
N O N - R E C T A N G U L A R E M B E D D E D
P R O G R A M M A B L E L O G I C CORES

by

Tony Yau-Wai Wong

B.A.Sc, University of British Columbia, 1998

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Applied Science

in

The Faculty of Graduate Studies

Department of Electrical and Computer Engineering

We accept this thesis as conforming to the
required standard:

The University of British Columbia

May 2002

© Tony Yau-Wai Wong, 2002

In p resent ing this thesis in partial fu l f i lment of t h e requ i rements fo r an advanced

degree at the Univers i ty of Brit ish C o l u m b i a , I agree that t h e Library shall make it

f reely available f o r re ference and study. I fu r ther agree that permiss ion fo r extens ive

c o p y i n g o f this thesis f o r scholar ly pu rposes may b e g ran ted by t h e h e a d o f m y

d e p a r t m e n t or by his o r her representat ives. It is u n d e r s t o o d that c o p y i n g o r

pub l i ca t i on of this thesis fo r f inancial gain shall n o t be a l l o w e d w i t h o u t m y w r i t t e n

permiss ion .

D e p a r t m e n t of CL^C 0**~~t Cn^pvJ'S^- ,'rJ&r>"

The Univers i ty o f Brit ish C o l u m b i a
Vancouver , Canada

Date jAo^p ? / , '"^00(1,

DE-6 (2/88)

ABSTRACT

N O N - R E C T A N G U L A R E M B E D D E D
P R O G R A M M A B L E LOGIC CORES

As System-on-a-Chip (SoC) design enters into mainstream usage, the ability

to make post-fabrication changes will become more and more attractive.

This ability can be realized using programmable logic cores. These cores are

like any other intellectual property (IP) in the SoC design methodology, except

that their function can be changed after fabrication. In many cases, non-

rectangular programmable logic cores are required, either to better mesh

with the other IP cores, or because of I /O constraints. However, most

C A D algorithm and programmable logic architecture research targets stand­

alone field programmable gate arrays (FPGA's), which are invariably square

or rectangular. In this thesis, we enable researchers to evaluate non-

rectangular programmable logic cores by a novel specification method and

an enhanced C A D tool. We also show that existing placement and routing

algorithms do not work well when targeting non-rectangular programmable

logic cores, and we present enhancements to existing placement and routing

algorithms that allow the algorithms to better target these cores. It is shown

that the new algorithms lead to a 12% critical path improvement for " U " -

shaped cores, and a 4% critical path improvement for "0"-shaped cores.

The density and speed penalty for using these non-rectangular cores is

significant, compared to square cores, however, we show that the penalty

would be significantly larger if the original algorithms were used.

u

T A B L E OF C O N T E N T S

Abstract u

List of Figures and Tables vi

Acknowledgments ix

Overview and Introduction 1

1.1 Motivation 1

1.2 Research Goals 6

1.3 Organization of This Thesis 7

Background and Previous Work 9

2.1 EPLC Architecture 9

2.1.1 Logic Resources 11

2.1.2 Routing Resources 14

Routing Between Logic Blocks 15

Routing Inside Logic Blocks 17

2.2 CADforEPLC's 17

2.2.1 Placement 19

2.2.2 Routing 22

2.3 Focus and Contributions of This Thesis 25

A Specification Method for Non-Rectangular EPLC's 27

in

3.1 Motivation 27

3.2 Original Specification Scheme 29

3.3 Enhanced Architecture Specification Method 33

3.4 Examples of Non-Rectangular EPLC's 36

3.5 Summary 42

Placement and Routing Algorithms 43

4.1 Placement and Routing for Stand-A lone FPGA 's 44

4.1.1 Placement 44

4.1.2 Routing 47

4.2 Placement and Routing for Non-Rectangular EPLC's 57

4.2.1 Placement 51

4.2.2 Routing 53

4.3 A Igorithm Evaluation 56

4.3.1 Experimental Methodology 56

4.3.2 Experimental Results 59

4:4 Summary 62

Architecture Study for Non-Rectangular EPLC's 63

5.1 Experimental Methodology. 64

5.2 Effect of Thinness on Non-Rectangular Core Architectures 65

5.3 Experimental Results 67

5.4 Summary 74

iv

Conclusions 75

6.1 Future Work 77

6.2 Summary of Contributions 78

References 80

v

LIST OF FIGURES A N D TABLES

Number Page

Figure 1.1(a) An "L"-shaped core used for interface logic 3

Figure 1.1(b) One "U"-shaped and four "0"-shaped cores used for test wrappers and

control 3

Figure 2.1 Island-style EPLC architecture 10

Figure 2.2 Constructing a "U"-shaped core from a square core 11

Figure 2.3 Logic block architecture 12

Figure 2.4 Simplified model ofBLE 12

Figure 2.5 4-input lookup-table 13

Figure 2.6 Routing architecture in an island-style EPLC 15

Figure 2.7 Two types of SRAM-basedprogrammable switch 17

Figure 2.8 A typical EPLC CAD flow 18

Figure 2.9 Pseudo-code of a generic simulated annealing-based placement algorithm22

Figure 2.10 Pseudo-code of the Pathfinder routing algorithm 25

Figure 3.1 Example of an original VPR-format architecture file 30

Figure 3.2 An "L "-shaped directionally biased routing architecture 35

Figure 3.3 Only Shape group is shown in the architecture file for an "L"-shaped core.

37

Figure 3.4 Only Shape group is shown in the architecture file for a "U"-shaped core37

Figure 3.5 Only Shape group is shown in the architecture file for an "O "-shaped core.

38

vi

Figure 3.6 Final routing result of an "L "-shaped EPLC 39

Figure 3.7 Final routing result of a "U"-shaped EPLC 40

Figure 3.8 Final routing result of an "O "-shaped EPLC 41

Figure 4.1 Example of half of a bounding box perimeter (bbx + bby) of an eight

terminal net 45

Figure 4.2 Net connecting a to b will have approximately the same delay as net

connecting c to d 46

Figure 4.3 Calculating the expected cost of a net during routing 50

Figure 4.4 Example of routing boundary for an eight terminal net. 51

Figure 4.5 Difference between the Manhattan distance and the shortest path distance in

a "U"-shaped core 52

Figure 4.6 Pseudo-Code of the correct delay estimation for "{]"- and "0"-shaped

cores 53

Figure 4.7 Failure of routing in a "U"-shaped core due to the net bounding box 54

Figure 4.8 Pseudo-Code of the correct shortest path distance calculation for "U"- and

"O "-shaped cores 55

Figure 4.9 Algorithm evaluation CAD flow 57

Figure 4.10 Relative aspect ratios of a "U"-shaped core and an "O "-shaped core used

in algorithm evaluation JS

Table 4.1 (a) Area and delay results for "U"-shaped EPLC's 60

Table 4.1(b) Runtime results for "U"-shaped EPLC's 60

Table 4.2(a) Area and delay results for "O"-shaped EPLC's 61

Table 4.2(b) Runtime results for "0 "-shaped EPLC's 61

Vll

Figure 5.1 Relative aspect ratios for "L "-shaped, "U"-shaped and "O "-shaped cores

under investigation (the number inside a bracket is its thinness value) 66

Figure 5.2 Routing area results 68

Figure 5.3 Delay results 69

Figure 5.4 Minimum channel width results 70

Figure 5.5 Routing area penalty over a square core 71

Figure 5.6 Delay penalty over a square core 71

Figure 5.7 Delay penalty reduction by enhanced algorithm on "U"-shaped cores 72

Figure 5.8 Delay penalty reduction by enhanced algorithm on "O"-shaped cores 72

vm

A C K N O W L E D G M E N T S

First of all, I am so thankful that I had such a great supervisor, Dr. Steven

Wilton. He constantly gives me encouragement and advice. Without his

help, I do not think I was able to finish this work. I also like to thank my

research group at UBC — Ernie, Steve, Kara, Dana, Julien and Martin for

their insightful discussions during my research work, especially I would like

to give a big thank to Peter for inspiring me to choose this research topic.

This research was supported by Micronet and Altera. I greatly appreciate

their financial support to my work. Also, I like to thank Vaughn Betz for

providing VPR and the Canadian Microelectronics Corporation for their

technical support.

I would like to thank my parents and two sisters for their continuous

support to my work in the past three years. Last but not least, I would like

to dedicate this thesis to Teresa for her motivation and prayers throughout

my academic life at UBC.

ix

Chapter 1

OVERVIEW A N D INTRODUCTION

1.1 M o t i v a t i o n

Recent years have seen impressive improvements in the achievable density of integrated

circuits. In order to maintain this rate of improvement, designers need new techniques

to handle the increased complexity inherent in these large chips. One such emerging

technique is the System-on-a-Chip (SoC) design methodology. In this methodology,

pre-designed and pre-verified blocks, often called cores or intellectual property (IP) are

obtained from internal sources or third parties, and combined onto a single chip.

These cores may include embedded processors, memory blocks, or circuits that handle

specific processing functions. The SoC designer, who would have only limited

knowledge of the structure of these cores, could then combine them onto a chip to

implement complex functions.

No matter how seamless the SoC design flow is made, and no matter how careful an

SoC designer is, there will always be some chips that are designed, manufactured, and

then deemed unsuitable. This may be due to design errors not detected by simulation

or it may be due to a change in requirements. This problem is not unique to chips

designed using the SoC methodology. However, the SoC methodology provides an

elegant solution to the problem: one or more embedded programmable logic cores

1

(EPLC's) can be incorporated into the SoC. The embedded programmable logic core

is a flexible logic fabric that can be customized to implement any digital circuit after

fabrication. Before fabrication, the designer embeds a programmable fabric (consisting

of many uncommitted gates and programmable interconnects between the gates).

After the fabrication, the designer can then program these gates and the connections

between them. Several companies, including Actel, Adaptive Silicon, Atmel, eASIC,

Lucent and QuickLogic already provide EPLC's [44,45,46,47,48,49].

Figure 1 shows two hypothetical examples of where EPLC's may be beneficial. In

Figure 1(a), an EPLC is shown that implements interface logic between the other ASIC

cores inside the chip and the peripherals outside the chip. As standards change, it is

clearly beneficial if this interface logic is flexible. Figure 1(b) shows another use of

f

EPLC's; in this case, the EPLC's are used as test logic controllers in SoC design [1].

This allows a test engineer to implement new test stimulus and/or test analysis circuits

on the programmable core after the chip is fabricated. As testing proceeds, if errors

are found, new tests can be devised and the new on-chip test circuitry can be

implemented in the EPLC.

2

• z _ z z a

ASIC
Logic

K P L C

• • • • • • • • • E H

CPU
Core

Mixed-
Signal
Core

SRAM
Core

• • • • • •

Figure 11(a) An "L"-shaped core used for interface logic

• • • • • • • • • • • • • • • • n •
Core Test Wrapper

CPU Core

(KI'U:)

Core lest Wrapper

Mixeil-
Sifiini]
('ore

(KPI.C)

DSP Core

(Kl'l.C)

Ctne I est Wrapper

Memory

Z -
(ore

<

(Kl'l.C)

lent (ollllollel (I PI (j

~~ z
•
m

m

• n • • • • • • • •
B

Figure 1.1(b) One "U"-shaped and four "0"-shaped cores used for test wrappers and control

3

These examples show two cases in which embedded programmable logic in a SoC

would be advantageous. In general, there are a number of reasons to do this:

1. An EPLC enables communication chip designers to proceed with

chip development before standards have been finalized. This is

important, since time-to-market is critical in industry today. As an

example, a network chip can be built in which the network protocol

is implemented in programmable logic and the remainder is

designed using fixed ASIC logic or fixed-function cores.

2. It is possible to make a single chip design that will be used by

several customers. In this case, an EPLC would incorporate the

customer-specific portion of the chip. Also, it could reduce the cost

of developing the ASIC over several products. Figure 1.1a

illustrates such chip design, where the processing functions and

memory, which are common among all customers, are implemented

in fixed ASIC logic and fixed-function cores, whereas the interface

to the processing is implemented in programmable logic.

3. Some C A D tool vendors offer platform-based design. Using this

design methodology, the C A D tool vendor provides basic hardware

components for particular application needs. With EPLC's, the

C A D tool vendor can now encapsulate the different requirements

from customers into the programmable logic, and leave the

unchanged components implemented in fixed logic. This would

greatly reduce the amount of work needed by the C A D tool

vendors to customize the platform for future customers.

