‘Cache and Branch Prediction Improvements
: for
Advanced Computer Architecture

by
YUL CHU -

B.Sc., KwangWoon University, Korea, 1984.
7 M.S.E.E., Washington State University, USA, 1995.

* A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE ST UDIES
(Department of Electrical and Computer Engineering)

We accept this thesis as conforming
to the required standard -

THE UNIVERSITY OF BRITISH COLUMBIA
May 2001

© Yul Chu, 2001

In presenting this thesis in partial fulflment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further. agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her - representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of EIQCWCM M . Comlpda,ghgrneeﬂ'ng

The Uﬁiversity of British Columbia
Vancouver, Canada

Date MO\/Y 30, m’

DE-6 (2/88)

ABSTRACT

‘As the gap between memory and processor performance continues to grow,.more and more
programs will be limited in pefforfnancé: by the memory latency of the system and by the branch
-instr\uctions (céntr_ol flow of “.theAprograms). Meanwhile, due to. the 4increase in complexity of
application programs over the last decade, object-oriented languages are replacing' traditiOnal
languages because of convenient code reusability and maintainability. However, it has a;lso been
observed that the run-time performance of object-oriented progra@s can be i.rnprovedn by_
reduéing the impact caused by the memory latency, branch misprediction, and several othér
factors. In this thesis, twé new schemes are introduced for reducing the memory latency and
branch mispredictions for Hi gh Performance Computing (HPC).

For the first scheme, in order to reduce the mémory latency, this thesis presents a new cache
'scheme: called TAC (Thrashing-Avoidance Cache), which can cffeptively reduce’: ihstruction
cache missés caused by procedure call/returns. The TAC scheme employs N-way banks and
XOR mapping functions. The ‘m.ain function of the TAC is to pla;e a grouﬁ of instfuctions
separated by a call instruction into a bank according to the initial and final bank selection
mechanisms. After the initial bank selection mechanism selects a bank on an instrucﬁon cache
mi§$, thé final bank selection mechanism will dete(rrrvline the final bank for updating a cache line
as a correction mechanism. These two mechanisms can guarantee that recent groups of
insfrucfions exist in eacﬁ bank safely. A simulation program, TACSim, has Beén developed by
using Shade and Si)ixtools, prdvided by SUN Microsystefns, ‘on an ultra SPARC/10 processor.
Our c;xpen'mental results show that TAC scheines reduce conflict misses more effectively than

skewed-associative caches in both C (9.29% impfovement) and C++ (44.44% .improvement)

i1

programs on L1 caches. In addition, TAC schemes also allow for a significant miss

reduction on Branch Target Buffers (BTB).

For the second scheme to reduce branch mispredictions, this thesis also presents a new

hybrid branch predictor called the GoStay2 that can efféctively reduce misprediction
rates for indirect branches. The GoStay2 has two different ﬁechénisms compared to other
2-stage hybrid predictors that use a Branch Target Buffer (BTB) as the first stage
predictor: First, to reduce conflict misses in the first stage, an effective 2-way cache
scheme is used instead of a 4-way set-associative scheme. Second, to reduce
mispredictions caused by an inefficient predict and update rule, a new selection
mechanism and update rule are proposed. A simulation program, GoS-Sim, has‘ been

developed by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra

SPARC/10 processor. Our results show significant improvement with these mechanisms

compared to other hybrid predictors. For example, the GoStay2 improves indirect
misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or 1K-entry PHT) by

14.9% to 21.53% compared to the Cascaded predictor (with leaky filter).

iii

" TABLE OF CONTENTS
Abstract |
Table of Contents
List of .Tables
List of Figures
Acknowledgements
CHAPTER 1 Overview and summary
11 Iptroduction |
1.2 Problem definitions and resolutions
1.3 General background |
1.3.1 Cache Misses
| 1.3.2 Branch Mispredictions
1.4 Contributions and summary
CHAPTER 1II-Reduction of Instruction Cache Misses
2.1 Introduction |
2.2 Cache Misses
V 22.1 | Total miss ratios vs.l conflict miss ratios
2.2.2 Skewed-associative caches '
23 Thrashing-Avqidance Cache (TAC)
- 2.3.1 An overview of a TAC scheme
2.3.2 Bénk Selection Logic (BSL) — Initial Bank Seléction
233 Bank—;m'ginated Pseudo LRU Replacement Policy (BoPLRU)
— Final Bank Selection |

2.3.4 Benefit of the TAC scheme

iv

i

v
Vil
viii

X1

14

14

19

24

27
2
30
30
34
37

38

40

44

47

2.3.5 Examples of cache misses: a 2-way TAC scheme vs. a 2-way

skewed-associative ‘ 49

2.4 Experimental Envir(;jnment 52-
2.4.1 Simulation methodology - 52

2.4.2 Benchmarks 54

2.5 Experimental results ' 55
2.5.1 Cache Misses vs. Cache Sizes 56

2.5.2 Bank Switching vs. Procedure Calls 60

2.5.3 Instruction Cache Misses for various cache schemes - 66

2.5.4 Skewed-associative caches vs. TAC schemes 68

2.5.5 Various cache schemes for the Branch Target Buffer 76

2.5.6 Comparison for all 2-way schemes 81

2.6 Chapter conclusions | » 83
CHAPTER III Reduction of Indirect Branch Mispredictions. 85
3.1 Introduction 85
3.2 Related work 88
3.2.1 Indexing functions for indirect branch predictors 89

3.2.2 Selection mechanisms and update rules for hybrid predictors 92

3.3 GoStay2 Branch Predictor | . 9%
3.3.1 An overview of a GoStay2 predictor ' 95

3.3.2 The 2-way TAC scheme for the BTB — The first mechanism 99

3.3.3 The GoStay predict and update rule — The second mechanism 101

3.3.3.1 GoStay predict rule 101

3.3.3.2 Update rule ' 103

3.3.4 Benefits of the GoStay2 branch predictor 104
3.4 Experimental environment 108
3.4.1 Benchmarks 109
3.5 Experimental results | 111
3.5.1 Implemented branch predictors 111
3.5.2 Indirect Branch Instructions 114
3.5.3 Conventional indirect branch predictors ' 116

3.5.4 Misprediction rates for indirect branches between the LF and GoS

122

3.5.5 Analyses of the update rule 129

3.6 Chapter conclusions ' 134
CHAPTER IV Conclusions and Future Research ' 137
4.1 Conclusions 137

4.1.1 Reduction of cache misses 138

4.1.2 Reduction of indirect branch mispredictions 139

4.2 Future Research _ 140
BIBLIOGRAPHY 145

Appendix A Experiment results for TAC schemes : 152

LIST OF TABLES

N

Table 1. . Actual miss rate versus blocic size for five:different—sized caches. - 16
Table 2. Behavioral differences between C and C++ Programs [Calder et al ‘94] | 28
Table 3. Benchmark descn'ptlions - , ' | | 54
Table 4. Benchmark cha£a;:ter£stics A | ' ' 55

Table 5. Instruction cache miss rates in percentages (cache size: 8 KB, a line size: 16 bytes)
66

Table 6. Comparison of hardware complexity and access time among three representative -

2-way schemes: 2-way set-associative, 2-way skewed-associative, and 2-way TAC schemes

82
Table 7. Update rules for the Target Cache and Cascaded predictors 93
Table 8. Benchmark descriptions | ' , ' 110
Table 9. Benchmark characteristics | ‘ 111
Table 10. Comparisons for the percentages of condi;tioﬁal and indirecf branches 114
Table 11. The relevanpe of indirect brancheé by comparing lines of code, inst./ind.
(instructions/indirect branch), and cond./ind. (conditional branches/indirect braﬁch) 115
Table 12. Indirect branch misprediction rates according to the BTB enfries. 1 136

vii

LIST OF FIGURES

Figure‘ 1. An overview of High Performance Computing (HPC) . 2
Figure 2. The technical trend for sup’ércomputérs and microproceséors [Buyya ’00] 3

Figure 3. Corﬁpaﬁson of the performance between microprocessor and DRAM according to

Moore’s Léw [Patterson and Keeton ‘00] [Alexander & Kedem ‘95] . » 7
- Figure 4. Problem definitions ' 9
_ Figufe 5. Relative CPU execution time by cache Il’lljS:S rates. : 11
Figure 6. Relative CPU execution time by branch misprgdiction rates. 13
Figure 7. Reductipn of cache misses (overview) | | - | 14

Figure 8. This cache example has eight block frames and memory has 32 blocks

[Patterson & Hennessy ‘96] 17
Figure 9. Reduction of branch mispredictions (overview) - , 19
Figure 10. Components of Total CPI (Cycles Per Instructions) [Bondi et al. “96] | .23 B
Figure 11. Miés ratios (%) of the various cache schemes [Gonzalés etal ‘97] - - : | 31
Figure 12. An example of instrucﬁons with two procedure calls | - 32
Figure 13. Execution of the code shown in Figure 12 in a direct-mapf)ed cache 32
Figure 14. Execution of the clode shown in Figure 12 in a fully—associative cache - 33

Fi gure 15.a, b, and ¢ cdmpete for the same location in bank 0, bﬁt can be présent at the éame
time, as they do not map to the same location in bank 1 [Seznec ‘97] _ | . '357
Figure 16. One of replacement polices, PLRU, for a 2-way skewed-associative cache 36
Fi gure 17. The basic operations of a conventional cache scheme and a TAC scheme | 38
Figﬁre 18. The operation of the BSL (2-bit counter, 2-way) according to a flow of instruétions.
Conflicts in (B, H) and (I, X) | | 4 | 41
Figﬁre 19. An example for the grouping instructions in a 2-way TAC scheme | 42

viii

Figure 20. Initial bank selection of BSL for a 2-way TAC scheme 43
Figure 21. Pseudo code for the BOPLRU replacemeht policy ‘ 45

Figure 22. Final bank selection of BOPLRU replacement policy for a 2-way TAC scheme 46

Figure 23. Plaqement of instructions in a 2-way TAC scl}eme | | 47
Figure 24. An example for a 2-§vay skewed-éssociative scheme : 50
Figure 25. An example for a 2-way TAC scheme - |) ‘ 51
Figure 26. Simulation rhethodology with benchmark programs and variqus tools - 52

'Figure 27: Comparisons for cache fnisses according to the cache sizes (4 cache schemes) 57.
Figur‘e 28. Cache miss rates according to the sizes of the n-bit counter (C programs) o 61
Figure 29. Cache miss rates according to the sizes of the n-bit counter (C++ programs) 63
Figure 30. Comparison for instruction caché miss rates between C (m88ksim) and C++
(deltablue) programs (8Kbytes, 16bytes) 67
Figure 31..C0mparisons for Improvement Ratios between 2"-.way skewed-associative

and 2-way TAC éaches | | , ' : 69
Figure 32. Comparisons for Improvement Ratios between 4-way skewed-associative

and 4-way TAC caches) s o
Figure 33. Comparisons for Improvement Ratios between skewe-d-assoc.:iative. and TAC
caches from 4Kbytes to 8 Kbytes | ' | “ 75
Figure 34. Comparisons of branch misprediction rates of BTB with a 4-way sét-associative,
2-way skewed-associative and 2-way TAC caches. ' ' 77
Figufe 35. Comparisons for Improvement Ratios among 4-way set-associative, 2-way
skewed-associative and 2-\l)vayv TAC schemes ' 79
Figure 36. Various indirect branch predictors - : - 89

Figure 37. The basic operations of conventional 2-stage and GoStay2 branch predictors. 96

ix

. Figure 38. The overview of the GoStay2 branch prédictor :

Figure 39. The operation of the first mechanism. data = branch address + target address
Figur¢ 40. The GéStay predict rule of the second méch‘anism

Figure 41. Update rule of the second mechanism

Figure 42. A comparison of the update processing between the GoStayZ and thev leaky
filter |

Figure 43. Experimental methodélogy

Figure 44. The comparison of misp;ediction rates according to BTB sizes for indirect
branch predictors. The second stage is a table with 512 entries (4-way)

Figure 45. Compaﬁson_ Misprediction Rates and Improvement Ratios i)etween C and

C++ Benchmark programs

97

102

103

106

108

116

124

Figure 46. Comparison misprediction rates and Improvement Ratios between the LF and

GoS for all Benchmark programs(C and C++ programs, harmonic mean)
Figufe 47. Analysis of prediction rates according to cases whether both predictors have
a correct target address dr_not. ‘Others’ means all other cases except the nl to n4

Figure 48. Future Research for caching, speculation, and simulation

127

130

141

ACKNOWLEDGEMENTS

I sincerely wish to express my gratitude to my sﬁpervisor, Dr. M. R. Ito, for his inspiring and
encouraging guidance in leading me to a deeper undérstanding‘ of this work. His invaluable oral

and written comments were always extremely perceptive, helpful, and appropriate.

I would also like to thank my committee members, Dr. Steve Wilton and Dr. Alan Hu, for
their help, advice, and valuable suggestions throughout my work. Thanks to Dr. Hu, I was able to
use SPEC95 benchmark program for my simulation without any trouble. Thanks to Dr. Wilton, I~

. was able to expand one of my future research programs to include the field of FPGA.

Special thanks should go to my friends Robert Ross and Susan Ritchie who provided valuable

proofreading comments on this work.

.
I‘ am also very grateful to Dr. Norm Hutchinson, Dr. Babak Hamidzadeh and Dr. Mark R.

Greenstreet for their kindness in participélting in my examining comnﬁttee. I am also very

- ‘grateful to Dr. Nikitas Dimopoulos for his valuable editorial comments and for passing me as an

external examiner.

It is my great pleasure to dedicate this small achievement to my mother Sunghye Hwang, my
father Kwangho Chu, my wife Myunghee Chu, our children, Sangjun, Jinna and Yuna for their

love, support, and patience over the past several years. -

bl

X1

I want to express my deep gratitude to my brother Dr. Hong Chu, my cousin Ronald Choo,

-

and their families for their love and encouragement.
Last, but certainly not least, I would like to extend my deepest thanks to Kyungwod club
members in Korea and many friends for their support and understanding throughout my time at

UBC.

This dissertation could not have been completed without the support of the many people who

are gratefully acknowledged here.

This research has been funded by the Natural Sciences and Engineering Research Council of

Canada.

Chapter 1 Overview and summary

1.1 Introduction

Through. the mid-1980s, 'sgpercorhputers such as Cray were used 'to aehieve high
performance for advanced scientific and engineering applications. However, since the
late 1980s, supercomputers have not been able to significantly improve performance.‘
- They have been restricted by high cost‘(about $3 million) eompared to a personal
computer (about $3000) and limited by the number of customers [Dowd & Severance
‘98]. |

Meanwhile, the performance of microprocessor architectures Has doubled every two to
three years. This has occurred for two reasons. First, microprocessor architectures are
borrowing and innoyating with techniques formerly unique to supercomputers and large
mainframes. The second reason has beerr the emergence :of a persoﬁal and business
compurer market which demands high performance for computer usage such as 3D
graphics, graphical user interface, and garries [Dowd & Severance ‘08]. Hewever,‘
supercomputers are still used for the most demanding applications such as weather

forecasting.
What is High Performance Computing (HPC)?

In general, High Performance Computing (HPC) refers to computing systems that are

used to provide solutions to problems that require the significant computational power

interactively across a geographically-distributed network. Figure 1 shows an overview of

HPC with respect to three different areas: goals, architectures, and techniques.

\ Superscalar |
| VLIW | Pipelining
[Cost J , & Vector : [Parallelism]
[Etc. | { Etc. J
L J :

-Figure 1. An overview of High Performance Computing (HPC)

In Figure 1, the goals for HPC could be achieved through méxirﬁum perfoﬁnance and |
minimum coét. How to maxirrﬁze performancé depends on reducing the time to execute a
prdgram (T), which is a function of the number of instructions to execute (n;), the average
n'urriber of clock cycles per instruction (CPI), and the clock cycle time (¢.). From (1),

there are two distinct approachés for increasing system performance:

T=nXCPIXt,———————~———~=-=—(1) .
e By lowering the clock cycle time (z.) — Much of this performance gain comes as a

, needed to process very large amounts of data quickly, and are also needed to operate
Co consequence of circuit and layout improvement. However, this is becoming increasingly

difficult and will eventually reach physical constraints. Since this topic is beyond the
scope of this thesis, it will not be covered in detail.

By impfoving two other factors (CPI, n;) — The major performance optimization is
pipelining, in which a stream of instructions progress from pipeline stage to pipeline
stage with overlapping of instruction fetch, decode, and execution: This technique will be
discussed in detail with other techniques such as cache memory, parallelism and

superscalar throughout this section.

10,000 —~
F | ® CRAY, n'=:1,000 |
[. | & CRAY.;h =:100.
L. & Micro, n'=:1,000- |, RO
| [_*Micro, n=:100- |
1,000 /
& : ‘ ' |'DEE:8260
‘g - B ¥m :
= ' ~7 [Xmp/a16 4 .. .
2 b © 4 IBM Power2/950;
x " SMIPS H4400
'f-() - | Xmp/14se . .
& - . DEC:Alpha
2 C. HP9000/735"
: L. /| #DECAIpha’AXP"
: @ CRAY 15 - HP:9000/750
K /+1BM RS6000/540,
10 |-
4 | mIPsimi2000
B /[MIPSiM20:
i
: . 'Sun4/260. X .
1L N . L Te . . T P N
1975 “1980: 1985: 1980 “1985 ~2000°

Figure 2. The technical trend for supercomputers and microprocessors [Buyya ’00].

Figure 2 compares the performance since 1980 between supercomputers such as
CRAY and microcomputers by using the LINPACK benchmark program. The LINPACK
is one of the more famous floating-point benchmarks of recent years, created by Jack

Dongarra, and gets its name from a linear algebra package that it uses to solve a dense

system of linear equations with Gaussian elimination. The LINPACK keeps track of
execution time and then divides this into the number of floating- pomt operatlons that are -
performed to get a MegaFLOPS ratmg ‘n = 100 and n = 1000’ in Flgure 2 describes the
results based on a 100 x 100 and 1000 x 1000 matrix using a double-precision floating |
point. Figure 2 shows that the performance of a supercomputer in 1990 is similar to a
microcomputer in 1995. Moreover, the performance gap between supercomputers and
microprocessofs has been decreasing since 1995 because of fhe rapid techriical_
development of microprocess_brs.

In 1988, an article appeared in the Wall Street Journal titled ‘Attack of the Killer_
‘Micro’ that described how éompuﬁng systems made up of many small ($3,000 to
$20,000) machines would soon make large.‘,’supercomputers ($3 million) obsolete. These
inexpensive processors have been developed toward high performance éomputing
systems. HPC, wHic'h is broader than supercomputing with supercomputers, is a moving
target because of the steady and rapid gains in the performance/cost ratio. Yesterday's
) supercomputer is today's personal computer; foday's leading-edge techniques for
‘supercomputers will be among tomorrow's mainstream capabilities for HPC.

In Figure 1, the architectures for HPC have a tendency to be designed in such a way as
to do additional parallelism proportional to increased machine resources [Lipasti & Shen
‘97]. According to Lipasti-& Shen (’97), these architectures are:
= Superscalar machines échedule instructi_ons dynamically at runtime. These machines

can reduce. the average number. of cycles per' instruction, but they need extra

hardware. Therefore, performance depends on the amount of resources in the

machine;

= VLIW machines schedule instructions statically at compile Fime. These machines
contain numerous functior}al‘ units, whieh accommodate multiple streams of data
input, such as audio and video. In general, VLIW maehines heavily 'rely on powerful
eompi]ers to detect and resolve inter-instruction dependencies in software. This keeps |
the hardware design simple and fast. But their static nature makes them incompatible
with dynamic variations in parallelism, which are caused by an aggressive fneindry
subsystem and speculative-execution techniques;

= Multithreaded processors supbort multiple machine contexts and execute multiple

instrucﬁon streams simultaneously. The performance depends on finding enough
thread parallelisrﬁ by software. The disadvantages of these:machines are that
debugging multithread programs is difficult, and that there is a 1ack of automatic
thread-partitioning compilers;

= Single chip 'multiprocessors are used fof . improving throughput under
multiprogrammed workloads. However, these machines are restricfed to numerical
applications that contain easily parallelized loops. Limited processor‘intercenneets
and synchronization overhead will degrade system perfoﬁnance. |

= Vector processors are machines built primarily to handle large scientific and
engineeridg calculations. Their performance derives from a heavily pipelined
architecture wﬁich operations on vectors and. matrices can efficiently exploit. As an
example, the NEC SX5/3C is reported at 8 Gflops per second per processor peak.

The techniques for HPC in Figure 1 can be categorized into four different fields. Those

fields include:

" Pipelining allows increased utilizatiOn of hardware resources by the partial execution
of more than one instruction at the same time. One of the most common uses of
pipelining is to fetch the next instrlictions from lower level memory while executing a
current one. |

. » Cache memory is to improve the throughput of memory data and instruction flow.
Memory ‘data flow is relevant to the load/store instructions. The data values are stored
aind retrieved from data m_ernory. To reduce average memory latency, the prediction
of load values and addresses are incorporated inte the .ex.ecution core. Meanwhile,
there are two main logicallstages” 1n the instruction flow: Fetch — the processor
retrieves instructions from cache or main memory;- and Decode — the processor
decodes instructions, renames theif operands, and detects inter-instruction
dependencies. For eacn stage, there is a neeci to reduce cache misses 'by using an
efficient cache scheme and increase the speculation for the control-ﬂew instructions
with an aecurate branch predictor.

= For the technique of parallelism, multiple execution units are popular for improving
performance. The execution core must strive for two fundamental goals to increase

, instruction throughput. It rnust:
- efficiently detect and resolve inter-instruction dependencies; and
- eliininnte or bynass as many dependencies as possible to explore more Aparalleli‘sm
between instructions.
= Other techniques such as prefetching, buffering, etc. are also popular for improving

system performance for the HPC.

What do future architectures look like?

Figure 3 shows Moore’s Law (the observation made in 1965 by Gbrdon Moore, co-
founder. of Intel): The nufnber of transistors on Aé microprocessor would double
approximately every 18 mqnths. Meanwhile, memory dénsities' (DRAM) énd disk
densities will continue to quadruple every three years. The-gap between‘ microprocessor

and memory will be discussed in detail in section 1.2.

| Microprocessor
1000 . e n B 8% [YT.

“‘Moore’s Law”
o .
0100 ..
c .
®
£
10 | oo R e
2 T : | " DRAM
° 5 -10%/yr.
(o 8 o
e A
W 0 WX W WX XXX ANDNDNDDDNANANDNDNN NS
a oo xS NQ
- v oy v o e v w v e o e e o e v v e e e)
Time

Figure 3. Comparison of the performance between microprocessor and DRAM according

to Moore’s Law [Patterson and Keeton ‘00] [Alexander & Kedem ‘95].

To date, Moore’s Law has proven remarkably accurate even if the end of Moore’s Law
has been predicted so many times that rumors of its demise have become an industry

joke. In reality, microprocessors have achieved a performance growth of 10,000 times

during the last two deqades. Transistor count incréased from 10,000 to 100,000 in the

1970s, and then‘i'n(:reased Lrp to 1 rrii'llion i:n the 1980s; while clock frequency increased

from 200KHz to 2MHz in the 1970s and up to 20MHz ‘in:'the 1980s. In the 1990s, both
transistor count and clock frequéncy achieved an increasé of 20 to 30 times. Futuré ‘
brllion-transistor chips in the 2000s will create machines that are much wider (issue more

than four instructions at once) and deeper (have longer pipelinr:s) [Lipersti-& Shen ‘97].

According to.Burger & Goodman (’97) and Patt et al. ("97), microprocessorswill.have
~ more ‘than one billion transistors on a single chip by 2010. As we discussed before, most
of the current tgchniques for microprocessors have come from . supercomputers.

Méreéver, some future techniques will be based on current ones such as instruction lévél

'parallglism. The future architectures surveyed by Burger & Goodman (’97) are: |

- Advanced Superscalar processors that issue 16 to 32 instructions per cycle and
Superspeculative processors that have wide-issue speculation;

- Vector IRAM processors couple vector processor execution with large, high-
béndwidth, on-chip DRAM banks, which provide the vector Lrnits with sufficient
bandrvidth at a reasonable cost;

- Chrp multiprocesrors that place a number of processoré (four to 16) on a single chip;

- Raw processors that implement parallel architectures with 128. tiles, very .simpl‘e
processors with reconfi grlrable functional logic. |

Beyond the brévious potential architectureé,‘ Simultaneous multithreaded processors and

Trace processors are also included in the surveyed future architectures [Burger &

Goodman *97].

1.2 Problem definitions and resolutions

The previous section provided an overview of high performance computing. This section
will discuss two problem definitions intended to improve system performance for current

and future microprocessors.

Chapter 2 | | Chapter 3
[Memory Latency J _ | [Branch Instructions J
Cache Memory] : [" Branch Predictor - J<—|
| Reduction of Reduction of

Cache Misses ~ | | Branch Mispredictions

Figure 4. Problem definitions

In Figure 4, rapidly changing technologics are improving ﬁlicroprocessor execution
| speeds at a rate of 50% - 80% per);ear. Iﬁ contrast, DRAM access time has déveloped at
the much lower rate of 5% - 10% per year [Alexander & Kedem< ‘95]. As -thg
‘ performanée gap between microprocessor and memory increases dramatically, more and
more programs will be l'imited in ﬁerformaince: |
- - by th_eAmemory latency and bandwidth of the system;

- by the branch instrﬁctions (control flow of the programs).

processor, and bandwidth as the rate of information transfer between the processor and

memory that supports the required processing rate.

1) F irst Problem Deﬁnition (Left side of Figure 4): Cache Misses

Since the pfocessor islmuch faster than the main ﬁlemory, latenéy often causes the
processor to go into one or more v;/ait states. In order to solve the létency prbblem, a
cache memory has “been introduced as part of a memory hierarchy. The memory
hierarchy combines a fast, small memory matched to the proéeSsor speed with slower and .
larger memories (level-two or main memory).

When a CPU does not find data it needs in a cache memory, a cache miss occurs. If a
cache miss occurs, the CPU must wait until the needed data is retrie?ed from a lower'
level membry.

The impact on CPU performance caused by cache miss rates is:

CPU Execution time = IC * (CPI + (Mémory étall clock cycle/Instrlict-ion));"

Ciock éycle time
= IC * (CPI + (memory accesses per instruction) * MR * MP) *
Clock cycle time
Where,'IC (Instruction Count), CPI (Cycles per Instruction), MR (Miss. Rate), and
'MP (Miss Penalty).- |
Rellative' CPU Execution time = CPU Execution time / (IC * Clock cycle time* CPI)

If there are no memory stalls (perfect cache), then Relative CPU Execution time is 1.

Latency is described as the total time memory requires to satisfy a request from the
10
|
|

Assume that CPI = 2, memory references per instruction = 1.33, Cache Miss Rate =
10%, and Miss Penalty =50 cyc”les.A ' | | “

Then, Relative CPU Execution time = (2 + 1.33 * 0.1 * 50) / 2 = 4.33.

This Relative CPU Execution tirhe shows that a CPU Execution time of 10%'ca§he |
miss rate is 4.33 times longer than a CPU Execution time with a perfect cache (0% cache
| miss rat¢). | |
Figure 5 shows Relative CPU Execution time when tﬁe behavior of the cache (from

0% cache miss rate, perfect cache, to 10% cache miss rate) is included.

Relative CPU
Execution Time

0% 1% 3% 5% 7% 9%

Cache Miss Rates

Figure 5. Relative CPU execution time }_)y cache miss rates.

Without any r,ﬁemory hierarchy at all, the CPI would increase t0 2.0 + 50%1.33 or .66.5k “
— a factor of over 33 times longer.

As the above example illustrates, cache behavior can h‘ave enormous impact on
pgrformance. Therefore, the efficiency of a cache meméry depénds on. reducing caéhe
misses and will bg discussed in detail _in,chapt.er 2. This thesis defines reduction of cache |
misses as the first problem to be solved and in chapter 2 introducés a new cache scheme
to reduce cache misses, focused on conflict mi‘ssesAdue' to the cachc. set overfilling, even

though the cache as a whole may not be full.

