
DYNAMIC CONGESTION CONTROL METHODS
TO IMPROVE PERFORMANCE OF TCP SPLIT

CONNECTIONS OVER SATELLITE NETWORKS
by

L I J U A N W U

B . E . , Tianjin University, China, 1993

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Electrical and Computer Engineering

We accept this thesis as. conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
October 2002

© Lijuan Wu, 2002

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

Satellites play important roles in global telecommunications. However, the performance

of Transmission Control Protocol (TCP) for reliable data transfer over the Internet suffers

significant degradation over satellite networks due to high bit error rate and the long latency of

satellite links.

Among the methods proposed for alleviating the impact of satellite link characteristics on

TCP performance, the split TCP connection separated by performance enhancement proxies

between the satellite and terrestrial Internet segments proves to be attractive for improving end-

to-end TCP performance while keeping the TCP configurations in end systems unchanged. In

this thesis, we propose a dynamic TCP congestion control mechanism for the satellite segment in

a split TCP connection scenario. This scheme uncouples the TCP congestion control and error

recovery operations, which benefits error-prone channels, and allows immediate congestion

feedback from underlying layer, which benefits long delay channels.

We model a satellite network with two gateways, which is widely studied in the literature,

and contribute a new system architecture with a single gateway, which employs a medium access

control protocol for very small aperture terminals accessing a shared satellite uplink. Different

from other approaches, the random early detection queue is deployed in the gateway. Based on

these two models, the performance between the proposed mechanism and other ubiquitous TCP

versions is compared under a number of network scenarios. Simulation results show that our

proposed mechanism improves TCP performance significantly, and is more robust when the

traffic load is heavy.

Table of Contents

Abstract "

Table of Contents iii

List of Tables vi

List of Figures vii

Acknowledgments ix

Chapter 1 Introduction 1

1.1 Background 2

1.1.1 Features of Broadband Satellite System 2

1.1.2 The Internet Protocol Architecture 5

1.1.3 TCP Limitations over Satellite Networks 6

1.1.4 Possible Solutions 9

1.2 Objectives 10

1.3 Outline of the Thesis 12

Chapter 2 TCP Fundamentals 13

2.1 TCP Overview 13

2.2 TCP Implementations 16

2.2.1 TCP Reno 16

2.2.2 TCP NewReno 18

2.2.3 TCP S A C K 18

2.2.4 TCP Vegas 19

2.3 TCP Options 22

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks 25

iii

3.1 A Modified Internet Architecture 25

3.2 Performance Enhancement Proxy (PEP) 26

3.2.1 The Concept of PEP 26

3.2.2 TCP Split Connection 29

3.3 Interworking 31

3.3.1 TCP Set Up and Tear Down 32

3.3.2 Interworking Congestion Control 34

3.4 Random Early Detection Queue 35

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways 39

4.1 System Architecture 39

4.2 Proposed Dynamic S A C K Mechanism (DSACK) 39

4.3 Simulation Results 42

4.3.1 Single Connection Case 44

4.3.2 Multiple Connections Case 50

4.4 Summary 52

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway 53

5.1 Sy stem Architecture 53

5.2 The M A C Protocol and Characteristic 54

5.3 Proposed Dynamic TCP Vegas Mechanism (DVegas) 57

5.4 Simulation Results 58

5.4.1 Impact of Uplink Bandwidth 59

5.4.2 Impact of Controlling Parameters on RTT 61

5.4.3 Impact of Traffic Load 63

iv

5.4.4 Impact of Buffer Capacity 63

5.4.5 Impact of BER 64

5.5 Summary 66

Chapter 6 Conclusion and Future Works 67

6.1 Summary of Findings 67

6.2 Future works 68

Bibliography 70

Appendix A. List of Abbreviations and Acronyms 75

Appendix B. NS2 Simulation Models 78

List of Tables

Table 2.1 S A C K option usage 18

Table 3.1 Performance enhancement proxy functions 27

Table 4.1 Events and action 42

Table 4.2 Simulation parameters for two-gateway model 43

Table 4.3 Difference between three schemes 44

Table 5.1 Simulation parameters for one-gateway model 58

Table 5.2 Number of packets dropped 63

vi

List of Figures

Figure 1.1 Internet protocol architecture 5

Figure 1.2 TCP data communication between end hosts 6

Figure 2.1 IP datagram and TCP segment 14

Figure 2.2 TCP header 14

Figure 3.1 Modified system architecture 26

Figure 3.2 Difference between TCP spoofing and TCP splitting 29

Figure 3.3 General system architecture 30

Figure 3.4 Datagram of TCP set up and tear down 33

Figure 3.5 Flow control between satellite networks and terrestrial networks 36

Figure 3.6 The packet mark/drop probability of RED queue 37

Figure 4.1 Two-gateway system architecture 40

Figure 4.2 Congestion control architecture 41

Figure 4.3 Throughput of single connection without bit error 45

Figure 4.4 Congestion window without bit error 46

Figure 4.5 Average queue length without bit error 47

Figure 4.6 Impact of bit error rate on single connection throughput 48

Figure 4.7 Congestion window when BER=10"6 49

Figure 4.8 Average queue length when BER=10"6 50

Figure 4.9 Throughput of multiple connections without bit error 51

Figure 4.10 Impact of bit error rate on multiple connections throughput 51

Figure 5.1 One gateway system architecture 54

Figure 5.2 Frame structure 56

vii

Figure 5.3 Impact of V S A T uplink bandwidth on throughput 60

Figure 5.4 Impact of V S A T uplink bandwidth on round trip delay 60

Figure 5.5 Impact of R T T controlling parameter on throughput 62

Figure 5.6 Impact of R T T controlling parameter on round trip delay 62

Figure 5.7 Impact of traffic load, buffer capacity and bit error rate on throughput 65

Figure 5.8 Impact of bit error rate on throughput (BER= 10 6) 66

Figure B . l Network interface stack 78

Figure B.2 Structure of class SatNode 79

viii

Acknowledgments

I would like to extend my sincere gratitude towards my supervisor, Dr. Victor C M .

Leung, for his guidance and constant source of inspiration throughout my graduate studies at the

University of British Columbia (UBC). I would like offer my appreciation to Fei Peng for her

continuous support. Last but not the least, I would like to thank the helpful staff of the

Department of Electrical and Computer Engineering at UBC.

This work is supported by grants from Com Dev International and the Canadian Institute

for Telecommunications Research under the N C E program of the Canadian Government, and by

the Canadian NSERC/CSA Partnership Program under grant CSA223232-98.

ix

Chapter 1 Introduction

Global Internet communication has experienced explosive growth since 1990 and plays an

increasingly important role. The availability of high-speed Internet access at a reasonable cost

will greatly empower people, institutions and corporations, and enhance their social-economic

well-being. Whereas high-speed Internet access technologies, such as cable modem and digital

subscriber loop are becoming popular, they mainly benefit densely populated urban areas where

they can be economically deployed. For geographically remote or underdeveloped regions,

creating such an infrastructure is time-consuming and expensive. The use of geostationary earth

orbit (GEO) and low earth orbit (LEO) satellites for offering high-speed Internet access provides

an attractive, and sometimes the only, alternative. Moreover, with the advent of the World Wide

Web (WWW), broadband Internet access tends to be highly asymmetric in traffic usage, with

users downloading much more information than they generating. This type of traffic pattern

matches well with satellite networks, where it is much cheaper to receive data at broadband rates

than to transmit at such a rate. With these merits, satellite offers the promise of a rapidly deploy-

able communication infrastructure for providing high-speed Internet access.

Active research is ongoing to make the high-speed Internet access over satellite networks

functional and cost-effective. The efforts for improvement involve both satellite and terminal

hardware, as well as protocol architecture. With years of development, satellites have evolved

from simple space repeaters to much more powerful devices with other capabilities, such as on

board processing (OBP) and switching functions. Since satellite channels are characterized as

high bit error rate (BER) and long propagation delay, protocol suite must adapt to these special

channels to work efficiently. For this reason, the success of delivering high-speed Internet access

1

Chapter 1 Introduction

also depends on the appropriate design of underlying protocols that can fit into the satellite

environment.

Although some research work has evolved to deal with these issues, how these satellite

systems are best configured for connectionless Internet services, and how they affect the end-to-

end performance of these Internet services, is not widely studied. Much work remains to be done

to assess the impact of Internet access via satellite on the end-to-end transport performance of

various applications, identify interworking and performance issues, and develop practical

solutions to enable cost effective and efficient use of satellites to access all types of Internet

applications and services. In this thesis, we concentrate on the application of satellite systems to

provide broadband Internet access, and focus on in particular, improving the performance of

reliable Transmission Control Protocol (TCP) by employing split-connection proxies over high

B E R high latency paths. We first describe the fundamental characteristics and technological

trends of both satellite communication and the present-day Internet.

1.1 Background

1.1.1 Features of Broadband Satellite System

A satellite communication system, distinguished by its global coverage, inherent

broadcast capability, bandwidth-on-demand flexibility, and the ability to support mobility, is an

excellent candidate for providing broadband integrated Internet services to globally scattered

users. Using steerable spot beam antennas and regenerative transponders with on-board signal

processing and switching, future generation satellites wil l be capable of supporting broadband

Internet services using very small aperture terminals (VSATs) located at users' premises.

Currently, Internet access service is available for asymmetric connections employing a high-speed

Chapter 1 Introduction

satellite link for network-to-user traffic and a slow-speed dial-up link for user-to-network traffic

[1]. A n all-satellite solution using satellite links for both traffic directions capable of efficiently

supporting asymmetrical and symmetrical traffic load is useful for some applications and

necessary for others, such as high quality video conferences. We concentrate on such system

topology in order to satisfy the current and future needs of industry.

The most cost-effective solution for satellite coverage is the GEO whereby a satellite is

located at the fixed location approximately 22,300 miles above the equator. A few GEO satellites,

if properly designed, can seamlessly cover the entire surface of the earth, making it extremely

appealing to aeronautical and maritime users, and to those in remote areas lacking a terrestrial

communication infrastructure. However, GEO satellite channels are characterized by a high BER,

long propagation delay, large bandwidth-delay product and are highly asymmetric, which has

some adverse effect on Internet Protocol suite [2-5].

• Transmission Errors: Reduced signal to noise ratio (SNR) is a major concern in satel

lite transmissions, since signal strength falls proportional to the square of the distance.

Measurements show that uncoded satellite channels can have BER values around 10"6

[6], much higher than cable or fiber links. Using legacy equipment and many existing

transponders [7], which are optimized for analog voice and video services, the BER

may be as high as 10"4 in the worst case, and 10"7 on average. In a digital satellite com

munication system [8], the normal BER should be in the order of 10"8 or less for clear

sky operations. However, it may be degraded a few decades during various random at

mospheric or space conditions, such as rain attenuation.

3

Chapter 1 Introduction

• Latency: Latency is composed by propagation delay, transmission delay and queueing

delay. In the broadband GEO satellite case, the propagation delay is the dominant part.

The speed of light dictates a one-way delay of approximately 250 milliseconds on a

typical "hop" comprising of a GEO satellite uplink and downlink. Therefore, the

round trip time (RTT) may be as high as 500 milliseconds. This long delay causes a

large bandwidth-delay product, which means that a large number of packets must be

kept "in flight" to fully utilize the satellite link.

• Asymmetry: TCP performance not only depends on characteristics of links and traffic

load in the direction of data transfer, but also depends on that of the reverse path [9].

Satellite networks exhibit asymmetry in several manners. Some are inherently band

width asymmetric, such as those networks employing a broadcast satellite downlink

and a slow-speed dial-up link; while others may have many subscribers to share a

common satellite link because of economic issues. For example, very small aperture

terminals, can offer end users with very high downlink bandwidth, likely up to tens of

Mbps, but only a limited uplink bandwidth not faster than several hundred Kbps or a

few Mbps, due to uplink carrier sizing.

• Congestion: Based on the fact that efficient utilization of satellite links requires statis

tical multiplexing, the congestion likely occurs at the link between the earth and satel

lites. With onboard switching or routing, a well designed satellite system should be

able to avoid congestion on the satellite by properly scheduling transmissions in the

ground stations. However, congestion may still occur at the gateway when there is too

much traffic for the link or satellite onboard capacity. During congestion M A C may

fail to receive reserved bandwidth, and packets are backlogged in the uplink buffers.

Chapter 1 Introduction

In this thesis, we investigate the impact of these satellite link characteristics on end-to-end

TCP performance and propose a feasible solution.

1.1.2 The Internet Protocol Architecture

The term of "the Internet" refers to a wide collection of packet switching networks that are

tied together through the common use of the Transmission Control Protocol/Internet Protocol

(TCP/IP) protocol suite. Figure 1.1 illustrates a popular view of Internet protocol architecture.

