
DIGITIZATION AND ANALYSIS OF MAMMO GRAPHIC IMAGES FOR

EARLY DETECTION OF BREAST CANCER

By

Farzin Aghdasi

B. Sc. (Eng. Hon.) Imperial College of Science and Technology, University of London,

London, U.K., 1977

M. B. A. University of Portland, Portland, Oregon, U.S.A., 1978

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

ELECTRICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1994

© Farzin Aghdasi, 1994



In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

___________________________

Department of IL E
The University of British Columbia
Vancouver, Canada

Date -tC# iX I91L-

DE-6 (2188)



Abstract

X-ray mammography is the proven method for early detection of breast cancer. Digital pro

cessing and analysis of mammographic images can potentially assist in improved performance

of radiologists in earlier detection and recognition of abnormalities.

In this work a novel image acquisition system based on an area scanning CCD array has

been developed for the digitization of mammograms at high spatial and photometric resolutions.

The system characteristic parameters were measured. The quality of the resulting images in

terms of sharpness and noise content is comparable with that obtained by the more expensive

and slower drum laser-scanning microdensitometer. The clinical application of soft-copy display

of digitized images are evaluated.

To further improve the quality of the images, restoration algorithms were applied to restore

the images from the degrading effects of the system’s blur and noise. Performance of three

filtering techniques was compared. A new method for the reduction of boundary truncation

artifacts in image restoration was suggested and studied.

The process of radiographic image formation was modeled and two locally adaptive smooth

ing filters were employed to counter signal-dependent radiographic noise before application of

restoration filters. The results of the restored images show a marked improvement in detectabil

ity of smallest particles of microcalcifications when judged by a human observer.

Image segmentation routines were developed to separate microcalcifications from the back

ground parenchymal pattern. Performances of two algorithmic approaches to segmentation and

two artificial neural networks were compared. Over 100 numerical features were automatically

extracted from the clusters of microcalcifications. These features were evaluated for their ability

to separate the benign and malignant formations. Using a database of 68 digitized mammo

grams a discriminant function was calculated. The sensitivity and specificity of this approach

in recognition of malignant microcalcification clusters is shown to be comparable to that of

trained radiologists.
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Chapter 1

Introduction

1.1 Motivation

For women in the developed countries, breast cancer is the most frequently diagnosed cancer and

a leading cause of cancer deaths. Over 10 percent of all women in North America will develop

breast cancer during their lifetime [1]. In Canada [2] breast cancer accounts for approximately

30% of all new cancer cases and for 20% of cancer deaths in women. In British Columbia the

incidence rate is about 105 women in 100,000 with a mortality rate of 32 in 100,000 [3]. Breast

cancer therefore is a major health threat to women of epidemic proportions.

The probability of success in curing breast cancer is directly related to the stage at which

it is detected. The earlier the detection, the higher are the chances of a successful treatment.

Breast preserving surgical therapy is only possible at the early stages of the disease.

There are several techniques for detection of asymptomatic breast cancer. These include

regular breast self-examination, clinical examination by a physician and imaging of the breast.

Clinical examination of the breast can detect tumors, but not infrequently bigger than 1 or

2 centimeters in diameter. They may have spread to the axillary lymph nodes and require

systemic as well as local treatment and more importantly the patients may not be cured.

Imaging the breast has therefore emerged as an indispensable tool for early detection.

Several types of breast imaging has been investigated by researchers. These include ther

mography, diaphanography, ultrasonography and mammography.

Thermography is based on the hypothesis that cancerous cells are more active than normal

cells. A heat sensing device is used to detect “hot spots”. The clinical reliability of this method

is very low and therefore it is rarely used.

1



Chapter 1. Introduction 2

In diaphanography the breast is transilluminated with strong light in the visible spectrum.

This method is generally thought to be of limited usefulness.

Ultrasonic imaging technology is emerging as a useful tool though as yet it lacks the nec

essary resolution. It is most effective in differentiating cystic from solid masses. Magnetic

resonance, impedance measurements and several other imaging modalities are also currently

under investigation.

The X-ray mammography holds the greatest promise of effective early detection of breast

cancer. Special low dose X-ray equipment has been developed reducing the danger of radiation

induced cancer to negligible levels.

It has been well documented that by screening postmenopausal women using X-ray mam

mography, the mortality rate can be reduced significantly [4]. Well over one quarter of a million

women in the USA have participated in a “Breast Cancer Detection Demonstration Project”

which illustrated reduced mortality rate for the screened population [4]. Of equal importance

is the fact that detecting the cancer at carcinoma in situ stage, when treatment with minimal

surgery followed by ionizing radiation is still possible, results in a much higher quality of life

for the patient.

Mass screening of asymptomatic women however will generate a vast number of mammo

grams. This overload is sufficiently large to place a thorough screening program beyond the

means of most communities. A helper tool such as a computerized prescreening device which

could aid radiologists in the detection and recognition of subtle signs of abnormality would

greatly speed up this process and make it more economical. Additionally, digital analysis of

mammographic images can assist in more objective and therefore more accurate interpretation

and diagnosis.

1.2 Human Female Breast

The breast or mammary gland is a modified sweat gland that has the specific function of milk

production. An understanding of its basic anatomy, physiology and histology is important in
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the interpretation of mammography.

Briefly, the adult breast is composed of three basic structures: the skin, the subcutaneous fat,

and the breast tissue, which includes the parenchyma and the stroma. The stroma is composed

of fat and other connective tissues. The parenchyma is divided into 15 to 20 segments, each

drained by a lactiferous duct. The ducts converge beneath the nipple, with 5 to 10 major ducts

draining into the nipple. Each duct drains a lobe composed of 20 to 40 lobules. The composition

of the breast changes with life cycle and is a function of both the diet and hormonal variation [5].

1.3 Breast Cancer

Although the origin and causes of breast cancer are not yet known, it has been established

that early detection is the most effective strategy in its management. There are over eighty

histologically different diseases of the breast covering the spectrum from mild benign cases

to highly aggressive invasive malignancies. There are great differences in appearance of these

abnormalities on a mammogram, with many similarities between the benign and malignant

cases. Additionally mammographic appearance of normal breasts are quite variable. Many

small breast cancers are non-palpable, and some are also mammographically occult. Differential

diagnosis of breast cancer is therefore both important and difficult.

1.4 Mammographic Presentation

X-ray mammography is used for two purposes: as a diagnostic tool, and as a mass screening

method. In screening centers mammography is used to identify suspicious cases, while as a

diagnostic tool it is used for the detection of abnormalities, recognition of malignant tumors

and preoperative localization of such tumors

The increased use of mammography has resulted in an increased incidence of detection

of smaller lesions. In British Columbia, for example, at screening, 15-20% of all detected

cancers are found in the carcinoma in situ stage. The normal presentation before mammography

screening was 2-3%. Early detection of pathological tissues depends on the mammographic
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image quality.

Radiologists typically scan mammograms for any signs of abnormality which may include 1)

clusters of microcalcifications, 2) well-defined and rounded or ill-defined and spiculated masses,

and 3) other signs such as skin thickening or architectural distortion of the breast etc. Ra

diologists usually compare a mammogram with other views of the same breast, those of the

other breast or previous mammograms of the patient to check for asymmetries or developing

densities. The radiographic images are quite complex. Despite a highly evolved human visual

system a radiologist requires many years of training to detect subtle abnormalities in a complex

parenchymal pattern.

To aid radiologists in this complex task researchers have reported different image and vision

processing techniques. A summary of this work is given in chapter 2.

Despite these efforts there is much room for improvement and this remains an active field

of research. Computer vision methods have in fact been used successfully in another area of

cancer imaging, namely that of cell classification in cervical cancer screening programs [6].

In digital mammography the efforts in applications of digital image processing have so far

concentrated on image enhancement for visual interpretation by a radiologist. Image analysis

for detection and classification have also been reported. Two important aspects however have

not received attention. The first is that in the process of X-ray image formation the latent

image suffers degradation due to the system blur and noise. The process of digitization of the

image further contributes to both the blur and the noise. The first step should therefore be

the restoration of the image from these effects. The second aspect is the need for accurate and

rapid digitization of the film images if any image processing algorithm is to be used in a clinical

setting. In this work these two issues are addressed before application of pattern recognition

techniques for detection and recognition of mammographic abnormalities.
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L5 Objectives

The objective of this study is to develop a system to assist in the detection and recognition

of microcalcifications which are frequently present in a mammogram. The most subtle signs

of abnormality are not visible in the digitized mammograms and may not be visible in

the original films — because of the noise and blur in the image. These are due to the X-ray

machine, the camera and the digitizing equipment. If the characteristics of the noise and the

different blur functions are known or obtained then these effects may be removed or reduced

by image restoration techniques. Different image enhancement techniques have been reported

in the literature but image restoration has not yet been applied on mammographic images.

While image enhancement has its own advantages such as removing noise and highlighting

some features, it does not compensate for the blur. Thus it would be of great value to restore

the image to aid radiologists in their analysis, prior to applying the automatic edge detection,

feature extraction and classification routines.

Following image acquisition and restoration, segmentation and recognition of microcalcifi

cation clusters will be developed and evaluated.

1.6 The Structure of This Thesis

Chapter 2 contains a review of the state of the art in processing and analysis of the digitized

mammograms.

In chapter 3, the hardware and software development of a system for the digitization of

mammograms using a Charge Coupled Device (CCD) sensor are described. The acquisition

system characteristics are reported in terms of its spatial and photometric response. The

Modulation Transfer Function (MTF) of the system is calculated from its Square Wave Response

Function (SWRF’) and also from its Edge Spread Function (ESF) in both spatial and frequency

domains. It is shown that the combined effects of fixed pattern and random noise can be

reduced to within round-off noise, having variance of 0.25 gray levels over the whole image.
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In chapter 4, the clinical evaluation of the film digitization system is reported. It will be

shown that in most cases radiologists can extract essentially the same diagnostic information

from electronically magnified images as from the magnification mammography procedure.

In chapter 5, the effects of image restoration on the digitized mammograms are considered.

Two simple Wiener image restoration filters which counter the high frequency attenuation

due to the MTF and sharpen the mammographic image details are tested. The results of

these procedures are the removal, to a great extent, of the blurring effects of the different

components of the image formation system and the generated noise. It has been postulated

that this image restoration will aid in the quantitative analysis of mammographic images and

assist the radiologists in improving their diagnosis.

Chapter 6 extends the restoration of mammograms to include the effects of radiographic

signal-dependent noise. To accomplish this a comprehensive image formation model is pre

sented.

In chapter 7, a novel method of carrying out filtering in the frequency domain using image

extension and circular convolution are presented. This approach eliminates much of the bound

ary artifacts associated with linear, frequency domain restoration of truncated images. we also

present a mathematical analysis of this technique.

Chapter 8 presents algorithms for automated segmentation of microcalcifications from the

background parenchyma of the breast.

Chapter 9 describes the extraction of over 100 quantitative features from the segmented

clusters of microcalcifications and their application in classification of mammographic abnor

malities.

Finally, chapter 10 presents conclusions and suggestions for further research.

The appendix gives many details and physical principles of mammographic image formation

and interpretation.
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1.7 Claims to originality

Materials presented in chapter 2 are gleaned from the relevant published literature.

CCD cameras have been used by others to digitize X-ray films. The system developed in

chapter 3 however is novel in construction and in many of its characteristics as described in the

body of this thesis. The software package MAMPRO is a new research tool that contains all of

the algorithms developed in this work.

The clinical investigations reported in chapter 4 are novel.

The restoration filters employed in chapter 5 are well known, but their application to digi

tized mammographic images is new.

The signal-dependent restoration filters described in chapter 6 are known. Their derivation

for the radiographic noise is new, as are the radiographic image formation models.

The image extension technique presented in chapter 7 has been reported in the literature in

the context of spatial domain filtering. The analysis of its effects in frequency domain filtering

for restoration problems, however, is new.

The first segmentation algorithm described in chapter 8 is taken from the literature. The

next two algorithms were developed by me for this work.

Most of the features used in chapter 9 are reported in literature in other contexts. Evaluation

of their utility in classification of mammograms is new. The data base of digitized mammograms

and the resulting multivariate discriminant functions are also new.

At present, no practical (commercial) system exists which provides means to radiologists for

accurate viewing, interactive manipulation, or objective (automated and quantitative) analysis

of mammograms. The radiological workstation described here forms the basis for such a system.

It provides a helper tool (and a second opinion) to aid radiologists in their task of primary

diagnosis of mammograms.



Chapter 2

State of the Art in Digital Mammogram Processing and Analysis

Most early efforts in digital analysis of mammograms were concentrated on processing of Xero

radiographs, poor quality radiographs, or have relied on manual measurement of features. Since

screen-film mammography has only recently produced acceptable radiographic image quality,

we will give a partial list of published work in this area since 1980. This is a very brief chapter

that merely points to the relevant literature in the field; details of the published studies that

have a direct bearing on this work are given in the subsequent chapters. Different attempts to

digitally process mammograms have had different goals in mind. These can be divided into the

following four groups:

2.1 Image enhancement

Digital image enhancement techniques either employ global manipulation of grey levels or locally

adapt such manipulations to image features. The input image is modified using a set of usually

heuristic rules to enhance the visibility of certain desired features [7]. In one approach a linear

combination of smoothed images and a non-linear contrast transformation is used to obtain

enhancement [8]. Alternatively a global estimate of the background breast structure is employed

to bring out pathologic abnormalities [9]. Image neighborhoods that are locally adapted to the

spatial extent of image features are selected. In this way enhancement techniques such as

contrast manipulation, histogram equalization, etc. respond to the local image detail [10, 11,

12, 13, 15]. Finally a non-linear mapping is used to encode the image gray levels in an attempt

to equalize the system noise which is signal-dependent [14].

In other approaches to smoothing of mammographic images adaptive order statistic filters

8



Chapter 2. State of the Art in Digital Mammogram Processing and Analysis 9

and tree-structured wavelet transforms are employed [16, 17]. These filters operate on the

mammogram at multiple resolutions and therefore are potentially useful in preserving image

features such as edges while smoothing the image [18].

2.2 Risk assessment

It has been suggested that a woman’s risk of developing breast cancer can be determined by the

pattern of parenchymal densities on the mammogram [133]. The goal of computer aided risk

assessment is to correlate the mammographic parenchymal pattern with the risk of developing

breast cancer using objective and repeatable measures commonly based on texture [19, 20, 21]

or density [22, 23].

2.3 Automated detection of abnormalities

Two types of abnormalities have been investigated namely microcalcifications and masses. Most

detection schemes enhance the conspicuity of abnormalities as an intermediate stage, before

selecting candidate pixels belonging to abnormalities. The classical method of unsharp masking

for the detection of abnormalities is evaluated in [24].

To detect the presence of microcalcifications, linear filtering techniques have been employed.

Researchers at the University of Chicago have used matched filtering to enhance the signal,

while a box-rim filter is employed to suppress the signal. The presence of microcalcifications is

detected from the difference of these signal enhanced and signal suppressed images [25, 26, 27,

28, 29]. Neural network techniques are then employed to reduce the number of false positive

detections [30, 31, 32].

Many other techniques have been used for the extraction of microcalcification images from

the background. These include: i) local area thresholding [35, 36], ii) morphological opera

tions [37, 38, 39], iii) stochastic image models [40, 41], iv) features derived from contour plots

for signal peak detection [42, 58], v) multiresolution approaches [44, 45], and vi) wavelet trans

forms [46, 47]. A battery of tests involving local contrast, shape, size, gradient, and proximity
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to other microcalcifications have been commonly used to reduce false positive detections of

clusters of microcalcifications [33, 34].

Research into the detection and segmentation of masses has also been reported in the lit

erature. Asymmetry between the right and left breasts have been exploited to detect possible

masses [49, 50, 51, 52]. Template matching has been applied for the detection and segmentation

of circumscribed masses [48]. The concept of multiresolution image processing based on fuzzy

pyramid linking is used to detect and subsequently classify masses [53, 54]. Scale space filtering

is used to extract closed contours associated with mass boundaries [55]. Texture features have

also been used to detect stellate lesions [56, 57], and Markov Random Field image model has

been utilized to segment tumors [66].

2.4 Differential Diagnosis

The aim of differential diagnosis is to apply pattern recognition methods to differentiate benign

and malignant lesions, or to separate benign or malignant subgroups. In one study radiographs

of biopsy specimen were used to extract features and calculate a discriminant function to classify

clusters of microcalcifications [59]. Different sets of features were used to approach the same

task for screen-film mammograms [60, 61, 62].

In a different approach to the same problem, individual objects were not extracted from the

background. Instead structural features were computed from the image. Subsequently artificial

neural networks were applied to these feature vectors to classify the whole mammogram without

the need for the prior segmentation of microcaicifications [67, 68, 69].

Shape features have been calculated for the classification of masses [63, 64, 65, 66]. Fractal

dimension has also been used to classify lesions based on image texture [70].

Other related developments are in the areas of film digitization [71, 72] and development

of smart workstations for computer aided diagnosis [73, 74, 75, 76, 77]. The most recent

advances in almost all of the above areas are reported in the proceedings of the two international

workshops that have so far been held in this field [159, 160, 161].
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Radiographic Film Digitization

Accurate digitization of the film is the first essential step to a successful automated analy

sis. The quality of digitized images is of fundamental importance as any information lost in

the acquisition and digitization process can not be recovered by further processing. Accurate

interpretation of digitized X-ray screen-film mammograms has been limited by the lack of a

‘specialized’ image acquisition system with high speed and accuracy.

Several researchers, e.g. [19], attempted to extract numerical feature descriptions for tumor

classification. They report however that a major llmitation on the success of these efforts is

the need for accurately digitized images. The mammographic features of interest range from

several centimeters across, as in architectural distortions of the breast, to fine microcalcifications

of less than 0.1 mm across. Very high resolutions are therefore required for at least some

portions of the image. Digitizing the entire mammogram at the highest possible resolution

requires a prohibitive amount of memory. Thus my approach is to develop an acquisition

system that facilitates the digitization of mammogram images at the various scales needed

for the different stages of analysis. The digitization should be rapid and within the required

accuracy. Such a system would be useful for both stages of pre-screening in the mass screening

of non-symptomatic women as well as for the more detailed analysis of suspicious lesions.

Two novel image acquisition systems based on a linear and an area scanning scientific grade

Charge Coupled Device (CCD) arrays were developed. Both systems will be described in this

chapter and their performance will be compared. Although both systems are useful, the second

system is superior and meets the specified requirements in that it offers a fast method of

digitizing mammograms with high spatial and photometric resolutions. The system is capable

11
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of acquiring 6 frames per second where each frame consists of over 1.3 miffion pixels digitized

to 12 bits per pixel. The fixed pattern and the random noise (of optical and electronic origin)

are minimized using background subtraction and signal averaging techniques. The quality of

the resulting image in terms of sharpness and noise content is comparable with that obtained

by the more expensive and slower drum laser-scanning microdensitometer.

3.1 Image Acquisition Hardware

There are three methods of film digitization, namely using: 1) microdensitometers; 2) video

cameras; 3) one-dimensional and two-dimensional CCD digital cameras.

3.1.1 Microdensitometers

X-ray film digitization has traditionally been performed using a microdensitometer. A nar

row beam of light is transmitted through the film, and a light sensitive device measures the

transmittance which is then converted to optical density using a calibration curve. Lighting

conditions approximate specular reflection. The film is moved past the beam by either a rotat

ing drum or a flat bed mechanism. The sampling aperture of these systems is limited to the

spot size. The scan-time is proportional to the number of sampling points or sampling lines

depending on the scan mechanism, and may be quite long. Furthermore the calibration and

operation of the system is an involved process requiring a skilled operator. For these reasons

microdensitometers have not been widely used to digitize radiograplis in clinical settings.

X-ray film digitization using laser scanning microdensitometer has been widely reported in

the literature. A comparative study of digitized film radiography systems and the associated

diagnostic and operational advantages are given in references [78, 79]. The performance charac

teristics of laser digitizers are reported in [80, 81, 82, 83]. A recent assessment of these systems

for clinical applications concludes that they are generally slow and expensive [84].
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3.1.2 Video Cameras

Video cameras have dynamic ranges and band width limitations that affect their performance

at the spatial and photometric resolutions required. As an example the Panasonic WV-BD400

video camera was evaluated. The video signal was captured and digitized to 512 x 480 pixels by

the frame grabber. The contrast transfer function of this camera falls off to 5% at 400 TV lines

on standard video resolution charts when the chart-camera distance is set for a full field of view.

This corresponds to a spatial resolution of 1.25 line pairs per mm. This is clearly inadequate for

detection of submilimeter microcalcifications. Also the useful gray scale resolution is only about

7 bits [851 and the camera response as a function of gray scale is non-linear with non-unity gain

factor. The analogue output of the camera has to be digitized resulting in further quantization

errors and the integration times are restricted to be less than 1/30 seconds for interlaced frames

at 60 Hz mains frequency. Therefore, video cameras were not considered any further.

3.1.3 CCD Sensors

Two new image acquisition systems which take advantage of the recent advances in Charge

Coupled Device (CCD) technology were developed. The first system is based on a linear array

CCD, and the second system uses a two-dimensional CCD array.

Linear CCIJ

The first system uses a digital scanner (Datacopy 612, Mountain View, CA) which has a linear

array solid state detector (Fairchild CCD 122). There are 1728 pixels spaced contiguously every

13 m over a 22.5 mm length. Two-dimensional images can be acquired by moving the sensor

in 13 im steps across the image. Scanning 2846 lines per image results in image files of 4.9

Megabytes where each pixel is digitized to 8 bits. The amount of optical aberration at the

corners however is severe and therefore the image was limited to 2500 lines. The integration

time is fixed at 3.5 ms.

The camera output is fed to the Datacopy image processing interface board model 110
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housed in an IBM AT computer. The camera interface board communicates with the frame

grabber (FG100AT, Imaging Technology Inc., Woburn, MA) and a digital signal processing

board (SKY32O, SKY computer Inc., Boston, MA) via the host computer bus (IBM-AT). The

arrangement is shown in Figures 3.1 and 3.2.

The digital signal processing board based on TMS32O signal processing chip is used to speed

up the scanning operation. The resulting image file is written onto the disk. The frame grabber

board is used to process and display the image on a Sony RGB monitor. Since this board

can only handle 512 x 512 image files the input image was subsampled prior to display. Six

mammograms were digitized using this system. Visual inspection of these images show them

to be of inferior quality compared with images obtained from a microdensitometer.

This system provides a large field of view but the scanning mechanism imposes two limit a

tions on its performance. The first limitation relates to the illumination source and is discussed

below.

The second performance limitation of this system is the scan time. This speed limitation

is characteristic of all point and line scanning mechanisms such as drum laser scanners and

linear array CCD cameras. Nonetheless the system is typically at least five times faster than

a microdensitometer and is considerably less expensive. Several other researchers have also

reported the use of a linear array CCII camera [13, 14]. As discussed later, the random noise

contributed by the illumination source and the sensor electronics may be reduced by averaging

several frames. This approach however is impractical for this system due to the scan time

which is several minutes per frame. To further improve the speed and accuracy of the system

the second acquisition system was built.

