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ABSTRACT 

N O N - R E C T A N G U L A R E M B E D D E D 
P R O G R A M M A B L E LOGIC CORES 

As System-on-a-Chip (SoC) design enters into mainstream usage, the ability 

to make post-fabrication changes will become more and more attractive. 

This ability can be realized using programmable logic cores. These cores are 

like any other intellectual property (IP) in the SoC design methodology, except 

that their function can be changed after fabrication. In many cases, non-

rectangular programmable logic cores are required, either to better mesh 

with the other IP cores, or because of I /O constraints. However, most 

C A D algorithm and programmable logic architecture research targets stand­

alone field programmable gate arrays (FPGA's), which are invariably square 

or rectangular. In this thesis, we enable researchers to evaluate non-

rectangular programmable logic cores by a novel specification method and 

an enhanced C A D tool. We also show that existing placement and routing 

algorithms do not work well when targeting non-rectangular programmable 

logic cores, and we present enhancements to existing placement and routing 

algorithms that allow the algorithms to better target these cores. It is shown 

that the new algorithms lead to a 12% critical path improvement for " U " -

shaped cores, and a 4% critical path improvement for "0"-shaped cores. 

The density and speed penalty for using these non-rectangular cores is 

significant, compared to square cores, however, we show that the penalty 

would be significantly larger if the original algorithms were used. 
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Chapter 1 

OVERVIEW A N D INTRODUCTION 

1.1 M o t i v a t i o n 

Recent years have seen impressive improvements in the achievable density of integrated 

circuits. In order to maintain this rate of improvement, designers need new techniques 

to handle the increased complexity inherent in these large chips. One such emerging 

technique is the System-on-a-Chip (SoC) design methodology. In this methodology, 

pre-designed and pre-verified blocks, often called cores or intellectual property (IP) are 

obtained from internal sources or third parties, and combined onto a single chip. 

These cores may include embedded processors, memory blocks, or circuits that handle 

specific processing functions. The SoC designer, who would have only limited 

knowledge of the structure of these cores, could then combine them onto a chip to 

implement complex functions. 

No matter how seamless the SoC design flow is made, and no matter how careful an 

SoC designer is, there will always be some chips that are designed, manufactured, and 

then deemed unsuitable. This may be due to design errors not detected by simulation 

or it may be due to a change in requirements. This problem is not unique to chips 

designed using the SoC methodology. However, the SoC methodology provides an 

elegant solution to the problem: one or more embedded programmable logic cores 
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(EPLC's) can be incorporated into the SoC. The embedded programmable logic core 

is a flexible logic fabric that can be customized to implement any digital circuit after 

fabrication. Before fabrication, the designer embeds a programmable fabric (consisting 

of many uncommitted gates and programmable interconnects between the gates). 

After the fabrication, the designer can then program these gates and the connections 

between them. Several companies, including Actel, Adaptive Silicon, Atmel, eASIC, 

Lucent and QuickLogic already provide EPLC's [44,45,46,47,48,49]. 

Figure 1 shows two hypothetical examples of where EPLC's may be beneficial. In 

Figure 1(a), an EPLC is shown that implements interface logic between the other ASIC 

cores inside the chip and the peripherals outside the chip. As standards change, it is 

clearly beneficial if this interface logic is flexible. Figure 1(b) shows another use of 

f 

EPLC's; in this case, the EPLC's are used as test logic controllers in SoC design [1]. 

This allows a test engineer to implement new test stimulus and/or test analysis circuits 

on the programmable core after the chip is fabricated. As testing proceeds, if errors 

are found, new tests can be devised and the new on-chip test circuitry can be 

implemented in the EPLC. 
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Figure 1.1(b) One "U"-shaped and four "0"-shaped cores used for test wrappers and control 
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These examples show two cases in which embedded programmable logic in a SoC 

would be advantageous. In general, there are a number of reasons to do this: 

1. An EPLC enables communication chip designers to proceed with 

chip development before standards have been finalized. This is 

important, since time-to-market is critical in industry today. As an 

example, a network chip can be built in which the network protocol 

is implemented in programmable logic and the remainder is 

designed using fixed ASIC logic or fixed-function cores. 

2. It is possible to make a single chip design that will be used by 

several customers. In this case, an EPLC would incorporate the 

customer-specific portion of the chip. Also, it could reduce the cost 

of developing the ASIC over several products. Figure 1.1a 

illustrates such chip design, where the processing functions and 

memory, which are common among all customers, are implemented 

in fixed ASIC logic and fixed-function cores, whereas the interface 

to the processing is implemented in programmable logic. 

3. Some C A D tool vendors offer platform-based design. Using this 

design methodology, the C A D tool vendor provides basic hardware 

components for particular application needs. With EPLC's, the 

C A D tool vendor can now encapsulate the different requirements 

from customers into the programmable logic, and leave the 



unchanged components implemented in fixed logic. This would 

greatly reduce the amount of work needed by the C A D tool 

vendors to customize the platform for future customers. 

In order to use EPLC's effectively in SoC design, there are a number of essential issues 

that have to be addressed. For example, most C A D algorithm and programmable logic 

architecture research targets stand-alone field programmable gate arrays (FPGA's) [2, 

41] which are invariably square or rectangular. In SoC design, however, it may be 

desirable to use an EPLC of a different shape. As shown in Figure 1.1(a), for example, 

the EPLC is "L"-shaped; not only may this better mesh with the other cores, but an L-

shape may be very suitable if the 1/O associated with this block spans more than one 

edge of the chip. In Figure 1.1(b), both "0"-shaped and "U"-shaped EPLC's can be 

seen. "0"-shaped EPLC's can be used as a test "wrapper" around other fixed-function 

cores, in this case, to map test signals to the cores. "U"-shaped EPLC's may also be 

used when a complete wrapping is not required. In any case, it is clear that EPLC's 

should be able to take on shapes other than rectangular. Therefore, new research has 

to be conducted for non-rectangular EPLC's if we want to use them in SoC design. 

In addition, researchers must determine how best to integrate the FPGA C A D flow 

into the existing ASIC design flow in order to make it possible for chip designers to use 

EPLC's. Another problem is to how to verify the programmable portion in an ASIC 

chip in the pre-tape-out stage when the circuit implemented in the EPLC is unknown. 
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1.2 Research Goals 

In this work, we focus on one of the important issues: C A D algorithms and 

architectures for non-rectangular EPLC's. Although there have been considerable 

research on C A D algorithms and architectures for programmable logic, all of them 

assume the shape of programmable logic is square or rectangular, which is true for 

stand-alone FPGA's. However, EPLC's can take on a variety of shapes and aspect 

ratios such as shown in Figures 1.1(a) and 1.1(b), and it seems likely that the existing 

algorithms used for stand-alone FPGA's may not perform well for non-rectangular 

EPLC's. In addition, it is unclear how to efficiently use non-rectangular cores in SoC 

design rather than rectangular cores to optimize area and delay. Therefore, an 

evaluation for the algorithms and architectures that target non-rectangular EPLC's is 

required. 

In this paper, we focus on three aspects: 

1. Design of a new specification method for describing a non-

rectangular EPLC and providing an evaluation C A D tool to support 

the new specification format. 

2. Improvement of the existing placement and routing algorithms on 

the evaluation C A D tool that better targets to non-rectangular 

EPLC's. 

3. Using the enhanced C A D tool to evaluate the architectures of " L " - , 

" U " - and "0"-shaped EPLC's for area and delay efficiency. 
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The first goal is to create a simple specification method to enable users to enter device 

information such as the shape of an E P L C architecture to an evaluation C A D tool. 

The second goal is to optimize the existing placement and routing algorithms used in a 

popular public F P G A C A D tool, V P R [6] for non-rectangular E P L C architectures. It 

is unknown how efficiently the existing placement and routing algorithms can map a 

user circuit into a non-rectangular core. We believe the placer and router can be 

improved by careful examination of both algorithms for non-rectangular cores. 

The third goal of this research is to use the enhanced evaluation C A D tool to study the 

area and speed performances of non-rectangular E P L C architectures. Three EPLC's 

are studied: "L"-shaped, "U"-shaped and "0"-shaped cores. Using the enhanced 

placer and router, we quantify the area and delay results of " L " - , " U " - and "0"-shaped 

cores and hence determine the penalty of using these non-rectangular cores compared 

to square cores. 

1.3 Organization of This Thesis 

This thesis is organized as follows: Chapter 2 contains an introduction to E P L C 

architectures as well as to C A D algorithms that are used to map a user circuit onto an 

E P L C . Chapter 3 introduces the novel specification method that enables users to 

describe a non-rectangular E P L C in an architecture file being used by an evaluation 

C A D tool. Chapter 4 focuses on the algorithmic issues in the evaluation C A D tool 

targeting non-rectangular cores. Specifically, we propose enhancements to the 

placement and routing algorithms, and present experimental results that show that the 
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enhanced placer and router lead to higher quality results and runtime savings. In 

Chapter 5, we measure the delay and area performances of " L " - , " U " - and uO"-shaped 

cores by the enhanced placer and router, and evaluate the feasibility of using these 

three types of cores by comparing them to square cores. Finally, we conclude the 

thesis with a summary of the work presented and future work, and also summarize the 

contributions of this work. 
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Chapter 2 

B A C K G R O U N D A N D PREVIOUS W O R K 

In this chapter, we present an overview of the architecture of EPLC's. In addition, we 

also cover the C A D flow used for mapping user circuits into EPLC's, along with a 

detailed discussion of the placement and routing algorithms. 

2.1 E P L C Architecture 

The architecture of commercially available EPLC's varies from vendor to vendor 

[44,45,46,47,48,49]. However, the architecture of EPLC's inherits much from the 

architecture of stand-alone FPGA's. In these devices, configurable logic blocks are 

placed in a grid, separated by horizontal and vertical wiring channels containing fixed 

metal tracks. These metal tracks are connected to each other and to the logic blocks 

using programmable switches as shown in Figure 2.1. This is often termed an island-

style architecture. In this study, we will exclusively investigate island-style EPLC's. 

9 



logic blocks 

wiring 
channels 

Figure 2.1 Island-style EPLC architecture 

Constructing a non-rectangular core is straightforward. The island-style architecture in 

most EPLC's provides a natural way to implement " L " - , " U " - , and "0"-shaped cores; 

one or more logic blocks and the routing fabric around these logic blocks can be 

removed from a rectangular core to form an " L " - , " U " - , or "0"-shaped core. An 

example is shown in Figure 2 . 2 ; in this case, the logic blocks in the shaded region can 

be removed to form a "U"-shaped core. 
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Figure 2.2 Constructing a "U"-shaped core from a square core 

All EPLC architectures are comprised of logic resources and routing resources. In 

Subsections 2.1.1 and 2.1.2, we will discuss the architecture of logic resources and 

routing resources for the island-style EPLC architecture respectively. 

