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Abstract 

Satellites play important roles in global telecommunications. However, the performance 

of Transmission Control Protocol (TCP) for reliable data transfer over the Internet suffers 

significant degradation over satellite networks due to high bit error rate and the long latency of 

satellite links. 

Among the methods proposed for alleviating the impact of satellite link characteristics on 

TCP performance, the split TCP connection separated by performance enhancement proxies 

between the satellite and terrestrial Internet segments proves to be attractive for improving end-

to-end TCP performance while keeping the TCP configurations in end systems unchanged. In 

this thesis, we propose a dynamic TCP congestion control mechanism for the satellite segment in 

a split TCP connection scenario. This scheme uncouples the TCP congestion control and error 

recovery operations, which benefits error-prone channels, and allows immediate congestion 

feedback from underlying layer, which benefits long delay channels. 

We model a satellite network with two gateways, which is widely studied in the literature, 

and contribute a new system architecture with a single gateway, which employs a medium access 

control protocol for very small aperture terminals accessing a shared satellite uplink. Different 

from other approaches, the random early detection queue is deployed in the gateway. Based on 

these two models, the performance between the proposed mechanism and other ubiquitous TCP 

versions is compared under a number of network scenarios. Simulation results show that our 

proposed mechanism improves TCP performance significantly, and is more robust when the 

traffic load is heavy. 
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Chapter 1 Introduction 

Global Internet communication has experienced explosive growth since 1990 and plays an 

increasingly important role. The availability of high-speed Internet access at a reasonable cost 

will greatly empower people, institutions and corporations, and enhance their social-economic 

well-being. Whereas high-speed Internet access technologies, such as cable modem and digital 

subscriber loop are becoming popular, they mainly benefit densely populated urban areas where 

they can be economically deployed. For geographically remote or underdeveloped regions, 

creating such an infrastructure is time-consuming and expensive. The use of geostationary earth 

orbit (GEO) and low earth orbit (LEO) satellites for offering high-speed Internet access provides 

an attractive, and sometimes the only, alternative. Moreover, with the advent of the World Wide 

Web (WWW), broadband Internet access tends to be highly asymmetric in traffic usage, with 

users downloading much more information than they generating. This type of traffic pattern 

matches well with satellite networks, where it is much cheaper to receive data at broadband rates 

than to transmit at such a rate. With these merits, satellite offers the promise of a rapidly deploy-

able communication infrastructure for providing high-speed Internet access. 

Active research is ongoing to make the high-speed Internet access over satellite networks 

functional and cost-effective. The efforts for improvement involve both satellite and terminal 

hardware, as well as protocol architecture. With years of development, satellites have evolved 

from simple space repeaters to much more powerful devices with other capabilities, such as on

board processing (OBP) and switching functions. Since satellite channels are characterized as 

high bit error rate (BER) and long propagation delay, protocol suite must adapt to these special 

channels to work efficiently. For this reason, the success of delivering high-speed Internet access 
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Chapter 1 Introduction 

also depends on the appropriate design of underlying protocols that can fit into the satellite 

environment. 

Although some research work has evolved to deal with these issues, how these satellite 

systems are best configured for connectionless Internet services, and how they affect the end-to-

end performance of these Internet services, is not widely studied. Much work remains to be done 

to assess the impact of Internet access via satellite on the end-to-end transport performance of 

various applications, identify interworking and performance issues, and develop practical 

solutions to enable cost effective and efficient use of satellites to access all types of Internet 

applications and services. In this thesis, we concentrate on the application of satellite systems to 

provide broadband Internet access, and focus on in particular, improving the performance of 

reliable Transmission Control Protocol (TCP) by employing split-connection proxies over high 

B E R high latency paths. We first describe the fundamental characteristics and technological 

trends of both satellite communication and the present-day Internet. 

1.1 Background 

1.1.1 Features of Broadband Satellite System 

A satellite communication system, distinguished by its global coverage, inherent 

broadcast capability, bandwidth-on-demand flexibility, and the ability to support mobility, is an 

excellent candidate for providing broadband integrated Internet services to globally scattered 

users. Using steerable spot beam antennas and regenerative transponders with on-board signal 

processing and switching, future generation satellites wil l be capable of supporting broadband 

Internet services using very small aperture terminals (VSATs) located at users' premises. 

Currently, Internet access service is available for asymmetric connections employing a high-speed 
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satellite link for network-to-user traffic and a slow-speed dial-up link for user-to-network traffic 

[1]. A n all-satellite solution using satellite links for both traffic directions capable of efficiently 

supporting asymmetrical and symmetrical traffic load is useful for some applications and 

necessary for others, such as high quality video conferences. We concentrate on such system 

topology in order to satisfy the current and future needs of industry. 

The most cost-effective solution for satellite coverage is the GEO whereby a satellite is 

located at the fixed location approximately 22,300 miles above the equator. A few GEO satellites, 

if properly designed, can seamlessly cover the entire surface of the earth, making it extremely 

appealing to aeronautical and maritime users, and to those in remote areas lacking a terrestrial 

communication infrastructure. However, GEO satellite channels are characterized by a high BER, 

long propagation delay, large bandwidth-delay product and are highly asymmetric, which has 

some adverse effect on Internet Protocol suite [2-5]. 

• Transmission Errors: Reduced signal to noise ratio (SNR) is a major concern in satel

lite transmissions, since signal strength falls proportional to the square of the distance. 

Measurements show that uncoded satellite channels can have BER values around 10"6 

[6], much higher than cable or fiber links. Using legacy equipment and many existing 

transponders [7], which are optimized for analog voice and video services, the BER 

may be as high as 10"4 in the worst case, and 10"7 on average. In a digital satellite com

munication system [8], the normal BER should be in the order of 10"8 or less for clear 

sky operations. However, it may be degraded a few decades during various random at

mospheric or space conditions, such as rain attenuation. 

3 
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• Latency: Latency is composed by propagation delay, transmission delay and queueing 

delay. In the broadband GEO satellite case, the propagation delay is the dominant part. 

The speed of light dictates a one-way delay of approximately 250 milliseconds on a 

typical "hop" comprising of a GEO satellite uplink and downlink. Therefore, the 

round trip time (RTT) may be as high as 500 milliseconds. This long delay causes a 

large bandwidth-delay product, which means that a large number of packets must be 

kept "in flight" to fully utilize the satellite link. 

• Asymmetry: TCP performance not only depends on characteristics of links and traffic 

load in the direction of data transfer, but also depends on that of the reverse path [9]. 

Satellite networks exhibit asymmetry in several manners. Some are inherently band

width asymmetric, such as those networks employing a broadcast satellite downlink 

and a slow-speed dial-up link; while others may have many subscribers to share a 

common satellite link because of economic issues. For example, very small aperture 

terminals, can offer end users with very high downlink bandwidth, likely up to tens of 

Mbps, but only a limited uplink bandwidth not faster than several hundred Kbps or a 

few Mbps, due to uplink carrier sizing. 

• Congestion: Based on the fact that efficient utilization of satellite links requires statis

tical multiplexing, the congestion likely occurs at the link between the earth and satel

lites. With onboard switching or routing, a well designed satellite system should be 

able to avoid congestion on the satellite by properly scheduling transmissions in the 

ground stations. However, congestion may still occur at the gateway when there is too 

much traffic for the link or satellite onboard capacity. During congestion M A C may 

fail to receive reserved bandwidth, and packets are backlogged in the uplink buffers. 
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In this thesis, we investigate the impact of these satellite link characteristics on end-to-end 

TCP performance and propose a feasible solution. 

1.1.2 The Internet Protocol Architecture 

The term of "the Internet" refers to a wide collection of packet switching networks that are 

tied together through the common use of the Transmission Control Protocol/Internet Protocol 

(TCP/IP) protocol suite. Figure 1.1 illustrates a popular view of Internet protocol architecture. 

The Internet suite of communication protocol follows a four-layer model, as described in [10]. 

This protocol stack allows different kinds of computers, running on different operation systems, 

to communicate with each other over the world wide Internet. Each layer of TCP/IP protocol suite 

has its own responsibility. The link layer deals with all hardware related issues, such as the 

physical interface between different types of media. The network layer handles packet routing 

within the Internet. The transport layer transfers a flow of data between two end hosts for the 

application layer above. The application layer handles the details of the particular application and 

user process. 

Application 

Transport 

Network 

Link 

e.g. FTP, HTTP, Telnet 

TCP, UDP 

IP 

PPP, Ethernet 

Figure 1.1 Internet protocol architecture. 
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IP is commonly used as a network layer protocol to route packet as a datagram by its 

addressing and routing mechanism. Since IP only provides a connectionless, best effort service, it 

does not guarantee reliability or in-order delivery for each packet. The packet may be lost or 

destroyed by the media, such as by network hardware failure, or packets delayed by dynamic 

network routing. It is the responsibility of the TCP, which is the ubiquitous transport protocol, to 

provide a reliable flow of data between two end hosts if the application requires reliable transmis

sion. The application can ignore all the details of data reliability issues, and only consider particu

lar uses like HyperText Transfer Protocol (HTTP), File Transport Protocol (FTP) and so on. 

Figure 1.2 shows the TCP data communications between two remote TCP hosts and all the 

protocols involved. 

Host Network node 

• 
Network node 

n 
Host 

Host-host 
Interface 

Application 

Transport 

Physical/LinkH-

Network 

Physical/LIiiW 

Network 

Physical/LlnH 

Host-n etwork 
Interface 

Network-n etwork 
interface 

Application 

Transport 

Network 

Physical/Link] 

Host-network 
interface 

Figure 1.2 TCP data communication between end hosts. 

1.1.3 TCP Limitations over Satellite Networks 

TCP are proposed to provide reliable end-to-end transmission over a number of network 

topologies and many different kinds of physical media, without knowledge of the underlying link 

characteristics. To achieve this purpose, the congestion control mechanisms of TCP are designed 
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to be very conservative. However, these conservative mechanisms guarantee the reliability by 

sacrificing efficiency in some cases, especially when more and more new network topologies and 

media with distinctive characteristics are added to the Internet. In order to balance the demands of 

higher efficiency and good adaptability, the Internet Engineering Task Force (IETF) working 

groups propose many options to enhance the TCP service. 

TCP employs a window based scheme to control the flow rate from sender to receiver. It 

also uses a cumulative positive acknowledgment with a retransmission scheme for error recovery. 

By adapting to the end-to-end delay and packet error rate, TCP error recovery and congestion 

control mechanisms perform well in low bit error rate terrestrial networks. However, communica

tions over satellites are quite different from these traditional networks. The inherent characteris

tics of satellite links often result in a significant degradation of TCP throughput. 