11

2) Second Problem Deﬁniiion (Right side of Figure 4): Branch Mi&predictions

For current microprocessors, multi-instruction issues aré a popular_ method of increasing
system performance. Therefore, instruction cache misses can severely limit the =
performance of high-speed mjcroprocessors. It haé been oBserved that many iﬁstr“ucti'on
cache misses are caused by the control flow of programs.

Control ’fl‘ov'v is related to the branch instructions, which can be generally categorized |
into conditional or unconditional, and direct or indirect [Chang et al ‘97]. Since these
branch instfuctions do not tend to fetch the next instruction in seéquence, it is not possible
to know the next instruction until a current instruction ‘is executed. To overcome this
obstacle, branch prediction schemes hav¢ been used for predicting and fetching. the
outcome of branches before they are éxecuted. Therefore, if the pfediction is wrong
(branch misprediction), the processor needs to be stalled because as a result of ﬂqshing all |
the instructions incorrectly -fetched, iséued, and executed. This is referred to as branch
,penalty. Thus, without an appropriate branch predictor, the branch penalty can have a
critical impact on overall system performance.

If branches are the only thing that cause stails in a pipeline, fhe impact of CPU
performance caused by branch penalty is:

CPU Execution time = IC * (CPII;ase + branch frequency * brancﬁ penalty)*

Clock cycle time
Whefe, IC (In§truction Count), CPIbase (an ideal CPI without branch stalls in £he
pipeline), branch penalty (branch miépredictidn rate * misprediction penalty).

Relative CPU Execution time = CPU Execution time / (IC * Clock Cycle time *ACPIbase)‘.

If there are no branch stalls (perfect branch predictor), Relative CPU Execution time is 1.

12

Assume that CPlbase = 1, branch fre_quency = 25%, branch misprediction rate = 20%,
and misprediction penalty = 5 cycles. | |

_Then, Relative CPU Execution time = (1 +0.25*0.2*5)/1= 1.25.

This Relative CPU Execution time sh(.)ws'that a CPU Execution time of 20% branch

. misprediction rzllteb is 1.25 times longer than a CPU lExecution time with a perfect branch

predictor (0% branch misprediction rate).

Figuré 6 shows Relative CPU Execution time when fhe behavior of Athe branch predictor
(from 0% branch misprediqtion rafe, perfect branch predictdr, t<‘) 40% branch

misprediction rate) is included.”

~2- ___ o

Relative CPU
Execution Time

0%

10% 15% 20% 30% 40%
Branch Misprediction Rates

Figure 6. Relative CPU execution tim; by branch misprediction rates. ‘

To reduce the branch penalty, there is a need fo reduce branch rrlispredictionS: direct
mispredictions and indirect branch mispredictions. As object-oriented languages such as
C++ and JAVA are widely used, more accurate branch predictors for multi-targets, which
are called indirect branch predictors, are needed. This thesis also defines the reduction of
branch mispredictions as the second problem to bé solved, and introduces in chapter 3 a
new branch predictor to reduce branch mispredictions focused on indirect branch’

mispredictions due to multi-targets.

13

1.3 General background

The previous section briefly describes the problems defineéd in this thesis. In this
section, we discuss the general background of cache misses and branch mispredictions in

more detail.

1.3.1 Cache Misses

Cache Misses

v

Efficient Cache
Schemes

' [Reduction of]

Larger Cache & Block Size]

conflict misses -
memory utilization
replacement

hit time

cost

Figure 7. Reduction of Cache Misses (overvjew).

Figure 7 shows ihe problem 6f reduction of cache misses. Theré are three cache-miss
types: cOmpulspry, éapacity, and conflict. Compp]sory and capacity cache misses can be
reduced by larger cache and block sizés. However, conflict misses are ﬁore complex than
- other cache misses and are critical to system perfoﬁnance. Figure 7 also suggests the
problems v?hich the conventional cache 'schemes have in regard to conflict Mmisses,

memory utilization, etc. In Chapter 2, we will discuss the conflict miss ratios of several

14

cache schemes (direct-mapped, 2-way skewed associative, etc.) compared to the fully-
associative scheme which has no conflict misses, and also introduces a new cache scheme
called the TAC (Thrashing—Avoidance Cache) scheme, which can reduce conflict misses

effectively.
Cache Miss Types

Despite tremendous research efforts, current cache schemes make poor use of cache
capacity. One of the drawbacks of conventional cache schemes is that they perform a
myopic management of all memory references: if the reference misses, a new block is

brought into the cache at the expense of replacing énothcr [Sanches et al ‘971].

There are three cachg-miss types - compulsory, capacity, and conflict [Patterson &
Hennessy ‘96]: |
e Compulsory misses: these are the first refe;rence misses since a block must be broﬁght

intd the caché the first time it is accessed;

e Capacity misées: if the number of active blocks is more than the cache can contain,
capacity misses take place;

e Conflict misses: these misses take place because of limited or zero associativity,
when blocks ‘must be discarded in order to accommodate new Ablocks which are
mapped to the ‘same line in the cache. A conflict miss occurs when the replaced block

needs to be accessed.

15

In case of compulsory misses, it is not possible to avoid these misses since the first
access is to a block that is not in the cache. Fortunately, the frequency of these misses

tends to be quite small compared to other cache misses.

Block Size Cache Size
IK 4K 16K 64K 256K
16 15.05 % 8.57 % 1 3.94 % 204 % 1.09A %
32 1334 % - 7;24 % 2.87 % 1.35 % 10.70 %
64 13.76 % 7.00 % 2.64 % 1.06 % 0.51 %
128 16.64 % 1778 % 2.77 % 1.02 % 0.49 %
256 22.01 % 9.51 % 3.29 % 1.15 % 0.49 %

Table 1. Actual miss rate versus block size for fivé different-sized caches. Note that for a
1-KB cache, 64-byte, 128-byte, and 256-byte blocks have a higher miss rate than 32-byte
blocks. In this exémple, the cache would have to be 256 KB in order for a 256-byte block

to decrease misses [Patterson & Hennessy ‘96].

| Table 1 shows the tradé-off of block size versus miss rate for a set of progfams and’
cache sizes. Larger cache and block sizes reduce Corﬁpulsory misses since larger blocks
take ad‘Vantage of spatial locality. At'the same time, the larger blocks increase any miss'
penalty. Since they reduce the number of blocks in the cache, larger blocks may increase

conflict misses and even capacity misses if the.cache size is small.

16

Basic Mapping Functions

Fully associative:

block 28 can go
anywhere

Block No. 0 1%3 4)

Cache

Memory
Block frame
Block No.

01234

Direct mapped:
block 28 can go
only into block 4
(28 mod 8)

22222233

Memory

567 4.5678901

Set associative:

block 28 can go
anywhere in set 0
(28 mod 4)

012345607

Set Set Set Set

01 2 3

Figure 8. This cache example has eight block frames and rneméry has 32 blocks

[Patterson & Hennessy: “96].

The basic mapping functions can be categorized into the following types:

e If a block can be placed anywhere in the cache, the cache is said to be fully-

associative;

e If each block has only one place it can appéar in the cache, the cache is said to be

direct-mapped. The mapping is usually (Blpck address) MOD (Number of blocks in

cache);‘

17

e If a block can be piaced ina restricted set of places in the cache, the cache is said to
be set assoeiative. A set is a group of blocks in the cache. Al block ie fire‘t mapped
onto a set, and then the block can be placed anywhere Wi‘thin that set. The set is
usually lchesen by bit selection; that is, (Block address) MOD (Number ef sets in
cache). If there are n blocks in a set, the cache replacement is called n-way set

associative.

Figure 8 shows that the restrictions on where a block is placed,creete three categories of
cache organization. The set-associative organization shown has four sets with two blocks
per set, and is called two-way set associative. AssuIﬁe that there is nothing in fhe cache
| and that the block address rieeded identifies lower-level block 28. The three options for
caches are shown left to right. In fully-asts;ociative, block 28 from the lower level can go
~ into any of the eight block frames of the cache. With direct-mapped, block 28 can only be
placed into block frame 4 (28 modulo 8). In twb-way set associative, the block is to 'be
placed anywhere in set 0 (28 modulo 4). With two blocks per set, this means block 28 can
be placed either in block 0 or block 1 of the cache. The vast majority of processor caches

today are direct-mapped, two-way set associative, or four-way set associative.

18

132 Bfanch Mispredictions

Reduction of
Branch Mispredictions

v

Taken or Not-Taken

l—P[Two-Level AdaptiveJ

Branch Predictor with J

I"’[Indirect Branch Predictor

EBranch Target Buffer, Target
= Cache, Strict Filter, Leaky Filter

multi-targets
conflict misses
table utilization
hit time

cost

Figure 9. Reduction of Branch Mispfedictions (overview).

Figure 9 ishows methods for the reduction of branch mispredictions, which are
categorized into direct and indirect branch mispredictions. Direct branches can be
predicted with two-level branch predict schemes with hit ratios of up to 97%. However, it
cannot be used for indirect branches which have more than one target. Chapter 3 explains
ihdirect branch mispredictions in detail and discusses current indirect hybrid branch
predictors such és Targe;t Cache and Cascaded Predictor. These predictors work better
than BTB-based predictors, which are used to predict fof-a single target such as direct
branches, but they suffer from -conflict misses in the first stage predictor and have
inefficient update rules. Chapter 3 introduces a new indirect hybrid branch predictor
célled the GoStay2 predictor to improve the upciate rules and reduce conflict misses in the

first stages.

19

Branch prediction is a key mechanism used to achieve high performance on multiple
issue, deeply-pipelined processors. By predicting the branch outcome at the instruction
fetch stage of the pipeline, ILP (Instruction Level Parallelism) can be exploited by

providing' a larger window of instructions [Kalamatianos & Kaeli ‘98].
Branch Cldssiﬁcation

~ Branches can be categorized as conditional or ueconditional and direct or indirect,
res.ulting in four classes: conditional direct, conditional indirect,,uncohditional direct, and
unconditional indirecf. Of the four classes, prediction of condiﬁonal indirect branches are
typicallvy not implemented [Kalamatianos & Kaeli ‘98].

“Conditional direct branches, which involve a condition, have two types: loop-closing
cenditional branches and' other conditional branches. The loop-closing b_ranehes‘are
eackward branches that are taken for all but the last iteration of a loop. Other conditional
branches are either taken or not taken, depending on whether the specified condition is
true of false [Sima et al 97].
| Unconditional direct brancheS, which are always taken, have tﬁree types: simple
unconditional brénches, branches to subroutines, and returns from subroutines. Simple
unconditional branches do not save the return address, whereas branches to subroutines
‘do. Returns from subroutines are dedicated uncoﬁditional branches ﬁerforming a eontrol o
transfef to the saved return address. In caseef nested subroutines, while branching to and

rettiming from the individual subroutines, the return addresses are saved and used in a

last-in first-out (LIFO) manner.

A conditional/unconditional direct branch has a statically specified target that pointé to
a single location in the program, whereas an unconditional indirect branch has a
dynamiéally sp¢cified (i.e. computed) target.'that may point to any number of locations,
multi-targeté, in the i)rograrn. Indirect branches with m'ulti-target»s are harder to predict
accurately than single-target direct branchés.

Driesen & Holzle (’98) also classified branches according to the number of> different
targets encountered in.a program run (SPECint95 and object oriented languages): one
target, two targets, and more than two targets. Brénches with only one target constitute
67% of all branches; 18% of all branches jump to tWo targets and branches with three or

more targets constitute 15% of all branches.
Branch Predictors

There are several types of branch predictors such as one-level, two-level, hybrid, etc.
For the one-level predictor, a BTB (branch target buffer) is commonly used. BTB is a
cache that contains the address of the branch instructions apd_ their target addresses. The
BTB is accesséd in the fetch stage to predict the state of a branch instruction. If a hit
occurs, then the current instruction is a taken branch. The PC (progfam counter) ié loaded
with the‘ target address from‘ BTB, and fetching starts from the new PC. For indirect
branch, the taken address is the last computed tafget f(')r the indirect jump. Unfortvunately,b
BTB-based prediction schemes perform poorly for indirectjumps [Chang ét al ‘97].

The two-level branch predictor uses two levels of history to make branch predictions

[Yeh and Patt ’92]. The first-level of history records the outcomes of the most recently

21

executed branches and the second-levél history keeps track of the ﬁore likely direction of
a branch when a partiéular pattern is-encountered in the first level history. The 2-level
branch predictor uses one or more k-bit shift registers, called branch history registers, to
record branch outcomes of the most recent k branches. It uses one or more arrays of Z-bit
saturating up-down cc;unters, called av Pattern Hiétory Table (PHT), to keep track of the
more-likely direction for\ branches. The lower bits of tl;e branch éddress select the
appropriate PHT and the value in’ the Branch-History Register (BHR) selects the
appropriate 2-bit counter to use within that PHT There are many variatidns of two-level
predictor. In Chlapter 3, we will discusé'various branch predictors in detail.

According to Sima et al ("97), the prediction accuracy of BTB is less than 70% iﬁ the
processor MC88110. In order to improve the prediction accuracy of simple BTB, more
complex hardWare' such as a two-level adaptive BTB, which can detect more varied
branch execution sequences and treat them individually, has been proposed to take
advantage of the relationship between nearby branches to imprové its branch prediction
accuracy. Even if the misprediction rate is less than 10%, the residual misprediction

penalty that these programs incur still deteriorates processor performance significantly.
Branch Misprediction Penalty
In Figure 10, Bondi et al ("96) show the total CPI (Cycles Per Instfuction) for the

model classified as normal processing, branch misprediction penalty, and memory access

wait cycles (imperfect cache). They evaluated x86 traces with the performance model of

a microprocessor design comprising a moderate-depth pipeline, 2-bit branch predictor, 4

integer execution resources, and on-chip instruction and data caches. The SPECint92
traces were generated by running the subject program on a PC under DOS after
compilation with the gcc compiler from DJGPP (one of SPECint92 benchmark

programs).

100% -
90%
80% A1
70% 1
60% A
50% 4
40%
30%
20% A
10% 1

0% -

! O memory

B branch
normal

QP ~ D < >

Figure 10. Components of Total CPI (Cycles Per Instruction) [Bondi et al. ‘96]

Of the total processing expended, normal processing consumes about 70%, branch
consumes about 13% and memory access consumes about 17%. Together, branch
penalties and memory waits waste about 30% of the overall processing effort. So if the
branch misprediction penalty and memory access wait cycles can be reduced further, the

system performance can be improved substantially. For example, if the branch accuracy

23

rate is increased from 95.2% to “96.0%, then the nﬁsprediction rate can be reduced up to
17.6%. If the recovery time from misprediction is reduced, it also improves the’ overall
CPL -

| According to Bondi et al (’96), mispredicted branch instructions are catcgérizéd into
two types: branches that are repeatedly mispredicted over program life, and braﬁches thaf
are mispredicted just once over program life. They shoWed_that brénches that have been .v
previously mispredicted cause most mispredictions. This behavior suggests that there ié a
need to hold the flushed branch instrﬁctions caused by conflict fnisses in a specific_ cache

memory in the processor.
1.4 Contributions and summary

As object-oriented languages are widely used, procedure calls are increasing frequently in
application prografns, causing a significantly increased number of conflict misses in the
iﬁstruction flow. Basically, the instrﬁ‘ction flow has several problems to solve: conflict
misses in the instruciion cache memory, conditional or unconditional branch throughput,
direct or indirect branch prediction, and miéprediction penalty. Current high performance
architectures such as superscalar [processors use branch prediétion to | speculatively '
execute instructions beyond an unresolved branch. If the branch is mispredicted, this
work is lost, and exgcution must restért right after the branch instruction.

As we discussed in section 1.2, there is a need to reduce cache misses and branch

mispredictions for improving system performance. The contributions of this thesis lie in

the fact that:

1. By developing a new cache scheme called the TAC (Thrashing-Avoidance Cache)

Cache miss rates can be reduced significantly compare to other»convgntional
cache memory schemes.

- Since the TAC has almost the same hardware coinplexity as n-way set-
associafive,l it is possible to increase system performance with the samé
hardware cost as n-way set-associative.

- As small on-chip cache niémory is popular, there is a need to have more
efficiént memory storage managemént than n-way set-associative. The TAC
provides this by using tsophisticat.ed mapping fﬁnctions.

- The TAC écheme can be applied t§ the techniques for HPC in regard to
instruction flows. |

2. By developing a new indirect braﬁch predictor called the GoStay2

- Indirect branch mispredictions éan be reduced significantly compared to other

- ‘convention'al indirect branch predictors.

- Since thé GoStay has almost the same hardware complexity as the other branch

predictors, it is poséible to .increase system .‘performancve with the same

hardware cost as the others.

- The GoStay2 can increase instruction level parallelism by improving‘ update

rules for the indirect branch predictions.
There are four chapters and one appendix in this thesis. They include:

Chaptér 1, Overview and summary, describes high performance computing, which is

divided into three pafts including goals, architectures, and techniques.. Moore’s Law is

25

’ discussed‘in order to undersfand the future trend of prdcessors. Ffom Moore’si Law‘; we
outlinéd probiem definitions such as cache misses and branch mispredictions, which
degrade systeﬁl performance lbecaﬁse of ‘the gap between processors and memory.
Géneral backg‘rohnd for cache ﬁﬂsses and branch mi-'spredictions are discussed, and a new
cache scheme and branph -predicto,r are suggested; o

Chapter 2, Cache misses, gives an ovérview and pfoblems of conventional cache schemes
and introducesl a new. cache scheme called the TAC (Thrashing-Avoidance Cache).
Through the expen’méntal feéults, it is shown that the TAC schemes reduce conflict _
misses better than éonventional cache scheﬁles;

Chapter 3, Branch Mispredictions, éxplajn§ branch mispfedictions caused by direct and
indirect conditional branches and discusses current branch predictors that were vrAecently
- proposed to reduce indirect branch i)redictors. Since those branch predictors-have an
inefficient update rule, a new branch predictor called the GoStay2 predictor is introduced
for improving brénch prediction fat'es. Through éxi)eﬁments, it is shown that the GoStayZ
works better thah c;ther indireét branch'prédictors such as Cascaded predi'ctors or Target |
Cache;

Chapter 4, Conclusion and Future Research, surﬁmarizes the experimental results for the
TAC séheme and GoStqu' predictor compared to conventional schemes and suggests
future research in regard to réduciﬁg memiory latencies and specul;ative'work; |

Appendix A, Experimental results for TAC schemes, gives detailed tables of the

experimental results for TAC schemes.

26

Chapter 2 Reduction of instruction cache misses

Due to the increased complexity of applicaﬁon programs over the past decade, object-
orienfed languages afe replacing traditional laﬁguages as a result of convenient code
reusability and maintainability. However, it has also beén observed that the run-time
performance of object-oriented programé can be improved by reducing the inﬁpact\CaUsed
by instruction cache misses. This thesis presents a new cache scheme cal}ed TAC
(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses
'caused' by prpcedure call/returns. The TAC scheme employs N-way banks and XOR
mapping functions. The main functilon of the ’i‘AC is to place a group of instructions
separafed by a call instruction into 2; bank according to thé Bank Selection Logic (B'SL)
and Bank-originated Pseudo-LRU replacement policy (BoPLRU). After the BSL selegts a
bank initially on an instruction cache miss, the BoPLRU will determine the final bank for
updating a cache line as a correction mechanism. The.se two mechanisms can guﬁrantee
that recent groﬁps of instructions exist in each bank safely. A simulation program,
TACSirﬁ, has been developed by using Shade and Spixtools, provided by SUN
Microsystems, on an ultra SPARC/10 processor. Our experimental results sh(;w that TAC
scheﬁles reduce conflict mis‘ses more effectively than skewed-associative caches for both |
C (9.29% improvement) and C++ (44.44% improvement) programs on L1 caches. In
addition, TAC schemes also allow for a significant miss reduction oanranch Target

Buffers (BTB).

27

2.1 Introduction

For cﬁrrent microprocessoré, multi-instruction issués are a popular mefhod of
increasing system performance. Therefore, instruction cache misseé can severely limit the.
performance of high—speed MiCTOpProcessors.

Several researchers have shown that many instruction cache misses are caused by the

~ frequent procedure call/returns in object-oriented languages.

C++ mean (12 C mean Ratio ' Description

.C++ programs) | (SPECint92) [(C++/C)
Type ' Object Oriented Traditional
Call/Return Frequency . 4.6% - 0.7% : 6.7 | Procedure calls and returns
Basic block . 4.8 59 0.8 | Instructions per block size
Function Dynamic 48.7 152.8 0.3 | During program run-time
size Static 273 443 0.6 | Property of program itself
Inst. Cache 4K ~5.83 3.49 1.67 | C++ programs tend to
miss rate 5K 3.08 232 72 perform many calls to small
(Direct :))) functions and benefit less
mapped, 16 K 247 1.18 2.09 | from the spatial locality of
32byte line) larger cache blocks.

‘ 32K L37| 0.59 2321 Average Ratio (C++/C):1.95
Data cache 4K 13.98 13.09 1.06 | Since the miss rates are quite
miss rate 5K 9.20 9.08 Lol similar, there is little room
(Direct)) 0 to improve data cache
mapped, 16K 6.35 643 | 0.98 | features.
32byte line) ' : : ‘ A Ratio (C++/C):1.02
32K 442 431| . 1oz | Averaee Ratio (G/C)

Table 2. Behavioral differences between C and C++ Programs [Calder et al ‘94] 4

In Table 2, Calder et al ('94) showed that object-oriented programs (C++) execute
-almost seven times more calls (4.6 % versus-0.7 %) and have smaller function sizes (48.7

versus 152.8 instructions/function) than traditional programs (C). While C programs

‘execute large monolithic functions to perform a task, C++ programs tend to perform

fnany éalls to small functions.. Thus, C++ progfams benefit less from the spatial locality,
and suffer more from function cal.l overhead.

The smaller function size of C++ progra_ms is another cause of poor instruction cache
misses. According to Calder et al ('94), prograrfls exe‘éuting a small numbér of ,
instrucﬁons in each function, such as C++, may suffer from insfruction cache conflicts.
For exarﬁple, two Iﬁutually recursive functions may be aligned to the same cache memory
addresses and constantly displaéé each other from the cache. C programs execute more
- instructions per function invocation, meaning that fnore_wqu is done within a particular
function.

Holzle & Ungar (94) also showed that for instmétion ;:aChe behavior the miss ratios of
object-oriented programs are significantly higher for most cache sizes and that the
medién miss ratio is 2 — 3 times higher than t.raditional programs. Meanwhile, Calder et al
(’94) and Holzle & Ungar (94) observed that the data cache misses for bo'fh programs
were seen to be similar. So this thesis hz;s focﬁséd on developing an effective cache -
scheme to reduce the instruction cache rﬁisses of iject-oriented pfograms, §vhich~can be

much higher than traditional programs because of the frequent call/returns.

In general, if a cache size is less than 32KB, conflict misses can degrade 'system‘l
‘ perfonnaﬁce significantly. For example, for a direct-mapped cache, conflict misses are
ébout 60% of the total cache misses of a small-sized cache of 8KB [Gonzaléz et al '97].
If- we do not want to increase the cache size, we need to_de':signv a small-sized, loW—cost

cache scheme to improve the cache miss ratio by reducing only the conflict misses which

are mainly caused by call/returns. This thesis presents a new cache scheme called TAC

(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses

caused by call/returns.

This .cha‘pter is organized as follows: Sectio,n 2.2 explains éache misses and skewed-
associative caches; section 2.3 presents a new instruction' cache scheme called TAC
(Thrashing-Avdidance Cache); section 2.4 déécribés simulatién methodology and
benchmark programs; section 2.5 presents our simulation results; and sectioﬁ 2.6

provides our chapter conclusions.

2.2 Cache Misses

As we discussed in chapter 1, there are three types of cache misses namely:
compulsory, capacity, and conflict misses. In this section, several cohv_entional cache
schemes are compared for determining the most effective conventional cache scheme for

reducing conflict misses.

2.2.1 Total miss ratios vs. conflict miss ratios

Gonzalez et al ("97) generated the miss ratios for several cache schemes as shown in
Figure 11: direct-mapped, 2-way set-associative, 4-way set-associétive, hash-rehash,
éolumn—associative, victim, and 2-way skewed-associative. They obtained the results in
Figure 141 by using the SPEC95 benchmark suite and by implementing a cache memory
(8 kilobytes capacity and 32 bytes per line). |
: .. For comparison, the miss ratio of a fully-associative cache is shown in the last column.
For each organization, the difference between its miss ratio and that of a fully-associative

cache represents the conflict miss ratio. For example, the ‘direct-mapped’ cache has a

30

miss ratio of ‘21.32’ in Figure 11. Here, ‘21.32’ means the total miss ratio (compulsory +

capacity + conflict) while ‘12.61’ is the conflict miss ratio which is computed as (total

miss ratio for a scheme — total miss ratio for the fully-associative scheme).

S
®
[
4
E $
. : hash- | col- | . .. |2-way| fully-
direct | 2-way | 4-way rehash| assoc. victim skew | assoc.
| total miss ratios (%) 21.32 | 19.76 | 16.42 | 21.87 | 19.11 | 14.27 | 11.05 | 8.71
@ conflict miss ratios (%) | 12.61 | 11.05 | 7.71 | 13.16 | 104 | 5.56 | 234 | 0

Various cache schemes

Figure 11. Miss ratios (%) of the various cache schemes [Gonzales et al ‘97].

From the results in Figure 11, the has'h-rehash scheme has a miss ratio similar to that of

a direct-mapped cache. Although both have similar access times, the hash-rehash scheme

requires two cache probes for some hits. Hence, the direct-mapped cache will be more

effective. The victim cache scheme removes many conflict misses and it outperforms a 4-

way set-associative cache. The 2-way skewed-associative cache offers the lowest miss

ratio of the existing schemes and is significantly lower than a 4-way set-associative cache

[Gonzalez et al ‘97].

- Figure 12 shows how conflict misses can happen in a cache memory. It is assumed that

there are 10 instructions (A, B... X, and Y) as an assembly code program in Figure 12,

which include two procedure calls (B to H and I to X) and two returns (YtoJand]J to'C). '

It is also assumed that (B, H), (C, I, X), and (D, J, Y) have the same set address (cache

31

memory index), namely 004, 008, and 00C, and that there is a stack register for the two
return addresses. The arrows in Figl'lrei 12 show instruction flows for executing this
program.

Set Address : Instructions

000

004

008

0oC

010

Figure 12. An example of instructions with two procedure calls.

Figure 13 shows the contents of a direct-mapped cache during execution of the two
loops of code shown in Figure 12. In the case of the set address ‘008’, there are two
conflict misses with three memory accesses (to main memory) in the first loop and three

- . conflict misses with three memory accesses in the second loop.

Set address Tag. Cache Instructions Set address Tag Cache Instructions

000 xx | A , -000 Cxxx | A

004 x| ¥H 004 wx| HBH |
008 XXX AK C 5 | 008 || xxx Ao c >
00C ok A 7D | ooC x| ¥ A7D ‘
010 Xxx | - E 010 XXX E '

First Loop _ Second Loop

Figure 13. Execution of the code shown in Figure 12 in a direct-mapped cache.

32

For the direct-mapped caéhe in Figure 13, problems occur when alternating memory

references point to the same set-address. Each reference causes a cache miss (conflict)

and replaces the entry just replaced, causing a lot of overhead. The popular word for this -

is thrashing. When there is a great deal of thrashing, a cache can be more of a liability

than an asset because each cache miss requires that a cache line be refilled - an operation

that moves more data than merely satisfying the reference directly from main memory

[Handy ‘93]. However, the direct-mapped cache has advantages of simplicity of memory .

access and hit time.

Figure 14 shows the contents of a fully-associative cache.which has no conflict

misses.

Tag Cache Instructions Tag Cache Instructions
XXXXX A XXXXX A
XXXXX B XXXXX B
XXXXX H -5 | Xxxxx H
XXXXX I] oxxxxx I
XXXXX - X XXXXX X
XXXXX Y XXXXX Y
XXXXX J XXXXX J
XXXXX C XXXXX C
XXXXX D XXXXX D
XXXXX E XXXXX E

Figure 14. Execution of the code shown in Figure 12 in a fully-associative cache.

First Loop

(b) Fully-associative cache.