2.1.1 Logic Resources 

A logic block (depicted in Figure 2.3) is the building block of an island-style EPLC 

architecture. Each logic block implements a small part of the logic required by a user 

circuit. By connecting logic blocks together properly, an EPLC can implement the 

entire user circuit. 
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Figure 2.3 Logic block architecture 

Inside a logic block, there are one or more basic logic elements (BLEs). Each B L E 

contains a lookup-table (LUT) and a register. The register is used for implementing a 

sequential circuit, and can be enabled or disabled by using the 2:1 multiplexer and a 

user-programmable SRAM cell. Figure 2.4 shows the internal structure of a basic logic 

element. 

Out 

Figure 2.4 Simplified model of BLE 
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Lookup-tables can be used to implement logic very efficiently because a k-input LUT 

can realize any function of k-inputs. Rose et al. [12] have shown that a 4-input LUT 

produces the highest area-efficiency, and the result is widely accepted by industry. We 

will use 4-input LUT for the rest of this study. Figure 2.5 shows a 4-iriput LUT, 

implemented by sixteen 1-bit SRAM cells and five 4:1 multiplexers. 

In3 In2 In1 InO 
SRAM cell I I I I 

Out 

Figure 2.5 4-input lookup-table 

The previous research [43] has shown that is preferable to include more than one B L E 

in each logic block. The user (via a C A D tool) can then cluster tightly connected BLEs 

together by the programmable local interconnect matrix, thereby reducing the 

13 



necessary global routing resources. This decreases the routing area and delay. 

However, if the number of BLEs in a logic block grows too large, the area and delay 

savings in global routing will be outweighed by the area and delay penalties imposed 

from the local interconnect within the logic blocks. Ahmed et al. [4] found that the 

number of BLEs in a logic block for the best area-delay efficiency ranges from four to 

ten. In our study, a logic block size of four is chosen, as illustrated in Figure 2.3. 

2.1.2 Routing Resources 

The routing resources enable the interconnect between logic blocks as well as between 

BLE's within a logic block. They are also used to connect the off-chip signals to the 

logic blocks through I /O pads. Routing resources are crucial to the overall area and 

speed because they account for a significant amount of chip space and critical path 

delay [17,36]. The routing resources in an EPLC can be categorized as: 

1. Routing between logic blocks 

2. Routing inside logic blocks 

Figure 2.6 shows only the routing between logic blocks in a single tile. Most EPLC's 

are created by replication of such a tile (a tile contains one logic block and its associated 

routing fabric). 

14 
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Figure 2.6 Routing architecture in an island-style EPLC 

touting Between Logic Blocks 

The routing between logic blocks contains three components: 

1. Routing channels 

2. Switch blocks 

3. Connection blocks 

Each routing channel consists of a number of fixed metal tracks that run either 

horizontally or vertically. In most EPLC's, each track in a channel is not a single long 

wire spanning the entire length of an EPLC. Instead, the wires are broken into a 

number of smaller wire segments, and each wire segment spans one or more logic 
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blocks. In this work, we focus on island-style EPLC architectures in which each 

channel contains the same number of tracks and each metal track spans one logic block 

as shown in Figure 2.6. 

A switch block occurs at each intersection between horizontal and vertical routing 

channels, as shown in Figure 2.6 determines all possible connections between these 

channels. Four different topologies for switch blocks have been proposed in the 

previous work: the disjoint switch block [52], the universal switch block [13], the Wilton 

switch block [8] and the Imran switch block [14]. In this work, the Wilton switch block 

is used for all the EPLC architectures because it has the best area-efficiency when all 

the routing wires span one logic block [5]. 

A connection block shown in Figure 2.6 connects the logic block pins to the routing 

channel and vice versa. The number of tracks in each routing channel to which each 

logic input and output pin can connect is called the connection block flexibility. Betz 

[5] has showed that the Wilton switch block works best when each logic block input 

and output pin connects to one quarter of the tracks in the neighboring routing 

channel. This is also adopted in this work. 

The connections in the connection blocks and the switch blocks are made by 

programmable switches. Each programmable switch contains either a pass transistor 

or a tri-state buffer, controlled by a SRAM cell shown in Figure 2.7. In this study, we 

will exclusively focus on SRAM-based EPLC's. 

16 



SRAM 

Pass Transistor Tri-state Buffer 

Figure 2.7 Two types of SRAM-based programmable switch 

Routing Inside Logic Blocks 

Routing within a logic block is performed using a local interconnect matrix as shown in 

Figure 2.3. The interconnect matrix allows connections between the logic block inputs 

and the B L E inputs in the logic block, and also enables the feedback paths from the 

B L E outputs to the B L E inputs in the logic block. If any of the logic block inputs, and 

any of the B L E outputs can be connected to any of the B L E inputs, the interconnect 

matrix is called fully connected. If only some of the logic inputs, and the feedbacks can 

be connected to any of the B L E inputs, the interconnect matrix is called depopulated. 

In this study, we use a fully connected interconnect matrix because it is most widely 

used in industry [51,52]. Further studies on the architecture of the interconnect matrix 

can be found in [15,16,17]. 

2.2 C A D fo r E P L C ' s 

The main function of an EPLC C A D tool is to convert a high-level circuit description 

(that a human can understand) into a programming file (unreadable format) setting the 

state of every programmable switch in an EPLC, in order to realize the user circuit. 

17 



The conversion is carried out through a number of sequential steps, as depicted 

Figure 2 . 8 . 

High-Level Circuit Description 

High-Level 
Synthesis 

Technology-
Independent Logic 

Optimization 

Packing into Logic 
Blocks 

EPLC Programming File 

Figure 2.8 A typical EPLC CAD Bow 

1 8 



First, users describe their circuit in high-level description language (such as V H D L or 

Verilog) or schematic, and then synthesize their description into a netlist of basic gates. 

This step is called high-level synthesis [18,19]. Then the netlist of gates is processed by 

a technology-independent logic optimization algorithm [19] in which the redundant 

logic is removed. Next, it is mapped into lookup tables by a technology mapping 

algorithm [10]. Next, the netlist of lookup tables is packed into logic blocks [7]. Then, 

each logic block is assigned a physical location in an EPLC using a placement algorithm 

[6]. Next, the connections among logic blocks will be routed on the wire segments on 

an EPLC by a routing algorithm [6]. Finally, all the connections are made among the 

logic blocks and the I /O pads. 

All steps prior to placement can operate independently of the shape of the EPLC. 

Placement and routing, however, are inherently geometrical in nature; thus, we would 

expect these algorithms to be strongly influenced by the shape of the target core. In 

Chapter 4, we will show that this intuition is correct. Therefore, in the following 

discussion (and the rest of the thesis) we focus on non-rectangular placement and 

routing. 

2.2.1 Placement 

Placement algorithm determines the exact location of user logic blocks on an EPLC. 

Typically, placement has three optimization goals: 

1. Minimize Wire-Length 

2. Minimize Congestion 
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3. Minimize Critical Path Delay 

The first goal is to reduce the amount of wire needed to make all required connections 

between the logic blocks. The reduction in wiring directly results in a denser and 

usually faster EPLC implementation for a circuit. One way to achieve this goal is to try 

to position tightly connected logic blocks close to each other. 

The second goal is to balance the wiring usage across the EPLC to avoid congestion of 

routing resources. Since most of EPLC's have evenly distributed routing channels, the 

circuit could be unroutable if an area in the EPLC is so congested that the required 

channel width exceeds the channel width offered in EPLC. 

The third goal is to minimize the circuit delay on an EPLC. In order to achieve this 

objective, placement should be able to recognize which net is more timing-critical, and 

then place the logic blocks which are connected by more timing-critical nets closer 

together to minimize the path delay. Further details on these goals will be discussed in 

Chapter 4. 

There are a number of well-known algorithms to solve the placement problem, such as 

min-cut (partitioning-based) [20], analytic [22,23], and simulated annealing [24,25,26]. 

In this study, we focus on simulated annealing algorithm because it was employed in 

the popular public FPGA C A D tool called VPR [6]; this is the C A D tool upon which 

our algorithms will be built. 

20 



The simulated annealing algorithm originates from the concept of the industrial 

annealing process used to gradually cool molten metal [26]. The pseudo-code for a 

generic simulated annealing-based placer is depicted in Figure 2.9. Initially, a simulated 

annealing-based placer randomly places logic blocks into physical locations in an EPLC. 

Then the placement is iteratively improved by randomly swapping logic blocks and 

measuring the placement cost resulting from every swap by a cost function. A cost 

function is used to evaluate the quality of any placement of logic blocks, such as wire-

length cost, congestion cost and path delay cost. If a swap results in a reduction in the 

placement cost, the move is always accepted. If the placement cost increases, there is 

still a chance of the move being accepted even though it makes the placement worse. 

The probability of acceptance is modeled by a formula e"Ac/T, where AC is the positive 

change in cost function the move causes, and T is the "temperature". At first, T is very 

high and almost all moves are accepted; however, it is gradually decreased when the 

placement is refined so that near the end of the anneal, probability of accepting a move 

that makes the placement worse is very low. The purpose of accepting the moves that 

make a placement worse is to prevent the simulated annealing-based placer from 

becoming trapped in a local minimum in the cost function. 

The rate at which temperature is decreased, the exit condition for stopping the 

annealing, the number of moves tried at each temperature (InnerLoopCriterion), and 

how each potential move is generated, are specified by the annealing schedule. A good 

annealing schedule is very important to achieve good results in a reasonable runtime. 
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P = RandomPlacementQ; 
T = InitialTemperarureQ; 

while (ExitCriterionO == false) { 
while (InnerLoopCriterion() == false) { 

L new GenerateNewMove (P); 
AC = Cost(P„ew) - Cost(P); 

r = random(0,l); 
If (r < e-^/i) { 

} 
} 
T = UpdateTemperatureQ; 

} 

Figure 2.9 Pseudo-code of a generic simulated annealing-based placement algorithm 

2.2.2 Routing 

The routing algorithm assigns the routing resources to all the nets in the user circuit. 

Generally, there are two optimization goals for a router: 

1. Complete routing of all nets 

2. Delay Minimization 

The first goal is to route all required nets using the routing resources on an EPLC 

without any resource contention. This objective is hard to achieve in EPLCs because 

the routing resources are fixed. However, if there is contention unresolved by a router, 

the user circuit cannot be implemented in an EPLC. Therefore, this is the most 

important goal. 
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The second goal is to minimize the circuit delay by using short paths and fast routing 

resources for nets which are on or near the critical path. However, this second goal is 

always competing with the first goal. A router has to simultaneously solve these two 

problems using the limited routing resources. 