A severe limitation of TCP that is particularly troublesome to satellite links with a non-

negligible packet error rate lies in its inability to distinguish between network congestion loss and 

transmission error loss. Raw satellite links are more noisy than wireline media. Bit error rates of 

the order of 10"6 or more are often observed, even under good weather conditions. Furthermore, 

errors on satellite links tend to be bursty by nature. TCP is a loss sensitive protocol, using packet 

loss to control transmission behavior. Therefore, packet corruption is incorrectly interpreted by 

TCP as congestion to be mitigated by reducing the transmission window, thus severely limiting 

throughput. When a packet loss is encountered, the lost packet is retransmitted and the rate of 

sending is reduced. Many studies [11 , 12] confirm that noisy satellite links lead to great TCP 

performance degradation since measurable BER values prematurely trigger the window reduction 

mechanism, even i f the network is uncongested. In addition, TCP uses a cumulative acknowledg-

7 
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ment scheme, and so can discover only one segment loss every round trip. Thus i f multiple 

segments are lost in one window of data, throughput is reduced sharply. 

TCP uses a closed-loop positive feedback mechanism to determine its transmission rate. 

To avoid congestion in the network, every connection starts with a slow start phase, in which the 

congestion window is initialized to one segment, and is increased by one segment for every new 

acknowledgment received. When the congestion window size is beyond a threshold, or a packet is 

lost, the congestion avoidance phase is started, and the window size is increased by one segment 

every time a complete window of data is acknowledged. Due to the low initial window, TCP slow 

start takes up to several seconds for the congestion window to grow large enough to effectively 

utilize the link bandwidth. This is a problem in the satellite environment where the round trip 

delay is as long as 500ms, especially those short-lived connections that suffer from low through

put. Some studies [13] show that a connection with smaller RTT can capture most of the network 

bandwidth at the expense of a long-delay channel. 

A different problem is seen during the congestion avoidance phase. In this phase the 

window grows by only one segment every RTT, so window growth is much slower than in slow 

start. Thus, i f the congestion window reduction is premature when congestion avoidance is 

entered, the satellite link can be under-utilized for prolonged periods of time. Most data 

transferred over a satellite link can thus complete without having attained a window large enough 

for optimal link utilization. This problem is more serious when the link condition is poor, which 

causes congestion avoidance to be entered too early. Furthermore, the header of each segment 

contains an offered window, which represents the largest amount of data that the destination 

permits the remote end to send without receiving further permission. This offered window is 
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represented by a 16-bit field, which restricts its value to 64 kilobytes. Some implementations limit 

the maximal window size to 32 kilobytes, and many popular implementations default to a window 

of 8 kilobytes. Since TCP can not send more than one window of data per RTT, the maximal 

throughput attainable by a connection over a GEO satellite link may be restricted to 128 Kbps. 

1.1.4 Possible Solutions 

In light of the above problems, many researchers have proposed solutions to improve TCP 

performance over satellite networks. The possible solutions can be classified into three categories: 

link level solutions [14], end-to-end solutions [15-19], and TCP performance enhancement proxy 

(PEP) [20] solutions. These solutions are not mutually exclusive; so it is likely that all three kinds 

of solutions may be used together in a network. 

As link error rates are a major concern in satellite networks, link level solutions include 

link layer techniques like forward error correction (FEC) and automatic repeat request (ARQ) 

mechanisms to mitigate the problem of data corruption. One well-known FEC coding scheme is 

convolution code. Many advanced coding techniques also exploit bit interleaving to reduce the 

effects of burst error. In many situations, deploying these mechanisms can ensure that most losses 

seen by TCP are in fact due to congestion. However, increased coding complexity can slow down 

satellite modems and reduce bandwidth efficiency due to data redundancy. 

Many end-to-end solutions are proposed to elaborate current TCP versions, or as 

extensions to TCP. A number of them are adopted as TCP options or enhancements by IETF [15-

19] since they begin to recognize the importance of satellite as a means of providing Internet 

access. We discuss these options further in the next chapter. It is worth mentioning that the 

effectiveness of these solutions is limited by the fact that not all given end systems support these 
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kinds of extensions. 

The TCP PEP approach is attracting much attention nowadays as an effective solution for 

satellite networks. In this approach proxies are deployed in the network to separate links or groups 

of links with highly dissimilar characteristics. The advantage of the TCP PEP is that it acts on 

behalf of end systems without changing their configurations. The proxy services are customized 

specifically to compensate for specific link characteristics that would otherwise cause poor 

performance. This allows for the simplification of the protocols used in the end-user terminal, at 

the expense of additional complexity in the network. Since the proxies are designed to take 

advantage of local network characteristics, we can obtain closer-to-optimal performance than 

with the end-to-end approach. Both the link layer solution and end-to-end solution can be 

combined with this method to enhance TCP performance. Split-connection proxies belong to this 

class of solutions. 

1.2 Objectives 

The overall goals of the thesis are to investigate the end-to-end performance issues that 

arise when TCP split connections are employed in satellite networks to provide high-speed 

Internet access, and to develop novel solutions to address these issues. We propose a dynamic 

congestion control mechanism implemented as the proxy service for the satellite segment in a 

split TCP connection scenario. The aim is to uncouple the TCP congestion control and error 

recovery operations over the satellite channel. To combat the shortcoming of long propagation 

delay, our mechanism allows immediate congestion feedback from underlying layers at the PEP. 

This thesis focuses on the performance of different TCP implementations and one new proposal 

over a satellite link. In order to have a better TCP throughput, optimization of TCP parameters for 

10 
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a heterogeneous network under different conditions are considered. In this thesis, two system 

architectures are fully presented, and different proposals are employed to deal with specific 

characteristics. 

The objectives of the thesis are as follows: 

To improve TCP performance over satellite networks by deploying split connection 

proxies, and proposing a new dynamic congestion control mechanism. 

• To separate the TCP congestion control and error recovery mechanisms, which benefit 

error-prone channels. 

To realize the immediate feedback from the underlying layer, which benefits long la

tency channels. 

• To investigate the impact of bit error rate, traffic load, uplink bandwidth and some 

TCP options on TCP throughput and delay over satellite networks. 

This work is different from others in the following ways: 

• It considers a network architecture employing satellite for Internet access, which is 

configured with a number of VSATs, and employs a medium access control (MAC) 

protocol for multiple subscribers to access satellite links. 

• It compares the performance of the different TCP versions under different traffic loads 

to reveal their advantages and disadvantages. 

• It employs a random early detection (RED) queue in the gateway, which can achieve 

high throughput. 

11 
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1.3 Outline of the Thesis 

In Chapter 2, an overview of basic TCP operations and different TCP implementations are 

presented and discussed. Chapter 3 provides a general system architecture and modified protocol 

stack of satellite communication employing split connection proxies. The basic algorithm of 

random early detection queue is given. Chapter 4 demonstrates the performance of the proposed 

mechanism and presents the simulation result of different TCP implementations in a satellite 

network environment over a two-gateway model. The simulation results and performance 

analysis of different TCP implementations in satellite network environments employing a single 

gateway scenario are given in Chapter 5. Finally, Chapter 6 summarizes all the findings and 

provides suggestions for future work. 

12 



Chapter 2 TCP Fundamentals 

The Transmission Control Protocol (TCP) [21, 22] is a transport protocol used by many 

Internet applications (such as web, file transfer, electronic mail and tele-learning), for end-to-end 

reliable data delivery. In this chapter, we describe the basis of a TCP operation, focusing on those 

aspects that are most relevant to satellite links. Then we discuss four different TCP implementa

tions: TCP Reno, TCP NewReno, TCP Selective Acknowledgement (SACK) and TCP Vegas. 

Finally, we introduce TCP options used to enhance TCP service over a satellite channel. 

2.1 TCP Overview 

TCP provides a byte-stream, connection-oriented, reliable end-to-end data service for 

applications, guaranteeing in order delivery. In order to achieve all of these requirements, a lot of 

mechanisms are incorporated in TCP. 

In terms of byte-stream service, a TCP sender accepts a stream of data from an application 

in an arbitrary size, and the TCP receiver sends the identical stream to its application layer. TCP 

data and acknowledgment (ACK) are carried in a TCP segment, then encapsulated into an IP 

datagram, as shown in Figure 2.1. The TCP header carries the important identification and other 

control information. The format of the TCP header is illustrated in Figure 2.2. The byte-stream 

information is contained in the sequence number field, which is the byte number of the first byte 

being transmitted in the payload. The acknowledgment number field contains a cumulative 

acknowledgment, indicating the destination has received all the data up through but not including 

that byte. TCP's flow control is provided by each end advertising a window size. This is the 

number of bytes that the receiver is willing to accept. The total length of the TCP header is 20 

bytes, except for the options. 

13 
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IP Datagram 

TCP Segment 

IP Header TCP Header TCP Data 

Figure 2.1 IP datagram and TCP segment. 

10 15 16 

Source Port Number Destination Port Number 

Sequence Number 

Acknowledgement Number 

H L E N Reserved Flags 

TCP Checksum 

Window Size 

Urgent Pointer 

Options (if any) 

31 

20 Bytes 

H L E N : Header Length 

Figure 2.2 TCP header. 

In terms of connection-orientation, TCP needs to exchange specially labelled segments 

(using the flags field) to establish, terminate and reset a connection. To establish a TCP connec

tion, a three-way handshake mechanism with a clock-based sequence number is required to set up 

a unique end-to-end connection between two remote hosts. The handshake mechanism also brings 

parameters to negotiate initialization information, such as window size and options. To terminate 

an active connection, each side can send a FIN segment to another when it finishes transmission; 

the other side responds with an A C K for FLN. 

14 
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In terms of reliability, TCP provides several error recovery operations. The basic error 

recovery mechanism for TCP is a retransmission time out (RTO) algorithm. After a TCP sender 

transmits a segment, a timer located at the sender waits for an interval of RTO for the receiver to 

A C K the data. If no A C K is received by the end of RTO, the data is retransmitted and a new timer 

is set based on the new time-out value. The RTO for a segment is based on the estimated round-

trip time (RTT) and RTT variance of the connection. The subsequent time-out intervals for the 

same segment are doubled each time; this process is known as exponential backoff. By combining 

with the accumulated positive acknowledgment and TCP checksum, it can easily find damaged, 

lost or duplicated segments. The formula list below shows how to calculate the RTO [10]: 

Err = M-A 
A <--A+ g • Err 

D<^D + h-(\Err\-D) 
RTO = A + 4-D 

where M i s the measurement of RTT, A is the smoothed RTT (an estimator of the average) and D 

is the smoothed mean deviation. Err is the difference between the measured value just obtained 

and the current RTT estimator. Both A and D are used to calculate the next RTO. The gain g for 

the average is set to 1/8. The gain for the deviation is h, and is set to 1/4. The higher gain for the 

deviation makes the RTO go up faster than RTT changes. 

