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Abstract 

One of the issues in mobility management is to support handoff. When the mobile 

user moves from one location to another, the network should ensure that all ongoing 

connections are rerouted to another access point in a seamless manner. Part of our work 

focuses on connection rerouting due to inter-switch handoff in wireless A T M networks. 

Although fast local connection rerouting minimizes handoff delay, the end-to-end path 

after rerouting may become "suboptimal", which implies an inefficient use of network 

resources. Path optimization may be necessary afterwards. Our research begins with the 

following question: "How often should path optimization be performed?" To this end, we 

propose three path optimization schemes (namely: exponential, periodic, and Bernoulli) , 

which are simple to implement. Closed-form solutions of the optimal operating point are 

derived for each scheme. 

We further investigate this problem and propose a stochastic model to determine 

the optimal time to initiate path optimization. L in k cost and signaling cost functions are 

introduced to capture the trade-off between the network resources utilized by a connection 

and the signaling and processing load incurred on the network. Results indicate that the 

optimal policy derived from our model has a better performance compared to other heuris

tics. 

Another issue in mobility management is to track the location of the users between 

call arrivals. Although it has been shown that the distance-based location update algorithm 

has a better performance than the movement and timer based schemes, the determination 

of the optimal distance threshold is often based on certain unrealistic assumptions. We 

propose a stochastic model to study the distance-based update algorithm. Our model is 

applicable to arbitrary cell topologies and the cell residence time can follow general distri

butions. We consider Markovian movement patterns in which the probability that the 

i i 



mobile user moves to a particular neighboring cel l can depend on the location of the 

current cell or a list of cells recently visited. Results indicate that the distance thresholds 

determined from our model have a better performance than those derived from a hexago

nal cell configuration with random walk movement pattern. 
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Chapter 1 Introduction 

In recent years, there has been tremendous growth in the use of wireless cellular telephony 

for communications. Mobi le subscribers are increasing at an exponential rate and wi l l 

continue to increase in the near future. There are various wireless networks currently in 

use or proposed in the literature. Examples include Personal Communication Services 

(PCS), paging [78], wireless Asynchronous Transfer Mode (ATM) [28] [29], mobile Inter

net Protocol (IP) [44], and mobile satellite. The next generation wireless broadband net

works, such as the International Mobi le Telecommunications 2000 (IMT-2000) [30] 

defined by the International Telecommunication Union (ITU) and the Universal Mobi le 

Telecommunications System ( U M T S ) defined by the European Telecommunications Stan

dards Institute (ETSI), aim to unify many of these diverse systems existing today into a 

seamless radio infrastructure capable of offering a wide range of services. 

In order to utilize the radio spectrum efficiently, a cellular architecture is used in 

wireless networks. The geographical coverage area is partitioned into cells, each served by 

a base station. Mobi le users and their terminals are connected to the network via the base 

stations. Cells can have different sizes: picocells are commonly used in indoor environ

ments; microcells are used within cities; macrocells are used in highway and rural areas. 

Smaller cells use less power for transmissions and allow a greater frequency re-use. 

One of the issues in mobility management is to track the location of the users and 

their terminals between call arrivals. Since mobile users are free to move within the 

coverage area, the network only maintains the approximate location of each user. When a 

connection needs to be established to a particular user, the network has to determine the 

user's exact location. The operation of informing the network about the current location of 

the mobile user is known as location update, and the operation of determining the exact 

location of the mobile user is called terminal paging or searching. 

1 
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It is well-known that there is a trade-off between location update and paging. If the 

mobile terminal updates its location whenever it crosses a cell boundary, then the network 

can maintain its precise location. However, i f the cal l arrival rate is low, the network 

wastes its resources by processing frequent update information and the mobile terminal 

wastes its power by transmitting the update signal. O n the other hand, i f the mobile 

terminal does not perform location update frequently, a large coverage area has to be 

paged when a call arrives, which wastes the radio bandwidth. Thus, the central problem of 

location management is to devise algorithms which minimize the overall cost for location 

update and paging. 

Another issue in mobility management is to maintain the connections when the 

mobile user moves from one access point to another. The operation of transferring a 

mobile connection from one access point to another is known as handoff or handover. 

Handoffs for multimedia traffic differ from conventional voice handoffs in that a mobile 

user may have several active connections with different bandwidth requirements and 

quality-of-service (QoS) constraints. The handoff function should ensure that all ongoing 

connections are rerouted to another access point in a seamless manner. In other words, the 

design goal is to minimize any service disruption and degradation during and after the 

handoff process. 

Since handoff may involve operations such as rerouting, resource allocation, and 

packet forwarding, the handoff protocols are network dependent. For example, the handoff 

operations for Mobi le IP are different than those for Wireless A T M . On the other hand, the 

same location update and paging mechanism can be deployed in different networks with 

minor modifications. The only difference is how the update information is stored, dissem

inated, and retrieved within the network. 

In our work, we focus on (1) handoff management in wireless ATM networks, and 
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(2) location update in wireless cellular networks. A m o n g different kinds of wireless 

network technologies, wireless A T M is chosen because of its potential to support different 

kind of services with QoS guarantee. A number of prototypes reported in the literature 

such as the M A G I C W A N D from Advanced Communications Technologies & Services 

(ACTS) [39] and the WATMnet from N E C [51] have demonstrated the feasibility of using 

A T M to support high speed services in the wireless domain. 

There are two types of handoffs in wireless A T M networks, namely intra-switch 

handoffs and inter-switch handoffs. A n intra-switch handoff occurs when the mobile 

terminal moves from one base station to another,, and both base stations are connected to 

the same switch. A n inter-switch handoff occurs when the mobile terminal moves to a new 

base station that is connected to another switch. In both cases, channel al location is 

performed at the new base station. However, connection rerouting is also required for 

inter-switch handoffs. Several local connection rerouting protocols have been proposed in 

the literature. Although most of these protocols incur a low handoff delay, the end-to-end 

path after rerouting may become "suboptimal", which implies an inefficient use of 

network resources. Part of our work focuses on optimizing the path after an inter-switch 

handoff. 

The rest o f this chapter is organized as follows: Sections 1.1-1.3 describe the 

related work on inter-switch handoff, location update, and terminal paging, respectively. 

Section 1.4 discusses the motivations and objectives of our work. Section 1.5 presents an 

overview of our contributions. Section 1.6 describes the scope of this thesis. 

1.1 Related Work on Inter-Switch Handoff 

Several connection rerouting protocols to facilitate inter-switch handoffs for wireless 

A T M networks have been proposed in the literature. In this section, we summarize these 

protocols and point out the strengths and weaknesses of each method. 
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1.1.1 Virtual Connection Tree 

Cal l and handoff control for wireless A T M networks based on hierarchical grouping of 

backbone and wireless network resources is proposed in [1]. A virtual connection tree is a 

collection of base stations and A T M switching nodes and links. The root of the tree is an 

A T M switching node and the leaves of the tree are the base stations. The advantage of the 

proposed scheme is that as long as the mobile terminals stay within the virtual connection 

tree, they can move to any base stations without involving the network call processor. 

However, the proposed solution minimized the handoff processing delay at the expense of 

allocating more resources that may not be used. Over allocation of network resources is 

contrary to the original idea of flexibility and efficiency inherent in A T M networks. In 

addition, packet loss may occur and out-of-sequence packets may be received at the 

mobile terminal or the end station. 

1.1.2 Multicast-Based Rerouting 

In this method [25], the controlling switch establishes a multicast connection to the cur

rent serving base station and its neighboring base stations. When A T M packets arrive for 

the mobile terminal, the controlling switch wi l l multicast those A T M packets to this multi

cast connection group. Thus when the mobile terminal moves to one of the neighboring 

base stations, A T M packets are. already available. After each handoff, the controlling 

switch has to add the new neighboring base stations to the multicast connection group as 

well as delete the previous neighboring base stations from the group. The major drawback 

of this scheme is that extra buffer space has to be allocated to the neighboring base sta

tions. In addition, with a large number of mobile terminals, frequent handoff increases the 

processing load of the controlling switch. 

1.1.3 Path Extension 

The rationale behind path extension is to extend the original connection to the switch to 
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Mobile terminal bj, Switch A Base Station 

Original Connection Extended Connection Partial Connection 

Figure 1.1 (a) Path extension scheme, (b) Path rerouting scheme. 

which the new base station is connected. A s shown in Figure 1.1 (a), the switches to which 

the original and new base stations are connected are usually referred, respectively, as the 

anchor switch and the target switch [6]. The path extension method extends the connection 

from the anchor switch to the target switch during handoff. The minimum hop path 

between these two switches is usually chosen as the extended path. The path extension 

scheme is fast and simple to implement. QoS degradations such as packet loss, duplicate 

packets, and mis-sequence packets do not occur. However, since the extended path is 

longer than the original one, certain QoS requirements, such as packet transfer delay and 

packet delay variation, may not be guaranteed after a handoff. In addition, data looping 

may occur when the mobile terminal moves back to the previous anchor switch later. This 

leads to an inefficient utilization of network resources. 

1.1.4 Path Rerouting 

Path rerouting can be considered as a generalization of the path extension scheme. In path 
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extension, the anchor switch extends the original connection to the target switch, while in 

path rerouting, any switch along the original connection can be selected to set up a branch 

connection to the target switch. As shown in Figure 1.1 (b), the switch chosen to perform 

this function is usually referred to as the crossover switch [61]. Depending on the perfor

mance criteria of the crossover switch discovery algorithms [61][14], the end-to-end path 

after rerouting may not be optimal. The optimal path is defined as the best path among a 

set of feasible paths that can satisfy the prescribed end-to-end QoS constraints. 

The performance comparisons between various connection schemes including the 

virtual connection tree, path extension, path rerouting, and multicast-based rerouting are 

reported in [11]. Results indicate that the virtual connection tree incurs the lowest handoff 

delay at the expense of the highest bandwidth requirements. The multicast-based rerouting 

has the shortest disruption time but a relatively high buffer requirements. The performance 

of path extension and path rerouting lie in between the virtual connection tree and the 

multicast-based rerouting schemes. However, these analytical results are only true for a 

hierarchical symmetric tree network configuration. Performance comparisons between 

these rerouting schemes in another network topology may be different. 

1.1.5 Two-Phase Handoff Scheme 

The two-phase handoff protocol proposed in [65] combines the advantages of path exten

sion and path rerouting. The two-phase handoff protocol consists of two stages: path 

extension and possible path optimization. Referring to Figure 1.2, path extension is per

formed for each inter-switch handoff, and path optimization is performed whenever it is 

necessary. During path optimization, the network determines the optimal path between the 

source and the destination (i.e., the path between the remote terminal and the current target 

switch in Figure 1.2) and transfers the user information from the old path to the new path. 

The major steps during path optimization execution generally involve [20]: 
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Remote Terminal 

Mobile's movements 

Original Connection Extended Connection _ . . _ Optimal Connection 

Figure 1.2 Two-phase handoff protocol. 

1. Determining the location of the crossover switch; 

2. Setting up a new branch connection; 

3. Transferring the user information from the old branch connection to the new one; 

4. Terminating the old branch connection. 

Since the mobile terminal is still communicating over the extended path v ia the 

current base station while path optimization takes place, this gives enough time for the 

network to perform the necessary functions while minimizing any service disruptions. 

Notice that the path optimization process described above is not restricted to the two-

phase handoff protocol. It can also be applied to other connection rerouting protocols 

where the location of the crossover switch is not the optimal one. In addition, when the 

mobile terminal moves to another switch during the execution of path optimization, path 

extension can still be used to extend the connection to the target switch. 

In [47], an experimental testbed is used to compare the performance between 
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different rerouting schemes. Results indicate that for the two-phase handoff scheme, path 

extension from the old base station to the new base station in the first phase incurs a small 

handoff delay (6.5 ms). For CD-quali ty audio (128 kb/s), there is no packet loss during 

path extension and that only 1% of the subsequent path optimizations suffer a loss of a 

single packet. 

To ensure a seamless path opt imiza t ion , some important issues need to be 

addressed: 

1. How to determine the location of the crossover switch? 

2. How can the service disruptions be minimized during path optimization? 

3. When and how often should path optimization be performed? 

For the first issue, a crossover switch determination algorithm based on P N N I 

(Private Network-to-Network Interface) standard [10] was proposed in [20]. Five different 

crossover switch algorithms for wireless A T M local area networks are proposed in [61]. 

For the second issue, packet loss and packet mis-sequencing can be prevented by using 

appropriate signaling and buffering at the anchor and crossover switches during path 

optimization, see [20][70][71]. However, little work has been reported on the third issue. 

1.2 Related Work on Location Update 

In order to reduce its location uncertainty, each mobile terminal has to report its location 

from time to time. The location update procedure begins with an update message sent by 

the mobile over the uplink control channel, which is followed by some signaling proce

dures which update the database. Location update algorithms can be divided into two main 

groups: static and dynamic. In a static algorithm, location update is triggered based on the 

topology of the network. In a dynamic algorithm, location update is based on the user's 

call and mobility patterns. In this section, we summarize various location update schemes 

currently in use or proposed in the literature. 
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1.2.1 Location Area (LA)-based 

In this update algorithm, the coverage area is partitioned into a number of location areas 

(LAs) . Each L A contains a group of cells. A l l base stations within the same L A broadcast 

the identifier (ID) of its L A periodically. Each mobile terminal compares its registered L A 

ID with the current broadcast L A ID. Location update is triggered i f the two IDs are differ

ent. Upon a call arrival for a particular mobile terminal, all the cells within its current L A 

are polled simultaneously, ensuring a success within a single step. The LA-based update 

scheme is widely adopted by the current cellular systems, including the E I A / T I A IS-41 

[22] and the G S M (Global System for Mobi le Communication) networks [41]. The main 

drawback of this scheme is that for an L A with a large number of cells, significant amount 

of radio bandwidth is consumed in paging for each call arrival. In addition, mobile termi

nals located close to an L A boundary may perform excessive location updates as they 

move back and forth between two L A s . 

1.2.2 Selective LA Update 

The rationale behind the selective LA update scheme [58] is that a daily commuter may 

cross a number of L A s on his way to and from work. However, he may only stay in some 

L A s for a very short period of time. Rather than performing location update whenever he 

crosses a new L A , the update process at certain L A s can be skipped. In [58], an analytical 

model is introduced in which the interconnections of the L A s are characterized by a graph 

model. The movement model is Markovian. The residence time in each L A follows a geo

metric distribution. A genetic algorithm is used to obtain the near-optimal solutions. For 

low residing probability in certain L A s and high update cost, results show that this scheme 

incurs a lower location management cost than the conventional LA-based scheme. 

For implementat ion, information regarding the transition probabi l i t ies and 

residence time is required. To estimate the transition probabilities between L A s for a 
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particular user, his movements throughout the day can be observed over long periods of 

time. Since the LA-based update scheme is used in the current P C S networks, information 

about the frequency of his transition from one L A to another can be retrieved from the 

database. 

1.2.3 Profile-based 

The goal of the profile-based location update scheme [45] (also known as the alternative 

location strategy [60]) is to reduce the update cost by taking advantage of the user's 

mobility pattern. The network maintains a profile for each user, which includes a sequen

tial list of the most likely L A s that the user is located at different time periods. This list is 

sorted from the most to the least likely L A where a user can be found. When a call arrives, 

the L A is being paged sequentially. A s long as the mobile terminal moves between L A s 

within the list, no update is necessary. Location update is performed only when the mobile 

terminal moves to a new L A which is not on the list. The list may be derived from the 

user's movement history. 

1.2.4 Movement-based 

In the movement-based update scheme [4] [12], each mobile terminal counts the number of 

boundary crossings between cells incurred by its movements. Location update is per

formed when this number exceeds a predefined movement threshold M (e.g., M = 6) . 

This scheme allows the dynamic selection of the movement threshold on a per-user basis. 

For implementation, the mobile terminal only needs a counter to count the number 

of cell boundary crossings. The counter is reset whenever it reaches the movement thresh

old. The cell identification code proposed in [43] can also be used to identify the boundary 

crossing. 

In [4], an analytical model is introduced to determine the optimal movement 

threshold. The model is applicable for mesh and hexagonal cell configurations under the 
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assumptions of a general cel l residence time distribution and symmetric random walk 

movement pattern. The maximum paging delay constraint is considered and a shortest-

distance-first order paging scheme is used. 

1.2.5 Timer-based 

In the timer-based update scheme [12][53], each mobile terminal updates its location 

every T time units (e.g., T = 1 hour). This scheme does not require the mobile terminal 

to record or process location information during the time between updates. For implemen

tation, the timer threshold can be programmed into the mobile terminal by a hardware or 

software timer. A n analytical model is introduced in [53] to study the timer-based scheme. 

Assuming the Gaussian distribution on user location probability and Poisson call arrivals, 

the update period which minimizes the cost of location update and paging is derived. 

Results show that the timer-based scheme performs substantially better than the LA-based 

scheme. 

A variation of the timer-based scheme, called the adaptive threshold scheme, is 

proposed in [42]. The mobile terminal transmits an update message every T time units, 

where the parameter T (referred as the location registration threshold) is not a constant, 

but varies with the current signaling load on the uplink control channel of the base station. 

Numerical results, under the assumptions of a linear cell configuration and random walk 

movement pattern, show that the adaptive threshold scheme has a better performance than 

the static timer-based scheme. 

1.2.6 Distance-based 

In the distance-based update scheme [12][27][38], each mobile terminal tracks the dis

tance it has moved (in number of cells) since the last update, and transmits an update sig

nal whenever the distance exceeds a certain threshold. For implementation, the mobile 

terminal requires some knowledge about the cell topology. In order to identify the cells 
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within the distance threshold or the cells along the distance threshold boundary, the mobile 

terminal needs to download a set of these cell IDs after each location update. 

The distance-based scheme has been studied extensively. In [12], the authors 

compared the movement, timer, and distance-based schemes, under the assumptions of 

random walk mobility movements and a ring topology of cells. Analyt ical results show 

that the distance-based scheme gives the lowest location management cost. In [38], the 

distance-based update scheme is formulated as an optimization problem. The goal is to 

minimize the expected total cost for update and paging between cal l arrivals. Under a 

linear cel l configuration and symmetric random walk movement pattern, the optimal 

distance threshold is determined by dynamic programming. In [27], an iterative approach 

is used to compute the optimal distance threshold in a hexagonal cell configuration under 

the assumption of symmetric random walk mobility pattern. 

1.2.7 Predictive Distance-based 

In the predictive distance-based update scheme [35], the mobile terminal reports both its 

location and velocity during the update process. Based on the above information, the net

work determines the probability density function of the mobile's location, which is used to 

predict the mobile's location in future time. This prediction information is made available 

to both the network and the mobile terminal. The mobile terminal checks its position peri

odically and performs location update whenever its distance exceeds the threshold dis

tance measured from the predicted location. Upon a call arrival, the network pages the 

mobile terminal starting from the predicted location (which may be the one that performed 

the last update) and outward, in a shortest-distance-first order, until the mobile terminal is 

found. 

For performance analysis, a Gauss-Markovian process is used to model the user's 

mobi l i ty pattern. The Gauss-Markov model captures the correlation of the mobile 's 
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velocity in time, and can represent different user mobility patterns, including the random 

walk and the constant velocity fluid-flow model. Numerical results, under the assumptions 

of an infinite one-dimensional linear model and Poisson call arrivals, show that the predic

tive distance-based scheme has a better performance than the non-predictive one. 

1.2.8 State-based 

In the state-based update scheme [55], the mobile terminal determines whether to perform 

location update based on its current state. The state information can include the time 

elapsed or the number of cell crossings since the last update, the cell-distance between the 

current and last registered locations, or some other criteria. Thus, maintaining different 

state information corresponds to different location update schemes. In [55], a state-based 

update scheme is analyzed where the system state includes the current location and the 

time elapsed since the last update. A time-varying Gaussian process [54] is used to model 

the user's movement. The sub-optimal solution for the average cost of location update and 

paging under no paging delay constraint is obtained by a greedy method. Results show 

that the state-based update scheme achieves a 10% improvement in average cost compared 

to the timer-based scheme. 

