
Cache and Branch Prediction Improvements
for

Advanced Computer Architecture

by

Y U L C H U

B.Sc , KwangWoon University, Korea, 1984.
M.S.E.E., Washington State University, USA, 1995.

A THESIS SUBMITTED IN PARTIAL F U L F I L M E N T OF
THE REQUIREMENTS FOR THE D E G R E E OF

DOCTOR OF PHILOSOPHY

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Electrical and Computer Engineering)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH C O L U M B I A

May 2001

©YulChu, 2001

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her ' representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

ABSTRACT

As the gap between memory and processor performance continues to grow, more and more

programs will be limited in performance: by the memory latency of the system and by the branch

instructions (control flow of the programs). Meanwhile, due to the increase in complexity of

application programs over the last decade, object-oriented languages are replacing traditional

languages because of convenient code reusability and maintainability. However, it has also been

observed that the run-time performance of object-oriented programs can be improved by

reducing the impact caused by the memory latency, branch misprediction, and several other

factors. In this thesis, two new schemes are introduced for reducing the memory latency and

branch mispredictions for High Performance Computing (HPC).

For the first scheme, in order to reduce the memory latency, this thesis presents a new cache

scheme called T A C (Thrashing-Avoidance Cache), which can effectively reduce instruction

cache misses caused by procedure call/returns. The T A C scheme employs N-way banks and

X O R mapping functions. The main function of the T A C is to place a group of instructions

separated by a call instruction into a bank according to the initial and final bank selection

mechanisms. After the initial bank selection mechanism selects a bank on an instruction cache

miss, the final bank selection mechanism will determine the final bank for updating a cache line

as a correction mechanism. These two mechanisms can guarantee that recent groups of

instructions exist in each bank safely. A simulation program, TACSim, has been developed by

using Shade and Spixtools, provided by SUN Microsystems, on an ultra SPARC/10 processor.

Our experimental results show that T A C schemes reduce conflict misses more effectively than

skewed-associative caches in both C (9.29% improvement) and C++ (44.44% improvement)

i i

programs on L I caches. In addition, T A C schemes also allow for a significant miss

reduction on Branch Target Buffers (BTB).

For the second scheme to reduce branch mispredictions, this thesis also presents a new

hybrid branch predictor called the GoStay2 that can effectively reduce misprediction

rates for indirect branches. The GoStay2 has two different mechanisms compared to other

2-stage hybrid predictors that use a Branch Target Buffer (BTB) as the first stage

predictor: First, to reduce conflict misses in the first stage, an effective 2-way cache

scheme is used instead of a 4-way set-associative scheme. Second, to reduce

mispredictions caused by an inefficient predict and update rule, a new selection

mechanism and update rule are proposed. A simulation program, GoS-Sim, has been

developed by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra

SPARC/10 processor. Our results show significant improvement with these mechanisms

compared to other hybrid predictors. For example, the GoStay2 improves indirect

misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by

14.9% to 21.53% compared to the Cascaded predictor (with leaky filter).

iii

T A B L E OF CONTENTS

Abstract ii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xi

CHAPTER I Overview and summary 1

1.1 Introduction 1

1.2 Problem definitions and resolutions . 9

1.3 General background 14

1.3.1 Cache Misses 14

1.3.2 Branch Mispredictions 19

1.4 Contributions and summary 24

CHAPTER n Reduction of Instruction Cache Misses 27

2.1 Introduction 28

2.2 Cache Misses 30

2.2.1 Total miss ratios vs. conflict miss ratios 30

2.2.2 Skewed-associative caches 34

2.3 Thrashing-Avoidance Cache (TAC) 37

' 2.3.1 An overview of a T A C scheme 38

2.3.2 Bank Selection Logic (BSL) - Initial Bank Selection 40

2.3.3 Bank-originated Pseudo L R U Replacement Policy (BoPLRU)

- Final Bank Selection 44

2.3.4 Benefit of the T A C scheme 47

iv

2.3.5 Examples of cache misses: a 2-way T A C scheme vs. a 2-way

skewed-associative 49

2.4 Experimental Environment 52

2.4.1 Simulation methodology 52

2.4.2 Benchmarks 54

2.5 Experimental results 55

2.5.1 Cache Misses vs. Cache Sizes 56

2.5.2 Bank Switching vs. Procedure Calls 60

2.5.3 Instruction Cache Misses for various cache schemes 66

2.5.4 Skewed-associative caches vs. T A C schemes 68

2.5.5 Various cache schemes for the Branch Target Buffer 76

2.5.6 Comparison for all 2-way schemes 81

2.6 Chapter conclusions 83

CHAPTER III Reduction of Indirect Branch Mispredictions 85

3.1 Introduction 85

3.2 Related work 88

3.2.1 Indexing functions for indirect branch predictors 89

3.2.2 Selection mechanisms and update rules for hybrid predictors 92

3.3 GoStay2 Branch Predictor 94

3.3.1 An overview of a GoStay2 predictor 95

3.3.2 The 2-way T A C scheme for the BTB - The first mechanism 99

3.3.3 The GoStay predict and update rule - The second mechanism 101

3.3.3.1 GoStay predict rule 101

v

3.3.3.2 Update rule 103

3.3.4 Benefits of the GoStay2 branch predictor 104

3.4 Experimental environment 108

3.4.1 Benchmarks 109

3.5 Experi mental results 111

3.5.1 Implemented branch predictors 111

3.5.2 Indirect Branch Instructions 114

3.5.3 Conventional indirect branch predictors 116

3.5.4 Misprediction rates for indirect branches between the L F and GoS
122

3.5.5 Analyses of the update rule 129

3.6 Chapter conclusions 134

CHAPTER IV Conclusions and Future Research 137

4.1 Conclusions 137

4.1.1 Reduction of cache misses 138

4.1.2 Reduction of indirect branch mispredictions 139

4.2 Future Research 140

BIBLIOGRAPHY 145

Appendix A Experiment results for T A C schemes 152

vi

LIST OF TABLES

Table 1. . Actual miss rate versus block size for five different-sized caches. 16

Table 2. Behavioral differences between C and C++ Programs [Calder et al '94] 28

Table 3. Benchmark descriptions 54

Table 4. Benchmark characteristics 55

Table 5. Instruction cache miss rates in percentages (cache size: 8 K B , a line size: 16 bytes)

66

Table 6. Comparison of hardware complexity and access time among three representative

2-way schemes: 2-way set-associative, 2-way skewed-associative, and 2-way T A C schemes
82

Table 7. Update rules for the Target Cache and Cascaded predictors 93

Table 8. Benchmark descriptions 110

Table 9. Benchmark characteristics 111

Table 10. Comparisons for the percentages of conditional and indirect branches 114

Table 11. The relevance of indirect branches by comparing lines of code, inst./ind.

(instructions/indirect branch), and cond./ind. (conditional branches/indirect branch) 115

Table 12. Indirect branch misprediction rates according to the BTB entries. 136

vii

LIST OF FIGURES

Figure 1. An overview of High Performance Computing (HPC) 2

Figure 2. The technical trend for supercomputers and microprocessors [Buyya '00] 3

Figure 3. Comparison of the performance between microprocessor and D R A M according to

Moore's Law [Patterson and Keeton '00] [Alexander & Kedem '95] 7

Figure 4. Problem definitions 9

Figure 5. Relative C P U execution time by cache miss rates. 11

Figure 6. Relative C P U execution time by branch misprediction rates. 13

Figure 7. Reduction of cache misses (overview) 14

Figure 8. This cache example has eight block frames and memory has 32 blocks

[Patterson & Hennessy '96] 17

Figure 9. Reduction of branch mispredictions (overview) 19

Figure 10. Components of Total CPI (Cycles Per Instructions) [Bondi et al. '96] 23

Figure 11. Miss ratios (%) of the various cache schemes [Gonzales et al '97] 31

Figure 12. An example of instructions with two procedure calls 32

Figure 13. Execution of the code shown in Figure 12 in a direct-mapped cache 32

Figure 14. Execution of the code shown in Figure 12 in a fully-associative cache 33

Figure 15. a, b, and c compete for the same location in bank 0, but can be present at the same

time, as they do not map to the same location in bank 1 [Seznec '97] 35

Figure 16. One of replacement polices, P L R U , for a 2-way skewed-associative cache 36

Figure 17. The basic operations of a conventional cache scheme and a T A C scheme 38

Figure 18. The operation of the B S L (2-bit counter, 2-way) according to a flow of instructions

Conflicts in (B, H) and (I, X) 41

Figure 19. An example for the grouping instructions in a 2-way T A C scheme 42

viii

Figure 20. Initial bank selection of B S L for a 2-way T A C scheme 43

Figure 21. Pseudo code for the BoPLRU replacement policy 45

Figure 22. Final bank selection of BoPLRU replacement policy for a 2-way T A C scheme 46

Figure 23. Placement of instructions in a 2-way T A C scheme 47

Figure 24. An example for a 2-way skewed-associative scheme 50

Figure 25. An example for a 2-way T A C scheme 51

Figure 26. Simulation methodology with benchmark programs and various tools 52

Figure 27. Comparisons for cache misses according to the cache sizes (4 cache schemes) 57

Figure 28. Cache miss rates according to the sizes of the n-bit counter (C programs) 61

Figure 29. Cache miss rates according to the sizes of the n-bit counter (C++ programs) 63

Figure 30. Comparison for instruction cache miss rates between C (m88ksim) and C++

(deltablue) programs (8Kbytes, 16bytes) 67

Figure 31. Comparisons for Improvement Ratios between 2-way skewed-associative

and 2-way T A C caches 69

Figure 32. Comparisons for Improvement Ratios between 4-way skewed-associative

and 4-way T A C caches 72

Figure 33. Comparisons for Improvement Ratios between skewed-associative and T A C

caches from 4Kbytes to 8 Kbytes 75

Figure 34. Comparisons of branch misprediction rates of BTB with a 4-way set-associative,

2-way skewed-associative and 2-way T A C caches. 77

Figure 35. Comparisons for Improvement Ratios among 4-way set-associative, 2-way

skewed-associative and 2-way T A C schemes 79

Figure 36. Various indirect branch predictors . 8 9

Figure 37. The basic operations of conventional 2-stage and GoStay2 branch predictors. 96

ix

Figure 38. The overview of the GoStay2 branch predictor 97

Figure 39. The operation of the first mechanism, data = branch address + target address 99

Figure 40. The GoStay predict rule of the second mechanism 102

Figure 41. Update rule of the second mechanism 103

Figure 42. A comparison of the update processing between the GoStay2 and the leaky

filter 106

Figure 43. Experimental methodology 108

Figure 44. The comparison of misprediction rates according to BTB sizes for indirect

branch predictors. The second stage is a table with 512 entries (4-way) 116

Figure 45. Comparison Misprediction Rates and Improvement Ratios between C and

C++ Benchmark programs 124

Figure 46. Comparison misprediction rates and Improvement Ratios between the L F and

GoS for all Benchmark programs(C and C++ programs, harmonic mean) 127

Figure 47. Analysis of prediction rates according to cases whether both predictors have

a correct target address or not. 'Others' means all other cases except the n l to n4 130

Figure 48. Future Research for caching, speculation, and simulation 141

x

A C K N O W L E D G E M E N T S

I sincerely wish to express my gratitude to my supervisor, Dr. M . R. Ito, for his inspiring and

encouraging guidance in leading me to a deeper understanding of this work. His invaluable oral

and written comments were always extremely perceptive, helpful, and appropriate.

I would also like to thank my committee members, Dr. Steve Wilton and Dr. Alan Hu, for

their help, advice, and valuable suggestions throughout my work. Thanks to Dr. Hu, I was able to

use SPEC95 benchmark program for my simulation without any trouble! Thanks to Dr. Wilton, I

was able to expand one of my future research programs to include the field of FPGA.

Special thanks should go to my friends Robert Ross and Susan Ritchie who provided valuable

proofreading comments on this work.

•

I am also very grateful to Dr. Norm Hutchinson, Dr. Babak Hamidzadeh and Dr. Mark R.

Greenstreet for their kindness in participating in my examining committee. I am also very

grateful to Dr. Nikitas Dimopoulos for his valuable editorial comments and for passing me as an

external examiner.

It is my great pleasure to dedicate this small achievement to my mother Sunghye Hwang, my

father Kwahgho Chu, my wife Myunghee Chu, our children, Sangjun,.Jinna and Yuna for their

love, support, and patience over the past several years.

xi

I want to express my deep gratitude to my brother Dr. Hong Chu, my cousin Ronald Choo,

and their families for their love and encouragement.

Last, but certainly not least, I would like to extend my deepest thanks to Kyungwoo club

members in Korea and many friends for their support and understanding throughout my time at

UBC.

This dissertation could not have been completed without the support of the many people who

are gratefully acknowledged here.

This research has been funded by the Natural Sciences and Engineering Research Council of

Canada.

xii

Chapter 1 Overview and summary

1.1 Introduction

Through the mid-1980s, supercomputers such as Cray were used to achieve high

performance for advanced scientific and engineering applications. However, since the

late 1980s, supercomputers have not been able to significantly improve performance.

They have been restricted by high cost (about $3 million) compared to a personal

computer (about $3000) and limited by the number of customers [Dowd & Severance

'98].

Meanwhile, the performance of microprocessor architectures has doubled every two to

three years. This has occurred for two reasons. First, microprocessor architectures are

borrowing and innovating with techniques formerly unique to supercomputers and large

mainframes. The second reason has been the emergence of a personal and business

computer market which demands high performance for computer usage such as 3D

graphics, graphical user interface, and games [Dowd & Severance '98]. However,

supercomputers are still used for the most demanding applications such as weather

forecasting.

What is High Performance Computing (HPC)?

In general, High Performance Computing (HPC) refers to computing systems that are

used to provide solutions to problems that require the significant computational power

1

needed to process very large amounts of data quickly, and are also needed to operate

interactively across a geographically-distributed network. Figure 1 shows an overview of

HPC with respect to three different areas: goals, architectures, and techniques.

Performance

Cost

Hi»h Performance
|̂ Computing (HPC) ^

Etc.

Figure 1. An overview of High Performance Computing (HPC)

In Figure 1, the goals for HPC could be achieved through maximum performance and

minimum cost. How to maximize performance depends on reducing the time to execute a

program (T), which is a function of the number of instructions to execute (ni), the average

number of clock cycles per instruction (CPT), and the clock cycle time (tc). From (1) ,

there are two distinct approaches for increasing system performance:

T = nixCPIxtc - - - (1)

• By lowering the clock cycle time (t) - Much of this performance gain comes as a

consequence of circuit and layout improvement. However, this is becoming increasingly

2

difficult and will eventually reach physical constraints. Since this topic is beyond the

scope of this thesis, it will not be covered in detail.

• By improving two other factors (CPI, n,J - The major performance optimization is

pipelining, in which a stream of instructions progress from pipeline stage to pipeline

stage with overlapping of instruction fetch, decode, and execution. This technique will be

discussed in detail with other techniques such as cache memory, parallelism and

superscalar throughout this section.

10.000

1.000

a.
o
) u
— 100,
o <
Q.
: z

to

1975 1980 1985'; 1990: 1995 2000

Figure 2. The technical trend for supercomputers and microprocessors [Buyya '00].

Figure 2 compares the performance since 1980 between supercomputers such as

C R A Y and microcomputers by using the L I N P A C K benchmark program. The L I N P A C K

is one of the more famous floating-point benchmarks of recent years, created by Jack

Dongarra, and gets its name from a linear algebra package that it uses to solve a dense

3

• C R A Y , n = 1,000
• C R A Y , n — 100
S Micro , n = 1.000

Sun 4/260
V' ; i- • • •»•••• -

system of linear equations with Gaussian elimination. The L I N P A C K keeps track of

execution time and then divides this into the number of floating-point operations that are

performed to get a MegaFLOPS rating, 'n = 100 and n = 1000' in Figure 2 describes the

results based on a 100 x 100 and 1000 x 1000 matrix using a double-precision floating

point. Figure 2 shows that the performance of a supercomputer in 1990 is similar to a

microcomputer in 1995. Moreover, the performance gap between supercomputers and

microprocessors has been decreasing since 1995 because of the rapid technical

development of microprocessors.

In 1988, an article appeared in the Wall Street Journal titled 'Attack of the Killer

Micro' that described how computing systems made up of many small ($3,000 to

$20,000) machines would soon make large supercomputers ($3 million) obsolete. These

inexpensive processors have been developed toward high performance computing

systems. HPC, which is broader than supercomputing with supercomputers, is a moving

target because of the steady and rapid gains in the performance/cost ratio. Yesterday's

supercomputer is today's personal computer; today's leading-edge techniques for

supercomputers will be among tomorrow's mainstream capabilities for HPC.

In Figure 1, the architectures for HPC have a tendency to be designed in such a way as

to do additional parallelism proportional to increased machine resources [Lipasti & Shen

'97]. According to Lipasti & Shen ('97), these architectures are:

• Superscalar machines schedule instructions dynamically at runtime. These machines

can reduce the average number of cycles per instruction, but they need extra

hardware. Therefore, performance depends on the amount of resources in the

machine;

• VLIW machines schedule instructions statically at compile time. These machines

contain numerous functional units, which accommodate multiple streams of data

input, such as audio and video. In general, V L I W machines heavily rely on powerful

compilers to detect and resolve inter-instruction dependencies in software. This keeps

the hardware design simple and fast. But their static nature makes them incompatible

with dynamic variations in parallelism, which are caused by an aggressive memory

subsystem and speculative-execution techniques;

• Multithreaded processors support multiple machine contexts and execute multiple

instruction streams simultaneously. The performance depends on finding enough

thread parallelism by software. The disadvantages of these : machines are that

debugging multithread programs is difficult, and that there is a lack of automatic

thread-partitioning compilers;

• Single chip multiprocessors are used for improving throughput under

multiprogrammed workloads. However, these machines are restricted to numerical

applications that contain easily parallelized loops. Limited processor interconnects

and synchronization overhead will degrade system performance.

• Vector processors are machines built primarily to handle large scientific and

engineering calculations. Their performance derives from a heavily pipelined

architecture which operations on vectors and matrices can efficiently exploit. As an

example, the NEC S X 5 / 3 C is reported at 8 Gflops per second per processor peak.

The techniques for HPC in Figure 1 can be categorized into four different fields. Those

fields include:

• Pipelining allows increased utilization of hardware resources by the partial execution

of more than one instruction at the same time. One of the most common uses of

pipelining is to fetch the next instructions from lower level memory while executing a

current one.

• Cache memory is to improve the throughput of memory data and instruction flow.

Memory data flow is relevant to the load/store instructions. The data values are stored

and retrieved from data memory. To reduce average memory latency, the prediction

of load values and addresses are incorporated into the execution core. Meanwhile,

there are two main logical stages in the instruction flow: Fetch - the processor

retrieves instructions from cache or main memory; and Decode - the processor

decodes instructions, renames their operands, and detects inter-instruction

dependencies. For each stage, there is a need to reduce cache misses by using an

efficient cache scheme and increase the speculation for the control-flow instructions

with an accurate branch predictor.

• For the technique of parallelism, multiple execution units are popular for improving

performance. The execution core must strive for two fundamental goals to increase

, instruction throughput. It must:

efficiently detect and resolve inter-instruction dependencies; and

eliminate or bypass as many dependencies as possible to explore more parallelism

between instructions.

• Other techniques such as prefetching, buffering, etc. are also popular for improving

system performance for the FfPC.

6

What do future architectures look like?

Figure 3 shows Moore's Law (the observation made in 1965 by Gordon Moore, co-

founder of Intel): The number of transistors on a microprocessor would double

approximately every 18 months. Meanwhile, memory densities (DRAM) and disk

densities will continue to quadruple every three years. The gap between microprocessor

and memory will be discussed in detail in section 1.2.

i c r o p r o c e s s o r
) - 80%/yr .

D R A M
5 -10%/yr .

© i H (S f i ^ w > v c r » 9 0 0 \ ' © » H N f > ^ > / > s e ' t - a o o \ © .

rt — H r t r t H r t H H r t H r t r t H H r t H r t H H N

Time

Figure 3. Comparison of the performance between microprocessor and D R A M according

to Moore's Law [Patterson and Keeton '00] [Alexander & Kedem '95].

To date, Moore's Law has proven remarkably accurate even if the end of Moore's Law

has been predicted so many times that rumors of its demise have become an industry

joke. In reality, microprocessors have achieved a performance growth of 10,000 times

7

during the last two decades. Transistor count increased from 10,000 to 100,000 in the

1970s, and then increased up to 1 million in the 1980s; while clock frequency increased

from 200KHz to 2MHz in the 1970s and up to 20MHz in the 1980s. In the 1990s, both

transistor count and clock frequency achieved an increase of 20 to 30 times. Future

billion-transistor chips in the 2000s will create machines that are much wider (issue more

than four instructions at once) and deeper (have longer pipelines) [Lipasti & Shen '97].

According to.Burger & Goodman ('97) and Patt et al. ('97), microprocessors will have

more than one billion transistors on a single chip by 2010. As we discussed before, most

of the current techniques for microprocessors have come from. supercomputers.

Moreover, some future techniques will be based on current ones such as instruction level

parallelism. The future architectures surveyed by Burger & Goodman ('97) are:

Advanced Superscalar processors that issue 16 to 32 instructions per cycle and

Superspeculative processors that have wide-issue speculation;

Vector IRAM processors couple vector processor execution with large, high-

bandwidth, on-chip D R A M banks, which provide the vector units with sufficient

bandwidth at a reasonable cost;

Chip multiprocessors that place a number of processors (four to 16) on a single chip;

- Raw processors that implement parallel architectures with 128 tiles, very simple

processors with reconfigurable functional logic.

Beyond the previous potential architectures, Simultaneous multithreaded processors and

Trace processors are also included in the surveyed future architectures [Burger &

Goodman'97].

8

1.2 Problem definitions and resolutions

The previous section provided an overview of high performance computing. This section

will discuss two problem definitions intended to improve system performance for current

and future microprocessors.

Chapter 2

Development of Technologies
Microprocessor (50%-80%.per year)

memory (5%-10% per year)

Chapter 3

Memory Latency 4 Cache Memory 4
—•

Reduction of
Cache Misses

Branch Instructions

Branch Predictor J

Reduction of
Branch Mispredictions

J

Conflict Misses and
Indirect Branch Mispredictions'

Figure 4. Problem definitions

In Figure 4, rapidly changing technologies are improving microprocessor execution

speeds at a rate of 50% - 80% per year. In contrast, D R A M access time has developed at

the much lower rate of 5% - 10% per year [Alexander & Kedem '95]. As the

performance gap between microprocessor and memory increases dramatically, more and

more programs will be limited in performance:

- by the memory latency and bandwidth of the system;

by the branch instructions (control flow of the programs).

9

Latency is described as the total time memory requires to satisfy a request from the

processor, and bandwidth as the rate of information transfer between the processor and

memory that supports the required processing rate.

I) First Problem Definition (Left side of Figure 4): Cache Misses

Since the processor is much faster than the main memory, latency often causes the

processor to go into one or more wait states. In order to solve the latency problem, a

cache memory has been introduced as part of a memory hierarchy. The memory

hierarchy combines a fast, small memory matched to the processor speed with slower and

larger memories (level-two or main memory).

When a GPU does not find data it needs in a cache memory, a cache miss occurs. If a

cache miss occurs, the C P U must wait until the needed data is retrieved from a lower

level memory.

The impact on C P U performance caused by cache miss rates is:

C P U Execution time = IC * (CPI + (Memory stall clock cycle/Instruction))*

Clock cycle time

= IC * (CPI + (memory accesses per instruction) * M R * MP) *

Clock cycle time

Where, IC (Instruction Count), CPI (Cycles per Instruction), M R (Miss Rate), and

M P (Miss Penalty).

Relative CPU Execution time = CPU Execution time /(IC * Clock cycle time* CPI)

If there are no memory stalls (perfect cache), then Relative C P U Execution time is 1.

10

Assume that CPI = 2, memory references per instruction = 1.33, Cache Miss Rate =

10%, and Miss Penalty = 50 cycles.

Then, Relative C P U Execution time = (2 + 1.33 * 0.1 * 50) / 2 = 4.33.

This Relative C P U Execution time shows that a C P U Execution time of 10% cache

miss rate is 4.33 times longer than a C P U Execution time with a perfect cache (0% cache

miss rate).

Figure 5 shows Relative C P U Execution time when the behavior of the cache (from

0% cache miss rate, perfect cache, to 10% cache miss rate) is included.

° c

5 I
DC X

UJ

5

4 -
3 -
2 -
1 -
0

0% 1% 3% 5% 7% 9% 10%
Cache Miss Rates

Figure 5. Relative C P U execution time by cache miss rates.

Without any memory hierarchy at all, the CPI would increase to 2.0 + 50*1.33 or 66.5

- a factor of over 33 times longer.

As the above example illustrates, cache behavior can have enormous impact on

performance. Therefore, the efficiency of a cache memory depends on reducing cache

misses and will be discussed in detail in chapter 2. This thesis defines reduction of cache

misses as the first problem to be solved and in chapter 2 introduces a new cache scheme

to reduce cache misses, focused on conflict misses.due to the cache set overfilling, even

though the cache as a whole may not be full.

11

2) Second Problem Definition (Right side of Figure 4): Branch Mispredictions

For current microprocessors, multi-instruction issues are a popular method of increasing

system performance. Therefore, instruction cache misses can severely limit the

performance of high-speed microprocessors. It has been observed that many instruction

cache misses are caused by the control flow of programs.

Control flow is related to the branch instructions, which can be generally categorized

into conditional or unconditional, and direct or indirect [Chang et al '97]. Since these

branch instructions do not tend to fetch the next instruction in sequence, it is not possible

to know the next instruction until a current instruction is executed. To overcome this

obstacle, branch prediction schemes have been used for predicting and fetching the

outcome of branches before they are executed. Therefore, if the prediction is wrong

(branch misprediction), the processor needs to be stalled because as a result of flushing all

the instructions incorrectly fetched, issued, and executed. This is referred to as branch

penalty. Thus, without an appropriate branch predictor, the branch penalty can have a

critical impact on overall system performance.