TCP also employs two other mechanisms to prevent network congestion, namely slow 

start and congestion avoidance. TCP maintains two variables known as the congestion window 

(cwnd) and slow start threshold (ssthresh) to switch between these two schemes. The congestion 

window is initialized to one segment upon connection startup, and represents the amount of data 

that may be outstanding at any time. The slow start threshold is the parameter determined at the 

15 
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connection setup, usually initialized as the receiver advertised window. The scheme of slow start 

is used upon the start of the connection in order to rapidly probe for available bandwidth. During 

slow start, the value of the congestion window opens exponentially by adding one TCP segment 

each time it receives an A C K , until the congestion window reaches the slow start threshold or a 

TCP segment loss occurs. Then it enters the congestion avoidance scheme. During this phase, the 

congestion window is increased by at most one segment per RTT, to make the window size grow 

linearly. Finally, i f any retransmitted segment is lost (which may indicate serious congestion), the 

TCP sender is forced to take a time-out, which involves retransmitting the missing segment, 

reducing the congestion window to one segment and resuming the slow start. For satellite connec

tions, this time-out period and the following slow start may take several seconds during which the 

system experiences very poor throughput. 

2.2 TCP Implementations 

Different TCP versions have evolved over years since the standard TCP (TCP Tahoe) [23] 

was first implemented in Unix 4.3 BSD in 1988. TCP Reno was proposed in 1990 on the basis of 

TCP Tahoe with a new error recovery scheme [24]. There are some other TCP Reno variances, 

such as NewReno [22] and TCP S A C K [18]. TCP Vegas is recently proposed in [25]. In this 

section, we focus on TCP Reno, TCP NewReno, TCP S A C K and TCP Vegas. 

2.2.1 TCP Reno 

TCP Reno has four basic schemes to control the congestion window: slow-start, conges

tion avoidance, fast recovery and fast retransmit. We discussed slow start and congestion 

avoidance before. The fast recovery is aimed to detect segment loss more quickly without trigger

ing a time-out; the fast retransmit is aimed to prevent the communication path from going empty 
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after a fast retransmit, thus avoiding the need to slow start to refill the path. 

With fast retransmit, after receiving a small number (usually 3) of duplicate A C K s for the 

same TCP segment, the sender infers that a segment is lost, and retransmits the segment without 

waiting for a retransmission timer to expire. With fast recovery, once the threshold of duplicate 

A C K s is reached and the sender retransmits the lost segment, TCP Reno reduces its congestion 

window by one half. Instead of a slow start, the Reno sender uses the additional incoming 

duplicate A C K to clock out subsequent outgoing segments because a duplicate A C K means that 

one segment goes out of networks. Fast retransmit and fast recovery benefits the situation in that a 

single segment is dropped from a window of data. However, when two or more segments are 

dropped in an RTT, Reno can still suffer performance problems. 

The advantage of TCP Reno lies in its adaptive retransmission and congestion control 

mechanisms. However, TCP Reno has no mechanism for detecting incipient congestion or 

preventing segment loss because of the essential nature of lost segments in the congestion control 

mechanism adopted. This occasionally becomes a problem because a segment may be lost due to 

TCP sender's too large window size. It assumes segment loss is caused by link congestion, which 

is the case in the wired link, but it is not suitable for the wireless link or satellite link when the 

B E R is relatively high. A satellite link is a long-fat channel; this worsens the situation when 

segment loss is due to error corruption. After the sender cuts its window in half due to error, the 

congestion window increases only linearly, not exponentially; the long RTT harms its perfor

mance much more seriously than in a wired network. Therefore, TCP Reno's performance 

degrades significantly when segment loss is caused by transmission error. Another major 

shortcoming of TCP Reno is that TCP Reno can retransmit at most one lost segment per RTT, and 
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has to cut its congestion window several times when multiple segments lost from the same 

window of data. Two major enhanced versions to TCP Reno are NewReno and S A C K . 

2.2.2 TCP NewReno 

TCP NewReno inherits slow start, congestion avoidance and fast retransmit mechanisms 

from TCP Reno. The difference lies in fast recovery. In fast recovery, TCP NewReno just cuts its 

congestion window half once when it encounters two or more segment loss in the single window 

of data. It does not end its fast recovery i f it detects another segment lost in the same window. 

2.2.3 TCP SACK 

The S A C K option allows multiple segments recovery in a single window per RTT. The 

S A C K option field contains a number of S A C K blocks, they represent a group of non-contiguous 

segments that have been received and queued. The first block in S A C K is required to report the 

receiver's most recently received segment, and the additional S A C K blocks repeat the last 

reported S A C K block. Due to the limited space for the TCP header, the S A C K option has room 

for at most four blocks. TCP S A C K option does not change the original acknowledgement field. 

We use an example to illustrate the usage of S A C K option. 

Table 2.1 SACK option usage. 

Triggering Segment A C K First Block Second Block Third Block 

0-1023 1024 

1024-2047 lost 

2048-3071 1024 2048-3071 

3072-4095 lost 

4096-5119 1024 4096-5119 2048-3071 

5120-6143 lost 

6144-7167 1024 6144-7167 4096-5119 2048-3071 
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TCP S A C K implementation preserves the basic congestion control schemes of TCP Reno. 

However, TCP S A C K allows the sender to explicitly retransmit those omissions and significantly 

reduce unnecessary retransmissions. Thus, TCP becomes robust in the presence of out-of-order 

segments, and uses the retransmit time-out as the last recovery resort. 

Results show that TCP S A C K performs very well in a long-delay environment with 

moderate losses, retransmitting all lost segments within the first RTT after fast recovery is 

triggered. Some studies [26, 27] state that S A C K feature reduces time-outs and is not overly 

aggressive when competing with non-SACK options. Average throughput improvements are 

measured from 15% to 50% over various terrestrial Internet settings. Nevertheless, under an 

extreme link error rate (10"6), even TCP S A C K is unable to prevent excessive time-outs, and 

average TCP throughput is below 15% [11]. Another issue concerning the S A C K option is that it 

requires the modification to both source and destination protocol stacks. 

2.2.4 TCP Vegas 

TCP Vegas is based on the modification of TCP Reno, and three major modifications are 

congestion avoidance, fast retransmission and slow start in order to improve throughput and 

recover from segment loss more efficiently. The main difference between Reno and Vegas lies in 

how to estimate the available bandwidth. Reno treats the segment loss as an indicator of network 

congestion, while Vegas calculates the expected and actual throughput based on the measured 

round trip time to control transmitting rate. 

In TCP Vegas, a fine grained timer is used to record RTT for each segment that is sent out. 

TCP Vegas uses the average recorded RTT to accurately determine the amount of data segments 
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that the sender can send out. In the congestion avoidance phase, TCP Vegas tracks changes in the 

throughput (more precisely, changes in the sending rate) and adjusts the congestion window 

according to the following formula: 

cwnd + 1; diff< a/baseRTT 
cwnd = I cwnd; a/baseRTT < diff< §/baseRTT 

cwnd-\; diff>$/baseRTT 

diff = expect rate - actual rate > 0 by definition 
expect rate = data in transit/base RTT 

actual rate = (next sent sequence number - segment timed)/averageRTT 

where averageRTT is the currently observed average RTT, baseRTT is the minimal value of 

measured RTTs, and a and (3 are thresholds that determine the extra buffers the sender can take 

given the current condition in the connection path. By default, the respective values of a and p are 

fixed as 1 and 3. 

TCP Vegas also employs some other algorithms to differentiate itself from Reno. One is 

when a duplicate A C K is received, Vegas checks to see if the difference between the current time 

and the timestamp recorded for the relevant segment is greater than the time-out value. If it is, 

then Vegas retransmits the segment immediately without waiting for three duplicate A C K s . 

Another is during slow start. The increasing rate of the congestion window in a slow start phase is 

half of TCP Reno. The algorithm compares the throughput of the same congestion window to 

check whether the throughput is increasing or not. It is noteworthy that the Vegas slow-start 

scheme allows for the exponential growth of the congestion window only for every other RTT, 

which may degrade performance over satellite links due to the long delay. 

The throughput performance of TCP Vegas in wired networks has been investigated 
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widely, but this is not the case for satellite networks. It is shown [28, 29] that the performance of 

TCP Vegas is inferior to TCP Reno over long delay channels. In this thesis, we present simulation 

results to reveal the conditions of this disadvantage. 

A Network Simulator [30] is used as the simulation tool, which already implements the 

TCP Vegas mechanism. After carefully reviewing the code, we found there are some points that 

are not mentioned in the original TCP Vegas behavior proposed in [25]. Readers can refer to [31] 

for details. I present some important unconformable parts, which may be used to explain the sim

ulation results in the following chapters. 

When TCP Vegas enters congestion avoidance from a slow start, the congestion window 

shrinks one eighth. When TCP Vegas enters fast recovery stage, i f the segment is lost for the first 

time, the congestion window is cut only by one quarter instead of one half. If the segment is lost 

the second time or more, the congestion window is cut by one half. 

In some cases, a serious problem occurs when TCP Vegas resets its baseRTT. TCP Vegas 

resets its baseRTT when there is only one segment transferred in the last RTT or the calculated 

average RTT is less than the current baseRTT. When there are several segments lost in the same 

window, sometimes the reset causes baseRTT to change to a very small value. This problem may 

severely hurt the throughput because the actual RTT is much larger than baseRTT, and cannot 

open its congestion window. In the implementation of this thesis, we add another judgement when 

resetting baseRTT. We reset baseRTT only when the baseRTT is larger than the propagation delay, 

which is the major part of the overall delay. 
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2.3 TCP Options 

Except for the S A C K option we introduced before, there are some other options which are 

defined by IETF. The IETF creates an informational standard that recommends which standard

ized TCP options should be used over satellite networks [32]. The options used by the source and 

destination have to be negotiated when the TCP connection is set up. Many of these can be 

applied to satellite networks. These options are as follows: 

• Window Scale [15]: TCP's protocol syntax originally only allowed windows up to the 

size of 64 kilobytes, which limits maximal goodput to roughly 1 Mbps. This value is 

insufficient for satellite bandwidth-delay products. The window scale option allows 

the effective size of the offered window to be increased to 30 bits by introducing a 

scaling factor, which significantly increases the amount of data which can be outstand

ing on a connection. This is particularly critical in the case of satellite links, which re

quire large windows to realize their high data rates. However, increased window size 

can result in sequence number wrap around. 

• Selective Acknowledgments (SACK) [18]: Selective acknowledgments allow for mul

tiple losses in a transmission window to be recovered in one RTT, significantly reduc

ing recovery time when the RTT is large. 