Illumination

The camera was mounted above a light box transilluminating a mammogram. This light box

is a common viewing box used by radiologists. It has two a.c. powered fluorescent lamps under

a light diffuser. Images obtained by the linear CCD displayed a regular pattern of light and
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dark bands parallel to the CCD array. This artifact was interpreted as being due to light flicker

produced by the a.c. source. The 60 Hz ripple in the power supply means that the illumination

flux varies over time. Consequently, different lines of the image will have different intensities.

For the case of the linear CCD, the camera’s fixed integration time of 3.5 ms is not long

enough to overcome this problem. This artifact is sufficiently disturbing as to render the image

essentially unusable for quantitative work.

This artifact may be minimized by use of a high frequency ballast. The standard ballast,

having output frequency of 60Hz was replaced by a Plaser ballast of 600Hz. The disturbing

artifact was reduced but was still perceptible.

Therefore a new light box (Gordon Instruments TVS, Orchard Park, NY) was acquired

with four d.c. driven, 400 watts, quartz lamps. This unit is air cooled and can transilluminate

transparencies of sizes up to 14” x 17”. The spatial non-uniformity of light emitted through

the top surface of the light box was measured using an optical power meter. A radiometric

filter was coupled to the light power detector to make broad-band measurements in the range

of 450-950 nm wavelengths. The incident light power is given in Figure 3.3 as a function of

distance from the centre. It can be seen that a hot ring exists about 10 cm from the center. The

maximum variation is about 20%. Narrow band radiometric and photometric measurements

were also performed which confirmed the existence of hot spots.

The light non-uniformity was also measured using the CCD camera. the background illumi

nation has a variance of 50 gray levels at mid range on an 8-bit scale. However this ‘hot spot’

non-uniformity can be accounted for as it is of fixed pattern.

The fluorescence lighting provides a more uniform illumination (variance of 10 on an 8-bit

scale). It is also cooler and therefore does not require the fan associated with the d.c. driven

source. The problems of flicker and constant (i.e. non-adjustable) output light can be solved

by use of variable integration times and area scanning CCD arrays.
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Figure 3.3: Spatial distribution of illumination in the light box
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2-D CCD

The second system is an adaptation of the detector originally developed for a solid state

microscope (SSM) employing Micro-Imager 1400 (XilJix Technologies Corp., Vancouver, BC,

Canada) [86, 87]. This detector uses a two-dimensional CCD array (Kodak KAF-1400) to cap

ture 1320 x 103b pixels with square sensor elements of 6.8 im per side. Up to six frames per

second can be acquired with variable integration times. The CCD output is digitized to 12 bits,

8 of which can be displayed at any one time. The contents of frame memory is displayed on a

high resolution monitor (1280x1024 pixels) and the system work station (Apollo DN4500) has

access to the frame memory for image transfer and subsequent analysis. The system block dia

gram is given in Figure 3.4. A highly interactive C program with an easy to operate graphical

user interface was developed for mammographic image analysis.

The following is the description of the performance characteristics of this system. The

performance characteristics of the light source, the lens, and the transfer functions of the camera

are described in section 3.2. Noise reduction is discussed in section 3.3 and a comparison of

film digitization systems is presented in section 3.4.

3.2 Performance Characteristics

The following six parameters characterize the quality of an image acquisition system [88]

spatial resolution, photometric resolution, photometric linearity and spectral response of the

transducer, spatial distortion due to non uniformity of illumination and size/shape variations

of transducer pixels, temporal distortion due to illumination fluctuations and electronic noise.

The photometric range of the detector is measured to be between 0 and 3.2 Optical Densities.

This dynamic range is sufficient to cover all radiographic densities present in a properly exposed

and developed mammogram. The CCD response was measured as a function of the intensity of

incident light and was found to be linear. Since the CCD measures the optical transmittance

of the mammogram at each pixel location, a logarithmic transformation was programmed in

the acquisition system’s look-up table (LUT) to enable the display of the image in the optical
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density domain.

Using a Nikon 55 mm f/2.8 Micro Nikkor lens and the 2-11 CCD sensor it is possible

to digitize a mammogram with a minimum sampling interval of 12.6 um. This high density

sampling is required for the task of detection of minute microcalcifications which may be present

in the vicinity of the primary tumor site. These “satellite” microcalcifications are indicative of

histologic multifocality and are believed to be of prognostic value [89].

The Contrast Transfer Function (CTF) of the camera using the above lens is measured and

given in Fig. 3.5. The limit of resolution was measured to be 770 TV lines when imaging a

standard resolution chart.

Although the CTF is commonly used to specify the spatial resolution of a camera, it is not

in general a linear measure and therefore the overall CTF can not be readily computed from

the CTF of cascaded elements. Therefore the Modulation Transfer Function (MTF) which is

the Fourier Transform of the Point Spread Function (i.e. blur) was used. Two methods were

used in measuring the MTF of the camera 1) the Square Wave Response Function and 2) the

Edge Spread Function.

The Square Wave Response Function (SWRF) has been used by others [90] and can be

directly measured using bar pattern test objects. Each sinusoidal component of the square

wave with frequency nf will have its amplitude MTF(nf) so that:

S(f) = >
MTF(nf)

(3.1)
n1 3

and we can compute the MTF from

MTF(f) = [S(f)
+ S(3f) - S(5f) +

(3.2)

where S is the SWRF.

From equation (3.2) it can be seen that the values of the MTF at high frequencies are

dependent on the accuracy of the SWRF measurements at much higher multiples of these

frequencies. At these higher frequencies the SWRF values are extremely difficult to measure
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since they are limited by noise. Thus the results of this method were not further employed in

this work.

In the second method a large black test object with a straight edge is imaged. The Edge

Spread Function (ESF) is obtained by averaging 128 one-dimensional step edges. The Line

Spread Function (LSF) is obtained by differentiating the ESF. Finally one slice of the MTF is

obtained by the one-dimensional discrete Fourier Transform of the LSF [91]. The differentiation

may be done in space domain (x, y) or equivalently in the spatial frequency domain (u, v):

MTF(u, v) . 6(v) = 2?rju G(u, v) (3.3)

where G(u, v) is the Fourier Transform of ESF, and 6 is the unit impulse function. The two-

dimensional MTF is a separable function formed by the product of one-dimensional MTFs in

the u and v directions. Furthermore the Point Spread Function (PSF) of the camera is found

by a two-dimensional inverse transform of the MTF. A plot of the MTF is given in Figure 3.6.

The results of this method was selected to be further used in this work.

3.3 Noise Reduction

The aim here is to correct the noise introduced in the system. Specifically we are concerned

with the noise element added by the film digitizing process. This noise is due to the following

four sources: a) the illumination source; b) the lens; c) the CCD and its associated amplifier;

and d) the analog to digital converter. We combine these four sources and divide the overall

noise present in the data into two types: the fixed pattern noise such as the optical shading of

the light source and aberrations of the lens, and random noise of optical and electronic origin.

The fixed pattern noise can be corrected by image calibration using [92]:

‘raw — ‘dark
‘cat. = k

T T
(3.4)

bright — 1dark

where ‘raw is the raw image, ‘dark is the image with the shutter closed, Ight is the image of

the background without the mammogram and k is a positive constant. For rapid processing,
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integer arithmetic can be used. In order to avoid discontinuities created by division by an

integer, the following approximate relationship was implemented.

-Tcal. = ‘raw — ‘bright + bias (3.5)

Applying this method to the full image, the noise standard deviation a, was reduced from 3.4

to 1.7 gray levels on the 8-bit scale at mid-range.

The random noise can be reduced by averaging multiple frames. If N frames are averaged,

the standard deviation of the noise will be reduced by a factor of After subtraction of the

fixed pattern noise 25 frames were averaged. This operation takes approximately 10 seconds

and reduces the standard deviation of the noise to 0.5 gray levels on the 8-bit scale at mid

range. This low level of noise was found to be independent of the integration time or the size of

the image and is primarily due to the arithmetic round-off errors introduced in equation (3.5).

After correction for both types of noise, a 1.3 megabyte image with a maximum background

variation of +2 gray levels was obtained.

3.4 Comparison of the Three Film Digitization Systems

A wide range of microdensitometers are in use and their characteristics have been widely re

ported in the literature. We have presented the above two film digitizers based on a linear CCD

and a two-dimensional CCD. We will now compare the performance of these systems with a

typical microdensitometer. We will use a ‘Matrix Laser Digitizer’ as a typical unit of modern

design [81].

Pixel Size:

Microdensitometers usually provide the option of a few fixed pixel sizes, in the range of 50-

200 sum. Each pixel is circular and its minimum size is limited by minimum beam spot size.

For CCD cameras the pixel is square and therefore congruent pixels cover the image without

overlaps. My first system (linear CCD) has 13 um pixels and the second system (2-D CCD)
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has 6.8 um pixels. Additionally, since the two-dimensional CCD has 100% fill factor there are

no gaps in the light sensitive area of the detector. This can not be achieved by the circular

scanning spot of microdensitometers.

Modulation Transfer Function:

The MTF of each digitizer is the combined effect of the MTF of the lens and the MTF of the

sensor. All three detectors can be designed such that the result ant MTF of the sensor is close to

the sampling aperture function with little degradation introduced by the sensor electronics. We

can therefore compare the aperture functions of the three systems. Fig. 3.7 gives the plot of the

MTFs of the three sensor apertures as compared with the MTF of a high resolution screen-film

combination. We have used the Matrix laser digitizer in the high resolution mode [81] and

the Kodak Min-R screen and the Ortho-M film. The effect of finer sampling by the CCD in

obtaining higher spatial resolutions is evident.

Signal to Noise Ratio:

The temporal noise of the digitizer is not a function of the sampling interval and may be

measured as a function of the film density. Fig. 3.8 is a plot of digitizer noise as a function

of film density compared with screen-film noise. It can be seen that temporal noise in the

microdensitometer and the (JCD sensor, after averaging, are comparable and lower than screen

film noise for densities less than 2.5. Since the area scanning CCD grabs an image at least 2

orders of magnitude faster than the other two systems, it is the only digitizer that allows noise

reduction by averaging of multiple frames within acceptable time scales. After noise reduction,

the system noise is primarily due to quantization noise in the analog to digital ( A/D ) converter.

Dynamic Range:

The useful density range of a film (defined as the density range with sensitometric slope > 0.5)

is between 0.2 and 3.2 optical density units. Therefore a dynamic range of in the signal
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(transmission) space is required. This can be obtained by all the above digitizers and a 12-bit

A/D.

Image Acquisition Time

The clinical application of digital radiology requires processing of hundreds of images per day

in an average sized radiology department. Film digitization time is therefore significant and

should preferably be less than the film processing time of one second per inch. Two-dimensional

CCD scanning has a major advantage in this regard and is between a hundred and a thousand

times faster than the other two systems.

Summary

In summary, both our CCD based systems can give higher resolutions than that of the densit

ometer and the two-dimensional CCD based system is significantly faster than the other two

systems. It should also be mentioned that a CCD based system could be manufactured at much

lower costs than the densitometer.

3.5 Image Acquisition at Multiple Scales

It is often necessary to acquire several images at different spatial resolutions from the same

mammogram. To facilitate rapid image acquisition the camera was mounted on a belt driven

vertical linear drive. The mechanism was coupled to a three stack stepper motor. The lens

was also connected to a rotary gear system that was driven by a smaller stepper motor. In

this way the camera could provide real time automated optical zoom capabilities. The drive

controller for the lens subassembly was programmed with a spline corresponding to the required

amount of rotation of the focus ring. In this way the focus ring would automatically maintain

focus while the camera moves vertically. Since the mammogram inherently contains a two

dimensional image at a fixed location atop the light box, this form of obtaining autofocus is

adequate. An x-y stage, controlled via RS232 port from the computer could be added to the
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system to provide pan capability. In initial clinical use however, practicing radiologists have

found that a manual pan of the film under the camera is just as acceptable when the system

is being used interactively. This form of zoom and pan provide magnification with increased

spatial resolution and is superior to the software zoom and pan provided by pixel replication

in commercially available software for imaging boards.

Once a region of interest (ROT) had been identified, either through detection of microcal

cification clusters or masses, its center coordinates were marked and new images with much

higher resolutions were obtained within a radius of up to 2.5 cm. These newly acquired images

were subject to various signal processing algorithms in an effort to identify minute calcification

formations associated with “satellite tumor sites”, around the central reference tumor. These

sateffites are normally mammographically occult to the naked eye but it has been pathologically

demonstrated that the presence or absence of these satellite tumors are highly prognostic [891.

The question which was addressed is whether the provision of higher spatial and photometric

resolution by itself is sufficient to enable the detection of these cancers if, in fact, they exist. For

this latter analysis a data base of mammograms is required on which subsequent pathological

analysis has shown the existence of satellite cancers. This issue will be further investigated in

chapter 6.

3.6 The Software Environment

None of the currently available commercial image processing software libraries are of direct use

since they are for general purpose use and do not conform to the particular requirements of

mammogram analysis such as image size, etc. These systems have not been designed for object

detection or pattern recognition work, are of a “turn key” style and generally unsuitable for

development work. A software environment therefore was developed to facilitate the acquisition,

storage and retrieval, processing and display of images of various size and format.

Development work was done on the following three hardware platforms as they became

available to me during the course of this project:



Chapter 3. Radiographic Film Digitization 31

1. an IBMPC compatible computer with 80386 CPU and a FG100AT Imaging Technology

monochrome imaging board.

2. an IBMPC compatible computer with 80486 CPU and a 1280 Matrox colour imaging

board

3. an Apollo 4500 computer with a Univision monochrome frame grabber.

The C programming language was chosen for all algorithm development. It is a medium

level language that combines ease of programming of high level languages with the speed of

machine specific languages.

For the PC environment, elementary routines were developed for manipulating image files.

The visual display unit available was a 480 x 640 pixel VGA monitor. Therefore routines were

developed to select subimages of 320 x 320 pixels from the input images. Also, routines for

subsampling the original image were written to create smaller image files at lower resolutions.

With a subsampling rate of 1:2 in each direction, it takes only 30% more disk space to store all

the low resolution ancestors of a given image in a pyramid linked data structure. Routines were

also written to enable writing of image data to the video memory for display. Two images of 320

x 320 can be simultaneously displayed on the monitor. This enables rapid visual comparison

of input and processed images. Routines were also written for calculating the global histogram

and for applying a user defined global threshold to the image gray level.

When the Matrox imaging board became available a software package named WINMAM

was developed for the acquisition and display of images. This set of routines use the windows

graphical interface and a secondary large screen (1280 x 1024 pixels) is then used for image

display.

3.6.1 MAMPRO

The C programming language operating under UNIX was used in software development for

the Apollo workstation. A user friendly, menu driven graphical interface was employed in
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this system and the routines are callable from this interface. The resulting package is called

MAMPRO and a listing of its menu structure developed for this study is given in tables 3.1 to

3.3.

3.7 Mammogram Data Base

An image data base was accumulated from mammograms obtained from the British Columbia

Cancer Agency. To minimize the effects of image degradation associated with the X-ray mam

mographic unit, all images were collected from similar units. The size of the data base was

limited by the availability of films with related radiologic and pathologic reports and the digital

storage facilities, however over 500 mammograms were examined and over 200 digitized images

were obtained. Each image is 1280 x 1024 pixels in size. Most mammograms were digitized at

either 50 m or 100 m at 12 bits using our 2D CCD sensor. Further details are given in the

following chapters.

Additionally, the image data base consists of five images of 1728 x 2500 pixels obtained

from the Datacopy linear scanner and 39 images of 1024 x 1024 pixels from the Royal Marsden

Hospital in London, U.K., digitized on a drum laser scanner.



Chapter 3. Radiographic Film Digitization 33

[ Main Menu
Camera Control Functions Set Input Look Up Table (LUT)

Set Integration Time
Shutter On/Off

Screen Facilities Set Display LUT
Set Pseudo Color
Graphics / Text Overlay
Zoom / Pan

Image Acquisition Scan
Average
Subtract Background

Image Storage/Retrieval Main Memory / Frame Memory
File Format

Image Statistics Intensity Profile
Linear / Log. Histogram

Image Processing Image Restoration
Image Enhancement
Edge Detection
Morphological Processing
Image Arithmetic
Images Arithmetic
Image Segmentation

Features Extraction Label Calcifications
Calculate Object Features
Calculate Cluster Features

Table 3.1: Main Menu Functions in the Software package IVIAMPRO
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Add Noise Add Gaussian noise
Add Poisson noise
Add photonic noise
Add radiographic noise

Clean Noise Wiener smoother
MMSE filter
MAP filter

Add Blur Add uniform blur
Add Gaussian blur
Add camera blur
Add radiographic blur

Form Pyramid Subsample by /2
Power Spectrum Image extension
Restore Camera Spatial / Freq. domain

Inverse filter
Wiener filter
CbS filter

Restore Mammogram Adaptive / Signal-dependent

Table 3.2: Image Restoration Functions in the Software package MAMPRO
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Image Enhancement Image convolution
Rank filters
Average filter
Sharp filters
Unsharp mask filters
Enhance contrast
Equalize histogram

_____________________________

Optical Density
Edge Detection Sobel filter

Roberts filter
Kirsch filter
Prewitt filter
Laplacian filter
Morphological edges
Marr & Hildreth

Morphological Proc. Dilation
Erosion
Closing
Opening
Morphological edges
Detect salts
Detect peppers
Skeletonizing

Image Arithmetic Image inversion
with a constant Image threshold

Image + - x / and or xor
Image clip clamp

Images Arithmetic Images ± - x / and or xor
between two images images mini/max

Images rms error
Image Segmentation Set threshold

Increase SNR
Segment calcifications
Label objects
Create binary masks

Table 3.3: Other Image Processing Functions in the Software package MAMPRO
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Clinical Evaluation of the Film Digitization System

A prototype unit of the film digitization system was evaluated subjectively from a clinical point

of view by experienced radiologists from the BC Cancer Agency. As a result of their initial

feedback it was postulated that such a film digitization unit will be of clinical utility even

without any further image processing and analysis software. This chapter reports on a clinical

investigation that was designed and implemented to assess this aspect of the device.

Radiologists normally scan a mammogram for a number of abnormalities including the

presence of any microcalcification clusters. Often a hand-held magnifying glass is used to

ensure that the very small and faint microcalcifications are detected. If a definite assessment still

cannot be made the patient is recalled and a magnification mammogram is taken. Magnification

mammography is a well established conventional procedure that is used as a diagnostic tool in

evaluation of microcalcifications. It achieves 1.5 to 2 times magnification of a selected portion of

the breast image by introducing an air gap between the breast and the screen-film receptor. The

air gap also increases the unsharpness of the image and therefore larger magnification ratios are

not practical. A superior image to the conventional mammography is obtained through exposing

the patient with several times more ionizing radiation. The noise reduction is primarily due

to lower amounts of Poisson-distributed quantum noise at higher X-ray doses in the primary

beam. The procedure normally involves patient recall with the associated cost and anxiety.

The film digitization system also produces magnified images by means of electro-optics.

Digital magnification of mammograms results in images that are superior to the conventional

36
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mammogram. Digital magnification is obtained by spatial magnification and photometric map

ping via an optimized camera Look Up Table (LUT). The optical arrangement generally pro

duces a demagnification, mapping the field of view to the CCD chip size. For example, for

the case of our prototype unit, a square 50 micron sampling interval on the X-ray film maps a

64 mm x 51.2 mm portion of mammogram to 8.7 mm x 7 mm CCD area, i.e. a reduction of

over 7.3 times. When viewed on an 18” display monitor the 1280 x 1024 image will be 360 x 288

mm in dimension, i.e. a net magnification of over 5.6. This is at least three times the magni

fication produced by the conventional magnification mammography. Although this can almost

be achieved using hand held magnifying glass, no improvement in contrast or conspicuity is

possible in the latter case. It is the combination of magnification with contrast enhancement

that provides the unique capabilities of Digital Magnification Mammography (DMM).

For this study we performed no post-processing or enhancement of the acquired images. The

acquisition camera was used with a linear LUT and a suitable choice of minimum and maximum

grey levels. This effectively provides for an implied adjustment of window and level for the input

grey levels. This operation is necessary since the acquisition is in 12 bits but the display is in

8 bits. This operation, coupled to the inherent contrast properties of the display unit leads to

a pronounced improvement in the image contrast and conspicuity of microcalcifications.

To assess the clinical utility of DMM a study was designed and carried out in collaboration

with three radiologists from British Columbia Cancer Agency (BCCA). This was a preliminary

clinical investigation of the application of DMM for the evaluation of mammograms and primary

diagnosis of early breast cancer by experienced practicing radiologists.

4.1 Working Hypothesis:

We tested the hypothesis that practicing radiologists can extract essentially the same diagnostic

information from the original mammogram in regards to microcalcifications by using DMM in

place of obtaining an extra magnification view, thus sparing the patient the added exposure to

ionizing radiation.
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4.2 Materials and Methods:

Mammograms of patients who had been referred to British Columbia Cancer Agency BCCA for

further radiographic follow-up were obtained. Each of the patients had a pair of mammograms

(craniocaudal and mediolateral oblique view) and one magnification mammography performed

on her. Subsequently a biopsy was carried out on each of these patients, and we obtained the

relevant pathology report on the excised tissue. All cases were reviewed by an experienced

radiologist from BCCA, to ensure their suitability for this study. Specifically, each suitable

case should have a visible suspicious cluster of microcalcifications. The films represented hard

cases that conventionally would require magnification mammography.

We selected 35 cases (three films per case i.e. 105 images) involving difficult-to-diagnose

microcalcifications (as judged by a radiologist) without associated masses or any other signs

of abnormality. Due to these requirements, we examined and rejected many more cases which

either had a visible lesion present on the film, or the original mammograms were unavailable.

Whenever the original mammograms were performed at an outside laboratory (normally within

BC), the films were requested through the BCCA department of Diagnostic Imaging. Each film

was subsequently digitized twice, at 50 um and at 100 ,um sampling intervals. The magnification

views each needed only to be digitized at 100 1um. In this way, each case is comprised of 5 images

only one of which was used in the present study.

Three radiologists participated in the study. The study consisted of two parts. In the first

part, each radiologist individually reviewed the original mammograms and the digitally mag

nified images on a monitor. In the second part, each participant again separately reviewed the

original mammograms as well as the extra magnification films as in a conventional reading.

In each case a detailed questionnaire, given in Appendix B, was filled by each observer. The

questionnaire involved 18 questions in 6 categories pertaining to the features of microcalcifica

tions. The questionnaire quantifies five attributes of the microcalcifications, namely: number in

a cluster, shape, density, margination, and spatial arrangement. The questionnaire also records

the overall clinical assessment.
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The two parts of the study were kept separate by both a time interval and random shuffling

of the cases so that the observers had no recollection of their previous analysis. The three

observers did not discuss the cases among themselves and no other clinical data or patient

history was supplied to them.

4.3 Results:

Two types of results were obtained namely, a qualitative assessment of the images by the

radiologists and a quantitative comparison of the data obtained from the questionnaire.

Qualitative assessment of the images by the radiologists:

All the three radiologists expressed that they were able to see the details of the microcalci

fications better on the monitor than on the original mammograms. Two other experienced

radiologists with special interest in mammography evaluated the digitized images using the

mammograms that they brought along with themselves. One of these radiologists is associated

with BCCA, while the other is affiliated with a community hospital. All the clinicians expressed

that they can see more microcalcifications on the monitor and they find the soft-copy display

easier to use for primary diagnosis than the films. Although the radiologists were free to refer

to the original mammograms during the evaluation of the digitized images, they chose not to

do so. They would first look at the films to determine the relative location of the microcal

cifications (i.e. in which quadrant of the breast they are) and then use the soft-copy display

exclusively for detailed description of the microcalcifications.

