
and the supporting classes implementing reverberation and sound output. 
For details on the class structure, SKINI message set, and other available 
classes, refer to the STK documentation. 

The following subsections will present the salient details of P h l S E M ar
chitecture, relevant parameters, and the supporting classes used. 

B.3.2 PhlSEM Architecture 
Figure B . l shows the basic architecture of the P h l S E M system. The main 
feature is a bank of resonant filters. This is iterated once for each sample, 
with a decaying, randomized input energy. The output is averaged over three 
samples to low-pass filter the sound. 

The input filter bank is a stochastically varying, decaying system energy 
value. The system energy also is affected by an input energy parameter, 
which represents the excitation energy of the instrument. Both the input en
ergy and the system energy are persistent but exponentially decaying values. 

The addition of the input energy to the system energy is governed by 
the first of three random processes. The system energy is increased by the 
input energy statistically infrequently - on the order of one to ten times per 
thousand ticks. The random addition of the input energy to the system is 
what drives the instrument, and when the input dies to zero the system does 
likewise. 

The second random process creates a random signal between the system 
energy and the equivalent negative value. It does so by creating a random 
multiplicative factor from -1.0 to 1.0. This signal is more influential in cre
ating the stochastic process which models hard collision sounds for Ph lSEM, 
as it is directly input into the filter bank. Note that the randomized system 
energy does not vary the system energy parameter itself. 

The third random process causes the filter bank itself to change slightly. 
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F i g u r e B . 1 : The sound generation process. The input energy is set to an initial value 
when a droplet is initiated, and decays with each iteration. Based on a random process, the 
input energy is sometimes added to the system energy, which decays similarly. A random 
excitation process perturbs the system energy before it is input to the resonant filter bank. 
Finally, the filter outputs are fed into a delay line and three delays are summed to form 
the sound output. For MetaMuse, the random processes were replaced with pre-recorded 
sequences to ensure consistency across droplets. 
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Fixed Mutable 
system gain input energy 
filter centre frequencies (system energy) 
filter resonances input decay 
freq_rand system decay 
nfreqs nObjects 
decay .scale resonant frequency (mod wheel) 

Table B.2 : Parameters in the P h l S E M Instrument. Those in the left column cannot be 

changed at runtime; those in the right can. 

Each filter has a centre frequency which is perturbed slightly whenever the 
input energy is added to the system. 

The next section discusses the specific parameters of the P h l S E M model 
and how they are used to predefine instruments. 

P h l S E M Parameters and Instrument Definitions 

The Ph lSEM Instrument contains several parameters, some of which are 
fixed on initialization and others which are mutable. These parameters are 
listed in Table B.2 . 

The parameters in Table B.2 affect different components of the P h l S E M 
system. These parameters are described as follows. Note that these pa
rameters are described to be internally consistent with this document; some 
parameter names may differ from the STK documentation. 

Input energy (mutable): This is the amount of energy being added to the 
system. Each tick, it decays by a factor input decay. Occasionally it is 
added to system decay-see nObjects for details on this random process. 

System energy (mutable but internal): This is the amount of energy IN 
the system. While it is mutable, it cannot be directly affected; instead 
it is indirectly affected by input energy. Each tick, system energy decays 
by system decay. The system energy affects the perceived strength of 
the collision in the instrument. 

input decay (mutable): A multiplicand for input energy. Input decay af
fects how quickly the input energy exponentially dies down to zero. 
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Typical values are 0.995 to 0.9999. 

system decay (mutable): A multiplicand for system energy, system decay 
affects how quickly the system energy dies down to zero. Typical values 
are 0.95-0.97. 

nObjects (mutable): Affects how efficiently input energy is transferred to 
system energy. Specifically, at each tick nObjects is compared to a 
random number from 0 to 1023. If the random number is less than 
nObjects, system energy is increased by input energy. nObjects typically 
ranges from slightly more than 1 to 512. 

nfreq (fixed): Describes the number of resonant frequencies modeled. Ranges 
from 1 to 6 or 7. 

centre_frequencies (fixed): Describe the centre frequencies of the filter's 
nfreq resonant frequencies. Typical frequencies range from a few hun
dred to nearly 10000Hz. 

