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Abstract 
The problem of wood tensile strength estimation of softwood lumber is studied in this 

thesis. The main contributions brought to this topic here are first, a set o f knot geometry 

features that can be used in board strength estimation, and second a learning algorithm 

that selects the best set of features for the purpose o f strength measurement. 

The estimation problem is posed as an empirical learning problem that is based on the 

measured properties of wood. The process o f producing the required database consisted 

o f three distinct tasks: selecting and preparing the boards, measuring a set of properties of 

wood for every board, and estimating the measured strength of each board from the 

measured profiles. 

A set of boards, providing a random sample o f softwood lumber, already existed at U B C 

(from previous experiments). These boards were measured and used as the preliminary 

database. A second set of boards was selected randomly from the regular production of 

softwood lumber. These boards created the evaluation data set. 

For the measurement task, all the boards were scanned using the available measurement 

machines. These machines were S O G and Microwave for grain angle measurement, X -

ray for local density measurement, dynamic bending machine for the Modulus of 

Elasticity measurement, as well as the ultimate tensile strength tester for measuring the 

tensile strength of a board. The output profiles per board were saved in a data file (one 

data file per board per machine). The measured data files were stored in a database 

consisting o f a structure of directories. 

In the strength estimation task all the measured profiles o f a board were mapped to 

specific features (usually statistical moments) and the features were then mapped to the 

strength of the board. One o f the features of a board is the set o f its knots. A conic model 

of a knot was chosen and the related mappings were developed such that the X-ray 

scanning could be used in order to detect the existence, location, and shape o f knots in a 

board. Then geometrical features were proposed such that the set o f knots of a board 

could be transformed into a set of features suitable for strength estimation methodology 

o f this thesis. 
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Since specimens are costly to measure, means to reduce the number required were 

developed. To this end statistical learning theory was applied. This theory addresses the 

suitability of the learning model for the physical problem and the effectiveness o f the 

features for the estimation problem. Based on this theory, the A S E C learning model was 

developed. 

The learning problem for wood tensile strength estimation was divided into three 

problems: defining the most suitable feature set, measuring the suitability of a learning 

machine, and using the a priori knowledge about the dependence in the learning machine. 

A method for measuring the suitability o f a regression estimator (VC-dimension) was 

developed in order to select the best model in a class o f models. The A S E C learning 

model was developed in order to find the best set o f new features from the given feature 

set by using the known dependencies. 

Different learning machines were tested in order to determine what model is most 

suitable for tensile strength estimation of lumber. The validity of all the methods was 

demonstrated by analytical proof, by simulation, or by test on the database. 
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Chapter 1. Introduction 

1.1. Objective and limitations 

The goal o f this research is to find a suitable method for estimating a board's tensile 

strength by measuring the important-known material properties o f wood. A s wil l be 

shown, this problem inherently leads to a series of studies of wood structure, wood 

properties measurement, feature definition, learning systems, and estimation accuracy 

analysis. This thesis is an attempt to tackle this problem on all levels to produce a 

coherent analysis o f the problem. 

From a practical point o f view, the problem of strength estimation can be divided into the 

following problems: collecting a set of specimens, selecting measurement means, 

defining and extracting features from the measured signals, and estimating the strength by 

using the features of a specimen. 

Strength estimation can be cast as a learning problem. To do so, one needs different 

parallel measurement profiles of different wood properties and must define a variety of 

different features, in order to reduce the chance o f having any un-modeled factors. 

Therefore, a high dimensional feature space is needed for strength estimation. In the end, 

the problem of wood strength estimation is transformed into a learning problem in a high 

dimensional (more than 20 dimensions) feature space. 

The practical restrictions can be considered as conditions of the learning problem. There 

are potentially three major restrictions to the application o f the resulting strength-

estimating model. The first restriction is, that because of measurement difficulty, the 

number of specimens for the database wil l be limited, which could make the database 

unsuitable for some learning systems. The second restriction is that properties of each 

species can vary depending on the region o f harvest, which means that any single model 

cannot be claimed as a general model of wood strength. Finally, the production lines may 

have different measurement means that have demonstrated reliability over time. 
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Therefore, many asymptotic learning methods may not be suitable for strength estimation 

and various learning methods should be explored in order to get the best result. Also, this 

research does not claim generality for the produced model to many species and wood 

harvesting regions. However, since the database of this thesis consists o f softwood 

lumber produced here in British Columbia (from here on B . C . ) the strength estimating 

model is suitable for B . C . 

1.2. T h e p a r a d i g m 

The problem of wood strength estimation can be summarized as shown in Figure 1.1. The 

problem can be divided into four major tasks; specimen selection, measurement, feature 

extraction, and model development. Each part o f the problem is briefly explained in the 

following. 

specimen profiles 

measurement 
signal conditioning and 

feature extraction 

features 

learning 
estimated 

strength 

a priori knowledge 

Figure 1.1. Wood strength estimation problem paradigm; different stages o f the 

learning problem. 

1.3. S p e c i m e n s 

A model is only representative o f the database used to formulate it. For this study, 

specimens were selected at random from normal production in a regular mill. In 

particular, four bundles o f regular production from two different mills (two bundles from 

each) were shipped to the laboratory for measurement and destructive testing. (The 

boards with obvious fractures were removed.) Each board was assigned a number that 



was written on the cross-section o f one o f its ends. This number was used to code all the 

data files that would be related to the same board and was kept constant throughout the 

project. Also, the same number was used to reference the specimen in the final feature 

set. 

During the course o f this research, two independent data sets were produced for the pilot 

study and the evaluation study, respectively. The pilot study data set consisted of 800 

boards and was further divided into two separate sets: set one was used to develop a set o f 

features and the boards in this set were destructively tested for tensile strength; set two 

was used as a repetition of the first set as well as for comparing the measurement 

machines in the laboratory with the measurement machines used in the industry. A 

description of all the measurement machines and their limitations wil l be presented later 

in the related sections. 

In the evaluation study, presented in Sections 6.5 to 6.8, 1100 boards were selected from 

local mills. Similar to the boards in the pilot study, the boards in the evaluation study 

were a random sample o f the produced boards. A l l the measurements were done using 

industrial machines and the tensile strength of the specimens were measured at the 

University of British Columbia (from here on, U B C ) . The following diagram shows the 

specimen sets and the related measurement machines. 
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SOG Cook-Bolinder Vision-Smart X-ray UTS 

Pilot Study 

Preliminary Set 

(400 boards) 

SOG + Cook-Bolinder + Vision-Smart X-ray UTS 

Microwave CTL™ + Advantage2 

Pilot Study 

Measurement Comparison Set 

(400 boards) 

Microwave Dynamic bending machine Advantage2 UTS 

Evaluation Study 

(1100 boards) 

Figure 1.2. Different Specimen sets that were produced during the course of this 

research. The S O G and Microwave machines measure the local grain angle of 

wood. Cook-Bolinder and CLT™machines measure the flatwise M O E of the 

board. Vision-Smart X-ray and Advantage2 measure the local density. U T S is for 

ultimate tensile strength measurement. 

1.4. An overview of the experimental work 

The measurement means wil l be discussed in detail in Chapter 2. Briefly, they consisted 

o f the following systems. 

For X-ray, a Vision Smart X-ray machine (at U B C Wood Products Laboratory) and a 

Newnes Advantage2 were used. The X-ray machines ([1]) produced two-dimensional 
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density images o f each board. Two images o f the same board, one from the top and one 

from the side, were produced. The Vision Smart X-ray machine was used for the pilot 

study and was set in the Wood Products Laboratory o f U B C . The Newnes Advantage2 X -

ray machine was used for the evaluation study. The data produced from the two machines 

were similar, but the Newnes Advantage2 database was used in the evaluation study 

because o f the higher resolution and because its conveyor had a more consistent speed. 

For S O G , the capacitance based heads, at U B C Wood Products Laboratory, and the 

microwave machine were used. These machines measured the local grain angle of wood 

along the board. The grain angle measurements were very similar between the two 

machines therefore the microwave measurements were used for strength estimation in 

evaluation study. 

For M O E , Cook-Bolinder M O E tester (at U B C Wood Products Laboratory) and 

Metriguard CLT™([4]) machine (at our industrial collaborator), also called dynamic 

bending machine here, were used. Cook-Bolinder M O E tester measured the flatwise 

Modulus o f Elasticity ( M O E ) profile of a board in a three-point test (see Figure 2.1) and 

measured the M O E profile o f one side o f the board in one scan. A Metriguard CLT™ 

machine is commonly used for wood grading and produces the two M O E profiles by one 

pass o f the specimen through the machine (see Section 2.1.1). A s wil l be shown in 

Section 2.4.1, the CLT™ machine is repeatable and its output is highly correlated to static 

M O E (see Section 2.1.1). Therefore, in the evaluation data set, only the CLT™ profile 

was measured and used for strength estimation. 

The ultimate strength tester (at U B C Wood Products Laboratory) was used to get the 

tensile strength o f each board in both the pilot study and evaluation study. In the U B C 

Wood Products Laboratory, all o f the different types of measurements were carried out 

independently. Once the measurement of one profile o f all the boards was finished, the 

laboratory was prepared for the next measurement. 

For each measurement, as each board was fed into the measurement machine its number 

was registered in a table. The measured profile of each board was saved in a different 

data file. Once an experiment (e.g. an X-ray measurement) was over, all the data files 

were renamed so that the file name represented the name o f the measurement (e.g. X-ray) 
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and the board number (e.g. 0114). The calibration files (if any) were kept with the data 

files in a directory to be used in a feature extraction program. 

1.5. A n overv i ew o f the analys is 

A s was stated above, the selected specimens limited the application of the model. Since 

the sample boards were from B C , the strength estimation model is suitable only for 

softwood production in local industry. The limitations of the model not withstanding, the 

best choice of measured properties for model development is that they produce the 

minimum amount of uncertainty for board characterization. Measurement selection and 

feature extraction can be viewed as attempts at specimen characterization, such that 

boards with different features are mapped to different points in the feature space. Since 

the strength of a board is a random variable in this space, good feature definition 

minimizes the variance o f this random variable at a given point. 

Each specimen is characterized by a set of features, which are the statistical or the 

geometrical transformations of the measured profiles. The total of 64 features wil l be 

used to characterize each specimen of the database o f this thesis. Each one-dimensional 

profile wi l l be transformed into eight statistical features and the combination of the two 

X-ray images wil l be transformed into 16 features. 

There wil l be three M O E profiles. O f these three, two profiles are the measured profiles 

and the third profile is the average profile o f the two measured profiles (at every point 

along the board). Therefore, there wil l be 24 features from the measured M O E profiles. 

The measured grain angle profiles wil l be grain angle, grain alignment, longitudinal 

signal amplitude, transverse signal amplitude, longitudinal signal phase, and transverse 

signal phase. However, the three signals; grain angle, grain alignment, and longitudinal 

signal amplitude were used in the strength estimation. Therefore, there wil l also be 24 

features from the measured grain angle profiles. Each of these profiles wil l be 

transformed into: minimum, maximum, average, standard deviation; variance, kurtosis, 

skewness; and the standard deviation o f the absolute value. 

The X-ray images o f the board wil l be transformed into the board three-dimensional 

model. The clear wood features: average, standard deviation, and variance of clear wood 
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density (as a random variable); the board volume; and the board density (sum of clear 

wood and non-clear wood density). Also, the knots wil l be characterized by: the number 

of knots; the ratio of knot volume to board volume; average and standard deviation of 

neighboring knot distances; average and standard deviation o f knot three-dimensional 

shape form the main axis of the board; average and standard deviation o f the standard-

deviation o f all the knot pixels from the main axis of the board; and average and 

maximum of knot area ratio. 

The learning model is a regression-like estimator that relates measured features to the 

strength of the board. The selected features are given in Section 5.11. At this level, the 

concept o f learning capacity (or V C dimension) of the learning system is important (see 

Section 6.3). Briefly, the limited number o f measured specimens limits the accuracy of 

the learning system. In other words, there should be a search among different methods of 

learning to find the best model for a limited-size training set. Statistical learning theory 

was used to guide this search. 

A group of learning systems operating on different concepts was tested to find which 

method works best. A learning method was suggested whose structure is compatible with 

the constraints o f this learning problem. Finally, the performance of different learning 

models was compared. 

1.6. R e v i e w o f o ther at tempts to t r a n s f o r m m e a s u r e d m e c h a n i c a l 

proper t i e s into s trength 

Since wood is a traditional structural material, there are many heuristic and scientific 

methods developed for estimating its strength. Among these, the weight o f a piece o f 

wood, which was used to represent the density o f wood, and the detection o f the presence 

of knots are the oldest. Scientific methods were later developed for finding the 

relationship between wood strength and one or more measured properties of wood. Since 

an estimation method can almost be identically used for tensile or the bending strength of 

wood, we wil l not distinguish between those. In the following discussion, different 

approaches to wood strength estimation are summarized. 
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The modulus of elasticity of wood is widely considered as the best single feature for 

estimating the strength of wood ([5],[6],[7]). In this method, the M O E (modulus of 

elasticity) profile o f a board is measured and a regression estimator maps the average of 

M O E profile to the strength o f wood. This method is the basis of an industry standard for 

machine stress grading. Special measurement machines were developed to measure this 

profile while the board passes through the machine at high speed. The coefficient of 

determination (r^xy) = c o v ^ x ^ ) between strength and the measured feature is r 2 « 0.5. 
i y 

The existing technology allows only the flatwise M O E profile of a board to be measured, 

that is, the M O E profile is measured by placing the bending force on the wider face 

(plank) of the board. Therefore it leaves out the applications where the bending force is 

applied to the narrower face (edge) of the board. 

The grain angle of wood has also been used for estimating strength ([8],[9]). In a similar 

approach, a regression estimator transforms the average grain angle to the strength o f 

wood. For this purpose, the capacitance based grain angle measurement and microwave 

based grain angle measurement tools were developed. The capacitance based grain angle 

measurement machine is most affected by the grain angle at the surface o f the board. The 

microwave measurement method can produce more than one measurement. It can 

estimate the average grain angle, and also the moisture content and the local density of 

wood. The features are usually the statistical moments of the measured profile and a 

linear regression estimator can be used to map the features to the strength. 

A finite element model of wood has been developed for estimating the strength of wood 

by assuming that the grain angle of wood is known at every point ([10]). Other 

parameters o f wood such as local density, M O E , etc., are typically assumed to be 

constant. This model is reported to produce accurate results for single knot and double 

knot pieces o f wood. The highest reported accuracy is r1 = 0.89 ([10]). Because o f the 

high computation time, this method is useful for laboratory study but is not suitable for 

industrial speeds. 

The effect of knots on the strength of wood was studied in ([11],[12],[13]). The use of 

knots in strength estimation is usually the limiting factor, and is applied in the visual 

grading of wood. There are category and boundary rules for estimating the impact o f a 
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knot on the strength. Therefore, a board is downgraded if, based on the rules, the knot or 

knots are considered to be significant strength reducing factors. Although this is 

obviously a very qualitative assessment o f their effect on strength, this method is an 

industry standard. This fact shows the high impact o f knots on the quality o f the graded 

wood. The geometrical features, as wi l l be discussed later, are especially developed to 

include this factor for characterizing a board. 

The local density of wood has also been suggested for strength estimation ([14],[15]). For 

this purpose X-ray machines (called X-ray lumber graders) were developed. It was 

proposed (arguably) as a non-contact measurement means that can replace the M O E 

measurement method ([15],[16]). In this case, the statistical features o f an X-ray image of 

a board are transformed to its strength by using a linear regression model. 

Visual systems ( C C D cameras, infra-red spectroscopy, and laser scanning) were also used 

for defect detection and grading of wood ([17],[18]). These methods are based on finding 

the difference between the color o f defects and that o f clear wood. Also, three-

dimensional profiling (using laser scanning) is studied for estimating the defects and 

shape o f the board. The detected defects are related to the surface o f the board and a 

regression estimator transforms their features to strength reducing factors of the board. 

The grade o f wood was estimated in ([19]) by using the slope of the grain, infrared 

spectroscopy, M O E , and visual scanning. A classification and regression tree ([20]) 

method was used to learn the best grading thresholds. The goal was to find better rules for 

strength classes. In the Classification And Regression Tree ( C A R T ) method the feature 

space is repeatedly divided into smaller sections, as long as the total estimation error is 

reduced. 

In learning systems theory, the S P O R E algorithm ([21]) was developed specifically for 

very high dimensional problems. This method o f learning was originally developed for 

human-to-robot skill transfer. This method is suitable for very large dimension feature 

space (about 100 dimensional) and large numbers of specimens (about 10,000) and uses 

almost no a priori information about the data. A s wil l be shown in Chapter 6, this method 

is one o f the most successful methods for predicting the strength of wood. In this method, 

one generates a polynomial in the feature space ([21]) by producing two variable 

estimator blocks and adding the blocks to the model such that the estimation error is 
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minimized. The restriction of the wood strength estimation problem is that the practical 

number o f measured specimens is limited to around 1000. This is because the 

measurement process is costly and time consuming. The S P O R E algorithm has been 

tested for typical sample sizes of 10000. Therefore, this model may not be stable for a 

typical sample size used for wood strength estimation problem. 

1.7. E c o n o m i c i m p o r t a n c e o f this knowledge 

The economic importance of this study arises from the limitations of the wood-grading 

standard. With the M S R lumber grading standard, three criteria must be met for every 

bundle that is sold. A flat M O E value (E) and an edge M O R (the bending stress that 

breaks the board) value (F) are provided for a grade. The following three criteria should 

be met for the assigned grade ([22]): 

a) The average flat M O E of a grade should be more than E; 

b) The fifth percentile o f M O E o f the grade should be more than 0.82 x E; 

c) The fifth percentile of M O R of the grade should be more than 2.1 xF. 

In practice, a stress-grading machine measures the M O E profile of each board. The 

average and minimum of this profile is measured and transformed into its grade. 

Recently, there have been attempts to improve the market value o f the grading system. In 

a recent study ([23]) it was shown that in M E L grading standards the limiting factor is 

the ultimate tensile strength of the board. Therefore, an increased estimation accuracy of 

the tensile strength increases the grade yield by more than 5%. It was shown (by 

simulation) that an increase in M O E prediction from 0.7 to 0.9 wil l produce more than 

17,5 million U$/year in British Columbia ([23]). 

1.8. W h y G e o m e t r i c a l features a r e i m p o r t a n t 

A s wil l be shown in future chapters, the problem o f learning the tensile strength of 

lumber is an empirical learning problem. In problems with small sample numbers, the a 

priori knowledge about the input-output dependence directly improves the estimation. 
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The geometrical feature set is a first step in including the classical study of wood failure 

under stress into this learning problem. Naturally, the features that are introduced are 

crude and only general information is used as a priori knowledge. It wil l be shown in 

Chapter 6 that even this set o f features produces relatively good estimation accuracy. 

The potential advantage of a geometrical feature set approach is that it is based on the 

three-dimensional model of a board, which wil l be produced by using scanning profiles. 

Since the model o f knots, the most common defect, is produced here, more refinement of 

features is possible by more carefully studying the effect of knots on strength. For 

example, through simulation enough samples can be generated so that a learning machine 

can find the effect o f common types o f defects on strength. 

1.9. O u t l i n e o f this thesis 

This thesis is presented in seven chapters. Chapter 2 describes the measurement systems 

used in this project. A look into the wood property that is to be measured is presented. 

Also, measurement restrictions that are due to the limitations of the measurement 

machines are presented. Chapter 3 presents the effect of common strength factors and 

how they are modeled. Chapter 4 presents the chosen approach for feature definition and 

board characterization. 

Extraction of features from measured profiles is presented in Chapter 5. Details o f knot 

detection algorithm that is the basis o f the geometrical feature set is presented in this 

chapter. The problem of learning systems is discussed in Chapter 6. The learning problem 

and different learning machine structures are presented. Also, the A S E C learning 

machine is described in this chapter. 

The Appendix presents an examination of wood failure. This study motivated the focus 

of this thesis and provides a basis for comparison between classical study on this subject 

and the approach of this thesis. 

A l l the experimental results are given in the related chapters. 
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1.10. T h e C o n t r i b u t i o n s o f this thesis 

The main contributions of this thesis are as follows: 

1. For analyzing an X-ray image, image segmentation (using Bayesian 

classification) is developed. In this method, the statistical properties of the 

image is used for segmentation. 

2. A geometrical model of knots is developed and the detection algorithm 

and transformations are presented. 

3. For characterization of a board, a geometrical feature set is developed. 

4. In order to estimate the accuracy of a learning system, a method for 

measuring the learning capacity (VC-dimension) of a regression estimator 

is presented. 

5. The A S E C learning method (see Section 6.6) is presented. In this method, 

the a priori knowledge about the input-output relationship is used to 

transform the given feature set into a better set of features. This method 

combines feature transformation and feature selection. 
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Chapter 2. Measurement means; practical constraints 

In this chapter the measurement systems used in the experiments are introduced and their 

limitations are discussed. For every wood property there are different technologies of 

measurement. Each technology and method of measurement is limited by its inherent 

restrictions that arise from the system's setup or its sensor requirements and limitations. 

As shown in Section 1.2, the measurement process is the first step in characterizing a 

specimen. The limitations of the measurement process directly affect the accuracy of the 

strength estimation because it is the basis o f specimen characterization and there is no 

other method for later compensation o f the generated error. Measurement restrictions can 

be examined from three different perspectives. 

The first limitation is that the measured property is affected by other properties o f wood, 

that is, one property of wood cannot be singled out. For example, the measured density of 

wood, i f measured by X-ray methods, increases with the increase of moisture content. 

The second limitation in the measurement process is influenced by the measurement 

method and the spatial resolution of the measured profile. Obviously, a property of wood 

cannot be measured at a single point and is usually the average of that property over an 

area or volume of wood, either at the surface of the board or through the depth o f the 

board. Any improvement of the measurement technique can result in a more sensitive 

machine and, therefore, improve the spatial resolution of the measured profile. 

The third limitation in the measurement process is dependent on the quality of the 

measurement machine, the sampling rate, and the noise level o f the output profile. In 

order to remove the measurement noise, almost all systems use averaging in a short 

period. For a board-moving system with a set o f fixed sensors, temporal averaging leads 

to spatial averaging. Higher-speed sensors allow the system to generate the output faster. 

In the following section the physical basis of the measurement machines is discussed. 
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2.1. M e a s u r e m e n t o f the P h y s i c a l P r o p e r t i e s o f W o o d 

The physical properties of wood relevant to the measurement systems o f this project are 

discussed in the following. 

2.1.1. Modulus of elasticity of wood 

The modulus o f elasticity o f a specimen is measured by using bending machines. The 

board is bent and the force needed to bend the board is measured. 

Young's modulus or modulus o f elasticity ( M O E ) , is widely recognized by the wood 

products industry as the best variable estimator o f the bending strength of boards ([5], [6], 

[7]). It is defined as the ratio of stress over strain. 

In the three point bending test, as shown in Figure 2.1a, force is applied at the midpoint 

o f the board. M O E is calculated as follows. 

MOE = PD 148/D (1) 

Where P is the load (N), D is the deflection (m), L is the span of the measurement (m), 

and / is the moment of inertia (m 3 ) . 

This test is sensitive to the location o f defects in the wood specimen. Therefore, the 

operator tries to find the weakest point on the board and places it right at the midpoint 

(and on the tensile stress side), where the force is being applied. To reduce the sensitivity 

of this, a four-point test is often used (see Figure 2.1b). In this test, the middle part of the 

board is in constant bending moment, therefore, the whole span between the two forcing 

points is uniformly tested. 
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Figure 2.1 Three-point and four-point bending test. 

What is shown in Figure 2.1 is the basis of static M O E measurement systems where the 

board is placed on holders and bending force is applied. In a mill the boards are passed 

sequentially through a machine that continuously measures the M O E . The CLT™ 

(Continuous Lumber Tester) is one of these machines. A s shown in Figure 2.2 the 

dynamic bending machine has four rollers that are slightly displaced from a straight line. 

The first and last rollers are placed to grip the board and push the board through the 

system. The middle rollers are slightly displaced (Figure 2.2) so that they bend the board 

as it passes through. The rollers' locations are fixed, therefore, the bending of the passing 

board is fixed. The force applied by the board to the bending rollers is measured and sent 

to the output o f the system. 

Figure 2.2 The mechanism o f a Continuous Lumber Tester (CLT™, or dynamic bending 

machine) machine. 

2.1.2. Moisture content 

The conductivity of wood is proportional to its moisture content. Therefore, by placing 

two conducting nails inside the board and measuring the resistance between them the 

moisture content of the board can be measured. Although this factor was not used as a 

feature of specimens, it was regularly checked to make sure that the boards were dry ( 

moisture content less than 12%). 
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2.1.3. Dielectric Properties 

Measuring the grain angle o f wood is usually based on its directional electric property. 

The permittivity of wood depends on the angle between an applied electric field and the 

longitudinal direction of the tracheid of wood. Also, the permittivity depends on the 

density, moisture content, and temperature of wood as well as the frequency o f the 

electric field used to measure it. Although these factors are briefly discussed here, they 

are not of significant importance because the grain angle measurement is based on the 

difference of permittivity along the grain and across the grain. 

The directional and variable permittivity o f wood is based on the polarization of its 

material and internal water and vapor. There are five polarization types that contribute to 

the overall polarization of wood. These are electronic polarization, ionic polarization, 

dipole polarization, interfacial polarization, and electrolytic polarization ([31]). Electronic 

polarization is due to the polarization o f the atoms o f the dielectric. Ionic polarization is a 

result o f elastic displacement o f atoms in a molecule. Dipole polarization is due to 

alignment of the existing dipole molecules in the direction of the electric field. Interfacial 

polarization is due to the interaction o f water and the cell wall that makes a cavity similar 

to a dipole. Electrolytic polarization is caused by the electrolysis of the soluble 

components due to the electric field. The first two polarizations are the major ones while 

the last three create the loss factor, making the permittivity a complex number as follows: 

e =s' - ie" (2) 

The permittivity is a directional factor with three major directions, longitudinal, radial, 

and tangential. The longitudinal permittivity is the biggest factor while the radial and 

tangential permittivity factors are approximately the same. A l l three factors are increased 

by wood density and moisture content. The permittivity of wood decreases as the 

frequency o f the applied electric field increases. A n increase in temperature may also 

cause an increase or decrease in permittivity, depending on the frequency o f the applied 

electric field ([31]). The loss factor (£") is usually much smaller than the real part of the 

permittivity itself, and therefore can be overlooked in the qualitative analysis of the 

measurement systems. 
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2.1.4. Density of wood 

It was shown that an X-ray source could be used for wood densitometry ([24]). The X-ray 

can be generated by an X-ray tube that projects beta rays onto a metal plate. The X-ray 

absorption phenomenon is a combination o f three absorption factors: the photoelectric 

absorption, the scattering absorption, and pair production absorption. The electrons of the 

matter rarely absorb the X-ray photons. This phenomenon is called true absorption or 

photoelectric absorption. Also, some of the photons are deflected by the atoms of the 

mass, which results in the scattering factor. In pair production absorption the ray 

transforms to matter (electron and positron) by the Einstein equation. 