Quantitative comparison of the data:

Comparative data for the three observers are given in table 4.1 in the form of a classification

confusion matrix. CMM refers to the conventional magnification mammography and DMM

refers to the digital magnification mammography. The last question in the questionnaire quan

tifies the overall diagnostic impression of the microcalcifications and can be viewed as a two
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Bcnign Malignath Snitivity 1 Specificity Accuracy Conipicuity
Pathology Pathology % 1.

Obeerver CMM B 20 3 67 77 74 49
#1 M 6 6

0MM 20 3 67 77 74 49
M 6 8

Obeerver CMM B 22 7 22 88 T 69 3?
#2 M 4 2 1

0MM B 19 6 44 73 T 66 31
7 4

Fbbserver CMM B to 2 78 T 38 49 -3

#3 M 16 7

0MM B 7 1 89 T 27 43 -14
M 19 8

Table 4.1: Confusion matrix for Benign (B) vs. Malignant (M) classification by conventional
(CMM) and digital (DMM) magnification mammography.

class classification problem, with the two classes labeled as either benign or malignant.

In table 4.1 we have also included calculations of “Sensitivity”, “Specificity”, and “Accu

racy” as used in the literature and reviewed in the Appendix. We also introduce a new metric

called “Conspicuity” defined as

C=2A—1 (4.1)

where C is the conspicuity, and A is the accuracy. The rationale for this metric is this: a

random classification for a two class problem, under the assumption of equal probabilities,

gives an accuracy of 50% . If the image of any abnormality is so inconspicuous as to render

the classification essentially random then Cz0. A highly conspicuous abnormality, with C1,

should ideally result in 100% accuracy in classification.

It is well known that some cancers are pathologically evident but radiologically occult.

Therefore if ground truth, so far as the images are concerned, is taken to be the 2/3 majority

of radiologists responses we obtain the results of table 4.2.

Table 4.3 gives the extent of inter-observer agreements for the conventional reading of mam

mograms. Observer # 1 agreed in 77% of cases with observer # 2, and 57% with observer #

3. The second and third observers only agreed in 40% of the cases. It can be seen that a

considerable disagreement exists. This may be a typical example, and a natural consequence

of the subjective and non-quantitative method of interpretation currently in practice.
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Berign 1 MaJiguant 1 Sensitivity Specificity ] Accuracy Conspicuity
features j features j % % j %

Observer CMM B 23 0 100 96 97 94
#1 M 1 11

0MM B 23 0 100 96 97 94
•___ 1 11

Observer 0MM B 23 6 46 96 80 60
#2 M 1 5

0MM W 20 3 73 83 80 60
M 4 8

Observer 0MM B 11 1 1 91 46 60 20

#3 M 13 10 j
DMM B 8 0 100 33 54 9

M 16 11

Table 4.2: Confusion matrix for Benign (B) vs. Malignant (M) classification by conventional
(CMM) and digital (DMM) magnification mammography; ground truth is radiologists’ majority
opinion.

___________

Observer # 2 Observer # 3
Benign Malignant Benign [ Malignant

Observer Benign 22 1 10 13

# 1 Malignant 7 5 2 10
Observer Benign 10 2

# 3 Malignant 19 4

Table 4.3: Inter-observer (dis)agreements for Benign vs. Malignant classification in conventional
magnification mammography.
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CMM
DMM Benign Malignant

Observer Benign 20 3

# 1 Malignant 3 9

Observer Benign 23 1

# 2 Malignant 6 5

Observer Benign 3 5

# 3 Malignant 9 18

Table 4.4: Comparison of classification by conventional (CMM) and digital (DMM) magnifica
tion mammography for each observer.

It is instructive to compare the results of conventional and digital magnification for each

individual observer. These are given in table 4.4.

The classification problem is carried out in two steps: detection and visualization of micro

calcifications, and determination of probability of malignancy. Both of these factors affect the

final outcome. The second step however is not a function of image quality. We should therefore

compare the radiologists responses for visibility of image features. Typical results from the first

observer are given in table 4.5.

4.4 Discussion

Observer # 1 had some preliminary exposure to the prototype unit, while the second and third

observers had never used soft-copy images for primary diagnosis of mammograms. It appears

from the results that some familiarity with this form of image display improves the outcome.

We also observe that in both the conventional and digital arms of the study, the first observer

was consistently closer to the “truth”.

Considering the conventional analysis we assume that all three radiologists are equally well

experienced, and yet their performance in predicting the probability of malignancy is very

different. In particular the third observer is extra cautious and calls for far too many cases of

malignancy. The accuracy of this observer is in fact worse than a random classification of 50%
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leading to negative values of image conspicuity. It is clear that this observer is influenced by

her past experience and the particular group of patients that she normally examines. Our data

base is a particularly difficult one to evaluate, and the probability distribution of malignant

cases is different than the normal expectations of this observer.

Concentrating on the results of the first observer, we note from tables 4.1 and 4.2 that the

hit rate for both the conventional and digital magnification is the same. This indicates that

within the statistical validity of the experiment the working hypothesis is confirmed.

This result should be interpreted with caution. The conventional magnification procedure

results in images that inherently have higher signal to noise ratios. There is however some loss

of sharpness in the magnified images. The digital magnification has optical magnification and

electronic contrast enhancement, but amplifies both the signal and the recorded noise in the

original mammogram. This study does not compare these images from a technical view i.e. by

signal to noise ratio, contrast, etc. but rather from a clinical point of view.

As an example referring to table 4.5 we note that out of the 35 cases we have 9 true

positive cases (TP=9), 20 true negative cases (TN=20), 3 false positive cases (FP=3) and 3

false negative cases (FN=3). This gives a false positive ratio of FPR=3/23=13%, or specificity

of 87%, a false negative ratio of FNR=3/12=25%, or sensitivity of 75%. The overall accuracy

is 29/35=83%. We have defined a conspicuity scale (or C-scale) as (2 x accuracy -1). Since a

random diagnosis is likely to lead to 50% FPR and 50% FNR it will give a C-value of 0, i.e. the

conspicuity of the abnormality has not increased by use of DMM. Alternatively if DMM could

completely obviate the use of conventional magnification mammography we would have no false

positives or false negatives, an accuracy of 100% and a C-value of 1. Any C-value above zero

quantifies the contribution of DMM. In this case C = 0.66, i.e. a 66% increase in conspicuity.

The above analysis can also be carried out in respect of individual questions in the ques

tionnaire to quantify the contribution of DMM in increasing the conspicuity of various features

of abnormalities. For the feature in question 1, the number of micro calcifications were classified

as few ( less than 10 per cm2 ) or many (equal to or greater than 10 per cm2).
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Hence out of the 35 cases correct estimates were made in 24 cases giving an accuracy of

69%. In 8 cases DMM has underestimated the number of microcalcifications while in 3 cases it

has overestimated it. The C-value is 0.37, indicating a 37% increase in conspicuity.

Question 5 relates to spatial arrangement of microcalcifications and its confusion matrix is

given in table 4.5. From table 4.5 we have an accuracy of 77% and C-value of 0.54, i.e. a 54%

increase in conspicuity.

Question 4 relates to margination of microcalcifications and classifies them into smooth or

irregular as given in table 4.5, with an accuracy of 57% and a modest increase in conspicuity

of 14%.

Question 3 measures the density of calcifications, and classifies them into uniformly dense

and poorly defined or smudgy. The confusion matrix is again given in table 4.5, from which we

see an accuracy of 0.63 and C-value of 0.26.

Question 2 relates to the shape of microcalcifications and is a seven class classification

problem with multiple labels being allowed. The confusion matrix for this feature has 49

entries, i.e. larger than the total number of cases. For this reason this method of analysis was

considered inappropriate.

In summary the most important of the above results is the number of cases that a radiolo

gist can correctly identify as benign or malignant without the use of conventional magnification

mammography. For the three radiologists the average ratio was 26 out of 35 cases or 74%. For

observer # 1, who had prior exposure to the system, this ratio was 83%. We have therefore

shown that within the parameters of the experiment, the number of magnification mammogra-.

phies may be reduced significantly by the use of digital magnification using the proposed image

acquisition device.
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Image Restoration

In this chapter we employ filtering techniques in an attempt to reduce the image degradations

and improve the detectability of abnormalities in digitized mammograms.

5.1 Problem Description

Many more breast cancers are now detected in earlier stages as a result of greater participation

of women in screening programs. The majority of early carcinomas of the breast are indicated

by the presence of one or more clusters of microcalcifications on a mammogram. Detection of

subtle, small, and low contrast microcalcifications, is therefore gaining increased significance.

Over 30% of all early carcinomas of the breast are detected solely on the basis of the pres

ence of a cluster of subtle microcalcifications. Usually a biopsy is performed and the presence

of microcalcifications together with the associated malignancy is confirmed pathologically. A

radiograph of the biopsy specimen is often taken employing contact radiography where the

parameters are optimized for the best possible image. The specimen radiograph has a higher

quality image due to lower noise associated with a much higher X-ray dose, and reduced scat

tering in the thin specimen. The specimen radiograph almost always shows a larger number of

microcalcifications than was visible in the original mammogram. Clearly then the mammogra

phy imaging process misses much needed information and introduces image degradations that

may play a critical role in the detection of early breast cancer.

A closely related problem is that mammography usually underestiniates the extent of a le

sion. From several correlated pathologic-radiologic studies it has been shown that the smallest
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microcalcifications, normally in the periphery of the lesions, are not visible on the mammo

gram. This problem is particularly significant when multifocality is involved and “satellite”

microcalcifications are present in the vicinity of the primary tumor. These satellite microcal

cifications can be found as far away as 4 cm from the primary lesion and are believed to be

highly prognostic [89].

Two factors contribute to this phenomenon namely the observation system noise and the

system blur. Image processing techniques may be used to overcome some of these degradations.

5.2 Image Processing

Image processing can be considered as a preprocessing stage in digital analysis of mammograms.

This preprocessing is used to calibrate the image, remove or reduce the random and fixed pattern

noise and counter the effects of non-linear illumination and camera response. It is also used to

correct the degrading effects of the transfer functions of the X-ray source, the imaging path and

the screen-film receptor as well as to correct for the blurring effects of the camera Modulation

Transfer Function (MTF).

There is much published work in the literature in the areas of image enhancement and

restoration, for example [94], [95], and [96]. We have treated noise reduction, image calibration

and some general image enhancement techniques in chapter 3.

While image enhancement techniques have their own advantages they do not consider the

process of image degradation in the derivation of algorithms. We have already noted that the

most subtle signs of abnormality are not visible in the raw mammogram or in its digitized

version because of the noise and blur in the image. Degradations caused by the blurring ef

fects and noise introduced by the X-ray machine and the screen-film detector appear in the

mammogram, and similar degradations of the camera and the digitizing equipment affect the

digitized mammogram. We postulate that if the characteristics of the noise and the different

blur functions are known or obtained then these effects may be removed or reduced by im

age restoration techniques. The restored image may then be directly viewed on the monitor,
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subjected to further image enhancement or processed for automated diagnosis.

In this chapter We will consider image restoration from the degradiiig effects of the system

transfer function. A prerequisite of restoration is the knowledge of the image formation model

and the transfer functions of the system components as well as the noise model. The overall

Modulation Transfer Function is considered to be due to both the screen-film receptor and the

film digitization system. The most common restoration methods use linear filtering techniques

such as Wiener filtering. In the following chapter We will extend this work to include the effects

of signal-dependent noise.

5.3 Image Restoration

Image restoration is a mathematical process in which operations are performed on an observed

image so as to estimate the original object that would be observed if no degradations were

present in the image formation system used. Basically the procedure is to model the image

degradation effects of the system and then find and perform appropriate operations to ‘undo’

these degrading effects. Thus in order to effectively design a digital image restoration procedure,

it is necessary to first quantify or characterize the image degradation effects of the physical

imaging system, the image digitizer, and the image display. Due to the statistical nature of the

degradations, ideal restoration is not possible. However> some degree of improvement may be

feasible. We seek such improvements in the X-ray imaging of the female breast.

To restore an image the blur functions and the noise strengths of the system must first be

measured. The two components of the overall system are the X-ray imaging system and the

two-dimensional CCD digitizing system, as shown in Fig. 5.1. These are modeled as a cascade

of linear and shift invariant systems. This siniple model serves as a starting point and has

the advantage of mathematical tractability. The Modulation Transfer Function (MTF) of the

camera was measured as discussed in chapter 3. The MTF of the screen-film combination is

normally available from the manufacturer. The noise components from the camera and the

noise recorded on the film are here assumed to be additive and their strengths are estimated.
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Object Film Matrix

Digitizing Camera rj-czzzzz> X-ray Mammography

Figure 5.1: The digital image formation model
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5.4 The System Transfer Function

The relative importance of the camera MTF and the screen-film MTF needs careful attention.

The values of the MTF of the best available X-ray screen-film combination at frequencies above

16 cycles/mm are known to be less than 5% of the MTF’s maximum value [97]. This implies

that image details associated with these frequency components are severely attenuated resulting

in blurring of the image. The mammographic image can therefore be considered to be band

limited. The camera MTF’s value is over 50% at this limit (16 cycles/mm) indicating that

the screen-film (and not the digitizing camera) limits the detection of microcalcifications. This

relationship depends of course on the geometrical magnification provided by the lens, and holds

only when the object and its image are of equal size. If the mammogram is imaged at lower

magnifications the effect of the camera MTF increases.

A combined impulse response can be found by convolving the impulse response of the indi

vidual elements in the imaging path. In the Fourier domain this translates into multiplication:

H(f,f) =H8j(f,f) H(f,f,) (5.1)

where H is the overall system modulation transfer function, H3f is the screen-film MTF and

H is the digitizing camera MTF.

The system is modeled as

g(x,y)= h(x,y)* f(x,y)-i- n(x,y) (5.2)

where * is the convolution operator, h(x,y) is the overall system blur function, and n(x,y) is

the additive noise, and g(x,y) is the observed image.

5.5 The Wiener Filter

The reconstruction ifiter is designed to minimize a certain estimation error e which may be

defined in a variety of forms. In the Wiener filter formulation E is defined as:

= Ex{JJ [f(x,y)f(x,y)j2ddy} (5.3)
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where Exp is the expectation operator, f(x, y) is the original, undegraded, and unknown image

and f(x,y) is the estimate of f(a,y). The expectation in equation (5.3) is performed over the

entire spatial support of the image.

The restored image F(f, f!,) in the transform domain is

P(f, f!d) = H(f, f) G(f, f) (5.4)

where H(f, fr,) is the restoration filter, and G(f, fr,) is the Fourier Transform of the observed

image.

For the assumed linear shift invariant system the Wiener filter in the Fourier domain is

known to be

H1’ f— x,jy

rJx,J!J)
— I 2

________

Jy) W(f,f,)

where H is the Fourier Transform of h, and WN and WF are the power spectrum of the noise and

signal respectively. Note that since the acquisition system blur function, h(a, y), is commonly

symmetric, the transfer function, H(f, fr,) is a real function, and thus the above restoration

filter is also real.

To calculate equation (5.5) we are faced with the fact that the power spectrum of the latent

image WF, in practice, is unknown. In our first attempt to calculate (5.5) we estimate WF

from the degraded images as follows. The Wiener filter (5.5) can be re-written as:

— H*.WF
H

— TT 2 TIT TXT (5.6)
11 I’Vp + VVN

where the (fr, fr,,) are implied. From (5.2) the observed image in the frequency domain is given

by:

G=H-F+N (5.7)

Therefore the power spectrum of the observed image WG can be calculated as:

W0 = H 2 WF + WN (5.8)
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and hence substituting for the unknown WF we get

H—’
WG-WN

T—ff W
(5.9)

From equation (5.9) we note that the Wiener filter can be decomposed into a cascade of a

smoothing filter, WGWw and the inverse filter, . The computations were carried using the

Discrete Fourier Transform (DFT), and WG was replaced by I G 2 In this implementation,

in order to minimize the effects of the zeros of H, we selected only the first L values of the

blur function as being significant and set the rest to a fixed, small but non-zero constant H(L).

L can be treated as a design parameter and its value may be chosen empirically. The noise

power spectrum was estimated from selected smooth regions of the noisy and blurred images.

The spectral energy of the relatively low contrast soft tissue images on a mammogram are

generally concentrated near the zero frequency. The Wiener smoothing filter WGW_WN was also

implemented separately and proved to be quite effective in smoothing mammographic images

as judged visually.

The alternative method of calculating equation (5.5) assumes the noise to signal power ratio

a = to be equal to a constant. The value of this constant is adjusted empirically to obtain

the best restored image, as judged visually. The filter takes the form of a sharpening high

pass filter and assists in better visualization of details of microcalcifications. The filter transfer

function is given in Figure 5.2. Although the first method of deriving WF from the observed

image has been suggested in the literature, we found that the second method of assuming a

constant noise to signal power ratio produced better results.

5.5.1 Iterative Restoration

The Wiener filter of equation (5.6) is the optimum linear restoration filter in the Minimum

Mean Square Error sense. As stated earlier the problem is that normally the power spectrum of

the latent image Wp’ is not known a priori. In section 5.5 above we tried to estimate WF from

the power spectrum of the observed image WG. This resulted in equation (5.9). Alternatively



Chapter 5. Image Restoration 53

16

14

(a) System MTF
.‘

1 2 (b) Hr with NSR=.O1 ,‘

(c) Hr with NSR=.OO1 .‘ .
(c)

1 0 (d) MTF * Hr(.Q1)

(e) MTF * Hr(.0O1) /
Li_

____________________________________

8 /
/

/
6

,.

4.

Frequency (Cycles/mm)

Figure 5.2: The Modulation Transfer Function of (a) the system; and the restoration filter with
(b) noise to signal power ratio o = 0.01; and (c) c = 0.001; (d) and (e) show the improvement
in MTF due to the application of the restoration filters Hr corresponding to (b) and (c).
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we assumed that WF has the same shape as WN and took to be a constant. In this section

we will estimate WF iteratively.

The first estimate of Wp’ is obtained from the observed image, by

:1:1 c 2 (5.10)

From this we formulate a restoration filter

=
(5.11)

IHl2WF +WN

This filter is used to obtain an estimate of the restored image

= H$) G (5.12)

Now a new estimate of WF can be obtained

=1 E() 12 (5.13)

The iteration may be stopped based on some convergence criteria. It was found effective enough

to arbitrarily stop the procedure after a few iterations.

5.6 The Constrained Least Squares Filter

The classical Constrained Least Square deconvolution procedure seeks to minimize the objective

function:

II QE 112 +) II (G — HF) 112 (5.14)

where Q is a two dimensional high pass filter, and A is the Lagrange multiplier. The first term

in the objective function imposes a smoothness criterion by minimizing the high frequency

components of the estimate of the restored image F. The second term aims at a least squares

fit to the observed image G. The Lagrange multiplier which is related to the extent of the

noise in the observation is treated as a design parameter and adjusted empirically for ‘best’
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results. It is well known that minimization of the above objective function yields the following

Constrained Least Squares deconvolution filter [96]:

H*
Hr

H 2
. I Q 12

(5.15)

where y is a constant inversely proportional to the Lagrange multiplier. Following the conven

tional approach the Laplacian operator was chosen, approximated by

0 10

q(x,y)= 1 —4 1

0 10

to enforce the smoothness constraint. Therefore

Q(w,w) = —1 + 0.5cos(w) + 0.5cos(w) (5.16)

5.7 Results

In order to compare the performances of the various restoration filters quantitatively it is

necessary to have access to the ‘true’ latent image. For this purpose first a phantom resolution

chart was imaged. The phantom image contains both high and low frequency objects of varying

contrasts. This image was considered to be our ‘latent’ image f(x,y). The image was blurred

with the system transfer function and independent white Gaussian noise of standard deviation

a,-. = 5 or 10 grey levels was added to it, to form the ‘observed’ blurred and noisy

image g(x, y) or g1(r, y) respectively. Each image was then filtered with the inverse filter, two

implementations of the Wiener filter, the iterative filter, and the Constrained Least Squares

filter. In each case we used the error metric e defined as

e =
])2

(5.17)

where images are of size M x M. While it is true that this metric does not correctly capture

the visual quality of the images, it is mathematically simple to implement, and is in common
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Filter Parameter j Restoration Error e

None 36.5
Inverse 98.1
Wiener SNR=l 42.4

SNR=80 27.1
SNR=100 26.7

SNRz1000 53
Wiener2 o, = 5 73.3

Iterative Wiener u = 5 44.2
Constrained ‘y = 0.001 45.2

Least Squares ‘y 0.01 24.7
= 0.1 31.8

y=1 37.6

Table 5.1: Comparison of restoration filter performances

use. Table 5.1 gives a summary of the results. In this table Wiener2 refers to the cascade of a

Wiener smoothing filter WGW_WN and an inverse filter as described in section 5.5 above.

A sample of images is given in Figure 5.3. In this figure Wiener3 refers to the iterative

implementation of the Wiener ifiter. It can be seen that the restoration filters can be optimized

to sharpen the image detail, with little degradation due to the amplified noise. Since a large

portion of the phantom consists of fiat areas with nearly constant grey levels, the amplification

of the noise causes the error e to be larger in some cases than the error in the unrestored image.

Judging visually, five of the output images show considerable improvement in visualization of

image detail, with the Constrained Least Squares filter with = 0.01 producing the best result.

This observation is consistent with the numerical results of table 5.1.

Figure 5.4 shows the effect of the Wiener filters on the actual image of a test phantom

obtained by the two-dimensional CCD digitizer. The object is placed at a distance far from

the camera such that the optical image formed at the CCD plane contains substantiai energy

at frequencies near the limit of the resolution capability of the camera. A blurred image is

obtained in this way while the camera is maintained at its best focus setting. No additional

degradation was introduced this time, and the impact of processing the image with the Wiener
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Figure 5.3: Restoration of test images: f is the latent image, fj, is the blurred image, g and g1
are the observed images; all other images are the results of restoration by various filters.
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filter was tested. A fixed noise to signal ratio (NSR) is assumed in the design of the Wiener

filters. The value of this constant was adjusted empirically to obtain the best restored image,

as judged visually. In Figure 5.4 the outputs labeled Wienerl and Wiener2 are produced by

application of Wiener filters with constant noise to signal ratios of NSR=0.0l and NS]Iii.00l

respectively.

To compare the performance of the deconvolution filter with enhancement filters we include

the effects of two high pass filters shown in Figure 5.4. Both of these filters are 3x3 convolutional

filters with the following mask values:

o —1 0 —1 —1 —1

—1 5 —i ;sharp2 = —l 9 —1

o —1 0 —1 —1 —1

These edge sharpening filters were implemented in the spatial domain and therefore were

computationally faster and more economical in the storage requirements. It can be seen that

the Wiener filter with NSR=.00l produces the sharpest image in which the four separate lines

at the top half of the image are clearly distinguished.