1.2.9 LeZi Update 

The idea of the LeZi update (pronounced as "lazy update") algorithm [16] is based on a 

compression algorithm proposed by Z iv and Lempel. The L e Z i update algorithm can be 

considered to be a path-based update scheme in which the movement history rather than 

the current location is sent in an update message. The movement history consists of a list 

of zone (i.e., L A or cell) IDs where the mobile terminal has crossed after the last update. 

The network database maintains the movement history in a compact form by a trie or dig

ital search tree. This trie can be considered to be a part of the user's profile. Upon a call 

arrival, selective paging based on the trie information is used to locate the mobile terminal. 
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1.3 Related Work on Terminal Paging 

Terminal paging is the process in which the network determines the exact location of a 

particular mobile terminal. In each polling cycle [27] or search iteration, polling signals 

are sent over the downlink control channel to all cells where the mobile terminal is likely 

to be present. A l l the mobile terminals listen to the page message and only the target 

mobile terminal sends a response message back over the uplink control channel. In each 

polling cycle, there is a timeout period. If the target mobile terminal replies before the tim

eout, then the paging process is terminated. Otherwise, another group of cells are chosen 

in the next polling cycle. To avoid call dropping, the mobile terminal must be located 

within an allowable time constraint. The maximum paging delay corresponds to the maxi

mum number of polling cycles allowed to locate the mobile terminal. For example, i f the 

maximum paging delay is equal to 1, the mobile terminal has to be located within a single 

search iteration. 

Since radio bandwidth is consumed during the paging process, the paging cost is 

proportional to the number of polling cycles, as well as the number of cells being polled in 

each cycle. The paging area depends on the information provided by the location update 

function. The paging cost can be reduced by predicting the current location of the mobile 

terminal. In this section, we summarize different paging strategies proposed in the litera

ture. A classification of various paging strategies is shown in Figure 1.3. 

1.3.1 Blanket Polling 

In blanket polling, all the cells within the L A in which the mobile terminal is located are 

being polled simultaneously when a call arrives. Since the mobile terminal is located 

within the L A , its location can be determined within a single polling cycle. This paging 

strategy is currently deployed on top of the LA-based update scheme in the existing P C S 

networks. The major drawback of blanket polling is that since the number of cells within a 
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Figure 1.3 Classification of different paging schemes. 

typical L A is large, the paging cost is very high. 

1.3.2 Shortest-Distance-First 

In this paging strategy, the network pages the mobile terminal starting from the cell where 

the mobile terminal last updated its location and moving outward, in a shortest-distance-

first order. The distance is measured in terms of the number of cells away from the last 

update location. If a threshold-based update scheme (e.g., distance or movement) is used, 

the paging area or the residing area of the mobile terminal is bounded [27]. The mobile 

terminal can be located within a fixed number of polling cycles. The paging delay con

straint can be incorporated by grouping cells with different distances for each polling 

cycle. Various location update algorithms such as the distance and movement-based 

schemes have used this paging strategy to determine the location management cost for 

performance comparisons (e.g., [27][35][38][43]). 

To illustrate the mechanism of this paging strategy, consider Figure 1.4 in which 

the cell topology is hexagonal. Suppose the cell labeled 0 is the location where the mobile 

terminal performed the last update. Assume the distance-based update scheme is used with 

a distance threshold equal to 4. That is, location update is performed whenever the mobile 
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Figure 1.4 Hexagonal cell configuration. 

terminal moves to any ce l l labeled 4. Wi th no paging delay constraint, the po l l i ng 

sequence is {0, 1, 2, 3} . That is, cell 0 is polled first. If no response is received from the 

mobile terminal after a timeout, all the cells labeled 1 are polled in the next polling cycle. 

This continues until either the mobile terminal sends a response message to the base 

station or all the cells within the sequence list have been polled. Wi th delay constraints, 

cells with different labels or distances may be polled as a group in a poll ing cycle. For 

example, i f the maximum paging delay is equal to 3, the paging sequence list can be 

{{0 , 1}, {2}, {3}} . That is, cells with label 0 or 1 are polled in the first poll ing cycle. 

Cells labeled 2 and 3 are polled in the second and third polling cycles, respectively. 

1.3.3 Sequential Paging based on User's Location Probability 

In this paging strategy, the current location of the mobile terminal is predicted based on its 

location probability distribution. Polling signals are sent only to those cells where the user 

is likely to be present. A n intuitive result derived in [52] states that: "Given the probability 
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distribution on user location, under no paging delay constraint, the paging cost is mini

mized by sequentially polling the cells in decreasing order of probability". Clearly, the 

uniform location distribution gives the highest paging cost and delay. 

When there is a maximum paging delay constraint, a group of cells can be polled 

together in each polling cycle. Dynamic programming [46] can be used to determine the 

optimal group size which minimizes the paging cost. In [52], the authors obtained the 

optimal paging sequence that results in the minimum paging cost with average paging 

delay constraint. The sequential paging strategy has been used in [53][55] for performance 

analysis of the timer and state-based update schemes. 

1.3.4 Velocity Paging 

The velocity paging scheme [68] aims to reduce the paging cost by decreasing the size of 

the paging area. The goal is achieved by grouping the users into different velocity classes, 

based on their velocity at the location update instant. When a call arrives, the paging area 

is dynamically generated based on the user's last registration time and the velocity class 

index. The velocity paging scheme can be deployed on top of other location update algo

rithms. To implement this paging strategy, information such as the mobile's last known 

location, velocity class index, and the last registration time is required at the user's data

base profile. When the velocity paging scheme is combined with the movement-based 

update algorithm, numerical results [68] indicate that this combined scheme may not 

always result in a reduction in cost as compared to the LA-based update scheme with blan

ket polling. The authors determine the range of cell radius under which this combined 

scheme should be used based on system parameters. 

1.4 Motivations and Objectives 

To facilitate inter-switch handoff in wireless A T M networks, several connection rerouting 
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protocols have been reported in the literature. Although most of these protocols incur a 

low handoff delay, the path after rerouting may become suboptimal, which implies an 

inefficient use of network resources. Path optimization is required to reroute the connec

tion to a more efficient route. However, the question of when path optimization should be 

performed has not been addressed in the literature, and is investigated in the first part of 

the thesis. 

Our work is motivated by the fact that path optimization does not have to be 

performed after each inter-switch handoff. Although path optimization can increase the 

network utilization by rerouting the connection to a more efficient route, transient QoS 

degradations such as packet loss and an increase in packet delay variation may occur. In 

addit ion, i f there are a large number of mobile users with high movement patterns, 

performing path optimization after each path extension w i l l increase the processing load 

of certain switches and the signaling load of the network. We believe the decision of 

performing path optimization should be based on several factors including: (1) the amount 

of network resources (e.g., bandwidth) utilized by the connection, (2) the QoS require

ments of the connection, (3) the remaining time of the connection, or (4) signaling load of 

the network. 

Another part of our work focuses on the determination of the optimal update 

boundary for the distance-based location update algorithm. Although it has been shown 

that the distance-based update algorithm has a better performance than the L A , movement, 

and timer based update schemes, the models used to determine the optimal distance 

threshold are often under certain unrealistic assumptions. First of a l l , structured cel l 

configurations are commonly used. For example, mesh or hexagonal cell configurations 

are used in two-dimensional models (e.g., [27]), and a linear model is used in the one-

dimensional case (e.g., [12][38]). Although these cell topologies simplify the analytical 
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computation, they do not give an accurate representation of a realistic cellular network 

topology, where the size of each cell depends on the transmit power, receiver sensitivity, 

antenna radiation pattern, and propagation environment, and the number of neighboring 

cells varies from ce l l to ce l l . We believe a graph model such as the one proposed in 

[16][58] is more appropriate to characterize the topology of a cellular network. ^ 

Another commonly used assumption is related to the cell residence time distribu

tion. The cell residence time denotes the amount of time that the mobile terminal stays in a 

particular cell before moving to another one. Most of the work assumed the cell residence 

time follows a geometric (or exponential) distribution. A n d the distribution is assumed to 

be independent and identically distributed (i.i.d.) for all cells. The major limitation of the 

i.i .d. geometric residence time assumption is that it does not capture an accurate represen

tation of individual user mobility patterns, where a user may stay at certain locations (e.g., 

his home or office) for a relatively long period of time. 

The last assumption is related to the movement models. The symmetric random 

walk is commonly used to characterize individual movement behavior. When the mobile 

user leaves a cell , there is an equal probability that the user w i l l move to any neighboring 

cells. Although the random walk model simplifies the analysis, its main drawback is that 

the direction of the mobile user is not taken into account. In general, a mobile user usually 

travels with a destination in mind. Thus, the mobile's location in the future is likely to be 

correlated with its movement history. 

Another goal of our work is to develop an analytical model which can eliminate 

some of the unrealistic assumptions commonly used and w i l l allow us to determine the 

optimal distance threshold (or update boundary) for the distance-based location update 

algorithm. 
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1.5 Contributions of the Thesis 

The main contributions of this dissertation are as follows: 

• Exponential, periodic, and Bernoulli path optimization schemes: To address 

the issue of when and how often path optimization should be performed, we 

propose three heuristics for the initiation of path optimization. These heuristics 

may not be optimal but they are simple to implement. Given the cost and mobility 

parameters, closed-form solutions of the expected cost per call and the optimal 

operating point are derived for each scheme. 

• Optimal policy to initiate path optimization: We further investigate the path 

optimization problem and propose a stochastic model to determine the optimal 

time to perform path optimization. L ink cost and signaling cost functions are 

introduced to capture the trade-off between the network resources utilized by a 

connection and the signaling and processing load incurred on the network. 

Different link cost functions can be assigned to different service classes with 

different bandwidth requirements. Different signaling cost functions can be used 

based on the complexity of the path optimization procedures and the signaling load 

of the network. The time between inter-switch handoffs can follow any arbitrary 

general distributions. A stationary deterministic optimal policy is obtained. Results 

indicate that the optimal policy derived from our model has a better performance 

compared to some other heuristics. 

• Distance-based location update algorithm: We propose a novel stochastic model 

to analyze the distance-based location update algorithm. The model is formulated 

as a semi-Markov decision process. There is a cost function associated with 

location update and another cost function associated with terminal paging. Unl ike 

other models, our model is applicable to arbitrary cell topologies and the cell 
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Figure 1.5 Structure of the thesis. 

residence time can follow general distributions. We consider Markovian movement 

patterns in which the probability that the mobile user moves to a particular 

neighboring cell can depend on the location of the current cell or a list of cells 

recently visited. Results indicate that the distance thresholds determined from our 

model have a better performance than those derived from a hexagonal cell 

configuration with random walk movement pattern. 

1.6 Organization of the Thesis 

Depending on the specific interest the reader may choose one of the following chapter 

routes (see Figure 1.5). The thesis is organized as follows: In Chapter 2, we propose and 

analyze three path optimization schemes to facilitate the two-phase handoff protocol. A 
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discrete time analytical model and a discrete event simulation model are proposed to eval

uate the performance of different path optimization schemes. We present performance 

comparisons between these schemes. In Chapter 3, we propose a stochastic model to 

determine the optimal time to perform path optimization. We describe the optimality equa

tions, the value iteration algorithm, and the structure of the optimal policy. We present 

numerical results and compare the optimal policy with four heuristics. In Chapter 4, we 

propose a stochastic model to determine the optimal update boundary for the distance-

based location update algorithm. We present numerical results for the hexagonal cell con

figuration and random graph topology. Finally, Chapter 5 concludes the thesis with a sum

mary of the presented work and some suggestions for future work. 
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Chapter 2 Path Optimization for Inter-Switch Hand-
off: Heuristics 

2.1 Introduction 

In this chapter, we address the issue of when to perform path optimization for the two-

phase handoff protocol by proposing and analyzing three path optimization schemes, 

namely: exponential, periodic, and Bernoulli [72]-[75]. These schemes may not be 

optimal but they are simple to implement. A n analytical model and a simulation model are 

used to analyze the performance of these path optimization schemes. For the discrete time 

analytical model, closed-form solution of the expected cost per call and the optimal 

operating point are derived for each path optimization scheme. The analytical results are 

corroborated by simulations based on non-hierarchical random graphs. 

The rest of this chapter is organized as follows. The proposed path optimization 

schemes are described in Section 2.2. The discrete time analytical model and the discrete 

event simulation model proposed for evaluating the performance of different path optimi

zation schemes are explained in Sections 2.3 and 2.4, respectively. Section 2.5 discusses 

the analytical and simulation results. A summary is given in Section 2.6. The proofs of the 

expected cost per ca l l for the proposed path optimization schemes are shown in the 

Appendices A - C . 

23 
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2.2 Path Optimization Schemes 

A s mentioned in Chapter 1, the end-to-end path after connection rerouting may not be 

optimal. For a large number of mobile connections within the fixed network, these sub-

optimal paths can lead to an inefficient use of network resources. In this section, we 

discuss different methods to initiate path optimization. Path optimization schemes are 

grouped into four types, namely, QoS-based, network-based, timer-based, and handoff-

based. These path optimization initiation schemes are described below. 

2.2.1 QoS-based 

A s the name implies, QoS-based path optimization schemes trigger path optimization of 

each mobile connection based on its current QoS measures. For example, path optimiza

tion can be initiated .if the number of hops of the path is greater than a certain number, or i f 

the average end-to-end packet transfer delay bound is violated. To implement those QoS-

based path optimization schemes, information about the quality of the current path in 

terms of the defined QoS measures (e.g., hop count, current average delay, delay variation) 

must be maintained by the network. 

2.2.2 Network-based 

Network-based path optimization schemes trigger path optimizations for a group of 

connections based on the existing traffic load of a switch or the utilization of the network. 

For example, a network switch can initiate path optimization for a group of mobile 

connections whenever the new call dropping probability of a certain traffic class exceeds a 

particular threshold. During path optimization, a number of connections wi l l be rerouted 

to some other switches, thereby reducing the traffic load of that switch. 
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2.2.3 Timer-based 

For the timer-based schemes, path optimizations are triggered at time instants which are 

independent of the current QoS of the connection or the utilization of the network. The 

time instants can be deterministic or random. For example, the time between path optimi

zation can be based on some random processes. In addition, it can also be a function of the 

velocity of the mobile terminal, the dwell time, and the residual service time of the mobile 

connection. In this chapter, we analyze two of these timer-based schemes which are 

simple to implement. 

1. Periodic path optimization scheme: path optimization is performed every T time units. 

2. Exponential path optimization scheme: The time between path optimizations is 

modeled as an exponentially distributed random variable with mean 1 / v . 

The periodic scheme has been proposed within the A T M Forum wireless A T M 

working group [8] to facilitate inter-switch handoff. Notice that both periodic and the 

exponential schemes trigger path optimization regardless of whether or not there is an 

inter-switch handoff. Thus, unnecessary path optimizations may be performed for station

ary mobile connections. 

2.2.4 Handoff-based 

The handoff-based path optimization schemes trigger path optimization for each mobile 

connection based on some criteria after each inter-switch handoff. For example, it can be a 

function of the number of previous handoffs, the velocity of the mobile terminal, or the 

residual service time of the connection. In this chapter, we also analyze the following 

scheme: 

1. Bernoulli path optimization scheme: After each path extension, there is a probability 

p, 0 < p < \ , such that path optimization is performed. 

For the Bernoul l i scheme, path optimization may only occur on condition that 
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there is an inter-switch handoff. Thus, path optimization is never triggered after each 

handoff i f p = 0 . On the other hand, path optimization is always performed after each 

path extension i f p = 1. 

Path opt imizat ion can also be invoked based on a combinat ion of the above 

schemes. In the remainder of this chapter, we w i l l compare the performance of the 

periodic, exponential, and the Bernoulli path optimization schemes, and determine how to 

assign the optimal values for v, T and p given a set of call and mobility parameters. 

2.3 Analytical Model 

In this section, we present a discrete time analytical model proposed to evaluate the 

performance of different path optimization schemes [73]. Our proposed model is a 

generalization of the model in [48]. Events occur at each fixed time interval. The time 

interval can be minutes or seconds. When the time interval is sufficiently small (e.g., 

fraction of a second), this model is approximately the same as a continuous time model. 

For each mobile connection, the following events can occur at each time interval: (1) path 

extension due to inter-switch handoff; (2) path optimization; and (3) call termination. A t 

each time interval, we let: 

• \ r denote the probability that there is an inter-switch handoff (and thus a path 

extension); 

• p, denote the probability that the call terminates. 

Thus, the time between inter-switch handoff and the call duration follow geometric 

distribution with mean l / ? i and 1 /p , respectively. For each mobile connection, we let: 

• L denote the number of links between the source and the destination during call 

setup; 
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• H denote the number of links between the anchor switch and the target switch 

during path extension. 

The random variables L and H are assumed to be independent, each having a 

general distribution with mean L and H, respectively. During path optimization, the path 

between the current anchor switch and the source is recomputed. We assume the number 

of links of this optimal path is a random variable also with mean L. 

The performance metric is the expected cost per call, which captures the amount of 

network resources used and the processing and signaling load of the network. The total 

cost per call is the sum of the link cost and the signaling cost due to inter-switch handoff. 

More precisely, we let: 

• C l i n k denote the link cost per unit time interval per link; 

• CPE denote the signaling cost for each path extension event; 

• CP0 denote the signaling cost for each path optimization event. 

The term C l i n k captures the amount of resources (e.g., bandwidth) used by the 

connection. Different traffic classes can be assigned different values for C l i n k . The total 

link cost of the call is a function of time and the number of links. The term CPE captures 

the cost for setting up the extended path between the anchor switch and the target switch. 

The term Cp0 includes the cost for (1) locating the crossover switch; (2) setting up the 

new branch connection; (3) terminating the old branch connection; and (4) updating the 

connection server about the status of the existing route. Since path optimization is more 

complex than path extension, the cost of performing path optimization is higher than the 

cost of performing path extension. Thus, it is reasonable to assume that CP0 » CPE . A s 

we are only interested in the relative performance between different path optimization 

schemes, other signaling costs including the costs for call setup and termination as well as 
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the costs for location update and intra-switch handoff are not considered. 

In the fo l lowing subsections, we describe the closed-form expressions of the 

expected cost for the exponential, periodic, and Bernoulli path optimization schemes. The 

derivation of these expressions are presented in the Appendices A - C . 

2.3.1 Exponential Path Optimization Scheme 

In the exponential scheme, the time between path optimization is modeled as an exponen

tially distributed random variable with mean 1 /v . In the discrete time model, the time 

between path optimization is modeled as a geometrically distributed random variable. A t 

each time interval, we let v denote the probability that path optimization is invoked. The 

expected cost per call, denoted as E[Cexponentia[], is: 

m r , L M\-\i)(\-v)H 
^exponential! ^ H I * ^ ^ 1 _ ( 1 _ _ V ) ] 

+ il^l(xcPE + vCP0). 

The proof of equation (2.1) is shown in Appendix A . In (2.1), the first term is the 

link cost of the call i f the mobile terminal remains connected to the same switch during its 

connection lifetime. The second term is the increase in link cost due to the path extension 

associated with each inter-switch handoff. The third term is the signaling cost due to path 

extension. A n d the last term is the signaling cost due to path optimization. When v = 0, 

Fir 11 - k r . Ml-[i)H r HI - H ) r ' n i . 
exponentiali\v _ Q ~ ^ link ^ p,[ 1 - ( 1 - p,)] ' ' " ^ \i P E ' 

The exponential path optimization scheme reduces to pure path extension. That is, only 

path extension is performed for each inter-switch handoff and there is no path optimiza

tion. On the other hand, i f v = 1, 
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E[C i i - k r 4. H L z ^ l r + LLzJilr 
exponentiali\v _ l ~ y^Hnk "*" ,, U P £ "*" ,, ^ P O ' 

(2.3) 

In this case, path optimization is invoked at each time interval. 