Resonances (fixed): Specify the strength with which the nfreq centre-freq
uencies resonate. Typical values are 0.995 to 0.998. 

freq_rand (fixed): As discussed above, the centre frequencies are occasion
ally re-calculated with slight perturbations. nObjects determines how 
frequently this occurs, freqjrand determines how much perturbation 
can occur to each centre frequency. Ranges from 0 to 0.2. 

Resonant frequency (mutable): Provides indirect access to the centre fre
quencies. Like a pitch bend, this parameter is intended for control by 
the mod wheel on a synth keyboard. It causes all centre frequencies to 
increase or decrease slightly. This parameter accepts standard MIDI 
values from 0 to 128. 

system gain (fixed): A multiplier used when recalculating the gains. Can 
range from 0.1 to 60 or more. 

gains (indirectly mutable): nfreq gains are multiplied by the resonator out
puts before they are summed at the output of the filter bank. The gains 
depend on nObjects and system.gain, and there is no way to change an 
individual gain separately from the others. 
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decay_scale (fixed): We do not use this parameter. 

The fixed parameters of an Instrument, set on initialization, affect the 
basic timbre of that instrument. STK defines several parameter sets for 
Ph lSEM Instruments called " Shakers". Shakers Instruments include a Maraca, 
a Sekere, a Casaba, bamboo wind chimes, and so on. These Instruments pre
define values for system-decay, input-decay, system-gain, nObjects, nfreq, and 
centre-frequencies and resonances. 

Support ing Classes for S T K 

Two of STK's supporting classes are used in MetaMuse: Reverb and WvOut. 
These implement a reverberating effect and an interface to the sound driver, 
respectively. The two supporting classes connect to the Instrument created 
by the Ph lSEM class as shown below. This configuration creates a pipeline 
wherein sound samples are created in the Instrument, reverberated in the 
Reverb, and output in the WvOut. 

I Instrument I -> I Reverb I -> I WvOut I 

The Reverb class implements a single delay line with a feedback loop. 
The length of the line is variable, creating an echo effect that falls behind 
the original sound. A mutable parameter, reverb, allows the amount of re
verberation to be changed at runtime. 

The WvOut class implements several methods for outputting the sam
ples making up the waveform. MetaMuse makes use of the real-time output, 
which passes the samples through to the sound card for immediate play
back. Other output methods, such as output to WAV file, are also available. 
WvOut sets up its output stream(s) on initialization. 

Reverb and WvOut are used as-is in MetaMuse. The Ph lSEM class, 
however, is changed considerably to create a synthesizer for MetaMuse. The 
following section details how P h l S E M is changed. 

B.3.3 Modifications to S T K Shakers 
STK's Shakers required three changes to make it viable for use in MetaMuse. 
First, the randomness had to be removed from the tick function to allow for 
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consistent droplet sounds. Second, the excitation function was replaced with 
a water-droplet excitation function. This pre-recorded sample series provides 
a more appropriate sound than the existing random excitation. Third, and 
most complex in its implementation, was providing real-time access to the 
fixed Instrument parameters such as centre frequency and resonances. This 
allows the Instrument to create different sounds from one droplet to the next. 
The three changes made will be discussed in greater detail. 

Removing Randomness from S T K Shakers 

Randomness is introduced in three places in the P h l S E M class, shown in 
Figure B.1. The first is the random value compared to nObjects, used to 
determine when to increase the system energy by the input energy and recal
culate the filter coefficients. The second is the noise-tick function at the input 
to the filter bank. The third is the random value, controlled by freq_rand, 
that gives minor perturbations to the centre frequencies. 

Of the three, the third is the simplest to remove. By ensuring freq_rand 
is always 0, the random component of the centre frequencies is always 0 and 
the centre frequencies remain constant. 

The first random value, that associated with nObjects, is more difficult 
to handle. It is not possible to simply replace the random value with a 
constant one. If the constant were less than nObjects, no energy would enter 
the system; if greater, too much energy and the filter would saturate. To 
produce a repeatable random sequence, we replaced the random function 
with one that reads numbers from a file and returns them in order. 

The function relies on a file containing a sequence of random numbers 
from 0 to 1, as would normally be returned by randQ. The first time it is 
called, the random function initializes an array of numbers and populates the 
array from the file. It then returns the next array value with each subsequent 
call. 