33

Second Loop

Is

For the fully-associative cache in Figure 14, any block (i.e., instruction) from'the main
memory can be placéd anywhere in the cache. After being placed in the cache, a g-iven
block is identified uniquely by its main memory block number and referred to as the tag,
which is stored inside a separate tag memory in the cache. The‘ful.ly-associative cache :
fnakes the most flexible and complete use of its capacity, storing the blocks whefe it

“needs to, but there is a pel;alty to be paid for this flexibility: the tag memory must be
searched in its entirety for each memory reference. Moreover, it is more expensive in
terms of gates than other access—bfaddress m_emories} because of the need ‘to do

simultaneous bit-by-bit comparisons of all bits in the memory [Heuring & Jordan ‘97].

To reduce ‘memory: stalls gffectively, there is a need to have a sophisticated form of
cache rﬁemory, whi;:h has: |
- less conflict misses; -
- simplicity (access—by—address);
| - ‘faster hit time; |
- efficient cache memory storage rhanagement; and

- low hardware costs.

- 2.2.2 Skewed-associative caches
In the previous section, Gonzalez et al ("97) showed that a 2-way skewed-associative

cache offers the lowest miss ratio, and is significantly lower than that of a 4-way set-

associative cache. Therefore, this scheme is discussed in detail in this-section.

Skewed associative caches h'avg been previously proposed by Seznec ('93). An N-way |
skewed-associative cache consists of N distinct ”ba‘nks that are acéessed simulfan‘éously
with different mapping functions. For eXamplé, Figure 15 shows that ‘z} 2-way skewed-
associative cache consists of two banks of the same size that are simultaneously accessed
with tWo different mapping functioné. That means a memory block at address ‘d’ may be
mapped onto physical line fo (d) in bank 0 or onto f1 (d) in bank 1, where fo and f1 are

different mapping functions.

DATA TAG , g ' DATA TAG
| fo(@) = fo(b) = folc) < fo f1 » f1(a)
f1(b)
ab.c f1(c)
bank 0 S bank 1

Figure 15. a, b, and ¢ compete for the same location in bank 0, but can be present at the

same time, as they do not map to the same location in bank 1 [Seznec ‘97].

- Mapping functions

B‘odinv & Seznec (*95) presented skewing functions that are obtained by XORing a few

bits in the address of a memory block. Let a skewed associative cache be built with 2 or 4
cache banks, each one consisting of 2" cache lines of 2° bytes, and let o be the perfect-
shuffle on n bits, so that the data block at memory address A, 2°%" + 4,2 + A 2° may

be mapped:

35

1. on a cache line A, ® A, in cache bank 0

2. ~ oron acache line 6(4,)® A, in cache bank 1
3. or on cache line O',Z(Al) ® A, in cache bank 2 (on a 4-way)
4. or on cache line 6 (A)@ A2 ‘in cache bank 3 (on a 4-way)
Repiacement policies
address S
1. On a Cache Miss

If Flag = 0, replace data |
in Bank 0 and set the
Flag 21. Otherwise,

replace data in Bank 1

. and set the Flag 0.

Figure 16. One of replacement polices, PLRU, for a 2-way. skewed-associative cactie.

Figure 16 shows that a 2-way skewed-associative cache uses a Pseudo-LRU (Least

Recently Used) replacement policy by associating a one-bit flag to each line in bank 0

when a miss occurs on a cache [Seznec ‘97]:

- A flag bit is associated with each line in bank 0: when the line is indexed, the flag bit
is set when the data is in bank 0 and reset when the data is in bank ‘1;
- On a miss, the flag of the line selected in bank O is read: when this flag is 1, the

missing line is written in bank 1, otherwise the missing line is written in bank 0.

2.3 Thrashing-Avoidance Cache (TAC)

In the previous section,.several cache memory schemes.were investigated in detail: a
direct-mapped scheme was shown to have the advantages of fast cache hit time and
simplicity, but it has the problem of conflict misses that can adversely affect system
performancé. Using a fully-as'sdciative.schémé cén solve the conflict misses, but it is too
expénsive for implementation and inefﬁcient for accessing to memory references. Even
thoﬁgh a 2-way skewed-associative scheme partially resolves these problems, it still has
an inefficient replacement policy for frequent proceduré call/returns, which can increase
conflicts for certain locations in a cache mémory.
There are two main reasons for designing a new instructibn cache memory:
e As technology changes, smaile'r on-chip L1 caches (less than 32 Kbytes) have
replacéd large external caches (greater than 256 Kbytes); |
e As object-oriented languages become more widely ﬁsed, procedure calls tend to
increase in application programs, causing an iricreasing number of conflict fnisses.

Thus, there is a need to have a new cache memory scheme to reduce instruction cache

misses focused on reducing thrashing conflict misses (i.e., a commonly used location is

displaced by another cor'nmonl'y used location in a cycle).

|
R 37

2.3.1 An overview of a TAC scheme

If the cache size is relative_ly'small, conflict' misses can degrade system performance
significantly [Gonzales et al “97]. Figure 17(a) shows that, in a conventioria] éacﬁé
scheme, individual insfructions (A or B) are pléced or replaced into ‘cache memory
ac'cording to a mapping function and replacement policy on a cache miss. A conventional '
cache scheme works well fqr reducing conflict misses for traditional programs but not for
object-oriented programs since traditional programs have fewer calls and larger function

sizes than object-oriented programs (refer to section 2.1).

Individual

instructions

A: an instruction except ‘call’
B: ‘call’ instruction

(a) A conventional cache scheme

A Group of
) instructions

Figure 17. The basic operations of a convéntional'cache scheme and a TAC scheme.
Figure 17(b) shows the basic operations 6f ;1 TAC scheme, which can reduce conflict

misses effectively for object-oriented programs by grouping instructions. In Figure 17(b), ‘

a grc;up of instructions (A and B) separated By call instruction (B) are placed and replacea

-into cache memory according to a mapping function or replacement policy on a cache

' (b) A TAC scheme
38

miss. Our measurements shows that grouping instructions benefité more from localities
than individual instructions in both traaitional and object—on’ented programs.

A TAC scheme is built with N distinct banks. Singe Gonza‘les-ét.al (’97) shOwed that
XOlfl mapping functions work well Tfo‘r reducing conflict misses, TAC employs XOR
mapping functions .(refer to section 2.'2.2) for accessing the instruction cache memory.

.On a cache miss, data must be fetched from a lower level niemdryaccording to the
XOR mapping functions and replacement policies, the Bank Selection Logic (BSL; refer
to section 2.3.2) and Bank-originatéd Pseudo LRU replacement policy (BoPLRU, refer to
section 2.3.3). The BSL selects a bé}nk initially according to the number of call R
instructions and the BoPLRU determines a final b'apk according to the replacenie‘nt policy
by using a flag.

The BSL and BoPLRU can guarantee that recent groups of instructions exist in each
bank safely. Soif the frequeﬁcy of call/returﬁs is increased, the TAC schem§: works vwe]l
since the manageable size of an instruction group is smaller. For example, if the average
number of instructions per call of an object-oriented program is 40 and that of a
traditioﬂal program is iOO, then the TAC scheme of an object-oriented program will Work
better than a traditional one for limited cache sizes.

In a TAC scheme, each cache line consists of tag, data, and flag. Tﬁe tag word consi-sts
of an address tag and some other status tags. The bit length of the flag is determined by
B the N distinct banks; that is, an n-bit flag representé 2" banks of an N-Way (N = 2").

cache scheme. For convenience, this thesis represents the cache line of a TAC scheme as

~ just a flag and data throughout this paper and omits the tag part.

~ 2.3.2 Bank Selection Logic (BSL) — Initial Bank Selection

The funcﬁon of the Baﬁk Selection Logic (BSL) is to seléct a bank initially on a cache
miss according to a fixed frequency of the procedure call instmctiqﬁs. The BSL empldys
an x-bit counter for counting the fréqqency of call instructions. The x-bit counter will bev
increased by one whenever a fetched instruction proves to be a call instruction. An n-
MSBs (n-Most Significant Bits) of the x-bit counter represents a selected bank for each
instruétion. Each bénk can be selected for every 2*" procedural calls. For example, if x =
2 and nv = 1, then there are two banks (2”‘ =2) an‘d‘a bank is switched to the other bank -
for every two procedure calls (2" = 2). A group of instructions terminated by a
procedure call can be placeci into the same bénk' through_ the BSL (Bank Selection Logic)
and XOR mapping functions. ’fhe .goal of the BSL is to }llelp' each bank tq share
instructions equally according to the occurrence of proceduré call instructions.

' As an example, Figure 18 shows how a 2-bit counter (x = 2 and n = 1) in the BSL
works with the flow of example inétructions in Figuré 18. The left side of Figure 18
shows the flow of instructions. Each call instruction woﬂcs as a separator for grouping
instructions. For a group of instructions, the next call instruction be_comes the last one in ,
the group. In Figure 18, it is assumed that there are cache conflicts in (B, H) and (I, X). -
The detailed operations of the 2-bit counter in the BSL on the right side of Fi gure 18 are:

e Instruction A is- fetched. On a cache miss, »thel flag of the selected line in Bank 0is
read. A is not a call instructibn, so there is no éhange in the 2-bit counter (+ 0);
o Instruction B is fetched. On a cache miss,’ the flag of the selected line in bank O is

read. B is a call instruction, so one is added to the 2-bit counter (+ 1);

40

° In.struction H is fetched. On a caché miss, the fla;gy of the selected line in bank 0. is
read. H is not a call instructidn, so there’s no change in the 2-bit counter (+_ 0).

e Instruction I is fetched. On a cache miss, the ﬂdg of the selected line in bank O is read.
Iis acall instruétion', 50 one is added to the 2-bit counter <+ 1);

- o Instruction X is fétched. On a cache miss, the flag Qf the selected.line in bank 1 is

read. X is not a call iﬁstruction,. so there’s no change in the 27bit counter (+ 0);

e Instruction Y is fetched. On a cache misé, the flag .of the selected -line :in bank 1 is
read. Y is not abrcall instruction, so there’s no change.in the 2_—bit counter (+ 0); and

e Instruction J is fetched. Or‘1. a cache miss, the flag of the seiected iinc in bank 1 1s

read. J is not a call instruction, so there’s no change in the 2-bit counter (+ 0).

Aflow of instructions - - A 2-bit counter in the BSL

+
<o

4+
[—

+
ow

+
(e

Group H
Group A Group X

+
S

+
e

R U X R X
+

Instruction cache memory

-Figure 18. The operation of the BSL (2-bit counter, 2-way) according to a flow of
instructions. Conflicts in (B, H) and (I, X).

41

Grouping instructions

Figure 18 shows that each ‘call’ instruction works as the selector of the distinct bank
for instructions following the ‘call’ instruction. Tha} means thése instructions after the
call instruction can be grouped tdgethér since they access the same bank on.a cache miss

until another call adds one to the n-bit counter in the BSL.

Instructions
~ —~~ GROUPA A \
/ \ _ — —GROUPH —¥

GROUFP X

— N —

Figure 19. An example for the grouping instructions in a 2-way TAC scheme.

" In FigUré 19, the ‘call’ instruction (B) works as a separator for grouping instructions.
The H instruction followed by the B instruction leads the group of instructions. The next
‘(;all’ instruction (I) is the last oﬁe in that group of instructions. Thereforé, the group of
instructions separated by the B instmction are {H, I}. In the same way, it is possible to
group iﬁstrﬁ‘ctions in Figure 19 into {A, B}, {H,I}, and {X, Y,‘J, 3 If each group is
" named after the leading instruction, there are three instruction groups such as group A,
group H, and group X. Figure 19 shows that group A and group H access bank 0 and

group X accesses bank 1 on a cache miss.

42

Consequently, there are three important properties in regard to grouping instructions in
the fdllowing ways:
e Each ‘call’ instruction works as a séparator for groupi'n'g'ins'tructions;
e The instruction following any ‘call’ instruction leads the group of instructions; and
e The next ‘call’ instruction terminates that group ‘of instructions’ and works as a

separator for the next group of instructions.

N
~
~ -
’ ~
Initially S
selected l Bank 1
MSB of Counter =0, - MSB of Counter =1,

- select Bank 0. > select Ba(zk 1.

We assumed that Bank 0 is
selected initially in this diagram.

Figure 20. Initial bank selection of BSL for a 2-way TAC scheme.

As an example, the BSL operation of the: 2-bit'coﬁnter in a 2-way TAC scheme is-
shown in Figure 20: On a cache miss, the BSL initially selects a bank according to the
value of the counter. If the MSB (Most Significant Bit) of the counter is 0, then bank 0 is -

selected. Otherwise, bank 1 is selected.

43

| 2.3.3 Bank-‘or»iginated Pseudo LRU Replacement Policy (BoPLRU) - Final Bank
Selection | | | |

After the BSL selects a bank on a cache miss, the BoPLRU will cieten’nine the final
bank for updating a line as a coﬁeétion mechanism by checking the flag for the selected

cache line.

The BSL selects a bank initially (say, initial bank). |
If a 2-way TAC scheme, which has two banks
If ‘the flag = 0’ of the initial bank
Replacé data of the other bank.
Set the flag of the initial bank to 1.
If the ﬂqg =1"of ;he initial bank
Replace data of the initial bank.
Set. the flag of the initial baﬁk to 0.
If an N—wdy TAC scheme, which has N banks
If ‘the ﬂag < (N-1)’ of the initial bank
Find the highest value of the flag ihrough other banks (say, | final bank).
Replace data of the final bahk; |
Set the flag of the final bank to 0. 4
For other bémks apart from the final bank
Increase the value of the flags by one.
If ‘the flag = (N-1)’ of the initial bank (say, final bank)

Replace data of the final bank.

44

Set the flag of the final bank to 0.
For other banks apart from the ﬁnal bank
If ‘theﬂag < (N-1)
Increase the value of the flags by one.
Else

Keep the value of the flags. |

Figure 21. Pseudo code for the BoPLRU réeplacement policy

Figure 21 shows the Pseudo code for the BoPLRU. If an N-way TAC scheme employs -
a h-bit ﬂég, then N =2". If n is 1 or 2, it repres',énts a 2-way or 4-way TAC scheme
respéctively.

For the 2-way TAC scheme, if ‘the flag = 0’ of the selected bank by the BSL, data in
the initial bank will remain while data of the other bank is replaced with new data fetched
from memory. After that, the flag of the initial bank will change from O to 1. Meanwhile,
if ‘the flag = 1” for the initial bank, data in the initial bank will be replaced with new data

and the flag for the initial bank will change to 0. By doing this, any conflicting data can

remain in a bank safely for a while.

For the N-wayj (N =2") TAC scheme in Figure 21, if ‘the flag < (N-1)’ of the selected
bank, it is necessary to find the highest value of the Hag for other banks to determir.levthe
final bank. After data of the final bank is replaced with new data from memory, the flag
will be set to 0 and the value of the other flags except th¢ one of ‘the final bank will be

increased by one. Méanwhile, if ‘the flag = (N-1)’, data for the initial bank will be

45

replaced by new fetched data and the flag is set to 0. For 6thér banks apart from the final
bank, if ‘flag < (N-1)’, the value of other“flags will bc increased by one. Otherwisé, the
value of the flags will be .kept since it is the highest value and the flag is not in the final
bank but will be _in the.final bank soon. |

The BoPLRU is a kind of modified pséudo-LRU replacement policy that guarantees

that recent groups of instructions can be retained in each bank safely.

Bank 1 | We assumed that flag = 0 for the
selected bank 0 in this diagram.

- Finally

Bank 0 | selected
flag=1, | flag=0,
replace data in bank 0 replace data in bank 1
and set the flag of | and set the flag of

bank 0 to ‘0’ bank 0 to ‘I’

Figure 22. Final bank selection of BoPLRU replacement policy for a 2-way TAC
scheme.
As an example, thé BoPLRU operation of the 1-bit flag, 2-way TAC scheme, is shown

in Figure 22: it is assumed that the BSL initially selects the bank O on a cache miss.

Therefore, a flag of the selected line in bank 0 is read. If the flag is'1, it is set to 0 and the

data fetched from memory 1s written into bank 0. Otherwise; the flag is set to ‘1’l and the

data is written into bank 1.

2.3.4 Benefit of the TAC scheme

Figure 23 shows how the instructions in Figure118 are written into each bank (2-way)

on a cache miss.

=il D
- hs‘ {
- ~ &Deret

- ’ - T~ ~ g
. GroupH Group A ~< ffferehtc" oy, Group X
. . %ﬁ ~S o R 3, n k

Group A: A, B _
Group H: H, I Bank 1
Group X: X, Y, J)

where {B & H} are conflicting in Bank O

~ » Guarantees the coexistence of instructions within a group.
* Guarantees the retention of recently used groups of instructions
in different banks.

Figure 23. Placement of instructions in a 2-way TAC scheme.
We assume that BSL selects bank 0 for Group A and H, and bank 1 for Group X: -
e Instructions A and B of Grouﬁ A are written into bank 0. It is assumed that the flags

for each cache line for Group A are initially set to ‘0’.

47

e Instruction H of Group H is written into bank 1 since it conflicts with instruction B of

' Group A. Therefore, the flég of the cache line for instruction B in bank O should be
setto ‘1°. | | | o

o Ins;truction I of Group H is written into bank 0. It is assumed that the flag is initially
setto ‘0’. |

\ 4, -

‘ o Instructibns X,'Y, and J of Group X are written into bank 1. It is assumed that the
flags of each cache line for Group X are initially set to ‘0.

If thel instructions in Figure 18 are considered, it can be easily verified that instructioﬁs
for each group execute in a sequential form. Therefore, the possibility of conflict misses
is very low within each group. However, it is reasonable that conflict misses among
instructions from different groups can occur éasily since the locations of .eac.h group of

instructions are randomly distributed in the main memory. Then, how can we effectively -

reduce the conflict misses among instructions from different groups?

\
|
|
|
The answer generally depends on how far the rules of locality in space and/or in time
can be satisfied.
1. 'Locality in Space (Spatial L'ocalify)
Handy (’93) shows that most computer code is executed repetitively out of a small
area. This space is not n‘ecessan'ly in a single address range of the main memory, but
miay be spread around bquite significéntly. Thét is why the principle of spatial locality
refers to the faci that a célling routine and the subroﬁtine can exist in two very small

areas of memory.

2. Locality in Time (Temporal Locality)

~ Handy (’93) also notes that the same instruction execute in close sequence with each
other, rather than being spread through time. That is, a processor is much more likely
to access a memory location which it accessed 10 cycles before than one which it

accessed 10,000 cycles before.

The benefit of a TAC scheme comes from satisfying thesei rules of locality:

e The TAC' séltisfies spatial locality by grouping instructions according to an
effective policy (calliﬁg routine and subroutine) and by guaranteeing the co-
existence of instructions Within a group; | |

e The TAC satisfies the temporalllocality by guaranteeing the retention of recently
used groups of instructions in different banks by usiﬁg the BoPLRU.

. If the frequenéy of occurrence of procedure call/returns increaées, it is expected

that the TAC schenié will work even better than other conventional cache schemes:

2.3.5 Examples of cache misses: a 2-wa3' TAC scheme vs. a Z-Way skewéd-associatis"e
In section 2.2, Gonzalez et al ("97) showed that a 2-way skewed-associative is the most
effective cache scheme among the conventional cachevscheme's such as direct-mapped, 2-
way set-associative, 4-way set-associative, hash-rehash, column-associative, victim, and
fully—associativé schemes. The 2-wéy skewed-associative scheme can reduce conflict -
misses most effectively among 'conyentional cache memory schemes.
In this section, cache misses for a 2-way TAC scheme are compared with a 2-way

skewed-associative scheme, which is known as the most effective of the conventional

cache schemes. It is assume;d that:

Address a, b, and ¢ compete for the same location in bank 0, but they do not map to
the same location in bank 1:
fol@)= fo(b)= fy(c), fi(a)# f,(b)# fi(c): Where, f, and f are XOR mapping |
functions.
- The order of fetching addresses: a b —c —a.

An Example for a 2-way skewed-associative

Figure 24 shows cache misses of a 2-way skewed-associative scheme for the above

instructions.

Cache Miss !!! patastac

fo fi <

DATA+TAG Flag

fi(Ao)
4

fo(Ao) = fo(A1) = fo(A2)

FYvy

(A

A fi(A1)

"
Ao A As o fi(A2)
Bank 0 Bank 1

fo and fi: Mapping Function

Ao, A1, and Az: Instructions with the same location in Bank 0
Try to avoid conflict misses per instruction according to the
status of the Flag (Flag = 0 > Bank 0 or Flag =1 = Bank 1)
Flag = 0: initial condition

Figure 24. An example for a 2-way skewed-associative scheme

In Figure 24, there are three initial ‘cache misses for a, b, and ¢, where a and ¢ are -
located in bank 0 and b is located in bank 1 according’ to mapping functions én’d the flag.
Since a and'é have the same location in bank 0, a is replaced wi-th c and the flag is set to 1
for the néxt conflict. Therefore, a can next be ldcated in bank 1. In a é-way set-
assdciatiyé scheme, the flag is located in cache lines of bank O only.

An Example for a 2-way TAC scheme |

Figure 25 shows cache misses of a 2-way TAC scheme for the same instructions as the 2-

. way skewed-associative scheme.

DATA+TAG Flag Cache Hit !!! DATA{TAG Flag
(f1(Ao)
. v
fo(Ao] = fo(A1) = f(A2) | & A
3 fo fi S

\“\A fi(Ar)

fi(A2
waa(®
Bank 0 . ‘ Bank 1

fo and fi: Mapping Function
“Ao,Ay, and Az Instructions with same location in Bank 0
Ao, A1, and A: & Bank 0 (Flag in Bank 0: 02>1-2>0->1).
Flag = 0 in Bank 0 > Bank 1 or Flag = 1 in Bank 0 - Bank 0.
All Flags = 0: initial conditions

Figure 25. An example for a 2-way TAC scheme

In Figure 25, there are three initial cache misses for a, b, and c, where a and ¢ are

located in bank 1 and b is located in bank 0 according to mapping functions and the flag.

51

Since there is no conflict miss among a, b, and ¢ between two banks, the last address is
where a can be a cache hit. in a 2-wéy TAC-scheme, each cache line of each bank has its '
own flag for avoiding conflict misses.

Figure 24 and Figure 25 show that a 2-way TAC scheme works better than a 2-w.ay
skewed-associative séhéme since the 2¥wéy TAC scheme can reduce conflict misses

better than the 2-way skewed-associative scheme.

2.4 Experimental environment

- 2.4.1 Simulation methodology

Benchmark : Exe. Fil

SPECYSINT ompi : xe. Fie

(_) Compiled GCC N o
Benchmark Compiler Benchmark Input
(C++) : Executables Data
— Shade &

SpixTools,

CACHESKEW
Simulator

Figure 26. Simulation methodology with benchmark programs and various tools.

52

Figure 26 éhows an overview of our simulation methodology:
e First, SPEC9SINT» and C++ programs were compiled by using the GNU gcc 2.6.3 aﬁd
2.7.2 compiler; | |
e Second, TACSim (cache simulator) is used to run each executable benchmark'with:its
input data. TACSim was developed by using the Shade, SpixTools,' and
' CAHCESKEW simulato'r. Shade and SpixTools. are tra;:ing and profiling tools
developed by ‘Sun. MicrbsYstems. Shade executes all the program instructions and-
passés them on to the cache simulator, TACSim. SpixTools is useci .fo‘r’céllelcting
information for static instructions. CACHESKEW is a cache simulator developed‘by
Seznec & Hedouin (’97) that not only simulates most cache schemes such as direct,
n-way set-associative and skewed-associative séhemes, but also runs severali XOR
mapping functions and repiacement policies such as LRU (Least Recently Used) ahd
Pseudo LRU, etc. The TAC scheme simulator is added into TACSim alongrw.ith tﬁ¢
BoPLRU replacement policy;
e Finally, cache miss rates, lthe number of instructions and data references, simulation..
‘time,.etc were collécted as outputs. |
In Figure 26, Shade is a tbol that d&namically executes and traces SPARC v§
executables. Using Shade, the trace information désired can be specified'. This n\léans‘ that
the trace information can be dynamically handled in any maﬁner. Itis pbssible to collect’
any detailed information for every inétruction and opcode dynamically. For example, it is
possible to obtain the dafa for the total number of call'instructions, program counter,

opcode fields, etc. This information is used for our simulation tool, TACSim.

53~

| 242 Benchmarks

Table 3 describes the benchmark prog'rams'. Five of the SPEC95 intégér programs Wére

used for our simulation — gcc, go, m88ksim, compress, perl, and li. These glre'the same

programs used by Radhakrishnan & John (°98). The next suite of programé is written in

| C++ and has been used for investigating the behavior between C aﬁd C++ [Calder et al
‘ ‘04] [Holzle & Ungar ‘94]. These programs are deltablue, ixx, and eqn.

\ ’ | ~ Table 4 provides a description of the 'run;time characteristics Qf the benchmarks.

Dynamic instructions represent the number of instructions executed by each program. It

also shows that the number of instructions (function size) per call in the C programs is

about two times larger than that of the C++ programs (as a harmonic mean).

Program Input Description

SPEC95 CINT: C Programs

go ‘ 2stone9.in Plays the game Go against itself

‘ gce ' amptjp.i ' Compiles pre-processed source

o m88ksim ctl.raw Simulates the Motorola 88100 pr_océssor
compress test.in - Compresses large text files
perl scrabble.pl - Performs text and numeric manipulations

‘scrabble.in

li train.Isp Lisp interpreter

Suite of C++ Programs

deltablue 3000 _ Incremental dataflow constraint solver

ixx . ‘ ~ object.h » IDL parser generating C++ stubs
som_plus_fresco.

idl

eqn - . eqn.input.all Type setting program for mathematical

equations

Table 3. Benchmark descriptions

http://scrabble.pl

Program

Dynamic

instructions

of procedure

calls

Instructions/call

SPEC95 CINT: C Programs

584,163,226

20 1,610,807 362.65
gcc 250,494,615 5,203,867 48.13
M88ksim 850,057 16,796 50.66
compress 41,765,761 1,355,389 30.81
el 63,028,127 2,611,048 24.14
Ii 189,184,575 7,971,176 23.73
Suite of C++ Programs .

deltablue 42,148,983 1,478,007 28.52
ixx 31,829,777 1,404,978 22.65
eqn 58,401,832 1,999,175 29.21
C Mean 4,894,178 97,407 37.67
C++ Mean 41,513,735 1,588,521 26.45

Table 4. Benchmark characteristics

2.5 Experimental results

The performance metrics used. for comparison of different cache schemes are the -

instruction cache miss rates and branch misprediction rates. BSL was implemented with a

2-bit counter and the BoPLRU with a 1-bit (2-way) and 2-bit (4-way) flag. If the counter 4

size of the BSL is greater than 4 bits, the instruction cache miss rates are slightly higher

than a small-sized counter with less than 2 bits (refer to section 2.5.2). In addition, since

Hill & Smith (’89) showed that there is little benefit in increasing cache associativity over

55

4, experiment results of 2-way and 4-way associativity for the TAC and .skéwed—'
associative cachés were collected.

In Table 4, the C benchmark. pfograms, from go to li, execute from 23 to 48
‘instructions per call except go. The SPECint95 instead of the SPEC2000 were used for
our simulation since there have been no experimental results for cache schemes by using
the SPEC2000. For “go”, sinc;e the number of instructions per call is mﬁch bigger than
other C programs, it will be excluded from all averages in sections 2.5.2 and 2.5.4. “Perl”
also is: excluded from all averages in sections 2.5.2 and 2.5.4 since it _exegﬁtes 24

instructions per calls like /i and takes too much time to get a simulation result.
2.5.1 Cache Misses vs. Cache Sizes

Much feséarch has been d;)ne‘to determine the relationship between the ;:ache size and
cache miss rates. For our research, 4 cache schemes were simulated with C and C++
benchmark programs in Figure 26: The 4 schemes are direct-mapped, 2-way set-
associative, 4-way set-associative, and 2-way skewed-associative; The C program§
“include go, gee, m88ksim, li, and compress; The C++ programs are deltablue, {xx, an’d‘.
eqn. The range for the simulated caéhe sizes is from 2Kbytes to 128 Kbytes according to
three different cache line vsizes including 8 bytes (Figure 26 (a) and (b)), 16 bytes (Figure
26 (c) and (d)), and 32 bytes (Figur_e‘26 (e) and (f)). The bars in Figure 26 represcn_tAthe
difference between the highest and _the lowest miss rates for each cache size. The purpose

of the bars is to show which cache sizes could benefit from efficient cache schemes for

reducing cache misses.