In order to use EPLC's effectively in SoC design, there are a number of essential issues

that have to be addressed. For example, most C A D algorithm and programmable logic

architecture research targets stand-alone field programmable gate arrays (FPGA's) [2,

41] which are invariably square or rectangular. In SoC design, however, it may be

desirable to use an EPLC of a different shape. As shown in Figure 1.1(a), for example,

the EPLC is "L"-shaped; not only may this better mesh with the other cores, but an L-

shape may be very suitable if the 1/O associated with this block spans more than one

edge of the chip. In Figure 1.1(b), both "0"-shaped and "U"-shaped EPLC's can be

seen. "0"-shaped EPLC's can be used as a test "wrapper" around other fixed-function

cores, in this case, to map test signals to the cores. "U"-shaped EPLC's may also be

used when a complete wrapping is not required. In any case, it is clear that EPLC's

should be able to take on shapes other than rectangular. Therefore, new research has

to be conducted for non-rectangular EPLC's if we want to use them in SoC design.

In addition, researchers must determine how best to integrate the FPGA C A D flow

into the existing ASIC design flow in order to make it possible for chip designers to use

EPLC's. Another problem is to how to verify the programmable portion in an ASIC

chip in the pre-tape-out stage when the circuit implemented in the EPLC is unknown.

5

1.2 Research Goals

In this work, we focus on one of the important issues: C A D algorithms and

architectures for non-rectangular EPLC's. Although there have been considerable

research on C A D algorithms and architectures for programmable logic, all of them

assume the shape of programmable logic is square or rectangular, which is true for

stand-alone FPGA's. However, EPLC's can take on a variety of shapes and aspect

ratios such as shown in Figures 1.1(a) and 1.1(b), and it seems likely that the existing

algorithms used for stand-alone FPGA's may not perform well for non-rectangular

EPLC's. In addition, it is unclear how to efficiently use non-rectangular cores in SoC

design rather than rectangular cores to optimize area and delay. Therefore, an

evaluation for the algorithms and architectures that target non-rectangular EPLC's is

required.

In this paper, we focus on three aspects:

1. Design of a new specification method for describing a non-

rectangular EPLC and providing an evaluation C A D tool to support

the new specification format.

2. Improvement of the existing placement and routing algorithms on

the evaluation C A D tool that better targets to non-rectangular

EPLC's.

3. Using the enhanced C A D tool to evaluate the architectures of " L " - ,

" U " - and "0"-shaped EPLC's for area and delay efficiency.

6

The first goal is to create a simple specification method to enable users to enter device

information such as the shape of an E P L C architecture to an evaluation C A D tool.

The second goal is to optimize the existing placement and routing algorithms used in a

popular public F P G A C A D tool, V P R [6] for non-rectangular E P L C architectures. It

is unknown how efficiently the existing placement and routing algorithms can map a

user circuit into a non-rectangular core. We believe the placer and router can be

improved by careful examination of both algorithms for non-rectangular cores.

The third goal of this research is to use the enhanced evaluation C A D tool to study the

area and speed performances of non-rectangular E P L C architectures. Three EPLC's

are studied: "L"-shaped, "U"-shaped and "0"-shaped cores. Using the enhanced

placer and router, we quantify the area and delay results of " L " - , " U " - and "0"-shaped

cores and hence determine the penalty of using these non-rectangular cores compared

to square cores.

1.3 Organization of This Thesis

This thesis is organized as follows: Chapter 2 contains an introduction to E P L C

architectures as well as to C A D algorithms that are used to map a user circuit onto an

E P L C . Chapter 3 introduces the novel specification method that enables users to

describe a non-rectangular E P L C in an architecture file being used by an evaluation

C A D tool. Chapter 4 focuses on the algorithmic issues in the evaluation C A D tool

targeting non-rectangular cores. Specifically, we propose enhancements to the

placement and routing algorithms, and present experimental results that show that the

7

enhanced placer and router lead to higher quality results and runtime savings. In

Chapter 5, we measure the delay and area performances of " L " - , " U " - and uO"-shaped

cores by the enhanced placer and router, and evaluate the feasibility of using these

three types of cores by comparing them to square cores. Finally, we conclude the

thesis with a summary of the work presented and future work, and also summarize the

contributions of this work.

8

Chapter 2

B A C K G R O U N D A N D PREVIOUS W O R K

In this chapter, we present an overview of the architecture of EPLC's. In addition, we

also cover the C A D flow used for mapping user circuits into EPLC's, along with a

detailed discussion of the placement and routing algorithms.

2.1 E P L C Architecture

The architecture of commercially available EPLC's varies from vendor to vendor

[44,45,46,47,48,49]. However, the architecture of EPLC's inherits much from the

architecture of stand-alone FPGA's. In these devices, configurable logic blocks are

placed in a grid, separated by horizontal and vertical wiring channels containing fixed

metal tracks. These metal tracks are connected to each other and to the logic blocks

using programmable switches as shown in Figure 2.1. This is often termed an island-

style architecture. In this study, we will exclusively investigate island-style EPLC's.

9

logic blocks

wiring
channels

Figure 2.1 Island-style EPLC architecture

Constructing a non-rectangular core is straightforward. The island-style architecture in

most EPLC's provides a natural way to implement " L " - , " U " - , and "0"-shaped cores;

one or more logic blocks and the routing fabric around these logic blocks can be

removed from a rectangular core to form an " L " - , " U " - , or "0"-shaped core. An

example is shown in Figure 2 . 2 ; in this case, the logic blocks in the shaded region can

be removed to form a "U"-shaped core.

10

Shaded region is removed to
form a "U"-shaped core logic blocks

• • • ;• • " • • • •
• • • • • • • • •
• • • • • • • • • • •
• • • • • • • • I • • •
• • • b • • • • • !

iiliii
• • •

• • • • • • B • | • • •
• • • • • • • • • • •
• • • o • • • • • i • • •
• • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

Figure 2.2 Constructing a "U"-shaped core from a square core

All EPLC architectures are comprised of logic resources and routing resources. In

Subsections 2.1.1 and 2.1.2, we will discuss the architecture of logic resources and

routing resources for the island-style EPLC architecture respectively.

2.1.1 Logic Resources

A logic block (depicted in Figure 2.3) is the building block of an island-style EPLC

architecture. Each logic block implements a small part of the logic required by a user

circuit. By connecting logic blocks together properly, an EPLC can implement the

entire user circuit.

11

Logic Block
Inputs

Feedback Path

Local
Interconnect

Matrix

BLE

BLE

BLE

BLE

Logic Block
Outputs

Figure 2.3 Logic block architecture

Inside a logic block, there are one or more basic logic elements (BLEs). Each B L E

contains a lookup-table (LUT) and a register. The register is used for implementing a

sequential circuit, and can be enabled or disabled by using the 2:1 multiplexer and a

user-programmable SRAM cell. Figure 2.4 shows the internal structure of a basic logic

element.

Out

Figure 2.4 Simplified model of BLE
12

Lookup-tables can be used to implement logic very efficiently because a k-input LUT

can realize any function of k-inputs. Rose et al. [12] have shown that a 4-input LUT

produces the highest area-efficiency, and the result is widely accepted by industry. We

will use 4-input LUT for the rest of this study. Figure 2.5 shows a 4-iriput LUT,

implemented by sixteen 1-bit SRAM cells and five 4:1 multiplexers.

In3 In2 In1 InO
SRAM cell I I I I

Out

Figure 2.5 4-input lookup-table

The previous research [43] has shown that is preferable to include more than one B L E

in each logic block. The user (via a C A D tool) can then cluster tightly connected BLEs

together by the programmable local interconnect matrix, thereby reducing the

13

necessary global routing resources. This decreases the routing area and delay.

However, if the number of BLEs in a logic block grows too large, the area and delay

savings in global routing will be outweighed by the area and delay penalties imposed

from the local interconnect within the logic blocks. Ahmed et al. [4] found that the

number of BLEs in a logic block for the best area-delay efficiency ranges from four to

ten. In our study, a logic block size of four is chosen, as illustrated in Figure 2.3.

2.1.2 Routing Resources

The routing resources enable the interconnect between logic blocks as well as between

BLE's within a logic block. They are also used to connect the off-chip signals to the

logic blocks through I /O pads. Routing resources are crucial to the overall area and

speed because they account for a significant amount of chip space and critical path

delay [17,36]. The routing resources in an EPLC can be categorized as:

1. Routing between logic blocks

2. Routing inside logic blocks

Figure 2.6 shows only the routing between logic blocks in a single tile. Most EPLC's

are created by replication of such a tile (a tile contains one logic block and its associated

routing fabric).

14

Segment Length = 1 Logic Block Wide

M •

• i i •

I

I

Switch
Block

Logic Block

i r

Connection

Block

t x
Programmable

Switch

J
Routing Channel

Figure 2.6 Routing architecture in an island-style EPLC

touting Between Logic Blocks

The routing between logic blocks contains three components:

1. Routing channels

2. Switch blocks

3. Connection blocks

Each routing channel consists of a number of fixed metal tracks that run either

horizontally or vertically. In most EPLC's, each track in a channel is not a single long

wire spanning the entire length of an EPLC. Instead, the wires are broken into a

number of smaller wire segments, and each wire segment spans one or more logic

15

blocks. In this work, we focus on island-style EPLC architectures in which each

channel contains the same number of tracks and each metal track spans one logic block

as shown in Figure 2.6.

A switch block occurs at each intersection between horizontal and vertical routing

channels, as shown in Figure 2.6 determines all possible connections between these

channels. Four different topologies for switch blocks have been proposed in the

previous work: the disjoint switch block [52], the universal switch block [13], the Wilton

switch block [8] and the Imran switch block [14]. In this work, the Wilton switch block

is used for all the EPLC architectures because it has the best area-efficiency when all

the routing wires span one logic block [5].

A connection block shown in Figure 2.6 connects the logic block pins to the routing

channel and vice versa. The number of tracks in each routing channel to which each

logic input and output pin can connect is called the connection block flexibility. Betz

[5] has showed that the Wilton switch block works best when each logic block input

and output pin connects to one quarter of the tracks in the neighboring routing

channel. This is also adopted in this work.

The connections in the connection blocks and the switch blocks are made by

programmable switches. Each programmable switch contains either a pass transistor

or a tri-state buffer, controlled by a SRAM cell shown in Figure 2.7. In this study, we

will exclusively focus on SRAM-based EPLC's.

16

SRAM

Pass Transistor Tri-state Buffer

Figure 2.7 Two types of SRAM-based programmable switch

Routing Inside Logic Blocks

Routing within a logic block is performed using a local interconnect matrix as shown in

Figure 2.3. The interconnect matrix allows connections between the logic block inputs

and the B L E inputs in the logic block, and also enables the feedback paths from the

B L E outputs to the B L E inputs in the logic block. If any of the logic block inputs, and

any of the B L E outputs can be connected to any of the B L E inputs, the interconnect

matrix is called fully connected. If only some of the logic inputs, and the feedbacks can

be connected to any of the B L E inputs, the interconnect matrix is called depopulated.

In this study, we use a fully connected interconnect matrix because it is most widely

used in industry [51,52]. Further studies on the architecture of the interconnect matrix

can be found in [15,16,17].

2.2 C A D fo r E P L C ' s

The main function of an EPLC C A D tool is to convert a high-level circuit description

(that a human can understand) into a programming file (unreadable format) setting the

state of every programmable switch in an EPLC, in order to realize the user circuit.

17

The conversion is carried out through a number of sequential steps, as depicted

Figure 2 . 8 .

High-Level Circuit Description

High-Level
Synthesis

Technology-
Independent Logic

Optimization

Packing into Logic
Blocks

EPLC Programming File

Figure 2.8 A typical EPLC CAD Bow

1 8

First, users describe their circuit in high-level description language (such as V H D L or

Verilog) or schematic, and then synthesize their description into a netlist of basic gates.

This step is called high-level synthesis [18,19]. Then the netlist of gates is processed by

a technology-independent logic optimization algorithm [19] in which the redundant

logic is removed. Next, it is mapped into lookup tables by a technology mapping

algorithm [10]. Next, the netlist of lookup tables is packed into logic blocks [7]. Then,

each logic block is assigned a physical location in an EPLC using a placement algorithm

[6]. Next, the connections among logic blocks will be routed on the wire segments on

an EPLC by a routing algorithm [6]. Finally, all the connections are made among the

logic blocks and the I /O pads.

All steps prior to placement can operate independently of the shape of the EPLC.

Placement and routing, however, are inherently geometrical in nature; thus, we would

expect these algorithms to be strongly influenced by the shape of the target core. In

Chapter 4, we will show that this intuition is correct. Therefore, in the following

discussion (and the rest of the thesis) we focus on non-rectangular placement and

routing.

2.2.1 Placement

Placement algorithm determines the exact location of user logic blocks on an EPLC.