The second random function, noise_tick, creates an excitation function 
for the filter. The excitation function is discussed in the following section. 

Changing the Exc i t a t ion Funct ion 

As discussed in the previous section, one of the random functions, rand(), 
used in Shakers acts as an excitation function. Since Shakers is intended 
to model solid objects striking one another, it is appropriate to replace this 
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function with one that will synthesize a water droplet. We recorded a droplet 
landing on a non-resonant surface. We implemented a new rand() function 
that takes its values from those samples. 

To record the excitation function of a water droplet, we required a sur
face that had minimal intrinsic resonance. We decided to use a light tissue 
paper and record the sound of a water droplet landing on it. Fortunately we 
already had such a recording from our grid-based sample selection discussed 
in Section B.2. 

Once the samples were recorded, they had to be returned in correct se
quence from the new rand() function. This was accomplished by keeping 
static variables in the rand() function. The sequence of samples was stored, 
as well as an index to the current sample. Each time the function is called, 
the current value is returned and the index incremented. The index is rolled 
over each time the array bounds are exceeded, though the sequence is zero-
padded to allow enough time for the system energy to die out before this 
happens. The counter can also be reset, allowing each new droplet to reset 
the excitation function to the beginning. 

Before it can be used, the sample array must be initialized from a file. 
There are two points in the code where this can be done: in the Instrument 
constructor or on the first call to rand(). The first is preferable to provide 
consistent execution time for every call to rand(), but requires a significant 
change to the Instrument class. In the interests of minimizing the footprint 
of our modifications, we initialize the sample array on the first call to rand(). 
Our controller program ensures rand() initializes by initiating one droplet on 
startup. 

Accessing Internal Parameters 

In Section B.3.2 we discussed the parameters that define a P h l S E M Instru
ment and mentioned some of the predefined Instruments included in the 
Shakers class. Having removed the randomness from the system and cre
ated an excitation function appropriate for a droplet of water landing on a 
surface, we next needed to model the resonant characteristics of the surface 
itself. This represents a significant departure from an instrument such as a 
Maraca, where the same beads are striking the same surface with every shake. 
With MetaMuse, we require that the surface itself from droplet to droplet, 
in accordance with the landscape metaphor. This requires access to the pa
rameters that, for other Instruments, are fixed: freq_rand, centre_frequencies, 
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nfreq, nObjects, input-decay, system_decay, decay .scale, and base_gain. 
Since the Instrument handling droplets works differently from the other 

Instruments, having different random functions and tick functions, we defined 
a new Instrument in the Shakers class. The Generic Instrument defines pa
rameter values and allocates space for eight centre frequencies, allowing nfreq 
to vary from 1 to 8 with no reallocation concerns. The other previously-fixed 
parameters are also made accessible, but no further innovation is required to 
allow that access. 

The Generic Instrument is successful - it allows changes to the resonant 
characteristics of the modeled surface through its parameters at runtime. 
However, testing showed that it is best to change the previously-fixed param
eters when the filter has died down to 0 energy. Changing the parameters at 
high energy sometimes results in instability in the filter. This is suitable for 
MetaMuse; as we shall see in Section B.3.4, MetaMuse sets up each droplet's 
parameters, energizes the droplet, and lets it die down before repeating. 

B.3.4 System Architecture 
The parametric synthesizer for MetaMuse consists of multiple Generic In
struments iterated in parallel. The Instruments are "fixed" in round-robin 
fashion, allowing multiple droplets to overlap without saturating the filter 
of any one Instrument. The Instruments' outputs are summed and passed 
through a Reverb to a real-time WvOut. This pipeline is iterated in a sepa
rate thread from the other components of MetaMuse, with signalling taking 
place through a shared memory segment and a condition variable. The round-
robin Instrument pool and inter-thread signalling methods will be discussed 
in greater detail. 

M u l t i p l e Instruments and Performance Considerat ions 

The use of multiple instruments in the synthesizer module allows multiple 
droplets to sound concurrently. The droplets are iterated in turn and their 
outputs summed. The number of Instruments to iterate is constrained from 
above by the amount of processing power available, and from below by the 
desire for many concurrent droplets. A tradeoff was made that allows the 
bank of Instruments to iterate in a single thread; this thread occupies one 
processor in a dual processor system. 
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Each tick of the synthesizer sends a single sound sample to the sound 
card. This process entails ticking each Instrument individually, then using 
each Instrument's output to tick its respective Reverb. Finally, the Reverb 
outputs are summed to provide a sample for output through the WvOut. At 
a sample rate of 22050 Hz, and with N instruments operating in unison, the 
MetaMuse system must be capable of ticking an Instrument 22050*N times 
a second. Clearly, then, the hardware used provides a maximum bound on 
N . 