Miss Rates .

Miss Rates

-+ direct-mapped

-=—2.way set-associative

-a- 4-way set-assoicative -
-=-2-way skewed-associative

2K 4K 8K . 16K 32K 64K 128K

Cache Sizes

(a) Miss rates vs. Cache sizes for C programs (8 bytes of cache line size)

-+ direct-mapped

-s—2-way set-associative
-+ 4-way set-assoicative
-= 2-way skewed-associative

2K 4K 8K 16K 32K 64K 128K

Cache Sizes

(b) Miss rates vs. Cache sizes for C++ programs (8 bytes of cache line size)

Figure 27. Comparisons for cache misses according to the cache sizes (4 cache schemes).

57

—— direct-mapped ‘

——2-way set-associative
----- + 4-way set-assoicative
_—w2-way skewed-associative

Miss Rates

S =N WA TN XS
|

2K - 4K 8K 16K 32K 64K 128K

Cache Sizes

(c) Miss rates vs. Cache sizes for C programs (16 bytes of cache line size)

-+~ direct-mapped

-s—2.way set-associative
-+~ 4-way set-assoicative

P T NN S Ss oo —=-2-way skewed-associative

Miss Rates

2K 4K 8K 16K 32K - 64K 128K

Cache Sizes

(d) Miss rates vs. Cache sizes for C++ programs (16 bytes of cache line size)

Figure 27. (continued) Comparisons for cache misses according to the cache sizes (4
cache schemes).

58

~+-direct-mapped

< -ccoeeeeeeeeeemmoooeeeeeeeeemooieeesieaseeeeessesmoomeeeseiimeiieeaeiiiiie
—=—2.way set-associative
S5 Aeeeees e B *'~'4-way set-assoicative
w 4 4.8 e onnn. 4 2-Way skewed-associative
W
;]
B B e A N e e
&
S S o
) TS SO UTvibuet o | SOOI
0 T T T T T T 1

2K 4K 8K 16K 32K 64K 128K

Cache Sizes

(e) Miss rates vs. Cache sizes for C programs (32 bytes of cache line size)

B oo ——direct-mapped
7 -=—2-way set-associative
& -+ 4-way set-assoicative
) S8 TR N N USSR —a 2-way skewed-associative
3 B T T T O N T R LTET TP P PR PR PSP PPEPP
«
=T R I N
A
S S SO N N SRR USROS PSSO
PRI N - e SRR
1
0

2K 4K 8K 16K 32K 64K 128K

Cache Sizes

(f) Miss rates vs. Cache sizes for C++ programs (32 bytes of cache line size)

Figure 27. (continued) Comparisons for cache misses according to the cache sizes (4
cache schemes).

59

Figuré 27 (a), (c), and (e) show cache miss rates for the C programs. Méanwhile,
Figure 27.(b), (d), and (f) show the results for fhe C++ pfograms._ Results for the C-
prbgrams show that if cache sizes are 4 Kbytes to 16 Kbytes, it is usefui to have a more
efficient cache scheme since cache miss rates can be reduced considerably. In the case of
the C++ programs, if cache sizes are 4 Kbytes to 32 Kbyteé, a more efficient cache
~ scheme would be useful for reducing cache misses.

In general, if cache sizes are less than 2 Kbytes or bi_ggéfthan 32 Kbytes, the cache
misses are similar whatever cache scheme is used. Figure 27 tentatively shows that it is
quite reasonable to use a more sophisticated cache scheme for reducing cache misses
between 4 Kbytes and 32 Kbytes bf cache size. As microprocessor technology changes, it
is widely accepted that small-sized on-chip L1 caches need to replace large external

caches.
2.5.2 Bank switching vs. Procedure Calls

Ina TAC scheme, the BSL (bank Selection Logic) works to seleqt a bank initially on a‘
cach‘evmiss. This section presents the most efficien.t size of X-bit,.counter bv‘vhich .B‘S.L ,
employs for selecting bénks. As we discussed in 'section 2.5.1, we primarily investigated
cache sizes that afe less than 32 Kbytes. Various cache sizes of 2-Way TAC scheme were
simulated with 7 benchmark programs to determine the most effective x-bit ‘countver size.

In Figure 28 and Figure 29, TAC_k ﬁeans that BSL selects a bank for every k call
. instructions on a cache miss. For example, if k = 2, then every two calls change the bank

on a miss. As we discussed in section 2.3, the n-MSBs (Most Significant Bit) of an x-bit

60

counter represents a bank for the current instruction. Therefore, if k =2 and n = 1, then a

2-bit counter is needed because {00, 01} - bank 0 and {10, 11) > bank 1. If k =8 and n

.= 1, then a 4-bit counter is needed because {0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111} - bank 0 and {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} => Bank 1.

Hence, k= 2" 5 and a x bit counter for the‘BSL is needed.

4.09
——4K

3.5 - : ' ' - 8K
37 o —+- 16K
: -= 32K

2 4196198 =198 =197 19F——= 1.99
1.5 - 4
| 41512 «1:12 112 112 112 +1.13

0.69

&5
[e 5
4
£
g
-
»
=
o

N
w
!

Miss Rates

0.5 _ . . . 0
0 T T T T 1
TAC_1 TAC_2 TAC_4 TAC_S8 TAC_16 TAC_32

TAC_n (n-bit Counter)

(a) Miss rates vs. TAC_n fof C programs (8 bytes of cache line size)

Figure 28. Cache miss rates according to the sizes of the n-bit counter (C programs).

61

w
v
J

3 1as4 2-86 284 2-87 2.88 2.88 4K
2.5 - 8K
s \ - 16K
N -
- . - 32K
2 1.5 - .
é’ +:33 *1:33 132 * 134 +:34 «1.35
1 .
0-71 0-71 0-71 8:71 8-71 0.71
0.5 4o d44—wpdd—ufdd— w044+ utdd——u0.44
0 T T T T 1

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32
' TAC_n (n-bit Counter)

(b) Miss rates vs. TAC_n for C programs (16 bytes of cache line size)

2.5 -
219 —-2-18 22 2:19 +2:19 219+ 4K
2 -
- —-a— 8K
w
W
s 1.5 - ~—16K
-4 - 32K
2 1] 108 =108 =109 168 =109 = 1.09
E B . ’
’ 0.5 +6:52 0-52 +(:52 0:52 052 + (.52
03 =03 =03 -3 =03 u(.3
0. 1 T B L] T 1 '
TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter) ‘

(c) Miss.rates vs. TAC_n for C programs (32 bytes of cache line size)

Figure 28. (cohtinued) Cache 'miss rates ‘according to the sizes of the n-bit counter (C
programs). '

62

The following discussion_ pertains to Figure 28:
e Four C .programs (gec, m88ksim, li, and compress) were used for determining fhe
mo‘st effective x-bit counter for C programs. |
e The results of the C progfams show that:
From Figﬁre 28 (a), (b), and (c), if a cache iine size is larger (32 bytes), cache miss

rates can be slightly reduced by using a smaller x-bit counter (say, less than 4-bit

counter).
6 -
N —— 4

5 1495 4:82 478 4:81 4:82 479
g 47 - 16K
5]
B3 -=- 32K
2
s 2 .,

1 H=27 -2 "117 +18 *+:19 ~=1.21

o §0:25 §0:23 5024 50:23 5023 30.2

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)
(a) Miss rates vs. TAC_n for C++ programs (8 bytes of cache line size)

/ _
Figure 29. Cache Miss rates according to the sizes of the n-bit counter (C++ programs).

63

4.5

O s S 3-89 3:9+ +3.94 e 3,89+ 4K
- _8,_./%"_'.’-0:’ . . s
3.5 = 8K
$ 37 _ ~+ 16K
[~] E g .
& 2.5) -= 32K
2 249 - o
2 1.5
1 3088 9:88 *0:88 =09 0:92 0.93
0.5 -
0 322 §0:19)19 §0:19 40:19 $0.19
TAC_1 TAC_2 TAC_4 TAC_S8 TAC_16 TAC_32
TAC_n (n-bit Counter)
(b) Miss rates vs. TAC_n for C++ programs (16 bytes of cache line size)
3.5 q
324 +3:24 3:24 327 3:25 3.25
3 - : ——4K
2.5 - 8K
g 16K
« 2 .
& - 32K
2 1.5
=
1 3689 088 6-89 6:88 9-91 = 0.9
0.5 4
o $%13 013 it SRl & — $0.14
TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 ° TAC_32

TAC_n (n-bit Counter)

(c) Miss rates vs. TAC_n for C++ programs (32 byfes of cache line size)

Figure 29. (continued) Cache Miss rates according to the sizes of the n-bit counter (C++
programs).

The following discussion relates to Figure 29:
e 3 VC++Vprograms (deltgblue, ixx, and eqn) were used for determining the most
effective x-bit counter for object-oriented languages such as C++ aha Java.
e The results of the C++ programs show that: |
From Figure 29 (a), (b), and (c), if a cachf; line size is larger (32 byfes), cache miss
rates can be slightly‘ reducedvby using a smaller x-bit counter (say, less than 2-bit
counter).

In conclusion, a small-sized counter, less than 2-bit for the case of a 2-way TAC, is

recommended for the BSL of a TAC scheme if a cache size is less than 32 Kbytes.

2.5.3 Instruction Cache Misses for various cache schemes

Results in Table 5 show that the programs in the C++ suite (deltablue, vix'x,, and _eqn)A

incur higher instruction cache misses than some typical C programs (compress and li). -

Table 5 also shows that a 2-way TAC scheme removes conflict misses more effectivély

than a 2-way skewed-associative cache in both C and C++ programs.

2-way

16-way

Benchmark direct- 4-way 2-way 2-way |

programs mapped o Skew - TAC
SPEC95 CINT (C Programs) .
g0 6.8691 5.5038 4.8715 | 5.4535 5_.3783 4.9203
gcc 5.934‘7~ 5.1155 4.1727 ‘ 4.1238 3.9645 3.4524 |
m88ksiﬁ1 3.8189 2.8224 1.5402 1.3996 1.'3-202 0.9474
compress 0.0564 0.0475 0.0210 .0.0173 | 0.6163 0.011
li 0.5394 | 0.4232 0.0834 0.0238 0.0106 0.0052
C++ Programs . . .
deltablue 3.0746 1.9852 1.3405 | 1.0326 0.6488 0.2427
1Xx 4.7679 2.5423 1.3825 | 1.1473 0.9444 0.2884
eqn 3.8790 2.0957 1.1265 1.0340 0.6186

1.1382

bytes)

66

Table 5. Instruction cache miss rates in percentages (cache size: 8 KB, a line size: 16

[1 m88ksim (C) .
B deltablue(C++)

" Direct 2-way 4-way 2-way 2-way 16-way
) Skew TAC

Cache Sizes

Figure 30. Comparison for instruction cache miss rates between C (m88ksim) and
C++ (deltablue) programs (8Kbytes, 16bytes). |

'Figure 39 shows that the 2-way TAC scheme greatly reduces ‘cache miss rates
,comi)ared to ot_he'r cache sqhemes, with the exception of the 16-way set-associative cache
Vscheme, for both' m88ksim (C) and deltablue (C++)brograﬁ1_s. The 16-way set-associative
cache can be considered a good approximation to a fully-associétive bcache. In addition,
the 2-way TAC scheme for the higher frequency of call instructions (deltabiue) ;Norks
better than that for the lower ffequency of call instructions (m88ksim). Thus, the 2;way
7 | TAC scﬁeme can replacé conventional cache schemes for fraditional'programs (fefer to
section 2.5.4) “whith li.ttle or no incréasé in hardware complexity (refer to section 2.5.6),

and is even more suited to object-oriented programs than conventional caches.

67

2.5.4 Skewed-associative caches vs. TAC schemes

Section 2.5.1 showed that a 2-way skewed-associative scheme can reduce cache misses
better ‘than_a 2-way or 4-way set-associative schgmé. As we discussed in ée'ction 2.2,
Gonzaiez et al (97) also showéd that a 2-way skewed-aésociative cache offers.the lowest
miss ratio among several conventional cach:e'schemes and is mﬁch lower than a 4-way
set-associative cache. This section compares cache miss rates between skewed-
dssociative and TAC schemes. Since there is little benefit in increasing cache
associativity over four [Hill and Smith ‘89], experimental results from 2-way and 4-way
associativity forvthe TAC and skewed-associative caches were collected. ‘ |

In order to compare cache miss rates between the TAC and skewed-associative caches,
we used é formula calleci IR, Ifnprovéihent Ratio, such that:

Cache Miss Rates of a 2-way skewed-assbciative =a;

Cache Miss Rates of a TAC scheme = b;

a/b=1+n/100 2 ‘a’ has n% more cache miss rates than ‘b’.
Ifn=1IR, | |

IR=((@=b)/b) * 100 To -wrrememmmmmmmmzmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmeee (2)

For example, if the caéhe miss rate of a 2-way skewed-associative scheme _is 5%, and
that of a TAC scheme is 4%, then, the IR for this case is ((5-4)/4) * 100 = 25%: An IR of
25% r'néans that the 2-Wa§ §kewed-associatiVe ﬁas a caéhe miss rate of 25% hore than
the TAC cache.

Therefore, if IR is used for comparing two cache schemes, the improved result can be

easily obtained in regard to cache miss rates.

B0 mp e ________________________________ ~¢- C Programs

45 oo ettt sea s bebe s gueeneneeneesens —#— C++ Programs

0 T ¢

T 1 v i
4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes).

D e -C Programs
' —a~ C++ Programs

4 KBytes 8KBytes 16KBytes 32KBytes
. Cache Sizes

.(b) Improvement Ratios for C and C++ Programs (cache line size : 16bytes)

Figure 31. Comparisons for Improvement Ratios between 2-way skewed-associative and
2-way TAC caches.

69

-=- C++ Programs

o
A

4 KBytes 8 KBytes 16KBytes 32KBytes
Cache Sizes

(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytes)

Figure 31. (continued) Comparisons for Improvement Ratios between 2- way skewed-
" associative and 2 -way TAC caches. :

This section shows some graphs with regérd to IR between the TAC and skewed-
associative caches derived from the tables in Appendix A.

In Figure 31, 4 C programs (gcé, m88ksim, li, and compréss) and 3 ‘C+-.|- programs
(deltablue, ixx, and eqn) were used for- determining IR between 2-way skewed-
associative and 2-way TAC schemes. |

Th.e results of rFigure 31 show tﬁat:

- 2-way TAC schemes can reduce cache misses more effectively than 2-way :skewed-
associative caches in both C and C++ programs; |

- For C programs, the rate of improvement of 2-way TAC schemes over -2-way set-
associative schemes range for various cache sizes:

o From 0.1% (32 Kbytes) to 8.99% (8 Kbytes) for cache line size of 8 bytes;

70

o From 2.36% (32 Kbytes) t6 6.82% (8 Kbytes) for cache line size of 16 bytes;

o From 2.56% (4 Kbytes) to 9.29% (16 Kbytes) for cache line size éf 32 bytes;
For C++ programs, the rate of improvement of 2-way TAC schemes over 2-way set-
associative schemes range:

o From 4.79% (4 Kbytes) to 44.44% (16 Kbytes) for cache line size of 8§ bytes;

o From 10.4% (4 Kbytes) to 22.08% (16 Kbytes) for cache line size of 16 bytes; |

o From 8.66% (4 Kbyte-s) to 30.7.1% (16 Kbytes) for cache line size of 32 bytes; |
Therefore, if the cache size is 8 Kbytes (for C programs) or 16 Kbytes (for C++

programs), 2-way TAC schemes can reduce cache misses much better than 2-way

- skewed-associative caches for all cache line sizes such as 8, 16, and 32 bytes. If cache

size is 4 Kbytes or 32 Kbytes, 2-way TAC schemes can reduce cache misses slightly

- better than 2-way skewed-associative caches for C programs.

12 2o - B — L +CPr6grarm

- C++ Pi'ograns

10 A

IR (%)

4 KBytes 8 KBytes 16KBytes 32KBytes
Cache Sizes

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes)

-C Progfaxm
-~ C++ Programs

4 KBytes 8 KBytes 16KBytes 32KBytes
Cache Sizes |

(b) Improvement Ratios for C and C++ Programs (cache line size : 16bytes) .

Figure 32. Comparisons for Improvement Ratios between 4-way skewed-associative and
4-way TAC caches. '

72

12 - , —- C Programs

-a- C++ Programs

4 KBytes 8 KBytes 16KBytes ~ 32KBytes
Cache Sizes

(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytés)

Figure 32. (continued) Comparisons for Improvement Ratios between 4-way skewed-
associative and 4-way TAC caches.

In Figure 32, 4 C programs (gcc, m88ksim, li, and compress) ‘and.3 C++ programs
(deltablue, ixx, and eqn) were also used for determining IR between 4-way skewed-
associative and 4-way TAC schemes..

| T_hé _fesults of Figure 32 show that:
- 4-way TAC.schemes reduce cache misses more effectively than 4-way éke\;&/ed-
associa}tive caches in both C aﬁd C++ programs;
- For C programs, the rate of improvement of 4-way TAC schemes over 4-way s¢t-
~associative schemes range:
| o From 3.2% (32 Kbytes) to 9.06% (4 Kbytes) for cache line size of 8 byt’e‘s.;
o From 4.53% (16 Kbytes) to '9.43%\(4 Kbytes) for cache line size of 16 bytes;

o From 4.42% (16 Kbytes) to 8.32% (4 Kbytes) for cache line size of 32 bytes;

73

- For C++ programs, the rate of improvement of 4-way TAC schemes over-4-way set-
'associative schemes range:

o From 1.23% (32 Kbytes) to 10.02% (4 Kbytes) for cache line size of 8 bytes;
o From 1.63% (16 Kbytes) to 14.09% (4 Iébytes) for cache line size of 16 bytes;
o From 4.98% (32 Kbjytes) to 10.46% (4 Kbytes) for cache line size of 32 bytes;
- Thérefore, if the cache size is 4 Kbytes (for C and C++ programs), .the 4-way TAC
: schemes can reduce cache rﬁisses much better than 4-way éke’wed-ass’ociativé caches
for all cache line sizes such as 8, 16, and 32 bytes. If cache sizes are largér than 16
Kbytes, the difference between 4-way TAC and 4-way sicewed-ass.ociat.ive schemes

are reduced since the 4-way TAC or the 4-way skewed-associative caches reduce

conflict misses significantly.

—— C Programs
-a— C++ Programs

4KB, 4KB, 8KB, 8KB, 16KB, 16KB,
16bytes 32bytes 16bytes 32bytes 16bytes 32bytes

Cache Sizes, Line Length

(a) Improvement Ratios for C and C++ Programs (2-way, cache line size : 8/16 bytes)

-+~ C Programs

—+— C++ Programs

4KB, 4KB, 8KB, 8KB, 16KB, 16KB,
16bytes 32bytes ° -16bytes 32bytes .. 16bytes 32bytes

(b) Improvement Ratios for C and C++ Programs (4-way, cache line size : 8/16 bytes)

Figure 33. Comparisons for Improvement Ratios between skewed-associative and TAC
caches from 4Kbytes to 8 Kbytes. '

75

_ - Cache Sizes, Line Length
|
|

The results of Figure 33 show that:
- (a) 2-way TAC schemeé over 2-way skewed—assoc‘iative caches‘ work well for cache
sizes of 8 Kbytes (for C pfograms) and 16 Kbytes (for C++ prdgrms);
% (b) 4—w5y TAC schemes work well for the small cache sizes such as 4 Kbytes or 8

Kbytes.

~ 2.5.5 Various cache schemes for ther Branch Target Buffer

The Branéh Target Buffer (BTB) is a small cache that contains the address of the

branch instructions and their target addresses. The BTB is accessed in the fetch stage to

. predict the state of a branch instruction. If a hit occurs, then the current instruction is a

taken branch. The Program Counter (PC) is loaded wifh the target address from BTB; and
fetching starts from the new PC. It has been populér to employ a 4-way set-associative
cache for a small-sized BTB table, which ha_s lesé than 512 entries. Dﬁesen énd Holzle
(’98) claimed that for a table with 256 entrieé (64 associativity sets of four) most BTB

conflict misses disappear. However, the results of our experiment show that even a BTB

‘with 512 entries (128 associativity sets of four) still suffers from conflict misses.

This section determines the most. effective cache scheme for BTB (Branch Target
Buffer) aﬁlong various cache schemes. BTB was simulated With tﬁree different cache
schemes by using C and C++ benchmark programs in Figure 34. Tﬁese scheines are 4-
way set—éssociative, 2-way skewed-associative and 2-way TAC scheme. The C programs
include go, gcc, m88ksim, li, and‘ perl. The C++ programs are deltablue, ixx, and eqn.

The range for the simulated BTB table sizes is from 64 entries to 1024 entries.

76

—+-4-way set-asso.

QD e !
: -a-2-way Skew
- —+—2-way TAC
I3 .
B30 Lo e
2 —
g]
I 1 SO OO e S, UL UV OO
12
£
é- 20 S OO
=
15 T T T T 1
64 128 ' 256 . 512 1024

Entries of BTB Tables

(a) Miss Rafes vs. Entries of BTB Tables for C Programs

—4— 4-way set-asso.
‘ —o—2-way Skew
35 o oo ——2-way TAC

Misprediction Rates (%)
N
th

64 128 256 512 1024
Entries of BTB Tables

(b) Miss Rates vs. Entries of BTB Tables for C++ Programs

Figure 34. Comparisons of branch misprediction rates of BTB with a 4-way set-
associative, 2-way skewed-associative and 2-way TAC caches.

S

77

QD e e B —— 4way set-asso. -

-~ 2-way Skew

35 et —+—2-way TAC
53) . .
7.
E 1 T EE OO USSR
S N
S 25 LTI e » SN
|51 I—— |
;.a #
-3}
Bl D) H-reveee e
g

15 T T T T —

64 . 128 256 512 1024

Entries of BTB Tables

(c) Miss Rates vs. Entries of BTB Tables for C and C++ Programs

Figure 34. (continued) Comparisons of branch misprediction rates of BTB with a 4-way
set-associative, 2-way skewed-associative and 2-way TAC caches.

The results of Figure 34, based data from Appendix A, show that:
- The Q-Way skewed-associative and TAC schemes reduce branch misbrediction rates
more effectively than 4-way set-associative in both C and C++ programs.
- For C programs in Figure 34(a), the 2-way TAC scheme for}thle 256—ent;y table of the'
BTB works better than the other sizes of the BTB table. , |
- For C++ programs in Figure 34(b), the 2-way TAC scheme for the 512-entry table of
the BTB works better than the other sizes of the BTB table.

- The 2-way TAC scheme can reduce branch misprediction rates more effectively for

'vthe small-sized BTB tables, i.e., less than 512 entries.

D) e —C ‘
—o— C++

— = Average

§_15_ .. e,

K 1 FERSRSURISSTIPRORRS £ AN SRk IO

% 5 e T Tt e e,

g
0 T T T T 1

64 128 256 512 1024

~ Entries of Tables

(a) Improvement Ratios between BTB and 2-way TAC Scheme

——C

N
(=
)

—a— C++
— - Average

[
wn
|

[y
<
J

Improvement Ratios (%)

64 . 128 256 ’ ‘512 1024
| Entries of Tables

(b) Improvement Ratios between 2-way Skew and 2-way TAC Scheme

Figure 35. Comparisons for Improvement Ratios among 4-way set-associative, 2-way

skewed-associative and 2-way TAC schemes.

79

In order to compare branch misprediction rates between the 2;way TAC and 4-way s’et-'_
associative caches, and between the 2-way TAC and 2-way skewed—associativ¢ caches,
we used a formula called IR, Improvement Ratio, such that:v~

Brancﬁ Misprediction Rates of a 2-way skewed-associative orx a 4—way set-
associative caches = a; |
R Branch Misprediction Rates of a 2-way TAC scheme = b;
a/b=1+n/100. Ifn=IR, IR =((a-b)/b) * 100 %o -------------=-mnmmcmemmemx (3)
The results in Fi gu‘re 35(a) show that: |
- 2-way TAC schemes Work better than 4-way set-associativ¢ caches for all table
entries, from 64 eﬁtries to 1024 entries, in both C and C++ programs.
- For C programs, Improvement Ratios of 2-Way TAC schemes over 4-w;1y set-
associative caches range from 4% (64 entries) to 11.83% (256 entries).
- For C++ Aprograms, Improvement Ratios of 2-way TAC schemes over 4-way set-
vassociative caches range from 5% (64 entrie;s) to 17.54% (512 entries).
- For all C and C++ programs, Improvement Ratios of 2-way TAC schemes over the 4-
way set-associative range from 310% (64 entries) to 12.46% (512 entries).

The résults in Figufe 35(b) show that:

- 2-way TAC schemes work better than 2-way skewed-associative caches for all table
entries, which are less than 1024 entries (Figure 35) for both C and C++ programs.

- For C programs, Improvement Ratios of 2-way TAC schemes over 4-way set-
associative caches range from 0.39% (512 entries) to 4;0% (256 entries).

- For C++ programs, Improvément Ratios of 2-way TAC schemes over 2-way skewed-

associative c_:aches range from 0.63% (512 entries) to 6.50% (128 entries).

80

- In the case of the 1024 entries for both C and C++ programs, there is no differgnce
between 2-way TAC s.cheme‘s and 2-way skewed-associative caches.

- For all C and C++ programs, Improvement Ratios of 2-way TAC scheméé over 2-
way skewed-associative caches range ‘from 0.53% (512 entries) to 4.46% (128
entries)" except for the 1024-entry table. |

The results in figure 35 show that 2-way skewed-associative cache and 2-way TAC
schemes reduce branch misprediction rates much better than the 4-way set—assbciatjve
cach-es. In addition, the Z—Way TAC schemes work considerably better than 2—way
skeWed-associative cachés er all table entries, from 64 entries to 1024 entries. However,
if a BTB table is greater than 1K entries, our results showed the sarﬁe results as Driesen
and Holzle ("98). Therefore, if the BTB table size is less than 512 entries, the. 2-way TAC
scheme can be a good solution for reducing branch mispredictions caused by conflict

misses.v
2.5.6 Comparison for all 2-way schemes

In the previous sections, we discussed that 2-way TAC schemes are the most effective
cache schemes to reduce conflict misses for the instruction cache memory or BTB. This
section, compares hardware complexity and memory access time among 2-way cache

schemes such as 2-way set-associative, 2-way skewed-associative and 2-way TAC

schemes.

Contents 2-way 2-way 2-way
set-associative skewed-associative TAC
Logic and Replacenient LRU, etc. PLRU, ete. BSL + BoPLRU
Indexing .
Indexing Lower part of XOR mapping XOR mapping or
address Polynornial, etc.
Hardware Banks 2 2 2
Flag Y (Bank 0) Y (Bank 0) Y (Each Bank)
Bank design Classical design Classical design + Classical design +
XOR gates (mapping) XOR gates (map)
Counter N) N ~ Y(BSL)
Access Time . Same Same Same
(slightly increased by (slightly increased
XOR gates) by XOR gates)
Hardware Complexity Same Almost Same Almost Same
(Only several XOR (Only a counter is
gates are added to the added to the 2-way
2-way set-associative) skewed-associative)
Cache Miss Ratio High Medium Low

1. BoPLRU: Bank-originated Pseudo Least Recently Used, BSL: Bank Selection Logic
2. ‘Access Time’ and ‘Hardware Complexity’ from ‘A. Seznec, A case for two-way skewed associative
Caches, Proc. Of the 20" ISCA, May 1993, pp169-178’.

Table 6. Comparison of hardware complexity and access time among three representative-
2-way schemes: 2-way set-associative, 2-way skewed-associative, and 2-way TAC

schemes.

Table 6 shows various characteristics for three different 2-way schemes:

- The 2-way TAC scheme employs a flag for each bank while other 2-way schemes
employ oﬁly one bank. However, the flag size will not be a critical factor in
increasing the hardware complexity in a 2-way. TAC.scheme since the flag size is |
only 1 bit.

