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ABSTRACT 

As the gap between memory and processor performance continues to grow, more and more 

programs will be limited in performance: by the memory latency of the system and by the branch 

instructions (control flow of the programs). Meanwhile, due to the increase in complexity of 

application programs over the last decade, object-oriented languages are replacing traditional 

languages because of convenient code reusability and maintainability. However, it has also been 

observed that the run-time performance of object-oriented programs can be improved by 

reducing the impact caused by the memory latency, branch misprediction, and several other 

factors. In this thesis, two new schemes are introduced for reducing the memory latency and 

branch mispredictions for High Performance Computing (HPC). 

For the first scheme, in order to reduce the memory latency, this thesis presents a new cache 

scheme called T A C (Thrashing-Avoidance Cache), which can effectively reduce instruction 

cache misses caused by procedure call/returns. The T A C scheme employs N-way banks and 

X O R mapping functions. The main function of the T A C is to place a group of instructions 

separated by a call instruction into a bank according to the initial and final bank selection 

mechanisms. After the initial bank selection mechanism selects a bank on an instruction cache 

miss, the final bank selection mechanism will determine the final bank for updating a cache line 

as a correction mechanism. These two mechanisms can guarantee that recent groups of 

instructions exist in each bank safely. A simulation program, TACSim, has been developed by 

using Shade and Spixtools, provided by SUN Microsystems, on an ultra SPARC/10 processor. 

Our experimental results show that T A C schemes reduce conflict misses more effectively than 

skewed-associative caches in both C (9.29% improvement) and C++ (44.44% improvement) 
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programs on L I caches. In addition, T A C schemes also allow for a significant miss 

reduction on Branch Target Buffers (BTB). 

For the second scheme to reduce branch mispredictions, this thesis also presents a new 

hybrid branch predictor called the GoStay2 that can effectively reduce misprediction 

rates for indirect branches. The GoStay2 has two different mechanisms compared to other 

2-stage hybrid predictors that use a Branch Target Buffer (BTB) as the first stage 

predictor: First, to reduce conflict misses in the first stage, an effective 2-way cache 

scheme is used instead of a 4-way set-associative scheme. Second, to reduce 

mispredictions caused by an inefficient predict and update rule, a new selection 

mechanism and update rule are proposed. A simulation program, GoS-Sim, has been 

developed by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra 

SPARC/10 processor. Our results show significant improvement with these mechanisms 

compared to other hybrid predictors. For example, the GoStay2 improves indirect 

misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by 

14.9% to 21.53% compared to the Cascaded predictor (with leaky filter). 
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Chapter 1 Overview and summary 

1.1 Introduction 

Through the mid-1980s, supercomputers such as Cray were used to achieve high 

performance for advanced scientific and engineering applications. However, since the 

late 1980s, supercomputers have not been able to significantly improve performance. 

They have been restricted by high cost (about $3 million) compared to a personal 

computer (about $3000) and limited by the number of customers [Dowd & Severance 

'98]. 

Meanwhile, the performance of microprocessor architectures has doubled every two to 

three years. This has occurred for two reasons. First, microprocessor architectures are 

borrowing and innovating with techniques formerly unique to supercomputers and large 

mainframes. The second reason has been the emergence of a personal and business 

computer market which demands high performance for computer usage such as 3D 

graphics, graphical user interface, and games [Dowd & Severance '98]. However, 

supercomputers are still used for the most demanding applications such as weather 

forecasting. 

What is High Performance Computing (HPC)? 

In general, High Performance Computing (HPC) refers to computing systems that are 

used to provide solutions to problems that require the significant computational power 
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needed to process very large amounts of data quickly, and are also needed to operate 

interactively across a geographically-distributed network. Figure 1 shows an overview of 

HPC with respect to three different areas: goals, architectures, and techniques. 

Performance 

Cost 

Hi»h Performance 
|̂  Computing (HPC) ^ 

Etc. 

Figure 1. An overview of High Performance Computing (HPC) 

In Figure 1, the goals for HPC could be achieved through maximum performance and 

minimum cost. How to maximize performance depends on reducing the time to execute a 

program (T), which is a function of the number of instructions to execute (ni), the average 

number of clock cycles per instruction (CPT), and the clock cycle time (tc). From (1 ) , 

there are two distinct approaches for increasing system performance: 

T = nixCPIxtc - - - ( 1 ) 

• By lowering the clock cycle time (t) - Much of this performance gain comes as a 

consequence of circuit and layout improvement. However, this is becoming increasingly 
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difficult and will eventually reach physical constraints. Since this topic is beyond the 

scope of this thesis, it will not be covered in detail. 

• By improving two other factors (CPI, n,J - The major performance optimization is 

pipelining, in which a stream of instructions progress from pipeline stage to pipeline 

stage with overlapping of instruction fetch, decode, and execution. This technique will be 

discussed in detail with other techniques such as cache memory, parallelism and 

superscalar throughout this section. 

10.000 

1.000 

a. 
o 
_) u_ 
— 100, 
o < 
Q. 
: z 

to 

1975 1980 1985'; 1990: 1995 2000 

Figure 2. The technical trend for supercomputers and microprocessors [Buyya '00]. 

Figure 2 compares the performance since 1980 between supercomputers such as 

C R A Y and microcomputers by using the L I N P A C K benchmark program. The L I N P A C K 

is one of the more famous floating-point benchmarks of recent years, created by Jack 

Dongarra, and gets its name from a linear algebra package that it uses to solve a dense 
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system of linear equations with Gaussian elimination. The L I N P A C K keeps track of 

execution time and then divides this into the number of floating-point operations that are 

performed to get a MegaFLOPS rating, 'n = 100 and n = 1000' in Figure 2 describes the 

results based on a 100 x 100 and 1000 x 1000 matrix using a double-precision floating 

point. Figure 2 shows that the performance of a supercomputer in 1990 is similar to a 

microcomputer in 1995. Moreover, the performance gap between supercomputers and 

microprocessors has been decreasing since 1995 because of the rapid technical 

development of microprocessors. 

In 1988, an article appeared in the Wall Street Journal titled 'Attack of the Killer 

Micro' that described how computing systems made up of many small ($3,000 to 

$20,000) machines would soon make large supercomputers ($3 million) obsolete. These 

inexpensive processors have been developed toward high performance computing 

systems. HPC, which is broader than supercomputing with supercomputers, is a moving 

target because of the steady and rapid gains in the performance/cost ratio. Yesterday's 

supercomputer is today's personal computer; today's leading-edge techniques for 

supercomputers will be among tomorrow's mainstream capabilities for HPC. 

In Figure 1, the architectures for HPC have a tendency to be designed in such a way as 

to do additional parallelism proportional to increased machine resources [Lipasti & Shen 

'97]. According to Lipasti & Shen ('97), these architectures are: 

• Superscalar machines schedule instructions dynamically at runtime. These machines 

can reduce the average number of cycles per instruction, but they need extra 

hardware. Therefore, performance depends on the amount of resources in the 

machine; 



• VLIW machines schedule instructions statically at compile time. These machines 

contain numerous functional units, which accommodate multiple streams of data 

input, such as audio and video. In general, V L I W machines heavily rely on powerful 

compilers to detect and resolve inter-instruction dependencies in software. This keeps 

the hardware design simple and fast. But their static nature makes them incompatible 

with dynamic variations in parallelism, which are caused by an aggressive memory 

subsystem and speculative-execution techniques; 

• Multithreaded processors support multiple machine contexts and execute multiple 

instruction streams simultaneously. The performance depends on finding enough 

thread parallelism by software. The disadvantages of these : machines are that 

debugging multithread programs is difficult, and that there is a lack of automatic 

thread-partitioning compilers; 

• Single chip multiprocessors are used for improving throughput under 

multiprogrammed workloads. However, these machines are restricted to numerical 

applications that contain easily parallelized loops. Limited processor interconnects 

and synchronization overhead will degrade system performance. 

• Vector processors are machines built primarily to handle large scientific and 

engineering calculations. Their performance derives from a heavily pipelined 

architecture which operations on vectors and matrices can efficiently exploit. As an 

example, the NEC S X 5 / 3 C is reported at 8 Gflops per second per processor peak. 

The techniques for HPC in Figure 1 can be categorized into four different fields. Those 

fields include: 



• Pipelining allows increased utilization of hardware resources by the partial execution 

of more than one instruction at the same time. One of the most common uses of 

pipelining is to fetch the next instructions from lower level memory while executing a 

current one. 

• Cache memory is to improve the throughput of memory data and instruction flow. 

Memory data flow is relevant to the load/store instructions. The data values are stored 

and retrieved from data memory. To reduce average memory latency, the prediction 

of load values and addresses are incorporated into the execution core. Meanwhile, 

there are two main logical stages in the instruction flow: Fetch - the processor 

retrieves instructions from cache or main memory; and Decode - the processor 

decodes instructions, renames their operands, and detects inter-instruction 

dependencies. For each stage, there is a need to reduce cache misses by using an 

efficient cache scheme and increase the speculation for the control-flow instructions 

with an accurate branch predictor. 

• For the technique of parallelism, multiple execution units are popular for improving 

performance. The execution core must strive for two fundamental goals to increase 

, instruction throughput. It must: 

efficiently detect and resolve inter-instruction dependencies; and 

eliminate or bypass as many dependencies as possible to explore more parallelism 

between instructions. 

• Other techniques such as prefetching, buffering, etc. are also popular for improving 

system performance for the FfPC. 
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What do future architectures look like? 

Figure 3 shows Moore's Law (the observation made in 1965 by Gordon Moore, co-

founder of Intel): The number of transistors on a microprocessor would double 

approximately every 18 months. Meanwhile, memory densities (DRAM) and disk 

densities will continue to quadruple every three years. The gap between microprocessor 

and memory will be discussed in detail in section 1.2. 

i c r o p r o c e s s o r 
) - 80%/yr . 

D R A M 
5 -10%/yr . 

© i H ( S f i ^ w > v c r » 9 0 0 \ ' © » H N f > ^ > / > s e ' t - a o o \ © . 

rt — H r t r t H r t H H r t H r t r t H H r t H r t H H N 

Time 

Figure 3. Comparison of the performance between microprocessor and D R A M according 

to Moore's Law [Patterson and Keeton '00] [Alexander & Kedem '95]. 

To date, Moore's Law has proven remarkably accurate even if the end of Moore's Law 

has been predicted so many times that rumors of its demise have become an industry 

joke. In reality, microprocessors have achieved a performance growth of 10,000 times 
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during the last two decades. Transistor count increased from 10,000 to 100,000 in the 

1970s, and then increased up to 1 million in the 1980s; while clock frequency increased 

from 200KHz to 2MHz in the 1970s and up to 20MHz in the 1980s. In the 1990s, both 

transistor count and clock frequency achieved an increase of 20 to 30 times. Future 

billion-transistor chips in the 2000s will create machines that are much wider (issue more 

than four instructions at once) and deeper (have longer pipelines) [Lipasti & Shen '97]. 

According to.Burger & Goodman ('97) and Patt et al. ('97), microprocessors will have 

more than one billion transistors on a single chip by 2010. As we discussed before, most 

of the current techniques for microprocessors have come from. supercomputers. 

Moreover, some future techniques will be based on current ones such as instruction level 

parallelism. The future architectures surveyed by Burger & Goodman ('97) are: 

Advanced Superscalar processors that issue 16 to 32 instructions per cycle and 

Superspeculative processors that have wide-issue speculation; 

Vector IRAM processors couple vector processor execution with large, high-

bandwidth, on-chip D R A M banks, which provide the vector units with sufficient 

bandwidth at a reasonable cost; 

Chip multiprocessors that place a number of processors (four to 16) on a single chip; 

- Raw processors that implement parallel architectures with 128 tiles, very simple 

processors with reconfigurable functional logic. 

Beyond the previous potential architectures, Simultaneous multithreaded processors and 

Trace processors are also included in the surveyed future architectures [Burger & 

Goodman'97]. 
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1.2 Problem definitions and resolutions 

The previous section provided an overview of high performance computing. This section 

will discuss two problem definitions intended to improve system performance for current 

and future microprocessors. 

Chapter 2 

Development of Technologies 
Microprocessor (50%-80%.per year) 

memory (5%-10% per year) 

Chapter 3 

Memory Latency 4 Cache Memory 4 
—• 

Reduction of 
Cache Misses 

Branch Instructions 

Branch Predictor J 

Reduction of 
Branch Mispredictions 

J 

Conflict Misses and 
Indirect Branch Mispredictions' 

Figure 4. Problem definitions 

In Figure 4, rapidly changing technologies are improving microprocessor execution 

speeds at a rate of 50% - 80% per year. In contrast, D R A M access time has developed at 

the much lower rate of 5% - 10% per year [Alexander & Kedem '95]. As the 

performance gap between microprocessor and memory increases dramatically, more and 

more programs will be limited in performance: 

- by the memory latency and bandwidth of the system; 

by the branch instructions (control flow of the programs). 
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Latency is described as the total time memory requires to satisfy a request from the 

processor, and bandwidth as the rate of information transfer between the processor and 

memory that supports the required processing rate. 

I) First Problem Definition (Left side of Figure 4): Cache Misses 

Since the processor is much faster than the main memory, latency often causes the 

processor to go into one or more wait states. In order to solve the latency problem, a 

cache memory has been introduced as part of a memory hierarchy. The memory 

hierarchy combines a fast, small memory matched to the processor speed with slower and 

larger memories (level-two or main memory). 

When a GPU does not find data it needs in a cache memory, a cache miss occurs. If a 

cache miss occurs, the C P U must wait until the needed data is retrieved from a lower 

level memory. 

The impact on C P U performance caused by cache miss rates is: 

C P U Execution time = IC * (CPI + (Memory stall clock cycle/Instruction))* 

Clock cycle time 

= IC * (CPI + (memory accesses per instruction) * M R * MP) * 

Clock cycle time 

Where, IC (Instruction Count), CPI (Cycles per Instruction), M R (Miss Rate), and 

M P (Miss Penalty). 

Relative CPU Execution time = CPU Execution time /(IC * Clock cycle time* CPI) 

If there are no memory stalls (perfect cache), then Relative C P U Execution time is 1. 

10 



Assume that CPI = 2, memory references per instruction = 1.33, Cache Miss Rate = 

10%, and Miss Penalty = 50 cycles. 

Then, Relative C P U Execution time = (2 + 1.33 * 0.1 * 50) / 2 = 4.33. 

This Relative C P U Execution time shows that a C P U Execution time of 10% cache 

miss rate is 4.33 times longer than a C P U Execution time with a perfect cache (0% cache 

miss rate). 

Figure 5 shows Relative C P U Execution time when the behavior of the cache (from 

0% cache miss rate, perfect cache, to 10% cache miss rate) is included. 

° c 

5 I 
DC X 

UJ 

5 

4 -
3 -
2 -
1 -
0 

0% 1% 3% 5% 7% 9% 10% 
Cache Miss Rates 

Figure 5. Relative C P U execution time by cache miss rates. 

Without any memory hierarchy at all, the CPI would increase to 2.0 + 50*1.33 or 66.5 

- a factor of over 33 times longer. 

As the above example illustrates, cache behavior can have enormous impact on 

performance. Therefore, the efficiency of a cache memory depends on reducing cache 

misses and will be discussed in detail in chapter 2. This thesis defines reduction of cache 

misses as the first problem to be solved and in chapter 2 introduces a new cache scheme 

to reduce cache misses, focused on conflict misses.due to the cache set overfilling, even 

though the cache as a whole may not be full. 
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2) Second Problem Definition (Right side of Figure 4): Branch Mispredictions 

For current microprocessors, multi-instruction issues are a popular method of increasing 

system performance. Therefore, instruction cache misses can severely limit the 

performance of high-speed microprocessors. It has been observed that many instruction 

cache misses are caused by the control flow of programs. 

Control flow is related to the branch instructions, which can be generally categorized 

into conditional or unconditional, and direct or indirect [Chang et al '97]. Since these 

branch instructions do not tend to fetch the next instruction in sequence, it is not possible 

to know the next instruction until a current instruction is executed. To overcome this 

obstacle, branch prediction schemes have been used for predicting and fetching the 

outcome of branches before they are executed. Therefore, if the prediction is wrong 

(branch misprediction), the processor needs to be stalled because as a result of flushing all 

the instructions incorrectly fetched, issued, and executed. This is referred to as branch 

penalty. Thus, without an appropriate branch predictor, the branch penalty can have a 

critical impact on overall system performance. 

If branches are the only thing that cause stalls in a pipeline, the impact of C P U 

performance caused by branch penalty is: 

C P U Execution time = IC * (CPIbase + branch frequency * branch penalty)* 

Clock cycle time 

Where, IC (Instruction Count), CPIbase (an ideal CPI without branch stalls in the 

pipeline), branch penalty (branch misprediction rate * misprediction penalty). 

Relative CPU Execution time = CPU Execution time / (IC * Clock Cycle time * CPIbase) 

If there are no branch stalls (perfect branch predictor), Relative C P U Execution time is 1. 

12 



Assume that CPIbase = 1, branch frequency = 25%, branch misprediction rate = 20%, 

and misprediction penalty = 5 cycles. 

Then, Relative C P U Execution time = (1 + 0.25 * 0.2 * 5) / 1 = 1.25. 

This Relative C P U Execution time shows that a C P U Execution time Of 20% branch 

misprediction rate is 1.25 times longer than a C P U Execution time with a perfect branch 

predictor (0% branch misprediction rate). 

Figure 6 shows Relative C P U Execution time when the behavior of the branch predictor 

(from 0% branch misprediction rate, perfect branch predictor, to 40% branch 

misprediction rate) is included. 

« '2-r 
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o g 0.5 4 
tr x 

U J , 

o% 5% 10% 15% 20% 30% 40% 
Branch Misprediction Rates 

Figure 6. Relative C P U execution time by branch misprediction rates. 

To reduce the branch penalty, there is a need to reduce branch mispredictions: direct 

mispredictions and indirect branch mispredictions. As object-oriented languages such as 

C++ and J A V A are widely used, more accurate branch predictors for multi-targets, which 

are called indirect branch predictors, are needed. This thesis also defines the reduction of 

branch mispredictions as the second problem to be solved, and introduces in chapter 3 a 

new branch predictor to reduce branch mispredictions focused on indirect branch 

mispredictions due to multi-targets. 
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1.3 General background 

The previous section briefly describes the problems defined in this thesis. In this 

section, we discuss the general background of cache misses and branch mispredictions in 

more detail. 

1.3.1 Cache Misses 

Reduction of 
Cache M isses 

C onflict M isses 

Eff icient C ache 
Schemes 

Compulsory Misses 
1 — H Larger Cache & B l o c k Size - i — H 

Larger Cache & B l o c k Size 

C apacity M isses . 
J 

C conflict misses ^ 
memory utilization 
replacem ent 
hit time 

V.cost 

Figure 7. Reduction of Cache Misses (overview). 

Figure 7 shows the problem of reduction of cache misses. There are three cache-miss 

types: compulsory, capacity, and conflict. Compulsory and capacity cache misses can be 

reduced by larger cache and block sizes. However, conflict misses are more complex than 

other cache misses and are critical to system performance. Figure 7 also suggests the 

problems which the conventional cache schemes have in regard to conflict misses, 

memory utilization, etc. In Chapter 2, we will discuss the conflict miss ratios of several 
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cache schemes (direct-mapped, 2-way skewed associative, etc.) compared to the fully-

associative scheme which has no conflict misses, and also introduces a new cache scheme 

called the T A C (Thrashing-Avoidance Cache) scheme, which can reduce conflict misses 

effectively. 

Cache Miss Types 

Despite tremendous research efforts, current cache schemes make poor use of cache 

capacity. One of the drawbacks of conventional cache schemes is that they perform a 

myopic management of all memory references: if the reference misses, a new block is 

brought into the cache at the expense of replacing another [Sanches et al '97]. 

There are three cache-miss types - compulsory, capacity, and conflict [Patterson & 

Hennessy '96]: 

• Compulsory misses: these are the first reference misses since a block must be brought 

into the cache the first time it is accessed; 

• Capacity misses: if the number of active blocks is more than the cache can contain, 

capacity misses take place; 

• Conflict misses: these misses take place because of limited or zero associativity, 

when blocks, must be discarded in order to accommodate new blocks which are 

mapped to the same line in the cache. A conflict miss occurs when the replaced block 

needs to be accessed. 
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In case of compulsory misses, it is not possible to avoid these misses since the first 

access is to a block that is not in the cache. Fortunately, the frequency of these misses 

tends to be" quite small compared to other cache misses. 

Block Size Cache Size Block Size 

I K 4K 16K 64K 256K 

16 15.05 % 8.57 % 3.94 % 2.04 % 1.09 % 

32 13.34 % 7.24 % 2.87 % 1.35 % 0.70 % 

64 13.76 % 7.00 % 2.64 % 1.06% 0.51 % 

128 16.64 % 7.78 % 2.77 % 1.02% 0.49 % 

256 22.01 % 9.51 % 3.29 % 1.15 % 0.49 % 

Table 1. Actual miss rate versus block size for five different-sized caches. Note that for a 

1-KB cache, 64-byte, 128-byte, and 256-byte blocks have a higher miss rate than 32-byte 

blocks. In this example, the cache would have to be 256 K B in order for a 256-byte block 

to decrease misses [Patterson & Hennessy '96]. 

Table 1 shows the trade-off of block size versus miss rate for a set of programs and 

cache sizes. Larger cache and block sizes reduce compulsory misses since larger blocks 

take advantage of spatial locality. At the same time, the larger blocks increase any miss 

penalty. Since they reduce the number of blocks in the cache, larger blocks may increase 

conflict misses and even capacity misses if the.cache size is small. 
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Basic Mapping Functions 

Fully associative: 
block 28 can go 
anywhere 

Block No. 0 1 2 3 4 5 6 7 

Cache 
Memory 

Memory 

Direct mapped: 
block 28 can go 
only into block 4 
(28 mod 8) 
0 1 2 3 4 5 6 7 

Block frame 

2 2 2 2 2 2 3 3 
Block No. 0 1 2 3 4 5 6 7 4 5 6 7 8 9 0 1 

Set associative: 
block 28 can go 
anywhere in set 0 
(28 mod 4) 
0 1 2 3 4 5 6 7 

Set Set Set Set 
0 1 2 3 

Figure 8. This cache example has eight block frames and memory has 32 blocks 

[Patterson & Hennessy '96]. 

The basic mapping functions can be categorized into the following types: 

• If a block can be placed anywhere in the cache, the cache is said to be fully-

associative; 

• If each block has only one place it can appear in the cache, the cache is said to be 

direct-mapped. The mapping is usually (Block address) M O D (Number of blocks in 

cache); 
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• If a block can be placed in a restricted set of places in the cache, the cache is said to 

be set associative. A set is a group of blocks in the cache. A block is first mapped 

onto a set, and then the block can be placed anywhere within that set. The set is 

usually chosen by bit selection; that is, (Block address) M O D (Number of sets in 

cache). If there are n blocks in a set, the cache replacement is called n-way set 

associative. 

Figure 8 shows that the restrictions on where a block is placed create three categories of 

cache organization. The set-associative organization shown has four sets with two blocks 

per set, and is called two-way set associative. Assume that there is nothing in the cache 

and that the block address needed identifies lower-level block 28. The three options for 

caches are shown left to right. In fully-associative, block 28 from the lower level can go 

into any of the eight block frames of the cache. With direct-mapped, block 28 can only be 

placed into block frame 4 (28 modulo 8). In two-way set associative, the block is to be 

placed anywhere in set 0 (28 modulo 4). With two blocks per set, this means block 28 can 

be placed either in block 0 or block 1 of the cache. The vast majority of processor caches 

today are direct-mapped, two-way set associative, or four-way set associative. 
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1.3.2 Branch Mispredictions 

Reduction of 
Branch Mispredict ions D irect M ispredictions 

Indirect M ispredictions 

Branch Predictor with 
Taken or N o t - T a k e n 

T w o - L e v e l Adapt ive 
Indirect Branch Predictor 

B r a n c h T a r g e t Buf fer , Targe t 
C a c h e , Strict F i l t er , L e a k y Fi l ter 

f m ulti-targets ^ 
conflict misses 
table utilization 
hit tim e 

^cost 

Figure 9. Reduction of Branch Mispredictions (overview). 