The Internet suite of communication protocol follows a four-layer model, as described in [10].

This protocol stack allows different kinds of computers, running on different operation systems,

to communicate with each other over the world wide Internet. Each layer of TCP/IP protocol suite

has its own responsibility. The link layer deals with all hardware related issues, such as the

physical interface between different types of media. The network layer handles packet routing

within the Internet. The transport layer transfers a flow of data between two end hosts for the

application layer above. The application layer handles the details of the particular application and

user process.

Application

Transport

Network

Link

e.g. FTP, HTTP, Telnet

TCP, UDP

IP

PPP, Ethernet

Figure 1.1 Internet protocol architecture.

5

Chapter I Introduction

IP is commonly used as a network layer protocol to route packet as a datagram by its

addressing and routing mechanism. Since IP only provides a connectionless, best effort service, it

does not guarantee reliability or in-order delivery for each packet. The packet may be lost or

destroyed by the media, such as by network hardware failure, or packets delayed by dynamic

network routing. It is the responsibility of the TCP, which is the ubiquitous transport protocol, to

provide a reliable flow of data between two end hosts if the application requires reliable transmis

sion. The application can ignore all the details of data reliability issues, and only consider particu

lar uses like HyperText Transfer Protocol (HTTP), File Transport Protocol (FTP) and so on.

Figure 1.2 shows the TCP data communications between two remote TCP hosts and all the

protocols involved.

Host Network node

•
Network node

n
Host

Host-host
Interface

Application

Transport

Physical/LinkH-

Network

Physical/LIiiW

Network

Physical/LlnH

Host-n etwork
Interface

Network-n etwork
interface

Application

Transport

Network

Physical/Link]

Host-network
interface

Figure 1.2 TCP data communication between end hosts.

1.1.3 TCP Limitations over Satellite Networks

TCP are proposed to provide reliable end-to-end transmission over a number of network

topologies and many different kinds of physical media, without knowledge of the underlying link

characteristics. To achieve this purpose, the congestion control mechanisms of TCP are designed

6

Chapter 1 Introduction

to be very conservative. However, these conservative mechanisms guarantee the reliability by

sacrificing efficiency in some cases, especially when more and more new network topologies and

media with distinctive characteristics are added to the Internet. In order to balance the demands of

higher efficiency and good adaptability, the Internet Engineering Task Force (IETF) working

groups propose many options to enhance the TCP service.

TCP employs a window based scheme to control the flow rate from sender to receiver. It

also uses a cumulative positive acknowledgment with a retransmission scheme for error recovery.

By adapting to the end-to-end delay and packet error rate, TCP error recovery and congestion

control mechanisms perform well in low bit error rate terrestrial networks. However, communica

tions over satellites are quite different from these traditional networks. The inherent characteris

tics of satellite links often result in a significant degradation of TCP throughput.

A severe limitation of TCP that is particularly troublesome to satellite links with a non-

negligible packet error rate lies in its inability to distinguish between network congestion loss and

transmission error loss. Raw satellite links are more noisy than wireline media. Bit error rates of

the order of 10"6 or more are often observed, even under good weather conditions. Furthermore,

errors on satellite links tend to be bursty by nature. TCP is a loss sensitive protocol, using packet

loss to control transmission behavior. Therefore, packet corruption is incorrectly interpreted by

TCP as congestion to be mitigated by reducing the transmission window, thus severely limiting

throughput. When a packet loss is encountered, the lost packet is retransmitted and the rate of

sending is reduced. Many studies [11 , 12] confirm that noisy satellite links lead to great TCP

performance degradation since measurable BER values prematurely trigger the window reduction

mechanism, even i f the network is uncongested. In addition, TCP uses a cumulative acknowledg-

7

Chapter 1 Introduction

ment scheme, and so can discover only one segment loss every round trip. Thus i f multiple

segments are lost in one window of data, throughput is reduced sharply.

TCP uses a closed-loop positive feedback mechanism to determine its transmission rate.

To avoid congestion in the network, every connection starts with a slow start phase, in which the

congestion window is initialized to one segment, and is increased by one segment for every new

acknowledgment received. When the congestion window size is beyond a threshold, or a packet is

lost, the congestion avoidance phase is started, and the window size is increased by one segment

every time a complete window of data is acknowledged. Due to the low initial window, TCP slow

start takes up to several seconds for the congestion window to grow large enough to effectively

utilize the link bandwidth. This is a problem in the satellite environment where the round trip

delay is as long as 500ms, especially those short-lived connections that suffer from low through

put. Some studies [13] show that a connection with smaller RTT can capture most of the network

bandwidth at the expense of a long-delay channel.

A different problem is seen during the congestion avoidance phase. In this phase the

window grows by only one segment every RTT, so window growth is much slower than in slow

start. Thus, i f the congestion window reduction is premature when congestion avoidance is

entered, the satellite link can be under-utilized for prolonged periods of time. Most data

transferred over a satellite link can thus complete without having attained a window large enough

for optimal link utilization. This problem is more serious when the link condition is poor, which

causes congestion avoidance to be entered too early. Furthermore, the header of each segment

contains an offered window, which represents the largest amount of data that the destination

permits the remote end to send without receiving further permission. This offered window is

8

Chapter 1 Introduction

represented by a 16-bit field, which restricts its value to 64 kilobytes. Some implementations limit

the maximal window size to 32 kilobytes, and many popular implementations default to a window

of 8 kilobytes. Since TCP can not send more than one window of data per RTT, the maximal

throughput attainable by a connection over a GEO satellite link may be restricted to 128 Kbps.

1.1.4 Possible Solutions

In light of the above problems, many researchers have proposed solutions to improve TCP

performance over satellite networks. The possible solutions can be classified into three categories:

link level solutions [14], end-to-end solutions [15-19], and TCP performance enhancement proxy

(PEP) [20] solutions. These solutions are not mutually exclusive; so it is likely that all three kinds

of solutions may be used together in a network.

As link error rates are a major concern in satellite networks, link level solutions include

link layer techniques like forward error correction (FEC) and automatic repeat request (ARQ)

mechanisms to mitigate the problem of data corruption. One well-known FEC coding scheme is

convolution code. Many advanced coding techniques also exploit bit interleaving to reduce the

effects of burst error. In many situations, deploying these mechanisms can ensure that most losses

seen by TCP are in fact due to congestion. However, increased coding complexity can slow down

satellite modems and reduce bandwidth efficiency due to data redundancy.

Many end-to-end solutions are proposed to elaborate current TCP versions, or as

extensions to TCP. A number of them are adopted as TCP options or enhancements by IETF [15-

19] since they begin to recognize the importance of satellite as a means of providing Internet

access. We discuss these options further in the next chapter. It is worth mentioning that the

effectiveness of these solutions is limited by the fact that not all given end systems support these

9

Chapter 1 Introduction

kinds of extensions.

The TCP PEP approach is attracting much attention nowadays as an effective solution for

satellite networks. In this approach proxies are deployed in the network to separate links or groups

of links with highly dissimilar characteristics. The advantage of the TCP PEP is that it acts on

behalf of end systems without changing their configurations. The proxy services are customized

specifically to compensate for specific link characteristics that would otherwise cause poor

performance. This allows for the simplification of the protocols used in the end-user terminal, at

the expense of additional complexity in the network. Since the proxies are designed to take

advantage of local network characteristics, we can obtain closer-to-optimal performance than

with the end-to-end approach. Both the link layer solution and end-to-end solution can be

combined with this method to enhance TCP performance. Split-connection proxies belong to this

class of solutions.

1.2 Objectives

The overall goals of the thesis are to investigate the end-to-end performance issues that

arise when TCP split connections are employed in satellite networks to provide high-speed

Internet access, and to develop novel solutions to address these issues. We propose a dynamic

congestion control mechanism implemented as the proxy service for the satellite segment in a

split TCP connection scenario. The aim is to uncouple the TCP congestion control and error

recovery operations over the satellite channel. To combat the shortcoming of long propagation

delay, our mechanism allows immediate congestion feedback from underlying layers at the PEP.

This thesis focuses on the performance of different TCP implementations and one new proposal

over a satellite link. In order to have a better TCP throughput, optimization of TCP parameters for

10

Chapter 1 Introduction

a heterogeneous network under different conditions are considered. In this thesis, two system

architectures are fully presented, and different proposals are employed to deal with specific

characteristics.

The objectives of the thesis are as follows:

To improve TCP performance over satellite networks by deploying split connection

proxies, and proposing a new dynamic congestion control mechanism.

• To separate the TCP congestion control and error recovery mechanisms, which benefit

error-prone channels.

To realize the immediate feedback from the underlying layer, which benefits long la

tency channels.

• To investigate the impact of bit error rate, traffic load, uplink bandwidth and some

TCP options on TCP throughput and delay over satellite networks.

This work is different from others in the following ways:

• It considers a network architecture employing satellite for Internet access, which is

configured with a number of VSATs, and employs a medium access control (MAC)

protocol for multiple subscribers to access satellite links.

• It compares the performance of the different TCP versions under different traffic loads

to reveal their advantages and disadvantages.

• It employs a random early detection (RED) queue in the gateway, which can achieve

high throughput.

11

Chapter 1 Introduction

1.3 Outline of the Thesis

In Chapter 2, an overview of basic TCP operations and different TCP implementations are

presented and discussed. Chapter 3 provides a general system architecture and modified protocol

stack of satellite communication employing split connection proxies. The basic algorithm of

random early detection queue is given. Chapter 4 demonstrates the performance of the proposed

mechanism and presents the simulation result of different TCP implementations in a satellite

network environment over a two-gateway model. The simulation results and performance

analysis of different TCP implementations in satellite network environments employing a single

gateway scenario are given in Chapter 5. Finally, Chapter 6 summarizes all the findings and

provides suggestions for future work.

12

Chapter 2 TCP Fundamentals

The Transmission Control Protocol (TCP) [21, 22] is a transport protocol used by many

Internet applications (such as web, file transfer, electronic mail and tele-learning), for end-to-end

reliable data delivery. In this chapter, we describe the basis of a TCP operation, focusing on those

aspects that are most relevant to satellite links. Then we discuss four different TCP implementa

tions: TCP Reno, TCP NewReno, TCP Selective Acknowledgement (SACK) and TCP Vegas.

Finally, we introduce TCP options used to enhance TCP service over a satellite channel.

2.1 TCP Overview

TCP provides a byte-stream, connection-oriented, reliable end-to-end data service for

applications, guaranteeing in order delivery. In order to achieve all of these requirements, a lot of

mechanisms are incorporated in TCP.

In terms of byte-stream service, a TCP sender accepts a stream of data from an application

in an arbitrary size, and the TCP receiver sends the identical stream to its application layer. TCP

data and acknowledgment (ACK) are carried in a TCP segment, then encapsulated into an IP

datagram, as shown in Figure 2.1. The TCP header carries the important identification and other

control information. The format of the TCP header is illustrated in Figure 2.2. The byte-stream

information is contained in the sequence number field, which is the byte number of the first byte

being transmitted in the payload. The acknowledgment number field contains a cumulative

acknowledgment, indicating the destination has received all the data up through but not including

that byte. TCP's flow control is provided by each end advertising a window size. This is the

number of bytes that the receiver is willing to accept. The total length of the TCP header is 20

bytes, except for the options.

13

Chapter 2 TCP Fundamentals

IP Datagram

TCP Segment

IP Header TCP Header TCP Data

Figure 2.1 IP datagram and TCP segment.

10 15 16

Source Port Number Destination Port Number

Sequence Number

Acknowledgement Number

H L E N Reserved Flags

TCP Checksum

Window Size

Urgent Pointer

Options (if any)

31

20 Bytes

H L E N : Header Length

Figure 2.2 TCP header.

In terms of connection-orientation, TCP needs to exchange specially labelled segments

(using the flags field) to establish, terminate and reset a connection. To establish a TCP connec

tion, a three-way handshake mechanism with a clock-based sequence number is required to set up

a unique end-to-end connection between two remote hosts. The handshake mechanism also brings

parameters to negotiate initialization information, such as window size and options. To terminate

an active connection, each side can send a FIN segment to another when it finishes transmission;

the other side responds with an A C K for FLN.

14

Chapter 2 TCP Fundamentals

In terms of reliability, TCP provides several error recovery operations. The basic error

recovery mechanism for TCP is a retransmission time out (RTO) algorithm. After a TCP sender

transmits a segment, a timer located at the sender waits for an interval of RTO for the receiver to

A C K the data. If no A C K is received by the end of RTO, the data is retransmitted and a new timer

is set based on the new time-out value. The RTO for a segment is based on the estimated round-

trip time (RTT) and RTT variance of the connection. The subsequent time-out intervals for the

same segment are doubled each time; this process is known as exponential backoff. By combining

with the accumulated positive acknowledgment and TCP checksum, it can easily find damaged,

lost or duplicated segments. The formula list below shows how to calculate the RTO [10]:

Err = M-A
A <--A+ g • Err

D<^D + h-(\Err\-D)
RTO = A + 4-D

where M i s the measurement of RTT, A is the smoothed RTT (an estimator of the average) and D

is the smoothed mean deviation. Err is the difference between the measured value just obtained

and the current RTT estimator. Both A and D are used to calculate the next RTO. The gain g for

the average is set to 1/8. The gain for the deviation is h, and is set to 1/4. The higher gain for the

deviation makes the RTO go up faster than RTT changes.