- Meémory acceSs time of 2-way skewed-associative and 2-way TAC schemes is greater
than for 2-way set-associative caches as a result of 'hsing XOR mapping functions.

However, according to Seznec (’93), the memory access time caused by the XOR

.82

mapping functions will be slightly increased by one xor-gate delay time since several

xor gates work in parallel for the XOR mapping functions.

According to Table 6, the 2-way TAC scheme is seen to be a good solution for
reducing conflict misses for instruction cache memory and BTB with similar hardware

complexity and memory access time compared to 2-way set-associative caches.
2.6 Chapter conclusions

Unlike traditional application programs, object-oriented languages use many small
functions during run-time and this ié the main factor for conflict misses. This paper
presents a new cache scheme called TAC (Thrashing-Avoidance Cache), which
effectively reduces instruction cache misses céused by frequent procedural call/returns.

Among conventional cache schemes, the skewed-associétive cache offers the lowest
miss ratio, which is significantly lower than a 4-way set-associative caéhé. However, a
skewed-associative cache has a limitation in handling conflict miss'es‘in object-oriented
programs due to the problem of accessing the large nqmber of small functions. The main
reason for this is that a skewed-associqtive cache is designed to reduce conflict mis;Ses for
individual instructions only. The TAC scheme works not only for individual instructions
but also for a group of instructions such as a calling routine and its associated subroutine.

Our simulation ;esults show that:

83

e TAC schemes (on L1 cache) can improve instruction cache miss rates by up to
9.29% for C programs and 44.44% for C++ programs over skewed-associativg |
caches. | |

e TAC schemes (on BTB, 2-way) reduce branch misprediction rates more
effectively than 4-way set-associative by up to 11.83% for C _programs andA
17.54% for 'C++ programs. |

e TAC schemes (on BTB, 2-way) also reduce branch misprediction rates better than
skewed-associative (2-way) caches by up to 4% for C programs and 6.5% for
-C++ programs. | | |

e Hardware cost and memory access time in an N-way TAC scheme are similar to
a n-way set-associative cache since an N-way TAC scheme employs N banks (N- |
way) and XOk mapping functions with simple hardware complexity.

e TAC schemes employ an efficient repla.cement policy. The BoPLRU effectively
reduces conflict misses caused by the procedure call/returns by ensuring that the
recent groups of instructions are retained in each bank safely.

Future work involves combining TAC schemes with more efficient mapping - functions,

more effective replacement policies, etc.

84

Chapter 3 Reduction of Indirect Branch Mispredictions
This chapter presents a new hybrid branch predictor called the GoStay2, which can
effectiveiy reduce misprediction rates for indirect branches. The GoStay2 has two

mechanisms that are different from other 2-stage hybrid predictors that use a Branch

' Target Buffer (BTB) as the first stage predictor. First, to reduce conflict misses in the

first stage, a new effective 2-way cache scheme is used instead of a 4-way set-associative.

Second, to reduce mispredictions caused by an inefficient predict and update rule, a new

_selection mechanism and update rule are proposed. A simulation program has been

'déveloped by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra

SPARC/10 processor. Our results show good ifnpfovement with these mechanisms

compared to other hybrid predictors. For example, the GoStay2 imprO\}es indirect

misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or 1K-entry PHT) by

14.9% to 21.53% corhpared to the Cascaded predictor (with leaky filter).
3.1 Introduction

For high performance computer architectures, branch prediction is a key mechanism in
achieving high performance on multi-instructioh issues. Branches transfer control flow of
programs. The next instruction can only ‘be decided after the current instruction is
executed. Therefore, if there is no branch prediction scheme, the pipeiihe‘ always stalls for X
at least three clock cycles (decode, issue, and execute stages)‘ whenever it meets a branch

instruction. A poor branch prediction scheme likewise results in many such stalls, whereas

85

a good branch prediction scheme reduces stalls. Thus, more accurate branch predictors aré
desired for reducing the impact on overall system performance.

Acéording to Chang et al. ("97), branches can be categorized as condiiional_ or
'unconditional, as well as direét or indirect, resultin.g.in four classés. Of the four claéses,
prediction of conditional indirect branches is typicaily not implemented [Kalamatianos
& Kaeli ‘98],

Conditional or unconditibnal direct branch instructiops include a target address as part of B
the instruction. However, unconditional indirect branch instructions obtain a target
address indirectly through a register or a pointer variable. Therefore, while direct branch
instructions have a single target, indirect ones. have multi-targets. Single-target direct
branches can be predicfed with repofted hit-ratios. of up to' 97% [Yeh & Patt ‘93]. In
contrast, indirect branches with multi-fargets are harder to predict accurately. Indirect
branches occur frequently in some widely used benchmark programs like SPECint95, and .
even more frequentlyvi‘n object—oﬁented languages. The sources of indirect branches are
switch staterﬁents, virtual function calls, or indirect function calls [Kalamatianos & Kaeli
‘08][Driesen & Holzle ‘98B]. Calder et al. ('94A) investigated behavlioralv differences -
between C and C++ programs; C++ programs execute maﬁy fewer conditional branch
instructions (61.6% vs. 80.0%) and more procedure calls (11.2% vs. 6.3%), indirect
prbcedure calls (3.9% vs. 0.3%), and return instructioqs (15.1% vs. 6.6%). The above
results indicate that handling indirect calls, procedure calls, and returns properly should
be Vir'nport'ant for C++ programs [Calder et al. ‘94A]. Chang et al. ("97) also showed that

indirect branches occur frequently in C++ (object-oriented lﬁnguages), which are rapidly

increasing in popularity.

Conventional branch pr'edictérs predict branch direction and generate the tafget
address associated with ‘that direction. BTB-based pfediction schemes are the only .
predictor for indirect branch'prediétion‘ in éonventjonal branch schemes since an indirect -
braﬁch needs a full target address instead of directiqr; (taken or not-taken). Howevef, they
_perform poorly, with a 66% to 76% misprediction rate for indirect branches since‘ the
target of .an indirect branch can change with every dynamic instancé of that ‘branch
[Chang et al. ‘97]. Chang.f,y et al. ("97) showed that the small proportion of indirect
branches (2 to 3%) for SPECint95 benchmarks could be a critical factor in Adeg.rading
system performance. Thus, an accurate indirect branch predictor is needed for Widf;ly
used object-oriented languages such as C++ i)rograms since theif indirect branch ratio is
at léast two to three times higher than that of SPEC benchmarks (C programé) [Chang et
al. ‘97][Calder et al. ‘94A]. N |

This chapter presents a 2-stage hybrid predictor called the GoSfay2, which employs a
new cééhe scheme for the first stage and a new selection mechanism and update rule
using a 2-bit flag. The flag is a similar mechanism to the meta-pre(iictor used by
McFarling ('93). However, our flag is updated according to the update rule and ‘execution
results while the meta-predictor is affected by the execution results only. This chapter
shows that the GoStay2 outperforms Qiher 2-stage hybrid predictors such as the Target
Cache [Chang et al. ‘97] z;nd Cascaded predictor [Driesen & Holzle ‘98B] by iiﬁproVing
the accuracy of indirect branch predictions.

This chapter is organized as follows: Section 3.2 explains related work; section 3.3

presents the new branch architecture with the two mechanisms for reducing indirect

mispredictions; section 3.4 describes simulation methodology and benchmark‘ programs; =

section 3.5 presents our simulation results; and section 3.6 provides our conclusions.
- 3.2 Related work: -

Van'oﬁs Abranch prediction strategies for indirect branches have been préviou’sly ‘stu‘digd .
) ‘to improve prediction accuracy. These strategies can be ;:ategorizéd into-three main areas:
J | 1ndéxing ‘fun'ctions for agCeséing predictor tables;
. . Selectioh mechanisrs for choosing acc;_urate predictibn in hybﬁd predictors;»
e Update rules after resolving abranch.)

For éach single-"schem:e ‘pfv'edictor, the acc'uraéy of ‘the branch predj.(ition,,depends on the
indexing functions. ‘.Mlost. o‘f the research on branch- bredicﬁon has been done on,.
developing efficient in.dexing functions. |

'A hybn'd’ Braﬁch predictof é:or'nbines two .or AIIIIOI'C single‘-scheme predictors. The
.performance of the hybﬁd prediétor depends on Both indéxin_g functions of each single-
scheme predictor and a selection mechanisin for a 'particuiar predictor. Récenﬂy, se'VAerali'

A 'selécti()n‘ mechanisms hav’e been proposed to .II)redict, indirect bra‘nchesz by using a

sophisticated form of the update rules instead of just simple n-bit counters [Chang et al.

‘97] [Driesen & Holzle ‘98B].

- 3.2.1 Indexing functions for indirect branch predictors

There: are two types of branch predictors classified according to the number of
component predictors: A single-scheme predictor that has only one predictor and a hybrid

predictor that combines two or more single-scheme predictors.

Branch address

Branch history

Prediction table ' Prediction table

prediction —>

Branch address Lower prediction —>
addr.

(b) Global two-level branch predictor
(single-scheme) ’

I Branch address
Branch address wer
. addr.

(a) Branch Target Buffer (single-scheme)

‘ Branch history
prediction prediction N
Predictor Predictor 2 prediction prediction
A
L—p | XX —DI : |

Predictiog table : . Target Cachg

A

Counts [Selection Mechanism
(¢) Combined branch predictor (hybrid) (d) Hybrid branch predictor for indirect branches

| Figure 36. Varidus indirect branch predictors‘

| In Figure 36, (a) and (b) represent typical single-scheme‘predictors. The Branch Target -
Buffer (BTB) stores both the branch address and target address. If a current branch is
found in the BTB, it is predicted as ‘taken’ with the target address. If there is a
misprediction or a first-miss, the branch and target 'addre_sses ‘are updated aﬁer the
execution. When a branch address is not found in the prediction table, it is recognized as

a first-miss. In general, a low-order branch address is used as the indexing function to

89

access the physiéal line of the BTB. As we discussed before, the BTB-bésed prediction
schemes should not used for indirect branches Because of poor predictioﬁ accuracy -
[Cihangret al. ‘97]. For improvement of the BTB, a 2-bit strategy .was proposed by Calder
and Gfunwald (’94). This strategy used a 2-bit éodnter for limiting the updafe of the
target address in the BTB only after two consecutive mispredictions have occurred. The
2-bit strategy can reduce a misprediction ratio for C++ applications without changing
predictions too rapidly. However, the 2-bit strategy is not very successful in predicting
the targets.of indirect bfanches in C programs such as SPECint95 benchmarks [Chang et
al. ‘97].

For indirect branches in Figure 36,'egch single-scheme predictor should hold a target
address per cache line instead of just a direction (taken/not‘ faken). The single-scheme
predictor in Figure 36(b) shows an indexing function obtained by varying a two-level
adaptive schemé described in [Yeh & Patt ‘93]. This is called a gshare scheme that was -
introduced by McFarling (’93). The gshare scheme performs better than a two-level [Yeh
- & Patt ;93] predictor by XORing (exclusive ‘obrin'g) the global branch history with the
lower bits of a branch addrc;,ss té generate the index into the prediction table. The gshare
is conéidered aé one of the highest performance predictors and the best single scheme at
allllevels of cost [Cﬁang et al. ‘97][Driesen & Holzle “98B]. |

In Figure 36(c), McFarling ('93) introduced the concept of a hybrid brénch predictor |
by combining single-scheme predictors. The combined branch predictor consists of two

- predictors and a table of 2-bit saturating counters. This counter array is called a meta-

predictor and is used to select the more accurate predictor for a current branch. After

resolving a branch, .both component .predictors are updated, and the meta-predictor is
" updated to reflect the relative accufaéy of the two predictors.

Figure 36(d) shows an indirect hybrid branch predictor vthat consists of two predictors
such as the BTB (Figure 36(a));and'gshare-like single-scheme predictors (Figure 36(b)).
This chapter considers only hybn'd branch predictors cdnsisting of two single-scheme‘
predictors. Moreover, one bf the predictors is a BTB since this chapter ‘éorhpar'es ;
strategies for simple and effective predictors such as the Target Cachev and Casc;.aded
predictor: | | |
» Target Cache - Chang et al. ("97) proposed a predictor by .using the.Target Céche to

im'prove the accuraéy of indirect‘branch predictions. The Tafget Cache is ‘similar to
the Pattern History Table (PHT) of a 2-level branch predictor except that the Target
Cache records the branch target while the PHT holds only branch directions such as
taken/not taken. This predictor. XORs pattern- o£ path-based history bits with fhe
branch address to index the prediction table shown in Figurel36(d).' The Taréet Cache
can reduce the misprediction rates 6f indirect branches significantly. Eor exarhple, a.
5 12-eﬁtry Target Cache achieved a misprediction rate of 30.4%. and 30.9% for gcc
and perl, while ‘a 1K—entry 4-way sét-associative achieves rates of 60% and 70.4% '

} [Chang et al. ‘97];

e Leaky or Strict Filters of the 2-stage Cascaded Predictor - Driesen and Holzle (’98B)
introduced two variants of the C-ascaded Predictor, which has two stages;l a BTB.V for -
the first__stége and a gshare-like two-level predictor as the second stage. The small-
sized BTB works as a filter and the second stage predictor stores indirect branc;hes

that need branch history-based prediction. The second stage uses an indexing function

91

similar to the Target Cache, such as a path-based branch history XORing With a low-
order branch address to index the predictioﬁ table shown in Figure 36(&). Driesen and
| Holzle (’98B) showed that the two filters (leaky or strict) have slightly' different |
update rules (Table 7). The filtering.effect decrea}sed the mispredigtion rate cdmpared '
to a non-filtering Cascaded Predictor. For examplé, a 32-entry BTB filter (first stage)
.improved the misprediction rate of a 256-entfy monopredictor_'(non filtering) from
11.7% to 10.7% [Driesen & Holzle ‘98B]. |
Kalamatianos and Kaeli ("98) shovs‘/ed that fhe leaky filter of a Cascaded Predictor
improved‘ indirect branch prediction accuracy over the Target Cache in most SPECint95

and C++ benchmarks.
3.2.2 Selection mechanisms and update rules for hybrid predictors
In the combined predictor of McFarling (’93), there are two single-scheme predictors

such as pl and p2. The meta-predictor, a table of 2-bit counters, is used to select one of

two predictors as a selection mechanism. A 2-bit counter reflects the states “strongly p2 -

'(11)”,v“weakly p2 (10)”, “weakly pl (01)”, and “strongly p1 (00)”. For example, when a

branch is predicted, each single-scheme predictor is queried. If the counter is ‘00’,-then

pl is selected for the branch prediction. When the branch commits, both predictors are

- updated and the meta-predictor is updated td favor the predictor that had the correct

prediction [McFarling ‘93] [Grunwald et al. “98].
While conventional hybrid branch predictors use a meta-predictor as a selection

mechanism, the Target Cache and Cascaded predictor have no such meta-predictor.

92

Inspead, selection is done by predict rule; both stages are examined for finding a current
bfanch address. If both stages have the current branch, the second stage predictor takes
precedence.' If not, the target address in any stage, which rpatghes the bbranch, is used. The
other difference from existing hybrid predictors lies in the handling of table updates.
Table 7 shows the update rules for the Target Cache and Cascaded predictors. For the
Target Cache, when an indirect Branch is résolved, the Target cache (second stage

predictor) is updated with its target address. Otherwise, updates are done in the first stage

predictor (BTB) only.
Predictors " Update Rules
Target Cache - When an indirect branch is resolved, the 2™ stage is updated

with its target address.

_Fora first—rniés, update of the 2“_d stage is not allowed.

Cascaded | Strict |- When an indirect branch is resolved, the 1% and 2" stages
predictor | Filter are updated.

- For a first-miss, update of the 2" stage is not allowed.

Leaky | - When an indirect branch is resolved, the 1* and_2nd stages
Filter are updated.
- For a first-miss, update of both the 1* and 2" stages is

allowed.

Table 7. Update rules for the Target Cache and Cascaded prediétors.

Table 7 shows the update rﬁles for the Target Cache and also the strict and the leaky
filters which are two variations of the Cascaded predictor. The Cascaded:‘predictor'can
redﬁce the table size effectively by using a small-sized BTB as.a filter. Since the first

stage works as a filter to separate indirect branches from amongst all branches, the

93

"~ second stage is used to store indifect branches that have multi-targets. Therefore, the
accuracy of a 2-stage predvictor‘ is much hivgher.'than that of a single-scheme. Theb
difference between the strict and leaky filters is that the leaky filter allows new second
stage entries on a first-miss while the strict filter does not [Driesen & Holzle ‘98B].
. The differences between indirect and conventionél hybrid branch predictors are:
o Indirect branch predictors record branch targets instead of directions in the table;
e Indirect branch predictors émploy different selection mechanisms other thaﬁ a 2-bit
saturating counter;,
e . Indirect branch predictors have differem; table update rules instead of just updating

both predictors simultaneously.
3.3 GoStay2 Branch Predictor

Section 3.2 described several indirect branch predictors in detail. Both the Target
cache and Cascaded predictor can reduce the indirect misprediction rate considerably
over a BTB-based 'predictor. Among them, the leaky filter of the Cascaded predictor
offers the most effective misprediction' rate performance for indirect branches
[Kalamatianos & Kaeli ‘98][Driesén & Holzle ‘98B]. However, the leaky filter has some
problems that degrade systém pérfonnance:

. Conflict misses — If a predicﬁon table such as BTB has small entries (say, less than

512 entries), conflict misses might increase the misprediction rate considerably;

o Inefficient predict rules — If a branch address is found at both stages, the second stage

has priority for prediction. If the first stagé has a correct target address and the second

94

stage has an incorrect target address, then the assumed priority of the second stage

always causes a misprediction.

e Inefficient update rules — If a predicted target address is wrong, then the resolved -
target address of the branch address is updatec_l in both stages. This also causes a

misprediction if the replaced target address is needed for a following branch.

In order to resolve the above problems,- this section presents a new hybrid branch -

predictor.
3.3.1 An overview of a GoStay2 predictor

Aé wé dichssed in s'f;ction 3.2, tﬁe; basic operation of 2-stage hybrid predictors can be
divided into the three parts comprising indexing, predicting, and updating. For predictiﬁg
énd updating, each 2-stage hybrid predictor has its own predict and update rule to predict
a targét address and update a resolved target address. -

~ Figure 37(a) shows that, in a conventional 2-stage branch predictor, if the first stage
has a correct target address (A) but the second stage has a wrong one (B), then t_he
’prédiction (B) leads to misprediction since the second stage alway; takes pﬁodty of .
predictic;n. |

Figure 37(b) shows fhe basic operation of a GQstay2 predictor, which. can reduce
mispredictions effectively‘. In a GoStay?2 predictor, the prediction will be made accordjng’

>to the flag in the first stage. In Figure 37(b), since the flag is ‘0’, the prediction (A) is

made with the target address in the first stage (A), which leads to correct prediction. The o

flag is ﬁpdated to ‘0’ or ‘1’ according to the update rule (refer to section 3.3.3).,

95

Misprediction!!
Predict B

, S ,
I Branch address 1%t stage predictor

Ass.umptio'n: :
A: Correct Target address _ B _— - B // Always
B: Wrong Target address 21 stage predictor :
(a) conventional 2-stage branch predictors
Oorl
Flag in the 1% stage Correct
, ' 0 Prediction!!
| Branch address LN Predict A
15t stage predict - if (Flag = 0)
- A .
B ke olse
B

2nd gtage predictor

(b) GoStay?2 branch predictors

Figﬁre 37. The basic operations of conventional 2-stage and GoStay2 branch predictors. ,

Figure 38 shows the overview of the proposed branch predictor called the GoStayZ,
which has a different operation from other 2-stage hybrid branch predictors such as the
Target Cache and Cascaded predictor. ‘GoS(ayZ’ implies GoStay predict and update
rules, as well as a 2-bit flag in the first stage. \

In the GoStay2, the indexing function for the first stage is different from the other
predictors (refer to section 3.3.2), but that of the second stage is 'the same as the others
shown in Figure' 37. For predicting, the GoStay2 predictor provides a new selection
scheme called the GoStaiy predict rule (refer to section 3.3.3). Our experiment shows that

the GoStay predict rule is more accurate than the leaky filter. Finally, for updating, this

section introduces a new replacement policy for the first stage and a new updaté rule for

96

both stages by using a 2-bit flag in the first stage. The first bit of the flag is for the Bank-
originated Pseudo-LRU (BoPLRU) replacement policy [Chu & Ito “00], and the second
_bit is for the GoStay. Figure 38 shows all the differences mentioned above as two

mechanisms.

branch target flag
| Target address | _ =5 mar B 101
XOR ’ - BTB (2-way TAC scheme)
The First Mechanism-’
| | ,; @ 3
Branch addréss l The Secpnd Mechanism-"
:;®_’Second—$tage predicto branch target
- " \ a B
| Branch history |

PHT (4-way set-associative)

** BTB: Branch Target Buffer, TAC: Thrashing Avoidance Cache, PHT: Pattern History Table

Figure 38. The overview of the GoStay2 branch predictor.

For the first mechanism in Figure 38, the GoStay2 Predictor uses a new cache scheme
.developed by C-hul and Ito ("00) instéad of a 4-way set-associative for“ the first stage to
reduce conflict misses. Thi.sl new scheme called the 2-way TAC employs 2-way banks.
and the XOR ma‘ppAi'ng function (XOR). The XOR is‘ used for indexing the 2-way TAC -
scheme by using' a branch address. Bodin and Seznec (95) ’defined the XOR for 2-way

banks such that each bank consiéts of 2" cache lines of 2° bytes, where © is the perfect-

97

shuffle on n bits, so that the daté block at‘mem'ory' addfeés A3250 4 A2 4 A12‘; m'ay'.
be mapped: |
e ona céqhe line Al@ Az in cache baﬁk 0.
e or o:n‘a ca"che line 0(A1)® Az in cache bank. 1
The 2-way TAC contains a branch énd target addrésé. al'ong.with a 2-Bit fla'gA P¢£ ‘cac’he o
line, which is added one more bit from the 2-way TAC of Chu and Ito ('00). T.he fnain,
| function of this scheme is to place a group of branch instructions into a bank accbrdirig to
the BSL (Bank ‘Selection Logic) and the BoPLRU réblacemcnf policy and is explaiﬁed i‘nv -
more detail in section 3.3.2. The cgfnbination of BSL and BoPLRU guar'an'tees that recent
groups of branches can be retained in eaéh bank safely. B |
Fof the second mechanism in Figure‘i38, to. imprové the ineffiéient" prebdi‘ct'and ’u‘p'date '
rules, the second bitvof the 2_—bit flag is used to @mplement the GoStay prédict and update. .
rule if both stages have a branchl address: If the second bit isv‘l’,,‘a _targetra'ddress of tﬁe .
second stage is used (Go). _Otherwise, r‘a 'téré& address of‘ the first stage is used (Stéy).*
The GOStéyZ predictor works the same as the leaky filter if the bit is “1°. This bit is set to
‘0’ whenever a branch address is found in tﬁe first stagé only and the predicted tﬁrgét -

address is correct. In other wofdé, if the second bit of the 2-bit flag is“O’, theh the vb_r‘anchy'

address is indirect, and the target address was correct for the previous predictioﬁ.

3.3.2 The 2-way .TAC‘ scheme for the BTB — The first mechanism

As we discussed before, the first stage employs the 2-way TAC scheme to reduce .
conflict misses for small-sized (say, less than 512 entries) tables. The first mechanism is
defined as two functions for this scheme (Figure 39), namely indexing (XOR rhapping)

and updating.

| Target address |

XOR _
, BSL & BoPLRU replacement
| Branch address | \/;) policy in the 2-way TAC
&/ Scheme
Target address On a Branch Misprediction
Initial Bank We assumed ‘MSB
Selection .=~ of counter’ = 0.
r'd
L4 f
. 7
data 2-bit flagk - BoPLRU |
B ank 0 e P ‘ Replacement ‘F
’ I Policy
Bank 1 s :
o = «~ - Final Bank
Selection™ = == -1 Bankg

Figure 39. The operation of the first mechanism. data = branch address + target address.

For the indexing function, the two banks of the first stage predictor are accessed
simultaneously with two different XOR mapping functions as we discussed in the

previous section. Since Gonzales et al. ("97) and Sezneé (’93) have shown that the XOR

99

works well for reducing conflict misses, the GoStay2 employs this mapping functim} for
this scheme. |

For updating function, if the GoStay lipdate rule (refer to séction 3.3.3) selecfé the
first-stage predictor to update resblved bra'nch/targét addresses, they are written into the
selected bank of the first-stage according to the value of the firstr bit of -the 2-bit flag. In
Figure 39, the BSL selects a bank initially on a miss according to a fixéd frequency of £he
procedure call i'nstructions. Thé BSL cmployvs‘ a n.—bit counter for codnting tﬁe
occurrences of call insfmctioﬁ. For exvample, if n = 2, then tﬁe first bit (Most Significant
Bit) of the counter toggles every second'procedure calls and the toggled firsf bit shows a
selected bank. Therefore, if an iﬁstruction in the first éroup is initially placed in bankO,
then an instruction in the third group is placed into bankl. In this chapter, it is assumed

that the first stage employs a 2-bit counter.

After the BSL se_,lection in Figure 39, the BoPLRU determines the final bank' ‘for '
. updating a liné as a correction mechanism by checking the first'bit of the ﬂa;g for the
selected cache line [Cﬁu & Ito ‘00]. When the first bit of the é-bit flag is ‘1’, the
branch/target addresses are written into bank0, and the‘ first bit is changed to ‘0.
Otﬁerwise, the branch/target addresses are written into bank1, and the first bit is changéd
to ‘1°. In the Figure 39 example, it is assumed that bankO of thé first stage is selec£ed for
updating by the BSL. Then, the BoPLRU policy works according to the status (‘1’ or ‘0’)
pf the first bit in the 2-bit flag. In Figure 38, bank 1 is selected for updating a cache line .

since the first bit of the 2-bit flag is ‘0’, then the 2-bit flag is changed from ‘01’ to ‘11’

[Chu & Tto ‘00].

This mechanism helps improve indirect misprediction rates by reducing conflict misses

" in a small-sized, less than 512 entries, first stage predictor table such as BTB.

3.3.3 The GoStay predict and update rule — The second mechanism

For the second Stage, like other 2-stage hybrid branch predictors, the GoStay2 can use
a pattern- or path-based history xor¢d with low-order bits of a branch address as an
indexing function. There are two functions in the second mechanism: the GoStay predict -

rule and update rule.
3.3.3.1 GoStay predict rule

Figure 40 shows that each stage is examined as to whether the current branch address
is/in the table or not. There are three possible cases:
1. If there is no matched branch address in either stage, then this is a case of ‘not taken’.

‘Therefore, no prediction occurred;

2. If there is one matched branch address between two stages, then the prediction occurs

with the target address of a matched stage;

3. If both stages have the same matched branch address, the prediction will be

determined according to the GoStay predict rule in Figure 40. S

101

1f (the second b1t of the flag = 1)

' - | predict with the second stage. i
| Target address | B oottt o

branch target - flag

a A
First-stage predictor []

A a B - (:éecond stage

________________ GO 10 Secorld stage
Nesncsnss N update rule ‘I: Z »

M branch target| flag
v a A X0 gt stage
Second-stage predictor - B | Second stage

Stay at First stage

! if (the second bit of the ﬂag =0) |
| predict with the first stage. !

.Figure 40. The GoStay‘predict rule of the second mechanism.

The gvoal of the GoStay predict rule is to reduée mispredictions caused by wrong target
addresses of the second stage. This rule works only when both stages have the same -
branchdaddress. The detailed operations in the ‘GoStay predict rule’ of Fi gure 40 are:

1. If the second bit of the 2-bit flag in the first stage is ‘1’, thenv the prédiction will be

done with the target address of the second stage (Go);

2. If the second Abit of the 2-bit flag in the first stage is ‘0’, then the prediction will be

done with the target address of the first stage (Stay).

102

3.3.3.2 Update rule

Update rule for the GoStay2

First-stage predictor

Target addre‘ssJ

Prediction Flag
with Resul?s Update (21 bit)
None None Both 1
stages
First stage| Correct | None 0
First stage| Incorrect Both 1
stages
Second Correct | None 1
stage
Second Second
Incorrect 1
stage stage

Second-stage predictor

Prediction with: Predicting with a target address of a selected bank.
Results: Prediction results after the execution.