The lower constraint on the number of Instruments is provided by the 
number of droplets we wish to have sound in unison. We found that a single 
droplet dies out in about 100 ms. Therefore, with N Instruments we can 
provide a maximum droplet frequency of 10N droplets per second. 

We run MetaMuse on a dual-processor P4 operating at 2GHz. With the 
synthesizer module running in a single thread, we were constrained by the 
power available from one processor; indeed, with the system appropriately 
tuned we find that the synthesizer thread fully occupies one processor, all 
other operations being handled by the other. In this setup, we were able to 
iterate 15 Instruments before the sound quality deteriorated due to dropped 
samples. We reduced this number to 10 for our final system, allowing further 
overhead for inter-thread communication. 

10 Instruments provides a maximum Droplet frequency of 100 droplets 
per second. This turns out to be adequate for a moderate rain-shower. We 
discuss ways in which the sound is further improved in Section B.3.5. 

Droplet allocator and inter-thread communication 
The droplet allocator is responsible for keeping track of which Instrument is 
next in line to receive an incoming droplet. To aid in this task, a Droplet 
struct is defined containing all the necessary parameters for initiating a 
droplet. The new Droplet is placed in shared memory by the mapper, which 
then waits on a condition variable for the allocator to receive the Droplet. 
Once received, the allocator sets up the droplet parameters in the appropri
ate Instrument, increases the input energy of the Instrument to the required 
level, and continues ticking all the Instruments. 

New Droplets are sent to each Instrument in turn. However, the allocator 
does not keep track of how recently an instrument was last used. If the 
Droplets arrive too quickly, previous droplets may be overwritten. The calling 
module is responsible for ensuring that droplets are not sent too frequently. 
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In MetaMuse this is done by throttling back the number of droplets produced 
when the watering can is at full tilt. 

B.3.5 Improving the sound with heuristic methods 

The synthesiser described thus far works reasonably well for single droplets, 
but sounds inaccurate when used to approximate a fuller rain shower or rain 
storm. We believe this to be because of the sheer magnitude of a rain storm 
- at any given time the listener may be hearing thousands of concurrent 
droplets, with millions of droplets per second falling in audible range. As 
discussed in Section B.3.4, MetaMuse is capable of a maximum of 10 con
current droplets and about 100 per second. Additional effects at the large 
scale may include surface water, secondary splashes, cavitation, and droplets 
interfering with one another on impact. We cannot hope to duplicate these 
effects, but we can imitate them to some extent. 

Three heuristic methods are used to improve the sound of the synthesiser: 
bass frequency fill-in, output low-pass filtering, and volume control. A l l three 
of these effects depend on the instantaneous frequency of the synthesiser. 
More precisely, the number of currently active Instruments is used to control 
the amount of each of these effects. 

The three heuristic effects will be discussed in greater detail. 

Bass f i l l - in 

One of the first differences we noted between the MetaMuse output and a 
recording of a rain storm was that MetaMuse lacked bass. The rainstorm 
recording had a deep, low-frequency component that filled in the sound. 
MetaMuse created the impression of several separate droplets rather than 
one rainstorm. 

We attempted to add bass to the system proportional to the instantaneous 
frequency. We did so by adding two centre frequencies to the four currently 
used. These additional resonators are set to lower frequencies — on the 
order of 400 to 800 Hz. They are iterated with the other resonators, but 
their output is multiplied by a gain of zero before the resonator outputs are 
summed. As the instantaneous frequency increases, the bass gain is also 
increased. At full frequency, the bass resonators are at a gain of 1, creating 
a bass rumble to the sound. 
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The bass fill-in helps to alleviate the sense of droplet separation the lis
tener feels. By filling in the lower frequencies, a better sense of depth is 
introduced to the sound. However, the droplets are still too infrequent to 
completely fill in the sound; the bass is heard as a series of separate sounds 
rather than as the continuous rumble perceived in the rain storm record
ing. The following section discusses a second heuristic method — low-pass 
filtering — that improves on this situation. 