The attenuation o f the ray as it passes through the board is as follows. 

where, ju, is the mass absorption coefficient (1/cm), and t is the specimen thickness. This 

equation can be written as follows. 

where/? is density (g/cm3) and p/p is the mass-absorption coefficient in square centimeters 

(area) per gram ([25]). A method of calculating the mass absorption coefficient for 

different materials is published in [26] and tables of it are published ([25]). 

A s the attenuated ray comes out of the wood, it is transformed to a measurable signal by 

an array of sensors. Each sensor is based on ionization of its atoms (gas or crystal) in an 

applied electric field ([27]), generating photons in the process. Every photon absorbed by 

the detector generates a pulse o f electric current. The count o f the pulses in a time interval 

is proportional to the intensity of the X-ray. 

2.2. M e a s u r i n g densi ty w i t h a n X - r a y m a c h i n e 

X-ray scanning is used to measure the local density of wood. A s the X-ray passes through 

the board its intensity is attenuated. A sensor array measures the ray intensity. 

I = I0exp(-ttt) (3) 

I = I0exp(-(ju/p)pt) (4) 
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The board density image is mainly used for knot detection, which leads to the board's 

structural model. Nevertheless, the system and method o f this densitometry are 

commonly used and are explained in the following. 

The system consists of an X-ray source tube, which projects an X-ray fan on the object, 

and a linear array o f sensors that detects the intensity o f the rays after passing through the 

board. A metal frame reduces the vibration caused by any moving components. Lead 

curtains create a shield for the operator from the X-rays. A few rollers lead the board 

(pushed by the conveyor) through the system. 

As previously discussed, the attenuated ray coming out of the wood is transformed into a 

measurable signal by a linear array o f sensors ([27]). 

< X-ray tube 

Board cross section 

Shadow 

<•—Sensor array 

Figure 2.3 A simple diagram of the X-ray system and the shadow image results from a 

non-collimated X-ray. The board is extended and moves perpendicular to this page. 

The measured variable is the ray density, which is calibrated to wood density. For that 

purpose a set o f calibration aluminum plates with knot density and different thickness 

were used. They were placed in the machine and a polynomial was fitted to the output 

signal so that it transformed the measured intensity to wood density. 

A n array o f sensors (in a single line) can capture the density profile across the board at 

the measurement point. Each measurement generates a density profile related to one 

cross-section o f the board. A conveyor moves the board along, while repeated scanning 

takes place. In the end, an image o f wood density results for the whole board. The X-ray 

densitometry method and the structure of the measurement system impose some 

constraints on the produced image that are discussed here. The X-ray generated from the 
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tube is not collimated; therefore, it creates a shadow of the board corner at the sides o f the 

density profile. 

If the angle o f the ray (6) is relatively small (for the vertical distance between the source 

and the sensor array) there wil l be little horizontal deviation (s) in the projection o f the 

measured signal and thus no collimation is needed, which was the case for the X-ray 

system used in this thesis. A s wil l be shown, the angle of the ray can be measured from 

the X-ray image. The shadow o f the board (s) (as is shown in Figure 2.4) is less than 

three pixels in the machine used, which is considered negligible in the measured profiles 

and is ignored in the feature extraction procedure. 

X-ray profile of the cross section of the board at one point 
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Figure 2.4 The profile o f one cross-section o f the board. The shadow of the board creates 

the side ramps. 

In Figure 2.4 the shadow of the board is 2 pixels at each side and the total number of 

pixels for the board is 35. Using the standard board size (89mm by 35 mm), one can 

calculate the maximum ray angle (G) with the center-line as follows (Figure 2.5): 
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Figure 2.5 The shadow of an X-ray image. 
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There is a more important shadow image that is related to the image o f knots of a board. 

Figure 2.6 shows an imaginary knot projected on the image plane similar to the result o f 

X-ray scanning of the board. A similar pattern is generated from the X-ray image o f a 

knot and wil l be used to detect knots in a board. 

The density of the image at every point is obviously the summation o f the wood density 

throughout the thickness of the board at that point. I f two perpendicular images are 

produced, a sense of density distribution in the body o f the board can be obtained. 

Figure 2.6 The shadow image of a knot. 

The sensor array makes a fixed resolution profile across the board. The image resolution 

along the board depends on the speed o f the board. I f the conveyor can push the board 

20 



through the system with a constant speed this resolution wil l be constant too. Through the 

course of this thesis, two X-ray systems were used for X-ray scanning. One o f them 

(made by Vision Smart) did not have any conveyor attached to it. Therefore a conveyor 

was placed next to the machine that pushed most of the board through the X-ray scanner 

and the end of the board (about 90 cm o f the length of the board) would free-run through 

the system because of its momentum. 

The deceleration of the board was compensated for as a preprocessing step when the 

image was being processed. The image was segmented into two parts, the first part 

related to the part o f the board that was pushed through the X-ray system with constant 

speed. The second part o f the image was related to the part of the board that was 

decelerating. A constant speed (that is the average speed during deceleration) was 

assigned to the second part of the image, as the momentary speed could not be estimated. 

The strength estimations by using each o f the outputs of the two machines resulted in 

similar strength estimation accuracy therefore here only a typical system is described. 

Another consideration regarding the X-ray image is that there should be a zero density 

region that surrounding the board density image. The content of the surrounding area is 

noise whose level is much less than the density o f clear wood. A threshold level can 

separate these parts and extract the density image of the board. 

Figure 2.7 shows the contour map of the top (for the plank of the board) and side images 

of the board. The lower right part of the image shows increased density that can be due to 

natural density variation o f clear wood or related to a defect, such as a resin canal. 

Vibration of the board is not considered in this case because slight vertical displacement 

of the board does not affect the measured image. This is because the source is far from 

the board surface and the slight change in the vertical location o f the board does not 

create significant change in the sensor readings. The noise level o f the system in the 

surrounding area is negligible, as can be seen from Figure 2.4. However, filtering by a 

square filter o f size three was advised (by the manufacturer) for smoothing the wood 

density. The system stores the measured ray intensity in 16 bits of data, which covers the 

spectrum of black to white. 
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Figure 2.7 The contour map o f an X-ray image. 

The final digital image is displayed by using two diagrams, the contour map and the three 

dimensional diagram o f the density. The contour map (Figure 2.7) is used for showing the 

general form of the image and the relative location of the defects in a board. The three 

dimensional density-diagram (similar to Figure 4.6) is used for showing the density 

variation due to the existence of a defect. 

2.3. M e a s u r i n g G r a i n A n g l e w i t h S O G a n d M i c r o w a v e M a c h i n e s 

The principle o f grain angle measurement was discussed above. In this section the details 

of the two grain-angle measurement machines are presented. 

2.3.1. Grain angle via an SOG machine 

The capacitance based measurement system that was used in this research was based on 

measuring the impedance o f a capacitor whose dielectric was the board at the 

measurement point and its operation is as follows (based on directional permittivity of 

wood). If two parallel strips of metal are placed on the top surface o f a board and the 
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impedance o f the created capacitor is measured, the impedance depends on the angle of 

the electric field o f the capacitor. I f the capacitor (i.e. the two metal plates) is rotated 

around its center the measured capacitance varies. The maximum capacitance is 

measured when the electric field is along the direction o f the grain. 

In a rotating head capacitor a cylindrical head is rotated around its axis. The bottom of the 

cylinder, where it contacts the board, four pieces of metal and a cross-shaped dielectric 

compose the circle as is shown in Figure 2.8. This arrangement creates two pairs o f 

parallel capacitors that are perpendicular to each other (as shown by the dotted lines in 

Figure 2.8). Therefore i f the electric field of two o f the parallel capacitors is along the 

grain o f wood then the electric field of the other two capacitors is perpendicular to the 

grain of wood. The angle o f the head where one of the two impedances is maximized and 

the other one is minimized is the angle of the grain o f wood. 

The impedance of each o f the capacitors is most affected by the grain of wood at the 

surface o f the board. The wood that is beneath the surface is affected less because the 

magnitude of electric field is less inside the board. Also, the measurement is taken over 

the area of the head. The diameter of the measurement head was about 5cm. The 

underlying assumption for accurate measurement is that the grain angle, and other factors 

that affect the permittivity, are about the same over the area of the measurement head. 

The measurement head rotates at 60 cycles per second and every half cycle one 

measurement can be completed. Therefore the sampling rate is limited to 120 samples per 

second. The grain-angle sampling rate is then controlled by the speed o f the conveyor. 

The sampling rate o f S O G measurement was about 1500 samples per board, which is 

about one sample per 3.3mm. The system's resolution is 0.1 degree and its accuracy is 

(±0.9) degree and the system covers -89 to 89 degrees ([2],[3]). 

Figure 2.8 The rotating head for grain angle measurement. 
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Figure 2.9 shows a profile that is measured by using this system. The large variations in 

Figure 2.9 are related to grain angle defects, which are usually related to knots. Small 

variations are related to the measurement noise. The two constant measurements at the 

beginning and the end of the profile is produced by the system when the board is not 

attached to the measurement head. The large variations, at the beginning and the end o f 

the board's grain angle profile, are produced when the board first reaches the 

measurement head or leaves it. 

A measured grain angle profile 
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Figure 2.9 A measured grain angle profile of a board. 

The grain angle measuring system consisted of a metal frame and plastic rollers to push 

the board along the system and before the measurement heads. A stepper motor controls 

the movement and speed of the board. Two measurement heads were placed on the 

system so that two profiles could be measured simultaneously, one from the face of the 

board and one from the edge of the board. The diameters of the two heads were different. 

One head diameter was almost equal the thickness across the face of the board and the 

other head diameter was almost equal the thickness across the edge of the board. Four 

profiles were measured by using this arrangement, two profiles from the two faces and 

two profiles from the two edges. B y rearranging the system four extra profiles were 
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measured from the two faces of the board, each grain angle profile related to half o f a 

face. 

2.3.2. Grain angle measurement via microwaves 

The microwave grain angle measurement machine is based on the directional attenuation 

of an electric field in wood. A simple diagram of such a machine is shown in Figure 2.10 

([28],[29]). In this machine a linearly polarized electromagnetic wave at microwave 

frequency («10 G H z ) is transmitted through the thickness o f the specimen. The 

directional conductivity and dielectric property of wood creates a non-symmetric 

attenuation and delay o f the wave. Therefore, the output wave is an elliptically polarized 

wave whose major axis is along the grain. The Microwave based grain angle 

measurement is based on identifying this ellipse. The standard deviation o f the measured 

grain angle is 2 degrees. 

M M 

Linearly polarized 

transmitting antenna 

Probe 

Circularly polarized 

receiving antenna 

Figure 2.10 Microwave System for measuring wood grain angle 

Let's say the electric field is represented by a sine wave as follows: 

E = E sin(tf*) (6) 

where the amplitude (E0) and the angular frequency (aj) are constant. Wood as an 

orthotropic material shows different loss factor and phase factor along and across its 
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grain. This would transform the linearly polarized electromagnetic wave to an elliptically 

polarized wave as shown in the following ([28],[29]). 

The incident wave components on longitudinal and transversal axes are as follows: 

E^E^cosiQ) (7) 

£ f f = £^s in (e ) (8) 

where 0 is the angle o f the incident field with the longitudinal axis. A s the transmitted 

wave propagates through wood, it is attenuated and delayed by the longitudinal and 

transverse propagation constants. 

rP = OLp+J% (9) 

rT = aT+j0r (10) 

Moisture content is the major factor of the wave attenuation and the wood material is the 

major factor of the wave delay. If the thickness of the specimen is d, the output wave is as 

follows: 

E T O = E I p e V = E 0 cos(9) e V * ^ (11) 

E ^ = E ^ e V = E 0 sin(0) e-<vwT« (12) 

which is an elliptically polarized wave. The assumption for the validity of equations (11) 

and (12) is that the two components of the electric field are uncoupled. Furthermore, 

based on a commonly used approximation ([30]), all internal multiple-reflections, inside 

the board, are neglected. The ratio o f En to Ew was used as a feature o f the grain angle 

that defines the alignment of the grain angle through the thickness of the board. In order 

to identify the ellipse, one needs to measure the amplitude of the electric field at least in 

three different angles. Therefore four probes, with a 45 degree angle between each other, 

were located underneath the specimen ([30]). Each probe is used to measure the 

amplitude o f the electric field along the direction of the probe. A probe adds a 455 K H z 

wave to the microwave. At the other end of the machine, the modulated signal is received 
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and the power (rms value) of the received signal is measured. The measured power 

represents the power o f the transmitted signal along the direction of the probe. 

to the signal source 

Figure 2.11 The arrangement of the probes (left) and the structure of a probe (right). 

Once the amplitude (or rms value) o f the signal along the direction of the probes is 

known, the general ellipse equation can be solved and the direction of the grain can be 

obtained ([29]). The measured grain angle profile is similar to that o f capacitance based 

(SOG) machine. The difference is that the output of the S O G machine is more affected by 

the surface grain o f the specimen, while the output o f the microwave machine represents 

the average grain angle through the depth of the specimen. 

2.4. M o d u l u s o f E l a s t i c i t y u s i n g the C o n t i n u o u s L u m b e r T e s t e r 

A s was discussed on Section 2.1, the Continuous Lumber Tester machine measures the 

flatwise M O E profile of the specimen by moving the board through two slightly 

displaced rollers and measuring the bending force. Two profiles are measured from each 

board (Figure 2.12) one from each side o f the board. The machine is calibrated by using 

aluminum bars. However the average M O E of the two profiles was compared with the 

static M O E measurement (Section 2.1) in the lab. A linear dependence between the 

measured average output and the static M O E was observed. A s is shown in Figure 2.12 

the noise level when there is no board in the machine is negligible as compared with the 

signal level. Therefore, thresholding was used to extract the M O E profile from the 

measured profile. The two profiles that are shown in Figure 2.12 are apart by a fixed 

distance. This distance is equal to the distance of the two measurement cells. 

The measured signal at the output of each sensor is an average over the span o f the board 

between one gripping roller and the other sensor roller. Therefore, the signal is very 
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smooth and does not need a high sampling rate. As is shown in Figure 2.12 there are 

about 500 samples over the length of the board. About 70 centimeters from each end of 

the board is not measured. The distance between the two sensors was twice that length, 

i.e., 140 centimeters ([4]). 

M O E test; CLT machine output (profile 1) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
sample number 

M O E tett; C L T machine output (profile 2) 

a 
f 0.5 

I 1 . .—— 

i 
200 400 600 800 1000 1200 1400 1600 1800 2000 

sample number 

Figure 2.12 Typical output profiles o f a dynamic bending machine. 

2.4.1. Calibration 

Unlike other measurement machines the calibration information for the dynamic bending 

machine was available at the time of the experiments. The following test was carried 

through at U B C ([32]) in order to ensure that the dynamic bending machine measurement 

was calibrated and that it had the same reliability as the other measurement systems. 

Fifteen specimens were randomly selected and were tested in a flatwise-static bending 

test as well as being tested by the dynamic bending machine machine. The average of the 

dynamic bending machine output and the average o f the static M O E profile were used to 

calculate the calibration factors. A s wil l be shown in the following, the result shows good 

linear correlation between the average dynamic bending machine and the average static 

M O E along the board. The repeatability of each measurement was tested as follows. For 
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each of five randomly selected specimens, the dynamic bending machine measurement 

was carried though five times. The repeated profiles were plotted in a diagram for 

comparison. Visual comparison shows good match of repeated profiles. 

The dynamic bending machine output measurement was explained previously and a 

sample output was shown in Figure 2.12. Each profile was extracted from the 

corresponding measured (dynamic bending machine output) signal by removing the 

surrounding area by using a threshold level of 0.1 v. magnitude. The result is shown in 

Figure 2.13. 

LandMark adjusted output voltage profiles for specimen #0760 
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Figure 2.13 The extracted and adjusted dynamic bending machine output profile for 

specimen #0760 

The flatwise-static M O E profiles were measured by means of two independent Static 

Bending machines, i.e., Metriguard Model 440 Static Bending Tester and Eldelco D A R T 

Static M O E Tester ([32]). 

Static M O E measurements were taken at equal spaces fifteen centimeters along each 

board. Seventy centimeters from both ends o f the board were not measured in order to 

have a proper support of the board. Two sample profiles are shown in Figure 2.14 and 

good agreement is obtained between the two static test machines. One o f the machines 

measures the M O E of a specimen by three-point test and the other measured the M O E by 

a four point M O E test (see Section 2.1.1). The difference between the two profiles o f 

Figure 2.14 is due to this difference in the machines. 
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Measured static M O E of specimen #0760 by using Metriguard (blue)and Eldelco (green) machii 
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Figure 2.14 Measured static M O E of specimen #0760 by using Metriguard (blue) and 

Eldelco (green) machines, (a) original measurement, (b) adjusted for sampling position. 

The extracted and adjusted profile shows the actual measured M O E at the represented 

points o f the board. The average o f the two profiles in Figure 2.13 (shown as V in Table 

1) and the average of the two profiles o f Figure 2.14 (shown as E in Table 1) were used 

for calibration. 

The measured average dynamic bending machine and average static M O E are shown in 

the following Figure 2.15. The coefficient of determination of the two variables is 

r 2 = 0.92, which shows a linear relationship between the two variables. 

i 

| 
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Table 1: The average CLT™ output, average M O E , and transformation coefficients 

for selected specimens. 

Specimen # V (CLT™) E ( M O E ) c, c\ 
760 1.3683 1.8833 0.7265 1.3764 

83 1.7110 1.8623 0.9188 1.0884 

749 1.2610 1.5726 0.8019 1.2471 

9 1.1853 1.3637 0.8692 1.1505 

570 1.0565 1.2586 0.8394 1.1913 

198 1.5896 1.8423 0.8628 1.1590 

503 1.5518 1.7860 0.8689 1.1509 

616 1.8549 2.0528 0.9036 1.1067 

62 1.3717 1.4725 0.9315 1.0735 

94 1.0792 1.4200 0.7600 1.3158 

642 1.4377 1.7064 0.8425 1.1869 

2 1.9447 2.1876 0.8890 1.1249 

612 1.6248 1.7914 0.9070 1.1025 

623 1.4489 1.7315 0.8368 1.1950 

17 1.7727 2.1795 0.8134 1.2295 
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Figure 2.15 Linear relationship between the average measured dynamic bending machine 

output and the average static M O E . 

Therefore for a linear relationship, the calibration equation o f each cell (that produces 

each dynamic bending machine profile) is as follows: 

V=CE + C (13) 

A s was stated before, V is the average of the dynamic bending machine output and E is 

the average static M O E . C 0 is the output offset of the dynamic bending machine machine 

and is equal to the output voltage when there is no board inside. Therefore, the part of a 

profile that is not related to the board (for example, see the side parts o f the two profiles 

shown in Figure 2.12) is equal to this offset factor. Each measured profile is the output of 

one force-measuring cell, which measures the required force for bending the board along 

each o f its faces. For the two cells there wil l be four factors (C 0 1 and C 0 2 for offset factors 

and C n and C 1 2 for the scale factors), which are shown in the following equations: 

Cm = 0.0626 (14) 

C =0.0172 
02 
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C M and C 1 2 are calculated by comparing the measured profiles (from dynamic bending 

machine ) with the static M O E profiles of the selected samples and by using the 

following equations: 

Cu =(K-C0l)/Ei (16) 

Ca =(K-C02)/E2 (17) 

As shown in Figure 2.13 and Figure 2.16 the two profiles are almost the same therefore 

the scale factors are about the same (Cn = Cn = C) and are calculated as follows: 

C, = (El + Ey((Vx - CJ + (V2 - CJ) (18) 

The 10% of the beginning and the end o f the dynamic bending machine profile are 

removed in order to avoid the transient part o f the measured profile. The following 

calibration factors were calculated by using linear regression. Equation (19) is the 

calibration equation for profile #1 (the output o f cell #1 o f the dynamic bending machine) 

and Equation (20) is the calibration equation for profile #2 (the output of cell #2) o f the 

dynamic bending machine: 

P r o f i l e d : E= 1.1808 (V- 0.0626) (19) 

Profile #2: E= 1.1808 (V- 0.0172) (20) 

The final calibrated dynamic bending machine profiles of a few specimens are shown in 

Figure 2.16. 

In order to check the consistency o f the measured profiles, five boards were randomly 

selected and the dynamic bending machine profile of each were measured five times. 

Figure 2.17 and Figure 2.18 show that the superimposed profiles match well for both 

cells o f the machine. The measured M O E values are very close but the location of the 

profiles can be compromised in some cases because of the board slippage under the 

conveyor rollers of the dynamic bending machine. 
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Figure 2.16 Measured M O E profiles by CLT™ and static bending methods. 
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Figure 2.17 The repeatability of the measured profiles for CLT™ machine. 
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Figure 2.18 The repeatability of the measured profiles for CLT™ machine (continued). 

2.5. Ultimate Tensile Strength Tester 

This machine destructively tests the boards. The board is put under increasing tensile 

stress until it breaks apart. The tensile stress is recorded at every instant and is kept when 

the board is broken. The system consists of two grips; one moving and one fixed. A metal 

frame holds the grips and provides the fencing for security of the operator from wood 

particles that may fly around due to the release o f tensile stress when the board breaks. 

The moving grip is driven by a pneumatic system whose measured pressure is 

transformed to the applied tensile stress. 
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Chapter 3. Modeling wood failure 

I f a board is tested in tension, a three-dimensional stress distribution is generated inside 

the board. This stress distribution is not usually uniform due to the variation of wood 

properties inside the board. A crack usually is initiated in one part (or more) where the 

stress level is high. I f the applied tensile stress (to the board) is increased, the chance o f 

wood failure under stress is increased. Once the wood fails at a point o f the board, it 

generates a higher stress zone around it. Since the property of wood usually changes 

gradually, the excessive stress can also cause the failure at a neighboring point. This 

phenomenon can generate a chain o f failures that finally ends when the board breaks 

apart ([33]). 

In the following sections the factors influencing the strength o f wood are presented. Also, 

the measurable features o f wood that have important effects on strength are explained. A 

board is composed of clear wood and various defects, which interact when tensile stress 

is applied. For example, assuming that wood property is known in a neighborhood, by 

knowing the geometrical features o f the defects in the board and wood properties, the 

stress distribution may be estimated. Each of the features (defects and clear wood) and 

their effect on total strength are discussed in the related sections. 

The discussions o f each section are mostly limited to qualitative descriptions o f the 

related physical factors. A feature or a set o f features wil l represent each physical factor. 

Therefore, the qualitative discussion provides an insight into the problem and helps in 

defining the features. A n exact relationship between each physical phenomenon and the 

tensile strength is not needed (and in most cases it is not known). The collective 

relationship wil l be learned by the estimation (or learning) algorithm, which wil l be 

discussed in subsequent chapters. 

Two very important aspects of wood are the complexity of its structure (as a fibrous 

anisotropic material) and variation in its local features (due to various defects). Therefore, 

even i f the features of wood were accurately measured at every point o f the board and i f 
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the strength model was fully developed, the computation o f a board's tensile strength 

doesn't seem feasible for on-line use. Therefore, simplification seems an integral part o f 

this problem i f a practical strength estimator is desired. 

3.1. T e n s i l e s trength o f c l e a r w o o d as a r a n d o m v a r i a b l e 

In strength-of-material testing in the early twentieth century it was observed that the 

tensile strength o f similar specimens are dispersed and cannot be modeled by a single 

value. The tensile strength o f matter, therefore, was modeled by a probability density 

function. Weibull weakest link theory ([34],[35]) is a theoretical explanation o f the 

probabilistic behavior of material strength. This theory was based on two major 

assumptions. The first assumption was that the cause of fracture is the flaw (microscopic 

cracks) in the material and that these flaws are independent and are randomly scattered in 

the volume o f the material. The second assumption was that the entire material holds up 

against the applied stress until one o f the flaws fails. This assumption is actually the 

weakest link theory, which is applicable to brittle material like glass or china. It was 

shown that this assumption is valid for wood i f the mode o f fracture is brittle. 

In non-brittle material the strength of a specimen is not equal to the strength of its 

weakest element and the failure of the specimen is a random process rather than a sudden 

event. When the fracture starts, stresses are redistributed and it doesn't necessarily lead to 

immediate collapse or failure. Also, neighboring points can affect the stress tolerance o f 

an element of the specimen. 

For the brittle case, the probability o f fracture at a point, S, is related to the stress level, a, 

over the volume of the material, V, by the following equation (Weibull distribution, 

[34],[35]): 

log(l -S) = -fn(o)dv (21) 
V 

where w(.) is a heuristic function and is defined as follows: 
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«(o) = ( ^ % (22) 
u 

where <r0, cr, and w are properties ofthe material. The probability of failure, S, is equal to 

zero for a < a 0 . The location parameter, cro, is not usually measured due to the practical 

difficulty in finding a minimum value for ultimate strength of material. Therefore n(d) is 

commonly defined as follows. 

n(d) = (^T (23) 
u 

There are different reported parameters in the literature. For SPF (Spruce-Pine-Fir) 

softwood lumber cr » 30 and m « 3 is used for simulation (covariance « 40%) ([23]). For 

Douglas fir, an average tensile strength of 14200 p.s.i. (102 MPa) and standard deviation 

of 3500 p.s.i. (26 MPa) is reported (covariance « 25%) in [36]. 

It was observed ([37]) that the size (the bigger dimension of the cross-section) o f the 

specimen affects the strength and caused modification o f this model ([38],[39],[40],[41]). 

However, it was shown that the size effect vanishes i f the thickness o f material is more 

than 30 mm ([42]). The modifications o f this model that account for redistribution o f 

stress due to the existence o f crack as well as size effect were developed ([43],[44]). 