“Correct’ means correct predictions and ‘incorrect’ means misprediction.
Both stages means both the first and second stages. ’
Flag is the 27 bit of the 2-bit flag in the first-stage predictor.

Figure 41. Update rule of the second mechanism.

Figure 41 shows the update rule after the branch instruction is resolved. The branch

history register will be updated according to the branch resolution. There are three cases

for updating both stage predictors.

" First, in case of no prediction; both stages are updated with a new branch and target

address. This is the case of a first-miss. Both the leaky filter and the GoStay2 permit

updating of the second stage table for a first-miss. In addition to this, the GoStay2 sets the

second bit of the 2-bit flag in the first stage as ‘1’. This second bit of the 2-bit flag is

always set to ‘1’ whenever the second stage is updated. Therefore, if the second bit is ‘r,

the GoStay2 works like the leaky filter in this case.

- 103

Secondly, in the case of prediction with a target address in the first stage, the update
can also be varied according to the branch resolution: °

1. Ifitis a correct prediction, the second-bit of the 2-bit flag is set to ‘0’;

2. Ifitis an incorrect prediction, both stages are updated. The second bit of the 2-bit flag
issetto ‘1.
Lastly, in case of prediction with a target address in the second stage, the update will

be varied according to the branch resolution:

1. Ifitis a correct prediction, no update is required;

2. If it is an incorrect prediction, the target address of the second stage is updated since

the branch address is indirect.

3.3.4 Benefits of the GoStay2 branch predictor

Figure 42 shows an example of commj’tted target addresses, which compares the
update processing between the GoStay2 and leaky filter. The assumptions for the branch :
addresses are:

- a(A),b(B), and lc(C') show the ‘branch address (target adciress)’ in each table;
- In the first stage, a(A) and c(C) have the same branéh indexing but different target
address;
- In the second stage, b(B) a_n'd c(C) have the same branch indexing but different target
address. |

Figure 42(a) shows how the GoStay2 works with the flow of example target addresses:

104

a(A) is placed into the first stage with the flag set to ‘x1’ and into the second stage
since a(A) is‘ assumed to be a first-misé. The ‘x’ of ‘x1’ means ‘don’t care’ since
the first bit is set by the replacement policy of the 2-way TAC scheme for the firs£
stage. The second bit of the flag is set to 1 sinée the second stage is updatedl.
(Miss); | |
b(B) conflicts with a(A) in the first stage becalvl_s‘e_ of the same branch indgxing, SO
the target addre;ss is changed A to B in the first stage. b(B) is placed into the
second stage without conflict. The second bit of the flag for b(B) in the first stage
is set to 1 since the second stage is updated. (Miss); | |

a(A) isAfound in the second stage. Therefore, the:re is no update for a(A). (Hit);

c(C) is placed into the first stage with the flag set to ‘x1’ since ¢(C) is assumed to
be a first-miss. b(B) in the second stage is changed to ¢(C) since there is a conflict

between b(B) and c(C) in the second stage according to the assumption. The

‘second bit of the flag is set to 1 since the second stage is updated. (Miss);

b(B) is found in the first stage only, so that the second bit of the ﬂag is set to 0

without further update according to the update rule. Therefore, the GoStay2 can

save b(B) in the first stage longer. In the case of the next occurrence of b(B), the

GoStay2 can predict the target address correctly. (Hit).

Branch (Térget)
i target

branch target flag branch target branch target branch
T A T @ .) pie i g VA“%: _
S || R \ Miss ‘ Miss / EATT

First stage. Second stage (Updating for the current branch) First stage Second stage

x: don’t care . ;
b (B) } ‘ TayhE | ASBE
Miss Miss

ayibEeAr B cls| [#anh- B R VB
a A a A
b B X1 b B 4——Q(A) : Dy B AL b B
Sy i Ak Hit Hit Sl A

sihiyie HE B IEE
a A

b B x| FESTIBSC <——€(@—>
it Gl a A Miss Miss

s X0 c C Ea bl AR B bEECS B
x1 a Av c C a A
(a) GoStay?2 Predictor V '(b) Leaky Filter

Assumptions: : .
1. Same branch indexing in the first stage: {a(A) and c(C)}.

2. Same branch indexing in the second stage: {b(B) and c(C)}.
3. a(A), b(B), and c¢(C) > branch address (target address).

Figure 42. A comparison of the update processing between the GoStay2 and the leaky
filter. : : -

- Figure 42(b) explains how the léaky filter works with the flow of exalﬁple targét
addresses:

e The update process of the first a(A) and b(B) are just like the GoStay2 except fdr -
the updating the flag bit since there is no flag bit iﬁ the leaky filtefl. (Two Misses:
“a(A) and b(B)); |

e a(A) is found in the second stage only. Therefore, b(B) in the first sfage is changed

to a(A) since there is a conflict between a(A) and b(B) in the first stage according

to the assumption. (Hit);

106

. e ¢(C) is placed into the first_stage. b(B) in the second stage is char)ged to ¢(C) since
there .is a conflict between b(B) 'and ¢(C) in the second stage according to the .
assumption. (Miss); |

e b(B) is placed into the first and second stagé. a(A) in the first stage is changed to
b(B) since there is a conﬂict. between a(B) and b(B) in the first stage. c(C) ih the
first stage is changed to b(B) since there is a cénﬂict between ¢(C) and B(B) in the

~second stage. (Miss).

From Figure 42, the benefifs of the GoStay2 predictor can be determined. The main ‘
featufe of indirect branches is more than one target address for an indirect branch.
Since the target of an indirect branch can vary With every dynamic instance, the ﬁse of
a history pattern is needed to select the correct one among several target addrezsses
stored in the prediction tables. If an indirect branch has several targets, .then it can be
assumed that eéch target has its own history. Therefore, if each target is presefved for
longer than before, then the indirect mispredictions can be reducéd effectively. The
GoStay?2 predictor can do this by using a 2-bit flag effecfively as shown in Figure 42.
The benefits of the GoStay2 predictor result from retained target addresses that have a

different history pattern since they can stay longer than can other 2-stage hybrid

predictors in the prediction tables.

3.4 Experimental environment

| Benchmark .
A(SPEC9SINT) Compiled Exe. File
\.—/4: Compiler :
Benchmark X Benchmark Input
(C++) Executables Data
/ V
. Shade &
Various types of Spixtools

Branch Predictor

Figure 43. Experimental methodology

Figure 43 shows an overview of our simulation methodology:
e First, SPECint95 and C++ programs were compiled by using a compiler (GNU gcc

2.6.3 and 2.7.2 are used); and

e Second, the GoS-Sim (branch prediction simulator) ran each executable benchmark
with its input data. GoS-Sim was developed by using the Shade and SpixTools.
Shade and SpixTools are tracing and profiling tools developed by Sun Microsystems.

Shade executes all the program instructions and passes them onto the branch

108

prediction simulator, GoS-Sim. SpixTools are used for éollecting the information for
static instructions. GoS-Sim not only simulafes most indirect braﬁéh predictors such
as the BTB-based Target Cache and"Cascaded Predictor, but it also runs several XOR
mapping functions and replacement policies such és the LRU (Least Recentl.y‘Uszed) |
and the Pseudo LRU, étc. The simulator for the proposed predictor was added into the
GoS-Sim. Fiﬁally, Outputs such as misprediction rates, the number of coqtrol transfer

and procedural call/return instructions, etc. were collected.

In Figufe 43, Shade is a tool that dynérnically executes and tracés SPARC v9
executables [Cmelik & Keppél ‘93]. One can specify the exact trace information that is
~ desired by using Shade. That means the trace information can be dynamically handled in
-‘any manner. Detailed information for every instruction, and opcode can be collected
dynamically. For example, the data for the total number of call i»nstructiqns, program
counter, opcode fields, etc. can be obtained. This information is u.sed for our simulation

tool, GoS-Sim.

3.4.1 Benchmarks

Téble 8 describes the benchmark programs in detail. Five of the SPECint95 programs
~ were used for our simulation — go, xlisp, m88ksim, gcc, and perl. ’i‘hese are the same
programs used in [Driesen & Holzle “98B][Radhakrishnan & John ‘98]. In order to
compare 6ur results with them, the SPECint95 instead of the SPEC2000 were used for

our simulation. The next suite of programs is written in C++ and has been used for

109

investigating the behavior between 'C and C++ [Calder et al. ‘94A][Holzle & Ungar ‘94].

Thése programs are ixx, eqn, and deltablue.

Program Input Description

SPEC95 CINT: C Programs

g0 2stone9.in Plays the game Go against itself

xlisp | train.lsp Lisp interpreter

m88ksim | ctl.raw _ Simulates the Motorola 88100 processor
gce ' amptjp.i Compiles pre-processed source

perl ‘ Scrabbl.pl Performs text and numeric manipulations

scrabble.in -

Suite of C++ Programs

XX object.h IDL parser generating C++ stubs

soim_plus_fres

co.idl
eqn eqn.input.all Type-setting program for mathematical
| equations o
deltablue ’ 3000 Incremental dataflow constraint solver

Table 8. Benchmark descriptions

Table 9 provides a description of the run-time characteristics of the benchmarks.
Dynamic iﬁstructions répreseﬁt the number of instructions executed by each pfogram. It
also shows the number of control transfer instructions. Control transfer instructions are
divided into three.gr'oups such as branches, direct calls, and indiréct jumps. It shows that
the rate for control transfer instructions (excebt branches) in objecf-oriented languagéé

(C++) is two to three times higher than for traditional languages (C).

110

http://Scrabbl.pl

Prograrﬁ | Dynamic # of control transfer iﬁstmctions
instructions Total Branches | Calls Jumps /indirect
| calls /returns /trap
returns

go 584,163K 82,253K | 69,163K 1,611K -~ 11,479K
xlisp 189,185K 43,643K | 30,288K 1,971K 5,384K
m88ksim 851K | 196K 171K 17K 9K |
gcc 250,495K 53,190K | 43,711K 5,204K 4,274K
perl 630,281K 130,746K | 88,162K | 26,110K 16,473K
ixx 31«,836K 7,258K 4,731K 1,405K 1,121K
eqn 58,401K | 12,080K 9,033K 1,999K 1,048K
deltablue 42,149K | 9,997K 5,122K 1,478K 3,397K
C .Méan V 4,210K 970K 842K 82K 42K |
(harmonic) (23.04 %) | (86.86 %) | . (8.42 %) | (4.38 %)
C++ Mean 41,514K 9,358K 5,800K 1,589K 1,401K
(harmoﬁic) (22.'54 %) | (61.98 %) | (16.98 %) (14.98%)

Table 9. Benchmark characteristics

- 3.5 Experimental results

3.5.1 Implemented branch Predictors .

We simulated several indirect branch predictors, compared their misprediction ratcs,.
and analyzed misprcdictic‘)n rates. For 2-stage hybrid predictors, most mispredictions
occur when both stages h'ave a current address but not a correct target address.lTherefore,- o
the analysis of indirect branch mispredictions will be done by examining the

misprediction rates according to the cases whether both stages have a correct target for a -

branch or not. The total number of entries for the PHT (the second stage predictor) is kept

constant (set to 512 and 1K entries) while BTB (the first stage predictor) varies from 8

entries to 4K entries. The PHT is used for the prediction table for the second stage, which

stores target addresses instead of directions (taken/not taken).

The implemented predictors are:

BTB (Branch Target Buffer): 4-way set-associative, indexing with the low-order

* bits of a branch address. The table sizes vary from 8 entries to 4K entries.

TC (Target Cache): The first stage is a BTB and the second stage is a 512- or 1K-
entry of the Target Cache (similar to the PHT, 4-Way set-associative) using a
gshare scheme. The 9-bit (512-entry) or 10-bit (iK—entry) history registers record
pattern-based history information. The BTB and TC are examined simultaneously .

for a branch. If the BTB detects an indirect branch, the selected TC entry is used

for target prediction. After resolving the indirect branch, the TC only can be

updated with its target address.
SF (Strict Filter for Cascaded prediétor): The hardware mechanism is similar to the

TC. The main difference to the TC is the handling of the table updates. SF only

* allows branches into the second-stage predictor if the first predictor mispredicts.

LF (Leéky Filter for Cascaded predictor): The hardware mechanism is similar to

*the SF. The difference to the SF is that the LF allows new second-stage entries on

first-misses in addition to the update rule of the SF.
GoS (GoStay2): The first stage is a 2-way TAC scheme. It contains branch and

target addresses with a 2-bit flag. The prediction table is accessed with the XOR

mapping functions. The secoﬁd stage is similar to the LF. The other differences

from TC, SF, and LF are the hew predict and update rules which depend on the

. flag bf the first stage predictor (refer to section 3.3).

The main goal of this section is to compare rthe berformance of the select‘ion
mechanism and update rule of the ‘GoStay2 with other 2-stage hybrid predictors such
as TC, SF, and LF. Therefore, the above predictors were impleménted with the same
indexing function for the second stage predictor.

For the pattern history of the second stage, the ﬁistory register records the direction
of the previous conditional branches. Nair (’95) showed that a path-based predictor
with two-bit bartial addresses attained prediction rates similar to a pattern-based -
predictor with taken/not taken bit (similar hardware budgets) [Driesen & Holzle ‘98A].
Therefore, the gshare ssheme was implemented by lising the pattern-based history only
because benchmark programs were tracéd with both direct and indirect branches.

Our simulation results geherated misprediction rates for ses/eral of the predictofs
that are a little bit higher than previously reported: Target Cache [Chang et al. 97] aﬁd
Cascaded predictor [Driesen & Holzle ‘98B]. This could have happened b<ecause all
kinds of control transfer instructions were traced to exarniﬁe the predictability of
various cases such as branches, procedure calls/returns, iﬁdirect jumps, etc. Hov-veve.r,
the Target Cache in Chang et al. ("97) recorded the target for each indirect jump
encountered only, whilé the Cascaded predictor in Driesen and Holzle (‘98B) excluded

proéedure returns with the assumption that they could be predicted accurately with a

return address stack.

3.5.2 Indirect Branch Instructions |

According to C_hang et al. ("97), control transfer instructions. can be categoriied into
three groups: direct conditional, direct unconditional or indirect unconditional branch
-instructions. In case of direct conditional/unconditional branches, they have a singlé-
targét which can be predicted with reported hit-ratios of up to 97% [Yeh & Patt ‘93].-
However, indirect branch instructions commonly have mulFi-target addresses. The multi-

target addresses of an indirect branch are created dynamically while the program is

executed.
Program | Type | Dynamic Control Flow Instructions

instructions - Total - "~ Conditional Indirect

| | branches branches
num. % | num. % num. %

xlisp C 189,185K | 43,643K | 100 | 30,288K | 69.40 | 4,076K | 9.34
ixx C++ 31,830K 7,258K | 100 4,731K | 65.19 | 538K | 7.42
perl C 630,281K | 130,746K | 100 | 88,162K | 67.43 | 7,656K | 5.97
gce C 250,495K | 53,190K | 100} 43,711K | 82.18 | 3,177K | 5.97
eqn C++ 58,401K | 12,080K | 100 9,033K | 74.78 547K | 4.53
m88ksim | C 851K 196K | 100 171K | 87.02 4K | 2.27
go C 584,163K | 82,253K | 100§ 69,163K | 84.09 548K | 0.67
deltablue | C++ 42,149K 9,997K | 100 5,122K | 51.24 554K | 5.54

Table 10.'Comparisons for the percentages of conditional and indirect branches.

Table 10 shows the percentages of conditional branches and indirect branches for the
benchmark programs. In the case of conditional branches, the percentages of the C.

programs are higher than the C++ programs in Table 10. In addition, in the case of

114

indirect branches, ‘xlisp’ shows the highest (9.34%) and ‘go’ has the lowest (0.67%)

_among all benchmark programsv.

Program | Type | Lines of code | Inst./ ind. Cond./ ind. Descriptions
insp - C : 4,700 46.42 7.43 | Using for all averages
ixx “C++ 11,600 59.12 8.79 | in section- 3.5.4 and
perl C 21,400 82.33 11.52 | 3.5.5. ‘
gcc C 130,800 78.85 | 1376 |
eqn C++ 8,300 106.74 - 16.51
m88ksim | C | 12,200 19Q.54 , 38.25
go C 29,200 1,065.49 126.15 | Low indirect branches
deltablue | C++ 500 76.07 9.24 | Small-sized program

Table 11. The relevance of indirect branches by comparing lines of code, inst./ind.

(instructions/indirect branch), and cond./ind. (conditional branches_/indirect branch).

Table 11 shows that the relevance of indireclt branch is related to the lines of 'code; by
the num‘ber of the instructions per indirect branch, and by the number of conditional ~
branches per indirect branch. .Three groups emerge: first, four of the SPECint95
Benchmarks and two C++ benchmarks execute fewer than éOO instructi‘ons per indirect
branch; second, one of the SPECint95 benchmarks execute more than 1,000 instructions
per indireét branch; third, one C++ benchmark has less than 500 linéé of code, a small-
sized benchmark program.

In Table 11, the first group of benchmark programs, from xlisp to m88ksim, _exécﬁtes
from 7 to 38 conditional branches per indiréct branches. They are a good choice for

evaluating indirect branch predictors since the frequency of indirect branches is spread

115

from higher (7.43) to lower (38.25). The results of the misprediction rates for the first
group will be used for all averages in section 3.5.4 apd 3.5.5.

For “go”, since the impact of indirect branch prediction is very low, it will be exéluded
from all averages in sections 3.5.4 and 3.5.5.

For “deltablue"’, \even though it execﬁtes fewer than 10 conditional branches per
indirect branch, most indirect branch mispredictions will be reduced by u.sing an

| appropriate size of the LF and GoS because of the small—}sized (less than 500 lines)

program. Therefore, it also is excludéd from all averages like the second group.

3.5.3 Conventional indirect branch predictors

00 - emsemeemeeee e —+—BTB

Q0 e e ettt —s—TC

804\ S NSO OO OSSOSO O OO — =SF

§ 70 oo N N et ——LF
é 1) IS WO oeeeeeeeneeeaeeeeees
% 50 4 e T g JRRR——
.g 4().1 .. S A | srrrrrreveers L TR ...
% 11 1 SO v 0 RSP OUOOOORO R ettt
g 20 e T T T i
é 10 4o e et st
0 T T T T — T T T !

8 16 = 32 64 128 256 512 1024 4096

First Stage Predictor (entry)
(a) xlisp (C program)

Figure 44. The comparison of misprediction rates according to BTB sizes for indirect
branch predictors. The second stage is a table with 512 entries (4-way).

116

Misprediction Ratios (%)

8 16 32 64 128 256 512 1024 4096
‘First Stage Predictor (entry)

(b) ixx (C++ program)

100 -
90 -
80 -
70 -
60 -
50 -
40 -
30 -
20 -
10 -

Misprediction Ratios (%)

8 16 32 64 128 256 512 1024 4096
First Stage Predictor (entry) '

(c) perl (C program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

117

Misprediction Ratios (%)

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(d) gee (C program)

200 = e —+—BTB
S
3
2
=
2
°
3
o
0- T T 4 T T . T T 1 1
8 16 32 64 128 256 512 1024 4096
First Stage Predictor (entry)
(e) eqn (C++ program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

118

Misprediction Ratios (%)

0 T I T T I T T) L)
8 16 32 64 128 256 512 1024 4096
First Stage Predictor (entry)
- (f) m88ksim (C program)
——BTB

1 SO

Misprediction Ratios (%)

8 16 32 64 128 256 512 1024 4096
First Stage Predictor (entry)

(g) go (C program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

119

) T s
.. —+—TC

o B0 e —-SF
B) e oo ——LF
B 60 oo
20
'9 ..
3]
T
= e r e e r et
g - ST — # 4

8 16 32 64 128 256 512 1024 4096
First Stage Predictor (entry)

(h)'deltablue (C++ program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

This section determines the most effective branch predictor among the BTB, TC, SF,
and LF. Eight benchmark programs are examined according to the size of the tables of
the first stage. For ﬁybrid predictors (ihe TC, SF, and LF), the second stage has a Jvtable
with 512-entrie$ and is 4-way set-associative.
Figure 44 shows the misprediction rates for four predictors using eight'benchmark ‘
programs:
1. Figure 44(a), (b), (c), (e), and (f) showed that the LF is the most effective among
other previous prgdictors. If the sizé of the BTB is less than 128 entries, the LF

reduces misprediction rates much better than other previous predictors do. Otherwise,

120

the LF works only slightly better than most others, and does much better than the

BTB;

2. Figure 44(d) showed that the LF is the most effective if the size of the BTB is less
than 128 entries; otherwise. the.SF works slightly better than the LF. This result can
occur because gcc contains a large ﬁumbér of static branches in its working set. This
large set can cause interference in the second stage predictor, redUcih.g the ability to

make accurate predictions [Chang et al. ‘95];

3. Figure 44(g) showed that the SF is the most effective if the BTB is less than 512
entries, otherwise the LF works slightly better than the SF. This result can occur
because go contains very low indirect branches compared to other benchmark

programs.

4. Figure 44(h) showed that the LF is the most effective ’arr‘long other predictors.
However, the overall misprediction rates are much lower than those of other
benchmark programs because deltablue has only 500 lines of code (a small-sized

i)rogram).
5. The SF works slightly better than the TC for all sizes of BTB-entries;

6. In general, hybrid predictors (the TC, SF, and LF) are much more effective than a

single-scheme predictor such as the BTB for all sizes of BTB-entries..

From the above results, the LF is determined as the most effective indirect predictor.
Driesen and Holzle ("98B) also showed that the misprediction rate for the LF is much

better than the SF for small-sized filters (BTB) such as 128 entries or less; otherwise, the

LF is slightly better than the SF. Kalamatianos and Kaeli ('98) also showed that the LF,

with a filter (BTB) of 128 entries, suffered fewer mispredictions than the TC. In the
following sections, the LF will be used as the representative indirect predictor for

comparing the misprediction rates with the GoS.

354 Misprediction rates for indirect branches between the LF and GoS

In this sectién, the. indirect misprediction rates are compared between the LF and GoS.

As we discus_sed before, there are some .diff‘erences between the LF and GoS:

e For the cache scheme of the first stage, the LF uses a 4-way set-associative, but the
GoS employs a 2-way TAC _schenie. Howgver, for the secoﬁd stage, .both predictors
use the PHT (512- or lK—entry, 4-way) with the same indexing function (the gshare
scheme for this thesis). | |

e For thé selection mechanisﬁ, if both stages have target addresses, the second stage of
the LFAtakes precedence for prediction as in the TC and SE. However, for the GoS,
even if .both stag'es' have target addresses, the prediction will be taken according to the
status of the second bit of the flag in the first stage. For example, if the bit is 0, the
first stage takes precedence, otherwise the second stage does.

e For the update rﬁle, the LF allows an entry to the second stage for a first-miss or

indirect branches. However, the GoS updates the two stages according to the update

rule according to the status of the flag.

"In Table 12, the SPECint95 benchmark programs and C++ programs were used for

comparing the indirect misprediction rate between the LF and GoS:

1. The GoS has lower misprediction rates than the LF for most sizes of the BTB (frorﬁ

64 entries to 4K entries) and the PHT (512entries and 1K entries) for all programs;

2. For the.xlisp and perl program, at 256 entries of BTB and 512 entries of PHT, the
GoS improves the misprediction rates at a rate of 44.24% and 15.60% 0§er the LF.
For the 512- c;r 1K-entry PHT table,. GoS with 64 entries of BT]é works better th.:m
the.LF with 1K entries of BTB. Therefore, the GoS yields a mispredictioh raté beiter

than the LF at less thaﬁ one-tenth the BTB cost;

3. For thé gcc program, at 512 entries of BTB and'512 entries of PﬁT, thé GoS
improves the nﬁsprediction rate by only 1.36% over the LF. Howevef, at 256 entries
(;r less in BTB and the lK-entry PﬁT table, .the LF works slightly better than the GoS.
This can occur because of the large set of static branches that 4we discussed in the

previous section.

Figure 45 (a) and (b) compare the harmonic mean of misprediction rates for C and C++
programs according to Table 10. There are four predictors namely LF-512 (512-entry |
PHT table), LF-1024 (1K-entry PHT table), GoS-512 (512-entry PHT), and GoS-1024

(IK-entry PHT table).

« ForC programs in Figure 45(a), the GoS-512 works better than the LF-512 and LF-

1024. In addition, the GoS-1024 shows the lowest misprediction rates among other

“predictors.

For C++ programs in Figure 45(b), if the BTB has more than 256 entries, the GoS-
512 works better than the LF-512 and LF-1024. Otherwise, the LF-1024 works
slightly better than the GoS-512. In addition, the GoS-1024 also shows the lowest

misprediction rates among other predictors.

e The 256-entry BTB of GoS-512 outperforms the 1-K entry BTB of LF-1024 in both

C and C++ programs.

o In general, for most sizes of the BTB-entries, the GoS works better than the LF.

F-512
| HLF-1024

» 351
]
&
£ 30
°
3
St
225
s

20 a

First Stage Predictor

(a) Misprediction Rates for C programs (harmonic mean).

Figure 45. Comparison Misprediction Rates and Improvement Ratios between C and
C++ Benchmark programs.

124

HLF-1024
[1GoS-512
g% £ GoS-1024
2
£
]
=
£
& 251
20 1
256 512 1024 4096
First Stage Predictor
(b) Misprediction Rates for C++ programs (harmonic mean).
1 SO OU OO
--IR-512
-+ JR-1024
é I SO oo OO
2
E 15 g
:
E 1 P PP
|
0 1 ¥ I T i 1
64 128 256 512 1024 4096
First Stage Predictor

(c) Improvement Rates (GoS over LF) for C programs (harmonic mean).

Figure 45. (continued) Comparison Misprediction Rates and Improvement Ratios
between C and C++ Benchmark programs.

125

"~ Improvement Ratios

64 | 128 256 512 1024 4096
First Stage Predictor

(d) Improvement Rates (GoS over LF) for C++ programs (harmonic mean).

Figure 45. (continued) Comparison -Misprediction Rates and Improvement Ratios
between C and C++ Benchmark programs. ‘

Figure 45 shows the improvement ratio (IR) between the LF and GoS aécording to the

sizes of the PHT.
IR-512 =(((MR of the LF-512) — (MR of the GoS-512)) / (MR of the GoS-512))* 100.

IR-1024 = (((MR of the LF-1024) — (MR of the GoS-1024)) / (MR of the GoS-

1024))*100.

Where MR represents Misprediction Rates as a harmonic mean of C or C++ programs in

Figure 45.

For IR-512, (¢) and (d) shows the improved ratios for the C and C++ programs. In the

case of C programs, the IR is increased from 19.63% (64-entry of BTB) to 22.93%

126

(4096-entry of BTB). However, in the case of C++ programs, the IR is increased by

3.81% (64-entry of BTB) and 11.1% (4096-entry of BTB).

For IR-1024, the IR is slightly higher than the IR-512. In the case of C programs, the
IR is increased from 22.31% (64-entry of BTB) to 25.89% (4096-entry of BTB). In the
case of C++ programs, the IR is increased by 5.7% (64-entry of BTB) and 11.2% (4096-
entry of BTB). In Figure 45(c) and (d), the IR of C programs are higher than C++
because some C programs, such as xlisp and perl, reduce misprediction rates considerably
with the GoS compared to the LF. The xlisp and perl are the benchmark programs with
high indirect branch density in C programs, while ixx is the only one that has high

indirect density in C++ programs [Driesen & Hélzle ‘98B].

@ LF-512
N LF-1024

Misprediction Rates

First Stage Predictor

(a) Misprediction Rates for C and C++ programs (harmonic mean).

Figure 46. Comparison Misprediction Rates and Improvement Ratios between the LF
and GoS for all Benchmark programs (C and C++ programs, harmonic mean).

127

3

&

e 15

g .

§ JO Ao L

S
0 T |] , T T | 1
‘ 64 128 256 512 1024 4096

First Stage Predictor .

(b) Improvement Rates (GoS over LF) for C and C++ prografns (harmonic mean).