TCP also employs two other mechanisms to prevent network congestion, namely slow

start and congestion avoidance. TCP maintains two variables known as the congestion window

(cwnd) and slow start threshold (ssthresh) to switch between these two schemes. The congestion

window is initialized to one segment upon connection startup, and represents the amount of data

that may be outstanding at any time. The slow start threshold is the parameter determined at the

15

Chapter 2 TCP Fundamentals

connection setup, usually initialized as the receiver advertised window. The scheme of slow start

is used upon the start of the connection in order to rapidly probe for available bandwidth. During

slow start, the value of the congestion window opens exponentially by adding one TCP segment

each time it receives an A C K , until the congestion window reaches the slow start threshold or a

TCP segment loss occurs. Then it enters the congestion avoidance scheme. During this phase, the

congestion window is increased by at most one segment per RTT, to make the window size grow

linearly. Finally, i f any retransmitted segment is lost (which may indicate serious congestion), the

TCP sender is forced to take a time-out, which involves retransmitting the missing segment,

reducing the congestion window to one segment and resuming the slow start. For satellite connec

tions, this time-out period and the following slow start may take several seconds during which the

system experiences very poor throughput.

2.2 TCP Implementations

Different TCP versions have evolved over years since the standard TCP (TCP Tahoe) [23]

was first implemented in Unix 4.3 BSD in 1988. TCP Reno was proposed in 1990 on the basis of

TCP Tahoe with a new error recovery scheme [24]. There are some other TCP Reno variances,

such as NewReno [22] and TCP S A C K [18]. TCP Vegas is recently proposed in [25]. In this

section, we focus on TCP Reno, TCP NewReno, TCP S A C K and TCP Vegas.

2.2.1 TCP Reno

TCP Reno has four basic schemes to control the congestion window: slow-start, conges

tion avoidance, fast recovery and fast retransmit. We discussed slow start and congestion

avoidance before. The fast recovery is aimed to detect segment loss more quickly without trigger

ing a time-out; the fast retransmit is aimed to prevent the communication path from going empty

16

Chapter 2 TCP Fundamentals

after a fast retransmit, thus avoiding the need to slow start to refill the path.

With fast retransmit, after receiving a small number (usually 3) of duplicate A C K s for the

same TCP segment, the sender infers that a segment is lost, and retransmits the segment without

waiting for a retransmission timer to expire. With fast recovery, once the threshold of duplicate

A C K s is reached and the sender retransmits the lost segment, TCP Reno reduces its congestion

window by one half. Instead of a slow start, the Reno sender uses the additional incoming

duplicate A C K to clock out subsequent outgoing segments because a duplicate A C K means that

one segment goes out of networks. Fast retransmit and fast recovery benefits the situation in that a

single segment is dropped from a window of data. However, when two or more segments are

dropped in an RTT, Reno can still suffer performance problems.

The advantage of TCP Reno lies in its adaptive retransmission and congestion control

mechanisms. However, TCP Reno has no mechanism for detecting incipient congestion or

preventing segment loss because of the essential nature of lost segments in the congestion control

mechanism adopted. This occasionally becomes a problem because a segment may be lost due to

TCP sender's too large window size. It assumes segment loss is caused by link congestion, which

is the case in the wired link, but it is not suitable for the wireless link or satellite link when the

B E R is relatively high. A satellite link is a long-fat channel; this worsens the situation when

segment loss is due to error corruption. After the sender cuts its window in half due to error, the

congestion window increases only linearly, not exponentially; the long RTT harms its perfor

mance much more seriously than in a wired network. Therefore, TCP Reno's performance

degrades significantly when segment loss is caused by transmission error. Another major

shortcoming of TCP Reno is that TCP Reno can retransmit at most one lost segment per RTT, and

1 7

Chapter 2 TCP Fundamentals

has to cut its congestion window several times when multiple segments lost from the same

window of data. Two major enhanced versions to TCP Reno are NewReno and S A C K .

2.2.2 TCP NewReno

TCP NewReno inherits slow start, congestion avoidance and fast retransmit mechanisms

from TCP Reno. The difference lies in fast recovery. In fast recovery, TCP NewReno just cuts its

congestion window half once when it encounters two or more segment loss in the single window

of data. It does not end its fast recovery i f it detects another segment lost in the same window.

2.2.3 TCP SACK

The S A C K option allows multiple segments recovery in a single window per RTT. The

S A C K option field contains a number of S A C K blocks, they represent a group of non-contiguous

segments that have been received and queued. The first block in S A C K is required to report the

receiver's most recently received segment, and the additional S A C K blocks repeat the last

reported S A C K block. Due to the limited space for the TCP header, the S A C K option has room

for at most four blocks. TCP S A C K option does not change the original acknowledgement field.

We use an example to illustrate the usage of S A C K option.

Table 2.1 SACK option usage.

Triggering Segment A C K First Block Second Block Third Block

0-1023 1024

1024-2047 lost

2048-3071 1024 2048-3071

3072-4095 lost

4096-5119 1024 4096-5119 2048-3071

5120-6143 lost

6144-7167 1024 6144-7167 4096-5119 2048-3071

18

Chapter 2 TCP Fundamentals

TCP S A C K implementation preserves the basic congestion control schemes of TCP Reno.

However, TCP S A C K allows the sender to explicitly retransmit those omissions and significantly

reduce unnecessary retransmissions. Thus, TCP becomes robust in the presence of out-of-order

segments, and uses the retransmit time-out as the last recovery resort.

Results show that TCP S A C K performs very well in a long-delay environment with

moderate losses, retransmitting all lost segments within the first RTT after fast recovery is

triggered. Some studies [26, 27] state that S A C K feature reduces time-outs and is not overly

aggressive when competing with non-SACK options. Average throughput improvements are

measured from 15% to 50% over various terrestrial Internet settings. Nevertheless, under an

extreme link error rate (10"6), even TCP S A C K is unable to prevent excessive time-outs, and

average TCP throughput is below 15% [11]. Another issue concerning the S A C K option is that it

requires the modification to both source and destination protocol stacks.

2.2.4 TCP Vegas

TCP Vegas is based on the modification of TCP Reno, and three major modifications are

congestion avoidance, fast retransmission and slow start in order to improve throughput and

recover from segment loss more efficiently. The main difference between Reno and Vegas lies in

how to estimate the available bandwidth. Reno treats the segment loss as an indicator of network

congestion, while Vegas calculates the expected and actual throughput based on the measured

round trip time to control transmitting rate.

In TCP Vegas, a fine grained timer is used to record RTT for each segment that is sent out.

TCP Vegas uses the average recorded RTT to accurately determine the amount of data segments

19

Chapter 2 TCP Fundamentals

that the sender can send out. In the congestion avoidance phase, TCP Vegas tracks changes in the

throughput (more precisely, changes in the sending rate) and adjusts the congestion window

according to the following formula:

cwnd + 1; diff< a/baseRTT
cwnd = I cwnd; a/baseRTT < diff< §/baseRTT

cwnd-\; diff>$/baseRTT

diff = expect rate - actual rate > 0 by definition
expect rate = data in transit/base RTT

actual rate = (next sent sequence number - segment timed)/averageRTT

where averageRTT is the currently observed average RTT, baseRTT is the minimal value of

measured RTTs, and a and (3 are thresholds that determine the extra buffers the sender can take

given the current condition in the connection path. By default, the respective values of a and p are

fixed as 1 and 3.

TCP Vegas also employs some other algorithms to differentiate itself from Reno. One is

when a duplicate A C K is received, Vegas checks to see if the difference between the current time

and the timestamp recorded for the relevant segment is greater than the time-out value. If it is,

then Vegas retransmits the segment immediately without waiting for three duplicate A C K s .

Another is during slow start. The increasing rate of the congestion window in a slow start phase is

half of TCP Reno. The algorithm compares the throughput of the same congestion window to

check whether the throughput is increasing or not. It is noteworthy that the Vegas slow-start

scheme allows for the exponential growth of the congestion window only for every other RTT,

which may degrade performance over satellite links due to the long delay.

The throughput performance of TCP Vegas in wired networks has been investigated

20

Chapter 2 TCP Fundamentals

widely, but this is not the case for satellite networks. It is shown [28, 29] that the performance of

TCP Vegas is inferior to TCP Reno over long delay channels. In this thesis, we present simulation

results to reveal the conditions of this disadvantage.

A Network Simulator [30] is used as the simulation tool, which already implements the

TCP Vegas mechanism. After carefully reviewing the code, we found there are some points that

are not mentioned in the original TCP Vegas behavior proposed in [25]. Readers can refer to [31]

for details. I present some important unconformable parts, which may be used to explain the sim

ulation results in the following chapters.

When TCP Vegas enters congestion avoidance from a slow start, the congestion window

shrinks one eighth. When TCP Vegas enters fast recovery stage, i f the segment is lost for the first

time, the congestion window is cut only by one quarter instead of one half. If the segment is lost

the second time or more, the congestion window is cut by one half.

In some cases, a serious problem occurs when TCP Vegas resets its baseRTT. TCP Vegas

resets its baseRTT when there is only one segment transferred in the last RTT or the calculated

average RTT is less than the current baseRTT. When there are several segments lost in the same

window, sometimes the reset causes baseRTT to change to a very small value. This problem may

severely hurt the throughput because the actual RTT is much larger than baseRTT, and cannot

open its congestion window. In the implementation of this thesis, we add another judgement when

resetting baseRTT. We reset baseRTT only when the baseRTT is larger than the propagation delay,

which is the major part of the overall delay.

21

Chapter 2 TCP Fundamentals

2.3 TCP Options

Except for the S A C K option we introduced before, there are some other options which are

defined by IETF. The IETF creates an informational standard that recommends which standard

ized TCP options should be used over satellite networks [32]. The options used by the source and

destination have to be negotiated when the TCP connection is set up. Many of these can be

applied to satellite networks. These options are as follows:

• Window Scale [15]: TCP's protocol syntax originally only allowed windows up to the

size of 64 kilobytes, which limits maximal goodput to roughly 1 Mbps. This value is

insufficient for satellite bandwidth-delay products. The window scale option allows

the effective size of the offered window to be increased to 30 bits by introducing a

scaling factor, which significantly increases the amount of data which can be outstand

ing on a connection. This is particularly critical in the case of satellite links, which re

quire large windows to realize their high data rates. However, increased window size

can result in sequence number wrap around.

• Selective Acknowledgments (SACK) [18]: Selective acknowledgments allow for mul

tiple losses in a transmission window to be recovered in one RTT, significantly reduc

ing recovery time when the RTT is large.

• Time Stamp [15]: Large round trip delay variables can yield inaccurate RTT estima

tions, which inevitably reduce the efficiency of TCP's loss detection mechanism. The

proposed time stamp option solves this problem by associating a sender-side time

stamp with each segment. The receiver echoes back these timestamps, and provisions

are given for handling non-contiguous segments. The time stamp option is important

22

Chapter 2 TCP Fundamentals

for TCP over satellite networks considering the large delay variability. The time stamp

can protect against sequence number wraparound, which is a problem caused by win

dow scale option.

• Larger Initial Window [17]: Since the slow start phase relies on the returning A C K to

increase window size, there is a direct dependency between RTT and bandwidth effi

ciency. The IETF approved an experimental proposal [16] which is allowed to in

crease the initial value of the congestion window to four segments instead of one.

• Path M T U Discovery [16]: This option allows the TCP sender to probe the network

for the largest allowable message transfer unit (MTU). Using larger MTUs is more ef

ficient, and helps the congestion window to open faster in a long-delay environment.

M T U can yield good benefit i f the maximal segment size is not known a priori. How

ever, some studies state that larger segments are more prone to corruption loss, so it

maybe harmful to satellite link where the BER is considerable.

• TCP for Transactions (T/TCP) [19]: The goal of T/TCP is allow each transactions, for

example, each request/response sequence, to be efficiently perform as a single incarna

tion of a TCP connection. This reduction can be significant for short-lived connection

over satellite networks.