3.2. T h e effect o f g r a i n angle o n s trength 

Grain angle o f wood is the angle between local longitudinal axis o f wood grain and the 

longitudinal axis of the board. The average grain of a tree doesn't necessarily grow along 

the longitudinal axis of the tree. In some cases the grain may grow in a spiral form around 

and along the trunk o f the tree ([45]). The average grain angle affects the strength of a 

small specimen and is described by the Hankinson equation ([46]). The impact o f grain 

angle on strength is due to the fact that the strength o f wood is directional. Tensile 

strength o f wood along the grain is the highest while the tensile strength is lowest across 

the grain. Although related to the species o f the tree, the longitudinal strength is usually 

many times larger in magnitude than the strength perpendicular to the grain. The 
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following equation (Hankinson equation) is an accepted relation between wood property 

(e.g., tensile strength or M O E ) and wood grain angle ([47]): 

P sin \0) + Q cos\0) v ' 

where, N is the desired property o f the test specimen, P is the property along the grain, Q 

is the property across the grain, and 9 is the angle o f the grain with respect to the stress 

direction, n was empirically derived, and is usually between 1.5 and 2 for tensile strength. 

In [48], P for tensile strength o f Douglas fir is reported to be equal to 13800 p.s.i. (99 

Mpa) and Q for the same tensile strength is reported to be 340 p.s.i. (2.4 Mpa). Although 

improvements to Hankinson equation were suggested ([49], [50]), this equation is still 

widely used. 

In a board, not only the average grain angle affects the strength o f the specimen, the local 

grain angle can affect the strength even more severely. Local grain angle is created by 

deviation of grain of the trunk o f the tree into its branches. Also, the deviation of grain 

angle around a branch that is a consequence o f natural growth o f the tree can have 

considerable effect on the strength of a piece o f lumber. 

Another effect that is not as important, for strength estimation, is that the type of failure 

also changes depending on the angle between tensile stress and the grain. I f tensile stress 

is perpendicular to the grain, failure in clear wood is like that of brittle material ([38]), 

while i f the tensile stress is along the grain failure in clear wood is like that o f tough 

material ([51]). 

3.3. T h e effect o f dens i ty v a r i a t i o n on s trength 

One of the features o f wood that was known for many centuries to be related to the 

strength was its density. Although not highly correlated with strength, the specific gravity 

of wood relates to the density o f fibers o f wood, i.e., the thickness o f the cell walls. The 

correlation between density and strength is valid within a species, and even valid within 

the body of a tree. Each ring o f a tree represents one year of its age. The light color part is 

early wood that grows in spring (when water is abundant). The cells that grow in this 
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season have bigger void at the center of the cell. The dark color part is related to late 

wood (summer and fall). The grain that grows in this season has smaller voids at the 

center o f the cell and is denser and stronger than that o f early wood. 

One of the reasons why wood shows orthotropic behavior is this difference between the 

strength of the two types o f wood in a ring ([38]). The body o f a tree shows a cylindrical 

symmetry that arises from the relative axial symmetry of growth rings. Therefore, at 

every point the properties of clear wood are relatively constant in three major directions; 

along the tree, along the radius of the trunk, and tangent to the trunk (perpendicular to the 

other two axes). 

Also, the difference between heartwood (close to the center o f the tree) and sapwood 

(away from the center and carrying water) as well as juvenile wood (the wood developed 

when the tree was young) and the rest of the tree can affect the strength o f a board. 

3.4. T h e effect o f holes o n s trength 

Although holes are not likely to be seen in a board, natural holes can be created in wood 

due to decay or missing knots. There are two effects that can be associated with holes; 

smaller effective cross-section of board and increased local stress arise due to the shape, 

size, and location of the hole. 

Usually, the increased stress that is caused by the shape o f the hole initiates the fracture, 

which propagates and results in the failure o f the board. The holes with sharp ends that 

are pointing across the board cause largest local stress. Therefore even a small saw cut, 

because of its shape, could be more strength reducing than a larger circular hole. 

However, the shape o f natural defects is not usually sharp. 

3.5. T h e effect o f knots o n s trength 

Knots may be the most common defects that exist in lumber. A s the trunk o f a tree grows 

radially, the base o f each branch is gradually taken into the body. Different types of knot 

can be generated based on how the branch is incorporated in the trunk wood. A knot can 
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appear as a distinguishably defined cylindrical shape in a board, or it can appear as an 

acute change of direction in local grain. 

Knots have two features that affect the tensile strength of a board. The first feature is that 

knot wood almost does not contribute to the strength of the board's cross-section at its 

location. Therefore, a knot is sometimes modeled by a hole in the board. However, the 

shape o f the knot cannot always be simply modeled as a hole because there is also density 

variation from clear wood to knot wood that makes the effect o f a knot more complicated. 

The second effect is that due to the existence of the knot, the grain of wood bears local 

variations. This variation o f the grain reduces the local strength o f wood around the knot. 

In practice, it is obvious that knots are the cause of failure in most cases ([11],[12]). 

Visual grading that usually deals with the largest knot of a board is an example o f 

empirical information that transforms knot features to board grades. The size of a knot 

and its closeness to the edge of the board are two important factors that reduce the 

strength. Knot area ratio represents what percentage o f the cross-section o f the board is 

actually taken by the knot. This, in fact, is the increase in the stress on clear wood section 

of the board cross-section. 

3.6. O t h e r factors 

Other factors such as wane, resin canal, and decay affect the strength but they are hard to 

model or learn by a learning algorithm. The reason is that these factors don't have any 

specific shape and density and that they don't happen frequent enough for a learning 

algorithm to be trained for their condition. 

Any error in measuring the features of wood wil l have an impact on the estimated 

strength. This factor can be modeled as a shift in the feature space. 

Some o f the features o f wood are not measurable. For example grain structure, which has 

a defining effect on strength, cannot be measured directly. Therefore, a heuristic approach 

to strength estimation wil l be limited to a specific species or a group of species. 
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3.7. A 2x4 b o a r d as a sys tem 

It is almost impossible to see a board without any defects. The impact o f defects on 

strength is so severe that the failure of a board is almost always assigned to a dominant 

defect or defects. A comparison o f board tensile strength and the tensile strength o f small 

samples o f clear wood from the same boards ([11]) shows low correlation. This 

comparison substantiates the observation of defect dominance on tensile strength. 

The actual failure o f a board under tensile stress usually takes place due to the interaction 

o f more than one feature. For example an edge knot initiates the fracture, but the 

propagation of the fracture is dependent on the general strength of the wood. In practice, 

there can be more than one fracture that is initiated but the first one that results in the 

total failure ends the experiment. Therefore, a board should be considered as a system o f 

wood features such that their interaction determines the tensile strength o f the board. 

Since a board usually has many defects in it, different strength zones can be defined (not 

always easily/possible). A study ([52],[53]) showed that i f defects are closer than a 

certain distance to each other, they could create local weak zones. In practice, it can be 

seen that close knots, for example, create low strength zones. This is due to the fact that 

high density variation and high grain variation as well as high stress zones exist in a small 

region, which lets the fracture be initiated and propagated in a relatively low stress level 

as compared with the average strength of the board. This fact is not only related to knots 

but also related to local high grain angle (like spikes), resin canals, or some times local 

decayed zones. However, knots are the most common factors that cause the failure of a 

board ([11]). 

One more factor that must be considered in board tensile strength estimation is that all the 

elements of a board are random variables. This means that all the elements of the system 

are random variables. Therefore the problem o f board tensile strength estimation, in 

general, can be considered as a nonlinear mapping of input random variables (features) to 

the strength. 
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3.8. P r o p o s e d a p p r o a c h to m o d e l i n g s trength as a cont inuous funct ion o f 

w o o d proper t i e s 

It is the goal of this thesis to find a mapping that transforms the measured properties o f a 

board to its tensile strength. The place where a failure initiates and the path on which the 

crack wil l grow are not known. Although it is desired to get a detailed and accurate 

measurement of all the physical attributes of a board, the complexity of analysis wil l 

make the study practically impossible. Therefore, the problem of transforming a board's 

physical properties to its tensile strength leads to transforming selected features of 

measured profiles to board tensile strength. 

Let's say X is the set of strength factors that should be measured in order to estimate the 

strength of the board. The set X is the set of all the necessary profiles. If X were known, 

the estimation error would be due to model development; i.e., board characterization 

(Chapter 4) and/or the learning method selection (Chapter 6). It is obvious that X cannot 

be fully produced by practical measurement. The measured profiles cannot be detailed 

enough to represent all the local variations of wood properties, as was obvious from the 

limitations of measuring machines of Chapter 2. For example the measured grain angle 

profile of the board can only be considered as a coarse presentation o f three-dimensional 

grain-direction of all the points o f the board. Also assuming that we know all the strength 

affecting factors, not all the factors are being measured due to unavailability of a suitable 

measuring machine and/or due to lack of reliability of an existing machine. The available 

set o f measurable strength factors, X, is a subset o f X, and its elements o f ! are usually 

the smoothed form of the elements o f X. Any improvement of the existing measurement 

machines or any invention of new machines that measure a new property o f wood would 

improve the estimation by making X more similar to X. 

One characteristic o f the measured profiles, that is, the elements of X, is that each one can 

be a single number, a vector, or an image (matrix). Any change in the measurement 

machines affects X. Figure 3.1 shows the problem of strength estimation as a learning 

problem ([21], [54]). In this figure, x is a vector that represents X, u is the vector that is 

not related to the output but can be a part o f the input feature set as a part o f exploratory 

44 



data analysis, v is the vector of features that are included in the generated feature set and 

represents X. g(x) is the actual process and g(x) is the model that is developed by the 

learning machine, y is the actual output and y is the estimated output. 

Figure 3.1. Strength estimation as a learning problem. 

To reduce the dimensionality of the problem the measured profiles, X, can be transformed 

into a feature space, F, that represents X. For example, a board can be identified by its 

defects and a general description of its average wood properties. The feature space, F, 

could also be very high dimensional and is not necessarily unique. Since there aren't any 

rules in defining the features, there can be many redundancies in the feature set or one 

may define a feature that is contributing to strength estimation. 

Some a priori knowledge about any dependence between the strength and the feature set 

helps in developing a more accurate model. As wil l be discussed in the Appendix, the 

problem o f wood failure under tensile stress was studied in the past. Therefore, it is 

desired to choose a set o f features that are physically meaningful and best represent F so 

that the existing knowledge of strength of material can be used at model development 

stage that wi l l be discussed in Chapter 6 

The selected feature space can be denoted by P. Since the tensile strength, S, is a random 

number it can be assumed that it is a hyper-surface in the measurable physical features 

space, with added uncertainty. The estimated tensile strength o f the board, S, is the hyper-

surface in P that estimates S. 
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A board can be related to a point in P. The estimation process requires the transformation 

of this point to S. As the point is transformed from one space to the next some 

uncertainty, or variance, is added to it. Once the methods of measurement, feature 

extraction, and model development are chosen the estimated strength for a given point in 

physical space is a random variable. 

Let's say the estimated strength of a board with measurable features P is denoted by 

S(JU,<T,X) where ju, a, and X are location, scale, and shape factors, and s is a random 

variable with known distribution ([55]). The three factors o f the distribution are functions 

o f the feature (P), assuming that boards are uniquely identified in the feature space. 

Therefore, the tensile strength of a board can be studied as a random function (for the 

random nature o f material failure) o f the features as follows. 

s(ju,a,A) = s<jj(P),o(hMP))==giP) (25) 
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Chapter 4. Characterizing a board; features 

There are two classical approaches to solving the strength estimation problem. One 

approach is based on the assumption of having relatively accurate knowledge about wood 

properties at every point of the board. This approach leads to an analytical approach that 

can be used in a method like linear elastic finite element modeling ([38],[64]). On the 

other hand, there have been estimation methods that were based on general properties of 

wood ([65]). In this case general features o f the board are mapped to the strength o f the 

board. The existing standard o f wood grading is based on such an approach. 

The strength estimation methodology o f this thesis is something between the two 

approaches but closely related to the second approach. A model of board structure 

(fundamentally similar to what is done in the first approach) was developed. Then the 

characterizing features o f the board were extracted from this model. Finally, the features 

was mapped to the strength of the board. 

In this method, the failure of wood is considered to be a function of general properties o f 

wood at a section o f the board. The basic assumption here is that wood properties don't 

change much in a small region. Therefore, a few (although it is not known how many) 

features of that section can characterize it. Since the exact location o f fracture initiation 

and the path o f fracture propagation are not needed, the features should be mapped to a 

single value that is the final stress level that leads to the failure o f the board. It should be 

noted, as was explained in Chapter 3, that the strength o f a board section is generally a 

random variable. However, the variance of strength at a point in the feature space is not 

studied in this thesis and the average of the strength distribution was estimated. 

Therefore, the strength o f a board can be modeled as g(P) where g(.) is a real function o f 

the real valued feature vector P. 

The problem o f characterizing the board for strength estimation is basically an attempt to 

define the weakest part of the board and the general properties o f the board. Therefore 
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two types o f features were produced; one type for the weakest section and one type for 

general properties o f wood. 

It may seem relatively straightforward to detect the weakest section or sections o f the 

board and develop the strength estimation model for that section. The underlying 

assumption here is that the weakest section can be indicated and its features can be used 

for strength estimation. This deduction arises from the fact that the causes of many failure 

cases are major defects that can be easily seen. 

If no distinct defect exists, interaction o f defects can go beyond the neighboring defects. 

Therefore, it is not always clear as how to distinguish different sections of a board. 

Therefore, characterizing a board cannot be considered a trivial task. Also, it can be 

expected that the feature set to be almost definitely noisy. 

A s was explained above, a single major defect or a combination o f defects can cause the 

failure. In many cases of failure a single defect or a group of defects can cause the failure 

o f the board. The section o f the board that has the dominant defect(s) is the weakest 

section of the board. In such cases a feature that represents the worst defect is needed in 

the representative feature set. The minimum of the M O E profile is related to the weakest 

section o f the board or equivalently to the biggest defect. Also, in many cases the board 

contains defects that are similar. In such cases there isn't one distinct defect that causes 

the failure. These defects increase the probability o f the failure at lower stress levels. 

Therefore, a set o f features that represents the overall existence o f defects should be 

included. 

From Chapter 3 it seems obvious that there are two basic factors that govern wood 

strength estimation; wood strength at a point or a section of the board and the structure o f 

the board. The former one defines how strong the material is and the latter one defines the 

stress distribution and stress concentration that has a definite reducing impact on strength. 

The stress distribution in a board is not going to be studied in this thesis but a set of 

features that seem to be related to the stress concentration should be included in the 

representative feature set. 

The definition o f features depends on the measurement constraints. The goal is to 

produce a set o f features that are most relevant to strength or failure and can be accurately 
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measured or calculated by using the measured features. The understanding of 

measurement constraints is important at this stage because some o f the features that may 

seem most relevant may not be measured properly. The measurement systems and their 

restrictions wil l be explained in Chapter 5. Local density, grain angle, and bending 

modulus of elasticity are the measured profiles. The representative features are therefore 

related to one o f these measured properties. Obviously, the unmeasured properties o f 

wood wil l add to the uncertainty o f the estimation, as was explained in Chapter 3. 

4.1. A g e n e r a l v iew o n de f in ing the features 

The need for extracting a feature set from the measured profiles o f a board arises from the 

fact that analyzing the measured profiles of the board is practically impossible because 

they contain numerous redundant or highly correlated pieces o f information. For reducing 

the unnecessary pieces of data, features of the measured profiles are used to develop a 

model of the board. These features are basically the characterizing features o f the board. 

The features that wil l be introduced serve a double purpose, they represent a board 

(distinguishing different boards) and they represent the strength-related physical features 

o f the board. Therefore the representative feature set needs to be a minimum necessary 

size. In order not to compromise prediction accuracy for feature meaningfulness, the 

method o f Figure 4.1 can be followed. The meaningfulness of the features makes them 

different than the features that are usually introduced in dimensionality reduction 

techniques as these techniques map (linearly or nonlinearly) the given set o f features to a 

fewer number o f features. For example, in a three layer neural network with few hidden 

layer neurons, the output of each neuron is dimensionally reduced feature. Obviously in a 

problem like wood strength estimation such a technique cannot be much o f help in using 

any existing information from other studies. However, i f the X-ray image is transformed 

to the board model, it can be transformed to Knot Area Ratio ( K A R ) , a feature that has 

been studied, by other researchers ([13]), as an effective strength-affecting feature. 
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measured profiles board structural model -> representative features 1 strength model 

I ^ representative features 2 _^ 

Figure 4.1. Steps o f strength estimation method. 

The board structural model is the generalization of the measured profiles. This model is 

developed based on the existing knowledge of the constraints that should exist on the 

measured profiles. However, the model tends to be simple and tends to remove the 

anomalies that are not considered in the model. For example, a small-size density 

variation is usually considered a measurement error. Therefore the measured profiles can 

generate features that can add to the generated features through the board model, shown 

as representative features 1 in Figure 4.1. 

A learning system, shown as the "strength model" in Figure 4.1, uses a fixed length of 

features. Therefore, the feature set should have fixed length. However, the fixed length 

feature set imposes restrictions on the estimation that can best be studied by the 

complexity o f signals. In the following, the effect o f a fixed number o f features on the 

estimation accuracy is discussed. 

It is obvious that the complexity of a board structure is variable. A board with many small 

defects is structurally more complex than a board with few major defects, although the 

strength o f both boards may be the same. For example i f a board with twenty knots is to 

be characterized, twenty sets of features for the knots and a set of features for the clear 

wood is needed. But i f a board with three large knots is to be characterized, only three 

sets of features for the knots and a set of features for the clear wood are needed. Since 

transformation of input to output needs a fixed length of features, the feature sets of clear 

wood and defects wil l be transformed into a fixed length vector of features that is the 

board feature set. 

It may seem that the board model is not needed because one could extract a set of 

representative features directly from the measured profiles and feed those to the strength 

estimator (Figure 4.1). The board model allows one to develop a set o f features that are 

physically meaningful, for example the features that are related to structure of the board. 
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B y using this model the existing knowledge from fracture mechanics and wood grading 

can be used in order to develop a meaningful representative feature set. This fact wi l l 

become obvious when knot feature extraction is involved. 

The characterization o f a board starts by categorizing its strength affecting factors. The 

factors that affect the failure (or strength) of the board are distinguished and are extracted 

from the measured profiles. A set of features that best characterize each factor wi l l be 

produced. Based on the feature sets of all the factors, a set o f features that best 

characterizes the board wil l be generated. 

The strength factors are categorized into clear wood and defects. The average properties 

o f clear wood contribute to the strength of the board. The defects, on the other hand, are 

the strength reducing factors. The measured profiles are the density, grain angle, and 

modulus of elasticity. The strength model is a learning system (parametric and non-

parametric) with fixed length of input vector. 

In order to produce a fixed length vector of features as the representative feature set of 

the board, the statistical representation of the features is used, i.e., the similar features of 

defects in a board are represented by their statistical features. For example, a feature o f a 

knot is its volume, but a representing feature for the related board is the average o f all 

knot volumes. The clear wood of a board wil l be represented in the same fashion. The 

clear wood can be represented more accurately because it is one entity whose properties 

change gradually. 

This method is based on the regularity o f the defects. I f the defect sizes are about the 

same and their strength reducing effect is about the same, then this method can represent 

the probability o f failure at lower strength levels. 

4.2. P r o p e r t i e s o f c l e a r w o o d 

Characterizing the clear wood of the board is basically defining what is regular in the 

board. For that purpose, the regular part o f a measured profile wil l be defined and wil l be 

extracted from the measured profiles. Here, a definition of clear wood and its attributes is 

provided and will be used to set the methodology for clear wood feature extraction and 
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clear wood modeling. Naturally, every measurement technique imposes some constraints 

on the measured property and therefore the methodology of feature extraction wil l be 

developed accordingly. 

The clear wood of a board is the non-defect wood that is related to the regularly grown 

portion of the trunk o f the tree with two distinct attributes. The first attribute is that this 

portion of a board contributes most of the body of the board. The second attribute is that 

the properties o f clear wood are either constant or vary gradually. However, randomness 

of properties can be expected because clear wood is a natural product. The first attribute, 

statistically speaking, states that the chance of a point being clear wood is more than that 

being a defect. The second attribute leads to using averaging or using regression for 

extracting the clear wood properties from the measured profiles. These attributes are the 

basis for extracting clear wood properties from the measured profiles. 

A density profile is a two dimensional profile in the form of an image. Every pixel of the 

image is proportional to the density o f that point of the board. I f the pixels of the image 

are considered as random numbers and presented as a histogram diagram, clear wood 

contributes the major shape of the distribution. The statistical mode o f the distribution is 

the most common density of the board and defines the average density o f clear wood. 

Also, the natural variation of density in clear wood is obviously a second feature. This 

feature is a strength-reducing factor (Figure 4.2). Therefore, the density o f clear wood at 

every point of the board is modeled by its average density and by its natural variation that 

is modeled by the standard deviation of the histogram diagram. 
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density distribution of knot + clear wood (specimen #97) 
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Figure 4.2. The histogram representation o f density distribution of a board 

If the clear wood density is assumed to be constant at all clear wood points o f the board, 

the mode of this distribution is the natural choice (Figure 4.2). The mode of distribution is 

the simplest form that can be used to model the clear wood density. Although, the 

average o f the distribution is usually close to the mode, the mode value has the slight 

advantage that it is not affected by large density affecting defects like decays or resin 

canals. The standard deviation should be independently stored as a feature. Also i f the 

density is assumed to change gradually along and across the board, a plane that is a linear 

regression of the image can model the clear wood density at every point. In geometrical 

defect detection it wil l be shown that two images are needed to develop the model o f the 

defect. One image is related to the wider face (plank) of the board, that is, the top image, 

and one is related to the narrower face (edge) o f the board, that is, the side image. The 

two images can produce the density o f all the points of the board. 

The grain angle profiles o f the board cannot be analyzed in the same way as done above. 

The sampling rate in this measurement is low therefore the number of measurements in 

this profile is considerably less than that of density profile. The sharp local grain angle 

variations that can be seen in the grain angle profile are related to the grain variation 

around knots. The shape of grain angle variation in the measured profile depends on the 

relative location of the measurement head with respect to the center o f the knot. The 

histogram representation does not generate a clear shape of distribution (Figure 4.3) 
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because the defects usually take a large portion of the profile. The grain angle features of 

clear wood should be extracted from the grain angle profile. The average and standard 

deviation o f the measured grain angle profile are considered as the grain angle features of 

the clear wood. 

grain angle profile of a board histogram distribution ofthe grain angle of a board 

Figure 4.3. Grain angle profile of a board and its distribution. 

The bending modulus o f elasticity measurement o f a board is an average over a span of 

the board. This profile does not vary much and the sampling rate is low. Therefore, 

similar to grain angle profile, the profile is better for feature extraction than its histogram 

diagram (Figure 4.4). However, unlike the grain angle profile the defects o f the board do 

not create any sharp changes in the profile. Therefore, the local measurement of the M O E 

of a point can be assigned to the cross-section of the board at that point. Although the 

variation in the M O E profile is gradual, the minimum of this profile usually indicates a 

weak zone in the board that is either related to the major defects of the board or a weak 

clear wood zone. This feature is not related to clear wood general properties and wil l be 

considered as a feature of the entire board. 
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Figure 4.4. The M O E profile of a board and its distribution. 

4.3. C h a r a c t e r i z i n g the defects 

Characterizing the defects starts with detecting the defects from the measured profiles. 

Defect detection can be categorized into three problems: detecting general variations, 

sharp local variations, and extreme values. The general variations were explained in 

Section 4.2, along with clear wood properties, in the form o f standard deviation of the 

measured local density. The local variation detection is based on the existing difference 

between the density or grain angle o f the defect and the clear wood. The extreme values 

are the minimum values o f wood density and modulus o f elasticity, which are the weak 

points of the board. 

Knots are the distinct defects that most commonly exist in wood. They were studied and 

modeled in detail by using their geometrical features. This is possible because of a knot's 

defined shape as well as its distinct density difference with respect to clear wood density. 

Each representing feature wil l be an indication of the defect's size, location (across the 

board), or shape. A grain deviation appears as sharp changes in the profile (Figure 4.3). 

This can be detected by using thresholding techniques. N o other specification is assigned 

to it because the shape and size o f the variation depends on the relative location of the 

measurement head with respect to knot location. It wi l l also be shown that the grain 

variation can be modeled by having the knot model. 

5 5 



These attributes of a feature are basically the properties that similarly affect the strength. 

The size o f a defect reduces the clear wood material. The shape o f the defect affects the 

high stress zones that are generated by the defect when the tensile stress is applied. Also, 

the location of the defect across the board influences the strength reducing effect of the 

defect. I f a similar defect is closer to the edge of the board, it more likely initiates a 

fracture. 

Also general variations of clear wood or general minima of strength factors are the 

features that reduce the strength. Therefore, the standard deviation of the measured 

properties (from clear wood values) in Figure 4.2, Figure 4.3, and Figure 4.4 are the 

features that can represent some of the defects of wood. Also, the minimum of the 

measured profile for M O E (Figure 4.4) and the minimum o f density across the board are 

the features that are related to weak points in the board. The minimum of density across 

the board is the average density in a small section of the board (Figure 4.5). Such general 

minima or maxima are not seen in grain angle profile of the measured samples. 

When the specific features cannot be defined, general features that may be related to the 

strength can be defined. For example a grain angle defect may not have a specific shape 

or size or location but its maximum grain deviation defines the weakest part o f that defect 

and is related to the likelihood o f failure at that point. Similarly a decayed zone can be 

identified because o f its regional reduced density level but a specific generic shape cannot 

be assigned to it. Also, the location across the board cannot be assigned to the decay zone 

because its large size makes this feature meaningless. 
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Figure 4.5. The local density profile of the board generated by a moving window. Window 

span is 1/10 o f the length of the board. 

4.4. G e o m e t r i c a l features o f a knot 

In this section the geometrical features of a knot wil l be explained. The geometrical 

features o f a knot are the features that are obtained by modeling the shape of the knot. 

The features characterize a knot's size, its shape, and its relative location with respect to 

other knots. The creation o f a knot is due to the existence o f a tree branch, which has a 

defined circular cross-section. The remainder of the branch keeps its defined cross-

section shape and leads to the geometrical model that wil l be produced in Chapter 5. 

The knot can be detected in the density image o f the board because its density is usually 

distinctly different than the density o f clear wood. Figure 4.6 shows the X-ray density 

profile of a knot in a piece o f wood. The three-dimensional image of such a knot can be 

imagined as what is shown in Figure 4.7. The flat part o f the density profile in Figure 4.6 

is related to clear wood that surrounds the knot and the protrusion is related to knot wood. 

It wil l be shown in Chapter 5 that two density images o f knot that are taken from 

mutually perpendicular directions are sufficient to identify the model of the knot (Figure 

4.7). 
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Density profile of a knot 

Figure 4.6. The density profile of a knot as compared with the density of clear wood o f a 

board. 