• Time Stamp [15]: Large round trip delay variables can yield inaccurate RTT estima

tions, which inevitably reduce the efficiency of TCP's loss detection mechanism. The 

proposed time stamp option solves this problem by associating a sender-side time 

stamp with each segment. The receiver echoes back these timestamps, and provisions 

are given for handling non-contiguous segments. The time stamp option is important 
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for TCP over satellite networks considering the large delay variability. The time stamp 

can protect against sequence number wraparound, which is a problem caused by win

dow scale option. 

• Larger Initial Window [17]: Since the slow start phase relies on the returning A C K to 

increase window size, there is a direct dependency between RTT and bandwidth effi

ciency. The IETF approved an experimental proposal [16] which is allowed to in

crease the initial value of the congestion window to four segments instead of one. 

• Path M T U Discovery [16]: This option allows the TCP sender to probe the network 

for the largest allowable message transfer unit (MTU). Using larger MTUs is more ef

ficient, and helps the congestion window to open faster in a long-delay environment. 

M T U can yield good benefit i f the maximal segment size is not known a priori. How

ever, some studies state that larger segments are more prone to corruption loss, so it 

maybe harmful to satellite link where the BER is considerable. 

• TCP for Transactions (T/TCP) [19]: The goal of T/TCP is allow each transactions, for 

example, each request/response sequence, to be efficiently perform as a single incarna

tion of a TCP connection. This reduction can be significant for short-lived connection 

over satellite networks. 

Using these options requires significant changes to both sender's and receiver's protocol 

suites. Some of the options require additional complexity and state information at the TCP layer, 

and so may not have been implemented, for example, on small embedded systems. Furthermore, 

some of these options are very hard to configure correctly on any given system. For example, the 

window scaling factor can only be negotiated at the connection setup when neither host has an 

estimate of the connection RTT; unless some additional mechanisms are used to determine the 
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RTT, the hosts can only guess at an appropriate scale factor. These options do not address some of 

the important problems pointed out in the previous section, such as the high penalties imposed by 

the congestion control algorithms for corruption-induced segment loss on connections using 

satellite channels. 
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Chapter 2 introduced the methods to improve TCP performance in the context of TCP 

itself. However, the effectiveness of those solutions is limited by backward compatibility of 

current given systems. In this chapter we introduce another method: employ TCP performance 

enhancing proxies (PEPs), more specifically, split connection proxies, over satellite networks. We 

provide an overview of the modified Internet configuration and the concept, implementation 

requirement and interworking problem of the TCP PEP. Finally, we present the basic working 

algorithm of a random early detection (RED) queue. 

3.1 A Modified Internet Architecture 

We have discussed that TCP performance degrades significantly over some specific 

network topology, such as those with a high BER, highly asymmetric, and high latency satellite 

link. Often these problems arise from inadequacies in the layered communication protocol suite; 

in many situations, each layer cannot function independently, but depends on other layers in a 

complicated way. For example, the transport layer may depend on link layer parameters, such as 

B E R and delay, or the network layer is affected by the stability of individual links, and so on. 

Even the application layer is not independent of the link layer, for instance, telnet applications 

require a short round trip time. 

If a network is homogeneous or nearly so, then layered protocol design yields efficient and 

good results. For example, Internet protocols work well in a terrestrial network with low or 

medium delay, low BER and low failure rates. However, a layered protocol design may perform 

poorly in a network with significantly different characteristics, this is the case in TCP over 
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satellite links. This observation suggests a way to modify the Internet for better performance: 

partition the network by proxies into parts that are homogeneous or nearly so, and apply the 

layered protocol design to each pair of proxies. Figure 3.1 shows this kind of modified architec

ture. 

N4 

Figure 3.1 Modified system architecture. 

The proxies P[ to P 4 are located at the edge of different networks to perform protocol 

conversions. By employing a different protocol stack, these proxies isolate the host of H j through 

H 2 from special link-layer characteristics of N 5 . Proxies may use a proprietary protocol within N 5 

to carry out some transport level function, and to perform a translation so that the changes are 

transparent to the end systems. For example, much TCP performance degradation arises from the 

interweaving of its error recovery and congestion control mechanisms, and the proxies may try to 

handle congestion control on a local basis, thus uncoupling these two schemes. One such kind of 

proxies is the performance enhancement proxy. 

3.2 Performance Enhancement Proxy (PEP) 

3.2.1 The Concept of PEP 

A PEP is used to improve the performance of Internet protocols on network paths where 
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native performance suffers from some characteristics of a link or subnetwork on the path [20]. 

The advantage of a PEP is that it acts on behalf of the end system without changing each end host 

configuration. At the same time, the proxy services are customized specifically for various 

characteristics of a link to compensate for poor performance. Both the link layer solution and end-

to-end solution can be combined with this method to enhance TCP performance. 

In principle, a PEP implementation may function at any protocol layer, but in practice, a 

PEP most commonly functions at the application layer or transport layer. Those proxies operating 

at the application layer need to understand the context of specific application. Others operating at 

the transport layer or below, only deal with problematic link characteristics, and ignore the 

knowledge of how an application works. Table 3.1 summarizes the various proxy functions used 

to improve performance in wireless and satellite links [33 ] . 

Table 3.1 Performance enhancement proxy functions 

Proxy Type Functions 

Application Proxy 
Web caches, pre-fetching, relay mail transfer agents 

Content transformation 
Application protocol transfer (e.g. HTML<-> HDML) 

Transport Proxy 
TCP ACK handling (e.g. ACK spacing) 

Compression, header suppression 
TCP performance enhancement (e.g. split connection, spoofing protocol) 

Web caching and prefeching are two basic mechanisms for reducing access latency at the 

application layer. Reference [34] proposes to establish the collaboration between proxy clients 

and web severs so that cache coherence and prefeching mechanisms can be combined into one 

effective mechanism to reduce the number of requests, as well as the corresponding connection 

time. The Smart Proxy Approach (SPA) [35] is an example of installing a proxy server at both the 

sender and receiver to provide web service across satellite links. The SPA uses a sender proxy to 
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implement parsing, caching, and pre-fetching an HTTP document, and uses a receiver proxy to 

implement caching such a document. As a result, the web transfers achieve tremendous speed up. 

Most of the proxy functions at the transport layer are targeted for degraded TCP perfor

mance over a specific network topology. In heterogeneous networks, almost all TCP applications 

suffer similar shortcomings, which arise from the limitations of the TCP itself. In addition, TCP is 

the only end-to-end connection-oriented protocol used in the Internet. Thus, many proxy 

functions have been proposed to improve the TCP performance over lossy and slow wireless or 

satellite links. There are three main functions completed at the transport layer: A C K handling, 

compression and header suppression, and TCP performance enhancement proxy. 

A C K filtering [9], which smooths out the A C K flow in the reverse path, is an well-known 

A C K handling method to reduce burstiness of TCP segments due to back-to-back arriving of TCP 

A C K s . Another example of A C K handling is the snoop protocol [36], which caches TCP 

segments locally and retransmits the lost TCP segments locally i f necessary, thus improving the 

TCP performance over a lossy link. Payload or TCP/IP header compression [37] may be applied 

to individual packet to reduce the amount of traffic over networks. 

There are two kinds of TCP PEPs that are proposed in the literatures over satellite links: 

TCP spoofing proxies and TCP split connection proxies. The difference between TCP spoofing 

and TCP split connection proxies is shown in Figure 3.2. Although they both break the end-to-end 

semantic of TCP, spoofing proxies just locally acknowledge TCP segments in order to reduce the 

RTT for the sender perceived; while split connection proxies partition one TCP connection into 

multiple separated connections. Reference [38] shows that TCP spoofing benefits the large file 

transfers and the throughput from the sender's point of view. However, it shows that spoofing 
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allows data to accumulate at the "spoofer", creating a second bottleneck and increasing the 

number of dropped packets, thus degrading the overall TCP performance. In this thesis, we focus 

exclusively on the TCP split connection proxies, which is commonly used over satellite links. 

Hostl Satellite Gateway Host2 Hostl Satellite Gateway Host2 Hostl Satellite Gateway Host2 

End to end TCP TCP spoofing TCP splitting 

Figure 3.2 Difference between TCP spoofing and TCP splitting. 

3.2.2 TCP Split Connection 

The split TCP connection approach employs a PEP to partition an end-to-end TCP 

connection into satellite and terrestrial segments. The idea behind the split connection is to isolate 

the long propagation delay and lossy links from other well-behaved parts of the network, in a way 

transparent to applications. The terrestrial segment would conform to the standard TCP protocol 

to guarantee compatibility with all Internet hosts. Protocol stack used between proxies may be 

customized to match the features of a satellite link. 

Figure 3.3 illustrates the split connection architecture as applied to the networks via 

satellite. In this configuration, the satellite provides access to the wired Internet through the earth 

station Gj. Gj is a PEP, which interconnects the satcom network to the outside Internet network, 

and employs a full protocol stack for protocol conversion. Considering both economic and techni

cal issues, a number of very small aperture terminals (VSATs) are located at the customer 
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premises. The satellite hosts can be connected to the VSAT directly, as with H b or composed of a 

subnet, as with H 2 to H n . 

G E O satellite 

Satellite 
host's server 

Proxy G l 

)ther clients 

Wide-are a Internet 

Other servers 

Satellite host 

H2 

Satellite 
subnet 

Figure 3.3 General system architecture. 

The end-to-end TCP connection between the server and satellite host is broken into two 

separate connections by the proxy The connection splitting is achieved by isolating the end 

hosts from characteristics of the satellite link through a proxy. For instance, having a proxy 

acknowledge data on behalf of remote hosts reduces the connection round trip time perceived by 

hosts. The use of such proxies allows the end hosts to implement very simple versions of TCP, as 

they only communicate over a relatively simple network. It also allows the proxy to optimize the 

data transfer, taking into account the nature of the satellite link. In this thesis, we consider two 

situations: (1), where multiple hosts connect to the Internet through a subnet satellite proxy G 2 ; 

and (2), where multiple satellite gateways compete for satellite links. 

A number of protocols adapted to satellite links are considered in earlier work. Reference 
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[39] employs a larger initial window and S A C K option to enhance TCP performance over the 

satellite link. Reference [40] uses TCP Reno enhanced with timestamp, window scaling and 

S A C K options on the satellite link. It also uses forward A C K (FACK) congestion control and an 

increased value for the initial window at the startup. Reference [41] introduces a congestion 

avoidance mechanism modified from TCP Vegas with a proposed send ahead mechanism to 

accelerate TCP throughput. However, these schemes are unable to distinguish between different 

reasons of packet loss because they are all based on the current TCP version. Another well-known 

proposal of TCP split connection is the satellite transport protocol (STP) [7], which is optimized 

for high latency, and asymmetric links with high error rates. STP can correctly differentiate 

between congestion packet loss and transmission errors. STP uses negative acknowledgement 

( N A C K ) to speed up packet loss recovery. The main drawbacks of STP are that it requires a 

customized implementation that is incompatible with TCP implementations, and that it still needs 

to wait one RTT after a congestion is detected before the congestion control mechanism becomes 

effective. The architecture of the above methods employs either a dedicated satellite channel or 

terrestrial dial-up link on the reverse path. In this thesis, we contribute a new system model in 

which the reverse link is shared by a number of VSATs, which communicate with the satellite 

directly over a shared uplink. 