Low-pass filtering and volume control 

MetaMuse performs low-pass filtering when there are many concurrent droplets 
to help blend the droplet sounds together. As with the bass fill-in, the in
stantaneous frequency is used to determine the amount of filtering to do. 
The filtering itself is performed by a biquad filter that is part of the STK 
package. 

The final heuristic method is volume. To further give the impression of 
more droplets, the volume is increased with the number of instantaneous 
droplets. 
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APPENDIX C 
IMPLEMENTATION OF 
POLHEMUS LIBRARY 
The Polhemus Library is a multi-threaded library for simplifying access to 
the Polhemus Fastrak. The Fastrak is a magnetic sensor that is attached as 
a peripheral on the serial port. The Polhemus Library, and the supporting 
Serial Port Library, provide layers of abstraction to facilitate use of the device. 

The Polhemus Library wraps the basic functionality of the Fastrak into a 
cohesive, easy-to-use set of function calls. Similarly, the Serial Port Library 
provides a cohesive interface to the computer's serial port, abstracting away 
the platform-specific details of opening, closing, and communicating on the 
port. These libraries will be discussed in greater detail in the following 
sections. 

C . l Serial Port Library 

The Serial Port Library provides a unified interface to the serial port across 
multiple platforms. It allows changes to the underlying port calls, such as 
open and close, without affecting the operation of the overlying device library. 
It does not provide access to advanced serial port control functions such as 
ioctl calls. A serialPort structure is defined in the library and contains the 
basic information required for operation. The use of this wrapping function is 
evidenced by a recent extension of the library to provide similar functionality 
for the Universal Serial Bus (USB), which has a different set of controlling 
functions. One of the benefits of this abstraction is that a USB-based Fastrak, 
if there was one, could be used in place of the serial port model now simply 
by relinking with a different Serial Port library. 

The Serial Port Library is simply a wrapper for the primary functions of 
the serial port: open, close, read, and write. The relevant information for the 
port, currently a name and the file number, are stored in a structure that is 
used by the calling function. The contents of the structure are extracted as 
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needed and passed with the function's arguments to the appropriate system 
calls. Since the library only provides access to the basic functions of open, 
close, read, and write, the serialPort structure is left unprotected to allow 
more complex control calls. However, this functionality is not used by the 
Polhemus library. 

C.2 Polhemus Library 

The Polhemus Library provides a standardized interface to the Polhemus Fas-
trak through the serial port. It handles the parsing of data from the Fastrak 
into records and provides access to those records through three modes: by 
polling, callbacks, and synchronous waiting. The interface is standardised in 
that it can be similarly applied to other serial devices. The implementation is 
multi-threaded, allowing synchronous or asynchronous communication. We 
will discuss the three input methods and their implementation in the follow
ing sections. 

C.2.1 Input Methods 
The three input methods are polling, callbacks, and synchronous waiting. 
The basic operation of each of these methods, with the Fastrak in streaming 
mode and using nonblocking reads for a single record, is as follows. 

Po l l i ng When records are polled, no indication is given to the application 
when new records are received. Instead, the application simply reads a 
record periodically. If a new record is available, it is returned, otherwise 
the read call returns an error code. Polling is most useful in situations 
where the timing of the record retrieval is very important, such as in 
limited-resource applications. 

Callbacks With the callback method, the application registers a callback 
function to be run whenever a new record is available. The function 
is run in a separate thread so it doesn't interrupt the parsing thread 
or the application itself. Callbacks allow data to be updated "behind 
the scenes," without interfering with the application. For example, 
a graphics application may use callbacks to update the positions of 
objects, which are then rendered by the main application thread. 
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Synchronous W a i t i n g Synchronous waiting, based on the select system 
call, is used when the application wishes to wait for one or more file 
descriptors to be ready to read1. When this method is in use, the ap
plication selects on a file descriptor that points to the receive end of a 
pipe. The pipe is signalled whenever a record is ready to be read, allow
ing the application to handle records as they arrive. The select system 
call is often used when multiple input methods, such as the Fastrak, 
the keyboard, and possibly other devices, are used concurrently. 