If branches are the only thing that cause stalls in a pipeline, the impact of C P U

performance caused by branch penalty is:

C P U Execution time = IC * (CPIbase + branch frequency * branch penalty)*

Clock cycle time

Where, IC (Instruction Count), CPIbase (an ideal CPI without branch stalls in the

pipeline), branch penalty (branch misprediction rate * misprediction penalty).

Relative CPU Execution time = CPU Execution time / (IC * Clock Cycle time * CPIbase)

If there are no branch stalls (perfect branch predictor), Relative C P U Execution time is 1.

12

Assume that CPIbase = 1, branch frequency = 25%, branch misprediction rate = 20%,

and misprediction penalty = 5 cycles.

Then, Relative C P U Execution time = (1 + 0.25 * 0.2 * 5) / 1 = 1.25.

This Relative C P U Execution time shows that a C P U Execution time Of 20% branch

misprediction rate is 1.25 times longer than a C P U Execution time with a perfect branch

predictor (0% branch misprediction rate).

Figure 6 shows Relative C P U Execution time when the behavior of the branch predictor

(from 0% branch misprediction rate, perfect branch predictor, to 40% branch

misprediction rate) is included.

« '2-r
D E

5 I 4 4
o g 0.5 4
tr x

U J ,

o% 5% 10% 15% 20% 30% 40%
Branch Misprediction Rates

Figure 6. Relative C P U execution time by branch misprediction rates.

To reduce the branch penalty, there is a need to reduce branch mispredictions: direct

mispredictions and indirect branch mispredictions. As object-oriented languages such as

C++ and J A V A are widely used, more accurate branch predictors for multi-targets, which

are called indirect branch predictors, are needed. This thesis also defines the reduction of

branch mispredictions as the second problem to be solved, and introduces in chapter 3 a

new branch predictor to reduce branch mispredictions focused on indirect branch

mispredictions due to multi-targets.

13

1.3 General background

The previous section briefly describes the problems defined in this thesis. In this

section, we discuss the general background of cache misses and branch mispredictions in

more detail.

1.3.1 Cache Misses

Reduction of
Cache M isses

C onflict M isses

Eff icient C ache
Schemes

Compulsory Misses
1 — H Larger Cache & B l o c k Size - i — H

Larger Cache & B l o c k Size

C apacity M isses .
J

C conflict misses ^
memory utilization
replacem ent
hit time

V.cost

Figure 7. Reduction of Cache Misses (overview).

Figure 7 shows the problem of reduction of cache misses. There are three cache-miss

types: compulsory, capacity, and conflict. Compulsory and capacity cache misses can be

reduced by larger cache and block sizes. However, conflict misses are more complex than

other cache misses and are critical to system performance. Figure 7 also suggests the

problems which the conventional cache schemes have in regard to conflict misses,

memory utilization, etc. In Chapter 2, we will discuss the conflict miss ratios of several

14

cache schemes (direct-mapped, 2-way skewed associative, etc.) compared to the fully-

associative scheme which has no conflict misses, and also introduces a new cache scheme

called the T A C (Thrashing-Avoidance Cache) scheme, which can reduce conflict misses

effectively.

Cache Miss Types

Despite tremendous research efforts, current cache schemes make poor use of cache

capacity. One of the drawbacks of conventional cache schemes is that they perform a

myopic management of all memory references: if the reference misses, a new block is

brought into the cache at the expense of replacing another [Sanches et al '97].

There are three cache-miss types - compulsory, capacity, and conflict [Patterson &

Hennessy '96]:

• Compulsory misses: these are the first reference misses since a block must be brought

into the cache the first time it is accessed;

• Capacity misses: if the number of active blocks is more than the cache can contain,

capacity misses take place;

• Conflict misses: these misses take place because of limited or zero associativity,

when blocks, must be discarded in order to accommodate new blocks which are

mapped to the same line in the cache. A conflict miss occurs when the replaced block

needs to be accessed.

15

In case of compulsory misses, it is not possible to avoid these misses since the first

access is to a block that is not in the cache. Fortunately, the frequency of these misses

tends to be" quite small compared to other cache misses.

Block Size Cache Size Block Size

I K 4K 16K 64K 256K

16 15.05 % 8.57 % 3.94 % 2.04 % 1.09 %

32 13.34 % 7.24 % 2.87 % 1.35 % 0.70 %

64 13.76 % 7.00 % 2.64 % 1.06% 0.51 %

128 16.64 % 7.78 % 2.77 % 1.02% 0.49 %

256 22.01 % 9.51 % 3.29 % 1.15 % 0.49 %

Table 1. Actual miss rate versus block size for five different-sized caches. Note that for a

1-KB cache, 64-byte, 128-byte, and 256-byte blocks have a higher miss rate than 32-byte

blocks. In this example, the cache would have to be 256 K B in order for a 256-byte block

to decrease misses [Patterson & Hennessy '96].

Table 1 shows the trade-off of block size versus miss rate for a set of programs and

cache sizes. Larger cache and block sizes reduce compulsory misses since larger blocks

take advantage of spatial locality. At the same time, the larger blocks increase any miss

penalty. Since they reduce the number of blocks in the cache, larger blocks may increase

conflict misses and even capacity misses if the.cache size is small.

16

Basic Mapping Functions

Fully associative:
block 28 can go
anywhere

Block No. 0 1 2 3 4 5 6 7

Cache
Memory

Memory

Direct mapped:
block 28 can go
only into block 4
(28 mod 8)
0 1 2 3 4 5 6 7

Block frame

2 2 2 2 2 2 3 3
Block No. 0 1 2 3 4 5 6 7 4 5 6 7 8 9 0 1

Set associative:
block 28 can go
anywhere in set 0
(28 mod 4)
0 1 2 3 4 5 6 7

Set Set Set Set
0 1 2 3

Figure 8. This cache example has eight block frames and memory has 32 blocks

[Patterson & Hennessy '96].

The basic mapping functions can be categorized into the following types:

• If a block can be placed anywhere in the cache, the cache is said to be fully-

associative;

• If each block has only one place it can appear in the cache, the cache is said to be

direct-mapped. The mapping is usually (Block address) M O D (Number of blocks in

cache);

17

• If a block can be placed in a restricted set of places in the cache, the cache is said to

be set associative. A set is a group of blocks in the cache. A block is first mapped

onto a set, and then the block can be placed anywhere within that set. The set is

usually chosen by bit selection; that is, (Block address) M O D (Number of sets in

cache). If there are n blocks in a set, the cache replacement is called n-way set

associative.

Figure 8 shows that the restrictions on where a block is placed create three categories of

cache organization. The set-associative organization shown has four sets with two blocks

per set, and is called two-way set associative. Assume that there is nothing in the cache

and that the block address needed identifies lower-level block 28. The three options for

caches are shown left to right. In fully-associative, block 28 from the lower level can go

into any of the eight block frames of the cache. With direct-mapped, block 28 can only be

placed into block frame 4 (28 modulo 8). In two-way set associative, the block is to be

placed anywhere in set 0 (28 modulo 4). With two blocks per set, this means block 28 can

be placed either in block 0 or block 1 of the cache. The vast majority of processor caches

today are direct-mapped, two-way set associative, or four-way set associative.

18

1.3.2 Branch Mispredictions

Reduction of
Branch Mispredict ions D irect M ispredictions

Indirect M ispredictions

Branch Predictor with
Taken or N o t - T a k e n

T w o - L e v e l Adapt ive
Indirect Branch Predictor

B r a n c h T a r g e t Buf fer , Targe t
C a c h e , Strict F i l t er , L e a k y Fi l ter

f m ulti-targets ^
conflict misses
table utilization
hit tim e

^cost

Figure 9. Reduction of Branch Mispredictions (overview).

Figure 9 shows methods for the reduction of branch mispredictions, which are

categorized into direct and indirect branch mispredictions. Direct branches can be

predicted with two-level branch predict schemes with hit ratios of up to 97%. However, it

cannot be used for indirect branches which have more than one target. Chapter 3 explains

indirect branch mispredictions in detail and discusses current indirect hybrid branch

predictors such as Target Cache and Cascaded Predictor. These predictors work better

than BTB-based predictors, which are used to predict for a single target such as direct

branches, but they suffer from conflict misses in the first stage predictor and have

inefficient update rules. Chapter 3 introduces a new indirect hybrid branch predictor

called the GoStay2 predictor to improve the update rules and reduce conflict misses in the

first stages.

19

Branch prediction is a key mechanism used to achieve high performance on multiple

issue, deeply-pipelined processors. By predicting the branch outcome at the instruction

fetch stage of the pipeline, ILP (Instruction Level Parallelism) can be exploited by

providing a larger window of instructions [Kalarhatianos & Kaeli '98].

Branch Classification

Branches can be categorized as conditional or unconditional and direct or indirect,

resulting in four classes: conditional direct, conditional indirect, unconditional direct, and

unconditional indirect. Of the four classes, prediction of conditional indirect branches are

typically not implemented [Kalamatianos & Kaeli '98].

Conditional direct branches, which involve a condition, have two types: loop-closing

conditional branches and other conditional branches. The loop-closing branches are

backward branches that are taken for all but the last iteration of a loop. Other conditional

branches are either taken or not taken, depending on whether the specified condition is

true of false [Sima et al'97].

Unconditional direct branches, which are always taken, have three types: simple

unconditional branches, branches to subroutines, and returns from subroutines. Simple

unconditional branches do not save the return address, whereas branches to subroutines

do. Returns from subroutines are dedicated unconditional branches performing a control

transfer to the saved return address. In case of nested subroutines, while branching to and

returning from the individual subroutines, the return addresses are saved and used in a

last-in first-out (LIFO) manner.

20

A conditional/unconditional direct branch has a statically specified target that points to

a single location in the program, whereas an unconditional indirect branch has a

dynamically specified (i.e. computed) target that may point to any number of locations,

multi-targets, in the program. Indirect branches with multi-targets are harder to predict

accurately than single-target direct branches.

Driesen & Holzle ('98) also classified branches according to the number of different

targets encountered in a program run (SPECint95 and object oriented languages): one

target, two targets, and more than two targets. Branches with only one target constitute

67% of all. branches; 18% of all branches jump to two targets and branches with three or

more targets constitute 15% of all branches.

Branch Predictors

There are several types of branch predictors such as one-level, two-level, hybrid, etc.

For the one-level predictor, a BTB (branch target buffer) is commonly used. BTB is a

cache that contains the address of the branch instructions and their target addresses. The

BTB is accessed in the fetch stage to predict the state of a branch instruction. If a hit

occurs, then the current instruction is a taken branch. The PC (program counter) is loaded

with the target address from BTB, and fetching starts from the new PC. For indirect

branch, the taken address is the last computed target for the indirect jump. Unfortunately,

BTB-based prediction schemes perform poorly for indirect jumps [Chang et al '97].

The two-level branch predictor uses two levels of history to make branch predictions

[Yeh and Patt '92]. The first-level of history records the outcomes of the most recently

21

executed branches and the second-level history keeps track of the more likely direction of

a branch when a particular pattern is encountered in the first level history. The 2-level

branch predictor uses one or more k-bit shift registers, called branch history registers, to

record branch outcomes of the most recent k branches. It uses one or more arrays of 2-bit

saturating up-down counters, called a Pattern History Table (PHT), to keep track of the

more-likely direction for branches. The lower bits of the branch address select the

appropriate PHT and the value in the Branch History Register (BHR) selects the

appropriate 2 bit counter to use within that PHT. There are many variations of two-level

predictor. In Chapter 3, we will discuss various branch predictors in detail.

According to Sima et al ('97), the prediction accuracy of BTB is less than 70% in the

processor MC88110. In order to improve the prediction accuracy of simple BTB, more

complex hardware such as a two-level adaptive BTB, which can detect more varied

branch execution sequences and treat them individually, has been proposed to take

advantage of the relationship between nearby branches to improve its branch prediction

accuracy. Even if the misprediction rate is less than 10%, the residual misprediction

penalty that these programs incur still deteriorates processor performance significantly.

Branch Misprediction Penalty

In Figure 10, Bondi et al ('96) show the total CPI (Cycles Per Instruction) for the

model classified as normal processing, branch misprediction penalty, and memory access

wait cycles (imperfect cache). They evaluated x86 traces with the performance model of

a microprocessor design comprising a moderate-depth pipeline, 2-bit branch predictor, 4

22

integer execution resources, and on-chip instruction and data caches. The SPECint92

traces were generated by running the subject program on a P C under D O S after

compilation with the gcc compiler from D J G P P (one of SPECint92 benchmark

programs).

100%

90% -

80% •

70% -

60% -

50%

40%

30%

20%

10%

0%

c
o
m
P s
r
e
s

H11

e
s
P
r o
e
s
s

A

v
e
r
a
g
e

• memory
• branch
• normal

Figure 10. Components of Total CPI (Cycles Per Instruction) [Bondi et al. '96]

Of the total processing expended, normal processing consumes about 70%, branch

consumes about 13% and memory access consumes about 17%. Together, branch

penalties and memory waits waste about 30% of the overall processing effort. So i f the

branch misprediction penalty and memory access wait cycles can be reduced further, the

system performance can be improved substantially. For example, i f the branch accuracy

23

rate is increased from 95.2% to 96.0%, then the misprediction rate can be reduced up to

17.6%. If the recovery time from misprediction is reduced, it also improves the overall

CPI.

According to Bondi et al ('96), mispredicted branch instructions are categorized into

two types: branches that are repeatedly mispredicted over program life, and branches that

are mispredicted just once over program life. They showed that branches that have been

previously mispredicted cause most mispredictions. This behavior suggests that there is a

need to hold the flushed branch instructions caused by conflict misses in a specific cache

memory in the processor.

1.4 Contributions and summary

As object-oriented languages are widely used, procedure calls are increasing frequently in

application programs, causing a significantly increased number of conflict misses in the

instruction flow. Basically, the instruction flow has several problems to solve: conflict

misses in the instruction cache memory, conditional or unconditional branch throughput,

direct or indirect branch prediction, and misprediction penalty. Current high performance

architectures such as superscalar processors use branch prediction to speculatively

execute instructions beyond an unresolved branch. If the branch is mispredicted, this

work is lost, and execution must restart right after the branch instruction.

As we discussed in section 1.2, there is a need to reduce cache misses and branch

mispredictions for improving system performance. The contributions of this thesis lie in

the fact that:

24

1. By developing a new cache scheme called the T A C (Thrashing-Avoidance Cache)

Cache miss rates can be reduced significantly compare to other conventional

cache memory schemes.

- Since the T A C has almost the same hardware complexity as n-way set-

associative, it is possible to increase system performance with the same

hardware cost as n-way set-associative.

As small on-chip cache memory is popular, there is a need to have more

efficient memory storage management than n-way set-associative. The T A C

provides this by using sophisticated mapping functions.

- The T A C scheme can be applied to the techniques for HPC in regard to

instruction flows.

2. By developing a new indirect branch predictor called the GoStay2

Indirect branch mispredictions can be reduced significantly compared to other

conventional indirect branch predictors.

Since the GoStay has almost the same hardware complexity as the other branch

predictors, it is possible to increase system performance with the same

hardware cost as the others.

- The GoStay2 can increase instruction level parallelism by improving update

rules for the indirect branch predictions.

There are four chapters and one appendix in this thesis. They include:

Chapter 1, Overview and summary, describes high performance computing, which is

divided into three parts including goals, architectures, and techniques. Moore's Law is

25

discussed in order to understand the future trend of processors. From Moore's Law, we

outlined problem definitions such as cache misses and branch mispredictions, which

degrade system performance because of the gap between processors and memory.

General background for cache misses and branch mispredictions are discussed, and a new

cache scheme and branch predictor are suggested;

Chapter 2, Cache misses, gives an overview and problems of conventional cache schemes

and introduces a new. cache scheme called the T A C (Thrashing-Avoidance Cache).

Through the experimental results, it is shown that the T A C schemes reduce conflict

misses better than conventional cache schemes;

Chapter 3, Branch Mispredictions, explains branch mispredictions caused by direct and

indirect conditional branches and discusses current branch predictors that were recently

proposed to reduce indirect branch predictors. Since those branch predictors have an

inefficient update rule, a new branch predictor called the GoStay2 predictor is introduced

for improving branch prediction rates. Through experiments, it is shown that the GoStay2

works better than other indirect branch predictors such as Cascaded predictors or Target

Cache;

Chapter 4, Conclusion and Future Research, summarizes the experimental results for the

T A C scheme and GoStay2 predictor compared to conventional schemes and suggests

future research in regard to reducing memory latencies and speculative work;

Appendix A , Experimental results for T A C schemes, gives detailed tables of the

experimental results for T A C schemes.

26

Chapter 2 Reduction of instruction cache misses

Due to the increased complexity of application programs over the past decade, object-

oriented languages are replacing traditional languages as a result of convenient code

reusability and maintainability. However, it has also been observed that the run-time

performance of object-oriented programs can be improved by reducing the impact caused

by instruction cache misses. This thesis presents a new cache scheme called T A C

(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses

caused by procedure call/returns. The T A C scheme employs N-way banks and X O R

mapping functions. The main function of the T A C is to place a group of instructions

separated by a call instruction into a bank according to the Bank Selection Logic (BSL)

and Bank-originated Pseudo-LRU replacement policy (BoPLRU). After the B S L selects a

bank initially on an instruction cache miss, the BoPLRU will determine the final bank for

updating a cache line as a correction mechanism. These two mechanisms can guarantee

that recent groups of instructions exist in each bank safely. A simulation program,

TACSim, has been developed by using Shade and Spixtools, provided by SUN

Microsystems, on an ultra SPARC/10 processor. Our experimental results show that T A C

schemes reduce conflict misses more effectively than skewed-associative caches for both

C (9.29% improvement) and C++ (44.44% improvement) programs on L I caches. In

addition, T A C schemes also allow for a significant miss reduction on Branch Target

Buffers (BTB).

27

2.1 Introduction

For current microprocessors, multi-instruction issues are a popular method of

increasing system performance. Therefore, instruction cache misses can severely limit the

performance of high-speed microprocessors.

Several researchers have shown that many instruction cache misses are caused by the

frequent procedure call/returns in object-oriented languages.

C++ mean (12
C++ programs)

C mean
(SPECint92)

Ratio
(C++/C)

Description

Type Object Oriented Traditional

Call/Return Frequency 4.6% 0.7% 6.7 Procedure calls and returns

Basic block 4.8 5.9 0.8 Instructions per block size

Function
size

Dynamic 48.7 152.8 0.3 During program run-time Function
size

Static 27.3 44.3 0.6 Property of program itself

Inst. Cache
miss rate
(Direct
mapped,
32byte line)

4 K • 5.83 3.49 1.67 C++ programs tend to
perform many calls to small
functions and benefit less
from the spatial locality of
larger cache blocks.
Average Ratio (C++/C):1.95

Inst. Cache
miss rate
(Direct
mapped,
32byte line)

8 K 3.98 2.32 1.72

C++ programs tend to
perform many calls to small
functions and benefit less
from the spatial locality of
larger cache blocks.
Average Ratio (C++/C):1.95

Inst. Cache
miss rate
(Direct
mapped,
32byte line)

16 K 2.47 1.18 2.09

C++ programs tend to
perform many calls to small
functions and benefit less
from the spatial locality of
larger cache blocks.
Average Ratio (C++/C):1.95

Inst. Cache
miss rate
(Direct
mapped,
32byte line)

32 K 1.37 0.59 2.32

C++ programs tend to
perform many calls to small
functions and benefit less
from the spatial locality of
larger cache blocks.
Average Ratio (C++/C):1.95

Data cache
miss rate
(Direct
mapped,
32byte line)

4 K 13.98 13.09 1.06 Since the miss rates are quite
similar, there is little room
to improve data cache
features.

Average Ratio (C++/C):1.02

Data cache
miss rate
(Direct
mapped,
32byte line)

8 K 9.20 9.08 1.01

Since the miss rates are quite
similar, there is little room
to improve data cache
features.

Average Ratio (C++/C):1.02

Data cache
miss rate
(Direct
mapped,
32byte line)

16 K 6.35 6.43 0.98

Since the miss rates are quite
similar, there is little room
to improve data cache
features.

Average Ratio (C++/C):1.02

Data cache
miss rate
(Direct
mapped,
32byte line)

32 K 4.42 4.31 1.03

Since the miss rates are quite
similar, there is little room
to improve data cache
features.

Average Ratio (C++/C):1.02

Table 2. Behavioral differences between C and C++ Programs [Calder et al '94]

In table 2, Calder et al ('94) showed that object-oriented programs (C++) execute

almost seven times more calls (4.6 % versus 0.7 %) and have smaller function sizes (48.7

versus 152.8 instructions/function) than traditional programs (C). While C programs

execute large monolithic functions to perform a task, C++ programs tend to perform

28

many calls to small functions. Thus, C++ programs benefit less from the spatial locality,

and suffer more from function call overhead.

The smaller function size of C++ programs is another cause of poor instruction cache

misses. According to Calder et al ('94), programs executing a small number of

instructions in each function, such as C++, may suffer from instruction cache conflicts.

For example, two mutually recursive functions may be aligned to the same cache memory

addresses and constantly displace each other from the cache. C programs execute more

instructions per function invocation, meaning that more work is done within a particular

function.

Holzle & Ungar ('94) also showed that for instruction cache behavior the miss ratios of

object-oriented programs are significantly higher for most cache sizes and that the

median miss ratio is 2 - 3 times higher than traditional programs. Meanwhile, Calder et al

('94) and Holzle & Ungar ('94) observed that the data cache misses for both programs

were seen to be similar. So this thesis has focused on developing an effective cache

scheme to reduce the instruction cache misses of object-oriented programs, which can be

much higher than traditional programs because of the frequent call/returns.

In general, if a cache size is less than 32KB, conflict misses can degrade system

performance significantly. For example, for a direct-mapped cache, conflict misses are

about 60% of the total cache misses of a small-sized cache of 8KB [Gonzalez et al '97].

If we do not want to increase the cache size, we need to design a small-sized, low-cost

cache scheme to improve the cache miss ratio by reducing only the conflict misses which

are mainly caused by call/returns. This thesis presents a new cache scheme called T A C

29

(Thrashing-Avoidance Cache), which can effectively reduce instruction cache misses

caused by call/returns.

This chapter is organized as follows: Section 2.2 explains cache misses and skewed-

associative caches; section 2.3 presents a new instruction' cache scheme called T A C

(Thrashing-Avoidance Cache); section 2.4 describes simulation methodology and

benchmark programs; section 2.5 presents our simulation results; and section 2.6

provides our chapter conclusions.

2.2 Cache Misses

As we discussed in chapter 1, there are three types of cache misses namely:

compulsory, capacity, and conflict misses. In this section, several conventional cache

schemes are compared for determining the most effective conventional cache scheme for

reducing conflict misses.

2.2.1 Total miss ratios vs. conflict miss ratios

Gonzalez et al ('97) generated the miss ratios for several cache schemes as shown in

Figure 1 1 : direct-mapped, 2-way set-associative, 4-way set-associative, hash-rehash,

column-associative, victim, and 2-way skewed-associative. They obtained the results in

Figure 1 1 by using the SPEC95 benchmark suite and by implementing a cache memory

(8 kilobytes capacity and 32 bytes per line).

For comparison, the miss ratio of a fully-associative cache is shown in the last column.

For each organization, the difference between its miss ratio and that of a fully-associative

cache represents the conflict miss ratio. For example, the 'direct-mapped' cache has a

30

miss ratio of '21.32' in Figure 11. Here, '21.32' means the total miss ratio (compulsory +

capacity + conflict) while '12.61' is the conflict miss ratio which is computed as (total

miss ratio for a scheme - total miss ratio for the fully-associative scheme).

VI
o

V}
VI

25
20
15
10
5
0

direct 2-way 4-way hash-
rehash

col-
assoc. victim

2-way
skew

fully-
assoc.

H total miss ratios (%) 21.32 19.76 16.42 21.87 19.11 14.27 11.05 8.71
I conflict miss ratios (%) 12.61 11.05 7.71 13.16 10.4 5.56 2.34

Various cache schemes

Figure 11. Miss ratios (%) of the various cache schemes [Gonzales et al '97].

From the results in Figure 11, the hash-rehash scheme has a miss ratio similar to that of

a direct-mapped cache. Although both have similar access times, the hash-rehash scheme

requires two cache probes for some hits. Hence, the direct-mapped cache will be more

effective. The victim cache scheme removes many conflict misses and it outperforms a 4-

way set-associative cache. The 2-way skewed-associative cache offers the lowest miss

ratio of the existing schemes and is significantly lower than a 4-way set-associative cache

[Gonzalez et al '97].

Figure 12 shows how conflict misses can happen in a cache memory. It is assumed that

there are 10 instructions (A, B . . . X , and Y) as an assembly code program in Figure 12,

which include two procedure calls (B to H and I to X) and two returns (Y to J and J to C).

It is also assumed that (B, H), (C, I, X) , and (D, J, Y) have the same set address (cache

31

Set Address

memory index), namely 004, 008, and OOC, and that there is a stack register for the two

return addresses. The arrows in Figure 12 show instruction flows for executing this

program.

Instructions

A

Subroutine
'Call

Return ...

Return

Figure 12. An example of instructions with two procedure calls.

Figure 13 shows the contents of a direct-mapped cache during execution of the two

loops of code shown in Figure 12. In the case of the set address '008', there are two

conflict misses with three memory accesses (to main memory) in the first loop and three

conflict misses with three memory accesses in the second loop.