B y taking the derivative of (2.1) with respect to v and setting the expression to 

zero, we obtain the optimal v , denoted as vopt, such that the expected cost is minimized. 

The expression is: 

1 
v = 

°P' 1 - p 
JXH^ - p 

C PO 
(2.4) 

Since v is a probability, it has to be within the range 0 < v < 1. Thus, based on (2.4), the 

sub-optimal value of v is: 

^sub - opt ^ opt 

1, 

if 0 < v o p l < \ 

i f v ^ > l . 

(2.5) 

2.3.2 Periodic Path Optimization Scheme 

The periodic scheme invokes path optimization periodically. In the discrete time model, 

we let positive integer k denote the time period, measured in number of discrete time 

intervals, between successive path optimizations. The expected cost per call, denoted as 

E[Cperiodic^ » i S : 

E[Cperiodic) = \cUnk + ^ 1 i [ 1 - *( 1 - 1 + (* - 1 ) ( 1 - tfVlink 

V* [i [1 - (1 - jx) ] (2.6) 
X(i-yi) ( l - p ) " r 

+ L - p E + - — l^PO-
l - ( l - l l ) 

The proof for equation (2.6) is shown in Appendix B . Similar to (2.1), the first 

term in (2.6) is the link cost of the call i f no inter-switch handoff is generated. The second 
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term is the increase in link cost due to path extension at each inter-switch handoff. The last 

two terms are the signaling cost due to path extension and path optimization, respectively. 

When = 1 in (2.6), 

E[Cperiodic1\k = i = ^Clink + ^ ^ ^CPE + ^ ^ CPO • (2-7) 

Equations (2.3) and (2.7) are the same. That is, path optimization is performed at each 

time interval. 

B y taking the derivative of (2.6) with respect to k and setting the expression to 

zero, the optimal k, denoted as kopt, such that the expected cost is minimized, is given by 

the solution of: 

XHClink[l+(\-[i)k-kln(\-[i)] = j i C P 0 l n ( l - f i ) . (2.8) 

Although the value of k that satisfies (2.8) is always positive, it may not be an integer. 

Thus this value needs to be rounded to the closest integer. 

2.3.3 Bernoulli Path Optimization Scheme 

For the Bernoulli scheme, path optimization is performed with probability p after each 

path extension. A s derived in Appendix C , the expected cost of the call , denoted as 

E[CBernoulli ' *S: 

F r r i-lr + Ml-p)(i-m r 

^ B e r n o u l l i i ~ \ilink + \i[\-(\-XP){\-\i)]link 

In (2.9), the first term is the link cost of the call i f the mobile terminal moves under 

the coverage of the same edge switch during its connection lifetime. The second term is 

the additional link cost due to path extension at each inter-switch handoff. The last term is 
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the signaling cost due to path extension and path optimization. When p = 0 , equation 

(2.9) reduces to the same expression as (2.2), as follows: 

F\C II - lC . A , ( l - n ) 5 c . k ( i - n ) c f 2 1 0 ) 
^Bernoulli\\p = Q " + p [ l _ ( l _ p ) ] C ^ + p ^ 1 U ' 

The Bernoulli scheme reduces to pure path extension. On the other hand, when p = 1, 

EiCBernoulli]\p=i = ±Clink + Mizii) ( C / 3 £ + C P 0 ) . (2.11) 

Path optimization is performed after every path extension. 

B y taking the derivative of (2.9) with respect to p and setting the expression to 

zero, we obtain the optimal p, denoted as p t , such that the expected cost is minimized, 

as follows: 

^•'xihu^-m"^f0-A (2-i2) 

Since p is a probability, it has to be within the range 0 < p < 1 . Thus, based on (2.12), the 

sub-optimal value of p is: 

Psub opt 

0, X popt<0 

PoPt ifO<popt<l (2.13) 

1. i f Popt>l-

2.4 Simulation Model 

In the simulation model, a wireless A T M network is modeled as a non-hierarchical 

random graph. Random graphs have been used to model A T M networks [24]. Different 

variations of random graph models have also been proposed to model the topology of the 

Internet [19] [80]. The generation of a non-hierarchical random graph consists of the 

following steps [19]: 
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1. /V nodes are randomly distributed over a rectangular coordinate grid. Each node is 

placed at a location with integer coordinates. A minimum distance is specified so that a 

node is rejected i f it is too close to another node. The Euclidean metric is then used to 

calculate the distance a(i, j) between each pair of nodes (i, j). 

2. A fully connected graph is constructed with the link weight equal to the Euclidean 

distance. 

3. Based on the fully connected graph, a minimum weight spanning tree is constructed. 

4. To achieve a specified average node degree1 of the graph, edges are added one at a 

time with increasing distance. 

If node i and j are connected, then the link weight, denoted as ca^, is assumed to be 

equal to: 

co0. = a(i,j) + p (2.14) 

where P is a uniformly distributed random variable in the range 0 < P < $ m a x - In (2.14), 

the first term can be interpreted as the propagation delay of the link, and the second term 

approximately models the queueing delay of the link. 

A 20-node random graph generated from the above model is shown in Figure 2.1. 

The size of the rectangular coordinate grid is 100 x 100. The minimum distance between 

any two nodes is 15. The average node degree of the graph is 3. For (2.14), $max is set to 

be equal to 100. Each node represents an A T M switch and each edge represents a physical 

link connecting the two switches. Since we are only concerned about inter-switch handoff, 

base stations are not included in the model. 

For our simulations, ten different 20-node random graphs, similar to the example 

shown above, were generated. Each random graph is employed in 10,000 simulation runs. 

The average node degree is defined as the average number of links connected to a node. 
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100 

Horizontal Distance 

Figure 2.1 A 20-node random graph with node degree of 3; minimum distance between 
any two nodes is 15. 

For each simulation run, a call is generated with two nodes chosen randomly as the source 

and destination nodes. Dijskstra's algorithm [13] is used to compute the shortest delay 

path between these two nodes. The source node is assumed to be stationary. The destina

tion node becomes the anchor switch of the mobile connection. The call duration and the 

time between inter-switch handoff are modeled as exponentially distributed random 

variables with mean 1/p, and 1/A,, respectively. 

During each inter-switch handoff, the target switch is restricted to be one of the 

neighboring switches of the current anchor switch. Path extension is used to extend the 

connection from the anchor switch to the target switch. Subsequent path optimizations 

may be triggered based on different initiation schemes as described in Section 2.2. 

Similar to the performance metric used in our analytical model, the performance 

metric in our simulation model is the average cost per call, which is defined as the sum of 

the link cost and the signaling cost due to inter-switch handoff, and is given by: 

m 

Cost = npECPE + npoCPO + £ %. /• Clink (2.15) 
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Table 2.1 Summary of parameters used in simulation and analytical models 
item symbol value 

number of nodes in the network - 20 

size of the rectangular coordinate grid - 100 x 100 

average node degree - 3 

maximum queueing delay (ms) Qmax 100 

time between inter-switch handoff (minutes) 5 

average call duration (minutes) 1/p, 20 

signaling cost per path extension CpE 1 

signaling cost per path optimization Cpo 5 

link cost per link per minute Clink variable 

time interval in analytical model (minutes) - 1 x 10~3 

average number of links during call setup (from simulation) L 3.44 

average increase in number of links during path extension H 1 

where nPE and npo denote the number of path extension and path optimization, respec

tively, during a call; Clink, CPE and Cpo are as defined in the previous section; m is the 

number of events per call; x • denotes the time elapsed between event i - 1 and i; and / • 

denotes the number of links between two end nodes during xi. The average cost per call is 

calculated by averaging the total cost per call over all (100,000) simulation runs. 

The simulation model described above can be extended to handle other network 

topologies (e.g., star, ring, and hierarchical), as well as other statistical distributions for the 

call duration and the time between inter-switch handoff. 

2.5 Results and Discussions 

The baseline parameters for the analytical and simulation models are summarized in Table 

1. Since the analytical model is a discrete time model and the simulation model is a 

continuous time model, for a fair comparison, the time interval in the analytical model has 
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to be sufficiently small in order to approximate it as a continuous time model. We have 

chosen a time interval of 1 x 10 minutes. Thus, i f Cunk = 0.5/link/minute in the simula-
_3 

tion model, the corresponding value is Cunk = 0.5 x 10 /link/time interval in the analyt

ical model. The inter-switch handoff rate X, the call termination rate [i, the path 

optimization rate v for the exponential scheme, and the path optimization period k for the 

periodic scheme also have to be scaled accordingly (e.g., X = 0.2/minute in the simula-
_3 

tion model is expressed as 0.2 x 10 /time interval in the analytical model). 

We first present the analytical results for the three proposed path optimization 

schemes. The expressions of the expected cost per call as shown in equations (2.1), (2.6), 

and (2.9) are normalized with respect to the signaling cost per path optimization, Cpo • 

Figures 2.2 - 2.4 show the analytical results for the exponential, periodic, and Bernoul l i 

path optimizat ion schemes, respectively. Given the l ink cost to s ignal ing cost ratio, 

Clink/Cp0 , and the mobility parameters X and \l, there exists an optimal operating point 

for each scheme such that the expected cost per call is minimized. This optimal value can 

be determined directly from equations (2.4), (2.8), and (2.12). 

For the exponential path optimization scheme, as shown in Figure 2.2, the optimal 

path optimization probability \ t increases as Clink/Cp0 increases. F rom equations 

(2.4) and (2.5), vsub o p ( is always equal to 1 when 
§^ > -L. (2.16) 
C P 0 XH 

For the periodic path optimization scheme, as shown in Figure 2.3, the optimal 

path optimization period kopt decreases as Clink/CP0 increases. When CUnk/CP0 

exceeds a certain threshold, kopt is always equal to 1. This threshold can be determined 

from equation (2.8). 

For the Bernoull i path optimization scheme, as shown in Figure 2.4, the optimal 
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path optimization probability popt increases as Clink/CPO increases. From equations 

(2.12) and (2.13), when 

Clink > \(l-\L)+]L ^ 
CP0 H 

Psub-opt is always equal to 1. 

Figures 2.5 - 2.7 compare the analytical and simulation results for the periodic, 

exponential, and the Bernoulli path optimization schemes, respectively. A s shown in the 

figures, the results of the expected cost per call from the analytical model and the average 

cost per call from the simulation model are closely in agreement. The simulation results 

corroborate the closed-form solutions derived from the analytical model. 

Although the analytical and simulation models give the same results, there are 

subtle differences between these two models. In the simulation model, a fixed network 

topology is required; while in the analytical model, only the parameters L and H are 

fixed. Thus, even though the average cost per cal l from the simulation model and the 

expected cost per call from the analytical model are the same, their second moments (i.e., 

cost variance) are different. 

Figure 2.8 shows the performance comparisons between different path optimiza

tion schemes. For each path optimization scheme, its optimal value (i.e., respectively, 

kopt, vopt, and popt) is first calculated and then used to determine the minimum expected 

cost per call . On the whole, the exponential scheme gives the highest expected cost per 

connection. The performance of the periodic scheme lies between the exponential and the 

Bernoull i schemes. The Bernoulli scheme outperforms the other two schemes by giving 

the lowest expected cost per call. This is due to the fact that in the Bernoulli scheme, path 

optimization may be invoked only after each inter-switch handoff, while in the exponential 

and periodic cases, multiple path optimizations may occur unnecessarily between succes-
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sive inter-switch handoff. Other results for different values of X and u. also indicate that 

the Bernoulli scheme has a better performance over the other two schemes. Another obser

vation from Figure 2.8 is that the minimum expected cost per call increases linearly in 

Clink/CP0 . Th i s is due to the fact that as Clink/CP0 increases, the first term in 

equations (2.1), (2.6), (2.9), (i.e., LClink/\i) becomes the dominant term of the respective 

expression. 

Note that in our simulation, 10 different 20-node random graphs are used. If the 

number of nodes of the random graph remains unchanged, the average total cost of using 

either 10, 25, or 50 random graphs is equal. However, i f the number of nodes of the 

random graph increases, the average number of l inks between two end-points w i l l 

increase. Thus, the expected total costs, averaged over al l source and destination pairs, 

w i l l also increase. In spite of that, results show that the Bernoulli scheme still has a better 

performance than the other two heuristics. 

In order to determine the minimum expected cost for each scheme, its optimal 

operating point needs to be calculated. The operating point for each scheme is a function 

of X, p , H, and CUnk/CP0. Although the parameters H and Clink/Cpo can be deter

mined by the network, the values of X and p. may not always be estimated correctly by 

the mobile terminal during call setup. If that is the case, the path optimization operating 

point may not indeed be the optimal one. We are interested in determining the percentage 

change of the expected cost per call to the variation of the average call duration 1 /u \ and 

the average time between inter-switch handoffs 1 /X. 

First of all, we assume the actual call termination rate p. = 0.03 per minute. Thus, 

the average call duration of the mobile connection is approximately 33 minutes. The opti

mal expected total cost, denoted as £ [ C o s t (optimal)], is determined. The average cal l 

duration is then varied within the range of (-90, 100) %, (i.e., between 3 and 66 minutes). 
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Let p, denote the estimated call termination rate. The values of p. and ft. are related by the 

following equation: 

A " ' = ( l + A ^ u - 1 (2.18) 

where A u , ( -90% < A ^ < 100%), is the percentage change of the average call duration. 

Based on the estimated call duration rate p. and other network parameters (i.e., L, H, 

Clink/ Cpo, etc), the sub-optimal operating point for each path optimization scheme is 

determined. From this sub-optimal operating point and other cost and mobility parameters 

(i.e., X, \i, etc), the sub-optimal expected total cost, denoted as £ [ C o s t (sub-optimal)], is 

computed. The change in the expected total cost is determined by the following equation: 

E[Cost (sub-optimal)] ^ 19) 

ZstCost (optimal)] 

For the mobi l i ty and cost parameters, we assume that A, = 0 .1 , Clink = 0.5, 

CPE = 1, CP0 = 5 , L = 3.5 , and H = 1. The result is shown in Figure 2.9. When the 

average ca l l duration is over-estimated by more than - 4 0 % , the cost ratio of a l l three 

schemes is equal to one, which implies that the operating point is insensitive to the change 

of average call duration. However, within the (-90, -40) percentage range, there is an 

increase in the cost ratio for both exponential and Bernoulli schemes. The periodic scheme 

has the smallest change in expected cost (less than 1%) within the variation range. These 

results imply that i f there is uncertainty in estimating the average call duration, it may be 

better to over-estimate the value. 

For the variation of the time between inter-switch handoff, we assume that the 

actual inter-switch handoff rate X. = 0.1 per minute. Thus, the average time between 

inter-switch handoffs is 10 minutes. The time between inter-switch handoffs is then varied 

within the range of (-90, 100)%, (i.e., between 1 and 20 minutes). Let X denote the 
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estimate inter-switch handoff rate. The values of X and X are related by the fol lowing 

equation: 

I " ' = (l+Ax)X~] (2.20) 

where A ^ , ( - 9 0 % < A ^ < 100%), is the percentage change of the time between inter-

switch handoffs. Based on the estimated inter-switch handoff rate X and other network 

parameters, the operating point for each path optimization scheme is calculated. The 

percentage change in expected cost is determined from eqn. (2.19). The result is shown in 

Figure 2.10. When the average time between inter-switch handoffs is over-estimated by 

more than - 6 0 %, the change in expected total cost is less than 5% for all three schemes. 

Among these three schemes, the Bernoulli scheme has the smallest change in expected 

cost. These results imply that i f there is uncertainty in estimating the time between inter-

switch handoffs, it may be better to over-estimate the value. 

Although both the analytical and simulation models provide us with some useful 

insights on the network resources used and the processing and signaling load per connec

tion, these models are not without drawbacks. First of all, path extension and path optimi

zation are assumed to be point processes, i.e., the time to perform these operations has not 

been taken into account. In addition, the signaling overhead for path optimization is 

assumed to be constant. In practice, this signaling overhead may also depend on the 

location of the crossover switch. To simplify the analysis, we assume the average number 

of links of the optimal path is the same as the average number of links of the path during 

call setup. In real networks, that assumption may not be true. 

2.6 Summary 

Path optimization may be necessary i f the end-to-end path after connection rerouting is 

not optimal. In this chapter, we proposed and analyzed three different path optimization 
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schemes which are simple to implement. For the exponential path optimization scheme, 

the time between path optimizations is modeled as an exponentially distributed random 

variable. The periodic path optimization scheme invokes path optimization at periodic 

time intervals. For the Bernoulli path optimization scheme, path optimization is performed 

with a fixed probability after each path extension. A discrete time analytical model and a 

discrete event simulation model were proposed to compare the performance of these 

schemes by evaluating the expected cost during a call. The analytical model enables a 

closed-form expression and optimal operating point to be obtained for each path optimiza

tion scheme. The analytical and simulation results agree with each other, corroborating the 

two models. The Bernoulli scheme outperforms the other two schemes by providing a 

lower expected cost per call and a lower percentage change of expected cost relative to the 

variation of the average time between inter-switch handoffs. 
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Figure 2.2 Exponential path optimization scheme. 
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Figure 2.3 Periodic path optimization scheme. 
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Figure 2.4 Bernoulli path optimization scheme. 
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Figure 2.5 Analytical and simulation results of the periodic path optimization scheme. 
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Figure 2.6 Analytical and simulation results of the exponential path optimization scheme. 
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Figure 2.7 Analytical and simulation results of the Bernoulli path optimization scheme. 
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Figure 2.8 Comparisons between different path optimization schemes. 
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Figure 2.9 Variation of the average call termination time. 
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And that has made aft the difference." 

fRpBert frost, The !RpadC^pt Taken. 

Chapter 3 Path Optimization for Inter-Switch Hand-
off: Optimal Policy 

3.1 Introduction 

In this chapter, we propose a stochastic model to determine the optimal time to perform 

path optimization [76]. The path optimization problem is formulated as a semi-Markov 

decision process. Link cost and signaling cost functions are introduced to capture the 

trade-off between the network resources utilized by a connection and the signaling and 

processing load incurred on the network. The objective is to determine the optimal policy 

which minimizes the expected total cost per call. The major contribution lies in the formu

lation of a general model that is applicable to a wide range of conditions. Distinct features 

of our model include: 

1. Different link cost functions can be assigned to different service classes with different 

bandwidth requirements. 

2. Different signaling cost functions can be used based on the complexity of the path 

optimization procedures and the signaling load of the network. 

3. The time between inter-switch handoffs can follow an arbitrary general distribution. 

The rest of this chapter is organized as follows. The model formulation of the path 

optimization problem is described in Section 3.2. In Section 3.3, we describe the optimal -

ity equations, the value iteration algorithm, and the structure of the optimal policy. The 

46 



Chapter 3 Path Optimization for Inter-Switch Handoff: Optimal Policy 47 

implementation issues are described in Section 3.4. Extension of the above model to 

mobile-to-mobile connection and other QoS constraints are described in Section 3.5. In 

Section 3.6, we present numerical results and compare the optimal policy with four other 

heuristics. A summary is given in Section 3.7. The proofs of the propositions stated in this 

chapter are shown in the Appendix D . For general background on M a r k o v decision 

processes, please refer to [46] or [56]. 

3.2 Model Formulation 

Each mobile connection may experience a number of inter-switch handoffs during its con

nection lifetime. During each inter-switch handoff, path extension can be used to extend 

the connection from the current anchor switch to the target switch. Although path exten

sion is simple to implement, the connection utilizes more network resources than neces

sary. Occasional path optimization is required to reroute the connection to an optimal path. 