The same filters were used on a data base of 30 mammograms selected from diagnostic films

of patients referred to the British Columbia Cancer Agency’s Vancouver clinic. The mammo

grams represent typical cases containing clusters of low-contrast microcalcifications present in

the normal breast parenchyma. The films were digitized with contiguous square pixels of 10Om

x lOOjim. Figure 5.5 shows the effect of the Wiener filter with NSR=.00l on a mammogram.

In Figure 5.5a the observed digitized image is shown. Figure 5.5b gives the result of the

application of a different Wiener filter which restores the image from the effects of the digitizing

system only, i.e. only the MTF of the camera is used in the derivation of the filter. Figure

5.5c is the result of a Wiener filter which restores the image from the combined effects of the

digitizing system and the screen-film combination. The sharpening effect of the filter is clearly

visible as are the characteristic textured patterns in the background due to the amplification of

the system noise. The microcalcifications associated with the primary tumor can be resolved
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Wiener2

Figure 5.4: A portion of a standard test phantom imaged at a far distance near the resolution
limit of the camera. Results of restoration by the two Wiener filters: Wienerl with NSR=.O1
& Wiener2 with NSR=.OO1, and enhancement by 3x3 convolutional masks sharpi & sharp2 as
defined in the text.

original Wienerl sharpi

sharp2
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(a) (c)

Figure 5.5: Restoration of a mammogram: (a) The observed image; (b) Restored image using
Wiener filter (with NSR=.001) compensating for the camera MTF; (c) Restored image using
Wiener filter (with NSR=.001) compensating for the combined system MTF.

(b)
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better, and several ‘satellite’ microcalcifications are now visible. It can be seen from Figure 5.5

that the effects of camera MTF at the sampling interval of 100 1um can not be neglected.

In summary in this chapter we have reported on our implementation of a number of restora

tion algorithms. The performances of these filters with various parameters were compared. The

effects of both the screen-film combination and the digitizing equipment were considered. The

restored images are sharper and assist in better visualization of the image detail.



Chapter 6

Restoration in the Presence of Signal-Dependent Noise

The work described in Chapter 5 assumes a globally stationary image with signal-independent

additive noise. In this chapter the restoration of mammographic images is extended to include

the signal-dependent nature of radiographic noise.

We consider a non-stationary image model and signal-dependent noise of photonic and

film-grain origins. Both the camera blur arid the MTF of the screen-film combination are

considered. The camera noise is minimized through averaging and background subtraction as

described in chapter 3. The signal-dependent nature of the radiographic noise is modeled by a

linear shift-invariant system and the relative strengths of various noise sources are compared.

We investigate the application of two locally adaptive image smoothing filters to improve

the signal to noise ratio of digitized mammogram images. To minimize the effects of the system

blur a deconvolution filter is then applied in conjunction with these smoothing filters resulting

in better visualization of image details.

The deconvolution filter is based on the Minimum Mean Squared Error (MMSE) criteria,

while the smoothing filters utilize the Bayesian and the Wiener criteria. Of the two smoothing

filters the Bayesian estimator is found to outperform the adaptive Wiener filter. The filters are

implemented in a real time processing environment as part of my MAMPRO mammographic

image acquisition and analysis system.

The objective of this approach is to facilitate the detection of microcalcifications at the

earliest stage of their formation. In section 6.1, We characterize the image formation system

and derive an image observatiomi model in section 6.2. In section 6.3 different image restoration

procedures are discussed and designed so as to minimize or reduce the effects of the different

62
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blurs and noise degradations.

6.1 Image Formation System

The system degradations are considered to originate from the cascade of two imaging systems

as described in chapter 5. In chapter 5 we assumed a globally stationary image with additive

Gaussian noise independent of the signal. In this chapter we study and develop a model to

describe the formation of digitized mammographic images with special attention to the signal-

dependent nature of the noise. In order to find a more realistic image degradation model, the

different components of the image formation system are first examined. Firstly there is the X

ray image formation system which produces the image recorded on the film. The X-ray system

is followed by the digitizing optoelectronic camera that produces the digital image matrix. We

will first consider these two systems separately and then in section 6.2, we combine them to

formulate an overall image observation model.

6.1.1 The X-ray Screen-Film Imaging System

Radiographic images suffer from a number of degradations which are inherent in the image

formation system. A block diagram of radiographic image formation is given in Figure 6.1.

These degradations may be broadly divided into two categories of blur or unsharpness, and

noise or statistical fluctuations in image intensity.

The Image Blur:

The image blur is due to the following four sources: a) the X-ray source; b) the geometry

of imaging; c) the beam scattering by the subject; and d) the image detection and display

components. The illumination received at the screen is non-uniform due to the X-ray source

and the geometry of the imaging. The largest amount of exposure is received along the central

beam, with the quantum fluence decreasing proportional to cos3O, where 0 is the angle of

inclination from the normal [98]. This effect is modulated by the ‘heel’ effect of the anode.
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Additionally, the focal spot on the anode of the X-ray tube has a finite size creating penumbral

shadows in the image. The extent of this shadow depends on the object-film distance, and it

affects the spatial resolution limit of the image. It is also this effect that limits the extent of

useful magnification views to about two times only [99j. We can model this effect by a two-

dimensional convolution of the point spread function corresponding to the effective focal spot

aperture with the image.

The X-ray scatter in the breast reduces the contrast of the image. This is a major source

of degradation. Breast compression devices and vibrating anti-scatter grids are used to reduce

this effect. Nevertheless, X-ray scatter remains a major limitation. The overall effect of these

limitations can be partially evaluated practically by comparing a pre-operative mammogram of

a patient who has undergone biopsy, with the specimen radiograph. In specimen radiography

the object-film distance is reduced and much of the breast mass responsible for beam scatter is

absent. Additionally higher doses are employed leading to better contrast and reduced input

quantum noise. The specimen is also centrally located reducing the effects of geometrical

distortions.

The screen-film combination as a detector has been studied extensively [97]. The intensifying

fluorescent screen absorbs the X-ray photons and radiates many more photons in the visible

range of wavelengths which expose the film. The X-ray absorption and re-radiation efficiency of

the screen , as well as the photon absorption efficiency of the film i2, contribute to the overall

contrast for a given dose to the patient. The amplification and scattering mechanisms of the

screen are stochastic in nature. Rabbani [100] has shown that the uncorrelated component of the

quantum noise passes through the screen unaltered while the correlated component is filtered

by the system contrast transfer function. The amplification m is described by its probability

distribution function Pr(m), having mean ñi, and variance u. The scattering process can be

modeled by a two-dimensional linear convolution operation and forms the major component of

the screen film Modulation Transfer Function (MTF).

For contrasts below about 6%, the system noise is the limiting factor in the visibility of the
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image details while the system MTF has little effect on it [101]. For higher contrasts however,

the MTF contributes significantly to these limitations. This fact indicates that in digitized

mammograms restoring the image from the effects of the system MTF may result in better

visualization of smaller objects.

Finally the response of the film to the incident photons is non-linear. This non-linearity

is described by the D — log E characteristic curve. Although this is commonly written as

D = -y log E + /3 we note that both and /3 are functions of the exposure level E. The contrast

transfer function of the screen-film combination is both a function of exposure (due to the

characteristic curve) and frequency (due to MTF).

Image Noise

The process of X-ray image formation is also associated with noise which is generated by four

sources. These noise sources are: a) the quantum noise due to the discrete nature of the X-ray

photons; b) the screen mottle due to the stochastic nature of amplifications and scattering;

c) the screen structure noise due to its inhomogeneous phosphor coating; and d) the film grain

noise of the emulsion coating. The screen structure noise is generally considered to contribute

less than 2% to the overall noise [97].

In Figure 6.1, X-ray quantum fluence Q, in the (i, j)th pixel contains spatial non-uniformities

due to the geometry of imaging and the inherent photon noise which has a Poisson distribution.

The effect of focal spot size is modeled by convolution with its aperture function, and that of

the X-ray scatter is represented as an effective low pass filter. The effects due to cos3 0 term

are quite small since for typical geometries involved 0 is less than 5°.

We use the Kodak Min-R screen together with a Kodak Ortho-M film. The densitometric

data, MTF, and other parameters of this screen-film combination have been reported by Bunch

[97]. Details of this model are further described in section 6.2.
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6.1.2 The CCD Camera

In addition to the X-ray, the digitizing camera also blurs the image. The finite size of each pixel

gives the aperture function and provides the theoretical limit to the MTF of the camera. The

lens contribution to the blur can at best be limited to the diffraction properties of the optical

components employed. As described in chapter 3, we use a two-dimensional CCD (Kodak KAF

1400) with 100% fill factor and 1035 x 1320 square pixels of 6.8 um per side. This gives an

MTF of the form ‘sinc(w)sinc(w)’. This function is multiplied by the MTF of the lens. We

used a Nikon Nikkor 55 mm lens which, for the best focus conditions has a minimum MTF of

0.6 at the Nyquest sampling frequency of our sensor.

The MTFs of the camera and that of the screen-film are shown in the same plot in Figure

6.2. The spatial frequency axis refers to the frequency content of images formed on the film

and on the CCD planes, respectively. When comparing these two MTFs we note that these two

curves should refer to the same imaging plane. If the geometry of imaging and the focal length

of the lens are chosen such that a ‘life size’ image is formed at the CCD then the two MTF curves

are directly comparable. Under these conditions we note that the screen-film combination (and

not the digitizing camera) is the limiting factor in spatial resolution. The field of view is now

restricted to the area of the CCD, i.e. a mere 7 mm x 9 mm. As we increase the field of view

the effective camera MTF referred to the object (mammogram) plane deteriorates.

In addition to the noise present on the developed film the digitizing system adds another

noise element. This noise element is due to the following four sources: a) the illumination source;

b) the lens; c) the CCD and its associated amplifier; and d) the analogue to digital converter.

Figure 6.3 gives a block diagram of the CCD image formation from the mammogram. We

combine these four sources and divide the overall noise present in the data into two types,

the fixed pattern noise such as the optical shading of the light source and the aberrations of

the lens, and the random noise of optical and electronic origin. The fixed pattern noise can

generally be corrected by image calibration, while the random component of the camera noise

may be reduced using averaging. The final calibrated image therefore will contain a small
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Modulation Transfer Functions
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Figure 6.2: The Modulation Transfer Functions
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amount of observation noise, which is due to the camera and uncorrelated to the image, and a

more significant radiographic noise which is signal-dependent.

6.2 Image Observation Model

It is customary in image restoration literature to consider the image observation model to be

linear. In a commonly used model the observed image, g, is considered to be the result of linear

convolution of the latent image, f, with a blur function, h, and addition of independent, zero-

mean, white, Gaussian noise. While this model has the advantage of mathematical tractability,

it is an over simplification of the actual situation.

We have employed this model and have shown in chapter 5 that improvement in the appear

ance of digitized mammographic images is possible. In particular the blur and noise contributed

by the digitizing camera can be modeled in this form. The X-ray image formation however, can

not be modeled in this way. Specifically, radiographic noise is strongly signal-dependent and

the film density vs. log exposure characteristic curve introduces non-linearity in the convolution

term.

We formulated an image observation model for the X-ray system as shown in Figure 6.4

based on the physical description of the system given in Figure 6.1. In this model the weakening

of the off-axis rays may be compensated for by a pointwise normalization of each pixel value

by the cos3 0 term. The input is the number of X-ray quanta received at the screen per

pixel, and the output is g3, the observed optical density of each pixel. We have included three

sources of blur in this model: hfocalspot, hscatter, and hscreen. There are also three scaling

factors: i is the mean screen amplification ratio; and and 2 are the absorption efficiencies

of the screen and the film respectively. The three noise sources represent n1 the correlated, and

n2 the uncorrelated, components of the input quantum noise, and n3 the associated film-grain

noise.

This model may be simplified by making the following observations. The scalar factors may

be taken out of the system block diagram and reflected at the input. The blur due to the focal
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spot size is a function of the relative distance of the lesion of interest and the screen. This is

of course not known a priori and for the cases where the object of interest is in contact with

the screen there are no blur contributions from the focal spot. Finally we assume that the

X-ray scatter in the subject is largely absorbed by the vibrating grid. An effective grid system

ensures that the scattered photons are not absorbed by the screen and therefore the scatter can

be modeled by a gain factor independent of spatial frequency.

Based on these considerations a simplified version of the above model is given in Figure 6.5.

In this model we have ignored the effects of the weakening of the off-axis rays, the focal spot

size and the X-ray scatter in the subject.

In Figure 6.5 the ‘ideal’ image is the number of light quanta, q23, absorbed by the film

in each pixel (i,j)

f = q,, = (6.1)

where Q, is the number of X-ray quanta received at the screen per pixel, ñi is the mean screen

amplification ratio, and = ?]12, i.e. the combined absorption efficiencies of the screen-film

combination. Note that in Figure 6.5 the images f, fi, and f2 are in the exposure domain

while f and g are in the optical density domain. P is the non-linear, D — log E, characteristic

function of the film.

The noise sources in Figure 6.5 n1, n2, and n3 are zero-mean additive signal-dependent

white noise sources uncorrelated with each other. The effects of the scalar factors of Figure 6.4

are now incorporated in the magnitudes of these sources. Specifically, n2 is the uncorrelated

component of the Poisson noise of the X-ray source and is generated as in Figure 6.6.

= ./j.n’ (6.2)

where n’ is a zero-mean unit-variance Gaussian random variable. fi is a random variable with

Poisson probability distribution whose expected value is f. The noise component n1 is the

amplified noise due to the screen amplification fluctuations:

=k1..,/jn’ (6.3)
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g1

g=f[bf*(f+n1)+n2J+n3

* * + fl,

= q13 11 iii Q

Figure 6.5: A simplified model of radiographic image formation
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It is generated according to the block diagram of Figure 6.7. The gain factor is

= iJth (i +
-i-) (6.4)

where E is the excess Poisson noise. The film-grain noise is represented by n3:

n3 = k3fn’ (6.5)

and

k3=a.logioe (6.6)

where a is the average film-grain area, and / is the sampling interval, i.e. the pixel size. For

optimally exposed film 3 is taken to be 0.5.

From Figure 6.5 we can write the following image observation equations

g = P[h31 *(f + ni)+ n2] + 713 (6.7)

f [h31 * f + (h3f * ni + n2)] + n3 (6.8)

where h3f is the point spread function of the screen-film and * signifies linear convolution. Using

the constant parameters for our screen fihn combination ( 0.58, ñz = 284, = 112, and MTF

and densitometric data as published in [97]) we note that n2 is at least two orders of magnitude

smaller than either n1 or n3. The latter two quantities are of comparable magnitudes. We will

therefore ignore n2 from now on and write:

g=P[h1*(f+n1)j+n3 (6.9)

The problem of film non-linearity may be handled in any one of the following three ways: i)

the function I’ may be explicitly incorporated in the restoration filter; ii) the processing may be

done in the exposure domain where a linear relationship exists; or iii) a small-signal model may

be used to derive a linear equation. Since mammographic images are of very low contrast we

will use the small-signal analysis assumption. If a linear approximation to the above non-linear
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poisson generator n2

ii’ = Gauss(O,1)

Figure 6.6: Generation of the noise source n2
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n, = k, ‘JT n’

k, =
i.[ (1 + / ffl)

c = excess Poisson noise
ffl = mean screen amplification

ni

1”

1c

Figure 6.7: Generation of the noise source n1
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equation is made then

9 * f + n4 (6.10)

n4 = hf * n1 + n3 (6.11)

where all variables are now in the density domain and the appropriate conversion constants are

incorporated in them. n4 is now the total radiographic noise.

This relation can be combined with the linear convolution model of digitization by the

CCD camera. We therefore consider that first the ‘ideal’ image, f(i,j), is blurred by the

system impulse response, h(i, j), and a small amount of uncorrelated camera observation noise,

flc(,j) is added to it to produce the blurred image fb(i,j). Subsequently the signal-dependent

radiographic noise n4(i,j) is added to it, which results in the final observed image9(i,j):

f&(i,j) = h(i,j) * f(i,j) + n(i,) (6.12)

g(i,j) = f&(i,j) +n4(i,j) (6.13)

The system impulse response h is due to the combined effect of the camera and the screen-film

system, i.e.:

h(i,j) =h3f(i,j) * h(i,j) (6.14)

Note that the additive noise model above is not restrictive since any multiplicative noise can be

reformulated as additive signal-dependent noise. We consider n, to be a white noise field with

zero-mean Gaussian distribution.

6.3 Image Restoration

We will use the image formation model of equations (6.12) and (6.13). According to this

model the observed image was formed in two steps. The latent image f, was first blurred

(with the addition of n) to form fb, and then contaminated by signal-dependent noise n4. We

therefore divide the restoration problem into two steps. In the first step we apply smoothing
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techniques using local statistics to ‘clean-up’ the image from the signal-dependent noise n4. In

the second step we apply a classical Wiener filter to deblur the image from the combined effects

of the system’s Modulation Transfer Function and the noise n. The following two criteria

of optimality are used in the first step in deriving two smoothing filters: the minimum mean

squared error (MMSE), and the maximum a posteriori (MAP) joint probability.

The required image smoothing may be achieved using either the global image or the local

image approach. In the first approach the image is assumed to be a stationary random process.

In chapter 5 a Wiener smoothing filter is employed, assuming the system noise is a white

Gaussian process independent of the image grey levels. This is a non-adaptive global approach

in which the MMSE criterion of optimality is applied over the whole image.

In this chapter we study the more realistic of the two approaches (i.e. the one which uses

local processing). We postulate that the breast image is non-stationary due to the presence

of structure in the parenchymal pattern. This is particularly true of mammograms containing

microcalcifications or masses. Additionally, the blur process is a local operation and therefore

it is reasonable to expect that the restoration should also be performed locally.

The grey level histogram of a complete mammogram is commonly not Gaussian. If we

subtract the local mean from each pixel however, the resulting image grey levels have a nearly

normal distribution. Therefore in this work we consider the image model to be Gaussian with

non-stationary mean and non-stationary variance (NMNV).

6.3.1 Local adaptive Wiener smoothing filter

For the NMNV model [102] the image is considered to be Gaussian only locally in small neigh

borhoods. Using the MMSE criterion locally will lead to an adaptive local linear minimum

mean square error (LLMMSE) filter. The estimated pixel value fb [103] is:

fg+
U;2U4(g_g)

(6.15)

where and c.r are the local mean and variance of the observed image, and u4 is the noise

variance. The required local statistics are estimated from the observed image and a priori
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knowledge about the image is not required.

The noise power is first estimated for each pixel and this knowledge is used to calculate a

new estimate of the signal according to equation (6.15). If the noise power is negligibly small

(i.e. u >> u4) then the estimated pixel value is very close to its observed value. At the other

extreme if all of the observed power is due to noise (i.e. u u4) then the best estimate of

the signal is the local average.

The noise power is estimated from a knowledge of the noise model. The total radiographic

noise n4 is the sum of the film-grain noise n3, and the noise due to the quantum mottle. The

noise power U4 can therefore be readily estimated for each pixel.

For the quantum mottle n1, we observe that the underlying noise process is due to the

discrete nature of the X-ray photons and therefore has a Poisson probability distribution. The

grey level fb(i,j) for the pixel (i,j) is related to the number of photons incident on it. The grey

level has a code value between zero and 255 which is a linear quantization of the film density

D(i,j), and the film density is a known function of the exposure. Therefore the number of

incident photons can be calculated for each pixel. Since the mean and variance of a Poisson

distribution are equal, the exposure va’ue will directly determine the noise power a1.

Finally, since the two components of the radiographic noise are independent of each other

the combined noise power can be obtained as

u1 MTF 2 (6.16)

6.3.2 Bayesian smoothing filter

The maximum a posteviori (MAP) filter for the above case of the non-stationary mean and

non-stationary variance (NMNV) image model and Poisson noise has the form [104]:

-

1fb
= 2

(6.7)

where the average power of the blurred image u6 is obtained from the observed image
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= max[(u
— 4), 0]. (6.18)

6.3.3 The Deconvolution Filter

After the application of one of the above smoothing filters, the resultant image f, is an estimate

of the blurred image f& (equation 6.13). A modified Wiener restoration filter was selected to

obtain f, an estimate of the ideal image:

P(w,.,w) = H,.(w,w).Fb(w,w71) (6.19)

II*(w w)
H,.(w,LJ)

I H(w,w,)
(6.20)

where F6(w,w), and H(w,w) are Fourier Transforms off, fb, and h respectively,

and * is the complex conjugation. H,. is the reconstruction filter in the frequency domain and

is a measure of the noise to signal power ratio.

6.4 Results

We implemented both the LLMMSE filter (equation 6.15) and the MAP filter (equation 6.17),

followed by the deconvolution filter (equation 6.20). We note that the application of these filters

may or may not be required depending on our operating conditions ( such as the sampling

interval ) and also depending on the application in mind. For example in any reading of a

mammogram where attention to fine spatial and photometric details is not required, image

deconvolution will not be necessary. An example of this is when mammograms of the left and

right breast of the same woman are being examined for the detection of bilateral asymmetry.

In such cases large pixel sizes ( e.g. 200 m per side ) may be used which leads to smaller, and

therefore more manageable images. The radiographic noise will also be sniafler in these images

obviating the need for image smoothing.

We evaluated each of the above three filters individually and also as combinations. The

two smoothing filters may be used individually in cases where radiographic noise is judged
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to be the limiting factor in interpreting the films. The deconvolution filter may be employed

alone in cases where the image blur is the principal consideration and oniy a small amount of

uncorrelated noise is present. This would be the case when a relatively large sampling interval

(i.e. pixel size ) is utilized. The cascade of adaptive smoothing and deblurring filters should

be applied in cases where both radiographic noise and image blur are present.

We have chosen visual assessment of processed images to determine image quality. Various

quantitative measures, such as MMSE have also been proposed in the literature. Calculation of

MMSE however requires knowledge of the ideal image and may be performed using simulated

degradations.

To evaluate the effectiveness of each one of the two smoothing filters we considered a portion

of a digitized mammogram containing a cluster of microcalcifications suspicious of malignancy.

Radiographic noise was then added to this image. Although this will exaggerate the total

amount of noise present in a mammogram it enables us to assess, more readily, the perfor

mance of the smoothing filters. It also represents a inamniogram obtained under less than the

ideal imaging conditions. A 5x5 square window was used to calculate local statistics. The

performance factor P for each filter is defined as the square root of the ratio of average noise

power before smoothing , to the average noise power after smoothing [104]:

= (6.21)

4 = -
(fb(i,j) — fb(i,))) (6.22)

(6.23)

Table 6.1 shows the advantages of our noise compensation procedure and gives a summary

of the performance factor for each filter. The extent of the noise was controlled by a constant

multiplier factor, ), in these experiments. The cases of A = 1, 0.5, & 0 correspond to ‘severe’,

‘moderate’, and no noise respectively.

Finally, to examine the effect of the combined operation we processed 30 images from our
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data base. Following smoothing, each smoothed image was deblurred by the Wiener filter. In

this implementation, we again considered the signal to noise ratio to be a constant independent

of the spatial frequency of the image. We used a signal to noise power ratio of 20 in the

deconvolution filter.

The images were displayed on a high resolution (1024 x 1280 pixels, colour) monitor, and

a radiologist and an image processing engineer reviewed the images. In all cases the processed

images were sharper and revealed greater amounts of image detail. Generally the noise content

of the images was also increased. This, however did not interfere with identification of microcal

cification clusters. The opinion of the reviewers was that application of these processing steps

normally assisted in better visualization of image detail.