Set address Tag Cache Instructions Set address Tag Cache Instructions

000

004

008

OOC

010

XXX A

XXX] / H

XXX kk. C

XXX

XXX E

000

004

008

OOC

010

XXX A

XXX H

XXX d k ilc

XXX d k / D

XXX E

First Loop Second Loop

Figure 13. Execution of the code shown in Figure 12 in a direct-mapped cache.

32

For the direct-mapped cache in Figure 13, problems occur when alternating memory

references point to the same set-address. Each reference causes a cache miss (conflict)

and replaces the entry just replaced, causing a lot of overhead. The popular word for this

is thrashing. When there is a great deal of thrashing, a cache can be more of a liability

than an asset because each cache miss requires that a cache line be refilled - an operation

that moves more data than merely satisfying the reference directly from main memory

[Handy '93]. However, the direct-mapped cache has advantages of simplicity of memory

access and hit time.

Figure 14 shows the contents of a fully-associative cache which has no conflict

misses.

Tag Cache Instructions Tag Cache Instructions

xxxxx A xxxxx A

xxxxx B xxxxx B

xxxxx H xxxxx H

xxxxx I xxxxx I

xxxxx X xxxxx X

xxxxx Y xxxxx Y

xxxxx J xxxxx J

xxxxx C xxxxx C

xxxxx D xxxxx D

xxxxx E xxxxx E

First Loop Second Loop

(b) Fully-associative cache.

Figure 14. Execution of the code shown in Figure 12 in a fully-associative cache.

33

For the fully-associative cache in Figure 14, any block (i.e., instruction) from the main

memory can be placed anywhere in the cache. After being placed in the cache, a given

block is identified uniquely by its main memory block number and referred to as the tag,

which is stored inside a separate tag memory in the cache. The fully-associative cache

makes the most flexible and complete use of its capacity, storing the blocks where it

needs to, but there is a penalty to be paid for this flexibility: the tag memory must be

searched in its entirety for each memory reference. Moreover, it is more expensive in

terms of gates than other access-by-address memories, because of the need to do

simultaneous bit-by-bit comparisons of all bits in the memory [Heuring & Jordan '97].

To reduce memory stalls effectively, there is a need to have a sophisticated form of

cache memory, which has:

- less conflict misses;

- simplicity (access-by-address);

- faster hit time;

- efficient cache memory storage management; and

- low hardware costs.

2.2.2 Skewed-associative caches

In the previous section, Gonzalez et al ('97) showed that a 2-way skewed-associative

cache offers the lowest miss ratio, and is significantly lower than that of a 4-way set-

associative cache. Therefore, this scheme is discussed in detail in this section;

34

Skewed associative caches have been previously proposed by Seznec ('93). An N-way

skewed-associative cache consists of N distinct banks that are accessed simultaneously

with different mapping functions. For example, Figure 15 shows that a 2-way skewed-

associative cache consists of two banks of the same size that are simultaneously accessed

with two different mapping functions. That means a memory block at address'd' may be

mapped onto physical line fo (d) in bank 0 or onto fx (d) in bank 1, where fo and fi are

different mapping functions.

DATA TAG DATA TAG

/o(a) = /o(fc) = /o(c) A /• <~ • / ! («)

a.b

>

.c a.b

>

.c a.b

>

.c
A

fi(c)

bank 0 bank 1

Figure 15. a, b, and c compete for the same location in bank 0, but can be present at the

same time, as they do not map to the same location in bank 1 [Seznec '97].

Mapping functions

Bodin & Seznec ('95) presented skewing functions that are obtained by XORing a few

bits in the address of a memory block. Let a skewed associative cache be built with 2 or 4

cache banks, each one consisting of 2" cache lines of 2C bytes, and let cr be the perfect-

shuffle on n bits, so that the data block at memory address A32c+2n + A22n+C + AX2C may

be mapped:

35

1. on a cache line A1@A2 in cache bank 0

2. or on a cache line a(Al) © \ in cache bank 1

3. or on cache line CT 2 (AJ) © \ in cache bank 2 (on a 4-way)

4. or on cache line CT 3 (AJ) © \ in cache bank 3 (on a 4-way)

Replacement policies

address
1. On a Cache Miss

Replacement Qp'lag in Bank 0

- V P o , i c y ^
(PseudoLRU) ' s 2. Bank Selection

s
N

S
^1
Bank 1

If Flag = 0, replace data
in Bank 0 and set the
Flagyl. Otherwise,

replace data in Bank 1
and set the Flag -X).

Figure 16. One of replacement polices, P L R U , for a 2-way skewed-associative cache.

Figure 16 shows that a 2-way skewed-associative cache uses a Pseudo-LRU (Least

Recently Used) replacement policy by associating a one-bit flag to each line in bank 0

when a miss occurs on a cache [Seznec ' 97] :

36

A flag bit is associated with each line in bank 0: when the line is indexed, the flag bit

is set when the data is in bank 0 and reset when the data is in bank 1;

- On a miss, the flag of the line selected in bank 0 is read: when this flag is 1, the

missing line is written in bank 1, otherwise the missing line is written in bank 0.

2.3 Thrashing-Avoidance Cache (TAC)

In the previous section, several cache memory schemes were investigated in detail: a

direct-mapped scheme was shown to have the advantages of fast cache hit time and

simplicity, but it has the problem of conflict misses that can adversely affect system

performance. Using a fully-associative scheme can solve the conflict misses, but it is too

expensive for implementation and inefficient for accessing to memory references. Even

though a 2-way skewed-associative scheme partially resolves these problems, it still has

an inefficient replacement policy for frequent procedure call/returns, which can increase

conflicts for certain locations in a cache memory.

There are two main reasons for designing a new instruction cache memory:

• As technology changes, smaller on-chip L I caches (less than 32 Kbytes) have

replaced large external caches (greater than 256 Kbytes);

• As object-oriented languages become more widely used, procedure calls tend to

increase in application programs, causing an increasing number of conflict misses.

Thus, there is a need to have a new cache memory scheme to reduce instruction cache

misses focused on reducing thrashing conflict misses (i.e., a commonly used location is

displaced by another commonly used location in a cycle).

37

2.3.1 An overview of a TAC scheme

If the cache size is relatively small, conflict misses can degrade system performance

significantly [Gonzales et al '97]. Figure 17(a) shows that, in a conventional cache

scheme, individual instructions (A or B) are placed or replaced into cache memory

according to a mapping function and replacement policy on a cache miss. A conventional

cache scheme works well for reducing conflict misses for traditional programs but not for

object-oriented programs since traditional programs have fewer calls and larger function

sizes than object-oriented programs (refer to section 2.1).

O n cache misses^-
n i c i p p i n g function

If A-
feplace'rhent policy

Individual
instructions c a c h e m e m o r y

A: an instruction except 'call'
B: 'call' instruction

(a) A conventional cache scheme

™ > f) n c a c n e misses^
/ C A >

A Group:
mapping function

-.replacement policy

A Group of
instructions

cache memory

Group Separator:
'call' instruction

(b) A TAC scheme

Figure 17. The basic operations of a conventional cache scheme and a T A C scheme.

Figure 17(b) shows the basic operations of a T A C scheme, which can reduce conflict

misses effectively for object-oriented programs by grouping instructions. In Figure 17(b),

a group of instructions (A and B) separated by call instruction (B) are placed and replaced

into cache memory according to a mapping function or replacement policy on a cache

38

miss. Our measurements shows that grouping instructions benefits more from localities

than individual instructions in both traditional and object-oriented programs.

A T A C scheme is built with N distinct banks. Since Gonzales et al ('97) showed that

XOR mapping functions work well for reducing conflict misses, T A C employs X O R

mapping functions (refer to section 2.2.2) for accessing the instruction cache memory.

On a cache miss, data must be fetched from a lower level memory according to the

X O R mapping functions and replacement policies, the Bank Selection Logic (BSL, refer

to section 2.3.2) and Bank-originated Pseudo L R U replacement policy (BoPLRU, refer to

section 2.3.3). The B S L selects a bank initially according to the number of call

instructions and the BoPLRU determines a final bank according to the replacement policy

by using a flag.

The B S L and BoPLRU can guarantee that recent groups of instructions exist in each

bank safely. So if the frequency of call/returns is increased, the T A C scheme works well

since the manageable size of an instruction group is smaller. For example, if the average

number of instructions per call of an object-oriented program is 40 and that of a

traditional program is 100, then the T A C scheme of an object-oriented program will work

better than a traditional one for limited cache sizes.

In a T A C scheme, each cache line consists of tag, data, and flag. The tag word consists

of an address tag and some other status tags. The bit length of the flag is determined by

the N distinct banks; that is, an n-bit flag represents 2" banks or an N-Way (N = 2")

cache scheme. For convenience, this thesis represents the cache line of a T A C scheme as

just a flag and data throughout this paper and omits the tag part.

39

2.3.2 Bank Selection Logic (BSL) - Initial Bank Selection

The function of the Bank Selection Logic (BSL) is to select a bank initially on a cache

miss according to a fixed frequency of the procedure call instructions. The B S L employs

an x-bit counter for counting the frequency of call instructions. The x-bit counter will be

increased by one whenever a fetched instruction proves to be a call instruction. An n-

MSBs (n-Most Significant Bits) of the x-bit counter represents a selected bank for each

instruction. Each bank can be selected for every 2'" procedural calls. For example, if x =

2 and n = 1, then there are two banks (2" =2) and a bank is switched to the other bank

for every two procedure calls (2*"" = 2). A group of instructions terminated by a

procedure call can be placed into the same bank through the B S L (Bank Selection Logic)

and X O R mapping functions. The goal of the B S L is to help each bank to share

instructions equally according to the occurrence of procedure call instructions.

As an example, Figure 18 shows how a 2-bit counter (x = 2 and n = 1) in the B S L

works with the flow of example instructions in Figure 18. The left side of Figure 18

shows the flow of instructions. Each call instruction works as a separator for grouping

instructions. For a group of instructions, the next call instruction becomes the last one in

the group. In Figure 18, it is assumed that there are cache conflicts in (B, H) and (I, X) .

The detailed operations of the 2-bit counter in the B S L on the right side of Figure 18 are:

• Instruction A is fetched. On a cache miss, the flag of the selected line in bank 0 is

read. A is not a call instruction, so there is no change in the 2-bit counter (+ 0);

• Instruction B is fetched. On a cache miss, the flag of the selected line in bank 0 is

read. B is a call instruction, so one is added to the 2-bit counter (+ 1);

40

• Instruction H is fetched. On a cache miss, the flag of the selected line in bank 0 is

read. H is not a call instruction, so there's no change in the 2-bit counter (+ 0).

• Instruction I is fetched. On a cache miss, the flag of the selected line in bank 0 is read.

I is a call instruction, so one is added to the 2-bit counter (+ 1);

• Instruction X is fetched. On a cache miss, the flag of the selected line in bank 1 is

read. X is not a call instruction, so there's no change in the 2-bit counter (+ 0);

• Instruction Y is fetched. On a cache miss, the flag of the selected line in bank 1 is

read. Y is not a call instruction, so there's no change in the 2-bit counter (+ 0); and

• Instruction J is fetched. On a cache miss, the flag of the selected line in bank 1 is

read. J is not a call instruction, so there's no change in the 2-bit counter (+ 0).

A flow of instructions

.:<M\
Group A J ' „

i - A . ' c a l l //~v

A 2-bit counter in the BSL

Group ^ ^ j e ^

Group Separator: ^/(Jy^.^/
call instruction \ yS'

' Group X

Group H
Group A Group X

i i

I J*, Bank 0

y)*. Bankl

J/ . Bankl

Bank 1

u 0

0

0
•

1

0 1

- 1 * 0

- 1 0

-- p.

- 1 * 0

p + 1

5 + 1

^ + 0

^ + 0

^ + 0

Instruction cache memory

Figure 18. The operation of the B S L (2-bit counter, 2-way) according to a flow of
instructions. Conflicts in (B, H) and (I, X) .

41

Grouping instructions

Figure 18 shows that each 'call' instruction works as the selector of the distinct bank

for instructions following the 'call' instruction. That means those instructions after the

call instruction can be grouped together since they access the same bank on a cache miss

until another call adds one to the n-bit counter in the BSL.

Instructions

Figure 19. An example for the grouping instructions in a 2-way T A C scheme.

In Figure 19, the 'call' instruction (B) works as a separator for grouping instructions.

The H instruction followed by the B instruction leads the group of instructions. The next

'call' instruction (I) is the last one in that group of instructions. Therefore, the group of

instructions separated by the B instruction are {H, I}. In the same way, it is possible to

group instructions in Figure 19 into {A, B}, {H,I}, and {X, Y , J, ..}. If each group is

named after the leading instruction, there are three instruction groups such as group A,

group H , and group X . Figure 19 shows that group A and group H access bank 0 and

group X accesses bank 1 on a cache miss.

42

Consequently, there are three important properties in regard to grouping instructions in

the following ways:

• Each 'call' instruction works as a separator for grouping instructions;

• The instruction following any 'call' instruction leads the group of instructions; and

• The next 'call' instruction terminates that group of instructions and works as a

separator for the next group of instructions.

Initially
selected Bank 1

MSB of Counter = 0,

select Bank 0.

MSB of Counter = 1,

select Bank 1.

We assumed that Bank 0 is
selected initially in this diagram.

Figure 20. Initial bank selection of B S L for a 2-way T A C scheme.

As an example, the B S L operation of the 2-bit counter in a 2-way T A C scheme is

shown in Figure 2 0 : On a cache miss, the B S L initially selects a bank according to the

value of the counter. If the MSB (Most Significant Bit) of the counter is 0 , then bank 0 is

selected. Otherwise, bank 1 is selected.

43

2.3.3 Bank-originated Pseudo LRU Replacement Policy (BoPLRU) - Final Bank

Selection

After the B S L selects a bank on a cache miss, the BoPLRU will determine the final

bank for updating a line as a correction mechanism by checking the flag for the selected

cache line.

The BSL selects a bank initially (say, initial bank).

If a 2-way TAC scheme, which has two banks

If 'the flag - 0' of the initial bank

Replace data of the other bank.

Set the flag of the initial bank to I.

If the flag = 1' of the initial bank

Replace data of the initial bank.

Set the flag of the initial bank to 0.

If an N-way TAC scheme, which has N banks

If 'the flag < (N-l)' of the initial bank

Find the highest value of the flag through other banks (say, final bank).

Replace data of the final bank.

Set the flag of the final bank to 0.

For other banks apart from the final bank

Increase the value of the flags by one.

If 'the flag = (N-l)' of the initial bank (say, final bank)

Replace data of the final bank.

44

Set the flag of the final bank to 0.

For other banks apart from the final bank

If'the flag < (N-l)'

Increase the value of the flags by one.

Else

Keep the value of the flags.

Figure 21. Pseudo code for the BoPLRU replacement policy
]

Figure 21 shows the Pseudo code for the BoPLRU. If an N-way T A C scheme employs

a n-bit flag, then N =2". If n is 1 or 2, it represents a 2-way or 4-way T A C scheme

respectively.

For the 2-way T A C scheme, if 'the flag = 0' of the selected bank by the BSL, data in

the initial bank will remain while data of the other bank is replaced with new data fetched

from memory. After that, the flag of the initial bank will change from 0 to 1. Meanwhile,

if 'the flag = 1' for the initial bank, data in the initial bank will be replaced with new data

and the flag for the initial bank will change to 0. By doing this, any conflicting data can

remain in a bank safely for a while.

For the N-way (N =2") T A C scheme in Figure 21, if 'the flag < (N-l) ' of the selected

bank, it is necessary to find the highest value of the flag for other banks to determine the

final bank. After data of the final bank is replaced with new data from memory, the flag

will be set to 0 and the value of the other flags except the one of the final bank will be

increased by one. Meanwhile, if 'the flag = (N - l) ' , data for the initial bank will be

45

replaced by new fetched data and the flag is set to 0. For other banks apart from the final

bank, if 'flag < (N-l) ' , the value of other flags will be increased by one. Otherwise, the

value of the flags will be kept since it is the highest value and the flag is not in the final

bank but will be in the final bank soon.

The BoPLRU is a kind of modified pseudo-LRU replacement policy that guarantees

that recent groups of instructions can be retained in each bank safely.

Initially
selected

Bank 0 Bank 1 We assumed that flag = Ofor the
selected bank 0 in this diagram.

B o P L R U
Replacement QFlag in a Selected Bank

. . Pol icy , „ „ , , ; /] Z

BankO

flag=l,

replace data in bank 0

and set the flag of
bank 0 to '0'

Finally
selected

flag=0,

replace data in bank 1

and set the flag of
bank 0 to *V

Figure 22. Final bank selection of BoPLRU replacement policy for a 2-way T A C

scheme.

As an example, the BoPLRU operation of the 1-bit flag, 2-way T A C scheme, is shown

in Figure 22: it is assumed that the B S L initially selects the bank 0 on a cache miss.

Therefore, a flag of the selected line in bank 0 is read. If the flag is 1, it is set to 0 and the

46

data fetched from memory is written into bank 0. Otherwise, the flag is set to T and the

data is written into bank 1.

2.3.4 Benefit of the TAC scheme

Figure 23 shows how the instructions in Figure 18 are written into each bank (2-way)

on a cache miss.

Group H Group A

\ : x

" ^ % { e ^ > Group X

Group A: A, B
Group H: H, I
Group X:X, Y, J
where {B & H} are conflicting in Bank 0

Guarantees the coexistence of instructions within a group.
Guarantees the retention of recently used groups of instructions
in different banks.

Figure 23. Placement of instructions in a 2-way T A C scheme.

We assume that B S L selects bank 0 for Group A and H , and bank 1 for Group X :

Instructions A and B of Group A are written into bank 0. It is assumed that the flags

for each cache line for Group A are initially set to '0 ' .

47

• Instruction H of Group H is written into bank 1 since it conflicts with instruction B of

Group A. Therefore, the flag of the cache line for instruction B in bank 0 should be

set to T .

• Instruction I of Group H is written into bank 0. It is assumed that the flag is initially

set to '0 ' .

• Instructions X , Y , and J of Group X are written into bank 1. It is assumed that the

flags of each cache line for Group X are initially set to '0'.

If the instructions in Figure 18 are considered, it can be easily verified that instructions

for each group execute in a sequential form. Therefore, the possibility of conflict misses

is very low within each group. However, it is reasonable that conflict misses among

instructions from different groups can occur easily since the locations of each group of

instructions are randomly distributed in the main memory. Then, how can we effectively

reduce the conflict misses among instructions from different groups?

The answer generally depends on how far the rules of locality in space and/or in time

can be satisfied.

1. Locality in Space (Spatial Locality)

Handy ('93) shows that most computer code is executed repetitively out of a small

area. This space is not necessarily in a single address range of the main memory, but

may be spread around quite significantly. That is why the principle of spatial locality

refers to the fact that a calling routine and the subroutine can exist in two very small

areas of memory.

2. Locality in Time (Temporal Locality)

48

Handy ('93) also notes that the same instruction execute in close sequence with each

other, rather than being spread through time. That is, a processor is much more likely

to access a memory location which it accessed 10 cycles before than one which it

accessed 10,000 cycles before.

The benefit of a TAC scheme comes from satisfying these rules of locality:

• The T A C satisfies spatial locality by grouping instructions according to an

effective policy (calling routine and subroutine) and by guaranteeing the co­

existence of instructions within a group;

• The T A C satisfies the temporal locality by guaranteeing the retention of recently

used groups of instructions in different banks by using the BoPLRU..

• If the frequency of occurrence of procedure call/returns increases, it is expected

that the T A C scheme will work even better than other conventional cache schemes;

2.3.5 Examples of cache misses: a 2-way TAC scheme vs. a 2-way skewed-associative

In section 2.2, Gonzalez et al ('97) showed that a 2-way skewed-associative is the most

effective cache scheme among the conventional cache schemes such as direct-mapped, 2-

way set-associative, 4-way set-associative, hash-rehash, column-associative, victim, and

fully-associative schemes. The 2-way skewed-associative scheme can reduce conflict

misses most effectively among conventional cache memory schemes.

In this section, cache misses for a 2-way T A C scheme are compared with a 2-way

skewed-associative scheme, which is known as the most effective of the conventional

cache schemes. It is assumed that:

49

Address a, b, and c compete for the same location in bank 0, but they do not map to

the same location in bank 1:

/o (fl) = /o (b) = f0 (c), A (a) * ft (b) * fx (c): Where, f0 and fx are X O R mapping

functions.

- The order of fetching addresses: a-^b —> c —> a .

An Example for a 2-way skewed-associative

Figure 24 shows cache misses of a 2-way skewed-associative scheme for the above

instructions.

fo and/i: Mapping Function
Ao, Ai, and A2: Instructions with the same location in Bank 0
Try to avoid conflict misses per instruction according to the
status of the Flag (Flag = 0 -> Bank 0 or Flag = 1 Bank 1)
Flag = 0: initial condition

Figure 24. An example for a 2-way skewed-associative scheme

50

In Figure 24, there are three initial cache misses for a, b, and c, where a and c are

located in bank 0 and b is located in bank 1 according to mapping functions and the flag.

Since a and c have the same location in bank 0, a is replaced with c and the flag is set to 1

for the next conflict. Therefore, a can next be located in bank 1. In a 2-way set-

associative scheme, the flag is located in cache lines of bank 0 only.

An Example for a 2-way TAC scheme

Figure 25 shows cache misses of a 2-way T A C scheme for the same instructions as the 2-

way skewed-associative scheme.

DATA+TAG Flag

fo(Ao; = fo(Ai) = fo(A2) • = fo(Ai) = fo(A2)
4

Cache Hit !!! D A T A + T A G Flag

BankO

Ao Ai A2 (Ao

fi(Ao)

fi(Ai)

\ fl(A2)

Bank 1

fo and fi: Mapping Function
Ao,Ai, and A2: Instructions with same location in Bank 0
Ao, Ai, and A 2 B a n k 0 (Flag in Bank 0: 0-»l-»0-»l) .
Flag = 0 in Bank 0 Bank 1 or Flag = 1 in Bank 0 Bank 0.
All Flags = 0: initial conditions

Figure 25. An example for a 2-way T A C scheme

In Figure 25, there are three initial cache misses for a, b, and c, where a and c are

located in bank 1 and b is located in bank 0 according to mapping functions and the flag.

51

Since there is no conflict miss among a, b, and c between two banks, the last address is

where a can be a cache hit. In a 2-way TAC-scheme, each cache line of each bank has its

own flag for avoiding conflict misses.

Figure 24 and Figure 25 show that a 2-way T A C scheme works better than a 2-way

skewed-associative scheme since the 2-way T A C scheme can reduce conflict misses

better than the 2-way skewed-associative scheme.

2.4 Experimental environment

2.4.1 Simulation methodology

Benchmark
(SPEC95INT)

Benchmark
(C++)

\ Compiler

Exe. File

Shade &
SpixTools

Benchmark
Executables

CACHESKEW
Simulator

Ported
Output

Simulated Results:
- I references
-1) references
- Simulation time
- Cache Miss rates
- # Of Procedure Calls

Input
Data

Figure 26. Simulation methodology with benchmark programs and various tools.

52

Figure 26 shows an overview of our simulation methodology:

• First, SPEC95INT and C++ programs were compiled by using the G N U gcc 2.6.3 and

2.7.2 compiler;

• Second, TACSim (cache simulator) is used to run each executable benchmark with its

input data. TACSim was developed by using the Shade, SpixTools, and

C A H C E S K E W simulator. Shade and SpixTools are tracing and profiling tools

developed by Sun Microsystems. Shade executes all the program instructions and-

passes them on to the cache simulator, TACSim. SpixTools is used for collecting

information for static instructions. CACFTESKEW is a cache simulator developed by

Seznec & Hedouin ('97) that not only simulates most cache schemes such as direct,

n-way set-associative and skewed-associative schemes, but also runs several X O R

mapping functions and replacement policies such as L R U (Least Recently Used) and

Pseudo L R U , etc. The T A C scheme simulator is added into TACSim along with the

BoPLRU replacement policy;

• Finally, cache miss rates, the number of instructions and data references, simulation.

time, etc were collected as outputs.

In Figure 26, Shade is a tool that dynamically executes and traces SPARC v9

executables. Using Shade, the trace information desired can be specified. This means that

the trace information can be dynamically handled in any manner. It is possible to collect

any detailed information for every instruction and opcode dynamically. For example, it is

possible to obtain the data for the total number of call instructions, program counter,

opcode fields, etc. This information is used for our simulation tool, TACSim.

53

2.4.2 Benchmarks

Table 3 describes the benchmark programs. Five of the SPEC95 integer programs were

used for our simulation - gcc, go, m88ksim, compress, perl, and l i . These are the same

programs used by Radhakrishnan & John ('98). The next suite of programs is written in

C++ and has been used for investigating the behavior between C and C++ [Calder et al

'94] [Ffolzle & Ungar '94]. These programs are deltablue, ixx, and eqn.

Table 4 provides a description of the run-time characteristics of the benchmarks.

Dynamic instructions represent the number of instructions executed by each program. It

also shows that the number of instructions (function size) per call in the C programs is

about two times larger than that of the C++ programs (as a harmonic mean).