Using these options requires significant changes to both sender's and receiver's protocol

suites. Some of the options require additional complexity and state information at the TCP layer,

and so may not have been implemented, for example, on small embedded systems. Furthermore,

some of these options are very hard to configure correctly on any given system. For example, the

window scaling factor can only be negotiated at the connection setup when neither host has an

estimate of the connection RTT; unless some additional mechanisms are used to determine the

23

Chapter 2 TCP Fundamentals

RTT, the hosts can only guess at an appropriate scale factor. These options do not address some of

the important problems pointed out in the previous section, such as the high penalties imposed by

the congestion control algorithms for corruption-induced segment loss on connections using

satellite channels.

24

Chapter 3 TCP Performance Enhancement Proxies for Sat
ellite Networks

Chapter 2 introduced the methods to improve TCP performance in the context of TCP

itself. However, the effectiveness of those solutions is limited by backward compatibility of

current given systems. In this chapter we introduce another method: employ TCP performance

enhancing proxies (PEPs), more specifically, split connection proxies, over satellite networks. We

provide an overview of the modified Internet configuration and the concept, implementation

requirement and interworking problem of the TCP PEP. Finally, we present the basic working

algorithm of a random early detection (RED) queue.

3.1 A Modified Internet Architecture

We have discussed that TCP performance degrades significantly over some specific

network topology, such as those with a high BER, highly asymmetric, and high latency satellite

link. Often these problems arise from inadequacies in the layered communication protocol suite;

in many situations, each layer cannot function independently, but depends on other layers in a

complicated way. For example, the transport layer may depend on link layer parameters, such as

B E R and delay, or the network layer is affected by the stability of individual links, and so on.

Even the application layer is not independent of the link layer, for instance, telnet applications

require a short round trip time.

If a network is homogeneous or nearly so, then layered protocol design yields efficient and

good results. For example, Internet protocols work well in a terrestrial network with low or

medium delay, low BER and low failure rates. However, a layered protocol design may perform

poorly in a network with significantly different characteristics, this is the case in TCP over

25

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

satellite links. This observation suggests a way to modify the Internet for better performance:

partition the network by proxies into parts that are homogeneous or nearly so, and apply the

layered protocol design to each pair of proxies. Figure 3.1 shows this kind of modified architec

ture.

N4

Figure 3.1 Modified system architecture.

The proxies P[to P 4 are located at the edge of different networks to perform protocol

conversions. By employing a different protocol stack, these proxies isolate the host of H j through

H 2 from special link-layer characteristics of N 5 . Proxies may use a proprietary protocol within N 5

to carry out some transport level function, and to perform a translation so that the changes are

transparent to the end systems. For example, much TCP performance degradation arises from the

interweaving of its error recovery and congestion control mechanisms, and the proxies may try to

handle congestion control on a local basis, thus uncoupling these two schemes. One such kind of

proxies is the performance enhancement proxy.

3.2 Performance Enhancement Proxy (PEP)

3.2.1 The Concept of PEP

A PEP is used to improve the performance of Internet protocols on network paths where

26

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

native performance suffers from some characteristics of a link or subnetwork on the path [20].

The advantage of a PEP is that it acts on behalf of the end system without changing each end host

configuration. At the same time, the proxy services are customized specifically for various

characteristics of a link to compensate for poor performance. Both the link layer solution and end-

to-end solution can be combined with this method to enhance TCP performance.

In principle, a PEP implementation may function at any protocol layer, but in practice, a

PEP most commonly functions at the application layer or transport layer. Those proxies operating

at the application layer need to understand the context of specific application. Others operating at

the transport layer or below, only deal with problematic link characteristics, and ignore the

knowledge of how an application works. Table 3.1 summarizes the various proxy functions used

to improve performance in wireless and satellite links [33] .

Table 3.1 Performance enhancement proxy functions

Proxy Type Functions

Application Proxy
Web caches, pre-fetching, relay mail transfer agents

Content transformation
Application protocol transfer (e.g. HTML<-> HDML)

Transport Proxy
TCP ACK handling (e.g. ACK spacing)

Compression, header suppression
TCP performance enhancement (e.g. split connection, spoofing protocol)

Web caching and prefeching are two basic mechanisms for reducing access latency at the

application layer. Reference [34] proposes to establish the collaboration between proxy clients

and web severs so that cache coherence and prefeching mechanisms can be combined into one

effective mechanism to reduce the number of requests, as well as the corresponding connection

time. The Smart Proxy Approach (SPA) [35] is an example of installing a proxy server at both the

sender and receiver to provide web service across satellite links. The SPA uses a sender proxy to

27

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

implement parsing, caching, and pre-fetching an HTTP document, and uses a receiver proxy to

implement caching such a document. As a result, the web transfers achieve tremendous speed up.

Most of the proxy functions at the transport layer are targeted for degraded TCP perfor

mance over a specific network topology. In heterogeneous networks, almost all TCP applications

suffer similar shortcomings, which arise from the limitations of the TCP itself. In addition, TCP is

the only end-to-end connection-oriented protocol used in the Internet. Thus, many proxy

functions have been proposed to improve the TCP performance over lossy and slow wireless or

satellite links. There are three main functions completed at the transport layer: A C K handling,

compression and header suppression, and TCP performance enhancement proxy.

A C K filtering [9], which smooths out the A C K flow in the reverse path, is an well-known

A C K handling method to reduce burstiness of TCP segments due to back-to-back arriving of TCP

A C K s . Another example of A C K handling is the snoop protocol [36], which caches TCP

segments locally and retransmits the lost TCP segments locally i f necessary, thus improving the

TCP performance over a lossy link. Payload or TCP/IP header compression [37] may be applied

to individual packet to reduce the amount of traffic over networks.

There are two kinds of TCP PEPs that are proposed in the literatures over satellite links:

TCP spoofing proxies and TCP split connection proxies. The difference between TCP spoofing

and TCP split connection proxies is shown in Figure 3.2. Although they both break the end-to-end

semantic of TCP, spoofing proxies just locally acknowledge TCP segments in order to reduce the

RTT for the sender perceived; while split connection proxies partition one TCP connection into

multiple separated connections. Reference [38] shows that TCP spoofing benefits the large file

transfers and the throughput from the sender's point of view. However, it shows that spoofing

28

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

allows data to accumulate at the "spoofer", creating a second bottleneck and increasing the

number of dropped packets, thus degrading the overall TCP performance. In this thesis, we focus

exclusively on the TCP split connection proxies, which is commonly used over satellite links.

Hostl Satellite Gateway Host2 Hostl Satellite Gateway Host2 Hostl Satellite Gateway Host2

End to end TCP TCP spoofing TCP splitting

Figure 3.2 Difference between TCP spoofing and TCP splitting.

3.2.2 TCP Split Connection

The split TCP connection approach employs a PEP to partition an end-to-end TCP

connection into satellite and terrestrial segments. The idea behind the split connection is to isolate

the long propagation delay and lossy links from other well-behaved parts of the network, in a way

transparent to applications. The terrestrial segment would conform to the standard TCP protocol

to guarantee compatibility with all Internet hosts. Protocol stack used between proxies may be

customized to match the features of a satellite link.

Figure 3.3 illustrates the split connection architecture as applied to the networks via

satellite. In this configuration, the satellite provides access to the wired Internet through the earth

station Gj. Gj is a PEP, which interconnects the satcom network to the outside Internet network,

and employs a full protocol stack for protocol conversion. Considering both economic and techni

cal issues, a number of very small aperture terminals (VSATs) are located at the customer

29

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

premises. The satellite hosts can be connected to the VSAT directly, as with H b or composed of a

subnet, as with H 2 to H n .

G E O satellite

Satellite
host's server

Proxy G l

)ther clients

Wide-are a Internet

Other servers

Satellite host

H2

Satellite
subnet

Figure 3.3 General system architecture.

The end-to-end TCP connection between the server and satellite host is broken into two

separate connections by the proxy The connection splitting is achieved by isolating the end

hosts from characteristics of the satellite link through a proxy. For instance, having a proxy

acknowledge data on behalf of remote hosts reduces the connection round trip time perceived by

hosts. The use of such proxies allows the end hosts to implement very simple versions of TCP, as

they only communicate over a relatively simple network. It also allows the proxy to optimize the

data transfer, taking into account the nature of the satellite link. In this thesis, we consider two

situations: (1), where multiple hosts connect to the Internet through a subnet satellite proxy G 2 ;

and (2), where multiple satellite gateways compete for satellite links.

A number of protocols adapted to satellite links are considered in earlier work. Reference

30

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

[39] employs a larger initial window and S A C K option to enhance TCP performance over the

satellite link. Reference [40] uses TCP Reno enhanced with timestamp, window scaling and

S A C K options on the satellite link. It also uses forward A C K (FACK) congestion control and an

increased value for the initial window at the startup. Reference [41] introduces a congestion

avoidance mechanism modified from TCP Vegas with a proposed send ahead mechanism to

accelerate TCP throughput. However, these schemes are unable to distinguish between different

reasons of packet loss because they are all based on the current TCP version. Another well-known

proposal of TCP split connection is the satellite transport protocol (STP) [7], which is optimized

for high latency, and asymmetric links with high error rates. STP can correctly differentiate

between congestion packet loss and transmission errors. STP uses negative acknowledgement

(N A C K) to speed up packet loss recovery. The main drawbacks of STP are that it requires a

customized implementation that is incompatible with TCP implementations, and that it still needs

to wait one RTT after a congestion is detected before the congestion control mechanism becomes

effective. The architecture of the above methods employs either a dedicated satellite channel or

terrestrial dial-up link on the reverse path. In this thesis, we contribute a new system model in

which the reverse link is shared by a number of VSATs, which communicate with the satellite

directly over a shared uplink.

3.3 Interworking

The end-to-end TCP semantic is partitioned into two or three different TCP connections

by PEPs, which are completely transparent to user applications. Therefore, there is no need to

reconfigure any host on a network in order to take advantage of the enhancement, except for the

proxy itself. The problem of interworking and the congestion control mechanism between satellite

networks and terrestrial area should be handled.

31

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

Since a TCP source requires A C K s for clocking out new segments, we must ensure that

the TCP source can receive a stream of A C K s i f the satellite link is not congested. In short, we

want to decouple the A C K clock, which is supposed to provide flow control by representing the

state of congestion in the network, from the link delay, which is a characteristic of the link. One

way to do this is to have the proxy acknowledge data segments as soon as it receives one.

TCP is running on the top of IP, which is a connectionless network protocol. The proxy

implementation should be robust to routing changes and reordering of packets in the networks.

One way to achieve this is to ensure the sequence numbers used by a TCP connection and its

cascading TCP connections are identical. If this information cannot be acquired because of

routing changes, the proxies should at least be capable of simply forwarding all subsequent

packets on that connection. Therefore, TCP needs to establish synchronization at the moment a

connection is set up.

3.3.1 TCP Set Up and Tear Down

To meet the above requirements, the proxy may utilize the information carried by the S Y N

segment to exchange sequence numbers. Similarly, proxies should preserve the port numbers as

many services use them as an authentication mechanism. The proxy must not return a S Y N A C K

to the host before the remote host has responded, in case the remote host is non-functional.

Therefore, the proxy must only return a S Y N A C K after the remote host has accepted the connec

tion. A similar statement might be made about the FIN sent to indicate a half-duplex close on a

connection. Suppose we want to set up a TCP connection between a satellite host's server and H l s

as shown in Figure 3.3. The procedure used to perform connection splitting setting up and tearing

down is illustrated in Figure 3.4.

32

er 3 TCP Performance Enhancement Proxies for Satellite Networks

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

Whenever the proxy Gj sees a connection request (i.e. a S Y N segment), it intercepts the

request and originates a similar connection request with customized protocol or mechansims.

When all downstream connections are completed, an acknowledgment (a S Y N A C K) is returned

to the host that originated the original request. Once the connection is set up, the proxy intercepts

all data on that connection, returns an acknowledgment to the sender bearing the address of the

destination, and buffers the data for downstream transmission. When a proxy receives a FIN

segment, it forwards the FIN to the end host and waits for the A C K . When a FIN is received for

both directions of a TCP connection, all the resources for the corresponding connection segments

are freed to minimize resource usage.

3.3.2 Interworking Congestion Control

As mentioned before, proxies acknowledge TCP segments locally. Thus, the end host does

not perceive the long delay over the satellite network. However, i f this is not controlled properly,

it raises another issue. The sender may clock out TCP segments so fast that they may consume too

much buffer in the proxy.

