
Early-Demultiplexing Techniques for Quality of Service
in Serving G P R S Support Nodes

by

Geoffrey Lefebvre

B.A.Sc. University of Sherbrooke, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master; of Applied Science
in

THE FACULTY OF GRADUATE STUDIES

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming
tn thp. rermireH standard

The University of British Columbia
December 2001

© Geoffrey Lefebvre, 2001

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my writ ten

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

The General Packet Radio Service(GPRS) is a wireless data service that sits on top
of the existing GSM infrastructure. It provides access to the Internet and packet
based billing. It is often referred as a 2.5G system and is designed to evolve to
UMTS(3G). The Serving GPRS Support Node(SGSN) is one of two new nodes
added to the GSM infrastructure to support GPRS. Its role is to route data to users
in its geographical area and provide user mobility, access control and security.

We have studied a SGSN from a system point of view, looking at how it
interacts with the operating system. We have found that a SGSN implemented as a
user level process will not be able to properly support Quality of Service(QoS). We
have looked at three QoS parameters: throughput, delay and precedence and have
found that a SGSN will not be able to maintain guaranteed services based on those
parameters when heavily loaded. This behavior is due to the fact that operating
systems are unaware of the QoS requirements of incoming traffic and are therefore
unable to properly queue incoming packets.

We have designed and built a SGSN where the incoming traffic flow is demul
tiplexed on arrival. The QoS requirements of incoming packets are identified before
they are queued. Packets can now be classified and queued properly. Our results
show that our Early Demultiplexing SGSN(ED-SGSN) provides large improvements.
The ED-SGSN is able to maintain service guarantees in terms of throughput, delay
and precedence even under serious loads.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Model and Problem 6

2.1 Introduction 6

2.2 Definitions 7

2.2.1 Downlink and Uplink traffic 7

2.2.2 Throughput 7

2.2.3 Exceeding Traffic and Misbehaving Users 7

2.2.4 Delay and Jitter 8

2.2.5 Precedence 8

2.2.6 Reliability 8

2.3 The General Packet Radio Service (GPRS) 8

2.4 The Serving GPRS Support Node (SGSN) 13

iii

2.4.1 GPRS Tunneling Protocol (GTP) 13

2:4.2 Sub Network Dependant Convergence Protocol (SNDCP) . . 13

2.4.3 Logical Link Control (LLC) 14

2.4.4 BSS GPRS Protocol (BSSGP) 14

2.4.5 Network Service (NS) 16

2.5 User Space Vs Kernel Space Implementation 16

2.6 Problem 18

3 Background 22

4 System Software Architecture 31

4.1 Event-Driven Process 31

4.2 Event Scheduler 34

4.3 STREAMS Message 35

4.4 Memory Management 37

5 G P R S Implementation 40

5.1 SGSN 40

5.1.1 Context Management 42

5.1.2 SNDCP and LLC implementation 43

5.1.3 Flow Control 44

5.1.4 BSSGP and NS implementation 47

5.2 MS/GB and GGSN/GN 47

6 Early Demultiplexing 49

6.1 Overview 49

6.2 Early Demulitplexing SGSN 52

iv

6.3 KSGSN 55

7 Experimentation and Results 59

7.1 Overview 59

7.1.1 Lab Setup 59

7.1.2 Traffic Generator 61

7.2 KSGSN Overhead 63

7.3 Througphut • 64

7.3.1 Overall Throughput 65

7.3.2 Fairness and Isolation 69

7.4 Delay and Support for Real-time Traffic 75

7.4.1 Real-Time Requirements of Multimedia Traffic 75

7.4.2 Low Delay Traffic Class 76

7.4.3 Experiments and Results 77

7.5 Precedence 80

7.5.1 Overview 80

7.5.2 Experiments and Results 81

8 Conclusion 84

Bibliography 88

•v

List of Tables

Stack traversal t iming (microseconds) 64

i

vi

List of Figures

2.1 GPRS Network 9

2.2 GPRS Transmission Plane 10

4.1 STREAMS message 36

4.2 Memory allocator 38

5.1 SGSN software architecture 41

6.1 SGSN(a) and ED-SGSN(b) 53
6.2 KSGSN software architecture 57

7.1 Lab setup 60

7.2 Throughput of SGSN and ED-SGSN with no exceeding traffic 67

7.3 Throughput of SGSN and ED-SGSN with 33.3% exceeding traffic . . 67

7.4 Throughput of SGSN and ED-SGSN with 50% exceeding traffic . . . 68

7.5 Input/Output of Good and Bad Users for the SGSN (160 Users) . . 71

7.6 Input/Output of Good and Bad Users for the ED-SGSN (160 Users) 71

7.7 Input/Output of Good and Bad Users for the SGSN (256 Users) . . 72

7.8 Input/Output of Good and Bad Users for the ED-SGSN (256 Users) 72

7.9 Average delay for real-time class 78

vii

7.10 Drop Rate for High Precedence Traffic Class

vii i

Chapter 1

Int roduct ion

The General Packet Radio Service (GPRS) is a new data communication service

that promises to bring packet based network connectivity to the wireless world on

a large deployment scale. GPRS sits on top of the existing GSM infrastructure,

making it a very attractive solution for existing GSM network operators. GPRS,

often referred to as a 2.5G system, is seen as a stepping stone to UMTS/3G, the

next generation infrastructure for mobile telecommunication. Combined with the

fact that GSM is by far the most widely used cellular technology in the world today,

clearly, GPRS will have an important role to play in wireless data communication

in the near future.

In order to become popular, GPRS must be able to provide Quality of Service

(QoS). A system that supports QoS is able to offer services with certain guaran

tees and is able to hold to these guarantees in all circumstances. This is becoming

increasingly important today as the usage of applications requiring such services

grows. Applications such as video conferencing, packetized voice and streaming

multimedia, all of which require some QoS support from the network, are already

quite popular on the Internet today and it is a good assumption that these applica-

1

tions will also be popular with GPRS users.

Most of the QoS research in the area of networking and communication has

focused on efficient link utilization and scheduling of packets so that service guaran

tees can be met. Often nodes that interconnect the links are modeled as black boxes

with a simple processing delay and a scheduler. The fact is that system software

is complex. The interaction between user level software, the operating system, and

the underlying hardware is not always well understood. This is especially true in

cases where Input/Output (I/O) intensive applications need to support QoS. In the

area of system research, some work has been done to build operating systems with

support for QoS in the I/O subsystem. However not much work has been done to

try to bring networking and system research together and analyze how the behavior

of a real system used as a node in a network can affect its overall performance.

In this thesis, we have built and analyzed a Serving GPRS Support Node

(SGSN). The SGSN is one of two new types of nodes added to the GSM infrastruc

ture in order to support GPRS. The SGSN is connected to the Base Station System

(BSS) via Frame Relay and to the Gateway GPRS Support Node (GGSN) via an

IP based GPRS backbone network. The role of the SGSN is to serve mobile users

in its geographical area. It routes packets to the right cells and keeps track of the

location of each user within its serving area. It also performs tasks such as mobile

authentication and cyphering.

For software engineering and economic reasons, an SGSN is often imple

mented as a user level process using facilities provided by the operating system.

This provides memory protection between processes and access to built-in libraries

for the most common tasks such as memory allocation, inter-process communica

tion and network access. The other option is to implement the SGSN as a kernel

2

level server. In this case the SGSN is implemented as an extension of the operating

system.

Our goal was to analyze how an SGSN interacts with the operating system

network subsystem and how this interaction affects the overall performance of the

SGSN and the service received by each user, especially in terms of meeting QoS

related guarantees. To achieve this goal, we designed and built an SGSN running

under the Linux operating system. We have also built a testbed that simulates a

GPRS network to test the SGSN. We believe building an actual system instead of

using simulation packages is the right approach to analyzing the behavior of a user

level SGSN especially under heavy traffic loads.

We have found that an SGSN implemented as a user-level server will be

unable to offer guaranteed services independently of the load on the system. The

quality of such service will degrade as the load on the system increases. The problem

is caused by the fact that operating systems do not have a facility to allow user

level processes to communicate their QoS requirements about incoming network

traffic. Because they lack the proper information, operating systems are unable to

classify and queue incoming network traffic according to their QoS requirements. A

simple First-In First-Out (FIFO) buffering mechanism is used instead, where the

QoS attributes of each packet are simply forgotten.

This problem is accentuated in GPRS by the usage of tunnels between GPRS

nodes in the GPRS backbone network. Every user's traffic is aggregated into a

single flow of data. Once encapsulated in such a manner, it becomes very hard to

differentiate individual flows and identify their QoS requirements. The operating

system hosting an SGSN is unable to do so and must resort to queuing all incoming

traffic in the input queue in a FIFO manner.

3

The problems caused by such behavior are numerous. First, high priority

packets are delayed by being queued behind lower priority packets. Second, once

the queue fills up, additional incoming traffic is dropped in a tail-drop manner. This

is done without accounting for the precedence or the importance that some packets

might have over others. Third, packets are read from the input queue in the same

order they were received and processed through the SGSN protocol stack, in that

order as well. This leads to problems related to isolation of individual users' traffic

when processing resources on the SGSN become saturated. Misbehaving users steal

processing resources from well-behaved users and affect their throughput. Since

exceeding traffic generated by misbehaving users is never sent out on the output

link, the resources consumed by such traffic are wasted. Thus, overall throughput

of the SGSN is affected.

To avoid theses problems, the FIFO behavior of SGSN's input queue must

be eliminated. Incoming traffic must be demultiplexed on arrival and queued in a

manner that allows all QoS requirements to be taken into account. Also, a scheduling

framework is necessary to make sure the SGSN processing resources are distributed

properly among all mobile users attached to the SGSN.

We have built a version of our SGSN where incoming traffic is demultiplexed

on arrival. We identify the owner and the Qos requirements of each incoming packet

before the packet is queued. This allows us to queue or drop packets according to

those QoS requirements and avoid the FIFO behavior.

In this framework, packets are no longer processed in a FIFO manner. A

packet scheduler decides which packet should be processed next by the SGSN instead

of simply processing the first packet at the head of the queue. This allows for proper

scheduling of the SGSN resources, providing better isolation between users, avoiding

4

unecessary delay for high priority traffic and eliminating resource wastage.

This thesis is organized as follows: Chapter 2 presents an overview of GPRS,

focusing on the SGSN. A comparison of user and kernel level processes is given

with an in depth presentation of the problems mentioned earlier. Chapter 3 gives

an overview of some the research that has been performed on GPRS and early-

demultiplexing. Chapter 4 describes the software components used to build our

SGSN, such as, a memory allocator and a message passing mechanism. Chapter 5

describes our implementation of the SGSN and of the other nodes on our testbed.

The most important differences between our SGSN and a commercial implementa

tion are given in this chapter. Chapter 6 describes the design and implementation

of our early-demultiplexing mechanism. Chapter 7 describes our experiments and

results. The conclusion is presented in Chapter 8.

5

Chapter 2

Mode l and Problem

2.1 Introduction

The General Packet Radio Service (GPRS) is a new wireless data communication

service. It sits on top of the existing GSM infrastructure and provides a higher data

transfer rate than previously available. The Serving GPRS Support Node (SGSN)

is one of two new nodes added to the GSM architecture to provide support for

GPRS. The SGSN provides data transfer to and from mobiles in its geographical

area. It keeps track of mobiles' locations and provides other management functions,

such as authentication and billing. The SGSN functionality is complex, and is often

implemented in software as a user-level process. We will see that such an approach

can lead to problems when it comes to supporting Quality of Service (QoS).

We will first describe GPRS, its goal and functionality. We will focus mostly

on the SGSN since it's the node we have studied and modeled. We will look at a

possible implementation of an SGSN as a user-level server, focusing on how such

software interacts with the operating system underneath.

6

2.2 Definitions

2.2.1 Downlink and Uplink traffic

Downlink traffic refers to traffic that travels from an external network, such as the

Internet, towards mobile users. Uplink traffic travels in the opposite direction, from

the mobile users to the external network.

2.2.2 Throughput

The overall throughput represents the total number of packets per second the S G S N

can output. Since we are mostly interested in traffic in the downlink direction, the

overall throughput usually refers to the total number of packets per second sent out

on the Gb link. This number is dependant on the input load on the Gn interface, the

available bandwidth on the Gb link, and on the processing capacity of the SGSN.

The throughput of a user or mobile (again in the downlink direction) repre

sents the number of packets per second that can be transferred from the external

network to the mobile user. This number depends on the individual load on the G n

interface, on the allocated bandwidth for this user and on the processing resources

available on the SGSN.

2.2.3 Exceeding Traffic and Misbehaving Users

Exceeding traffic is the portion of traffic generated by a user that exceeds the user's

pre-allocated bandwidth. A misbehaving user is a user that generates exceeding

traffic.

7

2.2.4 Delay and Jitter

Delay represents the length of time a packet spends at the SGSN. Delay is due to

a limitation of physical resources, such as link or processing capacity, which causes

packets to be queued for a certain amount of time. Jitter represents the variation in

delay. Jitter is caused by variable queuing time experienced by packets traversing

the SGSN.

2.2.5 Precedence

Precedence determines how service should be maintained under abnormal situations,

such as network congestion. When packets need to be dropped, the decision of which

packet to drop is based on the packet's precedence. Packets with low precedence

are always dropped before high precedence packets.

2.2.6 Reliability

Reliability defines the probability of errors such as packet loss, duplication, out of

order delivery and corruption. Traffic with high reliability requirements should be

transferred using the most reliable transport mechanism (acknowledgement, error

detection, etc) and should belong to the highest reliability class.

2.3 The General Packet Radio Service (GPRS)

GPRS provides access to X.25 networks and IP based networks such as the Internet

at speeds between 9 and 150 kilobits per second. For this, two new nodes are added

to the GSM architecture: the Serving GPRS Support Node (SGSN) and the Gateway

GPRS Support Node (GGSN). Both are anchor points for mobile users. The SGSN

8

Figure 2.1: GPRS Network

is a geographical anchor. It will route packets for all mobiles in its geographical

area. Still, mobiles can change geographical area and dynamically switch from one

SGSN to another. The GGSN is a network anchor. It acts as a gateway between the

GPRS network and an external network such as the Internet. A mobile station (MS)

assigned with a packet data protocol (PDP) address (i.e. ah IP or X.25 address)

always communicates with the external network via the same GGSN. From the point

of view of the outside network, the GGSN appears as a regular router; the GPRS

network is not visible. The SGSN and the GGSN are connected together via an IP

based GPRS backbone network. The SGSN is connected to the base stations using

Frame Relay.