In general, there are two types of routers. The first type consists of combined global-

detailed routers [9,27,28,29,31] in which a complete routing path is determined in one 

step. The second type consists of two-step routers which first perform global routing 

[32] to determine which logic block pins and channel each net would use, and then 

perform detailed routing [33,34] to determine the track(s) each net would use within 

the specified channel. Since the result quality of detailed routing is highly constrained 

by the choices the global router makes, combined global-detailed routers often have 

better routing results. Therefore, throughout this study, we use combined global-

detailed routing which is also supported by VPR. 

By far the most common technique to this routing problem is Dijkstra's algorithm [35] 

which finds the shortest path between a net source pin and a net sink pin. However, 

this approach alone often results in an unroutable circuit, where contention for routing 

resources by nets is still unresolved. Rip-up and retry techniques [37] are often used to 

resolve competition for routing resources. There are also routers [29] using rip-up and 

retry approach to tackle the congestion as well as timing problems. One such 

algorithm is the Pathfinder algorithm [9]. This algorithm is employed by the VPR 

C A D tool. 
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The Pathfinder algorithm is shown in Figure 2.10. It uses a breadth-first search 

through the routing resource graph1 to connect net terminals. The key idea of Pathfinder is 

to allow physical tracks to be shared by multiple nets during the routing process. Once 

all nets have been routed successfully, the cost of two nets sharing a track will be 

increased slightly. Each net is then ripped-up and re-routed. This is repeated for 

several iterations; each time the cost of sharing becomes slightly higher. When, at the 

end of an iteration, no track is shared by more than one net, a legal routing has been 

found, and the algorithm terminates. 

During routing, the fitness of each potential segment n that might be added to the net 

is evaluated using the following cost function: 

Cost(n) = Criticality x Delay(n) + [1 - Criticality] x b(n) x h(n) x p(n) (2 

where Delay(n) is the Elmore delay of the segment n, and b(n), h(n), and p(n) are the 

base cost, the historical congestion cost, and the present congestion cost of using 

segment n, and the Criticality is a measure of how close to the critical path the currently 

routed net is. The first term in the cost function represents the delay of the currently 

routed net, while the second term represents the congestion cost of the current 

segment. Nets with a higher value of Criticality are thus routed primarily for speed, 

while other nets are routed primarily for congestion. This ensures that, as routing 

progresses, nets which are not critical are moved away from congested regions. 

1 A directed graph, in which each node represents either a wiring segment or a logic block pin and each 
edge represents a programmable switch, is a very general way to describe an EPLC [5]. 
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R(i) be the set of nodes, n, in the current routing of net(i). 

Criticality(i, j) = 1 for all nets i and sinks j; 

while (OverusedResourcef) == true) { 
for (each net, i) { 

rip-up routing tree R(i) and update affected p(n); 
R(i) = NetSource(i); 

for (each sink, j of net(i) in decreasing Criticality(i,j) order) { 
PriorityQueue = R(i) at PathCost(n) = Criticality(i,j) x Delay(n) for each node n in R(i); 

while (sink(i,j) not found) { 
remove lowest cost node, m, from PriorityQueue; 

for (all fanout nodes n of node m) { 
add n to PriorityQueue at Pathcost(n) = Cost(n) + PathCost(m); 

} 
} 
for (all nodes, n, in path from R(i) to sink(i,j)) { / * Backtracing * / 

update p(n); 
add n to R(i); 

} 
} 

} 
Update h(n) for all nodes n; 
perform timing analysis and update Criticality(i,j) for all nets i and sinks j; 

} / * End of a routing iteration * / 

Figure 2.10 Pseudo-code of the Pathfinder routing algorithm 

2.3 Focus and Contributions of This Thesis 

In order to use a non-rectangular core, placement and routing tools that map a user 

circuit onto an EPLC are required. Such place and route tools have been well-studied 

for stand-alone FPGAs; however, as described in Section 2.1, EPLC's may differ in that 

they may not be square or rectangular. We need new place and route tools that enable 
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users to efficiently specify a non-rectangular EPLC and generate the correct 

architecture for evaluations. In Chapter 3, we propose a new specification method and 

incorporate it into the public-domain VPR place and route tool that is representative of 

industry tools developed by FPGA vendors. 

Since place and route tools use algorithms that are inherently geometrical, it seems 

likely that the same algorithms may not perform well with non-rectangular EPLC's. In 

Chapter 4, we propose enhancements to existing placement and routing algorithms in 

VPR that allow the algorithms to better target the non-rectangular cores. In Chapter 5, 

we investigate the area and delay performances of " L " - , " U " - and "0"-shaped EPLC's 

in various relative aspect ratios. 

The contributions of this thesis are summarized as follows: 

1. A novel specification method for describing non-rectangular 

EPLC's 

2. Enhancements to existing placement and routing algorithms that 

optimize for non-rectangular EPLC's 

3. Experimental evaluation of "L" - , " U " - and "0"-shaped EPLC's for 

the area and delay efficiencies 
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Chapter 3 

A SPECIFICATION M E T H O D FOR N O N - R E C T A N G U L A R EPLC'S 

In this chapter, we present a novel method of specifying a non-rectangular EPLC. 

This specification is used to provide device information to a C A D tool, as shown in 

Figure 3.1 [38]. This specification method we have developed is based on that used by 

the VPR place and route tool; the primary difference is that our specification method 

allows for the description of cores which are "L"-shaped, "U"-shaped, and "O"-

shaped. This chapter first reviews the specification method used by VPR, and then 

presents the enhancements needed in order to specify these non-rectangular shapes. 

3.1 Motivation 

A simple, flexible method of specifying programmable logic architectures is important 

for two reasons: 

1. Computer-Aided Design tools that map user circuits to the 

programmable logic devices or cores must be provided with 

information regarding the targeted architecture. Vendors of stand­

alone FPGA devices typically have a single C A D tool that maps 

circuits to an entire family of devices (or several families). These 

C A D tools read device files to obtain information regarding the 
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target architectures; the FPGA vendor provides a separate device 

file for each member of the FPGA family. This concept of device 

files allows a single C A D tool to target several devices. In addition, 

as FPGA vendors introduce new parts, they only need produce new 

device files; the C A D algorithms themselves need not change. 

2. In the EPLC architecture experiments presented later in this thesis, 

we experimentally map user circuits to a large number of potential 

EPLC architectures. In order to do this, a single C A D tool must be 

able to support a wide range of architectures; as in the commercial 

tools described above, the C A D tool needs to be able to read in 

device information describing the architecture to be targeted. 

For both of these reasons, a simple way to specify the characteristics of an EPLC is 

required. The place and route tool VPR [6] provides a clean and simple way to specify 

such architectures. However, since VPR was originally written to target stand-alone 

FPGAs, it only supports architectures which are square or rectangular. Thus, this 

chapter will describe how we have extended the VPR specification method to allow for 

the specification of non-rectangular cores. 
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3.2 Original Specification Scheme 

As described above, our specification method is based on the existing method 

employed by the VPR C A D tool [6]. In this section, we describe this existing method; 

in the next, we describe our enhancements. 

# 4 I/O pads per row or column 
io_rat 4 

########################### 
### Relative Channel Width ### 
########################### 
# Define uniform X / Y channel ratio for each region 
chan_width_io 1.0 
chan_width_x uniform 1.0 
chan_width_y uniform 1.0 

################## 
### Logic Block ### 
################## 
# Class 0 is LUT inputs, class 1 is the output, class 2 is the clock. 
#10 logic inputs. 
inpin class: 0 bottom 
inpin class: 0 left 
inpin class: 0 top 
inpin class: 0 right 
inpin class: 0 bottom 
inpin class: 0 left 
inpin class: 0 top 
inpin class: 0 right 
inpin class: 0 bottom 
inpin class: 0 left 
outpin class: 1 top 
outpin class: 1 right 
outpin class: 1 bottom 
outpin class: 1 left 
inpin class: 2 global top # Clock, assume routed on global resource. 

# Cluster of4 4-LUTs 
subblocks_per_clb 4 
subblock_lut_size 4 

############################### 
### Detailed Routing Architecture ### 
############################### 
switch_block_type wilton 
Fc_type fractional 
Fc_output .25 
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Fc_input .25 
Fc_pad 1 

# Metal 3, min W (0.28 um), min space (0.28 um) 
# The following values are assuming a tile length of 116.00 um 

segment frequency: 1.0 length: 1 wire_switch: 2 opin_switch: 2 Frac_cb: 1 \ 
Frac_sb: 1 Rmetal: 32.360 Cmetal: 3.946e-14 

switch 0 buffered: no R: 456.500 Cin: 3.7500e-15 Cout: 3.7500e-15 Tdel: 0 

# switch_l width is approximatley 10.0 times minimum width 
switch 1 buffered: yes R: 913.000 Cin: 1.6200e-15 Cout: 3.7500e-15 Tdel: 4.2600e-ll 

# switch_2 width is approximadey 5.0 times minimum width 

switch 2 buffered: yes R: 1826.000 Cin: 1.6200e-15 Cout: 1.8750e-15 Tdel: 4.0700e-ll 

# 0.7 um width. Multiplied by 0.693 to agree with Rswitch values. 

R_minW_nmos 4565 
R_minW_pmos 8674 # 1.9x R of an nmos 
##################### 
### Timing Analysis ### 
##################### 
C_ipin_cblock 1.62e-15 
T_ipin_cblock 3.7700e-10 
T_ipad 242e-12 #Clk_to_Q + 2:1 mux 
T_opad4.5e-ll 
T_sblk_opin_to_sblk_ipin 3.01 OOe-10 
T_clb_ipin_to_sblk_ipin 3.0100e-10 
T_sblk_opin_to_clb_opin 0 

T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10 
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10 
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10 
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10 

Figure 3.1 Example of an original VPR-format architecture file 

Architecture specifications can be supplied to VPR through the use of an architecture file. 

Figure 3.1 shows an example architecture file. With the exception of the parameter 

io_rat (which represents the number of 1/O pads that fit into one row or one column 

of the FPGA), all the architecture parameters belong to one of the following four 

groups: 
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1. Relative Channel Widths, 

2. Logic Block, 

3. Detailed Routing Architecture, 

4. Timing Analysis. 

The group of parameters relating to the relative channel widths has three lines. The 

first sets the ratio of the width of the channels between the I /O pads and the widest 

core. The other two specify the distribution of tracks for the vertical and horizontal 

channels respectively. Separating the vertical and horizontal channel distributions 

allows the user to specify directionally biased routing architecture [2,50,51], or non­

uniform routing architectures [40]. 