3.3 Interworking 

The end-to-end TCP semantic is partitioned into two or three different TCP connections 

by PEPs, which are completely transparent to user applications. Therefore, there is no need to 

reconfigure any host on a network in order to take advantage of the enhancement, except for the 

proxy itself. The problem of interworking and the congestion control mechanism between satellite 

networks and terrestrial area should be handled. 
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Since a TCP source requires A C K s for clocking out new segments, we must ensure that 

the TCP source can receive a stream of A C K s i f the satellite link is not congested. In short, we 

want to decouple the A C K clock, which is supposed to provide flow control by representing the 

state of congestion in the network, from the link delay, which is a characteristic of the link. One 

way to do this is to have the proxy acknowledge data segments as soon as it receives one. 

TCP is running on the top of IP, which is a connectionless network protocol. The proxy 

implementation should be robust to routing changes and reordering of packets in the networks. 

One way to achieve this is to ensure the sequence numbers used by a TCP connection and its 

cascading TCP connections are identical. If this information cannot be acquired because of 

routing changes, the proxies should at least be capable of simply forwarding all subsequent 

packets on that connection. Therefore, TCP needs to establish synchronization at the moment a 

connection is set up. 

3.3.1 TCP Set Up and Tear Down 

To meet the above requirements, the proxy may utilize the information carried by the S Y N 

segment to exchange sequence numbers. Similarly, proxies should preserve the port numbers as 

many services use them as an authentication mechanism. The proxy must not return a S Y N A C K 

to the host before the remote host has responded, in case the remote host is non-functional. 

Therefore, the proxy must only return a S Y N A C K after the remote host has accepted the connec

tion. A similar statement might be made about the FIN sent to indicate a half-duplex close on a 

connection. Suppose we want to set up a TCP connection between a satellite host's server and H l s 

as shown in Figure 3.3. The procedure used to perform connection splitting setting up and tearing 

down is illustrated in Figure 3.4. 
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Whenever the proxy Gj sees a connection request (i.e. a S Y N segment), it intercepts the 

request and originates a similar connection request with customized protocol or mechansims. 

When all downstream connections are completed, an acknowledgment (a S Y N A C K ) is returned 

to the host that originated the original request. Once the connection is set up, the proxy intercepts 

all data on that connection, returns an acknowledgment to the sender bearing the address of the 

destination, and buffers the data for downstream transmission. When a proxy receives a FIN 

segment, it forwards the FIN to the end host and waits for the A C K . When a FIN is received for 

both directions of a TCP connection, all the resources for the corresponding connection segments 

are freed to minimize resource usage. 

3.3.2 Interworking Congestion Control 

As mentioned before, proxies acknowledge TCP segments locally. Thus, the end host does 

not perceive the long delay over the satellite network. However, i f this is not controlled properly, 

it raises another issue. The sender may clock out TCP segments so fast that they may consume too 

much buffer in the proxy. 

The simplest way to achieve flow control between satellite networks and terrestrial 

networks is to use a "back-pressure" mechanism. The method we employ uses TCP advertised 

window in A C K segments to control the upstream sending rate. Proxy maintains two buffers for 

each direction of a TCP split connection: transmit buffer and receive buffer. The transmit buffer 

stores data that is ready to transmit to the downstream or those has been transmitted but waiting 

for acknowledgments. When A C K s arrivals, those segments correctly received by destination are 

eliminate from transmit buffer. The receive buffer stores those out-of-order segments, or those in 

order segments come from the upstream waiting to be sent downstream when the transmit buffer 
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is full. We place a fixed constraint on the total size of these two buffers. Thus, the available buffer 

space shrinks when new segments arrive from the upstream, and opens when acknowledgments 

come from the downstream to free up the space. We record the available buffer size in the 

advertised window field of A C K segments' header to notify the upstream how much data it can 

send in maximum. When the traffic load of a satellite link is light, segments can be sent out in 

time, leading to the buffer is almost empty. As a result, the advertised window is large, and 

upstream TCP sender can speed up the data transmission. On the other hand, when satellite link is 

congested, TCP segments are backlogged in the transmit buffer, and accumulated in the receive 

buffer when transmit buffer is full. As a result, the advertised window is reduced, and upstream 

TCP sender has to slow down the data transfer accordingly. Through this method, congestion 

indications are propagated back to the sending host eventually. 

Server Proxy 

Upstream i 1 r 

Advertised 
Window 

i i i 1 

Downstream 

Figure 3.5 Flow control between satellite networks and terrestrial networks 

3.4 Random Early Detection Queue 

One of the novel features of our approach is that we deploy a random early detection 

(RED) queue at the proxy. The R E D queue algorithm can detect incipient congestion of the 

network and manage the queue in a more active manner. One of the main goals of the RED queue 
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is to simultaneously achieve high throughput and low average delay [42], and avoid global 

synchronization and bias against bursty traffic by controlling the average queue size. 

A n RED queue is characterized by a set of parameters, the most important ones being two 

thresholds: minth and maxlh, used to switch between different queue management algorithms. The 

RED queue also maintains an estimate of the average queue length, using a low-pass filter with an 

exponentially weighted moving average (EWMA), as shown below: 

avg = q_w • q_int + (1 - q_w) • avg 

where q_yv determines the time constant of the low-pass filter, q_int is the instantaneous queue 

length at the time measurement, and avg stands for the average queue length. 

In our implementation, we use a gentle RED algorithm [43]. When the average queue size 

is less than the minimal threshold minlh, no packet is marked. When the average queue length falls 

between the minth and maxth, the system randomly marks the incoming packets with the probabil

ity pa, until the maximal probability maxp is reached. It begins to randomly drop the incoming 

packets with increasing probability from maxp to 1.0 when the average queue length exceeds the 

maxlh, and is less than 2*maxth. When the average queue size is greater than 2*maxth, every 

arriving packet is dropped. The reasons for switching from marking to dropping packets at some 

point are for adding robustness in case there are misbehaving flows not using conformable end-to-

end congestion control. That is, if a flow does not respond properly to marking, then it might drive 

the queue to high enough congestion levels, in which the system begins dropping packets rather 

than marking packets. Readers can refer to [44] for suggested values of these parameters. 

The probability of marking pb varies linearly from 0 to maxp, and the probability of 
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droppingpb varies linearly from maxp to 1.0, as shown in Figure 3.5. The final packet marking or 

dropping probability pa increases slowly since the last marked or dropped packets, which ensure 

that the gateway does not wait too long before marking a packet, using the formula listed below: 

pa<-pb/(\-count-pb) 

maxp 

min<h maxih 2xmax,h 

Average queue length 

Figure 3.6 The packet mark/drop probability of RED queue. 

where count define the number of packets since last marking or last dropping. 

If the marking is used to notify the congestion, the RED queue must be co-operative with 

senders and receivers that support Explicit Congestion Notification (ECN) [45]. If the receiver 

gets a marked TCP segment, it will echo back this mark by setting echo-flag in the header of the 

subsequent A C K s . When the sender receives these A C K s , it realizes that the network is 

congested, and cuts its window by one half. The original purpose of E C N is to detect the conges

tion in the network path and quench the sending rate of the TCP sender. It can partially differenti

ate the congestion loss and transmission error since it can get explicit congestion information. 

However, i f a packet is lost and TCP is not in the fast retransmit/fast recovery, or the E C N action 
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phase (ECN ensures the congestion window cut happened once per RTT), TCP wi l l cut its 

congestion window, even the packet loss is caused by transmission error. In this case, TCP cannot 

differentiate whether this packet loss is due to error or congestion. Therefore, the proposal in [46] 

exploits the implicit information provided by E C N to further distinguish the cause of packet loss. 

If one of the duplicate A C K s contains E C N , TCP assumes the packet loss is caused by congestion 

and cuts its congestion window. Otherwise, TCP assumes the packet loss is caused by transmis

sion error and keeps its congestion window. Another shortcoming of E C N is that it takes one RTT 

for the sender to react to the congestion, because the E C N needs to be echoed back by the 

receiver. The effectiveness of E C N over satellite networks is therefore limited due to the very 

long RTT, which can be more than 500 ms in GEO satellite systems. 
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Gateways 

In this chapter, we first introduce the system architecture with two gateways, which is 

widely studied in the literature [39, 40, 7]. Next, we describe the dynamic congestion control 

mechanism based on TCP S A C K proposed over a splitting connection scenario. Finally, we show 

the features of the proposed mechansims and compare the performance of our proposal with 

different TCP versions in a single flow case and multiple flows case through simulation. 

4.1 System Architecture 

Figure 4.1 illustrates the system architecture we use in this chapter. The satellite network 

provides an intermediate link in the end-to-end connection. We consider a simple bent-pipe satel

lite that relays packets received from the uplink to the downlink without demodulation or error-

checking. There are two gateways, each of them is located at the edge of the satellite network. The 

TCP split connection is achieved by configuring the gateway as a proxy for the remote host, thus 

isolating the host from the characteristics of the satellite link. When one of the end hosts requests 

to set up a TCP connection, its proxy intercepts this request and sets up a cascading TCP connec

tion for it over the satellite link to the opposite proxy, which in turn sets up another cascading TCP 

connection to the corresponding end host. The proxies are responsible for local acknowledgments 

and local retransmissions on behalf of end hosts over each of the terrestrial and satellite segment. 

The proposed dynamic TCP mechanism is applied to the proxies only. 

4.2 Proposed Dynamic SACK Mechanism (DSACK) 

In the split connection scenario, the proxies act as both a virtual receiver and a virtual 

sender of the cascading TCP connections. Thus, they have access to local information concerning 
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Figure 4.1 Two-gateway system architecture, 

underlying queue conditions. We adopt the same algorithm as the RED queue, but use this infor

mation in a completely different way. By exchanging information locally between the TCP and 

MAC layers, the proxies can react to the RED marking and dropping immediately. Therefore, the 

proxies can control network congestion and prevent queue overflow much more efficiently with

out the long RTT delay. 