The GPRS protocol can be divided into two parts: the transmission plane

and the signaling planes. The transmission plane is used for data transmission be-

9

MS BSS

~"~---^Rel

SNDCP

ay

GTP

LLC
UDP/TCP

BSSGP

UDP/TCP

BSSGP
IP

NS L2

LI bis LI

SGSN GGSN
Um On

Figure 2.2: GPRS Transmission Plane

tween mobiles and the external data network. It involves four nodes: the MS, the

base station subsystem (BSS), the SGSN and the GGSN. The transport of network

protocol data units (N-PDU) between the mobile and the GGSN is completely trans

parent. Network layer packets are encapsulated and tunneled through the GPRS

network. GPRS headers are added to properly route packets through the GPRS

network independently of the network layer protocol. The signaling planes are used

for management of the transmission plane. Tasks such as network access, user

authentication and mobility control, are accomplished using the signaling planes.

Signaling between the MS and the SGSN is done with the GPRS mobility manage

ment (GMM) and the session management (SM) protocols. Signaling between GSN

(SGSN and GGSN) nodes is done with the GPRS tunneling protocol (GTP).

Signaling also involves additional nodes, part of the existing GSM infras

tructure, such as the Home Location Register (HLR), the Mobile Switching Center

(MSC) and the Visitor Location Register (VLR). Signaling between GSN and GSM

nodes is done via SS7.

10

A mobile that wishes to connect to an external network using GPRS, must

first attach itself to the SGSN. The attach procedure is part of the G M M protocol.

This procedure usually requires the mobile to authenticate itself, and leads to the

establishment of a logical link between the mobile and the SGSN and the creation

of a mobility management (MM) context on the SGSN. The logical link is identified

by a Temporary Logical Link Identifier (TLLI). The M M context is used to store

the state relative to mobility management. Information, such as the International

Mobile Subscriber Identity (IMSI) and the current cell used by the MS, are stored

in the M M context.

An attached mobile that wishes to transfer data with an external network

must first obtain a PDP address. This is done via the PDP activation procedure,

part of the session management protocol (SM). This procedure involves the SGSN

and the GGSN. GPRS supports the assignment of static and dynamic PDP ad

dresses. The address assignment is made by the GGSN. A PDP context on the

SGSN is created to store information such as the Network layer Service Access

Point Identifier (NSAPI), the PDP address, the IP address of the GGSN and the

Quality of Service (QoS) profile.

GPRS allows the multiplexing of networking protocols and addresses over a

single logical link. A single MS could be assigned two different PDP addresses from

two different networks and/or protocols and use them simultaneously. With each

PDP address a NSAPI is assigned at the MS, the SGSN and the GGSN. The NSAPI

serves as an access point to the logical link between the mobile and the SGSN. The

TLLI/NSAPI pair allows for the proper routing of N-PDUs between the mobile and

the SGSN. Between the SGSN and the GGSN, the IMSI/NSAPI pair is used to

uniquely identify a PDP context.

11

GPRS supports Quality of Service (QoS). The requirements specify guide

lines for support of QoS. It defines 4 parameters: precedence, reliability, delay and

throughput[14] and defines classes of traffic for each parameter. GPRS defines 3

precedence classes and 3 reliability classes.

Four delay classes are defined in the requirements. Three of them have

maximal delay that should be experienced by traffic belonging in each class. The

fourth delay class has no bounded delay and represents a best effort service. The

values given in the requirements for mean and maximal delay represent end to end

delay across the entire GPRS network, not only the SGSN.

Throughput is split into 2 parameters: peak and mean throughput. Peak

throughput is calculated in bytes per second and represents the maximum rate that

can be transferred by a PDP context. There is no guarantee that the peak rate

can be achieved or sustained. Mean throughput is calculated in bytes per hour and

represents an average value that a PDP context can expect over its lifetime. In

both cases, a GPRS network can limit the throughput, even if additional capacity is

available. GPRS defines 9 peak throughput classes and 19 mean throughput classes.

Each PDP context is assigned a Qos profile, which is a combination of the five

parameters. An implementation does not need to support all possible combinations

of parameters[8]. There is one QoS profile per PDP context. The QoS profile to

be used by a PDP context is negotiated and assigned during the PDP activation

procedure. An example is the support of a real-time traffic class. Traffic belonging
i

to this profile would be part of the lowest delay and reliability class and be assigned

to some throughput and precedence classes.

12

2.4 The Serving G P R S Support Node (SGSN)

The task of the SGSN is to serve all mobiles in its geographical area. It must keep

track of theiocation of each mobile and route packets accordingly. For security and

privacy reasons, new mobiles connecting to the network must be authenticated, and

the link between the mobile and the SGSN is ciphered. The SGSN supports user

mobility within its geographical serving area and also between SGSNs. The S G S N is

designed as a multiple layer network stack. Each layer serves a specific purpose and

allows the transparent transport of N-PDUs between the G G S N and the mobile.

2.4.1 G P R S Tunneling Protocol (G T P)

The G P R S Tunneling Protocol (GTP)[11] is used to tunnel network layer PDUs

between the SGSN and G G S N . Packets from all P D P contexts are multiplexed into

a single stream. G T P supports acknowledged and unacknowledged transmission

modes. In unacknowledged mode, G T P PDUs are transported using UDP[32]. The

acknowledged mode uses TCP[33] as its transport protocol. T C P is recommended

for network layer protocols requiring a reliable link such as X.25. U D P is used for

protocols that don't need a reliable link such as IP. The G T P header contains a

Tunnel Identifer (TID) which is a combination of the mobile's IMSI and an N S A P I .

The TID identifies the mobile and the P D P context to which a packet belongs.

2.4.2 Sub Network Dependant Convergence Protocol (S N D C P)

The Sub Network Dependant Convergence Protocol (SNDCP) [13] allows the multi

plexing of multiple network protocol contexts onto a single logical link provided by

the L L C layer. NSAPIs are used as access points to the underlying link. S N D C P

also provides an adaptation layer for the above network layer. S N D C P supports

13

fragmentation so packets can conform to the maximal frame length requirement of

the LLC layer. SNDCP supports acknowledged and unacknowledged operations.

These in turn use the corresponding service provided by the LLC layer. To max

imize the usage of the radio interface, SNDCP provides data compression. The

SNDCP layer currently supports TCP/IP header compression[19] and V.42bis data

compression[18].

2.4.3 Logica l L i n k C o n t r o l (L L C)

The Logical Link Control (LLC) layer[12] provides a reliable ciphered logical link

between the MS and the SGSN. The LLC layer can operate in acknowledged or

unacknowledged mode. The retransmission and acknowledgement are performed at

the LLC layer. Frames are protected from corruption with a 24 bit Cyclic Redun

dancy Check (CRC), calculated over the entire frame and appended at the end. In

unacknowledged mode, two protection modes are supported: protected mode, which

calculates the CRC over the entire frame, and unprotected mode where the CRC

is only calculated over the LLC and SNDCP header. Confidentiality is provided

with encryption. Encryption is performed over the entire LLC payload and the field

containing the CRC. The security provided by the LLC layer is equivalent to what

is currently provided by GSM.

2.4.4 B S S G P R S P r o t o c o l (B S S G P)

The role of the Base Station Subsystem GPRS Protocol (BSSGP) [9] is to provide

a communication path between the SGSN and the Base Station Subsystem (BSS).

BSSGP only supports unconfirmed transfers of data. Reliability, if needed, is to be

provided by the LLC layer. BSSGP provides BSSGP Virtual Connections (BVC)s

14

that are established using Frame Relay Permanent Virtual Connections (PVC). A

BVC represents a connection between an SGSN and a cell. Individual mobile logical

links are multiplexed over BVCs. Along with data, packets are sent with QoS related

information. This information can be used by the BSS radio resource scheduler to

manage the radio interface.

BSSGP supports flow control between the SGSN and the BSS for traffic in

the downlink direction. There are no requirements for flow control in the uplink

direction. For each cell or BVC, there is a downlink buffer on the BSS. This buffer

is controlled by a leaky bucket. The BSS also controls the rate of each MS using a

leaky bucket. Flow control is performed at the SGSN on each MS and on each BVC

to make sure the capacity of any leaky bucket on the BSS is never exceeded. The

SGSN is kept up to date regarding changes in capacity and leak rate of each bucket

by the BSS.

Flow control is first performed on each MS's traffic. PDUs that pass the

mobile flow control are then subjected to the BVC flow control mechanism. Once

passed this second stage, the PDU can be sent to the BSS. If a PDU cannot be sent

immediately, it must be delayed on the SGSN until enough room is available at the

BSS.

The flow control mechanism on the SGSN also acts as a scheduler. It selects

the next packet to send to the BSS. This selection is based on the QoS profile of the

PDU. The requirements do not specify an algorithm for the scheduler. This is left

to the implementation.

15

2.4.5 Ne twork Service (NS)

The Network Service (NS)[10] provides a link layer transport mechanism using

Frame Relay Permanent Virtual Connection (PVC). This transport mechanism is

used to establish BVCs. Along with data transmission, NS provides load sharing

and virtual connection management.

2.5 User Space Vs Kernel Space Implementation

Most servers are usually designed to run as regular processes in user space. There

are sound advantages to this, both economical and practical. There are also disad

vantages, not only related to performance but also to Quality of Service support.

An SGSN protocol stack can also be implemented as a user level process. This is

a very likely solution, given the complexity of the requirements and the costs of

software development. The alternative would be to implement it or parts of it in

kernel space as an extension to the operating systems.

A user level server is a process that runs in user space. This means it runs

in its own address space protected from illegal memory access from other processes.

If a process wants to communicate with other processes or access hardware, it must

do so using facilities provided by the operating system such as system calls.

A kernel level server runs in kernel space. It doesn't have an address space of

its own. It uses the address space of the operating system kernel. This address space

is also shared by device drivers, file systems, the virtual memory manager and so

forth. Kernel space software has direct access to hardware registers and interrupts.

It can run in process context or in system context[44]. When kernel software runs in

process context, it acts on behalf of the currently running user level process, such as

16

when the process executes a system call or causes an exception. Interrupt handlers

run in system context. They do not act on behalf of the currently running process;

they are system wide. System context is often referred to as interrupt context.

There are many advantages to developing a server as a user level process.

User level processes are easier to develop. Many libraries are available. Operations

such as network communication, disk access and thread related operations are easier

to perform from user space. User space processes are also easier to debug. Standard

debuggers can be used and the system integrity is not threatened by misbehaving

actions from incorrect processes. Illegal memory access in kernel space and other

memory corruption bugs can easily crash an entire system.

Software designed to run in user space is also more portable. Standardized

Application Programming Interfaces (APIs), such as POSIX, make it possible to

design software that can be ported from one platform to another with only minor

modifications. Kernel APIs are tied to the operating system they belong to, making

the design of portable software a lot harder. Another important fact is, that the

number of software developers who possesses kernel development skills and experi

ence is limited. All of these factors make user-level software easier and quicker to

develop, and less expensive.

Operating systems provide resource multiplexing to multiple uncooperative

user level processes. User level servers do not have to worry about sharing access to

system resources; this is the operating system's role. This is not true in kernel space.

Servers running in kernel space must run in a cooperative manner. Resources are

not multiplexed, they must be shared and contention must be explicitly resolved.

Kernel level servers do have a performance advantage. Because they reside

in kernel space they do not have to copy data back and forth from user space. Data

17

copying is expensive because it uses the memory bus extensively, which runs at a

fraction of the CPU speed nowadays. This causes numerous processor stalls. Such

memory intensive operation tends to run at the speed of the memory bus instead

of the speed of the processor. Copying also causes cache pollution. Still, user level

servers are often seen as a more viable solution because of their software engineering

and their cost advantages.

2.6 Problem

The usage of the Internet for transmission of voice, audio and video in real-time

is getting more and more popular. With GPRS and soon UMTS, multimedia also

comes to the wireless world. For GPRS to become a broad success, it must provide

users with a pleasant experience. It needs to support Quality of Service (QoS).

There are requirements for QoS in GPRS. Different parameters (delay, precedence,

etc.) are defined, and for each of them a set of classes. The guarantees that each

class should receive are also specified but the algorithms to provide such guarantees

are not specified.

A typical user level implementation of an SGSN will use the operating system

UDP/IP stack on the Gn interface. Downlink packets will be read from a UDP

socket on the Gn interface and processed through the SGSN stack. They will then

be scheduled according to their QoS profile at the BSSGP level. Uplink packets will

be processed through the protocol stack and sent out on the Gn interface using the

same UDP socket.

We argue that a user level implementation of an SGSN will not be able to

support Quality of Service (QoS) under heavy loads. Support for guaranteed service

in terms of priority, precedence and throughput will be affected by the load on the

18

system. As the load on the SGSN increases, proper support for traffic prioritization

and precedence will degrade. Isolation between the different throughput classes will

not be maintained when subjected to misbehaving traffic. The overall throughput

of the SGSN will also be affected by the presence of misbehaving traffic.

The sources of these problems are twofold. First, data transfer between GSNs

is done using tunnels with the GTP protocolfll]. The individual traffic of each user

is aggregated in a single stream of data. This makes it hard to differentiate between

the various flows of traffic and their QoS requirements. Tunneling has also been

identified as a source of problems to support QoS in the core network[34].

Second, the First-In First-Out (FIFO) behavior of the UDP socket buffer is

the source of priority inversion and other QoS related problems. Incoming packets

on the Gn interface are put on the queue by the operating system independently of

their priority. The operating system cannot avoid this behavior since it is unaware

of the QoS requirements of incoming packets. There is currently no mechanism

that allows an application to specify its QoS requirements to the operating system

regarding incoming network traffic so that packets can be properly classified on

arrival. The fact that the buffer behaves in a FIFO manner is not bad in itself as

long as all packets in the queue have the same QoS requirements. It's the FIFO

behavior combined with the usage of tunnels in the core network that causes QoS

and throughput related problems.

As the load oh the system increases, the average input queue length grows,

increasing the priority inversion experienced by high priority traffic. Worse, when

this queue fills up, additional incoming packets are dropped independently of their

precedence. This problem is known as QoS cross-feeding noise[43]. Cross feeding

noise occurs when different classes of traffic are multiplexed together into a single

19

flow which is processed independently of the QoS requirements of the individual

flows that compose it.

Because packets are not classified on arrival, they are processed through the

stack despite of the fact that the flow they belong to may have exceeded its allocated

bandwidth. The flow control unit will drop all packets that should not be sent over

the Gb link but still, these packets will already have consumed important processing

resources. This is not so important when the CPU is not saturated, but once the

C P U becomes the bottleneck in the system, the impact of processing packets that

will be dropped at a later point in the stack has a negative impact on the throughput

of the system.

Once saturated, the SGSN can only process a certain fraction of the incoming

traffic. This fraction will consist of data coming from well behaved users, but can

also include a certain amount of exceeding traffic coming from misbehaving users.

The amount of CPU cycles wasted on packets that will be dropped at the flow

control unit is proportional the quantity of exceeding traffic. The diminution of

the overall throughput will also be proportional to the quantity of exceeding traffic.