Path optimization is a complex process. It increases the processing and signaling load of 

the network. Thus, there is a trade-off between the network resources utilized by the call 

and the processing and signaling load incurred on the network. We formulate the above 

problem as a semi-Markov decision process. After each path extension, the network must 

decide whether to perform subsequent path optimization. The decision is based on the cur

rent number of links of the path and the locations of the anchor and target switches. The 

model is described below. 

3.2.1 Semi-Markov Decision Process Model 

When an inter-switch handoff occurs, a path extension is performed. After that, a decision 

must be made whether to perform subsequent path optimization. Those time instants are 

called decision epochs. Referring to Figure 3.1, the sequence a 0 , Oj , . . . represents the 

time of successive decision epochs. Since inter-switch handoff only occurs during the call 
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Figure 3.1 Timing diagram. 

lifetime, the time interval requiring mobility monitoring is between a call arrival and its 

termination. The term o 0 = 0 represents the arrival time of a new call and the random 

variable T denotes the call termination time. The random variable ty(T) denotes the total 

number of inter-switch handoffs that has occurred before the termination time T. 

A t each decision epoch, the network must decide whether to perform subsequent 

path optimization. Let A = {NPO, PO} denote the action set, where PO corresponds to 

performing path optimization after path extension, and NPO corresponds to performing 

path extension only. The random variable Yn is used to denote the action chosen at 

decision epoch n. 

The action chosen is based on the current state of the connection. The state space 

is denoted by S. For each state s e S, the state information includes the locations of the 

target and anchor switches, and the number of links of the current path. Al though the 

decision is only based on the state at the current decision epoch, state change may occur 

between decision epochs. Consequently, we distinguish the natural process and the semi-

Markov decision process. The natural process models the state evolution of the system as 

if it were observed continually throughout time, while the semi-Markov decision process 

represents the evolution of the system state at decision epochs only. These two processes 

coincide at decision epochs. The random variable Xn is used to denote the state at 

decision epoch n, and W T is used to denote the state of the natural process at time T. 

Two cost functions are introduced to account for the network resources utilized 
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and the signaling load incurred due to inter-switch handoff. The link cost function reflects 

the amount of network resources used during the connection lifetime, while the signaling 

cost function captures the processing and signaling load incurred on the network due to 

path extension and path optimization. The signaling costs are incurred only at the decision 

epochs, while the link cost is accrued continuously during the call lifetime. 

The function f(s, s, a) denotes the l ink cost rate as long as the natural process 

occupies state s and action a was chosen in state s at the preceding decision epoch. If the 

natural process occupies state s during the time interval (x, x + di), then the l ink cost 

accrued during this period is f(s, s, a) • dl. 

The function b(s,a) denotes the signaling cost incurred when the decision maker 

chooses action a in state s. Thus, b{s, NPO) represents the signaling cost of performing 

path extension, and b(s, PO) represents the signaling cost of performing path extension 

and subsequent path optimization. A l l cost functions are assumed to be bounded and 

nondecreasing with respect to the number of links of the current path. 

A decision rule prescribes a procedure for action selection in each state at a 

specif ied dec i s ion epoch. De te rmin i s t i c M a r k o v i a n dec i s ion rules are functions 

ot: S —> As, which specify the action choice when the system occupies state s at decision 

epoch t < T; i.e., for each s e S, 5t(s) e As. This decision rule is said to be Markovian 

(memoryless) because it depends on previous system states and actions only through the 

current state of the system, and deterministic because it chooses an action with certainty. 

A policy 71 specifies the decision rule to be used at all decision epochs. That is, a policy is 

a sequence of decision rules, 7t = (5j , 8 2 , . . . ) . The set of all policies is denoted by IT. 

Let v (s) denote the expected total cost per call given policy n is used with initial 

state s. Thus, 
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(s) = En\jjb{Xn,Yn) + X \\yf(WvXn,Yn)dx Jt V 

U = 0 n = 0 
(3.1) 

+ f f(WvXHT),YHT))dx 

where Es denotes the expectation with respect to policy K and initial state s. In the above 

expression, the first summation corresponds to the lump sum portion of the signaling cost. 

In the second summation, each term corresponds to the continuous portion of the link cost 

that is incurred at rate f(Wv Xn, Yn) between decision epochs n and n + 1. The last term 

corresponds to the link cost that is incurred at rate / ( W v X^Ty Y^T^) between decision 

epoch (J)(T) and termination time T. We assume the termination time is exponentially dis

tributed with rate p . In that case, equation (3.1) can be written as: 

For a proof of this fact, see Proposition D . l in Appendix D . The expression in (3.2) is the 

expected total cost of an infinite-horizon semi-Markov decision process with discount rate 

p . The function c(s, a) in (3.3) is the expected total cost between two decision epochs, 

given the system occupies state s and the decision maker chooses action a in state s. This 

cost function is further discussed in Section 3.2.3. 

Since the optimization problem that we consider is to minimize the expected total 

cost, we define a policy iz* is optimal in IT if 

(3.2) 

where 

(3.3) 
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vK*(s) < v*(s) (3.4) 

for all 7t e n . 

Let G(t\Xn, Yn) denote the cumulative distribution function of the time between 

decision epochs n and n + 1, given that current state is Xn and action Yn is chosen. The 

time between decision epochs corresponds to the time between inter-switch handoffs. In 

this formulation, the time between inter-switch handoffs follows a general distribution and 

can depend on the location of a particular anchor switch that the mobile terminal is 

connected to. We use G(dt\Xn, Yn) to represent the time-differential. That is, 

G{dt\Xn,Yn) = dG(t\Xn,Yn). 

A policy is said to be stationary i f 8, = 8 for all t. A stationary policy has the 

form 7t = (8, 8, . . . ) ; for convenience we denote it by 8. For a stationary po l icy 8, 

equation (3.2) can be written as: 

v\s) = c[s, 8(s)] + X If VV> pls'\s> 5 ^ G[dt\s, d(s)] (3.5) 

where d(s)] denotes the transition probability that the next state is s', given the 

current state is s and action b(s) is chosen. For a proof of this fact, see Proposition D . l in 
* 

Appendix D . Our objective is to determine an optimal stationary deterministic policy 8 

which minimizes (3.5). 

To simplify the analysis, two assumptions are made. We assume the time between 

inter-switch handoffs is independent of the state and action chosen, i.e., the cumulative 

distribution function G(t\Xn, Yn) = G(t). We assume the mobile terminal is communi

cating with a remote terminal which is stationary; i.e., we consider a mobile-to-fixed 

connection. The model formulation for mobile-to-mobile connection is described in 

Section 3.5.1. 
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3.2.2 State Transition Probability Function 

A state change occurs when there is an inter-switch handoff. The state space S is three 

dimensional. For each state (/, j, k) e S, i denotes the location of the target switch; j 

denotes the location of the current anchor switch; and k denotes the number of links of the 

current path. Thus, 

where N denotes the total number of nodes in the network and L represents the maximum 

number of links allowed in a path. The number of links of any path is always finite. We 

assume the number of links increased during path extension is bounded by M which is 

much smaller than L (i.e., M « L). 

Since the end-to-end delay is proportional to the number of links of the path, a sub-

optimal path with a high number of links not only increases the delay but also increases 

the ca l l dropping probability and the congestion level of the network. We impose the 

condition that whenever the number of links is greater than or equal to L - M and there is 

an inter-switch handoff, path extension is performed followed by path optimization with 

certainty. For convenience, we let K = L-M. Later we show that path optimization is 

always performed when the number of links exceeds a certain threshold, and this threshold 

is much smaller than K. 

Given the current state s = (i, j, k), the available action set is: 

S = {1 ,2 , . . . , / V } x { l , 2 , . . . , / Y } x { l , 2 , . . . , L } (3.6) 

{NPO,PO}, 
{PO}, K< k < L. 

1 < k <K 
(3.7) 

Thus, after each path extension, path optimization may be performed i f the number of 

links is less than K, while path optimization is performed with certainty whenever the 

number of links is greater than or equal to K. 
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Two probability distribution functions are introduced to govern the state changes. 

Let 

• p(m\ i, j) denote the probability that the number of links of the optimal path is m, 

given the locations of the two end-points are i and j, respectively. 

• q(l\i) denote the probability that the location of the target switch in the next 

decision epoch is / , given the location of the target switch at the current decision 

In A T M networks, source routing is used for all connection setup requests. That is, the 

source switch selects a path based on topology, loading, and reachability information in its 

database. A s networks grow in size and complexity, full knowledge of network parameters 

is typically unavailable. Each single entity in the network cannot be expected to have 

detailed and instantaneous access to all nodes and links. Routing must rely on partial or 

approximate information, and still meet the QoS demands [26] [37]. The A T M Forum 

P N N I standard [10] introduces a hierarchical process that aggregates information as the 

network gets more and more remote. However, the aggregation process inherently reduces 

the accuracy of the information and introduces uncertainty. Thus, in large networks it is 

more appropriate to model the number of links of a path between two endpoints in a prob

abilistic manner. 

On the other hand, for small networks- with periodic routing information update, 

the number of links of a path between the two endpoints can be modeled in a deterministic 

manner. Let Y ( i , j) denote the number of l inks of the optimal path between the two 

endpoints i and j . The functions p(m\i, j) and T(i, j) are related by 

epoch is i. 

i f = m 

if Y ( i , j) * m. 
(3.8) 
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Let D denote the location of the destination (i.e., the remote terminal), which is 

assumed to be fixed. The transition probability that the next state s' = (/', /, k') given the 

current state s = (/, j, k) and action a chosen, is given by: 

P(i', f, k' | i , j, k, a) = 

q(i'\i) • p(m\i, j), x" * i , f = i, k' = k + m, a = NPO 

q(i'\i)- p(n\i,D), f = i, k' = n, a = PO (3.9) 

0, otherwise. 

Equation (3.9) states that i f action NPO is chosen, the number of links is increased by m 

with probability p(m\i, j) after path extension. On the other hand, i f action PO is chosen, 

the number of links is equal to n with probability p(n\i, D) after path optimization. In 

both cases, the location of the target switch at the next decision epoch is equal to /' with 

probability q(i'\i). 

3.2.3 Cost Functions 

For each path extension event, the network incurs a fixed signaling cost CPE> 0 and a 

variable signaling cost hPE(m) where m represents the number of links increased during 

path extension. The terms CPE and hpE(m) capture the cost of setting up the extended 

path between the anchor and target switches. 

For each path optimization performed, the network incurs a fixed signaling cost 

CP0 > 0 and a variable signaling cost hp0(l) where / represents the number of links 

reduced during path optimization. These two terms capture the cost of (1) locating the 

crossover switch; (2) setting up the new branch connection; (3) terminating the old branch 

connection; and (4) updating the connection server about the status of the existing route. 

We assume the link cost rate only depends on the number of links of the current 

path. That i s , f(~s,s,a) = f(k) for a l l S,SG S. R e c a l l f rom equat ion (3.2) that 

c(i, j, k, a) denotes the expected total cost between two decision epochs, given the system 
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occupies state (/, j, k) and action a is chosen. Since the first inter-switch handoff occurs 

at time O j , the locations of the anchor and target switches are the same at the call setup 

time a 0 . Thus, during the time interval ( G 0 , Gx ], we have i = j and the cost function 

c(j,j,k,NPO) = rxf(k) (3.10) 

r 0 0 r' - U T 

where / j = J J e dx G(dt). The function 7j/(fe) is the expected discounted link 

cost between two decision epochs, given the current number of links is k. 

For other decision epochs not equal to CT0, the locations of the anchor and target 

switches are always different (i.e., i * j i f o * a 0 ) . In that case, i f action NPO is chosen, 

then the cost function 

M 

c{i,j,k,NPO) = CPE + £ {hPE(m) + IJ{k + m)}p{m\i,j). (3.11) 
m = 1 

The function CPE + ^hPE(m)p(m\i, j) is the expected signaling cost for path extension, 

given the locations of the anchor and target switches are i and j, respectively. 

For path optimization, we assume the number of links of the optimal path is always 

less than or equal to the number of links of the current path, and less than K. For decision 

epoch CT not equal to CT0, i f action PO is chosen, then the cost function 
M 

c(i,j,k,PO) = CPE + X hPE(m)p(m\i, j) + CP0 

m = 1 (3.12) 
M (k + m)A(K-\) v 7 

+ X X {hp0(k + m-n) + Ilf(n)}p(n\i,D)p(m\i, j) 
in = 1 n = 1 

where JC A y = min (x, y). The expression CPO + ̂ h p o ( k - n)p(n\i, D) is the 

expected signaling cost for path optimization, given the current number of links is k, and 

the locations of the source and destination are i and D, respectively. 
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3.3 Optimality Equations 

In this section, we introduce the optimality equations (sometimes referred to as the B e l l 

man equations or functional equations) and investigate their properties. We show that 

solutions of these equations correspond to optimal value functions and that they also pro

vide a basis for determining optimal policies. Let v(s) denote the minimum expected total 

cost per call given state s. That is, 

v(s) = min vn(s). (3.13) 
TIE n 

The optimality equations are given by 

v(s) = ) = min \c(s,a) + Y IT v(s') P(s'\s, a) G(dt)] I. (3.14) 
aeA { fts

 L J ° J J 

Let 12 = J e G(dt). Equation (3.14) can be expanded as follows: 
'o 

For i = j and 1 <k< K, 

v(jJ,k) = c(jJ,k,NPO) + J^I2v(l,j,k)q(l\j). (3.15) 
/= 1 

For i * j and 1 < k < K, 

r N M 

v(i,j,k) = min \ c{i, j, k, NPO) + X 2 I2v(l, i, k + m)p(m\i, j)q(l\i), 

1 1 = 1 m - ] (3.16) 
N M {k + m)A(K-\) < 

c(i,j,k,PO)+^ £ £ I2v(l,i,n)p(n\i,D)p(m\i,j)q(l\i)[ 
1= 1 m = 1 n = 1 J 

For i * j and K<k<L, 

N K-1 

v(i,j,k) = c(i,j,k,PO) + £ ^I2v(l,i,n)p(n\i,D)q(l\i). (3.17) 
/= 1 n= 1 
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A t call setup time G 0 , the locations of the anchor and target switches are the same. Thus in 

(3.15), no path extension or path optimization is performed. For other decision epochs not 

equal to a 0 , the locations of the anchor and target switches are different. If the number of 

links of the path is less than K, then after each path extension, the network w i l l decide 

whether to perform subsequent path optimization. This fact is stated in (3.16). Since path 

optimization is always performed i f the number of links is greater than K, in (3.17), the 

action PO is chosen when there is an inter-switch handoff. 

If the signaling cost function for path optimization is zero (i.e., CP0 = 0 and 

hpo{l) = 0 ) , the problem of finding an optimal policy is trivial. It is optimal to perform 

path optimization after each inter-switch handoff. This is because the link cost function is 

nondecreasing with respect to the number of links of the current path. After each path 

optimization, there is a reduction in the number of links. However, i f the signaling cost 

function for path optimization is nonzero, it is not obvious as to what constitutes the 

optimal policy. Note that i f p. > 0 , the state space is finite, and the cost functions are 

bounded, then the solutions for equations (3.15)-(3.17) exist. B y solving these equations, a 

stationary deterministic optimal policy can be obtained. 

3.3.1 Value Iteration Algorithm 

There are a number of iteration algorithms available to solve the above optimality equa

tions. Examples include the value iteration, policy iteration, and linear programming algo

rithms [46]. Value iteration is the most widely used and best understood algorithm for 

solving discounted Markov decision problems. Value iteration is also known by other 

names including successive approximations, over-relaxation, and pre-Jacobi iteration. The 

following value iteration algorithm finds a stationary deterministic optimal policy and the 

corresponding expected total cost. 
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A l g o r i t h m : 

1. Set v°(5') = 0 for each state s e S. Specify e > 0 and set n = 0 . 

2. For each s e S, compute v" + 1 (s) by: 

v 0 ) = min 
ae A 

\c(s,a) + X [T ^ V ( s ' ) P ( y | s , a ) G ( < f r ) ] 

3. If | v " + 1 — v"! < e, go to step 4. Otherwise increment n by 1 and return to Step 2. 

4. For each s e S, the stationary optimal policy 

g min I c O . a ) + Y I T v V ) W l * . « ) [ 5 (s) = ar£ 

and stop. 

There are a number of definitions for the function norm || • ||. In this thesis, the 

function norm is defined as: 

||v|| = max v(s). 
se s 

Convergence of the value iteration algorithm is ensured since the operation in Step 2 cor

responds to a contraction mapping. Thus, the function v"(^) converges in norm to v(s ) . 

In small networks, i f each node maintains perfect information of al l nodes and 

links, then the function v[i, i, T(i, D)] is the minimum expected total cost per call given 

source i and destination D. On the other hand, in large networks, the number of links of a 

path determined by the source is modeled in a probabilistic manner. In that case, the 

expression 

J^v(i,i,k)p(k\i,D) (3.18) 
k 

is the minimum expected total cost per call given source i and destination D, averaged 
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over the number of links of the optimal path. 

3.3.2 Structure of the Optimal Policy 

We now provide a condition under which the optimal policy has a control limit (or thresh

old) structure. The control limit structure states that path optimization is performed with 

certainty whenever the number of links of the current path exceeds a certain threshold. For 

convenience, we let Ay(k) = y(lc + 1) - y(k) for some function y . 

Proposi t ion 3.1: Given state (/, j, k)e S, the optimal policy 8 has a control limit struc

ture: 

and k* <k<K. 

The proof of the above proposition is shown in Proposition D.2 in Appendix D . The value 

k* is the control limit or threshold. Consider the special case where the cost functions are 

linear. That is, f(k) = Clink • k and hpo(l) = wp0 • I where C l i n k and w p 0 are positive 

constant. In this case, i f l\CUnk - wP0 > 0 , then path optimization is always performed 

when the number of links is greater than or equal to k* . A n optimal policy with threshold 

structure facilitates its implementation. For each mobile connection, the network only has 

to maintain the information of the minimum number of links to initiate path optimization 

for all anchor and target switch pairs. The decision of performing path optimization can be 

made by a table lookup. 

1 <k<k*, 

k*<k<L 
(3.19) 

when IlAf(k + m)-^iAhPO(k + m-n)p(n\i,D)>0 for all m such that p(m\i,j)*0 
n 

3.4 Implementation Aspects 

Having identified the different parameters involved in the model, we are now in a position 
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to explain the steps that need to be taken in order to implement the model. For each mobile 

connection, during its connection setup phase, the network controller assigns the cost 

functions based on the service class and the signaling load of the network. Different ser

vice classes (e.g., C B R , V B R , A B R ) with different bandwidth requirements are assigned 

different link cost functions to reflect the network resources consumed. The assigned sig

naling cost function reflects the complexity of the path optimization procedures and the 

current signaling load of the network. B y keeping the mobility profile of each user (i.e., 

the movement history and call history), the average time between inter-switch handoffs as 

well as the average duration of the connection can be estimated [81]. 

Given the input parameters (i.e., cost functions and various distributions), the value 

iteration algorithm can be used to determine the optimal policy. The optimal policy is then 

stored in a table format. Each entry of the table specifies the minimum number of links to 

initiate path optimization for a specific pair of anchor and target switches. Whenever there 

is an inter-switch handoff, the network performs a table lookup at the corresponding 

anchor and target switch entry. Path optimization is performed i f the number of links is 

greater than the threshold. 

The optimal policy table needs to be updated when there are changes in network 

topology or signaling load of the network. The update can be performed off-line; i.e., 

whenever spare processing capacity is available at the network controller. 