Figure 9 shows methods for the reduction of branch mispredictions, which are 

categorized into direct and indirect branch mispredictions. Direct branches can be 

predicted with two-level branch predict schemes with hit ratios of up to 97%. However, it 

cannot be used for indirect branches which have more than one target. Chapter 3 explains 

indirect branch mispredictions in detail and discusses current indirect hybrid branch 

predictors such as Target Cache and Cascaded Predictor. These predictors work better 

than BTB-based predictors, which are used to predict for a single target such as direct 

branches, but they suffer from conflict misses in the first stage predictor and have 

inefficient update rules. Chapter 3 introduces a new indirect hybrid branch predictor 

called the GoStay2 predictor to improve the update rules and reduce conflict misses in the 

first stages. 
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Branch prediction is a key mechanism used to achieve high performance on multiple 

issue, deeply-pipelined processors. By predicting the branch outcome at the instruction 

fetch stage of the pipeline, ILP (Instruction Level Parallelism) can be exploited by 

providing a larger window of instructions [Kalarhatianos & Kaeli '98]. 

Branch Classification 

Branches can be categorized as conditional or unconditional and direct or indirect, 

resulting in four classes: conditional direct, conditional indirect, unconditional direct, and 

unconditional indirect. Of the four classes, prediction of conditional indirect branches are 

typically not implemented [Kalamatianos & Kaeli '98]. 

Conditional direct branches, which involve a condition, have two types: loop-closing 

conditional branches and other conditional branches. The loop-closing branches are 

backward branches that are taken for all but the last iteration of a loop. Other conditional 

branches are either taken or not taken, depending on whether the specified condition is 

true of false [Sima et al'97]. 

Unconditional direct branches, which are always taken, have three types: simple 

unconditional branches, branches to subroutines, and returns from subroutines. Simple 

unconditional branches do not save the return address, whereas branches to subroutines 

do. Returns from subroutines are dedicated unconditional branches performing a control 

transfer to the saved return address. In case of nested subroutines, while branching to and 

returning from the individual subroutines, the return addresses are saved and used in a 

last-in first-out (LIFO) manner. 
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A conditional/unconditional direct branch has a statically specified target that points to 

a single location in the program, whereas an unconditional indirect branch has a 

dynamically specified (i.e. computed) target that may point to any number of locations, 

multi-targets, in the program. Indirect branches with multi-targets are harder to predict 

accurately than single-target direct branches. 

Driesen & Holzle ('98) also classified branches according to the number of different 

targets encountered in a program run (SPECint95 and object oriented languages): one 

target, two targets, and more than two targets. Branches with only one target constitute 

67% of all. branches; 18% of all branches jump to two targets and branches with three or 

more targets constitute 15% of all branches. 

Branch Predictors 

There are several types of branch predictors such as one-level, two-level, hybrid, etc. 

For the one-level predictor, a BTB (branch target buffer) is commonly used. BTB is a 

cache that contains the address of the branch instructions and their target addresses. The 

BTB is accessed in the fetch stage to predict the state of a branch instruction. If a hit 

occurs, then the current instruction is a taken branch. The PC (program counter) is loaded 

with the target address from BTB, and fetching starts from the new PC. For indirect 

branch, the taken address is the last computed target for the indirect jump. Unfortunately, 

BTB-based prediction schemes perform poorly for indirect jumps [Chang et al '97]. 

The two-level branch predictor uses two levels of history to make branch predictions 

[Yeh and Patt '92]. The first-level of history records the outcomes of the most recently 
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executed branches and the second-level history keeps track of the more likely direction of 

a branch when a particular pattern is encountered in the first level history. The 2-level 

branch predictor uses one or more k-bit shift registers, called branch history registers, to 

record branch outcomes of the most recent k branches. It uses one or more arrays of 2-bit 

saturating up-down counters, called a Pattern History Table (PHT), to keep track of the 

more-likely direction for branches. The lower bits of the branch address select the 

appropriate PHT and the value in the Branch History Register (BHR) selects the 

appropriate 2 bit counter to use within that PHT. There are many variations of two-level 

predictor. In Chapter 3, we will discuss various branch predictors in detail. 

According to Sima et al ('97), the prediction accuracy of BTB is less than 70% in the 

processor MC88110. In order to improve the prediction accuracy of simple BTB, more 

complex hardware such as a two-level adaptive BTB, which can detect more varied 

branch execution sequences and treat them individually, has been proposed to take 

advantage of the relationship between nearby branches to improve its branch prediction 

accuracy. Even if the misprediction rate is less than 10%, the residual misprediction 

penalty that these programs incur still deteriorates processor performance significantly. 

Branch Misprediction Penalty 

In Figure 10, Bondi et al ('96) show the total CPI (Cycles Per Instruction) for the 

model classified as normal processing, branch misprediction penalty, and memory access 

wait cycles (imperfect cache). They evaluated x86 traces with the performance model of 

a microprocessor design comprising a moderate-depth pipeline, 2-bit branch predictor, 4 
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integer execution resources, and on-chip instruction and data caches. The SPECint92 

traces were generated by running the subject program on a P C under D O S after 

compilation with the gcc compiler from D J G P P (one of SPECint92 benchmark 

programs). 
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Figure 10. Components of Total CPI (Cycles Per Instruction) [Bondi et al. '96] 

Of the total processing expended, normal processing consumes about 70%, branch 

consumes about 13% and memory access consumes about 17%. Together, branch 

penalties and memory waits waste about 30% of the overall processing effort. So i f the 

branch misprediction penalty and memory access wait cycles can be reduced further, the 

system performance can be improved substantially. For example, i f the branch accuracy 
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rate is increased from 95.2% to 96.0%, then the misprediction rate can be reduced up to 

17.6%. If the recovery time from misprediction is reduced, it also improves the overall 

CPI. 

According to Bondi et al ('96), mispredicted branch instructions are categorized into 

two types: branches that are repeatedly mispredicted over program life, and branches that 

are mispredicted just once over program life. They showed that branches that have been 

previously mispredicted cause most mispredictions. This behavior suggests that there is a 

need to hold the flushed branch instructions caused by conflict misses in a specific cache 

memory in the processor. 

1.4 Contributions and summary 

As object-oriented languages are widely used, procedure calls are increasing frequently in 

application programs, causing a significantly increased number of conflict misses in the 

instruction flow. Basically, the instruction flow has several problems to solve: conflict 

misses in the instruction cache memory, conditional or unconditional branch throughput, 

direct or indirect branch prediction, and misprediction penalty. Current high performance 

architectures such as superscalar processors use branch prediction to speculatively 

execute instructions beyond an unresolved branch. If the branch is mispredicted, this 

work is lost, and execution must restart right after the branch instruction. 

As we discussed in section 1.2, there is a need to reduce cache misses and branch 

mispredictions for improving system performance. The contributions of this thesis lie in 

the fact that: 
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1. By developing a new cache scheme called the T A C (Thrashing-Avoidance Cache) 

Cache miss rates can be reduced significantly compare to other conventional 

cache memory schemes. 

- Since the T A C has almost the same hardware complexity as n-way set-

associative, it is possible to increase system performance with the same 

hardware cost as n-way set-associative. 

As small on-chip cache memory is popular, there is a need to have more 

efficient memory storage management than n-way set-associative. The T A C 

provides this by using sophisticated mapping functions. 

- The T A C scheme can be applied to the techniques for HPC in regard to 

instruction flows. 

2. By developing a new indirect branch predictor called the GoStay2 

Indirect branch mispredictions can be reduced significantly compared to other 

conventional indirect branch predictors. 

Since the GoStay has almost the same hardware complexity as the other branch 

predictors, it is possible to increase system performance with the same 

hardware cost as the others. 

- The GoStay2 can increase instruction level parallelism by improving update 

rules for the indirect branch predictions. 

There are four chapters and one appendix in this thesis. They include: 

Chapter 1, Overview and summary, describes high performance computing, which is 

divided into three parts including goals, architectures, and techniques. Moore's Law is 
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discussed in order to understand the future trend of processors. From Moore's Law, we 

outlined problem definitions such as cache misses and branch mispredictions, which 

degrade system performance because of the gap between processors and memory. 

General background for cache misses and branch mispredictions are discussed, and a new 

cache scheme and branch predictor are suggested; 

Chapter 2, Cache misses, gives an overview and problems of conventional cache schemes 

and introduces a new. cache scheme called the T A C (Thrashing-Avoidance Cache). 

Through the experimental results, it is shown that the T A C schemes reduce conflict 

misses better than conventional cache schemes; 

Chapter 3, Branch Mispredictions, explains branch mispredictions caused by direct and 

indirect conditional branches and discusses current branch predictors that were recently 

proposed to reduce indirect branch predictors. Since those branch predictors have an 

inefficient update rule, a new branch predictor called the GoStay2 predictor is introduced 

for improving branch prediction rates. Through experiments, it is shown that the GoStay2 

works better than other indirect branch predictors such as Cascaded predictors or Target 

Cache; 

Chapter 4, Conclusion and Future Research, summarizes the experimental results for the 

T A C scheme and GoStay2 predictor compared to conventional schemes and suggests 

future research in regard to reducing memory latencies and speculative work; 

Appendix A , Experimental results for T A C schemes, gives detailed tables of the 

experimental results for T A C schemes. 
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Chapter 2 Reduction of instruction cache misses 

Due to the increased complexity of application programs over the past decade, object-

oriented languages are replacing traditional languages as a result of convenient code 

reusability and maintainability. However, it has also been observed that the run-time 

performance of object-oriented programs can be improved by reducing the impact caused 

by instruction cache misses. This thesis presents a new cache scheme called T A C 

(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses 

caused by procedure call/returns. The T A C scheme employs N-way banks and X O R 

mapping functions. The main function of the T A C is to place a group of instructions 

separated by a call instruction into a bank according to the Bank Selection Logic (BSL) 

and Bank-originated Pseudo-LRU replacement policy (BoPLRU). After the B S L selects a 

bank initially on an instruction cache miss, the BoPLRU will determine the final bank for 

updating a cache line as a correction mechanism. These two mechanisms can guarantee 

that recent groups of instructions exist in each bank safely. A simulation program, 

TACSim, has been developed by using Shade and Spixtools, provided by SUN 

Microsystems, on an ultra SPARC/10 processor. Our experimental results show that T A C 

schemes reduce conflict misses more effectively than skewed-associative caches for both 

C (9.29% improvement) and C++ (44.44% improvement) programs on L I caches. In 

addition, T A C schemes also allow for a significant miss reduction on Branch Target 

Buffers (BTB). 
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2.1 Introduction 

For current microprocessors, multi-instruction issues are a popular method of 

increasing system performance. Therefore, instruction cache misses can severely limit the 

performance of high-speed microprocessors. 

Several researchers have shown that many instruction cache misses are caused by the 

frequent procedure call/returns in object-oriented languages. 

C++ mean (12 
C++ programs) 

C mean 
(SPECint92) 

Ratio 
(C++/C) 

Description 

Type Object Oriented Traditional 

Call/Return Frequency 4.6% 0.7% 6.7 Procedure calls and returns 

Basic block 4.8 5.9 0.8 Instructions per block size 

Function 
size 

Dynamic 48.7 152.8 0.3 During program run-time Function 
size 

Static 27.3 44.3 0.6 Property of program itself 

Inst. Cache 
miss rate 
(Direct 
mapped, 
32byte line) 

4 K • 5.83 3.49 1.67 C++ programs tend to 
perform many calls to small 
functions and benefit less 
from the spatial locality of 
larger cache blocks. 
Average Ratio (C++/C):1.95 

Inst. Cache 
miss rate 
(Direct 
mapped, 
32byte line) 

8 K 3.98 2.32 1.72 

C++ programs tend to 
perform many calls to small 
functions and benefit less 
from the spatial locality of 
larger cache blocks. 
Average Ratio (C++/C):1.95 

Inst. Cache 
miss rate 
(Direct 
mapped, 
32byte line) 

16 K 2.47 1.18 2.09 

C++ programs tend to 
perform many calls to small 
functions and benefit less 
from the spatial locality of 
larger cache blocks. 
Average Ratio (C++/C):1.95 

Inst. Cache 
miss rate 
(Direct 
mapped, 
32byte line) 

32 K 1.37 0.59 2.32 

C++ programs tend to 
perform many calls to small 
functions and benefit less 
from the spatial locality of 
larger cache blocks. 
Average Ratio (C++/C):1.95 

Data cache 
miss rate 
(Direct 
mapped, 
32byte line) 

4 K 13.98 13.09 1.06 Since the miss rates are quite 
similar, there is little room 
to improve data cache 
features. 

Average Ratio (C++/C):1.02 

Data cache 
miss rate 
(Direct 
mapped, 
32byte line) 

8 K 9.20 9.08 1.01 

Since the miss rates are quite 
similar, there is little room 
to improve data cache 
features. 

Average Ratio (C++/C):1.02 

Data cache 
miss rate 
(Direct 
mapped, 
32byte line) 

16 K 6.35 6.43 0.98 

Since the miss rates are quite 
similar, there is little room 
to improve data cache 
features. 

Average Ratio (C++/C):1.02 

Data cache 
miss rate 
(Direct 
mapped, 
32byte line) 

32 K 4.42 4.31 1.03 

Since the miss rates are quite 
similar, there is little room 
to improve data cache 
features. 

Average Ratio (C++/C):1.02 

Table 2. Behavioral differences between C and C++ Programs [Calder et al '94] 

In table 2, Calder et al ('94) showed that object-oriented programs (C++) execute 

almost seven times more calls (4.6 % versus 0.7 %) and have smaller function sizes (48.7 

versus 152.8 instructions/function) than traditional programs (C). While C programs 

execute large monolithic functions to perform a task, C++ programs tend to perform 
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many calls to small functions. Thus, C++ programs benefit less from the spatial locality, 

and suffer more from function call overhead. 

The smaller function size of C++ programs is another cause of poor instruction cache 

misses. According to Calder et al ('94), programs executing a small number of 

instructions in each function, such as C++, may suffer from instruction cache conflicts. 

For example, two mutually recursive functions may be aligned to the same cache memory 

addresses and constantly displace each other from the cache. C programs execute more 

instructions per function invocation, meaning that more work is done within a particular 

function. 

Holzle & Ungar ('94) also showed that for instruction cache behavior the miss ratios of 

object-oriented programs are significantly higher for most cache sizes and that the 

median miss ratio is 2 - 3 times higher than traditional programs. Meanwhile, Calder et al 

('94) and Holzle & Ungar ('94) observed that the data cache misses for both programs 

were seen to be similar. So this thesis has focused on developing an effective cache 

scheme to reduce the instruction cache misses of object-oriented programs, which can be 

much higher than traditional programs because of the frequent call/returns. 

In general, if a cache size is less than 32KB, conflict misses can degrade system 

performance significantly. For example, for a direct-mapped cache, conflict misses are 

about 60% of the total cache misses of a small-sized cache of 8KB [Gonzalez et al '97]. 

If we do not want to increase the cache size, we need to design a small-sized, low-cost 

cache scheme to improve the cache miss ratio by reducing only the conflict misses which 

are mainly caused by call/returns. This thesis presents a new cache scheme called T A C 
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(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses 

caused by call/returns. 

This chapter is organized as follows: Section 2.2 explains cache misses and skewed-

associative caches; section 2.3 presents a new instruction' cache scheme called T A C 

(Thrashing-Avoidance Cache); section 2.4 describes simulation methodology and 

benchmark programs; section 2.5 presents our simulation results; and section 2.6 

provides our chapter conclusions. 

2.2 Cache Misses 

As we discussed in chapter 1, there are three types of cache misses namely: 

compulsory, capacity, and conflict misses. In this section, several conventional cache 

schemes are compared for determining the most effective conventional cache scheme for 

reducing conflict misses. 

2.2.1 Total miss ratios vs. conflict miss ratios 

Gonzalez et al ('97) generated the miss ratios for several cache schemes as shown in 

Figure 1 1 : direct-mapped, 2-way set-associative, 4-way set-associative, hash-rehash, 

column-associative, victim, and 2-way skewed-associative. They obtained the results in 

Figure 1 1 by using the SPEC95 benchmark suite and by implementing a cache memory 

(8 kilobytes capacity and 32 bytes per line). 

For comparison, the miss ratio of a fully-associative cache is shown in the last column. 

For each organization, the difference between its miss ratio and that of a fully-associative 

cache represents the conflict miss ratio. For example, the 'direct-mapped' cache has a 
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miss ratio of '21.32' in Figure 11. Here, '21.32' means the total miss ratio (compulsory + 

capacity + conflict) while '12.61' is the conflict miss ratio which is computed as (total 

miss ratio for a scheme - total miss ratio for the fully-associative scheme). 

VI 
o 

V} 
VI 

25 
20 
15 
10 
5 
0 

direct 2-way 4-way hash-
rehash 

col-
assoc. victim 

2-way 
skew 

fully-
assoc. 

H total miss ratios (%) 21.32 19.76 16.42 21.87 19.11 14.27 11.05 8.71 
I conflict miss ratios (%) 12.61 11.05 7.71 13.16 10.4 5.56 2.34 

Various cache schemes 

Figure 11. Miss ratios (%) of the various cache schemes [Gonzales et al '97]. 

From the results in Figure 11, the hash-rehash scheme has a miss ratio similar to that of 

a direct-mapped cache. Although both have similar access times, the hash-rehash scheme 

requires two cache probes for some hits. Hence, the direct-mapped cache will be more 

effective. The victim cache scheme removes many conflict misses and it outperforms a 4-

way set-associative cache. The 2-way skewed-associative cache offers the lowest miss 

ratio of the existing schemes and is significantly lower than a 4-way set-associative cache 

[Gonzalez et al '97]. 

Figure 12 shows how conflict misses can happen in a cache memory. It is assumed that 

there are 10 instructions (A, B . . . X , and Y) as an assembly code program in Figure 12, 

which include two procedure calls (B to H and I to X) and two returns (Y to J and J to C). 

It is also assumed that (B, H), (C, I, X) , and (D, J, Y) have the same set address (cache 
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Set Address 

memory index), namely 004, 008, and OOC, and that there is a stack register for the two 

return addresses. The arrows in Figure 12 show instruction flows for executing this 

program. 

Instructions 

A 

Subroutine 
'Call 

Return ... 

Return 

Figure 12. An example of instructions with two procedure calls. 

Figure 13 shows the contents of a direct-mapped cache during execution of the two 

loops of code shown in Figure 12. In the case of the set address '008', there are two 

conflict misses with three memory accesses (to main memory) in the first loop and three 

conflict misses with three memory accesses in the second loop. 

Set address Tag Cache Instructions Set address Tag Cache Instructions 

000 

004 

008 

OOC 

010 

XXX A 

XXX ] / H 

XXX kk. C 

XXX 

XXX E 

000 

004 

008 

OOC 

010 

XXX A 

XXX H 

XXX d k ilc 

XXX d k / D 

XXX E 

First Loop Second Loop 

Figure 13. Execution of the code shown in Figure 12 in a direct-mapped cache. 
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For the direct-mapped cache in Figure 13, problems occur when alternating memory 

references point to the same set-address. Each reference causes a cache miss (conflict) 

and replaces the entry just replaced, causing a lot of overhead. The popular word for this 

is thrashing. When there is a great deal of thrashing, a cache can be more of a liability 

than an asset because each cache miss requires that a cache line be refilled - an operation 

that moves more data than merely satisfying the reference directly from main memory 

[Handy '93]. However, the direct-mapped cache has advantages of simplicity of memory 

access and hit time. 

Figure 14 shows the contents of a fully-associative cache which has no conflict 

misses. 

Tag Cache Instructions Tag Cache Instructions 

xxxxx A xxxxx A 

xxxxx B xxxxx B 

xxxxx H xxxxx H 

xxxxx I xxxxx I 

xxxxx X xxxxx X 

xxxxx Y xxxxx Y 

xxxxx J xxxxx J 

xxxxx C xxxxx C 

xxxxx D xxxxx D 

xxxxx E xxxxx E 

First Loop Second Loop 

(b) Fully-associative cache. 

Figure 14. Execution of the code shown in Figure 12 in a fully-associative cache. 
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For the fully-associative cache in Figure 14, any block (i.e., instruction) from the main 

memory can be placed anywhere in the cache. After being placed in the cache, a given 

block is identified uniquely by its main memory block number and referred to as the tag, 

which is stored inside a separate tag memory in the cache. The fully-associative cache 

makes the most flexible and complete use of its capacity, storing the blocks where it 

needs to, but there is a penalty to be paid for this flexibility: the tag memory must be 

searched in its entirety for each memory reference. Moreover, it is more expensive in 

terms of gates than other access-by-address memories, because of the need to do 

simultaneous bit-by-bit comparisons of all bits in the memory [Heuring & Jordan '97]. 

To reduce memory stalls effectively, there is a need to have a sophisticated form of 

cache memory, which has: 

- less conflict misses; 

- simplicity (access-by-address); 

- faster hit time; 

- efficient cache memory storage management; and 

- low hardware costs. 

2.2.2 Skewed-associative caches 

In the previous section, Gonzalez et al ('97) showed that a 2-way skewed-associative 

cache offers the lowest miss ratio, and is significantly lower than that of a 4-way set-

associative cache. Therefore, this scheme is discussed in detail in this section; 
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Skewed associative caches have been previously proposed by Seznec ('93). An N-way 

skewed-associative cache consists of N distinct banks that are accessed simultaneously 

with different mapping functions. For example, Figure 15 shows that a 2-way skewed-

associative cache consists of two banks of the same size that are simultaneously accessed 

with two different mapping functions. That means a memory block at address'd' may be 

mapped onto physical line fo (d) in bank 0 or onto fx (d) in bank 1, where fo and fi are 

different mapping functions. 

DATA TAG DATA TAG 

/o(a) = /o(fc) = /o(c) A /• <~ • / ! ( « ) 

a.b 

> 

.c a.b 

> 

.c a.b 

> 

.c 
A 

fi(c) 

bank 0 bank 1 

Figure 15. a, b, and c compete for the same location in bank 0, but can be present at the 

same time, as they do not map to the same location in bank 1 [Seznec '97]. 

Mapping functions 

Bodin & Seznec ('95) presented skewing functions that are obtained by XORing a few 

bits in the address of a memory block. Let a skewed associative cache be built with 2 or 4 

cache banks, each one consisting of 2" cache lines of 2C bytes, and let cr be the perfect-

shuffle on n bits, so that the data block at memory address A32c+2n + A22n+C + AX2C may 

be mapped: 
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1. on a cache line A1@A2 in cache bank 0 

2. or on a cache line a(Al) © \ in cache bank 1 

3. or on cache line CT 2 (AJ) © \ in cache bank 2 (on a 4-way) 

4. or on cache line CT 3 (AJ) © \ in cache bank 3 (on a 4-way) 

Replacement policies 

address 
1. On a Cache Miss 

Replacement Qp'lag in Bank 0 

- V P o , i c y ^ 
(PseudoLRU) ' s 2. Bank Selection 

s 
N 

S 
^1 
Bank 1 

If Flag = 0, replace data 
in Bank 0 and set the 
Flagyl. Otherwise, 

replace data in Bank 1 
and set the Flag -X). 

Figure 16. One of replacement polices, P L R U , for a 2-way skewed-associative cache. 

Figure 16 shows that a 2-way skewed-associative cache uses a Pseudo-LRU (Least 

Recently Used) replacement policy by associating a one-bit flag to each line in bank 0 

when a miss occurs on a cache [Seznec ' 97] : 
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A flag bit is associated with each line in bank 0: when the line is indexed, the flag bit 

is set when the data is in bank 0 and reset when the data is in bank 1; 

- On a miss, the flag of the line selected in bank 0 is read: when this flag is 1, the 

missing line is written in bank 1, otherwise the missing line is written in bank 0. 