Typically, placement has three optimization goals:

1. Minimize Wire-Length

2. Minimize Congestion

19

3. Minimize Critical Path Delay

The first goal is to reduce the amount of wire needed to make all required connections

between the logic blocks. The reduction in wiring directly results in a denser and

usually faster EPLC implementation for a circuit. One way to achieve this goal is to try

to position tightly connected logic blocks close to each other.

The second goal is to balance the wiring usage across the EPLC to avoid congestion of

routing resources. Since most of EPLC's have evenly distributed routing channels, the

circuit could be unroutable if an area in the EPLC is so congested that the required

channel width exceeds the channel width offered in EPLC.

The third goal is to minimize the circuit delay on an EPLC. In order to achieve this

objective, placement should be able to recognize which net is more timing-critical, and

then place the logic blocks which are connected by more timing-critical nets closer

together to minimize the path delay. Further details on these goals will be discussed in

Chapter 4.

There are a number of well-known algorithms to solve the placement problem, such as

min-cut (partitioning-based) [20], analytic [22,23], and simulated annealing [24,25,26].

In this study, we focus on simulated annealing algorithm because it was employed in

the popular public FPGA C A D tool called VPR [6]; this is the C A D tool upon which

our algorithms will be built.

20

The simulated annealing algorithm originates from the concept of the industrial

annealing process used to gradually cool molten metal [26]. The pseudo-code for a

generic simulated annealing-based placer is depicted in Figure 2.9. Initially, a simulated

annealing-based placer randomly places logic blocks into physical locations in an EPLC.

Then the placement is iteratively improved by randomly swapping logic blocks and

measuring the placement cost resulting from every swap by a cost function. A cost

function is used to evaluate the quality of any placement of logic blocks, such as wire-

length cost, congestion cost and path delay cost. If a swap results in a reduction in the

placement cost, the move is always accepted. If the placement cost increases, there is

still a chance of the move being accepted even though it makes the placement worse.

The probability of acceptance is modeled by a formula e"Ac/T, where AC is the positive

change in cost function the move causes, and T is the "temperature". At first, T is very

high and almost all moves are accepted; however, it is gradually decreased when the

placement is refined so that near the end of the anneal, probability of accepting a move

that makes the placement worse is very low. The purpose of accepting the moves that

make a placement worse is to prevent the simulated annealing-based placer from

becoming trapped in a local minimum in the cost function.

The rate at which temperature is decreased, the exit condition for stopping the

annealing, the number of moves tried at each temperature (InnerLoopCriterion), and

how each potential move is generated, are specified by the annealing schedule. A good

annealing schedule is very important to achieve good results in a reasonable runtime.

21

P = RandomPlacementQ;
T = InitialTemperarureQ;

while (ExitCriterionO == false) {
while (InnerLoopCriterion() == false) {

L new GenerateNewMove (P);
AC = Cost(P„ew) - Cost(P);

r = random(0,l);
If (r < e-^/i) {

}
}
T = UpdateTemperatureQ;

}

Figure 2.9 Pseudo-code of a generic simulated annealing-based placement algorithm

2.2.2 Routing

The routing algorithm assigns the routing resources to all the nets in the user circuit.

Generally, there are two optimization goals for a router:

1. Complete routing of all nets

2. Delay Minimization

The first goal is to route all required nets using the routing resources on an EPLC

without any resource contention. This objective is hard to achieve in EPLCs because

the routing resources are fixed. However, if there is contention unresolved by a router,

the user circuit cannot be implemented in an EPLC. Therefore, this is the most

important goal.

22

The second goal is to minimize the circuit delay by using short paths and fast routing

resources for nets which are on or near the critical path. However, this second goal is

always competing with the first goal. A router has to simultaneously solve these two

problems using the limited routing resources.

In general, there are two types of routers. The first type consists of combined global-

detailed routers [9,27,28,29,31] in which a complete routing path is determined in one

step. The second type consists of two-step routers which first perform global routing

[32] to determine which logic block pins and channel each net would use, and then

perform detailed routing [33,34] to determine the track(s) each net would use within

the specified channel. Since the result quality of detailed routing is highly constrained

by the choices the global router makes, combined global-detailed routers often have

better routing results. Therefore, throughout this study, we use combined global-

detailed routing which is also supported by VPR.

By far the most common technique to this routing problem is Dijkstra's algorithm [35]

which finds the shortest path between a net source pin and a net sink pin. However,

this approach alone often results in an unroutable circuit, where contention for routing

resources by nets is still unresolved. Rip-up and retry techniques [37] are often used to

resolve competition for routing resources. There are also routers [29] using rip-up and

retry approach to tackle the congestion as well as timing problems. One such

algorithm is the Pathfinder algorithm [9]. This algorithm is employed by the VPR

C A D tool.

23

The Pathfinder algorithm is shown in Figure 2.10. It uses a breadth-first search

through the routing resource graph1 to connect net terminals. The key idea of Pathfinder is

to allow physical tracks to be shared by multiple nets during the routing process. Once

all nets have been routed successfully, the cost of two nets sharing a track will be

increased slightly. Each net is then ripped-up and re-routed. This is repeated for

several iterations; each time the cost of sharing becomes slightly higher. When, at the

end of an iteration, no track is shared by more than one net, a legal routing has been

found, and the algorithm terminates.

During routing, the fitness of each potential segment n that might be added to the net

is evaluated using the following cost function:

Cost(n) = Criticality x Delay(n) + [1 - Criticality] x b(n) x h(n) x p(n) (2

where Delay(n) is the Elmore delay of the segment n, and b(n), h(n), and p(n) are the

base cost, the historical congestion cost, and the present congestion cost of using

segment n, and the Criticality is a measure of how close to the critical path the currently

routed net is. The first term in the cost function represents the delay of the currently

routed net, while the second term represents the congestion cost of the current

segment. Nets with a higher value of Criticality are thus routed primarily for speed,

while other nets are routed primarily for congestion. This ensures that, as routing

progresses, nets which are not critical are moved away from congested regions.

1 A directed graph, in which each node represents either a wiring segment or a logic block pin and each
edge represents a programmable switch, is a very general way to describe an EPLC [5].

24

R(i) be the set of nodes, n, in the current routing of net(i).

Criticality(i, j) = 1 for all nets i and sinks j;

while (OverusedResourcef) == true) {
for (each net, i) {

rip-up routing tree R(i) and update affected p(n);
R(i) = NetSource(i);

for (each sink, j of net(i) in decreasing Criticality(i,j) order) {
PriorityQueue = R(i) at PathCost(n) = Criticality(i,j) x Delay(n) for each node n in R(i);

while (sink(i,j) not found) {
remove lowest cost node, m, from PriorityQueue;

for (all fanout nodes n of node m) {
add n to PriorityQueue at Pathcost(n) = Cost(n) + PathCost(m);

}
}
for (all nodes, n, in path from R(i) to sink(i,j)) { / * Backtracing * /

update p(n);
add n to R(i);

}
}

}
Update h(n) for all nodes n;
perform timing analysis and update Criticality(i,j) for all nets i and sinks j;

} / * End of a routing iteration * /

Figure 2.10 Pseudo-code of the Pathfinder routing algorithm

2.3 Focus and Contributions of This Thesis

In order to use a non-rectangular core, placement and routing tools that map a user

circuit onto an EPLC are required. Such place and route tools have been well-studied

for stand-alone FPGAs; however, as described in Section 2.1, EPLC's may differ in that

they may not be square or rectangular. We need new place and route tools that enable

25

users to efficiently specify a non-rectangular EPLC and generate the correct

architecture for evaluations. In Chapter 3, we propose a new specification method and

incorporate it into the public-domain VPR place and route tool that is representative of

industry tools developed by FPGA vendors.

Since place and route tools use algorithms that are inherently geometrical, it seems

likely that the same algorithms may not perform well with non-rectangular EPLC's. In

Chapter 4, we propose enhancements to existing placement and routing algorithms in

VPR that allow the algorithms to better target the non-rectangular cores. In Chapter 5,

we investigate the area and delay performances of " L " - , " U " - and "0"-shaped EPLC's

in various relative aspect ratios.

The contributions of this thesis are summarized as follows:

1. A novel specification method for describing non-rectangular

EPLC's

2. Enhancements to existing placement and routing algorithms that

optimize for non-rectangular EPLC's

3. Experimental evaluation of "L" - , " U " - and "0"-shaped EPLC's for

the area and delay efficiencies

26

Chapter 3

A SPECIFICATION M E T H O D FOR N O N - R E C T A N G U L A R EPLC'S

In this chapter, we present a novel method of specifying a non-rectangular EPLC.

This specification is used to provide device information to a C A D tool, as shown in

Figure 3.1 [38]. This specification method we have developed is based on that used by

the VPR place and route tool; the primary difference is that our specification method

allows for the description of cores which are "L"-shaped, "U"-shaped, and "O"-

shaped. This chapter first reviews the specification method used by VPR, and then

presents the enhancements needed in order to specify these non-rectangular shapes.

3.1 Motivation

A simple, flexible method of specifying programmable logic architectures is important

for two reasons:

1. Computer-Aided Design tools that map user circuits to the

programmable logic devices or cores must be provided with

information regarding the targeted architecture. Vendors of stand­

alone FPGA devices typically have a single C A D tool that maps

circuits to an entire family of devices (or several families). These

C A D tools read device files to obtain information regarding the

27

target architectures; the FPGA vendor provides a separate device

file for each member of the FPGA family. This concept of device

files allows a single C A D tool to target several devices. In addition,

as FPGA vendors introduce new parts, they only need produce new

device files; the C A D algorithms themselves need not change.

2. In the EPLC architecture experiments presented later in this thesis,

we experimentally map user circuits to a large number of potential

EPLC architectures. In order to do this, a single C A D tool must be

able to support a wide range of architectures; as in the commercial

tools described above, the C A D tool needs to be able to read in

device information describing the architecture to be targeted.

For both of these reasons, a simple way to specify the characteristics of an EPLC is

required. The place and route tool VPR [6] provides a clean and simple way to specify

such architectures. However, since VPR was originally written to target stand-alone

FPGAs, it only supports architectures which are square or rectangular. Thus, this

chapter will describe how we have extended the VPR specification method to allow for

the specification of non-rectangular cores.

28

3.2 Original Specification Scheme

As described above, our specification method is based on the existing method

employed by the VPR C A D tool [6]. In this section, we describe this existing method;

in the next, we describe our enhancements.

4 I/O pads per row or column
io_rat 4

###########################
Relative Channel Width ###
###########################
Define uniform X / Y channel ratio for each region
chan_width_io 1.0
chan_width_x uniform 1.0
chan_width_y uniform 1.0

##################
Logic Block ###
##################
Class 0 is LUT inputs, class 1 is the output, class 2 is the clock.
#10 logic inputs.
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
inpin class: 0 top
inpin class: 0 right
inpin class: 0 bottom
inpin class: 0 left
outpin class: 1 top
outpin class: 1 right
outpin class: 1 bottom
outpin class: 1 left
inpin class: 2 global top # Clock, assume routed on global resource.

Cluster of4 4-LUTs
subblocks_per_clb 4
subblock_lut_size 4

###############################
Detailed Routing Architecture ###
###############################
switch_block_type wilton
Fc_type fractional
Fc_output .25

29

Fc_input .25
Fc_pad 1

Metal 3, min W (0.28 um), min space (0.28 um)
The following values are assuming a tile length of 116.00 um

segment frequency: 1.0 length: 1 wire_switch: 2 opin_switch: 2 Frac_cb: 1 \
Frac_sb: 1 Rmetal: 32.360 Cmetal: 3.946e-14

switch 0 buffered: no R: 456.500 Cin: 3.7500e-15 Cout: 3.7500e-15 Tdel: 0

switch_l width is approximatley 10.0 times minimum width
switch 1 buffered: yes R: 913.000 Cin: 1.6200e-15 Cout: 3.7500e-15 Tdel: 4.2600e-ll

switch_2 width is approximadey 5.0 times minimum width

switch 2 buffered: yes R: 1826.000 Cin: 1.6200e-15 Cout: 1.8750e-15 Tdel: 4.0700e-ll

0.7 um width. Multiplied by 0.693 to agree with Rswitch values.

R_minW_nmos 4565
R_minW_pmos 8674 # 1.9x R of an nmos
#####################
Timing Analysis ###
#####################
C_ipin_cblock 1.62e-15
T_ipin_cblock 3.7700e-10
T_ipad 242e-12 #Clk_to_Q + 2:1 mux
T_opad4.5e-ll
T_sblk_opin_to_sblk_ipin 3.01 OOe-10
T_clb_ipin_to_sblk_ipin 3.0100e-10
T_sblk_opin_to_clb_opin 0

T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10
T_subblock T_comb: 4.01e-10 T_seq_in: 2.95e-10 T_seq_out: 2.42e-10

Figure 3.1 Example of an original VPR-format architecture file

Architecture specifications can be supplied to VPR through the use of an architecture file.