Program Input Description

SPEC95 CINT: C Programs

go 2stone9.in Plays the game Go against itself

gcc amptjp.i Compiles pre-processed source

m88ksim ctl.raw Simulates the Motorola 88100 processor

compress test.in Compresses large text files

perl scrabble.pl

scrabble.in

Performs text and numeric manipulations

li train.lsp Lisp interpreter

Suite of C++ Programs

deltablue 3000 Incremental dataflow constraint solver

ixx object.h

som_plus_fresco.

idl

IDL parser generating C++ stubs

eqn eqn.input.all Type setting program for mathematical

equations

Table 3. Benchmark descriptions

54

http://scrabble.pl

Program Dynamic

instructions

of procedure

calls

Instructions/call

SPEC95 CINT: C Programs

go 584,163,226 1,610,807 362.65

gcc 250,494,615 5,203,867 48.13

M88ksim 850,957 16,796 50.66

compress 41,765,761 1,355,389 30.81

perl 63,028,127 2,611,048 24.14

li 189,184,575 7,971,176 23.73

Suite of C++ Programs

deltablue 42,148,983 1,478,007 28.52

ixx 31,829,777 1,404,978 22.65

eqn 58,401,832 1,999,175 29.21

C Mean 4,894,178 97,407 37.67

C++ Mean 41,513,735 1,588,521 26.45

Table 4. Benchmark characteristics

2.5 Experimental results

The performance metrics used for comparison of different cache schemes are the

instruction cache miss rates and branch misprediction rates. B S L was implemented with a

2-bit counter and the BoPLRU with a.1-bit (2-way) and 2-bit (4-way) flag. If the counter

size of the B S L is greater than 4 bits, the instruction cache miss rates are slightly higher

than a small-sized counter with less than 2 bits (refer to section 2.5.2). In addition, since

Hi l l & Smith ('89) showed that there is little benefit in increasing cache associativity over

55

4, experiment results of 2-way and 4-way associativity for the T A C and skewed-

associative caches were collected.

In Table 4, the C benchmark programs, from go to execute from 23 to 48

instructions per call except go. The SPECint95 instead of the SPEC2000 were used for

our simulation since there have been no experimental results for cache schemes by using

the SPEC2000. For "go", since the number of instructions per call is much bigger than

other C programs, it will be excluded from all averages in sections 2.5.2 and 2.5.4. "Perl"

also is excluded from all averages in sections 2.5.2 and 2.5.4 since it executes 24

instructions per calls like li and takes too much time to get a simulation result.

2.5.1 Cache Misses vs. Cache Sizes

Much research has been done to determine the relationship between the cache size and

cache miss rates. For our research, 4 cache schemes were simulated with C and C++

benchmark programs in Figure 26: The 4 schemes are direct-mapped, 2-way set-

associative, 4-way set-associative, and 2-way skewed-associative; The C programs

include go, gcc, m88ksim, l i , and compress; The C++ programs are deltablue, ixx, and

eqn. The range for the simulated cache sizes is from 2Kbytes to 128 Kbytes according to

three different cache line sizes including 8 bytes (Figure 26 (a) and (b)), 16 bytes (Figure

26 (c) and (d)), and 32 bytes (Figure 26 (e) and (f)). The bars in Figure 26 represent the

difference between the highest and the lowest miss rates for each cache size. The purpose

of the bars is to show which cache sizes could benefit from efficient cache schemes for

reducing cache misses.

56

2 K 4K 8K 16K 32K 64K 128K

Cache Sizes

(a) Miss rates vs. Cache sizes for C programs (8 bytes of cache line size)

2K 4 K 8K 16K 32K 64K 128K

Cache Sizes

(b) Miss rates vs. Cache sizes for C++ programs (8 bytes of cache line size)

ure 27. Comparisons for cache misses according to the cache sizes (4 cache schemes).

5 7

2K 4K 8K 16K 32K 64K 128K

Cache Sizes

(c) Miss rates vs. Cache sizes for C programs (16 bytes of cache line size)

-•-direct-mapped
-*- 2-way set-associative

4-way set-assoicative
2-way skewed-associative

2K 4K 8K 16K 32K 64K 128K

Cache Sizes

(d) Miss rates vs. Cache sizes for C++ programs (16 bytes of cache line size)

Figure 27. (continued) Comparisons for cache misses according to the cache sizes (4
cache schemes).

58

(e) Miss rates vs. Cache sizes for C programs (32 bytes of cache line size)

Cache Sizes

(f) Miss rates vs. Cache sizes for C++ programs (32 bytes of cache line size)

Figure 27. (continued) Comparisons for cache misses according to the cache sizes
cache schemes).

5 9

Figure 27 (a), (c), and (e) show cache miss rates for the C programs. Meanwhile,

Figure 27 (b), (d), and (f) show the results for the C++ programs. Results for the C

programs show that if cache sizes are 4 Kbytes to 16 Kbytes, it is useful to have a more

efficient cache scheme since cache miss rates can be reduced considerably. In the case of

the C++ programs, if cache sizes are 4 Kbytes to 32 Kbytes, a more efficient cache

scheme would be useful for reducing cache misses.

In general, if cache sizes are less than 2 Kbytes or bigger than 32 Kbytes, the cache

misses are similar whatever cache scheme is used. Figure 27 tentatively shows that it is

quite reasonable to use a more sophisticated cache scheme for reducing cache misses

between 4 Kbytes and 32 Kbytes of cache size. As microprocessor technology changes, it

is widely accepted that small-sized on-chip L I caches need to replace large external

caches.

2.5.2 Bank switching vs. Procedure Calls

In a T A C scheme, the B S L (bank Selection Logic) works to select a bank initially on a

cache miss. This section presents the most efficient size of x-bit counter which B S L

employs for selecting banks. As we discussed in section 2.5.1, we primarily investigated

cache sizes that are less than 32 Kbytes. Various cache sizes of 2-Way T A C scheme were

simulated with 7 benchmark programs to determine the most effective x-bit counter size.

In Figure 28 and Figure 29, TAC_k means that B S L selects a bank for every k call

instructions on a cache miss. For example, if k = 2, then every two calls change the bank

on a miss. As we discussed in section 2.3, the n-MSBs (Most Significant Bit) of an x-bit

60

counter represents a bank for the current instruction. Therefore, if k = 2 and n = 1, then a

2-bit counter is needed because {00, 01} -> bank 0 and {10, 11) -> bank 1. If k = 8 and n

. = 1, then a 4-bit counter is needed because {0000, 0001, 0010, 0011, 0100, 0101, 0110,

0111} -» bank 0 and {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} -> bank 1.

Hence, k = 2X~", and a x bit counter for the B S L is needed.

A. A T .

4.5 -,
4

3.5
"> 3

£ 1.5 -I
1

0.5
0

^T6 9 -

•-4-.G7-

4^98-

1-12-

-4rt-

-+T98-

-1-e-
Kb69-

-4T06-

' 1.97

-lvl-2-
• 0.69

-4^8-

11.97-

• 0.69

4.09 4K
— 8K
^ 1 6 K
-•-32K

' 1.99

1.13
• 0.69

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)

(a) Miss rates vs. TAC_n for C programs (8 bytes of cache line size)

Figure 28. Cache miss rates according to the sizes of the n-bit counter (C programs).

61

3.5

3

2.5

| 2H

-2T84-

+ 3 3 -
1.5

1
'-OrH-

0.5 - ^ 4 4 -

0

* 3 3 -

- 0-7-1-
• 0.44 • 0.44

H ± T 3 4 -

• 0.44

-*r34-

• 0.44

TAC_1 TAC_2 TAC_4

TAC_n (n-bit Counter)

' 2.88 4K
-"-8K
-*-16K
-•-32K

'1.35

0.71
• 0.44

1 1 1

TAC_8 TAC_16 TAC_32

(b) Miss rates vs. TAC_n for C programs (16 bytes of cache line size)

2.5 -,

2 -

3 1-5 H

+7O8-

- 0 r 5 2 - - 0.52
• 0.3

-2T2-

-0T52~
^ 3 —

-*T#8-

-0752-

2.19

0.52
• 0.3

1

0.5

0 "I 1 1 : 1 1 1

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)

2.19+. 4 K

-*-8K
-*-16K
-«-32K

'1.09

(c) Miss rates vs. TAC_n for C programs (32 bytes of cache line size)

Figure 28. (continued) Cache miss rates according to the sizes of the n-bit counter (C
programs).

62

The following discussion pertains to Figure 28:

Four C programs (gcc, m88ksim, l i , and compress) were used for determining the

most effective x-bit counter for C programs.

The results of the C programs show that:

From Figure 28 (a), (b), and (c), if a cache line size is larger (32 bytes), cache miss

rates can be slightly reduced by using a smaller x-bit counter (say, less than 4-bit

counter).

6

5

»> 4-1

a

« 3

£ 2
1

0

-4-78- -4.82- • 4.79
4K

- • -8K
— 16K
-•-32K

^^¥f -h2 " H r r r 7 "+Hr8 H T H —

* I I . Z J » I I . Z 4 » t l . Z . V » U . Z . I — 4

1.21

0.2

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)

(a) Miss rates vs. TAC_n for C++ programs (8 bytes of cache line size)

Figure 29. Cache Miss rates according to the sizes of the n-bit counter (C++ programs).

63

4.5
4

3.5
x 3 -
l 2.5 ^

.1 2

£ 1.5
1

-3T9+- -3T9+- •3.89--4K
— 8K
-*- 16K
-»-32K

M h » 8

* A 1 ft

M h 8 «

A n 1 o

^6r9

± n 1 o

^wr92

i A i n
• \ \).L * u. i y * (I.IV * u.iv * U.J V f

0.93

0.19 0
TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)

(b) Miss rates vs. TAC_n for C++ programs (16 bytes of cache line size)

3.5

3

2.5

« 2
X

% 1.5
5 1

0.5

0

-3T24- -3-34- -3T24- • 3.25
4K
8K
16K

-32K

'0.88 4h*9- '0.88 >-0T9+-

f̂ T+3~

' 0 . 9

t0.14

TAC_1 TAC_2 TAC_4 TAC_8 TAC_16 TAC_32

TAC_n (n-bit Counter)

(c) Miss rates vs. TAC_n for C++ programs (32 bytes of cache line size)

Figure 29. (continued) Cache Miss rates according to the sizes of the n-bit counter (C++
programs).

6 4

The following discussion relates to Figure 29:

• 3 C++ programs (deltablue, ixx, and eqn) were used for determining the most

effective x-bit counter for object-oriented languages such as C++ and Java.

• The results of the C++ programs show that:

From Figure 29 (a), (b), and (c), if a cache line size is larger (32 bytes), cache miss

rates can be slightly reduced by using a smaller x-bit counter (say, less than 2-bit

counter).

In conclusion, a small-sized counter, less than 2-bit for the case of a 2-way TAC, is

recommended for the BSL of a TAC scheme if a cache size is less than 32 Kbytes.

65

2.5.3 Instruction Cache Misses for various cache schemes

Results in Table 5 show that the programs in the C++ suite (deltablue, ixx, and eqn)

incur higher instruction cache misses than some typical C programs (compress and li).

Table 5 also shows that a 2-way T A C scheme removes conflict misses more effectively

than a 2-way skewed-associative cache in both C and C++ programs.

Benchmark

programs

direct-

mapped

2-way 4-way 2-way

Skew

2-way

T A C

16-way

SPEC95 CIN T (C Programs)

go 6.8691 5.5038 4.8715 5.4535 5.3783 4.9203

gcc 5.9347 5.1155 4.1727 4.1238 3.9645 3.4524

m88ksim 3.8189 2.8224 1.5402 1.3996 1.3202 0.9474

compress 0.0564 0.0475 0.0210 0.0173 0.0163 0.011

li 0.5394 0.4232 0.0834 0.0238 0.0106 0.0052

C++Programs. •

deltablue 3.0746 1.9852 1,3405 1.0326 0.6488 0.2427

ixx 4.7679 2.5423 1.3825 1.1473 0.9444 0.2884

eqn 3.8790 2.0957 1.1382 1.1265 1.0340 0.6186

Table 5. Instruction cache miss rates in percentages (cache size: 8 K B , a line size: 16
bytes)

66

1/1

2 2

Direct 2-way 4-way 2-way
Skew

• m88ksim(C)

• deltablue(C++)

2-way 16-way
T A C

Cache Sizes

Figure 30. Comparison for instruction cache miss rates between C (m88ksim) and

C++ (deltablue) programs (8Kbytes, 16bytes).

• Figure 30 shows that the 2-way T A C scheme greatly reduces cache miss rates

compared to other cache schemes, with the exception of the 16-way set-associative cache

scheme, for both m88ksim (C) and deltablue (C++) programs. The 16-way set-associative

cache can be considered a good approximation to a fully-associative cache. In addition,

the 2-way T A C scheme for the higher frequency of call instructions (deltablue) works

better than that for the lower frequency of call instructions (m88ksim). Thus, the 2-way

T A C scheme can replace conventional cache schemes for traditional programs (refer to

section 2.5.4) with little or no increase in hardware complexity (refer to section 2.5.6),

and is even more suited to object-oriented programs than conventional caches.

67

2.5.4 Skewed-associative caches vs. TAC schemes

Section 2.5.1 showed that a 2-way skewed-associative scheme can reduce cache misses

better than a 2-way or 4-way set-associative scheme. As we discussed in section 2.2,

Gonzalez et al ('97) also showed that a 2-way skewed-associative cache offers the lowest

miss ratio among several conventional cache schemes and is much lower than a 4-way

set-associative cache. This section compares cache miss rates between skewed-

associative and T A C schemes. Since there is little benefit in increasing cache

associativity over four [Hill and Smith '89], experimental results from 2-way and 4-way

associativity for the T A C and skewed-associative caches were collected.

In order to compare cache miss rates between the T A C and skewed-associative caches,

we used a formula called IR, Improvement Ratio, such that:

Cache Miss Rates of a 2-way skewed-associative = a;

Cache Miss Rates of a TAC scheme = b;

a/b1 = 1 + n/100 ' a' has n% more cache miss rates than 'b'.

Ifn = IR,

IR = ((a-b)/b)*100% r - (2)

For example, if the cache miss rate of a 2-way skewed-associative scheme is 5%, and

that of a T A C scheme is 4%, then, the IR for this case is ((5-4V4) * 100 = 25%. An IR of

25% means that the 2-way skewed-associative has a cache miss rate of 25% more than

the T A C cache.

Therefore, if IR is used for comparing two cache schemes, the improved result can be

easily obtained in regard to cache miss rates.

68

4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes).

0 -\ 1 : : - i 1

4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

.(b) Improvement Ratios for C.and C++ Programs (cache line size : 16bytes)

Figure 31. Comparisons for Improvement Ratios between 2-way skewed-associative and
2-way T A C caches.

69

C Programs
C++ Programs

4 KBytes 8 KBytes 16KBytes

Cache Sizes

32KBytes

(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytes)

Figure 31. (continued) Comparisons for Improvement Ratios between 2-way skewed-
associative and 2-way T A C caches.

This section shows some graphs with regard to IR between the T A C and skewed-

associative caches derived from the tables in Appendix A.

In Figure 31, 4 C programs (gcc, m88ksim, l i , and compress) and 3 C++ programs

(deltablue, ixx, and eqn) were used for determining TR between 2-way skewed-

associative and 2-way T A C schemes.

The results of Figure 31 show that:

- 2-way T A C schemes can reduce cache misses more effectively than 2-way skewed-

associative caches in both C and C++ programs;

- For C programs, the rate of improvement of 2-way T A C schemes over 2-way set-

associative schemes range for various cache sizes:

o From 0.1% (32 Kbytes) to 8.99% (8 Kbytes) for cache line size of 8 bytes;

70

o From 2.36% (32 Kbytes) to 6.82% (8 Kbytes) for cache line size of 16 bytes;

o From 2.36% (4 Kbytes) to 9.29% (16 Kbytes) for cache line size of 32 bytes;

For C++ programs, the rate of improvement of 2-way T A C schemes over 2-way set-

associative schemes range:

o From 4.79% (4 Kbytes) to 44.44% (16 Kbytes) for cache line size of 8 bytes;

o From 10.4% (4 Kbytes) to 22.08% (16 Kbytes) for cache line size of 16 bytes;

o From 8.66% (4 Kbytes) to 30.71% (16 Kbytes) for cache line size of 32 bytes;

Therefore, if the cache size is 8 Kbytes (for C programs) or 16 Kbytes (for C++

programs), 2-way T A C schemes can reduce cache misses much better than 2-way

skewed-associative caches for all cache line sizes such as 8, 16, and 32 bytes. If cache

size is 4 Kbytes or 32 Kbytes, 2-way T A C schemes can reduce cache misses slightly

better than 2-way skewed-associative caches for C programs.

71

4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

(a) Improvement Ratios for C and C++ Programs (cache line size : 8bytes)

4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

(b) Improvement Ratios for C and C++ Programs (cache line size : 16bytes)

Figure 32. Comparisons for Improvement Ratios between 4-way skewed-associative and
4-way T A C caches.

72

12 i
-•- C Programs
-*- C++ Programs

4 4

2 4

0 v

4 KBytes 8 KBytes 16KBytes 32KBytes

Cache Sizes

(c) Improvement Ratios for C and C++ Programs (cache line size : 32bytes)

Figure 32. (continued) Comparisons for Improvement Ratios between 4-way skewed-
associative and 4-way T A C caches.

In Figure 32, 4 C programs (gcc, m88ksim, l i , and compress) and 3 C++ programs

(deltablue, ixx, and eqn) were also used for determining IR between 4-way skewed-

associative and 4-way T A C schemes.

The results of Figure 32 show that:

- 4-way T A C schemes reduce cache misses more effectively than 4-way skewed-

associative caches in both C and C++ programs;

For C programs, the rate of improvement of 4-way T A C schemes over 4-way set-

associative schemes range:

o From 3.2% (32 Kbytes) to 9.06% (4 Kbytes) for cache line size of 8 bytes;

o From 4.53% (16 Kbytes) to 9.43% (4 Kbytes) for cache line size of 16 bytes;

o From 4.42% (16 Kbytes) to 8.32% (4 Kbytes) for cache line size of 32 bytes;

73

For C++ programs, the rate of improvement of 4-way T A C schemes over 4-way set-

associative schemes range:

o From 1.23% (32 Kbytes) to 10.02% (4 Kbytes) for cache line size of 8 bytes;

o From 1.63% (16 Kbytes) to 14.09% (4 Kbytes) for cache line size of 16 bytes;

o From 4.98% (32 Kbytes) to 10.46% (4 Kbytes) for cache line size of 32 bytes;

Therefore, if the cache size is 4 Kbytes (for C and C++ programs), the 4-way T A C

schemes can reduce cache misses much better than 4-way skewed-associative caches

for all cache line sizes such as 8, 16, and 32 bytes. If cache sizes are larger than 16

Kbytes, the difference between 4-way T A C and 4-way skewed-associative schemes

are reduced since the 4-way T A C or the 4-way skewed-associative caches reduce

conflict misses significantly.

74

0 -I •• 1 1 1 1 •• r

4KB, 4KB, 8KB, 8KB, 16KB, 16KB,
16bytes 32bytes 16bytes 32bytes 16bytes 32bytes

Cache Sizes, Line Length

(a) Improvement Ratios for C and C++ Programs (2-way, cache line size : 8/16 bytes)

0 -| 1 1 1 1 1 1

4KB, 4KB, 8KB, 8KB, 16KB, 16KB,
16bytes 32bytes 16bytes 32bytes 16bytes 32bytes

Cache Sizes, Line Length

(b) Improvement Ratios fOr C and C++ Programs (4-way, cache line size : 8/16 bytes)

Figure 33. Comparisons for Improvement Ratios between skewed-associative and T A C
caches from 4Kbytes to 8 Kbytes.

75

The results of Figure 33 show that:

(a) 2-way T A C schemes over 2-way skewed-associative caches work well for cache

sizes of 8 Kbytes (for C programs) and 16 Kbytes (for C++ programs);

(b) 4-way T A C schemes work well for the small cache sizes such as 4 Kbytes or 8

Kbytes.

2.5.5 Various cache schemes for the Branch Target Buffer

The Branch Target Buffer (BTB) is a small cache that contains the address of the

branch instructions and their target addresses. The BTB is accessed in the fetch stage to

predict the state of a branch instruction. If a hit occurs, then the current instruction is a

taken branch. The Program Counter (PC) is loaded with the target address from BTB, and

fetching starts from the new PC. It has been popular to employ a 4-way set-associative

cache for a small-sized BTB table, which has less than 512 entries. Driesen and Holzle

('98) claimed that for a table with 256 entries (64 associativity sets of four) most BTB

conflict misses disappear. However, the results of our experiment show that even a BTB

with 512 entries (128 associativity sets of four) still suffers from conflict misses.

This section determines the most effective cache scheme for BTB (Branch Target

Buffer) among various cache schemes. BTB was simulated with three different cache

schemes by using C and C++ benchmark programs in Figure 34. These schemes are 4-

way set-associative, 2-way skewed-associative and 2-way T A C scheme. The C programs

include go, gcc, m88ksim, l i , and perl. The C++ programs are deltablue, ixx, and eqn.

The range for the simulated BTB table sizes is from 64 entries to 1024 entries.

76

64

4-way set-asso.
2-way Skew
2-way TAC

128 256 512

Entries of BTB Tables

1024

(a) Miss Rates vs. Entries of BTB Tables for C Programs

Figure 34. Comparisons of branch misprediction rates of BTB with a 4-way
associative, 2-way skewed-associative and 2-way T A C caches.

77

40 -, - • - 4way set-asso.
2-way Skew
2-way TAC

e
•2 25 -

64 128 256 512 1024

Entries of BTB Tables

(c) Miss Rates vs. Entries of BTB Tables for C and C++ Programs

Figure 34. (continued) Comparisons of branch misprediction rates of BTB with a 4-way
set-associative, 2-way skewed-associative and 2-way T A C caches.

The results of Figure 34, based data from Appendix A, show that:

- The 2-way skewed-associative and T A C schemes reduce branch misprediction rates

more effectively than 4-way set-associative in both C and C++ programs.

- For C programs in Figure 34(a), the 2-way T A C scheme for the 256-entry table of the

BTB works better than the other sizes of the BTB table.

- For C++ programs in Figure 34(b), the 2-way T A C scheme for the 512-entry table of

the BTB works better than the other sizes of the BTB table.

- The 2-way T A C scheme can reduce branch misprediction rates more effectively for

the small-sized BTB tables, i.e., less than 512 entries.

78

20 7

£•15
•—•

1 10
"3
* 5

Average

1 1 1 1 1

64 128 256

Entries of Tables

512 1024

(a) Improvement Ratios between BTB and 2-way T A C Scheme

20

£ 1 5 - 1
if!
o
et
PS. 10
a

Si o s-

0

-«^C+ +
Average

^ $ £ - - ^

1 . 1

64 128
1

256 512
1™ • i

1024
Entries of Tables

(b) Improvement Ratios between 2-way Skew and 2-way T A C Scheme

Figure 35. Comparisons for Improvement Ratios among 4-way set-associative, 2-way

skewed-associative and 2-way T A C schemes.

79

In order to compare branch misprediction rates between the 2-way T A C and 4-way set-

associative caches, and between the 2-way T A C and 2-way skewed-associative caches,

we used a formula called IR, Improvement Ratio, such that:

Branch Misprediction Rates of a 2-way skewed-associative or a 4-way set-

associative caches = a;

Branch Misprediction Rates of a 2-way TAC scheme = b;

a/b = l + n/100. Ifn = IR, IR = ((a -b)/b)* 100 % - (3)

The results in Figure 35(a) show that:

2-way T A C schemes work better than 4-way set-associative caches for all table

entries, from 64 entries to 1024 entries, in both C and C++ programs.

- For C programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 4% (64 entries) to 11.83% (256 entries).

- For C++ programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 5% (64 entries) to 17.54% (512 entries).

- For all C and C++ programs, Improvement Ratios of 2-way T A C schemes over the 4-

way set-associative range from 3.0% (64 entries) to 12.46% (512 entries).

The results in Figure 35(b) show that:.

- 2-way T A C schemes work better than 2-way skewed-associative caches for all table

entries, which are less than 1024 entries (Figure 35) for both C and C++ programs.

- For C programs, Improvement Ratios of 2-way T A C schemes over 4-way set-

associative caches range from 0.39% (512 entries) to 4.0% (256 entries).

- For C++ programs, Improvement Ratios of 2-way T A C schemes over 2-way skewed-

associative caches range from 0.63% (512 entries) to 6.50% (128 entries).

80

- In the case of the 1024 entries for both C and C++ programs, there is no difference

between 2-way T A C schemes and 2-way skewed-associative caches.

- For all C and C++ programs, Improvement Ratios of 2-way T A C schemes over 2-

way skewed-associative caches range from 0.53% (512 entries) to 4.46% (128

entries) except for the 1024-entry table.

The results in Figure 35 show that 2-way skewed-associative cache and 2-way T A C

schemes reduce branch misprediction rates much better than the 4-way set-associative

caches. In addition, the 2-way T A C schemes work considerably better than 2-way

skewed-associative caches for all table entries, from 64 entries to 1024 entries. However,

if a BTB table is greater than I K entries, our results showed the same results as Driesen

and Holzle ('98). Therefore, if the BTB table size is less than 512 entries, the 2-way T A C

scheme can be a good solution for reducing branch mispredictions caused by conflict

misses.

2.5.6 Comparison for all 2-way schemes

In the previous sections, we discussed that 2-way T A C schemes are the most effective

cache schemes to reduce conflict misses for the instruction cache memory or BTB. This

section, compares hardware complexity and memory access time among 2-way cache

schemes such as 2-way set-associative, 2-way skewed-associative and 2-way T A C

schemes.

81

Contents 2-way
set-associative

2-way
skewed-associative

2-way
TAC

Logic and
Indexing

Replacement LRU, etc. PLRU, etc. BSL + BoPLRU Logic and
Indexing

Indexing Lower part of
address

XOR mapping XOR mapping or
Polynomial, etc.

Hardware Banks 2 2 2 Hardware

Flag Y (Bank 0) Y (Bank 0) Y (Each Bank)

Hardware

Bank design Classical design Classical design +
XOR gates (mapping)

Classical design +
XOR gates (map)

Hardware

Counter N N Y (BSL)

Access Time Same Same
(slightly increased by

XOR gates)

Same
(slightly increased

by XOR gates)
Hardware Complexity Same Almost Same

(Only several XOR
gates are added to the
2-way set-associative)

Almost Same
(Only a counter is
added to the 2-way
skewed-associative)

Cache Miss Ratio High Medium Low

1. BoPLRU: Bank-originated Pseudo Least Recently Used, BSL: Bank Selection Logic
2. 'Access Time' and 'Hardware Complexity' from 'A. Seznec, A case for two-way skewed associative

Caches, Proc. Of the 20th ISCA, May 1993, pp!69-178'.