This model is based on the generalization o f the cylindrical shape of a branch. Therefore 

a knot is modeled by a cone, which is cut by two parallel planes. The cone represents the 

knot and the parallel planes are the surface of the board. The features o f the geometrical 

shape are the features o f the related knot. More detailed features can be extracted from 

this shape because of its increased accuracy as compared with other defects. 

Knot volume, its axial deviation, the taper, the average radius, the distance to the closest 

knot, and knot-area-ratio are the features o f a knot. The axial deviation o f the knot is the 

standard deviation o f all knot points from the central line of the board. Knot taper is the 

ratio o f the smaller diameter to the larger diameter. Knot average radius is the average 

radius o f the knot cone in the board. Knot area ratio is the maximum of the ratio o f knot 

cross-section to the board cross-section. The Knot Area Ratio ( K A R ) is a visual quality 

level ([13]) measurement that is used in industry for down grading a piece of lumber i f a 

large knot exists in it. 

V 
Figure 4.7. Conic model of a knot. 
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Knot volume and average knot radius represent the reduction in the material of the 

surrounding clear wood area. Similarly, knot-area-ratio represents the minimum clear 

wood material at the cross-section of the board where the knot is. The axial deviation of 

the knot from the center ofthe board shows how close the knot is to a corner of the board. 

Knot taper represents the possible existence of the tip of the knot in the board that can 

create a high stress zone. The distance o f the knot to its closest neighbor can be used to 

represent the expected increase in stresses that can be created from knots that are very 

close to each other. 

4.5. C h a r a c t e r i z i n g feature sets a r e not u n i q u e 

In defining a set o f features, it should be noted that different sets of features can be 

defined that represent similar properties of wood. It is obvious that any transformation of 

a feature or a group of features wil l generate the same estimated strength as long as the 

learning system can learn the inverse of the transformation. Since there aren't any rules 

for defining features, the definition o f features that are representing the same factor is 

avoided. For example, the average and the mode of the density histogram of a board 

(Figure 4.2) are two features that are conceptually representing the same factor. The 

mode of the board's density profile is the regular density o f the clear wood o f the board, 

which is related to the strength of the board. The average of the X-ray image can be 

considered the same as long as the defects are neglected. 

In defining the representative features of a board their physical meaning wil l be 

considered. Therefore, the emphasis is on the features that are related to board model as 

opposed to those that are related to the measured profiles (Figure 4.1). The advantage of 

this methodology is that the existing knowledge from wood grading and wood mechanics 

can be used for feature definition. 
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4.6. B o a r d m o d e l 

The board model is the basis of generating a set of features that physically make sense. 

For that matter, the clear wood properties that were explained in Section 4.2 are extracted 

from the profiles and inserted at all the points of the board model. B y using the 

geometrical features of knots a basic three-dimensional model of the board can be 

generated (Figure 4.8). This model is a structural model o f the board. The knots are 

detected by using the geometrical method and are modeled by holes of the same shape. 

Figure 4.8. The model of a board that consists of the clear wood and defects. 

The clear wood part of the model at every point indicates the density, grain angle, and 

modulus of elasticity of wood at that point. The density o f wood at every point is the 

average of estimated density from the two density images after removing the knots. There 

may be more than one grain-angle profile of the board. The grain angle o f wood at a point 

is resulted from the interpolation o f the measured profiles after removing the anomalies 

(the trace of the defects like knots) in the profile. The modulus o f elasticity profile is 

usually measured as a pair, one from each side of the board. The average profile shows 

the average M O E o f the measured points. The M O E of all the points in a cross-section of 

the board are assigned the value of M O E at the related point in the measured profile. 

It is obvious that the complexity o f the characterizing feature set increases as the number 

of the defects changes. This can be seen from the fact that i f each defect is characterized 

by a set of features the total number of features increases i f the number of defects 

increases ([66],[67]). The complexity of the characterizing feature set can be related to 

the accuracy of the strength estimation of the board. 

As was mentioned before, the characterizing feature set of the board is a fixed length 

vector of features. In order to transform the variable number of features to a fixed number 
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of features the statistical moments were used. The clear wood features and general 

variations o f clear wood were defined before. The features that are related to the board 

model are the features that are related to geometrical features. Knot volume, its axial 

deviation, the shortest distance to a neighboring knot, taper, and knot area ratio are the 

features that were added. 
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Chapter 5. Extracting features from measured profiles 

In this chapter the extraction of features from the measured profiles is presented. The 

features, that wil l represent a board for strength estimation, were discussed in Chapter 4 

and the measured profiles were presented in Chapter 2. Statistical features are used for 

representing the grain angle measurement and the modulus o f elasticity measurement. 

The X-ray images, however, are used for deriving the location and shape of knots. Most 

of this chapter is related to detecting knots in an X-ray image and modeling the shape of 

the pattern. 

As was explained in Chapter 4, a model of board density is produced by using the X-ray 

scanning of the board. This model consists of the knots of the board and clear wood 

density distribution. A knot produces a local protrusion (a bump) in the regular surface 

that is the X-ray image o f the clear wood. Since the X-rays are almost parallel, the edge 

of this bump is a pattern that can represent the shape of the knot and wil l be used to 

extract the parameters of the knot model. It wil l be shown that two patterns are sufficient 

to produce the model o f the knot. The three dimensional shape o f a knot and its location 

in the board is the basis o f geometrical features of the board. 

Shown in Figure 5.2 is an X-ray image of the wood density of a board and the 

surrounding area. The surrounding area is related to the portion of the measured profile 

where there is no board in the system and the system output is the noise level. Since the 

noise level in all the measured profiles is considerably lower than the signal level, the 

portion of the measured profile that is related to the board can easily be separated from 

the surrounding part of the profile by thresholding. 

5.1. T h e i m a g e o f a knot i n a n X - r a y i m a g e ; the s h a d o w i m a g e 

As was explained in Chapter 4, the density image of a knot is generated by X-ray 

scanning of the board. Figure 5.1 shows the density image of a knot, which is a part of an 
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X-ray image. A s is shown in this Figure a knot can be seen as a local peak in a relatively 

flat surface that is related to clear wood o f the board. Because o f the large density 

difference between clear wood density and knot wood density (as can be seen in Figure 

5.1) a threshold level can separate knot pixels in this image. This is the basis o f knot 

detection that wil l be derived in the following sections. 

Figure 5.1. The X-ray image o f a knot 

A contour map can show the existence and location o f knots in an X-ray image. Figure 

5.2 shows the contour map o f a measured profile. The two relatively vertical lines are the 

edges of the board (the surrounding area were removed) and the closed elliptic contours 

are related to the knots. Each closed elliptic contour is related to a density variation 

similar to Figure 5.1. 
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Figure 5.2. Contour map o f an X-ray image. 

5.2. T h r e s h o l d i n g ; c lass i fy ing a p ixe l into knot o r c l e a r w o o d classes 

The existence o f knots and the related wood density variation makes the density 

distribution o f the board a bimodal distribution ([68]). In order to classify the image 

pixels into two classes o f clear wood and knot wood, Bayesian based thresholding was 

used. The density o f wood is assumed to be normally distributed, therefore, knot wood 

and clear wood can be modeled by two normal distributions whose averages and standard 

deviations were measured from the existing sample boards. For example, the distribution 

of density in knot and clear wood o f a board (as wi l l be discussed in detail later in this 

chapter) from a randomly selected board shows that the mean and standard deviation of 

clear wood distribution (assuming a normal distribution) are x = 1 and cr = 0.05, 
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relatively. The mean and standard deviation of knot wood distribution are xk= 1.39 and 

<rk = 0.44, relatively. The distributions are shown in Figure 5.4. 

The problem o f separating the image pixels into knot pixels and clear wood pixels was 

cast as a Bayesian decision-making problem. Every pixel of the image should be 

classified into one of two populations with known probability distributions (Figure 5.3). 

In deriving the threshold level two points were kept in mind, detecting knots and 

preserving the shape o f the knot pattern. Detecting small variations in clear wood density 

of the board was not o f interest here. The knot patterns, on the other hand, were 

specifically important because they were transformed to geometrical features of the 

board. Therefore, the threshold value was chosen so that it generates the least chance o f 

error in the output knot pattern. 

Although the density distribution of clear wood pixels of the X-ray image is related to the 

natural variation in wood density, assuming that knots are the only defects of the board, 

the density distribution of knot pixels is affected by different factors as is explained in the 

following. The density distribution of a knot depends on the type o f the knot. For 

example, i f the density distribution o f knot wood is modeled by a Normal distribution the 

mean of the distribution changes as the type of the knot changes. There are few types o f 

knots therefore one can expect few possible density distributions. The threshold level is 

specific to the two density distributions. A single threshold level imposes error in 

classification procedure. However, this error cannot be avoided because the types o f 

knots cannot be distinguished by using their X-ray images. 
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Figure 5.3. Probability distribution o f clear wood density and knot wood density. 

The actual statistical distribution of a knot-related X-ray image pixel is more complex 

because it comprises two components: the statistical distribution of knot wood density, 

and the statistical distribution due to the projection o f a knot cone onto the image plane. 

For a tilted knot, for example, the density value o f a pixel changes gradually from the 

knot wood to a combination o f knot wood and clear wood depending on how far the pixel 

is from the center of the knot. 

5.2.1. Bayesian classification 

Let's say nx is the population o f all the clear wood pixels in an X-ray image and n2 is the 

population of all the knot wood pixels in the same image. A is the population o f all the 

image pixels {nx u x2). X is a random variable that is defined as the measured density at a 

pixel in the X-ray image, x is an observation, i.e., it is the value o f a pixel in an X-ray 

image. Rx and R2 are the two regions of X that define clear wood and knot wood 

respectively. q is the a priori probability of a pixel belonging in nx and q2 is the a priori 

probability of the same pixel belonging in n2 (qx + q2 = 1). px is the conditional probability 

distribution function o f nx and p2 is the conditional probability distribution o f n2. C(2 |l) is 

the cost o f misclassifying a pixel into R2 (i.e., classifying it as a knot pixel) while it 

belongs in Rx (it is a clear wood pixel). Also, C(l|2) is the cost o f misclassifying a pixel 

into Rx (i.e., classifying it as clear wood) while it belongs in R2 (it is a knot pixel). 
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The conditional probability o f the pixel belonging in nx (clear wood) given that its value 

(the observation) is x can be expressed as follows: 

1iPi(x) 

P l = q,p^) + q1p^) ( 2 6 ) 

The cost o f misclassification is 

C = C(2|l) qx fPl(x) dx + C(l|2) q2 fp2(x) dx (27) 

Rt and R2 are chosen so that: 

p,(x) C(\\2)g2 

R>Pl(x)*C(2\l)qi ™ 

/?,(*) C(\\2)q2 

RrPi(x) <C(2\l)qi

 ( 2 9 ) 

The probability that a pixel is clear wood is much higher than that it relates to a knot, 

therefore 

q>>q2 (30) 

Since qx and q2 are the probability of a pixel belonging in a knot and clear wood 

correspondingly, they can be estimated by using the total clear wood area and total knot 

area in a sample X-ray image. 

The location, size, and shape o f a knot wil l be detected by using the edge of the particular 

knot in the X-ray image. Extracting these parameters is the whole purpose of edge 

detection. I f too many pixels are misclassified from knot to clear wood it disfigures the 

shape of the knot edge pattern, therefore affects the rest of the process. I f the threshold 

level is set to a higher level the resulted parameters of a knot wil l be biased to a lower 

value (because the size of the pattern wil l be smaller), which can be tolerated. Therefore, 

the cost o f misclassifying a clear wood pixel to a knot pixel (C(2|l)) is much higher than 

the cost o f misclassifying a knot pixel to a clear wood pixel (C(l|2)). 
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C ( 2 | 1 ) » C ( 1 | 2 ) (31) 

Therefore Rx is for all x's that are non-zero and R2 starts where px(x) diminishes to almost 

zero at a high percentile point. I f Xj, is the threshold level, 

R 2 = {V x > xr |pfa) = C(2\l)q ' * °* (32) 

If x T is a high percentile (for example 99 percentile) ofpx(x) it satisfies equation (32). 

5.2.2. Edge detection 

As can be seen from previous section, knot edge detection in an X-ray image of a board 

relies on finding px(x); clear wood density distribution, by using the X-ray image. The 

frequency distribution (a histogram diagram) related to the X-ray image pixels is the 

summation of two normal distributions with different average and standard deviations. 

Knowing the fact that the density of wood changes in a very limited range as well as 

equation (30), one can conclude that px(x) has a dominating effect regarding the overall 

statistical measures of the combined frequency distribution. Therefore, the mean and the 

standard deviation of the overall distribution can be measured and used directly in px(x). 

In the following it is shown that the statistical mean of px(x) is almost equal to the 

statistical mean of the overall distribution: 

m, = (33) 

(34) 

where x , is a pixel that belongs inpx(x) and x , is a pixel that belongs inp2(x). 

m (35) 
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= -[nm, + nm] 
flL

 1 1 2 2 J 

m = qimi+ q2m2 (36) 

Equation (30) and qx + q2 = 1 result in the following: 

m&m (37) 

The standard deviation of the overall distribution does not have such a simple relationship 

with the distribution o f the overall distribution as shown in the following. The standard 

deviation of the overall distribution s is as follows. 

The first term of equation (38) is the standard deviation of the clear wood distribution. 

Usually m2 is a multiple of mx therefore the second term of equation (38) is not negligible. 

The standard deviation of clear wood can be estimated by using the portion of the overall 

distribution that is mostly contributed by clear wood. Assuming that the standard 

deviations o f the two distributions are in the same order, one can conclude, from equation 

(30), that the maximum frequency of knot wood distribution is much less than the 

maximum frequency of clear wood distribution. For example for qx = 10 q2, the maximum 

frequency of clear wood distribution is about ten times as much as the maximum 

frequency o f knot wood distribution. This fact can be seen in Figure 5.4-a where the clear 

wood distribution obviously dominates the overall distribution (Figure 5.4-a, d, and e). 

The samples within a neighborhood of the mode value of the overall distribution is a 

censored representation of clear wood density distribution and can be used for estimating 

the standard deviation o f clear wood distribution. A censored sample o f a distribution is 

the sample of the distribution when a part of the distribution cannot be sampled. The 

limits of this neighborhood is defined by a threshold level, which should be more than 

1 n 

s1 = —r Z (x - m) n-l itl v - ' 
(38) 
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q21 qx in order to avoid the maximum frequencies of knot wood distribution. I f qx is 

assumed to be almost equal to 10 q2, the threshold level should not be less than 10%. The 

limit of the neighborhood can be set to be 20% of the mode frequency of px(x). The 

standard deviation of the clear wood density distribution is equal to the estimated 

standard deviation o f the pixels within this neighborhood. 

Once the parameters of are estimated the threshold level for knot detection wil l be 

one of its high percentiles (like 99 percentile). 

5.2.3. Experimental data 

The threshold level detection is studied on a typical sample. The overall statistical 

distribution of the density of wood is derived from the X-ray image of the sample. The 

actual density distributions of clear wood and knot wood were extracted subjectively for 

comparison. The statistical mean and standard deviation of the overall distribution wil l be 

compared with the statistical mean and standard deviation of clear wood distribution. The 

mean of the overall distribution wil l be used as the estimation of the mean of clear wood 

distribution. The 20% maximum frequency neighborhood wil l be used to estimate the 

standard deviation o f clear wood density distribution. The threshold level for knot edge 

detection wil l be derived based on the actual and estimated clear wood density 

distributions. The cost o f misclassification wil l be derived for each case. 

The distribution o f wood density (clear wood and knot wood) is shown in Figure 5.4-a. 

This diagram is the density distribution of all the pixels o f the X-ray image of specimen 

#97. One can easily see the dominating effect of clear wood density distribution by 

comparing the overall density distribution (Figure 5.4-a) with clear wood density 

distribution (Figure 5.4-e) and with knot wood density distribution (Figure 5.4-d). 

The actual knot wood density distribution and clear wood density distribution were 

extracted from the X-ray image for comparison. The pixels of the X-ray image were 

divided into knot and clear wood subjectively and with a confidence gap; i.e., the 

sampled knot pixel values are high enough to be obviously recognized from clear wood 

pixels and the sampled clear wood pixels were far from the knots (Figure 5.5). The gap 

affects the distribution of the knot density, as the lower values are more likely to be cut 
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out. Figure 5.4-d and Figure 5.4-e show the two distributions. It is obvious that the 

average density of knot wood is considerably higher than the average density of clear 

wood. 

The mean and standard deviation of the overall distribution are shown in equations (39) 

and (40): 

x = l (39) 

cr = 0.97 (40) 

The mean and standard deviation of actual knot wood distribution and clear wood 

distribution are as follows: 

* = 1 (41) 

a = 0.05 (42) 

* k = 1.39 (43) 

The mean and standard deviation o f the estimated clear wood distribution based on 20% 

of maximum frequency is as follows: 

* = 1 (44) 

ac = 0.04 (45) 

and the neighborhood of the mode is as follows: 

[0.91 1.09] (46) 

Equations (41), (42), (44), and (45) show that the mean and the standard deviation of the 

clear wood distribution are closely estimated. 

One can conclude from Figure 5.4-b and -e that the threshold level should be 1.2. In this 

case the probability o f misclassifying a clear wood pixel to a knot pixel is almost zero. 

Therefore, the cost of misclassification is as follows: 
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C=C(\\2)qJp2(x)dx (47) 
R 

l 

C , = C ( l | 2 ) ? 2 x 0 . 1 4 (48) 

The 99 percentile of estimated clear wood density distribution is 1.09. Therefore, the 

threshold level by using this criterion wil l be 1.1. The cost of misclassification is as 

follows: 

C 2 = C(2 | l ) qx fp{x) dx + C( l |2 ) q2 fp2(x) dx (49) 
R R 

2 1 

C2 = C(2 | l ) qx 0.032 + C( l |2 ) q2 0.064 (50) 

If it is assumed that 

C ( l | 2 ) = 10C(2|1) (51) 

and 

<7, = 10<72, (52) 

the cost of misclassification is as follows: 

C= 3.264 C{\\2)q2 (53) 
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Figure 5.4. Density distribution o f X-ray image pixels o f a specimen (a) overall-

distribution; the distribution o f all X-ray image pixel values (b) simulated density 

distribution of clear wood (Normal distribution with similar mean and variance), (c) 

simulated density distribution (Normal distribution) o f knot wood (d) density distribution 

of knot wood (normalized to average density of clear wood) (e) density distribution of 

clear wood (normalized to the average value). 
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contour of a knot 
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Figure 5.5. Sampling pixels o f a knot from an X-ray image. 

Figure 5.5 shows the samples pixels for the distributions of Figure 5.4. The area around 

each knot o f the board is separated and the clear wood pixels and knot pixels are 

separated as shown in Figure 5.5. The threshold level that shows the border line between 

knot pixels and clear wood pixels is equal to the average o f minimum and maximum 

wood density in the image of Figure 5.5. 

5.3. I n d e x i n g the pixels o f a knot 

Once the threshold level is found and the knot pixels are detected, the neighboring pixels 

that are related to a knot are grouped. A l l the pixels that belong to the same knot are 

adjacent in the X-ray image. Once one pixel that is related to a knot is found all the 

neighboring pixels can be found and marked. Therefore, indexing the pixels o f knots in 

the X-ray image is a double search. The first search is through all the pixels o f the image 

looking for a knot pixel that was not indexed before (looking for a new knot). Once a 

pixel is detected it is indexed and a second search starts. This search indexes all the pixels 

that are neighbor to this pixel or are the neighbors o f the neighbors o f this pixel. 

Therefore, all the knot pixels that are related to the same knot are found and indexed in 

this search. Once all the pixels o f one knot are indexed the first search resumes to find 

another knot. 
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A simple routine that can be used for indexing all the pixels o f the same knot is as 

follows. The first found pixel (the result o f first search) is placed in a stack. Then all the 

neighboring pixels are checked to see i f they are knot pixels. A l l the neighboring knot 

pixels are placed in the same stack as well. Then all the pixels in the stack can be 

retrieved and their neighboring pixels are check to see i f they are knot pixels. A 

neighboring knot pixel is added to the stack i f it already doesn't exist in the stack. The 

search terminates when all the pixels in the stack are checked and no new pixel is added 

to the stack. 

Figure 5.6. A search for neighboring knot pixels. Once the black pixel is known to be a 

knot pixel, all the gray pixels are check too. 

5.4. K n o t p a t t e r n 

The knot pattern is the edge o f the image o f a knot. The edge pixels are the outermost 

pixels of a group of pixels that are indexed to be related to a knot. The inside pixels can 

be easily detected because all their neighboring pixels are knot pixels. The edge pixels are 

simply non-inside pixels. Figure 5.7 shows an edge pattern that is obtained by using the 

method presented above. This pattern is simply the edge of the density profile shown in 

Figure 5.1. 
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Ellipse Shape Pattern of a real knot 
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Figure 5.7. A knot pattern (from its image) 

Solving this pattern for knot parameters is a basic problem in our knot detection 

procedure. The knot pattern can be imagined to be the orthographic projection of a cone 

onto an image plane ([69]). The cone is cut by two parallel-planes. Figure 5.8 shows the 

cone and its images on two image planes. Deriving the parameters o f the cone from the 

features of the pattern in x-y plane wil l result in solving the knot detection problem. It 

wil l be shown that the pattern in x-z plane can easily be solved. 

The patterns that are shown in Figure 5.8 are equivalent to knot patterns in an ideally 

simple case. In this case, the clear wood does not have any variations (standard deviation 

equal to zero) therefore the threshold level can be set very close to the average clear 

wood density. Also, the knot density is distinctly different than the clear wood density at 

all points o f the knot. 

Because the knot pattern results from the projection of all the points o f the cut cone onto 

the image plane, different sections of it can be distinguished. This pattern consists o f two 

half ellipses whose major axes are along the same line; therefore, their minor axes are 

parallel. The two ellipses are connected by two straight-lines as is shown in Figure 5.8. 

The center part of the pattern is a trapezoid whose two bases are equal to the diameters of 

the cone at the two ends. 
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Figure 5.8. Two orthographic projections of a knot. Projection line is perpendicular to the 

image plane (x-y and x-z planes). 

The special shape of this image can be proven to be correct by circulating the generator 

line around the axis o f the cone and following its projection on the image plane. It can be 

proven that the symmetry axis of the pattern is the projection of the axis of the cone. 

Also, the centroid o f the image lies on symmetry axis o f the pattern. It wi l l be shown that 

in most cases one of the extremities o f the symmetry axis o f the pattern is the farthest 

point from the centroid o f the contour. Therefore, the symmetry line can be drawn from 

the centroid and the farthest point; that is, the point with maximum distance from the 

centroid, that is on the perimeter of the pattern. 

The axis o f a knot cone is assumed to be closely radial; therefore, it wouldn't have a large 

component along the tree's length. It means that the edges o f the board wil l not cut the 

pattern parallel to the symmetry axis (i.e., its major direction). This axis wi l l be parallel to 

the large axis of the board. 
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Figure 5.9. The pattern o f a knot, o is the centroid o f the pattern. The dashed line indicates 

the symmetry line of the pattern. 

5.4.1. Knot model parameters 

A knot is modeled by a set of parameters that are easy to derive and useful in practice. 

The two centers of the two ellipses of the knot and the radii o f the cone at the two ends 

can define the knot cone. The two centers define the axis o f the cone and the two radii 

define the acute angle of the cone and size o f the knot. Therefore, eight parameters can 

define the knot. 

The centers of the two knot ellipses are projected to the centers of the two half ellipses of 

the knot pattern (o ] and o2 in Figure 5.9). The two diameters of the cone are projected 

onto the two minor axes of the corresponding half ellipses (dx and d2). Once the two 

patterns in two perpendicular image planes are obtained the knot parameters can easily be 

solved. 

5.4.2. Measuring and calculating the features of the pattern 

A simple solution to finding dx and d2 assumes that the knot pattern is a trapezoid. What is 

needed to find dx and d2 are the two areas of half trapezoid and the height o f the trapezoid 

from the center to the two ends. I f the area of the smaller end is ax and the area of the 

bigger end is a2, dx and d2 (see Figure 5.10) are found as follows: 

2a, 
d = Y ' d (54) 
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(55) 

d 

Figure 5.10. The approximate image of the knot, o is the centroid o f the pattern. 

In order to measure dx, d2, Xx, and X2, the centroid of the pattern, o, is found first (see 

Figure 5.11). The farthest point of the edge of the pattern from o is the tip of the smaller 

ellipse. p2 is the point that the angle of (px, o, p2) is closest to 180 degrees. p3 is the point 

with Z(p}, o,pi) = 90° andp 2 is the point that Z(p2, o,p3)= 180°. The pattern is then 

divided into two halves on the two sides of (pi, pj line. Let's say p is a random point in 

the pattern, i f ~st = (o , p) J_ (p3 ,pA) is the perpendicular projection of "a* on line (p 3 ,p), 

it defines which side of the pattern the point p lies. The angle of H* and (o,px) 

( Z ( (o~~px),~dL )) indicates the side. If this angle is zero p belongs in one side (p is closer 

to p) and i f it is 180°, p belongs to the other side (p is closer top2). Figure 5.11 shows the 

four points and the center o f the pattern. 

Adding the area of all the pixels of one side gives the area of one side of the pattern. Xx is 

the distance between o and px, X2 is the distance between o and p2, and d is the distance 

between p3 and p4. From equations (54) and (55) the two diameters o f the two ellipses are 

obtained. The projections of the two centers of the cone on an image are estimated by 

shifting px and p2 into the connecting line by dx 12 and d212. 

When the pattern ends to the edge o f the board it becomes a trapezoid (Figure 5.8, the 

pattern in x-z plane). In such a case the detection problem becomes a straightforward 
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problem. In such a case the sections of the pattern that touch the border of the board are 

measured. The length of each section is dx and d2, respectively. 

The diameter of the knot cone at the two ends equals d{ and d2 that are readily measured 

from either x-y or x-z pattern. The centers of the two ellipses of the knot are obtained 

from the two projections of each center that are obtained from each pattern. Also the 

centroid of the knot is estimated by using the two centroids of the two patterns. 

Figure 5.11. The four points of the pattern 

In the following the block diagram of knot pattern analysis is presented. In this algorithm, 

it is assumed that all the elements of the pattern are previously detected and saved in an 

nx2 matrix where n (a variable) is the number o f pixels in the knot pattern. 
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load the knot elements 

£ 
find o, the center of the pattern 

1 n j n 
X = " E J C , V = - Z V 

find the edge elements (X) 

findpx, the farthest point from o. 

find />, the complement of /?, with respect to o. 

find /?3, a perpendicular point to (p, , p2) 

P 3 = min 

I 
find p the complement of p with respect to o. 