Figure 46. (continued) Comparison Mispredicfion Rates and Improvement Ratios
between the LF and GoS for all Benchmark programs (C and C++ programs, harmonic
mean). . : ' ‘

Figure 46 shows misprediction rates as harmonic means for all benchmark programs
used. In Figure 46(a), the GoS outperforms the LF 'fof all sizes of both BTB-entries and -
PHT-entries. Moreovéf, the GoS-512 can reduce indirect mispredictions better than the

LF-1024 for all sizes of BTB,

In Figure 46(b), in the case of the IR-512, the IR increases from 14.9% (64-entry of
BTB) to 19.35% (4096-entry of BTB). In the case of IR—1024, the IR. ihcreases by
17.41% (64-entry of BTB) and 21.53% (4096-entry of BTB).- From the Figure 46, some

features of the GoS can be derived:

128

e The GoS reduces indirect mispredictions better than the LF as the indirect density
increases. The indirect density can be represented as the inverse of the number of

instructions per indirect instruction.

o If the size of the second stage (PHT) is increased, the misprediction rates with the
GoS are reduced considerably since the GoS can store more indirect branches with

fewer conflicts than the LF.

3.5.5 Analyses of the update rule

In the LF, some mispredictions can be traced to the inefficient bupdate rule. If a
predicted target address is wrong, the predictors of both stages are always allowed to
update the tables. That means that after resolving an indirect branch the tables of both
stages are updated with the new target address. This can remove the possibility for a
replaced target being predicted correctly the next time. Therefore, iﬁ order to improve the
misprediction rate in the LF, the update rule needs to be changed to preserve one of two
different targets for the next prediction. This means the target address of one stage (say,
the second stage) should be replaced with a new resolved target address while that of the
other stage (say, tﬁe first stage) should remain for the next time. In order to use the
remaining target for the next time, the predict rule needs to be changed in the LF, because
if a branch address is found at both stages, then thc;, second stage takes priority of
prediction. As we discussed in section 3.3.3, the GoS resolved these problems by using

two new mechanisms.

129

...

i n1: addr_both_target_both
i n2: addr-both_target_BTB |
n3: addr_both_target_PHT ! 24%
: nd: addr_both_target_none | ° others

n4(miss)

. - \
D“”“P I1(hit) Y
EIn2(miss) Y 21% \
On3(hit) i !
: e, b 1
Eln4(miss) -] h I
Mothers ;/ n3(hit) ,N2(miss)1

I 43% _ 7 \Y 8%
\A—’—” l'\\‘__//
(a) 128-entry filter of LF with 1024-entry PHT (perl, C program)
nl: addr_both_target_both .
n2: addr-both_target_BTB
i n3: addr_both_target_PHT !
i nd: addr_both_target_none ; _
i others: other cases n4(miss) others
"""""""""""""""""""""""""""""" 24% 59
n3(miss) °
Cln1(hit) 0%
On2(hit) n1(hit)
B n2(miss) 21%
O n3(hit) | PETTNN
OO n3(miss) < /,n2(hit) “
EIn4(miss) ! o 1
Hothers e T N h
/7 n3(hi 'n2(miss) !
[a2% Lt ' !
! ° L7 I 3% /
\\ - -7 r\ ~ -7 ’

(b) 128-entry filter of GoS with 1024-entry PHT (perl, C program)

Figure 47. Analysis of prediction rates according to cases whether both predictors have a
correct target address or not. ‘Others’ means all other cases except the nl to n4.

130

nl: addr_both_target_both
i n2: addr-both_target BTB |
| n3: addr_both_target_PHT |
i n4: addr_both_target_none n4(miss)
others: other cases 27%

others
19%

’_——\

On1(hit) Pie Y
Eln2(miss) : n37(°|;lt) !
o -
Cn3(hit) N
COn4(miss) /,—-‘_'“\ n1(hit)
Bothers /“n2(miss) 43%

!
toa%

-

nl: addr_both_target_both
i n2: addr-both_target_BTB |
n3: addr_both_target_PHT |
i nd: addr_both_target_none |
 others: other cases ’

others
19%

n4(miss)
On1(hit) 27%
CIn2(hit) | ==
On2(miss) rnS(miss) \|
On3(hit) ! 0%
[On3(miss) :
EInd4(miss) ' n3(hit) p n1(hit)
Bothers \ 7%

43%

| e == -
T n2(miss) \
I’ 1% n2(hit)
\

-~
-
O -

(d) 128-entry filter of GoS with 1024-entry PHT (eqn, C++ program)

Figure 47. (continued) Analysis of prediction rates according to cases whether both
predictors have a correct target address or not. ‘Others’ means all other cases except the
nl to n4.

131

There are four cases when both prédictors have a predictioﬁ:

. addr_both_target_both (n1): Both predictors have the same target and the target is
correct. = Correct predibtion in both the LF an_(:i" GoS;

e ‘addr_both_target_ BTB (n2)_: Both pre_dictorsn have a different target. The first stage
has a correct one but the secondAstage has a wrong one. For the LF, this case lclaads‘to
a misprediction. But for the GoS, if the second bit of the flag in the first predictor is 0,
then this case results in correct prediction. Otherwise, this case is a inisprediction.
Tﬁe GoS can reduce misprediction rates considerably by using this predict rple.

J addr_both_target_PHT (n3): Both predictors haile a different target. The first stage
has a wrong one but the second stagé has a correct one. In the LF, this casé leads té a
correct prediction. Meanwhile, for the GoS, if the flag bit is 0, it leads to a
misprediction. However, the possibility for this case is very ra;e, as little as 1%.
Otherwise, it is a correct prediction. .

e addr_both_target_none (n4): Both predictors have a target, but neither target is the

correct one. This case always leads to a misprediction in both the LF and GoS.

In Figure 47, most mispredictions of the indirect branches occur when two predictors
have a simulténéous prediction. Figure 47 shows prediction rates according to the cases
from 'the n1 to nd between the LF and GoS with the 128-entry filter (BTB) and tﬁe_ 1024-
entry PHT for ‘perl’ benchmark program (C progfam, Figure 47(a) and (b)) and ‘eqn’
benchmark program (C++ program, Figure 47(c) and (d)). As discussed before, most
indirect predictions occur when both stages have‘ a‘prediction. In Fig‘ure 47, ‘othérs’

means the prediction rates caused by the cases when one or none of the two stages has a

132

prediction, which can lead to a hit or miss. However, since these misprediction rates élre‘

small compared to other cases, they will Be igﬁored for this s'ect'ion.
The importan.t features provided By Figure 47 are:

e Figure 47(a), for the LF, shows that 96% of thé total predictions occur within cases
nl to n4. Among them, even if there is a cofréct target for n2, the predictidns in \the‘
LF caused by. the n2 always lead to mispredictions because of the inefficient predict
rule. The prediction rate caused by the n2 is 8%, Which leads to misprediction.

e Figure 47(b), for the GoS, shovs;s that a prediction rate of 95% occurs for case of the
nl to n4. quever, the differences between the LF and GoS are» the hit and miss rates
c‘aused by the cases of the n2 and ¥13. First, in the GoS, more than half of the
predictions (5% out of 8%) lead to a hit instead of a. miss; this can improve the
misprediction rates by using the GoStay predict and update rule. If the p_redictions of
the n3 lead to a hit in the LF, part of the predictions for the n3 can lead to

" mispredictions in the GoS. However, since the misprediction rate caused by this case
is small (0% in Figure 46(b)), it is possible to disregard the mispredictioﬁ rates caused
by the 3. |

» Figure 47(c) shows that 81% of the total predictions occuf within case nl to n4. The
prediction rate caused by n2 is 4%, and leads to misprediction.

e Figure 47(d) Ashow.s that a prediction rate of 81% occurs in the case of the ni to n4. In
the GoS, more than half of the predictions (3% out of 4%) lead to a hit instead of a
miss. The misprediction rates“here can be improved by using tﬁe GoStay predict and

update rule. If the predictions of the n3 lead to the hit in the LF, part of the

predictions for the n3 can lead to rnispredictions'in the GoS. However, since the

misprediction rate caused by this case is small (0% in Figure 47(d)), it is again

possible to disregard the rhi_sprediction rates caused by then3.

As we discussed above, the GoS can improve the 'rni'sprediction rates by selecting the
correct target address in the case, n2, by using the GoStay predict rule. Since more than
half Qf the prediction rates in n2 can be changevd to -a hit instead of a Il‘llSS The GoS
improved the misprediction rates up to 21.53% corﬁpared to the LF for ali sizes of the

BTB and PHT as shown in Figure 46.
3.6 Chapter conclusions

Due to the increased complexity of. applicatioﬁ pfograms, it is quite reasonable to use
small functions for code reusability aﬁd maintainability. However, these small functions
can cause an increase in indirect function calls in object;oriented languages ‘aﬁd is a
principal cause of indfrect .branches.

Unfortﬁnately, conventional branch predictors cannot reduce the impact of indirect
braﬁch mispredictions since the indirect branch» needs the full target address instead of the
direction and also the brénch target can change with each invo'cation' of the indirect
branch. We have discussed several previous indi;ect branch predictors: the BTB, the
Target Cache, ahd the Cascaded Predictor (with strict filter and with leaky filter).

For the previous indirect two—s’tage hybrid branch predictors, the leaky filter was found

to be the most effective one. However, the accuracy of this predictor is affected by two

factors: The conflict misses for small-sized tables (say, less than 512 entries)

considerably increase the misprediction rate. The other factor is the inefficient predict
and update rules: For the predict rule, this occurs 1f the first stage has a correct target
“address but the second stage has a wrong one, then the assumed priority of the second
stage always causes a misprediction. For iﬁe update rule, a misprédiction can oceur when
the previous target address is néeded after it is updated by a new one, as often happens
with indirect branches.

In order to resolve these problems, this chapter has presented a new branch
architecture, the GoStay2 predictor, which has two mechanisms that are different from
. the other hybrid branch predictors. The first mechanism is defined by two functions of a
new cache scheme, TAC, employed in the first sfage to reduce conﬂicf misses. Thesé
' functions are the XOR mapping function for indexing the first stage and the BoPLRU
replacement policy along with the BSL. Thé second mechanism is the GoStay predict and
' ljpdate rule to reduce the frequency of wrong predictions caused by inefficient i)redict
and update rules. By using these mechanisms, the GoStay2 reduces the indirect
misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or 1K-entry PHT) by
14.9% to 21.53% compared to the best previous indirect branch predictor, the Cascéded

predictor (with leaky filter).

135

Benchmarks | PHT BTB (1* stage predictor) . .
(4-way) |Pred..| n- | 64 128 256 | 512 | 1024 | 4096
way ‘ .
First Group: | 512 LF 4| 24.14| 24.07 | 24.06 | 24.05| 24.05 | 24.05
xlisp entries | GoS 2| 16.87 | 16.69 | 16.68 | 16.69 | 16.69 | 16.69
© 1024 LF 41 20.95(-20.94| 20.94 | 20.94 | 20.94 | 20.94
entries | GoS 2| 13.94| 13.87 | 13.87 | 13.86 | 13.86 | 13.86
ixx 512 LF 4| 38.18| 36.67 | 36.23 | 36.11 | 36.08 | 36.08
(C++) entries | GoS 2| 36.81| 34.39 | 33.39 | 33.08 | 33.04 | 33.01 |
1024 LF 4| 33.86| 33.6| 33.51| 33.49| 3347 3347
: entries- | GoS 2| 31.75| 3099 | 30.72| 30.6| 30.6| 30.59
perl 512 . LF 4| 36.14] 3595| 3571 | 35.63 | 35.62 | 35.63
©) entries | GoS 2| 3345| 32.44| 30.89| 3045| 304 | 304
1024 LF 4| 32.62| 32.53| 3243 | 32.43 | 3242 | 3242
entries | GoS 2 30.4 | 27.96 | 30.06 | 27.41 | 30.06 | 27.41
gcc 512 LF 41 4794 | 46.5| 45.62 | 44.65| 43.13 | 39.99
©) entries | GoS 2| 47.79 | 46.16 | 45.01 | 43.83 | 42.23 | 38.69
1024 LF 4] 4272 | 42.14 | 41.65| 40.96 | 39.58 | 36.74
entries | GoS 2| 43.04 | 42.27 | 41.69 | 40.76 | 39.33 | 36.14
eqn 512 LF 4| 41.56| 40.36 | 39.35| 38.59 | 37.78 | 37.18 |
(C++) entries | GoS 2| 40.04 | 38.24 | 36.70 | 3542 | 33.98 | 3291
1024 ~ |LF 4| 39.25| 38.51 | 37.86| 37.29 | 36.64 | 36.16
entries | GoS 2| 37.53| 36.19 | 35.13 | 34.01 | 32.73 | 31.95
| m88ksim 512 LF 4| 35.87| 34.59| 33.68 | 32.96 | 32.83 | 32.76
© entries | GoS 2| 3242 31.12| 29.8| 29.11 | 28.48 | 28.39
1024 LF 4| 34.55| 33.63| 33.09| 32.8] 32.69| 32.65
\ entries | GoS 2| 31.15] 29.89 | 29.56 29| 2844 | 28.21
Harmonic 512 LF 4] 21.07| 20.86 | 20.72 | 20.62 | 20.55| 20.44
Mean entries | GoS 2| 19.29 | 18.89 | 18.65 | 18.51 | 18.40 | 18.28 | -
(Total) 1024 LF 4| 19.74| 19.64 | 19.56 | 1949 | 1943 [19.32
, entries | GoS 2| 17.78 [17.50 | 17.54 | 17.31 | 17.36 | 17.10
| Second. 512 LF 4 56.1 | 55.14 | 53.59 | 52.58 | 52.03 | 52.08
Group: entries | GoS 2| 57.18 | 55.66 | 54.48 | 52.98 | 51.74 | 51.23
go .| 1024 LF 471 50.41| 49.57| 48.23 | 47.16 | 46.58 | 46.49
©) entries | GoS 2] 5224 | 51.08 | 50.05| 48.56 | 47.39| 46.7
Third 512 LF- 4 587 5.87| 587| 587| 587 587
Group: entries | GoS 2 5.64| 5.59| 559 5.58| 5.58| 5.58
deltablue 1024 LF 4 573 5.73| 5.73| 573| 5.793| 5.3
(C++) entries | GoS 2 546 | 5.46| 545| 545| 545 545
Table 12. Indirect branch misprediction rates according to the BTB entries.
136

Chapter 4 Conclusions and Future Research

In orcier to increase the perfofmance of ‘current inicroprocessor architectures, several
techniques are needed to help reduce the memory latency which is caused by the gap
betwcen memory and processor performance. Thesé techniques include caching, branch
~ prediction and value prediction, etc.

Since this thesis concentrates on instruction flow, a small-sized on-chip instruction
cache memory was considered to improve memory latency. There-are three types of
cache misses, including compulsory, capacity, and conflict misses. Among these, conflict
misses are critical to cache performance and branch penalty for a small-sized on-chip
cache memory.

Y

- 4.1 Conclusions

Since object-oriented languages are widely used, procedure calls have become
- increasingly uséd in application programs, causing a significantly increased number of
conflict misses in the instruction flow.

This \thesié has presented two efficient schemes for improving the HPC: 1) The TAC
§cheme fo reduce conflict misses in the inétrﬁction cache memory; and 2) The GbStayZ

predictor to reduce indirect branch mispredictions.

137

4.1.1 Reduction of cache misses

The TAC scheme was designed to reduce instruction cache misses for the frequent
procedure calls of object-oriented programs. .We discussed . several prﬁévious‘: cache
schemes for reducing conflict misses:. direct—r'nappéd, two-way 4set-associative, four-way
set-associative, hash-rehash, victim, and two-way skewed-associaﬁvé. The _Iictim cache
removes many conflict-misses and outperforms a four-Way'set-associati'ye cache. The
two-way .skewed-associati\.le cache offers the lowest miss ratio, which is s_ignificantly
lower than that of a four-way associative cache [Gonzalez et al. ‘97].

The 2-way skewed-associative cache uses a single flag to avoid conflict misses in bank
0: Each instruction is placed into a bank according to part of its rﬁemory address and a :
flag bit (refer to chapter 2). In general, the efficiency of the 2-way skewed-associative
scheme depends on the frequency of conflict misses in bank 0. If conflicts among
instructions in bank O increase, the efficiency of the 2-way skewed-associative conflict
decreases. Thereforé, the 2-way skewed-associative works better for traditional programs
than object-oriented programs since traditional programs have less procedure calls than
object-oriented ones.

The TAC scheme reduces conflict misses effeptively by. grouping instructions
separated by procedure call instructions. There are two steps for remg)\;ing cénflict misses
for the TAC scheme:

1. vlnitial bank selection: For each‘ group of instructions separated by a procedure Call;
the possibility of conflict misses is very rare since each memory address.in a, grbup is

in sequence (spatial locality). T hereforé, if each group is placed into a different bank,

138

conflict misses can be avoided easily between two adjacent grbups (temporal
locality).
" 2. Final bank selection: The possibility of conflict misses remains for groups of
~ instructions placed intq the same bénk after thc initial bank selection. In this case, a
flag of each cache line in a bank allow a conflict instruction to be placed into the
other bank.

With these two bank selection methods, TAC schemes reduce conflict rr;isses bétfer, 4
than a 2-way skewed-associative cache. The experirhental results in Chépter 2 shoWed
that TAC séhemes on a L1 cache (cacAhe sizes: 4 Kbytes to 32 Kbytes, cache line sizes: 8
Bytes to 32 Bytes) improves cache misé rates by up to 9.29% for C programs and 44.44%
for C++ programs compar‘edvto skewed—associative caches.

| Moreover, TAC schemes (on the BTB,‘2-way) reduce misprediction rates better than
skewed-associative caches (on the BTB, 2-way) by up to 4% for C programs and 6.5%

for C++ programs.
4.1.2 Reduction of indirect branch mispredictions

The GoStay2 predictor was designed to reduce indirect branch nﬁépredictions.- Several
previous branch predictors were discussed for reducing indirect branch mispredictions:
BTB, Target Cache, and Cascaded predictor (with strict filter and leaky filter).

The leaky filter, which has two stages, offers the lowest indirect mispredictions.
However, this predictor has problems in reducing indirect branch predictioﬁs as a result

of two factors: 1) conflict misses in the first stage for small tables (fewer than 512

139

entries); and 2) inefficient predict and update‘mles. Fo.r the predict rule, if the first stage
has a correct target address but the second stage has a wrong one, then. the assumed
| priority of the second stﬁge always causes a misprediction. For vthe update rule, a
rﬁisprediction can occur when the previous target a('i‘dress is required after it is updated ‘by
the new one.
The GoStay2 predictor, which also has two stages, can reduce indirect branch
mispredictions by improving these two factors by using two mechanisms:
1. The first mechanism: Conflict misses in a small-sized table with less than 512 entries_
~ in the first stage can be réduced by using the 2-way TAC scheme instead of a 4-way
set-associative.

2. The_ second mechanism: The GoStay predict and update rules (refer to chapter 3)
considerably reduce indirect mispredictions caused by inefficient predict and gpdate
rules.

With‘these two mechanisms, GoStay?2 predictors reduce indirecf mispredictions better
than leaky fivlters. The experimenfal results in Chapter'3 show that the GoStay2 improves
the indirect misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or 1K-entry

© PHT) by 14.9% to 21.53% compared to a leaky filter.
4.2 Futu.re Research

There are several techniques for reducing memory latency: 1) Cache schemes for

reducing cache misses; 2) Control/data flow predictors for instruction level parallelism;

etc.

This thesis has focused on designing an efficient instruction cache scheme and indirect
branch predictor. Future research could be targeted in three directions such as simulation,

caching, and speculation as shown in Figure 48.

{ Future Research‘]

@ , Speculation Simulation

iMapping Func.: (Predict Rule j ‘ : ‘Programs]
: Replacementj (Update Rulé | [Benchmarks]
! Data cache : | iLoad Predictior; Tracing‘]
: Etc. J ' ; r Etc. : ~ Logic J

Figure 48. Future Research for caching, speculation, and simulation.

Figure 48 shows three research directions:

1. Caching: For a .small-sized (less than 32 Kbytes) cache memory, the mapping
funétion is an important factor in reducing conflict misses. Gonzalez ‘ef al. C97)
compared the XOR mapping function proposed by Seznec (’93) with the
polynomial mapping function proposed by Rau ("91). The polynorhial mapping -

function is based on polynomial arithmetic. For example, an address A =

141

<a,,,,a,,a4, > can t)e con_sidered as a polynomial A (X) =
an_lx”'?,- --,alxl,ao, the coefficients of which are in the ‘Galois Field GF (2). For .
GF (2), all nonzero elements can be represented as 1 and a primitive elerrlent a,.
and all coefficients can be implemented as logical AND, and exclusive OR. .
According to Gonzalez et al. (.‘97), the polynomial 'mapping‘function can reduce
conflict misses even better than the XOR mapping function. Therefore, for future
research, it will be useful for the TAC scheme to assess the polynomial mappir'lgv . ;
function instead of the XOR mapping function (refer to chapter 2).

For implementing BoPLRU replacement policy, there can be several ways to
use a flag to avoirl conflict misses: If the flag is ‘0’, an instruction will be replaced
to the other bank on a cache miss; Otherwise, the instruction will be -rep‘laced in
the current bank. The modification of this replacement policy is also a subject of
possiele future research.

In the case of data cache memory, datta cache misses between traditional and
object-oriented programs have no large differences. However, since cache miss
rates of the data cache are higher than that of the instruction cache, it is important
to future research to design an etficient data cache memory to reduce data cache
misses.'

Speculation: High performance computer architectures use aggressive speculation
to improve instruction Alevel parallelisrn. This thesis presented the GoStay2
predictor as a way to avoid stalling the ﬁipeline caused by indirect branch

‘instructions. One of two mechanisms of the GoStay2 predictor is the GoStay -

142

predict and update rule. Tﬁis GoStay rule can be modified in several ways by |
changing the uéage of the flag 'and is a.subje‘ct of fufure research.

Load instructions, which represent the barﬁer to data flow, also incur iong
latencies that can degrade system peffonnanée considerably. Fortunately, loads do ‘
not fetch random sequences of values. Ratilver,' load instructions often fetch the
same values repeatedly, which makes them predictablé [Lipasti et al. ‘96]. A load
value vpre,dic_tor can quickly provide a predicted value of the instructions which
directly or indiréctly cons‘ume the load vélue. Lipasti et al. ("96) introduced the
concept of value locality defined as the likelihobd of a previously-seen value
recurring repeatedly within a storagé location. Value loéality is visible in manyA
ways [Lipasti et al. ‘96]: |

o Dafa redundancy: Some programs contain data which has little véﬁation,

such as sparée matrix, text files with white spaces, etc;

e Program éonstahts: Sometimes, it is efficient to generate extra code to load

program constants from memory into registers; -
. Computed branches: In the case of a switch stateme'n't, the compiler should |
. generate code to load a register with the base address for the branch;

e Virtual function célls: To call a virtual function call, the compiler should

generate code to load a function pointer, which is a run-time value;

e There are many other cases for value locality. |

Most recent research has be¢n doné on predicting pattéms from which values

are’ generated such as stride predictors to keep track of the last value and the

previous one [Gonzalez & Gonzalez ‘98]. Sazeides & Smith ("98) alserxplorcs

the use of context predictors that base their prediction on‘ the last of several \}alues
seen, thus capturing reference patterns that are not reflected in the simple stride
prediction scheme. Much research also has been done on the evaluation of
combinations or hybrids of the predictors [Calder et al. ‘9_9] [Rychlik et al. ‘98]
- [Wang & Franklin ‘97]. As object-oriented application programs are -Abecoming
‘more popular, efficient load predictors for 'indifect load values are required to
reduce memory latencies. Therefore, one possible future direction beyond this
thesis will be in designing an efficient load value predictor.

Simulation: For this thesis, two simulatienvprograms were used for iﬁstruetibn
cache memory and branch predictor with Shade and Spixtools. These programs
can be used for fpture research in the area of: 1) caching and 2) in speculation '
such as branch predictors.'In addition, for implementing load value predictions,
there should be three main phases: trace generation, LVP (Load Value Predictor)
unit simulation, and rﬁicroarchitectural simulation such as for the Alpha AXP
21164. For ‘the alpha AXP 21164_, traces can»be generated with the ATOM tle‘
[Srivastava and Eustace ‘94].

For benchmark programs, this thesis used SPECint95 and a suite of C++
programs. However, for future research, SPEC2000 and more C++ programs
could be used for evaluating various schemes.

Finally, H/W implementation (logic) is also needed for all the schemes

" designed in this thesis and to be developed for future research.

144

BIBLIOGRAPHY

[1] [Bodin & Seznec ‘05] F. Bodin, A. Seznec, Skewed-associativity enhances .
performance predictability, Proceedings of the .22nd International Symposium on
Computer Architecture (IEEE-ACM), Santa—Marghéﬁta; June 1995 (also IRISA Repoft

No 909).

[2] [Burger & Goodman ‘97] Doug Burger and James R. Goodman, "Billion-Transistor

Architecture”, IEEE, Computer, September 1997.

[3] [Buyya ‘00] Buyya, “High Performance Cluster Comp‘uting: Architecture, Systems,
and Applications, Conference Tutorial with the 27 ISCA, Vancouver, BC, Canada, June

12-14, 2000.

[4] [Calder & Grunwald ‘94] B. Calder and D. Grunwald, Reducing indirect function call
overhead in c++ programs, in 21* Symposium of Principles of Programming Languages,

pages 397-408, 1994.
[5] [Calder et al. ‘94A] B. Calder, D. Grunwald, and B. Zorn, Quantifying Behavioral

Differences Between C and C++ Programs, Journal of Programming languages, Vol. 2,

No. 4, pp. 313-351, 1994.

145

[6] [Calder et al. ‘_94B] B. Calder, D. Grunwald, ahd B. Zorn, Fast & Accurate Instruction
Fetch and Branch Prediction, ISCA ’94 Conference Proceedings, Chicago, IL. ‘March

1994.

‘[;/] [Calder et al. ‘99] Brad Calder, Glenn Reinman, and Dean M. Tullsen, Selective
Value Prediction, in Proceedings of the 26™ Annual International Symposium on

“Computer Architecture, 1999, pp.64-74.

[8] [Chang et al. ‘95] Po-Yung Chang, Eric Hao, Yale N. Patt, and Pohua Chang,
Alternative Implementations of Hybrid Branch Predictors, Proceedings of the 28"

ACM/IEEE International Symposium on Microarchitecture, Ann Arbor, MI, 1995.

[9] [Chang et al. ‘97] Po-Yung Chang, Eric Ha_o, and Yale N. Patt, Target Prediction for
Indirect Jumps, Proceedings of the 24™ International Symposium on Computer

Architecture, Denver, June 1997.

. [10] [Chu & Ito ‘00] Yul Chu and M. R. Tto, The 2-way Thrashing-Avoidance Cache
(TAC): An Efficient Instruction Cache Scheme for Object-Oriented Languages,

Proceedings of the 17" IEEE International Conference on Computer Design, Austin,

Texas, September 2000.

[11] [Cmelik & Keppél ‘93] R. F. Cmelik and D. Keppel, Shade: A Fast Instruction-Set
“ Simulator for Execution Profiling, Sun Microsystems Laborzitories, Techﬁical Repon =

SMLITR-93-12, 1993.

[12] [Diefendroff & Dubey ‘97] Keith Di'efenctlo'rff and Pfadcep K. Dubey, "How
Multimedia Workloads Will Change Processor Désign", IEEE, Computer 30(9):43-45,

Septeniber 1997.

. [13] [Driesen & Holzle ‘98A] Karel Driesen and Urs Holzle, Accufate Indirect Branch

Predicti‘on, ISCA ’98 Conference Proceedings, July 1998.

[14] [Driesen & Holzle ‘98B] Karel Driesen and Urs Holzle, The Cascaded Predictor: ‘

Economical and AdaptiVe Branch Target Prediction, IEEE Micro.3l, 1998.

[15] [Fisher ‘97] Joseph A Fisher, "Walk-Time Techniques: Catalyst for Architécture

Change", IEEE, Computer, Sep, 1997.

[16] [Gonzalez & Gonzalez ‘96] J. Gonzalez and A. Gonzalez, The Potential of Data
. Value Speculation to Boost ILP, in 12" Annual International Conference on

Supercomputing, 1998.