2.3 Thrashing-Avoidance Cache (TAC) 

In the previous section, several cache memory schemes were investigated in detail: a 

direct-mapped scheme was shown to have the advantages of fast cache hit time and 

simplicity, but it has the problem of conflict misses that can adversely affect system 

performance. Using a fully-associative scheme can solve the conflict misses, but it is too 

expensive for implementation and inefficient for accessing to memory references. Even 

though a 2-way skewed-associative scheme partially resolves these problems, it still has 

an inefficient replacement policy for frequent procedure call/returns, which can increase 

conflicts for certain locations in a cache memory. 

There are two main reasons for designing a new instruction cache memory: 

• As technology changes, smaller on-chip L I caches (less than 32 Kbytes) have 

replaced large external caches (greater than 256 Kbytes); 

• As object-oriented languages become more widely used, procedure calls tend to 

increase in application programs, causing an increasing number of conflict misses. 

Thus, there is a need to have a new cache memory scheme to reduce instruction cache 

misses focused on reducing thrashing conflict misses (i.e., a commonly used location is 

displaced by another commonly used location in a cycle). 
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2.3.1 An overview of a TAC scheme 

If the cache size is relatively small, conflict misses can degrade system performance 

significantly [Gonzales et al '97]. Figure 17(a) shows that, in a conventional cache 

scheme, individual instructions (A or B) are placed or replaced into cache memory 

according to a mapping function and replacement policy on a cache miss. A conventional 

cache scheme works well for reducing conflict misses for traditional programs but not for 

object-oriented programs since traditional programs have fewer calls and larger function 

sizes than object-oriented programs (refer to section 2.1). 

O n cache misses^-
n i c i p p i n g function 

If A-
feplace'rhent policy 

Individual 
instructions c a c h e m e m o r y 

A: an instruction except 'call' 
B: 'call' instruction 

(a) A conventional cache scheme 

™ > f ) n c a c n e misses^ 
/ C A > 

A Group: 
mapping function 

-.replacement policy 

A Group of 
instructions 

cache memory 

Group Separator: 
'call' instruction 

(b) A TAC scheme 

Figure 17. The basic operations of a conventional cache scheme and a T A C scheme. 

Figure 17(b) shows the basic operations of a T A C scheme, which can reduce conflict 

misses effectively for object-oriented programs by grouping instructions. In Figure 17(b), 

a group of instructions (A and B) separated by call instruction (B) are placed and replaced 

into cache memory according to a mapping function or replacement policy on a cache 
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miss. Our measurements shows that grouping instructions benefits more from localities 

than individual instructions in both traditional and object-oriented programs. 

A T A C scheme is built with N distinct banks. Since Gonzales et al ('97) showed that 

XOR mapping functions work well for reducing conflict misses, T A C employs X O R 

mapping functions (refer to section 2.2.2) for accessing the instruction cache memory. 

On a cache miss, data must be fetched from a lower level memory according to the 

X O R mapping functions and replacement policies, the Bank Selection Logic (BSL, refer 

to section 2.3.2) and Bank-originated Pseudo L R U replacement policy (BoPLRU, refer to 

section 2.3.3). The B S L selects a bank initially according to the number of call 

instructions and the BoPLRU determines a final bank according to the replacement policy 

by using a flag. 

The B S L and BoPLRU can guarantee that recent groups of instructions exist in each 

bank safely. So if the frequency of call/returns is increased, the T A C scheme works well 

since the manageable size of an instruction group is smaller. For example, if the average 

number of instructions per call of an object-oriented program is 40 and that of a 

traditional program is 100, then the T A C scheme of an object-oriented program will work 

better than a traditional one for limited cache sizes. 

In a T A C scheme, each cache line consists of tag, data, and flag. The tag word consists 

of an address tag and some other status tags. The bit length of the flag is determined by 

the N distinct banks; that is, an n-bit flag represents 2" banks or an N-Way (N = 2") 

cache scheme. For convenience, this thesis represents the cache line of a T A C scheme as 

just a flag and data throughout this paper and omits the tag part. 
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2.3.2 Bank Selection Logic (BSL) - Initial Bank Selection 

The function of the Bank Selection Logic (BSL) is to select a bank initially on a cache 

miss according to a fixed frequency of the procedure call instructions. The B S L employs 

an x-bit counter for counting the frequency of call instructions. The x-bit counter will be 

increased by one whenever a fetched instruction proves to be a call instruction. An n-

MSBs (n-Most Significant Bits) of the x-bit counter represents a selected bank for each 

instruction. Each bank can be selected for every 2'" procedural calls. For example, if x = 

2 and n = 1, then there are two banks (2" =2) and a bank is switched to the other bank 

for every two procedure calls (2*"" = 2). A group of instructions terminated by a 

procedure call can be placed into the same bank through the B S L (Bank Selection Logic) 

and X O R mapping functions. The goal of the B S L is to help each bank to share 

instructions equally according to the occurrence of procedure call instructions. 

As an example, Figure 18 shows how a 2-bit counter (x = 2 and n = 1) in the B S L 

works with the flow of example instructions in Figure 18. The left side of Figure 18 

shows the flow of instructions. Each call instruction works as a separator for grouping 

instructions. For a group of instructions, the next call instruction becomes the last one in 

the group. In Figure 18, it is assumed that there are cache conflicts in (B, H) and (I, X) . 

The detailed operations of the 2-bit counter in the B S L on the right side of Figure 18 are: 

• Instruction A is fetched. On a cache miss, the flag of the selected line in bank 0 is 

read. A is not a call instruction, so there is no change in the 2-bit counter (+ 0); 

• Instruction B is fetched. On a cache miss, the flag of the selected line in bank 0 is 

read. B is a call instruction, so one is added to the 2-bit counter (+ 1); 
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• Instruction H is fetched. On a cache miss, the flag of the selected line in bank 0 is 

read. H is not a call instruction, so there's no change in the 2-bit counter (+ 0). 

• Instruction I is fetched. On a cache miss, the flag of the selected line in bank 0 is read. 

I is a call instruction, so one is added to the 2-bit counter (+ 1); 

• Instruction X is fetched. On a cache miss, the flag of the selected line in bank 1 is 

read. X is not a call instruction, so there's no change in the 2-bit counter (+ 0); 

• Instruction Y is fetched. On a cache miss, the flag of the selected line in bank 1 is 

read. Y is not a call instruction, so there's no change in the 2-bit counter (+ 0); and 

• Instruction J is fetched. On a cache miss, the flag of the selected line in bank 1 is 

read. J is not a call instruction, so there's no change in the 2-bit counter (+ 0). 

A flow of instructions 

.:<M\ 
Group A J ' „ 

i - A . ' c a l l //~v 

A 2-bit counter in the BSL 

Group ^ ^ j e ^ 

Group Separator: ^/(Jy^.^/ 
call instruction \ yS' 

' Group X 

Group H 
Group A Group X 

i i 

I J*, Bank 0 

y)*. Bankl 

J/ . Bankl 

Bank 1 

u 0 

0 

0 
• 

1 

0 1 

- 1 * 0 

- 1 0 

-- p. 

- 1 * 0 

p + 1 

5 + 1 

^ + 0 

^ + 0 

^ + 0 

Instruction cache memory 

Figure 18. The operation of the B S L (2-bit counter, 2-way) according to a flow of 
instructions. Conflicts in (B, H) and (I, X) . 
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Grouping instructions 

Figure 18 shows that each 'call' instruction works as the selector of the distinct bank 

for instructions following the 'call' instruction. That means those instructions after the 

call instruction can be grouped together since they access the same bank on a cache miss 

until another call adds one to the n-bit counter in the BSL. 

Instructions 

Figure 19. An example for the grouping instructions in a 2-way T A C scheme. 

In Figure 19, the 'call' instruction (B) works as a separator for grouping instructions. 

The H instruction followed by the B instruction leads the group of instructions. The next 

'call' instruction (I) is the last one in that group of instructions. Therefore, the group of 

instructions separated by the B instruction are {H, I}. In the same way, it is possible to 

group instructions in Figure 19 into {A, B}, {H,I}, and {X, Y , J, ..}. If each group is 

named after the leading instruction, there are three instruction groups such as group A, 

group H , and group X . Figure 19 shows that group A and group H access bank 0 and 

group X accesses bank 1 on a cache miss. 
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Consequently, there are three important properties in regard to grouping instructions in 

the following ways: 

• Each 'call' instruction works as a separator for grouping instructions; 

• The instruction following any 'call' instruction leads the group of instructions; and 

• The next 'call' instruction terminates that group of instructions and works as a 

separator for the next group of instructions. 

Initially 
selected Bank 1 

MSB of Counter = 0, 

select Bank 0. 

MSB of Counter = 1, 

select Bank 1. 

We assumed that Bank 0 is 
selected initially in this diagram. 

Figure 20. Initial bank selection of B S L for a 2-way T A C scheme. 

As an example, the B S L operation of the 2-bit counter in a 2-way T A C scheme is 

shown in Figure 2 0 : On a cache miss, the B S L initially selects a bank according to the 

value of the counter. If the MSB (Most Significant Bit) of the counter is 0 , then bank 0 is 

selected. Otherwise, bank 1 is selected. 
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2.3.3 Bank-originated Pseudo LRU Replacement Policy (BoPLRU) - Final Bank 

Selection 

After the B S L selects a bank on a cache miss, the BoPLRU will determine the final 

bank for updating a line as a correction mechanism by checking the flag for the selected 

cache line. 

The BSL selects a bank initially (say, initial bank). 

If a 2-way TAC scheme, which has two banks 

If 'the flag - 0' of the initial bank 

Replace data of the other bank. 

Set the flag of the initial bank to I. 

If the flag = 1' of the initial bank 

Replace data of the initial bank. 

Set the flag of the initial bank to 0. 

If an N-way TAC scheme, which has N banks 

If 'the flag < (N-l)' of the initial bank 

Find the highest value of the flag through other banks (say, final bank). 

Replace data of the final bank. 

Set the flag of the final bank to 0. 

For other banks apart from the final bank 

Increase the value of the flags by one. 

If 'the flag = (N-l)' of the initial bank (say, final bank) 

Replace data of the final bank. 
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Set the flag of the final bank to 0. 

For other banks apart from the final bank 

If'the flag < (N-l)' 

Increase the value of the flags by one. 

Else 

Keep the value of the flags. 

Figure 21. Pseudo code for the BoPLRU replacement policy 
] 

Figure 21 shows the Pseudo code for the BoPLRU. If an N-way T A C scheme employs 

a n-bit flag, then N =2". If n is 1 or 2, it represents a 2-way or 4-way T A C scheme 

respectively. 

For the 2-way T A C scheme, if 'the flag = 0' of the selected bank by the BSL, data in 

the initial bank will remain while data of the other bank is replaced with new data fetched 

from memory. After that, the flag of the initial bank will change from 0 to 1. Meanwhile, 

if 'the flag = 1' for the initial bank, data in the initial bank will be replaced with new data 

and the flag for the initial bank will change to 0. By doing this, any conflicting data can 

remain in a bank safely for a while. 

For the N-way (N =2") T A C scheme in Figure 21, if 'the flag < (N-l) ' of the selected 

bank, it is necessary to find the highest value of the flag for other banks to determine the 

final bank. After data of the final bank is replaced with new data from memory, the flag 

will be set to 0 and the value of the other flags except the one of the final bank will be 

increased by one. Meanwhile, if 'the flag = ( N - l ) ' , data for the initial bank will be 
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replaced by new fetched data and the flag is set to 0. For other banks apart from the final 

bank, if 'flag < (N-l) ' , the value of other flags will be increased by one. Otherwise, the 

value of the flags will be kept since it is the highest value and the flag is not in the final 

bank but will be in the final bank soon. 

The BoPLRU is a kind of modified pseudo-LRU replacement policy that guarantees 

that recent groups of instructions can be retained in each bank safely. 

Initially 
selected 

Bank 0 Bank 1 We assumed that flag = Ofor the 
selected bank 0 in this diagram. 

B o P L R U 
Replacement QFlag in a Selected Bank 

. . Pol icy , „ „ , , ; / ] Z 

BankO 

flag=l, 

replace data in bank 0 

and set the flag of 
bank 0 to '0' 

Finally 
selected 

flag=0, 

replace data in bank 1 

and set the flag of 
bank 0 to *V 

Figure 22. Final bank selection of BoPLRU replacement policy for a 2-way T A C 

scheme. 

As an example, the BoPLRU operation of the 1-bit flag, 2-way T A C scheme, is shown 

in Figure 22: it is assumed that the B S L initially selects the bank 0 on a cache miss. 

Therefore, a flag of the selected line in bank 0 is read. If the flag is 1, it is set to 0 and the 

46 



data fetched from memory is written into bank 0. Otherwise, the flag is set to T and the 

data is written into bank 1. 

2.3.4 Benefit of the TAC scheme 

Figure 23 shows how the instructions in Figure 18 are written into each bank (2-way) 

on a cache miss. 

Group H Group A 

\ : x 

" ^ % { e ^ > Group X 

Group A: A, B 
Group H: H, I 
Group X:X, Y, J 
where {B & H} are conflicting in Bank 0 

Guarantees the coexistence of instructions within a group. 
Guarantees the retention of recently used groups of instructions 
in different banks. 

Figure 23. Placement of instructions in a 2-way T A C scheme. 

We assume that B S L selects bank 0 for Group A and H , and bank 1 for Group X : 

Instructions A and B of Group A are written into bank 0. It is assumed that the flags 

for each cache line for Group A are initially set to '0 ' . 
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• Instruction H of Group H is written into bank 1 since it conflicts with instruction B of 

Group A. Therefore, the flag of the cache line for instruction B in bank 0 should be 

set to T . 

• Instruction I of Group H is written into bank 0. It is assumed that the flag is initially 

set to '0 ' . 

• Instructions X , Y , and J of Group X are written into bank 1. It is assumed that the 

flags of each cache line for Group X are initially set to '0'. 

If the instructions in Figure 18 are considered, it can be easily verified that instructions 

for each group execute in a sequential form. Therefore, the possibility of conflict misses 

is very low within each group. However, it is reasonable that conflict misses among 

instructions from different groups can occur easily since the locations of each group of 

instructions are randomly distributed in the main memory. Then, how can we effectively 

reduce the conflict misses among instructions from different groups? 

The answer generally depends on how far the rules of locality in space and/or in time 

can be satisfied. 

1. Locality in Space (Spatial Locality) 

Handy ('93) shows that most computer code is executed repetitively out of a small 

area. This space is not necessarily in a single address range of the main memory, but 

may be spread around quite significantly. That is why the principle of spatial locality 

refers to the fact that a calling routine and the subroutine can exist in two very small 

areas of memory. 

2. Locality in Time (Temporal Locality) 
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Handy ('93) also notes that the same instruction execute in close sequence with each 

other, rather than being spread through time. That is, a processor is much more likely 

to access a memory location which it accessed 10 cycles before than one which it 

accessed 10,000 cycles before. 

The benefit of a TAC scheme comes from satisfying these rules of locality: 

• The T A C satisfies spatial locality by grouping instructions according to an 

effective policy (calling routine and subroutine) and by guaranteeing the co­

existence of instructions within a group; 

• The T A C satisfies the temporal locality by guaranteeing the retention of recently 

used groups of instructions in different banks by using the BoPLRU.. 

• If the frequency of occurrence of procedure call/returns increases, it is expected 

that the T A C scheme will work even better than other conventional cache schemes; 

2.3.5 Examples of cache misses: a 2-way TAC scheme vs. a 2-way skewed-associative 

In section 2.2, Gonzalez et al ('97) showed that a 2-way skewed-associative is the most 

effective cache scheme among the conventional cache schemes such as direct-mapped, 2-

way set-associative, 4-way set-associative, hash-rehash, column-associative, victim, and 

fully-associative schemes. The 2-way skewed-associative scheme can reduce conflict 

misses most effectively among conventional cache memory schemes. 

In this section, cache misses for a 2-way T A C scheme are compared with a 2-way 

skewed-associative scheme, which is known as the most effective of the conventional 

cache schemes. It is assumed that: 
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Address a, b, and c compete for the same location in bank 0, but they do not map to 

the same location in bank 1: 

/o (fl) = /o (b) = f0 (c), A (a) * ft (b) * fx (c): Where, f0 and fx are X O R mapping 

functions. 

- The order of fetching addresses: a-^b —> c —> a . 

An Example for a 2-way skewed-associative 

Figure 24 shows cache misses of a 2-way skewed-associative scheme for the above 

instructions. 

fo and/i: Mapping Function 
Ao, Ai, and A2: Instructions with the same location in Bank 0 
Try to avoid conflict misses per instruction according to the 
status of the Flag (Flag = 0 -> Bank 0 or Flag = 1 Bank 1) 
Flag = 0: initial condition 

Figure 24. An example for a 2-way skewed-associative scheme 
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In Figure 24, there are three initial cache misses for a, b, and c, where a and c are 

located in bank 0 and b is located in bank 1 according to mapping functions and the flag. 

Since a and c have the same location in bank 0, a is replaced with c and the flag is set to 1 

for the next conflict. Therefore, a can next be located in bank 1. In a 2-way set-

associative scheme, the flag is located in cache lines of bank 0 only. 

An Example for a 2-way TAC scheme 

Figure 25 shows cache misses of a 2-way T A C scheme for the same instructions as the 2-

way skewed-associative scheme. 

DATA+TAG Flag 

fo(Ao; = fo(Ai) = fo(A2) • = fo(Ai) = fo(A2) 
4 

Cache Hit !!! D A T A + T A G Flag 

BankO 

Ao Ai A2 ( Ao 

fi(Ao) 

fi(Ai) 

\ fl(A2) 

Bank 1 

fo and fi: Mapping Function 
Ao,Ai, and A2: Instructions with same location in Bank 0 
Ao, Ai, and A 2 B a n k 0 (Flag in Bank 0: 0-»l-»0-»l) . 
Flag = 0 in Bank 0 Bank 1 or Flag = 1 in Bank 0 Bank 0. 
All Flags = 0: initial conditions 

Figure 25. An example for a 2-way T A C scheme 

In Figure 25, there are three initial cache misses for a, b, and c, where a and c are 

located in bank 1 and b is located in bank 0 according to mapping functions and the flag. 
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Since there is no conflict miss among a, b, and c between two banks, the last address is 

where a can be a cache hit. In a 2-way TAC-scheme, each cache line of each bank has its 

own flag for avoiding conflict misses. 

Figure 24 and Figure 25 show that a 2-way T A C scheme works better than a 2-way 

skewed-associative scheme since the 2-way T A C scheme can reduce conflict misses 

better than the 2-way skewed-associative scheme. 

2.4 Experimental environment 

2.4.1 Simulation methodology 

Benchmark 
(SPEC95INT) 

Benchmark 
(C++) 

\ Compiler 

Exe. File 

Shade & 
SpixTools 

Benchmark 
Executables 

CACHESKEW 
Simulator 

Ported 
Output 

Simulated Results: 
- I references 
-1) references 
- Simulation time 
- Cache Miss rates 
- # Of Procedure Calls 

Input 
Data 

Figure 26. Simulation methodology with benchmark programs and various tools. 
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Figure 26 shows an overview of our simulation methodology: 

• First, SPEC95INT and C++ programs were compiled by using the G N U gcc 2.6.3 and 

2.7.2 compiler; 

• Second, TACSim (cache simulator) is used to run each executable benchmark with its 

input data. TACSim was developed by using the Shade, SpixTools, and 

C A H C E S K E W simulator. Shade and SpixTools are tracing and profiling tools 

developed by Sun Microsystems. Shade executes all the program instructions and-

passes them on to the cache simulator, TACSim. SpixTools is used for collecting 

information for static instructions. CACFTESKEW is a cache simulator developed by 

Seznec & Hedouin ('97) that not only simulates most cache schemes such as direct, 

n-way set-associative and skewed-associative schemes, but also runs several X O R 

mapping functions and replacement policies such as L R U (Least Recently Used) and 

Pseudo L R U , etc. The T A C scheme simulator is added into TACSim along with the 

BoPLRU replacement policy; 

• Finally, cache miss rates, the number of instructions and data references, simulation. 

time, etc were collected as outputs. 

In Figure 26, Shade is a tool that dynamically executes and traces SPARC v9 

executables. Using Shade, the trace information desired can be specified. This means that 

the trace information can be dynamically handled in any manner. It is possible to collect 

any detailed information for every instruction and opcode dynamically. For example, it is 

possible to obtain the data for the total number of call instructions, program counter, 

opcode fields, etc. This information is used for our simulation tool, TACSim. 
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2.4.2 Benchmarks 

Table 3 describes the benchmark programs. Five of the SPEC95 integer programs were 

used for our simulation - gcc, go, m88ksim, compress, perl, and l i . These are the same 

programs used by Radhakrishnan & John ('98). The next suite of programs is written in 

C++ and has been used for investigating the behavior between C and C++ [Calder et al 

'94] [Ffolzle & Ungar '94]. These programs are deltablue, ixx, and eqn. 

Table 4 provides a description of the run-time characteristics of the benchmarks. 

Dynamic instructions represent the number of instructions executed by each program. It 

also shows that the number of instructions (function size) per call in the C programs is 

about two times larger than that of the C++ programs (as a harmonic mean). 

Program Input Description 

SPEC95 CINT: C Programs 

go 2stone9.in Plays the game Go against itself 

gcc amptjp.i Compiles pre-processed source 

m88ksim ctl.raw Simulates the Motorola 88100 processor 

compress test.in Compresses large text files 

perl scrabble.pl 

scrabble.in 

Performs text and numeric manipulations 

li train.lsp Lisp interpreter 

Suite of C++ Programs 

deltablue 3000 Incremental dataflow constraint solver 

ixx object.h 

som_plus_fresco. 

idl 

IDL parser generating C++ stubs 

eqn eqn.input.all Type setting program for mathematical 

equations 

Table 3. Benchmark descriptions 
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Program Dynamic 

instructions 

# of procedure 

calls 

Instructions/call 

SPEC95 CINT: C Programs 

go 584,163,226 1,610,807 362.65 

gcc 250,494,615 5,203,867 48.13 

M88ksim 850,957 16,796 50.66 

compress 41,765,761 1,355,389 30.81 

perl 63,028,127 2,611,048 24.14 

li 189,184,575 7,971,176 23.73 

Suite of C++ Programs 

deltablue 42,148,983 1,478,007 28.52 

ixx 31,829,777 1,404,978 22.65 

eqn 58,401,832 1,999,175 29.21 

C Mean 4,894,178 97,407 37.67 

C++ Mean 41,513,735 1,588,521 26.45 

Table 4. Benchmark characteristics 

2.5 Experimental results 

The performance metrics used for comparison of different cache schemes are the 

instruction cache miss rates and branch misprediction rates. B S L was implemented with a 

2-bit counter and the BoPLRU with a.1-bit (2-way) and 2-bit (4-way) flag. If the counter 

size of the B S L is greater than 4 bits, the instruction cache miss rates are slightly higher 

than a small-sized counter with less than 2 bits (refer to section 2.5.2). In addition, since 

Hi l l & Smith ('89) showed that there is little benefit in increasing cache associativity over 
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4, experiment results of 2-way and 4-way associativity for the T A C and skewed-

associative caches were collected. 

In Table 4, the C benchmark programs, from go to execute from 23 to 48 

instructions per call except go. The SPECint95 instead of the SPEC2000 were used for 

our simulation since there have been no experimental results for cache schemes by using 

the SPEC2000. For "go", since the number of instructions per call is much bigger than 

other C programs, it will be excluded from all averages in sections 2.5.2 and 2.5.4. "Perl" 

also is excluded from all averages in sections 2.5.2 and 2.5.4 since it executes 24 

instructions per calls like li and takes too much time to get a simulation result. 