Figure 6.8 presents a typical image at various processing stages. Here the mammogram

contains ‘real’ ( i.e. not simulated ) radiographic noise. The results of the deconvolution

both before and after smoothing of the mammograms are shown. Figure 6.8a is the observed

noisy and blurred mammogram, and Figure 6.8d is the restoration of it using the Wiener

filter but without any prior smoothing. The amplification of the noise obscures much of the

detail of this image. Figure 6.8b is the result of processing the image of Figure 6.8a with the

LLMMSE smoothing filter, and Figure 6.8e is its restoration using the Wiener filter. Clearly

the image detail has been sharpened without any significant gain in the noise. Figure 6.8c is

the result of smoothing of Figure 6.8a with the MAP filter, and Figure 6.8f is the deblurring

of Figure 6.8c with the Wiener filter. The beneficial effects of these noise smoothing and detail

sharpening filters are clearly visible. The visual appearance of these images are consistent

with the measured values of the filter performance factors. Since the MAP filter shows higher

performance factors, this filter was implemented as part of the real-tinie mammographic image

acquisition and analysis system.
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Table 6.1: Filter performance factors

Moderate Noise Severe Noise
LLMMSE 1.63 1.47

MAP 1.76 1.63

6.5 Summary

In summary radiographic images suffer from both signal-dependent noise and system blur. We

have designed and implemented locally adaptive smoothing filters to reduce the effect of the

noise. The smoothed images are then subjected to a deblurring algorithm to reduce the effects

of system blur. The resulting images improve the visibility of subtle signs of abnormality and

thus help the earlier detection of breast cancer.
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Figure 6.8: Adaptive smoothing and deconvolution of a digitized mammogram (a) observed
image, (b) smoothed by LLMMSE filter, (c) smoothed by MAP filter, (d,e,f), result of Wiener
deconvolution of images (a,b ,c), respectively.



Chapter 7

Reduction of Boundary Artifacts in Image Restoration

In this chapter we investigate the problem of restoration of large images. When a mammogram

is digitized to high resolutions, it becomes computationally very expensive to process the whole

image at once. When the image is subdivided into smaller images artifacts are introduced due

to boundary truncation effects. In this chapter we analyse these effects and suggest a simple

novel approach to overcome these effects.

The abrupt boundary truncation of an image introduces artifacts in the restored image that

may be visually objectionable. These artifacts are particularly severe when the restoration

filter contains significant high frequency components which is usually the case. The traditional

solution is to smooth the image data using special window functions such as Hamming or trape

zoidal windows, before applying the restoration filter. This method improves the results but

still distorts the image, especially at the margins. Instead of the customary ‘linear’ convolution

of the image with the restoration filter we examine a different procedure. This procedure is

simple and exploits the natural property of ‘circular’ or periodic convolution of the Discrete

Fourier Transform. Instead of padding the image by zeros, it is padded by a reflected version of

it. this is followed by ‘circular’ convolution with the restoration filter. This procedure is shown

to lead to much better restoration results than the windowing techniques. The computational

effort is also improved since our method requires half the number of computations required by

the conventional linear de-convolution method.

85
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7.1 Image Restoration Artifacts

To remove certain well characterized degradations from images, image restoration techniques

are employed. These however generally introduce various artifacts of their own in the image.

Several authors have studied these artifacts. Tekaip and Sezan have identified and detailed

four types of image restoration artifacts, namely the filtered noise, the filter deviation, the

Point Spread Function error and the boundary truncation artifacts [105]. In particular the

artifacts associated with the image boundary truncation can dominate the restored image under

certain conditions. Woods was the first to discuss the boundary truncation artifact [106].

White and Brzakovic have considered the problem of image extension to minimize errors in

convolution of images with spatial masks [1071. Tan, Lim and Tan have discussed the boundary

artifacts in image restoration, but they have not considered extending the image to reduce these

artifacts [108, 1091. We analyze the boundary artifact problem in section 7.2, and proceed to

suggest a solution to it in section 7.3. In section 7.2.1 we discuss the problems arising when

linear deconvolution is used, and in section 7.2.2 We will discuss the related problem of aliasing

due to periodic convolutions. Section 7.4 considers the computational load of the new approach

and we report the experimental results in section 7.5.

The image degradation model is usually assumed to be that of a linear convolution and

additive noise. In this chapter we do not consider the noise and concentrate on the deblurring.

Even though the omission of the noise may not hold in actual situations, this analysis serves

as an appropriate starting point due to its mathematical tractability. This image restoration

model is schematically depicted in Figure 7.1.

Consider an image of a scene obtained by a photographic camera. The observed image

g1(x, y) is cut from the background due to the finite aperture of the image acquisition device.

Since the reconstruction filter is usually a convolutional filter, and not a point-wise operation,

the restored image f(x,y) will contain artifacts due to the abrupt truncated boundaries in

g1(x, y).

This problem is of special relevance in the restoration of large images, where a large image is
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f(x,y) g(x,y).. .g(x,y) f(x,y)

Figure 7.1: The image degradation and restoration model in the absence of noise.
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subdivided into subimages and each subimage is restored separately. It is well known that the

distribution of intensities in a large image is generally not Gaussian. Typical images of common

scenes have non-stationary mean and variance. It has been suggested that the removal of the

local mean from the image will render the image Gaussian [112]. It is for this reason that

the observed image is divided into smaller size subimages and then each of these subimages

is restored separately. Additionally the computational load of restoration is reduced by image

subdivision. The boundaries of each subimage introduced by dividing the large image lead to

undesirable artifacts.

The traditional solution to the image truncation problem has been to employ special win

dowing functions, such as Hamming or Hanning, to smooth the effect of truncation. This is

followed by zero padding the observed image to the length of the restoration filter, and DFT

operations are then used for deconvolution. The zero padding is necessary to achieve linear

deconvolution (convolution) since such DFT processes are by nature circular or periodic ones.

Here we examine the effects of some simple measures to minimize the effects of these bound

ary truncation artifacts. We show that for this problem, the natural circular deconvolution

(convolution) process of a DFT can be used to advantage in lessening the image truncation

effects. We find that when the image is globally stationary, then padding with the image itself

(instead of zeros) leads to better expected results. We then relax the condition of global sta

tionarity to that of local stationarity and propose a simple padding method by which the results

are further improved. Whenever convenient, and without loss of generality, we will illustrate

our approach using one-dimensional images.

7.2 Problem description

Consider a long one-dimensional signal f(x) whose length >> M, and its blurred version g(x).

Let g1(x) be the observed truncated section of g(x). gi(n), the discretized version ofg1(x), is

limited to a width of M pixels. Assume the impulse response of the reconstruction filter hr(n)

has L,. non-zero terms. After processing gi(n) by h(n) the resulting image f(m) is of length
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L + M — 1. The first and last L,. — 1 terms of f(n) are affected by the boundary truncation

artifact and only the middle M
—

L,. + 1 terms are true estimates of f(n). If L,. << M and if

h is a smoothing function i.e. a low pass filter, then the boundary artifact has the effect of

smoothing a band of L,. — 1 pixels wide around the image. This effect is usually of little visual

objection.

It is common however for the degrading function to be a blurring one i.e. to be a low

pass function and therefore hr() tends to be a high pass filter i.e. the transfer function

corresponding to hr() will contain high frequency components. Moreover, the reconstruction

filter is commonly designed and applied in the frequency domain such as in inverse filtering,

Wiener filtering and other associated techniques. Under these circumstances and particularly

due to sharp transitions in the transfer function of the reconstruction filter, the length of the

impulse response hr(n), L, is likely to be large. The effects of a high pass filter on an image

with sharp boundaries are the introduction of highly objectionable artifacts. If L,. M + 1

these artifacts spread over the whole image. Fig. 7.3 gives an example of this effect.

In Fig. 7.3 the degraded image is obtained by imaging a step edge with a CCII camera

using a square aperture. The camera sensor has 1317 x 1035 pixels with 100% fill factor such

that there are no gaps between adjacent pixels. Each pixel is 6.8 zm x 6.8 im giving a Nyquist

bandwidth of 73 cycles/mm. The aperture function sets the theoretical limit of the Modulation

Transfer Function (MTF). A further reduction to the camera bandwidth is contributed by the

lens. We have determined the MTF of the digitizing camera experimentally and this is shown

in Fig. 7.2. This MTF has positive non-zero values at all frequencies below the Nyquist limit

(64 pixels in our case).

The reconstruction filter is a modified smooth Wiener filter which was designed from the

knowledge of the camera Modulation Transfer Function. We used the following filter

Hr
I H-f-c

(7.1)

where c = 0.01 gave the visually best restored image (Fig. 7.3b). The ringing artifacts produced

by frequency domain filtering are clearly visible in the restored image of Fig. 7.3b.
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Figure 7.2: Modulation Transfer Function of the digitizing camera.



Chapter 7. Reduction of Boundary Artifacts in Image Restoration 91

Figure 7.3: Restoration of a step edge acquired by a digitizing photographic camera: a) The
observed image of the step edge; b) The restored image using linear deconvolution, notice the
boundary truncation artifact; c)The restored image of the step edge, a trapezoidal was applied
to the data prior to its deconvolution; d)The restored image of the step edge using the proposed
approach.

(a) (b) (c) (d)
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7.2.1 Analysis of errors in using the conventional linear de-convolution

In this section we investigate the sources and nature of errors arising from the abrupt truncation

of the image. To do that we will first consider the restoration of a blurred image in the absence of

picture truncation. Assume there is no boundary truncation and the object f(n) is surrounded

by a background of grey levels equal to zeros:

{0, 0, 0, fo ..., fRi, 0, 0, 0}

Assume f(n), the finite impulse response h(n) and thus the resulting g(n) are of finite lengths

R,LandMrespectively(M = R+L—1). Assume that g(n)= {0,0,0,go,...,gR_1,gR,...,gM,0,0,0}

is completely observed, then

g(n) = h(n) * f(n) 0 < n < M — 1 (7.2)

= 0 otherwise

where * represents the linear convolution operation. To obtain f(n) we shall operate on g(n)

by h(n) whose length is Lr. Since the length of g(n) is M, L is usually chosen to be M.

In the rest of this paper we assume L,. M.

)(n)= h(n)*g(n) 0< ii < M+ Lr 1 (7.3)

J(n) is of length M + L — 1 2M — 1.

If we perform our computation using a DFT then we pad h,f,g and hr by zeros (for

example, as recommended by [110]). We take the DFT of size (M + Lr — 1)-point. Without

loss of generality form now on we will take the N-point DFT, where N = 2M. We get

G(k) = H(k) F(k) (7.4)

Applying Hr(k) we get

P(k) = Hr(k) . H(k) . F(k) (7.5)
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and choosing H(k) as the inverse filter (assuming H(k) 0 Vk) we obtain

P(k) F(k) (7.6)

i.e. F(k) is recovered exactly.

In the above we studied the case when f(n) is of length Rand g(n) is of length M = R+L—i

and we took N-point DFT (N = 2M). Suppose we now increase the length of f(n) but we still

apply N-point DFTs. We have two cases:

Case 1: Length of f(n) is > R but N — L + 1: here the length of g(n) is < N and taking

N-point DFT will result in equation (7.4) as above.

Case 2: Length of f(n) is > N — L + 1. The resulting image g(n) is of length > N. Let us

truncate g(n) = {0, 0,0, go, ...,
gj.r1,gN, ...} and denote the segment of g(n) whose length is

N by gN(n) = {go, Let us denote the corresponding N pixels of f(m) by fN(n) =

{fo,...,fUN_l}. for 0< n< N—i we get

gN(n) = h(n) * fN(n) 0 n < N — 1 (7.7)

Let the N-point DFT of gN(n) and fN(n) be GN(k) and FN(k) respectively. We get

GN(k) H(k) FN(k) (7.8)

but rather

GN(Ic) = H(k) . FN(k) + EN(k) (7.9)

where BN(k) is an error sequence. Although the image formation of g(n) in (7.2) and (7.7)

are similar, their N-point DFT’s (7.4) and (7.9) are not the same because the length of g(n.) is

now greater than N. This is the first problem which we encounter when we truncate the image

g(n).

The second error arises from circular convolution as follows: The finite aperture of the image

acquisition device modulates the observed image. Since the aperture window w(n) is of size
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M(< N), then the observed truncated image g1(n) is

gi(n) = g(n) w(n) (7.10)

= gN(n).w(n)

where gi(n) is of length M(< N).

To restore the observed g1(n) we apply the restoration filter, hr(fl), of size L,. = M. To

apply hr(n), we pad each of gi(n) and hr(n) by zeros and use the N-point (N = 2M) DFT.

In what follows we let G1(k) and W(k) be the N-point DFT of the zero-padded gi(n) and

w(n) respectively. Since gN(n) is of length N(> M), the N-point DFT of (7.10) results in the

circular convolution

Gl(k)=GN(k)® W(k) (7.11)

where ® is the periodic (circular) convolution operator. Thus, from (7.9) and (7.11) we

conclude that in general

G1(k) = [H(k). FN(k) + EN(k)j ® W(k) (7.12)

The application of the inverse filter to G1(k) in (7.12) will not result in E(k) = F(k) as in

(7.6) due to EN(k) and the circular convolution with W(k). Even if EN(k) = 0 (case 1 above),

we will still have a circular convolution with W(k). Thus, it is clear from (7.12) that the exact

recovery of F(k) via linear deconvolution is usually impossible.

The classical approach to the boundary problem has been to employ different smoothing

windows, i.e. multiplying g1(n) in (7.10) by w(n)’s of different shapes so as to lessen the

effects of the abrupt boundaries and the literature has many examples of such windows [111].

Although this approach restricts the influence of the boundary effects, the results may still be

objectionable.

In Fig.7.3c we illustrate the use of a trapezoidal window. The same Wiener filter as in

Fig.7.3b is employed to restore the observed noisy step edge. The original image was multiplied

by a trapezoidal window such that a band of 16 pixels wide around the image was attenuated
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linearly while the central region of 32 x 32 pixels were unaltered. Clearly the step edge itself

becomes sharper, reversing the blurring effect of the camera; however the margins of the image

are severely distorted.

So far we have analyzed the sources of errors associated with image truncation in restoration.

The first problem is that of f(n) being too long resulting in length of g(n) greater than N.

When the N-point DFT is used this results in the model (7.9). The second problem is that

of circular convolution (7.11) with W(k). In what follows we model the problem differently so

that the effects of the second problem are avoided.

Specifically let us select the M points

{fo,fl,...,fM—1}

from the long sequence

f(7i)
—

and assume that the observedg1(n) (of size M) is due to the convolution of h(n) with {fo, ..., fM—1}

plus the modeling errors. Let us pad the M selected points of f(n) with zeros to length N to

obtain the set fi(n)

thus

f(n) — fi(n) = {...,f_2,f1,O,O,O,...,fM,fM±1,...} (7.13)

Padding g1(n) with zeros to size N, the resulting gi(n) is

g1(m) = h(n) * fi(n) + ei(n) for 0 < n < N — 1 (7.14)

Taking the N-point DFT we get

G1(k) = H(k) . F(k) + E1(k) (7.15)
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Thus unlike (7.12), by using the present model utilizing fj(n) of (7.13), we now have a simple

additive error sequence E1(k). We show in appendix 7A that

E1(k) = h(j)W (f(_n) - (_1)kf(M
- n)) W (7.16)

for 0 < k < N-i, where

WN = e_2111

In the space domain the error sequence ei(n) is

I Jh(j)[f(n-j)-fi(n-j)] for 0<n<M-i (7.17)
ei(n) = ç

(_Jh(j)f1(n_j) for M<n<N—i

Please note that in the above we assumed h(n) to be in the form {h0,h1, ..., hL_}. If however

h(n) is symmetric and is represented in the form {h_, ..., ho, . .., h. } then the equation

(7.17) becomes

(Ll)/2h(J)[f(fl_J)_ f(n-j)] for 0 <n < M- 1
e(n)

_(Ll)/2h(i)fl(i) for n<0 or n>M

Applying the restoration filter Hr(k)
=

results in

E(k) = H(k).G(k) (7.18)

= Fi(k)+Hr(k)Ei(k) (7.19)

And the error in the restoration is

Et(k) = P(k) — F1(k) (7.20)

= H(k) E1(k) (7.21)

i.e. the error in restoration is given by (7.21) and (7.16).
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7.2.2 Restoration by circular de-convolution

Consider again the degraded image g(n). Truncating g(n) to length M to obtain the observed

gi(n) and padding the latter by zeros creates severe edges within the signal g1(n) which causes

the errors in (7.12) or (7.14). Thus instead of assuming the observed gi(n) is a truncated signal

let us assume g1(n) as a period in a periodic signal and let us investigate the effects of the

periodic or circular de-convolution of this period with the reconstruction filter hr(n). Let us

denote two periods ofg1(n) as g2(n). g2(n) is thus the N-sample sequence

g2(n) = {go,...,gM—1,go,...,gM—i}

i.e.

g2(n) = g1(n) + gi(n — M) 0 <n < N — 1 (7.22)

This model implies that the object resulting in g2(n) (compare with (7.13)) is formed of the

two periods

f2(n) = {fo, fi, ..., fM—i, fo, fi, ..., fM—i} (7.23)

i.e.

f(n) — f2(n) = {..., f—a — f-i — fM-i, 0,0,0,..., f — fo, fM+i — fi, ...} (7.24)

i.e. we assume g2(n) is the result of the circular convolution off2(n) with h(n) plus errors

g2(n) = h(n.) f2(n) + e2(n) 0 n K N — 1 (7.25)

where ®is the circular convolution operator.

Since g was assumed periodic with period M, studying two periods instead of one will have

no effect on the results of computations, but it facilitates the comparison of the error sequences

which are now all of size N as in section 7.2.1. Applying the restoration filter h(n) whose

length is Lr M we get

f2(fl) = hr(fl) ® g2(m) 0 n K N — 1 (7.26)
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Since g(n) was originally formed by linear convolution of f and h, and f2 in (7.26) is

produced by circular deconvolution, thus for the considered pixels,

f2(n) f(n) 0 < n < M —‘ (7.27)

in general due to the ‘wraparound’ effect of the periodic convolution.

Let G2(k) be the N-point DFT ofg2(n), then from (7.24) we obtain

G2(k) H(k). F2(k) + E2(k) 0 <m < N — 1 (7.28)

and applying the inverse filter Hr(k) we obtain

F2(k) = Hr(k) . G(k) 0 < fl < N 1 (7.29)

F2(k) + Hr(k) . E(k) (7.30)

and thus the error in the restoration is

Ernv(k) = F2(k) — F2(k) (7.31)

= ll(k).E2(k) (7.32)

i.e. it is exactly the same as (7.21) except that here the term E1(k) is replaced by E2(k). Thus

if E2(k) < E1(k) then we expect the error in restoration for this circular deconvolution case to

be less than that of the previous linear deconvolution case. Appendix 7B shows that

E2(k) = h(j)W [f(-n) - f(M n)j [i + (_i)k] W (733)

for 0 < k < N — 1, and in the space domain we can show that e2(n) is

1Zo’h(j)[f(n-j)-f2(n-j)1 for 0<n<M-1 (7.34)
e2(n) =

( e2(n—M) for M<n<N—1

Comparing (7.33) and (7.16) we note that in this case the error E2(k) is a function of the

quantity

b2(n,k) = [f(-n) - f(M - n)j [1 + (_i)k] (7.35)
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while in the case of linear convolution the error E1(k) (7.16) is the same function as in (7.33)

but of the quantity

bi(n,k) = [f(_n) - (_1)kf(M
- n)] (7.36)

We restate (7.36) and (7.35) as

I f(—n)—f(M—n) forkeven
E1(k) is a function of

I f(—n)+f(M—n) forkodd

and

I 2[f(—n)--f(M—n)} forkeven
E2(k) is a function of

10 forkodd

For an image of constant grey level, note that E(k) = 0 only when k is even, but E2(k) = 0 Vk.

In this special case E2(k) < E1(k) Vk. Also if the image is “globally stationary”, i.e.

Exp{f(n)} = K ‘v/n (7.37)

where K, the image mean is a constant and Exp represents the expected value, then Exp{Ei(k)} =

0 only when k is even, but not when k is odd. However from (36) Exp{E2(k)} = 0 Vk. In this

case we also have E2(k) E1(k) Vk. The same results also hold when the grey levels around

the boundary of the image are all equal to the same constant.

An alternative way to see that is to note thate2(n) in (7.34) is a function of f(n)—f2(n)which

is given in (7.24) and ei(n) is a function of fi(m) or f(n) — fi(n) given in (7.13). In the latter

since Exp{f1(n)} or Exp{f(n) — fi(n)} are never equal to zero then Exp{e1(n)} is never zero.

However the Exp{f(n.) —f2(n)} may be equal to zero when the areas surrounding the picture’s

boundaries are of similar gray level values. For these cases we therefore expect the error in

restoration to be smaller for the case of circular convolution than that of the linear convolution.

In particular if the image is truly periodic with period M then E2(k) = 0 Vk i.e. the error

vanishes when circular convolution is used. This fact suggests how structural features within

the image can be exploited to reduce boundary truncation artifacts.
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In this section we have modeled the degradation process by a circular convolution process

and therefore, as is well known, it leads to wraparound errors which are included in e2(n). The

question now is how we can use these errors of the circular convolution to our advantage so

that they lessen the effects of the boundary truncation artifacts. In the next section we propose

a simple procedure which enables the use of periodic convolution and reduces the impact of

boundary truncation artifacts.

7.3 Restoration by image extension and periodic convolution

Our proposed solution to the boundary problem is to form a new image g3(x, y) as in Fig.7.4.

The new image is N x N(N — 2M) pixels. The top left quadrant ofg3(x, y) is the observed

M x M image g1(x,y) and the other three quadrants are extensions ofg1(x,y). The top

right quadrant is the mirror image of g1(x, y) about the AA aids and the bottom half is the

mirror image of the top half about the BB axis. The method of extending an image at the

boundaries albeit by reflecting only a few of the rows and columns has been earlier suggested

for performing convolutions of the image with spatial masks (such as in smoothing or edge

detection applications) [107]. The extension of the image by reflecting all its rows and columns

and its application with circular deconvolution in restoration problems are new.

If it is desired to completely remove the boundary effect in the most general case we need to

apply signal prediction techniques to extend an M x M image by M/2 pixels on each side. This

is clearly a non trivial task and our proposed method of image extension by mirror imaging

effectively achieves a first order prediction in a straight forward manner.

We have seen in section 7.2 that using circular convolution, via N x N DFT, results in

smaller expected errors than using linear convolution when the image is globally stationary.

We therefore use circular convolution here also, i.e. we shall not pad the newly formed N

x N image by zeros before applying the restoration filter hr(,y) in the transform domain.