There are four parameters for the logic block description group. One specifies the 

number of inputs to each lookup-table. Another sets the number of lookup-tables in 

each logic block. These two parameters have been studied extensively for their optimal 

values [4,12]. The remaining two parameters define the location (which side of the 

logic block) and the type (local/global resource) of each logic block's input and output 

pins. Betz [5] showed that pin placement had different impacts on the results of non-

biased and biased routing architectures. 

The parameters in the detailed routing architecture group are required if and only if 

combined global and detailed routing is to be performed. The results from combined 

global and detailed routing are more accurate and complete than those from global 
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routing because there are nine more parameters being considered in the C A D tool. 

The nine parameters contain the following information: switch block topology; Fc 

values for logic block input pin, output pin or I /O pad pin; segmentation distribution; 

switch block internal population; connection block internal population; switch type 

used to connect each routing wire to other wires; switch type definition; metal width 

and spacing of the various routing wires [38]. All this information is important to 

determining the connectivity and the electrical properties of the FPGA routing 

architecture. 

The last group of parameters involves timing analysis. There are eight parameters that 

describe the different parts of the delay of a signal coming from a routing track, 

through both the logic block's input pin and the logic block itself, and to the logic 

block's output pins. These parameters are required only if timing analysis is to be 

performed on the placed and routed circuit. This information can be used to find a 

good approximation for calculating the critical path delay of the routed circuit. 

Note that these parameters do not completely describe an FPGA architecture. As an 

example, although the length of each wiring segment can be specified in the detailed 

routing architecture group, the actual start and end points of each wire in each channel 

cannot be specified. The VPR program contains algorithms which read in an 

architecture file, and create a model of an FPGA using the specified parameters, 

making intelligent decisions about the details not specified in the architecture file. This 

frees the designer from specifying every detail, meaning a wider range of architectural 

parameters can be considered during experimentation. The "construction" of an 
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F P G A using the architecture file parameters is an interesting problem in itself, and has 

been well studied in [39]. 

The constructed architecture is represented within the C A D tool as a routing resource 

graph. This is a generic graph data structure in which each node is a routing track or 

logic block pin, and each edge is a programmable connection between logic block pins. 

The C A D tools then use this routing resource graph during placement and routing. 

3.3 Enhanced Architecture Specification Method 

From the architecture file specifications, there is no attention directed to the overall 

shape of the F P G A architecture. In the command-line of V P R , users can specify the 

aspect ratio of the F P G A so that a rectangular or square F P G A can be formed. 

However, we need shape-specific parameters in order to describe a non-rectangular 

E P L C . Therefore, we propose an extension to the specification format, which consists 

of three new parameters as follows: 

Shape of an E P L C 

1. size {fixed \ aspect_ratio) 

2. region <id> bottom_left: <x_coord> <y_coord> top_right: 

<x_coord> <y_coord> 

3. cregion bottom_left: <x_coord> <y_coord> top_right: 

<x_coord> <y_coord> top: <region_id> bottom: <region_id> 

left: <region_id> right: <region_id> 
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The first parameter, size, has only two valid values. One is fixed, which means the 

specifications of the parameters region and cregion are treated as fixed dimensions of 

the E P L C . This feature is very useful for evaluating the performance of a fixed-size 

E P L C . The second valid value is aspect_raUo, replacing the original VPR's command-

line option aspect_ratio. If aspect_ratio is assigned to parameter size, the specifications 

of the parameters region and cregion are treated as the aspect ratio of an E P L C . In 

other words, the specified shape of the core will be kept unchanged, but not its size. 

This is very helpful for running benchmark experiments when each benchmark circuit 

is of a different size. 

The second parameter, region, specifies a square or rectangular area that can be 

defined as part or all of an E P L C . A region is defined by its integer identifier, and then 

by the x and y coordinates at both bottom left and top right corners of the region. 

The coordinate (0,0) starts at the bottom left corner of this coordinate system. As a 

few rectangular or square regions are defined, a non-rectangular E P L C can be formed. 

In Figure 3.2, two regular regions and one connection region form an "L"-shaped 

E P L C . 

The third parameter, cregion, is called the connection region. We posit the restriction 

that every two regular regions must be connected through the connection region. The 

only difference between a connection region and a regular region is that the widths of 

all horizontal and vertical channels of a connection region depend totally on the 

channel widths of the two neighboring regular regions, respectively. This is depicted in 

Figure 3.2. This parameter helps distinguish between a connection region and a regular 
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region, because of the extra constraint the channel widths of a connection region put 

on a directionally biased routing architecture. A connection region is defined by the x 

and y coordinates at both bottom left and top right corners of the connection region. 

For each side of a connection region, a region identifier must be entered to show 

which regular region it makes contact with. If no regular region has contact with that 

side of a connection region, -1 should be entered. For this parameter, we give a limit 

of only two orthogonal regular regions which can make contact with one connection 

region. 

Narrow Channel 

Regular Regions 

Wide Channel 

Switch Block 

Figure 3.2 An "L"-shaped directionally biased routing architecture 
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The VPR place and route tool was enhanced to support this extended specification 

description. This involved changes to both the architecture file parser and the code 

that generates the routing resource graph from the architecture description. Our 

current implementation is limited to segment length of 1; although most commercial 

EPLC architectures typically have longer segments, we can still use this tool to gather 

information about the effectiveness of various placement and routing algorithms that 

target the non-rectangular cores. 

3.4 Examples of Non-Rectangular EPLC's 

In this section, we show examples of how to describe "L"-shaped, "U"-shaped and 

"0"-shaped EPLC's in the architecture files, and display routing results using the 

enhanced VPR. Figures 3.3, 3.4 and 3.5 show only the lines of Shape group on the 

architecture files for an "L"-shaped core, a "U"-shaped core and an "0"-shaped core 

respectively. The rest of the lines on their architecture files are the same as those 

depicted in Figure 3.1, because all of them have the same settings for their relative 

channel widths, logic block, detailed routing architecture, and timing. Moreover, they 

all choose aspectjratio for parameter size, meaning the enhanced VPR must find the 

minimum possible size for implementing a circuit, while the shape and the aspect ratio 

of a core remain as specified. In Figure 3.3, two rectangular regions and one square 

connection region are used to form an "L"-shaped core. In Figure 3.4, three 

rectangular regions and two square connection regions are used to form a "U"-shaped 

core. In Figure 3.5, four rectangular regions and four square connection regions create 

an "0"-shaped core. 
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#Size of the EPLC 
size aspect_ratio 

# Define region(s) by assigning bottom left and top right (x y) coordinates. 

region 0 bottomjeft: 1 0 top_right: 3 1 
region 1 bottom_left: 0 1 top_right: 1 3 

# Define connection region(s) by assigning bottom left and top right 
# (x y) coordinates and also specifying the region index where 
# the side of the cregion contacts with. 

cregion bottom_left: 0 0 top_right: 1 1 top: 1 bottom: -1 left: -1 right: 0 

Figure 3.3 Only Shape group is shown in the architecture file for an "L"-shaped core. 

# Size of the EPLC 
size aspect_ratio 

# Define region(s) by assigning bottom left and top right 
# (x y) coordinates. 

region 0 bottom_left: 0 2 top_right: 1 6 
region 1 bottom_left: 1 0 top_right: 5 2 
region 2 bottom_left: 5 2 top_right: 6 6 

# Define connection region(s) by assigning bottom left and top right 
# (x y) coordinates and also specifying the region index where 
# the side of the cregion contacts with. 

cregion bottom_left: 0 0 top_right: 1 2 top: 0 bottom: -1 left: -1 right: 1 
cregion bottom_left: 5 0 top_right: 6 2 top: 2 bottom: -1 left: 1 right: -1 

Figure 3.4 Only Shape group is shown in the architecture file for a "U"-shaped core 
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# Size of the EPLC 
size aspect_ratio 

# Define region(s) by assigning bottom left and top right 
# (x y) coordinates. 

region 0 bottom_left: 0 1 top_right: 1 5 
region 1 bottom_left: 1 0 top_right: 5 1 
region 2 bottom_left: 5 1 top_right: 6 5 
region 3 bottom_left: 1 5 top_right: 5 6 

# Define connection region(s) by assigning bottom left and top right 
# (x y) coordinates and also specifying the region index where 
# the side of the cregion contacts with. 

cregion bottom_left: 0 0 top_right: 1 1 top: 0 bottom: -1 left: 
cregion bottom_left: 5 0 top_right: 6 1 top: 2 bottom: -1 left: 
cregion bottom_left: 5 5 top_right: 6 6 top: -1 bottom: 2 left: 
cregion bottom_left: 0 5 top_right: 1 6 top: -1 bottom: 0 left: 

-1 right: 
1 right: 
3 right: 
-1 right: 

1 
-1 
-1 
3 

Figure 3.5 Only Shape group is shown in the architecture file for an "0"-shaped core. 

A n M C N C 2 benchmark circuit named C6288 is used to demonstrate that the enhanced 

V P R can place and route a circuit on these core architectures as specified by the 

architecture files in Figures 3.3, 3.4 and 3.5. Figures 3.6, 3.7 and 3.8 display the pictures 

of the final routing results for "L"-shaped, "U"-shaped and "0"-shaped cores. In 

Figure 3.6, the minimum channel width that can route the circuit for an "L"-shaped 

core is 20 tracks, whereas the minimum channel width for "U"-shaped and "0"-shaped 

cores is much larger, 28 and 24, as depicted in Figures 3.7 and 3.8. A n in-depth study 

of the architecture of non-rectangular cores is presented in Chapter 5. 

2 Microelectronics Corporation of North Carolina 
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Routing succeeded whh a channel width 'factor oi 20. 

Figure 3.6 Final routing result of an "L"-shaped EPLC 
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Routing succeeded wilh a channel width factor of 28. 

Figure 3.7 Final routing result of a "U"-shaped EPLC 
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Routing succeeded with a channel width tactor oi 24. 