2.5.1 Cache Misses vs. Cache Sizes 

Much research has been done to determine the relationship between the cache size and 

cache miss rates. For our research, 4 cache schemes were simulated with C and C++ 

benchmark programs in Figure 26: The 4 schemes are direct-mapped, 2-way set-

associative, 4-way set-associative, and 2-way skewed-associative; The C programs 

include go, gcc, m88ksim, l i , and compress; The C++ programs are deltablue, ixx, and 

eqn. The range for the simulated cache sizes is from 2Kbytes to 128 Kbytes according to 

three different cache line sizes including 8 bytes (Figure 26 (a) and (b)), 16 bytes (Figure 

26 (c) and (d)), and 32 bytes (Figure 26 (e) and (f)). The bars in Figure 26 represent the 

difference between the highest and the lowest miss rates for each cache size. The purpose 

of the bars is to show which cache sizes could benefit from efficient cache schemes for 

reducing cache misses. 
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Cache Sizes 

(a) Miss rates vs. Cache sizes for C programs (8 bytes of cache line size) 

2K 4 K 8K 16K 32K 64K 128K 

Cache Sizes 

(b) Miss rates vs. Cache sizes for C++ programs (8 bytes of cache line size) 

ure 27. Comparisons for cache misses according to the cache sizes (4 cache schemes). 
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2K 4K 8K 16K 32K 64K 128K 

Cache Sizes 

(c) Miss rates vs. Cache sizes for C programs (16 bytes of cache line size) 

-•-direct-mapped 
-*- 2-way set-associative 

4-way set-assoicative 
2-way skewed-associative 

2K 4K 8K 16K 32K 64K 128K 

Cache Sizes 

(d) Miss rates vs. Cache sizes for C++ programs (16 bytes of cache line size) 

Figure 27. (continued) Comparisons for cache misses according to the cache sizes (4 
cache schemes). 
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(e) Miss rates vs. Cache sizes for C programs (32 bytes of cache line size) 

Cache Sizes 

(f) Miss rates vs. Cache sizes for C++ programs (32 bytes of cache line size) 

Figure 27. (continued) Comparisons for cache misses according to the cache sizes 
cache schemes). 
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Figure 27 (a), (c), and (e) show cache miss rates for the C programs. Meanwhile, 

Figure 27 (b), (d), and (f) show the results for the C++ programs. Results for the C 

programs show that if cache sizes are 4 Kbytes to 16 Kbytes, it is useful to have a more 

efficient cache scheme since cache miss rates can be reduced considerably. In the case of 

the C++ programs, if cache sizes are 4 Kbytes to 32 Kbytes, a more efficient cache 

scheme would be useful for reducing cache misses. 

In general, if cache sizes are less than 2 Kbytes or bigger than 32 Kbytes, the cache 

misses are similar whatever cache scheme is used. Figure 27 tentatively shows that it is 

quite reasonable to use a more sophisticated cache scheme for reducing cache misses 

between 4 Kbytes and 32 Kbytes of cache size. As microprocessor technology changes, it 

is widely accepted that small-sized on-chip L I caches need to replace large external 

caches. 

2.5.2 Bank switching vs. Procedure Calls 

In a T A C scheme, the B S L (bank Selection Logic) works to select a bank initially on a 

cache miss. This section presents the most efficient size of x-bit counter which B S L 

employs for selecting banks. As we discussed in section 2.5.1, we primarily investigated 

cache sizes that are less than 32 Kbytes. Various cache sizes of 2-Way T A C scheme were 

simulated with 7 benchmark programs to determine the most effective x-bit counter size. 

In Figure 28 and Figure 29, TAC_k means that B S L selects a bank for every k call 

instructions on a cache miss. For example, if k = 2, then every two calls change the bank 

on a miss. As we discussed in section 2.3, the n-MSBs (Most Significant Bit) of an x-bit 
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counter represents a bank for the current instruction. Therefore, if k = 2 and n = 1, then a 

2-bit counter is needed because {00, 01} -> bank 0 and {10, 11) -> bank 1. If k = 8 and n 

. = 1, then a 4-bit counter is needed because {0000, 0001, 0010, 0011, 0100, 0101, 0110, 

0111} -» bank 0 and {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} -> bank 1. 

Hence, k = 2X~", and a x bit counter for the B S L is needed. 

A. A T . 

4.5 -, 
4 

3.5 
"> 3 

£ 1.5 -I 
1 

0.5 
0 

^T6 9 -

•-4-.G7-

4^98-

1-12-

-4rt-

-+T98-

-1-e-
Kb69-

-4T06-

' 1.97 

-lvl-2-
• 0.69 

-4^8-

11.97-

• 0.69 

4.09 4K 
— 8K 
^ 1 6 K 
-•-32K 

' 1.99 

1.13 
• 0.69 

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32 

TAC_n (n-bit Counter) 
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Figure 28. Cache miss rates according to the sizes of the n-bit counter (C programs). 
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Figure 28. (continued) Cache miss rates according to the sizes of the n-bit counter (C 
programs). 
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The following discussion pertains to Figure 28: 

Four C programs (gcc, m88ksim, l i , and compress) were used for determining the 

most effective x-bit counter for C programs. 

The results of the C programs show that: 

From Figure 28 (a), (b), and (c), if a cache line size is larger (32 bytes), cache miss 

rates can be slightly reduced by using a smaller x-bit counter (say, less than 4-bit 

counter). 
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Figure 29. Cache Miss rates according to the sizes of the n-bit counter (C++ programs). 
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Figure 29. (continued) Cache Miss rates according to the sizes of the n-bit counter (C++ 
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The following discussion relates to Figure 29: 

• 3 C++ programs (deltablue, ixx, and eqn) were used for determining the most 

effective x-bit counter for object-oriented languages such as C++ and Java. 

• The results of the C++ programs show that: 

From Figure 29 (a), (b), and (c), if a cache line size is larger (32 bytes), cache miss 

rates can be slightly reduced by using a smaller x-bit counter (say, less than 2-bit 

counter). 

In conclusion, a small-sized counter, less than 2-bit for the case of a 2-way TAC, is 

recommended for the BSL of a TAC scheme if a cache size is less than 32 Kbytes. 

65 



2.5.3 Instruction Cache Misses for various cache schemes 

Results in Table 5 show that the programs in the C++ suite (deltablue, ixx, and eqn) 

incur higher instruction cache misses than some typical C programs (compress and li). 

Table 5 also shows that a 2-way T A C scheme removes conflict misses more effectively 

than a 2-way skewed-associative cache in both C and C++ programs. 

Benchmark 

programs 

direct-

mapped 

2-way 4-way 2-way 

Skew 

2-way 

T A C 

16-way 

SPEC95 CIN T (C Programs) 

go 6.8691 5.5038 4.8715 5.4535 5.3783 4.9203 

gcc 5.9347 5.1155 4.1727 4.1238 3.9645 3.4524 

m88ksim 3.8189 2.8224 1.5402 1.3996 1.3202 0.9474 

compress 0.0564 0.0475 0.0210 0.0173 0.0163 0.011 

li 0.5394 0.4232 0.0834 0.0238 0.0106 0.0052 

C++Programs. • 

deltablue 3.0746 1.9852 1,3405 1.0326 0.6488 0.2427 

ixx 4.7679 2.5423 1.3825 1.1473 0.9444 0.2884 

eqn 3.8790 2.0957 1.1382 1.1265 1.0340 0.6186 

Table 5. Instruction cache miss rates in percentages (cache size: 8 K B , a line size: 16 
bytes) 
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• m88ksim(C) 

• deltablue(C++) 

2-way 16-way 
T A C 

Cache Sizes 

Figure 30. Comparison for instruction cache miss rates between C (m88ksim) and 

C++ (deltablue) programs (8Kbytes, 16bytes). 

• Figure 30 shows that the 2-way T A C scheme greatly reduces cache miss rates 

compared to other cache schemes, with the exception of the 16-way set-associative cache 

scheme, for both m88ksim (C) and deltablue (C++) programs. The 16-way set-associative 

cache can be considered a good approximation to a fully-associative cache. In addition, 

the 2-way T A C scheme for the higher frequency of call instructions (deltablue) works 

better than that for the lower frequency of call instructions (m88ksim). Thus, the 2-way 

T A C scheme can replace conventional cache schemes for traditional programs (refer to 

section 2.5.4) with little or no increase in hardware complexity (refer to section 2.5.6), 

and is even more suited to object-oriented programs than conventional caches. 
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2.5.4 Skewed-associative caches vs. TAC schemes 

Section 2.5.1 showed that a 2-way skewed-associative scheme can reduce cache misses 

better than a 2-way or 4-way set-associative scheme. As we discussed in section 2.2, 

Gonzalez et al ('97) also showed that a 2-way skewed-associative cache offers the lowest 

miss ratio among several conventional cache schemes and is much lower than a 4-way 

set-associative cache. This section compares cache miss rates between skewed-

associative and T A C schemes. Since there is little benefit in increasing cache 

associativity over four [Hill and Smith '89], experimental results from 2-way and 4-way 

associativity for the T A C and skewed-associative caches were collected. 

In order to compare cache miss rates between the T A C and skewed-associative caches, 

we used a formula called IR, Improvement Ratio, such that: 

Cache Miss Rates of a 2-way skewed-associative = a; 

Cache Miss Rates of a TAC scheme = b; 

a/b1 = 1 + n/100 ' a' has n% more cache miss rates than 'b'. 

Ifn = IR, 

IR = ((a-b)/b)*100% r - (2) 

For example, if the cache miss rate of a 2-way skewed-associative scheme is 5%, and 

that of a T A C scheme is 4%, then, the IR for this case is ((5-4V4) * 100 = 25%. An IR of 

25% means that the 2-way skewed-associative has a cache miss rate of 25% more than 

the T A C cache. 

Therefore, if IR is used for comparing two cache schemes, the improved result can be 

easily obtained in regard to cache miss rates. 
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Cache Sizes 

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes). 

0 -\ 1 : : - i 1 
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.(b) Improvement Ratios for C.and C++ Programs (cache line size : 16bytes) 

Figure 31. Comparisons for Improvement Ratios between 2-way skewed-associative and 
2-way T A C caches. 
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4 KBytes 8 KBytes 16KBytes 

Cache Sizes 

32KBytes 

(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytes) 

Figure 31. (continued) Comparisons for Improvement Ratios between 2-way skewed-
associative and 2-way T A C caches. 

This section shows some graphs with regard to IR between the T A C and skewed-

associative caches derived from the tables in Appendix A. 

In Figure 31, 4 C programs (gcc, m88ksim, l i , and compress) and 3 C++ programs 

(deltablue, ixx, and eqn) were used for determining TR between 2-way skewed-

associative and 2-way T A C schemes. 

The results of Figure 31 show that: 

- 2-way T A C schemes can reduce cache misses more effectively than 2-way skewed-

associative caches in both C and C++ programs; 

- For C programs, the rate of improvement of 2-way T A C schemes over 2-way set-

associative schemes range for various cache sizes: 

o From 0.1% (32 Kbytes) to 8.99% (8 Kbytes) for cache line size of 8 bytes; 
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o From 2.36% (32 Kbytes) to 6.82% (8 Kbytes) for cache line size of 16 bytes; 

o From 2.36% (4 Kbytes) to 9.29% (16 Kbytes) for cache line size of 32 bytes; 

For C++ programs, the rate of improvement of 2-way T A C schemes over 2-way set-

associative schemes range: 

o From 4.79% (4 Kbytes) to 44.44% (16 Kbytes) for cache line size of 8 bytes; 

o From 10.4% (4 Kbytes) to 22.08% (16 Kbytes) for cache line size of 16 bytes; 

o From 8.66% (4 Kbytes) to 30.71% (16 Kbytes) for cache line size of 32 bytes; 

Therefore, if the cache size is 8 Kbytes (for C programs) or 16 Kbytes (for C++ 

programs), 2-way T A C schemes can reduce cache misses much better than 2-way 

skewed-associative caches for all cache line sizes such as 8, 16, and 32 bytes. If cache 

size is 4 Kbytes or 32 Kbytes, 2-way T A C schemes can reduce cache misses slightly 

better than 2-way skewed-associative caches for C programs. 

71 



4 KBytes 8 KBytes 16KBytes 32KBytes 

Cache Sizes 

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes) 
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(b) Improvement Ratios for C and C++ Programs (cache line size : 16bytes) 

Figure 32. Comparisons for Improvement Ratios between 4-way skewed-associative and 
4-way T A C caches. 
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(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytes) 

Figure 32. (continued) Comparisons for Improvement Ratios between 4-way skewed-
associative and 4-way T A C caches. 

In Figure 32, 4 C programs (gcc, m88ksim, l i , and compress) and 3 C++ programs 

(deltablue, ixx, and eqn) were also used for determining IR between 4-way skewed-

associative and 4-way T A C schemes. 

The results of Figure 32 show that: 

- 4-way T A C schemes reduce cache misses more effectively than 4-way skewed-

associative caches in both C and C++ programs; 

For C programs, the rate of improvement of 4-way T A C schemes over 4-way set-

associative schemes range: 

o From 3.2% (32 Kbytes) to 9.06% (4 Kbytes) for cache line size of 8 bytes; 

o From 4.53% (16 Kbytes) to 9.43% (4 Kbytes) for cache line size of 16 bytes; 

o From 4.42% (16 Kbytes) to 8.32% (4 Kbytes) for cache line size of 32 bytes; 
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For C++ programs, the rate of improvement of 4-way T A C schemes over 4-way set-

associative schemes range: 

o From 1.23% (32 Kbytes) to 10.02% (4 Kbytes) for cache line size of 8 bytes; 

o From 1.63% (16 Kbytes) to 14.09% (4 Kbytes) for cache line size of 16 bytes; 

o From 4.98% (32 Kbytes) to 10.46% (4 Kbytes) for cache line size of 32 bytes; 

Therefore, if the cache size is 4 Kbytes (for C and C++ programs), the 4-way T A C 

schemes can reduce cache misses much better than 4-way skewed-associative caches 

for all cache line sizes such as 8, 16, and 32 bytes. If cache sizes are larger than 16 

Kbytes, the difference between 4-way T A C and 4-way skewed-associative schemes 

are reduced since the 4-way T A C or the 4-way skewed-associative caches reduce 

conflict misses significantly. 
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(a) Improvement Ratios for C and C++ Programs (2-way, cache line size : 8/16 bytes) 
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(b) Improvement Ratios fOr C and C++ Programs (4-way, cache line size : 8/16 bytes) 

Figure 33. Comparisons for Improvement Ratios between skewed-associative and T A C 
caches from 4Kbytes to 8 Kbytes. 
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The results of Figure 33 show that: 

(a) 2-way T A C schemes over 2-way skewed-associative caches work well for cache 

sizes of 8 Kbytes (for C programs) and 16 Kbytes (for C++ programs); 

(b) 4-way T A C schemes work well for the small cache sizes such as 4 Kbytes or 8 

Kbytes. 

2.5.5 Various cache schemes for the Branch Target Buffer 

The Branch Target Buffer (BTB) is a small cache that contains the address of the 

branch instructions and their target addresses. The BTB is accessed in the fetch stage to 

predict the state of a branch instruction. If a hit occurs, then the current instruction is a 

taken branch. The Program Counter (PC) is loaded with the target address from BTB, and 

fetching starts from the new PC. It has been popular to employ a 4-way set-associative 

cache for a small-sized BTB table, which has less than 512 entries. Driesen and Holzle 

('98) claimed that for a table with 256 entries (64 associativity sets of four) most BTB 

conflict misses disappear. However, the results of our experiment show that even a BTB 

with 512 entries (128 associativity sets of four) still suffers from conflict misses. 

This section determines the most effective cache scheme for BTB (Branch Target 

Buffer) among various cache schemes. BTB was simulated with three different cache 

schemes by using C and C++ benchmark programs in Figure 34. These schemes are 4-

way set-associative, 2-way skewed-associative and 2-way T A C scheme. The C programs 

include go, gcc, m88ksim, l i , and perl. The C++ programs are deltablue, ixx, and eqn. 

The range for the simulated BTB table sizes is from 64 entries to 1024 entries. 

76 



64 

4-way set-asso. 
2-way Skew 
2-way TAC 

128 256 512 

Entries of BTB Tables 

1024 

(a) Miss Rates vs. Entries of BTB Tables for C Programs 

Figure 34. Comparisons of branch misprediction rates of BTB with a 4-way 
associative, 2-way skewed-associative and 2-way T A C caches. 
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(c) Miss Rates vs. Entries of BTB Tables for C and C++ Programs 

Figure 34. (continued) Comparisons of branch misprediction rates of BTB with a 4-way 
set-associative, 2-way skewed-associative and 2-way T A C caches. 

The results of Figure 34, based data from Appendix A, show that: 

- The 2-way skewed-associative and T A C schemes reduce branch misprediction rates 

more effectively than 4-way set-associative in both C and C++ programs. 

- For C programs in Figure 34(a), the 2-way T A C scheme for the 256-entry table of the 

BTB works better than the other sizes of the BTB table. 

- For C++ programs in Figure 34(b), the 2-way T A C scheme for the 512-entry table of 

the BTB works better than the other sizes of the BTB table. 

- The 2-way T A C scheme can reduce branch misprediction rates more effectively for 

the small-sized BTB tables, i.e., less than 512 entries. 
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Figure 35. Comparisons for Improvement Ratios among 4-way set-associative, 2-way 

skewed-associative and 2-way T A C schemes. 
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In order to compare branch misprediction rates between the 2-way T A C and 4-way set-

associative caches, and between the 2-way T A C and 2-way skewed-associative caches, 

we used a formula called IR, Improvement Ratio, such that: 

Branch Misprediction Rates of a 2-way skewed-associative or a 4-way set-

associative caches = a; 

Branch Misprediction Rates of a 2-way TAC scheme = b; 

a/b = l + n/100. Ifn = IR, IR = ((a -b)/b)* 100 % - (3) 

The results in Figure 35(a) show that: 

2-way T A C schemes work better than 4-way set-associative caches for all table 

entries, from 64 entries to 1024 entries, in both C and C++ programs. 

- For C programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 4% (64 entries) to 11.83% (256 entries). 

- For C++ programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 5% (64 entries) to 17.54% (512 entries). 

- For all C and C++ programs, Improvement Ratios of 2-way T A C schemes over the 4-

way set-associative range from 3.0% (64 entries) to 12.46% (512 entries). 

The results in Figure 35(b) show that:. 

- 2-way T A C schemes work better than 2-way skewed-associative caches for all table 

entries, which are less than 1024 entries (Figure 35) for both C and C++ programs. 

- For C programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 0.39% (512 entries) to 4.0% (256 entries). 

- For C++ programs, Improvement Ratios of 2-way T A C schemes over 2-way skewed-

associative caches range from 0.63% (512 entries) to 6.50% (128 entries). 
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- In the case of the 1024 entries for both C and C++ programs, there is no difference 

between 2-way T A C schemes and 2-way skewed-associative caches. 

- For all C and C++ programs, Improvement Ratios of 2-way T A C schemes over 2-

way skewed-associative caches range from 0.53% (512 entries) to 4.46% (128 

entries) except for the 1024-entry table. 

The results in Figure 35 show that 2-way skewed-associative cache and 2-way T A C 

schemes reduce branch misprediction rates much better than the 4-way set-associative 

caches. In addition, the 2-way T A C schemes work considerably better than 2-way 

skewed-associative caches for all table entries, from 64 entries to 1024 entries. However, 

if a BTB table is greater than I K entries, our results showed the same results as Driesen 

and Holzle ('98). Therefore, if the BTB table size is less than 512 entries, the 2-way T A C 

scheme can be a good solution for reducing branch mispredictions caused by conflict 

misses. 

2.5.6 Comparison for all 2-way schemes 

In the previous sections, we discussed that 2-way T A C schemes are the most effective 

cache schemes to reduce conflict misses for the instruction cache memory or BTB. This 

section, compares hardware complexity and memory access time among 2-way cache 

schemes such as 2-way set-associative, 2-way skewed-associative and 2-way T A C 

schemes. 
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Contents 2-way 
set-associative 

2-way 
skewed-associative 

2-way 
TAC 

Logic and 
Indexing 

Replacement LRU, etc. PLRU, etc. BSL + BoPLRU Logic and 
Indexing 

Indexing Lower part of 
address 

XOR mapping XOR mapping or 
Polynomial, etc. 

Hardware Banks 2 2 2 Hardware 

Flag Y (Bank 0) Y (Bank 0) Y (Each Bank) 

Hardware 

Bank design Classical design Classical design + 
XOR gates (mapping) 

Classical design + 
XOR gates (map) 

Hardware 

Counter N N Y (BSL) 

Access Time Same Same 
(slightly increased by 

XOR gates) 

Same 
(slightly increased 

by XOR gates) 
Hardware Complexity Same Almost Same 

(Only several XOR 
gates are added to the 
2-way set-associative) 

Almost Same 
(Only a counter is 
added to the 2-way 
skewed-associative) 

Cache Miss Ratio High Medium Low 

1. BoPLRU: Bank-originated Pseudo Least Recently Used, BSL: Bank Selection Logic 
2. 'Access Time' and 'Hardware Complexity' from 'A. Seznec, A case for two-way skewed associative 

Caches, Proc. Of the 20th ISCA, May 1993, pp!69-178'. 

Table 6. Comparison of hardware complexity and access time among three representative 

2-way schemes: 2-way set-associative, 2-way skewed-associative, and 2-way T A C 

schemes. ' 

Table 6 shows various characteristics for three different 2-way schemes: 

- The 2-way T A C scheme employs a flag for each bank while other 2-way schemes 

employ only one bank. However, the flag size will not be a critical factor in 

increasing the hardware complexity in a 2-way T A C scheme since the flag size is 

only 1 bit. 

Memory access time of 2-way skewed-associative and 2-way T A C schemes is greater 

than for 2-way set-associative caches as a result of using X O R mapping functions. 

However, according to Seznec ('93), the memory access time caused by the X O R 
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mapping functions will be slightly increased by one xor-gate delay time since several 

xor gates work in parallel for the X O R mapping functions. 

According to Table 6, the 2-way T A C scheme is seen to be a good solution for 

reducing conflict misses for instruction cache memory and BTB with similar hardware 

complexity and memory access time compared to 2-way set-associative caches. 

2.6 Chapter conclusions 

Unlike traditional application programs, object-oriented languages use many small 

functions during run-time and this is the main factor for conflict misses. This paper 

presents a new cache scheme called T A C (Thrashing-Avoidance Cache), which 

effectively reduces instruction cache misses caused by frequent procedural call/returns. 

Among conventional cache schemes, the skewed-associative cache offers the lowest 

miss ratio, which is significantly lower than a 4-way set-associative cache. However, a 

skewed-associative cache has a limitation in handling conflict misses in object-oriented 

programs due to the problem of accessing the large number of small functions. The main 

reason for this is that a skewed-associative cache is designed to reduce conflict misses for 

individual instructions only. The T A C scheme works not only for individual instructions 

but also for a group of instructions such as a calling routine and its associated subroutine. 

Our simulation results show that: 
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• T A C schemes (on L I cache) can improve instruction cache miss rates by up to 

9.29% for C programs and 44.44% for C++ programs over skewed-associative 

caches. 

• T A C schemes (on BTB, 2-way) reduce branch misprediction rates more 

effectively than 4-way set-associative by up to 11.83% for C programs and 

17.54% for C++ programs. 

• T A C schemes (on BTB, 2-way) also reduce branch misprediction rates better than 

skewed-associative (2-way) caches by up to 4% for C programs and 6.5% for 

C++ programs. 

• Hardware cost and memory access time in an N-way T A C scheme are similar to 

a n-way set-associative cache since an N-way T A C scheme employs N banks (N-

way) and X O R mapping functions with simple hardware complexity. 

• T A C schemes employ an efficient replacement policy. The BoPLRU effectively 

reduces conflict misses caused by the procedure call/returns by ensuring that the 

recent groups of instructions are retained in each bank safely. 