Considering again the untruncated one-dimensional image g(n),

g(n) = g(n). w(n) 0< n M —1
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Figure 7.4: Extension of the image by mirroring in the x and y directions.
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The newly formed image in the one dimensional case is

g3(n) = {go,gi,..,g_i,gM—i,...,go} (7.38)

i.e.

g3(n) = gi(n)+gi(N—n —1) 0 <n <N—i (7.39)

We assume that the point spread function is symmetric and that the image g3(n) is formed

by a circular convolution of the symmetric h(n) with f3(n) where now f3(n) is given by

f3(n) = {fo, fi, ..., fM—i, fM—i, ..., fo} (7.40)

thus

f(n)—f3(n) {...,f2 — fi,f-i — fo,0,0,0,...,fM
— fM—i,fM+i — fM-2,...} (7.41)

In the frequency domain, using N-point DFT and circular convolution we have

G3(k) = H(k) . F3(k) + E3(k) (7.42)

We now perform the circular convolution of the extended image g3(n) with the reconstruction

filter h(n) in the DFT domain

‘3(k) = Hr(k) . G3(k) 0 < k < N 1

= F3(k)+E(k) (7.43)

where

ET”(k) = H(k) . E3(k) (7.44)

Note that (7.44) is the same as (7.21) and (7.32) except for the E3(k) term.

We have shown in the previous section that when the image is globally stationary the

expected error using circular deconvolution is less than that using linear deconvolution. For the

present case we show below that the expected error (using mirroring and circular convolution)
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is less than that using linear deconvolution if the image is locally stationary. Local stationary

is a more relaxed condition than global stationary [112].

We show in Appendices 7A and 7C that for symmetric h(n) the error term E1(k) is given

by

(L—1)/2 —1 M—1

E1(k) = > h(j)W > f(m)W
jzzl n=—j nM—j

(L—1)/2 j—i M—1+J

+ h(j)W — f(n)W + f(n)Wj (7.45)
n=M

for 0 < k < N — 1, while the error term E3(k) is given by

E3(k) = Ei(k) + WE1(—k) (7.46)

and hence

(L—1)/2 —1

E3(k) = h(j)W {f(n) - f(—n — 1)}Wj
j=1 n=—j

M-1
— {—f(n)+f(N—n—1)}Wj

nM-j

(L—1)/2 -1

+ h(j)W {—f(n)+f(—n—1)}Wj
jzzl n=O

M—1+j

+ {f(n)—f(N—n—1)}Wj (7.47)
n=M

for 0 < k < N — 1. In the space domain e3(n) is

f Jh(j)[f(n-j)-f3(n-j)] for 0<n<M-1 (7.48)
e3(n) =

(e3(N_n_1) for M<n<N—1

Comparing the expressions for E1(k) (7.45) and E3(k) (7.47) we note that they have the same

form except that in E3(k) every pixel value f(n) has been replaced by the difference of two

pixel values, where the two pixels lie in the same local neighbourhood. For example, inside the

first term in (7.45) and (7.47), f(n) in (7.45) is replaced by the difference of f(n) and f(—n— 1)

where the possible values of n lie between -1 and — and where L is the width of the blurring
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function. Thus the maximum distance between f(n) and f(—n — 1) is less than L. The same

applies for the other 3 terms in (7.45) and (7.47). Thus when the image is locally stationary in

the truncation boundaries then Exp{E3(k)} = 0 Vk and thus

Exp{Ea} < Exp{Ei} (7.49)

We therefore conclude that our proposed method of extension of the observed image by reflection

followed by circular deconvolution leads to smaller expected errors in the restored image when

the truncated image is locally stationary at each of its boundaries.

Also, as illustrated in the Fig. 7.5, if the grey levels in the neighbourhood of the boundary

f(0), up to L,. pixels are all equal to a constant K1, and those from M
—

L,. — 1 up to the

boundary f(M — 1) are also equal to another constant K2, then E3(k) = 0 Vk. In the case of

circular deconvolution (section 7.2.2) E2(k) = 0 under the added condition that K1 = K2.

In the two dimensional case, if the restoration function hr(fl, m) has L,. non-zero terms

in both directions then the wrap-around effects due to circular convolution affects a band,

(L,. — 1)-pixels wide, along the margins of the image. Referring to Fig. 7.6 we observe that if

the objects of interest fall inside region A then they will be free from distortion due to wrap

around, but the margins are not. If this margin is a smooth background region in which the

energy is concentrated at a d.c. level, then the wrap-around errors introduced by the circular

convolution operation is such that they will maintain this d.c. level exactly and the object is

exactly recovered.

We also note that if the support of the blur function is along one axis only (as for example

in motion blur) then to obtain exact recovery, the grey-levels of the margins of different lines

ofg1(x, y) need not be all equal; additionally, the grey levels may be different for the right and

left L,. — 1 pixels of the same line.

7.3.1 Computational Load

For our proposed method (section 7.3) we use the N(= 2M)-point DFT. In the two-dimensional

case we can show that the computational load compared to the circular convolution (i.e. without
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Figure 7.5: The extended signal under the conditions necessary for exact recovery.
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L? 1

A L1

Figure 7.6: Spatial support of the boundary artifacts around the margins of the image for the
case of Lr <M.
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any zero padding) will increase from O(M2log2 M) to O(4M2log2 2M). However since the

resulting extended image g3(n) is real and symmetric considerable gains can be made. Taking

N-point DFT of (7.39), after a spatial shift of one half a pixel, we get

G3(k) = 2Re{Gi(k)} (7.50)
M-1

= 2Re{ gi(m)e_32N} for 0< k < N — 1 (7.51)

M-1

= 2 gi(n) cos(’ffkn/M) (7.52)

Therefore we only need to compute the real DFT transform of an M-point signal. The trans

formation (7.52) is the real part of the Discrete Fourier Transform and FFT algorithms can be

adopted in its computation.

For conventional linear deconvolution, to calculate G1 (k) we need to calculate the real part

as well as the imaginary part ofG1(k). The same applies to the inverse DFT computations. Our

proposed technique therefore requires half the computational load of the traditional approach.

7.4 Experiments

Example: Consider a one-dimensional image M pixels long,g1(n). We extend this image to N =

2M pixels by reflecting it about a point half a pixel away from the last pixel to form g1(N — n).

We now form a periodic function 2(n), one period of which is g2(n) gi(n) +g1(N — n). Let

the first L,. — 1 values of gi(n) be all equal to a, and that its last L — 1 values be all equal to

b. The signal g2(n) is shown in Figure 7.5.

Assume that the reconstruction filter has Lr(<M-i) non-zero valuesh0,h1,...,hrL_1 and

that these values are normalized to have a sum of 1. Now perform a circular convolution of

g2(n) and hr(n) to compute f(n).

)(n)= a.hr(p)=aforO<n<Lr_1

b.hr(p)bforN_Lr+1nN_1
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Thus the aliasing error cancels the boundary truncation error and therefore the margins

remain undistorted.

In the above example we obtained the exact result because we made the aliases compensate

for the truncation errors. To understand why this is so, let us consider the case of g(n) =

C, for 0 < n < 4, i.e. a constant gray level and h = a, b, c. Using the linear deconvolution, the

recovered image is

f(n)=C{a,a+b,1,1,1,b+c,c} 0< n< M+L —1

where we have normalized the area a+b+c under h,. to be equal to 1. If we use image extension,

we get the length of g = 2M = 10 and because of circular convolution the new f(n) is composed

of the sum of the restoration results of the signal plus its aliases. Thus,

1(n) = C{a,a+ b,1,1,1,1,1,1,b+ c,c} +

C{b+ c,c,0,0,0,0,0,0,0,0}+

C{0, 0, 0, 0, 0,0,0,0,a,a+ b}

where the second and third quantities are due to the aliases to the left and right of the signal.

Thus,

)(n) C{1, 1, 1,1,1,1,1,1,1, 1}

and after deleting the second half of f(n) we obtain

)(n) = C{1, 1, 1,1, 1}

Thus we have used the aliases to our advantage.

Fig.7.3d illustrates the effect of this technique in restoring the image of the blurred step

edge. In the general case, i.e. for any image, this method of image extension preserves a first

order continuity at the image boundaries and therefore greatly reduces the undesirable effects

of boundary discontinuity artifacts. The only requirement is that within each horizontal or

vertical lines the margins should be reasonably smooth.



Chapter 7. Reduction of Boundary Artifacts in Image Restoration 109

Figure 7.7: Restoration of the blurred image of Bayan: a) original; b) a 64x64 section cut from
the original larger image; c) a 64x64 section of the original image blurred by the out-of-focus
model of the digitizing camera; d) result of restoring by linear deconvolution; e) result of
restoring by linear deconvolution alter windowing the data by a trapezoidal window; f) result
of restoring using image extension and circular deconvolution; g) the difference image of b) and
c); h) the difference image of b) and d); i) the difference image of b) and f).
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To show how the new method performs on any image even if the boundaries are not smooth,

we apply it on the 64x64 pixel image of a smiling child, Bayan. Fig.7.7a shows the 128x128

pixel image of Bayan and Fig.7.7b is a 64x64 section of his face. Fig.7.7c is the appropriate

64x64 section of the result of the linear convolution of Fig.7.7a with a 64x64 blurring mask

h(n). The blur function of Fig.7.2 was used in this experiment. Fig.7.7d is the result of

linear deconvolution of the inverse restoration filter with the blurred and zero-padded image

of Fig.7.7c. The effects of the boundary artifacts are clearly visible. Fig.7.7e was obtained by

first applying a two-dimensional trapezoidal window on Fig.7.7c in the space domain before

zero-padding and linear convolution with the same restoration filter. Fig.7.7f is the result of

the application of the restoration filter according to our proposed method. Figs.7.7g, 7.7h, and

7.7i, are the difference images of the original image in Fig.7.7b and Figs.7.7c, 7.7d, and 7.7f

respectively. A bias of 128 grey-levels has been added for display purposes.

Summary

We have discussed the problem of image truncation in image deconvolution. The commonly

practiced method of frequency domain image filtering firstly involves the application of a window

(such as hamming, trapezoidal, etc.) in the space domain to smooth the effects of truncation.

Since by its nature, DFT performs circular deconvolution (convolution), after applying the

window, the image is zero-padded to the required DFT size so that linear deconvolution is

achieved. This approach partially corrects for the boundary truncation artifacts but at the cost

of reducing the useful part of the image.

In this chapter we have exploited the natural circular deconvolution process to our ad

vantage. We first show that if the blurred image is globally stationary, then using circular

deconvolution (i.e. instead of padding with zeros we pad by the image itself) leads to reduced

errors arising from boundary truncation effects. We have then proposed a simple image exten

sion technique by which the observed image is mirrored in both spatial directions. We have
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shown that when the blur is a symmetric function, applying circular deconvolution on the njir..

rored image leads to reduced errors when each area around the boundaries of the image is only

locally stationary. Our proposed method thus leads to much improved restored images. This

technique is also of advantage in the restoration of large blurred images and requires half the

computational effort of the traditional linear deconvolutional approach.
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Appendix 7A

In this appendix we will derive an expression for the boundary truncation error associated

with the use of linear convolution. Consider a long image f and its linear convolution with an

L( M)-point unit sample response h to produce the blurred image g. We observe M points

of g, denoting the observed sequence g1

=
O<i<M-1

We take the N(= 2M)-point DFT of g1

G1(k) = gi(i)W Ok<N—1

M—1 L—1

G1(k) = h(j)f(i—j)W
=O j=U

L—1 M—1

= h(j)W [(i —

j=O

Now let n = i
—

j

L-1 M-1-j

G1(k) = h(j)W f(n)Wj
j=O n=—j

L—1 / —i M—1 M—1

Gi(k) = h(j)Wjjc ( f(n)W + f(n)Wj —

j=O n0 nM—j

L—i fM—i 3 3
= h(j)W ( f(n)W + f(—n)W — f(M — n)Wj”

jzzO \n=O n=1

G1(k) = H(k)F(k) + E1(k)

where

B1(k) = h(j)W (f(_n) - (_1)kf(M
- n)) W
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If we assume a symmetric blur function h(n) in the form {h_-1,..., ho, ...,h1-1 } then we

have

(L—1)/2 —1 M—i

Ei(k) = h(j)W f(n)Wj— f(n)W
j=1 n=—j

(L—1)/2 j—1 M—1+,

+ h(j)Wc —f(n)W+ f(n)W
3=1 n=O n=M

Appendix 7B

In this appendix we will derive an expression for the boundary truncation error associated

with the use of circular convolution. We will use two periods of g1(n) in order to obtain an

N-sample sequence. We have

g2(n) = {go,...,gM—1,go,...,gM—;}

= gi(n)+gi(n—M)

We also define the sequence

f2(n) {fo, ..., fM—i, fo, ..., fM—1}

= fi(n)+fi(n—M)

Taking N-point DFT we have

G2(k) = (1 + (_1)Ic)G1(k)

and

F2(k) (1+(—l)’)F1(k)

In terms of the image formation model we have

G1(k) = H(k)F1(k)-t-E1(k)

G2(k) = H(k)F2(k) + E2(k)
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and hence

E2(k) = (1 + (_1)ic)E1(k)

E2(k) h(j)W [f(-n) - f(M - n)j [1 + (_i)k] W
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Appendix 7C

In this appendix we will derive an expression for the boundary truncation error associated

with the use of image extension and circular convolution. The original image is assumed to be

f3(n) = {fof1,...,fM—1,fM—1,...,fo}

and the corresponding observed image after extension is

g3(n) = {go,gl,...,gM—1,gM—1,...,go}

We will assume a symmetric blur function h(n) in the form {h_L, ...h0, ...,hL_I} then we

have

(L—1)/2

g3(i) = h(j)f3(i—j) OiN—1
j=—(L—1)/2

We take the N(= 2M)-point DFT of g3

G3(k) g3(i)W 0 <k < N — 1

We also have

g3(n) = gi(n)+gi(N--n—1)

giving

G3(k) = Gi(k) + W/’G1(—k)

G3(k) H(k) . F3(k) + E3(k)

G1(k) = H(k).F1(k)-j-E1(k)

We conclude that

E3(k) = E(k) -j- WE1(—k)
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The expression for E1(k) for the case of a symmetric h(n) is given in appendix 7A above.

Substituting for Ei(k) we have

(L—1)/2 —1

E3(k) = h(j)W f(n)Wj — f(n)Wf
j1 n=M—j

(L—1)/2 —1 M-—i

+ >Z h(j)W1ç f(n)W1 —

f(n)Wk Wi/c
j=rl n=M—j

(L—1)/2 j—1 JkI—1-)-j

+ h(j)W7 —f(n)W+ f(n)W
n=O n=M

(L—1)/2 j—1 M—1+j

+ h(j)Wjc — f(n)W/ + f(n)W/ W
j=1 nO

Substituting the dummy variable n’ for n + 1 in the second and fourth square bracket we get

(L—1)/2 —1

E3(k) h(j)W f(n)W —

jzl n=—j
(L—1)/2 0 M

+ h(j)W/ f(n’ — 1)W’Ic — f(n’ — 1)W7”
jz1 n’=—j+l nzzM-j-F1

(L—1)/2 j—1 M—1--j

+ h(j)W — f(n)Wj + f(n)Wj
j=1

(L—1)/2 j M+j

+ h(j)W — f(m’ — 1)W” + f(n’ — 1)W’Ic
j1 nM+1

With new dummy substitutions n = N — n’ or n —n’ as appropriate in the same terms we

obtain

(L—1)/2 —1 M—i

E3(k) h(j)W f(n)Wj — f(n)Wj
n=—j

(L—1)/2 —1 M—1+j

+ h(j)Wk f(—n—1)Wj— f(N—n—1)W
jzrl nM

(L—1)/2 j—1

+ h(j)W? —>f(n)Wf+ f(n)W
3=1 n=O

(L—1)/2 —1

+ h(j)W] — f(—n—1)Wj+ f(N—n_1)Wj
j=1 n=—j n=M—j
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We can now combine the terms in the first and fourth square brackets together, and similarly

the terms in the second and third square brackets to obtain the final expression

(L—1)/2

E3(k) = h(j)W {f(n)—f(—n--1)}Wj
j=1 n=—j

M-1
— > {—f(n)+f(N—n—1)}W

n=M—j

(L—1)/2

+ h(j)W1k {—f(n)+f(—n—1)}Wi
n=O

M-1+j

+ {f(n)_f(N_n_1)}W]



Chapter 8

Segmentation

This chapter describes several approaches to the segmentation of microcalcifications from the

background parenchyma. Segmentation is a prerequisite step in the analysis of mammographic

images.

8.1 Image Analysis

Image analysis is concerned with the extraction of semantic descriptions from images. It differs

from image processing in that its output is not another image. Image analysis techniques can be

employed in detection and localization of abnormalities and in extracting quantitative features.

Pattern recognition methods are then used for recognition and classification of abnormalities,

as described in chapter 9.

Common approaches in image analysis include matching, segmentation, shape analysis and

description [113].

Matching normally involves template matching using cross correlation techniques or matched

ifitering. These techniques may be applied in a transform domain to render the match invari

ant to size, rotation or translation [94]. Template matching is a common technique in machine

vision for segmentation for example of manufactured parts. Due to great variability in shapes

and sizes of microcalcifications however, this approach is not likely to be useful for the detection

of abnormalities.

Segmentation methods involve thresholding, edge detection and texture based segmenta

tion [1141.

Thresholding may be applied to gray level or some other property such as first or second

118
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oider histogram [1151.

The edge detection methods are well developed and are in large based on derivative operators

or best fit models. The more successful algorithms model the computational aspects of the

human visual system and lead to operators that extract edges at various scales or resolutions.

Many such operators can be approximated by the difference of Gaussians [1161.

Texture segmentation uses variations of split and merge algorithms. Also the concept of

fractal dimension [117] is used to segment textured images. These algorithms may be applied

to segment masses from a mammogram. They are not however of much use in the case of

microcalcifications that are only a few pixels in size.

Shape analysis employs a description of the object boundaries and may involve morpho

logical processing such as thinning etc. [118]. These processes are followed by extraction of

numerical features which are then employed to classify the observed abnormalities.

8.2 Detection and Segmentation of Microcalcification Clusters

The first step in automated mammographic image analysis is the detection of calcifications,

if present. The criteria commonly used by radiologists for recognition of calcifications must

first be quantified. This was done based on a large number of cases in collaboration with an

experienced radiologist. Features for recognition of calcifications include intensity level, local

contrast measured by offset or ratio of the pixel to the average within a window, shape and size

tests, gradient tests, etc.

In this chapter we describe three methods for the detection and segmentation of microcal

cification clusters. Mammograms will typically include identification marks. To exclude these

from the analysis, a simple routine was applied to separate breast from non-breast areas.

8.3 Local Histogram Thresholding Algorithm

Thresholding of image grey level histogram is commonly used for object segmentation. We

implemented a modified version of a locally adaptive method described in [36]. Each image is
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first subdivided into 100 square regions. In each region the grey level histogram is computed

and the pixels belonging to the non breast areas are automatically excluded. The grey scale

histogram is repeatedly smoothed using a simple three tap Finite Impulse Response (FIR)

averaging filter until it has less than three modes. If the resulting smoothed histogram is

bimodal and a significant valley is still found then a threshold value is chosen. The thresholds

for regions whose histograms are unimodal or do not exhibit a clear valley are interpolated from

neighbouring regions. In this way local thresholds are found, that vary from region to region

but are constant within each region.

The local threshold values that are found may be used in a preliminary segmentation of the

image. The input image is a 32mm x 32mm section of a mammogram containing microcalci

fications, shown in Figure 8.la and the processed output is given in Figure 8.lb. Clearly the

choice of sub-region size and boundary affects the results and a large portion of the background

breast structure is misclassified as calcifications. To correct for the effect of boundaries, a grid,

as suggested by Davies et al. 1351, was placed in five overlapping positions as shown in Figure

8.2. The subregion of concern is the shaded area. In this way there are five independently

determined local threshold values for each sub region. Figure 8.lc shows the result of accepting

as calcification any pixel that has a gray level higher than any of its associated thresholds.

Figures 8.ld, 8.le and 8.lf are the results of progressively raising the requirements of pixel gray

level to be higher than 2, 3 or all five of threshold values obtained from the five grids. The

amount of debris is clearly decreasing but few pixels which, when assessed visually, may be

potential candidates are also eliminated.

The resulting segmented objects are subjected to further tests involving size of the area

and gradient values. The size test was imposed using the heuristic knowledge that significant

microcalcifications are rarely greater than 1.6mm x 1.6mm in area. The introduction of this

constraint removes most of the remaining artifacts as shown in Figure 8.3e. Figures 8.3a-d are

reproduced from Figure 8.1 for ease of comparison.

To further reduce the false positive rate, the following gradient test is applied. The Roberts
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(a) (b) (c)

(d) (e) (f)

Figure 8.1: Segmentation using the Local Histogram Thresholding algorithm
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Figure 8.2: The subimage grid displacement
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(a) (b) (c)

(d) (e) (f)

Figure 8.3: Effects of area and gradient tests on segmentation
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gradient operator for one edge of the pixel F(i,j) is given as:

R=R+R

R= IF(i,j)—F(i—l,j— 1)1

= F(i
—

1,j) — F(i,j
— 1)1

For computational simplicity we use a modified operator R = IRI + IRI. The average edge

strengths of each pixel in the perimeter of each object is measured and weak edges are removed.

Figure 8.3f shows that the application of this edge constraint removes several scattered de

bris. It cannot be known whether the remaining border line cases are truly microcalcifications or

not without a correlated pathologic study. Figure 8.4 shows the results of processing two other

mammograms. It can be seen that the algorithm produces satisfactory results when calcifica

tions are of good contrast. However when calcifications appear superimposed on other densities,

the algorithm segments the entire mass with its associated calcifications. The algorithm fails

to correctly detect or segment low contrast microcalcifications.

8.3.1 Object Labeling

The above algorithm is computationally expensive due to the repeated shifting of the subregion

forming grid. To reduce the computational effort, an alternative method which uses a two

pass approach is taken. In the first pass the grid is fixed and the local histogram is used to

determine a threshold for each pixel as described above. Potential microcalcification pixels are

marked. Each object is then labeled using 6-connected neighbours then object boundaries are

marked but they are not segmented from the background. These object boundaries will involve

discontinuities at the edges of each subregion since the thresholds change at these locations.

This is corrected for in the second pass as follows. The mean grey level of each object is

computed and a unique threshold is allocated to each object. This threshold value lies halfway
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(a) (b) (c)

(d) (e) (f)

Figure 8.4: Examples of segmentation using the Locai Histogram Thresholding algorithm
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between the object mean grey level and the background and is used for extracting the object.

This method produces results that are comparable with the previous method, but with lower

computational effort.

8.4 Edge Detection and Region Growing Algorithm

The above algorithm fails to correctly detect microcalcifications of low contrast. Thus another

algorithm which identifies the pixels that may potentially belong to microcaicifications, using

edge detection technique, instead of obtaining thresholds from the local histograms, is employed.

Eight different edge detecting algorithms were implemented for the gradient test and their per

formance compared. These included the following four gradient-based edge detectors, namely

the Roberts, Sobel, Kirsh, and Prewit operators. These operators are simple to implement,

and they have short execution times. However they are all sensitive to noise with comparable

performances. Of these four convolutional masks, the Roberts operator gives the thinnest, i.e.

the best localized edges, while the Kirsh operator gives the thickest edges with about 4 pixels

marked for a one-pixel-wide edge.

Two approximations to the second order derivative Laplacian operator were also imple

mented. The edges are located by identifying the zero-crossings of the output from the Lapla

cian operators. These operators are quite sensitive to noise with many spurious edges detected.