Another problem that appears when the SGSN becomes saturated, is that isolation

between users is no longer maintained. Exceeding traffic steals processing resources

from well behaved users and the latter see their individual throughput affected by

this.

Using a mechanism to read packets at a lower level, such as a raw socket to

skip parts of the IP stack, will not solve the problem because incoming packets are

still queued in a FIFO fashion. The problem lies in the fact that incoming packets

are queued independently of their QoS requirements.

A kernel level implementation can easily avoid this problem by demultiplex-

20

ing the incoming GTP flow in interrupt context, avoiding input FIFO queuing.

Incoming packets are identified on arrival and de-multiplexed early. They can be

queued according to their QoS profile and then scheduled to be processed through

the reset of the SGSN stack accordingly.

We have designed and built an SGSN where packets are de-multiplexed in

interrupt context and queued accordingly. The order in which packets are processed

through the SGSN stack can then be scheduled according to QoS parameters, user

status and network status. This provides QoS support independently of the load on

the system, and provides efficient resource utilization. The Early-Demultiplexing

SGSN (ED-SGSN) is built as a split' user/kernel implementation. The kernel com

ponent named KSGSN identifies and queues incoming packets in system context.

Most of the SGSN is still in user space. This allows the preservation of the eco

nomical and software engineering advantages of a user level implementation. The

scheduling of packets to be processed through the user level SGSN stack is done in

process context by the KSGSN module, when the SGSN reads a packet from the

kernel. This means that only valid packets are copied to user space. Exceeding

traffic is never copied to user space and processed through the SGSN stack.

21

Chapter 3

Background

Most of the research on support for Quality of Service (QoS) in GPRS has focused

on the radio interface. This is understandable since the air interface is the most

limited resource. Some work has also been done on studying QoS support over

the core network. Although work has been done on evaluating different scheduling

algorithmis for specific nodes in the GPRS infrastructure, an analysis of the actual

performance of an SGSN has only been done in [25]. Most of the research analyzing

and evaluating specific system software has been focussed on the Web[22][30],

We first present a brief overview of some of the research related to GPRS and

Quality of Service. We then focus in more detail on some of the key publications in

the operating system and networking areas on issues related to early demultiplexing.

[25] presents a platform architecture for the implementation of an SGSN. An

overview of a potential hardware and software platform is described with an analysis

of its performance for the processing of voice packets. The performance analysis is

based on a simple queuing model based on hardware performance. Our approach is

different. We focus on the analysis of the software architecture of the transmission

plane and its interaction with the operating system. Also we opt for a testbed system

22

instead of a model using a simulation package. We believe that system software,

because of the complex interaction with the operating system and hardware, is very

hard to model using queuing theory and simulation packages although results from

our testbed could be used as input in a large scale simulation.

In [35], an overview of the QoS infrastructure is given for GPRS phase 1. The

current infrastructure is compared with the Universal Mobile Telecommunications

System (UMTS) and its shortcomings are identified. Recommendations are made

for future release of GPRS.

[31] presents an overview and analysis of different packet scheduling algo

rithms for GPRS- The algorithms are evaluated using a simulation model with a

variable number of GSM time slots available for GPRS. [45] introduces a schedul

ing algorithm which dynamically allocates radio resources depending on the level of

radio interference. This allows more effective use of the radio link. [42][40] present

models and analysis of the GPRS radio interface.

In [38], the behavior of Web traffic and E-mail over a GPRS network is

simulated. A model of the radio interface is used to account for cell usage, slot

contention and transmission time. Sharing with voice users is also simulated. The

wired part of the network from the base station to the Web or mail server is modeled

as a simple delay. QoS metrics such as Web page download times are derived and

results are compared with simulated modem access.

[34] focuses on QoS support in the GPRS core network. They identify two

problems with the current GPRS architecture related to QoS support. The use of

tunnels between GSN nodes (SGSN and GGSN) aggregates all individual flows and

makes QoS of support in the core network non-trivial. Second, QoS profiles are

assigned on an IP address basis, not on a per flow basis. We also have identified the

23

use of a tunnel between the SGSN and GGSN as a problem to support QoS within the

SGSN. They propose two solutions, one based on differentiated services[4], the other

based on integrated services using the Resource Reservation Protocol (RSVP)[5j. A

model of a GPRS core network was built to analyze the integrated service solution.

The model supports Web, FTP, audio and video traffic. Inter SGSN mobility is

also accounted for in the simulation. The overhead of integrated services signaling

is analyzed and shown to be acceptable.

Although not related to GPRS, research has been done on the need for early

demultiplexing support in operating systems. This research focuses on QoS, real

time support, and on maintaining service during overload periods.

Tennenhouse [43] was one of the first to identify the problem of layered

multiplexing and express the need for early demultiplexing in order for systems to

properly support Quality of Service (QoS). Network protocols are designed in a lay

ered fashion. Each layer offers service to the layer above, along with access point or

associations. Associations are necessary to identify the layer or application above

from the point of view of the layer below. Because all traffic goes out through the

same interface as a single bit stream, all associations must eventually be aggregated.

This often means individual associations are multiplexed together into a single ag

gregated association. This aggregation can lead to QoS cross talk. QoS cross talk

occurs when "the network performance experienced by an application is unduly

affected by the traffic pattern of parallel tributaries with which it is multiplexed."

The problem arises when QoS requirements are assigned to individual appli

cation associations. Layers below are unaware of these requirements and therefore

unable to take them into account when processing the aggregated traffic. On recep

tion, packets must go through every layer before their QoS requirements are known.

24

High priority packets are delayed because they are processed as regular traffic until

they reach the application. The problem gets worse when misbehaving application

are involved. Once multiplexed, misbehaving traffic is indiscernible and therefore

cannot be dealt with by the lower layers.

According to Tennenhouse, multiplexing should be done once at the low

est layer. Each application association should have its own logical vertical stack.

Outgoing packets should only be multiplexed at the data link layer. Incoming mes

sages should be immediately demutliplexed on an application association basis and

passed to the corresponding protocol stack. This allows proper isolation of inde

pendent traffic flows and minimizes QoS cross talk. It is now possible to do the

processing of each incoming packet at a priority relevant to the target application's

priority. A threaded model is suggested where a thread is assigned per application

or per association to process packets through the network stack in the context of

the application.

The main ideas behind using early demultiplexing in an SGSN are based

on the concepts derived in this paper. Our goal is to improve QoS support by

providing better isolation between individual mobiles. We demultiplex incoming

traffic on arrival on a per mobile association in interrupt context. Instead of using

a threaded approach we used a single thread with a packet scheduler. The packet

scheduler acts globally on behalf of all mobiles to determine the next packet to be

processed through the SGSN stack. We believe a single thread approach is a more

scalable and efficient approach. The usage of a multithreaded approach could be

justified in a hard real-time scenario.

Other people have used early demultiplexing to solve system instability dur

ing overload periods and the lack of resource accounting in the network subsystem

25

of most operating systems.

Lazy Receiver Processing (LRP)[7] is a network subsystem designed to main

tain system performance during overload periods. In UNIX and many other operat

ing systems, the network subsystem is interrupt driven. This gives the processing of

incoming packets a higher priority than any other application in the system. Dur

ing overload periods, this leads to wasted resources and possible starvation of user

processes. LRP moves the processing of incoming packets into the context of the

destination application. This leads to better resource accounting and maintaining

throughput during overload periods. The paper describes a new implementation of

the TCP/IP stack using LRP.

Under UNIX and many other Operating Systems, an interrupt signals the

arrival of a packet from the network. The interrupt handler copies the packet from

the network adapter to memory and posts a software interrupt. The software inter

rupts role is to process the packet through the protocol stack and put the packet

in the buffer of the target application. If the queue is full, the packet is dropped.

Both hardware and software interrupts run in system context and have strict prior

ity over any user processes. Finally, the target process copies the packet from the

kernel buffer into its address space. This is done in user context, when the applica

tion makes a system call. The processing time for both interrupts is charged to the

application running at the moment the interrupts occurred, not to the destination

application.

Packet reception, handled as described before, leads to several problems.

First, resources are wasted when packets are dropped because their target buffer

is full. Packets are dropped after a non-negligible amount of resources has been

invested in processing it. In extreme overload situations, this can lead to a state

26

known as receiver livelock. A system is in this state when it spends all its time

in interrupt context processing incoming packets, only to drop them because their

target input queues are full. The queues are full because user processes never get a

chance to run. The amount of useful work done by the system drops to zero.

The lack of accounting for processing done in interrupt context leads to an

unfairness problem. Processes which make heavy usage of the network subsystem

end up stealing processor time from other processes. By moving the processing

of packets in the context of their targets, most of these problems are solved or

their impact is greatly reduced. Incoming packets are mapped to their destination

process on reception and queued immediately. If the queue is full, the packet is

dropped with a minimum of wasted processing time. This prevents situations such

as receiver livelock. When the application runs, it processes the packet through

the protocol stack and copies it into its address space. Processing is done in user

context, meaning resources consumed are charged to the destination process and

the priority of the process is taken into account.

To be able to process incoming traffic in user context, incoming packets

must be mapped to their target application as soon as they arrive. To demultiplex

incoming traffic, a hardware and a software solution are proposed. The hardware

solution uses a specialized network adapter with a programmable processor to do

the demultiplexing. The software solution does the demultiplexing in the interrupt

handler.

The goals of LRP are different from ours. Their goal is to avoid wasting

resources within the network protocol stack so that the receiver livelock state and

denial of service attack can be avoided. Both of these situations occur in extreme

cases of overload. Because incoming packets are still processed through the IP stack

27

in interrupt context, the ED-SGSN could still be prone to a receiver livelock in the

case of a severe overload. This is unlikely since the GPRS backbone network is a

private network, but, if this problem was to be avoided, a hardware based solution

using a similar programmable processor as in LRP would be appropriate.

The goal of ED-SGSN is to properly schedule packets so that wasting re

sources and priority inversions are avoided on the Gb side of the SGSN protocol

stack. Priority inversion can still occur on the Gn side of the SGSN protocol stack.

This is acceptable in our case since this priority inversion is about an order of mag

nitude less than the potential priority inversion than can occur on the Gb side of the

protocol stack. This priority inversion can be eliminated by using a programmable

network adapter to do the demulitplxing.

Other research projects in the area of systems have identified early-demul

tiplexing as an important requirement to support QoS. In the Scout operating

system[27], the importance of segregating work early to have separate input queues

instead of a single shared queue is deemed to be a critical requirement for support

of Quality of Service. Real-Time Mach[21] puts the network protocol into libraries

that are linked into the application address space. Processing of packets is done

at the priority of the application in user context. A packet filter is used to de

multiplex incoming traffic to its target application. This provides more accurate

resource usage and allows the inclusion of network packet processing as part of the

overall system scheduling. Early-demultiplexing and LRP are used in the QLinux

Multimedia Operating System[41] to support accurate resource accounting. In [17],

real-time upcalls (RTU) are used to efficiently implement network processing at the

user level. RTUs are non preemptible, like interrupts, but their resource usage is

accounted for and guaranteed by the operating system. Again, early-demultiplexing

28

is used to associate incoming packets with the right RTU.

Mogul and Ramakrishnan[26] present a different approach to avoiding re

ceiver livelock in interrupt-driven systems. Their solution is geared towards host-

based routers and firewalls. During overload periods, they propose to disable inter

rupts and switch to a polling thread. A network card only issues an interrupt once

to notify that it has received one or more packets. Once this interrupt is processed,

interrupts are not re-enabled on the card until the polling thread has processed the

packets on the card. This solves the receiver livelock problem caused by hardware

interrupts. The polling thread processes packets through the IP protocol stack and

queues them on the proper destination queue. This queue can belong to a user-level

application or to a network interface in the case of a host-based router. If this

queue is full the packet is dropped. This is a waste of the resources that have been

invested in the packet so far. If the output queue belongs to a network interface,

the problem is not so bad because the hardware will keep sending and draining

packets in its queue but if the packets are destined to a user process, the receiver

livelock problem arises again, this time caused by the polling thread. To avoid this

situation, they propose a feedback mechanism to notify the polling thread when an

application queue is full. Incoming packets are no longer read from the network

card until the queue is below a certain level. Of course, this only works in cases

where every incoming packet in the system must be queued on the same application

queue, such as a user-level firewall.

This is similar conceptually to the feedback mechanism used in the ED-

SGSN. The goal is the same but the mechanism in the SGSN is more fine grained.

The feedback mechanism works on a mobile basis. The flow control unit can block

any individual input queue representing a single mobile.

29

In [15], Floyd describes a problem referred to as congestion collapse from

undelivered packets. Congestion collapse is defined as a situation where an increase

in traffic results in a lower throughput. Congestion collapse from undelivered packets

arises when bandwidth is wasted by delivering packets through the network that will

be dropped before reaching their final destination. A regular user level SGSN can

experience a similar problem by wasting processing resources on packets that will

be dropped by the flow control unit. This can lead to a throughput reduction on

the SGSN.

30

Chapter 4

System Software Architecture

In order to build an SGSN, we first designed software components used as building

blocks on which the SGSN's GPRS functionality was implemented. These software

components were designed to handle all the necessary operations in a multi-layer

user-level network stack. These were designed to be fast and efficient to maximize

throughput. We will first look at the overall architecture and justify why we used

such an architecture. We will then describe the most important components we have

built and explain why they are required and how they fit in this general software

architecture.

4.1 Event-Driven Process

Our SGSN is designed as a single-thread event-driven process. In an event-driven

process, a single thread waits for events and processes them as they arrive. When an

event occurs, the thread determines the nature of the event and calls the appropriate

handler. The event is processed to completion and the system goes on to handle the

next event. This is in contrast to a threaded server where a new thread is created

31

to handle each request.

Single threaded event-driven servers are fast [3] [30] because they require

no synchronization primitives and have no context-switching overhead. They are

efficient and usually perform better than multi-threaded servers[29]. On symmetric

multi-processor (SMP) machines, they require one thread per processor to take

advantage of the parallelism offered by the hardware. In this case synchronization

primitives are required to protect critical sections.

Although efficient, the event-driven approach imposes some requirements

that must be met in order for the system to perform well. The multi-threaded

approach doesn't have such requirements and is often easier to program but is

inadequate in our case since the number of requests is high and the requests are

short lived. The large number of threads would waste substantial resources due to

operating system overhead. The requirements of an SGSN are closer to those of

a router than to those of a Web server, making it more suited to the event-driven

approach.

For the server to use only a single thread, there must be only one location

where event notification can occur, for instance, where the thread can wait to be

notified of incoming events. This requires the operating system to support an event

multiplexing mechanism, such as a system call that allows a thread to block and wait

for any event the process is interested in. Under UNIX[37], the selectQ and poll()

system calls can be used as a single event handling point[39]. They allow registering a

list of file descriptors and events of interest (ready to read, ready to write) for each of

them. A file descriptor represents a handle to an input/output (I/O) entity. It may

represent a file, a network connection (socket) or a communication channel between

two processes (pipe, message queue), and so forth. When a thread calls select()

32

or poll(), it will sleep until an event occurs on one or more of the file descriptors

it registered. The call returns with a list of file descriptors on which events have

occurred. The application can then process each event.