Figure 3.1 shows an example architecture file. With the exception of the parameter

io_rat (which represents the number of 1/O pads that fit into one row or one column

of the FPGA), all the architecture parameters belong to one of the following four

groups:

30

1. Relative Channel Widths,

2. Logic Block,

3. Detailed Routing Architecture,

4. Timing Analysis.

The group of parameters relating to the relative channel widths has three lines. The

first sets the ratio of the width of the channels between the I /O pads and the widest

core. The other two specify the distribution of tracks for the vertical and horizontal

channels respectively. Separating the vertical and horizontal channel distributions

allows the user to specify directionally biased routing architecture [2,50,51], or non­

uniform routing architectures [40].

There are four parameters for the logic block description group. One specifies the

number of inputs to each lookup-table. Another sets the number of lookup-tables in

each logic block. These two parameters have been studied extensively for their optimal

values [4,12]. The remaining two parameters define the location (which side of the

logic block) and the type (local/global resource) of each logic block's input and output

pins. Betz [5] showed that pin placement had different impacts on the results of non-

biased and biased routing architectures.

The parameters in the detailed routing architecture group are required if and only if

combined global and detailed routing is to be performed. The results from combined

global and detailed routing are more accurate and complete than those from global

31

routing because there are nine more parameters being considered in the C A D tool.

The nine parameters contain the following information: switch block topology; Fc

values for logic block input pin, output pin or I /O pad pin; segmentation distribution;

switch block internal population; connection block internal population; switch type

used to connect each routing wire to other wires; switch type definition; metal width

and spacing of the various routing wires [38]. All this information is important to

determining the connectivity and the electrical properties of the FPGA routing

architecture.

The last group of parameters involves timing analysis. There are eight parameters that

describe the different parts of the delay of a signal coming from a routing track,

through both the logic block's input pin and the logic block itself, and to the logic

block's output pins. These parameters are required only if timing analysis is to be

performed on the placed and routed circuit. This information can be used to find a

good approximation for calculating the critical path delay of the routed circuit.

Note that these parameters do not completely describe an FPGA architecture. As an

example, although the length of each wiring segment can be specified in the detailed

routing architecture group, the actual start and end points of each wire in each channel

cannot be specified. The VPR program contains algorithms which read in an

architecture file, and create a model of an FPGA using the specified parameters,

making intelligent decisions about the details not specified in the architecture file. This

frees the designer from specifying every detail, meaning a wider range of architectural

parameters can be considered during experimentation. The "construction" of an

32

F P G A using the architecture file parameters is an interesting problem in itself, and has

been well studied in [39].

The constructed architecture is represented within the C A D tool as a routing resource

graph. This is a generic graph data structure in which each node is a routing track or

logic block pin, and each edge is a programmable connection between logic block pins.

The C A D tools then use this routing resource graph during placement and routing.

3.3 Enhanced Architecture Specification Method

From the architecture file specifications, there is no attention directed to the overall

shape of the F P G A architecture. In the command-line of V P R , users can specify the

aspect ratio of the F P G A so that a rectangular or square F P G A can be formed.

However, we need shape-specific parameters in order to describe a non-rectangular

E P L C . Therefore, we propose an extension to the specification format, which consists

of three new parameters as follows:

Shape of an E P L C

1. size {fixed \ aspect_ratio)

2. region <id> bottom_left: <x_coord> <y_coord> top_right:

<x_coord> <y_coord>

3. cregion bottom_left: <x_coord> <y_coord> top_right:

<x_coord> <y_coord> top: <region_id> bottom: <region_id>

left: <region_id> right: <region_id>

33

The first parameter, size, has only two valid values. One is fixed, which means the

specifications of the parameters region and cregion are treated as fixed dimensions of

the E P L C . This feature is very useful for evaluating the performance of a fixed-size

E P L C . The second valid value is aspect_raUo, replacing the original VPR's command-

line option aspect_ratio. If aspect_ratio is assigned to parameter size, the specifications

of the parameters region and cregion are treated as the aspect ratio of an E P L C . In

other words, the specified shape of the core will be kept unchanged, but not its size.

This is very helpful for running benchmark experiments when each benchmark circuit

is of a different size.

The second parameter, region, specifies a square or rectangular area that can be

defined as part or all of an E P L C . A region is defined by its integer identifier, and then

by the x and y coordinates at both bottom left and top right corners of the region.

The coordinate (0,0) starts at the bottom left corner of this coordinate system. As a

few rectangular or square regions are defined, a non-rectangular E P L C can be formed.

In Figure 3.2, two regular regions and one connection region form an "L"-shaped

E P L C .

The third parameter, cregion, is called the connection region. We posit the restriction

that every two regular regions must be connected through the connection region. The

only difference between a connection region and a regular region is that the widths of

all horizontal and vertical channels of a connection region depend totally on the

channel widths of the two neighboring regular regions, respectively. This is depicted in

Figure 3.2. This parameter helps distinguish between a connection region and a regular

34

region, because of the extra constraint the channel widths of a connection region put

on a directionally biased routing architecture. A connection region is defined by the x

and y coordinates at both bottom left and top right corners of the connection region.

For each side of a connection region, a region identifier must be entered to show

which regular region it makes contact with. If no regular region has contact with that

side of a connection region, -1 should be entered. For this parameter, we give a limit

of only two orthogonal regular regions which can make contact with one connection

region.

Narrow Channel

Regular Regions

Wide Channel

Switch Block

Figure 3.2 An "L"-shaped directionally biased routing architecture

35

The VPR place and route tool was enhanced to support this extended specification

description. This involved changes to both the architecture file parser and the code

that generates the routing resource graph from the architecture description. Our

current implementation is limited to segment length of 1; although most commercial

EPLC architectures typically have longer segments, we can still use this tool to gather

information about the effectiveness of various placement and routing algorithms that

target the non-rectangular cores.

3.4 Examples of Non-Rectangular EPLC's

In this section, we show examples of how to describe "L"-shaped, "U"-shaped and

"0"-shaped EPLC's in the architecture files, and display routing results using the

enhanced VPR. Figures 3.3, 3.4 and 3.5 show only the lines of Shape group on the

architecture files for an "L"-shaped core, a "U"-shaped core and an "0"-shaped core

respectively. The rest of the lines on their architecture files are the same as those

depicted in Figure 3.1, because all of them have the same settings for their relative

channel widths, logic block, detailed routing architecture, and timing. Moreover, they

all choose aspectjratio for parameter size, meaning the enhanced VPR must find the

minimum possible size for implementing a circuit, while the shape and the aspect ratio

of a core remain as specified. In Figure 3.3, two rectangular regions and one square

connection region are used to form an "L"-shaped core. In Figure 3.4, three

rectangular regions and two square connection regions are used to form a "U"-shaped

core. In Figure 3.5, four rectangular regions and four square connection regions create

an "0"-shaped core.

36

#Size of the EPLC
size aspect_ratio

Define region(s) by assigning bottom left and top right (x y) coordinates.

region 0 bottomjeft: 1 0 top_right: 3 1
region 1 bottom_left: 0 1 top_right: 1 3

Define connection region(s) by assigning bottom left and top right
(x y) coordinates and also specifying the region index where
the side of the cregion contacts with.

cregion bottom_left: 0 0 top_right: 1 1 top: 1 bottom: -1 left: -1 right: 0

Figure 3.3 Only Shape group is shown in the architecture file for an "L"-shaped core.

Size of the EPLC
size aspect_ratio

Define region(s) by assigning bottom left and top right
(x y) coordinates.

region 0 bottom_left: 0 2 top_right: 1 6
region 1 bottom_left: 1 0 top_right: 5 2
region 2 bottom_left: 5 2 top_right: 6 6

Define connection region(s) by assigning bottom left and top right
(x y) coordinates and also specifying the region index where
the side of the cregion contacts with.

cregion bottom_left: 0 0 top_right: 1 2 top: 0 bottom: -1 left: -1 right: 1
cregion bottom_left: 5 0 top_right: 6 2 top: 2 bottom: -1 left: 1 right: -1

Figure 3.4 Only Shape group is shown in the architecture file for a "U"-shaped core

37

Size of the EPLC
size aspect_ratio

Define region(s) by assigning bottom left and top right
(x y) coordinates.

region 0 bottom_left: 0 1 top_right: 1 5
region 1 bottom_left: 1 0 top_right: 5 1
region 2 bottom_left: 5 1 top_right: 6 5
region 3 bottom_left: 1 5 top_right: 5 6

Define connection region(s) by assigning bottom left and top right
(x y) coordinates and also specifying the region index where
the side of the cregion contacts with.

cregion bottom_left: 0 0 top_right: 1 1 top: 0 bottom: -1 left:
cregion bottom_left: 5 0 top_right: 6 1 top: 2 bottom: -1 left:
cregion bottom_left: 5 5 top_right: 6 6 top: -1 bottom: 2 left:
cregion bottom_left: 0 5 top_right: 1 6 top: -1 bottom: 0 left:

-1 right:
1 right:
3 right:
-1 right:

1
-1
-1
3

Figure 3.5 Only Shape group is shown in the architecture file for an "0"-shaped core.

A n M C N C 2 benchmark circuit named C6288 is used to demonstrate that the enhanced

V P R can place and route a circuit on these core architectures as specified by the

architecture files in Figures 3.3, 3.4 and 3.5. Figures 3.6, 3.7 and 3.8 display the pictures

of the final routing results for "L"-shaped, "U"-shaped and "0"-shaped cores. In

Figure 3.6, the minimum channel width that can route the circuit for an "L"-shaped

core is 20 tracks, whereas the minimum channel width for "U"-shaped and "0"-shaped

cores is much larger, 28 and 24, as depicted in Figures 3.7 and 3.8. A n in-depth study

of the architecture of non-rectangular cores is presented in Chapter 5.

2 Microelectronics Corporation of North Carolina

38

Routing succeeded whh a channel width 'factor oi 20.

Figure 3.6 Final routing result of an "L"-shaped EPLC

39

Routing succeeded wilh a channel width factor of 28.

Figure 3.7 Final routing result of a "U"-shaped EPLC

40

Routing succeeded with a channel width tactor oi 24.

Figure 3.8 Final routing result of an "0"-shaped EPLC

41

3.5 Summary

An efficient yet simple specification method is crucial to the design of EPLC

architectures because it allows researchers to experiment with their core designs by

running many benchmark circuits on the C A D tool. However, the current FPGA

C A D tools do not support one of the important design criteria of an EPLC in a SoC

design, which is to allow non-rectangular cores. In this chapter, we have presented a

new specification method that describes a non-rectangular core on an architecture file

used by the FPGA C A D tool VPR. Furthermore, we have briefly explained how to

implement these new specifications on the enhanced VPR. Examples of "L"-shaped,

"U"-shaped and "0"-shaped EPLC's are pictured, taken from routing results generated

by the enhanced VPR.

42

C h apter 4

P L A C E M E N T A N D ROUTING ALGORITHMS

The density and the speed of a programmable logic core depend not only on its

architecture, but also on how well a C A D tool maps a circuit into the programmable

device. In the previous chapter, we introduced the new C A D tool, built on the existing

VPR program, which can place and route a circuit on non-rectangular programmable

core architectures using existing placement and routing algorithms in VPR. However,

these placement and routing algorithms are not optimized for non-rectangular core

architectures. It is not clear how efficiently both the placement and routing algorithms

in VPR map a circuit into a non-rectangular core. Therefore, an examination of these

placement and routing algorithms is required.

In this chapter, we focus on the algorithmic issues of non-rectangular programmable

logic core architectures. In Section 4.1, we first describe the existing placement and

routing algorithms in VPR that targets stand-alone FPGA's. Section 4.2 then shows

how these algorithms can be modified to better support " L " - , " U " - , and "0"-shaped

EPLC's. In Section 4.3, we will experimentally investigate how the enhanced

algorithms perform compared to the original algorithms. Finally, a summary is

presented in Section 4.4.

43

4.1 Placement and Routing for Stand-Alone FPGA's

We have based our algorithms on the existing VPR place and route tool [6]. VPR is

representative of industrial tools developed by FPGA vendors. The following

subsections describe the relevant details of the algorithms; a more complete description

is in [3,5]. Section 4.2 will show how these algorithms were enhanced to better target

non-rectangular cores.