Figure 3.8 Final routing result of an "0"-shaped EPLC 
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3.5 Summary 

An efficient yet simple specification method is crucial to the design of EPLC 

architectures because it allows researchers to experiment with their core designs by 

running many benchmark circuits on the C A D tool. However, the current FPGA 

C A D tools do not support one of the important design criteria of an EPLC in a SoC 

design, which is to allow non-rectangular cores. In this chapter, we have presented a 

new specification method that describes a non-rectangular core on an architecture file 

used by the FPGA C A D tool VPR. Furthermore, we have briefly explained how to 

implement these new specifications on the enhanced VPR. Examples of "L"-shaped, 

"U"-shaped and "0"-shaped EPLC's are pictured, taken from routing results generated 

by the enhanced VPR. 
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C h apter 4 

P L A C E M E N T A N D ROUTING ALGORITHMS 

The density and the speed of a programmable logic core depend not only on its 

architecture, but also on how well a C A D tool maps a circuit into the programmable 

device. In the previous chapter, we introduced the new C A D tool, built on the existing 

VPR program, which can place and route a circuit on non-rectangular programmable 

core architectures using existing placement and routing algorithms in VPR. However, 

these placement and routing algorithms are not optimized for non-rectangular core 

architectures. It is not clear how efficiently both the placement and routing algorithms 

in VPR map a circuit into a non-rectangular core. Therefore, an examination of these 

placement and routing algorithms is required. 

In this chapter, we focus on the algorithmic issues of non-rectangular programmable 

logic core architectures. In Section 4.1, we first describe the existing placement and 

routing algorithms in VPR that targets stand-alone FPGA's. Section 4.2 then shows 

how these algorithms can be modified to better support " L " - , " U " - , and "0"-shaped 

EPLC's. In Section 4.3, we will experimentally investigate how the enhanced 

algorithms perform compared to the original algorithms. Finally, a summary is 

presented in Section 4.4. 
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4.1 Placement and Routing for Stand-Alone FPGA's 

We have based our algorithms on the existing VPR place and route tool [6]. VPR is 

representative of industrial tools developed by FPGA vendors. The following 

subsections describe the relevant details of the algorithms; a more complete description 

is in [3,5]. Section 4.2 will show how these algorithms were enhanced to better target 

non-rectangular cores. 

4.1.1 Placement 

The main task of placement is to assign user logic blocks to physical logic block 

locations in a programmable logic core. In this study, we refer to the timing-driven 

placement algorithm used in VPR as T-VPlace. T-VPlace takes the netlist of a user 

circuit and intelligently maps it onto the available sites (logic blocks or I /O pads) in a 

programmable logic core. T-VPlace is a simulated annealing based algorithm [26] as 

described in Section 2.2.1. For more details of simulated annealing algorithm, please 

refer to Section 2.2.1. 

T-VPlace tries to minimize two cost functions: 

1. Wiring Cost, 

2. Timing Cost. 

Wiring cost is the estimated amount of interconnect needed to route a circuit with the 

current placement. The total wiring cost of a placement is the summation of every 

net's bounding box half perimeter. Figure 4.1 depicts a bounding box half perimeter 

for an eight terminal net. If a net has more than three terminals, a factor q will be 
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multiplied to the net's half of bounding box half perimeter to compensate for wire-

length underestimation [42]. In general, the lower the total wiring cost is, the higher 

the area density of a circuit will become. 

• • • • • • 
• 
• 
• 
• 
• 

bby 

bbx 

Figure 4.1 Example of half of a bounding box perimeter (bbx + bby) of an eight terminal net 

Timing on the critical path is another important issue that a placer should consider. In 

T-VPlace, the timing cost of a net is defined as follows: 

Timing Cost = Delay x Cri t ical i ty C n t , c a l , t y - E x p o n e n t (4 

The delay of a connection clearly depends on the placement; however, calculation of 

this delay during placement is difficult. T-VPlace uses a pre-computed matrix that 

contains the delay of each potential connection (the shortest route of each connection 

is performed, and Elmore delay is used to estimate the delay). Note that it is not 

necessary to compute the delay between every pair of logic blocks; in most standalone 
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FPGA's, the delay between location (x,y) and (x+Ax, y+Ay) can be approximated as 

being independent of the values of x and y. This is shown Figure 4.2; the delay of a net 

connecting a and b will be approximately the same as the delay of a net connecting c 

and d. Thus, a single array indexed on the span of each wire is enough. For each 

potential placement, the x and y span of each wire can be found, and the matrix can be 

used to quickly find the delay of each connection. For more details, see [3]. 

• • • • • • • • 
• i l l • D A H • • • 

n 
Ay • 

• • • 
Ay 

• • • 
• • • • 
• • • • 

L T D E L T D H D D 
• • •"• • • 

Figure 4.2 Net connecting a to b will have approximately the same delay as net connecting c to d 

In order to focus on minimizing the delay on the critical path and let the delay of the 

non-critical paths to be increased, the terms Criticality and Criticality_Exponent are 

introduced to give more weight on the connections that are critical and less weight on 

the connections that are non-critical. Criticality is defined as follows: 

A x i 

Criticality = 1 - Slack/Max_Delay (4 

where Max_Delay is the critical path delay and Slack is the amount of delay that can be 

added to a connection without increasing the critical path delay. By default, 
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Criticality_Exponent starts as 1 and then is gradually increased the value to 8, a 

schedule recommended in [3]. The total timing cost of a placement is the sum of every 

net's timing cost. 

4.1.2 Routing 

Routing is the process that determines the connections among all the logic block input 

pins and output pins required by the user circuit. It is the final step of the EPLC C A D 

flow depicted in Figure 2.8. For a timing-driven router, there are two goals to achieve: 

1. Make a circuit routable on a given programmable logic core, 

2. Make the critical path fast. 

Since high circuit speeds are very important, timing-driven routing is much more 

desirable than the purely routability-driven routing that focuses on the first goal only 

[30]. In VPR, the routing algorithm is timing-aware so it takes care of both mutability 

and circuit speed at the same time. 

In this study, we refer to the timing-driven routing algorithm used within VPR as T-

VRoute. T-VRoute takes two input files: the netlist of a circuit to be mapped, and a 

placement file generated by a placement tool. The goal of T-VRoute is to successfully 

route all the connections required between the logic block input and output pins where 

their locations are specified by the placement file, and optimize the speed of the circuit 

at the same time. Since routing is a NP-complete problem, no optimal solution is 

guaranteed by any routing algorithm. However, a heuristic solution can be obtained. 
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T-VRoute performs a number of routing iterations. Each routing iteration comprises 

the following two steps: 

1. Timing analysis, 

2. Rip-up and reroute of each net. 

In order to optimize the delay of a circuit, timing analysis is required. There are two 

parts in the process of timing analysis. The first part involves computing the delay of 

all of the paths in a circuit. T-VRoute models pass transistors as linear resistors, wires 

as an RC pi-network, and buffers as resistors plus constant delay. Therefore, a net's 

routing can be modeled as an RC-tree [21]. Then the Elmore delay model is employed 

to estimate the delay of the RC-tree; this gives high fidelity of delay estimation of all of 

the paths in a circuit [5]. The second part is to calculate the amount of delay that may 

be added to each connection before it becomes critical, which is called the slack of that 

connection. The value of slack will then be used to guide T-VRoute to preferentially 

route delay-critical connections to make these connections as fast as possible. 

The second step involves ripping up the previously routed net and rerouting it. The 

purpose of this step is to resolve competition for routing resources, and at the same 

time improve circuit speed. T-VRoute achieves this goal by employing the Pathfinder 

negotiated congestion-delay algorithm [9]. The Pathfinder algorithm is a modified 

maze router allowing overuse of routing resources and utilizing a cost function to 

resolve the contention for routing resources gradually, and also directly optimize the 
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timing of a circuit. As a result, this algorithm produces good quality routed circuits. 

Further information about Pathfinder algorithm is in Section 2.2.2. 

When a routing iteration is finished for all nets (but some nets could still have 

contention for routing resources), the process of timing analysis will be repeated to 

update the delay of the newly routed nets, and then the ripping-up and rerouting will be 

repeated. This continues until all congestion is resolved. By default, T-VRoute tries 30 

iterations to route a circuit. If T-VRoute fails, it will stop and deem the circuit 

unroutable. 

Since standard maze routing can be a very slow process for a large FPGA, making it 

run fast is also an important goal. T-VRoute uses two methods to speed the execution: 

1. Directed search, 

2. Net bounding box. 

Directed search is based on the knowledge of the expected remaining distance or cost 

from the current position to the destination in order to speed the search process. To 

take this into account, the cost function in Equation 2.1 is modified into: 

Total Cost(n) = Cost(n) + Expected Cost(n), (4 

where the Expected Cost term is computed using the Manhattan distance between the 

current routing segment and the sink of the connection. Figure 4.3 shows this 

graphically; the Expected Cost term for the segment would be x+y. In this way, most 
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connections are found very quickly; the 

there is significant congestion. 

algorithm reverts to a standard maze router if 

Source Pin Current Routing Net 

• • • • 
• • • 

• • • 
• • • 

• • • • •"• 
Sink Pin 

Figure 4.3 Calculating the expected cost of a net during routing 

The second method to speedup the search process is to prevent the route from 

expanding routing resources that lie more than a preset distance outside the net's 

bounding box. By default, T-VRoute only considers routing resources which are either 

within a net's bounding box or no more than 2 tiles away from the boundary box as 

shown in Figure 4.4. This net bounding box search helps reduce CPU time with a 

small degradation on the quality of routing [5]. 
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Net Bounding Box 
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Routing Boundary 
— . for this net 

Figure 4.4 Example of routing boundary for an eight terminal net 

4.2 Placement and Routing for Non-Rectangular E P L C ' s 

The VPR placement and routing algorithms described in Section 4.1 are both 

geometry-based. In the following two subsections, we will show why these algorithms 

are not suitable for non-rectangular cores, and will show enhancements to better 

support these cores. 

4.2.1 Placement 

The current placement tool does not produce good solutions on "O"- and "U"-shaped 

cores. Figure 4.5 shows the problem. As described in Section 4.1.1, the delay between 

a pair of logic blocks is found using a pre-computed delay lookup table, indexed by the 

x and j span of the net. As shown in Figure 4.5, the Manhattan distance between two 

blocks may not correctly represent the shortest path distance between the two nodes in 

" U " - and "0"-shaped cores. Therefore, the delay value stored in the pre-computed 
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delay lookup table gives a very poor estimate of the actual delay of this connection. 

This poor delay estimation also affects the Criticality of this connection. If the 

connection shown in Figure 4.5 is on or near the critical path, the placer would not pay 

as much attention as it should to minimizing the delay of this connection and 

eventually could result in a slower circuit. 

region #1 ; • • • 

source 

• • • : 

• • • ! region #2 

DJ2 L T 

• • 
• • 
n_n_ 

• • • • ntn • • • • • • 
• • • • • • • • • • • • 
• • • • • • • • • • • • 

Shortest Path Distance 
Between the Two Terminals 

sink 

Figure 4.5 Difference between the Manhattan distance and the shortest path distance in a "U"-shaped 
core 

In a " U " - or an "0"-shaped core, the same delay table cannot be used for each block; 

different (x,y) locations should have different delay tables. One possible solution is to 

compute a separate delay table for each block location (x,y). However, this is very non-

scalable, and could make the placer run very slow and require too much memory. Our 

solution is to compute separate delay tables for all blocks in Regions 1 and 2 in Figure 

52 



4.5; this delay table is used for all nets that span the two regions and the original delay 

table is used for all other nets. A similar technique can be used for "0"-shaped cores. 