Table 6. Comparison of hardware complexity and access time among three representative

2-way schemes: 2-way set-associative, 2-way skewed-associative, and 2-way T A C

schemes. '

Table 6 shows various characteristics for three different 2-way schemes:

- The 2-way T A C scheme employs a flag for each bank while other 2-way schemes

employ only one bank. However, the flag size will not be a critical factor in

increasing the hardware complexity in a 2-way T A C scheme since the flag size is

only 1 bit.

Memory access time of 2-way skewed-associative and 2-way T A C schemes is greater

than for 2-way set-associative caches as a result of using X O R mapping functions.

However, according to Seznec ('93), the memory access time caused by the X O R

82

mapping functions will be slightly increased by one xor-gate delay time since several

xor gates work in parallel for the X O R mapping functions.

According to Table 6, the 2-way T A C scheme is seen to be a good solution for

reducing conflict misses for instruction cache memory and BTB with similar hardware

complexity and memory access time compared to 2-way set-associative caches.

2.6 Chapter conclusions

Unlike traditional application programs, object-oriented languages use many small

functions during run-time and this is the main factor for conflict misses. This paper

presents a new cache scheme called T A C (Thrashing-Avoidance Cache), which

effectively reduces instruction cache misses caused by frequent procedural call/returns.

Among conventional cache schemes, the skewed-associative cache offers the lowest

miss ratio, which is significantly lower than a 4-way set-associative cache. However, a

skewed-associative cache has a limitation in handling conflict misses in object-oriented

programs due to the problem of accessing the large number of small functions. The main

reason for this is that a skewed-associative cache is designed to reduce conflict misses for

individual instructions only. The T A C scheme works not only for individual instructions

but also for a group of instructions such as a calling routine and its associated subroutine.

Our simulation results show that:

83

• T A C schemes (on L I cache) can improve instruction cache miss rates by up to

9.29% for C programs and 44.44% for C++ programs over skewed-associative

caches.

• T A C schemes (on BTB, 2-way) reduce branch misprediction rates more

effectively than 4-way set-associative by up to 11.83% for C programs and

17.54% for C++ programs.

• T A C schemes (on BTB, 2-way) also reduce branch misprediction rates better than

skewed-associative (2-way) caches by up to 4% for C programs and 6.5% for

C++ programs.

• Hardware cost and memory access time in an N-way T A C scheme are similar to

a n-way set-associative cache since an N-way T A C scheme employs N banks (N-

way) and X O R mapping functions with simple hardware complexity.

• T A C schemes employ an efficient replacement policy. The BoPLRU effectively

reduces conflict misses caused by the procedure call/returns by ensuring that the

recent groups of instructions are retained in each bank safely.

Future work involves combining T A C schemes with more efficient mapping functions,

more effective replacement policies, etc.

84

Chapter 3 Reduction of Indirect Branch Mispredictions

This chapter presents a new hybrid branch predictor called the GoStay2, which can

effectively reduce misprediction rates for indirect branches. The GoStay2 has two

mechanisms that are different from other 2-stage hybrid predictors that use a Branch

Target Buffer (BTB) as the first stage predictor. First, to reduce conflict misses in the

first stage, a new effective 2-way cache scheme is used instead of a 4-way set-associative.

Second, to reduce mispredictions caused by an inefficient predict and update rule, a new

selection mechanism and update rule are proposed. A simulation program has been

developed by using Shade and Spixtools, provided by SUN Microsystems, on an Ultra

SPARC/10 processor. Our results show good improvement with these mechanisms

compared to other hybrid predictors. For example, the GoStay2 improves indirect

misprediction rates of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by

14.9% to 21.53% compared to the Cascaded predictor (with leaky filter).

3.1 Introduction

For high performance computer architectures, branch prediction is a key mechanism in

achieving high performance on multi-instruction issues. Branches transfer control flow of

programs. The next instruction can only be decided after the current instruction is

executed. Therefore, if there is no branch prediction scheme, the pipeline always stalls for

at least three clock cycles (decode, issue, and execute stages) whenever it meets a branch

instruction. A poor branch prediction scheme likewise results in many such stalls, whereas

85

a good branch prediction scheme reduces stalls. Thus, more accurate branch predictors are

desired for reducing the impact on overall system performance.

According to Chang et al. ('97), branches can be categorized as conditional or

unconditional, as well as direct or indirect, resulting in four classes. Of the four classes,

prediction of conditional indirect branches is typically not implemented [Kalamatianos

& Kaeli '98].

Conditional or unconditional direct branch instructions include a target address as part of

the instruction. However, unconditional indirect branch instructions obtain a target

address indirectly through a register or a pointer variable. Therefore, while direct branch

instructions have a single target, indirect ones have multi-targets. Single-target direct

branches can be predicted with reported hit-ratios of up to 97% [Yeh & Patt '93]. In

contrast, indirect branches with multi-targets are harder to predict accurately. Indirect

branches occur frequently in some widely used benchmark programs like SPECint95, and

even more frequently in object-oriented languages. The sources of indirect branches are

switch statements, virtual function calls, or indirect function calls [Kalamatianos & Kaeli

'98][Driesen & Holzle '98B]. Calder et al. f94A) investigated behavioral differences

between C and C++ programs; C++ programs execute many fewer conditional branch

instructions (61.6% vs. 80.0%) and more procedure calls (11.2% vs. 6.3%), indirect

procedure calls (3.9% vs. 0.3%), and return instructions (15.1% vs. 6.6%). The above

results indicate that handling indirect calls, procedure calls, and returns properly should

be important for C++ programs [Calder et al. '94A]. Chang et al. ('97) also showed that

indirect branches occur frequently in C++ (objectToriented languages), which are rapidly

increasing in popularity.

86

Conventional branch predictors predict branch direction and generate the target

address associated with that direction. BTB-based prediction schemes are the only

predictor for indirect branch prediction in conventional branch schemes since an indirect

branch needs a full target address instead of direction (taken or not-taken). However, they

perform poorly, with a 66% to 76% misprediction rate for indirect branches since the

target of an indirect branch can change with every dynamic instance of that branch

[Chang et al. '97]. Chang et al. ('97) showed that the small proportion of indirect

branches (2 to 3%) for SPECint95 benchmarks could be a critical factor in degrading

system performance. Thus, an accurate indirect branch predictor is needed for widely

used object-oriented languages such as C++ programs since their indirect branch ratio is

at least two to three times higher than that of SPEC benchmarks (C programs) [Chang et

al. '97][Calder et al. '94A].

This chapter presents a 2-stage hybrid predictor called the GoStay2, which employs a

new cache scheme for the first stage and a new selection mechanism and update rule

using a 2-bit flag. The flag is a similar mechanism to the meta-predictor used by

McFarling ('93). However, our flag is updated according to the update rule and execution

results while the meta-predictor is affected by the execution results only. This chapter

shows that the GoStay2 outperforms other 2-stage hybrid predictors such as the Target

Cache [Chang et al. '97] and Cascaded predictor [Driesen & Holzle '98B] by improving

the accuracy of indirect branch predictions.'

This chapter is organized as follows: Section 3.2 explains related work; section 3.3

presents the new branch architecture with the two mechanisms for reducing indirect

87

mispredictions; section 3.4 describes simulation methodology and benchmark programs;

section 3.5 presents our simulation results; and section 3.6 provides our conclusions.

3.2 Related work

Various branch prediction strategies for indirect branches have been previously studied

to improve prediction accuracy. These strategies can be categorized into three main areas:

• Indexing functions for accessing predictor tables;

• Selection mechanisms for choosing accurate prediction in hybrid predictors;

• Update rules after resolving a branch.

For each single-scheme predictor, the accuracy of the branch prediction depends on the

indexing functions. Most of the research on branch prediction has been done on;.

developing efficient indexing functions.

A hybrid branch predictor combines two or more single-scheme predictors. The

performance of the hybrid predictor depends on both indexing functions of each single-

scheme predictor and a selection mechanism for a particular predictor. Recently, several

selection mechanisms have been proposed to predict indirect branches by using a

sophisticated form of the update rules instead of just simple n-bit counters [Chang et ai.

'97] [Driesen & Holzle'98B].

88

3.2.1 Indexing functions for indirect branch predictors

There are two types of branch predictors classified according to the number of

component predictors: A single-scheme predictor that has only one predictor and a hybrid

predictor that combines two or more single-scheme predictors.

Prediction (able

(a) Branch Target Buffer (single-scheme)

Branch address

X X

prediction

Predictor

Counts

prediction

Predictor 2

Branch address

Branch history
Index

June.
prediction

Prediction table

(b) Global two-level branch predictor
(single-scheme)

Lower }<-
^addr.

Branch address

prediction

Prediction table

Branch history

Index
June.

prediction

Target Cache)

Selection Mechanism

(c) Combined branch predictor (hybrid)

Figure 36. Various indirect branch predictors

(d) Hybrid branch predictor for indirect branches

In Figure 36, (a) and (b) represent typical single-scheme predictors. The Branch Target

Buffer (BTB) stores both the branch address and target address. If a current branch is

found in the BTB, it is predicted as 'taken' with the target address. If there is a

misprediction or a first-miss, the branch and target addresses are updated after the

execution. When a branch address is not found in the prediction table, it is recognized as

a first-miss. In general, a low-order branch address is used as the indexing function to

89

access the physical line of the BTB. As we discussed before, the BTB-based prediction

schemes should not used for indirect branches because of poor prediction accuracy

[Chang et al. '97]. For improvement of the BTB, a 2-bit strategy was proposed by Calder

and Grunwald ('94). This strategy used a 2-bit counter for limiting the update of the

target address in the BTB only after two consecutive mispredictions have occurred. The

2-bit strategy can reduce a misprediction ratio for C++ applications without changing

predictions too rapidly. However, the 2-bit strategy is not very successful in predicting

the targets of indirect branches in C programs such as SPECint95 benchmarks [Chang et

al. '97].

For indirect branches in Figure 36, each single-scheme predictor should hold a target

address per cache line instead of just a direction (taken/not taken). The single-scheme

predictor in Figure 36(b) shows an indexing function obtained by varying a two-level

adaptive scheme described in [Yeh & Patt '93]. This is called a gshare scheme that was

introduced by McFarling ('93). The gshare scheme performs better than a two-level [Yeh

& Patt '93] predictor by XORing (exclusive oring) the global branch history with the

lower bits of a branch address to generate the index into the prediction table. The gshare

is considered as one of the highest performance predictors and the best single scheme at

all levels of cost [Chang et al. '97][Driesen & Holzle '98B].

In Figure 36(c), McFarling ('93) introduced the concept of a hybrid branch predictor

by combining single-scheme predictors. The combined branch predictor consists of two

predictors and a table of 2-bit saturating counters. This counter array is called a meta-

predictor and is used to select the more accurate predictor for a current branch. After

90

resolving a branch, both component predictors are updated, and the meta-predictor is

updated to reflect the relative accuracy of the two predictors.

Figure 36(d) shows an indirect hybrid branch predictor that consists of two predictors

such as the BTB (Figure 36(a)) and gshare-like single-scheme predictors (Figure 36(b)).

This chapter considers only hybrid branch predictors consisting of two single-scheme

predictors. Moreover, one of the predictors is a BTB since this chapter compares

strategies for simple and effective predictors such as the Target Cache and Cascaded

predictor:

• Target Cache - Chang et al. ('97) proposed a predictor by using the Target Cache to

improve the accuracy of indirect branch predictions. The Target Cache is similar to

the Pattern History Table (PHT) of a 2-leyel branch predictor except that the Target

Cache records the branch target while the PHT holds only branch directions such as

taken/not taken. This predictor XORs pattern- or path-based history bits with the

branch address to index the prediction table shown in Figure 36(d).' The Target Cache

can reduce the misprediction rates of indirect branches significantly. For example, a

512-entry Target Cache achieved a misprediction rate of 30.4% and 30.9% for gcc

and perl, while a lK-entry 4-way set-associative achieves rates of 60% and 70.4%

[Chang etal.'97];

• Leaky or Strict Filters of the 2-stage Cascaded Predictor - Driesen and Holzle ('98B)

introduced two variants of the Cascaded Predictor, which has two stages; a BTB for

the first.stage and a gshare-like two-level predictor as the second stage. The small-

sized BTB works as a filter and the second stage predictor stores indirect branches

that need branch history-based prediction. The second stage uses an indexing function

91

similar to the Target Cache, such as a path-based branch history XORing with a low-

order branch address to index the prediction table shown in Figure 36(d). Driesen and

Holzle ('98B) showed that the two filters (leaky or strict) have slightly different

update rules (Table 7). The filtering effect decreased the misprediction rate compared

to a non-filtering Cascaded Predictor. For example, a 32-entry BTB filter (first stage)

improved the misprediction rate of a 256-entry monopredictor (non filtering) from

11.7% to 10.7% [Driesen & Holzle '98B].

Kalamatianos and Kaeli ('98) showed that the leaky filter of a Cascaded Predictor

improved indirect branch prediction accuracy over the Target Cache in most SPECint95

and C++ benchmarks.

3.2.2 Selection mechanisms and update rules for hybrid predictors

In the combined predictor of McFarling ('93), there are two single-scheme predictors

such as p i and p2. The meta-predictor, a table of 2-bit counters, is used to select one of

two predictors as a selection mechanism. A 2-bit counter reflects the states "strongly p2

(11)", "weakly p2 (10)", "weakly p i (01)", and "strongly p i (00)". For example, when a

branch.is predicted, each single-scheme predictor is queried. If the counter is '00', then

p i is selected for the branch prediction. When the branch commits, both predictors are

updated and the meta-predictor is updated to favor the predictor that had the correct

prediction [McFarling '93] [Grunwald et al. '98].

While conventional hybrid branch predictors use a meta-predictor as a selection

mechanism, the Target Cache and Cascaded predictor have no such meta-predictor.

92

Instead, selection is done by predict rule; both stages are examined for finding a current

branch address. If both stages have the current branch, the second stage predictor takes

precedence. If not, the target address in any stage, which matches the branch, is used. The

other difference from existing hybrid predictors lies in the handling of table updates.

Table 7 shows the update rules for the Target Cache and Cascaded predictors. For the

Target Cache, when an indirect branch is resolved, the Target cache (second stage

predictor) is updated with its target address. Otherwise, updates are done in the first stage

predictor (BTB) only.

Predictors Update Rules

Target Cache - When an indirect branch is resolved, the 2 n d stage is updated

with its target address.

- For a first-miss, update of the 2 n d stage is not allowed.

Cascaded

predictor

Strict

Filter

- When an indirect branch is resolved, the 1st and 2 n d stages

are updated.

- For a first-miss, update of the 2 n d stage is not allowed.

Cascaded

predictor

Leaky

Filter

- When an indirect branch is resolved, the 1st and 2 n d stages

are updated.

- For a first-miss, update of both the 1st and 2 n d stages is

allowed.

Table 7. Update rules for the Target Cache and Cascaded predictors.

Table 7 shows the update rules for the Target Cache and also the strict and the leaky

filters which are two variations of the Cascaded predictor. The Cascaded predictor can

reduce the table size effectively by using a small-sized BTB as a filter. Since the first

stage works as a filter to separate indirect branches from amongst all branches, the

93

second stage is used to store indirect branches that have multi-targets. Therefore, the

accuracy of a 2-stage predictor is much higher than that of a single-scheme. The

difference between the strict and leaky filters is that the leaky filter allows new second

stage entries on a first-miss while the strict filter does not [Driesen & Holzle '98B].

. The differences between indirect and conventional hybrid branch predictors are:

• Indirect branch predictors record branch targets instead of directions in the table;

• Indirect branch predictors employ different selection mechanisms other than a 2-bit

saturating counter;

• , Indirect branch predictors have different table update rules instead of just updating

both predictors simultaneously.

3.3 GoStay2 Branch Predictor

Section 3.2 described several indirect branch predictors in detail. Both the Target

cache and Cascaded predictor can reduce the indirect misprediction rate considerably

over a BTB-based predictor. Among them, the leaky filter of the Cascaded predictor

offers the most effective misprediction rate performance for indirect branches

[Kalamatianos & Kaeli '98][Driesen & Holzle '98B]. However, the leaky filter has some

problems that degrade system performance:

• Conflict misses - If a prediction table such as BTB has small entries (say, less than

512 entries), conflict misses might increase the misprediction rate considerably;

• Inefficient predict rules - If a branch address is found at both stages, the second stage

has priority for prediction. If the first stage has a correct target address and the second

94

stage has an incorrect target address, then the assumed priority of the second stage

always causes a misprediction.

• Inefficient update rules - If a predicted target address is wrong, then the resolved

target address of the branch address is updated in both stages. This also causes a

misprediction if the replaced target address is needed for a following branch.

In order to resolve the above problems, this section presents a new hybrid branch

predictor.

3.3.1 An overview of a GoStay2 predictor

As we discussed in section 3.2, the basic operation of 2-stage hybrid predictors can be

divided into the three parts comprising indexing, predicting, and updating. For predicting

and updating, each 2-stage hybrid predictor has its own predict and update rule to predict

a target address and update a resolved target address. .

Figure 37(a) shows that, in a conventional 2-stage branch predictor, if the first stage

has a correct target address (A) but the second stage has a wrong one (B), then the

prediction (B) leads to misprediction since the second stage always takes priority of

prediction.

Figure 37(b) shows the basic operation of a GoStay2 predictor, which can reduce

mispredictions effectively. In a GoStay2 predictor, the prediction will be made according

to the flag in the first stage. In Figure 37(b), since the flag is '0', the prediction (A) is

made with the target address in the first stage (A), which leads to correct prediction. The

flag is updated to '0' or T according to the update rule (refer to section 3.3.3).

95

Branch address

Assumption:
A: Correct Target address
B: Wrong Target address

A •
-

1ST stage predictor

B

selector

2 n d stage predictor

(a) conventional 2-stage branch predictors

Branch address

0 or 1

Flag in the 1st stage

1st stage predictor

B

selector

2 n d stage predictor

(b) GoStay2 branch predictors

Misprediction !!
— • Predict B

B //Always

Correct
Prediction!!

— • Predict A

• if (Flag = 0)
A

else
B

Figure 37. The basic operations of conventional 2-stage and GoStay2 branch predictors.

Figure 38 shows the overview of the proposed branch predictor called the GoStay2,

which has a different operation from other 2-stage hybrid branch predictors such as the

Target Cache and Cascaded predictor. 'GoStay2' implies GoStay predict and update

rules, as well as a 2-bit flag in the first stage.

In the GoStay2, the indexing function for the first stage is different from the other

predictors (refer to section 3.3.2), but that of the second stage is the same as the others

shown in Figure 37. For predicting, the GoStay2 predictor provides a new selection

scheme called the GoStay predict rule (refer to section 3.3.3). Our experiment shows that

the GoStay predict rule is more accurate than the leaky filter. Finally, for updating, this

section introduces a new replacement policy for the first stage and a new update rule for

96

both stages by using a 2-bit flag in the first stage. The first bit of the flag is for the Bank-

originated Pseudo-LRU (BoPLRU) replacement policy [Chu & Ito '00], and the second

bit is for the GoStay. Figure 38 shows all the differences mentioned above as two

mechanisms.

Target address

First-stage predictor p |
F T

The First Mechanism''

>-(̂ ipdate rule

Branch address

Second-stage predictor—1

branch target flag

a Ft

BTB (2-way TAC scheme)

The Second Mechanism

Branch history

branch target

a R

PHT (4-way set-associative)

** BTB: Branch Target Buffer, TAC: Thrashing Avoidance Cache, PHT: Pattern History Table

Figure 38. The overview of the GoStay2 branch predictor.

For the first mechanism in Figure 38, the GoStay2 Predictor uses a new cache scheme

developed by Chu and Ito ('00) instead of a 4-way set-associative for the first stage to

reduce conflict misses. This new scheme called the 2-way T A C employs 2-way banks

and the X O R mapping function (XOR). The X O R is used for indexing the 2-way T A C

scheme by using a branch address. Bodin and Seznec ('95) defined the X O R for 2-way

banks such that each bank consists of 2 n cache lines of 2° bytes, where a is the perfect-

97

shuffle on n bits, so that the data block at memory address A 3 2 c + 2 n + A 2 2 n + C + A{lc may

be mapped:

• on a cache line Ai© A2 in cache bank 0

• or on a cache line CT(AI)© A2 in cache bank 1

The 2-way T A C contains a branch and target address along with a 2-bit flag per cache

line, which is added one more bit from the 2-way T A C of Chu and Ito ('00). The main

function of this scheme is to place a group of branch instructions into a bank according to

the B S L (Bank Selection Logic) and the BoPLRU replacement policy and is explained in

more detail in section 3.3.2. The combination of B S L and BoPLRU guarantees that recent

groups of branches can be retained in each bank safely.

For the second mechanism in Figure 38, to improve the inefficient predict and update

rules, the second bit of the 2-bit flag is used to implement the GoStay predict and update,

rule if both stages have a branch address: If the second bit is '1 ' , a target address of the

second stage is used (Go). Otherwise, a target address of the first stage is used (Stay).

The GoStay2 predictor works the same as the leaky filter if the bit is T ' . This bit is set to

'0' whenever a branch address is found in the first stage only and the predicted target

address is correct. In other words, i f the second bit of the 2-bit flag is '0', then the branch

address is indirect, and the target address was correct for the previous prediction.

98

3.3.2 The 2-way TAC scheme for the BTB - The first mechanism

As we discussed before, the first stage employs the 2-way T A C scheme to reduce

conflict misses for small-sized (say, less than 512 entries) tables. The first mechanism is

defined as two functions for this scheme (Figure 39), namely indexing (XOR mapping)

and updating.

Target address

XOR

BTB (2-way TAC Scheme)
First-stage predictor

t update

GoStay

Branch address
update rule

Prediction .predict rule,. '

BSL & BoPLRU replacement
policy in the 2-way T A C

" Scheme

Target address 1 On a Branch Misprediction

2 L
BSL counter

7
Initial Bank
Selection x ''

Rank 0 Bank 1
We assumed 'MSB
of counter' = 0.

BankO

Bankl

data 2-bit f lag^. • x

BoPLRU 3 -

^ Final Bank
Selection ^

Replacement < l̂ag in a Selected'Banp
Policy JV \ ^

BankO 1 _ J Bank 1

Figure 39. The operation of the first mechanism, data = branch address + target address.

For the indexing function, the two banks of the first stage predictor are accessed

simultaneously with two different XOR mapping functions as we discussed in the

previous section. Since Gonzales et al. ('97) and Seznec ('93) have shown that the X O R

99

works well for reducing conflict misses, the GoStay2 employs this mapping function for

this scheme.

For updating function, if the GoStay update rule (refer to section 3.3.3) selects the

first-stage predictor to update resolved branch/target addresses, they are written into the

selected bank of the first-stage according to the value of the first bit of the 2-bit flag. In

Figure 39, the B S L selects a bank initially on a miss according to a fixed frequency of the

procedure call instructions. The B S L employs a n-bit counter for counting the

occurrences of call instruction. For example, if n = 2, then the first bit (Most Significant

Bit) of the counter toggles every second procedure calls and the toggled first bit shows a

selected bank. Therefore, if an instruction in the first group is initially placed in bankO,

then an instruction in the third group is placed into bankl. In this chapter, it is assumed

that the first stage employs a 2-bit counter.

After the B S L selection in Figure 39, the BoPLRU determines the final bank for

updating a line as a correction mechanism by checking the first bit of the flag for the

selected cache line [Chu & Ito '00]. When the first bit of the 2-bit flag is T , the

branch/target addresses are written into bankO, and the first bit is changed to '0'.

Otherwise, the branch/target addresses are written into bankl, and the first bit is changed

to T . In the Figure 39 example, it is assumed that bankO of the first stage is selected for

updating by the BSL. Then, the BoPLRU policy works according to the status (T or '0')

of the first bit in the 2-bit flag. In Figure 38, bank 1 is selected for updating a cache line

since the first bit of the 2-bit flag is '0', then the 2-bit flag is changed from '01' to '11'

[Chu & Ito '00].

100

This mechanism helps improve indirect misprediction rates by reducing conflict misses

in a small-sized, less than 512 entries, first stage predictor table such as BTB.

3.3.3 The GoStay predict and update rule - The second mechanism

For the second stage, like other 2-stage hybrid branch predictors, the GoStay2 can use

a pattern- or path-based history xored with low-order bits of a branch address as an

indexing function. There are two functions in the second mechanism: the GoStay predict

rule and update rule.

3.3.3.1 GoStay predict rule

Figure 40 shows that each stage is examined as to whether the current branch address

is/in the table or not. There are three possible cases:

1. If there is no matched branch address in either stage, then this is a case of 'not taken'.

Therefore, no prediction occurred;

2. If there is one matched branch address between two stages, then the prediction occurs

with the target address of a matched stage;

3. If both stages have the same matched branch address, the prediction will be

determined according to the GoStay predict rule in Figure 40. 1

101

Target address

if (the second bit of the flag = 1)
predict with the second stage.

First-stage predictor

••(update rule)

Second-stage predictor J

branch target flag

sRrst stage

(jO to Second stage

branch target

Second stage

flag

First stage

Second stage

Stay at First stage

if (the second bit of the flag = 0)
predict with the first stage.

Figure 40. The GoStay predict rule of the second mechanism.

The goal of the GoStay predict rule is to reduce mispredictions caused by wrong target

addresses of the second stage. This rule works only when both stages have the same

branch address. The detailed operations in the 'GoStay predict rule' of Figure 40 are:

1. If the second bit of the 2-bit flag in the first stage is '1 ' , then the prediction will be

done with the target address of the second stage (Go);

2. If the second bit of the 2-bit flag in the first stage is '0', then the prediction will be

done with the target address of the first stage (Stay).