Future work involves combining T A C schemes with more efficient mapping functions, 

more effective replacement policies, etc. 
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Chapter 3 Reduction of Indirect Branch Mispredictions 

This chapter presents a new hybrid branch predictor called the GoStay2, which can 

effectively reduce misprediction rates for indirect branches. The GoStay2 has two 

mechanisms that are different from other 2-stage hybrid predictors that use a Branch 

Target Buffer (BTB) as the first stage predictor. First, to reduce conflict misses in the 

first stage, a new effective 2-way cache scheme is used instead of a 4-way set-associative. 

Second, to reduce mispredictions caused by an inefficient predict and update rule, a new 

selection mechanism and update rule are proposed. A simulation program has been 

developed by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra 

SPARC/10 processor. Our results show good improvement with these mechanisms 

compared to other hybrid predictors. For example, the GoStay2 improves indirect 

misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by 

14.9% to 21.53% compared to the Cascaded predictor (with leaky filter). 

3.1 Introduction 

For high performance computer architectures, branch prediction is a key mechanism in 

achieving high performance on multi-instruction issues. Branches transfer control flow of 

programs. The next instruction can only be decided after the current instruction is 

executed. Therefore, if there is no branch prediction scheme, the pipeline always stalls for 

at least three clock cycles (decode, issue, and execute stages) whenever it meets a branch 

instruction. A poor branch prediction scheme likewise results in many such stalls, whereas 
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a good branch prediction scheme reduces stalls. Thus, more accurate branch predictors are 

desired for reducing the impact on overall system performance. 

According to Chang et al. ('97), branches can be categorized as conditional or 

unconditional, as well as direct or indirect, resulting in four classes. Of the four classes, 

prediction of conditional indirect branches is typically not implemented [Kalamatianos 

& Kaeli '98]. 

Conditional or unconditional direct branch instructions include a target address as part of 

the instruction. However, unconditional indirect branch instructions obtain a target 

address indirectly through a register or a pointer variable. Therefore, while direct branch 

instructions have a single target, indirect ones have multi-targets. Single-target direct 

branches can be predicted with reported hit-ratios of up to 97% [Yeh & Patt '93]. In 

contrast, indirect branches with multi-targets are harder to predict accurately. Indirect 

branches occur frequently in some widely used benchmark programs like SPECint95, and 

even more frequently in object-oriented languages. The sources of indirect branches are 

switch statements, virtual function calls, or indirect function calls [Kalamatianos & Kaeli 

'98][Driesen & Holzle '98B]. Calder et al. f94A) investigated behavioral differences 

between C and C++ programs; C++ programs execute many fewer conditional branch 

instructions (61.6% vs. 80.0%) and more procedure calls (11.2% vs. 6.3%), indirect 

procedure calls (3.9% vs. 0.3%), and return instructions (15.1% vs. 6.6%). The above 

results indicate that handling indirect calls, procedure calls, and returns properly should 

be important for C++ programs [Calder et al. '94A]. Chang et al. ('97) also showed that 

indirect branches occur frequently in C++ (objectToriented languages), which are rapidly 

increasing in popularity. 
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Conventional branch predictors predict branch direction and generate the target 

address associated with that direction. BTB-based prediction schemes are the only 

predictor for indirect branch prediction in conventional branch schemes since an indirect 

branch needs a full target address instead of direction (taken or not-taken). However, they 

perform poorly, with a 66% to 76% misprediction rate for indirect branches since the 

target of an indirect branch can change with every dynamic instance of that branch 

[Chang et al. '97]. Chang et al. ('97) showed that the small proportion of indirect 

branches (2 to 3%) for SPECint95 benchmarks could be a critical factor in degrading 

system performance. Thus, an accurate indirect branch predictor is needed for widely 

used object-oriented languages such as C++ programs since their indirect branch ratio is 

at least two to three times higher than that of SPEC benchmarks (C programs) [Chang et 

al. '97][Calder et al. '94A]. 

This chapter presents a 2-stage hybrid predictor called the GoStay2, which employs a 

new cache scheme for the first stage and a new selection mechanism and update rule 

using a 2-bit flag. The flag is a similar mechanism to the meta-predictor used by 

McFarling ('93). However, our flag is updated according to the update rule and execution 

results while the meta-predictor is affected by the execution results only. This chapter 

shows that the GoStay2 outperforms other 2-stage hybrid predictors such as the Target 

Cache [Chang et al. '97] and Cascaded predictor [Driesen & Holzle '98B] by improving 

the accuracy of indirect branch predictions.' 

This chapter is organized as follows: Section 3.2 explains related work; section 3.3 

presents the new branch architecture with the two mechanisms for reducing indirect 
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mispredictions; section 3.4 describes simulation methodology and benchmark programs; 

section 3.5 presents our simulation results; and section 3.6 provides our conclusions. 

3.2 Related work 

Various branch prediction strategies for indirect branches have been previously studied 

to improve prediction accuracy. These strategies can be categorized into three main areas: 

• Indexing functions for accessing predictor tables; 

• Selection mechanisms for choosing accurate prediction in hybrid predictors; 

• Update rules after resolving a branch. 

For each single-scheme predictor, the accuracy of the branch prediction depends on the 

indexing functions. Most of the research on branch prediction has been done on;. 

developing efficient indexing functions. 

A hybrid branch predictor combines two or more single-scheme predictors. The 

performance of the hybrid predictor depends on both indexing functions of each single-

scheme predictor and a selection mechanism for a particular predictor. Recently, several 

selection mechanisms have been proposed to predict indirect branches by using a 

sophisticated form of the update rules instead of just simple n-bit counters [Chang et ai. 

'97] [Driesen & Holzle'98B]. 
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3.2.1 Indexing functions for indirect branch predictors 

There are two types of branch predictors classified according to the number of 

component predictors: A single-scheme predictor that has only one predictor and a hybrid 

predictor that combines two or more single-scheme predictors. 

Prediction (able 

(a) Branch Target Buffer (single-scheme) 

Branch address 

X X 

prediction 

Predictor 

Counts 

prediction 

Predictor 2 

Branch address 

Branch history 
Index 

June. 
prediction 

Prediction table 

(b) Global two-level branch predictor 
(single-scheme) 

Lower }<-
^addr. 

Branch address 

prediction 

Prediction table 

Branch history 

Index 
June. 

prediction 

Target Cache) 

Selection Mechanism 

(c) Combined branch predictor (hybrid) 

Figure 36. Various indirect branch predictors 

(d) Hybrid branch predictor for indirect branches 

In Figure 36, (a) and (b) represent typical single-scheme predictors. The Branch Target 

Buffer (BTB) stores both the branch address and target address. If a current branch is 

found in the BTB, it is predicted as 'taken' with the target address. If there is a 

misprediction or a first-miss, the branch and target addresses are updated after the 

execution. When a branch address is not found in the prediction table, it is recognized as 

a first-miss. In general, a low-order branch address is used as the indexing function to 
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access the physical line of the BTB. As we discussed before, the BTB-based prediction 

schemes should not used for indirect branches because of poor prediction accuracy 

[Chang et al. '97]. For improvement of the BTB, a 2-bit strategy was proposed by Calder 

and Grunwald ('94). This strategy used a 2-bit counter for limiting the update of the 

target address in the BTB only after two consecutive mispredictions have occurred. The 

2-bit strategy can reduce a misprediction ratio for C++ applications without changing 

predictions too rapidly. However, the 2-bit strategy is not very successful in predicting 

the targets of indirect branches in C programs such as SPECint95 benchmarks [Chang et 

al. '97]. 

For indirect branches in Figure 36, each single-scheme predictor should hold a target 

address per cache line instead of just a direction (taken/not taken). The single-scheme 

predictor in Figure 36(b) shows an indexing function obtained by varying a two-level 

adaptive scheme described in [Yeh & Patt '93]. This is called a gshare scheme that was 

introduced by McFarling ('93). The gshare scheme performs better than a two-level [Yeh 

& Patt '93] predictor by XORing (exclusive oring) the global branch history with the 

lower bits of a branch address to generate the index into the prediction table. The gshare 

is considered as one of the highest performance predictors and the best single scheme at 

all levels of cost [Chang et al. '97][Driesen & Holzle '98B]. 

In Figure 36(c), McFarling ('93) introduced the concept of a hybrid branch predictor 

by combining single-scheme predictors. The combined branch predictor consists of two 

predictors and a table of 2-bit saturating counters. This counter array is called a meta-

predictor and is used to select the more accurate predictor for a current branch. After 
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resolving a branch, both component predictors are updated, and the meta-predictor is 

updated to reflect the relative accuracy of the two predictors. 

Figure 36(d) shows an indirect hybrid branch predictor that consists of two predictors 

such as the BTB (Figure 36(a)) and gshare-like single-scheme predictors (Figure 36(b)). 

This chapter considers only hybrid branch predictors consisting of two single-scheme 

predictors. Moreover, one of the predictors is a BTB since this chapter compares 

strategies for simple and effective predictors such as the Target Cache and Cascaded 

predictor: 

• Target Cache - Chang et al. ('97) proposed a predictor by using the Target Cache to 

improve the accuracy of indirect branch predictions. The Target Cache is similar to 

the Pattern History Table (PHT) of a 2-leyel branch predictor except that the Target 

Cache records the branch target while the PHT holds only branch directions such as 

taken/not taken. This predictor XORs pattern- or path-based history bits with the 

branch address to index the prediction table shown in Figure 36(d).' The Target Cache 

can reduce the misprediction rates of indirect branches significantly. For example, a 

512-entry Target Cache achieved a misprediction rate of 30.4% and 30.9% for gcc 

and perl, while a lK-entry 4-way set-associative achieves rates of 60% and 70.4% 

[Chang etal.'97]; 

• Leaky or Strict Filters of the 2-stage Cascaded Predictor - Driesen and Holzle ('98B) 

introduced two variants of the Cascaded Predictor, which has two stages; a BTB for 

the first.stage and a gshare-like two-level predictor as the second stage. The small-

sized BTB works as a filter and the second stage predictor stores indirect branches 

that need branch history-based prediction. The second stage uses an indexing function 
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similar to the Target Cache, such as a path-based branch history XORing with a low-

order branch address to index the prediction table shown in Figure 36(d). Driesen and 

Holzle ('98B) showed that the two filters (leaky or strict) have slightly different 

update rules (Table 7). The filtering effect decreased the misprediction rate compared 

to a non-filtering Cascaded Predictor. For example, a 32-entry BTB filter (first stage) 

improved the misprediction rate of a 256-entry monopredictor (non filtering) from 

11.7% to 10.7% [Driesen & Holzle '98B]. 

Kalamatianos and Kaeli ('98) showed that the leaky filter of a Cascaded Predictor 

improved indirect branch prediction accuracy over the Target Cache in most SPECint95 

and C++ benchmarks. 

3.2.2 Selection mechanisms and update rules for hybrid predictors 

In the combined predictor of McFarling ('93), there are two single-scheme predictors 

such as p i and p2. The meta-predictor, a table of 2-bit counters, is used to select one of 

two predictors as a selection mechanism. A 2-bit counter reflects the states "strongly p2 

(11)", "weakly p2 (10)", "weakly p i (01)", and "strongly p i (00)". For example, when a 

branch.is predicted, each single-scheme predictor is queried. If the counter is '00', then 

p i is selected for the branch prediction. When the branch commits, both predictors are 

updated and the meta-predictor is updated to favor the predictor that had the correct 

prediction [McFarling '93] [Grunwald et al. '98]. 

While conventional hybrid branch predictors use a meta-predictor as a selection 

mechanism, the Target Cache and Cascaded predictor have no such meta-predictor. 
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Instead, selection is done by predict rule; both stages are examined for finding a current 

branch address. If both stages have the current branch, the second stage predictor takes 

precedence. If not, the target address in any stage, which matches the branch, is used. The 

other difference from existing hybrid predictors lies in the handling of table updates. 

Table 7 shows the update rules for the Target Cache and Cascaded predictors. For the 

Target Cache, when an indirect branch is resolved, the Target cache (second stage 

predictor) is updated with its target address. Otherwise, updates are done in the first stage 

predictor (BTB) only. 

Predictors Update Rules 

Target Cache - When an indirect branch is resolved, the 2 n d stage is updated 

with its target address. 

- For a first-miss, update of the 2 n d stage is not allowed. 

Cascaded 

predictor 

Strict 

Filter 

- When an indirect branch is resolved, the 1st and 2 n d stages 

are updated. 

- For a first-miss, update of the 2 n d stage is not allowed. 

Cascaded 

predictor 

Leaky 

Filter 

- When an indirect branch is resolved, the 1st and 2 n d stages 

are updated. 

- For a first-miss, update of both the 1st and 2 n d stages is 

allowed. 

Table 7. Update rules for the Target Cache and Cascaded predictors. 

Table 7 shows the update rules for the Target Cache and also the strict and the leaky 

filters which are two variations of the Cascaded predictor. The Cascaded predictor can 

reduce the table size effectively by using a small-sized BTB as a filter. Since the first 

stage works as a filter to separate indirect branches from amongst all branches, the 
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second stage is used to store indirect branches that have multi-targets. Therefore, the 

accuracy of a 2-stage predictor is much higher than that of a single-scheme. The 

difference between the strict and leaky filters is that the leaky filter allows new second 

stage entries on a first-miss while the strict filter does not [Driesen & Holzle '98B]. 

. The differences between indirect and conventional hybrid branch predictors are: 

• Indirect branch predictors record branch targets instead of directions in the table; 

• Indirect branch predictors employ different selection mechanisms other than a 2-bit 

saturating counter; 

• , Indirect branch predictors have different table update rules instead of just updating 

both predictors simultaneously. 

3.3 GoStay2 Branch Predictor 

Section 3.2 described several indirect branch predictors in detail. Both the Target 

cache and Cascaded predictor can reduce the indirect misprediction rate considerably 

over a BTB-based predictor. Among them, the leaky filter of the Cascaded predictor 

offers the most effective misprediction rate performance for indirect branches 

[Kalamatianos & Kaeli '98][Driesen & Holzle '98B]. However, the leaky filter has some 

problems that degrade system performance: 

• Conflict misses - If a prediction table such as BTB has small entries (say, less than 

512 entries), conflict misses might increase the misprediction rate considerably; 

• Inefficient predict rules - If a branch address is found at both stages, the second stage 

has priority for prediction. If the first stage has a correct target address and the second 
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stage has an incorrect target address, then the assumed priority of the second stage 

always causes a misprediction. 

• Inefficient update rules - If a predicted target address is wrong, then the resolved 

target address of the branch address is updated in both stages. This also causes a 

misprediction if the replaced target address is needed for a following branch. 

In order to resolve the above problems, this section presents a new hybrid branch 

predictor. 

3.3.1 An overview of a GoStay2 predictor 

As we discussed in section 3.2, the basic operation of 2-stage hybrid predictors can be 

divided into the three parts comprising indexing, predicting, and updating. For predicting 

and updating, each 2-stage hybrid predictor has its own predict and update rule to predict 

a target address and update a resolved target address. . 

Figure 37(a) shows that, in a conventional 2-stage branch predictor, if the first stage 

has a correct target address (A) but the second stage has a wrong one (B), then the 

prediction (B) leads to misprediction since the second stage always takes priority of 

prediction. 

Figure 37(b) shows the basic operation of a GoStay2 predictor, which can reduce 

mispredictions effectively. In a GoStay2 predictor, the prediction will be made according 

to the flag in the first stage. In Figure 37(b), since the flag is '0', the prediction (A) is 

made with the target address in the first stage (A), which leads to correct prediction. The 

flag is updated to '0' or T according to the update rule (refer to section 3.3.3). 
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Branch address 

# Assumption: 
A: Correct Target address 
B: Wrong Target address 

A • 
-

1ST stage predictor 

B 

selector 

2 n d stage predictor 

(a) conventional 2-stage branch predictors 

Branch address 

0 or 1 

Flag in the 1st stage 

1st stage predictor 

B 

selector 

2 n d stage predictor 

(b) GoStay2 branch predictors 

Misprediction !! 
— • Predict B 

B //Always 

Correct 
Prediction!! 

— • Predict A 

• if (Flag = 0) 
A 

else 
B 

Figure 37. The basic operations of conventional 2-stage and GoStay2 branch predictors. 

Figure 38 shows the overview of the proposed branch predictor called the GoStay2, 

which has a different operation from other 2-stage hybrid branch predictors such as the 

Target Cache and Cascaded predictor. 'GoStay2' implies GoStay predict and update 

rules, as well as a 2-bit flag in the first stage. 

In the GoStay2, the indexing function for the first stage is different from the other 

predictors (refer to section 3.3.2), but that of the second stage is the same as the others 

shown in Figure 37. For predicting, the GoStay2 predictor provides a new selection 

scheme called the GoStay predict rule (refer to section 3.3.3). Our experiment shows that 

the GoStay predict rule is more accurate than the leaky filter. Finally, for updating, this 

section introduces a new replacement policy for the first stage and a new update rule for 
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both stages by using a 2-bit flag in the first stage. The first bit of the flag is for the Bank-

originated Pseudo-LRU (BoPLRU) replacement policy [Chu & Ito '00], and the second 

bit is for the GoStay. Figure 38 shows all the differences mentioned above as two 

mechanisms. 

Target address 

First-stage predictor p | 
F T 

The First Mechanism'' 

>-(̂ ipdate rule 

Branch address 

Second-stage predictor—1 

branch target flag 

a Ft 

BTB (2-way TAC scheme) 

The Second Mechanism 

Branch history 

branch target 

a R 

PHT (4-way set-associative) 

** BTB: Branch Target Buffer, TAC: Thrashing Avoidance Cache, PHT: Pattern History Table 

Figure 38. The overview of the GoStay2 branch predictor. 

For the first mechanism in Figure 38, the GoStay2 Predictor uses a new cache scheme 

developed by Chu and Ito ('00) instead of a 4-way set-associative for the first stage to 

reduce conflict misses. This new scheme called the 2-way T A C employs 2-way banks 

and the X O R mapping function (XOR). The X O R is used for indexing the 2-way T A C 

scheme by using a branch address. Bodin and Seznec ('95) defined the X O R for 2-way 

banks such that each bank consists of 2 n cache lines of 2° bytes, where a is the perfect-
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shuffle on n bits, so that the data block at memory address A 3 2 c + 2 n + A 2 2 n + C + A{lc may 

be mapped: 

• on a cache line Ai© A2 in cache bank 0 

• or on a cache line CT(AI)© A2 in cache bank 1 

The 2-way T A C contains a branch and target address along with a 2-bit flag per cache 

line, which is added one more bit from the 2-way T A C of Chu and Ito ('00). The main 

function of this scheme is to place a group of branch instructions into a bank according to 

the B S L (Bank Selection Logic) and the BoPLRU replacement policy and is explained in 

more detail in section 3.3.2. The combination of B S L and BoPLRU guarantees that recent 

groups of branches can be retained in each bank safely. 

For the second mechanism in Figure 38, to improve the inefficient predict and update 

rules, the second bit of the 2-bit flag is used to implement the GoStay predict and update, 

rule if both stages have a branch address: If the second bit is '1 ' , a target address of the 

second stage is used (Go). Otherwise, a target address of the first stage is used (Stay). 

The GoStay2 predictor works the same as the leaky filter if the bit is T ' . This bit is set to 

'0' whenever a branch address is found in the first stage only and the predicted target 

address is correct. In other words, i f the second bit of the 2-bit flag is '0', then the branch 

address is indirect, and the target address was correct for the previous prediction. 
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3.3.2 The 2-way TAC scheme for the BTB - The first mechanism 

As we discussed before, the first stage employs the 2-way T A C scheme to reduce 

conflict misses for small-sized (say, less than 512 entries) tables. The first mechanism is 

defined as two functions for this scheme (Figure 39), namely indexing (XOR mapping) 

and updating. 

Target address 

XOR 

BTB (2-way TAC Scheme) 
First-stage predictor 

t update 

GoStay 

Branch address 
update rule 

Prediction .predict rule,. ' 

BSL & BoPLRU replacement 
policy in the 2-way T A C 

" Scheme 

Target address 1 On a Branch Misprediction 

2 L 
BSL counter 

7 
Initial Bank 
Selection x '' 

Rank 0 Bank 1 
We assumed 'MSB 
of counter' = 0. 

BankO 

Bankl 

data 2-bit f lag^. • x 

BoPLRU 3 -

^ Final Bank 
Selection ^ 

Replacement < l̂ag in a Selected'Banp 
Policy JV \ ^ 

BankO 1 _ J Bank 1 

Figure 39. The operation of the first mechanism, data = branch address + target address. 

For the indexing function, the two banks of the first stage predictor are accessed 

simultaneously with two different XOR mapping functions as we discussed in the 

previous section. Since Gonzales et al. ('97) and Seznec ('93) have shown that the X O R 
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works well for reducing conflict misses, the GoStay2 employs this mapping function for 

this scheme. 

For updating function, if the GoStay update rule (refer to section 3.3.3) selects the 

first-stage predictor to update resolved branch/target addresses, they are written into the 

selected bank of the first-stage according to the value of the first bit of the 2-bit flag. In 

Figure 39, the B S L selects a bank initially on a miss according to a fixed frequency of the 

procedure call instructions. The B S L employs a n-bit counter for counting the 

occurrences of call instruction. For example, if n = 2, then the first bit (Most Significant 

Bit) of the counter toggles every second procedure calls and the toggled first bit shows a 

selected bank. Therefore, if an instruction in the first group is initially placed in bankO, 

then an instruction in the third group is placed into bankl. In this chapter, it is assumed 

that the first stage employs a 2-bit counter. 

After the B S L selection in Figure 39, the BoPLRU determines the final bank for 

updating a line as a correction mechanism by checking the first bit of the flag for the 

selected cache line [Chu & Ito '00]. When the first bit of the 2-bit flag is T , the 

branch/target addresses are written into bankO, and the first bit is changed to '0'. 

Otherwise, the branch/target addresses are written into bankl, and the first bit is changed 

to T . In the Figure 39 example, it is assumed that bankO of the first stage is selected for 

updating by the BSL. Then, the BoPLRU policy works according to the status ( T or '0') 

of the first bit in the 2-bit flag. In Figure 38, bank 1 is selected for updating a cache line 

since the first bit of the 2-bit flag is '0', then the 2-bit flag is changed from '01' to '11' 

[Chu & Ito '00]. 
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This mechanism helps improve indirect misprediction rates by reducing conflict misses 

in a small-sized, less than 512 entries, first stage predictor table such as BTB. 

3.3.3 The GoStay predict and update rule - The second mechanism 

For the second stage, like other 2-stage hybrid branch predictors, the GoStay2 can use 

a pattern- or path-based history xored with low-order bits of a branch address as an 

indexing function. There are two functions in the second mechanism: the GoStay predict 

rule and update rule. 

3.3.3.1 GoStay predict rule 

Figure 40 shows that each stage is examined as to whether the current branch address 

is/in the table or not. There are three possible cases: 

1. If there is no matched branch address in either stage, then this is a case of 'not taken'. 

Therefore, no prediction occurred; 

2. If there is one matched branch address between two stages, then the prediction occurs 

with the target address of a matched stage; 

3. If both stages have the same matched branch address, the prediction will be 

determined according to the GoStay predict rule in Figure 40. 1 
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Target address 

if (the second bit of the flag = 1) 
predict with the second stage. 

First-stage predictor 

••( update rule ) 

Second-stage predictor J 

branch target flag 

sRrst stage 

( jO to Second stage 

branch target 

Second stage 

flag 

First stage 

Second stage 

Stay at First stage 

if (the second bit of the flag = 0) 
predict with the first stage. 

Figure 40. The GoStay predict rule of the second mechanism. 