4.1.1 Placement

The main task of placement is to assign user logic blocks to physical logic block

locations in a programmable logic core. In this study, we refer to the timing-driven

placement algorithm used in VPR as T-VPlace. T-VPlace takes the netlist of a user

circuit and intelligently maps it onto the available sites (logic blocks or I /O pads) in a

programmable logic core. T-VPlace is a simulated annealing based algorithm [26] as

described in Section 2.2.1. For more details of simulated annealing algorithm, please

refer to Section 2.2.1.

T-VPlace tries to minimize two cost functions:

1. Wiring Cost,

2. Timing Cost.

Wiring cost is the estimated amount of interconnect needed to route a circuit with the

current placement. The total wiring cost of a placement is the summation of every

net's bounding box half perimeter. Figure 4.1 depicts a bounding box half perimeter

for an eight terminal net. If a net has more than three terminals, a factor q will be

44

multiplied to the net's half of bounding box half perimeter to compensate for wire-

length underestimation [42]. In general, the lower the total wiring cost is, the higher

the area density of a circuit will become.

• • • • • •
•
•
•
•
•

bby

bbx

Figure 4.1 Example of half of a bounding box perimeter (bbx + bby) of an eight terminal net

Timing on the critical path is another important issue that a placer should consider. In

T-VPlace, the timing cost of a net is defined as follows:

Timing Cost = Delay x Cri t ical i ty C n t , c a l , t y - E x p o n e n t (4

The delay of a connection clearly depends on the placement; however, calculation of

this delay during placement is difficult. T-VPlace uses a pre-computed matrix that

contains the delay of each potential connection (the shortest route of each connection

is performed, and Elmore delay is used to estimate the delay). Note that it is not

necessary to compute the delay between every pair of logic blocks; in most standalone

45

FPGA's, the delay between location (x,y) and (x+Ax, y+Ay) can be approximated as

being independent of the values of x and y. This is shown Figure 4.2; the delay of a net

connecting a and b will be approximately the same as the delay of a net connecting c

and d. Thus, a single array indexed on the span of each wire is enough. For each

potential placement, the x and y span of each wire can be found, and the matrix can be

used to quickly find the delay of each connection. For more details, see [3].

• • • • • • • •
• i l l • D A H • • •

n
Ay •

• • •
Ay

• • •
• • • •
• • • •

L T D E L T D H D D
• • •"• • •

Figure 4.2 Net connecting a to b will have approximately the same delay as net connecting c to d

In order to focus on minimizing the delay on the critical path and let the delay of the

non-critical paths to be increased, the terms Criticality and Criticality_Exponent are

introduced to give more weight on the connections that are critical and less weight on

the connections that are non-critical. Criticality is defined as follows:

A x i

Criticality = 1 - Slack/Max_Delay (4

where Max_Delay is the critical path delay and Slack is the amount of delay that can be

added to a connection without increasing the critical path delay. By default,
46

Criticality_Exponent starts as 1 and then is gradually increased the value to 8, a

schedule recommended in [3]. The total timing cost of a placement is the sum of every

net's timing cost.

4.1.2 Routing

Routing is the process that determines the connections among all the logic block input

pins and output pins required by the user circuit. It is the final step of the EPLC C A D

flow depicted in Figure 2.8. For a timing-driven router, there are two goals to achieve:

1. Make a circuit routable on a given programmable logic core,

2. Make the critical path fast.

Since high circuit speeds are very important, timing-driven routing is much more

desirable than the purely routability-driven routing that focuses on the first goal only

[30]. In VPR, the routing algorithm is timing-aware so it takes care of both mutability

and circuit speed at the same time.

In this study, we refer to the timing-driven routing algorithm used within VPR as T-

VRoute. T-VRoute takes two input files: the netlist of a circuit to be mapped, and a

placement file generated by a placement tool. The goal of T-VRoute is to successfully

route all the connections required between the logic block input and output pins where

their locations are specified by the placement file, and optimize the speed of the circuit

at the same time. Since routing is a NP-complete problem, no optimal solution is

guaranteed by any routing algorithm. However, a heuristic solution can be obtained.

47

T-VRoute performs a number of routing iterations. Each routing iteration comprises

the following two steps:

1. Timing analysis,

2. Rip-up and reroute of each net.

In order to optimize the delay of a circuit, timing analysis is required. There are two

parts in the process of timing analysis. The first part involves computing the delay of

all of the paths in a circuit. T-VRoute models pass transistors as linear resistors, wires

as an RC pi-network, and buffers as resistors plus constant delay. Therefore, a net's

routing can be modeled as an RC-tree [21]. Then the Elmore delay model is employed

to estimate the delay of the RC-tree; this gives high fidelity of delay estimation of all of

the paths in a circuit [5]. The second part is to calculate the amount of delay that may

be added to each connection before it becomes critical, which is called the slack of that

connection. The value of slack will then be used to guide T-VRoute to preferentially

route delay-critical connections to make these connections as fast as possible.

The second step involves ripping up the previously routed net and rerouting it. The

purpose of this step is to resolve competition for routing resources, and at the same

time improve circuit speed. T-VRoute achieves this goal by employing the Pathfinder

negotiated congestion-delay algorithm [9]. The Pathfinder algorithm is a modified

maze router allowing overuse of routing resources and utilizing a cost function to

resolve the contention for routing resources gradually, and also directly optimize the

48

timing of a circuit. As a result, this algorithm produces good quality routed circuits.

Further information about Pathfinder algorithm is in Section 2.2.2.

When a routing iteration is finished for all nets (but some nets could still have

contention for routing resources), the process of timing analysis will be repeated to

update the delay of the newly routed nets, and then the ripping-up and rerouting will be

repeated. This continues until all congestion is resolved. By default, T-VRoute tries 30

iterations to route a circuit. If T-VRoute fails, it will stop and deem the circuit

unroutable.

Since standard maze routing can be a very slow process for a large FPGA, making it

run fast is also an important goal. T-VRoute uses two methods to speed the execution:

1. Directed search,

2. Net bounding box.

Directed search is based on the knowledge of the expected remaining distance or cost

from the current position to the destination in order to speed the search process. To

take this into account, the cost function in Equation 2.1 is modified into:

Total Cost(n) = Cost(n) + Expected Cost(n), (4

where the Expected Cost term is computed using the Manhattan distance between the

current routing segment and the sink of the connection. Figure 4.3 shows this

graphically; the Expected Cost term for the segment would be x+y. In this way, most

49

connections are found very quickly; the

there is significant congestion.

algorithm reverts to a standard maze router if

Source Pin Current Routing Net

• • • •
• • •

• • •
• • •

• • • • •"•
Sink Pin

Figure 4.3 Calculating the expected cost of a net during routing

The second method to speedup the search process is to prevent the route from

expanding routing resources that lie more than a preset distance outside the net's

bounding box. By default, T-VRoute only considers routing resources which are either

within a net's bounding box or no more than 2 tiles away from the boundary box as

shown in Figure 4.4. This net bounding box search helps reduce CPU time with a

small degradation on the quality of routing [5].

50

Net Bounding Box

• • • • • • • • • • • •
• ET • " "LT~Q/D" IT LT"d~Lli • •

•
•
•
•
•
•
•
•

• •! • •
• nj-e-B-
• •: • •
• •! • • • •

• _ p j • d • •

• • • • • • • • q • •

• • • • • • • • • • • •
• • • • • • • • • • • •

Routing Boundary
— . for this net

Figure 4.4 Example of routing boundary for an eight terminal net

4.2 Placement and Routing for Non-Rectangular E P L C ' s

The VPR placement and routing algorithms described in Section 4.1 are both

geometry-based. In the following two subsections, we will show why these algorithms

are not suitable for non-rectangular cores, and will show enhancements to better

support these cores.

4.2.1 Placement

The current placement tool does not produce good solutions on "O"- and "U"-shaped

cores. Figure 4.5 shows the problem. As described in Section 4.1.1, the delay between

a pair of logic blocks is found using a pre-computed delay lookup table, indexed by the

x and j span of the net. As shown in Figure 4.5, the Manhattan distance between two

blocks may not correctly represent the shortest path distance between the two nodes in

" U " - and "0"-shaped cores. Therefore, the delay value stored in the pre-computed
51

delay lookup table gives a very poor estimate of the actual delay of this connection.

This poor delay estimation also affects the Criticality of this connection. If the

connection shown in Figure 4.5 is on or near the critical path, the placer would not pay

as much attention as it should to minimizing the delay of this connection and

eventually could result in a slower circuit.

region #1 ; • • •

source

• • • :

• • • ! region #2

DJ2 L T

• •
• •
n_n_

• • • • ntn • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

Shortest Path Distance
Between the Two Terminals

sink

Figure 4.5 Difference between the Manhattan distance and the shortest path distance in a "U"-shaped
core

In a " U " - or an "0"-shaped core, the same delay table cannot be used for each block;

different (x,y) locations should have different delay tables. One possible solution is to

compute a separate delay table for each block location (x,y). However, this is very non-

scalable, and could make the placer run very slow and require too much memory. Our

solution is to compute separate delay tables for all blocks in Regions 1 and 2 in Figure

52

4.5; this delay table is used for all nets that span the two regions and the original delay

table is used for all other nets. A similar technique can be used for "0"-shaped cores.

The pseudo-code is depicted in Figure 4.6.

D = Estimated delay between the source at (xl, yl) and the sink at (x2, y2).

if (CoreShape = " U " | | CoreShape = "O") { /* U-shaped or O-shaped core*/
if (OppositeRegions(xl, y l , x2, y2)) { /* source and sink at the two opposite */

/* regions */
D = Source_to_Sink_DelayTable(xl, y l , x2, y2);

}
else { /* both source and sink are not at the */

/* two opposite regions */
delta_x = abs(x2 - xl);
delta_y = abs(y2 - yl);
D = OriginalDelayTable(delta_x, delta_y); /* then use original delay table */

}
}
else { /* L-shaped or rectangular or square core */

delta_x = abs(x2 - xl);
delta_y = abs(y2 — yl);
D = OriginalDelayTable(delta_x, delta_y); /* use original delay table */

}

Figure 4.6 Pseudo-Code of the correct delay estimation for "U"- and "0"-shaped cores

4.2.2 Routing

The current routing algorithm does not produce good solutions on "O"- and " U " -

shaped cores. Figure 4.7 shows the first problem. As described in Section 4.1.2, the

router finds a bounding box around each net, expands it by two logic blocks in each

direction; the router then does not explore routes outside this bounding box. As

shown in Figure 4.7, this can cause a problem in " U " - and "0"-shaped cores. In the

figure, the net will not be successfully routed, because all potential routes must pass

53

outside the bounding box. The solution to this problem is straightforward; we simply

remove the bounding box constraint, and allow the router to explore the entire graph.

Although this slows down the algorithm somewhat, experiments have shown later in

Section 4.3.2 that the impact on run-time is very small.

Routing Boundary

• • • • s • • • • •
• • • • L T D • • • •

Fail to route this net between
the two terminals

•
•
•
•
•
•
•

Figure 4.7 Failure of routing in a "U"-shaped core due to the net bounding box

The second problem is that the expected cost term in the direct search may be

inaccurate. As described in Subsection 4.1.2, the expected cost is computed as the

Manhattan distance between the current routing segment and the sink of the

connection. Figure 4.5 shows an example where this estimation of the expected cost is

incorrect. In this case, the preferred route is to leave the source in a downward

direction. However, using the current cost function, the upward direction appears

54

equally attractive. Although the correct route will still be found eventually, the portion

of the routing fabric that will be explored is large, especially considering that the

bounding box constraint has been removed, as described above. This leads to long run

times.

Our solution is to explicitly add terms to better estimate the distance from the current

routing segment to the sink in " U " - and "0"-shaped cores. This is shown in Figure

4.8.

D = Estimated distance between the current location (xl, yl) and the destination location
(x2,y2).
H = Horizontal part of the estimated distance D.
V = Vertical part of the estimated distance D.

yla is the y-coordinate where the region containing (xl, yl) touches the connection region
above it. The same applies for y2a.
ylb is the y-coordinate where the region containing (xl, yl) touches the connection region
below it. The same applies for y2b.

if (CoreShape = "U") { /* U-shaped core * /
V = abs (yl - ylb) + abs (y2 - y2b); /* use lower path only * /

}

else if (CoreShape = "O") { /* O-shaped core * /
VI = abs (yl - yla) + abs (y2 - y2a); /* use upper path * /
V 2 = abs (yl - ylb) + abs (y2 - y2b); /* use lower path * /
V = min (VI, V2); /* choose the shortest path * /

else { / * L-shaped or rectangular or square core * /
V = abs (yl - y2); / * then use Manhattan distance * /

}
H = abs (xl - x2);
D = H + V;

Figure 4.8 Pseudo-Code of the correct shortest path distance calculation for "U"- and "0"-shaped
cores

55

Note that none of these enhancements to the placement and routing algorithms are

needed for "L"-shaped cores. Circuits can be placed and routed on "L"-shaped cores

using the same tools as for square and rectangular cores.