The simplest way to achieve flow control between satellite networks and terrestrial

networks is to use a "back-pressure" mechanism. The method we employ uses TCP advertised

window in A C K segments to control the upstream sending rate. Proxy maintains two buffers for

each direction of a TCP split connection: transmit buffer and receive buffer. The transmit buffer

stores data that is ready to transmit to the downstream or those has been transmitted but waiting

for acknowledgments. When A C K s arrivals, those segments correctly received by destination are

eliminate from transmit buffer. The receive buffer stores those out-of-order segments, or those in

order segments come from the upstream waiting to be sent downstream when the transmit buffer

34

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

is full. We place a fixed constraint on the total size of these two buffers. Thus, the available buffer

space shrinks when new segments arrive from the upstream, and opens when acknowledgments

come from the downstream to free up the space. We record the available buffer size in the

advertised window field of A C K segments' header to notify the upstream how much data it can

send in maximum. When the traffic load of a satellite link is light, segments can be sent out in

time, leading to the buffer is almost empty. As a result, the advertised window is large, and

upstream TCP sender can speed up the data transmission. On the other hand, when satellite link is

congested, TCP segments are backlogged in the transmit buffer, and accumulated in the receive

buffer when transmit buffer is full. As a result, the advertised window is reduced, and upstream

TCP sender has to slow down the data transfer accordingly. Through this method, congestion

indications are propagated back to the sending host eventually.

Server Proxy

Upstream i 1 r

Advertised
Window

i i i 1

Downstream

Figure 3.5 Flow control between satellite networks and terrestrial networks

3.4 Random Early Detection Queue

One of the novel features of our approach is that we deploy a random early detection

(RED) queue at the proxy. The R E D queue algorithm can detect incipient congestion of the

network and manage the queue in a more active manner. One of the main goals of the RED queue

35

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

is to simultaneously achieve high throughput and low average delay [42], and avoid global

synchronization and bias against bursty traffic by controlling the average queue size.

A n RED queue is characterized by a set of parameters, the most important ones being two

thresholds: minth and maxlh, used to switch between different queue management algorithms. The

RED queue also maintains an estimate of the average queue length, using a low-pass filter with an

exponentially weighted moving average (EWMA), as shown below:

avg = q_w • q_int + (1 - q_w) • avg

where q_yv determines the time constant of the low-pass filter, q_int is the instantaneous queue

length at the time measurement, and avg stands for the average queue length.

In our implementation, we use a gentle RED algorithm [43]. When the average queue size

is less than the minimal threshold minlh, no packet is marked. When the average queue length falls

between the minth and maxth, the system randomly marks the incoming packets with the probabil

ity pa, until the maximal probability maxp is reached. It begins to randomly drop the incoming

packets with increasing probability from maxp to 1.0 when the average queue length exceeds the

maxlh, and is less than 2*maxth. When the average queue size is greater than 2*maxth, every

arriving packet is dropped. The reasons for switching from marking to dropping packets at some

point are for adding robustness in case there are misbehaving flows not using conformable end-to-

end congestion control. That is, if a flow does not respond properly to marking, then it might drive

the queue to high enough congestion levels, in which the system begins dropping packets rather

than marking packets. Readers can refer to [44] for suggested values of these parameters.

The probability of marking pb varies linearly from 0 to maxp, and the probability of

36

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

droppingpb varies linearly from maxp to 1.0, as shown in Figure 3.5. The final packet marking or

dropping probability pa increases slowly since the last marked or dropped packets, which ensure

that the gateway does not wait too long before marking a packet, using the formula listed below:

pa<-pb/(\-count-pb)

maxp

min<h maxih 2xmax,h

Average queue length

Figure 3.6 The packet mark/drop probability of RED queue.

where count define the number of packets since last marking or last dropping.

If the marking is used to notify the congestion, the RED queue must be co-operative with

senders and receivers that support Explicit Congestion Notification (ECN) [45]. If the receiver

gets a marked TCP segment, it will echo back this mark by setting echo-flag in the header of the

subsequent A C K s . When the sender receives these A C K s , it realizes that the network is

congested, and cuts its window by one half. The original purpose of E C N is to detect the conges

tion in the network path and quench the sending rate of the TCP sender. It can partially differenti

ate the congestion loss and transmission error since it can get explicit congestion information.

However, i f a packet is lost and TCP is not in the fast retransmit/fast recovery, or the E C N action

37

Chapter 3 TCP Performance Enhancement Proxies for Satellite Networks

phase (ECN ensures the congestion window cut happened once per RTT), TCP wi l l cut its

congestion window, even the packet loss is caused by transmission error. In this case, TCP cannot

differentiate whether this packet loss is due to error or congestion. Therefore, the proposal in [46]

exploits the implicit information provided by E C N to further distinguish the cause of packet loss.

If one of the duplicate A C K s contains E C N , TCP assumes the packet loss is caused by congestion

and cuts its congestion window. Otherwise, TCP assumes the packet loss is caused by transmis

sion error and keeps its congestion window. Another shortcoming of E C N is that it takes one RTT

for the sender to react to the congestion, because the E C N needs to be echoed back by the

receiver. The effectiveness of E C N over satellite networks is therefore limited due to the very

long RTT, which can be more than 500 ms in GEO satellite systems.

38

Chapter 4 TCP Dynamic SACK for Networks with Two
Gateways

In this chapter, we first introduce the system architecture with two gateways, which is

widely studied in the literature [39, 40, 7]. Next, we describe the dynamic congestion control

mechanism based on TCP S A C K proposed over a splitting connection scenario. Finally, we show

the features of the proposed mechansims and compare the performance of our proposal with

different TCP versions in a single flow case and multiple flows case through simulation.

4.1 System Architecture

Figure 4.1 illustrates the system architecture we use in this chapter. The satellite network

provides an intermediate link in the end-to-end connection. We consider a simple bent-pipe satel

lite that relays packets received from the uplink to the downlink without demodulation or error-

checking. There are two gateways, each of them is located at the edge of the satellite network. The

TCP split connection is achieved by configuring the gateway as a proxy for the remote host, thus

isolating the host from the characteristics of the satellite link. When one of the end hosts requests

to set up a TCP connection, its proxy intercepts this request and sets up a cascading TCP connec

tion for it over the satellite link to the opposite proxy, which in turn sets up another cascading TCP

connection to the corresponding end host. The proxies are responsible for local acknowledgments

and local retransmissions on behalf of end hosts over each of the terrestrial and satellite segment.

The proposed dynamic TCP mechanism is applied to the proxies only.

4.2 Proposed Dynamic SACK Mechanism (DSACK)

In the split connection scenario, the proxies act as both a virtual receiver and a virtual

sender of the cascading TCP connections. Thus, they have access to local information concerning

39

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

Figure 4.1 Two-gateway system architecture,

underlying queue conditions. We adopt the same algorithm as the RED queue, but use this infor

mation in a completely different way. By exchanging information locally between the TCP and

MAC layers, the proxies can react to the RED marking and dropping immediately. Therefore, the

proxies can control network congestion and prevent queue overflow much more efficiently with

out the long RTT delay.

We use service primitives to exchange information between the TCP layer and MAC

layer. Figure 4.2 shows the exchange procedure. To query the status of the underlying queue, the

TCP layer sends a request message to the MAC layer, which then responses the value of average

queue length. When a TCP packet is "marked" by the RED algorithm the MAC layer generate a

congestion signal to notify the corresponding TCP layer. Because the "marking" is random, the

signal will exist until TCP takes action, even the sequential packets are not marked by the RED

algorithm. The TCP layer can clear this signal only after it takes appropriate actions.

40

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

Proxy

Receive Buffer Transmit Buffer

Clear i ̂ Request

Notification
1

i

r

i

Response

1
maxlh

 m i n i h

TCP Layer

Queue

M A C Layer

Figure 4.2 Congestion control architecture.

In detail, when a packet arrives at the queue, if it is marked by the probability determined

from the RED queue algorithm (the probability calculation is shown in Section 3.4), the M A C

queue generates a signal to the corresponding TCP layer. These congestion notification signals

enable immediate feedback, which benefits the long-delay satellite link.

Because TCP is ACK-clocking protocol, its window growth or reduction is done after

receiving an A C K . When an A C K arrives, no matter it is a new A C K or a duplicate A C K , TCP

first checks the congestion notification signal set by the M A C layer. In the presence of the conges

tion signal, TCP enquires the current average queue length. If average queue length is less than

maxlh, it cuts its congestion window by one fourth; and if average queue length is larger than

maxth, it cuts its congestion window by one half. When TCP cuts it congestion window, it records

the maximin sequence number it send out to ensure it just cut once in single window of data even

it receives more than one congestion signal. Otherwise, it allows its window to grow as in the

original TCP mechanism. The congestion signals are the only reason for TCP to cut its congestion

window. In this way, congestion control and error recovery schemes are separated.

41

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

We use table 4.1 to illustrate the event and the action taken.

Table 4.1 Events and action.

Events Action

A TCP packet is "marked" by the RED
queue.

The congestion signal is generated.

When TCP receives an ACK segment,
(including new ACK or duplicate ACK)

1. TCP checks the congestion signal occur or not.
2. If not, increase the congestion window as original TCP scheme.
3. If the signal is present, send the request message to the MAC
layer query the average queue length. If the average queue length is
less than maxlh, cut the congestion window 1/4; otherwise, cut the
congestion window 1/2.

When the congestion occurs at the proxy, the congestion signal causes the TCP to slow

down its transmission rate. The packets begin to accumulate in the transmit buffer. When the

transmit buffer is full, the upstream incoming packets accumulate in the receive buffer. The adver

tised window size becomes smaller and smaller. Since the TCP congestion window is the minimal

value of the congestion window and advertised window, upstream TCP source has to slow down

its transmission rate eventually.

Our proposal includes two important mechanisms: congestion control with immediate

feedback and wireless error identification. In satellite networks, when the link error is high and

multiple packet losses occur within one window of data, the throughput degradation is still large.

We propose to adopt the TCP S A C K option for quick recovery from high link errors. We also

adopt the window scale option to allow for a large window size in the satellite segment. We call

the combined mechanism D S A C K .

4.3 Simulation Results

The simulation in this thesis uses Network Simulator version 2.1b9a (NS2) [30]. The satel

lite network interface stacks and structure of satellite nodes are illustrated in Appendix B. We set

42

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

up the splittcpsink module, which is the receiver of the upstream TCP connection and forwards

the data to the downstream TCP connection if the congestion window allows. The proposed

D S A C K mechanism only applies to the satellite network segment. For split D S A C K and split

SACK, two terrestrial network segments use the normal TCP Reno. The interworking problem is

described in Section 3.3.2.

The system configurations evaluated include a single TCP connection and multiple TCP

connections between satellite hosts. In the single TCP connection scenario, we further demon

strate the advantage of the proposed mechanism through the TCP congestion window and under

lying queue occupancy. The TCP throughput is defined as the number of data bits received (not

including TCP/IP headers), divided by the time used to finish the transmission. The file transport

protocol (FTP) is used as the application data source. The simulation parameters are listed in the

table below.

Table 4.2 Simulation parameters for two-gateway model.

Parameter Item Parameter Value

Bandwidth for terrestrial link 10 Mbps

Propagation delay for terrestrial link 50 ms

Bandwidth for gateway over satellite 2 Mbps

Propagation delay for satellite link 250 ms

Packet length for downstream (including TCP/IP headers) 1024 Bytes

Offered window size for terrestrial link 64 KB

Offered window size for satellite link 32768 KB

RED queue buffer capacity 125 packets

Minlh for RED queue 5 packets

Maxlh for RED queue 15 packets

maxp for RED queue 0.1

q_w for RED queue 0.002

43

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

We simulate the TCP end-to-end SACK, where both end hosts support the S A C K option,

and compare it with the split SACK, where the S A C K option is supported by the proxies only.

The corresponding results are denoted as the end-to-end S A C K and split S A C K in the graphs.

Results for the dynamic SACK, incorporating both the immediate feedback and error identifica

tion mechanisms, are denoted as the split D S A C K in the graphs.

Table 4.3 Difference between three schemes.

Difference End-to-end S A C K Split S A C K Split D S A C K

End hosts use SACK option Y N N

Proxies use the SACK option N Y Y

Window scale option N Y Y

ECN-capable end hosts Y Y N

4.3.1 Single Connection Case

First, we compare the performance of different TCP versions and proposed mechanism

with and without bit error. We further demonstrate the advantages of our proposed mechanism

through the TCP congestion window, average RED queue length and the separation of the effect

of two schemes: immediate feedback and error identification.

Figure 4.3 shows the throughput of a single TCP connection versus the file size without bit

error. A l l three curves show that the throughput is increasing with the file size because the impact

of the slow-start is decreased. If the transmission is long, the slow-start only takes up a small part

of the overall transmission time and most of the data is transmitted in the congestion avoidance

phase, thus efficiently utilizing the available bandwidth. For the end-to-end SACK, the perfor

mance does not change much after the file size is larger than 1 M B due to the limited offered win

dow size (64K). Our split D S A C K significantly outperforms the split S A C K when file size is

44

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

larger than 100 K B ; in this case, the queue occupancy is too small for the congestion control

mechanism to take effect. For example, when file size is 10MB, the throughput of the split

D S A C K improves about 35% as compared to the split S A C K and improves about 138% as com

pared to the end-to-end S A C K .