The pseudo-code is depicted in Figure 4.6. 

D = Estimated delay between the source at (xl, yl) and the sink at (x2, y2). 

if (CoreShape = " U " | | CoreShape = "O") { /* U-shaped or O-shaped core*/ 
if (OppositeRegions(xl, y l , x2, y2)) { /* source and sink at the two opposite */ 

/* regions */ 
D = Source_to_Sink_DelayTable(xl, y l , x2, y2); 

} 
else { /* both source and sink are not at the */ 

/* two opposite regions */ 
delta_x = abs(x2 - xl); 
delta_y = abs(y2 - yl); 
D = OriginalDelayTable(delta_x, delta_y); /* then use original delay table */ 

} 
} 
else { /* L-shaped or rectangular or square core */ 

delta_x = abs(x2 - xl); 
delta_y = abs(y2 — yl); 
D = OriginalDelayTable(delta_x, delta_y); /* use original delay table */ 

} 

Figure 4.6 Pseudo-Code of the correct delay estimation for "U"- and "0"-shaped cores 

4.2.2 Routing 

The current routing algorithm does not produce good solutions on "O"- and " U " -

shaped cores. Figure 4.7 shows the first problem. As described in Section 4.1.2, the 

router finds a bounding box around each net, expands it by two logic blocks in each 

direction; the router then does not explore routes outside this bounding box. As 

shown in Figure 4.7, this can cause a problem in " U " - and "0"-shaped cores. In the 

figure, the net will not be successfully routed, because all potential routes must pass 
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outside the bounding box. The solution to this problem is straightforward; we simply 

remove the bounding box constraint, and allow the router to explore the entire graph. 

Although this slows down the algorithm somewhat, experiments have shown later in 

Section 4.3.2 that the impact on run-time is very small. 

Routing Boundary 

• • • • s • • • • • 
• • • • L T D • • • • 

Fail to route this net between 
the two terminals 

• 
• 
• 
• 
• 
• 
• 

Figure 4.7 Failure of routing in a "U"-shaped core due to the net bounding box 

The second problem is that the expected cost term in the direct search may be 

inaccurate. As described in Subsection 4.1.2, the expected cost is computed as the 

Manhattan distance between the current routing segment and the sink of the 

connection. Figure 4.5 shows an example where this estimation of the expected cost is 

incorrect. In this case, the preferred route is to leave the source in a downward 

direction. However, using the current cost function, the upward direction appears 
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equally attractive. Although the correct route will still be found eventually, the portion 

of the routing fabric that will be explored is large, especially considering that the 

bounding box constraint has been removed, as described above. This leads to long run 

times. 

Our solution is to explicitly add terms to better estimate the distance from the current 

routing segment to the sink in " U " - and "0"-shaped cores. This is shown in Figure 

4.8. 

D = Estimated distance between the current location (xl, yl) and the destination location 
(x2,y2). 
H = Horizontal part of the estimated distance D. 
V = Vertical part of the estimated distance D. 

yla is the y-coordinate where the region containing (xl, yl) touches the connection region 
above it. The same applies for y2a. 
ylb is the y-coordinate where the region containing (xl, yl) touches the connection region 
below it. The same applies for y2b. 

if (CoreShape = "U") { /* U-shaped core * / 
V = abs (yl - ylb) + abs (y2 - y2b); /* use lower path only * / 

} 

else if (CoreShape = "O") { /* O-shaped core * / 
VI = abs (yl - yla) + abs (y2 - y2a); /* use upper path * / 
V 2 = abs (yl - ylb) + abs (y2 - y2b); /* use lower path * / 
V = min (VI, V2); /* choose the shortest path * / 

else { / * L-shaped or rectangular or square core * / 
V = abs (yl - y2); / * then use Manhattan distance * / 

} 
H = abs (xl - x2); 
D = H + V; 

Figure 4.8 Pseudo-Code of the correct shortest path distance calculation for "U"- and "0"-shaped 
cores 
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Note that none of these enhancements to the placement and routing algorithms are 

needed for "L"-shaped cores. Circuits can be placed and routed on "L"-shaped cores 

using the same tools as for square and rectangular cores. 

4.3 Algorithm Evaluation 

In this study, we use an empirical method to evaluate the proposed algorithmic 

enhancements, and compare the enhanced algorithms to VPR's existing algorithms. 

This involves technology-mapping, packing, placing and routing benchmark circuits 

into non-rectangular E P L C architectures. The area and delay results of each circuit 

implementation are then computed, and from this we are able to compare the 

performance of the enhanced algorithms to that of the original algorithms. 

4.3.1 Experimental Methodology 

To evaluate the proposed enhancements, we experimentally mapped sixteen large 

M C N C benchmark circuits onto a model E P L C . We assumed an island-style E P L C , 

where each logic block contains four 4-input lookup tables and four flip-flops. It was 

assumed that each fixed wiring track spans one logic block, and a Wilton switch block 

[8] is employed. We assumed a 0.18 (J.m C M O S process available from T S M C . 

56 



Benchmark Circuit 

Logic Optimization (SIS) 

Technology Map to 4-LUTs (FlowMap + FlowPack) 

Group 4-LUTs and FFs into Logic Blocks (T-VPack) 

Placement (T-VPlace or Enhanced T-VPlace) 

Routing (T-VRoute or Enhanced T-VRoute) 

Adjust Channel Width (W) 

No 

Yes (Wmin found) 

Routing with W = 1.2 * Wmin 
(T-VRoute or Enhanced T-VRoute) 

Determine Area and Delay 

Figure 4.9 Algorithm evaluation CAD flow 

The C A D flow that we use is depicted in Figure 4.9. First, each benchmark circuit is 

optimized by SIS [19] and technology mapped into 4-input lookup tables and flip-flops 

using Flowmap/Flowpack [10]. Then the timing-driven packing algorithm T-VPack [7] 

is employed to pack the lookup tables and flip-flops into logic blocks. The logic blocks 

were then placed and routed on an appropriated sized E P L C using both the original 

and enhanced algorithms. For each circuit, we sized the E P L C to be the smallest shape 
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that that meets the relative ratios show in Figure 4.10. Only " U " - and "0"-shaped core 

results are described in this subsection, since as described above, existing place and 

route tools work well with "L"-shaped cores. Routing was performed twice; the first 

route was used to find the minimum number of routing tracks needed for 100% 

routability. This number was then increased by 20%, and the routing repeated. This 

"low-stress" routing is representative of the routing performed in real industrial designs 

[5]. After that, we apply our delay model to estimate the delay of the circuit critical 

path, and our area model to estimate the total transistor area needed to lay out all the 

routing3 in this core architecture. Finally, we use the area and delay results to compare 

the performance between the enhanced and original algorithms on " U " - and "O"-

shaped cores. All the experiments were run on a 400MHz UltraSparc workstation. 

1 1 

BMIIII 

1 ' 1 

6 " * 6 

Figure 4.10 Relative aspect ratios of a "U"-shaped core and an "0"-shaped core used in algorithm 
evaluation 

All the results give only the routing area of the EPLC because the logic block is held constant 
throughout all the experiments. To allow averaging results from benchmark circuits of different sizes, 
we are only interested in routing area per tile (logic block). 
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4.3.2 Experimental Results 

Tables 4.1(a) and 4.1(b) show the routing area per tile (in terms of the number of 

Minimum Transistor Equivalents4), critical path delay, and algorithm runtime for all 

sixteen circuits implemented on a "U"-shaped EPLC. In Tables 4.1(a) and 4.1(b), 

columns 2 and 3 show results for the original VPR placement and routing tool, 

columns 4 and 5 show the results for the original VPR placement algorithm and the 

enhanced routing algorithm, and columns 6 and 7 show the results for the enhanced 

placement and routing algorithms. As the Tables 4.1(a) and 4.1(b) show, the enhanced 

router produces similar results to the original router, but with a 62% faster run-time. 

When the enhanced placer is used, the runtime is increased somewhat, but the critical 

path delay is reduced by 12%. 

Tables 4.2(a) and 4.2(b) show the results for an "0"-shaped core. Again, the 

improvement in runtime of the enhanced router is significant (40%). The 

improvement in critical path when the enhanced placer is used is 4%. 

4 A minimum transistor equivalent area is the layout occupied by the smallest transistor that can be 
contacted in a process, plus the minimum spacing to another transistor above it and to its right [5]. 
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Circuit 

Origina 
and R 

I Placer 
.outer 

Original 
Enhanced 

Placer, 
Router 

Enhanced Placer 
and Router 

Circuit Area 
(MTE) 

Critical 
Path (ns) 

Area 
(MTE) 

Critical 
Path (ns) 

Area 
(MTE) 

Critical 
Path (ns) 

C6288 6883 44.9 5561 39.1 6016 40.9 

a lu4 10133 32.8 10510 36.5 11159 29.8 

A p e x 2 11601 32.8 11601 39.7 11191 35.3 

A p e x 4 13120 38.6 14808 32.4 13120 29.4 

b igkey 11427 22.6 12248 25.3 11427 17.1 

Dsip 10302 16.0 10914 14.7 10085 12.9 

ex1010 10651 59.2 10469 57.5 10469 54.3 

ex5p 11634 29.5 12292 29.9 12292 28.5 

f r isc 14552 33.2 12913 35.2 14082 35.1 

i ir16 6205 34.2 6318 32.0 6544 32.5 

m isex3 11541 32.6 11367 32.3 11541 26.1 

m isex3c 7264 20.9 7799 22 .4 8262 18.3 

S298 8447 40.6 8447 40.9 7665 36.8 

seq 12181 34.0 11364 32.3 11364 27.5 

sort8 11191 78.8 11043 79.4 11191 61.1 

tseng 9940 17.4 9570 15.7 9940 16.1 

Geo . A v . 10185 32.7 10149 32.5 10137 28.9 

Dif f % — — - 0 . 4 % - 0 . 6 % - 0 . 5 % - 1 1 . 6 % 

Table 4.1(a) Area and delay results for "U"-shaped EPLC's 

Original Placer Original Placer, Enhanced Placer 
and Router Enhanced Router and Router 

Circuit Placement Routing Placement Routing Placement Routing 
Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) 