We use service primitives to exchange information between the TCP layer and MAC 

layer. Figure 4.2 shows the exchange procedure. To query the status of the underlying queue, the 

TCP layer sends a request message to the MAC layer, which then responses the value of average 

queue length. When a TCP packet is "marked" by the RED algorithm the MAC layer generate a 

congestion signal to notify the corresponding TCP layer. Because the "marking" is random, the 

signal will exist until TCP takes action, even the sequential packets are not marked by the RED 

algorithm. The TCP layer can clear this signal only after it takes appropriate actions. 

40 



Chapter 4 TCP Dynamic SACK for Networks with Two Gateways 

Proxy 

Receive Buffer Transmit Buffer 

Clear i ̂  Request 

Notification 
1 

i 

r 

i 

Response 

1 
maxlh

 m i n i h 

TCP Layer 

Queue 

M A C Layer 

Figure 4.2 Congestion control architecture. 

In detail, when a packet arrives at the queue, if it is marked by the probability determined 

from the RED queue algorithm (the probability calculation is shown in Section 3.4), the M A C 

queue generates a signal to the corresponding TCP layer. These congestion notification signals 

enable immediate feedback, which benefits the long-delay satellite link. 

Because TCP is ACK-clocking protocol, its window growth or reduction is done after 

receiving an A C K . When an A C K arrives, no matter it is a new A C K or a duplicate A C K , TCP 

first checks the congestion notification signal set by the M A C layer. In the presence of the conges

tion signal, TCP enquires the current average queue length. If average queue length is less than 

maxlh, it cuts its congestion window by one fourth; and if average queue length is larger than 

maxth, it cuts its congestion window by one half. When TCP cuts it congestion window, it records 

the maximin sequence number it send out to ensure it just cut once in single window of data even 

it receives more than one congestion signal. Otherwise, it allows its window to grow as in the 

original TCP mechanism. The congestion signals are the only reason for TCP to cut its congestion 

window. In this way, congestion control and error recovery schemes are separated. 
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We use table 4.1 to illustrate the event and the action taken. 

Table 4.1 Events and action. 

Events Action 

A TCP packet is "marked" by the RED 
queue. 

The congestion signal is generated. 

When TCP receives an ACK segment, 
(including new ACK or duplicate ACK) 

1. TCP checks the congestion signal occur or not. 
2. If not, increase the congestion window as original TCP scheme. 
3. If the signal is present, send the request message to the MAC 
layer query the average queue length. If the average queue length is 
less than maxlh, cut the congestion window 1/4; otherwise, cut the 
congestion window 1/2. 

When the congestion occurs at the proxy, the congestion signal causes the TCP to slow 

down its transmission rate. The packets begin to accumulate in the transmit buffer. When the 

transmit buffer is full, the upstream incoming packets accumulate in the receive buffer. The adver

tised window size becomes smaller and smaller. Since the TCP congestion window is the minimal 

value of the congestion window and advertised window, upstream TCP source has to slow down 

its transmission rate eventually. 

Our proposal includes two important mechanisms: congestion control with immediate 

feedback and wireless error identification. In satellite networks, when the link error is high and 

multiple packet losses occur within one window of data, the throughput degradation is still large. 

We propose to adopt the TCP S A C K option for quick recovery from high link errors. We also 

adopt the window scale option to allow for a large window size in the satellite segment. We call 

the combined mechanism D S A C K . 

4.3 Simulation Results 

The simulation in this thesis uses Network Simulator version 2.1b9a (NS2) [30]. The satel

lite network interface stacks and structure of satellite nodes are illustrated in Appendix B. We set 
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up the splittcpsink module, which is the receiver of the upstream TCP connection and forwards 

the data to the downstream TCP connection if the congestion window allows. The proposed 

D S A C K mechanism only applies to the satellite network segment. For split D S A C K and split 

SACK, two terrestrial network segments use the normal TCP Reno. The interworking problem is 

described in Section 3.3.2. 

The system configurations evaluated include a single TCP connection and multiple TCP 

connections between satellite hosts. In the single TCP connection scenario, we further demon

strate the advantage of the proposed mechanism through the TCP congestion window and under

lying queue occupancy. The TCP throughput is defined as the number of data bits received (not 

including TCP/IP headers), divided by the time used to finish the transmission. The file transport 

protocol (FTP) is used as the application data source. The simulation parameters are listed in the 

table below. 

Table 4.2 Simulation parameters for two-gateway model. 

Parameter Item Parameter Value 

Bandwidth for terrestrial link 10 Mbps 

Propagation delay for terrestrial link 50 ms 

Bandwidth for gateway over satellite 2 Mbps 

Propagation delay for satellite link 250 ms 

Packet length for downstream (including TCP/IP headers) 1024 Bytes 

Offered window size for terrestrial link 64 KB 

Offered window size for satellite link 32768 KB 

RED queue buffer capacity 125 packets 

Minlh for RED queue 5 packets 

Maxlh for RED queue 15 packets 

maxp for RED queue 0.1 

q_w for RED queue 0.002 
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We simulate the TCP end-to-end SACK, where both end hosts support the S A C K option, 

and compare it with the split SACK, where the S A C K option is supported by the proxies only. 

The corresponding results are denoted as the end-to-end S A C K and split S A C K in the graphs. 

Results for the dynamic SACK, incorporating both the immediate feedback and error identifica

tion mechanisms, are denoted as the split D S A C K in the graphs. 

Table 4.3 Difference between three schemes. 

Difference End-to-end S A C K Split S A C K Split D S A C K 

End hosts use SACK option Y N N 

Proxies use the SACK option N Y Y 

Window scale option N Y Y 

ECN-capable end hosts Y Y N 

4.3.1 Single Connection Case 

First, we compare the performance of different TCP versions and proposed mechanism 

with and without bit error. We further demonstrate the advantages of our proposed mechanism 

through the TCP congestion window, average RED queue length and the separation of the effect 

of two schemes: immediate feedback and error identification. 

Figure 4.3 shows the throughput of a single TCP connection versus the file size without bit 

error. A l l three curves show that the throughput is increasing with the file size because the impact 

of the slow-start is decreased. If the transmission is long, the slow-start only takes up a small part 

of the overall transmission time and most of the data is transmitted in the congestion avoidance 

phase, thus efficiently utilizing the available bandwidth. For the end-to-end SACK, the perfor

mance does not change much after the file size is larger than 1 M B due to the limited offered win

dow size (64K). Our split D S A C K significantly outperforms the split S A C K when file size is 
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larger than 100 K B ; in this case, the queue occupancy is too small for the congestion control 

mechanism to take effect. For example, when file size is 10MB, the throughput of the split 

D S A C K improves about 35% as compared to the split S A C K and improves about 138% as com

pared to the end-to-end S A C K . 

F i l e S i z e ( K B ) 

Figure 4.3 Throughput of single connection without bit error. 

Why and how does this happen? Figure 4.4 illustrates the congestion window comparison 

of these three schemes over the satellite segment when file size is 10MB. The figure is truncated 

at 70 seconds for the end-to-end S A C K . We can see that the end-to-end S A C K enters congestion 

avoidance too early due to the offered window size. It takes seventy seconds to reach the window 

size while the split S A C K and D S A C K only use several seconds. On the contrary, the split S A C K 

enters congestion avoidance too late. At this moment, the network is very congested and the 

average queue length reaches thirty, which is almost twice that of maxth. Thus, it has to cut its 

congestion window several times. The split D S A C K enters the congestion avoidance just at the 

time when the average queue length is a little larger than minth. This is the point where the 
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immediate feedback takes action. We can see this effect more clearly from Figure 4.5, which 

shows the corresponding average queue length. The average queue length overshoot for the split 

S A C K is three times more than the split D S A C K because of the long delay loop over the satellite 

link. This may also cause queue overflow when there are multiple flows transmitting at the same 

time. Dur ing the congestion avoidance stage, the congestion window o f the split D S A C K 

oscillates in a much smaller range than the split S A C K . This is because when the split D S A C K 

detects the incipient congestion, it cuts one fourth of its congestion window, while the split S A C K 

cuts one half, so its congestion window fluctuates within a big range. For most of the time, the 

average queue length of the end-to-end S A C K is kept at zero, which cannot fully utilize capacity. 
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Figure 4.4 Congestion window without bit error. 

We investigate the impact of different B E R s over the satellite channels to T C P perfor

mance. The file size used in the simulation is 10 M B . To evaluate individual impact, we run simu

lations for the immediate feedback mechanism and error identification mechanism separately. 

With immediate feedback, the congestion signal is generated as we discussed before, but T C P 
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Figure 4.5 Average queue length without bit error, 

only checks the congestion signal when it receives a new A C K , and cuts the congestion window 

according to average queue length. If T C P receives a duplicate A C K , it enters fast transmit and 

fast recovery as usual and ignore congestion signals. We denote this scheme as the split immedi

ate feedback in the graph. In the error identification mechanism, T C P are ECN-capable and 

employs R E D queue. The E C N marks are echoed back after an R T T in the satellite segment. To 

account for the shortcomings of E C N (the shortcomings of E C N are described in Section 3.4), 

T C P cuts the congestion window in one half, if one of duplicate A C K s contains echo-flag. If non 

duplicate A C K contains echo-flag, T C P assumes the packet loss is caused by error and takes no 

action. This method is denoted as the split error identification. 

From Figure 4.6, we can see that the split S A C K is better than the end-to-end S A C K 

thanks to local retransmissions for error recovery. Even though the split S A C K can recover sev

eral packet losses within an RTT, the performance degrades sharply when the B E R reaches 10"6. 

On the other hand, the impact of the B E R on the D S A C K throughput is much smaller because it 
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can check the status of the underlying queue to distinguish between congestion loss and transmis

sion error. When the BER is IO"6, the split D S A C K is five times better than the split S A C K and 

more than seven and half times better than the end-to-end SACK. 
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Figure 4.6 Impact of bit error rate on single connection throughput. 

We can see the effect of different mechanisms more clearly from the split Immediate 

Feedback and split Error Identification curves. Both of these mechanisms can improve TCP per

formance to some degree; however, their respective performance stays lower than the proposed 

DSACK. For example, the throughput of the split Immediate Feedback degrades significantly 

when the BER is higher than IO"8. When the BER is IO"6, the split Error Identification yields 

almost the same throughput as the split D S A C K , while the Immediate Feedback performs poorly. 

The reason that the Immediate Feedback offers little advantage at 10"6 B E R is easy to explain. 

Because the Immediate Feedback cannot distinguish a transmission error from congestion loss, it 

cuts its window continuously and makes the average queue length only exceed the minth once; this 

means the Immediate Feedback takes effect only once during the simulation. However, when the 
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BER is as low as IO"8, the split Immediate Feedback can raise the throughput by about 34% as 

compared to the split S A C K . The Immediate Feedback keeps taking actions to prevent possible 

network congestion. In short, the performance of the split D S A C K is a result of the combined 

effect of these two schemes. Sometimes one scheme may dominate the whole result of the simula

tion. For instance, the Split Error Identification is more effective when the B E R is high. 