A single thread event-driven process can never block anywhere except at its

event handling point. If so, the entire process blocks and no other events can be

processed during this period. A thread can block for two reasons: when a blocking

system call is performed or when it has caused a page fault. The first cause can

be avoided by using non-blocking system calls for potentially blocking operations.

System calls such as read() and write() will usually block if there is no data available

or no space to write data. Non-blocking system calls return an error message instead

of blocking. File descriptors can be set to operate in a non-blocking fashion using

the fcntl() system call[39].

A thread that causes a page fault will block if the page in question needs to

be brought from disk[l]. It is possible to lock the memory used by a process using

mlockall()[16]. This prevents locked pages from being swapped out to disk but

doesn't entirely prevent page faults. Page mapped into the process's address space

after calling mlockall() will still generate page faults when accessed for the first time.

Usually such page faults only require the operating system to map a page frame to

the process's address space but if memory resources are scarce, the operating system

might have to swap out a page to disk from another process to accommodate the

faulting process. This is of primary concern for the heap, which often accesses new

pages at runtime. To avoid this, all dynamic memory the application plans on using

should be allocated at initialization before calling mlockallQ.

The SGSN locks its address space to avoid getting any of its pages swapped

to disk. To prevent page faults at run time, all memory is pre-allocated when the

33

SGSN is started. Runtime memory allocation is managed using our own memory

management system, which grabs memory from the pre-allocated pools. The SGSN

memory management system is described in section 4.4.

One of the complex aspects to an event-driven process is dealing with events

that cannot be processed to completion. Sometimes, to complete the handling of an

event, the process must block until another event occurs, such as a timer expiration.

In a threaded server, this is very easy to handle. The thread handling the event

simply sleeps until the required event occurs. An event-driven process is not allowed

to sleep anywhere except, at its event-handling point. To handle this case, the

event handler must somehow put the partially processed event aside and come back

later to finish processing it. The SGSN uses a service queue, which is described in

section 4.2, to deal with events that cannot be processed to completion.

4.2 Event Scheduler

The event scheduler is the core component of our SGSN architecture. It manages the

dispatching of all incoming events and the completion of delayed events. It monitors

all file descriptors using a variation of select(). Al l event handlers are called by the

event scheduler. Sometimes an event cannot be processed to completion without

blocking or be delayed. A good example is flow control. If a packet cannot be sent

out immediately because there is no bandwidth available, it needs to be delayed

until there is enough room to send it. The handler cannot sleep or spin until then.

It must allow other events to be processed. The handler must somehow terminate

immediately and come back later to try again. To remedy to this situation, the

event scheduler uses a service queue.

The service queue allows the processing of events to be completed at a later

34

time. Any module that can potentially block implements a service method. The

service method is meant to be called at a later time to finish processing incomplete

events. When a module notices that it cannot finish processing an event it registers

itself with the event scheduler. The event scheduler adds the module to the service

queue. At every service interval, the service timer expires and the service queue

is processed. Currently the service queue is processed every 50 milliseconds. The

service methods of each module on the queue are called one after the other. The

service methods are also not allowed to block. If they cannot complete the event,

they must terminate and ask to be put on the service queue again for the next

round.

4.3 S T R E A M S Message

To pass packets from one protocol layer to the next in a uniform fashion and sim

plify adding headers and trailers to packets as they traverse the protocol stack, a

messaging framework is necessary. The SGSN's messaging framework is derived

from STREAMS[36].' STREAMS was originally developed by Dennis Ritchie. It

was designed as a general framework to implement character device drivers. We

use the STREAMS message data structures. We also borrow the concept of the ser

vice queue explained in Section 4.2, from STREAMS. The STREAMS message data

structures are well suited for layered applications such as an SGSN protocol stack.

They allow the easy adding of headers and trailers to a message without copying

the message into a new, larger buffer, or having knowledge of the total space to be

required by a packet when its first buffer is allocated. The data structures also allow

virtual copying of messages and queuing of packets.

A STREAMS basic message is composed of three objects: a struct msgb, a

35

struct datab
struct msgb

b_next

b_prev |«

b_datap

b_rptr

b_wptr

db_base

db_lim

valid data

struct msgb
data buffer

struct datab

valid data

data buffer

Figure 4.1: STREAMS message

struct datab and a data buffer. The msgb provides a handle to a message. It is the

data structure used to pass around messages. The datab contains information about

the actual buffer used to store the data. The data buffer is simply an allocated zone

of memory where the actual data is stored. The data structures we use are very

similar. They have the same name but are missing some fields, compared to their

STREAMS equivalents. Figure 4.1 shows our version of a STREAMS message. We

only use the fields necessary for our purposes.

In the msgb data structure, the b-next and b-prev pointers lare used to link

multiple messages. Message queues are implemented as double linked lists using

these two fields. The b^cont pointer is used to chain the different parts of the

same message. This is how headers, the payload, and trailers of a message are

linked together. When a message is passed around, only a pointer to the first msgb

structure is required. The b.datap fields point to a struct datab.

36

The db-base and dbJim fields of the datab structure point respectively to

the beginning and end of the data buffer. These two pointers never change for the

lifetime of the data buffer. The b-rptr and b-uuptr field in the msgb structure point to

the beginning and end of the useful data contained in the buffer. When a message

is allocated, both b.rptr and b.wptr point to the beginning of the buffer (db-base).

As data is written in the buffer, b-wptr is moved accordingly. If data is removed

from the front of the buffer, bjrptr is moved toward b-wptr.

The db.ref field contains the reference count of the datab and its associated

data buffer. It allows multiple msgb to share the same datab, providing virtual copies

of the same message. The packet fragmentation done at the SNDCP layer uses this

facility to avoid copying each packet fragment into a separate buffer.

4.4 Memory Management

As explained in section 4.1, dynamic memory allocation may cause page faults when

the operating system needs to map page frames into the application's address space.

If no page frames are available, the operating system will need to swap some pages

to disk to obtain the needed space. This is a problem since our entire process

is blocked during this time. To avoid dynamic memory allocation at runtime, all

memory is pre-allocated when the SGSN is started and runtime buffer allocation is

managed by the server's own memory allocation system. This system is based on the

McKusick-Karels[24] allocator, which is used in UNIX variants such as 4.4BSD[23].

Instead of using one large block of memory to handle every request, buffers

are allocated from different free lists, depending on the requested size. There is a

free list of buffers for each power of two size. The free lists are maintained in an array

indexable by the size of the buffer in powers of two. The free list is a linked list of

37

free list array free buffers

16

32

64

128

256

Figure 4.2: Memory allocator

buffers. When a buffer is in the free list, its first four bytes are used to store the link

list pointer. This system is fast because allocation and de-allocation operations are

in the order of 0(1). The main disadvantage of this system is that it cannot handle

arbitrarily large memory requests since it is limited by the maximum allocated buffer

size. This is not really a problem for an SGSN, since the maximum packet size is

known. The memory allocation system is integrated with our STREAMS message

framework. We use our memory allocator to build free lists of msgb blocks and datab

blocks

When a buffer is requested, its size is rounded to the next power of two and

a buffer is removed from the front of the corresponding free list. A struct datab is

also allocated from the datab free list. The datab pointers are set and a pointer to

the datab is returned.

To release a buffer, we need to re-insert it into the free list corresponding to

its size. A buffer is always released by giving a pointer to its struct datab. This

makes it easy to determine the size of the allocated buffer. The size of the buffer

38

is rounded to the next power of two to get the index in the array of free lists. The

buffer is then re-inserted at the front of its free list. The datab is also put back on

the datab free list. Figure 4.2 gives an illustration of how the memory allocation

mechanism works.

39

Chapter 5

GPRS Implementation

The GPRS tesbed runs on personal computers (PC) under Linux. There are three

software components in the testbed. The SGSN, The GGSN/GN and the MS/GB.

The GGSN/GN and the MS/GB are used as traffic generators and/or traffic sinks.

In our current lab setup each component runs on a different machine connected via

switched Ethernet. It is also possible to run all components on one machine or run

multiple instances of each component on multiple machines.

5.1 SGSN

The SGSN implementation is based on the requirements described in [8]. Since

our goals are only experimental and not commercial, only a subset of the SGSN

functionality is implemented. We will discuss our implementation and the differ

ences with a commercial SGSN. The testbed SGSN supports data compression and

TCP/ IP header compression. Cyclic redundancy check and a very basic form of

encryption are implemented. The SGSN was built using the components described

in Chapter 4. To keep things modular, we have implemented each layer as a sepa-

40

Mobile Flow Control _
(One Queue per MS)

Cell Flow Control _
(One Queue per Cell)

SNDCP

- mm MM urn

Event Scheduler

UDP Kernel Level

Figure 5.1: SGSN software architecture

rate software module. Still, interlayer communication is done through function calls

for performance reasons[6]. Figure 5.1 shows an overview of the different software

module that compose the SGSN.

The two main differences between a commercial system and our implementa

tion are the omission of the signaling planes and the use of Ethernet instead of Frame

Relay on the Gb side. Our main interests in these experiments were related to the

transmission plane, so signaling was not a major issue. Because Frame Relay was

replaced with Ethernet on the Gb link, the two bottom layers of the stack (BSSGP

and NS) are quite different than that specified in the GPRS requirements. Because

we limit the transmission rate over the Gb link using flow control, the difference in

link capacity between Ethernet and Frame Relay is not an issue in our experiments.

Only the unreliable, unacknowledged data transmission mode is implemented, and

41

re-ordering of packets is not supported. This simplifies our implementation because

it reduces the complexity of the state to be kept for each mobile. We believe the

lack of retransmission doesn't significantly affect our results since we are mainly

interested in analyzing the transfer of packets inside the SGSN software and its

interaction with the operating system kernel.

5.1.1 Context Management

The state of each mobile is stored in a mobility management (MM) context and a

packet data protocol (PDP) context. The M M and PDP contexts are kept in the

GPRS mobility management (GMM) module. In our SGSN implementation, the

M M and PDP contexts are created at initialization. A configuration file containing

information about each mobile (QoS profile, PDP address, IMSI, NSAPI, current

cell location, etc.) is loaded when the SGSN is started and is used to set up the

initial state of the system. Calls are made to the G M M subsystem to initialize

the M M and PDP contexts of each mobile loaded in the system. In a commercial

implementation, a mobile uses signaling messages to connect to the GPRS network.

A mobile who wishes to connect to an external network using GPRS must first

initiate the Attach procedure and then the PDP Activation procedure[8].

Packets coming from the Gn interface are mapped to the mobile they belong

to with their Tunnel IDentification (TID)[11]. The TID is part of the GTP header

and is a combination of the mobile's IMSI and a NSAPI. Packets coming from the

Gb interface are identified by the mobile's TLLI. The state of a mobile must be

retrievable using its TLLI or the IMSI. The G M M data structures are designed to

retrieve the state of a mobile using either a TLLI or IMSI in 0(1). The G M M

module is implemented as a fixed size table initialized on startup. The maximum

42

number of mobiles supported by the system is decided at compilation time.

5.1.2 SNDCP and LLC implementation

The testbed implementation of the SNDCP layer is based on [13]. It supports

V.42bis data compression[18] and TCP/IP header compression[19]. Packet frag

mentation and reassembly is supported. The SNDCP layer keeps some state for

each mobile/NSAPI pair. The TCP/IP header compression state, the V.42bis dic

tionary and the SNDCP sequence number and fragment status, are kept at the

SNDCP level. This state is accessed using a mobile's TLLI-and NSAPI in 0(1).

The SNDCP implementation only supports the unacknowledged transmission mode.

The implementation of the LLC layer is based on the requirements described

in [12]. The implementation performs the frame check sequence (FCS). The FCS is

a 24 bits cyclic redundancy check (CRC) code. It follows the guidelines described

in [12]. The encryption implementation is different than what is specified in the

requirements. We have implemented a simple form of encryption to impose on each

packet traversing the stack, a penalty equivalent to the real encryption mechanism

in terms of processing time and memory usage. A typical implementation will have

to touch every byte in a packet in order to encrypt it. This requires transferring

each byte from memory to the processor and back to memory. Our encryption

mechanism imposes a similar burden on the system. The L L C layer also keeps some

information for each mobile. This state is indexable in 0(1) with the mobile's TLLI.

The LLC frame sequence number is stored in this table.

The implementation of the LLC layer only supports the unacknowledged

mode of operation. There are no error recovery or reordering mechanisms. Corrupt

frames will be detected with the FCS, duplicate frames will also be detected and

43

discarded using the frame sequence number. In the case of missing frames, the error

will be detected but not recovered. Our implementation supports both protected

and unprotected modes. In protected mode, the FCS is calculated over the entire

frame. In unprotected mode, the FCS is only calculated over the LLC frame header

and the first bytes of the payload. This number of bytes corresponds to the size of

the SNDCP header.

5.1.3 Flow Control

The testbed SGSN supports flow control on the Gb link as specified in [9]. Data

is flow controlled on a per mobile basis and on a per cell basis. The requirement

specifies that the base station use a leaky bucket to control the rate of traffic for

each mobile and each cell. The SGSN is not allowed to send packets to the base

station that would overflow one of the leaky buckets. If a bucket at the base station

is full, the SGSN will delay packets for a short period of time. The bucket capacity

at the base station and the buffering capacity on the SGSN change depending on

the experiments running. Usually the capacity is set to buffer one second of traffic

at each location (base station and SGSN) for both cells and mobiles.

We use the service queue explained in Section 4.2 to implement flow control.

Before a packet is sent over the Gb link it is first sent to the mobile flow control

unit. The mobile flow control unit identifies the owner of the packet from its TLLI

and takes one of the following actions depending on the state of the connection:

- If there is room at the base station for this packet, then the packet is sent

immediately.

- If there is currently no room at the base station for this packet, we need to

control this mobile's flow. The packet's transmission needs to be delayed until

44

there is room at the base station. The packet is buffered by the mobile's flow

control module and the module is added to the service queue.

- If the mobile's queue on the SGSN is full, the packet is dropped.

When a mobile's flow is controlled, the transmission of buffered packets is done at a

later time when the service queue is processed. When this occurs, the flow control

module determines how much space is now available at the base station and sends

as many packets as allowed. If there are still packets to send then the module is put

on the service queue again.

Once a packet has gone through the mobile flow control unit, it goes down

to the cell's scheduler and flow control unit. The scheduler works with the cell flow

control unit. If the destination cell is not flow controlled, then packets simply bypass

the scheduler and are sent right away. If the cell needs to be flow controlled then

packets are buffered by the scheduler and the scheduler is put on the service queue.

When the service queue is processed, the scheduler decides which packets should be

sent to the base station. The room available at the base station determines how

many packets should be sent. If there are still packets to to send, the scheduler is

put back on the service queue.