102

3.3.3.2 Update rule

Update rule for the GoStay2
Prediction

with
Results Update

Flag
(2 n d bit)

None None
Both
stages

1

First stage Correct None 0

First stage Incorrect
Both
stages

1

Second
stage

Correct- None 1

Second
stage

Incorrect
Second
stage

1

First-stage predictor

<c=> < 1 Target address

Second-stage predictor

Prediction with: Predicting with a target address of a selected bank.
Results: Prediction results after the execution.
'Correct' means correct predictions and 'incorrect' means misprediction.
Both stages means both the first and second stages.
Flag is the 2 n d bit of the 2-bit flag in the first-stage predictor.

Figure 41. Update rule of the second mechanism.

Figure 41 shows the update rule after the branch instruction is resolved. The branch

history register will be updated according to the branch resolution. There are three cases

for updating both stage predictors.

First, in case of no prediction, both stages are updated with a new branch and target

address. This is the case of a first-miss. Both the leaky filter and the GoStay2 permit

updating of the second stage table for a first-miss. In addition to this, the GoStay2 sets the

second bit of the 2-bit flag in the first stage as '1 ' . This second bit of the 2-bit flag is

always set to '1 ' whenever the second stage is updated. Therefore, if the second bit is T ' ,

the GoStay2 works like the leaky filter in this case.

103

Secondly, in the case of prediction with a target address in the first stage, the update

can also be varied according to the branch resolution:

1. If it is a correct prediction, the second-bit of the 2-bit flag is set to '0';

2. If it is an incorrect prediction, both stages are updated. The second bit of the 2-bit flag

is set to T .

Lastly, in case of prediction with a target address in the second stage, the update will

be varied according to the branch resolution:

1. If it is a correct prediction, no update is required;

2. If it is an incorrect prediction, the target address of the second stage is updated since

the branch address is indirect.

3.3.4 Benefits of the GoStay2 branch predictor

Figure 42 shows an example of committed target addresses, which compares the

update processing between the GoStay2 and leaky filter. The assumptions for the branch

addresses are:

a(A), b(B), and c(C) show the 'branch address (target address)' in each table;

In the first stage, a(A) and c(C) have the same branch indexing but different target

address;

In the second stage, b(B) and c(C) have the same branch indexing but different target

address.

Figure 42(a) shows how the GoStay2 works with the flow of example target addresses:

104

a(A) is placed into the first stage with the flag set to ' x l ' and into the second stage

since a(A) is assumed to be a first-miss. The 'x' of ' x l ' means 'don't care' since

the first bit is set by the replacement policy of the 2-way T A C scheme for the first

stage. The second bit of the flag is set to 1 since the second stage is updated.

(Miss);

b(B) conflicts with a(A) in the first stage because of the same branch indexing, so

the target address is changed A to B in the first stage. b(B) is placed into the

second stage without conflict. The second bit of the flag for b(B) in the first stage

is set to 1 since the second stage is updated. (Miss);

a(A) is found in the second stage. Therefore, there is no update for a(A). (Hit);

c(C) is placed into the first stage with the flag set to ' x l ' since c(C) is assumed to

be a first-miss. b(B) in the second stage is changed to c(C) since there is a conflict

between b(B) and c(C) in the second stage according to the assumption. The

second bit of the flag is set to 1 since the second stage is updated. (Miss);

b(B) is found in the first stage only, so that the second bit of the flag is set to 0

without further update according to the update rule. Therefore, the GoStay2 can

save b(B) in the first stage longer. In the case of the next occurrence ofb(B), the

GoStay2 can predict the target address correctly. (Hit).

105

Branch (Target)
branch target f lag b ranch target

n A '
£ n A r-
i
!

Miss

branch target b ranch target

Miss
-— a A

a A

First stage I Second stage (Updating for the current branch) First stage Second stage
x: don't care

a -» b A -» R xl b
a

n
A ^

Miss
^

Miss

• • a -> h A n b R
Miss a A Miss

h B xl h R
s s j x a v i v , ; ; . : Hit

• • BbS^ 'a 'S - s ROSA'S b R
Hit a A Hit

h B xl R - » C
c ' C. xl a A Miss

• • a A b -» c R -» C
Miss c. C. a A Miss

wmmm x0; c C.
c. c xl a A Hit

(a) GoStay2 Predictor

• • «a:^::bH:: r-» R M i s s c. c. a A M i s s

(b) Leaky Filter
Assumptions:

1. Same branch indexing in the first stage: (a(A) and c(C)}.
2. Same branch indexing in the second stage: (b(B) and c(C)}.
3. a(A), b(B), and c(C) -> branch address (target address).

Figure 42. A comparison of the update processing between the GoStay2 and the leaky
filter.

Figure 42(b) explains how the leaky filter works with the flow of example target

addresses:

• The update process of the first a(A) and b(B) are just like the GoStay2 except for

the updating the flag bit since there is no flag bit in the leaky filter. (Two Misses:

a(A) and b(B));

• a(A) is found in the second stage only. Therefore, b(B) in the first stage is changed

to a(A) since there is a conflict between a(A) and b(B) in the first stage according

to the assumption. (Hit);

106

• c(C) is placed into the first stage. b(B) in the second stage is changed to c(C) since

there is a conflict between b(B) and c(C) in the second stage according to the

assumption. (Miss);

• b(B) is placed into the first and second stage. a(A) in the first stage is changed to

b(B) since there is a conflict between a(B) and b(B) in the first stage. c(C) in the

first stage is changed to b(B) since there is a conflict between c(C) and b(B) in the

second stage. (Miss).

From Figure 42, the benefits of the GoStay2 predictor can be determined. The main

feature of indirect branches is more than one target address for an indirect branch.

Since the target of an indirect branch can vary with every dynamic instance, the use of

a history pattern is needed to select the correct one among several target addresses

stored in the prediction tables. If an indirect branch has several targets, then it can be

assumed that each target has its own history. Therefore, if each target is preserved for

longer than before, then the indirect mispredictions can be reduced effectively. The

GoStay2 predictor can do this by using a 2-bit flag effectively as shown in Figure 42.

The benefits of the GoStay2 predictor result from retained target addresses that have a

different history pattern since they can stay longer than can other 2-stage hybrid

predictors in the prediction tables.

107

3.4 Experimental environment

Benchmark
(SPEC95INT)

Various types of
Branch Predictor

Exe. File

Simulated KesulLs:
- Branch references
- Predicted/Unpredicted branches
- # of Indirect branches
- Misprediction/Miss rates
- Simulation lime

Input
Data

Shade &

> i i i i Spixtools

Figure 43. Experimental methodology

Figure 43 shows an overview of our simulation methodology:

First, SPECint95 and C++ programs were compiled by using a compiler (GNU gec

2.6.3 and 2.7.2 are used); and

Second, the GoS-Sim (branch prediction simulator) ran each executable benchmark

with its input data. GoS-Sim was developed by using the Shade and SpixTools.

Shade and SpixTools are tracing and profiling tools developed by Sun Microsystems.

Shade executes all the program instructions and passes them onto the branch

108

prediction simulator, GoS-Sim. SpixTools are used for collecting the information for

static instructions. GoS-Sim not only simulates most indirect branch predictors such

as the BTB-based Target Cache and Cascaded Predictor, but it also runs several X O R

mapping functions and replacement policies such as the L R U (Least Recently Used)

and the Pseudo L R U , etc. The simulator for the proposed predictor was added into the

GoS-Sim. Finally, Outputs such as misprediction rates, the number of control transfer

and procedural call/return instructions, etc. were collected.

In Figure 43, Shade is a tool that dynamically executes and traces SPARC v9

executables [Cmelik & Keppel '93]. One can specify the exact trace information that is

desired by using Shade. That means the trace information can be dynamically handled in

any manner. Detailed information for every instruction, and opcode can be collected

dynamically. For example, the data for the total number of call instructions, program

counter, opcode fields, etc. can be obtained. This information is used for our simulation

tool, GoS-Sim.

3.4.1 Benchmarks

Table 8 describes the benchmark programs in detail. Five of the SPECint95 programs

were used for our simulation - go, xlisp, m88ksim, gcc, and perl. These are the same

programs used in [Driesen & Holzle '98B][Radhakrishnan & John '98]. In order to

compare our results with them, the SPECint95 instead of the SPEC2000 were used for

our simulation. The next suite of programs is written in C++ and has been used for

109

investigating the behavior between C and C++ [Calder et al. '94A][Holzle & Ungar '94].

These programs are ixx, eqn, and deltablue.

Program Input Description

SPEC95 CINT: C 3rograms

go 2stone9.in Plays the game Go against itself

xlisp train.lsp Lisp interpreter

m88ksim ctl.raw Simulates the Motorola 88100 processor

gcc amptjp.i Compiles pre-processed source

perl Scrabbl.pl

scrabble.in

Performs text and numeric manipulations

Suite of C++ Programs

ixx object.h

som_plus_fres

co.idl

IDL parser generating C++ stubs

eqn eqn.input.all Type-setting program for mathematical

equations

deltablue 3000 Incremental dataflow constraint solver

Table 8. Benchmark descriptions

Table 9 provides a description of the run-time characteristics of the benchmarks.

Dynamic instructions represent the number of instructions executed by each program. It

also shows the number of control transfer instructions. Control transfer instructions are

divided into three groups such as branches, direct calls, and indirect jumps. It shows that

the rate for control transfer instructions (except branches) in object-oriented languages

(C++) is two to three times higher than for traditional languages (C).

110

http://Scrabbl.pl

Program Dynamic

instructions

of control transfer instructions Dynamic

instructions
Total Branches Calls Jumps /indirect

calls /returns /trap

returns

go 584,163K 82.253K 69,163K 1.611K 11.479K

xlisp 189,185K 43,643K 30,288K 7,971K 5.384K

m88ksim 851K 196K 171K 17K 9K

gcc 250,495K 53,190K 43,71 I K 5,204K 4.274K

perl 630,281K 130.746K 88,162K 26,110K 16.473K

ixx 31-.830K 7,258K 4,73 IK 1.405K 1.121K

eqn 58,401K 12,080K 9,033K 1.999K 1.048K

deltablue 42,149K 9,997K 5,122K 1.478K 3,397K

C Mean 4,210K 970K 842K 82K 42K

(harmonic) (23.04 %) (86.86 %) . (8.42 %) (4.38 %)

C++ Mean 41.514K 9,358K 5,800K 1.589K 1.401K

(harmonic) (22.54 %) (61.98 %) (16.98 %) (14.98%)

Table 9. Benchmark characteristics

3.5 Experimental results

3.5.1 Implemented branch Predictors

We simulated several indirect branch predictors, compared their misprediction rates,

and analyzed misprediction rates. For 2-stage hybrid predictors, most mispredictions

occur when both stages have a current address but not a correct target address. Therefore,

the analysis of indirect branch mispredictions will be done by examining the

misprediction rates according to the cases whether both stages have a correct target for a

branch or not. The total number of entries for the PITT (the second stage predictor) is kept

111

constant (set to 512 and I K entries) while BTB (the first stage predictor) varies from 8

entries to 4K entries. The PHT is used for the prediction table for the second stage, which

stores target addresses instead of directions (taken/not taken).

The implemented predictors are:

• BTB (Branch Target Buffer): 4-way set-associative, indexing with the low-order

bits of a branch address. The table sizes vary from 8 entries to 4K entries.

• TC (Target Cache): The first stage is a BTB and the second stage is a 512- or 1K-

entry of the Target Cache (similar to the PHT, 4-way set-associative) using a

gshare scheme. The 9-bit (512-entry) or 10-bit (lK-entry) history registers record

pattern-based history information. The BTB and TC are examined simultaneously

for a branch. If the BTB detects an indirect branch, the selected TC entry is used

for target prediction. After resolving the indirect branch, the TC only can be

updated with its target address.

• SF (Strict Filter for Cascaded predictor): The hardware mechanism is similar to the

TC. The main difference to the TC is the handling of the table updates. SF only

allows branches into the second-stage predictor if the first predictor mispredicts.

• LF (Leaky Filter for Cascaded predictor): The hardware mechanism is similar to

the SF. The difference to the SF is that the L F allows new second-stage entries on

first-misses in addition to the update rule of the SF.

• GoS (GoStay2): The first stage is a 2-way T A C scheme. It contains branch and

target addresses with a 2-bit flag. The prediction table is accessed with the X O R

mapping functions. The second stage is similar to the LF . The other differences

112

from TC, SF, and L F are the new predict and update rules which depend on the

flag of the first stage predictor (refer to section 3.3).

The main goal of this section is to compare the performance of the selection

mechanism and update rule of the GoStay2 with other 2-stage hybrid predictors such

as TC, SF, and LF. Therefore, the above predictors were implemented with the same

indexing function for the second stage predictor.

For the pattern history of the second stage, the history register records the direction

of the previous conditional branches. Nair ('95) showed that a path-based predictor

with two-bit partial addresses attained prediction rates similar to a pattern-based

predictor with taken/not taken bit (similar hardware budgets) [Driesen & Holzle '98A].

Therefore, the gshare scheme was implemented by using the pattern-based history only

because benchmark programs were traced with both direct and indirect branches.

Our simulation results generated misprediction rates for several of the predictors

that are a little bit higher than previously reported: Target Cache [Chang et al. '97] and

Cascaded predictor [Driesen & Holzle '98B]. This could have happened because all

kinds of control transfer instructions were traced to examine the predictability of

various cases such as branches, procedure calls/returns, indirect jumps, etc. However,

the Target Cache in Chang et al. ('97) recorded the target for each indirect jump

encountered only, while the Cascaded predictor in Driesen and Holzle ('98B) excluded

procedure returns with the assumption that they could be predicted accurately with a

return address stack.

113

3.5.2 Indirect Branch Instructions

According to Chang et al. ('97), control transfer instructions can be categorized into

three groups: direct conditional, direct unconditional or indirect unconditional branch

instructions. In case of direct conditional/unconditional branches, they have a single-

target which can be predicted with reported hit-ratios of up to 97% [Yeh & Patt '93].

However, indirect branch instructions commonly have multi-target addresses. The multi-

target addresses of an indirect branch are created dynamically while the program is

executed.

Program Type Dynamic

instructions

Control Flow Instructions Program Type Dynamic

instructions Total Conditional

branches

Indirect

branches

Program Type Dynamic

instructions

num. % num. % num. %

xlisp C 189,185K 43,643K 100 30.288K 69.40 4,076K 9.34

ixx C++ 31.830K 7,258K 100 4/731K 65.19 538K 7.42

perl c 630,281K 130,746K 100 88.162K 67.43 7,656K 5.97

gcc c 250,495K 53,190K 100 43.711K 82.18 3,177K 5.97

eqn C++ 58,401K 12,080K 100 9,033K 74.78 547K 4.53

m88ksim c 851K 196K 100 171K 87.02 4K 2.27

go c 584,163K 82,253K 100 69,163K 84.09 548K 0.67

deltablue C++ 42,149K 9,997K 100 5,122K 51.24 554K 5.54

Table 10. Comparisons for the percentages of conditional and indirect branches.

Table 10 shows the percentages of conditional branches and indirect branches for the

benchmark programs. In the case of conditional branches, the percentages of the C,

programs are higher than the C++ programs in Table 10. In addition, in the case of

114

indirect branches, 'xlisp' shows the highest (9.34%) and 'go' has the lowest (0.67%)

among all benchmark programs.

Program Type Lines of code Inst./ ind. Cond./ ind. Descriptions

xlisp C 4,700 46.42 7.43 Using for all averages

in section 3.5.4 and

3.5.5.

ixx C++ 11,600 59.12 8.79

Using for all averages

in section 3.5.4 and

3.5.5. perl c 21,400 82.33 11.52

Using for all averages

in section 3.5.4 and

3.5.5.

gcc c 130,800 78.85 13.76

Using for all averages

in section 3.5.4 and

3.5.5.

eqn C++ 8,300 106.74 16.51

Using for all averages

in section 3.5.4 and

3.5.5.

m88ksim c 12,200 190.54 38.25

Using for all averages

in section 3.5.4 and

3.5.5.

go c 29,200 1,065.49 126.15 Low indirect branches

deltablue C++ 500 76.07 9.24 Small-sized program

Table 11. The relevance of indirect branches by comparing lines of code, inst./ind.

(instructions/indirect branch), and cond./ind. (conditional branches/indirect branch).

Table 11 shows that the relevance of indirect branch is related to the lines of code, by

the number of the instructions per indirect branch, and by the number of conditional

branches per indirect branch. Three groups emerge: first, four of the SPECint95

benchmarks and two C++ benchmarks execute fewer than 200 instructions per indirect

branch; second, one of the SPECint95 benchmarks execute more than 1,000 instructions

per indirect branch; third, one C++ benchmark has less than 500 lines of code, a small-

sized benchmark program.

In Table 11, the first group of benchmark programs, from xlisp to m88ksim, executes

from 7 to 38 conditional branches per indirect branches. They are a good choice for

evaluating indirect branch predictors since the frequency of indirect branches is spread

115

from higher (7.43) to lower (38.25). The results of the misprediction rates for the first

group will be used for all averages in section 3.5.4 and 3.5.5.

For "go", since the impact of indirect branch prediction is very low, it will be excluded

from all averages in sections 3.5.4 and 3.5.5.

For "deltablue", even though it executes fewer than 10 conditional branches per

indirect branch, most indirect branch mispredictions will be reduced by using an

appropriate size of the L F and GoS because of the small-sized (less than 500 lines)

program. Therefore, it also is excluded from all averages like the second group.

3.5.3 Conventional indirect branch predictors

0 -| 1 1 1 1 - i 1 1 r

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(a) xlisp (C program)

Figure 44. The comparison of misprediction rates according to BTB sizes for indirect
branch predictors. The second stage is a table with 512 entries (4-way).

116

0 H 1 1 1 : — i 1 1 1 1 i

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(b) ixx (C++ program)

o 4 1 1 1 1 1 1 1 1 1

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(c) perl (C program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

117

0 -I 1 1 1 1 1 1 1 ~i

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(d) gcc (C program)

0 4 1 1 1 1 1 : 1 1 1

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(e) eqn (C++ program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

118

0 -| 1 1—• 1 1 1 1 1 1 1

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(f) m88ksim (C program)

0 -| 1 1 1 1 i 1 i 1 1

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(g) go (C program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

119

0 -I 1 1 1 1 1 1 1 1 : 1

8 16 32 64 128 256 512 1024 4096

First Stage Predictor (entry)

(h) deltablue (C++ program)

Figure 44. (continued) The comparison of misprediction rates according to BTB sizes for
indirect branch predictors. The second stage is a table with 512 entries (4-way).

This section determines the most effective branch predictor among the BTB, TC, SF,

and LF. Eight benchmark programs are examined according to the size of the tables of

the first stage. For hybrid predictors (the TC, SF, and LF), the second stage has a table

with 512-entries and is 4-way set-associative.

Figure 44 shows the misprediction rates for four predictors using eight benchmark

programs:

1. Figure 44(a), (b), (c), (e), and (f) showed that the L F is the most effective among

other previous predictors. If the size of the BTB is less than 128 entries, the L F

reduces misprediction rates much better than other previous predictors do. Otherwise,

120

the L F works only slightly better than most others, and does much better than the

BTB;

2. Figure 44(d) showed that the L F is the most effective if the size of the BTB is less

than 128 entries, otherwise the SF works slightly better than the LF . This result can

occur because gcc contains a large number of static branches in its working set. This

large set can cause interference in the second stage predictor, reducing the ability to

make accurate predictions [Chang et al.'95];

3. Figure 44(g) showed that the SF is the most effective if the BTB is less than 512

entries, otherwise the L F works slightly better than the SF. This result can occur

because go contains very low indirect branches compared to other benchmark

programs.

4. Figure 44(h) showed that the L F is the most effective among other predictors.

However, the overall misprediction rates are much lower than those of other

benchmark programs because deltablue has only 500 lines of code (a small-sized

program).

5. The SF works slightly better than the TC for all sizes of BTB-entries;

6. In general, hybrid predictors (the TC, SF, and LF) are much more effective than a

single-scheme predictor such as the BTB for all sizes of BTB-entries.

From the above results, the L F is determined as the most effective indirect predictor.

Driesen and Holzle ('98B) also showed that the misprediction rate for the L F is much

better than the SF for small-sized filters (BTB) such as 128 entries or less; otherwise, the

L F is slightly better than the SF. Kalamatianos and Kaeli ('98) also showed that the LF ,

121

with a filter (BTB) of 128 entries, suffered fewer mispredictions than the TC. In the

following sections, the LP will be used as the representative indirect predictor for

comparing the misprediction rates with the GoS.

3.5.4 Misprediction rates for indirect branches between the LF and GoS

In this section, the indirect misprediction rates are compared between the L F and GoS.

As we discussed before, there are some differences between the L F and GoS:

• For the cache scheme of the first stage, the L F uses a 4-way set-associative, but the

GoS employs a 2-way T A C scheme. However, for the second stage, both predictors

use the PHT (512- or lK-entry, 4-way) with the same indexing function (the gshare

scheme for this thesis).

• For the selection mechanism, if both stages have target addresses, the second stage of

the L F takes precedence for prediction as in the TC and SF. However, for the GoS,

even if both stages have target addresses, the prediction will be taken according to the

status of the second bit of the flag in the first stage. For example, if the bit is 0, the

first stage takes precedence, otherwise the second stage does.

• For the update rule, the L F allows an entry to the second stage for a first-miss or

indirect branches. However, the GoS updates the two stages according to the update

rule according to the status of the flag.

122

In Table 12, the SPECint95 benchmark programs and C++ programs were used for

comparing the indirect misprediction rate between the L F and GoS:

1. The GoS has lower misprediction rates than the L F for most sizes of the BTB (from

64 entries to 4K entries) and the PHT (512entries and I K entries) for all programs;

2. For the xlisp and perl program, at 256 entries of BTB and 512 entries of PHT, the

GoS improves the misprediction rates at a rate of 44.24% and 15.60% over the LF.

For the 512- or lK-entry PHT table, GoS with 64 entries of BTB works better than

the L F with IK entries of BTB. Therefore, the GoS yields a misprediction rate better

than the LF at less than one-tenth the BTB cost;

3. For the gcc program, at 512 entries of BTB and 512 entries of PHT, the GoS

improves the misprediction rate by only 1.36% over the LF . However, at 256 entries

or less in BTB and the lK-entry PHT table, the L F works slightly better than the GoS.

This can occur because of the large set of static branches that we discussed in the

previous section.

Figure 45 (a) and (b) compare the harmonic mean of misprediction rates for C and C++

programs according to Table 10. There are four predictors namely LF-512 (512-entry

PHT table), LF-1024 (lK-entry PHT table), GoS-512 (512-entry PHT), and GoS-1024

(lK-entry PHT table).

• For C programs in Figure 45(a), the GoS-512 works better than the LF-512 and L F -

1024. In addition, the GoS-1024 shows the lowest misprediction rates among other

predictors.

123

• For C++ programs in Figure 45(b), i f the B T B has more than 256 entries, the GoS-

512 works better than the LF-512 and LF-1024. Otherwise, the LF-1024 works

slightly better than the GoS-512. In addition, the GoS-1024 also shows the lowest

misprediction rates among other predictors.

. The 256-entry B T B of GoS-512 outperforms the 1-K entry B T B of LF-1024 in both

C and C++ programs.

• In general, for most sizes of the BTB-entries, the GoS works better than the L F .

64 128 256 512

First Stage Predictor

1024

• LF-512
• LF-1024
• GoS-512
• GoS-1024

4096

(a) Misprediction Rates for C programs (harmonic mean).

Figure 45. Comparison Misprediction Rates and Improvement Ratios between C and
C++ Benchmark programs.

124

64 128 256 512 1024

First Stage Predictor

• LF-512
• LF-1024
• GoS-512
• GoS-1024

4096

(b) Misprediction Rates for C++ programs (harmonic mean).

(c) Improvement Rates (GoS over LF) for C programs (harmonic mean).

Figure 45. (continued) Comparison Misprediction Rates and Improvement Ratios
between C and C++ Benchmark programs.

125

30^

25-
in

R
at

io

20-

R
at

io

"S 15-

ge
o

10 -

Im
pr

5

0
64

ER-512
IR-1024

7 1 1 1 1 1

128 256 512 1024 4096

First Stage Predictor

(d) Improvement Rates (GoS over LF) for C++ programs (harmonic mean).

Figure 45. (continued) Comparison Misprediction Rates and Improvement Ratios
between C and C++ Benchmark programs.

Figure 45 shows the improvement ratio (IR) between the L F and GoS according to the

sizes of the PHT.

IR-512 =(((MR of the LF-512)- (MR of the GoS-512)) / (MR of the GoS-512))* 100.

IR-1024 = (((MR of the LF-1024) - (MR of the GoS-1024)) / (MR of the GoS-

1024))*100.

Where MR represents Misprediction Rates as a harmonic mean of C or C+ + programs in

Figure 45.

For IR-512, (c) and (d) shows the improved ratios for the C and C++ programs. In the

case of C programs, the IR is increased from 19.63% (64-entry of BTB) to 22.93%

126

(4096-entry of B T B) . However, in the case of C++ programs, the IR is increased by

3.81% (64-entry of B T B) and 11.1% (4096-entry of B T B) .

For IR-1024, the IR is slightly higher than the IR-512. In the case of C programs, the

IR is increased from 22.31% (64-entry of B T B) to 25.89% (4096-entry of B T B) . In the

case of C++ programs, the IR is increased by 5.7% (64-entry of B T B) and 11.2% (4096-

entry of B T B) . In Figure 45(c) and (d), the IR of C programs are higher than C++

because some C programs, such as xlisp and perl, reduce misprediction rates considerably

with the GoS compared to the L F . The xlisp and perl are the benchmark programs with

high indirect branch density in C programs, while ixx is the only one that has high

indirect density in C++ programs [Driesen & Holzle '98B].