3.5 Model Extensions 

In the previous sections, we have considered the connection between a mobile terminal 

and a fixed endpoint. In this section we extend the above model to the connection between 

two mobile terminals and to take into the consideration of other QoS constraints. 
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3.5.1 Extension to Mobile-to-Mobile Connection 

The problem formulation for mobile-to-mobile connection is similar to that of mobile-to-

fixed connection. Consider mobile terminals 1 and 2 communicating with each other via a 

wireless A T M network. Each mobile terminal has its own movement pattern. Path exten

sion is performed when there is an inter-switch handoff, (initiated from either side), fol

lowed by path optimization i f necessary. In this formulation, the state space needs to 

include the locations of the two endpoints, as well as the information of which mobile ter

minal initiates the path extension. For each state (i, j, k, I, m) e S, i and j denote the 

locations of the anchor switch connected to mobile terminals 1 and 2, respectively; k 

denotes the number of links of the current path; / denotes the identifier of the mobile ter

minal which initiates the inter-switch handoff; and m denotes the location of the target 

switch. 

Since the movement pattern of each mobile user is different, the time between 

inter-switch handoffs for each mobile user is also different. Suppose the time between 

inter-switch handoffs for mobile terminal r , ( r e { 1 , 2 } ) , is exponentially distributed 

with rate Xr, then the time between decision epochs is also exponentially distributed with 

rate X-l+X2. 

Since the state space has changed, the cost functions and the state transition 

probability function have to be modified accordingly. A s the modification is conceptually 

similar to the functions derived in Section 3.3, the details are omitted. The optimality 

equations are 

v(s) = min 
aeA 

(3.20) 

The value iteration algorithm described in Section 3.3.1 can be used to evaluate the 

expected total cost and the optimal policy. The conditions for the optimal policy with a 
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threshold structure can also be derived. 

3.5.2 Extension to QoS Constraints 

In Sections 3.2 and 3.3, path optimization is triggered based on the number of links of the 

current path. In general, a mobile connection can have multiple QoS constraints such as 

bandwidth, delay, delay jitter, etc. Suppose the connection has to maintain a delay con

straint. In this case path optimization is performed with certainty i f the end-to-end delay 

after path extension exceeds the delay constraint, while path optimization may be per

formed i f the delay after path extension is still below the constraint. 

To incorporate the delay constraint into the model, the state space needs to be 

extended to include the end-to-end delay of the current path. We assume the endTto-end 

delay of a path is the sum of the delay on each link of the path. The delay information on 

each link can be obtained from the network by measurement. Let £ denote the end-to-end 

delay of the current path and *F be the delay constraint. Let <£>(/, j) denote the delay of 

the path between the two endpoints / and j. The optimality equations described in Section 

3.3 have to include the following constraint 

£ + O ( U ) < *F (3.21) 

where i and j denote the locations of target and anchor switches respectively. Note that 

the value iteration algorithm described in Section 3.3.1 cannot be used to solve the opti

mality equations with constraints. However, the optimality equations can be transformed 

into primal or dual linear programs, which can then be solved by the simplex algorithm. 

Interested readers are referred to [46] for details of the transformation. 

In summary, multiple QoS constraints can be incorporated into the model by 

extending the state space and including the constraint equations into the set of optimality 

equations. The expected total cost and the optimal policy can be obtained by transforming 
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the model into a linear programming model. 

3.6 Numerical Results and Discussions 

In this section, we compare the performance of the optimal policy with four heuristics. For 

the first heuristic, path optimization is performed after each path extension. We denote this 

policy as "always perform path optimization" or 8 . For the second heuristic, no path 

optimization is performed during the connection lifetime. We denote this policy as "never 

perform PO" or bNP°. For the third heuristic, periodic path optimization is considered. 

The use of periodic path optimization has been proposed within the A T M Forum [8]. For 

periodic path optimization, after every T time units, the network determines i f the connec

tion requires path optimization. Suppose the current time is r, path optimization is per

formed i f an inter-switch handoff has occurred during the time interval (t- Y, t). In this 

section, we assume that T is equal to the average time between inter-switch handoffs. For 

the last heuristic, we consider the Bernoulli path optimization scheme which is proposed 

and analyzed in the previous chapter. 

The performance metrics are the expected total cost per call and the expected 

number of path optimizations per call. The expected total cost per ca l l is defined in 

Section 3.1. The expected number of path optimizations per cal l given pol icy 71 with 

initial state s is: 

^n = 0 J 

where 1 [ ] denotes the indicator function. That is, l[a = 1] is equal to one i f a = 1 and 

zero otherwise. 

(3.22) 
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3.6.1 Simulation Model 

In the simulation model, a wireless A T M network is modeled as a non-hierarchical ran

dom graph, similar to the one proposed in Chapter 2. Based on network model, we obtain 

the adjacency matrix of the network as well as the number of links of the shortest path 

between any two nodes. We assume the number of links of the shortest path estimated by 

the source is deterministic. The call duration is assumed to be exponential. The time 

between inter-switch handoffs follows a Gamma distribution. 

For each source and destination pair, the value iteration algorithm described in 

Section 3.3.1 is used to determine the minimum expected total cost and the optimal policy. 

F r o m the optimal policy, the value iteration algorithm is used again to calculate the 

expected number of path optimizations. The m i n i m u m expected total cost and the 

expected number of path optimizations are then averaged over all possible source and 

destination pairs. We repeat this for 100 random graphs and determine the averages. 

For the two heuristics bP° and b N P O , the expected total cost and the expected 

number of path optimizations for each source and destination pair are also determined by 

the value iteration algorithm. These values are then averaged over all possible source and 

destination pairs. A g a i n , we repeat this for 100 random graphs and determine the 

averages. 

For the periodic and Bernoulli path optimization policies, simulation must be used. 

Given the network topology, a call is generated with two nodes chosen as the source and 

destination. Dijskstra's algorithm is used to compute the shortest path between these two 

nodes. The destination node is assumed to be stationary. The source node becomes the 

anchor switch of the mobile connection. During each inter-switch handoff, the target 

switch is restricted to be one of the neighboring switches of the current anchor switch. 

Path extension is used to extend the connection from the anchor switch to the target 
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switch. Path optimization is performed periodically for the periodic scheme. For the 

Bernoul l i scheme, its operating point, denoted as p , is determined from equations 

(2.12) and (2.13). After each path extension, path opt imizat ion is performed wi th 

p robabi l i ty popt. For each source and destination pair, 1000 s imula t ion runs are 

performed. The average total cost and the average number of path optimizations per call 

are determined. We repeat this for 100 random graphs and determine the averages. 

A l l the cost funct ions are assumed to be l inear . The l i n k cost func t ion 

f(k) = Clink • k where Clink > 0 . The term Clink captures the amount of resources (e.g., 

bandwidth) used by the connection. Different traffic classes can be assigned different 

values for C l i n k . The variable cost function for path extension hPE(m) = wPE • m 

where wpE > 0 and m denotes the number of links increased during path extension. The 

variable cost function for path optimization hpo(l) = wP0 • I where wp0 > 0 and / 

denotes the number of links reduced during path optimization. For the cost and mobility 

parameters, we assume that Clink = 0.1, CPE = 1, CP0 = 5 , wPE = 0.5, wP0 = 0.5, 

X = 0.1 , and p, = 0.03. 

3.6.2 Results 

Figure 3.2 shows the expected total cost versus the link cost rate C l i n k . The optimal policy 

gives the lowest expected total cost compared to the other four heuristics. When the link 

cost rate is small, there is no incentive to perform path optimization. The operating point, 

p t , for the Bernoulli policy is close to zero. The optimal policy is to perform path exten

sion only. Thus, results of the Bernoulli, 8NP0, and optimal policies are the same. When 

the link cost rate increases, the optimal policy for some source and destination pairs is to 

perform path optimization. Results of the optimal, Bernoulli, and bNP° policies diverge, 

PO 
while the results of the Bernoulli and 5 policies begin to converge. 

Figure 3.3 shows the expected number of path optimizations versus the l ink cost 
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rate Clink. Since no path optimization is performed for the S"ru policy, the expected 

number of path optimizations is always equal to zero. Note that since both the call termi

nation rate and the inter-switch handoff rate are constant, in this case the expected number 

PO 

of inter-switch handoffs is also a constant. Thus, results for the periodic and 8 policies 

are independent of the link cost rate. For the Bernoulli and optimal policies, when the link 

cost rate is small, there is no incentive to perform path optimization. The expected number 

of path optimizations is small. A s the link cost rate increases, some source and destination 

pairs perform path optimization after inter-switch handoff. Thus, there is an increase in the 

number of path optimizations performed. 

Figure 3.4 shows the expected total cost versus the inter-switch handoff rate A,. 

The expected total cost increases as the inter-switch handoff rate increases. When X is 

small (i.e., the average time between inter-switch handoffs is larger than the average call 

duration), an inter-switch handoff is unlikely to occur during the connection lifetime. 

Thus, the results between the five policies are close. A s the inter-switch handoff rate 
PO 

increases, these five curves begin to diverge. The 8 policy gives the highest expected 

total cost, which is followed by the periodic, dNP0, and Bernoulli policies. Results of the 

& N P 0 and Bernoulli policies are very close. Although we can conclude that the expected 

total cost increases in X and the optimal policy always gives the minimum expected total 

cost, the performance comparisons between the other four heuristics differ when another 
PO 

set of parameters are chosen. That is, the 8 policy can sometimes have a better perfor

mance than the periodic and b N P 0 policies 

Figure 3.5 shows the expected number of path optimizations versus the inter-

switch handoff rate X. The expected number of path optimizations increases as X 

increases. Results of the Bernoulli and optimal policies are quite close. Due to the thresh

old structure of the optimal policy, path optimization is performed only after a certain 
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number of inter-switch handoffs. Thus, the expected number of path optimizations for the 

PO 

optimal policy is smaller than the periodic and 6 policies. 

Figure 3.6 shows the expected total cost versus the call termination rate \i. The 

expected total cost decreases as the call termination rate increases, which is intuitive since 

the link cost is accrued continuously during the call lifetime. When p. is large (i.e., the call 

duration is short), all the connections experience a small number of inter-switch handoffs. 

Thus, the results of all these policies are close. When the cal l duration increases, the 

results begin to diverge. We can see a significant cost difference between the optimal 

policy and the other heuristics when the call duration is long (i.e., p. is small). 

Figure 3.7 shows the expected number of path optimizations versus the ca l l 

termination rate p.. The expected number of path optimizations decreases as \i increases. 

Due to the threshold structure of the optimal policy, path optimization is performed only 

after a certain number of path extensions. Thus, the expected number of path optimiza-
po 

tions performed for the optimal policy is much smaller than the periodic and 8 policies. 

In the previous results, we assume the time between inter-switch handoffs follows 

a Gamma distribution. We also consider exponential and hyper-exponential distributions 

for the time between inter-switch handoff. For a fair comparison, the average time 

between inter-switch handoffs is the same for various distributions. Figure 3.8 and Figure 

3.9 show the min imum expected total cost of the optimal pol icy versus X and CUnk, 

respectively. These results indicate that the expected total cost is relatively insensitive to 

the distributions of the time between inter-switch handoffs. 

We also perform the sensitivity analysis for the optimal policy with respect to the 

variation of the average call duration and the average time between inter-switch handoffs. 

The procedures for the sensitivity analysis are similar to those described in Section 2.5 in 

Chapter 2. The results for different \l are shown in Figure 3.10. When the average call 
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duration is over-estimated by more than -40 %, the cost ratio is almost equal to one, which 

implies that the optimal policy is insensitive to the change of the average ca l l duration. 

However, within the (-90, -50) percentage range, there is an increase in the cost ratio. 

The cost ratio can be as high as 1.53 for p. = 0.02. These results imply that i f there is 

uncertainty in estimating the average call duration, it may be better to over-estimate the 

value in order to reduce the cost ratio difference. 

Figure 3.11 shows the cost ratio versus the percentage change in average time 

between inter-switch handoffs for different X. Within the percentage range of interest, the 

cost ratio is always less than 1.07 (i.e., 7%). Within the (-50, 100) percentage range, the 

cost ratio is less than 1.01 (i.e., 1%). These results imply that the optimal pol icy is 

relatively insensitive to the change of the average time between inter-switch handoffs. 

In this chapter, the wireless A T M network is modeled as a non-hierarchical 

random graph. One question that arises is whether the results w i l l differ i f some other 

network topologies are used. The answer is affirmative. The relative performance between 

the four heuristics w i l l change i f another network topology is used. This is essentially the 

same as changing the values in the functions p(m\i, j) or T(i, j). However, the optimal 

policy wi l l always give the lowest expected total cost compared to the other heuristics. 

One issue may arise as to the mapping of the network resources ut i l ized by a 

connection into appropriate cost functions. That issue is beyond the scope of our work. 

Interested readers can refer to [7] or [17] for details. 

3.7 Summary 

In this chapter, we addressed the issue of when to initiate path optimization for the two-

phase handoff protocol. The path optimization problem is formulated as a semi-Markov 

decision process. Based on current state information, the network decides whether to per

form path optimization after path extension. The time between inter-switch handoff fol-
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lows a general distribution and can depend on the location of the anchor switch. Although 

in this chapter, the network architecture is assumed to be ATM-based, the proposed model 

is also applicable for any connection-oriented mobile network archiectures. In addition in 

the future IP network infrastructure which provides QoS, our model may also be used to 

ensure a continuous flow of the multimedia applications in the wireless domain. 

We presented the value iteration algorithm which solves the optimality equations. 

A stationary deterministic optimal pol icy is obtained. Under certain conditions, the 

optimal policy has a threshold structure. That is, path optimization is always performed 

when the number of links of the path is greater than a certain threshold. The threshold 

structure of the optimal policy facilitates the implementation. When inter-switch handoff 

occurs, the decision of performing path optimization can be made by a table lookup. 

The performance of the optimal policy is compared with four heuristics, namely, 

"always perform path optimization", "never perform path optimization", "periodic" and 

"Bernoull i" path optimizations. Simulation results indicate that the optimal policy gives a 

lower expected cost per call than the other four heuristics. These results imply that by 

using the optimal policy, the mobile connection maintains a good balance between the 

network resources ut i l ized and the signaling load incurred on the network during its 

connection lifetime. We studied the effect of various distributions for the time between 

inter-switch handoffs on the expected total cost. Results indicate that the relative change in 

the expected total cost is not significant. We also performed the sensitivity analysis for the 

optimal policy with respect to the variation of the average call duration and the average 

time between inter-switch handoffs. Results indicate that the optimal policy is relatively 

insensitive to the change of the average time between inter-switch handoffs. If there is 

uncertainty in estimating the average call duration, it may be better to over-estimate the 

value in order to reduce the cost ratio difference. 
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Figure 3.2 Expected total cost versus link cost rate Clink. 
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Figure 3.3 Expected number of path optimizations versus link cost rate Cx 
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Figure 3.4 Expected total cost versus inter-switch handoff rate X. 

Figure 3.5 Expected number of path optimizations versus inter-switch handoff rate A, 
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Figure 3.6 Expected total cost versus call termination rate p . 
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Figure 3.7 Expected number of path optimizations versus call termination rate 
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Figure 3.8 Min imum expected total cost of the optimal policy versus inter-switch 
handoff rate X for various distributions. 
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Figure 3.9 Min imum expected total cost versus link cost rate Clink for various inter-

switch handoff rate distributions. 
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Figure 3.10 Variation of the average call termination time. 
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Figure 3.11 Variation of the average time between inter-switch handoffs. 



"There, is always another way to look\at the same problem." 

%ichardcP. Jeynman, 1918-1988. 

Chapter 4 Distance-based Location Update 

4.1 Introduction 

In this chapter, we propose a stochastic model to analyze the distance-based location 

update algorithm [77]. The location tracking problem is formulated as a semi-Markov 

decision process [46]. There is a cost function associated with location update and another 

cost function associated with terminal paging. The objective is to determine the optimal 

policy so as to minimize the expected total cost between call arrivals. Unlike other models 

proposed in the literature, our model eliminates some of the unrealistic assumptions com

monly used. Distinct features of our model include: 

1. Cell residence time can follow general distributions: This captures the fact that the 

mobile user may spend more time at certain cell locations (e.g., home or office) than 

some other locations. In addition, various distributions can be used to model different 

cell sizes (e.g., macrocell, microcell, or picocell). The average residence time in each 

cell can be different. The i.i.d. exponential or geometric cell residence time assump

tion can be relaxed. 

2. Applicable to arbitrary cell topologies: This feature captures the fact that the num

ber of neighboring base stations at different locations may vary in real life. Some base 

stations may only have two neighboring base stations while others can have as many as 

six. Thus, our model is not restricted to structured cell configuration such as mesh or 

hexagonal. 

3. Markovian movement patterns: The probability that the mobile user moves to a par-

75 
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Figure 4.1 Timing diagram. 

ticular neighboring cell can depend on the location of the current cell or a list of cells 

recently visited. The assumption of symmetric random walk movement pattern can be 

relaxed. 

The structure of this chapter is as follows: In Section 4.2, we describe the model 

formulation. In Section 4.3, we derive some analytical results for the distance-based 

algorithm under a given cell residence time distribution. Numerical results are presented in 

Section 4.4. A summary is given in Section 4.5. The derivation of the optimality equations 

is shown in Appendix D . In the remainder of this chapter, we use the terms "mobile user" 

and "mobile terminal" interchangeably. 

4.2 Model Formulation 

The mobile terminal has to make a decision whenever it crosses a cell boundary or a cer

tain time has elapsed. Those time instants are called decision epochs. Referring to Figure 

4.1, the sequence G 0 , o t , . . . represents the times of successive decision epochs. Since the 

network must track the user's location perfectly during a call, the user's location is known 

to the network when a call terminates. Thus, the time interval requiring mobility tracking 

is between the termination of the last call and the arrival of the next one. In Figure 4.1, 

c 0 = 0 denotes the last call termination time and the random variable T represents the 

arrival time of the next call. 

A t each decision epoch, the mobile terminal has to decide whether to update its 
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location or not. The action set A = {0, 1} , where " 1 " represents the action of performing 

location update and "0" represents the null action of no intervention. The random variable 

Yn is used to denote the action chosen at decision epoch n. 

The mobile terminal chooses an action based on its current state information. The 

state informat ion can include: the number of cel ls crossings since the last update 

(movement-based), the cell-distance between the current location and where the previous 

update was performed (distance-based), the velocity of the mobile terminal, or some other 

criteria. The random variable Xn is used to denote the state at decision epoch n. 

Two cost functions are introduced to account for the network resources used for 

location update and terminal paging. The location update cost reflects the consumption of 

radio bandwidth and battery power, as wel l as the update processing incurred on the 

database. The paging cost reflects the number of cells being paged and the number of 

search iterations performed. 

The function f(Xn, Yn) denotes the update cost at decision epoch n, given current 

state Xn and action Yn chosen. Thus, f(Xn, 1) represents the cost incurred, given 

location update is performed at decision epoch n with state Xn. On the other hand, we 

assume the cost is zero for no updating, i.e., f(Xn, 0) = 0 . 

For the paging cost function, referring to Figure 4.1, let l(T) denote the last 

decision epoch before the next call arrival. The cost function hiX^) represents the cost 

incurred on terminal paging. We assume that the paging strategy follows the shortest-

distance-first order. That is, when a paging event occurs, the search is conducted first at the 

user's last reported cell . If the mobile is not found there, then the search is conducted in 

increasing distance order from the last reported ce l l , unt i l the user is located. The 

maximum paging delay corresponds to the maximum number of search iterations allowed. 

A t each search iteration, a set of cells is paged simultaneously. In this model, different 
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paging delay constraints are modeled by using different paging cost functions. 

A decision rule prescribes a procedure for action selection in each state at a 

specif ied dec i s ion epoch. De te rmin i s t i c M a r k o v i a n dec i s ion rules are functions 

8,: S —> A, which specify the action choice when the system occupies state s at decision 

epoch t < T. A policy n = (8, , 8 2 , ...) is a sequence of decision rule to be used at al l 

decision epochs. 