In the basic configuration, the scheduler is simply a First In - First Out

(FIFO) queue. Packets are queued on a first come, first served basis, independently

of their QoS profile.

We have configured the scheduler to support real-time traffic by using a

priority queue. The priority queue currently supports only two classes of traffic:

real-time and best effort. The priority queue is implemented as two FIFO queues,

one for each traffic class. The reader of the priority queue always reads the real-

45

time queue first and only removes packets from the best effort class if there are no

real-time packets available. This ensures strict priority for real-time traffic.

A priority queue is one of the possible mechanisms discussed in [20] to support

the Expedited Forwarding (EF) service. EF is part of the Differentiated Services

architecture[28][4] and is designed to bring support for a guaranteed low-loss low-

delay low-jitter service on the Internet. A real-time traffic class has very similar

requirements to those provided by the EF service. In [20], the authors mandate the

usage of a rate limiter, such as a token bucket, to prevent starvation of other traffic

classes when a mechanism such as a priority queue is used.

We currently do not support a rate limiter for the real-time class at the

cell level. The only rate limiter we currently support is the mobile flow control

mechanism. This will limit the rate of each mobile but will not enforce a limitation

on the aggregated flow of all mobiles in a given cell. This means that a mobile

cannot exceed its pre-allocated rate even if it belongs to the real-time class. The

problem is that multiple real-time mobiles could starve other non-real time mobiles

in the same cell since the maximum rate for the real-time class is not defined at the

cell level. Since our system is only experimental, this is not really a problem. We

always control the number of mobiles in each cell and we always ensure that our

real-time traffic is well behaved.

Support for different precedence levels can also be configured. Two prece

dence levels are currently supported: normal and high precedence. Normal prece

dence packets are always dropped before high precedence packets. In a case where a

high precedence packet comes in and the queue is full, the high precedence packet will

replace a normal precedence packet and the latter will be dropped. High precedence

packets can still be dropped when their owners exceed their allocated bandwidth.

46

5.1.4 B S S G P and N S implementation

Because of the hardware difference on the Gb link, our BSSGP and NS layer im

plementations are quite different. We use only a very simple BSSGP header. It

contains the mobile's TLLI, QoS profile and the size of the packet. This informa

tion is also contained in a real BSSGP header with other information relevant only

in a real system. In a real implementation, frame relay time slots are assigned to

create a BSSGP Virtual Connection (BVC) between a cell and the SGSN. There is

one BVC per cell. In our case, BVCs are mapped over UDP connections. We have

one UDP connection per BVC. Although UDP is connectionless, it is possible to

bind a UDP socket to a source port and to connect it to a remote port, therefore

creating an unreliable connection.

The NS layer simply acts as an abstraction layer for sockets. Taking care of

tasks such as binding the socket to an IP address and connecting it to a remote IP.

The NS layer also does scatter-gather I/O, avoiding making an extra copy of the

packet to group all headers, payload and trailers into a single buffer.

5.2 M S / G B and G G S N / G N

The MS/GB simulates the Gb side of the GPRS network. It simulates mobile

stations and cells. Except for the lowest layers of the protocol stack, the packets

sent by the MS/GB are identical to those a real SGSN would receive from actual

mobiles.

The GGSN/GN simulates the Gn side of the GPRS network. It simulates

a GGSN and the end nodes connected to it. An end node is the other half of a

communication with a mobile. An end node sends and receives data to/from a

47

mobile. The packets generated are identical to those a real SGSN would receive

from a GGSN via the Gn interface.

The MS/GB and the GGSN/GN were both built using the framework de

veloped for the SGSN. They also use the parts of the SGSN stack that are relevant

-to them (The GGSN/GN uses the Gn side of the SGSN stack and the MS/GB uses

the Gb side of the stack). On top of the stack sits the packet generator. The role

of the packet generator is to send and receive packets and keep statistics on them.

Depending on how the testbed is configured, generated traffic can flow in the

downlink, uplink or in both directions simultaneously. If a node is configured to

send data, then a packet generating function runs every 10 milliseconds to generate

the desired traffic load.

The same configuration file used by the SGSN to load its state is used by

the packet generator to configure itself and its underlying GPRS stack. The file in

addition to the GPRS related configuration information, also contains the packet size

and packet rate for each user. A user has both a mobile and an end node associated

with it, and depending on the traffic direction configured for the testbed, the mobile,

the end node, or both generates traffic at the rate specified in the configuration file.

When the packet generating function runs, it builds and sends a burst of

packets for each user. The size of the burst depends on the data rate assigned to the

user and the distribution used. Currently, uniform and exponential distributions

are supported. When the exponential distribution is used, each user possesses its

own distribution which is initialized with a different seed for each user. To avoid

traffic patterns caused by the order in which each user's traffic is sent, the sending

order is randomly selected.

48

Chapter 6

Early Demultiplexing

As mentioned previously, we believe an SGSN implemented as a user process will

experience problems related to Quality of Service(QoS). These problems are caused

by the usage of tunnels to transfer data between GSNs combined with the FIFO

behavior of the input queue. First, we will describe how early demultiplexing can

solve the problems described in chapter 2. A overview of the Early Demulitplexing

SGSN(ED-SGSN) will be given and then the design of the demultiplexing kernel

module will be described in detail.

6.1 Overview

To avoid the problems described in chapter 2, the incoming aggregated traffic on

the Gn interface must be demultiplexed as early as possible. The PDP context and

QoS profile of each packet must be retrieved in interrupt context so that packets

can be classified and queued accordingly, as they arrive. Once packets are queued

properly, the order in which they are processed through the stack can be easily

scheduled. The selection of the next packet should be based on the bandwidth on

49

the QoS profile and on the status of the Gb link. To avoid processing packets that

will be dropped because their output queue is full, a feedback mechanism is required

to inform the packet scheduler of the current status of the output queues. Packets

whose target queues are full are not scheduled to be processed. No resources are

wasted on packets that can be processed through the SGSN but dropped by the

flow control mechanism.

By combining early demultiplexing with a feedback mechanism, a SGSN can

discard exceeding traffic early with a minimum amount of resources wasted. The

number of packets processed by the SGSN remains fairly constant with or without

the usage of early demultiplexing, but because no exceeding traffic is processed

through its stack, the ED-SGSN throughput remains fairly constant when faced

with large amounts of exceeding traffic, even when its processing resources become

saturated.

The packet scheduler allows the fair distribution of CPU resources among all

users according to their QoS profiles. This way, proper isolation is provided between

users, and exceeding traffic from misbehaving users does not affect the throughput

of well behaved users.

An early demultiplexing mechanism is only implemented for downlink traffic.

There are no requirements in the GPRS technical specification for flow control and

packet scheduling on the SGSN for uplink traffic. This means that packets flowing

in the uplink direction are basically processed and sent out on a First-In First-

Out (FIFO) fashion. This is acceptable since the bottleneck is most likely going to

be in the downlink direction because of the bandwitdth difference between the Gb

and Gn interface.

Depending on how incoming packets are queued on the Gb interface by the

50

Frame Relay device driver, early demultiplexing could also be very important on

the Gb interface to ensure proper prioritization and precedence of traffic. It can

also be used to ensure proper resource allocation within the SGSN between uplink

and downlink traffic. Because we believe the amount of traffic will be greater in the

downlink direction than in the uplink direction, we have focused on the Gn interface.

A n early demultiplexing mechanism on the Gb interface is left for future work.

To support real-time traffic, an SGSN must be able to offer support for a low

delay low jitter traffic class. Traffic belonging to this class should experience a small

and constant transit delay at the SGSN. In a user level SGSN, incoming packets

on the Gn interface are queued by the operating system in a U D P socket buffer.

This buffer acts as a FIFO queue and doesn't take into account the priority of each

packet. This means that the delay experienced at the SGSN will be dependant on

the input queue length, which is dependent on the load on the system. Because the

load on an SGSN is never really constant, the delay will vary, causing considerable

jitter. A user level SGSN can minimize the delay at the output queue by using an

appropriate scheduling mechanism, but is unable to reduce the delay at the input

queue.

By demutliplexing the traffic before it is queued, it is possible to identify

and process high priority packets ahead of lower priority traffic. This is necessary to

provide support for real-time traffic. This way, high priority packets are prioritized

both at the input and output queues. This provides a transit delay independent of

the load on the system, since high priority packets are never queued behind other

classes of traffic. Because all incoming traffic is identified on arrival, it is possible to

determine the precedence class of a packet when it arrives. This allows the system

to take the appropriate action, instead of simply behaving in a tail drop fashion.

51

6.2 Early Demulitplexing SGSN

We have built an SGSN where the UDP input queue of a user-level SGSN is replaced

by a demulitplexing mechanism which classifies and schedules incoming traffic on the

Gn interface. Packets are identified on arrival in interrupt context and queued on a

per mobile basis. Figure 6.1 shows a user level SGSN and our early demultiplexing

implementation called ED-SGSN. Although the internal software architecture is

different, the interfaces of the ED-SGSN have not changed.

To be able to identify incoming packets on the Gn interface, the GTP header

needs to be read to retrieve the user's M M and PDP contexts. Because we want

to identify packets before they are queued, this must be done in interrupt context.

Since all work done in interrupt context is done in kernel mode, the processing of the

GTP header and the retrieval of the M M and PDP contexts for incoming packets is

now done in kernel mode, after the IP and UDP header processing. Once identified,

packets are passed to the packet scheduler.

The packet scheduler operates on a per mobiles basis. The scheduling should

actually be done on a per PDP context basis, since QoS profiles are associated

with PDP contexts and not with individual mobiles. Since our implementation only

supports one PDP context per mobile, scheduling mobiles or PDP contexts is exactly

the same. The scheduler has one queue for each mobile registered on the SGSN.

Incoming packets, once identified, are queued in interrupt context in the appropriate

queue. The actual scheduling occurs in user context when the user level portion of

the SGSN makes a system call to read a packet. The scheduler picks the next packet

to be processed based on its scheduling policy and the status of the output queues.

If the output queue of a mobile or a cell is full, the corresponding input queue will

be blocked by the feedback mechanism. Blocked input queues are skipped by the

52

NS L L C SNDCP GTP

User Level

Socket Buffer (Input Queue)

UDP / IP

Kernel Level

(a)

Packet Scheduler

L L C SNDCP

ME
WE
ME

ME

HIT
mr
WE

User Level 1 Kernel Level

Downlink Traffic Direction

(b)

Figure 6.1: SGSN (a) and ED-SGSN (b)

53

scheduler. The standard scheduling policy is round robin. This policy is appropriate

for cases where all users have been assigned the same throughput and have the same

QoS profile.

Although parts of the GTP layer have been moved to kernel space, most of

the SGSN software remains unchanged. The other main differences are that once

read, incoming packets on the Gn interface are passed to the SNDCP layer instead

of the GTP layer. Support for the feedback mechanism has been added to the

flow control unit. System calls were added to notify the SGSN kernel modules that

certain mobiles should be blocked or unblocked. The transmission of packets on the

Gn interface is unchanged and still uses a UDP socket.

The ED-SGSN can be configured to support real-time traffic. It uses the

same priority queue mechanism in the flow control unit to schedule the transmission

of packets on the Gb interface. This prioritization mechanism is there to ensure

that high-priority packets are not delayed at their output queue. More details on

the usage of a priority queue are available in section 5.1.3. The kernel-level packet

scheduler also uses a prioritization mechanism. Mobiles in each traffic class are

served by a separate round robin scheduler. Again, two traffic classes are supported:

real-time and best effort. Priority is always given to the real-time scheduler, ensuring

strict prioritization of real-time traffic. Again individual flows are controlled but the

aggregated real-time flow is not. As we have stated previously, this is significant in

our case but would be in a commercial system. The prioritization mechanism in the

kernel level packet scheduler is there to avoid delay at the input queue. This delay

is most likely going to be more important than the output queue delay because the

input queue is used by every user attached to the SGSN. The packet scheduler in the

flow control mechanism only schedules packets among users located in the same cell.

54

The number of users in a given cell will always be smaller than the total number of

users attached to the SGSN, so the potential for long delay is alway greater at the

input than at the output.

The ED-SGSN can also support the two-level precedence mechanism de

scribed in section 5.1.3. A similar mechanism is configured inside the kernel-level

packet scheduler to support the different precedence levels. The packet scheduler

always accept high precedence packets unless their individual queue is blocked be

cause the owner has exceeded his allocated bandwidth. In the case where a high

precedence packet will replace a low precedence packet, the low precedence packet

to be dropped is taken from a user located in the same cell as the owner of the high

precedence packet.

The packet scheduler also needs to increase the priority of high precedence

users from time to time. The scheduler increases the priority of a high precedence

user when its queue is above a high watermark. In this case, unless blocked, the

queue is processed ahead of the others by the packet scheduler. This is necessary

when the ED-SGSN is overloaded to make sure queues belonging to high precedence

users do not grow indefinitely. When the ED-SGSN is overloaded, the fraction of

processing resources a high precedence user may receive from the scheduler might

not be enough to sustain the user's incoming traffic rate. In this case, since high

precedence packets are always accepted, the high precedence user's queue will grow

unbounded if its priority is not raised.

6.3 K S G S N

The early de-multiplexing module named KSGSN was implemented in kernel space

using the Netfilter architecture[2]. It is built as a group of kernel modules that run

55

both in interrupt and user context. It acts as a packet scheduler and replaces the

UDP input queue on the Gn interface. It supports system calls for configuration

and data transfer. The ED-SGSN uses KSGSN instead of a regular UDP socket

for packet reception on the Gn interface. Packet transmission on the Gn side is

unchanged and still uses a regular UDP socket. The Netfilter architecture is new in

Linux 2.4. It is meant to replace the firewall and address translation implementation.

These two used to be implemented separately even if they had much functionality

in common. They are now unified in Netfilter. Netfilter provides hooks at different

point in the network stack. It currently provides five hooks in the IPv4 stack. On

top of Netfilter sits Iptables which provides the capability to attach kernel modules

to any of the Netfilter hooks. These kernel modules can observe, modify or even

grab packets away from the network stack and process them in any desired way.

Iptables allows to specify matching rules for a kernel module. If a packet matches

the rule, it is forwarded to the module.

KSGSN is implemented as a group of kernel modules. It can be dynamically

loaded and unloaded from the Linux kernel at runtime. It is composed of four main

components each implemented as a separate kernel module. Figure 6.2 shows the

architecture of KSGSN and the links with the user space SGSN. Incoming GTP

packets are intercepted by Netfiler/Iptables and passed to KSGSN.