Figures 4.7 and 4.8 reveal more detailed information when the B E R is equal to 10~6. The 

figures are truncated at 160 seconds for the end-to-end S A C K and split S A C K . We can see that 

congestion windows of the end-to-end S A C K and split S A C K are kept at a very low level. This is 

because they cut their congestion windows continuously when they encounter packet loss, even i f 

they have just recovered from the last window of packet loss. Queue occupancy is also maintained 

at a very low level, except at the startup, as Figure 4.8 shows, and thus cannot fully utilize the 

available bandwidth. On the other hand, the split D S A C K can maintain its congestion window at 

a much higher level, and reduce its window only when congestion occurs at the networks. For 

these three schemes, time-out events are unavoidable when the retransmission packets are lost. 
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Figure 4.7 Congestion window when BER=lO"6. 
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4.3.2 Multiple Connections Case 

Figure 4.9 illustrates the total TCP throughput versus the number of TCP connections over 

an error-free channel. The number of connections varies from 10 to 40. Each connection simulta

neously transmits a 200 K B file, which approximates the typical size of HTTP objects [47]. The 

general trend shows that the overall throughput improves with an increasing number of TCP con

nections. Note that owing to the immediate feedback, the packet losses in the split D S A C K due to 

congestion are much less than that of the split SACK. Therefore, the performance of the D S A C K 

is better than both the end-to-end S A C K and the split SACK. 

We completed similar simulations of the single flow case over a range of the BER from 

10"6 to 10"9. The results for 20 TCP connections simultaneously transmitting 200 K B files are 

shown in Figure 4.10. Evidently, the proposed D S A C K method yields the highest throughput 

compared to the other two methods over the entire range of BER values, especially when the BER 

is high. For instance, when the BER is 10"6, the throughput of the split D S A C K is 28% higher than 
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Figure 4.9 Throughput of multiple connections without bit error. 

the split S A C K , and 36% higher than the end-to-end SACK. 
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Figure 4.10 Impact of bit error rate on multiple connections throughput. 
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4.4 Summary 

In this chapter, we have proposed a novel dynamic congestion control method for TCP 

split connection proxies applied to satellite networks. The mechanisms include an immediate 

feedback scheme to prevent queue overflow, which improves TCP performance over long-fat 

satellite channels, and an error identification mechanism to separate TCP's congestion control and 

error recovery operations, which improves TCP performance in the presence of transmission 

errors. The key feature of the DSACK is the local congestion notification signalling from the 

MAC layer to the TCP layer in the proxies based on current buffer occupancy. We presented 

simulation results to verify that the proposed DSACK offers significant improvements for TCP 

performance. 
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Gateway 

In this chapter, we first introduce a system architecture with a single gateway, in which a 

large number of very small aperture terminals (VSATs) share an uplink satellite channel using an 

appropriate medium access control (MAC) protocol. Then we describe the dynamic congestion 

control mechanism based on TCP Vegas proposed over a satellite link. Finally, we compare the 

performance of our proposal with different TCP versions and investigate the impact of reverse 

bandwidth, BER, traffic load, and underlying buffer capacity on TCP throughput. 

5.1 System Architecture 

Considering the satellite link capacity is scarce and expensive for use as a thin route 

access technology for the Internet, a number of satellite hosts sharing a satellite channel is quite 

normal. Very small aperture terminals (VSATs) are designed for this purpose. VSATs can scatter 

to a large number of locations to access the same satellite channel. By the beginning of 1999, 

about 300,000 two-way VSATs were in operation throughout the world [48]. 

Figure 5.1 illustrates the system architecture of satellite-based Internet access. A number 

of VSATs are located at the subscriber premises, which enable end hosts to access the Internet via 

satellite. In order to efficiently share satellite bandwidth and avoid unnecessary collision, the 

VSATs employ a MAC protocol to access a shared uplink. In the split TCP configuration, one 

proxy sits at the gateway connecting the satellite network to local web servers or the global 

Internet, while the other proxy is located at each of the VSATs. When an end host wants to set up 

a TCP connection with the server, the gateway intercepts this request and set up a cascading TCP 

connection. The gateway is granted fixed bandwidth in a dedicated uplink channel, which is the 
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Figure 5.2 Frame structure. 

requests are discarded for simplicity. Third, a packet on behalf of which a reservation is made 

may get transmitted even before its reservation is honored, either via a free assigned slot or via a 

demand assigned slot reserved by some antecedent packet of the same station. In order to fully 

utilize the precious bandwidth, each VSAT station keeps counting the number of reservations that 

are yet to be honored for it. The counter is incremented by the number of slots requested each time 

a reservation is made, and is decremented by one whenever it receives a demand assigned slot. 

Thus, the number of reservations made is equivalent to (packets queued in the station - value of 

counter). 

One important feature of the C F D A M A protocol is the access delay. The heavier the traf

fic load, the longer the time for end hosts to access the satellite channel. When traffic load is light, 

the access delay increases almost linearly. With the increasing traffic, the access delay rises 

sharply. The phenomena is more obvious when the number of hosts is large. Different from the 

two-gateway model, we have to take account this feature in the single gateway model. Both TCP 

Reno and TCP S A C K use the RTT in an implicit way while TCP Vegas uses the RTT as one of its 

controlling parameters, as discussed before. This is why we apply the dynamic congestion control 
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scheme to TCP Vegas. 

5.3 Proposed Dynamic TCP Vegas Mechanism (DVegas) 

In the system topology in Figure 5.1, there are two bottlenecks in the satellite network. 

One is the downstream RED queue, and the other is the multiple access uplink shared by a 

number of VSATs. In the split connection scenario, the gateway acts as both end-points of the 

cascading TCP connections. Therefore, it has full knowledge of the conditions of the underlying 

queues. At the same time, TCP Vegas keeps an estimate of the RTT. Thus, we can utilize this 

information to optimize the throughput and delay more effectively. 

We use service primitives to exchange the information between the TCP layer and 

underlying layer. The exchange procedure is the same as we illustrated in Figure 4.2. The conges

tion signal generation and the action taken by TCP for TCP Vegas is the same as what DSACK 

does. Different from that approach, we use the following scheme to control RTT. 

TCP Vegas uses two thresholds, a and p, to control the congestion window. TCP DVegas 

dynamically adjusts these two thresholds according to both the average queue length and the 

observed RTT. In our approach, when the average queue length is less than the minth, and the ratio 

of averageRTT to baseRTT is less than 1.1, we increment a and P with factor (baseRTT/ 

averageRTT)/!. When the average queue length is larger than the maxth, or the ratio of 

averageRTT Xo baseRTT is larger than 1.2, we multiply a and p with factor (baseRTT/ 

averageRTT)/!. The lower bounds for a and p, 1 and 3, respectively, are the same as the default 

values in Vegas. This dynamic control of the congestion window is aimed at achieving both high 

throughput and low latency. 
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5.4 Simulation Results 

We use Network Simulator version 2.1b9a [30] as the simulation tool. The satellite net

work interface stack and structure of satellite node are illustrated in Appendix B. As well as the 

splittcpsink module we mentioned before, we implement the C F D A M A protocol over the satellite 

link. Similar to before, DVegas is used only over satellite parts. We compare the performance of 

different TCP versions: TCP Reno, TCP SACK, TCP Vegas and the proposed TCP DVegas. The 

TCP versions we compared are all ECN-enabled to support RED queue. The implementation 

includes 100 VSATs at the customer side. The TCP throughput is defined as the received data bits 

divided by the simulation time. 

The table below list the simulation parameters used in the following experiment, except as 

otherwise noted. 

Table 5.1 Simulation parameters for one-gateway model. 

Parameter Item Parameter Value 

Bandwidth for terrestrial link 10 Mbps 

Propagation delay for terrestrial link 50 ms 

Bandwidth for gateway over satellite 6 Mbps 

Packet length for downstream (including TCP/IP headers) 1024 Bytes 

Packet length for upstream (including TCP/IP headers) 128 Bytes 

Propagation delay for satellite link 250 ms 

Bit error rate (BER) io- 7 

RED queue buffer capacity 375 packets 

Minlh for RED queue 15 packets 

Max,h for RED queue 45 packets 

maxp for RED queue 0.1 

q_w for RED queue 0.002 

Simulation time 300 s 
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Because the implementation includes 100 TCP connections terminating at the VSAT side, 

long-live traffic is not suitable for this topology. We set up the following traffic to test the 

proposed mechanism. The server transmits a series of 200KB files with exponentially distributed 

waiting time between transmissions to each VSAT. This traffic model approximates WWW traffic 

[51]. The traffic load increases as the inter-arrival time is reduced. 

5.4.1 Impact of Uplink Bandwidth 

We investigate the impact of the uplink bandwidth (from VSAT to proxy) on the TCP 

throughput as well as the round trip delay (satellite segment only). The downlink bandwidth (from 

proxy to VSAT) is 6 Mbps. The uplink bandwidth changes from 1Mbps to 6Mbps, and the RED 

buffer capacity is increasing accordingly, which is equal to the bandwidth-delay product (the 

delay used here is propagation delay, which is the dominant in satellite communications). In addi

tion, the thresholds for the RED queue are proportionally increasing. For example, when the 

uplink bandwidth is 2Mbps, the buffer capacity is equal to 125 packets and the minth and maxth is 

5 and 15 packets, respectively. If the uplink bandwidth is 4Mbps, the buffer capacity is equal to 

250 packets, and the minlh and maxth is 10 and 30 packets, respectively. The inter-arrival time 

between each file transmission is 20 seconds. 

Figures 5.3 and 5.4 show the TCP throughput and RTT delay. The throughput of the four 

schemes degrade significantly when the uplink bandwidth is less than 3Mbps because TCP Reno 

and SACK cannot get enough ACK to open their congestion window as soon as possible. There is 

a trade-off when bandwidth is only 1Mbps. TCP DVegas and Vegas sacrifice throughput for low 

RTT, while TCP Reno and SACK keep their throughput but their RTT is raised sharply. This is 

because TCP Vegas and DVegas use the RTT as a parameter to control their window growth. 
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Except for this point, the throughput performance of DVegas is 14% better than Reno, and 7% 

better than TCP Vegas. The RTT for DVegas is a little bit higher than Reno and SACK when 

bandwidth is larger than 4Mbps because the ratio between averageRTT to baseRTT is less than 

1.2. Thus, the ratio does not take action to reduce thresholds of a and p. 
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en a. .a 

3 

O 

0 . 9 

0 . 8 5 . 