Let vK(s) denote the expected total cost between call arrivals given policy n is 

used with initial state 5 . It is the sum of the location update and paging cost. Based on the 

above notations, 

As) = En

sl X /(*„ , Yn) + h(Xl(T)) (4.1) 
U = o J 

where denotes the expectation with respect to policy n and initial state s . In the above 

expression, the first term corresponds to the lump sum portion of the location update cost. 

The second term corresponds to the paging cost incurred upon a call arrival. 

Let G{t\Xn, Yn) denote the cumulative distribution function of the time between 

decision epochs n and n + 1, given current state Xn and action Yn chosen. The time 

between decision epochs corresponds to the cell residence time (also known as the cell 

dwell time). In our formulation, the cell residence time follows a general distribution that 

can depend on the location of the cell. This captures the fact that a mobile user may spend 

more time at certain cell locations than the others. In addition, different cell sizes (e.g., 

macrocell, microcell, picocell) can have different cell residence time distributions. Thus, 

the usual i . i .d. exponential cell residence time assumption can be relaxed. 

If the time between call arrivals at each mobile terminal is exponentially distrib

uted with mean l/X, then as shown in Appendix D , equation (4.1) can be written as: 
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v\s) = A £ e-X%(Xn, Yn) (4.2) 

where 

c(Xn, Yn) = f(Xt 
Yn) + h(Xn)f(\-e-Xx)G(dx\Xn,Yn). (4.3) 

The cost function c(Xn, Yn) can be interpreted as the effective cost incurred at decision 

epoch n, given the current state Xn and that action Yn is chosen. 

A policy is said to be stationary i f 5, = 8 for all t. A stationary policy has the 

form 7t = (8, 8, . . . ) ; for convenience we denote it by 8. For a stationary po l i cy 8, 

equation (4.2) can be written as 

where P[j\s, 8(s)] denotes the transition probability that the next state is ;', given the cur

rent state is s and action 8(s) is chosen. For a proof of this fact, see Proposition D . l in 

Appendix D . Our objective is to determine an optimal stationary deterministic policy 8 

which minimizes (4.4). Note that for Markovian movement pattern, correlations between 

the directions of successive moves of the mobile user can also be incorporated i f the state 

includes a history of the cells visited. 

Since different location update algorithms correspond to maintaining different 

states, in the remainder of this chapter, we focus on the analysis of the distance-based 

location update algorithm subject to various paging delay constraints, cell residence time 

distributions, and network topologies. 

(4.4) 

* 
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-2 -1 0 1 2 

Figure 4.2 One-dimensional linear model. 

4.3 Distance-based Location Update Algorithm 

In this section, we begin by analyzing the distance-based algorithm with a given cell resi

dence time distribution G{t) for all cells and a simple linear cell configuration. The value 

iteration algorithm is presented to evaluate the expected total cost and the optimal policy. 

The conditions under which the optimal policy has a threshold structure are given. These 

results are then extended to the hexagonal cell configuration. After that, we analyze the 

distance-based algorithm under arbitrary cell topology and Markovian movement patterns, 

and describe the implementation based on a simple table lookup. 

4.3.1 Linear Cell Configuration 

We assume that the mobile user moves according to a symmetric one-dimensional random 

walk (see Figure 4.2). That is, when the mobile user moves to a neighboring cell , the prob

ability that the user moves to the left (or right) is equal to 0.5. The state 

X(t) e {0, ± 1 , ±2 , ...} of the mobile terminal at time t refers to the coordinates of the 

current position of the user relative to the position of the last update. For / > 0 , X(t) = i 

denotes the user being i units to the right at time t, and vice versa. The state X(t) = 0 

denotes the user staying within the cell in which the mobile terminal performed the last 

update. 

Whenever the mobile terminal crosses a cell boundary, it makes a decision whether 

or not to perform location update. Let S(X(r) ) denote the action chosen at state X(t). If 

8(X(f)) = 0 , then X(t+) = X(t). I f 8(X(0) = 1, then X(t+) = 0 , where X(t+) 

denotes the user's location immediately after the decision. 
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The cost for location update is assumed to be constant. That is, 

f(X(t),a) = 
a = 1. 

a = 0 
(4.5) 

The update cost represents the expenditure of radio bandwidth and processing at the data

base. 

If a call arrives at time t, the paging cost incurred is given by h(X(t)). The form 

of the paging cost function is based on the assumption that the network starts its search for 

the user from the cell in which the mobile terminal last updated its location (i.e., shortest-

distance-first). 

Since the network must track the user's location precisely during a call, we assume 

the user's locat ion is known to the network when a ca l l ends. Start ing from state 

X(0) = 0 , we devise a distance-based location update pol icy which minimizes the 

expected sum of the location update costs and the paging cost of the next call. 

We now introduce the optimality equations and investigate their properties. For 

simplicity, we denote the position X(t) by i. Let v(i) denote the minimum expected total 

cost between call arrivals given state / . The optimality equations are given by: 

The first term in (4.6) denotes the expected total cost i f no update is performed at 

state i, whi le the second term denotes the expected total cost i f locat ion update is 

performed at state / . For state i = 0 , the minimum is achieved by the first term so that 

(4.6) 

where i = 0, ± 1 , ± 2 , . . . , and K = e G(dx). 
o 
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8 (0) = 0 and 

v(0) = (\-K)h(0) + | [ v ( l ) + v ( - l ) ] . (4.7) 

For ( V O , the optimal policy 8 (i) is given by: 

r o , v(i) < cLU + v(0) 
8 (i) = ^ ( 4 - 8 ) 

[1 , v(i) = CLU + v(0). 

There are a number of iteration algorithms available to solve the opt imali ty 

equations. The following value iteration algorithm finds a stationary deterministic optimal 

policy and the corresponding minimum expected total cost. 

Value Iteration Algorithm: 

1. Select v°(i), specify e > 0 and set n = 0 . 

2. For each i, compute v" + 1 (i) by 

v " + 1 ( 0 ) = (l-K)h(O) + | [ v " ( l ) + v " ( - l ) ] (4-9) 

vn + \i) = min Ul-K)h(i) + | [ v " ( / + l ) + v " ( / - l ) ] , 

CLU + vB(0)} 

(4.10) 

where i = +1, ±2 , . . . . 

3. If || v" + 1 — v"|| < e, go to step 4. Otherwise increase n by 1 and return to Step 2. 

4. For each i, choose 8 (/) = 0 i f 
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( l - ^ ( 0 + | [ v B ( i + l ) + v " ( / - l ) ] < CLU + vn(0). (4.11) 

Otherwise, choose 8 ( 0 = 1. 

5. Stop. 

We now provide a condition under which the optimal policy has a control limit (or 

threshold) structure. The control l imi t structure simply states that location update is 

performed with certainty whenever the distance exceeds a certain threshold. 

Proposi t ion 4.1: If the paging cost function h(i) is nondecreasing in i 

for i < 0 , then the optimal policy has the control limit structure 

= | 0 ' u<i<'» 
[ 1, otherwise 

where IL<Q<IJJ. We allow the values IL = - ° ° and 1^ = ° ° , which correspond to the 

policy that location update is never performed. If h(i) is symmetric, that is h(i) = h(-i) 

for all i > 0 , then IL = - I V . 

Proof: Let v°(j) = 0 for all i in the value iteration algorithm. B y using induction 

in n, it is clear that for each n, v" is nondecreasing in i for / > 0 and nonincreasing in i 

for i < 0 . Since v" —»v, the optimal expected total cost v is also nondecreasing in i for 

i > 0 and nonincreasing in i for i < 0 . From (4.8), the optimal policy must have a control 

limit structure. • 

Let Cp denote the paging cost per cell. We now consider the scenario where h(i) 

is symmetric and unbounded, such as 

h(i) = CP-[2\i\ + 1] . (4.13) 

for i > 0 and in -i 

(4.12) 
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In this case, the paging cost is proportional to the distance from the user's last known loca

tion. Since the paging cost function and the random walk model are both symmetric, we 

can deduce that v must also be symmetric in i. Thus, the value iteration algorithm only 

needs to consider non-negative values of i. 

It is necessary to limit the range of i in order to obtain a practical value iteration 

algorithm. We assume the existence of an upper bound v(0) for v (0 ) , and let Imax be the 

minimal value of i such that 

(l-K)h(i) > CLU + v(0) > CLU + v(0) 

for all | i | > Imax. The existence of a finite Imax is guaranteed for h such as (4.13), since 

(1 - K)h(i) - » o o as i ' - » o o . From (4.6)-(4.8), we obtain v(i') = CLU + v(Q) and 

5(z) = 1 for \i\>Imax. Therefore in the value iteration algorithm, we only consider 

vn(i) for \i\ < Imaxmd set 

vn + \-Imax) = v" + \ l m a x ) = CLU + vn(0) 

for all n. 

To obtain an upper bound v (0 ) , we consider the following policy: 

5 ( 0 = i . , 1421 

in which the mobile terminal updates its position whenever it moves to another cell . We 

take the expected cost at state 0 of this policy as our upper bound of v (0 ) . Thus, 

v(0) = (\-K)h{Q) + | [ 2 C L f / + 2v(0)] 
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Figure 4.3 Hexagonal cell configuration. 

In summary, given a general ce l l residence time distr ibut ion, the m i n i m u m 

expected total cost of updating and paging as well as the optimal policy can be determined 

by the value iteration algorithm. If the paging cost function is nondecreasing, the optimal 

policy has a threshold structure. Results in this section can be considered as an extension 

of [38] in which the cel l residence time is restricted to be geometric, while our model 

allows a general cell residence time distribution. 

4.3.2 Hexagonal Cell Configuration 

We now extend the results in the previous section to the symmetric two-dimensional ran

dom walk model. A n infinite two-dimensional hexagonal cell configuration is considered 

(see Figure 4.3). The probability that a user moves to each neighboring cell is equal to 

1 /6 . The cell residence time is assumed to be i.i .d. with a given cumulative distribution 

G(t). 

The state X(t) e {0, 1, 2, ...} of the mobi le terminal at time f refers to the 
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coordinates of the current position of the user relative to the most recent update position. 

The state X(t) = 0 denotes the user staying within the cel l where the last update was 

performed. The state X(t) = i denotes the user being located in one of those cells which 

is i units away from the last update location. 

The cost for each location update is C L U . If a call arrives at time t, the paging cost 

incurred is given by h(X(t)). For simplicity, we denote the two-dimensional position 

X(t) by i. The optimality equations for the minimum expected total cost between call 

arrivals are given by: 

v(0) = (l-K)h(O) + Kv(l). (4.14) 

v(i) = mm^(\-K)h(i) + ̂ Q - l j v ( i - l ) + ^v(i) + Q + I)v(i+1) 

CLU + (l-K)h(O) + Kv(l)} 

(4.15) 

where / = 1 ,2 ,3 , . . . and K = \ e G(dx). 
Jo 

The first term in (4.15) denotes the expected total cost i f no update is performed at 

state i, whi le the second term denotes the expected total cost i f location update is 

performed at state i. 
* 

If state i = 0 , the optimal policy 8 (0) = 0 . For state i > 1, the optimal policy 
* 

8 (0 is given by 

r o , v(o < cLU + V(0) 
8 ( 0 = \ (4.16) 1 1, v(i) = CLU + v(0). 

The value iteration algorithm in the previous section can be used to determine the 

optimal policy and the minimum expected total cost. We only need to replace equations 

(4.9) and (4.10) by 
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n + 1 (0) = (l-K)h(O) + Kv"(\). (4.17) v 

(4.18) 

where i = 1, 2, 3, A n d replace equation (4.11) by: 

(4.19) 

Simi lar to the linear cel l configuration, the optimal pol icy in a hexagonal cel l 

configuration also has a threshold structure i f h(i) is a non-decreasing function. In that 

case, 

where / denotes the distance threshold. Interested readers can refer to [59] for a proof of 

this fact. 

In summary, for a hexagonal cell configuration, under the assumption of a given 

general cell residence time distribution and random walk movement pattern, the minimum 

expected total cost of updating and paging as well as the optimal policy can be determined 

by the value iteration algorithm. Results in this section can be considered as an extension 

of [27]. The key difference between our results and those in [27] is that we consider 

mobility tracking between calls and do not make the assumption that the user's location 

evolves to a steady-state by the time the next cal l arrives. In addition, our model can 

i < I 

i > I. 
(4.20) 
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analyze any given cell residence time distribution where the model in [27] is restricted to 

the exponential distribution. 

4.3.3 Arbitrary Cell Topology 

Although the model formulations of the distance-based algorithm in the previous sections 

give us some insight on the structure of the optimal policy and allow us to extend the work 

reported in [38] and [27], they are not practical for implementation simply because (1) it is 

difficult to keep track of the distance between two cells, and (2) the analysis are still under 

certain unrealistic assumptions (e.g., random walk movement pattern). To implement the 

distance-based algorithm efficiently, we propose that: "the mobile terminal maintains the 

information of the identifiers of the current cell and the cell that performed the last update. 

Whenever the mobile terminal crosses a cell boundary, the decision of location update is 

made by a simple table lookup." This model is formally described below. 

Let (i, j) denote the state, where i represents the identifier of the current cell that 

the mobile terminal is residing, and j represents the identifier of the cell in which the 

mobile terminal performed its last update. 

For a particular mobile user, different cel l residence time distributions can be 

assigned to different cell locations. The average residence time in each cell can be differ

ent. This is achieved by letting G(t\i) denote the cumulative distribution function of the 

cell residence time, given the identifier of the current cell is i. 

For the Markovian movement pattern in an arbitrary cell topology, we let P(k\i) 

denote the probabil i ty that the mobile user moves to neighboring ce l l k in the next 

decision epoch, given the current cell identifier is / . This captures the correlations of the 

user movement between two neighboring cells. If the state information includes the identi

fiers of the recently visited cells, then a history-based mobility model for a particular user 

can be obtained. 
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The location update cost is CLU and the paging cost function is given by h(i, j). 

Let v(/, j) denote the minimum expected total cost between call arrivals given state (/, j). 

The optimality equations are given by: 

v(i,j) = min ^fQ(l-e-Xt)h(i,j)G(dt\i) + ^[f^e^' v(k, j)P(k\i)G(dt\i)^, 

(4.21) 

CLU + fQ(l-e~lt)h(i,i)G(dt\i) + ̂ ^ e ~ X t v(kJ)P(k\i)G(dt\i)^ 

where 1 < i, j < N and N denotes the number of base stations within the coverage area. 

The first term in (4.21) denotes the expected total cost i f no update is performed at state 

(i, j), while the second term denotes the expected total cost i f location update is per

formed at state (i, j). Equation (4.21) can be solved by the value iteration algorithm to 
* 

obtain the minimum expected total cost and the optimal policy 5 (/, j). Since the mobile 

terminals usually have limited processing power, the computations can be performed 

either at the base stations or the switches. 

Note that there are some differences between the distance thresholds computed in 

an arbitrary cell topology to those derived from a structured cell topology. In a structured 

cel l topology (e.g., hexagonal), the number of neighboring cells is the same for all cel l 

locations. Since the derivation of the optimal distance threshold in a structured cell config

uration is under the assumptions of symmetric random walk and i. i .d. cell residence time 

distribution, the optimal distance threshold is the same for all cell locations. A s an 

example, refer to Figure 4.3. Suppose cell "0" is the last update location and the distance 

threshold is equal to 3. Whenever the mobile terminal moves to a cel l location with 

distance threshold greater than or equal to 3, location update is performed. 

One the other hand, in an arbitrary cell topology, the number of neighboring cells 
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• Mobile's movement Cell " B " : Boundary cell 

Figure 4.4 Update boundary derived from an arbitrary cell configuration. Location update 
is performed whenever the mobile terminal moves to any cells labeled with " B " . 

is different at different cell locations. Since our proposed model allows Markovian move

ment pattern and general cell residence time distributions at different cell locations: 

1. For any cells located on the update boundary, their cell-distance measured from the 

last updated cell location may be different. 

2. Different cell locations may have different update boundary. 

A s an example, refer to Figure 4.4. The cell labeled with "0" is the cel l location 

where update was last performed. The update boundary consists of the set of cells labeled 

with " B " . Whenever the mobile terminal moves to those boundary cells, location update is 

performed. Note that some boundary cells have cell-distance equals to 2 while some have 

cell-distance equal to 3. After an update is performed in a boundary cell, that cell w i l l be 

labeled as "0" and a new set of boundary cells w i l l be chosen. 

For implementation, after each location update or a cal l termination, the mobile 

terminal needs to download the list of the update boundary cell identifiers. Whenever the 

mobile terminal moves to another cell , it compares the new cell identifier with the list of 

the update boundary cell identifiers. Location update is performed i f the new cell is one of 
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those update boundary cells. 

4.4 Numerical Results and Discussions 

We now present some numerical results for the distance-based location update algorithm. 

The performance metrics are the expected total cost and the optimal distance threshold. 

We are interested in understanding how the (1) paging delay constraints, (2) cell residence 

time distributions, (3) cell topologies, and (4) movement patterns affect the expected total 

cost and the optimal distance threshold. 

4.4.1 Paging Delay Constraints 

We consider a hexagonal cell configuration with random walk movement pattern. The cell 

residence time is assumed to be Gamma distributed with the following cumulative distri

bution function: 

K — 1 N 

G(t) = 1 - Y f K = 1 ,2 ,3 , . . . (4.22) 
n = 0 

If 1 / f t represents the mean cell residence time, then j l = p,/K. The factor K controls the 

variance of the distribution. A higher value of K gives a lower variance. In this section, we 

assume K = 2 . 

The max imum paging delay corresponds to the max imum number of search 

iterations al lowed. When there is no paging delay constraint, we assume the paging 

strategy follows the shortest-distance-first order. Let state i denote the user being located 

in one of those cells which is i units away from the last update location. The paging cost 

function is: 

h(i) = CP[3i(i+\) + l]. (4.23) 

When the maximum paging delay is equal to one, all cells within the distance 
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threshold are paged simultaneously. Let / denote the distance threshold. The paging cost 

function is: 

h(i) = 
CP[3I(I- 1)+ 1], 0 < / < 7 

o o , i>I. 
(4.24) 

When the maximum paging delay is equal to two, we assume all the cells within 

half the distance of the threshold are paged first. If the mobile terminal is not located, then 

the remaining cells within the distance threshold are paged simultaneously. For the paging 

cost function with distance threshold 1=1, 

h(i) = 
C p, i = 0 

i > 0. 
(4.25) 

For the paging cost function with distance threshold I > 1, 

+ 1 j , 0<i< 

Hi) = 

CP 3 
I -0 I 

. 2 . J _2_ 

CP[3(I- 1 )7+1] , 

- 1 

/ 
_2 

|i| >/ 

<i<I 
(4.26) 

We assume that the call arrival rate A, is 0.01 per minute, the cell crossing rate j l is 

0.1 per minute, the location update cost CLU is 10, and the paging cost per cell CP is 1. 

Figure 4.5 shows the expected total cost versus the call arrival rate A of each user 

under various delay constraints. When the call arrival rate is high, the average inter-arrival 

time is much smaller than the average cel l residence time, in which case the network 

tracks the user's location perfectly. The expected total cost decreases when the call arrival 

rate increases. The cases of "paging delay = 1" and "no paging delay constraint" provide 

the upper and lower bounds for the expected total cost, respectively. A s the maximum 
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paging delay increases, there is a reduction in the expected total cost. 

Figure 4.6 shows the optimal distance threshold versus the call arrival rate X under 

various delay constraints. The optimal distance threshold decreases as the call arrival rate 

increases. The cases of "no delay constraint" and "paging delay = 1" provide the upper 

and lower bounds for the optimal distance threshold, respectively. A s the maximum 

paging delay increases, there is an increase in the optimal distance threshold. 

Figure 4.7 shows the expected total cost versus cell crossing rate j l under various 

delay constraints. The expected total cost increases when the outgoing rate increases. 

When the cell crossing rate is high, the average cell residence time is small. In that case, 

the mobile user moves frequently which increases the need to perform location update. 