The main component is the packet scheduler named ksched. Its task is to

queue incoming packets and to decide which packet to pass to the SGSN when

requested. The scheduler has one FIFO queue per mobile, which buffers incoming

packets. Packets are inserted at the back of a mobile's queue in interrupt context

and are removed from the front of the queue in user context. The selection of the

next packet to be removed from its queue and passed to user space is based on the

56

User Level

G M M

ioctlQ

MS How Control

Cell Flow Control

Relay

NS

GTP

Event Scheduler

ioctlQ poll() read();

Kernel Level

K G M M

KSYS

IPT_GTP

Figure 6.2: KSGSN software architecture

57

scheduling policy.

The kgmm module is the kernel level part of the user level gram. It keeps

the state necessary to KSGSN for each mobile. The kgmm is configured by the

gmm with ioctl() system calls, passing down information for each mobile. The M M

and PDP context are retrieved from the kgmm module in interrupt context for each

incoming packets using the Tunnel ID(TID) from the GTP header.

The ksys module serves as a wrapper around the scheduler. Its task is to

translate all the system calls into calls to the scheduler and process incoming packet

before passing them to the scheduler. The ksys module supports ioctl() system calls

for configuration and to block/unblock a mobile's queue in the scheduler. The read()

system call is used to transfer packets from kernel space to user space and the poll()

system call is implemented allowing the SGSN to sleep when there are no packets

to read.

The ipt.GTP module is the kernel module registered with Iptables to receive

all GTP packets. It performs some basic error checking and passes the packet to

the ksys module. Since our modules bypass the UDP layer, we have to make sure

packets are not corrupted. This task is usually performed at the UDP level by

verifying the checksum in the UDP header. The Ethernet card used in our testbed

performs UDP checksum in hardware allowing us to bypass this step.

58

Chapter 7

Experimentation and Results

7.1 Overview

As stated earlier in Chapter 2, we believe a user level SGSN will not be able to truly

support Quality of Service (QoS). By truly, we mean that it will not be able to pro

vide proper isolation between the. different classes of traffic and provide guaranteed

services independently of the load on the system. We have studied this problem by

looking at three QoS parameters: throughput, delay and precedence. These param-

eters are part of a GPRS QoS profile and are defined in [14]. In this section, we show

that a user level SGSN fails to provide guaranteed service with respect to these QoS

parameters under heavy loads. We will also show that our early-demultiplexing

SGSN (ED-SGSN) is able to maintain guaranteed service under heavy loads and

degrades gracefully when unable to meet all guarantees.

7.1.1 Lab Setup

The GPRS testbed setup used to run all experiments is shown in Figure 7.1. All

nodes are connected using switched Ethernet running in duplex mode. The SGSN

59

Intel Pentium II400 MHz

Linux 2.4.3

Intel Pentiiun 166 M H z

Linux 2.4.12

Intel Pentium II 400 MHz

Linux 2.4.3

.140

subnet 137.82.57.0

Figure 7.1: Lab setup

runs on a Pentium 166Mhz and both GGSN/GN and MS/GB run on Pentium II

400 MHz. The Ethernet cards used are 3Com 905TX PCI. They are able to perform

scatter-gather DMA and TCP/UDP checksum in hardware.

The SGSN uses two Ethernet cards. One for each interface (Gn and Gb).

This is done to make sure the hardware does not become congested when faced with

high transmission rates. To make sure packets are sent to the right network interface

on the SGSN, ARP entries are added to the GGSN/GN and MS/GB machine. On

the SGSN, to force packets to go out on the desired network interface, entries are

added to the routing table.

Each PC runs R.edHat Linux. The SGSN uses the Linux kernel 2.4.12 and

the other nodes use kernel 2.4.3. The GPRS software is written in C and is compiled

with the GNU C compiler. Because it uses some of the GNU extensions to the C

language, the GNU C compiler must be used. Since it uses POSIX APIs, the user-

level code should be easily portable to other UNIX platforms that support the GNU

C compiler.

60

7.1.2 Traffic Generator

All traffic is generated using the packet generator. The packet generator builds and

sends bursts of packets every 10 milliseconds. To avoid timing drifts, the frequency

of the generator needs to be a multiple of the system clock resolution. The system

clock frequency on most PCs is 100 Hz[16]. The higher the frequency, the more

accurate the packet generator will be, but setting the frequency at a higher rate will

lead to serious timing drifts and inaccuracies. The frequency of the generator was

set to 100Hz for all experiments. Every time the generator runs, a burst is built for

each user and is sent out. The size of the burst depends on the pre-configured rate

of each user and on the type of traffic distribution configured for each user. The

packet generator supports two types of traffic distribution: exponential and fixed.

Al l experiments are done with unidirectional traffic. Al l traffic is generated

by the GGSN/GN and travels in the GGSN/GN to MS/GB direction. Except for

two-way applications, such as video conferencing and voice over IP, most applications

on the Internet are largely unidirectional. Web surfing and multimedia streaming

have far more data travelling from the server to the client than in the other direction.

We assume that the usage of GPRS will be similar. Most of the traffic will be in

the downlink direction, travelling from the Internet to the mobiles.

To simplify our experiments, all generated packets are identical. They are

the same size and the random content of the payload is hard coded. This allows

the destination host to know the content of incoming packets and to easily detect

errors. Generating the payload at runtime would slow down the packet generator.

We do not believe that using the same content in each packet has any influence on

the SGSN performance and on the outcome of the experiments.

V.42bis data compression was turned off for all experiments. The perfor-

61

mance of the compression algorithm had too much impact on the overall performance

of the SGSN. This is acceptable since V.42bis is an optional feature in GPRS. The

payload carried in each packet is 378 bytes. With the SNDCP, LLC and BSSGP

header, the total size of the packet being sent over the Gb interface becomes 400

bytes.

To model regular traffic, we used a Poisson distribution. This allows us

to generate traffic with a certain burstiness since the interval between packets is

exponentially distributed. Because of the limitation of the system clock resolution,

generated traffic cannot be truely exponential. It is impossible to send each packet

at the exact instant dictated by the distribution. Instead, packets are grouped and

sent out as a continuous burst. Each time the packet generator timer expires (every

10 milliseconds), the packet generator calculates the size of the next burst to send

for each user. The size of the burst is determined by adding all packets that would

have been sent in the next 10 milliseconds according to the exponential distribution.

Once the size of the burst is determined, the packets are sent out one after the other.

The rate at which each packet in a burst is actually sent out is determined by the

speed of the hardware and operating system. This operation is repeated for each

user. Once every user has sent his data, the generator sleeps until the next interval.

The packet generator also supports a uniform distribution. This allows traffic

to be generated at a fixed rate. The uniform distribution is used to model real-time

traffic, such as streaming multimedia.

For both distributions, the order in which each user's packet burst is gener

ated and sent out is randomly determined at each interval. This is to avoid potential

traffic patterns that could be caused by using the same order over and over again.

62

7.2 K S G S N Overhead

Modifying an SGSN stack by moving some of it to kernel space can affect the stack

performance. We have to make sure this operation does not add too much overhead.

The time spent by packets traversing the stack cannot increase significantly or the

overall performance of the system will suffer.

We have measured the stack traversal using Netfilter. We have written a

kernel module that captures incoming and outgoing GPRS packets. This module

measures the traversal time inside the SGSN for each packet belonging to a specific

mobile. The module is configured with the mobile's IMSI and TLLI. Every time a

packet with the target IMSI comes by on the Gn interface, the module takes a time

stamp. When a packet with the corresponding TLLI leaves on the Gb interface, the

module takes another timestamp. The incoming timestamp is taken in interrupt

context just before being sent to the KSGSN's packet scheduler. The outgoing

timestamp is taken in process context just after the UDP protocol layer. Separate

counters are kept for incoming and outgoing packets allowing measurements to take

place even when there is more than one packet in the system at a given time. The

timing is done using the CPU cycle counter. This counter is incremented at each

CPU cycle, allowing very precise measurements.

We ran each test three times for both the SGSN and ED-SGSN. Each test

is made with no load on the system. Only one user is registered, sending at a rate

of ten packets per second. The uniform distribution was used to make sure the flow

control would not intervene and delay packets, distorting our results. Each test ran

for 1000 seconds. In total, over 10000 measurements are taken in each run, but

the module only keeps the last 2048 measurements. Early measurements have to

be discarded anyway since the system is starting up and might not be in a steady

63

state.

SGSN avg SGSN std dev ED-SGSN avg ED-SGSN std dev
test 1 413.26 2.56 407.55 0.29
test 2 406.33 0.27 412.05 0.69
test 3 409.64 8.65 408.42 1.69

avg 409.74 3.83 409.34 0.89

Table 7.1: Stack traversal timing (microseconds)

Table 7.1 shows the average and standard deviation of the three tests for

both SGSN and ED-SGSN. All results are in microseconds. As the table shows, the

differences between the two are minimal. This is understandable since no additional

functionality is added, but simply moved from user space to kernel space. The

standard deviation is low for all tests, meaning that the measurements are fairly

constant.

To make sure comparative tests were fair, both SGSNs were configured with

the same buffering capacity. In the ED-SGSN, each mobile possesses its own input

queue. The capacity of this queue is set to buffer one second of traffic at the mobile's

allocated rate. The size of the input queue on the SGSN was set to be equal to the

total number of mobiles times the capacity of an individual mobile queue on the

ED-SGSN.

7.3 Througphut

Our first experiment was to measure the throughput of the system and see how the

SGSN behaved when submitted with variable amounts of exceeding traffic. We look

at two things, the overall throughput and individual user throughput. Our results

show that exceeding traffic affects the overall throughput, of both the SGSN and

64

ED-SGSN but that the ED-SGSN always performs better, up to 42 % in certain

cases.

Our results also show that the SGSN fails to maintain isolation between indi

vidual users' traffic when processing resources become saturated. Well-behaved users

are penalized by misbehaving users. The ED-SGSN, because it allocates processing

resources based on users' pre-allocated bandwidth, always maintains isolation be

tween users and is not affected by exceeding traffic. Once processing resources are

saturated, users within the same QoS profile are penalized equally.

7.3.1 Overall Throughput

We first look at the overall throughput of the system. Although not related to

Quality of Service per say, the behavior of the overall throughput of the system

when overloaded can give a good idea of how guaranteed services are going to be

affected under such conditions. The overall throughput of the system is defined as

the total number of packets per second that the SGSN is able to output on the Gb

interface.

We define the theoretical throughput as the throughput of an SGSN with

infinite processing and buffering capacity. Even with infinite processing capacity,

an SGSN would still drop packets belonging to mobiles which exceed their allocated

bandwidth, but wouldn't drop packets because of buffer overflow in their input

queue. When an SGSN is not saturated, the actual throughput will be equal or

very close to the theoretical throughput. Once saturated, an SGSN will not be able

to keep up and its throughput will be lower than the theoretical throughput. The

theoretical throughput allows us to see how efficent an SGSN actually is.

The input load coming from the Gn interface on an SGSN can be split into

65

two parts: the well-behaved traffic generated by all users and the exceeding traffic

generated only by misbehaving users. The theoretical throughput is always equal

to the amount of well-behaved traffic.

We have measured the throughput of both SGSN and ED-SGSN with three

different traffic models. In all three traffic models, every user has the same QoS

profile (i.e. the same pre-allocated bandwidth) and the number of mobiles per cell

is equal for every cell. The only difference between each model is the fraction of

exceeding traffic. For a given number of users, the theoretical throughput of each

model is identical, only the quantity of exceeding traffic varies. The fractions of

exceeding traffic for each model are respectively 0, 33.3 and 50%. These fractions

represent the ratio of the exceeding traffic over the total amount of incoming traffic

(well behaved and exceeding). In a case where the theoretical throughput is 2000

packets per second and the fraction of exceeding traffic is 33.3% for example, the

total input on the system will be 3000 packets per second. In every traffic model,

the exceeding traffic is always generated by half of the user population.

Figures 7.2, 7.3 and 7.4 show the throughput for the SGSN and ED-SGSN

under various loads for each traffic model. On each graph, we can clearly see the

saturation point for the SGSN and ED-SGSN. The saturation point represents the

load at which an SGSN is no longer able to process all incoming traffic. It's the point

where the actual throughput is no longer equal to the theoretical throughput. The

graphs show that the ED-SGSN saturates between 1900 and 2150 packets per second

depending on the additional load of exceeding traffic generated by misbehaving

users. On the other hand, the SGSN saturates between 960 and 1600 packets per

second depending on the amount of exceeding traffic. Although our results show

that the ED-SGSN performs better, even when not subjected to exceeding load from

66

3000

2500 r

2000 r

1500

SGSN 1 —
ED-SGSN — X - -

Theoretical

500 1000 1500 :

Load (packets per second)

2500

Figure 7.2: Throughput of SGSN and ED-SGSN with no exceeding traffic

SGSN
ED-SGSN — X - -

Theoretical •

2500

2000

1500 h

1000

500 h

- — - X 1

500 1000 1500 2000 2500

Load(packets per second)

3000 3500

Figure 7.3: Throughput of SGSN and ED-SGSN with 33.3% exceeding traffic

67

Q | I I | | | I I I I | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Load (packets per second)

Figure 7.4: Throughput of SGSN and ED-SGSN with 50% exceeding traffic

misbehaving users, the important thing here is the fluctuation of the saturation point

experienced by both the SGSN and ED-SGSN. When a traffic model with a 50%

fraction of exceeding traffic is submitted, the SGSN's saturation point diminishes by

40%. In the same situation, the saturation point of the ED-SGSN only diminishes

by 12%.

The large reduction in throughput experienced by the SGSN can be explained

by the fact that the SGSN processes packets on a first-come first-served basis. This

is done independently of the status of the output queues. When a packet's output

queue is full, the packet is dropped, but only after it has been processed through

most of the SGSN protocol stack. At this point, a substantial amount of resources

have been spent on this packet and, therefore wasted. When the SGSN is saturated,

this waste of resources leads to a diminution in throughput. Wasted resources could

68

have been used on packets that would have been successfully sent out on the Gb

interface. Instead, some of theses packets end up being dropped at the input queue

because of lack of processing resources.

The ED-SGSN doesn't suffer this fate because it takes into account the status

of the output queues when scheduling which packet should be processed through the

protocol stack. When a given output queue is full, no packets destined for this queue

are read and processed through the stack. This ensures that no resources are wasted

on processing packets that will be dropped at their output queue.

The difference in performance between the ED-SGSN and the regular SGSN

when there is no exceeding traffic, can be attributed to better software efficiency

and reduced overhead. Since the ED-SGSN uses less flow control, the service queue

is not used as heavily, allowing more resources to be dedicated to the processing of

packets.

The reduction in throughput experienced by the ED-SGSN past the satu

ration point is caused by the processing of incoming packets through the IP, UPD

and GTP protocol layers. This processing is done in interrupt context before the

ED-SGSN determines if a packet should be queued or dropped. This means that ev

ery packet dropped by the'ED-SGSN still wastes a small amount of resources. This

small wasteage of resources adds up and becomes noticeable when the ED-SGSN is

heavily loaded and a large quantity of packets is dropped.