F i l e S i z e (K B)

Figure 4.3 Throughput of single connection without bit error.

Why and how does this happen? Figure 4.4 illustrates the congestion window comparison

of these three schemes over the satellite segment when file size is 10MB. The figure is truncated

at 70 seconds for the end-to-end S A C K . We can see that the end-to-end S A C K enters congestion

avoidance too early due to the offered window size. It takes seventy seconds to reach the window

size while the split S A C K and D S A C K only use several seconds. On the contrary, the split S A C K

enters congestion avoidance too late. At this moment, the network is very congested and the

average queue length reaches thirty, which is almost twice that of maxth. Thus, it has to cut its

congestion window several times. The split D S A C K enters the congestion avoidance just at the

time when the average queue length is a little larger than minth. This is the point where the

45

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

immediate feedback takes action. We can see this effect more clearly from Figure 4.5, which

shows the corresponding average queue length. The average queue length overshoot for the split

S A C K is three times more than the split D S A C K because of the long delay loop over the satellite

link. This may also cause queue overflow when there are multiple flows transmitting at the same

time. Dur ing the congestion avoidance stage, the congestion window o f the split D S A C K

oscillates in a much smaller range than the split S A C K . This is because when the split D S A C K

detects the incipient congestion, it cuts one fourth of its congestion window, while the split S A C K

cuts one half, so its congestion window fluctuates within a big range. For most of the time, the

average queue length of the end-to-end S A C K is kept at zero, which cannot fully utilize capacity.

5

o

a>
o>
c
o
O

2 5 0

2 0 0

1SO

100

20 3 0 4 0 5 0

S i m u l a t i o n T i m e (s)

Figure 4.4 Congestion window without bit error.

We investigate the impact of different B E R s over the satellite channels to T C P perfor

mance. The file size used in the simulation is 10 M B . To evaluate individual impact, we run simu

lations for the immediate feedback mechanism and error identification mechanism separately.

With immediate feedback, the congestion signal is generated as we discussed before, but T C P

46

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

30

25 h
E n d t o e n d S A C K
S p i l t S A C K
S p l i t D S A C K

u
c
a

20 h
u
u

O
15

a>
10 \

5

O
10 20 30 40

S i m u l a t i o n T i m e (s)

O 50 70

Figure 4.5 Average queue length without bit error,

only checks the congestion signal when it receives a new A C K , and cuts the congestion window

according to average queue length. If T C P receives a duplicate A C K , it enters fast transmit and

fast recovery as usual and ignore congestion signals. We denote this scheme as the split immedi

ate feedback in the graph. In the error identification mechanism, T C P are ECN-capable and

employs R E D queue. The E C N marks are echoed back after an R T T in the satellite segment. To

account for the shortcomings of E C N (the shortcomings of E C N are described in Section 3.4),

T C P cuts the congestion window in one half, if one of duplicate A C K s contains echo-flag. If non

duplicate A C K contains echo-flag, T C P assumes the packet loss is caused by error and takes no

action. This method is denoted as the split error identification.

From Figure 4.6, we can see that the split S A C K is better than the end-to-end S A C K

thanks to local retransmissions for error recovery. Even though the split S A C K can recover sev

eral packet losses within an RTT, the performance degrades sharply when the B E R reaches 10"6.

On the other hand, the impact of the B E R on the D S A C K throughput is much smaller because it

47

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

can check the status of the underlying queue to distinguish between congestion loss and transmis

sion error. When the BER is IO"6, the split D S A C K is five times better than the split S A C K and

more than seven and half times better than the end-to-end SACK.

2200-

2000 -

1800 -

1600^

Jg- 140C;J-

^ 1200-
3

J= 100tfH

3 S aoo -
. e
i —

600 -

4O0 -

200
l V a

 10"8 1 0 7 10"6

Bit Error Rate (BER)

Figure 4.6 Impact of bit error rate on single connection throughput.

We can see the effect of different mechanisms more clearly from the split Immediate

Feedback and split Error Identification curves. Both of these mechanisms can improve TCP per

formance to some degree; however, their respective performance stays lower than the proposed

DSACK. For example, the throughput of the split Immediate Feedback degrades significantly

when the BER is higher than IO"8. When the BER is IO"6, the split Error Identification yields

almost the same throughput as the split D S A C K , while the Immediate Feedback performs poorly.

The reason that the Immediate Feedback offers little advantage at 10"6 B E R is easy to explain.

Because the Immediate Feedback cannot distinguish a transmission error from congestion loss, it

cuts its window continuously and makes the average queue length only exceed the minth once; this

means the Immediate Feedback takes effect only once during the simulation. However, when the

48

- 0 - S p l i t D S A C K
- O - S p l i t E r r o r I d e n t i f i c a t i o n

S p l i t I m m e d i a t e F e e d b a c k
- * - S p l i t S A C K

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

BER is as low as IO"8, the split Immediate Feedback can raise the throughput by about 34% as

compared to the split S A C K . The Immediate Feedback keeps taking actions to prevent possible

network congestion. In short, the performance of the split D S A C K is a result of the combined

effect of these two schemes. Sometimes one scheme may dominate the whole result of the simula

tion. For instance, the Split Error Identification is more effective when the B E R is high.

Figures 4.7 and 4.8 reveal more detailed information when the B E R is equal to 10~6. The

figures are truncated at 160 seconds for the end-to-end S A C K and split S A C K . We can see that

congestion windows of the end-to-end S A C K and split S A C K are kept at a very low level. This is

because they cut their congestion windows continuously when they encounter packet loss, even i f

they have just recovered from the last window of packet loss. Queue occupancy is also maintained

at a very low level, except at the startup, as Figure 4.8 shows, and thus cannot fully utilize the

available bandwidth. On the other hand, the split D S A C K can maintain its congestion window at

a much higher level, and reduce its window only when congestion occurs at the networks. For

these three schemes, time-out events are unavoidable when the retransmission packets are lost.

2 5 0

2 0 0

1 S O

CO . _ _
o 100 cn
c
o O

5 0

i 1 1
E n d t o e n d S A C K
S p l i t S A C K
S p l i t D S A C K

-
1 1 1 1 t
Si

-

- -

h 1

2 0 4 0 6 0 8 0 1 0 0

S i m u l a t i o n T i m e (s)

1 2 0 1 4 0 1 6 0

Figure 4.7 Congestion window when BER=lO"6.

49

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

30
E n d t o e n d S A C K
S p i l t S A C K
S p l i t D S A C K

V

O

5

O 140 160

Figure 4.8 Average queue length when BER=l0 6.

4.3.2 Multiple Connections Case

Figure 4.9 illustrates the total TCP throughput versus the number of TCP connections over

an error-free channel. The number of connections varies from 10 to 40. Each connection simulta

neously transmits a 200 K B file, which approximates the typical size of HTTP objects [47]. The

general trend shows that the overall throughput improves with an increasing number of TCP con

nections. Note that owing to the immediate feedback, the packet losses in the split D S A C K due to

congestion are much less than that of the split SACK. Therefore, the performance of the D S A C K

is better than both the end-to-end S A C K and the split SACK.

We completed similar simulations of the single flow case over a range of the BER from

10"6 to 10"9. The results for 20 TCP connections simultaneously transmitting 200 K B files are

shown in Figure 4.10. Evidently, the proposed D S A C K method yields the highest throughput

compared to the other two methods over the entire range of BER values, especially when the BER

is high. For instance, when the BER is 10"6, the throughput of the split D S A C K is 28% higher than

50

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

2000

1800

S p i l t D S A C K
S p l i t S A C K
E n d t o e n d S A C K

20 25 30
Number of C o n n e c t i o n s

40

Figure 4.9 Throughput of multiple connections without bit error.

the split S A C K , and 36% higher than the end-to-end SACK.

1000 u

10 10 10
Bit Error Rate (BER)

10

Figure 4.10 Impact of bit error rate on multiple connections throughput.

51

Chapter 4 TCP Dynamic SACK for Networks with Two Gateways

4.4 Summary

In this chapter, we have proposed a novel dynamic congestion control method for TCP

split connection proxies applied to satellite networks. The mechanisms include an immediate

feedback scheme to prevent queue overflow, which improves TCP performance over long-fat

satellite channels, and an error identification mechanism to separate TCP's congestion control and

error recovery operations, which improves TCP performance in the presence of transmission

errors. The key feature of the DSACK is the local congestion notification signalling from the

MAC layer to the TCP layer in the proxies based on current buffer occupancy. We presented

simulation results to verify that the proposed DSACK offers significant improvements for TCP

performance.

52

Chapter 5 TCP Dynamic Vegas for Networks with Single
Gateway

In this chapter, we first introduce a system architecture with a single gateway, in which a

large number of very small aperture terminals (VSATs) share an uplink satellite channel using an

appropriate medium access control (MAC) protocol. Then we describe the dynamic congestion

control mechanism based on TCP Vegas proposed over a satellite link. Finally, we compare the

performance of our proposal with different TCP versions and investigate the impact of reverse

bandwidth, BER, traffic load, and underlying buffer capacity on TCP throughput.

5.1 System Architecture

Considering the satellite link capacity is scarce and expensive for use as a thin route

access technology for the Internet, a number of satellite hosts sharing a satellite channel is quite

normal. Very small aperture terminals (VSATs) are designed for this purpose. VSATs can scatter

to a large number of locations to access the same satellite channel. By the beginning of 1999,

about 300,000 two-way VSATs were in operation throughout the world [48].

Figure 5.1 illustrates the system architecture of satellite-based Internet access. A number

of VSATs are located at the subscriber premises, which enable end hosts to access the Internet via

satellite. In order to efficiently share satellite bandwidth and avoid unnecessary collision, the

VSATs employ a MAC protocol to access a shared uplink. In the split TCP configuration, one

proxy sits at the gateway connecting the satellite network to local web servers or the global

Internet, while the other proxy is located at each of the VSATs. When an end host wants to set up

a TCP connection with the server, the gateway intercepts this request and set up a cascading TCP

connection. The gateway is granted fixed bandwidth in a dedicated uplink channel, which is the

53

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

From VSAT to Satellite

R Data R Data

Minislot Data Slot

F/D F/D F/D F/D F/D

250 ms

R: Reservation
F/D: Fixed or Demand

Figure 5.2 Frame structure.

requests are discarded for simplicity. Third, a packet on behalf of which a reservation is made

may get transmitted even before its reservation is honored, either via a free assigned slot or via a

demand assigned slot reserved by some antecedent packet of the same station. In order to fully

utilize the precious bandwidth, each VSAT station keeps counting the number of reservations that

are yet to be honored for it. The counter is incremented by the number of slots requested each time

a reservation is made, and is decremented by one whenever it receives a demand assigned slot.

Thus, the number of reservations made is equivalent to (packets queued in the station - value of

counter).

One important feature of the C F D A M A protocol is the access delay. The heavier the traf

fic load, the longer the time for end hosts to access the satellite channel. When traffic load is light,

the access delay increases almost linearly. With the increasing traffic, the access delay rises

sharply. The phenomena is more obvious when the number of hosts is large. Different from the

two-gateway model, we have to take account this feature in the single gateway model. Both TCP

Reno and TCP S A C K use the RTT in an implicit way while TCP Vegas uses the RTT as one of its

controlling parameters, as discussed before. This is why we apply the dynamic congestion control

56

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

scheme to TCP Vegas.

5.3 Proposed Dynamic TCP Vegas Mechanism (DVegas)

In the system topology in Figure 5.1, there are two bottlenecks in the satellite network.

One is the downstream RED queue, and the other is the multiple access uplink shared by a

number of VSATs. In the split connection scenario, the gateway acts as both end-points of the

cascading TCP connections. Therefore, it has full knowledge of the conditions of the underlying

queues. At the same time, TCP Vegas keeps an estimate of the RTT. Thus, we can utilize this

information to optimize the throughput and delay more effectively.

We use service primitives to exchange the information between the TCP layer and

underlying layer. The exchange procedure is the same as we illustrated in Figure 4.2. The conges

tion signal generation and the action taken by TCP for TCP Vegas is the same as what DSACK

does. Different from that approach, we use the following scheme to control RTT.

TCP Vegas uses two thresholds, a and p, to control the congestion window. TCP DVegas

dynamically adjusts these two thresholds according to both the average queue length and the

observed RTT. In our approach, when the average queue length is less than the minth, and the ratio

of averageRTT to baseRTT is less than 1.1, we increment a and P with factor (baseRTT/

averageRTT)/!. When the average queue length is larger than the maxth, or the ratio of

averageRTT Xo baseRTT is larger than 1.2, we multiply a and p with factor (baseRTT/

averageRTT)/!. The lower bounds for a and p, 1 and 3, respectively, are the same as the default

values in Vegas. This dynamic control of the congestion window is aimed at achieving both high

throughput and low latency.