To overcome this problem, we implemented the Marr-Hildreth edge detector which is the Lapla

clan of the Gaussian operator with variable width of the Gaussian smoother. We found this

edge detector to be essentially useless for this application. The reason is that microcalcifica

tions are small objects with pronounced edges. The Gaussian smoother tends to eliminate the

smaller and fainter microcalcifications and lead to many false negatives.

The last edge detector that we tested was based on morphological operations. Essentially if

an eroded version of the image is subtracted from the original scene, the resulting output may

be thresholded to give an edge map. We found this morphological edge detector to be quite

useful for larger microcalcifications, however single pixel calcifications are once again eliminated
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by the erosion operation despite their high contrast. For these reasons we selected the Roberts

operator as the edge detector of choice for the initial detection of edges. Spurious outputs from

this operator were then eliminated in the subsequent steps of the algorithm.

After the identification of boundary pixels, region growing techniques were employed to

grow the calcifications. A local threshold was calculated based on the grey levels of each edge

pixel, its neighbouring pixels, and the direction of the steepest gradient. This threshold was

used in growing additional pixels at the boundaries of each object. If the seed pixel was not

a true edge of a connected object, the object normally grows to be unrealistically large. This

criteria was used to eliminate false detections. Finally, the resulting segmented objects were

subjected to tests involving shape, size and gradient at the boundaries.

Figure 8.5 shows sections of three mammograms containing clusters of microcalcifications

and the output of the various segmentation routines. The left column is the original digitized

mammograms. The top image is a degenerating fibroadenoma with benign microcalcifications.

The two lower images are malignant formations. The central column is the output of the local

area thresholding algorithm (algorithm 1), and the right column is the output of the edge

detection and region growing algorithm (algorithm 2). It can be seen that in all the three

examples the second algorithm outperforms the first one.

8.5 Neural Networks Techniques

Various neural network architectures have been used in object detection and image segmentation

problems. The basic idea is to treat image segmentation as a pixel classification problem. If

m distinct regions exist in an image, then each pixel can have one of m different labels. The

network dynamics, in a supervised, or unsupervised fashion, should then lead the network to a

stable state such that each pixel has the desired label. In [1191 a constraint satisfaction neural

network (CSNN) is developed and applied to segmentation of CT, PET, and MRI images.

In [31] an algorithmic approach is taken towards detection of clusters of microcalcifications

in digitized mammograms. A multilayered Perceptron is then used to reduce the false positive
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Figure 8.5: Comparison of two segmentation algorithms
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rate and increase the specificity of the detection algorithm with only moderate decrease in its

sensitivity. In [32] the performance of three different neural networks are compared in reduction

of false positive detection of microcalcification clusters. The input to the network consisted of

seven features extracted from the segmented objects, and the network output would indicate if

they represent a true cluster.

In this section we examine the ability of two neural networks to operate directly on the raw

image and segment the microcalcifications by assigning one of two labels to each pixel.

8.5.1 The Modified Hopfield Network:

The first neural network considered is a modified version of a Hopfield network. This network

has self organizing properties that favor the formation of compact regions and therefore a

training set of images is not required. The derivation of this network is given in [120] in detail.

We provide here a summary description of it.

One neuron is assigned to each pixel in a digitized mammogram. Each neuron is connected

only locally to the neurons of the pixels in a pre-defined neighbourhood. This neighbourhood

may be defined arbitrarily as either the four connected adjacent pixels ( referred to as N2 ) or

the eight connected pixels ( referred to as N3 ). The choice of neighbourhood is treated as a

design parameter and will have an impact on the performance of the system.

The input U, to each neuron i, comes from two sources, namely the local neighbourhood,

and a bias input. Thus the input U is such that

(8.1)

where W, are the synaptic connections between neuron i and neuron j, V3 is the output of

neuron j, and I is the bias input to neuron i. We let the bias input be a normalized version of

the pixel grey levels in the raw input mammogram, so that

I=2—1 (8.2)
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where g is the grey level of the pixel i in the observed image, and L is the maximum number

of grey levels. We will assume symmetric weights, i.e.

W, = W, (8.3)

We constrain W, to be in the range { 0 , 1 }. The choice of values of W dictate the influence

of the neighbourhood. For example if we set Wj = 0 for all i and j, all neurons are decoupled

from each other and no segmentation takes place beyond the initial estimate. If W = 1 for

the closest 8 neighbours, and W 0 for all other neurons, then these neighbouring pixels will

have a strong effect on the classification of the central pixel under consideration while all others

will only have an indirect effect. This is similar to a morphological operation that fills holes in

the segmentation mask.

The energy function for this network also has two components as follows: If a pixel belongs to

the background (and not microcalcifications) then there is a high probability that its neighbours

also belong to the background. Therefore if a pair of adjacent pixels has similar values then

the energy contribution of this pair should be small. One of the terms in the energy function

therefore is

Also if the grey level of a pixel is very close to that of the background parenchymal pattern

(i.e. relatively darker), or to that of the object (i.e. relatively brighter than its neighbourhood),

then it is highly likely that in the stable state the corresponding neuron will be labeled as

background or object respectively. Since we have chosen the input bias to be proportional to

the image grey levels, then the product I,V. should contribute less towards the total energy

value. The second part of the energy expression therefore is

Finally, the network energy is given by

E = -I1V. (8.4)
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The Discrete Model:

In this formulation we use bi-state neurons. Each neuron i, has two possible states, correspond

ing to the two labels of its associated pixel. The neural output V, may take the values of +1,

or 4, corresponding to the ON or OFF states of the neuron. The output of each neuron is

derived from its input by a simple threshold logic

1+1 if U>O
vt=

i_i if U<O,

where S. is a local estimate of threshold.

A change in the output of the neuron i, tiV will result in a change in the energy of the

network LE such that

—

- (>z wjvj + (8.5)

In the above equation it can be seen that /V has the same sign as the expression in the

bracket and therefore < 0. Hence the network dynamics tends to obtain the minimum

energy.

The Continuous Model:

In this formulation the neural response is graded and is an approximation of the sigmoidal

function. This function is similar to the ‘S’ function used in fuzzy sets and can be written as

—1 if U—1

(U+1)2—1 if —1<U<0

1—(1—U2)2 if 0<U<1

+1 if U>1

Once again the network time evolution leads it to a minimum energy state. The dynamics

of the network are governed by simultaneous solutions to the differential equations

8EdU1
86

ÔV. dt
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By Euler approximation we have

U(t + At) = U(t) + At (WVj(t) + I — U2(t)) (8.7)

It can be shown that the energy function of such a system is monotonically decreasing and

therefore the network dynamics lead the system to a stable output representing the required

binarized mask of pixels belonging to the microcalcifications.

8.5.2 The Feed Forward Neural Network:

The second neural network is a three layer Perceptron. The input layer receives the grey level

values of each pixel and the output layer flags the presence of microcalcifications. A hidden

layer is added to ensure that a piecewise linear discrimination between the two classes may also

be accommodated. The back propagation training a’gorithm is used for the adjustment of the

synaptic connections and the training and test set of images are kept separate.

It is well known that this network architecture does not have shift-invariant properties. It

follows that the network needs to be trained on all the shifted versions of a given input pattern.

This requires a prohibitively long training time, and it is unlikely that successful training can

be accomplished for images of realistic size and complexity. To overcome this restriction we

formulated the problem differently as follows.

The detection of microcalcifications is essentially a local operation. A single microcalcifica

tion is detected by a human observer by comparison of its features with those of its immediate

vicinity. We can therefore examine a window around each pixel to decide whether it should be

labeled as a microcalcification or not. In this way the network becomes shift-invariant.

Based on the above analysis we chose a three layer perceptron with 81 neurons in the input

layer, 4 neurons in the middle layer, and one neuron in the output layer. The input consists

of grey levels in a 9 x 9 window centered on a pixel and the output is the label assigned to

this pixel. Sections from four mammograms containing numerous microcalcifications of various

sizes and shapes were chosen as the training set. training pattern vectors were generated by a

moving 9 x 9 window.



Chapter 8. Segmentation 133

Automated segmentation Manual segmentation
Object Background

Object 364 371
Background 161 101504

Table 8.1: Classification matrix for algorithm 1

8.6 Results and Discussions

Performance of each of the two neural networks and the two above algorithms were tested using

selected images from our database of 68 images. Local Histogram Thresholding algorithm is

referred to as algorithm 1, and Edge Detection and Region Growing algorithm is referred to

as algorithm 2. We have chosen to compare the results on a pixel by pixel basis instead of on

an object by object basis, since both the detection and accurate segmentation of the shape of

microcalcifications are clinically significant. Table 8.1 gives a typical classification matrix for

the first algorithm. In this particular case a 320 x 320 pixel square window from a mammogram

was segmented manually and also using the first algorithm.

A total of 525 pixels were labeled manually as belonging to microcaicifications, and the

balance of 101875 pixels as background parenchyma. The algorithm correctly labeled 364 pixels

as being microcalcifications, missing the other 161 pixels. It also falsely labeled 371 pixels as

being microcalcifications. In this image there were 11 individual calcifications, nine of which

were detected by the algorithm. The shape of the calcifications however were not segmented

accurately leading to pixel misciassifications. We use the standard definitions of

TP
Sensitivity

TP+FN
(8.8)

and

TN
Specificity

= TN+FP
(8.9)

and

TP+TN
accuracy

= TP+TN+FP+FN
(8.10)
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Automated segmentation Manual segmentation
Object Background

Object 507 26
Background 18 101849

Table 8.2: Classification matrix for algorithm 2

where TP, TN, FP, FN are the number of true positive, true negative, false positive and false

negative cases respectively.

For this typical case Specificity is 0.996, Sensitivity is 0.69, and accuracy is 0.995. The high

value of accuracy is due to the very large number of background pixels. In such cases care

should be exercised in interpretation of the results.

The classification matrix for our second algorithm and the same input image is given in

Table 8.2. 507 of the 525 microcalcification pixels were correctly labeled and 26 pixels of the

background were misclassified. We note from this table that both Sensitivity and Specificity

have increased considerably. This second algorithm has consistently performed better than the

first, indicating the superiority of an edge based technique to thresholding of local histogram.

The modified Hopfield network was also tested with the same input image. No manual

segmentation was performed as this network has self organizing properties. We found that

this network can be tuned for a given set of input images to achieve acceptable segmentation.

In particular the network dynamics are such that segmented microcalcifications are morpho

logically compact, i.e. without holes in them. Unfortunately, the choice of neural response,

the various gain factors, and the choice of neighbourhood size and shape are problem depen

dent. This limits the application and generalization of this network to other data sets. Further

investigation into the proper choice of these parameters is required.

The multilayer Perceptron was tested with the same image data base. We first verified

the shift invariant property of the network by training it on a subset of images and testing

its performance on shifted versions of the same images. A typical classification matrix for this

network is given in Table 8.3. We notice a comparable performance with the above algorithmic
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Automated segmentation Manual segmentation
Object Background
350 87
175 101788

Object
Background

Table 8.3: Classification matrix for Perceptron

approaches.

Using the proposed techniques all of the microcalcification clusters in the original set of

mammograms were correctly detected. Additionally, other minute calcifications were segmented

which were not readily visible on the original mammograms.

These results indicate that both algorithmic and neural network based approaches can

segment microcalcifications from the background parenchyrnal pattern, and that a combination

of approaches may be used for improved sensitivity and specificity. These techniques could

prove of assistance for objective classification of some malignant breast lesions.

The computational complexity of these routines depends on the contents of each image.

In our experience all calculations can be performed within a few seconds on an Apollo 4500

workstation. This time is only slightly longer than image digitization and is sufficiently rapid

to make this system usable in a clinical setting to provide a second (objective) opinion to the

radiologist’s interpretation of the mammogram.

8.7 Summary

Automatic detection and segmentation of microcalcifications may be achieved by application

of algorithmic techniques or by use of artificial neural networks. We have developed two al

gorithmic approaches using firstly a local area thresholding method and secondly a technique

based on edge detection followed by region growing to segment microcalcifications from the

background parenchyma. We also selected two neural network architectures and implemented

object detection techniques on them. Further In this chapter we reported on the performance
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and comparative merits of each one of these four systems. Of these four systems the approach

based on a modified Hopfield network has been the least successful one in that it requires

manual specification of parameters which are dependent on the contents of each image. The

perceptron performs similar to the first algorithm. The second algorithm, based on edge detec

tion and region growing, outperforms the first algorithm, which was based on local histogram

thresholding. The second algorithm was therefore chosen for use in the next chapter.

The objective of the work in this chapter and the following chapter is to develop a system

for the automatic recognition of microcalcifications which are the most common signs of abnor

mality in a mammogram. At present, no practical system is available to provide radiologists

means for the computer assisted detection and quantitative analysis of mammographic images

which will likely lead to improved diagnosis.



Chapter 9

Classification

Microcalcifications are non-specific indicators of breast carcinoma in conventional mammo

graphic examinations. Currently, radiologists inspect mammograms with a viewing box and

based on a subjective appearance of microcalcifications, determine the presence or absence of

a suspicious lesion.

The objective of the work described in this chapter is to extract various numerical features

from microcalcifications in a digitized mammographic image and to use this information to

construct a piecewise linear discriminant function for classification of images into two groups

of clearly benign or possibly malignant class. Recent advances in digital image acquisition

and analysis have made it possible to consider automated diagnosis of mammographic images.

Towards this end, a good selection of small number of features would be helpful for a successful

discrimination of mammograms [121].

We therefore evaluated over 100 numerical features extracted from individual as well as

clusters of microcalcifications in digitized mammographic images. These features quantify the

number, size, shape, roughness, and configuration of clusters of microcalcifications. The features

are then examined individually and also in various combinations to test their potential in

discriminating between benign and malignant microcalcification patterns.

Pattern Recognition Methods

Pattern recognition methodologies can be divided into two broad categories of supervised and

unsupervised classification. Supervised learning may be further divided into statistical decision

making and syntactic or structural.

137
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The image represents a point in N-dimensional feature space. In the training phase the

feature vector is considered as the input and the desired classification as the output. A dis

criminant function is then computed to best separate the feature space into various classes.

This function may be linear, quadratic, or generally non-linear. Piecewise linear discriminant

functions are the most popular in image pattern recognition since most practical feature vec

tor spaces are not linearly separable and the general non-linear discriminant functions are not

mathematically tractable. In computing the discriininant function, if the a priori knowledge

of the class statistics is unobtainable then a heuristic distribution-free approach is followed.

One such decision rule is based on the minimum distance of the observed vector from the class

centroid. Alternatively, k-nearest-neighbour classifiers may be used.

The statistical pattern recognition methods commonly use Bayes’ rule and require knowledge

of a priori probabilities of each class. These may be parametric such as Gaussian distributions

or non-parametric. Unsupervised learning techniques such as clustering [122], and fuzzy set

reasoning [1231 have also been used in pattern recognition tasks.

9.1 Data Base

We have examined over 400 mammograms from patients who have recently undergone breast

biopsies at Vancouver Clinic of British Columbia Cancer Agency (BCCA). From this group 68

typical images were selected. These images contain isolated fine and coarse calcifications as well

as clusters of microcalcifications that may be clearly benign, clearly malignant or suspicious of

malignancy. Participating radiologists from the Clinic have performed a blind diagnosis of the

images without access to other relevant clinical or pathological information. The images were

then digitized with 100gm sampling interval in both spatial directions using the two dimensional

CCD device described in chapter 3.

Each image was processed by the “edge detection and region growing” segmentation routine

described in chapter 8. Each image was associated with a binary mask representing the pixels

that belong to microcalcifications. Each image and its associated mask was checked manually
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and if necessary, the segmentation mask was corrected. This step was included to ensure that

any errors in automatic segmentation do not affect the pattern classification stage. Quantitative

features were then extracted from each image.

9.2 Features

My approach was to extract features from microcalcifications individually as well as collectively

from all the microcalcifications present in the image. Screen-film mammograms were imaged

and discretized to 1280x1024 pixels with 12 bit accuracy using the system as described in

chapter 3. Each image was then subjected to a segmentation algorithm based on edge detection

and region growing as explained in chapter 8. A binary mask created in this way would tag the

pixels that were calcified. In order to eliminate the effect of errors in automated segmentation

on the classification results, each binary mask was examined and corrected if necessary. For

each microcaicification the following groups of features were computed:

1. Photometric variables:

(a) Mean and variance of intensity of the object (microcalcification);

(b) Contrast of the object over the background parenchyma;

(c) The Optical Density (OD) of each pixel was measured as

OD(x,y) = —20log10T(x,y) (9.1)

where T is the local optical transmittance of the mammogram for each pixel at

coordinates (x, y).

(d) A histogram of OD was constructed for each object and minimum, maximum, range,

mean and variance of OD were calculated.

(e) The skewness of the OD histogram is the third moment of its distribution normalized

by its second moment; and was calculated from

(OD(x, y) — ODmean)3
ODskew

= (n
— 1)ODa,.

(9.2)
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where n is the total number of the pixels in the object, ODva,. is the variance of OD

normalized by ODean, and ODskew is a measure of asymmetry in OD distribution.

(f) The long-tailed nature of the optical density distribution was measured by its kur

tosis, being its fourth moment normalized by the square of its second moment

(OD(x, y) — ODrnean)4
ODkt = (

— flOD
(9.3)

I var

2. Size variables:

(a) Area, being n, the number of connected pixels forming the microcalcification.

(b) Perimeter, using 4-connectedness (i.e. only edge adjacent pixels are considered neigh

bours) and appropriate corrections for square tessellations

P = ni + v’irn2 + 2.0fl3 (9.4)

where n1, n2, and n3 are the number of edge pixels in the object with 1, 2, and 3

non-object neighbours respectively.

(c) Mean radius, being the distance from the object centroid to the object edge.

3. Shape variables:

(a) Compactness, calculated as the normalized ratio of area to perimeter squared;

C
=

(9.5)

where n is the total number of the pixels in the object.

(b) Moment of inertia of the mask considered as a uniform laminar object, normalized

by the mask area squared;

Inert
2rd2(x,y)

(9.6)

where d(x, y) is the distance of the pixel at (x, y) from the object centroid.
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(c) Variance of the object radii;

(d) Sphericity, defined as the ratio of the radii of two concentric circles enclosing the

object boundary;

(e) Eccentricity, defined as the ratio of the eigenvalues of the matrix of second moments

of the object; i.e. let M2 be such a matrix

M2
lyx Iyy

where I, = I =
—

— ) and I and I, are variances of x-coordinate

and y-coordinate values. If eigenvalues of M2 are denoted as A1 and A2 and A1 A2

then

Eccent = A1/A2 (9.7)

(f) Elongation, defined as the ratio of major axis to minor axis of the least squares best

fit of the object boundary to an effipse.

4. Roughness variables: coarse and fine roughness measured as energy content of se’ected

frequency bands in the spectrum of the object radii. The coordinates (x, y) of the object

boundary are first expressed in polar coordinates (r, 0). Using Fourier coefficients we can

write

r(8) = + (a cos(iO) + /Jb sin(iO)) (9.8)

then the mean radius is ; (a1,b1) determine the least squares best fit of the object

boundary to a circle; and (a2,b2) determine the least squares best fit to an effipse. The

major and minor axis of this ellipse are given by

a0 + 2a + b (9.9)

Finally the energy content within a given frequency band i1 to i2 is calculated from

(a + b) (9.10)
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We used the parameters (i1 = 3 i2 = 10) to measure coarse boundary variation and

(i1 = 11 i2 = 31) to estimate fine boundary variation.

Features of all individual microcalcifications in an image were combined to derive overall

characteristic features for each image. Thus minimum, maximum, range, mean, variance and

normalized standard deviation were calculated for each feature of individual microcalcifications.

The center of mass of all masks within an image was identified and simple statistical data

were computed for distance of each object to the cluster center. To estimate the degree of

scatteredness of calcifications, the object-to-cluster-center distance was weighted by object area

or object perimeter and similar statistical metrics were calculated. The mean and variance

of the distance between pairs of microcalcifications were used as other features to estimate

scatteredness.

Additionally, a convex polygon enclosing each microcalcification cluster was calculated and

several features relating to its size and shape were computed.

Other features measured relate to the degree of alignment of calcifications. Radiologists

often consider a cluster as being suspicious if the major axis of individual microcalcifications

are aligned in a linear or branching fashion. We used two methods of calculating alignment as

follows [59]:

1. For each object i, we measure the degree to which the major axis of all other objects in

the scene are aligned with it,

Alin = (1
— A— —

-.—)A?, . M, (9.11)

where k is the total number of microcalcifications in the image, Ar is the aspect ratio, A

is a unit vector along the major axis of each object, and M. . M2 implies a dot product.

Note that long and thin objects are weighted more than round and compact objects.

Simple statistical data from the distribution of alignment values were used to describe

the whole cluster.
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2. Alternatively, the direction of the major axis of the convex polygon enclosing the cluster

was first identified. Orientation of each microcaicification was then compared to this

vector to derive alignment features.

Many other common features from the literature [124] (e.g. normalized central moments,

Fourier coefficients, and other invariant features for shape recognition) were also implemented.

A complete list of features is given in Appendix C.

9.3 Analysis

A commercially available statistical analysis package (Bio-Medical Data Processing) was used

to evaluate the feature vectors. The Fisher statistics for each individual feature was calculated.

Individual histograms were also computed for each feature.

The features were grouped together based on what attribute of the cluster was being mea

sured. From each group of the features one or two representative ones were selected based

on their discriminating power. These features were used in calculation of a piece wise linear

discriminant function. The jackknife method was used to ensure that the training set and the

test cases were kept separate.

9.4 Results

Based on a data base of 68 images we have determined the most effective features when used

individually as listed in Table 9.1 with their relative discriminating value. Nineteen features

showed F-values higher than 4 and were considered significant in classification. It can be seen

from Table 9.1 that the most important featllre is the number of microcalcifications in a cluster.

This is confirmed by current practice of radiologists who consider the presence of more than 10

microcalcifications per square centimeter as highly suspicious for malignancy. Various features

measuring alignment, compactness and inertia were also found to be significant.

Combining a few selected features resulted in a two-class discriminant function that correctly

classified 64 of the 68 selected mammograms, i.e. with an overall accuracy of 94.1%
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Feature Fisher Value Classification Accuracy (%)
Number of Microcalcifications 73.30 89.7
Range of Alignmentl 46.94 91.2
Max. of Alignmentl 44.57 91.2
Var. of Alignmentl 27.11 88.2
Mean of Alignmentl 26.57 85.3
Minimum Inertia 21.95 79.4
Minimum Compactness 16.47 79.4
Range of Alignmentll 11.8 82.4
Max. of Alignmentll 11.52 80.9
Mean of Alignmentll 10.61 80.9
Normalized Std. Dev. of Area 7.06 69.1
Mm. Mean Radius 6.92 67.7
Mm. Perimeter 6.6 64.7
Mm. Distance to Center 5.36 55.9
Var. of Alignmentll 5.28 85.3
Normalized Std. Dev. of Perimeter 4.9 66.2
Mm. Pair Distance 4.87 48.5
Average Mean Radius 4.35 51.5
Average Pair Distance 4.16 66.2

Table 9.1: Discriminant Power of Features
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The three “best” features taken as a combination are:

X3 = Number of microcalcifications in the cluster

X75 = Area of the convex polygon enclosing the cluster

X59 = Variance of mutual alignment of microcalcifications

X3, the number of microcalcifications in the cluster, is the feature with the most discrim

inating power. The next best feature, when taken together with X3, is X75, which measures

the compactness of the cluster. The third best feature, when taken together with X3 and X75,

is X59, which measures the degree of mutual alignment of the individual microcalcifications

within a cluster. Addition of other features did not significantly improve the classification re

sults. The automatic selection of these features by the software package for the calculation of

discriminant function, confirms and quantifies the experience of radiologists in separating the

benign and malignant classes.