4.3 Algorithm Evaluation

In this study, we use an empirical method to evaluate the proposed algorithmic

enhancements, and compare the enhanced algorithms to VPR's existing algorithms.

This involves technology-mapping, packing, placing and routing benchmark circuits

into non-rectangular E P L C architectures. The area and delay results of each circuit

implementation are then computed, and from this we are able to compare the

performance of the enhanced algorithms to that of the original algorithms.

4.3.1 Experimental Methodology

To evaluate the proposed enhancements, we experimentally mapped sixteen large

M C N C benchmark circuits onto a model E P L C . We assumed an island-style E P L C ,

where each logic block contains four 4-input lookup tables and four flip-flops. It was

assumed that each fixed wiring track spans one logic block, and a Wilton switch block

[8] is employed. We assumed a 0.18 (J.m C M O S process available from T S M C .

56

Benchmark Circuit

Logic Optimization (SIS)

Technology Map to 4-LUTs (FlowMap + FlowPack)

Group 4-LUTs and FFs into Logic Blocks (T-VPack)

Placement (T-VPlace or Enhanced T-VPlace)

Routing (T-VRoute or Enhanced T-VRoute)

Adjust Channel Width (W)

No

Yes (Wmin found)

Routing with W = 1.2 * Wmin
(T-VRoute or Enhanced T-VRoute)

Determine Area and Delay

Figure 4.9 Algorithm evaluation CAD flow

The C A D flow that we use is depicted in Figure 4.9. First, each benchmark circuit is

optimized by SIS [19] and technology mapped into 4-input lookup tables and flip-flops

using Flowmap/Flowpack [10]. Then the timing-driven packing algorithm T-VPack [7]

is employed to pack the lookup tables and flip-flops into logic blocks. The logic blocks

were then placed and routed on an appropriated sized E P L C using both the original

and enhanced algorithms. For each circuit, we sized the E P L C to be the smallest shape

57

that that meets the relative ratios show in Figure 4.10. Only " U " - and "0"-shaped core

results are described in this subsection, since as described above, existing place and

route tools work well with "L"-shaped cores. Routing was performed twice; the first

route was used to find the minimum number of routing tracks needed for 100%

routability. This number was then increased by 20%, and the routing repeated. This

"low-stress" routing is representative of the routing performed in real industrial designs

[5]. After that, we apply our delay model to estimate the delay of the circuit critical

path, and our area model to estimate the total transistor area needed to lay out all the

routing3 in this core architecture. Finally, we use the area and delay results to compare

the performance between the enhanced and original algorithms on " U " - and "O"-

shaped cores. All the experiments were run on a 400MHz UltraSparc workstation.

1 1

BMIIII

1 ' 1

6 " * 6

Figure 4.10 Relative aspect ratios of a "U"-shaped core and an "0"-shaped core used in algorithm
evaluation

All the results give only the routing area of the EPLC because the logic block is held constant
throughout all the experiments. To allow averaging results from benchmark circuits of different sizes,
we are only interested in routing area per tile (logic block).

58

4.3.2 Experimental Results

Tables 4.1(a) and 4.1(b) show the routing area per tile (in terms of the number of

Minimum Transistor Equivalents4), critical path delay, and algorithm runtime for all

sixteen circuits implemented on a "U"-shaped EPLC. In Tables 4.1(a) and 4.1(b),

columns 2 and 3 show results for the original VPR placement and routing tool,

columns 4 and 5 show the results for the original VPR placement algorithm and the

enhanced routing algorithm, and columns 6 and 7 show the results for the enhanced

placement and routing algorithms. As the Tables 4.1(a) and 4.1(b) show, the enhanced

router produces similar results to the original router, but with a 62% faster run-time.

When the enhanced placer is used, the runtime is increased somewhat, but the critical

path delay is reduced by 12%.

Tables 4.2(a) and 4.2(b) show the results for an "0"-shaped core. Again, the

improvement in runtime of the enhanced router is significant (40%). The

improvement in critical path when the enhanced placer is used is 4%.

4 A minimum transistor equivalent area is the layout occupied by the smallest transistor that can be
contacted in a process, plus the minimum spacing to another transistor above it and to its right [5].

59

Circuit

Origina
and R

I Placer
.outer

Original
Enhanced

Placer,
Router

Enhanced Placer
and Router

Circuit Area
(MTE)

Critical
Path (ns)

Area
(MTE)

Critical
Path (ns)

Area
(MTE)

Critical
Path (ns)

C6288 6883 44.9 5561 39.1 6016 40.9

a lu4 10133 32.8 10510 36.5 11159 29.8

A p e x 2 11601 32.8 11601 39.7 11191 35.3

A p e x 4 13120 38.6 14808 32.4 13120 29.4

b igkey 11427 22.6 12248 25.3 11427 17.1

Dsip 10302 16.0 10914 14.7 10085 12.9

ex1010 10651 59.2 10469 57.5 10469 54.3

ex5p 11634 29.5 12292 29.9 12292 28.5

f r isc 14552 33.2 12913 35.2 14082 35.1

i ir16 6205 34.2 6318 32.0 6544 32.5

m isex3 11541 32.6 11367 32.3 11541 26.1

m isex3c 7264 20.9 7799 22 .4 8262 18.3

S298 8447 40.6 8447 40.9 7665 36.8

seq 12181 34.0 11364 32.3 11364 27.5

sort8 11191 78.8 11043 79.4 11191 61.1

tseng 9940 17.4 9570 15.7 9940 16.1

Geo . A v . 10185 32.7 10149 32.5 10137 28.9

Dif f % — — - 0 . 4 % - 0 . 6 % - 0 . 5 % - 1 1 . 6 %

Table 4.1(a) Area and delay results for "U"-shaped EPLC's

Original Placer Original Placer, Enhanced Placer
and Router Enhanced Router and Router

Circuit Placement Routing Placement Routing Placement Routing
Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s)

C6288 31 29 31 13 37 11

alu4 146 617 146 234 170 231

apex2 281 387 281 210 323 187

apex4 130 255 130 75 167 77

bigkey 284 452 284 256 446 228

ds ip 314 300 314 127 351 144

ex1010 1755 2233 1755 704 1679 953

ex5p 125 195 125 105 138 92

fr isc 1049 2030 1049 844 1022 1033

iir16 869 481 869 79 836 311

misex3 136 192 136 53 172 92

m isex3c 30 53 30 30 33 22

S298 214 222 214 95 246 141

seq 254 412 254 176 315 226

sort8 245 423 245 126 291 141

tseng 138 134 138 45 173 84

Geo . A v . 216 304 216 117 250 142

Dif f % — — 0% - 6 2 % 1 6 % - 5 3 %

Table 4.1(b) Runtime results for "U"-shaped EPLC's

60

Original Placer Original Placer, Enhanced Placer
and Router Enhanced Router and Router

Circuit Area Critical Area Critical Area Critical
(MTE) Path (ns) (MTE) Path (ns) (MTE) Path (ns)

C6288 5254 41.3 5254 38.8 5445 40.9

a lu4 9606 33.9 9606 30.9 9328 29.8

A p e x 2 11454 35.8 11630 34.5 11630 31.6

A p e x 4 12211 33.0 11964 30.9 11964 32.0

b igkey 9484 19.3 9850 20.2 9208 17.1

Dsip 9850 15.8 9484 17.1 9208 17.4

ex1010 9820 55.6 9820 59.7 9820 50.6

ex5p 12205 31.1 12632 31.6 13117 29.8

f r isc 13133 44.2 13302 46.7 13507 41.1

i ir16 7587 33.0 7587 33.6 8361 38.6

m isex3 10955 31.2 10955 30.0 10559 27.2

m isex3c 6787 20.9 6787 17.3 6787 17.5

S298 7844 44.1 7844 42.4 7568 43.6

seq 11103 29.3 11299 29.3 10644 30.0

sort8 11300 84.1 11105 88.8 10645 73.4

tseng 8254 15.7 8884 16.0 8440 16.8

Geo . Av . 9546 32.3 9615 32.0 9516 30.9

Dif f % — ~ 0.7% - 1 % - 0 . 3 % - 4 . 3 %

Table 4.2(a) Area and delay results for "0"-shaped EPLC's

Original Placer Original Placer, Enhanced Placer
and Router Enhanced Router and Router

Circuit Placement Routing Placement Routing Placement Routing
Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s) Runtime (s)

C6288 29 12 29 11 38 11

alu4 131 220 131 125 182 117

apex2 253 553 253 241 346 267

apex4 117 279 117 194 176 117

bigkey 338 283 338 171 442 241

dsip 282 251 282 171 379 212

ex1010 1307 2608 1307 1171 1749 1540

ex5p 124 228 124 168 155 205

fr isc 851 2276 851 1509 1155 1395

iir16 660 269 660 155 952 436

misex3 126 308 126 123 192 148

m isex3c 26 24 26 13 35 15

S298 170 275 170 195 258 195

seq 216 365 216 229 306 262

sort8 221 406 221 198 289 243

tseng 137 62 137 46 175 59

Geo. A v . 192 247 192 148 264 173

Diff % — ~ 0% - 4 0 % 3 7 % - 3 0 %

Table 4.2(b) Runtime results for "0"-shaped EPLC's

61

4.4 Summary

In this chapter, we have presented enhanced placement and routing algorithms for

"U"-shaped and "0"-shaped embedded programmable logic cores. For a typical " U " -

shaped core as shown in Figure 4.10, the algorithms give a 12% reduction in the critical

path of the resulting circuit, compared to algorithms optimized for square and

rectangular cores. A critical path reduction of 4% for an "0"-shaped core was

obtained. For both " U " - and "0"-shaped cores, the enhanced router runs much faster

than the original router but the enhanced placer runs slower than the original placer

because calculation for additional delay tables is required. Overall, the run-time of the

two algorithms together remains roughly the same for an "0"-shaped core, and is

reduced by 25% for the "U"-shaped core.

62

Chapter 5

ARCHITECTURE STUDY FOR N O N - R E C T A N G U L A R EPLC'S

In the previous chapter, we developed the enhanced VPR place and route tool that can

better map a user circuit into non-rectangular EPLC's than the original VPR. In this

chapter, we will use an experimental approach to investigate the area and delay

efficiency of three non-rectangular EPLC architectures: "L"-shaped, "U"-shaped and

"0"-shaped cores. The potential uses of these three non-rectangular EPLC

architectures in SoC design have been illustrated in Chapter 1. In this chapter, we will

focus on two aspects related to these three non-rectangular cores:

1. In [2], it was suggested that a thinner rectangular core results in a

lower area density and circuit speed than a thicker rectangular core.

In this work, we will quantify how the thinness of each of the three

non-rectangular cores affects its area density and circuit speed. This

is important for chip designers to understand how flexible each of

the three non-rectangular cores can be for reasonable performance

tradeoffs.

2. We quantify the density and delay penalties on all three non-

rectangular cores compared to square cores.

63

These two aspects will be studied by an experimental approach that is described in

Section 5.1. Section 5.2 discusses the effect of thinness on the non-rectangular cores

and shows the relative dimensions of "L" - , " U " - and "0"-shaped cores that we

investigate in this work. In Section 5.3, we will experimentally quantify the area and

delay efficiency for using the three non-rectangular cores, and measure the penalty

compared to square cores. Lastly, a summary will be given in Section 5.4.

5.1 Experimental Methodology

In this chapter, we are investigating how shape and thinness affect the speed and area

efficiency of different core architectures while we hold the other architectural

parameters constant. Each non-rectangular core uses an island-style architecture, and

each channel contains the same number of tracks and has the same segment length of

one (one logic block wide). Each core architecture contains a number of logic blocks,

each containing 4 basic logic elements (BLE's) with 10 inputs. The input and output

pins are evenly distributed around the perimeter of the logic block. Each of the logic

block inputs and outputs can be connected to one-quarter of the tracks in a

neighboring channel. Each B L E consists of a 4-input LUT and a flip-flop. At the

intersection of each horizontal and vertical channel is the Wilton switch block [8], and

each programmable connection within the switch block is buffered. A 0.18 urn CMOS

process from TSMC and eighteen M C N C benchmark circuits are used for this

investigation.