Figure 4.8 shows the optimal distance threshold versus cell crossing rate p, under 

various delay constraints. The optimal distance threshold increases when the cell crossing 

rate increases. When the cell residence time is large (i.e., cell crossing rate is small), the 

mobile terminal has a high chance to be within the last update location. A small distance 

threshold reduces the paging cost. On the other hand, when the cell residence time is small 

(i.e., cell crossing rate is large), the mobile terminal may have crossed a large number of 

cells before a call arrives. A high distance threshold reduces the update cost. 

Figure 4.9 shows the expected total cost versus the location update cost CLU under 

various delay constraints. The behavior for low and high values of location update costs is 

in accordance with intui t ion. When the update cost is low, more updates are being 

performed in order to reduce the paging cost. When the update cost increases, there is no 

incentive to perform location update. Figure 4.10 confirms the above reasoning. The 

optimal distance threshold increases as the update cost increases. 

4.4.2 Cell Residence Time Distributions 

In this section, we study the effect of the cell residence time distributions on the expected 
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total cost and the distance threshold. We assume a hexagonal cell configuration with ran

dom walk movement pattern. Three cell residence time distributions are chosen: exponen

tial, hyper-exponential, and Gamma. The Gamma distribution is stated in equation (4.22). 

For the hyper-exponential distribution, it has the following cumulative distribution func

tion: 

G(t) = 1 - [pe'^' + (1 - p)e~^\. (4.27) 

We assume p,j = 2 j l , p, 2

 = ( 2 / 3 ) j l , and p = 0.5 . We also assume that the call arrival 

rate X is 0.01 per minute, the location update cost CLU is 10, and the paging cost per cell 

CP is 1. 

Figure 4.11 shows the optimal distance threshold versus the cel l crossing rate fx 

under different cel l residence time distributions and paging delay constraints. Results 

indicate that for a given cell crossing rate fx, the values of the optimal distance threshold 

are in general the same for these cell residence time distributions. Their values only differ 

for 0.007 < fx < 0.01 with paging delay constraint equals to 1 and for 0.08 < j l < 0.09 

with no paging delay constraint. 

Figure 4.12 shows the expected total cost versus the cell crossing rate fx under 

three different cell residence time distributions and paging delay constraints. Results show 

that the expected total costs between various cell residence time distributions are quite 

close. One way to explain this is by observing equations (4.14)-(4.15). Different cel l 

residence time distributions correspond to different values of K. For example, when 

X = 0.01 a n d fx = 0.1: K e x p o n e n t i a l = 0.909, ^ h y p e , e x p o n e n t i a l = 0.911, a n d 

^ G a m m a = 0-907 . For the range of parameters that we have chosen to investigate, the 

values of K under those three cell residence time distributions are quite close. Thus, the 

expected total costs between these distributions are also quite close. These results indicate 
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that for a hexagonal cell configuration with random walk movement pattern, the effect of 

changing the cell residence time distributions is not significant. 

4.4.3 Cell Topologies 

In the previous sections, we assume a hexagonal cell configuration for the analysis. Rather 

than using a structured cell topology, in this section, we use a graph model to model the 

cellular network. In general, the interconnection of the cells can be modeled as a con

nected graph G = (N, E), where the node set N represents the set of cell or base station 

identifiers and the edge set E represents the connectivity between two neighboring cells. 

For example, referring to Figure 4.13, the node set N = {a, b, c, d, e, f, g] and the edge 

set E = {(a, b), (a, c), (b, c), (f, g)} . 

Since we are unable to obtain an actual cell topology from the public domain, we 

use a random graph model to represent the topology of a cellular network. The advantages 

of using a random graph model are: (1) the number of neighboring base stations for each 

base station can be different; and (2) only the nodes that are close together are connected. 

This models the connectivities of the neighboring base stations. The generation of a 

random graph is described in Section 2.4. In our model, we consider a coverage area that 

consists of 100 base stations with an average node degree of 4. A n example of a random 

graph model is shown in Figure 4.14. 

The cell residence time is assumed to be Gamma distributed. A symmetric random 

walk movement model is assumed. We also assume that the call arrival rate X is 0.01 per 

minute, the cell crossing rate p is 0.1 per minute, the location update cost CLU is 10, and 

the paging cost per cell Cp is 1. 

Figure 4.15 shows the relative frequency distribution of the average optimal 

distance threshold. For each last updated location, its average optimal distance threshold is 

defined as the average of all the cell-distance of the update boundary cells relative to the 
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last updated ce l l location. For illustration purpose, the optimal distance threshold is 

rounded to the closest integer. Figure 4.15 shows that for a random graph topology, 

approximately 62% of the cells have a distance threshold of 4, 25% of the cells have a 

distance threshold of 5, 10% of the cells have a distance threshold of 3, and 3% of the cells 

have a distance threshold of 6. Note that, for the same set of cost and mobility parameters, 

the optimal distance threshold derived from a hexagonal cell configuration is equal to 4. 

4.4.4 Performance Comparisons 

One question arises as to the performance gain of using (1) a random graph model with 

Markovian movement pattern as compared to (2) a hexagonal cell configuration with sym

metric random walk movement pattern. We now compare the performance between these 

two models. 

Since the mobile user usually has a destination in mind, we model this behavior by 

choosing one particular node (or cell) in the random graph as the destination. Whenever 

the mobile user leaves the current cell , it moves to a neighboring cell which is closest to 

the destination. This captures the behavior of moving towards the destination. If the 

mobile user is staying within the destination cell, after a certain period of time it w i l l move 

to one of the neighboring cells. This continues until the next call arrives. 

We now describe the procedures of comparing the distance thresholds determined 

from our model to those derived from a hexagonal cell configuration. 

1. Given the cost and mobility parameters, we first use a hexagonal cell configuration 

with symmetric random walk movement pattern to obtain the optimal distance thresh

old. This optimal distance threshold is then applied to the random graph model with 

Markovian movement pattern. 

2. The expected total cost of location update and paging between call arrivals is then 

determined. This cost is denoted as "Cost (hexagonal)". The term "hexagonal" is used 
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to remind us that the optimal distance threshold is derived from the hexagonal cell 

configuration. 

3. We also use the random graph model with the above movement pattern to determine 

the minimum expected total cost by solving the optimality equations. This cost is 

denoted as "Cost (optimal)". The term "optimal" is used to remind us that the update 

boundary corresponds to the optimal policy. 

4. The performance gain is the cost ratio which is defined as Cost (hexagonal) / Cost 

(optimal). 

The parameters used include: call arrival rate X = 0.01 per minute, the location 

update cost CLU = 10, and the paging cost per cel l Cp = 1. We assume that the cel l 

residence time follows an i.i .d. Gamma distribution with rate p . 

Figure 4.16 shows the cost ratio versus the cal l arrival rate X and the location 

update cost CLU under different cell crossing rate p . From these figures, we observe that 

the cost ratio increases when p increases or X decreases. A n d it approaches unity when X 

or C L ( / . a r e large. In Figure 4.16 (a), when the average time between call arrivals is large 

(i.e., X is small), the optimal update boundary obtained from our model gives a lower cost 

than the distance threshold derived from the hexagonal model. However, when the average 

time between call arrivals is small (i.e., X is large), the mobile user does not travel much 

before a call arrives. Thus, the distance thresholds derive from both methods give the same 

performance. In Figure 4.16 (b), the variation of the cost ratio with respect to CLU is due 

to the changes of the optimal update boundary or distance threshold for different update 

cost values. When CLU is large, there is no incentive to perform location update. The 

expected total cost only consists of the paging cost. Thus, the cost ratio approaches unity. 

These results imply that in real wireless cellular networks environments in which 

the cell topology is not structured and the user movement pattern is not random, our model 
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can provide a more accurate update boundary than that derived from a hexagonal cell 

configuration with random walk movement pattern. A n d by using a more accurate location 

update boundary, the network can maintain a better balance between the processing 

incurred due to location update and the radio bandwidth utilized for paging between call 

arrivals. 

4.4.5 Sensitivity Analysis 

We also perform sensitivity analysis for the optimal policy with respect to the variation of 

the average time between call arrivals and average cell residence time. The procedures for 

the sensitivity analysis are similar to those described in Section 2.5 in Chapter 2. 

Figure 4.17 (a) shows the cost ratio versus A ^ under different call arrival rate X 

and Figure 4.17 (b) shows the cost ratio versus A ^ under different cell crossing rate p.. 

From these figures, we observe that the cost ratio is more sensitive to the under-estimation 

of both X and \i. If the target cost ratio has to be less than 1.05 (i.e., 5% difference 

between the optimal and sub-optimal cost), then A ^ has to be greater than - 5 0 % and A ^ 

has to be greater than - 6 0 % . These results imply that if there is uncertainty in estimating 

X or p,, it may be better to over-estimate the values in order to reduce the cost ratio differ

ence. 

4.5 Summary 

In this chapter, we proposed a stochastic model to analyze the distance-based location 

update algorithms. The location tracking problem is formulated as a semi-Markov deci

sion process. Based on the current state information, the mobile terminal decides whether 

to update its location whenever it crosses a cell boundary. 

The Markovian movement pattern allows the study of a variety of mobility models. 

For example, i f the state information includes the identifiers of the recently visited cells, 
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then a history-based mobility model for a particular user can be obtained. The cell resi

dence time follows a general distribution and can depend on the location of the cel l . The 

usual i . i .d. assumption for the cell residence time distribution can be relaxed. 

For the distance-based algorithm, we showed that the optimal policy has a thresh

old structure for nondecreasing paging cost functions. We proposed an efficient scheme to 

implement the distance-based algorithm in an arbitrary cell topology. After each location 

update or a call termination, the mobile terminal needs to download the list of the update 

boundary cell identifiers corresponds to its current location. Whenever the mobile terminal 

moves to another cell , it compares the new cell identifier with the list of the update bound

ary cel l identifiers. Location update is performed i f the new cel l is one of those update 

boundary cells. 

We presented numerical results for the distance-based update algorithm in both 

hexagonal and random graph models. Results indicate that the distance threshold (or 

update boundary) computed from our proposed model has a better performance (in terms 

of a lower cost) than the distance threshold derived from a hexagonal cell configuration 

with random walk movement pattern. These results imply that by using the optimal policy, 

the network maintains a good balance between the processing incurred on location update 

and the radio bandwidth utilized for paging between call arrivals. 
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Figure 4.6 Optimal distance threshold versus call arrival rate under various delay 
constraints. 
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Figure 4.8 Optimal distance threshold versus cell crossing rate under various delay 
constraints. 
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Figure 4.9 Expected total cost versus location update cost under various delay constraints. 
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Figure 4.10 Optimal distance threshold versus location update cost under various delay 
constraints. 
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Figure 4.11 Optimal distance threshold versus cell crossing rate under various cell 
residence time distributions and delay constraints: (a) maximum paging delay constraint = 

1, (b) maximum paging delay constraint = 2, (c) no paging delay constraint. 
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Figure 4.12 Expected total cost versus cell crossing rate under various cell residence time 
distributions and paging delay constraints: (a) maximum paging delay = 1, (b) maximum 

paging delay = 2, (c) no paging delay constraint. 
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(a) The cell topology. (b) Graph model showing the 

interconnections of the cells. 

Figure 4.13 Representation of a cellular network topology by a graph model. 

Horizontal Distance 

Figure 4.14 Graph model with an average node degree of 4. The nodes represent the 
location of the base stations. A n edge between two nodes represents those two base 

stations are neighbors to each other. 
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Figure 4.15 Optimal distance threshold distribution. 

Figure 4.16 Cost ratio versus call arrival rate and location update cost under different cell 
crossing rate. 
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"Ifall, I stand stiff... 

I trudge on, Igain a little... 

Iget more eager and climb higher and 

begin to see the. xvidening horizon. 

"Every struggle is a victory." 

Helen "Keller, 1880-1968. 

Chapter 5 Conclusions 

We conclude this dissertation with a summary of our contributions and directions for 

future work. 

5.1 Summary 

This research begins with a study of inter-switch handoff in wireless A T M networks. Path 

optimization may be necessary i f the end-to-end path after connection rerouting is not 

optimal. 

• In Chapter 2, we proposed and analyzed three different path optimization schemes 

which are simple to implement. In the exponential path optimization scheme, the 

time between path optimizations is modeled as an exponentially distributed 

random variable. The periodic path optimization scheme invokes path optimization 

at periodic time intervals. In the Bernoulli scheme, path optimization is performed 

with a fixed probability after each path extension. A discrete time analytical model 

and a discrete event simulation model were proposed to compare the performance 

of these schemes by evaluating the expected total cost during a call . The analytical 

model enables a closed-form expression and optimal operating point to be 

obtained for each path optimization scheme. The analytical and simulation results 

agree with each other, corroborating the two models. Results indicate that the 

108 
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Bernoulli scheme outperforms the other two schemes by providing a lower 

expected cost per call and a lower percentage change of expected cost relative to 

the variation of the average time between inter-switch handoffs. 

• In Chapter 3, we addressed the issue of when to initiate path optimization by 

proposing a stochastic model. The path optimization problem is formulated as a 

semi-Markov decision process. Based on current state information, the network 

decides whether to perform path optimization after path extension. The time 

between inter-switch handoff follows a general distribution and can depend on the 

location of the anchor switch. We presented the value iteration algorithm which 

solves the optimality equations. A stationary deterministic optimal policy is 

obtained. Under certain conditions, the optimal policy has a threshold structure. 

That is, path optimization is always performed when the number of links of the 

path is greater than a certain threshold. The threshold structure of the optimal 

policy facilitates the implementation. When inter-switch handoff occurs, the 

decision of performing path optimization can be made by a simple table lookup. 

The performance of the optimal policy was compared with four heuristics, namely, 

"always perform path optimization", "never perform path optimization", 

"periodic", and "Bernoull i" path optimization. Simulation results indicate the 

optimal policy gives a lower expected cost per call than the other four heuristics. 

These results imply that by using the optimal policy, the mobile connection 

maintains a good balance between the network resources utilized and the signaling 

load incurred on the network during its connection lifetime. We also performed the 

sensitivity analysis for the optimal policy with respect to the variation of the 

average call duration and the average time between inter-switch handoffs. Results 

indicate that the optimal policy is relatively insensitive to the change of the average 
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time between inter-switch handoffs. If there is uncertainty in estimating the 

average call duration, it may be better to over-estimate the value in order to reduce 

the cost ratio difference. 

Another part of this thesis focused on location update in wireless cellular networks. 

Although it has been shown that the distance-based update algorithm has a better 

performance than the L A , movement, and timer based update schemes, the determination 

of the optimal distance threshold is often under certain unrealistic assumptions. 

• In Chapter 4, we proposed a stochastic model to analyze the distance-based 

location update algorithm. The location tracking problem is formulated as a semi-

Markov decision process. Based on the current state information, the mobile 

terminal decides whether to update its location whenever it crosses a cell 

boundary. The Markovian movement pattern allows the study of a variety of 

mobility models. For example, i f the state information includes the identifiers of 

the recently visited cells, then a history-based mobility model for a particular user 

can be obtained. The cell residence time follows a general distribution and can 

depend on the location of the cell. The usual i.i .d. assumption for the cell residence 

time distribution can be relaxed. For the distance-based algorithm, we showed that 

the optimal policy has a threshold structure for nondecreasing paging cost 

functions. We proposed an efficient scheme to implement the distance-based 

algorithm in an arbitrary cell topology. Each mobile terminal only has to maintain 

the information of the identifiers of the current cell and the cell that performed the 

last update. Whenever the mobile terminal crosses a cell boundary, the decision of 

location update is made by a simple table lookup. We presented numerical results 

for the distance-based update algorithm in both hexagonal and random graph 

topologies. Results indicate that the distance threshold (or update boundary) 
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computed from our proposed model has a better performance (in terms of a lower 

cost) than the distance threshold determined from the hexagonal cell configuration 

with random walk movement pattern. These results imply that by using the optimal 

policy, the network can maintain a good balance between the processing incurred 

on location update and the radio bandwidth utilized for paging between call 

arrivals. 

5.2 Further work 

In the course of the investigations reported in this thesis, a number of interesting problems 

have been discovered which merit further research. 

• Multicast Handoff: The support of multicast handoff is similar to the support of 

dynamic multicasting in which users can leave or join the multicast tree. If the 

target switch is part of the multicast tree, the handoff function can be invoked 

similar to the dynamic joint function in multicasting. If the target switch is not part 

of the multicast tree, path rerouting or path extension schemes can be still used. If 

path extension scheme is used [62], the crossover switch algorithm requires 

modification. Termination of the old subpath is required only i f there is no group 

users connected to the old subpath within the multicast tree. Although path 

extension scheme seems to be easier to implement, issues like the increase of the 

path length and the formation of loops still need to be addressed. Path optimization 

within a multicast tree may not be a simple procedure. Further work is required in 

this area. 

• State-based models: The proposed model in Chapter 4 can be used to analyze the 

movement-based and timer-based location update algorithms, and to study the 

effects of correlations between the cell residence times of adjacent cells. Our 
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proposed model can also be extended to study the location tracking algorithms in a 

wireless two-way messaging system [78], in which there is an additional holding 

cost to account for delaying the delivery of a message. Most of the models 

proposed in the literature (including the one we proposed in Chapter 4) assume the 

call arrival rate for a particular mobile user follows a Poisson distribution. Results 

in [31 ] show that it may not be the case. This points to the need for new analytical 

models for location tracking under general call arrival distributions. 

• User Profile: Several location update and paging strategies improve the network 

performance by predicting the user's location based on his velocity, probability 

distribution, etc. This information has to be stored in the user profile. A n efficient 

way to collect, store, update, and disseminate the user profile information is 

crucial. 

• Heterogeneous Networks: As part of the IMT-2000 system, the mobile terminal 

wi l l be able to communicate with several networks at the same time. Rather than 

performing location update with different networks, it is desirable i f the mobile 

terminal only needs to report its location to a single network. This network wi l l 

then disseminate the location information to other networks. A n efficient way to 

disseminate and retrieve the information remains an open issue. 
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Appendix A. Expected Cost for the Exponential Path 
Optimization Scheme 

In this appendix, we derive the expected cost per call for the exponential path optimization 

scheme. The notations used follow the analytical model described in Chapter 2. Referring 

to Figure A . l , the following notations are defined to facilitate the derivation: 

ct = c\ + c/ 

i-1 i+1 1 r 
n-l n 

Figure A . 1 Timing diagram 

• n denote the call termination time. 

• Ci denote the total cost during time interval [i, 

• c/ denote the link cost during time interval [/, i+1). 

• C / denote the signaling cost at time i . 

The cost functions C , , C- , and C- are related by the following equation: 

time 

Ci = c/+c/ (A.1) 

Two indicator functions are defined: 

j 1, i f path extension occurs at time i , 
1 10, otherwise. 

(A.2) 

[a, b) denote the interval between a and b that includes a but not b. 

122' 
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[ 1, i f path optimization occurs at time i , 
I i = \ ~ . (A.3) 

0, otherwise. 

Since at each time interval, path extension and path optimization are modeled as Bernoulli 

processes with probabilities A and v , respectively, we have: 

£ [ / • ] = A and £ [ / , ] = v . (A.4) 

For the initial conditions, i.e., at i = 0 , we assume: 

C0

S = 0 • and CQ

l = LClink. (A.5) 

Their expected values are: 

E[CQ

S] = 0 and E[C0

l] = LClink . (A.6) 

For the signaling cost due to mobility at time i: 

C- = IfpE + IiCpo i>\ . (A.7) 

Taking the expectation: 

E[Ct

s] = 7iCPE + vCP0 i>\ . (A.8) 

For the link cost between time interval [i, i+1): 

Cli = +IiHClink)(l-Ii) + LCnJi i*l • (A.9) 

Taking the expectation, we have: 
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£ [ C / ] = (l-v)E[Ci

l_l] + [(i-v)XH + vL]Clink. (A.10) 

For i > 1, it can be proved by mathematical induction that: 

£ [ C / ] = ( l - v ) I L C / . n f c + [ l + ( l - v ) + ... + ( l - v ) i _ 1 ] M ( A . l l ) 

where M = (1 - v)\HClink + vLClink . 