[17] [Gonzalez et al ‘97] Antonio Gonzalez, Mateo Valero, Nigel Topham, and Joan M.

Parcerisa, Eliminating cache conflict misses through XOR-based placement functions,

147

Proc. Of the ACM international conference on Supercomputing, Vienna (Austria), pp76-

83, July 1997.

[18] [Grunwald et al. ‘98] D. Grunwald, D. Lihdsay,'and B. Zorn, Static Methods in
Hybrid Branch Prediction, in Proceedings of the'Inti. Conf. On Parallel Architectures and

Compilation Techniques, October 1998.

[19] [Hammond et al. ‘97] Lance Hammond, Basem Nayfeh, and Kunle Olukotun, "A '

Single-Chip Multiprocessor", IEEE, Computer, Sep, 1997.
[20] [Handy ‘93] Jim Handy, The Cache Memory Book, Academic Press, Inc., 1993.

[21] [Hill & Smith ‘89] M. D. Hill and A. J. Smith, Evaluating Associativity in CPU

Caches, IEEE Transaqtions on Computers, December 1989.

[22] [Holzle & Ungar ‘94] Urs Holzle and David Ungar, Do object-oriented languages
need special hardware support? Technical Report TRCS 94-21, Department of Computer

Science, University of California, Santa Barbara, November 1994.

[23] [Kalamatianos & Kaeli ‘98] John Kalamatianos and David R. Kaeli, Predicting

Indirect Branches via Data Compression, IEEE, MICRO 31, 1998. .

148

: ['24] [Kozyrakis et al. ‘97] C. Kozyrakis, S. Perissakis, D. Patterson et al., Scalable
Processors in the Billion-Transistor Era:IRAM, 1IEEE, Computer, vol 30, no. 9,

September 1997, p75-78.

[25] [Lipasti & Shen ‘97] Mikko H. Lipasti and John Paul Shen, Superspeculative

Microarchitecture for Beyond AD2000, IEEE, Computer, September 1997.

[26] [Lipasti et al. ‘96] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, Value ldcality and
load value prediction, In Proceedings of the Seventh International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-

VII), October 1996.

[27] [McFarling ‘93] S. McFarling, Combining branch predictors, Technical Report TN-

36, Digital Western Research Laboratory, June 1993.

[28] [Mil'ls ‘96] Jack Mills, An industrial perspective on computer architecture,. ACM

CompUting Survey,r Volume28, 4es, 1996.

[29] [Mudge ‘96] Trevor Mudge, Strategic directions In Computer Architecture, ACM

Computing Surveys, Volume28, Issue4, 1996.

[30] [Nair ‘95] Ravi Nair, Path-Based Branch Correlation, Proceedings of MICRO-28,

1995.

149

[31] [Olsen ‘96] Dan Olsen, Computational Resources and the Internet, ACM Computing

Survey, Volume28, 4es, 1996.

[32] [Pasquale ‘96] Joseph Pasquale, Towards Internet Computing, ACM Computing-

Survey, V28, 4e, 1996.

[33] [Patt et al. ‘97] Yale N.Patt, S. J. Patel, M. Evers, D. H. Friendly, J. Stark, One

Billion Transistors, One Uniprocessor, One chip, IEEE, Computer, September 1997.

[34] [Radhakrishnan & John ‘98] R. Radhakrishnan and L. John, Execution
Characteristics of Object-oriented Pfograms on the UltraSPARC-II, Proceedings of the

5" Int. Conf. on High Performance Computing, Dec. 1998.

[35] [Rau ‘91] B. R. Rau, Pseudo-Randomly Interleaved Memories, in Proc. Int. Symp.

on Computer Architecture, 1991, pp. 74-83.

[36] [Rychlik et al. ‘98] Bhuslav Rychlik, John Faistl, Bryon Krug, and John Paul Shen,
Eficacy and Performance Impact of Value Prediction, Technical Report CMuART-1998-

04.

[37] [Seznec ‘9_.3] A. Seznec, A case for two-way skeweci associative caches, Proc. of the

20™ Int. Symp. on Computer Architecture, May 1993, pp 169-178.

[38] [Seznec ‘97] Andre Seznec, A new case for Skewed-Associativity, IRISA Report

No. 1114, July 1997.

[39] [Sriyastava & Eustace. ‘94] Amitabh Srivastava and Alan Eustace, ATOM: A system
for‘building customized program analysis tools. In Procéedings of the ACM SIGPLAN
’04 Conference on Programming Language Design and Implementation, 1994, pp. 196-

205.

[40] [Tulisen & Seng ‘99] Dean M. Tullsen and John S. Seng, Storageless Value
Prediction using Prior Register Values, in Proceedings of the 26"™ Annual International

Symposium on Computer Architecture, 1999, pp.270-279.

[41] [Waingold et al. ‘97] Elliot Waingold et.al., "Baring It All to Software: Raw

Machines", IEEE, Computer, Sep, 1997.

[42] [Wang & Franklin ‘97] Kai Wang and Manoj Franklin, Highly Accurate Data Value
Prediction using Hybrid Predictors, in Proceedings of the 30™ Annual IEEE/ACM

International Symposium on Microarchitecture, 1997, pp. 281-290.

[43] [Yeh & Patt ‘93] Tse-Yu Yeh_ and Yale N. Patt, A comparison of dynamic branch

predictors that use two levels of branch history, ISCA, pages 257-266, 1993.

151

Appendix A Experimental results for TAC schemes

A.1 In the case of 8 bytes of cache line size

A.1.1 Cache size: 4 Kbytes

Cache schemes

Benchmark _
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
mapped | associative | associative | -associative skew skew
SPECint95 (C programs) ‘
gce 13.5741 12.3575 12.0427 11.7404 11.404 11.2711
m88ksim 9.9471 7.4542 6.3708 3.7289 5.1271 3.5799
compress 0.1688 0.1277 0.1209 0.0746 0.0823 0.074
li _ 5.1875 1.8762 0.3607 0.093 0.3886 0.1612
C++ Programs .
deltablue 8.0334 7.7241 6.6252 6.8178 5.1844 5.2465
XX 11.1933 9.8344 6.0157 4.1165 5.451 5.3853
eqn 8.9639 6.558 5.4569 3.3671 4.7608 4.2074
C 7.22 5.45 4.72 3.91 4.25 3.77
harmonic
mean
C++ 9.40 | 8.04 6.03 4.77 5.13 4.95
harmonic ‘ '
mean
Benchmark . Cache schemes
. Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter |- counter | overskew | counter counter | over skew
SPECint95 (C programs)
gcc 11.1119 11.1267 2.62871 10.646 10.8381 5.871689
m88ksim 4.7821 4.9144 7.2144 3.3723 3.5435 6.156036
compress 0.0777 0.0785 5.92021 0.0574 0.0598 28.91986
i 0.2883 0.2863 34.7901 0.1421 0.1447 13.44124
C++ Programs ,
deltablue 4.6123 4.5402 12.4038 4.986 4.9716 5.224629
1XX 5.2906 5.2923 3.03179 ,4.1889 4.5289 28.5612
eqn , 4.5504 4.4957 4.62377 3.7011 3.7056 13.67972
‘C harmonic mean 5.58 9.06
C++ harmonic mean 4.79 10.02

** IR: Improvement Ratios (Refer to p67 in Chaptér 2).

** R of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

152

A.1.2 Cache size: 8 Kbytes

Benchmark Cache schemes _
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
5 mapped | associative | associative | associative skew . skew -
SPECint95 (C programs)
gce ' 9.1722 7.7615 6.2134 49915 5.9139 5.0517
m88ksim 5.8685 4.1365 2.1018 1.4363 2.3495 1.6656
COMpress 0.087 0.0701 0.0283 0.0175 0.0311 0.0195
li 0.7856 0.6061 0.1168 0.0079 0.0305 0.0132
C++ Programs '
deltablue 4.7708 2.7842 1.6601 0.0861 1.5225 0.0117
IXX 6.955 - 3.5307 1.4447 0.2425 1.114 0.3466
eqn 5.6203 2.7741 1.4158 0.8877 1.8375 1.2184
C 3.98 3.14 2.12 1.61 2.08 1.69 |
harmonic '
mean
C++ 5.78 3.03 1.51 0.41 1.49 0.53
harmonic
mean
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
_ counter ‘| ‘counter | overskew | ‘counter counter | over skew
SPECint95 (C programs) ; . :
2ce 5.6966 5.6987 3.81456 4.894 5.0781 3.222313
m88ksim 2.163 2.1757 8.62228 1.5623 1.6339 6.612046
compress 0.0265 0.0277 17.3585 0.0183 0.0193 6.557377
li 0.0145 0.0131 110.345 0.0119 0.013 10.92437
C++ Programs I :
deltablue 1.0737 0.9787 41.7994 | 0.0108 0.0108 8.333333
XX 0.8022 0.8011 38.8681 0.2491 0.2873 39.14091
eqn , 1.732 1.7324 6.09122 1.195 1.1965 1.958159
C harmonic mean ' 8.99 : 5.67
C++ harmonic mean 14.03 4.57

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

A.1.3 Cache size: 16 Kbytes

Benchmark ~ Cache schemes
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
mapped | associative | associative | associative | skew skew
SPECint95 (C programs) B
gcc 6.1155 4.2874 3.6041 3.1364 3.5366 3.2786
m88ksim 3.5999 1.6063 1.1218 0.777 1.0883 0.977
COmpress 0.0599 0.0242 0.0171 0.0109 0.0153 0.0126
li 0.4797 0.0682 0.0053 0.0036 0.0055 0.0048
C++ Programs :
deltablue 2.5623 0.9306 0.2434 0.0451 0.513 0.005
1XX 3.6767 1.8135 0.1891 0.0183 0.2015 0.0217
eqn 2.9243 1.0045 0.5393 0.4198 0.6108 0.5092
C 2.56 1.50 1.19 0.98 1.16 1.07
harmonic
mean
C++ 3.05 1.25 0.32 0.16 0.44 0.18
harmonic ' ' '
mean
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter counter | over skew | counter counter | over skew
SPECint95 (C programs) ' :
gcc ’ 3.3943 3.393 4.19232 3.1665 3.2477 3.540186
m88ksim 1.0791 1.076 0.85256 0.8832 0.9376 10.62047
| compress 0.0144 0.0148 6.25 0.0121 0.0125 4.132231
li 0.0051 0.0051 7.84314 0.0045 0.0049 6.666667
C++ Programs -
deltablue 0.1028 0.1389 399.027 0.0049 0.0048 2.040816
1XX 0.0661 0.0659 204.841 0.0214 0.0253 1.401869
eqn 0.5237 0.5245 16.6317 0.4615 0.4615 10.33586
C harmonic mean 2.35 5.20
C++ harmonic mean 44.44 2.31

** [R: Improvement Ratios (Refer to p67 in Chapter 2).

** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

154

A.1.4 Cache size: 32 Kbytes

Benchmark Cache schemes
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- | 2-way 4-way
mapped | associative | associative | associative - skew skew
SPECint95 (C programs) .
gcce 3.4646 2.4058 2.011 1.7609 1.9741 1.9271
m88ksim 1.8787 1.0754 0.7072 0.6892 0.7964 0.7362
compress 0.0276 0.0163 0.0102 0.0101 0.0114 0.0104
li 0.0225 0.0046 0.0031 0.003 0.0037 0.0032
C++ Programs ‘ '
deltablue 1.7674 0.3336 0.0452 0.0444 0.0589 0.0044
1XX 1.6477 0.4922 0.0557 0.0159 0.0355 0.0163
eqn 1.7602 0.3163 0.1373 0.0532 0.1274 0.051
C 1.35 0.88 0.68 0.62 | 0.70 0.67
harmonic
mean
C++ 1.73 0.38 0.08 0.04 0.07 0.02
harmonic '
mean
Benchmark | Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter couriter | overskew | counter | - counter | over skew
SPECint95 (C programs)
gce 1.9278 1.9277 2.4017 1.7801 1.8437 8.257963
m88ksim 0.7962 0.8064 0.02512 0.7131 0.7253 3.239377
compress 0.0113 0.0114 0.88496 0.0102 0.0103 1.960784
li 0.0036 0.0035 2.77778 0.0031 0.0032 3.225806
C++ Programs , .
deltablue 0.0479 0.0489 22.9645 | 0.0043 0.0044 2.325581
1XX 0.0185 0.018 91.8919 0.0162 0.0163 0.617284
eqn 0.0989 0:1002 28.817 . 0.0497 0.0507 2.615694
C harmonic mean 0.10 3.20
C++ harmonic mean- 33.66 1.23

**IR: Irriprovement Ratios (Refer to p67 in Chapter 2).

** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

155

| A.2 In the case of 16 bytes'of cache line size

A.2.1 Cache size: 4 Kbytes

Benchmark | . Cache schemes)
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
mapped | associative | associative | associative skew skew
SPECint95 (C programs) : :
gce 8.6789 | 7.9353 7.946 8.0305 7.4845 7.698
m88ksim 6.3876 5.0672 4.4541 3.3018 4.1036 2.9957
compress 0.1028 0.0795 0.0768 - 0.0568 0.0637 0.0475
li 3.3711 1.2779 0.3358 0.0841 0.3675 0.1499
C++ Programs ’ :
deltablue 5.116 47752 | 4.2907 4.5764 | . - 4.0781 4.149
XX 7.5845 6.8999 4.6471 3.3742 4.5208 4.2719
eqn 5.9877 4.8258 4.4649 2.7172 40775 | 3.2816
C 4.64 3.59 : 3.20 2.87 3.00 2.72
harmonic
| mean '
| CH 6.23 5.50 4.47 3.56 - 423 3.90
harmonic
mean
Benchmark . Cache schemes ,
Programs 2-way TAC scheme 4-way TAC scheme
: 2-bit 3-bit - | IR of TAC 2-bit 3-bit IR of TAC
counter counter | over skew | counter counter | over skew
SPECint95 (C programs) o '
gcc . 7.393 7.4022 1.237657 | 7.3405 7.4604 4.87024
m88ksim - 3.7967 3.7306 8.083336 2.7533 2.8557 8.803981
compress 0.0599 0.0592 6.343907 0.0406 ~0.0435 16.99507
li ’ 0.1789 0.1798 105.422 - 0.1233 0.1271 | 21.5734
C++ Programs -
deltablue 3.07731 3.7096 32.52159 3.7354 3.7374 | 11.07244
1ixx - 4.1548 4.1553 | 8.809088 3.3772 3.6033 26.49236
eqn 3.8129 3.8116 6.9396 | 2.9355 2.9405 11.79015
C harmonic mean 3.64 ‘ . 9.43
C++ harmonic mean 10.40 - 14.09

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of TAC (2-way and 4-way) over skew uses “2-bit counter’.

156

A.2.2 Cache size:-8 Kbytes

Cache schemes

Benchmark
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
mapped | associative | associative | associative skew skew
SPECint95 (C programs) A .
gce 5.9347 5.0115 4.1727 3.4524 4.1238 3.5264
m&88ksim 3.8189 2.8224 1.5402 0.9474 | 1.3996 0.8247
compress 0.0564 0.0475 0.021 - 0.011 0.0173 0.0122
li 0.5394 0.4232 0.0834 0.0052 0.0238 0.0099
C++ Programs o
deltablue 3.0746 1.9852 1.3405 0.2427 1.0326 0.0076
1XX 4.7679 2.5423 1.3825 0.2884 1.1473 0.3752
eqn - 3.879 2.0957 1.1382 0.6186 1.1265 0.8662
C 2.59 2.08 1.45 1.10 1.39 1.09
harmonic ‘
mean
C++ 3.91 2.21 1.29 0.38 1.10 | . 042
harmonic '
mean
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
| 2-bit 3-bit |[IRof TAC | - 2-bit’ 3-bit | IR of TAC
counter counter | over skew | counter counter | over skew
SPECint95 (C programs) : L :
gce 3.9645 3.9744 4.018161 3.3503 3.483 5.256246
m88ksim 1.3202 1.2846 6.01424 0.7526 0.7918 9.580122
compress 0.0163 0.0159 | 6.134969 0.0114 0.0118 7.017544
li 0.0106 0.0094 124.5283 0.0088 0.0094 12.5
C++ Programs | '
deltablue 0.6488 0.6002 | 59.15536 0.0062 0.0087 22.58065
1XX ' 0.9444 0.9431 21.48454 - 0.2642 0.2986 '42.01363
eqn 1.034 1.1002 8.945841 0.8192 0.823 5.737305
C harmonic mean 6.82 ' 7.73
C++ harmonic mean 17.12 12.38

** IR: Improvement Ratios (Refer to f)67 in Chapter 2).

** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

157

A.2.3 Cache size: 16 Kbytes

Benchmark _ Cache schemes _
Programs | Direct- | 2-way set- | 4-way set- | 16-way set-.| 2-way 4-way
mapped | associative | associative | -associative skew skew
SPECint95 (C programs)
gcc 3.9905 2.7931 2.3425 1.9864 2.2363 2.0591
m88ksim 2.4346 1.1673 0.8468 0.4722 0.7035 0.4043
compress 0.0399 0.0176 0.0133 0.0064 0.0087 0.0075
li 0.2987 0.0618 0.0039 0.0022 0.004 0.0029
C++ Programs ’
deltablue 1.6494 0.6624 0.2994 0.0254 0.2398 0.0029
1XX 1.6494 1.2925 0.1574 0.0116 0.138 0.0145
eqn 1.6494 0.8677 0.3923 0.2721 0.3947 0.338
C 1.69 1.01 0.80 0.62 0.74 0.62
harmonic
mean _
C++ 1.65 0.94 0.28 0.10 0.26 0.12
harmonic
mean
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter counter | over skew counter counter | over skew
SPECint95 (C programs) '
gcce e 2.1576 2.1587 3.647571 | 1.9997 2.0545 2.970446 |
m88ksim 0.6799 0.6731 3.471099 0.3636 0.3926 '11.19362
COmpress 0.0084 0.0086 3.571429 0.0071 0.0075 |© 5.633803
li 0.0033 0.0033 21.21212 0.0028 0.0029 | 3.571429
C++ Programs ' :
deltablue 0.1725 0.1872 |- 39.01449 0.0028 0.0029 | 3.571429
ixx 0.0416 0.0375 231.7308 0.0144 0.0166 0.694444
eqn 0.3592 0.3507 9.883073 0.3127 0.3143 8.090822
C harmonic mean 4.50 ‘ 4.53
C++ harmonic mean 22.88 1.63

** IR: Improvement Ratios (Refer to p67 in Chapter 2).

** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

158

A.2.4 Cache size: 32 Kbytes

Cache schemes

Benchmark ,
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way
mapped | associative | associative | associative skew skew
SPECint95 (C programs) ‘
gce 2.2738 1.5641 | 1.3168 1.1609 . 1.3269 1.2732
m88ksim 1.3058 0.7318 ©0.4034 0.3894 0.4665 0.2609
compress 0.0191 0.0111 0.0057 0.0057 0.0063 0.0059
li 0.0141 0.0031 0.0017 0.0016 0.0021 0.0019
C++ Programs ' : A ‘ ‘
deltablue 1.1016 - 0.2278 0.0252 0.0247 0.0298 0.0025
1XX 1.0529 0.3239 0.0405 0.0087 0.0137 0.0091
eqn 1.2675 0.2233 0.098 0.0428 - 0.0855 - 0.0428
|c 0.90 0.58 0.43 0.39 0.45 0.39 |
harmonic
ean
C++ 1.14 0.26 0.05 0.03 0.04 0.02
harmonic '
mean
Benchmark - Cache schemes :
Programs 2-way TAC scheme - 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter counter | over skew | counter counter | over skew
SPECint95 (C programs) ‘
gce 1.2864 1.2861 3.148321 1.1738 1.2163 8.468223
m88ksim 0.4583 0.4659 1.789221 0.2516 0.2546 3.696343
compress 0.0062 0.0062 1.612903 0.0057 0.0057 3.508772
i 0.002 0.002 5 0.0018 0.0018 | ' 5.555556
C++ Programs L
deltablue 0.0271 0.03 9.9631 0.0024 0.0024 4.166667
1XX 0.0112 0.0109 22.32143 0.009 0.0091 1.111111
eqn 0.0711 0.0709 20.25316 0.0419 0.0426 2.147971
C harmonic mean ' 2.36 4.69
C++ harmonic mean 15.42 1.87

** IR: Improvement Ratios (Refer to p67 in Chapter 2).

** R of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

159

A.3 In the case of 32 bytes of cache line size

A.3.1 Cache size: 4 Kbytes

Cache schemes

Benchmark
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- | 2-way 4-way
: mapped | associative | associative | associative skew skew
SPECint95 (C programs)
gcc 7.9949 5.4971 5.5726 | 5.6542 5.4127 5.5763
m8&8ksim 4.5646 4.0027 3.6464 3.7047 -3.2517 2.9957
compress 0.071 0.0598 0.0577 0:0603 0.0494 0.046
li 1.9055 0.9577 0.3082 0.0896 0.2095 0.2128
C++ Programs A
deltablue 3.5258 3.2252 3.0665 3.152 '2.9576 3.0722
1XX 5.4656 4.9618 4.0429 3.1098 3.8383 3.696
eqn 4.4088 3.9352 4.0752 2.9875 3.8065 | 2.7779
C ,
harmonic :
mean 3.63 2.63 240 2.38 223 2.21
C++ :
harmonic o
mean 4.47 4.04 3.73 3.08 3.53 3.18
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC |
counter counter | over skew | .counter counter | over skew
| SPECint95 (C programs) :
gce 5.3645 5.3725 0.898499 5.3663 5.4436 3.913311
m88ksim 3.1451 3.1806 3.389399 2.7533 2.8557 8.803981
compress 0.0474 0.0474 | 4.219409 0.0416 0.0429 1. 10.57692
li 0.1761 0.1798 | . 18.9665 0.1338 0.1493 59.04335
C++ Programs
deltablue 27039 2.6597 9.382743 2.8521 2.8392 7.717121
XX - 3.4364 3.4823 11.69538 3.054 3.238 21.02161
eqn 3.5743 3.5746 6.487439 2.5455 2.5454 9.129837
C harmonic mean 2.36 8:32
C++ harmonic mean 8.66 10.46

** IR: Improvement Ratios -(Refér to p67 in Chapter 2).

** IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

160

A.3.2 Cache size: 8 Kbytes

Benchmark Cache schemes _
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- 2-way 4-way -
mapped | associative | associative | associative skew- skew
SPECint95 (C programs) .
| gee 4.1804 3.6679 3.1195 2.7556 3.08 2.833
m88Kksim 2.8292 2.2555 1.3272 0.723 1.3233 0.8247
COmpress 0.04 0.0369 0.0198 0.0073 0.0187 0.0082
li 0.3859 0.3035 0.1161 | 0.0039 0.0235 0.0111
C++ Programs
deltablue 2.1809 1.5769 1.2615 0.5718 1.1811 0.0543
XX 3.5475 2.052 1.2953 -0.4001 0.8825 0.5443
eqn 2.8563 1.6637 1.0094 0.5411 1.0382 0.7688
C v : .
harmonic ,
mean 1.86 1.57 1.15 0.87 | 1.11 0.92
C++ N
harmonic
| mean 2.86 1.76 119 0.50 1.03 0.46
Benchmark Cache schemes
Programs 2-way TAC scheme ' 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
o counter counter | over skew | counter counter | over skew
SPECint95 (C programs) ' :
gce 3.0053 3.0114 2.485609 2.6558 2.7596 6.672189
m88ksim 1.3065 1.3048 1.285878 0.7526 0.7918 9.580122
compress 0.0163 0.0168 14.72393 - 0.0078 0.008 5.128205
li : 0.0088 0.0087 | 167.0455 0.009 0.0097 23.33333
C++ Programs .
deltablue 0.9927 - 1.004 18.97854 0.0527 0.0437 3.036053
XX 0.733 0.7324 20.39563 0.3895 0.4358 39.74326
eqn 0.9214 0.9343 12.67636 0.7089 0.7109 | - 8.449711
C harmonic mean 3.19 ' 8.13
C++ harmonic mean 16.61 6.34

** JR: Improvement Ratios (Refer to p67 in Chapter 2). .

% IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’. |

161

A33 Caché size: 16 Kbytes

Benchmark | Cache schemes
Programs | Direct- | 2-way set- | 4-way set- | 16-way set- | 2-way 4-way
' mapped | associative | associative | associative skew skew
SPECint95 (C programs) .
gcc 2.8254 1.9897 1.6636 | 1.3693 1.6726 1.3945
m88ksim 1.8028 0.877 0.6775 0.3243 0.4904 0.4043
compress 0.0285 0.0128 0.0107 0.0041. 0.0071 0.0048
li 0.1997 0.0503 0.0193 0.0017 0.0057 0.0021
C++ Programs : '
deltablue 1.2023 0.6767 0.2733 0.0151 0.1851 0.0019
1XX 1.8822 1.0502 0.1395 0.0105 0.2141 0.0146
eqn 0.9408 0.1709 0.0773 0.0401 0.2919 0.2378
C ' '
harmonic
mean 1.21 0.73 0.59 0.42 0.54 0.45
C++ '
harmonic :
mean 1.34 0.63 0.16 0.02 0.23 0.08
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
counter counter | over skew | counter counter | over skew
SPECint95 (C programs) :
gce 1.6061 1.606 4.140464 1.3696 1.4071 1.818049
m88ksim 0.4589 0.4575 6.864241 0.3036 0.3926 33.16864
compress 0.0055 0.0056 29.09091 0.0046 0.0048 4.347826
li 0.0027 0.0026 | - 111.1111 0.0019 0.0021 10.52632
C++ Programs ‘
deltablue 0.0599 0.0596 209.015 0.0018 0.0018 5.555556
1XX ' 0.0797 0.0822 |~ 168.6324 .0.0133 0.0147 9.774436
eqn 0.2618 0.2644 11.49733 0.2253 0.2261 5.548158
C harmonic mean 9.29 4.42
C++ harmonic mean 30.71 6.49

** [R: Improvement Ratios (Refer to p67 in Chapter 2).

- ** IR of TAC (2-way-and 4-way) over skew uses ‘2-bit counter’.

162

A.3.4 Cache size: 32 Kbytes

Benchmark- Cache schemes 4
Programs | Direct- | 2-way set- |- 4-way set-- | 16-way set- 2-way . 4-way
mapped | associative | associative | associative skew skew
SPECint95 (C programs)
gcc 1.6247 1.0923 0.9306 0.8345 0.9405 0.9049
m88ksim 0.8457 0.5073 0.2432 0.2295 0.3007 0.2609
compress 0.0124 0.0076 0.0033 0.0033 0.0039 0.0034
i 0.0188 0.0027 | 0.0011 0.001 0.0018 0.0011
C++ Programs -
deltablue 0.8077 0.1986 0.0147 0.0138 0.0162 . 0.0014
iXx 0.7429 0.2627 0.0343 0.005 0.0128 0.0052
eqn 0.9408 0.1709 0.0773 0.0401 0.0774 0.0423
C _
harmonic ‘
mean 0.63 0.40 0.29 0.27 0.31 0.29
C++
harmonic
mean 0.83 0.21 0.04 0.02 0.04 0.02
Benchmark Cache schemes
Programs 2-way TAC scheme 4-way TAC scheme
2-bit 3-bit IR of TAC 2-bit 3-bit IR of TAC
. counter counter | over skew | counter counter | over skew
SPECint95 (C programs) : :
| gee 0.9064 0.9068 3.762136 0.8434 0.8699 7.291914
m88ksim 0.2943 0.2983 2.174652 0.2516 0.2546 3.696343
compress 0.0038 0.0038 2.631579 | 0.0033 0.0034 3.030303
i = 0.0015 0.0013 20 0.001 " 0.0011 10
C++ Programs
deltablue 0.0151 0.015 7.284768 0.00135 0.0014 3.703704
1XX 0.0065 0.0064 96.92308 0.005 0.0054 4
eqn 0.0637 0.063 | 21.50706 0.0377 0.0379 12.20159
C harmonic mean 3.46 ‘ 4.78
C++ harmonic mean 15.46 4.98

**1R: Imprbvement Ratios (Refer to p67 in Chapter 2).
#* IR of TAC (2-way and 4-way) over skew uses ‘2-bit counter’.

163