More advanced operation of these methods occurs is possible. The Fastrak 
can be used in non-streaming mode, with blocking reads, or with multiple 
records to account for multiple sensors. These concerns are discussed in the 
implementation sections below as each is introduced. 

C.2.2 Common Implementation 
The three input methods discussed above share a common implementation, 
with extensions for the additional requirements of each method. The com
mon implementation is discussed in this section, followed by the extended 
implementation for the three methods. 

The common implementation of the Polhemus library centres around a 
pair of structures, one used to hold record data and one which stores run
time variables, and a thread dedicated to parsing data as it arrives from the 
Fastrak. The first structure, called a phRecord, contains space for all data 
that can be received from the Polhemus in one update cycle. The second is 
called a Polhemus, and stores all necessary structures for the operation of the 
library, including thread pointers, flags, mutexes, condition variables, and a 
pointer to a phRecord. The parsing thread separates the data parsing from 
the flow of the application. 

The phRecord structure 

The implementation of the phRecord involves an important concept of the 
Polhemus library: the record set. The Polhemus Fastrak can produce up 
to four records in an update cycle, one for each sensor. In addition, it can 
produce messages relating to its status or to internal errors. To provide 
access to all of these in a given cycle, the phRecord structure contains space 

1 Other conditions are also usable with select. See the system manual pages. 
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to store four data records as well as one message. When a record is read, the 
calling application must specify which record or records to read from within 
the phRecord. 

This design has ramifications in the implementation of both callbacks 
and the select function call. In both those input methods, an action occurs 
when a record is received. To allow the specification of a single action for a 
set of several data records, the concept of a record set is defined. Callbacks 
can be registered, and select call file descriptors requested, for any of the 
individual data or message records, or for the set of data records for all 
active sensors. This implementation allows one action to be performed when 
records are received for several sensors. Finally, when the record set is used, 
any message is viewed as completion of the set — this allows error messages 
to be passed on immediately regardless of the completion status of the data 
records. 

The implementation of individual and set callbacks and file descriptors 
is discussed in further detail in the callback and select system call sections 
below, respectively. 

The Polhemus structure 

The Polhemus structure maintains all the runtime information required by 
the library. This includes the underlying serialPort pointer, the thread 
pointer for the parsing thread, and various flags, mutexes, and condition 
variables. It also includes additional data elements required for callbacks 
and the select system call; these elements are discussed in the appropriate 
sections below. 

A Polhemus variable is created upon initialization of the Polhemus Fas
trak using phlnitialize. A pointer to the variable is returned by phlnitialize, 
and is then passed to all other functions called by the application. This 
allows all the Polhemus data to be kept in one place. Also, providing the 
application with all the Polhemus data allows nonstandard operations to be 
performed. For example, the application can configure the Fastrak to provide 
data in inches rather than centimeters, or to provide a different set of Euler 
angles for the orientation, by calling spWrite, the serial port write function, 
on the Polhemus' Port variable. The only restriction to this configuration 
is that the number of bytes per record, and the number of records in a set, 
cannot be changed by the application. 

Conceptually, the most important element in the Polhemus structure is 
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the thread pointer for the parsing thread. Without the use of a separate 
thread to parse the Fastrak data as it arrives on the serial port, the ap
plication program would be required to pause periodically to carry out that 
parsing. Failure for the application to do so frequently enough could result in 
buffer overruns on the serial port, and thence lost records. The use of a sepa
rate thread for parsing the Fastrak data frees the application from having to 
consider the parsing task. Instead, the operating system's thread scheduler 
runs the parser often enough to read all the serial data under normal system 
load. 

The use of a separate thread necessitates measures to ensure synchro
nization between threads and protection of shared memory. Condition syn
chronization, in the form of pthread_cond_t and pthread_mutex_t variables, 
is used to signal the blocking read call, phGetBlocking, that a phRecord is 
ready. Condition synchronization is also used in the implementation of call
backs, which will be discussed below. Locks, in the form of pthread_mutex_t 
variables, are used to protect shared memory in the case of the parsing 
thread itself, the phRecord, and a status flag. A l l these pthread_cond_t and 
pthread_mutex_t variables are stored in the Polhemus structure. 