C6288 31 29 31 13 37 11 

alu4 146 617 146 234 170 231 

apex2 281 387 281 210 323 187 

apex4 130 255 130 75 167 77 

bigkey 284 452 284 256 446 228 

ds ip 314 300 314 127 351 144 

ex1010 1755 2233 1755 704 1679 953 

ex5p 125 195 125 105 138 92 

fr isc 1049 2030 1049 844 1022 1033 

iir16 869 481 869 79 836 311 

misex3 136 192 136 53 172 92 

m isex3c 30 53 30 30 33 22 

S298 214 222 214 95 246 141 

seq 254 412 254 176 315 226 

sort8 245 423 245 126 291 141 

tseng 138 134 138 45 173 84 

Geo . A v . 216 304 216 117 250 142 

Dif f % — — 0% - 6 2 % 1 6 % - 5 3 % 

Table 4.1(b) Runtime results for "U"-shaped EPLC's 
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Original Placer Original Placer, Enhanced Placer 
and Router Enhanced Router and Router 

Circuit Area Critical Area Critical Area Critical 
(MTE) Path (ns) (MTE) Path (ns) (MTE) Path (ns) 

C6288 5254 41.3 5254 38.8 5445 40.9 

a lu4 9606 33.9 9606 30.9 9328 29.8 

A p e x 2 11454 35.8 11630 34.5 11630 31.6 

A p e x 4 12211 33.0 11964 30.9 11964 32.0 

b igkey 9484 19.3 9850 20.2 9208 17.1 

Dsip 9850 15.8 9484 17.1 9208 17.4 

ex1010 9820 55.6 9820 59.7 9820 50.6 

ex5p 12205 31.1 12632 31.6 13117 29.8 

f r isc 13133 44.2 13302 46.7 13507 41.1 

i ir16 7587 33.0 7587 33.6 8361 38.6 

m isex3 10955 31.2 10955 30.0 10559 27.2 

m isex3c 6787 20.9 6787 17.3 6787 17.5 

S298 7844 44.1 7844 42.4 7568 43.6 

seq 11103 29.3 11299 29.3 10644 30.0 

sort8 11300 84.1 11105 88.8 10645 73.4 

tseng 8254 15.7 8884 16.0 8440 16.8 

Geo . Av . 9546 32.3 9615 32.0 9516 30.9 

Dif f % — ~ 0.7% - 1 % - 0 . 3 % - 4 . 3 % 

Table 4.2(a) Area and delay results for "0"-shaped EPLC's 

Original Placer Original Placer, Enhanced Placer 
and Router Enhanced Router and Router 

Circuit Placement Routing Placement Routing Placement Routing 
Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) 

C6288 29 12 29 11 38 11 

alu4 131 220 131 125 182 117 

apex2 253 553 253 241 346 267 

apex4 117 279 117 194 176 117 

bigkey 338 283 338 171 442 241 

dsip 282 251 282 171 379 212 

ex1010 1307 2608 1307 1171 1749 1540 

ex5p 124 228 124 168 155 205 

fr isc 851 2276 851 1509 1155 1395 

iir16 660 269 660 155 952 436 

misex3 126 308 126 123 192 148 

m isex3c 26 24 26 13 35 15 

S298 170 275 170 195 258 195 

seq 216 365 216 229 306 262 

sort8 221 406 221 198 289 243 

tseng 137 62 137 46 175 59 

Geo. A v . 192 247 192 148 264 173 

Diff % — ~ 0% - 4 0 % 3 7 % - 3 0 % 

Table 4.2(b) Runtime results for "0"-shaped EPLC's 
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4.4 Summary 

In this chapter, we have presented enhanced placement and routing algorithms for 

"U"-shaped and "0"-shaped embedded programmable logic cores. For a typical " U " -

shaped core as shown in Figure 4.10, the algorithms give a 12% reduction in the critical 

path of the resulting circuit, compared to algorithms optimized for square and 

rectangular cores. A critical path reduction of 4% for an "0"-shaped core was 

obtained. For both " U " - and "0"-shaped cores, the enhanced router runs much faster 

than the original router but the enhanced placer runs slower than the original placer 

because calculation for additional delay tables is required. Overall, the run-time of the 

two algorithms together remains roughly the same for an "0"-shaped core, and is 

reduced by 25% for the "U"-shaped core. 
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Chapter 5 

ARCHITECTURE STUDY FOR N O N - R E C T A N G U L A R EPLC'S 

In the previous chapter, we developed the enhanced VPR place and route tool that can 

better map a user circuit into non-rectangular EPLC's than the original VPR. In this 

chapter, we will use an experimental approach to investigate the area and delay 

efficiency of three non-rectangular EPLC architectures: "L"-shaped, "U"-shaped and 

"0"-shaped cores. The potential uses of these three non-rectangular EPLC 

architectures in SoC design have been illustrated in Chapter 1. In this chapter, we will 

focus on two aspects related to these three non-rectangular cores: 

1. In [2], it was suggested that a thinner rectangular core results in a 

lower area density and circuit speed than a thicker rectangular core. 

In this work, we will quantify how the thinness of each of the three 

non-rectangular cores affects its area density and circuit speed. This 

is important for chip designers to understand how flexible each of 

the three non-rectangular cores can be for reasonable performance 

tradeoffs. 

2. We quantify the density and delay penalties on all three non-

rectangular cores compared to square cores. 
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These two aspects will be studied by an experimental approach that is described in 

Section 5.1. Section 5.2 discusses the effect of thinness on the non-rectangular cores 

and shows the relative dimensions of "L" - , " U " - and "0"-shaped cores that we 

investigate in this work. In Section 5.3, we will experimentally quantify the area and 

delay efficiency for using the three non-rectangular cores, and measure the penalty 

compared to square cores. Lastly, a summary will be given in Section 5.4. 

5.1 Experimental Methodology 

In this chapter, we are investigating how shape and thinness affect the speed and area 

efficiency of different core architectures while we hold the other architectural 

parameters constant. Each non-rectangular core uses an island-style architecture, and 

each channel contains the same number of tracks and has the same segment length of 

one (one logic block wide). Each core architecture contains a number of logic blocks, 

each containing 4 basic logic elements (BLE's) with 10 inputs. The input and output 

pins are evenly distributed around the perimeter of the logic block. Each of the logic 

block inputs and outputs can be connected to one-quarter of the tracks in a 

neighboring channel. Each B L E consists of a 4-input LUT and a flip-flop. At the 

intersection of each horizontal and vertical channel is the Wilton switch block [8], and 

each programmable connection within the switch block is buffered. A 0.18 urn CMOS 

process from TSMC and eighteen M C N C benchmark circuits are used for this 

investigation. 

The C A D flow we use to evaluate the three non-rectangular core architectures is 

identical to that of Chapter 4. Each circuit was optimized and technology-mapped 
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using SIS [19] and Flowmap/Flowpack [10]. The logic elements were then packed to 

logic blocks using T-VPack [7], and timing-driven placement and routing were 

performed using the enhanced VPR place and route tool as described in Chapter 4. 

For each circuit and architecture, the minimum number of tracks required for 100% 

routability was found; the number of tracks in each channel was then increased by 20% 

in order to perform "low-stress" routing. After the "low-stress" routing, the area and 

delay results are computed by our area and delay models. Finally, we use these 

quantities to compare both the area and delay efficiency among these core 

architectures. 

5.2 Effect of Thinness on Non-Rectangular Core Architectures 

In this work, we are investigating the effect of thinness on "L"-shaped, "U"-shaped 

and "©"-shaped core architectures. In [2], it was suggested a more rectangular EPLC 

would result in a circuit with a lower density and speed. It is unclear whether " L " -

shaped, "U"-shaped and "0"-shaped core architectures follow the same trend as a 

rectangular core when their shapes become thinner. Also, if there are density and 

speed disadvantages from thinner core architectures, we want to quantify the area and 

delay penalties imposed on them so that chip designers can make a reasonably good 

decision on what the shape of an EPLC should look like. 
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Figure 5.1 Relative aspect ratios for "L"-shaped, "U"-shaped and "0"-shaped cores under investigation 
(the number inside a bracket is its thinness value) 

In this experiment, we assumed "L"-shaped, "U"-shaped and "0"-shaped cores 

employing the same architecture framework described in Section 5.2. In order to 

compare those three non-rectangular cores fairly, we introduce a metric thinness to 

measure how thin they are. The value of thinness ranges from zero to less than one, 
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which represents the proportion of a square core that is removed to create the non-

rectangular core. If the value of thinness equals zero, that would describe a square 

core. The purpose of defining this metric is to provide an indicator how non-square 

these non-rectangular cores are as we will compare the area and delay efficiency 

between the three non-rectangular cores and square cores. In Figure 5.1, "L"-shaped, 

"U"-shaped and "0"-shaped cores in each row have the same value of thinness. For 

example, thinness of 0.11 means 11% of a square core area has been removed in order 

to create an "L"-shaped, a "U"-shaped or an "0"-shaped core shown in the first row 

in Figure 5.1. In this paper, we are going to investigate "L"-shaped, "U"-shaped and 

"0"-shaped cores in various thinness between 0.11 (a very thick core) and 0.79 (a very 

thin core). 

The relative aspect ratios of each "L"-shaped, " U " -shaped or "0"-shaped cores under 

investigation are illustrated in Figure 5.1. Notice that these are not the exact 

dimensions of what a target platform would be implemented on, but rather relative 

aspect ratios used for specifying their core architectures for the C A D tool. The 

enhanced VPR tool described in Chapter 4 can find the smallest possible size for a core 

of interest to realize a target circuit and at the same time keep its relative aspect ratios. 

5.3 Experimental Results 

Figure 5.2 shows the routing area comparisons for "L"-shaped, "U"-shaped and "O"-

shaped cores as a function of thinness. The vertical axis is the number of minimum-

width transistor areas per tile in the routing fabric of an EPLC, geometrically averaged 

over all 18 benchmark circuits. Since all non-rectangular cores use the same logic 
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blocks, the area occupied by a logic block is the same throughout all cores. Therefore, 

we are only interested in their routing area. 

Routing Area vs. Thinness for L-shaped, U-shaped and O-shaped Cores 
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Figure 5.2 Routing area results 

A general trend shown in Figure 5.2 is that, for all three cores, as the thinness of the 

core increases, the routing area increases. Over the entire range of thinness, an " L " -

shaped core has the best area-efficiency among all three cores. An "0"-shaped core 

performs better than a "U"-shaped core when thinness equals 0.44 or above. When 

the thinness is below 0.44, both "0"-shaped and "U"-shaped cores have very similar 

results. 