57

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

5.4 Simulation Results

We use Network Simulator version 2.1b9a [30] as the simulation tool. The satellite net

work interface stack and structure of satellite node are illustrated in Appendix B. As well as the

splittcpsink module we mentioned before, we implement the C F D A M A protocol over the satellite

link. Similar to before, DVegas is used only over satellite parts. We compare the performance of

different TCP versions: TCP Reno, TCP SACK, TCP Vegas and the proposed TCP DVegas. The

TCP versions we compared are all ECN-enabled to support RED queue. The implementation

includes 100 VSATs at the customer side. The TCP throughput is defined as the received data bits

divided by the simulation time.

The table below list the simulation parameters used in the following experiment, except as

otherwise noted.

Table 5.1 Simulation parameters for one-gateway model.

Parameter Item Parameter Value

Bandwidth for terrestrial link 10 Mbps

Propagation delay for terrestrial link 50 ms

Bandwidth for gateway over satellite 6 Mbps

Packet length for downstream (including TCP/IP headers) 1024 Bytes

Packet length for upstream (including TCP/IP headers) 128 Bytes

Propagation delay for satellite link 250 ms

Bit error rate (BER) io- 7

RED queue buffer capacity 375 packets

Minlh for RED queue 15 packets

Max,h for RED queue 45 packets

maxp for RED queue 0.1

q_w for RED queue 0.002

Simulation time 300 s

58

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

Because the implementation includes 100 TCP connections terminating at the VSAT side,

long-live traffic is not suitable for this topology. We set up the following traffic to test the

proposed mechanism. The server transmits a series of 200KB files with exponentially distributed

waiting time between transmissions to each VSAT. This traffic model approximates WWW traffic

[51]. The traffic load increases as the inter-arrival time is reduced.

5.4.1 Impact of Uplink Bandwidth

We investigate the impact of the uplink bandwidth (from VSAT to proxy) on the TCP

throughput as well as the round trip delay (satellite segment only). The downlink bandwidth (from

proxy to VSAT) is 6 Mbps. The uplink bandwidth changes from 1Mbps to 6Mbps, and the RED

buffer capacity is increasing accordingly, which is equal to the bandwidth-delay product (the

delay used here is propagation delay, which is the dominant in satellite communications). In addi

tion, the thresholds for the RED queue are proportionally increasing. For example, when the

uplink bandwidth is 2Mbps, the buffer capacity is equal to 125 packets and the minth and maxth is

5 and 15 packets, respectively. If the uplink bandwidth is 4Mbps, the buffer capacity is equal to

250 packets, and the minlh and maxth is 10 and 30 packets, respectively. The inter-arrival time

between each file transmission is 20 seconds.

Figures 5.3 and 5.4 show the TCP throughput and RTT delay. The throughput of the four

schemes degrade significantly when the uplink bandwidth is less than 3Mbps because TCP Reno

and SACK cannot get enough ACK to open their congestion window as soon as possible. There is

a trade-off when bandwidth is only 1Mbps. TCP DVegas and Vegas sacrifice throughput for low

RTT, while TCP Reno and SACK keep their throughput but their RTT is raised sharply. This is

because TCP Vegas and DVegas use the RTT as a parameter to control their window growth.

59

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

Except for this point, the throughput performance of DVegas is 14% better than Reno, and 7%

better than TCP Vegas. The RTT for DVegas is a little bit higher than Reno and SACK when

bandwidth is larger than 4Mbps because the ratio between averageRTT to baseRTT is less than

1.2. Thus, the ratio does not take action to reduce thresholds of a and p.

5 6 0 0

5 4 0 0

5 2 0 0

5 0 0 0

4 8 0 0

4 6 0 0

4 4 0 0
i

4 2 0 0 '

4 0 0 0

3 8 0 1

-0- DVegas
O Vegas

- # - SACK
•H— Reno

2 . 5 3 3 . 5 4 4 . 5

Uplink Bandwidth (bps)
5 . 5 6

X 1 0 B

Figure 5.3 Impact of VSAT uplink bandwidth on throughput.

en a. .a

3

O

0 . 9

0 . 8 5 .

0 . 7 5

0 . 6 5

0 . 5 5

2 . 5 3 3 . 5 4 4 . 5

U p l i n k B a n d w i d t h (b p s)

DVegas
- © - Vegas

SACK
Reno

5 . 5 6
6

X 1 0

Figure 5.4 Impact of VSAT uplink bandwidth on round trip delay.

60

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

5.4.2 Impact of Controlling Parameters on RTT

TCP DVegas sacrifices throughput for low RTT because TCP DVegas uses the RTT

explicitly as a controlling parameter. We run the simulation to investigate its effect on TCP

throughput and round trip delay. The first mechanism used is the same as TCP DVegas, except

that the change of thresholds a and p is only according to the average queue length of the RED

queue, no matter how the RTT changes; we call this DVegas-NC. The second mechanism used is

the same as TCP DVegas except that the ratio to change thresholds a and p is modified from 1.1

and 1.2, respectively, to 1.05 and 1.15; we call this DVegas-rttl.05, which is tighter than what we

used in the above situation. The third one is the DVegas we have described before; we called it

DVegas-rttl.l.

Figures 5.5 and 5.6 present the simulation results of throughput and RTT with different

RTT control parameters. The RTT for three schemes become smaller with the increasing of uplink

bandwidth because more slots are available for them to transmit ACKs. We can see that DVegas-

NC achieves highest throughput and highest RTT, especially when uplink bandwidth is limited.

DVegas-rttl.05 and DVegas-rttl.l show no difference when bandwidth is 1 and 2Mbps. This is

because compared to the RTT control parameter, the minth and maxth may dominate the changing

of a and p. After this point, the values of minth and maxth become larger, and the RTT control

parameter takes action. From this simulation scenario, we can see that the proposed mechanism is

very flexible for using over a satellite link. If delay is the main concern, some throughput can be

sacrificed to achieve low delay. If throughput is the main concern, one can achieve higher

throughput with a larger RTT.

61

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

0.95

Figure 5.6 Impact of RTT controlling parameter on round trip delay.

62

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

5.4.3 Impact of Traffic Load

We investigate the effect of traffic load on TCP throughput. The following simulation is

done under the condition that all parameters are the same as in Table 5.1. The interarrival time for

transferred files ranges from 40 seconds to 15 seconds, and VSAT uplink bandwidth is 6Mbps.

When the load is heavy, TCP DVegas, Vegas and S A C K outperform TCP Reno, as Figure

5.7(a) shows. This is because TCP Reno needs more time to recover from dropped packets, while

S A C K can recover quicker using selective A C K . TCP Vegas drops only half the packets com

pared to Reno due to congestion, and the immediate feedback mechanism in DVegas results in

very few dropped packets. Table 5.2 shows that the number of packets has been dropped for each

situation. When the load is light, TCP Vegas is worst due to its conservative congestion control

mechanism, that is, a double slow start, and small thresholds a and p. In short, TCP DVegas per

forms well over all traffic loads, and is especially robust when traffic is heavy. .

Table 5.2 Number of packets dropped.

TCP 15 s 20 s 25s 30 s 35 s 40 s

Reno 3099 1536 982 429 308 567

Sack 2947 1511 1511 903 551 616

Vegas 1590 86 0 0 0 0

DVegas 12 0 0 0 0 0

5.4.4 Impact of Buffer Capacity

We compare TCP throughput on different RED buffer capacities and different thresholds.

This time we run the simulation when the RED buffer capacity is 125 packets, and the minth and

maxlh is 5 and 15, respectively.

Compared with Figure 5.7(a), although the throughput of all four mechanisms degrade

63

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

slightly, as shown in Figure 5.7(b), the throughput of TCP Reno and SACK is more sensitive to

the underlying buffer capacity than TCP Vegas and DVegas. For instance, when the interarrival

time is 15, TCP SACK degrades about 2.5% while TCP DVegas only degrades about 1.3%.

5.4.5 Impact of BER

We test the impact of the BER on TCP performance in a scenario where 20% of the

VSATs experience 10"6 BER, while the rest experience 10"7 BER. The other simulation parameter

is the same as the Table 5.1.

Compared to Figure 5.7(a), Figure 5.7(c) shows that the overall throughput does not suffer

much degradation due to the adaptive congestion mechanism of TCP. Other TCP connections take

bandwidth from those suffering degradation. However, Figure 5.8 shows that the proposed DVe

gas significantly improves the performance of those TCP connections suffering from a higher

error rate. Because DVegas separates the mechanism of congestion control and error recovery,

those who suffer a higher BER can still achieve the high throughput if the network is not con

gested. Vegas is better than Reno because Vegas just cuts its window by one fourth if the packet is

lost for the first time, as we mentioned before. We put these three figures together for comparison.

64

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

6 0 0 0 D V e g a s
V e g a s

2 5 3 0
I n t o r a r r i v a l T i m e (s)

(a) Impact of traffic load on throughput (buffer capacity = 375)

4SOO

O D V e g a s
O V e g a s

—*— S A C K

I S 2 6 3 0
I n t e r a r r i v a l T i m e (s)

(b) Impact of buffer capacity on throughput (buffer capacity = 125)

6 0 0 0

£
jfl 4 0 0 0

D V e g a s
V e g a s

2S 3 0
I n t e r a r r i v a l T i m e (a)

(c) Impact of bit error rate on overall throughput (where 20% VSATs are experienced BER=106)

Figure 5.7 Impact of traffic load, buffer capacity and bit error rate on throughput.

65

Chapter 5 TCP Dynamic Vegas for Networks with Single Gateway

1 2 0 0 r

1 1 0 0 -

Q. 1 0 0 0 -
JQ
, •

—
a.

9 0 0 =
— cn
3

O 8 0 0 -
1—

7 0 0 -

6 0 0 -

5 0 0 L

O DVegas
O Vegas

- * - SACK
Reno

15 20 25 30
Interarrival T i m e (s)

35 40

Figure 5.8 Impact of bit error rate on the throughput (BER=106).

5.5 Summary

This chapter presents the simulation results of the proposed mechanism as compared to

other widely used TCP versions in all kinds of network scenarios. The results show that TCP

DVegas is a simple, efficient and flexible mechanism over satellite networks. Its scheme is easy to

implement even when the end hosts are not ECN-capable nodes. The performance of DVegas

outperforms other TCP versions in almost all cases shown. The flexibility of the proposed

mechanism lies in that it can achieve high throughput or low round trip time through adjusting

parameters.

66

Chapter 6 Conclusion and Future Work

Performance enhancement proxies draw considerable interest from the network

community as an effective approach to improve TCP performance over the satellite link and

wireless link. In this thesis, we demonstrated the feasibility of implementing a transparent split

connection proxies over a geostationary satellite link to enhance TCP performance. Such proxies

are easy to incorporate into existing networks and improve the performance of existing TCP

implementations by a large factor in the presence of a satellite link. This thesis focuses on the

performance evaluation of TCP Reno, TCP SACK, TCP Vegas and proposed dynamic congestion

control mechanism. It also studies the effect of traffic load, bandwidth asymmetry, bit error rate

and TCP parameters on TCP performance.

6.1 Summary of Findings

A dynamic TCP congestion control method, which mitigates TCP's shortcomings while

keeping its merits, is proposed for split connection proxies over satellite networks. The novel

mechanisms include an immediate feedback scheme to prevent network congestion, which

benefits long latency channels, and an error identification scheme to uncouple TCP's congestion

control and error recovery operations, which benefits error-prone channels. Simulation results

show that the proposed mechanism is efficient, flexible, and easy to implement over satellite

networks. Compared to RED queue, the dynamic congestion control scheme can achieve better

performance, and reduce the complexity of network configuration.

The throughput performance of different TCP implementations in network with satellite

links interconnected with Internet has been thoroughly analyzed and compared. In the two-

gateway environment, we confirm that split connection is significantly beneficial to long-live

67

Chapter 6 Conclusion and Future Work

traffic without bit error rate. However, in presence of the serious error rate, it can not utilize

bandwidth efficiently because TCP throughput oscillates with the congestion window. The

proposed mechanism, which separate error recovery from congestion control, solves this problem

effectively and achieves five to seven times throughput improvement.

We also contribute a new system architecture, single gateway model, for multiple

subscribers to access the shared satellite channel by employing a MAC protocol, CFDAMA.

Under this model and the proxies, the performance of the different TCP versions under different

traffic loads are investigated to reveal their advantages and disadvantages. We also investigated

the impact of asymmetric bandwidth and different BERs on TCP performance over satellite links.

The results obtained from testing the proposed mechanism show significant throughput improve

ments under a wide range of conditions. The simulation results show that the dynamic congestion

control method is robust when traffic load is heavy.