The goal of the GoStay predict rule is to reduce mispredictions caused by wrong target 

addresses of the second stage. This rule works only when both stages have the same 

branch address. The detailed operations in the 'GoStay predict rule' of Figure 40 are: 

1. If the second bit of the 2-bit flag in the first stage is '1 ' , then the prediction will be 

done with the target address of the second stage (Go); 

2. If the second bit of the 2-bit flag in the first stage is '0', then the prediction will be 

done with the target address of the first stage (Stay). 
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3.3.3.2 Update rule 

Update rule for the GoStay2 
Prediction 

with 
Results Update 

Flag 
(2 n d bit) 

None None 
Both 
stages 

1 

First stage Correct None 0 

First stage Incorrect 
Both 
stages 

1 

Second 
stage 

Correct- None 1 

Second 
stage 

Incorrect 
Second 
stage 

1 

First-stage predictor 

<c=> < 1 Target address 

Second-stage predictor 

Prediction with: Predicting with a target address of a selected bank. 
Results: Prediction results after the execution. 
'Correct' means correct predictions and 'incorrect' means misprediction. 
Both stages means both the first and second stages. 
Flag is the 2 n d bit of the 2-bit flag in the first-stage predictor. 

Figure 41. Update rule of the second mechanism. 

Figure 41 shows the update rule after the branch instruction is resolved. The branch 

history register will be updated according to the branch resolution. There are three cases 

for updating both stage predictors. 

First, in case of no prediction, both stages are updated with a new branch and target 

address. This is the case of a first-miss. Both the leaky filter and the GoStay2 permit 

updating of the second stage table for a first-miss. In addition to this, the GoStay2 sets the 

second bit of the 2-bit flag in the first stage as '1 ' . This second bit of the 2-bit flag is 

always set to '1 ' whenever the second stage is updated. Therefore, if the second bit is T ' , 

the GoStay2 works like the leaky filter in this case. 
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Secondly, in the case of prediction with a target address in the first stage, the update 

can also be varied according to the branch resolution: 

1. If it is a correct prediction, the second-bit of the 2-bit flag is set to '0'; 

2. If it is an incorrect prediction, both stages are updated. The second bit of the 2-bit flag 

is set to T . 

Lastly, in case of prediction with a target address in the second stage, the update will 

be varied according to the branch resolution: 

1. If it is a correct prediction, no update is required; 

2. If it is an incorrect prediction, the target address of the second stage is updated since 

the branch address is indirect. 

3.3.4 Benefits of the GoStay2 branch predictor 

Figure 42 shows an example of committed target addresses, which compares the 

update processing between the GoStay2 and leaky filter. The assumptions for the branch 

addresses are: 

a(A), b(B), and c(C) show the 'branch address (target address)' in each table; 

In the first stage, a(A) and c(C) have the same branch indexing but different target 

address; 

In the second stage, b(B) and c(C) have the same branch indexing but different target 

address. 

Figure 42(a) shows how the GoStay2 works with the flow of example target addresses: 
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a(A) is placed into the first stage with the flag set to ' x l ' and into the second stage 

since a(A) is assumed to be a first-miss. The 'x' of ' x l ' means 'don't care' since 

the first bit is set by the replacement policy of the 2-way T A C scheme for the first 

stage. The second bit of the flag is set to 1 since the second stage is updated. 

(Miss); 

b(B) conflicts with a(A) in the first stage because of the same branch indexing, so 

the target address is changed A to B in the first stage. b(B) is placed into the 

second stage without conflict. The second bit of the flag for b(B) in the first stage 

is set to 1 since the second stage is updated. (Miss); 

a(A) is found in the second stage. Therefore, there is no update for a(A). (Hit); 

c(C) is placed into the first stage with the flag set to ' x l ' since c(C) is assumed to 

be a first-miss. b(B) in the second stage is changed to c(C) since there is a conflict 

between b(B) and c(C) in the second stage according to the assumption. The 

second bit of the flag is set to 1 since the second stage is updated. (Miss); 

b(B) is found in the first stage only, so that the second bit of the flag is set to 0 

without further update according to the update rule. Therefore, the GoStay2 can 

save b(B) in the first stage longer. In the case of the next occurrence ofb(B), the 

GoStay2 can predict the target address correctly. (Hit). 
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Branch (Target) 
branch target f lag b ranch target 

n A ' 
£ n A r-
i 
! 

Miss 

branch target b ranch target 

Miss 
-— a A 

a A 

First stage I Second stage (Updating for the current branch) First stage Second stage 
x: don't care 

a -» b A -» R xl b 
a 

n 
A ^ 

Miss 
^ 

Miss 

• • a -> h A n b R 
Miss a A Miss 

h B xl h R 
s s j x a v i v , ; ; . : Hit 

• • BbS^ 'a 'S - s ROSA'S b R 
Hit a A Hit 

h B xl R - » C 
c ' C. xl a A Miss 

• • a A b -» c R -» C 
Miss c. C. a A Miss 

wmmm x0; c C. 
c. c xl a A Hit 

(a) GoStay2 Predictor 

• • «a:^::bH:: r-» R M i s s c. c. a A M i s s 

(b) Leaky Filter 
Assumptions: 

1. Same branch indexing in the first stage: (a(A) and c(C)}. 
2. Same branch indexing in the second stage: (b(B) and c(C)}. 
3. a(A), b(B), and c(C) -> branch address (target address). 

Figure 42. A comparison of the update processing between the GoStay2 and the leaky 
filter. 

Figure 42(b) explains how the leaky filter works with the flow of example target 

addresses: 

• The update process of the first a(A) and b(B) are just like the GoStay2 except for 

the updating the flag bit since there is no flag bit in the leaky filter. (Two Misses: 

a(A) and b(B)); 

• a(A) is found in the second stage only. Therefore, b(B) in the first stage is changed 

to a(A) since there is a conflict between a(A) and b(B) in the first stage according 

to the assumption. (Hit); 
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• c(C) is placed into the first stage. b(B) in the second stage is changed to c(C) since 

there is a conflict between b(B) and c(C) in the second stage according to the 

assumption. (Miss); 

• b(B) is placed into the first and second stage. a(A) in the first stage is changed to 

b(B) since there is a conflict between a(B) and b(B) in the first stage. c(C) in the 

first stage is changed to b(B) since there is a conflict between c(C) and b(B) in the 

second stage. (Miss). 

From Figure 42, the benefits of the GoStay2 predictor can be determined. The main 

feature of indirect branches is more than one target address for an indirect branch. 

Since the target of an indirect branch can vary with every dynamic instance, the use of 

a history pattern is needed to select the correct one among several target addresses 

stored in the prediction tables. If an indirect branch has several targets, then it can be 

assumed that each target has its own history. Therefore, if each target is preserved for 

longer than before, then the indirect mispredictions can be reduced effectively. The 

GoStay2 predictor can do this by using a 2-bit flag effectively as shown in Figure 42. 

The benefits of the GoStay2 predictor result from retained target addresses that have a 

different history pattern since they can stay longer than can other 2-stage hybrid 

predictors in the prediction tables. 
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3.4 Experimental environment 

Benchmark 
(SPEC95INT) 

Various types of 
Branch Predictor 

Exe. File 

Simulated KesulLs: 
- Branch references 
- Predicted/Unpredicted branches 
- # of Indirect branches 
- Misprediction/Miss rates 
- Simulation lime 

Input 
Data 

Shade & 

> i i i i Spixtools 

Figure 43. Experimental methodology 

Figure 43 shows an overview of our simulation methodology: 

First, SPECint95 and C++ programs were compiled by using a compiler (GNU gec 

2.6.3 and 2.7.2 are used); and 

Second, the GoS-Sim (branch prediction simulator) ran each executable benchmark 

with its input data. GoS-Sim was developed by using the Shade and SpixTools. 

Shade and SpixTools are tracing and profiling tools developed by Sun Microsystems. 

Shade executes all the program instructions and passes them onto the branch 
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prediction simulator, GoS-Sim. SpixTools are used for collecting the information for 

static instructions. GoS-Sim not only simulates most indirect branch predictors such 

as the BTB-based Target Cache and Cascaded Predictor, but it also runs several X O R 

mapping functions and replacement policies such as the L R U (Least Recently Used) 

and the Pseudo L R U , etc. The simulator for the proposed predictor was added into the 

GoS-Sim. Finally, Outputs such as misprediction rates, the number of control transfer 

and procedural call/return instructions, etc. were collected. 

In Figure 43, Shade is a tool that dynamically executes and traces SPARC v9 

executables [Cmelik & Keppel '93]. One can specify the exact trace information that is 

desired by using Shade. That means the trace information can be dynamically handled in 

any manner. Detailed information for every instruction, and opcode can be collected 

dynamically. For example, the data for the total number of call instructions, program 

counter, opcode fields, etc. can be obtained. This information is used for our simulation 

tool, GoS-Sim. 

3.4.1 Benchmarks 

Table 8 describes the benchmark programs in detail. Five of the SPECint95 programs 

were used for our simulation - go, xlisp, m88ksim, gcc, and perl. These are the same 

programs used in [Driesen & Holzle '98B][Radhakrishnan & John '98]. In order to 

compare our results with them, the SPECint95 instead of the SPEC2000 were used for 

our simulation. The next suite of programs is written in C++ and has been used for 
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investigating the behavior between C and C++ [Calder et al. '94A][ Holzle & Ungar '94]. 

These programs are ixx, eqn, and deltablue. 

Program Input Description 

SPEC95 CINT: C 3rograms 

go 2stone9.in Plays the game Go against itself 

xlisp train.lsp Lisp interpreter 

m88ksim ctl.raw Simulates the Motorola 88100 processor 

gcc amptjp.i Compiles pre-processed source 

perl Scrabbl.pl 

scrabble.in 

Performs text and numeric manipulations 

Suite of C++ Programs 

ixx object.h 

som_plus_fres 

co.idl 

IDL parser generating C++ stubs 

eqn eqn.input.all Type-setting program for mathematical 

equations 

deltablue 3000 Incremental dataflow constraint solver 

Table 8. Benchmark descriptions 

Table 9 provides a description of the run-time characteristics of the benchmarks. 

Dynamic instructions represent the number of instructions executed by each program. It 

also shows the number of control transfer instructions. Control transfer instructions are 

divided into three groups such as branches, direct calls, and indirect jumps. It shows that 

the rate for control transfer instructions (except branches) in object-oriented languages 

(C++) is two to three times higher than for traditional languages (C). 
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Program Dynamic 

instructions 

# of control transfer instructions Dynamic 

instructions 
Total Branches Calls Jumps /indirect 

calls /returns /trap 

returns 

go 584,163K 82.253K 69,163K 1.611K 11.479K 

xlisp 189,185K 43,643K 30,288K 7,971K 5.384K 

m88ksim 851K 196K 171K 17K 9K 

gcc 250,495K 53,190K 43,71 I K 5,204K 4.274K 

perl 630,281K 130.746K 88,162K 26,110K 16.473K 

ixx 31-.830K 7,258K 4,73 IK 1.405K 1.121K 

eqn 58,401K 12,080K 9,033K 1.999K 1.048K 

deltablue 42,149K 9,997K 5,122K 1.478K 3,397K 

C Mean 4,210K 970K 842K 82K 42K 

(harmonic) (23.04 %) (86.86 %) . (8.42 %) (4.38 %) 

C++ Mean 41.514K 9,358K 5,800K 1.589K 1.401K 

(harmonic) (22.54 %) (61.98 %) (16.98 %) (14.98%) 

Table 9. Benchmark characteristics 

3.5 Experimental results 

3.5.1 Implemented branch Predictors 

We simulated several indirect branch predictors, compared their misprediction rates, 

and analyzed misprediction rates. For 2-stage hybrid predictors, most mispredictions 

occur when both stages have a current address but not a correct target address. Therefore, 

the analysis of indirect branch mispredictions will be done by examining the 

misprediction rates according to the cases whether both stages have a correct target for a 

branch or not. The total number of entries for the PITT (the second stage predictor) is kept 
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constant (set to 512 and I K entries) while BTB (the first stage predictor) varies from 8 

entries to 4K entries. The PHT is used for the prediction table for the second stage, which 

stores target addresses instead of directions (taken/not taken). 

The implemented predictors are: 

• BTB (Branch Target Buffer): 4-way set-associative, indexing with the low-order 

bits of a branch address. The table sizes vary from 8 entries to 4K entries. 

• TC (Target Cache): The first stage is a BTB and the second stage is a 512- or 1K-

entry of the Target Cache (similar to the PHT, 4-way set-associative) using a 

gshare scheme. The 9-bit (512-entry) or 10-bit (lK-entry) history registers record 

pattern-based history information. The BTB and TC are examined simultaneously 

for a branch. If the BTB detects an indirect branch, the selected TC entry is used 

for target prediction. After resolving the indirect branch, the TC only can be 

updated with its target address. 

• SF (Strict Filter for Cascaded predictor): The hardware mechanism is similar to the 

TC. The main difference to the TC is the handling of the table updates. SF only 

allows branches into the second-stage predictor if the first predictor mispredicts. 

• LF (Leaky Filter for Cascaded predictor): The hardware mechanism is similar to 

the SF. The difference to the SF is that the L F allows new second-stage entries on 

first-misses in addition to the update rule of the SF. 

• GoS (GoStay2): The first stage is a 2-way T A C scheme. It contains branch and 

target addresses with a 2-bit flag. The prediction table is accessed with the X O R 

mapping functions. The second stage is similar to the LF . The other differences 
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from TC, SF, and L F are the new predict and update rules which depend on the 

flag of the first stage predictor (refer to section 3.3). 

The main goal of this section is to compare the performance of the selection 

mechanism and update rule of the GoStay2 with other 2-stage hybrid predictors such 

as TC, SF, and LF. Therefore, the above predictors were implemented with the same 

indexing function for the second stage predictor. 

For the pattern history of the second stage, the history register records the direction 

of the previous conditional branches. Nair ('95) showed that a path-based predictor 

with two-bit partial addresses attained prediction rates similar to a pattern-based 

predictor with taken/not taken bit (similar hardware budgets) [Driesen & Holzle '98A]. 

Therefore, the gshare scheme was implemented by using the pattern-based history only 

because benchmark programs were traced with both direct and indirect branches. 

Our simulation results generated misprediction rates for several of the predictors 

that are a little bit higher than previously reported: Target Cache [Chang et al. '97] and 

Cascaded predictor [Driesen & Holzle '98B]. This could have happened because all 

kinds of control transfer instructions were traced to examine the predictability of 

various cases such as branches, procedure calls/returns, indirect jumps, etc. However, 

the Target Cache in Chang et al. ('97) recorded the target for each indirect jump 

encountered only, while the Cascaded predictor in Driesen and Holzle ('98B) excluded 

procedure returns with the assumption that they could be predicted accurately with a 

return address stack. 
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3.5.2 Indirect Branch Instructions 

According to Chang et al. ('97), control transfer instructions can be categorized into 

three groups: direct conditional, direct unconditional or indirect unconditional branch 

instructions. In case of direct conditional/unconditional branches, they have a single-

target which can be predicted with reported hit-ratios of up to 97% [Yeh & Patt '93]. 

However, indirect branch instructions commonly have multi-target addresses. The multi-

target addresses of an indirect branch are created dynamically while the program is 

executed. 

Program Type Dynamic 

instructions 

Control Flow Instructions Program Type Dynamic 

instructions Total Conditional 

branches 

Indirect 

branches 

Program Type Dynamic 

instructions 

num. % num. % num. % 

xlisp C 189,185K 43,643K 100 30.288K 69.40 4,076K 9.34 

ixx C++ 31.830K 7,258K 100 4/731K 65.19 538K 7.42 

perl c 630,281K 130,746K 100 88.162K 67.43 7,656K 5.97 

gcc c 250,495K 53,190K 100 43.711K 82.18 3,177K 5.97 

eqn C++ 58,401K 12,080K 100 9,033K 74.78 547K 4.53 

m88ksim c 851K 196K 100 171K 87.02 4K 2.27 

go c 584,163K 82,253K 100 69,163K 84.09 548K 0.67 

deltablue C++ 42,149K 9,997K 100 5,122K 51.24 554K 5.54 

Table 10. Comparisons for the percentages of conditional and indirect branches. 

Table 10 shows the percentages of conditional branches and indirect branches for the 

benchmark programs. In the case of conditional branches, the percentages of the C, 

programs are higher than the C++ programs in Table 10. In addition, in the case of 
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indirect branches, 'xlisp' shows the highest (9.34%) and 'go' has the lowest (0.67%) 

among all benchmark programs. 

Program Type Lines of code Inst./ ind. Cond./ ind. Descriptions 

xlisp C 4,700 46.42 7.43 Using for all averages 

in section 3.5.4 and 

3.5.5. 

ixx C++ 11,600 59.12 8.79 

Using for all averages 

in section 3.5.4 and 

3.5.5. perl c 21,400 82.33 11.52 

Using for all averages 

in section 3.5.4 and 

3.5.5. 

gcc c 130,800 78.85 13.76 

Using for all averages 

in section 3.5.4 and 

3.5.5. 

eqn C++ 8,300 106.74 16.51 

Using for all averages 

in section 3.5.4 and 

3.5.5. 

m88ksim c 12,200 190.54 38.25 

Using for all averages 

in section 3.5.4 and 

3.5.5. 

go c 29,200 1,065.49 126.15 Low indirect branches 

deltablue C++ 500 76.07 9.24 Small-sized program 

Table 11. The relevance of indirect branches by comparing lines of code, inst./ind. 

(instructions/indirect branch), and cond./ind. (conditional branches/indirect branch). 

Table 11 shows that the relevance of indirect branch is related to the lines of code, by 

the number of the instructions per indirect branch, and by the number of conditional 

branches per indirect branch. Three groups emerge: first, four of the SPECint95 

benchmarks and two C++ benchmarks execute fewer than 200 instructions per indirect 

branch; second, one of the SPECint95 benchmarks execute more than 1,000 instructions 

per indirect branch; third, one C++ benchmark has less than 500 lines of code, a small-

sized benchmark program. 

In Table 11, the first group of benchmark programs, from xlisp to m88ksim, executes 

from 7 to 38 conditional branches per indirect branches. They are a good choice for 

evaluating indirect branch predictors since the frequency of indirect branches is spread 
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from higher (7.43) to lower (38.25). The results of the misprediction rates for the first 

group will be used for all averages in section 3.5.4 and 3.5.5. 

For "go", since the impact of indirect branch prediction is very low, it will be excluded 

from all averages in sections 3.5.4 and 3.5.5. 

For "deltablue", even though it executes fewer than 10 conditional branches per 

indirect branch, most indirect branch mispredictions will be reduced by using an 

appropriate size of the L F and GoS because of the small-sized (less than 500 lines) 

program. Therefore, it also is excluded from all averages like the second group. 

3.5.3 Conventional indirect branch predictors 

0 -| 1 1 1 1 - i 1 1 r 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(a) xlisp (C program) 

Figure 44. The comparison of misprediction rates according to BTB sizes for indirect 
branch predictors. The second stage is a table with 512 entries (4-way). 
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0 H 1 1 1 : — i 1 1 1 1 i 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(b) ixx (C++ program) 

o 4 1 1 1 1 1 1 1 1 1 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(c) perl (C program) 

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for 
indirect branch predictors. The second stage is a table with 512 entries (4-way). 
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0 -I 1 1 1 1 1 1 1 ~i 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(d) gcc (C program) 

0 4 1 1 1 1 1 : 1 1 1 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(e) eqn (C++ program) 

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for 
indirect branch predictors. The second stage is a table with 512 entries (4-way). 
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8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(f) m88ksim (C program) 

0 -| 1 1 1 1 i 1 i 1 1 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(g) go (C program) 

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for 
indirect branch predictors. The second stage is a table with 512 entries (4-way). 
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0 -I 1 1 1 1 1 1 1 1 : 1 

8 16 32 64 128 256 512 1024 4096 

First Stage Predictor (entry) 

(h) deltablue (C++ program) 

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for 
indirect branch predictors. The second stage is a table with 512 entries (4-way). 

This section determines the most effective branch predictor among the BTB, TC, SF, 

and LF. Eight benchmark programs are examined according to the size of the tables of 

the first stage. For hybrid predictors (the TC, SF, and LF), the second stage has a table 

with 512-entries and is 4-way set-associative. 

Figure 44 shows the misprediction rates for four predictors using eight benchmark 

programs: 

1. Figure 44(a), (b), (c), (e), and (f) showed that the L F is the most effective among 

other previous predictors. If the size of the BTB is less than 128 entries, the L F 

reduces misprediction rates much better than other previous predictors do. Otherwise, 
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the L F works only slightly better than most others, and does much better than the 

BTB; 

2. Figure 44(d) showed that the L F is the most effective if the size of the BTB is less 

than 128 entries, otherwise the SF works slightly better than the LF . This result can 

occur because gcc contains a large number of static branches in its working set. This 

large set can cause interference in the second stage predictor, reducing the ability to 

make accurate predictions [Chang et al.'95]; 

3. Figure 44(g) showed that the SF is the most effective if the BTB is less than 512 

entries, otherwise the L F works slightly better than the SF. This result can occur 

because go contains very low indirect branches compared to other benchmark 

programs. 

4. Figure 44(h) showed that the L F is the most effective among other predictors. 

However, the overall misprediction rates are much lower than those of other 

benchmark programs because deltablue has only 500 lines of code (a small-sized 

program). 

5. The SF works slightly better than the TC for all sizes of BTB-entries; 

6. In general, hybrid predictors (the TC, SF, and LF) are much more effective than a 

single-scheme predictor such as the BTB for all sizes of BTB-entries. 

From the above results, the L F is determined as the most effective indirect predictor. 

Driesen and Holzle ('98B) also showed that the misprediction rate for the L F is much 

better than the SF for small-sized filters (BTB) such as 128 entries or less; otherwise, the 

L F is slightly better than the SF. Kalamatianos and Kaeli ('98) also showed that the LF , 
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with a filter (BTB) of 128 entries, suffered fewer mispredictions than the TC. In the 

following sections, the LP will be used as the representative indirect predictor for 

comparing the misprediction rates with the GoS. 

3.5.4 Misprediction rates for indirect branches between the LF and GoS 

In this section, the indirect misprediction rates are compared between the L F and GoS. 

As we discussed before, there are some differences between the L F and GoS: 

• For the cache scheme of the first stage, the L F uses a 4-way set-associative, but the 

GoS employs a 2-way T A C scheme. However, for the second stage, both predictors 

use the PHT (512- or lK-entry, 4-way) with the same indexing function (the gshare 

scheme for this thesis). 

• For the selection mechanism, if both stages have target addresses, the second stage of 

the L F takes precedence for prediction as in the TC and SF. However, for the GoS, 

even if both stages have target addresses, the prediction will be taken according to the 

status of the second bit of the flag in the first stage. For example, if the bit is 0, the 

first stage takes precedence, otherwise the second stage does. 

• For the update rule, the L F allows an entry to the second stage for a first-miss or 

indirect branches. However, the GoS updates the two stages according to the update 

rule according to the status of the flag. 

122 



In Table 12, the SPECint95 benchmark programs and C++ programs were used for 

comparing the indirect misprediction rate between the L F and GoS: 

1. The GoS has lower misprediction rates than the L F for most sizes of the BTB (from 

64 entries to 4K entries) and the PHT (512entries and I K entries) for all programs; 

2. For the xlisp and perl program, at 256 entries of BTB and 512 entries of PHT, the 

GoS improves the misprediction rates at a rate of 44.24% and 15.60% over the LF. 

For the 512- or lK-entry PHT table, GoS with 64 entries of BTB works better than 

the L F with IK entries of BTB. Therefore, the GoS yields a misprediction rate better 

than the LF at less than one-tenth the BTB cost; 

3. For the gcc program, at 512 entries of BTB and 512 entries of PHT, the GoS 

improves the misprediction rate by only 1.36% over the LF . However, at 256 entries 

or less in BTB and the lK-entry PHT table, the L F works slightly better than the GoS. 

This can occur because of the large set of static branches that we discussed in the 

previous section. 