PA= max Z.(p o,p)) 

Figure 5.12. The flow chart for knot pattern analysis. 
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5.4.3. Matching patterns 

In order to match the two patterns in either o f the images the longitudinal location o f the 

centroids and the span o f the patterns (the length of the pattern along the board) are used, 

as is explained in the following. The two patterns are matching i f the two spans are 

overlapping. I f more than one pattern overlaps with a pattern, the ones with closest 

centroids are chosen. The two sides o f the two patterns are also matched by finding the 

smaller end and the bigger end. The smaller diameters are averaged to result in the 

smaller diameter o f the knot. The projected centers o f the ellipse on these images result in 

the center o f the smaller ellipse of the knot. Similarly the parameters o f the larger ellipse 

of the knot can be obtained. 

5.5. G e o m e t r i c a l features o f a knot 

The geometrical features o f the knot are indicators of its size, taper, and deviation from 

center. The volume of a knot, dx I d2, axial deviation, and knot area ratio are the 

geometrical features o f a knot. 

In order to measure the volume and the axial deviation of a knot, a model o f the knot is 

generated (by using the measured parameters) in a cubic matrix. B y using the center o f 

the two ellipses the axis line o f the cone can be generated. The cone is generated as a 

parametric equation. For every point of the matrix cube its projection on the axis of the 

knot is obtained. The radius o f the cone at this point is obtained by linearly interpolating 

the two radii o f the cone. I f the distance o f the cube pixel from the axis is more than the 

related radius o f the cone the pixel is marked as a knot pixel. 

Adding the volume of all the knot pixels o f the cube results in the volume of the knot. 

Knot area ratio is equal the ratio o f knot area to board area at every cross-section of the 

board. 

The axial deviation is the standard deviation of all the pixels of the knot when compared 

with the central line o f the board. The axial deviation of the knot is shown in the 

following: 
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1 / N 

Axial deviation = J^\jTi (d(pa,p))2 (56) 

where N is the number of knot pixels, d(pn,p) is the distance between two points, pn is 

the wth knot pixel and p is the projection o f pn on the central line of the cube. 

5.6. X - r a y i m a g e analys i s ; ex trac t ion o f b o a r d i m a g e a n d defect 

detect ion 

A s was explained in previous chapters, detecting knots from the X-ray image is the 

cornerstone o f geometrical features for characterizing a specimen. In this section the 

extraction o f a board X-ray image from the measured X-ray image and the extraction o f 

knots from the board X-ray image wil l be presented. In Section 5.2 the image 

segmentation problem was generally related to the density distribution of clear wood and 

the required equations for extracting useful information from an X-ray image were 

developed. In this section those equations are applied to a typical specimen. 

The measured X-ray image can be divided into three parts: the surrounding area, the 

clear-wood area, and the knot area. Each area of the image is detected and separated from 

the rest by thresholding the density of the image pixel. Separating the board X-ray image 

from the rest of the image is simply done by a fixed thresholding because the noise level 

is not comparable with the signal level. 

The overall statistical distribution o f the density of wood is derived from the X-ray image 

o f the sample. The actual density distributions of clear wood and knot wood were 

extracted subjectively for comparison. The statistical mean and standard deviation o f the 

overall distribution wil l be compared with the statistical mean and standard deviation o f 

clear wood distribution. The mean of the overall distribution wil l be used as the 

estimation o f the mean o f clear wood distribution. The 20% maximum frequency 

neighborhood wil l be used to estimate the standard deviation of clear wood density 

distribution. The threshold level for knot edge detection wil l be derived based on the 

actual and estimated clear wood density distributions. The cost o f misclassification wil l 

be derived for each case. 

83 



5.6.1. Edges of the board 

Extracting the image o f the board from the X-ray image was overlooked to this point. A 

threshold level can extract this segment of the image as well. First the noise level in the 

sample image is measured. Figure 5.13 shows the comparison of the output levels. The 

noise level is related to the same run that the image o f the board is extracted. For that 

purpose the average o f the sensor output before the board reaches the location o f the 

sensor is used for representing the noise level. This comparison shows that the signal to 

noise ratio is at least 100. Also the comers o f the board cross-section profile shows that 

the image does not have large shadow area. The shadow image appears as a slow slope o f 

the line descending from the clear wood density to the surrounding area. 

the X-ray system output with a board tha X-ray system output with out a board 

X-ray tensor number X-ray sensor mirriber 

Figure 5.13. The output o f the X-ray system with (top) and without (bottom) the sample 

board. The maximum sensor noise level is about 0.01 of the average signal level. 

Therefore, a threshold scale of 0.6 was used to separate the board image from the 

surrounding area. This level is well below the wood density level and well beyond the 

noise level (see Figure 5.4-a). 

For segmentation of the X-ray image it is assumed that the board is located in a straight 

extension along the image. Therefore, the average values of pixels along the image and 
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across the image are found. The search starts from both the beginning and the end of the 

image. When the average pixel value is more than the threshold level, the location is 

marked as the edge of the board. 

T h * o u t p u t o f t h e X - r a y m a c h in a 

r 
! . . . 

„ 1 5 

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 
l e n g i n 

T h e > 

2 5 0 0 3 0 0 0 3 5 0 0 
o f t h e board ( m m ) 

-ray i m a g e o f t h e b o a r d 

4 0 0 0 4 5 0 0 

I I I t>; 

i 
r 
I 
r r - I " i 

• • • - — r n 
5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 

l e n g t h o f t h e b o a r d ( m m ) 
3 5 0 0 4 0 0 0 4 5 0 0 

7igure 5.14. Output o f the X-ray imaging machine (top) and the X-ray image of the board 

(bottom). 

The coordinate o f the image o f the board in Figure 5.14 is used for knot detection. The 

same method is used for processing the edgewise image o f the board. 

5.6.2. Knot detect ion 

One can conclude from Equation (32) and Figure 5.4-b that the threshold level should be 

1.2. In this case the probability o f misclassifying a clear wood pixel to a knot pixel is 

almost zero. I f this level o f thresholding is used the edges o f knots of the board would be 

as shown in Figure 5.15. 
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knots edges with threshold scale equal to 1.2 

board 
withd 
(mm) 

620 1240 1860 2480 3100 
board length (mm) 

Figure 5.15. The edge o f all knots o f a board detected by fixed Bayesian based thresholding. 

The threshold level is 1.2 times the average clear wood density. 

The edges of all knots o f a board are detected by fixed level Bayesian based thresholding. 

The threshold level is 1.1 times the average clear wood density. The edges o f knots of the 

board that are detected by using this thresholding are shown in Figure 5.16. 

knots edges with threshold scale equal to 1.1 

board 
withd 
(mm) 

_ILi i J l U • U i U I i S j _ 
620 1240 1860 2480 3100 3720 4340 

board length (mm) 

Figure 5.16. The edge of all knots o f a board detected by fixed Bayesian based thresholding. 

The threshold level is 1.1 times the average clear wood density. 

Other randomly selected specimens are shown in Figure 5.17 and Figure 5.18. 
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knots edges with threshold scale equal to 1 2 
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Figure 5.17. Knot detection by using Bayesian thresholding. Specimen 130. 

board 
width 
(mm) 

knots edges with threshold scale equal to 1.2 

1240 1860 2480 3100 3720 4340 
board length (mm) 

Figure 5.18. Knot detection by using Bayesian thresholding. Specimen 70. 

The following figures show the effect of thresholding to the image of a knot. 
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real size side view X-ray image of a knot, specimen #100 
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real size discretized side view X-ray image of a knot, specimen #100 

8 
length (cm) 

10 12 14 

Figure 5.20. The side view X-ray image and discretized X-ray image of a knot. 
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5.6.3. Three dimensional knot shape detection (simulation) 

In this section, the projection pattern is solved and all its parameters are detected. A 

projection pattern is a pattern that is generated in an x-ray image o f the knot. A knot in a 

perfect board and its x-ray image(s) are artificially generated. Simulation was used for 

comparing the generated parameters with detected parameters and for analyzing the 

accuracy o f the detection method. The error o f the knot detection algorithm wil l be 

reflected on strength estimation and, therefore, it is reasonable to expect that any 

improvement in the knot detection algorithm wil l improve the strength estimation 

accuracy. 

A knot can be modeled by using a higher density cone (than clear wood) inside a cube. 

The cone o f the knot is defined by seven parameters; the center o f the knot (three 

parameters), the direction vector (three parameters), and the acute angle of the knot (one 

parameter). 

The X-ray image of the board is basically the orthographic projection of the object (i.e., 

the board) on the image plane. In the following it is shown that one can start from the X -

ray image and obtain all the parameters o f the knot. The board itself is a 3 -D matrix. Each 

element o f the matrix that is inside the knot (can be defined by using vector algebra) has 

the value of one while each element that is outside the knot has the value o f zero. The 

image (a 2 -D matrix) is obtained by adding the pixel values along a specific direction. 

Since the image is simulated, its edges represent the most accurate pattern that can be 

obtained by measurement. In fact the actual measured images are not this accurate 

because they suffer from general blurring and lack o f uniform material density 

distribution in the knot and in the clear wood area. The fact of having perfect image in 

this case allows the threshold level to be chosen close to the clear wood density and 

obtain a pattern that is almost as accurate as a theoretical pattern. 

The detection procedure starts by detecting the existence of a knot due to the existence of 

some points in the image with higher density than the median value. Then the clear wood 

density is used for finding one point in the knot area. The entire pixels that are in the knot 

are searched for finding the edge points and the centroid of the image. The image is 
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presented by its edge so that the inner density o f the knot does not affect the procedure 

(this makes the procedure more general). 

The farthest point from the image centroid and the centroid itself are located on the 

symmetry line of the pattern. There is a complementary point to the farthest point that lies 

on the symmetry line and the edge of the pattern. The distance of these two points is the 

length of the pattern. The width of the pattern is the longest line segment that is drawn 

between two points of the edge and is perpendicular to the symmetry line. In this 

simulation the length of this line is assumed to be close to the length of the line segment 

that passes the centroid and is perpendicular to the symmetry line. These two line 

segments are called the symmetry line and the perpendicular line in this report. Having 

the centroid and the farthest point from it, one can find the three other points by using 

vector algebra. 

The areas of the pattern that are at either side of the perpendicular line are given different 

names. The area of inner side o f the pattern from the perpendicular line towards the 

farthest point is called the vertex-side area and the other area is called the non-vertex-side 

area. Each of them is found by scanning the entire pixels of the pattern and finding what 

side of the line the pixel is located. Then the area o f the pixel is added to the related area. 

The vertex-side area is used for finding the smaller diameter of the knot cone. 

The simulation parameters are as follows. 

(x o ly 0,z 0) = vertex location 

(v l 5v 2,v 3) = the direction vector o f the knot 

<p - cone acute angle 

V V i + v\ 
y/ = arctan( — ) is the angle of the knot. 

L = Max{(3S-z0)[tan(i//+<p) - t an (y -# ) ] , (38-z0) \m(y/+(p) + z 0 tan(^-#>)} is the length 

o f the pattern. In this equation 38 is the thickness of the board. 

/ = 2x((38-z0) / cos(y/)) • tan(^j) is the larger diameter of the knot 
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/ ' = 2x(z 0 / cos(^)) • tan(^) is the smaller diameter of the knot. 

The detected parameters are as follows. 

L is the length of the pattern. 

/ is the width o f the pattern, which is equal to the larger diameter of the pattern, 

/ ' i s the smaller diameter of the pattern. 

1'0 

517 

x 

Figure 5.21. The diagram o f a knot cone and its parameters. 

1 K 
y/ is the solution o f L • cos(ys) - 38 sin(^) = ^ • ( / + / ) • Since y/ is in [0 , and since 

K 
c o s ( ^ and sin(^) are always decreasing in [ 0 , ^ ] , the above equation has a unique 

solution. The location of the knot vertex is kept fixed at (x0 = 0 , y0 = 0) and 

- 2 0 < 2 Q < - 3 5 in increments o f 2. Two relatively small cone acute angle values are 

chosen to be q> = 3,5,7 degrees. Three values for the knot angle are y/ = 25, 28, 31 

degrees, v is equal to v 2 so that by choosing y/ the three direction vectors can be 

determined. For the given knot angles (y/) and knot vertex location (0,0,z0), the smaller 
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diameter o f the knot would be less than 2.5 cm and the larger diameter would be less than 

5 cm. Therefore, the size of the knot is relatively small and the accuracy o f the model can 

be assessed by this simulation. 

A three dimensional matrix simulated a small board segment (38 x 89 x 100 mm). Every 

element of the matrix represents a point in the artificial board. Each dimension o f the 

matrix is one dimension of the board (x, y, or z). The matrix elements that are inside the 

knot are equal to one and the rest o f the elements are equal to zero. These element values 

are selected for simplicity, such that the edge of the knot can be easily detected in a 

simulated X-ray image as follows. The simulated X-ray image is a two dimensional 

matrix whose element values are obtained by adding the elements of the simulated board 

in one direction. The x-y simulated image (equivalent to the top X-ray image) is obtained 

by adding up the elements o f the simulated board along the z axis. Similarly for obtaining 

an element value of x-z simulated image, all the elements of the simulated board along 

the y axis are added. A l l the nonzero elements belong in the knot image. 

Two X-ray images o f a simulated knot are shown in Figure 5.22. The simulation 

parameters are y/ = 35, <p = 5, and z 0 = - 30. The resolution of the image is 0.5 mm. 
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Figure 5.22. Contour diagrams showing the simulated top X-ray image (top) and side X-ray 

image (bottom) of a knot. The simulation parameters are y/ = 35, <p = 5, and z f l = - 30. 

Image resolution is 0.5 mm. 

Figure 5.23 shows the error o f detection (for the image resolution) for larger and smaller 

diameters of the simulated knot. The coefficient o f determination (A*2) between the 

detected smaller diameter of the knot and the generated smaller diameter is 0.84, and the 

r2 between the detected larger diameter o f the knot and the generated larger diameter is 

0.98. The error of the larger diameter in some cases is relatively big. 
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Figure 5 . 2 3 . Estimation accuracy for the knot diameters. The horizontal axis represents the 

generated diameter and the vertical axis shows the detected diameter. 

The set of knots that are simulated contains the knot size/locations that can stretch outside 

the limit o f the board and cause excessive error in the detection. The following Figure 

shows a simulated knot that stretches outside the limit o f the board and produces error in 

detection. 
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5.7. K n o t detect ion f o r r e a l d a t a 

The knot detection algorithm was applied to a few samples for comparison of the 

detection of knot size and location with image data. The results are shown in the 

following figure: 
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knots in two images of flatwise and edgewise (top; flat, bottum; edge) specimen #100 

620 1240 

' - T V U k 

1860 2480 3100 3720 4340 

620 1240 1860 2480 3100 3720 4340 

Figure 5.25. The result o f applying the knot detection algorithm to the X-ray image of 

specimen #100. 

The location of each knot is detected and marked by an asterisk. The two knot-cone 

diameters are also printed at the location of the knot. For example, the two numbers 

(10,6) show that the diameter o f the knot at one of the faces is equal to 10 and it is equal 

to 6 at the other face of the board. 

The board can be regenerated from the knot parameters and an artificial X-ray image can 

be produced. The result is shown in Figure 5.24. 
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flatwise X-ray image simulation, generated by using simulated board 
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Figure 5.26. The simulated X-ray images. These images are generated from the geometrical 

features o f specimen #100. 

Also location o f knots can be detected in C C D camera images o f a board. About 80% o f 

the knot patterns in each simulated image (Figure 5.26) overlap with those in the 

discretized form o f the X-ray image (Figure 5.25). In order to calculate the overlap of the 

two images, the X-ray image is discretized the same way as is described in knot detection 

algorithm and the output image is a binary with pixel values o f zero or one. The pixels 

that represent a high-density defect are marked as one and the rest o f the pixels are 

marked as zero. The simulated X-ray images are similarly processed. Therefore, the 
M N 

overlap o f the two images is equal to § ^x^jpcj^ij). M and N are the number of rows and 

columns o f each matrix. Dividing the over lap o f the two images by the sum o f defect 
M N 

area in the simulated image (g J} x (ij)) gives the ratio of the overlap. 

A s a byproduct of knot detection algorithm, the location and size of knots can be 

indicated in other measured profiles such as C C D camera image (Figure 5.25). 
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Knot geometrical features of X-ray are used to identify knots in the TOP CCD image 

500 1000 1500 2000 2500 3000 3500 4000 

Knot geometrical features of X-ray are used to identify knots in the BOTTOM C C D image 

500 1000 1500 2000 2500 3000 3500 4000 

Figure 5.27. The location and size o f knots in C C D camera images are detected from 

geometrical features. 
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5.8. X - r a y a n d S O G i n t e r r e l a t i o n 

Similar to density variations in a board the grain angle variation can be divided into two 

factors, the variations due to the existence o f knots and other variations in the regular 

grain angle of wood. 

Figure 5.28 shows the variations in the grain angle profile that is caused by the existence 

of knots. The type of variation in the grain profile (as can be seen in Figure 5.28) depends 

on the relative path of the (grain angle) measurement head with respect to the knot. 

Therefore, the shape o f the grain angle variations in Figure 5.28 varies. In Figure 5.29 all 

the profiles of a sample board as well as the board image are shown. 

It is interesting to note that the variations due to the existence o f knots (Figure 5.28) can 

be modeled using the geometry o f knots. A n approximate model proposed in [70] is 

based on fluid flow around a solid obstacle in its path. The average grain angle in this 

model replaces the direction o f the fluid stream. The direction of the fluid at every point 

around the obstacle defines the direction o f the grain angle around the knot ([70]). 

Assuming that the general trend of clear-wood grain angle is the direction of a line with a 

fixed angle with the longitudinal direction of the board, one can generate the local 

variations of grain angle around a knot by generating the fluid direction around the knot 

([71]). 
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Figure 5.28. Most of the knots show a grain variation in the grain angle profile. The top two 

profiles are grain angle profiles o f the top half and bottom half o f the specimen #100. The 

bottom image is the X-ray image o f the same specimen. 
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5.9. Suf f ic iency o f s a m p l i n g rate; the p r o b l e m o f reso lut ion 

The sampling rate of the natural properties of wood that is regarded as the resolution of 

the measurement system can have direct impact on the accuracy of the estimation because 

it can change the information content o f the input signal to the estimation process. The 

resolution o f the image compared to the size o f a knot is the controlling factor in 

geometrical feature sets. The longitudinal resolution o f the current X-ray image is close 

to 3mm (-1/10 inch), which is very much smaller than the size o f strength determining 

knots. 

In the following, the effect of the sampling rate of the signals on the estimation accuracy 

wil l be studied by using Fourier analysis of M O E and SOG. B y comparing the spatial 

distance o f measurement points (along the board) with the sampling instances of an 

analog signal, one can analyze the sufficiency of the sampling rate for measured signal. 

A s wi l l be shown in the following, the sampling rate of the slope o f the grain signal and 

the modulus o f elasticity signal are much more than the signal bandwidth, therefore no 

aliasing takes place and no part of the information is lost. Figure 5.30 shows the Fourier 

transform o f an M O E signal. In order to capture the effect of the sampling rate, the 

average of the signal is removed. Figure 5.30, shows that the bandwidth of the signal is 

much less than the sampling rate. 

The zero mean MOE profile of specimen #3 Discrete Fourier transform of the MOE profile (specimen *3) 

100 200 300 400 SOO 800 TOO SOO 

sample number along tne board (n) 

Figure 5.30. The measured signal and its Fourier-transform o f a typical M O E profile with 

zero mean (specimen #3). 
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m = The measured M O E profile of the board 

m'= m -m = The zero mean profile (shown in Figure 5.30) 

M(k) = \jtm'(ri) e * * " 1 ^ (57) 

A s is shown in Figure 5.30, the maximum of the Fourier transform magnitude (|M(k)|) at 

low frequency is more than 275 (max(|M(k)|)>275), and the magnitude o f the Fourier 

transform is less than 0.8 (|M(k)|<0.8) for k>300. Therefore, the energy of the signal at 

the tail o f the Fourier transform (near k=400) is much less than the energy at low 

frequency levels (k<50) therefore the measured signal wil l not be affected by aliasing. 

Similarly, the grain angle profile and its discrete Fourier transform are shown in Figure 

5.31. The average of the grain angle profile is not removed because the average grain 

angle is usually small. 

A measired grain angle profile of speamen #3 dscrele Fouler transform ofthe gram a r ^ pro«e (specimen <G) 

E800| 

Figure 5.31. The measured signal and its Fourier-transform o f a typical S O G profile 

(specimen #3). 

Similar to equation Figure 5.31, the discrete Fourier transform o f the grain angle profile 

can be written as follows. 

s(n)= The sampled grain angle profile of the specimen. 
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n - The sample number. 

N= Total number of samples in a profile. The number of samples is 1300. 

S(k) = The discrete Fourier transform of s(ri), defined as follows: 

S(k) = jjSt s(n) e^->xn-.yN k=\,...,N (58) 

A s is shown in Figure 5.31, the maximum of the Fourier transform magnitude (|5(A:)|) at 

low frequency is more than 300 (max(\S(k)\) > 300), and the magnitude o f the Fourier 

transform is less than 20 (\S(k)\ < 20 for k > 600). The energy of the signal at the tail o f 

the Fourier transform (near k = 650) is much less than the energy at low frequency levels 

(k < 200) therefore the measured signal wi l l not be affected by aliasing. 

5.10. P r e p a r a t i o n o f spec imens a n d m e a s u r e m e n t process 

During the course of this thesis two complete sets of data were produced and analyzed. 

The first set o f boards was used for developing the required skills and producing the 

programs. The second set of boards was used for actual analysis and comparison of 

models and methods. 

The boards were selected from typical production from mills in B C . A few o f the boards 

had suffered damage during shipment and were removed from the database. Once the set 

of boards for the experiments was selected each board was assigned one number (starting 

from 1). The code o f each board was written on one cross-section o f the board and was 

used in all the measurements. B y using the board code the direction and side were 

assigned to a board by having the code in front and upward (not upside down). This 

direction was needed to be consistent through X-ray measurement for geometrical feature 

extraction. 

The boards were dry (moisture content less than 12%). The moisture content of the 

boards was measured before all the measurements to make sure that the boards remain 

dry. The boards were kept under roof and away from rain and snow. For transportation, 
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the boards were first wrapped in plastic covers to make sure that they are kept from the 

elements. 

The CLT™ machine has two outputs ( B N C connections) that port the (amplified) output 

voltage of the two M O E sensors. A n Atlantis data acquisition board (in a laptop) with 

five channels of analog inputs (only two channels were used) was connected to the CLT™ 

output port. The driver program o f the data acquisition board had the option o f 

transforming the existing data files from binary to text. This option was later (in the 

laboratory) used to transform the data file format from binary to text format. When the 

size o f the data files was not too big, (i.e., it could be saved on internal hard-drive), the 

text format was more desirable because the file could be checked by a variety o f different 

applications and proved useful through the experiments. 

The Newnes Advantage2 X-ray machine has a set of measurements and wood cutting 

tools that are controlled by a group o f computers. This machine also had a conveyor 

system that consistently moved the board through the machine. The output of the X-ray 

sensors was saved in the machine's memory. The data files were then downloaded from 

the computer and transferred to the laboratory at U B C . The Newnes Advantage2 output 

files were named in sequential order. A s each board was going through the machine an 

assistant registered the code of the board. The table was later used to change the file name 

so that it showed the board code. This wil l be explained in detail later. 

Removing the surrounding area 

In the following, three terms wil l be used frequently that should be defined first. The 

measured signal is related to what is saved in a data file. There can be more than one 

measured signal in a data file. For example a M O E data file contains two measured 

signals. The measured signal o f a data file ( M O E , S O G , or X-ray) either contains a 

measured one-dimensional profile (or simply a profile) of the board or it contains an 

image (X-ray image) of the board. We use the term profile for one-dimensional profiles 

as well as the images. 

A l l the measured signals contain a surrounding area to each profile. For one-dimensional 

profiles the surrounding area is the output of the measurement system before and after the 
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actual profile. For X-ray images the surrounding area is the part o f the image that is not 

covered by the board. The surrounding area contains only measurement noise and is 

easily separated from the measured profile by thresholding as follows. Since the density 

of clear wood in X-ray image is detected by statistical methods, the threshold level was 

set to be almost half of the density o f clear wood. A scan algorithm searches for the 

beginning and the end o f the board in two dimensions of the image. Starting from the 

start or the end of each axis of the image, the scan algorithm searched for the point where 

the measured density level was more than the threshold level and marked them as the 

beginning or the end o f the X-ray image. 

The surrounding area in M O E signals was only the noise level (at a level of 0.001 volt) 

that was much below the M O E profile level (at least 2 volts). In order to extract the 

measured M O E profiles from the data files a fixed threshold level (0.1 v) was used. 

Starting from the start or the end o f a profile, a scan algorithm searched for the point 

where the measured signal level was more than the threshold level and marked them as 

the beginning and the end of the M O E profile. As was discussed in Chapter 2 the 

dynamic bending machine (CLT™) produces two M O E profiles. I f the two profiles are 

significantly different it shows that the board is bent. In order to reduce the effect of the 

bend in a board the average of the two profiles was saved as a third output signal o f the 

dynamic bending machine. Therefore, the number of M O E profiles is three. 

In the capacitance-based grain-angle-measuring system the output is kept constant when 

the measurement head is not in contact with wood. For finding the beginning and the end 

of the measured grain angle profile, the scan algorithms search for any sudden change in 

the measured signal. Once the two points (start and end) are marked a small portion o f the 

profile that corresponds to a few centimeters of the length of the board were removed in 

order to exclude the transient response o f the measurement machines. The output was 

considered as the measured profile o f the board and was used for feature extraction. 

There were six measured profiles per specimen. The structure o f the capacitance based 

grain angle measurement was discussed in Chapter 2. The size o f the head was about 5 

cm. In order to cover the wider face of a board two scans were carried out. Also, one scan 

for each narrower face of a board was carried out. Therefore, the output o f the 

capacitance based grain-angle-measuring machine is six signals. 
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Similar to M O E signals the surrounding area in Microwave signals was noise. In order to 

extract the measured grain angle profiles from Microwave signals the average o f the 

signal was used as a threshold level. Starting from the start or the end o f a profile, a scan 

algorithm searched for the point where the measured signal level was more than the 

threshold level (half the average of the measured signal). The rest of the algorithm is the 

same as that o f the capacitance based system. The output signals of the Microwave 

system were; grain angle, grain alignment, longitudinal signal amplitude, transverse 

signal amplitude, longitudinal signal phase, and transverse signal phase. 