7.3.2 Fairness and Isolation

It is our belief that users with the same QoS profile (i.e. same throughput class)

should receive the same amount of bandwidth. If either processing or bandwidth

resources become scarce, then the system should degrade gracefully. The reduction

69

in available bandwidth should be felt equally by all users with the same Qos profile.

Misbehaved users should not receive more bandwidth than well-behaved users under

any circumstances.

Unfortunately, when the SGSN reaches its saturation point and resources are

scarce, the SGSN does not degrade gracefully. The difference in received bandwidth

between well-behaved and misbehaved users is flagrant. Because packets are queued

and processed in FIFO order and because of the tail-drop behavior of the operating

system, once the SGSN is saturated the resources allocated to each user are directly

related to the fraction each user occupies in the input queue. This means that

the more packets a user sends, the larger the portion of resources he will receive

regardless of whether the user is exceeding his allocated bandwidth or not.

Of course, all packets in excess of their pre-allocated bandwidth are dropped,

but still, they have consumed precious processing resources. Well behaved users

see their throughput diminish substantially because they are unable to obtain the

necessary resources to process their packets, while misbehaving users still manage

to obtain their full bandwidth.

To avoid this, resources must be allocated fairly among users. The fraction of

resources a user receives must depend on his allocated bandwidth and QoS profile,

not on the fractions he occupies in the input queue. Because the ED-SGSN identifies

the owner of each packet on arrival, it can queue packets on a per mobile basis.

Packets can then easily be scheduled so that resources are allocated fairly between

all mobiles. Since there is one queue per mobile, it's easy to discard traffic on an

individual basis. Misbehaving traffic is discarded on arrival, wasting a minimum of

system resources and well-behaved users are never penalized. Of course, when the

system is saturated, packets are dropped, but the system degrades gracefully. Al l

70

1.6

1.4

1.2

i :

0.8

0.6

0.4

0.2

0

1 1 1 1 1 1 1
_ _

-
-

-

good user — i — .

I
bad user

'
— K ~ i i

5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%)

(a)

1.6

1.4

1.2 h
1

0.8 h

0.6

0.4

0.2

0

good user — I —
bad user — X —

0 5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%)

(b)

Figure 7.5: Input/Output of Good and Bad Users for the SGSN (160 Users)

1.6

1.4

1.2

1 * -

0.8

0.6

0.4

0.2

0

"1 1 1 1 1 1 1 1 1
good user — F -

bad user — > £ -

j i i i i _

0 5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%)

(a)

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0

T 1 1 r ~I 1 1 r-
good user — F -

bad user — > c -

*

_ i i i _

5 10 15 20 25 30 ,35 40 45 50

Fraction of exceeding traffic (%)

(b)

Figure 7.6: Input/Output of Good and Bad Users for the ED-SGSN (160 Users)

users with the same QoS profile are penalized equally.

To analyze isolation and fairness between users, we have compared the service

received by two kinds of users: good and bad. A good user is a well-behaved user

who does not generate exceeding traffic. A bad or misbehaving user generates a

variable quantity of exceeding traffic. Both types of users have the same Quality of

Service profile meaning they have the same allocated bandwidth. We have looked at

how much resources each kind of user consumes and what fraction of their allocated

71

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%) Fraction of exceeding traffic (%)

(a) (b)

Figure 7.7: Input/Output of Good and Bad Users for the SGSN (256 Users)

1.6

1.4

1.2 h
1

0.8 3 ^

0.6 [•

0.4

0.2 h

0

-i 1 1 1 r
good user — (—

bad user — X —

0 5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%)

(a)

1.6

1.4

1.2

1

0 . 8 ^

0.6

0.4

0.2

0

-1 1 1 P 1 1—
good user — I —

bad user — X — •

5 10 15 20 25 30 35 40 45 50

Fraction of exceeding traffic (%)

(b)

Figure 7.8: Input/Output of Good and Bad Users for the ED-SGSN (256 Users)

72

i
bandwidth they receive. The 160-user scenario corresponds, when no exceeding

traffic is present, to a load slightly below the saturation point for the SGSN and

ED-SGSN. When no exceeding traffic is present, both good and bad users receive

their allocated bandwidth. The SGSN becomes saturated as the amount of exceeding

traffic increases. The scenario with 256 users represents a load above the saturation

point for both the SGSN and the ED-SGSN even when no exceeding traffic is present.

In both scenarios, half of the user population consists of well-behaved users and the

other consists of misbehaving users.

For each scenario and for each SGSN (SGSN and ED-SGSN) we vary the

amount of exceeding traffic generated by misbehaving users. As in the overall

throughput experiments, the amount of exceeding traffic is given as a fraction of

the total amount of incoming traffic.

Figures 7.5 and 7.6 show the SGSN and ED-SGSN respectively, with 160

mobile users connected. Figures 7.5-a and 7.6-a show the amount of traffic read

from the input queue by the SGSN or ED-SGSN. This quantity is expressed as a

fraction a user's allocated bandwidth. The number of packets read and processed

represents the amount of SGSN processing resources consumed by a user. Figures

7.5-b and 7.6-b show the amount of traffic transmitted on the Gb interface, again

expressed as a fraction of a user's allocated bandwidth. Each graph shows a curve

for good and bad users.

Figure 7.5-a clearly shows that as the load of misbehaving traffic increases

on the SGSN, so does the quantity of resources consumed by misbehaving users.

This is understandable since the SGSN processes packets in FIFO order and doesn't

take into account whether packets will be discarded or not before processing them.

Since misbehaving users' traffic occupies a larger portion of the input queue than

73

the traffic of well-behaved users, misbehaving users receive more resources than they

should.

When the SGSN reaches its saturation point, resources become limited. At

this point, the fact that misbehaving users receive more resources than they should

affects the throughput of well behaved users. Again, Figure 7.5 clearly shows this

behavior. The resources consumed by well-behaved users diminish as the amount

of exceeding traffic increases. This affects their throughput. Figure 7.5-b shows

that well behaved users only receive about 50% of their allocated bandwidth when

the fraction of misbehaving traffic reaches 50%. Misbehaving users still manage to

receive 100% of their allocated bandwidth. This shows that a user level SGSN is

not able to provide proper isolation between users when it becomes overloaded.

Because it manages resources properly and is able to discard misbehaving

traffic early, the ED-SGSN is able to remain below its saturation point and not be

affected by the exceeding traffic. Figure 7.6 shows this behavior. The amount of

resources consumed by both well-behaved and misbehaving users is identical. Both

types of users are also able to get their entire allocated bandwidth, regardless of the

amount of exceeding traffic.

Figures 7.7 and 7.8 show the same graphs for the 256-user scenario. In

this case both SGSN and ED-SGSN are overloaded. The same behavior as in the

160-user scenario is observed for the SGSN. The numbers are lower because of the

severity of the overload but the fact remains that misbehaving users receive more

resources and more bandwidth than well-behaved users. The ED-SGSN, although

affected by the overload created by a large amount of users, is not really affected by

the quantity of misbehaving traffic. Resources, although saturated, are distributed

evenly among all users and each user receives the same bandwidth. The throughput

74

of each user remains fairly constant regardless of the quantity of exceeding traffic.

These results show that the ED-SGSN is able to provide proper isolation and

fairness among users independently of the load on the system and of the quantity

of misbehaving traffic generated by its users.

7.4 Delay and Support for Real-time Traffic

Multimedia applications such as audio streaming and video conferencing are becom

ing very popular. There is a good chance those applications will also be popular

with GPRS users. In order to support such applications, GPRS must be able to

offer a guaranteed low delay, low jitter service.

7.4.1 Real -Time Requirements of Mult imedia Traffic

Multimedia streaming is characterized by the need to output a signal at fixed in

tervals. This signal can be audio or video. The multimedia application processes

incoming data from the network to build the signal. If the application cannot output

the signal at the right moment because the required data is not available, then the

quality of the output suffers; video frames are missing or there are glitches in the

audio track. This data is packetized at the server and transmitted over the network

to the client application. The moment in time where a packet must be available to

the application, in order for the signal to be outputted correctly, is defined as the

packet's deadline.

Transmitting information over a packet-based network inevitably introduces

fluctuation in the delay between each packet. This fluctuation, known as jitter,

is caused by the variable queuing delay that packets experience in their journey

through the network. Jitter can cause packets to arrive late and miss their deadline.

75

To eliminate problems caused by jitter, an application can buffer data for a certain

time before starting the playback of the signal. Buffering works well with non real

time one-way streaming applications, where the signal is pre-recorded and startup

delay is unimportant, but has very limited use in real-time, two-way streaming

applications, such as video conferencing or packetized voice transmission. Because

buffering adds additional delay, it causes substantial lag in such applications.

To support applications with such real-time requirements, the underlying

network must be able to offer a low delay, low jitter service. Such service must be

able to prioritize packets belonging to real-time applications in order to minimize

their queuing delay at each node on the network.

7.4.2 Low Delay Traffic Class

GPRS has provisions for a low-delay traffic class. Delay is one of the four parameters

defined in the GPRS QoS specification [8] [14]. The technical specifications define

four delay classes that can be used by an operator to define different QoS profiles. A

network operator wanting to support a real-time traffic class provides a QoS profile

using the lowest delay class. The GPRS specifications do not specify or recommend

an implementation, nor a scheduling algorithm for providing such a service.

To ensure that real-time traffic obtains a guaranteed low delay, low jitter

service, forwarding nodes such as a SGSN must be able to support a forwarding

behavior that is independent of the traffic load at the node. This can be done

by using a forwarding mechanism such as a priority queue to make sure the delay

experienced by real-time traffic is minimized and bounded.

We show that a user-level SGSN will be unable to provide such a service

even if it supports the appropriate scheduling mechanism. This problem is caused

76

by the queuing of incoming packets in the UDP queue. Because incoming packets

are queued in FIFO order, packets belonging to a real-time traffic class are not

prioritized and suffer a delay proportional to the queue length. This delay is com

pletely independent of the scheduling algorithm used by the SGSN to support QoS.

Depending on the algorithm used, an additional queuing delay may be added on top

of the UDP queuing delay.

We also show that the ED-SGSN does not suffer from this problem. Because

packets are identified on arrival, it is very easy to provide proper traffic prioritization.

This allows the real-time traffic class to avoid the FIFO queuing behavior of the UDP

input queue. This minimizes the delay real-time traffic experiences while traversing

the SGSN protocol stack.

7.4.3 Exper iments and Results

The goal of this experiment is to show the load-dependant latency real-time traf

fic will experience traversing a user-level SGSN. We also show that the ED-SGSN

doesn't suffer from this problem.

The traffic model we use consists of one real-time mobile, plus additional

best effort mobiles, to create an extra traffic load on the system. The real-time

mobile receives data at its maximal configured rate. A uniform distribution is used

to generate the traffic for the real-time mobile. Exponential distributions are used

to generate the additional best-effort load.

To measure the delay experienced by each packet, the traversal time of real

time packets is measured. The same module described in Section 7.2 is used to

measure the traversal time. Each experiment is run for a period of 1000 seconds

and only the last 2048 measurements are kept.

77

SGSN H
•SGSN — X-

0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Load (packets per second)

Figure 7.9: Average delay for real-time class

Figure 7.9 shows the average delay experienced by a real-time user in both

the SGSN and ED-SGSN. We can clearly see that the delay experienced by this user

on the SGSN grows quickly as the load on the system increases. We are unable to

measure the delay experienced by real-time packets past 1600 packets per second

on the SGSN, because at this point the SGSN starts dropping too many packets

in the UDP socket buffer, making it impossible to measure the delay. There is no

reason to believe the delay would not keep growing in a similar fashion past 1600

packets per second. The ED-SGSN probably starts dropping packets in some of its

input queues at a similar load, but since real-time packets are prioritized on arrival,

these packets do not suffer the same fate as on the SGSN. Packets belonging to the

best-effort class are probably dropped instead.

The behavior experienced by real-time traffic on the SGSN is quite undesir-

78

able. The problem is not only that the delay becomes large when the system is fully

loaded but that this delay varies by an order of magnitude (from 0.5 milliseconds to

almost 5 milliseconds) between the no-load and the fully loaded situations. Having

the delay as a function of the load on the system can cause large amounts of jitter.

Over a long period of time, the load on an actual system will vary substantially.

This will cause large variations in the delay experienced by real-time traffic at the

SGSN. Jitter is undesirable and problematic because it makes it hard for real-time

applications to tune themselves to the conditions of the network. A larger but con

stant delay is often better than a varying delay because it is easier for applications

to adjust themselves to a constant delay. Parameters such as buffer requirements or

knowing if it is even possible to run the application are easily determined when the

delay is fairly constant.

Most delay, if not all, experienced by real-time traffic at the SGSN comes

from time spent in the input queue. By using a priority queue as a packet scheduler

in the flow control unit, the SGSN is able to properly prioritize packets being sent

out on the Gb interface. The use of a priority queue in the flow control unit is

described in detail in Section 5.1.3. Unfortunately, there is nothing a user-level

SGSN can do about the delay at the input queue. The operating system, which

queues incoming traffic, knows nothing about the priority of each of the incoming

packets.

By classifying packets on arrival before they are queued, the ED-SGSN is

able to properly prioritize real-time traffic. When there is very little load on the

system, the delay is the same on both the SGSN and ED-SGSN. The difference is

that the ED-SGSN is able to keep this delay low under any load. The increase in

delay from a no load situation to a load of 1600 packets per second is around 285

79

microseconds. This is still an increase of 67%, but 285 microseconds is a fairly small

amount of time when put in the context of end-to-end delay experienced in wide

area networks, and is probably quite acceptable. Compared to the increase in delay

experienced at the SGSN for the same load interval, this is an improvement of about

1500%.

The increase in delay experienced at the ED-SGSN is probably caused by

the increase in the number of interrupts. As the load on the system increases,

the frequency of interrupts generated by the network interface card also increases.

Since interrupts have the highest priority in the system, they will always preempt

the processing of packets through the SGSN protocol stack. The probability of

having an interrupt preempt the processing of a packet increases with the load on

the system and so will the delay. Still, the ED-SGSN is able to provide a low delay

low jitter service, which is by far superior to what a regular user-level SGSN can

provide.

7.5 Precedence

7.5.1 Overview

Precedence defines the importance of a packet or a user. Packets belonging to

low precedence traffic classes are always dropped before packets belonging to high

precedence classes. Supporting different levels of precedence enables the definition

of different services based on their importance. One can think of a premium service

that is of greater importance than a regular service. A user subscribing to such

a service will always get priority in terms of maintaining service under abnormal

conditions, such as link congestion or overload periods. Regular subscribers' packets

80

are always dropped before premium service subscribers' packets.

Precedence is one of the parameters defined in the GPRS QoS specifications

[8] [14]. GPRS supports three different levels of precedence allowing a network

operator to define various services of different importance.