6.2 Future Work

Our proposed mechanism can be employed not only in GEO satellite networks, but also in

any network that benefits from the deployment of the split connection or cascading TCP, such as

LEO satellite networks, cellular or ad-hoc wireless networks. Because GEO satellite networks

have some special characteristics, such as the long-fat channels, many of the new features we

proposed in this thesis are aimed to attack these problems. However, other networks with proxies

may have quite different characteristics. For example, the wireless channels in cellular or ad-hoc

wireless networks would not have such a long delay, but they may encounter a much higher BER.

Thus, our mechanism needs further modification to adapt to them, which can be done in future

research work.

68

Chapter 6 Conclusion and Future Work

Recent months have been increasing deployment of next-generation Internet protocols

such as IPSEC and IPv6 in the Internet. These protocols change some of the characteristic of

Internet traffic, and some of the information available to network nodes about end-to-end traffic.

The impact of these changes on proxy architectures is also an important aspect for future study.

69

Bibliography
[1] H. D. Clausen and B. Nocker, "Internet services via direct broadcast satellites," IEEE Int'I

Performance, Computing and Communications Confi, pp. 468-475, Phoenix, Feb. 1997.

[2] R. C, Durst, G. J. Miller and E. J. Travis, "TCP extensions for space communications," Proc.

2ndACM/IEEE MobiCom Conf, pp. 15-26, Nov. 1996.

[3] C. Partridge and T. J. Shepard, "TCP/IP performance over satellite links," IEEE Network,
vol. 11, no. 5, pp. 44-49, Sept.-Oct. 1997.

[4] J. S. Stadler and J. Gelman, "Performance enhancement for TCP/IP on a satellite channel,"
IEEE Proc. MILCOM98, vol. 1, pp: 270-276, Boston, Oct. 1998.

[5] C. Barakat, E. Altman and W. Dabbous, "On TCP performance in a heterogeneous network:
a survey," IEEE Communications Magazine, vol. 38, no. 1, pp. 40-46, Jan. 2000.

[6] Allman et al., "Ongoing TCP research related to satellite," RFC 2760, Feb. 2000.

[7] T. R. Henderson and R. H. Katz, "Transport protocols for Internet compatible satellite
network," IEEE Journal on Selected Areas in Communications, vol. 17, no. 2, pp. 326-344,
Feb. 1999.

[8] M. Filip and E. Vilar, "Optimum utilization of the channel capacity of a satellite link in the
presence of amplitude scintillations and rain attenuation," IEEE Transactions on
Communications, vol. 38, no. l,pp. 1958-1965, Nov. 1990.

[9] H. Balakrishnan, V. Padmanabhan and R. Katz, "The effects of asymmetry on TCP
performance," Proc. 3rdACM/IEEE MobiCom Conf, pp. 77-89, Berkeley, Sept. 1997.

[10] W. R. Stevens, TCP/IP Illustrated Volume 1- The protocol, Addison-Wesley, Reading, MA,
Oct. 2000.

[11] R. Goyal et al, "Traffic management for TCP/IP over satellite ATM networks," IEEE
Communications Magazine, vol. 37, no. 3, pp. 56-61, Mar. 1999.

70

Bibliography

[12] M . Allman et al, "An application-level solutions to TCP's satellite inefficiencies," Proc. Is'
Int'I. Workshop Satellite-based Information Services, Rye, Nov. 1996.

[13] T. V. Lakshman and U . Madhow, "The performance of TCP/IP for networks with high
bandwidth-delay products and random loss," IEEE/ACM Transactions on Networking, vol.
5, no. 3, pp: 336-350, Jun. 1997.

[14] D. A . Eckhardt and P. Steenkiste, "Improving wireless L A N performance via adaptive local
error control," Proc. 6th Int'l Conf on Network Protocols, pp. 327-338, Austin, Oct. 1998.

[15] V. Jacobson, R. Braden and D. Borman, "TCP extensions for high performance," RFC 1323,
May 1992.

[16] J. Mogul and S. Deering, "Path M T U discovery," RFC 1191, Nov. 1990.

[17] M . Allman, S. Floyd and C. Partridge, "Increasing TCP's initial window," RFC 2414, Sept.
1998.

[18] M . Mathis, J. Mahdavi, S. Floyd and A. Romanow, "TCP selective acknowledgment
options," RFC 2018, Oct. 1996.

[19] R. Braden, "T/TCP—TCP extensions for transaction, functional specification," RFC 1644,
Jul. 1994.

[20] J. Border, M . Kojo, J. Griner, G. Montenegro and Z. Shelby, "Performance enhancing
proxies intended to mitigate link-related degradations," RFC 3135, Jun. 2001.

[21] M . Allman, V. Paxson and W. Stevens, "TCP congestion control," RFC 2581, Apr. 1999.

[22] Floyd, S. and T. Henderson, "The NewReno modification to TCP's fast recovery algorithm,"
RFC 2582, Apr. 1999.

[23] V. Jacobson, "Congestion avoidance and control," Computer Communication Review, vol.
18, no. 4, pp. 314-329, Aug. 1988.

71

Bibliography

[24] V. Jacobson, "Modified TCP congestion avoidance algorithm," end2end-interest mailing
list, ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail, Apr. 30, 1990.

[25] L. S. Brakmo and L. L. Peterson, "TCP Vegas: end to end congestion avoidance on a global
Internet," IEEE Journal Selected Areas in Communications, vol. 13, no. 8, pp. 1465-1480,
Oct. 1995.

[26] K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and SACK TCP,"
Computer Communication Review, vol. 26, no. 3, pp. 5-21, Jul. 1996.

[27] R. Bruyeron, B. Hemon and L. Zhang, "Experimentations with TCP selective
acknowledgment," Computer Communication Review, vol. 28, no. 2, pp. 54-77, Apr. 1998.

[28] S. Horan and R. Wang, "Internet-type protocol testing in a simulated small satellite
environment," Proc. IEEE Aerospace Conf, vol. 2, pp. 977-989, Big Sky, Mar. 2001.

[29] Y. Thing, E. Yan, and S. K. Dao, "A measurement of TCP over long-delay networks," Proc.
ofINFOCOM'99,pp. 1556-1563, New York, Mar. 1999.

[30] The Network Simulator ns-2, http://www. isi.edu/nsnam/ns.

[31] U. Hengartner, J. Bolliger and T. Gross, "TCP Vegas revisited," 19th Annual Joint Conf. of
IEEE Computer and Communications Societies, vol. 3, pp. 1546-1555, Tel Aviv, Mar. 2000.

[32] M. Allman, D. Glover, and L. Sanchez, "Enhancing TCP over satellite channels using
standard mechanisms," RFC 2488, Jan. 1999.

[33] Z. Jiang, L. F. Chang, B. J. J. Kim and K. K. Leung, "Incorporating proxy services into wide
area cellular IP networks," IEEE WCNC 2000, vol. 1, pp. 246-252, Chicago, Sept. 2000.

[34] J. Q. Li, Z. X. Wang, D. Zeng and F. Y Wang, "Combined coherence and prefetching
mechanisms for effective web caching," IEEE Int'I Conf. on Systems, Man, and
Cybernetics, vol. 5, pp. 3034-3038, Tucson, Oct. 2001.

72

ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail
http://www

Bibliography

[35] A. Chrungoo, V. Gupta, H. Sarari and R. Shorey, "Smart proxy: reducing latency for HTTP
based web transfers across satellite links," IEEE Int'I Conf. on Personal Wireless
Communications, pp. 572-576, Hyderabad, Dec. 2000.

[36] H. Balakrishnan, S. Seshan, E. Amir and R. Katz, "Improving TCP/IP performance over
wireless networks," Proc. Is' ACM MobiCom conf, vol. 1, pp. 711-718, Berkeley, Nov.
1995.

[37] C. Chi, J. Deng and Y.H. Lim, "Compression proxy server: design and implementation,"
Proc. of 2nd USENIX Symposium on Internet Technologies and Systems, pp. 105-116,
Berkeley, Oct. 1999.

[38] J. Ishac and M. Allman, "On the performance of TCP spoofing in satellite networks," IEEE
MILCOM, Communications for Network-Centric Operations: Creating the Information
Force, vol. 1, pp. 700-704, McLean, Oct. 2001.

[39] M. West and S. McCann, "Improving TCP performance over long-delay and error-prone
links," IEE Seminar on Satellite Services and the Internet, pp. 1-9, 2000.

[40] V.G. Bharadwaj, J.S. Baras, and N. P. Butts, "An architecture for Internet service via
broadband satellite networks," International Journal of Satellite Communications, vol. 19,
pp. 29-50, Jan.-Feb. 2001.

[41] T. Hasegawa, T. Hasegawa, Y. Miyake and K. Nakao, "TCP Gateway for satellite-based
Internet service accommodating multiple subscribers," Proc. IEEE WCNC'02, vol. 2, pp.
849-854, Orlando, Mar. 2002.

[42] S. Floyd and V. Jacobson, "Random early detection gateways for congestion avoidance,"
IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-413, Aug. 1993.

[43] S. Floyd, "Recommendation on using 'gentle_' variant of RED," http://www.ciri.org/floyd/
red/gentle.html, Mar. 2000.

[44] S. Floyd, "RED: discuss of setting parameters," http://www.ciri.org/floyd/
REDparameters.txt, Nov. 1997.

73

http://www.ciri.org/floyd/
http://www.ciri.org/floyd/

Bibliography

[45] K. Ramakrishnan and S. Floyd, "A proposal to add explicit congestion notification (ECN) to
IP," RFC 2481, Jan. 1999.

[46] R. Ramani and A. Karandikar, "Explicit congestion notification (ECN) in TCP over wireless
network," 2000 IEEE Int'I Conf. on Personal Wireless Communications, pp. 495-499,
Hyderabad, Dec. 2000.

[47] N. Guo, "WWW service in 3G wireless CDMA systems," 1999 IEEE Radio and Wireless
Conf, pp. 137-140, Denver, Aug. 1999.

[48] N. Abramson, "Internet Access Using VSATs," IEEE Communications Magazine, pp. 60-
68, Jul. 2000.

[49] T. Le-Ngoc and J.I. Mohammed, "Combined free/demand assignment multiple access
(CFDAMA) protocols for packet satellite communication," Proc. of 2nd IEEE Int 7 Conf. on
Universal Personal Communications, vol. 2, pp. 824-828, Ottawa, Oct. 1993.

[50] RD Mitchell, T.C. Tozer and D. Grace, "Improved medium access control for data traffic via
satellite using the CFDAMA protocol," IEE Seminar on Broadband Satellite: The Critical
Success Factors Technology, Service and Markets, pp. 18/1-18/7, London, Oct. 2000.

[51] E. Anderlind and J. Zander, "A traffic model for non-real-time traffic in wireless radio
networks," IEEE Communications Letters, vol. 2, pp. 37-39, Mar. 1997.

[52] K. Fall (Editor) and K. Varadhan (Editor), The ns Manual, The VINT Project, Jan. 2002.

74

Appendix A. List of Abbreviations and Acronyms

ACK: ACKnowledgment

ARQ: Automatic Repeat reQuest

BER: Bit Error Rate

CFDAMA: Combined Free/Demand Assignment Multiple Access

DAMA: Demand Assignment Multiple Access

DSACK: Dynamic Selective ACKnowledgment

DVegas: Dynamic Vegas

ECN: Explicit Congestion Notification

FACK: Forward ACKnowledgment

FEC: Forward Error Correction

FTP: File Transport Protocol

GEO: Geostationary Earth Orbit

HTTP: HyperText Transfer Protocol

IETF: Internet Engineering Task Force

IP: Internet Protocol

75

Appendix A. List of Abbreviations and Acronyms

LEO: Low Earth Orbit

MAC: Medium Access Control

MTU: Message Transfer Unit

NACK: Negative ACKnowledgement

OBP: On-Board Processing

PEP: Performance Enhancement Proxy

RED: Random Early Detection

RTO: Retransmission Time Out

RTT: Round Trip Time

SACK: Selective ACKnowledgment

SNR: Signal to Noise Ratio

SPA: Smart Proxy Approach

STP: Satellite Transport Protocol

TCP: Transmission Control Protocol

T/TCP: TCP for Transactions

UDP: User Datagram Protocol

76

Appendix A. List of Abbreviations and Acronyms

VSAT: Very Small Aperture Terminal

W W W : World Wide Web

77

Appendix B. NS2 Simulation Models

This appendix shows the satellite network interface stack and structure of satellite node

[52].

from routing agent to Node -> entry

I
M

Sat/Recv

to SatChannel from SatChannel

Figure B.l Network interface stack.

78

Appendix B. NS2 Simulation Models

class SatNode: public Node

SatPosition

LinkHandoffM

SatTrace

List of pointers:
nodehead nodehead_
linklisthead linklisthead
channel* uplink_
channel* downlink

Other link
objects

Other link
objects

Figure B.2 Structure of class SatNode.

79