Figure 45 (a) and (b) compare the harmonic mean of misprediction rates for C and C++ 

programs according to Table 10. There are four predictors namely LF-512 (512-entry 

PHT table), LF-1024 (lK-entry PHT table), GoS-512 (512-entry PHT), and GoS-1024 

(lK-entry PHT table). 

• For C programs in Figure 45(a), the GoS-512 works better than the LF-512 and L F -

1024. In addition, the GoS-1024 shows the lowest misprediction rates among other 

predictors. 
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• For C++ programs in Figure 45(b), i f the B T B has more than 256 entries, the GoS-

512 works better than the LF-512 and LF-1024. Otherwise, the LF-1024 works 

slightly better than the GoS-512. In addition, the GoS-1024 also shows the lowest 

misprediction rates among other predictors. 

. The 256-entry B T B of GoS-512 outperforms the 1-K entry B T B of LF-1024 in both 

C and C++ programs. 

• In general, for most sizes of the BTB-entries, the GoS works better than the L F . 

64 128 256 512 

First Stage Predictor 

1024 

• LF-512 
• LF-1024 
• GoS-512 
• GoS-1024 

4096 

(a) Misprediction Rates for C programs (harmonic mean). 

Figure 45. Comparison Misprediction Rates and Improvement Ratios between C and 
C++ Benchmark programs. 
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64 128 256 512 1024 

First Stage Predictor 

• LF-512 
• LF-1024 
• GoS-512 
• GoS-1024 

4096 

(b) Misprediction Rates for C++ programs (harmonic mean). 

(c) Improvement Rates (GoS over LF) for C programs (harmonic mean). 

Figure 45. (continued) Comparison Misprediction Rates and Improvement Ratios 
between C and C++ Benchmark programs. 
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(d) Improvement Rates (GoS over LF) for C++ programs (harmonic mean). 

Figure 45. (continued) Comparison Misprediction Rates and Improvement Ratios 
between C and C++ Benchmark programs. 

Figure 45 shows the improvement ratio (IR) between the L F and GoS according to the 

sizes of the PHT. 

IR-512 =(((MR of the LF-512)- (MR of the GoS-512)) / (MR of the GoS-512))* 100. 

IR-1024 = (((MR of the LF-1024) - (MR of the GoS-1024)) / (MR of the GoS-

1024))*100. 

Where MR represents Misprediction Rates as a harmonic mean of C or C+ + programs in 

Figure 45. 

For IR-512, (c) and (d) shows the improved ratios for the C and C++ programs. In the 

case of C programs, the IR is increased from 19.63% (64-entry of BTB) to 22.93% 
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(4096-entry of B T B ) . However, in the case of C++ programs, the IR is increased by 

3.81% (64-entry of B T B ) and 11.1% (4096-entry of B T B ) . 

For IR-1024, the IR is slightly higher than the IR-512. In the case of C programs, the 

IR is increased from 22.31% (64-entry of B T B ) to 25.89% (4096-entry of B T B ) . In the 

case of C++ programs, the IR is increased by 5.7% (64-entry of B T B ) and 11.2% (4096-

entry of B T B ) . In Figure 45(c) and (d), the IR of C programs are higher than C++ 

because some C programs, such as xlisp and perl, reduce misprediction rates considerably 

with the GoS compared to the L F . The xlisp and perl are the benchmark programs with 

high indirect branch density in C programs, while ixx is the only one that has high 

indirect density in C++ programs [Driesen & Holzle '98B]. 

64 128 256 512 1024 4096 

First Stage Predictor 

(a) Misprediction Rates for C and C++ programs (harmonic mean). 

Figure 46. Comparison Misprediction Rates and Improvement Ratios between the L F 
and GoS for all Benchmark programs (C and C++ programs, harmonic mean). 
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(b) Improvement Rates (GoS.over LF) for C and C++ programs (harmonic mean). 

Figure 46. (continued) Comparison Misprediction Rates and Improvement Ratios 
between the L F and GoS for all Benchmark programs (C and C++ programs, harmonic 
mean). 

Figure 46 shows misprediction rates as harmonic means for all benchmark programs 

used. In Figure 46(a), the GoS outperforms the L F for all sizes of both BTB-entries and 

PHT-entries. Moreover, the GoS-512 can reduce indirect mispredictions better than the 

LF-1024 for all sizes of BTB. 

In Figure 46(b), in the case of the IR-512, the IR increases from 14.9% (64-entry of 

BTB) to 19.35% (4096-entry of BTB). In the case of IR-1024, the IR increases by 

17.41% (64-entry of BTB) and 21.53% (4096-entry of BTB). From the Figure 46, some 

features of the GoS can be derived: 
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• The GoS reduces indirect mispredictions better than the L F as the indirect density 

increases. The indirect density can be represented as the inverse of the number of 

instructions per indirect instruction. 

• If the size of the second stage (PHT) is increased, the misprediction rates with the 

GoS are reduced considerably since the GoS can store more indirect branches with 

fewer conflicts than the LF . 

3.5.5 Analyses of the update rule 

In the LF , some mispredictions can be traced to the inefficient update rule. If a 

predicted target address is wrong, the predictors of both stages are always allowed to 

update the tables. That means that after resolving an indirect branch the tables of both 

stages are updated with the new target address. This can remove the possibility for a 

replaced target being predicted correctly the next time. Therefore, in order to improve the 

misprediction rate in the LF , the update rule needs to be changed to preserve one of two 

different targets for the next prediction. This means the target address of one stage (say, 

the second stage) should be replaced with a new resolved target address while that of the 

other stage (say, the first stage) should remain for the next time. In order to use the 

remaining target for the next time, the predict rule needs to be changed in the L F , because 

if a branch address is found at both stages, then the second stage takes priority of 

prediction. As we discussed in section 3.3.3, the GoS resolved these problems by using 

two new mechanisms. 
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n l : addr_both_target_both 
n2: addr-both_target_BTB 
n3: addr_both_target_PHT 
n4: addr_both_target_none 
others: other cases 

• n1(hit) 

• n 2 ( m i s s ) 

• n3(hi t ) 

• n4(m iss ) 

• o t h e r s 

n4(m iss) 
24% 

n3(hit) 
43% „ ' 

n1(hit) \ 
21% » 

i 
I 
i 

n2(m iss) i 

* 8% / 

(a) 128-entry filter of L F with 1024-entry PHT (perl, C program) 

n l : addr_both_target_both 
n2: addr-both_target_BTB 
n3: addr_both_target_PHT 
n4: addr_both_target_none 
others: other cases 

• n1(h i t ) 

• n2(h i t ) 

• n 2 ( m i s s ) 

• n3(h i t ) 

• n 3 ( m i s s ) 

• n4(m i ss ) 

• o t h e r s 

n4(m iss) 

n3(m iss) 
0% n1 (hit) 

21% 

/n2(hi t) i 
5% J 

i 

'n2(miss) ' 
[ 3% / 

(b) 128-entry filter of GoS with 1024-entry PHT (perl, C program) 

Figure 47. Analysis of prediction rates according to cases whether both predictors have 
correct target address or not. 'Others' means all other cases except the n l to n4. 
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n l : addr_both_target_both 
n2: addr-both_target_BTB 
n3: addr_both_target_PHT 

(c) 128-entry fdter of L F with 1024-entry PHT (eqn, C++ program) 

n l : addr_both_target_both 
n2: addr-both_target_BTB 
n3: addr_both_target_PHT 
n4: addr_both_target_none 
others: other cases 

• n1(h i t ) 

• n2(h i t ) 

• n 2 ( m i s s ) 

• n3(h i t ) 

• n 3 ( m i s s ) 

• n 4 ( m i s s ) 

B o t h e r s 

n4(m iss) 
27% 

i _ -1 n3(m iss) \ 
0% 

n3(hit) 

others 

n1 (hit) 
43% 

(d) 128-entry filter of GoS with 1024-entry PHT (eqn, C++ program) 

Figure 47. (continued) Analysis of prediction rates according to cases whether both 
predictors have a correct target address or not. 'Others' means all other cases except the 
n l to n4. 
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There are four cases when both predictors have a prediction: 

• addr_both_target_both (nl): Both predictors have the same target and the target is 

correct. Correct prediction in both the L F and GoS; 

• addr_both_target_BTB (n2): Both predictors have a different target. The first stage 

has a correct one but the second stage has a wrong one. For the LF, this case leads to 

a misprediction. But for the GoS, if the second bit of the flag in the first predictor is 0, 

then this case results in correct prediction. Otherwise, this case is a misprediction. 

The GoS can reduce misprediction rates considerably by using this predict rule. 

• addr_both_target_PHT (n3): Both predictors have a different target. The first stage 

has a wrong one but the second stage has a correct one. In the L F , this case leads to a 

correct prediction. Meanwhile, for the GoS, if the flag bit is 0, it leads to a 

misprediction. However, the possibility for this case is very rare, as little as 1%. 

Otherwise, it is a correct prediction. 

• addr_both_target_none (n4): Both predictors have a target, but neither target is the 

correct one. This case always leads to a misprediction in both the L F and GoS. 

In Figure 47, most mispredictions of the indirect branches occur when two predictors 

have a simultaneous prediction. Figure 47 shows prediction rates according to the cases 

from the nl to n4 between the L F and GoS with the 128-entry filter (BTB) and the 1024-

entry PHT for 'perl' benchmark program (C program, Figure 47(a) and (b)) and 'eqn' 

benchmark program (C++ program, Figure 47(c) and (d)). As discussed before, most 

indirect predictions occur when both stages have a prediction. In Figure 47, 'others' 

means the prediction rates caused by the cases when one or none of the two stages has a 
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prediction, which can lead to a hit or miss. However, since these misprediction rates are 

small compared to other cases, they will be ignored for this section. 

The important features provided by Figure 47 are: 

• . Figure 47(a), for the L F , shows that 96% of the total predictions occur within cases 

n l to n4. Among them, even if there is a correct target for n2, the predictions in the 

LF.caused by the n2 always lead to mispredictions because of the inefficient predict 

rule. The prediction rate caused by the n2 is 8%, which leads to misprediction. 

• Figure 47(b), for the GoS, shows that a prediction rate of 95% occurs for case of the 

n l to n4. However, the differences between the L F and GoS are the hit and miss rates 

caused by the cases of the n2 and n3. First, in the GoS, more than half of the 

predictions (5% out of 8%) lead to a hit instead of a miss; this can improve the 

misprediction rates by using the GoStay predict and update rule. If the predictions of 

the n3 lead to a hit in the LF , part of the predictions for the n3 can lead to 

mispredictions in the GoS. However, since the misprediction rate caused by this case 

is small (0% in Figure 46(b)), it is possible to disregard the misprediction rates caused 

bythen3. 

• Figure 47(c) shows that 81% of the total predictions occur within case n l to n4. The 

prediction rate caused by n2 is 4%, and leads to misprediction. 

• Figure 47(d) shows that a prediction rate of 81% occurs in the case of the n l to n4. In 

the GoS, more than half of the predictions (3% out of 4%) lead to a hit instead of a 

miss. The misprediction rates here can be improved by using the GoStay predict and 

update rule. If the predictions of the n3 lead to the hit in the L F , part of the 

predictions for the n3 can lead to mispredictions in the GoS. However, since the 
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misprediction rate caused by this case is small (0% in Figure 47(d)), it is again 

possible to disregard the misprediction rates caused by the n3. 

As we discussed above, the GoS can improve the misprediction rates by selecting the 

correct target address in the case, n2, by using the GoStay predict rule. Since more than 

half of the prediction rates in n2 can be changed to a hit instead of a miss. The GoS 

improved the misprediction rates up to 21.53% compared to the L F for all sizes of the 

BTB and PFTT as shown in Figure 46. 

3.6 Chapter conclusions 

Due to the increased complexity of application programs, it is quite reasonable to use 

small functions for code reusability and maintainability. However, these small functions 

can cause an increase in indirect function calls in object-oriented languages and is a 

principal cause of indirect branches. 

Unfortunately, conventional branch predictors cannot reduce the impact of indirect 

branch mispredictions since the indirect branch needs the full target address instead of the 

direction and also the branch target can change with each invocation of the indirect 

branch. We have discussed several previous indirect branch predictors: the BTB, the 

Target Cache, and the Cascaded Predictor (with strict filter and with leaky filter). 

For the previous indirect two-stage hybrid branch predictors, the leaky filter was found 

to be the most effective one. However, the accuracy of this predictor is affected by two 

factors: The conflict misses for small-sized tables (say, less than 512 entries) 
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considerably increase the misprediction rate. The other factor is the inefficient predict 

and update rules: For the predict rule, this occurs if the first stage has a correct target 

address but the second stage has a wrong one, then the assumed priority of the second 

stage always causes a misprediction. For the update rule, a misprediction can occur when 

the previous target address is needed after it is updated by a new one, as often happens 

with indirect branches. 

In order to resolve these problems, this chapter has presented a new branch 

architecture, the GoStay2 predictor, which has two mechanisms that are different from 

the other hybrid branch predictors. The first mechanism is defined by two functions of a 

new cache scheme, T A C , employed in the first stage to reduce conflict misses. These 

functions are the X O R mapping function for indexing the first stage and the BoPLRU 

replacement policy along with the BSL. The second mechanism is the GoStay predict and 

update rule to reduce the frequency of wrong predictions caused by inefficient predict 

and update rules. By using these mechanisms, the GoStay2 reduces the indirect 

misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by 

14.9% to 21.53% compared to the best previous indirect branch predictor, the Cascaded 

predictor (with leaky filter). 
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Benchmarks PHT 
(4-way) 

BTB (1 s t stage predictor) Benchmarks PHT 
(4-way) Pred. n-

way 
64 128 256 512 1024 4096 

First Group: 
xlisp 
(C) 

512 
entries 

L F 4 24.14 24.07 24.06 24.05 24.05 24.05 First Group: 
xlisp 
(C) 

512 
entries GoS 2 16.87 16.69 16.68 16.69 16.69 16.69 

First Group: 
xlisp 
(C) 1024 

entries 
L F 4 20.95 20.94 20.94 20.94 20.94 20.94 

First Group: 
xlisp 
(C) 1024 

entries GoS 2 13.94 13.87 13.87 13.86 13.86 13.86 
ixx 
(C++) 

512 
entries 

L F 4 38.18 36.67 36.23 36.11 36.08 36.08 ixx 
(C++) 

512 
entries GoS 2 36.81 34.39 33.39 33.08 33.04 33.01 

ixx 
(C++) 

1024 
entries-

L F 4 33.86 33.6 33.51 33.49 33.47 33.47 

ixx 
(C++) 

1024 
entries- GoS 2 31.75 30.99 30.72 30.6 30.6 30.59 

perl 
(C) 

512 
entries 

L F 4 36.14 35.95 35.71 35.63 35.62 35.63 perl 
(C) 

512 
entries GoS 2 33.45 32.44 30.89 30.45 30.4 30.4 

perl 
(C) 

1024 
entries 

L F 4 32.62 32.53 32.43 32.43 32.42 32.42 

perl 
(C) 

1024 
entries GoS 2 30.4 27.96 30.06 27.41 30.06 27.41 

gcc 
(C) 

512 
entries 

L F 4 47.94 46.5 45.62 44.65 43.13 39.99 gcc 
(C) 

512 
entries GoS 2 47.79 46.16 45.01 43.83 42.23 38.69 

gcc 
(C) 

1024 
entries 

L F 4 42.72 42.14 41.65 40.96 39.58 36.74 

gcc 
(C) 

1024 
entries GoS 2 43.04 42.27 41.69 40.76 39.33 36.14 

eqn 
(C++) 

512 
entries 

L F 4 41.56 40.36 39.35 38.59 37.78 37.18 eqn 
(C++) 

512 
entries GoS 2 40.04 38.24 36.70 35.42 33.98 32.91 

eqn 
(C++) 

1024 
entries 

L F 4 39.25 38.51 37.86 37.29 36,64 36.16 

eqn 
(C++) 

1024 
entries GoS 2 37.53 36.19 35.13 34.01 32.73 31.95 

m88ksim 
(C) 

512 
entries 

L F 4 35.87 34.59 33.68 32.96 32.83 32.76 m88ksim 
(C) 

512 
entries GoS 2 32.42 31.12 29.8 29.11 28.48 28.39 

m88ksim 
(C) 

1024 
entries 

L F 4 34.55 33.63 33.09 32.8 32.69 32.65 

m88ksim 
(C) 

1024 
entries GoS 2 31.15 29.89 29.56 29 28.44 28.21 

Harmonic 
Mean 
(Total) 

512 
entries 

L F 4 21.07 20.86 20.72 20.62 20.55 20.44 Harmonic 
Mean 
(Total) 

512 
entries GoS 2 19.29 18.89 18.65 18.51 18.40 18.28 

Harmonic 
Mean 
(Total) 1024 

entries 
L F 4 19.74 19.64 19.56 19.49 19.43 19.32 

Harmonic 
Mean 
(Total) 1024 

entries GoS 2 17.78 17.50 17.54 17.31 17.36 17.10 
Second 
Group: 
go 
(C) 

512 
entries 

L F 4 56.1 55.14 53.59 52.58 52.03 52.08 Second 
Group: 
go 
(C) 

512 
entries GoS 2 57.18 55.66 54.48 52.98 51.74 51.23 

Second 
Group: 
go 
(C) 

1024 
entries 

L F 4 50.41 49.57 48.23 47.16 46.58 46.49 

Second 
Group: 
go 
(C) 

1024 
entries GoS 2 52.24 51.08 50.05 48.56 47.39 46.7 

Third 
Group: 
deltablue 
(C++) 

512 
entries 

L F 4 5.87 5.87 5.87 5.87 5.87 5.87 Third 
Group: 
deltablue 
(C++) 

512 
entries GoS 2 5.64 5.59 5.59 5.58 5.58 5.58 

Third 
Group: 
deltablue 
(C++) 

1024 
entries 

L F 4 5.73 5.73 5.73 5.73 5.73 5.73 

Third 
Group: 
deltablue 
(C++) 

1024 
entries GoS 2 5.46 5.46 5.45 5.45 5.45 5.45 

Table 12. Indirect branch misprediction rates according to the BTB entries. 
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Chapter 4 Conclusions and Future Research 

In order to increase the performance of current microprocessor architectures, several 

techniques are needed to help reduce the memory latency which is caused by the gap 

between memory and processor performance. These techniques include caching, branch 

prediction and value prediction, etc. 

Since this thesis concentrates on instruction flow, a small-sized on-chip instruction 

cache memory was considered to improve memory latency. There are three types of 

cache misses, including compulsory, capacity, and conflict misses. Among these, conflict 

misses are critical to cache performance and branch penalty for a small-sized on-chip 

cache memory. 

4.1 Conclusions 

Since object-oriented languages are widely used, procedure calls have become 

increasingly used in application programs, causing a significantly increased number of 

conflict misses in the instruction flow. 

This thesis has presented two efficient schemes for improving the HPC: 1) The T A C 

scheme to reduce conflict misses in the instruction cache memory; and 2) The GoStay2 

predictor to reduce indirect branch mispredictions. 
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4.1.1 Reduction of cache misses 

The T A C scheme was designed to reduce instruction cache misses for the frequent 

procedure calls of object-oriented programs. We discussed several previous cache 

schemes for reducing conflict misses: direct-mapped, two-way set-associative, four-way 

set-associative, hash-rehash, victim, and two-way skewed-associative. The victim cache 

removes many conflict-misses and outperforms a four-way set-associative cache. The 

two-way skewed-associative cache offers the lowest miss ratio, which is significantly 

lower than that of a four-way associative cache [Gonzalez et al. '97]. 

The 2-way skewed-associative cache uses a single flag to avoid conflict misses in bank 

0: Each instruction is placed into a bank according to part of its memory address and a 

flag bit (refer to chapter 2). In general, the efficiency of the 2-way skewed-associative 

scheme depends on the frequency of conflict misses in bank 0. If conflicts among 

instructions in bank 0 increase, the efficiency of the 2-way skewed-associative conflict 

decreases. Therefore, the 2-way skewed-associative works better for traditional programs 

than object-oriented programs since traditional programs have less procedure calls than 

object-oriented ones. 

The T A C scheme reduces conflict misses effectively by grouping instructions 

separated by procedure call instructions. There are two steps for removing conflict misses 

for the T A C scheme: 

1. Initial bank selection: For each group of instructions separated by a procedure call, 

the possibility of conflict misses is very rare since each memory address i n a group is 

in sequence (spatial locality). Therefore, if each group is placed into a different bank, 
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conflict misses can be avoided easily between two adjacent groups (temporal 

locality). 

2. Final bank selection: The possibility of conflict misses remains for groups of 

instructions placed into the same bank after the initial bank selection. In this case, a 

flag of each cache line in a bank allow a conflict instruction to be placed into the 

other bank. 

With these two bank selection methods, T A C schemes reduce conflict misses better 

than a 2-way skewed-associative cache. The experimental results in Chapter 2 showed 

that T A C schemes on a L I cache (cache sizes: 4 Kbytes to 32 Kbytes, cache line sizes: 8 

Bytes to 32 Bytes) improves cache miss rates by up to 9.29% for C programs and 44.44% 

for C++ programs compared to skewed-associative caches. 

Moreover, T A C schemes (on the BTB, 2-way) reduce misprediction rates better than 

skewed-associative caches (on the BTB, 2-way) by up to 4% for C programs and 6.5% 

for C++ programs. 

4.1.2 Reduction of indirect branch mispredictions 

The GoStay2 predictor was designed to reduce indirect branch mispredictions. Several 

previous branch predictors were discussed for reducing indirect branch mispredictions: 

BTB, Target Cache, and Cascaded predictor (with strict filter and leaky filter). 

The leaky filter, which has two stages, offers the lowest indirect mispredictions. 

However, this predictor has problems in reducing indirect branch predictions as a result 

of two factors: 1) conflict misses in the first stage for small tables (fewer than 512 
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entries); and 2) inefficient predict and update rules. For the predict rule, if the first stage 

has a correct target address but the second stage has a wrong one, then the assumed 

priority of the second stage always causes a misprediction. For the update rule, a 

misprediction can occur when the previous target address is required after it is updated by 

the new one. 

The GoStay2 predictor, which also has two stages, can reduce indirect branch 

mispredictions by improving these two factors by using two mechanisms: 

1. The first mechanism: Conflict misses in a small-sized table with less than 512 entries 

in the first stage can be reduced by using the 2-way T A C scheme instead of a 4-way 

set-associative. 

2. The second mechanism: The GoStay predict and update rules (refer to chapter 3) 

considerably reduce indirect mispredictions caused by inefficient predict and update 

rules. 

With these two mechanisms, GoStay2 predictors reduce indirect mispredictions better 

than leaky filters. The experimental results in Chapter 3 show that the GoStay2 improves 

the indirect misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or lK-entry 

PHT) by 14.9% to 21.53%) compared to a leaky filter. 

4.2 Future Research 

There are several techniques for reducing memory latency: 1) Cache schemes for 

reducing cache misses; 2) Control/data flow predictors for instruction level parallelism; 

etc. 
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This thesis has focused on designing an efficient instruction cache scheme and indirect 

branch predictor. Future research could be targeted in three directions such as simulation, 

caching, and speculation as shown in Figure 48. 

Mapping Func. 

Replacement 

Data cache 

Etc. 

Future Research 

(̂ Speculatic^ 

Predict Rule 

Update Rule 

Load Prediction! 

Etc. 

Programs 
> < 

Benchmarks 

Tracing 
> ; < 

Logic 

Figure 48. Future Research for caching, speculation, and simulation. 

Figure 48 shows three research directions: 

1. Caching: For a small-sized (less than 32 Kbytes) cache memory, the mapping 

function is an important factor in reducing conflict misses. Gonzalez et al. ('97) 

compared the X O R mapping function proposed by Seznec ('93) with the 

polynomial mapping function proposed by Rau ('91). The polynomial mapping 

function is based on polynomial arithmetic. For example, an address A = 
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<an_l,---,al,aQ > can be considered as a polynomial A (x) = 

the coefficients of which are in the Galois Field GF (2). For 

GF (2), all nonzero elements can be represented as 1 and a primitive element a, 

and all coefficients can be implemented as logical A N D , and exclusive OR. 