Table 2: The number of output signals of measurement machines 

Board density 

(X-ray) 

Grain angle 

(capacitance 

based) 

Grain angle 

(Microwave) 

Modulus of 

Elasticity 

(CLT™) 

The number 

of output 

profiles 
2 6 6 3 

The type o f 

output profile 

Two dimensional 

density image 

One 

dimensional 

profile 

One 

dimensional 

profile 

One 

dimensional 

profile 

Practical considerations and the database 

Boards were first coded in the laboratory and few broken specimens were removed. The 

broken specimens have been broken in transportation or have a relatively large fracture 

along and partly across the board. The board code was written at the cross section o f each 

specimen. 

There was little or no control on keeping the order of specimens in a set when the 

specimens were to be taken from a bundle. 
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A l l the data files that were produced by the measurement machines were in sequential 

order with regard to the measured specimen. For example the name of the stored data 

files from the dynamic bending machine were CLT_0001.data, for the first specimen that 

was measured and CLT_0002.data for the second specimen. 

In every measurement process the code of every passing board was registered by an 

assistant as follows: 

1 0014 

2 0528 

Therefore, it was known that the file CLT_0001.dat was related to specimen 0014 and 

that the file CLT_0002.dat was related to specimen 0528. 

It is obvious that any mistake in registering the specimen code would directly cause a mix 

up in the database. The experiments had to be finished within a limited time slot due to 

the availability o f the Newnes machines. Therefore, there was little chance for repeating a 

part o f an experiment. 

In order to avoid specimen mix up there was a repeated measurement of the same 

specimen as is explained in the following. After a specified number (say 20) of the 

specimens were measured the last specimen was measured again. This repeated 

measurement made two relatively identical data files in the measured data files. 

Table 3: Specimen file names 

Sequence of the passing 

board 

The board code Final file name 

1 0014 CLT_0001.dat 

2 0528 CLT_0002.dat 

19 0751 CLT_0019.dat 
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20 1049 CLT_0020.dat 

21 1049 CLT_0020.dat 

40 0081 CLT_0040.dat 

41 0081 CLT_0041.dat 

Any error in registering the board codes would appear as a shift in this table. There was 

rarely any mistake in registering the board, however, any error would cause a number 

(usually 20) to either be removed from the database or be sent back for another round of 

measurement. In the end, the table of specimen codes would match all the (remaining) 

data files. 

Then based on the board code table, the data file names were changed so that the file 

name represented the board code. For example, 

1 0014 CLT_0001.dat 

CLT__0001.dat -» Landmark_CLT_0014.dat 

If possible, the format of the data files was also changed to an easier to handle format for 

future research. 

Landmark_CLT_0014.dat -> Landmark_CLT_0014.txt 

The strength o f all the boards was recorded in one file, which contained two columns, one 

for board code and one for the registered strength. The database is a structure of 

directories that represent the related measurements as follows. 
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I L G S 

X-ray 

Edge 

| NewnesX_e_0014.dat 

I Flat 

I NewnesX_f_0014.dat 

— C L T 

| Landmark_CLT_0014.txt 

Microwave 

' CAE_MW_0014 . tx t 

' Strength 

1 ILGS_strength.txt 

Figure 5.32. The database structure. 

The X-ray files are binary files that contain 128x1400 matrices. Each element is 

represented by 16 bits. The CLT™ file is a text file that is a matrix of 4000x3. The first 

column is the location indicator, the second column is the first dynamic bending machine 

profile (cell 1), and the third column is the second dynamic bending machine profile. The 

microwave file is a text file that contains a matrix o f seven columns. The first column is 

the location indicator, and other columns (as was said before) were the related grain 

angle, grain alignment, longitudinal signal amplitude, transverse signal amplitude, 

longitudinal signal phase, and transverse signal phase. 
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The strength file is a text file that contains a matrix of size two columns; the first column 

is the board code, and the second column is the tensile strength (MPa). 

A l l the board codes o f the specimens in the database are included in a specimen list text 

file (ILGS_boards.txt) that is placed in the I L G S directory. 

A data processing program reads the board codes from the specimen-list file, generates 

the name of all the related data files, and loads the files from the pre-specified directories 

of the database. 

5.11. S p e c i m e n C h a r a c t e r i z a t i o n 

In a pilot study in the Wood Science Department of U B C , the statistical features were 

applied to the raw data. In the work reported here the following features were computed. 

For one-dimensional profiles the average, minimum, maximum, standard deviation, 

variance, the standard deviation o f the absolute value, Fisher skewness, Fisher kurtosis of 

the profile are the feature set of the profile. These features are compatible with those used 

in previous statistical analysis in the Wood Science Department of U B C . These features 

characterize the board. Fisher skewness (sk) and Fisher kurtosis (k) are defined as 

follows. 

^ w = ^ 5 £ i ^ ( 5 9 ) 

k M = N £ L l ^ 1 ( 6 0 ) 

In the above equations, x is the variable, N is the number of samples in the profile, x is the 

average value o f the variable, and cris the standard deviation o f the variable x. 

For X-ray feature definition the geometrical features were produced. From the X-ray 

images of the board the knots were detected and a model board was generated. The 

coordinate of a knot is shown in Figure 5.33. For each knot the centers (xy,z) o f the two 
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end ellipses and the diameter o f the cone at the two centers were saved as the parameters 

o f the knots. For each knot the characterizing features are as follows. 

1. Fy Volume 

2. F2: Axial deviation (average distance of the knot pixels from the center o f the 

board), 

3. Fy Axia l standard deviation (standard deviation of the knot pixels form the center 

o f the board), 

4. F4: The ratio o f small diameter to the large diameter, 

5. F5: Closest distance to a neighboring knot, 

6. F6: Knot area ratio ( K A R : the ratio of a knot cross-section to the board cross-

section) 

Figure 5.33. The coordinate o f a knot in a board 

These features were processed to produce a final set o f features as follows. 

1. The average o f knot area ratio (F 6 ) over all the knots of the board 

2. The maximum of knot area ratio (F 6 ) over all the knots o f the board 

3. The standard deviation o f knot area ratio (F^ over all the knots of the 

board 

4. The average of axial deviation (F 2 ) over all the knots in the board 
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5. The standard deviation o f axial deviation (F2) over all the knots in the 

board 

6. The average o f axial standard deviation (F 3 ) over all the knots 

7. The standard deviation of axial standard deviation (F 3 ) over all the knots 

8. The board distribution mode. This feature is equivalent to the density o f 

clear wood of the board. 

9. The standard deviation of the density distribution of the board 

10. The variance of the density distribution of the board 

11. The average of the distance between neighboring knots (F 5 ) . For each knot 

the neighboring knot is the closest knot. 

12. The standard deviation of the neighboring knot distances (F 5 ) over all the 

knots in the board. 

13. The number of knots in a board 

14. The ratio o f knot volume to the board volume 

15. The board volume is identified by the X-ray image 

16. The board density, which is the summation of the density over the board. 

This feature is the summation o f all the pixels of the X-ray image of the 

board. I f two images exist, the average o f this feature for two images is 

used. 

Geometrical feature extraction program 

The flow chart of the knot detection program is shown in the following. This program is a 

part of geometrical feature extraction program that follows. 
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Fetch a board code from the board 

list 

* 
Load flat wise and edgewise images 

Run knot extraction routine 

* 
Save geometrical features of the specimen 

Figure 5.34. The general flow chart of geometrical feature extraction program 
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Extract board image from the X-ray image 

Find mode 

$ 
Discretize the image by using thresholding 

Run knot extraction routing 

A vector of all knot patterns in flatwise image 

Extract board image from the X-ray image 

* 
Find mode 

Discretize the image by using thresholding 

if A vector o f all knot patterns in edgewise image 

Run knot extraction routine 2 

Scan for all matching patterns in the two vectors 

4r A l l knots in the board 

Regenerate each knot from their parameters and extract features 

i r A list o f all features of all knots 

Extract the geometrical features of the board from knots features 

Figure 5.35. The flow chart of the knot extraction routine 

Knot pattern extraction routine is as follows: 
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i 
Search for a non-zero element in the 

discretized image. 

return 

Starting from this point find all the non-zero 

elements that belong to the same pattern 

Extract the features of this pattern and save 

them 

Figure 5.36. The flow chart o f knot extraction routine 2 

Statistical feature extraction program 

The feature extraction program for one-dimensional profiles is the same for grain angle 

and for dynamic bending machine profiles. Only the threshold levels are adjusted. 

117 



* 
Fetch a board code from the board list 

Generate the file name and the directory name 

and load the data file 

Scan for the beginning and the end o f the 

profile 

A vector that represents the measured profile 

I 
Extract the statistical features 

Save the features 

Figure 5.37. The flow chart o f the statistical feature extraction program 

The output of each feature extraction program is a matrix whose first column is the board 

code and other columns are the extracted features. Once all the feature files are generated 

one output file is produced that is the combination of all the extracted features. The first 

column is the board code, then all the features (dynamic bending machine, Microwave, 
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and Geometrical features), and the last column is the measured strength of the specimen. 

This file is used in all the learning algorithms of Chapter 6. 
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Chapter 6. Strength Estimation; Empirical Learning for 

Small Sample Size 

The final stage of the strength estimation process is the empirical learning problem. Once 

the feature set is defined and the strength of each specimen is measured, a suitable 

machine should be chosen in order to produce the best predictive model. Due to the high 

cost of generating a learning set for wood strength estimation, the number of specimens 

in the training set is very limited. Therefore, a number of different learning machines 

need to be examined to discover what model works best. 

The problem of learning (or function approximation) can be stated as finding the optimal 

parameters of the approximating function by minimizing a risk functional. The type of 

input variables (continuous or discrete) and the task (regression or classification) of the 

function should be defined. A s were shown in the previous chapters the features of a 

board, which are the input variables o f the approximating function, are numeric variables. 

The approximation problem is to find a regression function to estimate the strength of a 

new board. 

In Section 6.1 a review of learning systems is presented in order to create the common 

ground for various learning machines for strength estimation, as described later in this 

chapter. In this section the principles and components of a learning method are discussed 

and the relationship between two accuracy measures (also called performance criteria), 

such as the mean square error and the coefficient of determination is presented. The 

coefficient of determination between measured and estimated strength is used in the 

standard o f wood grading. Mean square error is usually recognized as the measure of 

accuracy in learning methods. 

The problem of high dimensionality for feature space is discussed in Section 6.2. The 

high dimensionality of feature space is known as "the curse" or complexity of 

dimensionality ([54]). 
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In Section 6.3 a review of the theoretical upper bound ([66]) on the error o f a learning 

system is presented. The upper bound o f the error is a function of sample size and the 

learning capacity o f the learning system. Therefore, in Section 6.3 the relationship 

between the sample-size, the learning-capacity o f the learning machine, and the 

estimation error is presented. The learning-capacity o f a learning machine is the factor 

that defines how suitable the machine is for the given task. The understanding that is 

developed in this section wil l later be used in the A S E C model (Section 6.6). A practical 

method for measuring the learning capacity of a classifier exists in the literature ([73]). 

The equation of the upper bound error is valid for both classifiers and regression 

estimators ([81]), assuming that the learning-capacity o f the machine is known. A 

practical method o f learning-capacity measurement for regression estimators is presented 

in Section 6.4. The learning capacity of regression estimators is defined based on the 

definition o f the learning capacity o f classifiers and thus, the presented capacity 

measurement method for regression estimators is based on the existing method for the 

learning-capacity measurement of classifiers. 

Different learning machines that have been used for strength estimation are discussed in 

Section 6.5, and the A S E C algorithm is presented in Section 6.6. The existing learning 

machines o f Section 6.5 are linear regression, K-nearest neighbor ([74]), the radial basis 

network, the multi-layer neural network ([75]), and S P O R E ([21]). 

Parametric Learning Machines 

The linear regression method is commonly used in practice and is a parametric learning 

machine. Parametric learning machines develop a model by assuming that the data 

distribution has a known parametric form. A parametric learning machine can result in 

constant error due to irresolvable biasing, because o f the restriction imposed by the fixed 

structure o f the approximating function. 

Nonparametric Learning Machines 

Neural networks, K-nearest neighbor, S P O R E , and A S E C , are non-parametric learning 

machines. These machines reduce the bias error by changing the complexity (see sub-

Section 6.1) o f the learning machine. A simple multi-layer neural network consists o f 
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three layers (input, output, and middle layers) with one layer (middle layer) for non-linear 

mapping of the input to the output ([75]). The K-nearest neighbor algorithm and radial 

basis networks estimation methods are also called memory based learning machines and 

do not generate a model from the given data but predict the output for a new specimen by 

finding its closeness to the given samples. 

S P O R E is a learning method that was developed for learning conditions similar to that 

dealt with in this research. A s explained in Chapter 4, a minimum set of features is not 

known. Therefore, there may potentially be a group o f features that are poorly correlated 

with the tensile strength o f a board. S P O R E was developed specifically for this condition 

and for when a large number o f features and noisy input and output exists with no a 

priori knowledge about the input-output (i.e., feature-strength) relationship. 

The A S E C algorithm is developed in this thesis in order to include the a priori 

knowledge about the input-output (feature-strength) relationship in the learning process. 

In A S E C , the features and the input-output transformation are selected such that the 

estimation error is minimized. The a priori knowledge is included in the form of input-

output transformations. A S E C uses subset selection ([82]) and space expansion ([83]) and 

learning system error estimation (Section 6.1 and [81]) in order to transform the given set 

of features to a new set of features with minimum size and best accuracy of estimation. 

6.1. S t r e n g t h es t imat ion as a n e m p i r i c a l l e a r n i n g p r o b l e m 

In this section the problem o f wood strength estimation is looked at as a learning 

problem, or equivalently, a function approximation problem. The problem of learning (or 

function approximation) can be modeled as finding the optimal parameters o f the 

approximating function by minimizing a risk functional. The type o f input variables and 

the task of the function should be defined. A s were shown in the previous chapters the 

features o f a board, which are the input variables o f the approximating function, are 

numeric variables. The approximation problem is to find a predictive model to estimate 

the strength of a new board. 
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The process of data generation and the learning problem are shown in Figure 6.1. The 

sample space is the collection o f boards randomly picked from a typical mill-run in the 

region. It is assumed to be a typical sample o f the board production. The actual strength 

affecting factors are denoted by F. These factors may or may not be measurable. The 

A 

feature set presented to the learning system is denoted by F. These features were 

presented and discussed in Chapter 5. The measured strength of the board (the output o f 

the destructive test) is denoted by S. The learning system estimates a dependence between 
A A 

F and S. The estimate o f the strength is the output o f the learning system (S). 

A board from the 

sample space 

F 
Actual Failure process 

Measurement and 
feature computation 

A 

F 

•> s 

Learning system A 

s 

Figure 6.1 The learning problem 

It is obvious that the input variables to the learning system are not the same as the actual 

factors of the failure process. This has been explained in detail in previous chapters. The 

A 

features in F are the features, among measurable features, that are reasonably related to 
A 

board strength. The learning system uses S and F to generate an estimate of the strength 

A 

(S). The whole strength estimation problem is then formulated as follows: 

S=S + e (61) 

In order to separate the analytical discussion of the function approximation problem from 

the wood strength estimation problem, the regular notation in the literature is used in the 

A A 

following. Therefore F is denoted as x and S is denoted as^y. The estimated strength, S, is 
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denoted asj\x,w) (ory) which is the output o f the approximating function and w denotes 

the set of parameters of the learning system. 

The learning problem is stated as estimating the parameters o f the approximating function 

in order to find the best mapping from x to y from a set of given (x^y). A set o f 

approximating functions, flx,w), are chosen to estimate the dependence. It is assumed that 

the dependence between x and y can be modeled by the chosen set off[x,w). The choice 

of the approximating function depends on the researcher and depends on the nature of the 

dependence between x and y. Different forms of J\x,w) were tested in order to find the 

best model. 

A learning problem can be formulated as a minimization problem. The goal is to 

minimize a risk functional, R(w), which determines the difference between the actual 

dependence between x andy, and the estimated dependence that is modeled by f[x,w). 

R(w) = fL(y,Ax,w))p(xy)dxdy (62) 

A common empirical risk functional, which is an estimate o f R(w), is used for regression 

purposes as shown in equation (64). 

L(y,fix,M>)) = (A^)-yY (63) 

The risk functional can be estimated as follows. 

Where R (w) denotes the empirical risk functional that wi l l be minimized in the 

estimation problem. The parameter vector w is the vector o f all the adjustable parameters 

o f / O -

Therefore the dependence between x andy is estimated as shown in equation (65). 

y=fix,w) + e (65) 

Equation (65) is equivalent to equation (61). The difference between j> and j\x,w) can be 

contributed by two factors: the inherent difference between the true dependence (between 
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y and x) and j\x,w), and the measurement noise. In a small neighborhood in the feature 

space the risk functional can be written as in equation (66) ([72]): 

EMx,w) - yf] = E[ (few) - Efew)] f]+(y- E\fe,wW (66) 

The function E(.) represents an average over all training samples. The first term of the 

right hand side o f equation (66) is the variance of the approximating function. This term 

is related to the complexity o f fe,w) and wil l be explained later. The second term is the 

square of bias error, which is the actual error between the approximating function and the 

true dependence. 

The complexity offe,w) defines how fast / changes with respect to the variation of its 

input, x. The complexity offe,w) can be measured with respect to a given set of data (as 

wil l be done later). However, the complexity of a function may be defined by using the 

number o f its parameters. For example for a linear model, the complexity of the function 

is equal to the number of coefficients. Generally speaking, depending on whether the 

complexity offe,w) is low or high, the dominant estimation error can be bias error or 

variance error. 

Informally speaking, i f the complexity o f / is limited, the resulting approximating 

function cannot follow all the variations o f the measured output and the bias error wi l l be 

dominant in equation (66). In this case, the variance error wil l be limited. A n obvious 

form o f bias error happens when the set of approximating functions cannot estimate the 

true dependence, for example, trying to approximate a second-degree dependence (y = x2 

) using a linear regression. 

I f the complexity offe,w) is too high, the variance error wi l l dominate equation (66). The 

variance error is a result o f having a limited number o f specimens for training the 

learning machine. In this case, i f the complexity offe,w) is too high, the approximating 

function follows all the variation ofy that is caused by the noise. 

Assuming that fe,w) can model y, minimizing R^Jw) as shown in equation (64) 

generates little bias error in training stage, but large error results due to the variance o f 

the resulting function, fe,w*). Therefore, a second factor to be rmrrimized is the 

complexity of the estimating function fe,w). Therefore, finding the right parameters of 
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the approximating function in the learning problem means finding a compromise between 

the bias error and variance error. 

Model development 

In order to solve the model development problem four stages are followed: 

1. a set o f approximating functions is chosen; 

2. the a priori knowledge or assumptions are used to place constraints on the 

approximating function (in order to reduce the variance error); 

3. an inductive principle is chosen in order to reach a solution and compare 

the results (Section 6.1.2); 

4. a learning method (e.g. an optimization algorithm) is developed in order to 

construct the approximating function based on the inductive principle. 

Each o f the parts o f this process is explained in the following. 

The structure of the approximating function j%x,w) depends on the choice of the 

designer. The definition of the approximating function's complexity is related to a priori 

knowledge about the type of dependence. Basically, J{x,w) belongs to a wide class of 

functions. Most of the time the approximating function, fix,w), is generated by using a 

class of basis functions. Based on the type of the basis functions, the approximation 

method can be called universal or local. Also based on the freedom o f the class of basis 

functions the approximation method is called parametric, semi-parametric, or non-

parametric. In parametric form the shape o f the approximating function is defined a 

priori (e.g. linear regression) while a non-parametric structure uses the data to find the 

right shape o f the approximating function. In a semi-parametric form (also called 

dictionary method) there is a limited number of basis functions that a designer can choose 

from. For example, linear regression is a parametric structure o f an approximating 

function, and a multi-layer neural network is a semi-parametric form o f structure. A n 

example of the universal approximator is x* that can construct the polynomials 

(J\x,w) = 1) w. x*). The S P O R E algorithm is a non-parametric structure that wi l l be 

introduced in subsequent sections. 
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The a priori knowledge can be used to limit the set of approximating functions, or limit 

the optimization goals. For example, the early stopping rule in multi-layer neural 

networks limits the complexity o f these learning machines. 

There are different inductive principles that lead to defining the complexity term and 

minimizing the risk functional of equation (62). These principles are Bayesian inference, 

the penalization principle, the neural network early stopping rule, the minimum 

description length, and the structural risk minimization ([66]). A s wil l be shown, we wil l 

use the penalization principle and the neural network early stopping rule. Structural risk 

minimization also overlaps wit work in this project, but does not add to it, and therefore, 

is not studied in detail. 

In the penalization inductive principle, R^fiv) is defined as follows: 

RJM = \ t(Ax,w)-y)2 + A d>mw)] (67) 

where AO\f[x,w)] is the term that measures the complexity of the approximating 

function. The penalization functional, <I>[/(x,w)], is defined based on a priori knowledge 

o f the data. The regularization parameter, A, is derived from the data in order to make the 

learning problem data driven. This means that A should be chosen so that minimizing 

R^Jw) is equivalent to minimizing R(w). In the neural network early stopping rule the 

complexity penalization term is controlled by limiting the repeated training steps. 

The complexity of the approximating function can be defined in different ways. The 

penalty functional, Of.] , can be parametric or non-parametric. I f a function of the 

parameters o f the approximating function defines the complexity o f the approximating 

function, the complexity functional is called parametric. I f the penalty functional restricts 

the shape o f the approximating function it is called a non-parametric penalty functional. 

For example, £ w] is a parametric penalty functional while Of/] = J " ^ ^ ds (for a given 

filter G(s)) is a non-parametric penalty-functional. The complexity of the learning 

methods used in this research is explained with the learning methods. 
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For a given Of/fow)], finding the right X is called complexity control or model selection. 

A s mentioned above, the right X is chosen so that minimizing the empirical risk 

functional is equivalent to minimizing the actual risk functional. In order to do so, an 

estimate of the actual risk functional should be obtained. Then for a series of X, the 

approximating function is found by minimizing the empirical risk functional. 

w* = argmin ,w) - yj + X ®[j%x,w))} (68) 

The desired value o f X is the one that produces an approximating function, fl{x,w*), which 

minimizes the estimated risk functional. Here w* is the vector ofthe parameters offix,w*) 

. The input-output relationship is estimated by the following equation: 

y,=/(*X) (69) 

In order to evaluate the risk functional two approaches can be taken: analytical and 

numerical. In an analytical approach, the actual risk functional is related to the empirical 

risk functional by the following equation: 

RM-ri^RJp) (70) 

where r(.) is called the penalization function, h is a measure of the degree of freedom of 

the data set and is similar to X. n is the number o f specimens. This approach is commonly 

developed for linear estimators. 

Cross-Validation 

In the cross-validation technique the data set is divided into two sets, one for training the 

learning machine and the other for finding the accuracy of the developed learning 

machine. Therefore, the cross-validation technique uses the data for approximating the 

actual risk functional, R(w). In this method the actual risk functional is estimated by using 

a portion o f the data set not used for training. In this case, the data set is divided into two 

parts: one part for estimating the parameters of the estimation function, and the second 

part (validation set) for estimating the risk functional. In this case, different values of X 
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can be used for developing the approximating function and the estimation o f risk 

functional is used for choosing the optimal regularization parameter (Z*). 

A n effective method of estimating the risk functional is k-fold cross validation. For 

example, in ten-fold cross validation, the specimens of the data set are randomly 

categorized into ten groups. Producing the approximation function and estimating the risk 

functional is repeated as follows. Each group in turn is considered as the validation set. 

The rest of the data set is used to develop the approximating function. For the group /' the 

risk functional is then estimated as follows: 

rr^VWLXj^-yjV (71) 

The estimation of the actual risk functional is as follows: 

R(w) « | z r (72) 

The above learning method is good for understanding the learning process. However, in 

practice other methods can be followed that accomplish the same goal with less effort. 

For example, in training the neural networks the number o f neurons in the middle layer 

and the training goal are two factors that can define the complexity of the network. 

Therefore, a two dimensional search can be completed by using the cross-validation 

technique in order to find the optimal values. 

Risk functional 

The learning system usually minimizes the risk functional but it is customary (from a 

statistical point o f view) to compare different random variables by using r2, the 

coefficient of determination, defined by the following equation: 

(73) 
* y 

The coefficient of determination, r2, is related to the risk functional Z (y, -ft*))2 in the 

sense that the maximum of r2 happens when the minimum of Z (y, -fix))2 is happening. 
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The following relationship between r1 and Z (y,-AX)Y 1S the basis of the comparison (see 

[84], pp. 531). 

/ J = 1 - [ ^ E ( X - ^ , ) ) 2 ] / ^ (74) 

Therefore, the risk functional is a Euclidean norm o f the estimation error and the 

approximating functions are U (Lebesgue integrable) functions. 

The ten-fold cross validation technique can be used to estimate the risk functional. In this 

technique, the data set is divided into two parts, one for developing each model and one 

part for testing all the models as to how well they can predict the model. In order to do so 

the data set is randomly sorted and 10% of the data is separated for the final prediction 

test. The training data set is also sorted for 10 fold cross validation. Here, the data set is 

randomly grouped into ten sets. In each repeat of the training, one of the sets (without 

replacement) is picked for testing. The remaining nine data sets are grouped into the 

training data set used for model parameter estimation. The tenth set, which is the test set, 

is used to find out what the risk functional value is. The process is repeated ten times; 

therefore, ten values of the risk functional are obtained. The average of these estimated 

risk functional determines how well the model works. 

6.2. H i g h d imens iona l i ty o f the feature set 

A s mentioned above and seen in Chapter 5, the representative features are logically 

chosen such that they seem to be best correlated to strength. The feature set therefore 

would be high dimensional. The high dimensionality o f the feature set makes it difficult 

to develop an estimator that can desirably estimate the tensile strength because the 

samples are not densely distributed in the feature space. This issue, which is called "the 

curse of dimensionality", is a restricting factor. This problem is usually dealt with by 

placing restricting constrains on the approximating function^*). This means thatX*) wil l 

be o f lower complexity, or of smoother function. 
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There are four issues that affect the function approximation process when dealing with 

high dimensional data as follows ([72], [21]). First, the number of samples needed for 

generating the same density o f the data (in the feature space) increases exponentially with 

dimension. Second, as the dimensionality of the feature space increases, in order to cover 

a fraction of the feature space volume (e.g. a hyper cube) a greater portion o f each axis is 

needed. Third, in the unit hyper-cube every point in the feature space is closer to an edge 

than to a neighboring point. Fourth, for every point in the feature space all other points 

look close to each other. Therefore every point can look like an outlier and the concept o f 

interpolating between sampling points (that is usually associated with function 

approximation) can be deceptive. 