64 128 256 512 1024 4096

First Stage Predictor

(a) Misprediction Rates for C and C++ programs (harmonic mean).

Figure 46. Comparison Misprediction Rates and Improvement Ratios between the L F
and GoS for all Benchmark programs (C and C++ programs, harmonic mean).

127

30
IR-512

25 4 IR-1024

S 15 4

I 5 -

0
64 128 256 512 1024 4096

First Stage Predictor

(b) Improvement Rates (GoS.over LF) for C and C++ programs (harmonic mean).

Figure 46. (continued) Comparison Misprediction Rates and Improvement Ratios
between the L F and GoS for all Benchmark programs (C and C++ programs, harmonic
mean).

Figure 46 shows misprediction rates as harmonic means for all benchmark programs

used. In Figure 46(a), the GoS outperforms the L F for all sizes of both BTB-entries and

PHT-entries. Moreover, the GoS-512 can reduce indirect mispredictions better than the

LF-1024 for all sizes of BTB.

In Figure 46(b), in the case of the IR-512, the IR increases from 14.9% (64-entry of

BTB) to 19.35% (4096-entry of BTB). In the case of IR-1024, the IR increases by

17.41% (64-entry of BTB) and 21.53% (4096-entry of BTB). From the Figure 46, some

features of the GoS can be derived:

128

• The GoS reduces indirect mispredictions better than the L F as the indirect density

increases. The indirect density can be represented as the inverse of the number of

instructions per indirect instruction.

• If the size of the second stage (PHT) is increased, the misprediction rates with the

GoS are reduced considerably since the GoS can store more indirect branches with

fewer conflicts than the LF .

3.5.5 Analyses of the update rule

In the LF , some mispredictions can be traced to the inefficient update rule. If a

predicted target address is wrong, the predictors of both stages are always allowed to

update the tables. That means that after resolving an indirect branch the tables of both

stages are updated with the new target address. This can remove the possibility for a

replaced target being predicted correctly the next time. Therefore, in order to improve the

misprediction rate in the LF , the update rule needs to be changed to preserve one of two

different targets for the next prediction. This means the target address of one stage (say,

the second stage) should be replaced with a new resolved target address while that of the

other stage (say, the first stage) should remain for the next time. In order to use the

remaining target for the next time, the predict rule needs to be changed in the L F , because

if a branch address is found at both stages, then the second stage takes priority of

prediction. As we discussed in section 3.3.3, the GoS resolved these problems by using

two new mechanisms.

129

n l : addr_both_target_both
n2: addr-both_target_BTB
n3: addr_both_target_PHT
n4: addr_both_target_none
others: other cases

• n1(hit)

• n 2 (m i s s)

• n3(hi t)

• n4(m iss)

• o t h e r s

n4(m iss)
24%

n3(hit)
43% „ '

n1(hit) \
21% »

i
I
i

n2(m iss) i

* 8% /

(a) 128-entry filter of L F with 1024-entry PHT (perl, C program)

n l : addr_both_target_both
n2: addr-both_target_BTB
n3: addr_both_target_PHT
n4: addr_both_target_none
others: other cases

• n1(h i t)

• n2(h i t)

• n 2 (m i s s)

• n3(h i t)

• n 3 (m i s s)

• n4(m i ss)

• o t h e r s

n4(m iss)

n3(m iss)
0% n1 (hit)

21%

/n2(hi t) i
5% J

i

'n2(miss) '
[3% /

(b) 128-entry filter of GoS with 1024-entry PHT (perl, C program)

Figure 47. Analysis of prediction rates according to cases whether both predictors have
correct target address or not. 'Others' means all other cases except the n l to n4.

130

n l : addr_both_target_both
n2: addr-both_target_BTB
n3: addr_both_target_PHT

(c) 128-entry fdter of L F with 1024-entry PHT (eqn, C++ program)

n l : addr_both_target_both
n2: addr-both_target_BTB
n3: addr_both_target_PHT
n4: addr_both_target_none
others: other cases

• n1(h i t)

• n2(h i t)

• n 2 (m i s s)

• n3(h i t)

• n 3 (m i s s)

• n 4 (m i s s)

B o t h e r s

n4(m iss)
27%

i _ -1 n3(m iss) \
0%

n3(hit)

others

n1 (hit)
43%

(d) 128-entry filter of GoS with 1024-entry PHT (eqn, C++ program)

Figure 47. (continued) Analysis of prediction rates according to cases whether both
predictors have a correct target address or not. 'Others' means all other cases except the
n l to n4.

131

There are four cases when both predictors have a prediction:

• addr_both_target_both (nl): Both predictors have the same target and the target is

correct. Correct prediction in both the L F and GoS;

• addr_both_target_BTB (n2): Both predictors have a different target. The first stage

has a correct one but the second stage has a wrong one. For the LF, this case leads to

a misprediction. But for the GoS, if the second bit of the flag in the first predictor is 0,

then this case results in correct prediction. Otherwise, this case is a misprediction.

The GoS can reduce misprediction rates considerably by using this predict rule.

• addr_both_target_PHT (n3): Both predictors have a different target. The first stage

has a wrong one but the second stage has a correct one. In the L F , this case leads to a

correct prediction. Meanwhile, for the GoS, if the flag bit is 0, it leads to a

misprediction. However, the possibility for this case is very rare, as little as 1%.

Otherwise, it is a correct prediction.

• addr_both_target_none (n4): Both predictors have a target, but neither target is the

correct one. This case always leads to a misprediction in both the L F and GoS.

In Figure 47, most mispredictions of the indirect branches occur when two predictors

have a simultaneous prediction. Figure 47 shows prediction rates according to the cases

from the nl to n4 between the L F and GoS with the 128-entry filter (BTB) and the 1024-

entry PHT for 'perl' benchmark program (C program, Figure 47(a) and (b)) and 'eqn'

benchmark program (C++ program, Figure 47(c) and (d)). As discussed before, most

indirect predictions occur when both stages have a prediction. In Figure 47, 'others'

means the prediction rates caused by the cases when one or none of the two stages has a

132

prediction, which can lead to a hit or miss. However, since these misprediction rates are

small compared to other cases, they will be ignored for this section.

The important features provided by Figure 47 are:

• . Figure 47(a), for the L F , shows that 96% of the total predictions occur within cases

n l to n4. Among them, even if there is a correct target for n2, the predictions in the

LF.caused by the n2 always lead to mispredictions because of the inefficient predict

rule. The prediction rate caused by the n2 is 8%, which leads to misprediction.

• Figure 47(b), for the GoS, shows that a prediction rate of 95% occurs for case of the

n l to n4. However, the differences between the L F and GoS are the hit and miss rates

caused by the cases of the n2 and n3. First, in the GoS, more than half of the

predictions (5% out of 8%) lead to a hit instead of a miss; this can improve the

misprediction rates by using the GoStay predict and update rule. If the predictions of

the n3 lead to a hit in the LF , part of the predictions for the n3 can lead to

mispredictions in the GoS. However, since the misprediction rate caused by this case

is small (0% in Figure 46(b)), it is possible to disregard the misprediction rates caused

bythen3.

• Figure 47(c) shows that 81% of the total predictions occur within case n l to n4. The

prediction rate caused by n2 is 4%, and leads to misprediction.

• Figure 47(d) shows that a prediction rate of 81% occurs in the case of the n l to n4. In

the GoS, more than half of the predictions (3% out of 4%) lead to a hit instead of a

miss. The misprediction rates here can be improved by using the GoStay predict and

update rule. If the predictions of the n3 lead to the hit in the L F , part of the

predictions for the n3 can lead to mispredictions in the GoS. However, since the

133

misprediction rate caused by this case is small (0% in Figure 47(d)), it is again

possible to disregard the misprediction rates caused by the n3.

As we discussed above, the GoS can improve the misprediction rates by selecting the

correct target address in the case, n2, by using the GoStay predict rule. Since more than

half of the prediction rates in n2 can be changed to a hit instead of a miss. The GoS

improved the misprediction rates up to 21.53% compared to the L F for all sizes of the

BTB and PFTT as shown in Figure 46.

3.6 Chapter conclusions

Due to the increased complexity of application programs, it is quite reasonable to use

small functions for code reusability and maintainability. However, these small functions

can cause an increase in indirect function calls in object-oriented languages and is a

principal cause of indirect branches.

Unfortunately, conventional branch predictors cannot reduce the impact of indirect

branch mispredictions since the indirect branch needs the full target address instead of the

direction and also the branch target can change with each invocation of the indirect

branch. We have discussed several previous indirect branch predictors: the BTB, the

Target Cache, and the Cascaded Predictor (with strict filter and with leaky filter).

For the previous indirect two-stage hybrid branch predictors, the leaky filter was found

to be the most effective one. However, the accuracy of this predictor is affected by two

factors: The conflict misses for small-sized tables (say, less than 512 entries)

134

considerably increase the misprediction rate. The other factor is the inefficient predict

and update rules: For the predict rule, this occurs if the first stage has a correct target

address but the second stage has a wrong one, then the assumed priority of the second

stage always causes a misprediction. For the update rule, a misprediction can occur when

the previous target address is needed after it is updated by a new one, as often happens

with indirect branches.

In order to resolve these problems, this chapter has presented a new branch

architecture, the GoStay2 predictor, which has two mechanisms that are different from

the other hybrid branch predictors. The first mechanism is defined by two functions of a

new cache scheme, T A C , employed in the first stage to reduce conflict misses. These

functions are the X O R mapping function for indexing the first stage and the BoPLRU

replacement policy along with the BSL. The second mechanism is the GoStay predict and

update rule to reduce the frequency of wrong predictions caused by inefficient predict

and update rules. By using these mechanisms, the GoStay2 reduces the indirect

misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or lK-entry PHT) by

14.9% to 21.53% compared to the best previous indirect branch predictor, the Cascaded

predictor (with leaky filter).

135

Benchmarks PHT
(4-way)

BTB (1 s t stage predictor) Benchmarks PHT
(4-way) Pred. n-

way
64 128 256 512 1024 4096

First Group:
xlisp
(C)

512
entries

L F 4 24.14 24.07 24.06 24.05 24.05 24.05 First Group:
xlisp
(C)

512
entries GoS 2 16.87 16.69 16.68 16.69 16.69 16.69

First Group:
xlisp
(C) 1024

entries
L F 4 20.95 20.94 20.94 20.94 20.94 20.94

First Group:
xlisp
(C) 1024

entries GoS 2 13.94 13.87 13.87 13.86 13.86 13.86
ixx
(C++)

512
entries

L F 4 38.18 36.67 36.23 36.11 36.08 36.08 ixx
(C++)

512
entries GoS 2 36.81 34.39 33.39 33.08 33.04 33.01

ixx
(C++)

1024
entries-

L F 4 33.86 33.6 33.51 33.49 33.47 33.47

ixx
(C++)

1024
entries- GoS 2 31.75 30.99 30.72 30.6 30.6 30.59

perl
(C)

512
entries

L F 4 36.14 35.95 35.71 35.63 35.62 35.63 perl
(C)

512
entries GoS 2 33.45 32.44 30.89 30.45 30.4 30.4

perl
(C)

1024
entries

L F 4 32.62 32.53 32.43 32.43 32.42 32.42

perl
(C)

1024
entries GoS 2 30.4 27.96 30.06 27.41 30.06 27.41

gcc
(C)

512
entries

L F 4 47.94 46.5 45.62 44.65 43.13 39.99 gcc
(C)

512
entries GoS 2 47.79 46.16 45.01 43.83 42.23 38.69

gcc
(C)

1024
entries

L F 4 42.72 42.14 41.65 40.96 39.58 36.74

gcc
(C)

1024
entries GoS 2 43.04 42.27 41.69 40.76 39.33 36.14

eqn
(C++)

512
entries

L F 4 41.56 40.36 39.35 38.59 37.78 37.18 eqn
(C++)

512
entries GoS 2 40.04 38.24 36.70 35.42 33.98 32.91

eqn
(C++)

1024
entries

L F 4 39.25 38.51 37.86 37.29 36,64 36.16

eqn
(C++)

1024
entries GoS 2 37.53 36.19 35.13 34.01 32.73 31.95

m88ksim
(C)

512
entries

L F 4 35.87 34.59 33.68 32.96 32.83 32.76 m88ksim
(C)

512
entries GoS 2 32.42 31.12 29.8 29.11 28.48 28.39

m88ksim
(C)

1024
entries

L F 4 34.55 33.63 33.09 32.8 32.69 32.65

m88ksim
(C)

1024
entries GoS 2 31.15 29.89 29.56 29 28.44 28.21

Harmonic
Mean
(Total)

512
entries

L F 4 21.07 20.86 20.72 20.62 20.55 20.44 Harmonic
Mean
(Total)

512
entries GoS 2 19.29 18.89 18.65 18.51 18.40 18.28

Harmonic
Mean
(Total) 1024

entries
L F 4 19.74 19.64 19.56 19.49 19.43 19.32

Harmonic
Mean
(Total) 1024

entries GoS 2 17.78 17.50 17.54 17.31 17.36 17.10
Second
Group:
go
(C)

512
entries

L F 4 56.1 55.14 53.59 52.58 52.03 52.08 Second
Group:
go
(C)

512
entries GoS 2 57.18 55.66 54.48 52.98 51.74 51.23

Second
Group:
go
(C)

1024
entries

L F 4 50.41 49.57 48.23 47.16 46.58 46.49

Second
Group:
go
(C)

1024
entries GoS 2 52.24 51.08 50.05 48.56 47.39 46.7

Third
Group:
deltablue
(C++)

512
entries

L F 4 5.87 5.87 5.87 5.87 5.87 5.87 Third
Group:
deltablue
(C++)

512
entries GoS 2 5.64 5.59 5.59 5.58 5.58 5.58

Third
Group:
deltablue
(C++)

1024
entries

L F 4 5.73 5.73 5.73 5.73 5.73 5.73

Third
Group:
deltablue
(C++)

1024
entries GoS 2 5.46 5.46 5.45 5.45 5.45 5.45

Table 12. Indirect branch misprediction rates according to the BTB entries.

136

Chapter 4 Conclusions and Future Research

In order to increase the performance of current microprocessor architectures, several

techniques are needed to help reduce the memory latency which is caused by the gap

between memory and processor performance. These techniques include caching, branch

prediction and value prediction, etc.

Since this thesis concentrates on instruction flow, a small-sized on-chip instruction

cache memory was considered to improve memory latency. There are three types of

cache misses, including compulsory, capacity, and conflict misses. Among these, conflict

misses are critical to cache performance and branch penalty for a small-sized on-chip

cache memory.

4.1 Conclusions

Since object-oriented languages are widely used, procedure calls have become

increasingly used in application programs, causing a significantly increased number of

conflict misses in the instruction flow.

This thesis has presented two efficient schemes for improving the HPC: 1) The T A C

scheme to reduce conflict misses in the instruction cache memory; and 2) The GoStay2

predictor to reduce indirect branch mispredictions.

137

4.1.1 Reduction of cache misses

The T A C scheme was designed to reduce instruction cache misses for the frequent

procedure calls of object-oriented programs. We discussed several previous cache

schemes for reducing conflict misses: direct-mapped, two-way set-associative, four-way

set-associative, hash-rehash, victim, and two-way skewed-associative. The victim cache

removes many conflict-misses and outperforms a four-way set-associative cache. The

two-way skewed-associative cache offers the lowest miss ratio, which is significantly

lower than that of a four-way associative cache [Gonzalez et al. '97].

The 2-way skewed-associative cache uses a single flag to avoid conflict misses in bank

0: Each instruction is placed into a bank according to part of its memory address and a

flag bit (refer to chapter 2). In general, the efficiency of the 2-way skewed-associative

scheme depends on the frequency of conflict misses in bank 0. If conflicts among

instructions in bank 0 increase, the efficiency of the 2-way skewed-associative conflict

decreases. Therefore, the 2-way skewed-associative works better for traditional programs

than object-oriented programs since traditional programs have less procedure calls than

object-oriented ones.

The T A C scheme reduces conflict misses effectively by grouping instructions

separated by procedure call instructions. There are two steps for removing conflict misses

for the T A C scheme:

1. Initial bank selection: For each group of instructions separated by a procedure call,

the possibility of conflict misses is very rare since each memory address i n a group is

in sequence (spatial locality). Therefore, if each group is placed into a different bank,

138

conflict misses can be avoided easily between two adjacent groups (temporal

locality).

2. Final bank selection: The possibility of conflict misses remains for groups of

instructions placed into the same bank after the initial bank selection. In this case, a

flag of each cache line in a bank allow a conflict instruction to be placed into the

other bank.

With these two bank selection methods, T A C schemes reduce conflict misses better

than a 2-way skewed-associative cache. The experimental results in Chapter 2 showed

that T A C schemes on a L I cache (cache sizes: 4 Kbytes to 32 Kbytes, cache line sizes: 8

Bytes to 32 Bytes) improves cache miss rates by up to 9.29% for C programs and 44.44%

for C++ programs compared to skewed-associative caches.

Moreover, T A C schemes (on the BTB, 2-way) reduce misprediction rates better than

skewed-associative caches (on the BTB, 2-way) by up to 4% for C programs and 6.5%

for C++ programs.

4.1.2 Reduction of indirect branch mispredictions

The GoStay2 predictor was designed to reduce indirect branch mispredictions. Several

previous branch predictors were discussed for reducing indirect branch mispredictions:

BTB, Target Cache, and Cascaded predictor (with strict filter and leaky filter).

The leaky filter, which has two stages, offers the lowest indirect mispredictions.

However, this predictor has problems in reducing indirect branch predictions as a result

of two factors: 1) conflict misses in the first stage for small tables (fewer than 512

139

entries); and 2) inefficient predict and update rules. For the predict rule, if the first stage

has a correct target address but the second stage has a wrong one, then the assumed

priority of the second stage always causes a misprediction. For the update rule, a

misprediction can occur when the previous target address is required after it is updated by

the new one.

The GoStay2 predictor, which also has two stages, can reduce indirect branch

mispredictions by improving these two factors by using two mechanisms:

1. The first mechanism: Conflict misses in a small-sized table with less than 512 entries

in the first stage can be reduced by using the 2-way T A C scheme instead of a 4-way

set-associative.

2. The second mechanism: The GoStay predict and update rules (refer to chapter 3)

considerably reduce indirect mispredictions caused by inefficient predict and update

rules.

With these two mechanisms, GoStay2 predictors reduce indirect mispredictions better

than leaky filters. The experimental results in Chapter 3 show that the GoStay2 improves

the indirect misprediction rate of a 64-entry to 4K-entry BTB (with a 512- or lK-entry

PHT) by 14.9% to 21.53%) compared to a leaky filter.

4.2 Future Research

There are several techniques for reducing memory latency: 1) Cache schemes for

reducing cache misses; 2) Control/data flow predictors for instruction level parallelism;

etc.

140

This thesis has focused on designing an efficient instruction cache scheme and indirect

branch predictor. Future research could be targeted in three directions such as simulation,

caching, and speculation as shown in Figure 48.

Mapping Func.

Replacement

Data cache

Etc.

Future Research

(̂ Speculatic^

Predict Rule

Update Rule

Load Prediction!

Etc.

Programs
> <

Benchmarks

Tracing
> ; <

Logic

Figure 48. Future Research for caching, speculation, and simulation.

Figure 48 shows three research directions:

1. Caching: For a small-sized (less than 32 Kbytes) cache memory, the mapping

function is an important factor in reducing conflict misses. Gonzalez et al. ('97)

compared the X O R mapping function proposed by Seznec ('93) with the

polynomial mapping function proposed by Rau ('91). The polynomial mapping

function is based on polynomial arithmetic. For example, an address A =

141

<an_l,---,al,aQ > can be considered as a polynomial A (x) =

the coefficients of which are in the Galois Field GF (2). For

GF (2), all nonzero elements can be represented as 1 and a primitive element a,

and all coefficients can be implemented as logical A N D , and exclusive OR.

According to Gonzalez et al. ('97), the polynomial mapping function can reduce

conflict misses even better than the X O R mapping function. Therefore, for future

research, it will be useful for the T A C scheme to assess the polynomial mapping

function instead of the X O R mapping function (refer to chapter 2).

For implementing BoPLRU replacement policy, there can be several ways to

use a flag to avoid conflict misses: If the flag is '0', an instruction will be replaced

to the other bank on a cache miss; Otherwise, the instruction will be replaced in

the current bank. The modification of this replacement policy is also a subject of

possible future research.

In the case of data cache memory, data cache misses between traditional and

object-oriented programs have no large differences. However, since cache miss

rates of the data cache are higher than that of the instruction cache, it is important

to future research to design an efficient data cache memory to reduce data cache

misses.

Speculation: High performance computer architectures use aggressive speculation

to improve instruction level parallelism. This thesis presented the GoStay2

predictor as a way to avoid stalling the pipeline caused by indirect branch

instructions. One of two mechanisms of the GoStay2 predictor is the GoStay

142

predict and update rule. This GoStay rule can be modified in several ways by

changing the usage of the flag and is a subject of future research.

Load instructions, which represent the barrier to data flow, also incur long

latencies that can degrade system performance considerably. Fortunately, loads do

not fetch random sequences of values. Rather, load instructions often fetch the

same values repeatedly, which makes them predictable [Lipasti et al. '96]. A load

value predictor can quickly provide a predicted value of the instructions which

directly or indirectly consume the load value. Lipasti et al. ('96) introduced the

concept of value locality defined as the likelihood of a previously-seen value

recurring repeatedly within a storage location. Value locality is visible in many

ways [Lipasti et al. '96]:

• Data redundancy: Some programs contain data which has little variation,

such as sparse matrix, text files with white spaces, etc;

• Program constants: Sometimes, it is efficient to generate extra code to load

program constants from memory into registers;

• Computed branches: In the case of a switch statement, the compiler should

generate code to load a register with the base address for the branch;

• Virtual function calls: To call a virtual function call, the compiler should

generate code to load a function pointer, which is a run-time value;

• There are many other cases for value locality.

Most recent research has been done on predicting patterns from which values

are generated such as stride predictors to keep track of the last value and the

previous one [Gonzalez & Gonzalez '98]. Sazeides & Smith ('98) also explores

143

the use of context predictors that base their prediction on the last of several values

seen, thus capturing reference patterns that are not reflected in the simple stride

prediction scheme. Much research also has been done on the evaluation of

combinations or hybrids of the predictors [Calder et al. '99] [Rychlik et al. '98]

[Wang & Franklin '97]. As object-oriented application programs are becoming

more popular, efficient load predictors for indirect load values are required to

reduce memory latencies. Therefore, one possible future direction beyond this

thesis will be in designing an efficient load value predictor.

Simulation: For this thesis, two simulation programs were used for instruction

cache memory and branch predictor with Shade and Spixtools. These programs

can be used for future research in the area of: 1) caching and 2) in speculation

such as branch predictors. In addition, for implementing load value predictions,

there should be three main phases: trace generation, L V P (Load Value Predictor)

unit simulation, and microarchitectural simulation such as for the Alpha A X P

21164. For the alpha A X P 21164, traces can be generated with the A T O M tool

[Srivastava and Eustace'94].

For benchmark programs, this thesis used SPECint95 and a suite of C++

programs. However, for future research, SPEC2000 and more C++ programs

could be used for evaluating various schemes.

Finally, H/W implementation (logic) is also needed for all the schemes

designed in this thesis and to be developed for future research.

144

BIBLIOGRAPHY

[1] [Bodin & Seznec '95] F. Bodin, A . Seznec, Skewed-associativity enhances

performance predictability, Proceedings of the 22nd International Symposium on

Computer Architecture (IEEE-ACM), Santa-Margharita, June 1995 (also fRISA Report

No 909).

[2] [Burger & Goodman '97] Doug Burger and James R. Goodman, "Billion-Transistor

Architecture", IEEE, Computer, September 1997.

[3] [Buyya '00] Buyya, "High Performance Cluster Computing: Architecture, Systems,

and Applications, Conference Tutorial with the 27 t h ISCA, Vancouver, B C , Canada, June

12-14, 2000.

[4] [Calder & Grunwald '94] B. Calder and D. Grunwald, Reducing indirect function call

overhead in C++ programs, in 21 s t Symposium of Principles of Programming Languages,

pages 397-408, 1994.

[5] [Calder et al. '94A] B. Calder, D. Grunwald, and B. Zorn, Quantifying Behavioral

Differences Between C and C++ Programs, Journal of Programming languages, Vol . 2,

No. 4, pp. 313-351, 1994.

145

[6] [Calder et al. '94B] B. Calder, D. Grunwald, and B. Zorn, Fast & Accurate Instruction

Fetch and Branch Prediction, ISCA '94 Conference Proceedings, Chicago, IL. March

1994.

[7] [Calder et al. '99] Brad Calder, Glenn Reinman, and Dean M . Tullsen, Selective

Value Prediction, in Proceedings of the 26 t h Annual International Symposium On

Computer Architecture, 1999, pp.64-74.

[8] [Chang et al. '95] Po-Yung Chang, Eric Hao, Yale N . Patt, and Pohua Chang,

Alternative Implementations of Hybrid Branch Predictors, Proceedings of the 28 t h

ACM/IEEE International Symposium on Microarchitecture, Ann Arbor, MI , 1995.

[9] [Chang et al. '97] Po-Yung Chang, Eric Hao, and Yale N . Patt, Target Prediction for

Indirect Jumps, Proceedings of the 24 t h International Symposium on Computer

Architecture, Denver, June 1997.

[10] [Chu & Ito '00] Yul Chu and M . R. Ito, The 2-way Thrashing-Avoidance Cache

(TAC): An Efficient Instruction Cache Scheme for Object-Oriented Languages,

Proceedings of the 17 t h IEEE International Conference on Computer Design, Austin,

Texas, September 2000.

146

[11] [Cmelik & Keppel '93] R. F. Cmelik and D. Keppel, Shade: A Fast Instruction-Set

Simulator for Execution Profiling, Sun Microsystems Laboratories, Technical Report

SMLITR-93-12, 1993.