0 . 7 5 

0 . 6 5 

0 . 5 5 

2 . 5 3 3 . 5 4 4 . 5 

U p l i n k B a n d w i d t h ( b p s ) 

DVegas 
- © - Vegas 

SACK 
Reno 

5 . 5 6 
6 

X 1 0 

Figure 5.4 Impact of VSAT uplink bandwidth on round trip delay. 

60 



Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway 

5.4.2 Impact of Controlling Parameters on RTT 

TCP DVegas sacrifices throughput for low RTT because TCP DVegas uses the RTT 

explicitly as a controlling parameter. We run the simulation to investigate its effect on TCP 

throughput and round trip delay. The first mechanism used is the same as TCP DVegas, except 

that the change of thresholds a and p is only according to the average queue length of the RED 

queue, no matter how the RTT changes; we call this DVegas-NC. The second mechanism used is 

the same as TCP DVegas except that the ratio to change thresholds a and p is modified from 1.1 

and 1.2, respectively, to 1.05 and 1.15; we call this DVegas-rttl.05, which is tighter than what we 

used in the above situation. The third one is the DVegas we have described before; we called it 

DVegas-rttl.l. 

Figures 5.5 and 5.6 present the simulation results of throughput and RTT with different 

RTT control parameters. The RTT for three schemes become smaller with the increasing of uplink 

bandwidth because more slots are available for them to transmit ACKs. We can see that DVegas-

NC achieves highest throughput and highest RTT, especially when uplink bandwidth is limited. 

DVegas-rttl.05 and DVegas-rttl.l show no difference when bandwidth is 1 and 2Mbps. This is 

because compared to the RTT control parameter, the minth and maxth may dominate the changing 

of a and p. After this point, the values of minth and maxth become larger, and the RTT control 

parameter takes action. From this simulation scenario, we can see that the proposed mechanism is 

very flexible for using over a satellite link. If delay is the main concern, some throughput can be 

sacrificed to achieve low delay. If throughput is the main concern, one can achieve higher 

throughput with a larger RTT. 
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0.95 

Figure 5.6 Impact of RTT controlling parameter on round trip delay. 
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5.4.3 Impact of Traffic Load 

We investigate the effect of traffic load on TCP throughput. The following simulation is 

done under the condition that all parameters are the same as in Table 5.1. The interarrival time for 

transferred files ranges from 40 seconds to 15 seconds, and VSAT uplink bandwidth is 6Mbps. 

When the load is heavy, TCP DVegas, Vegas and S A C K outperform TCP Reno, as Figure 

5.7(a) shows. This is because TCP Reno needs more time to recover from dropped packets, while 

S A C K can recover quicker using selective A C K . TCP Vegas drops only half the packets com

pared to Reno due to congestion, and the immediate feedback mechanism in DVegas results in 

very few dropped packets. Table 5.2 shows that the number of packets has been dropped for each 

situation. When the load is light, TCP Vegas is worst due to its conservative congestion control 

mechanism, that is, a double slow start, and small thresholds a and p. In short, TCP DVegas per

forms well over all traffic loads, and is especially robust when traffic is heavy. . 

Table 5.2 Number of packets dropped. 

TCP 15 s 20 s 25s 30 s 35 s 40 s 

Reno 3099 1536 982 429 308 567 

Sack 2947 1511 1511 903 551 616 

Vegas 1590 86 0 0 0 0 

DVegas 12 0 0 0 0 0 

5.4.4 Impact of Buffer Capacity 

We compare TCP throughput on different RED buffer capacities and different thresholds. 

This time we run the simulation when the RED buffer capacity is 125 packets, and the minth and 

maxlh is 5 and 15, respectively. 

Compared with Figure 5.7(a), although the throughput of all four mechanisms degrade 
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slightly, as shown in Figure 5.7(b), the throughput of TCP Reno and SACK is more sensitive to 

the underlying buffer capacity than TCP Vegas and DVegas. For instance, when the interarrival 

time is 15, TCP SACK degrades about 2.5% while TCP DVegas only degrades about 1.3%. 

5.4.5 Impact of BER 

We test the impact of the BER on TCP performance in a scenario where 20% of the 

VSATs experience 10"6 BER, while the rest experience 10"7 BER. The other simulation parameter 

is the same as the Table 5.1. 

Compared to Figure 5.7(a), Figure 5.7(c) shows that the overall throughput does not suffer 

much degradation due to the adaptive congestion mechanism of TCP. Other TCP connections take 

bandwidth from those suffering degradation. However, Figure 5.8 shows that the proposed DVe

gas significantly improves the performance of those TCP connections suffering from a higher 

error rate. Because DVegas separates the mechanism of congestion control and error recovery, 

those who suffer a higher BER can still achieve the high throughput if the network is not con

gested. Vegas is better than Reno because Vegas just cuts its window by one fourth if the packet is 

lost for the first time, as we mentioned before. We put these three figures together for comparison. 
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(c) Impact of bit error rate on overall throughput (where 20% VSATs are experienced BER=106) 

Figure 5.7 Impact of traffic load, buffer capacity and bit error rate on throughput. 
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Figure 5.8 Impact of bit error rate on the throughput (BER=106). 

5.5 Summary 

This chapter presents the simulation results of the proposed mechanism as compared to 

other widely used TCP versions in all kinds of network scenarios. The results show that TCP 

DVegas is a simple, efficient and flexible mechanism over satellite networks. Its scheme is easy to 

implement even when the end hosts are not ECN-capable nodes. The performance of DVegas 

outperforms other TCP versions in almost all cases shown. The flexibility of the proposed 

mechanism lies in that it can achieve high throughput or low round trip time through adjusting 

parameters. 
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Performance enhancement proxies draw considerable interest from the network 

community as an effective approach to improve TCP performance over the satellite link and 

wireless link. In this thesis, we demonstrated the feasibility of implementing a transparent split 

connection proxies over a geostationary satellite link to enhance TCP performance. Such proxies 

are easy to incorporate into existing networks and improve the performance of existing TCP 

implementations by a large factor in the presence of a satellite link. This thesis focuses on the 

performance evaluation of TCP Reno, TCP SACK, TCP Vegas and proposed dynamic congestion 

control mechanism. It also studies the effect of traffic load, bandwidth asymmetry, bit error rate 

and TCP parameters on TCP performance. 

6.1 Summary of Findings 

A dynamic TCP congestion control method, which mitigates TCP's shortcomings while 

keeping its merits, is proposed for split connection proxies over satellite networks. The novel 

mechanisms include an immediate feedback scheme to prevent network congestion, which 

benefits long latency channels, and an error identification scheme to uncouple TCP's congestion 

control and error recovery operations, which benefits error-prone channels. Simulation results 

show that the proposed mechanism is efficient, flexible, and easy to implement over satellite 

networks. Compared to RED queue, the dynamic congestion control scheme can achieve better 

performance, and reduce the complexity of network configuration. 

The throughput performance of different TCP implementations in network with satellite 

links interconnected with Internet has been thoroughly analyzed and compared. In the two-

gateway environment, we confirm that split connection is significantly beneficial to long-live 
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traffic without bit error rate. However, in presence of the serious error rate, it can not utilize 

bandwidth efficiently because TCP throughput oscillates with the congestion window. The 

proposed mechanism, which separate error recovery from congestion control, solves this problem 

effectively and achieves five to seven times throughput improvement. 

We also contribute a new system architecture, single gateway model, for multiple 

subscribers to access the shared satellite channel by employing a MAC protocol, CFDAMA. 

Under this model and the proxies, the performance of the different TCP versions under different 

traffic loads are investigated to reveal their advantages and disadvantages. We also investigated 

the impact of asymmetric bandwidth and different BERs on TCP performance over satellite links. 

The results obtained from testing the proposed mechanism show significant throughput improve

ments under a wide range of conditions. The simulation results show that the dynamic congestion 

control method is robust when traffic load is heavy. 

6.2 Future Work 

Our proposed mechanism can be employed not only in GEO satellite networks, but also in 

any network that benefits from the deployment of the split connection or cascading TCP, such as 

LEO satellite networks, cellular or ad-hoc wireless networks. Because GEO satellite networks 

have some special characteristics, such as the long-fat channels, many of the new features we 

proposed in this thesis are aimed to attack these problems. However, other networks with proxies 

may have quite different characteristics. For example, the wireless channels in cellular or ad-hoc 

wireless networks would not have such a long delay, but they may encounter a much higher BER. 

Thus, our mechanism needs further modification to adapt to them, which can be done in future 

research work. 
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Recent months have been increasing deployment of next-generation Internet protocols 

such as IPSEC and IPv6 in the Internet. These protocols change some of the characteristic of 

Internet traffic, and some of the information available to network nodes about end-to-end traffic. 

The impact of these changes on proxy architectures is also an important aspect for future study. 
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Appendix A. List of Abbreviations and Acronyms 

ACK: ACKnowledgment 

ARQ: Automatic Repeat reQuest 

BER: Bit Error Rate 

CFDAMA: Combined Free/Demand Assignment Multiple Access 

DAMA: Demand Assignment Multiple Access 

DSACK: Dynamic Selective ACKnowledgment 

DVegas: Dynamic Vegas 

ECN: Explicit Congestion Notification 

FACK: Forward ACKnowledgment 

FEC: Forward Error Correction 

FTP: File Transport Protocol 

GEO: Geostationary Earth Orbit 

HTTP: HyperText Transfer Protocol 

IETF: Internet Engineering Task Force 

IP: Internet Protocol 
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LEO: Low Earth Orbit 

MAC: Medium Access Control 

MTU: Message Transfer Unit 

NACK: Negative ACKnowledgement 

OBP: On-Board Processing 

PEP: Performance Enhancement Proxy 

RED: Random Early Detection 

RTO: Retransmission Time Out 

RTT: Round Trip Time 

SACK: Selective ACKnowledgment 

SNR: Signal to Noise Ratio 

SPA: Smart Proxy Approach 

STP: Satellite Transport Protocol 

TCP: Transmission Control Protocol 

T/TCP: TCP for Transactions 

UDP: User Datagram Protocol 
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VSAT: Very Small Aperture Terminal 

W W W : World Wide Web 
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Appendix B. NS2 Simulation Models 

This appendix shows the satellite network interface stack and structure of satellite node 

[52]. 

from routing agent to Node -> entry 

I 
M 

Sat/Recv 

to SatChannel from SatChannel 

Figure B.l Network interface stack. 
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class SatNode: public Node 

SatPosition 

LinkHandoffM 

SatTrace 

List of pointers: 
nodehead nodehead_ 
linklisthead linklisthead 
channel* uplink_ 
channel* downlink 

Other link 
objects 

Other link 
objects 

Figure B.2 Structure of class SatNode. 
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