An SGSN wishing to support different levels of precedence will implement

support for it in the packet scheduler of the flow control unit. This will allow it

to maintain high precedence services ahead of other services when cells become

congested. Unfortunately, a user-level SGSN will be unable to properly support

different levels of precedence once its processing resources become saturated. The

reasons for this are closely related to why a user-level SGSN cannot support real-time

traffic.

The operating system is unaware of the QoS requirements of incoming traffic.

Al l incoming packets are treated identically by the operating system. When the

input queue fills up, additional traffic is simply dropped in a tail-drop manner,

regardless of the precedence of each packet.

The ED-SGSN can avoid this problem because it sees every incoming packet.

The ED-SGSN can make informed decisions when selecting which packet should be

dropped. This allows the ED-SGSN to properly support different precedence levels

even when overloaded. In the case of a user-level SGSN, the operating system sees

every packet, but the SGSN process only sees the packets it is able to read from the

socket buffer.

7.5.2 Experiments and Results

We have measured how well precedence is supported in both the SGSN and ED-

SGSN by looking at how traffic is controlled by the SGSN in an overloaded cell.

81

SGSN H
•SGSN — X -

3000

Load (packets per second)

Figure 7.10: Drop Rate for High Precedence Traffic Class

This experiment shows how well the SGSN and ED-SGSN support precedence under

various loads.

The cell we looked at serves five mobiles, all of which transmitting at 4000

bytes per second or ten packets per second. The cell has a capacity of 16000 bytes

per second, which is not enough to support all five mobiles. One mobile belongs to

the high-precedence class while the others belong to the regular precedence class. To

make sure the individual mobile's flow control unit doesn't interfere, the allocated

bandwidth for each user is set to 6000 bytes per second.

Figure 7.10 shows the drop rate for the high-precedence mobile user in the

congested cell. For both the SGSN and ED-SGSN, the precedence mechanism in the

flow mechanism properly maintains the high precedence service below the saturation

point. Until it saturates, the SGSN drops none of the packets belonging to the high

82

precedence user. The support for different precedence levels fails on the SGSN as

soon as the saturation point is reached. The drop rate of the high precedence user

rises dramatically, reaching 45% at around 2900 packets per second. This number

will probably keep growing if the load is increased.

Every high-precedence packet that the SGSN drops is dropped at the input

queue by the operating system. The operating system controls which packet is to be

dropped at the input queue and it does so without taking into account the precedence

level of each packet. Service differentiation based on precedence disappears once the

saturation point is reached on the SGSN.

The ED-SGSN can maintain a high precedence service perfectly, well past its

saturation point. It is easy to see in Figure 7.10 that the drop rate stays at zero for

every experiment run. Even at rates near 3000 packets per second, the ED-SGSN

did not drop a single high precedence packet.

83

Chapter 8

Conclusion

In this thesis we have studied an SGSN from a system point of view. We have looked

at the interaction between the operating system and the SGSN and analyzed how

this interaction affects the performance of the SGSN. We have studied the overall

performance of the system and we have looked at how well guaranteed services are

supported.

Our study shows that an SGSN implemented as a user-level process will not

support guaranteed services well when heavily loaded. We have looked at three

Quality of Service(QoS) metrics: throughput, delay and precedence. In each case,

the user-level SGSN failed to properly support services based on one of the metrics.

The overall throughput of a user-level SGSN is highly influenced by misbe

having traffic when overloaded. Isolation between the bandwidth allocated to each

user is not maintained. Well-behaved users see their throughput affected by misbe

having users. We also show that a user-level SGSN will not be able to support a

guaranteed low delay traffic class and that it does not support different precedence

levels when overloaded.

All these problems are caused by the fact that there is currently no mecha-

84

nism available to an application to specify how incoming network traffic should be

classified and queued by the operating system. The problem can be summarized in

three main points:

- Packets are queued in a FIFO manner by the operating system ignoring the

packets QoS requirements. This causes high priority packets to be queued

behind lower priority traffic causing delays that are highly dependent on the

system load.

- Once the input queue fills up, the operating system simply drops additional

incoming packets regardless of their precedence.

- Packets are also processed through the SGSN protocol stack in the order they

arrive at the SGSN, regardless of their QoS requirements and independently

of the fact that their owner may have exceeded its allocated bandwidth.

We have built an SGSN where incoming traffic is classified and queued accordingly

in interrupt context. Packets are queued on a per mobile basis on arrival. Because

packets are identified on arrival, their precedence is immediately determined and

the appropriate action can be taken. Instead of processing packets in the order they

arrived, a packet scheduler decides which packet should be processed next. The

scheduler takes into account the priority of each packet, the allocated bandwidth of

each user and the status of the output queues. This allows the proper prioritization

of packets, making sure that high-priority packets are not needlessly delayed.

Processing resources are allocated to each user according to its allocated

bandwidth, making sure that misbehaving users do not consume an inappropriate

amount of resources. This ensures that isolation between users is maintained even

when the system is overloaded. Also, no resources are wasted on processing packets

85

through the SGSN protocol stack and then dropped because their output queue is

full.

Results show that the Early-Demultiplexing SGSN(ED-SGSN) brings major

improvements to all three QoS metrics identified earlier. The overall throughput

of the system is maintained to a greater extent when faced with a large amount of

exceeding traffic. Improvements of up to 42 % can be seen when the system is faced

with large amounts of misbehaving traffic. Isolation between users is maintained

even when the system is overloaded with large amounts of exceeding traffic.

The ED-SGSN also properly supports a low-delay real-time traffic class, pro

viding only an increase of less than 300 microseconds between a no-load situation

and a load of 1600 packets per second. The delay experienced at the regular SGSN

varies by over 4 milliseconds for the same load interval. Precedence is also very well

supported with no dropping of high precedence packets even well above the satu

ration point. This is in sharp contrast to the plain SGSN, which fails to support

precedence when overloaded, even slightly.

Although early-demultiplexing is an idea that has been around for a while in

the area of systems research, it has never been applied to GPRS. Our work shows

that it is feasible to implement an early-demultiplexing mechanism on a SGSN even

with the complexity of the protocol stack.

As far as we know, the idea of combining the use of early-demultiplexing with

a feedback mechanism monitoring the status of the output queues, to avoid wasting

processing resources, is novel. The usage of a packet scheduler for determining how

packets should be processed throughout the rest of the system, in order to obtain

proper resource allocation within the system, is also novel.

In terms of systems research, our work can be seen as a first step in establish-

86

ing the requirements of an operating system with support for Quality of Service in

the I/O subsystem. Also, we believe our in-depth performance analysis of an SGSN

from a system point of view could be used in communication and networking re

search to build a more accurate model of an SGSN that could be used in large-scale

GPRS network studies.

87

Bibliography

[1] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler acti

vations: Effective kernel support for the user-level management of parallelism.

ACM Transactions on Computer Systems, 10(l):53-70, February 1992.

[2] D. A. Bandel. Taming the wild netfilter. Linux Journal, 89:64, 66-68, 70, 72,

September 2001.

[3] G. Banga and J. C. Mogul. Scalable kernel performance for internet servers

under realistic loads. In Proceedings of the USENIX 1998 Annual Technical

Conference, pages 1-12, Berkeley, USA, June 15-19 1998. USENIX Association.

[4] S. Blake, D. Black, M . Carlson, E. Davies, Z. Wang, and W. Weiss. RFC 2475:

An architecture for differentiated services, December 1998.

[5] E. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC 2205: Resource

ReSerVation Protocol (RSVP) — version 1 functional specification, September

1997.

[6] D. D. Clark. The Structuring of Systems Using Upcalls. In Proceedings of the

Tenth Symposium on Operating Systems Principles, Shark Is., WA, 1985.

[7] P. Druschel and Q. Banga. Lazy receiver processing (LRP): A network sub

system architecture for server systems. In USENIX, editor, 2nd Symposium

88

on Operating Systems Design and Implementation (OSDI '96), October 28-31,

1996. Seattle, WA, pages 261-275, Berkeley, CA, USA, October 1996. USENIX.

[8] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Service Description; Stage 2 (GSM 03.60 version 6.1.1

Release 1997). ETSI, 1998.

[9] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Base Station System(BSS) - Serving GPRS Support

Node (SGSN); BSS GPRS Protocol (BSSGP) (GSM 08.18 version 6.3.0 Release

1997). ETSI, 1999.

[10] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Base Station System(BSS) - Serving GPRS Support

Node (SGSN) interface; Network Service (GSM 08.16 version 6.3.0 Release

1997). ETSI, 1999.

[11] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); GPRS Tunnelling Protocol(GTP) across the Gn and Gp

interface; (GSM 09.60 version 7.0.0 Release 1998). ETSI, 1999.

[12] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Mobile Station - Serving GPRS Support Node (MS-

SGSN); Logical Link Control (LLC) layer specification (GSM 04.64 version

6.3.0 Release 1997). ETSI, 1999.

[13] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Mobile Station (MS) - Serving GPRS Support Node

89

(SGSN); Subnetwork Dependent Convergence Protocol (SNDCP) (GSM 04.65

version 6.3.0 Release 1997). ETSI, 1999.

[14] ETSI. Digital cellular telecommunications system (Phase 2+); General Packet

Radio Service(GPRS); Service Description; Stage 1 (GSM 02.60 version 6.3.1

Release 1997). ETSI, 2000.

[15] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in

the internet. IEEE/ACM Transactions on Networking, 7(4):458-472, August

1999.

[16] B. Gallmeister. POSIX.4-' Programming for the Real World. O'Reilly & Asso

ciates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, January 1995.

[17] R. Gopalakrishnan and G. M. Parulkar. Efficient user-space protocol implemen

tations with QoS guarantees using real-time upcalls. IEEE/ACM Transactions

on Networking, 6(4):374-388, August 1998.

[18] ITU-T. Recommendation V.42bis - data compression procedures for data cir

cuits-terminating equipment (dee) using error correcting procedures. Geneva,

Switzerland, February 1998.

[19] V. Jacobson. RFC 1144: Compressing TCP/IP headers for low-speed serial

links, February 1990.

[20] V. Jacobson, K. Nichols, and K. Poduri. RFC 2598: An expedited forwarding

phb, June 1999.

[21] C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar. Predictable communication

protocol processing in real-time mach. In IEEE Real-Time Technology and

90

Applications Symposium (RTAS '96), pages 220-229, Washington - Brussels -

Tokyo, June 1996. IEEE Computer Society Press.

[22] C. Maltzahn, K. J. Richardson, and D. Grunwald. Performance issues of enter

prise level web proxies. In Proceedings of the 1991A CM STGMETRICS Interna

tional Conference on Measurement and Modeling of Computer Systems, volume

25,1 of Performance Evaluation Review, pages 13-23,.New York, June 15-18

1997. A C M Press.

[23] M . McKusick, K. Bostic, and M . Karels. The design and implementation of the

4.4BSD operating system. Addison-Wesley, May 1996.

[24] M . K. McKusick and M. J. Karels. Design of a general purpose memory allo

cator for the 4.3BSD UNIX kernel. In USENIX Association, editor, USENIX

Conference Proceedings, Summer, 1988. San Francisco, pages 295-303, Berke

ley, CA, USA, Summer 1988. USENIX.

[25] A. Mishra. Performance and architecture of sgsn and ggsn of general packet

radio service(gprs). In Global Telecommunications Conference, 2001. GLOBE-

COM '01. Volume 6. IEEE, 2001.

[26] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an

interrupt-driven kernel. ACM Transactions on Computer Systems, 15(3):217-

252, August 1997.

[27] D. Mosberger and L. L. Peterson. Making paths explicit in the scout operating-

system. In USENIX, editor, 2nd Symposium on Operating Systems Design and

Implementation (OSDI '96), October 28-31, 1996. Seattle, WA, pages 153-167,

Berkeley, CA, USA, October 1996. USENIX.

91

[28] K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474: Definition of the Dif

ferentiated Services Field (DS Field) in the IPv4 and IPv6 headers, December

1998.

[29] J. K. Ousterhout. Why threads are A bad idea (for most purposes). Invited

Talk at the 1996 USENIX Technical Conference, January 1996.

[30] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable

web server. In Proceedings of the 1999 USENIX Annual Technical Conference

(USENIX-99), pages 199-212, Berkeley, CA, June 6-11 1999. USENIX Asso

ciation.

[31] Q. Pang, A. Bigloo, V . C . M . Leung, and C. Scholefield. Service scheduling for

general packet radio service classes. In IEEE Wireless Communications and

Networking Conference, pages 1229-1233, 1999.

[32] J. Postel. RFC 768: User datagram protocol, August 1980.

[33] J. Postel. RFC 793: Transmission control protocol, September 1981.

[34] G. Priggouris, S. Hadjiefthymiades, and L. Merakos. Supporting IP QoS in the

General Packet Radio Service. IEEE Network, pages 8-17, September 2000.

[35] M . Puuskari. Quality of service framework in gprs and evolution towards umts.

In 3rd European Personal Mobile Communications Conference, Paris, France,

mar 1999.

[36] D. M . Ritchie. A stream input-output system. BSTJ, 63, 8:1897-1910, 1984.

[37] D. M . Ritchie and K. Thompson. The UNIX time-sharing system. Bell System

Technical J., 57(6):1905, July-August 1978.

92

[38] D. Staehle, K. Leibnitz, and K. Tsipotis. QoS of internet access with GPRS. The

Fourth ACM International Workshop on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (MSWiM 2001), 2001.

[39] R. Stevens. UNIX network programming: Networking APIs: sockets and XTI,

volume 1. Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA, second

edition, 1998.

[40] P. Stuckmann and F. Muller. GPRS radio network capacity and quality of ser

vice using fixed and on-demand channel allocation techniques. Proc. Vehicular

Technology Confernece (VTC spring 2000), May 2000.

[41] V. Sundaram, P. Shenoy, A. Chandra, J. Sahni, P. Goyal, and H. Vin. Applica

tion performance in the QLinux multimedia operating system. In Proceedings of

the 8th International ACM Conference on Multimedia (Multimedia-00), pages

127-136, N . Y., October 30-November 04 2000. A C M Press.

[42] F. Tataranni, S. Porcarelli, F. Di Giandomenico, A. Bondavalli, and L. Si-

moncini. Modeling and analysis of the behavior of gprs systems. In Proceedings

of the Sixth International Workshop on Object-Oriented Real-Time Dependable

Systems, pages 5-12. IEEE, 2001.

[43] D. L. Tennenhouse. Layered Multiplexing Considered Harmful. In Proceedings

of the 1st International Workshop on High-Speed Networks, May 1989.

[44] U. Vahalia. UNIX Internals. Prentice-Hall, Upper Saddle River, NJ 07458,

USA, 1996.

93

[45] J. Yang, C. Tseng, and Cheng C. Dynamic scheduling framework on rlc/mac

layer for general packet radio service. In 2001 International Conference on

Distributed Computing Systems Workshop, pages 441-447. IEEE, 2001.

94