The parsing thread 

The parsing thread continually parses data from the serial port into records, 
then signals the application as appropriate when full records are accumulated. 
A state machine is used in the parsing algorithm, with the data being exam
ined to determine its content at the beginning of each record. Also important 
in the implementation of the parsing thread are thread synchronization and 
thread initialization and termination. 

Data is captured into a buffer, which is then parsed according to the 
parsing algorithm. The parsing algorithm is based on a state machine. With 
no data parsed, the machine is in the C O M M A N D state. If the first byte 
is '0', the incoming record is a data record and the next byte indicates to 
which sensor it belongs. This byte is read in the STATION state. The third 
byte, is a status code, read in the STATUS-CODE state, then 24 bytes of 
data, providing six four-digit numbers for position and orientation of the 
sensor, are received in the DATA state. A carriage return (CR state) and a 
line feed (LF state) complete the record, and the parsing algorithm returns 
to the C O M M A N D state for the beginning of the next record. If the first 
byte is other than '0', the incoming record is a message and is parsed in 
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the A C C U M state until a newline is received. In any state, if the buffer is 
emptied the algorithm will read further data from the port to complete the 
current record. 

The parsing thread is initialized and forked in the phlnitialize function 
call. The pthread.t variable is stored in the Polhemus object, which is then 
passed to pthread_create as the argument to the thread's function. A keep-
alive thread, protected by a mutex, is used to determine when the thread 
should stop parsing and exit. 

Other functions 

There are several common functions used throughout the library, indepen
dent of the method of access used. These are phlnitialize, phClose, phStrea-
mOn, phStreamOff, phRequestRecord, phGetNonBlocking, and phGetBlock-
ing. phlnitialize was discussed in the previous section; the remainder will be 
discussed here briefly. 

phClose Signals all threads to terminate, joins with them, deallocates mem
ory space, closes the sPort, and exits. 

phSt reamOn and phStreamOff Send command to turn data streaming 
on or off. 

phRequestRecord Used when streaming is turned off, this function sends 
a command to the Fastrak to request a single record set. 

p h G e t N o n B l o c k i n g Gets a new parsed record; returns an error if no new 
record is available. The calling application includes indication of which 
records (one or more data records, the message record, or the full record 
set) to get. Records are copied from the phRecord in the Polhemus 
structure to a phRecord passed in by the calling application. A lock 
is used to protect the Polhemus' phRecord from simultaneous access. 
phGetNonBlocking is used in all MetaMuse functions. 

p h G e t B l o c k i n g Gets a new parsed record; blocks until a new record is 
available. This function otherwise operates the same as phGetNon
Blocking. However, in the current implementation of the Polhemus 
library, this function is not implemented. 
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In both phGetNonBlocking and phGetBlocking, only new, unread records 
are returned. A status flag is used to keep track of whether a record has been 
read or not; the flag is set when a record is read and cleared when the record 
is written by the parsing algorithm. This presents a limitation to the library: 
only one application can read data from a Polhemus with this library. If 
multiple applications try to read, the first will cause the status flag to be 
set, and all others will receive an error, or block, indicating no new record is 
available. For applications that use the Polhemus Fastrak data in multiple 
places, or for situations where multiple applications use the data, it must be 
read in only one place and shared amongst the other modules or applications 
from there. 

C.2.3 Polling Implementation 
As discussed above, the polling method is used when the application simply 
reads a record periodically; no notification is given to the application when 
new records are received. As such no specific implementation is required 
for use of polling. The application either uses streaming mode, set with 
phStreamOn, or periodically requests records using phRequestRecord, then 
gets records with phGetBlocking or phGetNonBlocking. 

C.2.4 Select Implementation 
The use of the select system call requires the application to have one or more 
file descriptors. The application is then signalled by being made ready to 
read; this causes the select call to return with an indication of which file 
descriptor is ready. File descriptors are created based on pipes, and are 
accessed by the application with the phGetFD and phFreeFD functions. 

To set up select call use, the application calls phGetFD, indicating for 
which records file descriptors are required. File descriptors can be issued 
for any of the four data records, the message record, or for the full record 
set. Though there are no checks to prevent the application from getting file 
descriptors for both the full record set and for some subset, the behaviour of 
the library in this case is undefined. File descriptors can be released, either 
to convert to a different input method or to change from, for example, a full 
record set to some subset, using phFreeFD. 