The C A D flow we use to evaluate the three non-rectangular core architectures is

identical to that of Chapter 4. Each circuit was optimized and technology-mapped
64

using SIS [19] and Flowmap/Flowpack [10]. The logic elements were then packed to

logic blocks using T-VPack [7], and timing-driven placement and routing were

performed using the enhanced VPR place and route tool as described in Chapter 4.

For each circuit and architecture, the minimum number of tracks required for 100%

routability was found; the number of tracks in each channel was then increased by 20%

in order to perform "low-stress" routing. After the "low-stress" routing, the area and

delay results are computed by our area and delay models. Finally, we use these

quantities to compare both the area and delay efficiency among these core

architectures.

5.2 Effect of Thinness on Non-Rectangular Core Architectures

In this work, we are investigating the effect of thinness on "L"-shaped, "U"-shaped

and "©"-shaped core architectures. In [2], it was suggested a more rectangular EPLC

would result in a circuit with a lower density and speed. It is unclear whether " L " -

shaped, "U"-shaped and "0"-shaped core architectures follow the same trend as a

rectangular core when their shapes become thinner. Also, if there are density and

speed disadvantages from thinner core architectures, we want to quantify the area and

delay penalties imposed on them so that chip designers can make a reasonably good

decision on what the shape of an EPLC should look like.

65

[0 11|

1 1
£ = 3 * £ = = 3 |

10.11]

llil
, 1 !

,
i" ni

— *

|0 25] 10.25]

m
III 2

2
C

• [" 251
— ,

f—s>

|0.44]

1

10,141

1

/ •

4

, 4

r
|0,W|

|(K.4|

10

[0.64]

10

1

[0.79]

1

4

18

10

16

[0.79]

10

Figure 5.1 Relative aspect ratios for "L"-shaped, "U"-shaped and "0"-shaped cores under investigation
(the number inside a bracket is its thinness value)

In this experiment, we assumed "L"-shaped, "U"-shaped and "0"-shaped cores

employing the same architecture framework described in Section 5.2. In order to

compare those three non-rectangular cores fairly, we introduce a metric thinness to

measure how thin they are. The value of thinness ranges from zero to less than one,

66

which represents the proportion of a square core that is removed to create the non-

rectangular core. If the value of thinness equals zero, that would describe a square

core. The purpose of defining this metric is to provide an indicator how non-square

these non-rectangular cores are as we will compare the area and delay efficiency

between the three non-rectangular cores and square cores. In Figure 5.1, "L"-shaped,

"U"-shaped and "0"-shaped cores in each row have the same value of thinness. For

example, thinness of 0.11 means 11% of a square core area has been removed in order

to create an "L"-shaped, a "U"-shaped or an "0"-shaped core shown in the first row

in Figure 5.1. In this paper, we are going to investigate "L"-shaped, "U"-shaped and

"0"-shaped cores in various thinness between 0.11 (a very thick core) and 0.79 (a very

thin core).

The relative aspect ratios of each "L"-shaped, " U " -shaped or "0"-shaped cores under

investigation are illustrated in Figure 5.1. Notice that these are not the exact

dimensions of what a target platform would be implemented on, but rather relative

aspect ratios used for specifying their core architectures for the C A D tool. The

enhanced VPR tool described in Chapter 4 can find the smallest possible size for a core

of interest to realize a target circuit and at the same time keep its relative aspect ratios.

5.3 Experimental Results

Figure 5.2 shows the routing area comparisons for "L"-shaped, "U"-shaped and "O"-

shaped cores as a function of thinness. The vertical axis is the number of minimum-

width transistor areas per tile in the routing fabric of an EPLC, geometrically averaged

over all 18 benchmark circuits. Since all non-rectangular cores use the same logic
67

blocks, the area occupied by a logic block is the same throughout all cores. Therefore,

we are only interested in their routing area.

Routing Area vs. Thinness for L-shaped, U-shaped and O-shaped Cores

25000

ra 20000

S 'jj; 15000

< ™
ID) >
C r -
'•? ^
P 2 10000
BC 3

5000

U-shaped Core/

shaped Core

L-shaped Core

0.1 0.2 0.3 0.4 0.5

Thinness

0.6 0.7 0.8 0.9

Figure 5.2 Routing area results

A general trend shown in Figure 5.2 is that, for all three cores, as the thinness of the

core increases, the routing area increases. Over the entire range of thinness, an " L " -

shaped core has the best area-efficiency among all three cores. An "0"-shaped core

performs better than a "U"-shaped core when thinness equals 0.44 or above. When

the thinness is below 0.44, both "0"-shaped and "U"-shaped cores have very similar

results.

Figure 5.3 shows the delay comparisons for the three non-rectangular cores. The

vertical axis is the critical path delay of each circuit, geometrically averaged over all

benchmarks.

68

Delay vs. Thinness for L-shaped, U-shaped and O-shaped Cores

60 n

50

40

> 30 -
ra 01 Q

20

10

0

U-shaped Core

O-shaped Core

L-shaped Core

0.1 0.2 0.3 0.4 0.5

Thinness

0.6 0.7 0.8 0.9

Figure 5.3 Delay results

Figure 5.3 shows that when the shape of the core becomes narrower, the critical path

delay increases especially for "U"-shaped and "0"-shaped cores. An "L"-shaped core

results in the fastest circuit speed among all three cores over the entire range of

thinness. On the other hand, a "U"-shaped core has shorter delay than an "0"-shaped

core except for thinness of 0.79, in which a "U"-shaped core runs slightly slower than

an "0"-shaped core.

Figure 5.4 shows the comparisons of the minimum channel width required for the

three non-rectangular cores. These results are based on "high-stress" routing where a

benchmark circuit is just barely routable, whereas the results shown in Figure 5.2 and

5.3 are based on "low-stress" routing where 20% more routing resources than the

minimum required are given to route a given circuit.

69

Minimum Channel Width vs. Thinness for L-shaped, U-shaped and O-shaped Cores

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Thinness

Figure 5.4 Minimum channel width results

As shown in Figure 5.4, an "L"-shaped core requires the least number of tracks per

channel to route a circuit, thus has the highest routing flexibility among all three cores.

An "©"-shaped core needs fewer tracks per channel to route a circuit than a " U " -

shaped core when thinness is above 0.11.

Figure 5.5 and 5.6 show the comparisons of both routing area and delay penalties

associated with using the three non-rectangular cores over a square core respectively. A

square core is chosen for comparison because it is the best shape for area-efficiency

and speed [2]. The routing area and delay penalties are shown as percentages.

70

Routing Area Penalty Over Square Core vs. Thinness for L, U and O-shaped Cores

300%
oi
o

Thinness

Figure 5.5 Routing area penalty over a square core

Delay Penalty Over Square Core vs. Thinness for L, U and O-shaped Cores

140%

Thinness
Figure 5.6 Delay penalty over a square core

71

Delay Penalty Over Square Core vs. Thinness for U-shaped Cores

350%
4)

Thinness

Figure 5.7 Delay penalty reduction by enhanced algorithm on "U"-shaped cores

Delay Penalty Over Square Core vs. Thinness for O-shaped Cores

350% -,
0)

Thinness
Figure 5.8 Delay penalty reduction by enhanced algorithm on "0"-shaped cores

It seems it is unwise to use any of the three non-rectangular EPLC's in chip design

because of their area and delay penalties over a square core. However, in many

applications, the fixed shapes and sizes of the other IP cores will dictate that a non-

rectangular EPLC is required. For thick "L"-shaped cores (thinness of 0.25 or below),

the area and delay penalties over a square core are small, at most 15% for area penalty

72

and 1% for delay penalty. For thick "U"-shaped and "0"-shaped cores (thinness of

0.25 or below), the area and delay penalties are less than 30%. As thinness increases,

however, the penalties become much larger; for thinness of 0.79, the area and delay

penalties of "L"-shaped cores are 122% and 58% respectively, the area and delay

penalties of "0"-shaped cores are 199% and 125% respectively, the area and delay

penalties of "U"-shaped cores are 247% and 133% respectively.

For the same thinness, the results show that an "L"-shaped core is the best shape

among the three non-rectangular cores in terms of area efficiency, circuit speed and

routing flexibility. This is due to two factors. First, the thickness of an "L"-shaped

core is approximated twice as thick as that of a "U"-shaped core or an "0"-shaped

core with the same thinness metric. Second, an L-shaped core requires fewer long

connections to connect I /O pins together than "U"-shaped and "0"-shaped cores.

For almost any value of thinness, an "0"-shaped core has better routing flexibility than

a "U"-shaped core resulting in an "0"-shaped core having higher area density than a

"U"-shaped core. In applications such as core test wrappers, it is advantageous to use

an "0"-shaped core over a "U"-shaped core because such a design may require a very

thin core and it is shown a thin "0"-shaped core has better area-efficiency and circuit

speed than a thin "U"-shaped core. In addition, an "0"-shaped core has higher I /O

pins per unit area than a "U"-shaped core, which is beneficial to high-bandwidth testing

applications.

When we compare the area impact to the delay impact, clearly the delay impact is not

as significant as the area impact. Figure 5.7 shows that this is directly a result of the

73

improved place and route algorithms described in Chapter 4. Using the enhanced

algorithms, for a thinness of 0.64, the delay penalty of a "U"-shaped core is

approximately 60%. If the original algorithms had been employed, the delay penalty

would be almost 150%. The results for an "0"-shaped core shown in Figure 5.8 are

similar.

5.4 Summary

In this chapter we have presented the experimental results for "L"-shaped, "U"-shaped

and "0"-shaped EPLC's. We have shown that for the same thinness, "L"-shaped

cores have the best in density and speed compared to "U"-shaped and "0"-shaped

cores, while thinness is 0.44 or above, "0"-shaped cores have better area-efficiency

than "U"-shaped cores. We have also shown that for thinness is 0.25 or below, the

area (less than 30%) and delay (less than 20%) penalty of "L"-shaped, "U"-shaped and

"0"-shaped cores are much smaller than the same shaped cores with higher thinness.

It is important to note that we are not suggesting that all programmable logic cores

should be rectangular or square. Indeed, in many cases, a non-rectangular core will be

required, either because of 1/O constraints or because it is the only shape that will fit

well with other cores in an SoC design. Instead, our results show that if such a core is

used, the enhancements to the placement and routing algorithms are required, in order

to reduce the delay and area penalty as much as possible.

74

Ch a pter 6

CONCLUSIONS

In this thesis, we investigated the C A D algorithm and architecture of non-rectangular

embedded programmable logic cores. Specifically, we focused on "L"-shaped, " U " -

shaped and "0"-shaped cores. First, we developed a new specification method to

support non-rectangular cores, and incorporated it into the FPGA C A D tool VPR in

order to place and route those cores. Next, we enhanced the existing routing and

placement algorithms targeting non-rectangular cores. We also examined the area and

delay performances of the three non-rectangular core architectures.

In order to adapt the SoC design style, non-rectangular EPLC's may be needed to

better mesh with the other ASIC cores which dictate the shape of an EPLC. However,

there is no published work discussing how to efficiently use a non-rectangular EPLC in

an SoC design. There is also no freely available C A D tool that can be used to describe

a non-rectangular core. In Chapter 3, we presented a simple and efficient specification

method that describes a non-rectangular core on an architecture file used by the free

industry-strength FPGA evaluation C A D tool VPR. We also modified VPR to

correctly place and route a circuit on "L"-shaped, "U"-shaped and "0"-shaped cores.

As a result, an evaluation for these cores can be done using this modified version of

VPR.

75

Since the routing and placement algorithms in VPR were not optimized for non-

rectangular cores, there may be potential improvement that can be made through

careful examination on the algorithms. In Chapter 4, we proposed two enhancements

for the routing algorithm, and showed that for typical " U " - and "0"-shaped cores

shown in Figure 4.9, the enhanced routing algorithm has a runtime that is 2.1 times that

of the original algorithm on a "U"-shaped core, and 1.4 times on an "0"-shaped core.

We also proposed an enhancement for the placement algorithm. For the same " U " -

and "©"-shaped cores, we demonstrated that the combined enhanced placement and

routing algorithms outperforms the original VPR by producing not only denser

implementation, but also on average 12% faster circuits on a "U"-shaped core, and 4%

faster circuits on an "0"-shaped core.

In order to understand the tradeoffs between using a non-rectangular core and a

rectangular core in an SoC design, it is important to evaluate the delay and area

performances of a non-rectangular core. Chapter 5 used the enhanced VPR with the

enhanced placer and router to examine "L"-shaped, "U"-shaped and "0"-shaped cores

over a range of thinness. The experimental results showed that for the same thinness,

"L"-shaped cores have the best in density and speed compared to "U"-shaped and

"0"-shaped cores, while for a thinness of 0.44 or above, "0"-shaped cores are more

area efficient than "U"-shaped cores. We have also shown that for a thinness of 0.25

or below, the area (less than 30%) and delay (less than 20%) penalty of the three non-

rectangular cores are much smaller than the same shaped cores with higher thinness.