Equation ( A . l 1) can also be written as: 

E[C!] = ( l - v ) i L C l i n k +

l {l V ) M / > 0 (A.12) 

The expected cost of the call when using the exponential path optimization scheme is: 

E[Cexponential ~ E<E 

n = 1 

rn- 1 -
n 

-i = 0 -

(A. 13) 

• M - l 

1E 

n = 1 

7V = n 
= 0 

1 

Z ( c / + c/) 

P(N = n) 

N = n \P(N = n) 

•i = 0 

The expected signaling cost of the call: 
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oo p i - 1 

X ( C , ' | / V = n) P(N = n) 
n = 1 U = 0 

oo n - 1 

n = 2 i = 1 (A.14) 

= aCP£ + v C P O ) X ( » - ! ) ( ! - H ) " V 
n = 2 

( i - n ) 
I1 

( A C P £ + v C P 0 ) . 

The expected link cost of the call: 

71-1 

X (c/ ^ = ») 
n = 1 U = 0 

rn-l 

F(7V = n) 

= X X ^ 1 - ^ 1 ^ + 
l - ( l - v ) ' 

n = 1 = 0 

- X I ^T< ~LClink + 

w = 1 

h 
V 

W l - ( l - V ) 
V , 2 

M ^P(7V = n) 

l i n k p [ l - ( l - p ) ( l - v ) ] l i n k ' 

(A.15) 

Substituting equations (A.14) and (A.15) into equation (A. 13), we have: 

E[C exponential ] = r + Ml-M-)( l -v)# r 

" n * p [ l - ( l - p ) ( l - v ) ] 

0 - ^ ( A C P £ + v C P O ) . 
P 

(A. 16) 



Appendix B. Expected Cost for the Periodic Path 
Optimization Scheme 

In this appendix, we derive the expected cost per call for the periodic path optimization 

scheme. The notations and definitions used follow those defined in Chapter 2 and Appen

dix A . In addition, we let k denote the period to invoke path optimization. The value of k is 

a positive integer and is measured in time interval as defined in Chapter 2. A n indicator 

function, which models the time to perform periodic path optimization, is defined as: 

_ | 1, i f i mod k = 0, 

' [ 0, otherwise. 

Thus, / • is equal to 1 whenever time / is a multiple of k. 

For the signaling cost due to mobility at time i: 

C- = ItCpE+IiCpo i>l. (B.2) 

Taking the expectation: 

E[Ct

s] = XCpE+TiCpo i>\. (B.3) 

For the link cost between time interval [i, 

C\ = (c/_ j + liHCUnk){\ -Tt) + TtLClink. (B.4) 

Taking the expectation: 

E[C!] = (l-T^EiC^^ + Kl-T^XH + T^Cn^. (B.5) 

Since E[CQ

l] = LC[ink , equation (B.5) can also be written as: 
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£ [ C / ] = LClink + XHClink(i mod k) i>0. (B.6) 

The expected cost of the^all is: 

E\-C periodic^ = X E 

n = \ U=0 

N = n P(N = n) (B.7) 

The expected signaling cost of the call: 

n = 1 

P(N = n) 
m-l I 

X (C / | /V = n) 
U = o 

oo n - 1 

n = 2 ( = 0 n - 1 

= ^ c P £ x i n p ( N =")] + c ™ X X Tipw = ") 
n = 2 « = 2 i = 0 

oo oo k 

= ^ ^ W l - l i f V ] + C P 0 X X JP(N = jk + m) 
n = 2 j = 1 m = 1 

O O 

= ^ } C / J £ + C , 0 X I ; ( l - H ) i i + B-V 

y = 1 m = 1 

_ X ( l - f i ) 

^ I - ( I - M - ) 

(B.8) 

The expected link cost of the call: 
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r n - l 

X (C / N = n) \P(N = n) 
n = 1 U = 0 

oo n - 1 

X X llCUnk + ^HClink(i mod = n) 
n=\ i=0 

k-\ 

LCUnk X [nP(N = « ) ] + A t f C ^ X 
n = 1. An = 1 

ifc-1 

n = 1 m = 1 
/t- 1 

™X X p(N = j) 
L ,= 1 j = ki-(k-\-m) 

OO oo 

mX X 
L (=1 j = ki-(k-\-m) 

(B.9) 

£ m ( l - i x ) 
l - ( l - u T m = i 

r 1 U. [ 1 - ( 1 - M-) 1 

Substituting equations (B.8) and (B.9) into equation (B.7), we have: 

E[C periociic] 
M i - n ) H C , „ f e [ i ^ ( i _ ^ _ 1 + ( ^ _ i ) ( i _ ^ ] 

(B.10) 
A ( l - | i ) r (1 -u) r 

+ ~ ^PE + k PO' 
V l - ( l - J i ) 



Appendix C. Expected Cost for the Bernoulli Path 
Optimization Scheme 

In this appendix, we derive the expected cost per call for the Bernoulli path optimization 

scheme. Following the notations and definitions used in Chapter 2 and Appendix A , we 

also define an indicator random variable: 

j j l , perform path optimization after path extension at time i , 
1 [O, otherwise. 

Since path optimization is invoked with probability p after each path extension, we have: 

E[Ii\ = p. ( C 2 ) 

Note that in our analytical model, path extension and path optimization are modeled as 

point processes. Thus, the time required to perform these operations is not taken into 

account. 

For the signaling cost due to mobility at time i: 

C- = IiiCpE + IiCpo) i>\. (C.3) 

Taking the expectation: 

E[C-} = MCPE + PCP0) i>l. (CA) 

For the link cost between time interval [i, i+1): 

Cl = < _ , ( ! - / , . ) + ( C / . , + HClink)I:(!-/,)+ LCuM . (C.5) 

Taking the expectation: 

5 [ C / ] = (l-Xp)E[Ci

l_l] + [X(l-p)H + lpL]ClM. (C.6) 
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Since E[C0 ] = LClink , it can be proved by mathematical induction that for i > 1: 

£ [ C / ] = (l-Xp)'LClink + [i + (i-M + ... + (i-M'' -1]* 

= {\-Xp)lLClink + 
Xp 

(C.7) 
K 

where/? = [X( \ -p)H + XpL]C link ' 

The expected cost of the call when using the Bernoulli path optimization scheme is: 

\P(N = n ) . (C.8) 
E[CBernoulli] ~ X E 

n = 1 

m -1 

I(c/ + c/) 
4 = 0 

/V = n 

The expected signaling cost of the call: 

P(7Y = n) 
r n - l 

X ( C / | i V = n) 

oo n — 1 . 

= X X ^ C P £ + PCPO)P(N =N) 
n = 2 i = 1 

= M C P £ + pcPO)X(«-1)(1-i-o,I"V 
n = 2 

= M i ^ ) ( C p £ + pcP0) 

(C9) 

The expected link cost of the call: 

r n - l 

4 = 0 n = 1 

oo r n - \ 

rc=1W=0 

X ( C / / V = «) P(N = n) 

fP(/V = n) 

L A , ( l - p ) ( l - n ) / f 
P ^ p [ l - ( l - A . / ? ) ( l - p ) ] / , n * ' 

(CIO) 
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Substituting equations (C.9) and (CIO) into equation (C.8), we have: 

mr ^ = LC + M l - p ) ( l - H ) g C < f a j b 

^Bernoulli* ^link ^[1 - (l - Xp)(l -



"Another roof, another proof." 

TauPEraas, 1913-1996. 

Appendix D. Semi-Markov Decision Processes 

Proposit ion D . l : Assume the cost, transition probabilities, and sojourn times are time 

homogeneous. If the termination time of a finite-horizon semi-Markov decision process is 

exponentially distributed with mean 1/u., then it is equivalent to an infinite-horizon semi-

Markov decision process with discount rate p,. That is, 

r4»(T) 4>(r)-l 

A * ) = En\ X b{Xn, Yn) + X [j; + 1 / ( W t , X „ , T „ ) J t 

U = 0 n = 0 

+ f f(WvXl{T),Yl{T))ax + h(XHT))\ 

is equivalent to 

where 

( D . l ) 

^S) = E:\^e-"\(Xn,Yn)\ (D.2) 

c(s,a) = b(s,a) + Ea

s\j\ wf{Ws, a)dt + (l -e (D.3) 

Proof: For clarity, we wi l l analyze the four terms in (D. l ) separately. Let 

vn(s) = ul(s) + u\(s) + 1*3(5) + ^ 4 ( 5 ) (D-4) 

132 
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where 

"fr) = E*\ X b(Xn, Yn) (D.5) 
U = o J 

'4>(T)-1 fr) = *J X [£+7(wrx„yB)*r (D.6) 
n = 0 

= En

sUT^Tf(WvXl{T), Yl{T))dx (D.7) 

IIJ(J) = En

s{h(X,(T))} 
(D.8) 

For (D.5), 

u*{s) = E*\ X b(Xn, Yn) 
U = o 

4K0 

X ^) 
U = 0 

If m represents the last decision epoch before termination, then 

-To = 4 x C 
^ m = 0 Ln = 0 

X Yn) \le ^'dt 

B y interchanging the order of summation, we have 

o o o o 

•To-*? X xC"''(X»•,'"¥e"," 
L n = 0 m = n 

Since Y f°" + 1(-)^ = f CO*. 
Jo J (T „ 
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= I fa HXn, F M )p<f ^ j 

= X e-^b(Xn, Yn) 
L n = 0 

For (D.6), we have 

u2(s) Es\ x [j ; ;7 (w r x„ ,y„)jT 

rm - 1 

'-m = 1 <-n = 0 

B y interchanging the order of summation, we obtain, 

TC, . 
u2(s) 

( o o o o 

n = 0 m = n + l " L " J j 

• £*f ix.,Kr,/(,v"x-y»)AK'"*} 
= 0 

= 0 

For (D.7), 

= {̂r / ( W t , ^ ( r ) , y ^ ( r ) ) J x l 

pe 

(D.9) 

(D.10) 

If n represents the last decision epoch before termination, then 
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( oo 

n = 0 " " 

B y interchanging the order of integration, we have, 

3 w = ^{xC;*'[C*,/(H'"x»'i'»)t"!"1"* 
= 0 " 

dx 

= E*s\ ^fa" + i[e^-e-^]f(WvXn,Yn)dx 
'-n = 0 

( D . l l ) 

For (D.8) 

ul(s) = E*{h(XHT))} 

= 0 

(D.12) 

U = 0 

Substitute (D.9)-(D.12) into (D.4), we obtain: 

v-(.) = E:\ 2 r^°"MX„,y„) + f"+ie^f(WvXn,Yn)dx 
•*n = 0 

= d I ^ " [ ^ , F„) + f^e-^nW,, Xn, Yn)dx_ 

( D . l 3) 

^n = 0 
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{ oo 

I [e~^HXn, Yn) + foye^f(Wv Xn, Y n)dx 
n = 0 " 

+ (e -e )h(Xn)] \ 

U = 0 

(D.14) 
•0-n+l - U . ( T - O j 

+ ( l - ^ " + > ( X „ ) ] . 

Recall c(s, a) denotes the expected total cost between two decision epochs, given that the 

system occupies state s at the first decision epoch and that the decision maker choose 

action a in state s. Since the cost, transition probabilities, and sojourn times are assumed 

to be time homogeneous, 

c(s,a) = b(s,a) + Ea

s^j\~iitf(Wt,s,a)dt + (1 - <f^ ' ) /z(s) j . (D.15) 

Substitute (D.15) into (D.13), we have 

v\s) = E:\ie-^c(Xn,Yn)\ 

The discrete-time version of this result can be found in Chapter 5 of [46]. 

For stationary deterministic policy 5 : 

v\s) = c[s,8(s)] + E ^ W X ^ 

= c[s, b(s)] + X i f y 5 ( y ) P [ S ' \ S'
 5 ( 5 ) 1

 G [ d t \ S'
 5 ( 5 ) ] f D 
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L e m m a D . l : For each state (/, j, Jc) e S, the expected total cost v(i, j, k) is a nondecreas

ing function in the number of links k. 

Proof: The proof of this lemma is by induction. We must show 

v ( , ; ^ ) - v ( , - , ; , « : + 1 ) < 0 . R e c a 1 1 / 2 = J j V 1 " G[dt) .For K <k< L: 

N K-l 

v(i,j,k) = c(i,j,k,PO) + £ y£l2Hl,i,n)p(n\i,D)q(l\i). 

1=1 n=l 

From (3.10) and (3.11), it is clear that c(i, j, k, a) < c(i, j,k+l,a) for all k. Hence, 

N K-1 

v(i,j,k) < c(i,j,k+l,PO) + ' £ JjI2v(l,i,n)p(n\i,D)q(l\i) 
1=1 n=\ 

= v(i,j,k+ 1). 

Thus, v( i , j, k) < v( i , j, k + 1) for K < k < L. 

Since (K - 1 + m) A (K - 1) = K- 1, for state (i,j,K): 

v{i,j,K-\) 
r N M 

= min \c{i,j,K-\,NPO) + X X *2v(l> h K- 1 + m)p(m\i, j)q(l\i), 
[ 1= 1 m= 1 

N M K-l 

c(i,j,K-\,PO) + £ £ JjI2v{l,i,n)p(n\i,D)p(m\i,j)q(l\i) 
1=1 m = l n = l 

N K-l 
<c{i,j,K-\,PO) + £ ^I2v(l,i,n)p(n\i,D)q(l\i) 

1=1 n=l 
N K-l 

<c(i,j,K,PO) + J JJI2v(l,i,n)p(n\i,D)q(l\i) 
1= 1 n= 1 

<v(i,j,K). 
F o r j and 1 < k < K , assume v(i, j, k + 1) < v(i, j, k + 2) < ... < v(i, j, L). We need 
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to show v(/, j, k) - v(i, j, k + 1) < 0 . From (3.16), 

r N M 

v(i,j,k) = min \c(i,j,k,NPO) + X X / 2 V ( / ' ^ ^ + m)/?(m|/, 
<- l = l m = l 

c{i,j,k,PO)+YJ X X I2v(l,i,n)p(n\i,D)p(m\i,j)q(l\i)l 

I = 1 ;n = 1 n = 1 J 

Let a* denote the optimal action of state (i, j, k + 1) . If a* = PO, 

v(i, j, k) 
N M {k + m) A ( # - 1 ) 

< c(i,j,k,PO)+ X X / 2 v ( / , i , » ) p ( n | i , P ) p ( m | i , j ) g ( i | 0 
/ = 1 m = 1 n = 1 

JV M (fc+1+m) A ( A T - 1 ) 

< c ( « , y , t + l , P O ) + X X X I2v(l,i,n)p(n\i,D)p(m\i,j)q(l\i) 
1= 1 m = 1 n = 1 

= v(i,j,k+ 1). 

On the other hand, i f a* = NPO, 

A/ 

v(i,j,k) < c(i,j,k,NPO) + X X 7 2 V ( Z > ' » * + m)P(m\i> J)<l(lV) 
1= 1 m = 1 

N M . 

< c(i,j,k+l,NPO) + X X 7 2 v ( * ' '"'̂ + 1 + m)p(m|/, 7)̂ r(/|0 
/= 1 m= 1 

= v(i,j,k+ 1). 

To complete the proof, we need to show v(j, j, k) - v(j, j, k + 1) < 0 for 1 < k < K. From 

(3.15), 

N 
v(j,j,k) = c(j,j,k,NPO) + ^I2v(l,j,k)q(l\j) 

1=1 
N 

< c(j,j,k+\,NPO) + J^I2v(l,j,k+\)q(l\j) 
/= l 

< v(j,j,k+l). 
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Thus, by the principle of induction, for each state (/, j, k) e S, the expected total cost 

v(i, j, k) is a nondecreasing function in k. • 

The following proposition states the conditions under which the optimal policy has a 

threshold structure. 

* 

Proposit ion D.2: Given state (/, j, k) e S, the optimal policy 5 has a control limit (or 

threshold) structure: 

[NPO, \<k<k*, 
8 (i,j,k) = \ (D.16) 

[ PO, k*<k<L 

when IlAf(k + m)-^iAhPO(k + m-n)p(n\i,D)>0 for all m such that p(m\i,j)*Q 

n 

and k*<k<K. 

Proof: Let 
M N M 

r(i,j,k) = X Iif(k + m)p(m\i,j)+ X ]T I2v(l,i,k + m)p{m\i, j)q(l\i) 
m = 1 / = 1 m = 1 

M (jfc + m) A ( # - 1) 

- CPO ~ X X {r t P 0 (fc + m - n ) + / I / ( n ) } / 7 ( n | / , D ) p ( m | i , ;') 
m = 1 n = 1 

M (fc + /n) A ( J T - 1 ) 

" X X X / 2 v ( / , /, n)p(n\i, D)p(m\i, j)q{l\i). 
/= 1 m = 1 „ = 1 

Thus, the action PO is chosen i f r(i,j,k)>0 and the action NPO is chosen i f 

r(i, j, k)<0. Let £ be the smallest k such r(i, j,k)>0. 

For convenience, let A r ( / , 7, k) = r(i, j,k+ 1) - r(«', 7, A:). 



Appendix D. Semi-Markov Decision Processes 140 

M N M 

Ar(i,j,k) = X l\&f(k + m)p(m\i, j) + X X 7 2 A v ( ' ' *» ^ + w ) p ( m | i , y ' )?( / |0 
m = 1 / = i « = i ( D 1 7 ) 

M (ik + m ) A ( ^ - l ) 

~X X Ahp0(k + m-n)p(n\i,D)p(m\i, j). 
m = 1 n = 1 

Since v(i,j,k) is a nondecreasing function in Av(7, /, + m) > 0 . Thus, 

Ar(i, j, k)>0 when 

(£ + m) A ( A : - 1) 

IxAf{k->i-m) - X Ahp0(k + m-n) p(n\i, D) > 0 
n = l 

for all m such that p(m| / , /) ^ 0 . Now for some assume Ar(i, j, k), Ar(i, j,k+ 1), 

..., Ar(i,j,k-l)>O.Then 

N M M 

Ar(i,j,k)= X X hAv(l> i, k + m)p(m\i, j)q(l\i) + X 7 l Af(k + m)p{m\i, j) 
l= \ m=\ m=\ 

M (k + m)A(K-\) 

- X X Afcp0(fc + m-n)p(rt|i, D)p(m\i, j). 
m = 1 n = 1 

Since v(i,j,k) is a nondecreasing function in £ , A v ( / , /, k + m) > 0 . Thus, 

Ar(i, j, k)>0 when 

(k + m)A(K-\) 

IxAf{k + m) - X Ahpo(k + m-n)p(n\i,D) > 0 
n = 1 

for all m such that p(ra|z, j)^0. Thus, by induction, the optimal policy has the control 

limit structure when /,Af(k + m) - ^Ahpo(k + m-n)p(n\i, D)>0 for all m such that 
n 

p(m\i, j)*0 and k* <k<K. • 



Glossary of Acronyms 

A B R Available Bi t Rate 

A C T S Advanced Communications Technologies & Services 

A T M Asynchronous Transfer Mode 

C B R Constant Bi t Rate 

G S M Global System for Mobi le Communication 

E T S I European Telecommunications Standards Institute 

ID Identifier 

IMT-2000 International Mobile Telecommunications 2000 

IP Internet Protocol 

I T U International Telecommunication Union 

L A Location Area 

P C S Personal Communication Services 

P N N I Private Network-to-Network Interface 

QoS Quality of Service 

U M T S Universal Mobi le Telecommunications System 

V B R Variable Bi t Rate 
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