According to Gonzalez et al. ('97), the polynomial mapping function can reduce 

conflict misses even better than the X O R mapping function. Therefore, for future 

research, it will be useful for the T A C scheme to assess the polynomial mapping 

function instead of the X O R mapping function (refer to chapter 2). 

For implementing BoPLRU replacement policy, there can be several ways to 

use a flag to avoid conflict misses: If the flag is '0', an instruction will be replaced 

to the other bank on a cache miss; Otherwise, the instruction will be replaced in 

the current bank. The modification of this replacement policy is also a subject of 

possible future research. 

In the case of data cache memory, data cache misses between traditional and 

object-oriented programs have no large differences. However, since cache miss 

rates of the data cache are higher than that of the instruction cache, it is important 

to future research to design an efficient data cache memory to reduce data cache 

misses. 

Speculation: High performance computer architectures use aggressive speculation 

to improve instruction level parallelism. This thesis presented the GoStay2 

predictor as a way to avoid stalling the pipeline caused by indirect branch 

instructions. One of two mechanisms of the GoStay2 predictor is the GoStay 

142 



predict and update rule. This GoStay rule can be modified in several ways by 

changing the usage of the flag and is a subject of future research. 

Load instructions, which represent the barrier to data flow, also incur long 

latencies that can degrade system performance considerably. Fortunately, loads do 

not fetch random sequences of values. Rather, load instructions often fetch the 

same values repeatedly, which makes them predictable [Lipasti et al. '96]. A load 

value predictor can quickly provide a predicted value of the instructions which 

directly or indirectly consume the load value. Lipasti et al. ('96) introduced the 

concept of value locality defined as the likelihood of a previously-seen value 

recurring repeatedly within a storage location. Value locality is visible in many 

ways [Lipasti et al. '96]: 

• Data redundancy: Some programs contain data which has little variation, 

such as sparse matrix, text files with white spaces, etc; 

• Program constants: Sometimes, it is efficient to generate extra code to load 

program constants from memory into registers; 

• Computed branches: In the case of a switch statement, the compiler should 

generate code to load a register with the base address for the branch; 

• Virtual function calls: To call a virtual function call, the compiler should 

generate code to load a function pointer, which is a run-time value; 

• There are many other cases for value locality. 

Most recent research has been done on predicting patterns from which values 

are generated such as stride predictors to keep track of the last value and the 

previous one [Gonzalez & Gonzalez '98]. Sazeides & Smith ('98) also explores 
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the use of context predictors that base their prediction on the last of several values 

seen, thus capturing reference patterns that are not reflected in the simple stride 

prediction scheme. Much research also has been done on the evaluation of 

combinations or hybrids of the predictors [Calder et al. '99] [Rychlik et al. '98] 

[Wang & Franklin '97]. As object-oriented application programs are becoming 

more popular, efficient load predictors for indirect load values are required to 

reduce memory latencies. Therefore, one possible future direction beyond this 

thesis will be in designing an efficient load value predictor. 

Simulation: For this thesis, two simulation programs were used for instruction 

cache memory and branch predictor with Shade and Spixtools. These programs 

can be used for future research in the area of: 1) caching and 2) in speculation 

such as branch predictors. In addition, for implementing load value predictions, 

there should be three main phases: trace generation, L V P (Load Value Predictor) 

unit simulation, and microarchitectural simulation such as for the Alpha A X P 

21164. For the alpha A X P 21164, traces can be generated with the A T O M tool 

[Srivastava and Eustace'94]. 

For benchmark programs, this thesis used SPECint95 and a suite of C++ 

programs. However, for future research, SPEC2000 and more C++ programs 

could be used for evaluating various schemes. 

Finally, H/W implementation (logic) is also needed for all the schemes 

designed in this thesis and to be developed for future research. 
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Appendix A Experimental results for T A C schemes 

A . l In the case of 8 bytes of cache line size 

A . l . l Cache size: 4 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 13.5741 12.3575 12.0427 11.7404 11.404 11.2711 
m88ksim 9.9471 7.4542 6.3708 3.7289 5.1271 3.5799 
compress 0.1688 0.1277 0.1209 0.0746 0.0823 0.074 
li 5.1875 1.8762 0.3607 0.093 0.3886 0.1612 
C++ Programs 
deltablue 8.0334 7.7241 6.6252 6.8178 5.1844 5.2465 
ixx 11:1933 9.8344 6.0157 4.1165 5.451 5.3853 
eqn 8.9639 6.558 5.4569 3.3671 4.7608 4.2074 

C 7.22 5.45 4.72 3.91 4.25 3.77 
harmonic 
mean 
C++ 9.40 8.04 6.03 4.77 5.13 4.95 
harmonic 
mean 

Benchmark Cache schemes 
. Programs 2-way T A C scheme 4-way T A C scheme 

2-bit 3-bit IR of T A C 2-bit 3-bit IR of T A C 
counter counter over skew counter counter over skew 

SPECint95 (C programs) 
gcc 11.1119 11.1267 2.62871 10.646 10.8381 5.871689 
m88ksim 4.7821 4.9144 7.2144 3.3723 3.5435 6.156036 
compress 0.0777 0.0785 5.92021 0.0574 0.0598 28.91986 
li . 0.2883 0.2863 34.7901 0.1421 0.1447 13.44124 
C++ Programs 
deltablue 4.6123 4.5402 12.4038 4.986 4.9716 5.224629 
ixx 5.2906 5.2923 3.03179 ,4.1889 4.5289 28.5612 
eqn 4.5504 4.4957 4.62377 3.7011 3.7056 13.67972 

C harmonic mean 5.58 9.06 
C++ harmonic mean 4.79 10.02 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.1.2 Cache size: 8 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 9.1722 7.7615 6.2134 4.9915 5.9139 5.0517 
m88ksim 5.8685 4.1365 2.1018 1.4363 2.3495 1.6656 
compress 0.087 0.0701 0.0283 0.0175 0.0311 0.0195 
li 0.7856 0.6061 0.1168 0.0079 0.0305 0.0132 
C++ Programs 
deltablue 4.7708 2.7842 1.6601 0.0861 1.5225 0.0117 
ixx 6.955 3.5307 1.4447 0.2425 1.114 0.3466 
eqn 5.6203 2.7741 1.4158 0.8877 1.8375 1.2184 
C 3.98 3.14 2.12 1.61 2.08 1.69 
harmonic 
mean 
C++ 5.78 3.03 1.51 0.41 1.49 0.53 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter ' 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 5.6966 5.6987 3.81456 4.894 5.0781 3.222313 
m88ksim 2.163 2.1757 8.62228 1.5623 1.6339 6.612046 
compress 0.0265 0.0277 17.3585 0.0183 0.0193 6.557377 
li 0.0145 0.0131 110.345 0.0119 0.013 10.92437 
C++ Programs 
deltablue 1.0737 0.9787 41.7994 0.0108 0.0108 8.333333 
ixx 0.8022 0.8011 38.8681 0.2491 0.2873 39.14091 
eqn 1.732' 1.7324 6.09122 1.195 1.1965 1.958159 

C harmonic mean 8.99 5.67 
C++ harmonic mean 14.03 4.57 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.1.3 Cache size: 16 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 6.1155 4.2874 3.6041 3.1364 3.5366 3.2786 
m88ksim 3.5999 1.6063 1.1218 0.777 1.0883 0.977 
compress 0.0599 0.0242 0.0171 0.0109 0.0153 0.0126 
li 0.4797 0.0682 0.0053 0.0036 0.0055 0.0048 
C++ Programs 
deltablue 2.5623 0.9306 0.2434 0.0451 0.513 0.005 
ixx 3.6767 1.8135 0.1891 0.0183 0.2015 0.0217 
eqn 2.9243 1.0045 0.5393 0.4198 0.6108 0.5092 
C 2.56 1.50 1.19 0.98 1.16 1.07 
harmonic 
mean 
C++ 3.05 1.25 0.32 0.16 0.44 0.18 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 3.3943 3.393 4.19232 3.1665 3.2477 3.540186 
m88ksim 1.0791 1.076 0.85256 0.8832 0.9376 10.62047 
compress 0.0144 0.0148 6.25 0.0121 0.0125 4.132231 
li . 0.0051 0.0051 7.84314 0.0045 0.0049 6.666667 
C++ Programs 
deltablue 0.1028 0.1389 399.027 0.0049 0.0048 2.040816 
ixx 0.0661 0.0659 204.841 0.0214 0.0253 1.401869 
eqn 0.5237 0.5245 16.6317 0.4615 0.4615 10.33586 

C harmonic mean 2.35 5.20 
C++ harmonic mean 44.44 2.31 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.1.4 Cache size: 32 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 3.4646 2.4058 2.011 1.7609 1.9741 1.9271 
m88ksim 1.8787 1.0754 0.7072 0.6892 0.7964 0.7362 
compress 0.0276 0.0163 0.0102 0.0101 0.0114 0.0104 
li 0.0225 0.0046 0.0031 0.003 0.0037 0.0032 
C++ Programs 
deltablue 1.7674 0.3336 0.0452 0.0444 0.0589 0.0044 
ixx 1.6477 0.4922 0.0557 0.0159 0.0355 0.0163 
eqn 1.7602 0.3163 0.1373 0.0532 0.1274 0.051 
C 1.35 0.88 0.68 0.62 0.70 0.67 
harmonic 
mean 
C++ 1.73 0.38 0.08 0.04 0.07 0.02 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

LR of T A C 
over skew 

SPECint95 (C programs) 
gcc 1.9278 1.9277 2.4017 1.7801 1.8437 8.257963 
m88ksim 0.7962 0.8064 0.02512 0.7131 0.7253 3.239377 
compress 0.0113 0.0114 0.88496 0.0102 0.0103 1.960784 
li 0.0036 0.0035 2.77778 0.0031 0.0032 3.225806 
C++ Programs 
deltablue 0.0479 0.0489 22.9645 0.0043 0.0044 2.325581 
ixx 0.0185 0.018 91.8919 0.0162 0.0163 0.617284 
eqn 0.0989 0.1002 28.817 0.0497 0.0507 2.615694 

C harmonic mean 0.10 3.20 
C++ harmonic mean 33.66 1.23 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.2 In the case of 16 bytes of cache line size 

A.2.1 Cache size: 4 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 8.6789 7.9353 7.946 8.0305 7.4845 7.698 
m88ksim 6.3876 5.0672 4.4541 3.3018 4.1036 2.9957 
compress 0.1028 0.0795 0.0768 0.0568 0.0637 0.0475 
li 3.3711 1.2779 0.3358 0.0841 0.3675 0.1499 
C++ Programs 
deltablue 5.116 4.7752 4.2907 4.5764 4.0781 4.149 
ixx 7.5845 6.8999 4.6471 3.3742 4.5208 4.2719 
eqn 5.9877 4.8258 4.4649 2.7172 4.0775 3.2816 
C 4.64 3.59 3.20 2.87 3.00 2.72 
harmonic 
mean 
C++ 6.23 5.50 4.47 3.56 4.23 3.90 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 7.393 7.4022 1.237657 7.3405 7.4604 4.87024 
m88ksim 3.7967 3.7306 8.083336 2.7533 2.8557 8.803981 
compress 0.0599 0.0592 6.343907 0.0406 0.0435 16.99507 
li 0.1789 0.1798 105.422 0.1233 0.1271 21.5734 
C++Programs 
deltablue 3.07731 3.7096 32.52159 3.7354 3.7374 11.07244 
ixx 4.1548 4.1553 8.809088 3.3772 3.6033 26.49236 
eqn 3.8129 3.8116 6.9396 2.9355 2.9405 11.79015 

C harmonic mean 3.64 9.43 
C++ harmonic mean 10.40 14.09 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.2.2 Cache size: 8 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 5.9347 5.0115 4.1727 3.4524 4.1238 3.5264 
m88ksim 3.8189 2.8224 1.5402 0.9474 1.3996 0.8247 
compress 0.0564 0.0475 0.021 0.011 0.0173 0.0122 
li 0.5394 0.4232 0.0834 0.0052 0.0238 0.0099 
C++ Programs 
deltablue 3.0746 1.9852 1.3405 0.2427 1.0326 0.0076 
ixx 4.7679 2.5423 1.3825 0.2884 1.1473 0.3752 
eqn 3.879 2.0957 1.1382 0.6186 1.1265 0.8662 
C 2.59 2.08 1.45 1.10 1.39 1.09 
harmonic 
mean 
C++ 3.91 2.21 1.29 0.38 1.10 . 0.42 
harmonic 
mean 

Benchmark Cache schemes 
Programs 2-way T A C scheme 4-way T A C scheme 

2-bit 3-bit IR of T A C 2-bit ' 3-bit IR of T A C 
counter counter over skew counter counter over skew 

SPECint95 (C programs) 
gcc 3.9645 3.9744 4.018161 3.3503 3.483 5.256246 
m88ksim 1.3202 1.2846 6.01424 0.7526 0.7918 9.580122 
compress 0.0163 0.0159 6.134969 0.0114 0.0118 7.017544 
li 0.0106 0.0094 124.5283 0.0088 0.0094 12.5 
C++ Programs 
deltablue 0.6488 0.6002 59.15536 0.0062 0.0087 22.58065 
ixx 0.9444 0.9431 21.48454 0.2642 0.2986 42.01363 
eqn 1.034 1.1002 8.945841 0.8192 0.823 5.737305 

C harmonic mean 6.82 7.73 
C++ harmonic mean 17.12 12.38 

** ER: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.2.3 Cache size: 16 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 3.9905 2.7931 2.3425 1.9864 2.2363 2.0591 
m88ksim 2.4346 1.1673 0.8468 0.4722 0.7035 0.4043 
compress 0.0399 0.0176 0.0133 0.0064 i 0.0087 0.0075 
li 0.2987 0.0618 0.0039 0.0022 0.004 0.0029 
C++ Programs 
deltablue 1.6494 0.6624 0.2994 0.0254 0.2398 0.0029 
ixx 1.6494 1.2925 0.1574 0.0116 0.138 0.0145 
eqn 1.6494 0.8677 0.3923 0.2721 0.3947 0.338 
C 1.69 1.01 0.80 0.62 0.74 0.62 
harmonic 
mean 
C++ 1.65 0.94 0.28 0.10 0.26 0.12 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 2.1576 2.1587 3.647571 1.9997 2.0545 2.970446 
m88ksim 0.6799 0.6731 3.471099 0.3636 0.3926 11.19362 
compress 0.0084 0.0086 3.571429 0.0071 0.0075 5.633803 
li 0.0033 0.0033 21.21212 0.0028 0.0029 . 3.571429 
C++Programs 
deltablue 0.1725 0.1872 •-. 39.01449 0.0028 0.0029 3.571429 
ixx 0.0416 0.0375 231.7308 0.0144 0.0166 0.694444 
eqn 0.3592 0.3507 9.883073 0.3127 0.3143 8.090822 

C harmonic mean 4.50 4.53 
C++ harmonic mean 22.88 1.63 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.2.4 Cache size: 32 Kbytes 

Benchmark Cache schemes 
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way 

mapped associative associative associative skew skew 
SPECint95 (C programs) 
gcc 2.2738 1.5641 1.3168 1.1609 1.3269 1.2732 
m88ksim 1.3058 0.7318 0.4034 0.3894 0.4665 0.2609 
compress 0.0191 0.0111 0.0057 0.0057 0.0063 0.0059 
li 0.0141 0.0031 0.0017 0.0016 0.0021 0.0019 
C++ Programs 
deltablue 1.1016 . 0.2278 0.0252 0.0247 0.0298 0.0025 
ixx 1.0529 0.3239 0.0405 0.0087 0.0137 0.0091 
eqn 1.2675 0.2233 0.098 0.0428 0.0855 0.0428 
C 0.90 0.58 0.43 0.39 0.45 0.39 
harmonic 
mean 
C++ 1.14 .0.26 0.05 0.03 0.04 0.02 
harmonic 
mean 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 1.2864 1.2861 3.148321 1.1738 1.2163 8.468223 
m88ksim 0.4583 0.4659 1.789221 0.2516 0.2546 3.696343 
compress 0.0062 0.0062 1.612903 0.0057 0.0057 3.508772 
li 0.002 0.002 5 0.0018 0.0018 ' 5.555556 
C++ Programs 
deltablue 0.0271 0.03 9.9631 0.0024 0.0024 4.166667 
ixx 0.0112 0.0109 22.32143 0.009 0.0091 1.111111 
eqn 0.0711 0.0709 20.25316 0.0419 0.0426 2.147971 

C harmonic mean 2.36 4.69 
C++ harmonic mean 15.42 1.87 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 

159 



A.3 In the case of 32 bytes of cache line size 

A.3.1 Cache size: 4 Kbytes 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs Direct-

mapped 
2-way set-
associative 

4-way set-
associative 

16-way set-
associative 

2-way 
skew 

4-way 
skew 

SPECint95 (C programs) 
gcc 7.9949 5.4971 5.5726 5.6542 5.4127 5.5763 
m88ksim 4.5646 4.0027 3.6464 3.7047 • 3.2517 2.9957 
compress 0.071 0.0598 0.0577 0.0603 0.0494 0.046 
li 1.9055 0.9577 0.3082 0.0896 0.2095 0.2128 
C++ Programs 
deltablue 3.5258 3.2252 3.0665 3.152 2.9576 3.0722 
ixx 5.4656 4.9618 4.0429 3.1098 3.8383 3.696 
eqn 4.4088 3.9352 4.0752 2.9875 3.8065 2.7779 
C 
harmonic 
mean 3.63 2.63 2.40 2.38 2.23 2.21 
C++ 
harmonic 
mean 4.47 4.04 3.73 3.08 3.53 3.18 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
. counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 5.3645 5.3725 0.898499 5.3663 5.4436 3.913311 
m88ksim 3.1451 3.1806 3.389399 2.7533 2.8557 8.803981 
compress 0.0474 0.0474 4.219409 0.0416 0.0429 10.57692 
li 0.1761 0.1798 . 18.9665 0.1338 0.1493 59.04335 
C++ Programs 
deltablue 2:7039 2.6597 9.382743 2.8521 2.8392 7.717121 
ixx 3.4364 3.4823 11.69538 3.054 3.238 21.02161 
eqn 3.5743 3.5746 6.487439 2.5455 2.5454 9.129837 

C harmonic mean 2.36 8,32 
C++ harmonic mean 8.66 10.46 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.3.2 Cache size: 8 Kbytes 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs Direct-

mapped 
2-way set-
associative 

4-way set-
associative 

16-way set-
associative 

2-way 
skew 

4-way 
skew 

SPECint95 (C programs) 
gcc 4.1804 3.6679 3.1195 2.7556 3.08 2.833 
m88ksim 2.8292 2.2555 1.3272 0.723 1.3233 . 0.8247 
compress 0.04 0.0369 0.0198 0.0073 0.0187 0.0082 
li 0.3859 0.3035 0.1161 0.0039 0.0235 0.0111 
C++ Programs 
deltablue 2.1809 1.5769 1.2615 0.5718 1.1811 0.0543 
ixx 3.5475 2.052 1.2953 ,0.4001 0.8825 0.5443 
eqn 2.8563 1.6637 1.0094 0.5411 1.0382 0.7688 
C 
harmonic 
mean 1.86 1.57 1.15 0.87 1.11 0.92 
C++ 
harmonic 
mean 2.86 1.76 1.19 0.50 1.03 0.46 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 3.0053 3.0114 2.485609 2.6558 2.7596 6.672189 
m88ksim 1.3065 1.3048 1.285878 0.7526 0.7918 9.580122 
compress 0.0163 0.0168 14.72393 0.0078 0.008 5.128205 
li 0.0088 0.0087 167.0455 0.009 0.0097 23.33333 
C++ Programs 
deltablue 0.9927 1.004 18.97854 0.0527 0.0437 3.036053 
ixx 0.733 0.7324 20.39563 0.3895 0.4358 39.74326 
eqn 0.9214 0.9343 12.67636 0.7089 0.7109 8.449711 

C harmonic mean 3.19 8.13 
C++ harmonic mean 16.61 6.34 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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A.3.3 Cache size: 16 Kbytes 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs Direct-

mapped 
2-way set-
associative 

4-way set-
associative 

16-way set-
associative 

2-way 
skew 

4-way 
skew 

SPECint95 (C programs) 
gcc 2.8254 1.9897 1.6636 1.3693 1.6726 1.3945 
m88ksim 1.8028 0.877 0.6775 0.3243 0.4904 0.4043 
compress 0.0285 0.0128 0.0107 0.0041 0.0071 0.0048 
li 0.1997 0.0503 0.0193 0.0017 0.0057 0.0021 
C++ Programs 
deltablue 1.2023 0.6767 0.2733 0.0151 0.1851 0.0019 
ixx 1.8822 1.0502 0.1395 0.0105 0.2141 0.0146 
eqn 0.9408 0.1709 0.0773 0.0401 0.2919 0.2378 
C 
harmonic 
mean 1.21 0.73 0.59 0.42 0.54 0.45 
C++ 
harmonic 
mean 1.34 0.63 0.16 0.02 0.23 0.08 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 1.6061 1.606 4.140464 1.3696 1.4071 1.818049 
m88ksim 0.4589 0.4575 6.864241 0.3036 0.3926 33.16864 
compress 0.0055 0.0056 29.09091 0.0046 0.0048 4.347826 
li 0.0027 0.0026 111.1111 0.0019 0.0021 10.52632 
C++ Programs 
deltablue 0.0599 0.0596 209.015 0.0018 0.0018 5.555556 
ixx 0.0797 0.0822 168.6324 0.0133 0.0147 9.774436 
eqn 0.2618 0.2644 11.49733. 0.2253 0.2261 5.548158 

C harmonic mean 9.29 . 4.42 
C++ harmonic mean 30.71 6.49 

** IR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 

162 



A.3.4 Cache size: 32 Kbytes 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs Direct-

mapped 
2-way set-
associative 

4-way set-
associative 

16-way set-
associative 

2-way 
skew 

4-way 
skew 

SPECint95 (C programs) 
gcc 1.6247 1.0923 0.9306 0.8345 0.9405 0.9049 
m88ksim 0.8457 0.5073 0.2432 0.2295 0.3007 0.2609 
compress 0.0124 0.0076 0.0033 0.0033 0.0039 0.0034 
li 0.0188 0.0027 0.0011 0.001 0.0018 0.0011 
C++ Programs 
deltablue 0.8077 0.1986 0.0147 0.0138 0.0162 . 0.0014 
ixx 0.7429 0.2627 0.0343 0.005 0.0128 0.0052 
eqn 0.9408 0.1709 0.0773 0.0401 0.0774 0.0423 
C 
harmonic 
mean 0.63 0.40 0.29 0.27 0.31 0.29 
C++ 
harmonic 
mean 0.83 0.21 0.04 0.02 0.04 0.02 

Benchmark 
Programs 

Cache schemes Benchmark 
Programs 2-way T A C scheme 4-way T A C scheme 

Benchmark 
Programs 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

2-bit 
counter 

3-bit 
counter 

IR of T A C 
over skew 

SPECint95 (C programs) 
gcc 0.9064 0.9068 3.762136 0.8434 0.8699 7.291914 
m88ksim 0.2943 0.2983 2.174652 0.2516 0.2546 3.696343 
compress 0.0038 0.0038 2.631579 0.0033 0.0034 3.030303 
li 0.0015 0.0013 20 0.001 0.0011 10 
C++ Programs 
deltablue 0.0151 0.015 7.284768 0.00135 0.0014 3.703704 
ixx 0.0065 0.0064 96.92308 0.005 0.0054 4 
eqn 0.0637 0.063 21.50706 0.0377 0.0379 12.20159 

C harmonic mean 3.46 4.78 
C++ harmonic mean 15.46 4.98 

** TR: Improvement Ratios (Refer to p67 in Chapter 2). 
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'. 
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