Distance of one specimen from others in the feature 
101 1 1 1 1 T " 
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Number of other specimens 

Figure 6.2 Distance o f all other boards from a sample board. The Figure shows that the 

average o f the distance is less than 3 while the distance from the closest point is more 

than 1. 

Figure 6.2 demonstrates the high dimensionality o f the feature space by showing the 

variation o f distance from a randomly selected point. This Figure shows that the 

Euclidean distance of a point (in the feature space) from the neighboring points is close to 

1, while the average distance o f the point form all other points is between 2 and three. 

Since Figure 6.2 is produced from the feature set o f this thesis, it is a demonstration of the 
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high dimensionality issue in the strength estimation problem. The number of features is 

88 and the number o f specimens is more than 1000. 

6.3. T h e re la t ionsh ip between es t imat ion a c c u r a c y , l e a r n i n g capac i ty , 

a n d s a m p l e size 

In order to get an estimate of the structure o f the learning system, one can use upper 

bound error estimation based on the learning capacity of a learning machine. The learning 

capacity of a learning machine (also called the VC-dimension) is a measure o f how well a 

machine can learn the training data. I f the learning capacity o f the machine is very low, 

the machine cannot learn the variations in the training data and the trained system wil l 

produce a bias error. I f the learning capacity o f the machine is too high, it wil l generate a 

variance error, or the model wi l l simply over-fit its parameters. I f the learning capacity o f 

a learning machine is known, statistical learning theory provides the framework for 

analyzing bias error and variance error. The result o f this theory tends to be conservative; 

that is, an over estimation of error is produced. Therefore, the cross validation technique 

is used for producing the estimation o f error. The upper bound of error guides the design 

of the learning machine. 

The learning capacity o f a learning machine defines how much o f the variance in the 

learning data can be learned by the machine. The learning capacity o f a learning machine 

is roughly equal to the number of specimens (number of samples in the training set) that 

the learning machine can learn without generating any error. For a limited learning set 

size, this factor controls the estimation error. Small learning capacity causes bias error 

and large learning capacity causes variance error. A n estimate of the learning capacity (or 

VC-dimension) of a learning machine can be measured for a classifier ([73]) and a 

regression estimator (see Section 6.4). This measurement is based on repeating the 

machine training-step numerous times and measuring the variance o f error at each 

learning step. Therefore, this approach becomes impractical for cases where training a 

model is already difficult. 
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In order to find the optimum learning capacity of a learning machine, the designer can 

adjust a controllable learning factor such that, theoretically, by finding the bounds, or 

practically by measuring estimation error, the performance o f the system is improved. In 

the case o f polynomials, one of the controlling factors o f the learning capacity of the 

machine is the number o f terms of the function. For multi-layer neural networks the 

number o f neurons o f the hidden layer, for K-nearest neighbor the size of neighborhood 

(K), and similarly for radial basis functions the size of the neighborhood (the radius of the 

radial function) controls the learning capacity of the machine. 

In the case of K-nearest neighbor and the radial basis function, the functions locally 

minimize the risk functional. But i f K or radial function radius is kept constant, the 

overall estimation error can be used for finding the optimum K or radial function radius. 

If the estimation error is minimized at a level of the controllable learning factor, that level 

identifies the best structure of the learning system. For example, by increasing K in a K -

nearest neighbor and using 10 fold cross validation for estimation error evaluation, a 

minimum point for the error curve can be found which defines the best learning capacity 

of the learning machine for the given data set. 

A n upper bound of the estimation error can be established based on the approximation 

error when the machine is being trained. The estimation error is a function o f the number 

o f training samples, learning estimation errors (error in learning the training set), and the 

learning capacity of the machine. The learning system learns the dependence between x 

andy for X given samples by minimizing the following empirical risk functional: 

where the empirical data or the training data (zj =(x^)) is the set of X samples that was 

mentioned above: 

(75) 

(76) 

z={zp...,zj (77) 
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The empirical risk functional is an estimation (over a finite number of samples) of 

following risk functional: 

R(a) = fQ(z,a)dF(z) (78) 

Where F(z) is the cumulative distribution function. 

If the estimated parameter set that results from minimizing the empirical risk functional 

(a) is put to the test, it will produce i?(ax) estimation error. The best parameter set for the 

same learning machine could be obtained by minimizing equation (78). If the best 

parameter set is called a0, the following is the inherent error due to the limited number of 

samples. 

A(ax)=R(aJ-R(a0) (79) 

The estimated error at the training level, which is estimated by R^a), should be adjusted 

to count for the limited number of samples. This difference was derived in [81] and is as 

follows. 

R(aJ<R(a)+Be(X) 
f ' 47? (a) 

/1+ ^ x (80) s(X) 

This bound holds with the probability of I-7. The two new parameters in inequality (80), 

B and e(X), are defined as follows. 

0<Q(z,a)<B (81) 

IX 1 
/Klny+1)-Jn(77) 

£(X) = 4 (82) 

The learning capacity of the machine, h, is assumed to be known. Equations (80) to (82) 

define the learning error as a function of the VC-dimension (h) and the number of 

specimens (X) in the database. 
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6.4. E x t e n d i n g the l e a r n i n g - c a p a c i t y ( V C - d i m e n s i o n ) to regress ion 

es t imators 

In this section the Vapnik-Chervonenkis dimension related to classifiers is generalized to 

cover regression problems. Since the VC-dimension is originally defined for classifiers, 

the equivalence o f classifiers and regression estimators wi l l be demonstrated first. Then, 

based on the VC-dimension of classifiers, the VC-dimension of regression estimators wil l 

be defined. Statistical learning theory can be used for estimating an upper bound for 

estimation variance. 

The VC-dimension o f classifiers was presented in [73]. The goal is to measure the 

dimensionality o f a learning machine and derive an upper bound for the risk functional 

estimation error. In [73] a practical method was presented for measuring the 

corresponding dimension of a classifier. The analytical V C dimension for all learning 

models cannot yet be derived, thus there is a need to estimate it for any particular 

machine. The measurement is based on finding the classification error for a size o f 

training samples. B y varying the size of the training sample one can find the sample size 

that initiates the learning process. 

In this section we wil l show that the same technique can be applied to regression 

estimators as well. 

6.4.1. The equivalence of classifiers and regression estimators 

In this section it wil l be shown that under a general condition (on the output o f the 

regression estimator) a classifier and a regression estimator can easily be transformed into 

each other. 

6.4.1.1. Learning problem statement 

A classification problem is defined on a set o f (xt,a)) where x.eR" is the input space and 

0 ( e { O , l } is the output space, which is the class o f the given input. A classifier consists of 

a set of basis functions (/(.)) with a set of parameters asA. 
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The classification problem is the problem o f learning the dependence between x. and co. 

for a given class o f estimating functions j\x,a). In the empirical risk minimization 

principle the learning problem is equivalent to minimizing a risk functional on the given 

parameter space (a&A) o f the estimating functions (/Tx,a)). The risk functional is a 

distance measure and is usually the mean squared error or a similar measure. 

L%x,a) = \Z(fc,a)-a# (83) 
" i=l 

The parameter set that produces the best classification fit is denoted by a* and is defined 

as follows: 

a* = min R^a) = min \ I(/T>, a) - a,)* (84) 

A regression problem is defined on a set o f (x*y,) where X.GR" and y.sR. A regression 

estimator estimates the dependence of x. on y.. Similar to a classification problem, a 

regression problem minimizes a risk functional on the given set of estimating functions 

(f[x,a)). The risk functional is the same. 

LXx,a)=\±(j(x,a)-yy (85) 

The parameter set that produces the best regression fit is denoted by a* and is defined as 

follows: 

If one assumes that the same set of estimating functions is used for both regression and 

classification problems, then the question arises whether either problem could be stated 

by using the other. In other words, i f one has a regression estimator, is there any way to 

use it for a classification problem? Or i f one has a classifier, is there any way to use it for 

a regression problem? Solving this problem leads to the VC-dimension o f a regression 

estimator i f the VC-dimension o f the corresponding classifier is known. 
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6.4.1.2. Constructing a classifier by using a regression estimator 

The regression estimator learns the a posteriori probability (p(y\x)) at every point as wil l 

be shown in the following. For reconstructing the regression estimator, we need to 

construct a two-class classifier by using the regression estimator. In the case of a two-

class classifier, the estimating function f[x,a) can be used to define the a posteriori 

probability of p(Cl \ x) or p(C2 \ x) as follows. Establishing a classifier by using the a 

posteriori probability is the subject o f sufficient statistics [79]: 

Assuming D is the domain of x where the regression problem is defined, we can define 

the normalized regression estimator as follows: 

(87) 

C2 = {xi\y>T} /=!,...,« (88) 

J(x,a) = fyp(xy) dy = jypixy) dy + pp(xy) dy (89) 

This leads to the following necessary and sufficient conditions: 

(90) 

and 

(91) 

Then the a posteriori probability of a class can be derived as follows: 

(92) 

and 

(93) 
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Therefore, assuming the two conditions of (90) and (91) are valid, the two classes are 

defined as follows: 

C={x\Ax,a)<T) (94) 

and 

C2 = {x\f{x,a)>T} (95) 

Note that in the above there is no assumption about the type of the estimation problem 

(classification or regression). Therefore, the learning problem is reduced to training the 

regression estimator to learn the dependence (either regression or classification). The 

classification problem then results from setting a decision level for distinguishing the two 

classes. 

The two conditions o f (90) and (91) can be questions wheny(x,#) = T. Therefore, in a 

classification problem, the decision level can be adjusted so that minimum classification 

error results. The nominal decision level for a classification problem is naturally 

T = (A+B)/2 where A and B are the outputs related to either class. 
nam x ' r 

6.4.1.3. C o n s t r u c t i n g a regress ion est imator by u s i n g a class i f ier 

In the previous section it was shown that a classifier could be constructed by using the 

regression estimator. A regression function can be constructed by defining the output of a 

classifier so that it satisfies the following condition: 

The threshold level T in equation (96) is an arbitrary variable that belongs to the range of 

the regression estimator (min(y) < T< max(y)). It wil l be shown that the regression 

estimator can be constructed (as closely as desired) by using the set o f classifiers defined 

by equation (96). 

The regression estimator is developed on a training set as follows: 

V x , x , T <y<T<y)=>(a><a>) (96) 

SR-{(x^),i-K..,n} (97) 
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The estimator is developed by using equations (85) and (86). A group o f classification 

sets can be defined as follows. Assume the specimens are ordered such that y. <yM. B y 

using a decision level the output o f a classifier can be defined as follows: 

V x , x , T <y<T<y)=>(a><a>) (98) 

Then a set o f input/output can be defined that represents a class, as follows: 

Sa = {(x,a>), j= \,...,n, G)x,...,(Oi =1, G)i+l, ... , a = 0} (99) 

Then a group of n classifiers can be trained to learn the dependence in each Sa by using 

equations (83) and (84). Each classifier (Sa) is also equivalent to a classifier o f the 

previous section with the decision level of y. < T <y /+1. 

Assuming that the range o f the regression problem is limited and is divided into equally 

separated threshold levels, an upper bound for equation (85) can be reached as follows: 

A = min(y), B = max(y) (100) 

A ( = | T r T J = ( B ^ y ( n + l ) = A (101) 

The output o f the regression estimator can be approximated by the outputs of all the 

classifiers o f Sa (i = 1,... ,ri). 

yri = r.yc+A/2 (T* = max(T=l) , z'=l,... ,ri) (102) 

Where yct is the output o f the classifier ^ C i . The minimum mean squared error in this case 

wil l be as follows: 

(a*) = min L(x,a) = \ | ( v , - j ^ 2 (103) 

The error in the regression estimator can be defined as follows: 

max(l9 -fix,a)\)<N2 (104) 
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The output of the regression model and the output o f the regression estimator are related 

as follows: 

yH=A*,a) + et (105) 

Where s is the error (noise) in the estimation of the output of the regression estimator. 

This noise is uniformly distributed and is independent ofy. and j\x,d) ([80]): 

M $ N i A / 2 (106) ' 
10 |£J>A/2 

Properties o f the quantization error follow: 

E(e) = 0 (107) 

and 

o 2 = var( £) = J e2 ^de (108) 
-A/2 

^ a 12 A 12 (m+ If 

where m is the number of classifiers in the model. The variance of noise approaches zero 

as the number o f classifiers approaches infinity. 

In the following we wil l show that R^p(ct) is an upper bound for R^fa): 

\t{yt-Ax,a)-s)2 

\ p,-fix, a)?-\t(yt -fix,d» s + \t (s)2 

140 



In the two extreme cases where one o f R " (a) or Rr (a) is zero, the other one wil l be 

equal to cr 2. 

Therefore the distance o f the two empirical cost functionals is as follows: 

^l|£(y ( -A '«))- f J + d|(^2l 

«(=1 " «=i " ;=i 

Loosely accepting the following equation: 

a 2 =-2X*) 2 (111) 

we wil l have the following bound: 

s u p { ^ ( « H ? r ( a ) | } < a 2 (112) 
a 

Similarly, the risk functionals are related as follows: 

B 

RT(cc) = f(y-fix,a) - sfp(y) dy (113) 
A 

B B B 

= f(y-fedjfpiy) dy -lf(y -J\x,a)) .ep(y)dy + fe>p(y) dy 
A A A 

Which results in the distance of the two risk functionals, as follows: 

sup{\Rcr(a)-RXd)\}<a2 (114) 

141 



Where d is the variance of e. This shows that R " (a) is an upper bound for Rr (a) and 
empx 7 r r etnpx ' 

Rrip) is an upper bound for Rr(a). I f the number of classifiers approaches infinity the 

bound Rcr(a) approaches R(a). 

6.4.2. The VC-dimension of a regression estimator 

In the above the construction of each learning system by using the other has been 

explained. In order to measure the VC-dimension of a given regression estimator we wil l 

construct a classifier from it and reconstruct the regression estimator from the classifiers. 

In the process, the regression estimator is represented by a finite number of classifiers 

whose VC-dimension can be measured ([73]). Then by equation (114) the upper bound 

for the empirical risk functional o f the regression estimator wi l l be derived. 

In order to find the VC-dimension of the regression estimator we should derive an upper 

bound for R(x,a). It is obvious that i f the maximum o f VC-dimension o f the regression 

estimator in the range [AJ3] is known we wil l have the following: 

suP{|/n«HC(«)i} * o 15> 

Therefore, with cr tolerance, an upper bound for the risk functional can be obtained by 

using m classifiers. The maximum estimation error for the regression estimator can be 

derived as follows: 

snp{\R-(a)-R;ja)\} + swp{\Rel(a)-R;ja)\} (116) 

h 
+ sup{\RcXa)-R~(a)\} <tf-f*') + 2 c 2 

a A. 

sup{|/r(a)-*;(a)|} + sup{\R;ja)-R^a)\} (117) 

+ sup{|/r(«) -R(a)\} < sup{|/r(a) - / T ( a ) + R^(a) -/r (a) + R(a) - iT(a) |} 

Therefore, the upper bound for maximum risk functional error can be written as follows: 



s u p { | i r ( a ) - ^ ( « ) | } < ( | ) ( - ^ ) + 2 . o 2 (118) 

A s the number o f classifiers increases, & approaches zero and A m a x approaches to the V C -

dimension of the regression estimator ([81]). 

6.4.3. Coro l lary 

A n upper bound not related to the assumed distribution o f s can be obtained by placing 

AV4 instead of d: 

sup{^(a)-/r (a)|) < (R-̂ -) + f (119) 

6.4.4. Measur ing the V C - d i m e n s i o n at a point 

In order to measure the V C dimension of the regression estimator for the given set of 

data, the regression data set is transformed to a classification problem as follows: 

(x,,co) (120) 

where, the classification output (CD) is defined as follows: 

a>=l, if y > T 
' n / \ T ( 1 2 1 ) 

In order to measure the V C dimension of the regression estimator, the variance in the 

estimation for a data set with variable set size should be measured. Therefore, a number 

of different test set sizes (X) are selected. For each set size, 20 different data sets (from 

the original data set given in equation (120)) are produced: 

Z2]={(x\, a$,(K> «P. •••>«. «0> - 0> - >(̂ > O ) (122> 

The set size (X) is between 1 and 100, and 20 equally spaced numbers are selected. 

The maximum variation in estimated empirical risk functional must be measured. The 

empirical risk functional of a set of size X is defined as follows: 
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v x ( a )=^£ | tv /V*) l < 1 2 3 > 

The maximum variation in the measured empirical risk functional is defined as follows: 

= sup [ v f t Z > ) - v * ( Z » ] (124) 

The expected value o f £(Z 2 X ) is a monotonically decreasing function of the V C dimension 

o f the learning machine: 

£ {sup [ v } ( Z » - v^<Z>)]} * 0 ( | ) (125) 

where h is the V C dimension of the learning machine. The expected value is 

approximated by an average over N (=20) test sets: 

m = ^ t w % (126) 

The V C dimension of the learning machine (J{x,a), as A) is the integer parameter that 

X 
makes the best fit between <&(jp and £(X..): 

/7* = a r g m i n | : [ ^ i ) - 0 ( ^ ) ] 2 (127) 

The largest deviation in the empirical risk is estimated by using the opposite class of half 

o f the members o f TP* as follows: 

V^ = \t\wrfc,djR+\ t [a>rfixpa)Y (128) 

where the opposite class (tn) is defined as follows: 

m = 0 if 0 = 1 

m = 1 / / co< = 0 
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The deviation function (0(^)) has the following simplified form that was suggested in 

[73]: 

// 1^0.5 

* / | > 0 . 5 
(130) 

The constant d is empirically derived ([73]) and is equal to 0.39. 

Example 

In this example the V C dimension of a regression estimator wi l l be measured. The 

original dependence between input and output of the samples is a norm function and the 

estimator function is a linear regression estimator. The regression problem wil l be 

transformed to a classification problem by using a threshold level and the V C dimension 

of the learning machine wil l be measured by following the steps in [73]. The V C 

dimension o f a polynomial is known to be equal to the number of its coefficients. It wi l l 

be shown that the measured V C dimension is very close to the known V C dimension o f 

the linear regression estimator. 

The function to be studied is the norm function of ten independent variables as follows: 

Where, the independent variables (x) are independent random variables in [0,10]. The 

number of variables (AO is changed and the V C dimension is measured. A linear 

regression estimator is used to learn the input-output relation: 

The V C dimension o f this linear regression estimator is equal to N+l. A sample set of 

size ten thousand is produced, by generating one thousand random points for each 

variable (A7) and the related output from equation (131): 

(131) 

= c+ 2jc x2 

0 7 7 ' < 
(132) 
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(xt,y) i = l , . . . , 1 0 0 0 (133) 

Where the input variable is a vector o f size 10. 

The threshold level is equal to the average of the output: 

T - £ t , , (134) 

For solving equation (127), it was assumed that h is within the range o f [1,100] and a 

"look-up table" was generated for ®(~fp The solution to equation (127) was found by 

searching for the best h that minimized the error. Table 4 shows that the measured V C 

dimension is very close to the number of coefficients o f the linear regression estimator. 

Changing the threshold level (7) does not affect the measured V C dimension. 

Table 4: The measured V C dimension of a linear regression estimator. 

Number of variables Number of coefficients Measured V C dimension 

5 6 6 

10 11 10 

15 16 16 

20 21 21 

25 26 25 

30 31 31 

35 36 37 

40 41 42 

60 61 61 
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T h e V C - d i m e n s i o n measurement a lgori thm 

Repeat n times 

Load the empirical data set {z} 

/=!,... ,X 

r 
Find the range of the output (v) 

•< T 
Load the threshold level (T) 

r 
r/,- = <> if y,<T 

1 y ' - l i f y ^ T 

r 
Randomly assign each empirical pair (xJ5y'p 

to one of the two sets £,{, %\ 

r 
Negate the output of all the empirical 

elements in ^ 

y» = 1 if y-= 0 

1 y'; = o if y;=i 

r 

Find e(X) feauation 821 

Solve <|>C£) for h* (equation 127) 

Figure 6.3 The block diagram for estimating the VC-dimension 
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This routine works especially well when 2h* < X ^10/7*. I f an initial value for h* is known, 

the range of X can be defined readily. The routine works well when an assumption for h* 

is made and the range o f X is obtained. Then this range of X is used to find a new h* and 

this loop continues until the sequence of h* approaches to a constant value. 

Significance of VC-dimension calculation 

In order to get the theoretical distribution of the error o f the risk functional, the V C -

dimension of a regression estimator is needed. Obtaining an estimate o f the risk 

functional (R(cc)) requires having a sufficient number of specimens. This condition is not 

always practically possible. The VC-dimension of a regression estimator (either measured 

or estimated) provides a means for obtaining the error distribution o f the (regression) 

estimator. This error distribution is used in every step of A S E C for finding the size o f the 

selected subset. 

For grading purposes, the practical significance of the VC-dimension is that one can 

estimate the grading improvement for any increase in the number of database specimens. 

Assuming that the VC-dimension o f the regression estimator (h) is known, or is 

measured, at a threshold level (or grading level) and assuming that the number of 

specimens increases from Xt to X2, one can calculate the expected improvement in grading 

For the same learning problem and the same learning machine, the empirical risk does not 

change much by changing the number o f the specimens, thus: 

as follows: 

+ « * £ ) 

(135) 

Rice) 
2 

(136) 

(137) 
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Therefore the improvement in the risk functional o f the regression problem is as follows. 

* > ) - * > ) M y ) - e ( y ) (138) 

B y using equations 74 and 138, one can obtain the improvement in the coefficient o f 

determination (f). 

6.5. S t r e n g t h es t imat ion b y u s i n g exist ing methods 

Each o f the learning machines used for strength estimation is explained in the following. 

6.5.1. Linear regression 

A s a parametric model, a linear regression is the first model to be used for checking the 

dependence between features, x, and the output, y. This model generally fits a polynomial 

to the given data set. The approximating function is shown in equation (139): 

flx,w) = TwiXi (139) 

where N is equal to the number o f features and the complexity o f the approximating 

function. Therefore, one can test the effect o f the complexity o f the approximating 

function on the estimation, at the lower end of the complexity, by using this model. The 

higher degree terms in equation (139) can be introduced as new features; therefore, an 

estimation o f the parameters ofj\x,w) can simply be formulated as follows: 

fix,w) =2>x = wft +w2x2+ ...+ wxm = yt (140) 

or, 

Xw=Y (141) 

w=XlY (142) 

The capital letters denote the vectors of the same variables that lower case letters 

represent. X1 is the pseudo-inverse of X, which is (XX)lX. The potential problem with 
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the polynomial fit is that it generates a higher dimensional feature space than already 

exists. For example, for the strength estimation of wood, about 1000 specimens are 

collected and the number of features is about 100. A third degree polynomial creates 200 

new features (the original features to the power o f two and three). Multiplying the 

number of features in the polynomial learning method rapidly adds to the problem of high 

dimensionality of the feature space. Also, since the form of the function is defined at the 

beginning, the bias error has a lower bound ([66]). 

6.5.2. K-Nearest Neighbor and radial basis functions 

These two networks are local networks. A s mentioned before, the local networks do well 

when the samples are not dense. These methods generate a prediction at a given point of 

the input space without generating a hyper surface in the input space. 

These two methods are adaptive networks, called kernel-based networks, in the sense that 

fix) is a local function ([66], [74]). The radial basis network can be phrased as follows: 

j ^ i V / t f l l x - x J ) (143) 

2 
Where ht(.) is usually a bell-shaped function (ht (x) = ex). \\x-x. || is the Euclidean 

distance of the input x from the location of the radial basis function xt. The complexity of 

the approximating function (see page 125) is inversely proportional to the radius of h (.). 

Since the radius is the same for all hf(.) a line search can find the optimum radius. 

Therefore, for a given radius, w{ can be found by an optimization technique (similar to a 

training algorithm for a neural network) and the risk functional value is computed. A n 

optimization technique can find the radius that minimizes the risk functional. 

Similarly a K-nearest neighbor uses the average of yt for K neighbors of the point. The 

larger K is the smoother the function wil l be, therefore, the complexity o f the function is 

inversely proportional to K . The choice of the distance is important in this case. 

In order to construct the approximating function, the risk functional for the neighborhood 

the kernel function covers should be minimized. A n alternative would be to use similar 

kernel function over the entire space o f the input variables. Therefore, the summation of 
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all the local risk functionals is the empirical risk functional. The optimal parameter set is 

the one that minimizes the empirical risk functional. 

In a K-nearest neighbor machine, the size of neighbors controls the learning capacity of 

the machine. Therefore, by increasing the number of neighbors and finding the 

neighborhood size where the maximum estimation accuracy occurs, the best structure of 

the machine can be found. It was seen that the neighborhood of size 5 results in the most 

accurate estimation from 10 fold cross validation ([72]). 

In a radial basis function machine the diameter of the radial function controls the learning 

capacity of the learning machine. By keeping the radial function diameter constant, one 

can maximize the overall estimation accuracy and find the right structure of the learning 

machine. By using 10 fold cross validation for accuracy approximation and by doing a 

search on radial function diameter, the best diameter was obtained. 

6.5.3. Multi-layer neural networks 

Multi-layer neural networks are semi-parametric adaptive networks. These networks 

usually consist of three fully connected layers. The first layer is the input (features). The 

second layer consists of the neurons and the third layer is the output layer, which is a 

linear neuron that sums the scaled output of all the neurons of the second layer. These 

networks are robust with respect to the training set and perform very well when dense 

samples are available, even for high dimensional inputs ([66],[75]). This network is a 

universal approximator; that is, given enough neurons the network can approximate the 

continuous function that appears in applications ([76],[77]). 

Multi-layer neural networks with different neuron activation functions are trained by 

using back propagation. The network can be modeled as follows. 

where M is the number of neurons, N is the number of features, b is the bias, and af are 

the scale factors of each feature. hf (.) is the activation function of the related neuron, g (.) 

y = th(g(x)) (144) 

g(x) = b + lZaixi 
(145) 
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is a linear function that generates the input to the neuron. A network consists of the 

necessary number of neurons at its middle layer and a linear neuron (hj (x) = x) as the 

output of the network. The typical forms of h. (.) are linear, sigmoid, or radial basis. The 

design of the network consists of finding the right number of neurons and activation 

functions. 