76

Even though the penalty for using non-rectangular cores is significant, in many cases

they will be required, either to better mesh with the other ASIC cores, or because of

1/O constraints. Our results show that if such a core is used, the enhancements to the

placement and routing algorithms are required, in order to reduce the speed and area

penalty as much as possible.

6.1 Future Work
Currently the new specification method lets users describe a non-rectangular core on

the architecture file but does not allow the specification of a heterogeneous routing

architecture, where the horizontal and vertical channels have different numbers of

tracks. In [2], it was suggested that for a rectangular EPLC, channels in the long

direction should have more tracks than channels in the narrow direction. An

interesting project would remove this restriction and explore whether applying results

from [2] into each rectangular region on a non-rectangular core, such as an "L"-shaped,

a "U"-shaped or an "0"-shaped core, would improve area density and circuit speed.

Segmentation distribution has an important impact on the density and delay of EPLC's.

In this paper, we restrict all wires to span one logic block length. It will be interesting

to explore non-rectangular core architectures that have wires spanning more than one

logic block, and determine the optimal segmentation length for each non-rectangular

core. .Also, it is essential to find good switch block topologies for use with segmented

non-rectangular core architectures.

77

(

As we understand how various architectural components, such as horizontal and

vertical channel width ratio, segmentation distribution and switch block topology, affect

the speed and density of a non-rectangular EPLC, an "embedded programmable logic

generator" can be created to provide an EPLC with the optimal architecture to a chip

designer. Using this generator, the chip designer can request a core with certain

properties (shape, size, number and type of interface pins etc.), and the generator

would automatically create an EPLC that best meets the user's specifications. A project

is currently under way at the University of British Columbia to implement such a

generator.

6.2 Summary of Contributions
The contributions of our work are summarized as follows:

i. We developed a novel specification method to describe a non-

rectangular EPLC in an architecture file used by the modified

FPGA C A D tool VPR.

ii. We proposed enhancements to existing placement and routing

algorithms and quantified the improvement on area, delay and

runtime over the original algorithm when targeting non-

rectangular cores.

iii. We quantified and compared the area and delay performances of

"L"-shaped, "U"-shaped and "0"-shaped cores over a variety of

78

thinness, and measured the penalty of using these three non-

rectangular cores compared to square cores.

This work has enabled researchers or chip designers to evaluate non-rectangular

EPLC's in the SoC design style through the new specification method and the

enhanced C A D tool. In addition, new understandings of the area and delay efficiency

of "L"-shaped, "U"-shaped and "0"-shaped cores are provided in this research.

79

REFERENCES

1. SJ.E. Wilton and R. Saleh, "Programmable Logic IP Cores in SoC Design:

Opportunities and Challenges," IEEE Custom Integrated Circuits Conference,

May 2001, pp. 63 - 66.

2. P. Hallschmid and S.J.E. Wilton, "Detailed Routing Architecture for Embedded

Programmable Logic IP Cores," A C M / S I G D A International Symposium on

Field Programmable Gate Arrays, February 2001, pp. 69 - 74.

3. A. Marquardt, V. Betz and J. Rose, "Timing-Driven Placement for FPGA,"

A C M / S I G D A International Symposium on Field Programmable Gate Arrays,

2000, pp. 203-213.

4. E. Ahmed and J. Rose, "The Effect of LUT and Cluster Size on Deep-

Submicron FPGA Performance and Density," A C M / S I G D A International

Symposium on Field Programmable Gate Arrays, February 2000, pp. 3 - 12.

5. V. Betz, J. Rose and A. Marquardt, "Architecture and C A D for Deep-Submicron

FPGAs," Kluwer Academic Publishers, 1999.

6. V. Betz and J. Rose, "VPR: A New Packing, Placement and Routing Tool for

FPGA Research," International Workshop on Field-Programmable Logic and

Applications, August 1997, pp. 213 - 222.

80

7. A. Marquardt, V. Betz and J. Rose, "Using Cluster-Based Logic Blocks and

Timing-Driven Packing to Improve FPGA Speed and Density," A C M / S I G D A

International Symposium on Field Programmable Gate Arrays, 1999, pp. 37 — 46.

8. S.J.E. Wilton, "Architectures and Algorithms for Field-Programmable Gate

Arrays with Embedded Memory," Ph.D. thesis, University of Toronto, 1997.

9. C. Ebeling, L. McMurchie, S.A. Hauck and S. Burns, "Placement and Routing

Tools for the Triptych FPGA," IEEE Trans, on VLSI, Vol. 3, No. 4, December

1995, pp. 473-482.

10. J. Cong and Y. Ding, "Flowmap: An Optimal Technology Mapping Algorithm

for Delay Optimization in Lookup-Table Based FPGA Designs," I E E E Trans,

on Computer-Aided Design of Integrated Circuits and Systems, Vol. 13, No. 1,

January 1994, pp. 1-12.

U . S . Yang, "Logic Synthesis and Optimization Benchmarks, Version 3.0," Technical

Report, Microelectronics Center of North Carolina, 1991.

12. J. Rose, R. Francis, D. Lewis and P. Chow, "Architecture of Field-Programmable

Gate Arrays: The Effect of Logic Block Functionality on Area Efficiency," JSSC,

October 1990, pp. 1217 - 1225.

13. Y.W. Chang, D. Wong and C. Wong, "Universal Switch modules for FPGA

design," A C M Transactions on Design Automation of Electronic Systems, Vol.

1, January 1996, pp. 80 - 101.

81

14. M.I. Masud and S.J.E. Wilton, " A New Switch Block for Segmented FPGAs," in

International Workshop on Field-Programmable Logic and Applications,

Glasgow, U.K., September 1999, pp. 274 - 281.

15. G.G. Lemieux, P. Leventis and D. Lewis, "Generating Highly-Routable Sparse

Crossbars for PLDs," A C M / S I G D A International Symposium on Field

Programmable Gate Arrays, February 2000, pp. 155 — 164.

16. G.G. Lemieux and D. Lewis, "Using Sparse Crossbars Within LUT Clusters,"

A C M / S I G D A International Symposium on Field Programmable Gate Arrays,

February 2001, pp. 59 - 68.

17. M.I. Masud, "FPGA Routing Architectures: A Novel Switch Block and

Depopulated Interconnect Matrix Architectures," M.A.Sc Thesis, University of

British Columbia, December 1999.

18. R.K. Brayton, G. D. Hachtel and A. L. Sangiovanni-Vincentelli, "Multilevel Logic

Synthesis," in Proceedings of the IEEE, Vol. 78, No. 2, February 1990, pp. 264 -

300.

19. E .M. Sentovich, K. J. Singh, C. Moon, H . Savoj, R. K. Brayton and A. L.

Sangiovanni-Vincentelli, "Sequential Circuit Design Using Synthesis and

Optimization," ICCD, 1992, pp. 328 - 333.

82

20. D. Huang and A. Kahng, "Partitioning-Based Standard-Cell Global Placement

with an Exact Objective," A C M Symposium on Physical Design, 1997, pp. 18 —

25.

21. M . Khellah, S. Brown and Z. Vranesic, "Modelling Routing Delays in SRAM-

based FPGAs," Canadian Conference on VLSI, 1993, pp. 6B.13 - 6B.18.

22. C. Alpert, T. Chan, D. Huang, A. Kahng, I. Markov, P. Mulet and K. Yan,

"Faster Minimization of Linear Wirelength for Global Placement," A C M

Symposium on Physical Design, 1997, pp. 4 — 11.

23. B. Riess and G. Ettelt, "Speed: Fast and Efficient Timing Driven Placement,"

IEEE International Symposium on Circuits and Systems, 1995, pp. 377 — 380.

24. W. Sun and C. Sechen, "Efficient and Effective Placement for Very Large

Circuits," IEEE Transaction on CAD, March 1995, pp. 349 - 359.

25. W. Swartz and C. Sechen, "Timing Driven Placement for Large Standard Cell

Circuits," DAC, 1995, pp. 211 - 215.

26. S. Kirkpatrick, C. Gelatt and M . Vecchi, "Optimization by Simulated Annealing,"

Science, May 1983, pp. 671 - 680.

27. Y.L. Wu and M . Marek-Sadowska, "An Efficient Router for 2-D Field

Programmable Gate Arrays," European Design Automation Conference, 1994,

pp. 412-416.

83

28. M.J. Alexander, G. Robins, "New Performance-Driven FPGA Routing

Algorithms," DAC, 1995, pp. 562 - 567.

29. Y.S. Lee, A. Wu, " A Performance and Routability Driven Router' for FPGAs

Considering Path Delays," DAC, 1995, pp. 557 - 561.

30. A. Yan, R. Cheng and S.J.E. Wilton, "On the Sensitivity of FPGA Architectural

Conclusions to Experimental Assumptions, Tools and Techniques,"

A C M / S I G D A International Symposium on Field Programmable Gate Arrays,

February 2002, pp. 147 - 156.

31. M . Placzewski, "Plane Parallel A* Maze Router and Its Application to FPGAs,"

D A C , 1992, pp. 691 - 697.

32. Y. Chang, S. Thakur, K. Zhu and D. Wong, " A New Global Routing Algorithm

for FPGAs," ICCAD, 1994, pp. 356 - 361.

33. S. Brown, J. Rose and Z.G. Vranesic, " A Detailed Router for Field-

Programmable Gate Arrays," IEEE Transaction on C A D , May 1992, pp. 620 -

628.

34. G. Lemieux and S. Brown, " A Detailed Router for Allocating Wire Segments in

FPGAs," A C M / S I G D A Physical Design Workshop, 1993, pp. 215 - 226.

35. E. Dijkstra, " A Note on Two Problems in Connexion with Graphs," Numerical

Mathmatics, Vol. 1, 1959, pp. 269 - 271.

84

36. S. Oldridge, " A Novel FPGA Architecture Supporting Wide Shallow Memories,"

M.A.Sc Thesis, University of British Columbia, April 2002.

37. W. Dees and R. Smith, "Performance of Interconnection Rip-Up and Reroute

Strategies," DAC, June 1981, pp. 382 - 390.

38. V. Betz, "VPR and T-VPack User's Manual version 4.30," March 2000.

39. V. Betz and J. Rose, "Automatic Generation of FPGA Routing Architectures

from High-Level Descriptions," A C M / S I G D A International Symposium on

Field Programmable Gate Arrays, February 2000, pp. 175 - 184.

40. B.K. Bntton, Y. T. Oh, W. Oswald, H . T. Nguyen, S. Singh, G. Lee, Wai-Bor

Leung, C. Spivak, J. Steward and C. T. Chen, "Second Generation ORCA

Architecture Utilizing 0.5um Process Enhances the Speed and Usable Gate

Capacity of FPGAs," IEEE International ASIC Conference, September 1994,

pp. 474 - 478.

41. S. Brown, R. Francis, J. Rose and Z. Vranesic, "Field Programmable Gate

Arrays," Kluwer Academic Publishers, 1992.

42. C. Cheng, "RISA: Accurate and Efficient Placement Routability Modeling,"

ICCAD, 1994, pp. 690 - 695.

85

43. S. Singh, J. Rose, D. Lewis, K. Chung and P. Chow, "Optimization of Field-

Programmable Gate Array Logic Block Architecture for Speed," I E E E Custom

Integrated Circuits Conference, 1991, pp. 6.1/1 - 6.1/6.

44. C. Matsumoto, "Actel Plans to Produce FPGAs as ASIC Cores," Electrical

Engineering Times, September 15, 2000.

45. C. Matsumoto, "LSI Logic ASICs to add Programmable Logic Cores," Electrical

Engineering Times, August 29, 1999.

46. "Embedded FPGA Cores Enable Programmable ASICs, ASSPs," Electrical

Engineering Times, September 20, 1999.

47. "Startup stakes out ground between FPGAs and ASICs," Electrical Engineering

Times, July 9, 2001.

48. "Lucent Introduces ORCA Series 4 FPGA," Programmable Logic News and

Views, pp. 7-11.

49. R. Merritt, "QuickLogic Steps up Merger of FPGA with IP Cores - DSP First

Target," Electrical Engineering Times, August 9, 2000.

50. Actel Corporation, Data Book 2001, http://www.actel.com.

51. Altera Inc., Data Book 2001, http://www.altera.com.

52. Xilinx Inc., Data Book 2001, http://www.xilinx.com.

86

http://www.actel.com
http://www.altera.com
http://www.xilinx.com