When phGetFD is called, the library creates a pipe for each file descriptor 
requested. Pipes are created with the pipe call from the unistd system library, 
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which returns a pair of file descriptors: one for reading, one for writing. The 
readable file descriptor is returned to the application to be added to an 
FDJ3ET and used in a select call. 

When the parsing thread completes a record, it checks the existence of a 
relevant file descriptor. If one exists, the thread writes a single byte to the 
pipe, which puts the readable file descriptor into the 'ready-to-read' state. 
The application's select call will then return. Note that the pipe is used only 
for signalling purposes; it does not transmit the record itself. Instead, the 
application calls either of phGetBlocking or phGetNonBlocking to read the 
record as usual; both these functions read from the necessary file descriptors 
to clear the byte and remove the 'ready-to-read' status. 

C.2.5 Callback Implementation 
The use of callbacks requires one or more functions be registered with the 
Polhemus library. As with the file descriptors for the select call, callbacks 
can be registered for any of the individual records or for the full record set 
(and behaviour is undefined if both are registered). The difference, however, 
is that a function must be provided by the application for execution as each 
callback. In addition to the required function definition, a separate thread is 
created to allow callbacks to be run without interrupting the parsing thread. 

The callback function is in the form: 

void callback\_function( void *polhemus\_pointer, 
void *callback\_argument ) 

with the polhemus pointer providing access to the Polhemus structure, 
and the callback argument providing access to a structure defined by the ap
plication. The callback argument is represented as a pointer to void to allow 
any structure to be passed in — the application simply casts the structure 
to a void pointer when passing it to the library, then casts it back within the 
callback function itself. 

When the application registers its first callback with the Polhemus l i 
brary using phRegisterCallback, a new thread is forked to run the callback 
on demand. That thread waits on a condition variable, which is signalled 
each time a relevant record is received. Note that since only one thread is 
forked to run all possible callbacks, a lock-protected flag is used to indicate to 
the thread which callback or callbacks should be run. This operation is con
founded, however, if the callback takes longer to run than the refresh period 
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of the Polhemus. Rather than simply signal the callback thread for every 
record received, the value of the condition variable is tested. The thread is 
signalled only if it has not already been signalled. 

The described operation required one important implementation detail. 
The flag indicating which callbacks are to be run could be changed during the 
course of the callback thread's operation. Locking it for the entire duration 
of the callback or callbacks, however, potentially delays the parsing thread 
as it attempts to update the flag with the arrival of new records. To prevent 
both of these issues, the flag is read once by the callback thread immediately 
after it has been signalled. The value is then stored as a local variable, and 
only those callbacks that were signalled at that time are run. 

Only one callback can be registered per record or record set. Callbacks 
can be deregistered, either to convert to a different input method or to change 
from, for example, a full record set to some subset, by registering a N U L L 
callback function. Finally, when the Polhemus is closed with the phClose 
function, a flag is set to indicate to the callback thread that it should termi
nate, and the thread is signalled. The thread then terminates and phClose 
joins with it. 

C.2.6 Variations 
The Polhemus library is intended to create a template for device interaction, 
as well as a Polhemus Fastrak interaction library. Libraries with a similar 
interaction paradigm could be created for any serial device, as well as many 
other devices such as frame-buffers. Two other libraries are currently in 
operational development for serial devices other than the Polhemus: one for 
the Virtual Technologies CyberGlove, a data-glove, and one for the Phidget, 
a USB-based general-purpose I/O device. 

The CyberGlove library differs from the Polhemus library in the number 
of available records and the size of the record. Records from the CyberGlove 
have data for all sensors in one record, meaning that multiple records, and 
therefore multiple callbacks or file descriptors, are not required. As such, the 
CyberGlove library has a simpler implementation than the Polhemus library. 
However, other than these simplifications, the CyberGlove library is identical 
to the Polhemus library. 

The Phidget is similar to the CyberGlove in its record structure. However, 
it uses the USB port rather than the standard RS232 serial port. Since the 
serial port operation is separated into a different library, however, all that was 
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required to convert the CyberGlove library to use the Phidget was to change 
the function calls for opening, closing, reading to, and writing from the port. 
Otherwise the Phidget library is identical to that of the CyberGlove. 