The common neurons are sigmoid functions, the logistic function and the arc-tangent 

function, as defined by equations (146) and (147) in the following. The choice of either 

one of these functions does not affect the result much ([72]): 

Kx)=J^r, (146) 

h(x)=^tanl(x)+^ (147) 

Networks of more than three layers are also being used. The extra layer(s) adds to the 

complexity of the network. By limiting the number of neurons and limiting the norm of 

the parameter vector, one can control the complexity of the network. The first 

usually is choosing the structure of the network, and the second is choosing the early 

stopping rule. 

Figure 6.4 A multi-layer neural network. 
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In this case, only a three-layer network is used. The hidden layer consists of symmetric 

sigmoidal neurons and the output layer is a linear neuron. The best accuracy was obtained 

by 5 hidden neurons. Adjusting the accuracy goal at the training level did not improve the 

results. 

6.5.4. S P O R E 

This method o f function approximation was developed for a set of problems with the 

same conditions as the problem at hand (Ph.D. thesis of Grudic, [21]). This method is a 

nonparametric adaptive network that works well even when the number of features is 

large. There are different versions of the S P O R E algorithm but what is applied in this 

research is SPORE-1 , as is explained in the following. 

The network consists of a cascade of blocks of two variable polynomials with adjustable 

degrees. The output of each block is fed to the next block until the end o f the cascade. 

The output function is a linear combination o f all the blocks (Figure 6.5). 

x. a 

£ « L ( - ) 

Figure 6.5 The cascade form of SPORE-1 . 

Each polynomial (g(.,.)) is defined as follows: 

(148) 
O's(0,l,...) 
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The network is developed in block sections, a few blocks at a time, and progresses until 

all the variables are included. The number o f blocks in a block section is more than a 

constant number 'depthl ' . The order of the input variables is random. The parameters of 

each block in the block section is estimated for minimizing the following cost function. 

£J<g(;-)-yJ (149) 

where the set T® is a bootstrap sample from the training set. In Figure 6.5, the output scale 

of each block, ap is proportional to the inverse of the mean square error of the block. 

When the change in the cascade error in the last 'depthl+1' blocks is less than a constant 

factor s the construction of the new blocks stops. Then a search in the block set takes 

place to find a subset of the blocks that minimizes the risk functional (equation (149)) 

more than the block set does. I f such a subset exists, the blocks that are in the block set 

but not in the subset, are removed and variables are freed for later approximation 

improvement. The same process continues by using a block set of size 'depth2' from the 

remainder of the variables. This second block set is constructed to learn the error of the 

first block set. It can be seen that K defines the complexity of the network and the 

learning algorithm is a comprehensive search among different combinations o f the 

variables. 

In this model the learning capacity of the machine has to be controlled by adjusting its 

parameters. The model finds the best structure by trial and error. Therefore, no notion o f 

learning capacity is used for this machine. 

6.6. A l t e r n a t i n g S p a c e E x p a n s i o n a n d C o n t r a c t i o n ( A S E C ) 

A s was implied through this thesis and in many exploratory estimation problems, not 

only the input-output dependence (fixjv)) is not known but also the representative feature 

set (x) could be arbitrarily defined. In A S E C method both the parameters of the 

estimating function (f[x,w)) and the set of input features (x) are optimized in order to 

improve the estimation accuracy. Two iterations o f A S E C are shown in Figure 6.6. 
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Figure 6.6 Two iterations o f A S E C 

In a field like the strength o f material, the a priori knowledge usually exists in the form 

of relationships between strength affecting factors (represented by g in Figure 6.6), and 

between them and the strength o f material (represented by / i n Figure 6 .6) . /and g do not 

have to be the same in different iterations. 

For producing the new feature set (x* + 1), the existing feature set fx*) is transformed by the 

nonlinear transformation (g) to a large set of features, x 7 is a small subset o f the 

generated feature set that produces the smallest estimation error. 

If the set of transformations (g) is similar to a universal approximator, its convergence 

could be guaranteed for a large number of specimens. A good example of a universal 

approximator is a generalized polynomial, as follows. 

Z C ; x. + E C , , x. x. + ZC] x*+ ... (150) 

If the individual functions in g, are exponential transformations of the given feature set 

fx*), then the terms of equation (150) could be used to check i f all the necessary terms are 

included in g. 
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Although the polynomial model is a general approximator, it is not the final model when 

a small number of measured specimens are available. For example, for estimating 

y = tan(x) with a given number of samples and a given accuracy r2, a polynomial with a 

relatively large number of terms should be generated. The accuracy of the estimation 

depends inversely on the number o f coefficients because o f the limited number o f 

specimens. Therefore, a range o f nonlinear dependencies that can reasonably exist should 

be included in the expansion guide. 

The problem of wood features to tensile strength was modeled by using the following. A n 

approximation model is selected. In our case the model is as follows: 

^ = I c ( i ( (151) 

The feature transformation (g(x)) was done by two sets of nonlinear transformations: a set 

o f such nonlinear transformations o f a single feature; and a set o f cross-multiplication of 

features. The nonlinear transformations o f a single feature (see Appendix) is shown in the 

following: 

{ ^ I x U s i g n f x W M , * 2 } (152) 

The cross multiplication o f features investigate the inter-relation of the features an is 

shown in the following: 

{**} (153) 

The contraction method is a selection method that identifies a subset o f the given feature 

set so that the best estimation (minimum error) can be obtained. The Gram-Schmidt 

method o f space spanning is used for this purpose, as follows. 

1. The closest vector to the output is selected. 

2. A l l other features (including the output) are replaced by their orthogonal 

projection on the first feature. 

Steps 1 and 2 are repeated to generate the subset o f given size. 
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In order to include the variation in the feature set, a group of training feature sets (e.g. 10) 

called T (, is generated in order to demonstrate the direction of feature vectors and their 

variations. For each training feature set (T) the minimum subset is obtained and the table 

of consequent features is generated. 

Table 5: The parallel feature sets. 

iteration 1 iteration 2 iteration 3 

f„ 

T 2 

T 3 f31 f33 

The selected subset (based on Table 5) is then as follows: 

The features are then eliminated from the set one by one such that a subset with highest 

accuracy is obtained. This step eliminates the features whose contribution to the accuracy 

of the model can be compensated for by the other features. 

Based on the given contracted feature set, the model of equation (151) was developed and 

the accuracy of the estimated and is compared to that of the previous model (accuracy o f 

model 0 is equal to 0). 

If improvement results another iteration wil l be attempted. I f no improvement results, the 

process wil l be terminated. 

The number of iterations in Gram-Schmidt selection can be obtained from statistical 

learning theory. In this theory there is an inherent estimation error associated with the 

generalization ability of the learning system. The generalization ability (measured by 

learning capacity or VC-dimension) for a polynomial can be estimated by the number of 

coefficients, which is the number of Gram-Schmidt iterations. 
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A starting point for the number o f iterations (for example 10% of the training set size) is 

considered and the subset is generated. The learning accuracy of the estimator can be 

obtained as shown in the following Figure: 

Figure 6.7 Estimation accuracy from the contracted space (top) and the empirical risk 

(bottom). 
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The overall (lower bound) estimation accuracy is obtained by subtracting the error from 

the estimation accuracy. 

upper bound of risk functional 

40 56 
numbar of features 

Figure 6.8 The curve o f the upper bound o f the risk functional for the given number of 

features. 

The optimum feature set size T is the basis number in the contraction step (step 3). T is a 

minimum number of iterations because the statistical learning theory provides a 

conservative measure of performance. The actual number o f iterations is a multiple of T 

(between 3 and 6 times) and a more realistic iteration number can later be obtained by 

using the cross validation technique. 

The cross validation technique works as follows. Each training set is again divided into a 

group of cross validation sets and wil l be called second sets. 

The second training sets and the second testing sets are used to find the realistic T. Each 

second set generates one trajectory o f features for the higher level set. Different 

trajectories are different rows o f the feature table in 'Table P. From each trajectory a 

diagram o f estimation accuracy is obtained whose maximum is at the iteration number. 

The average of these profiles is used for finding the iteration number. B y doing so, the 

iteration number, which is one o f the learning parameters, is produced without the effect 
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of the test set. Once this process is repeated for all 'n' scenarios, a set o f estimation 

accuracy and an optimum iteration number wil l be obtained: 

{*„/,}, (VJ ( W (155) 

One can use the average of these values as the outcome of one cycle of A S E C , as 

follows: 

Different trajectories are representative of the variation o f the feature vector directions. I f 

the variation is large enough to get closer to a different vector, the projection vector at the 

"ith" level switches to the new vector, thus a new trajectory results. I f the two projection 

vectors are very close the variation in the feature vector can be ignored. A measure o f this 

closeness is the condition number of the transfer matrix of equation (151). Therefore, i f 

by adding a projection vector to 'A ' the condition number of 'A ' jumps (beyond some 

threshold level so that it can produce the numerical error), the projection vector wi l l be 

removed from the table and replaced by the previous projection vector (Figure 6.9). 

Although the process o f space spanning for the trajectory with the replaced projection 

vector should be repeated to account for the change, it can be ignored because the 

induced change is very small. 

Finally, the minimum subset wi l l be as follows: 

(156) 

(157) 
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• 
f f 

3 31 22 33 

Figure 6.9 Replacement of close features in the trajectory table. 

Example 

The given feature set consisted o f 88 features (geometrical features from X-ray images 

and statistical features from others). As mentioned above the two function sets of 

{-, \x\, sign(x)A/jxj, x2} and {x x] (cross multiplication) were used in order to generate a 

new feature set from any given feature set. The approximation model was a linear 

regression model, i.e., yl = T.ci x . The Gram-Schmidt space spanning method was 

followed to generate a sequence o f features, for example, one row of Table 5. Ten rows 

were produced. I f the coefficient o f determination between two features was more than 

r2 = 0.9, one o f them would be replaced with the other. Figure 6.7 shows the 

improvement in estimation as more terms were added to the feature set (see (154)). Using 

the inequality of equation (80), as an equality for 77 = 0.5 (representing the expected 

value), and B=( m a X

2 ™ n ) 2 (see equation (81)) the diagram of 0 was obtained. 

The cross-multiplication o f features produced a large number of new features. In order to 

avoid memory overload, an iteration o f the A S E C consisted of two cycles; in each only 

one o f the transforming function sets were applied. Once the sequence of features was 

161 



produced, the risk functional was estimated by using ten-fold cross validation. The result 

is shown in the following: 

Table 6: The computed r 2 after each iteration of ASEC 

r2 

The estimation accuracy after the 

first iteration 0.6448 

The estimation accuracy after the 

second iteration 
0.6565 

The estimation accuracy after the 

third iteration 
0.7093 

The estimation accuracy did not improve after three iterations. The final feature-set size 

was 38. 

The block diagram for an iteration of the ASEC 

A n iteration of A S E C consists o f expanding a given set of features to a new set of 

features (usually with more features) and then contracting the expanded set in order to 

produce a new feature set with fewer features. The new feature set includes new and 

more effective features. 

To expand a feature set, a set of predetermined functions can be used. The generality of 

this method is not compromised because i f such a set of functions is not available, any set 

of universal approximator functions can be used. A given set is contracted by selecting a 

series of features, by using the Gramm-Schmidt theorem. 
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Import the feature set 

Expand the imported set 

New feature set 
r 

Generate a series of features 

* 
Estimate the error on empirical risk 

Select the set with minimum 
empirical risk 

Figure 6.10 The flow chart o f one cycle o f the A S E C 

This cycle is repeated to the point where it no longer improves the estimation accuracy. 

6.7. E s t i m a t i o n a c c u r a c y o f d i f ferent l e a r n i n g m a c h i n e s 

A l l the learning machines were tested using the cross validation technique. The ten fold 

cross validation technique is a commonly used test. In this test, each specimen is 

randomly assigned to one o f ten sets. In ten repetitions, each set, in order, is used as the 

testing set and the rest o f the ten sets are combined into the training set. The learning 

machine is trained using the training set and the estimation accuracy is tested by the test 

set. 

For generating the ten sets, a random number was assigned to each specimen. The 

specimens were sorted with respect to the random numbers. Starting from the smallest 

random number, one tenth o f the specimens were removed and assigned to the first set. 

Other sets were separated in the same fashion. In cases where the learning capacity of the 
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learning machine had to be determined, the best structure was determined by using the 

first training set and the same structure was used for the rest of the accuracy testing. 

The number o f neighbors controls the learning capacity o f the K-nearest neighbor. To test 

the K-nearest neighbor the number of neighbors was increased (starting from 1) and the 

cross validation technique was applied. For the multilayer neural network, the number o f 

hidden neurons and the early termination factor control the learning capacity. Starting 

with one hidden neuron (and increasing), the training was repeated. The early stopping 

level was changed to increase the cross validation accuracy. Since the steepest descent 

algorithm was used for neural network training, the estimation accuracy did not 

necessarily reach as low as the stopping level. Therefore, the training process was 

repeated by using another initial value for the parameters. Dr. Grudic, who developed the 

algorithm, trained the S P O R E learning machine. This machine adjusts its learning by 

doing repeated searches. 

For the A S E C algorithm the number o f coefficients is taken as equivalent to the learning 

capacity of the machine. The algorithm reached maximum accuracy in five iterations, two 

non-linear mappings and three cross-multiplication mappings. The expected accuracy 

diagram was produced, for any iteration, and the optimum number o f features (that 

minimized the estimation error) was found. The best number of parameters was usually 

approximately 20. Two to three times this number was transferred to the next iteration. 

The increased number of features normally did not affect the results. Too many features 

slowed down the algorithm to an impractical rate. Table 7 shows the strength estimation 

accuracy of the specimens using different learning machines. 

Table 7 : The accuracy of estimation by using different learning machines. 

Learning machine r 2 by using 10-fold cross validation 

Linear regression 0.60 

K-nearest neighbors 0.31, k=15 

Multi-layer neural networks 0.68 

S P O R E 0.73 
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A S E C 0.71 

A n estimate o f the contribution of different features is also studied here using a linear 

regression model. In order to see the contribution o f the measurement machines to the 

strength estimation accuracy, one or more measurement systems are excluded from the 

input (the profiles). The cross validation technique is not used here because the model is 

not being tested. Therefore, the entire set of specimens is used for developing the 

regression model and then testing the accuracy o f the estimation. The purpose o f this test 

is to show that all the measurements are contributing to final estimation accuracy and, no 

one o f them can be replaced by a combination of other measured properties. Table 8 

shows the accuracy of the estimation for the given set of features. 

Table 8: The accuracy of the estimation for different feature sets. 

included features for 

estimation 
r 2 at learning 

X-ray 0.4059 

M O E 0.5625 

S O G 0.5275 

X-ray and M O E 0.6101 

X-ray and S O G 0.6011 

M O E and S O G 0.6572 

X-ray and M O E and S O G 0.6805 

6.8. D i s c u s s i o n o f the results 

Table 7 shows two properties of the learning problem for the database o f this thesis. B y 

comparing the accuracy of linear regression and nonlinear transformations (Neural 
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Networks, A S E C , and SPORE) it becomes clear that higher order self and cross products 

of features lead to improved performance. 

The poor estimation accuracy from K-nearest neighbor shows the effect of high 

dimensionality of the feature space. As was pointed out in Section 6.2, high 

dimensionality o f a feature set (in this case, 88 features) makes the concept o f 

'neighborhood' ineffective. Especially i f some dimensions are inherently noisy as they 

are in these types of measurements. 

The A S E C algorithm and the S P O R E algorithm followed two different approaches for 

improving the strength estimation. In the A S E C algorithm, the given feature set is being 

transformed (by using a priori knowledge) into a more effective set of features, while the 

S P O R E algorithm used the given feature set (88 features) and found the best hyper-

surface that maps them to the output (measured strength). The closeness o f the estimation 

accuracy by the two algorithms shows the equal validity o f the two approaches. However, 

the estimation accuracy o f A S E C could be improved by searching for better 

transformations and more complex estimation functions (a simple linear estimator was 

used in this research). 

The final feature set that was produced by A S E C included 38 features. This shows that 

the original feature set (with 88 features) includes redundant information. Using a smaller 

(and more effective) feature set reduces the VC-dimension of some of the estimators (e.g. 

linear regression) and thereby improves the estimation accuracy for those models. This 

can be seen in Table 6, which shows that the error is minimized at 38 features. 
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Chapter 7. Conclusions and Future Directions 

7.1. C o n c l u s i o n s 

The problem of estimating the tensile strength of lumber is the focus of this thesis. This 

problem was posed as a multi-sensory measurement problem and a small-sample learning 

problem. It was shown that the regression approximation was successful in estimating 

strength, and that regular industrial estimation accuracy can be significantly improved by 

using a multiple sensory system. 

The measurement means were those most commonly used in industry, so their speed 

could be adjusted to match speeds found in industry. The principles and practical 

limitations of each measurement means was studied in order to make sure each did not 

produce the significant effect on estimation accuracy. A study for calibrating the dynamic 

bending machine, the machine commonly used for wood grading, was performed. The 

result of this study showed that the flat-wise dynamic M O E that was measured by the 

dynamic bending machine was highly correlated (r 2 = 0.92, see Section 2.4.1) to flat­

wise static M O E . The significance o f this finding is that the type o f M O E measuring 

machine used would not affect the accuracy of strength estimation. 

A conic model o f knots and a knot detection algorithm was developed. The estimation 

accuracy o f this model was demonstrated through simulation (^ = 0.81 for smaller 

diameter and r2 = 0.98 for larger diameter). This model was developed for single knots, 

which comprise the majority of the defects of boards. It was demonstrated that this model 

could be used for producing a simple representation of a board consisting of clear wood 

and single knots. Also, it was shown that the model and the related detection algorithm 

could be used for detecting the same defects in other measured profiles, such as the C C D 

camera image o f a board. 

Characterizing a board consisted of transforming the measured profiles into a set o f 

previously studied statistical features and geometrical features as proposed in this thesis. 
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The measured profiles, except for the X-ray images, were transformed to their statistical 

moments. From the two X-ray images of a board the geometrical features o f the board 

were calculated. The knots locations were shown to match the location of the actual 

knots. 

A brief survey o f different learning techniques was presented and the problem o f strength 

estimation as an empirical learning problem was discussed. Because of the high cost of 

measuring such properties, the problem of lumber strength estimation was considered as a 

small-sample learning problem. It was shown that classification VC-dimension could be 

extended to the VC-dimension o f a regression estimator. During this demonstration it was 

shown that a classifier could be constructed by using a regression estimator, and vice 

versa. This concept established the very basis of this research, which is to improve the 

grading accuracy (a classification problem) by improving strength estimation accuracy (a 

regression problem). 

The A S E C learning model was proposed in order to produce an optimal feature set from 

the original feature set. This model allows a researcher to incorporate a priori knowledge 

about input-output dependence. I f such dependence does not exist, a generic mapping can 

be used. The accuracy o f strength estimation when using this model, along with a simple 

relationship between knot-size and stress-distribution, showed that this model performs 

better than most existing learning models. 

7.2. F u t u r e D i r e c t i o n s 

Throughout the course o f this research, a high speed of computation has been a goal since 

the real time applicability o f the process is a focus. Therefore, the solutions presented 

here were attempted without any recursive approach. Any improvement in estimation 

accuracy by using gained by recursive algorithms (for detection) could be further 

investigated. In particular, the knot detection algorithm could be repeated by adjusting the 

size and location of a partial cone in the space in order to maximize the similarity o f its 

orthographic projections to the detected knot patterns from the X-ray images. 

A more substantial model of clear wood properties for the board model (see Figure 4.8) 

could be developed. For example, the gradual variations in clear wood density could be 
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added to the model. Also grain angle, and M O E could be included with the properties o f 

wood in every element o f the model. 

Any performance improvement for the A S E C algorithm by modifying its transformations 

could be investigated. In essence, the effect of other a priori knowledge in the form of 

feature transformations (for example higher order terms in Irwin's equation) as well as 

non-linear estimators are to be investigated. 

Table 8 indicates that all the measurement means contributed to the estimation accuracy 

o f the tensile strength of wood. The estimation accuracy is likely to be improved by 

adding new measurement means, such as ultrasound or visual sensing, in order to gather 

relevant information that is not presently available. 

Other analyses, such as stress analysis, could be used for generating more effective 

features from the existing measurements. 

The estimation improvement due to knowing basic wood properties could also be 

examined. 
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Appendix: Board failure; initiation and propagation of a 

fracture 

Although fracture mechanics was not used in this research for analyzing the tensile 

strength of lumber, it provides the understanding of how the failure of wood takes place. 

In selecting the representative features of lumber, one needs an understanding of the 

failure process because it sometimes plays a leading role. This Appendix is intended as a 

brief examination of the wide area of fracture mechanics. 

In the literature, a crack is defined as a split in material that grows (propagates) when 

applied stress increases. A fracture is the growth of a crack due to applied stress. These 

two terms (crack and fracture) are loosely used interchangeably here because the meaning 

is conveyed by the text and because it is not essential to the adopted methodology o f this 

thesis. 

The process of failure due to fracture can be caused by applied force or by material status. 

"Fatigue" and "creep" are two examples where fracture is caused by the feature of the 

applied force and by the feature of the material state. In fatigue, the cyclic pattern of the 

applied force causes the fracture but in creep the state of material (hot metal, for 

example) causes the fracture in low stress levels. Also, fast fracture propagation and slow 

fracture propagation are distinguished in the literature. The tensile strength of lumber 

being estimated in this thesis occurs where slow monotonic loading is applied to a test 

specimen. There are three major modes of failure, opening (mode-I), shear (mode-II), and 

tearing (mode-Ill). Mode-I o f failure happens when the crack progresses across the board 

while the board is under tensile stress. Mode-II of failure happens when the crack is 

progressing along the board. Mode- I l l is not usually considered for the failure of a board. 

The failure o f a specimen in most cases is an opening mode of failure (mode I), as wil l be 

explained later. However, the propagation of fracture in wood (across and along the 

grain) suggests that failure mode must be a combination of mode-I and mode-II ([56]). 

There are numerous micro and macro fractures that already exist in wood. High stress or 

low strength zones create the condition in which the existing fractures can grow. In 
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theory, the fracture can start at any point in/on the board because micro fractures are 

randomly distributed in a board. In practice, it is almost certain that one of the defects of 

wood wil l be the location of fracture initiation, and in most cases, a knot initiates a 

fracture ([11], [12]). The tip of a fracture creates a high stress zone that deforms the 

material and causes its failure. The stress concentration at the tip of the fracture is much 

more than that o f other natural defects o f wood. Therefore, a fracture has a good chance 

of propagating until it stops at some point. It was observed that a crack ends in another 

defect (like knot) or when the crack propagation direction goes along the board. There are 

three types of fracture: opening, sliding, and tearing. Once the failure starts at a point it 

propagates step wise, that is, the fracture propagates consequently along the grains and 

across them until complete failure takes place. In practice a combination of opening and 

sliding takes place in the failure of wood. The sliding mode usually takes much more 

tensile stress to propagate. This is why in some cases one crack practically stops 

progressing. I f another crack initiates with stress level close to that of the first crack, then 

this second crack gets a chance to propagate. 

In grown knots there is density difference and high grain variation with respect to clear 

wood. In some cases of knots, only a high grain angle exists and that happens where the 

knot is related to the bottom of a branch (where the branch wood starts by high grain 

deviation o f the trunk wood). Variation in the density of a knot with respect to clear wood 

causes high stress zones, which can cause the failure o f clear wood. In high grain angle 

parts o f a knot the tensile strength o f wood drops significantly such that it can fail under 

regular tensile stress that clear wood, such as, trunk wood, with regular grain angle can 

stand. 

The normally used tool for analyzing the initiation and propagation o f fractures in 

material is the linear elastic finite elements. Critical stress intensity factor, or fracture 

toughness ([57]) is the concept on which linear elastic fracture mechanics is based. It is 

assumed that once a fracture is initiated, it can progress almost regardless of body and 

loading geometry (given certain specific general conditions ([33],[58],[59])). 

171 



Once a crack is created in the body of the board, it generates its own high stress zone. 

The stress distribution around a crack tip and its propagation is the subject o f many 

theories. 

Based on stress distribution around a fracture, different theories were developed that 

predict the failure of material ([33], [60], [61], [62]). Griffith ([39]) developed a fracture 

theory based on the decrease in material potential energy (Up) and fracture surface energy 

(LQ as follows: 

7?+77-° <158) 

where Up and C/Sare as follows: 

J / = - ^ 0 5 9 ) 

U = 4aty (160) 
s * s 

Equation (158) states that when the stress level reaches its critical level, Up wil l be 

transformed to U„. Therefore the critical stress level can be obtained as follows: 

2Ey 
a - A / - * (161) 

a is the stress level, E is modulus of elasticity, t is thickness, a is fracture surface, and ys 

is the elastic surface energy per unit thickness. Based on this theory, i f the critical stress 

in the material exceeds the critical level, the material fails and the crack propagates. 

A theory that distinguishes different modes o f failure was published in [57]. Based on this 

theory, the stress distribution around the tip ofthe fracture can be modeled as follows: 

<r, = ^(K, + Kn f£0) + Km f°(ej) + higher terms (162) 

where r and 0 are the coordinates o f the material element in a two dimensional polar 

coordinate system, r and 0 are measured with respect to fracture tip and fracture line. Kp 
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KJP and Km are stress intensity factors for opening, sliding, and tearing modes of failure. 

For a two-dimensional tensile stress problem only an opening mode of failure exists. For 

a fracture of length 2a critical stress is found from the following equation. 

KM=<ryfc (163) 

KIc is a material property. Once the stress intensity factor of any type exceeds the critical 

level the fracture of that type takes place. 

The mixed mode of failure that takes place in a material such as wood was explored in 

([63]). The failure criterion in this case is as follows: 

Ic lie 

K} and Ku are the mode-I and mode-II stress intensity factors, and KIc and KIIc are the 

fracture toughness for those failure modes, which are material properties (constant). A 

theory initially used in fracture analysis routines ([12]) was based on maximum stress 

failure theory. A second theory that combines mode-I and mode-II of failure was later 

used for wood ([63]). 

The information from fracture mechanics contributes to the estimation problem in two 

different ways. Although the effect of knots on strength is the subject o f other research, 

geometrical features wil l be defined in order to include this knowledge (in a qualitative 

way) in the feature set. For example, knowing that the knots are usually the initiating 

points of fractures, the distance between two knots is included as a feature. Also, the form 

of any dependence of strength to the feature set can be incorporated into the learning 

system as a priori knowledge. For example, equation (162) states that the stress level 

produced due to the existence of a fracture diminishes by ~\=. In A S E C model (Chapter 6) 

this information is used for generating new features from the given set o f features by four 

different mappings of ~, \x\, sign(xj\fx, and x2. 
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