Figure 5.3 shows the delay comparisons for the three non-rectangular cores. The 

vertical axis is the critical path delay of each circuit, geometrically averaged over all 

benchmarks. 
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Delay vs. Thinness for L-shaped, U-shaped and O-shaped Cores 
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Figure 5.3 Delay results 

Figure 5.3 shows that when the shape of the core becomes narrower, the critical path 

delay increases especially for "U"-shaped and "0"-shaped cores. An "L"-shaped core 

results in the fastest circuit speed among all three cores over the entire range of 

thinness. On the other hand, a "U"-shaped core has shorter delay than an "0"-shaped 

core except for thinness of 0.79, in which a "U"-shaped core runs slightly slower than 

an "0"-shaped core. 

Figure 5.4 shows the comparisons of the minimum channel width required for the 

three non-rectangular cores. These results are based on "high-stress" routing where a 

benchmark circuit is just barely routable, whereas the results shown in Figure 5.2 and 

5.3 are based on "low-stress" routing where 20% more routing resources than the 

minimum required are given to route a given circuit. 
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Minimum Channel Width vs. Thinness for L-shaped, U-shaped and O-shaped Cores 
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Figure 5.4 Minimum channel width results 

As shown in Figure 5.4, an "L"-shaped core requires the least number of tracks per 

channel to route a circuit, thus has the highest routing flexibility among all three cores. 

An "©"-shaped core needs fewer tracks per channel to route a circuit than a " U " -

shaped core when thinness is above 0.11. 

Figure 5.5 and 5.6 show the comparisons of both routing area and delay penalties 

associated with using the three non-rectangular cores over a square core respectively. A 

square core is chosen for comparison because it is the best shape for area-efficiency 

and speed [2]. The routing area and delay penalties are shown as percentages. 
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Routing Area Penalty Over Square Core vs. Thinness for L, U and O-shaped Cores 
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Figure 5.5 Routing area penalty over a square core 

Delay Penalty Over Square Core vs. Thinness for L, U and O-shaped Cores 
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Figure 5.6 Delay penalty over a square core 
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Delay Penalty Over Square Core vs. Thinness for U-shaped Cores 
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Figure 5.7 Delay penalty reduction by enhanced algorithm on "U"-shaped cores 
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Figure 5.8 Delay penalty reduction by enhanced algorithm on "0"-shaped cores 

It seems it is unwise to use any of the three non-rectangular EPLC's in chip design 

because of their area and delay penalties over a square core. However, in many 

applications, the fixed shapes and sizes of the other IP cores will dictate that a non-

rectangular EPLC is required. For thick "L"-shaped cores (thinness of 0.25 or below), 

the area and delay penalties over a square core are small, at most 15% for area penalty 
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and 1% for delay penalty. For thick "U"-shaped and "0"-shaped cores (thinness of 

0.25 or below), the area and delay penalties are less than 30%. As thinness increases, 

however, the penalties become much larger; for thinness of 0.79, the area and delay 

penalties of "L"-shaped cores are 122% and 58% respectively, the area and delay 

penalties of "0"-shaped cores are 199% and 125% respectively, the area and delay 

penalties of "U"-shaped cores are 247% and 133% respectively. 

For the same thinness, the results show that an "L"-shaped core is the best shape 

among the three non-rectangular cores in terms of area efficiency, circuit speed and 

routing flexibility. This is due to two factors. First, the thickness of an "L"-shaped 

core is approximated twice as thick as that of a "U"-shaped core or an "0"-shaped 

core with the same thinness metric. Second, an L-shaped core requires fewer long 

connections to connect I /O pins together than "U"-shaped and "0"-shaped cores. 

For almost any value of thinness, an "0"-shaped core has better routing flexibility than 

a "U"-shaped core resulting in an "0"-shaped core having higher area density than a 

"U"-shaped core. In applications such as core test wrappers, it is advantageous to use 

an "0"-shaped core over a "U"-shaped core because such a design may require a very 

thin core and it is shown a thin "0"-shaped core has better area-efficiency and circuit 

speed than a thin "U"-shaped core. In addition, an "0"-shaped core has higher I /O 

pins per unit area than a "U"-shaped core, which is beneficial to high-bandwidth testing 

applications. 

When we compare the area impact to the delay impact, clearly the delay impact is not 

as significant as the area impact. Figure 5.7 shows that this is directly a result of the 
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improved place and route algorithms described in Chapter 4. Using the enhanced 

algorithms, for a thinness of 0.64, the delay penalty of a "U"-shaped core is 

approximately 60%. If the original algorithms had been employed, the delay penalty 

would be almost 150%. The results for an "0"-shaped core shown in Figure 5.8 are 

similar. 

5.4 Summary 

In this chapter we have presented the experimental results for "L"-shaped, "U"-shaped 

and "0"-shaped EPLC's. We have shown that for the same thinness, "L"-shaped 

cores have the best in density and speed compared to "U"-shaped and "0"-shaped 

cores, while thinness is 0.44 or above, "0"-shaped cores have better area-efficiency 

than "U"-shaped cores. We have also shown that for thinness is 0.25 or below, the 

area (less than 30%) and delay (less than 20%) penalty of "L"-shaped, "U"-shaped and 

"0"-shaped cores are much smaller than the same shaped cores with higher thinness. 

It is important to note that we are not suggesting that all programmable logic cores 

should be rectangular or square. Indeed, in many cases, a non-rectangular core will be 

required, either because of 1/O constraints or because it is the only shape that will fit 

well with other cores in an SoC design. Instead, our results show that if such a core is 

used, the enhancements to the placement and routing algorithms are required, in order 

to reduce the delay and area penalty as much as possible. 
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Ch a pter 6 

CONCLUSIONS 

In this thesis, we investigated the C A D algorithm and architecture of non-rectangular 

embedded programmable logic cores. Specifically, we focused on "L"-shaped, " U " -

shaped and "0"-shaped cores. First, we developed a new specification method to 

support non-rectangular cores, and incorporated it into the FPGA C A D tool VPR in 

order to place and route those cores. Next, we enhanced the existing routing and 

placement algorithms targeting non-rectangular cores. We also examined the area and 

delay performances of the three non-rectangular core architectures. 

In order to adapt the SoC design style, non-rectangular EPLC's may be needed to 

better mesh with the other ASIC cores which dictate the shape of an EPLC. However, 

there is no published work discussing how to efficiently use a non-rectangular EPLC in 

an SoC design. There is also no freely available C A D tool that can be used to describe 

a non-rectangular core. In Chapter 3, we presented a simple and efficient specification 

method that describes a non-rectangular core on an architecture file used by the free 

industry-strength FPGA evaluation C A D tool VPR. We also modified VPR to 

correctly place and route a circuit on "L"-shaped, "U"-shaped and "0"-shaped cores. 

As a result, an evaluation for these cores can be done using this modified version of 

VPR. 
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Since the routing and placement algorithms in VPR were not optimized for non-

rectangular cores, there may be potential improvement that can be made through 

careful examination on the algorithms. In Chapter 4, we proposed two enhancements 

for the routing algorithm, and showed that for typical " U " - and "0"-shaped cores 

shown in Figure 4.9, the enhanced routing algorithm has a runtime that is 2.1 times that 

of the original algorithm on a "U"-shaped core, and 1.4 times on an "0"-shaped core. 

We also proposed an enhancement for the placement algorithm. For the same " U " -

and "©"-shaped cores, we demonstrated that the combined enhanced placement and 

routing algorithms outperforms the original VPR by producing not only denser 

implementation, but also on average 12% faster circuits on a "U"-shaped core, and 4% 

faster circuits on an "0"-shaped core. 

In order to understand the tradeoffs between using a non-rectangular core and a 

rectangular core in an SoC design, it is important to evaluate the delay and area 

performances of a non-rectangular core. Chapter 5 used the enhanced VPR with the 

enhanced placer and router to examine "L"-shaped, "U"-shaped and "0"-shaped cores 

over a range of thinness. The experimental results showed that for the same thinness, 

"L"-shaped cores have the best in density and speed compared to "U"-shaped and 

"0"-shaped cores, while for a thinness of 0.44 or above, "0"-shaped cores are more 

area efficient than "U"-shaped cores. We have also shown that for a thinness of 0.25 

or below, the area (less than 30%) and delay (less than 20%) penalty of the three non-

rectangular cores are much smaller than the same shaped cores with higher thinness. 
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Even though the penalty for using non-rectangular cores is significant, in many cases 

they will be required, either to better mesh with the other ASIC cores, or because of 

1/O constraints. Our results show that if such a core is used, the enhancements to the 

placement and routing algorithms are required, in order to reduce the speed and area 

penalty as much as possible. 

6.1 Future Work 
Currently the new specification method lets users describe a non-rectangular core on 

the architecture file but does not allow the specification of a heterogeneous routing 

architecture, where the horizontal and vertical channels have different numbers of 

tracks. In [2], it was suggested that for a rectangular EPLC, channels in the long 

direction should have more tracks than channels in the narrow direction. An 

interesting project would remove this restriction and explore whether applying results 

from [2] into each rectangular region on a non-rectangular core, such as an "L"-shaped, 

a "U"-shaped or an "0"-shaped core, would improve area density and circuit speed. 

Segmentation distribution has an important impact on the density and delay of EPLC's. 

In this paper, we restrict all wires to span one logic block length. It will be interesting 

to explore non-rectangular core architectures that have wires spanning more than one 

logic block, and determine the optimal segmentation length for each non-rectangular 

core. .Also, it is essential to find good switch block topologies for use with segmented 

non-rectangular core architectures. 
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As we understand how various architectural components, such as horizontal and 

vertical channel width ratio, segmentation distribution and switch block topology, affect 

the speed and density of a non-rectangular EPLC, an "embedded programmable logic 

generator" can be created to provide an EPLC with the optimal architecture to a chip 

designer. Using this generator, the chip designer can request a core with certain 

properties (shape, size, number and type of interface pins etc.), and the generator 

would automatically create an EPLC that best meets the user's specifications. A project 

is currently under way at the University of British Columbia to implement such a 

generator. 

6.2 Summary of Contributions 
The contributions of our work are summarized as follows: 

i. We developed a novel specification method to describe a non-

rectangular EPLC in an architecture file used by the modified 

FPGA C A D tool VPR. 

ii. We proposed enhancements to existing placement and routing 

algorithms and quantified the improvement on area, delay and 

runtime over the original algorithm when targeting non-

rectangular cores. 

iii. We quantified and compared the area and delay performances of 

"L"-shaped, "U"-shaped and "0"-shaped cores over a variety of 
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thinness, and measured the penalty of using these three non-

rectangular cores compared to square cores. 

This work has enabled researchers or chip designers to evaluate non-rectangular 

EPLC's in the SoC design style through the new specification method and the 

enhanced C A D tool. In addition, new understandings of the area and delay efficiency 

of "L"-shaped, "U"-shaped and "0"-shaped cores are provided in this research. 
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