[12] [Diefendroff & Dubey '97] Keith Diefendorff and Pradeep K . Dubey, "How

Multimedia Workloads Wil l Change Processor Design", IEEE, Computer 30(9):43-45,

September 1997.

[13] [Driesen & Holzle '98A] Karel Driesen and Urs Holzle, Accurate Indirect Branch

Prediction, ISCA '98 Conference Proceedings, July 1998.

[14] [Driesen & Holzle '98B] Karel Driesen and Urs Holzle, The Cascaded Predictor:

Economical and Adaptive Branch Target Prediction, IEEE Micro 31, 1998.

[15] [Fisher '97] Joseph A Fisher, "Walk-Time Techniques: Catalyst for Architecture

Change", IEEE, Computer, Sep, 1997.

[16] [Gonzalez & Gonzalez '96] J. Gonzalez and A. Gonzalez, The Potential of Data

Value Speculation to Boost ILP, in 12 t h Annual International Conference on

Supercomputing, 1998.

[17] [Gonzalez et al '97] Antonio Gonzalez, Mateo Valero, Nigel Topham, and Joan M .

Parcerisa, Eliminating cache conflict misses through XOR-based placement functions,

147

Proc. Of the A C M international conference on Supercomputing, Vienna (Austria), pp76-

83, July 1997.

[18] [Grunwald et al. '98] D. Grunwald, D. Lindsay, and B. Zorn, Static Methods in

Hybrid Branch Prediction, in Proceedings of the Intl. Corif. On Parallel Architectures and

Compilation Techniques, October 1998.

[19] [Hammond et al. '97] Lance Hammond, Basem Nayfeh, and Kunle Olukotun, "A

Single-Chip Multiprocessor", IEEE, Computer, Sep, 1997.

[20] [Handy '93] Jim Handy, The Cache Memory Book, Academic Press, Inc., 1993.

[21] [Hill & Smith '89] M . D. Hill and A. J. Smith, Evaluating Associativity in CPU

Caches, IEEE Transactions on Computers, December 1989.

[22] [Holzle & Ungar '94] Urs Holzle and David Ungar, Do object-oriented languages

need special hardware support? Technical Report TRCS 94-21, Department of Computer

Science, University of California, Santa Barbara, November 1994.

[23] [Kalamatianos & Kaeli '98] John Kalamatianos and David R. Kaeli, Predicting

Indirect Branches via Data Compression, IEEE, MICRO 31, 1998.

148

[24] [Kozyrakis et al. '97] C. Kozyrakis, S. Perissakis, D. Patterson et al., Scalable

Processors in the Billion-Transistor Era:IRAM, IEEE, Computer, vol 30, no. 9,

September 1997, p75-78.

[25] [Lipasti & Shen '97] Mikko H . Lipasti and John Paul Shen, Superspeculative

Microarchitecture for Beyond AD2000, IEEE, Computer, September 1997.

[26] [Lipasti et al. '96] M . H . Lipasti, C. B. Wilkerson, and J. P. Shen, Value locality and

load value prediction, In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS-

VII), October 1996.

[27] [McFarling '93] S. McFarling, Combining branch predictors, Technical Report T N -

36, Digital Western Research Laboratory, June 1993.

[28] [Mills '96] Jack Mills, An industrial perspective on computer architecture, A C M

Computing Survey, Volume28, 4es, 1996.

[29] [Mudge '96] Trevor Mudge, Strategic directions In Computer Architecture, A C M

Computing Surveys, Volume28, Issue4, 1996.

[30] [Nair '95] Ravi Naif, Path-Based Branch Correlation, Proceedings of MICRO-28,

1995.

149

[31] [Olsen '96] Dan Olsen, Computational Resources and the Internet, A C M Computing

Survey, Volume28, 4es, 1996.

[32] [Pasquale '96] Joseph Pasquale, Towards Internet Computing, A C M Computing

Survey, V28, 4e, 1996.

[33] [Patt et al. '97] Yale N.Patt, S. J. Patel, M . Evers, D. H . Friendly, J. Stark, One

Billion Transistors, One Uniprocessor, One chip, IEEE, Computer, September 1997.

[34] [Radhakrishnan & John '98] R. Radhakrishnan and L . John, Execution

Characteristics of Object-oriented Programs on the UltraSPARC-U, Proceedings of the

5 t h Int. Conf. on High Performance Computing, Dec. 1998.

[35] [Rau '91] B. R. Rau, Pseudo-Randomly Interleaved Memories, in Proc. Int. Symp.

on Computer Architecture, 1991, pp. 74-83.

[36] [Rychlik et al. '98] Bhuslav Rychlik, John Faistl, Bryon Krug, and John Paul Shen,

Eficacy. and Performance Impact of Value Prediction, Technical Report CMuART-1998-

04.

[37] [Seznec '93] A . Seznec, A case for two-way skewed associative caches, Proc. of the

20 t h Int. Symp. on Computer Architecture, May 1993, pp 169-178.

150

[38] [Seznec '97] Andre Seznec, A new case for Skewed-Associativity, IRISA Report

No. 1114, July 1997.

[39] [Srivastava & Eustace '94] Amitabh Srivastava and Alan Eustace, A T O M : A system

for building customized program analysis tools. In Proceedings of the A C M SIGPLAN

'94 Conference on Programming Language Design and Implementation, 1994, pp. 196-

205.

[40] [Tullsen & Seng '99] Dean M . Tullsen and John S. Seng, Storageless Value

Prediction using Prior Register Values, in Proceedings of the 26 t h Annual International

Symposium on Computer Architecture, 1999, pp.270-279.

[41] [Waingold et al. '97] Elliot Waingold et.al., "Baring It A l l to Software: Raw

Machines", IEEE, Computer, Sep, 1997.

[42] [Wang & Franklin '97] Kai Wang and Manoj Franklin, Highly Accurate Data Value

Prediction using Hybrid Predictors, in Proceedings of the 30 t h Annual I E E E / A C M

International Symposium on Microarchitecture, 1997, pp. 281-290.

[43] [Yeh & Patt '93] Tse-Yu Yeh and Yale N . Patt, A comparison of dynamic branch

predictors that use two levels of branch history, ISCA, pages 257-266, 1993.

151

Appendix A Experimental results for T A C schemes

A . l In the case of 8 bytes of cache line size

A . l . l Cache size: 4 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 13.5741 12.3575 12.0427 11.7404 11.404 11.2711
m88ksim 9.9471 7.4542 6.3708 3.7289 5.1271 3.5799
compress 0.1688 0.1277 0.1209 0.0746 0.0823 0.074
li 5.1875 1.8762 0.3607 0.093 0.3886 0.1612
C++ Programs
deltablue 8.0334 7.7241 6.6252 6.8178 5.1844 5.2465
ixx 11:1933 9.8344 6.0157 4.1165 5.451 5.3853
eqn 8.9639 6.558 5.4569 3.3671 4.7608 4.2074

C 7.22 5.45 4.72 3.91 4.25 3.77
harmonic
mean
C++ 9.40 8.04 6.03 4.77 5.13 4.95
harmonic
mean

Benchmark Cache schemes
. Programs 2-way T A C scheme 4-way T A C scheme

2-bit 3-bit IR of T A C 2-bit 3-bit IR of T A C
counter counter over skew counter counter over skew

SPECint95 (C programs)
gcc 11.1119 11.1267 2.62871 10.646 10.8381 5.871689
m88ksim 4.7821 4.9144 7.2144 3.3723 3.5435 6.156036
compress 0.0777 0.0785 5.92021 0.0574 0.0598 28.91986
li . 0.2883 0.2863 34.7901 0.1421 0.1447 13.44124
C++ Programs
deltablue 4.6123 4.5402 12.4038 4.986 4.9716 5.224629
ixx 5.2906 5.2923 3.03179 ,4.1889 4.5289 28.5612
eqn 4.5504 4.4957 4.62377 3.7011 3.7056 13.67972

C harmonic mean 5.58 9.06
C++ harmonic mean 4.79 10.02

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

152

A.1.2 Cache size: 8 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 9.1722 7.7615 6.2134 4.9915 5.9139 5.0517
m88ksim 5.8685 4.1365 2.1018 1.4363 2.3495 1.6656
compress 0.087 0.0701 0.0283 0.0175 0.0311 0.0195
li 0.7856 0.6061 0.1168 0.0079 0.0305 0.0132
C++ Programs
deltablue 4.7708 2.7842 1.6601 0.0861 1.5225 0.0117
ixx 6.955 3.5307 1.4447 0.2425 1.114 0.3466
eqn 5.6203 2.7741 1.4158 0.8877 1.8375 1.2184
C 3.98 3.14 2.12 1.61 2.08 1.69
harmonic
mean
C++ 5.78 3.03 1.51 0.41 1.49 0.53
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter '

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 5.6966 5.6987 3.81456 4.894 5.0781 3.222313
m88ksim 2.163 2.1757 8.62228 1.5623 1.6339 6.612046
compress 0.0265 0.0277 17.3585 0.0183 0.0193 6.557377
li 0.0145 0.0131 110.345 0.0119 0.013 10.92437
C++ Programs
deltablue 1.0737 0.9787 41.7994 0.0108 0.0108 8.333333
ixx 0.8022 0.8011 38.8681 0.2491 0.2873 39.14091
eqn 1.732' 1.7324 6.09122 1.195 1.1965 1.958159

C harmonic mean 8.99 5.67
C++ harmonic mean 14.03 4.57

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

153

A.1.3 Cache size: 16 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 6.1155 4.2874 3.6041 3.1364 3.5366 3.2786
m88ksim 3.5999 1.6063 1.1218 0.777 1.0883 0.977
compress 0.0599 0.0242 0.0171 0.0109 0.0153 0.0126
li 0.4797 0.0682 0.0053 0.0036 0.0055 0.0048
C++ Programs
deltablue 2.5623 0.9306 0.2434 0.0451 0.513 0.005
ixx 3.6767 1.8135 0.1891 0.0183 0.2015 0.0217
eqn 2.9243 1.0045 0.5393 0.4198 0.6108 0.5092
C 2.56 1.50 1.19 0.98 1.16 1.07
harmonic
mean
C++ 3.05 1.25 0.32 0.16 0.44 0.18
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 3.3943 3.393 4.19232 3.1665 3.2477 3.540186
m88ksim 1.0791 1.076 0.85256 0.8832 0.9376 10.62047
compress 0.0144 0.0148 6.25 0.0121 0.0125 4.132231
li . 0.0051 0.0051 7.84314 0.0045 0.0049 6.666667
C++ Programs
deltablue 0.1028 0.1389 399.027 0.0049 0.0048 2.040816
ixx 0.0661 0.0659 204.841 0.0214 0.0253 1.401869
eqn 0.5237 0.5245 16.6317 0.4615 0.4615 10.33586

C harmonic mean 2.35 5.20
C++ harmonic mean 44.44 2.31

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

154

A.1.4 Cache size: 32 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 3.4646 2.4058 2.011 1.7609 1.9741 1.9271
m88ksim 1.8787 1.0754 0.7072 0.6892 0.7964 0.7362
compress 0.0276 0.0163 0.0102 0.0101 0.0114 0.0104
li 0.0225 0.0046 0.0031 0.003 0.0037 0.0032
C++ Programs
deltablue 1.7674 0.3336 0.0452 0.0444 0.0589 0.0044
ixx 1.6477 0.4922 0.0557 0.0159 0.0355 0.0163
eqn 1.7602 0.3163 0.1373 0.0532 0.1274 0.051
C 1.35 0.88 0.68 0.62 0.70 0.67
harmonic
mean
C++ 1.73 0.38 0.08 0.04 0.07 0.02
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

LR of T A C
over skew

SPECint95 (C programs)
gcc 1.9278 1.9277 2.4017 1.7801 1.8437 8.257963
m88ksim 0.7962 0.8064 0.02512 0.7131 0.7253 3.239377
compress 0.0113 0.0114 0.88496 0.0102 0.0103 1.960784
li 0.0036 0.0035 2.77778 0.0031 0.0032 3.225806
C++ Programs
deltablue 0.0479 0.0489 22.9645 0.0043 0.0044 2.325581
ixx 0.0185 0.018 91.8919 0.0162 0.0163 0.617284
eqn 0.0989 0.1002 28.817 0.0497 0.0507 2.615694

C harmonic mean 0.10 3.20
C++ harmonic mean 33.66 1.23

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

155

A.2 In the case of 16 bytes of cache line size

A.2.1 Cache size: 4 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 8.6789 7.9353 7.946 8.0305 7.4845 7.698
m88ksim 6.3876 5.0672 4.4541 3.3018 4.1036 2.9957
compress 0.1028 0.0795 0.0768 0.0568 0.0637 0.0475
li 3.3711 1.2779 0.3358 0.0841 0.3675 0.1499
C++ Programs
deltablue 5.116 4.7752 4.2907 4.5764 4.0781 4.149
ixx 7.5845 6.8999 4.6471 3.3742 4.5208 4.2719
eqn 5.9877 4.8258 4.4649 2.7172 4.0775 3.2816
C 4.64 3.59 3.20 2.87 3.00 2.72
harmonic
mean
C++ 6.23 5.50 4.47 3.56 4.23 3.90
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 7.393 7.4022 1.237657 7.3405 7.4604 4.87024
m88ksim 3.7967 3.7306 8.083336 2.7533 2.8557 8.803981
compress 0.0599 0.0592 6.343907 0.0406 0.0435 16.99507
li 0.1789 0.1798 105.422 0.1233 0.1271 21.5734
C++Programs
deltablue 3.07731 3.7096 32.52159 3.7354 3.7374 11.07244
ixx 4.1548 4.1553 8.809088 3.3772 3.6033 26.49236
eqn 3.8129 3.8116 6.9396 2.9355 2.9405 11.79015

C harmonic mean 3.64 9.43
C++ harmonic mean 10.40 14.09

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

156

A.2.2 Cache size: 8 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 5.9347 5.0115 4.1727 3.4524 4.1238 3.5264
m88ksim 3.8189 2.8224 1.5402 0.9474 1.3996 0.8247
compress 0.0564 0.0475 0.021 0.011 0.0173 0.0122
li 0.5394 0.4232 0.0834 0.0052 0.0238 0.0099
C++ Programs
deltablue 3.0746 1.9852 1.3405 0.2427 1.0326 0.0076
ixx 4.7679 2.5423 1.3825 0.2884 1.1473 0.3752
eqn 3.879 2.0957 1.1382 0.6186 1.1265 0.8662
C 2.59 2.08 1.45 1.10 1.39 1.09
harmonic
mean
C++ 3.91 2.21 1.29 0.38 1.10 . 0.42
harmonic
mean

Benchmark Cache schemes
Programs 2-way T A C scheme 4-way T A C scheme

2-bit 3-bit IR of T A C 2-bit ' 3-bit IR of T A C
counter counter over skew counter counter over skew

SPECint95 (C programs)
gcc 3.9645 3.9744 4.018161 3.3503 3.483 5.256246
m88ksim 1.3202 1.2846 6.01424 0.7526 0.7918 9.580122
compress 0.0163 0.0159 6.134969 0.0114 0.0118 7.017544
li 0.0106 0.0094 124.5283 0.0088 0.0094 12.5
C++ Programs
deltablue 0.6488 0.6002 59.15536 0.0062 0.0087 22.58065
ixx 0.9444 0.9431 21.48454 0.2642 0.2986 42.01363
eqn 1.034 1.1002 8.945841 0.8192 0.823 5.737305

C harmonic mean 6.82 7.73
C++ harmonic mean 17.12 12.38

** ER: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

157

A.2.3 Cache size: 16 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 3.9905 2.7931 2.3425 1.9864 2.2363 2.0591
m88ksim 2.4346 1.1673 0.8468 0.4722 0.7035 0.4043
compress 0.0399 0.0176 0.0133 0.0064 i 0.0087 0.0075
li 0.2987 0.0618 0.0039 0.0022 0.004 0.0029
C++ Programs
deltablue 1.6494 0.6624 0.2994 0.0254 0.2398 0.0029
ixx 1.6494 1.2925 0.1574 0.0116 0.138 0.0145
eqn 1.6494 0.8677 0.3923 0.2721 0.3947 0.338
C 1.69 1.01 0.80 0.62 0.74 0.62
harmonic
mean
C++ 1.65 0.94 0.28 0.10 0.26 0.12
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 2.1576 2.1587 3.647571 1.9997 2.0545 2.970446
m88ksim 0.6799 0.6731 3.471099 0.3636 0.3926 11.19362
compress 0.0084 0.0086 3.571429 0.0071 0.0075 5.633803
li 0.0033 0.0033 21.21212 0.0028 0.0029 . 3.571429
C++Programs
deltablue 0.1725 0.1872 •-. 39.01449 0.0028 0.0029 3.571429
ixx 0.0416 0.0375 231.7308 0.0144 0.0166 0.694444
eqn 0.3592 0.3507 9.883073 0.3127 0.3143 8.090822

C harmonic mean 4.50 4.53
C++ harmonic mean 22.88 1.63

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

158

A.2.4 Cache size: 32 Kbytes

Benchmark Cache schemes
Programs Direct- 2-way set- 4-way set- 16-way set- 2-way 4-way

mapped associative associative associative skew skew
SPECint95 (C programs)
gcc 2.2738 1.5641 1.3168 1.1609 1.3269 1.2732
m88ksim 1.3058 0.7318 0.4034 0.3894 0.4665 0.2609
compress 0.0191 0.0111 0.0057 0.0057 0.0063 0.0059
li 0.0141 0.0031 0.0017 0.0016 0.0021 0.0019
C++ Programs
deltablue 1.1016 . 0.2278 0.0252 0.0247 0.0298 0.0025
ixx 1.0529 0.3239 0.0405 0.0087 0.0137 0.0091
eqn 1.2675 0.2233 0.098 0.0428 0.0855 0.0428
C 0.90 0.58 0.43 0.39 0.45 0.39
harmonic
mean
C++ 1.14 .0.26 0.05 0.03 0.04 0.02
harmonic
mean

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 1.2864 1.2861 3.148321 1.1738 1.2163 8.468223
m88ksim 0.4583 0.4659 1.789221 0.2516 0.2546 3.696343
compress 0.0062 0.0062 1.612903 0.0057 0.0057 3.508772
li 0.002 0.002 5 0.0018 0.0018 ' 5.555556
C++ Programs
deltablue 0.0271 0.03 9.9631 0.0024 0.0024 4.166667
ixx 0.0112 0.0109 22.32143 0.009 0.0091 1.111111
eqn 0.0711 0.0709 20.25316 0.0419 0.0426 2.147971

C harmonic mean 2.36 4.69
C++ harmonic mean 15.42 1.87

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

159

A.3 In the case of 32 bytes of cache line size

A.3.1 Cache size: 4 Kbytes

Benchmark
Programs

Cache schemes Benchmark
Programs Direct-

mapped
2-way set-
associative

4-way set-
associative

16-way set-
associative

2-way
skew

4-way
skew

SPECint95 (C programs)
gcc 7.9949 5.4971 5.5726 5.6542 5.4127 5.5763
m88ksim 4.5646 4.0027 3.6464 3.7047 • 3.2517 2.9957
compress 0.071 0.0598 0.0577 0.0603 0.0494 0.046
li 1.9055 0.9577 0.3082 0.0896 0.2095 0.2128
C++ Programs
deltablue 3.5258 3.2252 3.0665 3.152 2.9576 3.0722
ixx 5.4656 4.9618 4.0429 3.1098 3.8383 3.696
eqn 4.4088 3.9352 4.0752 2.9875 3.8065 2.7779
C
harmonic
mean 3.63 2.63 2.40 2.38 2.23 2.21
C++
harmonic
mean 4.47 4.04 3.73 3.08 3.53 3.18

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
. counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 5.3645 5.3725 0.898499 5.3663 5.4436 3.913311
m88ksim 3.1451 3.1806 3.389399 2.7533 2.8557 8.803981
compress 0.0474 0.0474 4.219409 0.0416 0.0429 10.57692
li 0.1761 0.1798 . 18.9665 0.1338 0.1493 59.04335
C++ Programs
deltablue 2:7039 2.6597 9.382743 2.8521 2.8392 7.717121
ixx 3.4364 3.4823 11.69538 3.054 3.238 21.02161
eqn 3.5743 3.5746 6.487439 2.5455 2.5454 9.129837

C harmonic mean 2.36 8,32
C++ harmonic mean 8.66 10.46

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

160

A.3.2 Cache size: 8 Kbytes

Benchmark
Programs

Cache schemes Benchmark
Programs Direct-

mapped
2-way set-
associative

4-way set-
associative

16-way set-
associative

2-way
skew

4-way
skew

SPECint95 (C programs)
gcc 4.1804 3.6679 3.1195 2.7556 3.08 2.833
m88ksim 2.8292 2.2555 1.3272 0.723 1.3233 . 0.8247
compress 0.04 0.0369 0.0198 0.0073 0.0187 0.0082
li 0.3859 0.3035 0.1161 0.0039 0.0235 0.0111
C++ Programs
deltablue 2.1809 1.5769 1.2615 0.5718 1.1811 0.0543
ixx 3.5475 2.052 1.2953 ,0.4001 0.8825 0.5443
eqn 2.8563 1.6637 1.0094 0.5411 1.0382 0.7688
C
harmonic
mean 1.86 1.57 1.15 0.87 1.11 0.92
C++
harmonic
mean 2.86 1.76 1.19 0.50 1.03 0.46

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 3.0053 3.0114 2.485609 2.6558 2.7596 6.672189
m88ksim 1.3065 1.3048 1.285878 0.7526 0.7918 9.580122
compress 0.0163 0.0168 14.72393 0.0078 0.008 5.128205
li 0.0088 0.0087 167.0455 0.009 0.0097 23.33333
C++ Programs
deltablue 0.9927 1.004 18.97854 0.0527 0.0437 3.036053
ixx 0.733 0.7324 20.39563 0.3895 0.4358 39.74326
eqn 0.9214 0.9343 12.67636 0.7089 0.7109 8.449711

C harmonic mean 3.19 8.13
C++ harmonic mean 16.61 6.34

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

161

A.3.3 Cache size: 16 Kbytes

Benchmark
Programs

Cache schemes Benchmark
Programs Direct-

mapped
2-way set-
associative

4-way set-
associative

16-way set-
associative

2-way
skew

4-way
skew

SPECint95 (C programs)
gcc 2.8254 1.9897 1.6636 1.3693 1.6726 1.3945
m88ksim 1.8028 0.877 0.6775 0.3243 0.4904 0.4043
compress 0.0285 0.0128 0.0107 0.0041 0.0071 0.0048
li 0.1997 0.0503 0.0193 0.0017 0.0057 0.0021
C++ Programs
deltablue 1.2023 0.6767 0.2733 0.0151 0.1851 0.0019
ixx 1.8822 1.0502 0.1395 0.0105 0.2141 0.0146
eqn 0.9408 0.1709 0.0773 0.0401 0.2919 0.2378
C
harmonic
mean 1.21 0.73 0.59 0.42 0.54 0.45
C++
harmonic
mean 1.34 0.63 0.16 0.02 0.23 0.08

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 1.6061 1.606 4.140464 1.3696 1.4071 1.818049
m88ksim 0.4589 0.4575 6.864241 0.3036 0.3926 33.16864
compress 0.0055 0.0056 29.09091 0.0046 0.0048 4.347826
li 0.0027 0.0026 111.1111 0.0019 0.0021 10.52632
C++ Programs
deltablue 0.0599 0.0596 209.015 0.0018 0.0018 5.555556
ixx 0.0797 0.0822 168.6324 0.0133 0.0147 9.774436
eqn 0.2618 0.2644 11.49733. 0.2253 0.2261 5.548158

C harmonic mean 9.29 . 4.42
C++ harmonic mean 30.71 6.49

** IR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

162

A.3.4 Cache size: 32 Kbytes

Benchmark
Programs

Cache schemes Benchmark
Programs Direct-

mapped
2-way set-
associative

4-way set-
associative

16-way set-
associative

2-way
skew

4-way
skew

SPECint95 (C programs)
gcc 1.6247 1.0923 0.9306 0.8345 0.9405 0.9049
m88ksim 0.8457 0.5073 0.2432 0.2295 0.3007 0.2609
compress 0.0124 0.0076 0.0033 0.0033 0.0039 0.0034
li 0.0188 0.0027 0.0011 0.001 0.0018 0.0011
C++ Programs
deltablue 0.8077 0.1986 0.0147 0.0138 0.0162 . 0.0014
ixx 0.7429 0.2627 0.0343 0.005 0.0128 0.0052
eqn 0.9408 0.1709 0.0773 0.0401 0.0774 0.0423
C
harmonic
mean 0.63 0.40 0.29 0.27 0.31 0.29
C++
harmonic
mean 0.83 0.21 0.04 0.02 0.04 0.02

Benchmark
Programs

Cache schemes Benchmark
Programs 2-way T A C scheme 4-way T A C scheme

Benchmark
Programs

2-bit
counter

3-bit
counter

IR of T A C
over skew

2-bit
counter

3-bit
counter

IR of T A C
over skew

SPECint95 (C programs)
gcc 0.9064 0.9068 3.762136 0.8434 0.8699 7.291914
m88ksim 0.2943 0.2983 2.174652 0.2516 0.2546 3.696343
compress 0.0038 0.0038 2.631579 0.0033 0.0034 3.030303
li 0.0015 0.0013 20 0.001 0.0011 10
C++ Programs
deltablue 0.0151 0.015 7.284768 0.00135 0.0014 3.703704
ixx 0.0065 0.0064 96.92308 0.005 0.0054 4
eqn 0.0637 0.063 21.50706 0.0377 0.0379 12.20159

C harmonic mean 3.46 4.78
C++ harmonic mean 15.46 4.98

** TR: Improvement Ratios (Refer to p67 in Chapter 2).
** IR of T A C (2-way and 4-way) over skew uses '2-bit counter'.

163