The resulting discriminant function for the benign and malignant groups are:

= 0.57932X3 — 0.00004X59 — 6.10094X75 — 1.92331 (9.12)

= 1.78940X3 — 0.00028X59 — 15.05314X75 — 11.96746 (9.13)

The classification matrix for the entire data set is given in Table 9.2. This table shows that

even with the use of over 100 features the two classes in the training set can not be separated

with 100% accuracy. 53 out of 55 benign cases and 11 of 13 malignant cases were automatically

recognized. Given the fact that in current practice only two out of five biopsies prove to be

malignant, the sensitivity (85%), specificity(96%), and accuracy (94.1%) figures derived from

Table 9.2 represent a major improvement over current clinical practice. Table 9.3 represents the

jackknife classification matrix for this data set. The performance accuracy of the algorithms

drops to 92.6%.
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[ “Truth”
Algorithmic L Benign Malignant

Benign 53 2
Malignant 2 11

Table 9.2: Classification performance of computer algorithms on training images.

“Truth”
Algorithmic Benign Malignant

Benign 53 3
Malignant 2 10

Table 9.3: Jackknife classification performance of computer algorithms.

9.5 Summary

We evaluated the potential of over 100 features in discriminating benign from malignant mi

crocalcification clusters. The results indicate that a few features, when taken in combination,

are capable of successfully discriminating the two classes of mammograms, with a success rate

of over 92%. The computational complexity of feature calculation routines depends on the

contents of each image, and in our experience all calculations can be performed within a few

seconds on an Apollo 4500 workstation. This time is only slightly longer than image digitiza

tion and is sufficiently rapid to make this system usable in a clinical setting to provide a second

(objective) opinion to the radiologist’s interpretation of the mammogram.



Chapter 10

Conclusions, and recommendations for future work

10.1 Objectives

The objective of this research has been to investigate the following two hypotheses:

1. Using image restoration techniques in digitized mammograms, it is possible to improve

the visibility of minute microcalcifications which are common signs of early breast cancer.

In some forms of breast cancer these microcalcifications may be present in the vicinity of

the primary tumors and are believed to be highly prognostic.

2. Using quantitative image features extracted from microcalcifications it is possible to clas

sify a cluster as benign or madignant.

10.2 Summary of the work

In order to carry out this investigation a series of hardware and software tools were developed.

Chapter 3 describes the development and characterization of a film digitization device based

on a two dimensional CCD array sensor. It is shown that this device can provide the required

spatial and photometric resolution necessary in digitizing mammograms.

We have described the derivations of system parameters and noise characteristics and have

also implemented measures to reproduce the original image in the digital form with a high

degree of fidelity.

The distinguishing features of the newly developed system are: i) a fast method of digitizing

mammograms and ii) acquisition of images with a high spatial and photometric resolution. Each

147
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frame contains over 1.3 million pixels digitized to 12 bits per pixel. The sampling interval is

6.8 ,um without optical magnification.

The fixed pattern and the random noise are minimized using background subtraction and

signal averaging techniques. The resulting image appears comparable with that obtained by a

laser-scanning microdensitometer obtained at a fraction of the time required.

Chapter 4 reports on the clinical evaluation of digitized images and concludes that the use

of the conventional magnification mammography procedure may be substantially reduced.

It is shown in chapter 5 that application of known restoration techniques to digitized mam

mograms can greatly increase the visibility of image details. Locally adaptive filters are used

in chapter 6 to improve the results of image restoration in the presence of signal dependent

radiographic noise.

The results of image restoration algorithms on the data base of 30 images show a marked

improvement in detectability of smallest particles of microcalcifications when judged by a human

observer.

In chapter 7, we have given mathematical derivations to show the benefits of using image

extension and circular deconvolution in frequency domain image restoration via the DFT.

To test the second hypothesis, we have developed image segmentation routines, including

the evaluation of neural network techniques, for the automated detection and extraction of

microcalcifications.

Automatic detection and segmentation of microcalcifications may be achieved by the ap

plication of algorithmic techniques or by the use of artificial neural networks. We selected two

neural network architectures and implemented object detection techniques on them.

The first neural network considered is a modified version of a Hopfield network. One neuron

is assigned to each pixel in a digitized mammogram. Each neuron is connected only ally to a

pre-defined neighbourhood. The network dynamics favor the formation of compact regions and

lead the system to a stable output representing the required binarized mask of pixels belonging

to the microcalcifications.
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The second neural network is the classical three layer perceptron with error back propagation

scheme for training. The input layer receives the gray level values of the normalized image and

the output layer flags the presence of microcalcifications.

Further we have developed two algorithmic approaches to segment microcalcifications. In

the first algorithm, thresholding of local image grey level histogram is used for object segmenta

tion. In the first pass, each object is labeled and object boundaries are marked but they are not

segmented from the background. In the second pass, the discontinuities due to region bound

aries are corrected for by allocating a unique threshold value for each object commensurate

with the local background.

In an alternative algorithm we employ edge detection to identify the pixels that may po

tentially belong to microcalcifications. Region growing techniques are then applied and the

resulting segmented objects are subjected to tests involving shape, size and gradient.

We have examined over 400 mammograms of patients with biopsy proven benign or malig

nant abnormalities. Participating radiologists have performed a blind diagnosis of the images

without access to other relevant clinical or pathological information. The images were then

digitized at 12 bits with 50km or 100am sampling intervals. Preliminary results indicate that

both algorithmic and neural network based approaches can segment microcaicifications from

the background parenchymal pattern, and that a combination of approaches may be used for

improved sensitivity and specificity.

Finally, in chapter 9 we have calculated over 100 photometric and morphological features

from different microcalcification patterns in 68 digitized mammographic images. These feature

vectors were used in computation of a discriminant function that separates the benign and ma

lignant classes with overall accuracies better than can be obtained subjectively by experienced

radiologists.
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10.3 Suggestions for future work

The problem of automatic detection and recognition of several abnormalities in mammograms,

with clinically acceptable sensitivity and specificity, is as yet unsolved.

New film digitization devices should be designed and built with larger sensors so that all or

most of a mammogram can be digitized with pixels of 25jm2. This is necessary so that image

detail up to 201p/mm can be captured.

New developments in CCD and associated technologies are making it possible to acquire

whole breast digital images directly from the patient without the use of radiographic film.

This development will open new avenues for characterization of the physical imaging system.

Application of image restoration techniques to this new direct-digital modality needs to be

investigated.

Enhancement of mammographic images to increase the conspicuity of abnormalities is an

other area of on-going research.

Differentiation of calcifications from dense background needs to be further investigated.

Since only about 50% of malignant diseases of breast manifest microcalcifications, the next

step in the analysis of mammograms will be the detection of masses. Soft tissue image pro

cessing algorithms will have to be developed for segmenting masses from the normal breast

background. A number of segmentation algorithms needs to be evaluated for their effectiveness

in discriminating poorly defined masses from normal breast parenchyma. Measurements based

on texture will be the major criteria here. Various features of the segmented masses will have

to be measured in order to classify them as benign or suspicious for malignancy.

The third step in the analysis of mammograms will be the detection of secondary signs of

cancer. This includes comparison of images of both breasts of the same subject. Although the

parenchymal pattern and size of the two breasts may not be identical, radiologists consider a

lack of symmetry between the two images as suspicious. Some measure of asymmetry can be

computed even though exact registration of the two images is often not possible.

Another secondary sign of cancer is the dilation of a single duct. Linear or non-linear
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edge detection algorithms may be applied to segment the prominent ductal patterns from the

background. The ductal size can then be measured and used as evidence of abnormality.

Skin thickness can be measured and any skin retraction can be located by changes in curva

ture in unexpected places. Any architectural distortions of the breast will have to be identified.

A degree of confidence measure may be assigned to any and all measurements. In this

way the combined effects of primary and secondary signs of cancer may be weighed for a final

classification of the mammogram as normal or suspicious of malignancy.
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Appendix A

Mammography

In this Appendix I will describe the process of mammographic image formation and review the

factors affecting primary diagnosis of breast cancer from mammographic images.

A.1 Mammographic Image Formation System

The components of a typical X-ray imaging system are shown in Figure A.1. The photons emit

ted by the X-ray tube enter the patient where they may be scattered, absorbed or transmitted

without interaction. The primary photons recorded by the image receptor form the image, but

the scattered photons create a background signal which reduces contrast.

The receptor is a combination of a fluorescent screen and the radiographic film. The screen

is added to increase the detective efficiency of the receptor. After chemical development, the

film is illuminated and viewed by a radiologist at a distance and magnification appropriate to

the detail in the image. The film is viewed as a transparency to provide a greater dynamic

range of intensity. The maximum optical density of a film is over 3 while that of a photographic

print is only 2 on a logarithmic scale.

In a variation of screen-film mammography, a dry non-silver photographic system is used

known as Xeroradiography. In a process similar to photocopying, the photoconductive prop

erties of amorphous selenium powder is exploited. The resulting image has better spatial

resolution and is edge enhanced. This technique has poor broad area contrast and is slower

than screen-film receptors thus producing 5 to 10 times more radiation exposure to the patient.

Interpretation of a mammogram directly depends on the quality of the mammographic

image. The intensity patterns in a mammogram are composed of the image of the breast
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Figure A.1: X-ray mammography system
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degraded by the system transfer function and embedded in noise. The breast image is made

up of the image of any abnormality superimposed on the image of the background anatomic

structures. These abnormalities must be observed, differentiated and classified as benign or

malignant.

The perception of the sharpness of the signal is influenced by two factors: contrast and extent

of blurring. Both of these factors are affected by noise. I will first consider various components

along the imaging path and characterize their overall transfer functions, then consider sources

of noise and numerically specify a typical screening mammography unit. Effects of digitization

are also considered. The numerical measurements given are for the CGR X-ray mammography

unit at the B.C. Breast Screening Centre.

A.2 Sources of Image Blur In Mammography

Image blur is caused by (a) motion; (b) geometric distortion and(c) the screen-film receptor.

A.2.1 Motion Blur

Motion blur may be due to patient movement or involuntary organ movement. The degree of

motion blur is proportional to exposure time. For a given electron beam voltage setting (in Ky),

exposure time cannot be reduced below a minimum without adversely affecting the contrast.

This minimum exposure time is a characteristic of screen-film combination and is automatically

controlled by a photocell measuring the exposure. The use of a breast compression device

reduces motion blur to negligible levels.

A.2.2 Geometric Distortion

Geometric distortion is a function of (a) effective focal spot size; (b) focal spot to object distance

and (c) object to film distance [125]. The effective focal spot size is the actual focal spot size

foreshortened by the anode angle. The anode angle cannot be smaller than about 100 due to

the so-called “heel” effect. The heel effect is the absorption of x-ray photons by the anode itself.
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This absorption is strongest for rays that are almost parallel to the anode surface. The heel

effect contributes to the non-uniformity of x-ray, weakening the exposure on the anode side of

the film (point C on Figure A.2). This non-uniformity is over and above the non-uniformity due

to the inverse square law which causes the central ray (point A on Figure A.2) to be stronger

than the peripheral rays (points B and C). For a given Ky setting the size of the focal spot is

limited by the heat dissipation capacity of the anode. Rotating anodes achieve much smaller

focal sizes [126j. The effective focal spot size for screening mammography is 0.3 mm. For

minimum distortion the subject should be imaged parallel to the film and perpendicular to

the central ray. Higher focal-spot to subject distances provide a more uniform radiation and

reduce the penumbra shadow but require increased exposure time or higher Ky settings. High

subject-film distances increase magnification but also increase the blur.

In dedicated mammographic units the anode to receptor distance is set to 65 cm and the

breast is in contact with the receptor. If the average breast thickness is taken as 4.5 cm, the

penumbra shadow will thus be less than 23 1um. The magnification ratio of an object 4.5 cm

from the film will be 1.07.

A.2.3 The Radiographic Receptor

The receptor is a screen-film combination. The screen is a layer of fluorescent material that

absorbs almost 90% of x-ray energy and fluoresces with hundreds of times more photons, usually

in the blue range. Use of intensifying screens reduces patient dose by an order of magnitude.

Double emulsion films are usually sandwiched between two screens. They reduce exposure

requirements but contribute to blur. For this reason only single emulsion films are used in

mammography. The main source of blur in x-ray mammography, other than the focal spot size,

is the screen [127].

Factors affecting receptor blur are:

• Distance of phosphor particles in the screen from the film i.e. layer thickness, and any

air gap thinner layers produce lower blur but are also less efficient in X-ray photon
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THE HEEL EFFECT
Anode
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Note:

A = 100% intensity

AB consists of a slight increase over 100% intensity and
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AC = consists of a considerable decrease in intensity as C
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Figure A.2: The heel effect
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absorption and conversion.

• Phosphor particle size — larger particles produce more exposure and more blur.

• Presence of reflector layer — increases photon absorption efficiency of the film, and the

effective distance of fluorescent particles to film.

• Presence of light absorbing pigments or dyes in the screen — reduces scatter.

• Cross over ratio of unabsorbed x-ray photons — increases blur on double emulsion films.

• Film emulsion type, density and grain size.

High quality screen-film combinations allow:

• Lower patient exposure through lower Ky setting and/or lower exposure time.

• Faster response and hence less motion blur.

• Longer tube life through lower Ky.

Factors affecting exposure time are:

• Inherent film speed.

• Absorption efficiency of the screen i.e. screen thickness, packing density, phosphor type

and size.

• Spectral match of the film and screen.

• Fluorescent efficiency of the screen i.e. ratio of absorbed x-ray to light produced.

• Presence of a reflecting layer in the screen.

• Presence of light absorbing dyes in the screen.
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The above parameters are used by the manufacturers of screen-film systems to obtain ac

ceptable images at the lowest possible exposure to the patient. We will need to consider these

factors to understand the process of image formation and subsequently develop algorithms for

image restoration of mammograms.

A.3 The System Characteristic Parameters

A.3.1 The Modulation Transfer Function

The overall degradation of images can be measured by test objects [125]. Neglecting the effects

of noise and poor contrast we can measure or calculate the system point spread function (PSF),

the line spread function (LSF), the square wave response function (SWRF), the edge response

function (ERF) or the modulation transfer function (MTF). MTF is the magnitude of optical

transfer function (OTF). The MTF of three popular screen-film combinations are given in

Figure A.3.

In the screening mammography program in B.C. the electron beam energy utilized is usually

about 27 Ky and the cathode current is set to 100 to 250 mAs range. The fluorescent screen is

a single Kodak Min-R medium screen with an Ortho-M single emulsion film. This arrangement

gives a spatial resolution of 16 cycles/mm when MTF is 4% of its peak value. The films are

processed on an X-omatic processor on extended cycle.

A.3.2 Contrast

Contrast is a function of both inherent subject contrast and characteristics of the screen-film

combination. The subject contrast, 5, is defined as the ratio of the difference in x-ray fluence

incident on the receptor between an image point and an arbitrary reference point to the mean

value of the two fluences.

Since S ranges from 0 to 2, a percent contrast is often quoted, given by 100(S/2). The

subject contrast is affected by the scatter-to-primary ratio R = S’/P, the thickness of the

target tissue and the difference in linear attenuation coefficients of the normal tissue and any
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Figure A.3: MTF curves for three Kodak screen-film combinations [131]



Appendix A. Mammography 173

abnormality that may be present in the breast. Figure A.4 gives the variation of contrast with

photon energy for two objects of importance in mammography. The upper curve is for a 100 um

calcium hydroxyapatite and the lower curve is for a 1 mm glandular tissue. The contrast is

relative to normal breast tissue.

The film characteristics with and without a screen are given in Figure A.5. This is a

plot of optical density against exposure. Optical density is defined as —log1oT where T is

the transmission ratio. A film with a steep characteristic curve has higher contrast but lower

latitude. A major contribution to contrast degradation is scatter radiation discussed later. The

dynamic range for screening mammography is over 3 optical densities. The lowest densities are

limited by base (the natural tint of the film) and fog (background exposure).

Let C(u, v) be the Fourier Transform of the x-ray fluence distribution after passing through

the subject. If we consider a point object of contrast S then the x-ray fluence is S5(x,y)

and C(u, v) = 5, a constant. If we assume the focal spot to be negligibly small and take the

Modulation Transfer Function of the film to be 1, then the MTF of the system is due to that

of the screen MTF3(u,v). The resulting image contrast is

G . log10e . MTF3(u, v). C(u, v) (A.1)

where G is the gradient of the film characteristic curve at optical density of 1 [130]. In general

the point slope of the characteristic curve q(Q) should be used instead of G, since G is a

constant and does not reflect the non-linearity of the film, where Q is the number of incident

quanta/mm2.The contrast transfer function, (CTF), is defined as

CTF(u, v, q) = MTF(u, v) . q(Q) (A.2)

Detectability of an object, of course, depends not only on the contrast but also on the size.

The minimum dose required to visualize an object increases as the inverse fourth power of the

size of the object [126].
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Figure A.4: Variation of contrast with photon energy [126]
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SCREEN-FILM
CHARACTERISTIC CURVES

A. Characteristics of two screen film combinations
Kodak Ortho.G Filna/Lanex Screens Kodak Oitho-G Film/Lanex Screens
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B. Comparison of characteristic curves of film (A) with
screen-film (B)
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Figure A.5: Screen-film characteristic curves
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A.3.3 Noise

Noise in radiography is due to artifacts and mottle. There are three sources of mottle: (1) film

graininess; (2) quantum mottle—random distribution of absorbed x-ray quanta; (3) structure

mottle—microscopic non-uniformities of screen. The signal to noise ratio (SNR) is defined as

SNR
zD

(A.3)
/W(u, v)

where W(u,v) is the Wiener noise power spectrum. In general W(u,v,Q) is a function of

exposure Q. Substituting from equation A.1 above and taking the subject contrast to be S we

get

SNR(u, v)
= G . log10 e s . MTF3(u, v)

(A.4)
\/W(u, v)

SNR(u,v) S. -./NEQ (A.5)

where NEQ, the noise equivalent quanta is a measure of performance. The effect of the

receptor on SNR is given by the detective quantum efficiency

D A6
SNRI1 ( .)

The ideal detector—the one counting the photons—will have DQE of 1 [130]. Figure A.6

gives the quantum noise, film noise and total noise for the Min-R screen Ortho-M film com

bination [130]. Clearly, at high spatial frequencies the film noise dominates. The noise power

due to screen mottle is only about 0.2% of the total noise power. The ability of the film to

record quantum mottle decreases to negligible levels beyond 10 cycles/ mm due to the effects

of system MTF. Therefore the detection of small objects is limited by the film granularity.

A.3.4 The X-ray Scatter

During passage through the subject, x-rays are scattered. The thicker or denser portions of the

breast produce more scatter [1281. Use of a compression device reduces the scatter. Figure A.7
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Figure A.6: Noise power spectrum; film noise (solid line); quantum noise (dash line); and totalnoise [130]
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gives a plot of scattered to primary radiation ratio as a function of radiation field and thickness

of breast. As the field size increases, typically above 8 cm, the ratio increases slowly because

x-rays are absorbed within the breast. The receptor usually has higher efficiencies for scattered

radiation, worsening the ratio.

A grid is often employed to reduce the incidence of scattered radiation on the screen-film.

Grids may be stationary and focused with absorption ratios of 3 to 15. The shadow of this grid

may be a disturbing artifact on the film. Moving grids are employed in screening mammography

units to reduce the effect of this shadow. The grid has 44 lines per centimeter and achieves a

grid ratio of 5:1. A scatter degradation factor may be defined as SDF = P/(P + S’) where

P is the primary radiation intensity and S’ is the scattered radiation intensity in a given

local neighborhood. For a unit with S’/P ratio of 7, typical of chest radiography, we have

SDF = 0.125. If now a 12:1 grid is employed, the measured value of SDF improves to

0.5 [1281. The primary beam is also attenuated by the grid. The primary transmission factor

Tp for this grid is 0.62 and hence the overall detective quantum efficiency due to scatter and

grid is DQE = Tp.SDF = 0.31. Use of a grid requires an increased exposure of about 2 to 8

and gives a contrast improvement of 1.5 to 3.5 [126].

A.3.5 Digitization

The analogue x-ray image is sampled and quantized to form a digital image. The digital image

is then processed and displayed. Following the work of Giger et al. [158] I assume a square

sampling grid and a finite sampling aperture. In general, the sampling interval may not be

equal to the aperture. This is the case for 2-D GCD cameras with fill factor less than unity.

When they are equal, we can refer to congruent pixels that completely cover the scene. The

analogue image is modulated by the sampling aperture to form the pre-sampling image. This

image is then operated on by a two-dimensional comb function. The resulting optical transfer

function is:
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Figure A.7: Ratio of scattered to primary radiation as a function of radiation field [128]
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OTF(u,v) {[OTFA(u v) OTFs(u, v)]* (u, v, —, —) }•
OTFF(u, v) OTFD(U, v)

where A, S, F and D refer to analogue image, sampling aperture, linear filter and the display

unit respectively and * denotes convolution. If the image preprocessing filter is non-linear the

analysis will be more complex. If the aperture for sampling and display are squares of width

Ws and WD, then

MTF(’u,v) = {[MTFA(u,v).sinc(-irwsu).sinc(lrWsvyj* fl

MTFF(u, v) . .sinc(7rWDu) sinc(irWjjv)

where

111

In our case Lx = = Ws = 0.1 mm, The display aperture on a 640 x 480 VGA monitor

is 0.375 mm x 0.4375 mm. The digital MTF shows a ‘false’ increase over the analogue MTF

due to aliasing. To minimize the effects of aliasing, the sampling and display intervals should

be decreased. The Nyquist rate for a resolution of 16 cycles/mm (4% MTF of analogue screen-

film) corresponds to pixel sizes of 31 1um.

The digitization process also affects the noise. Assuming square sampling and display pixels

of width Ws and WD respectively:

Total noise = {[WSA(u,v)sinc2(7rWsu)sinc2(IrWsv)] * itt (,,_-_)}
MT]4(u, v) . sinc2(’JrWDu) . sinc2(’IrWDv) + WSE(U, v)

where Ws is the Wiener noise power spectrum, and E refers to electronic noise. The effect

of digitization on signal to noise ratio and threshold contrast can thus be determined.
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A.4 Mammographic Image Interpretation

Reading of mammograms is a highly skilled task requiring long training periods [132]. In

screening applications, the films are classified into two groups of “normal” or “suspicious”

requiring further investigation. For diagnostic purposes the type and extent of abnormality

is also determined leading to recommendation for treatment modality. For biopsy, excision or

other surgery, the location of abnormality should also be specified.

It has been claimed that the mammographic parenchymal pattern is an indicator of the risk

of breast cancer. Wolfe [133] demonstrated a strong relationship between density patterns and

the risk of cancer. In current radiological practice, mammograms are classified into one of four

“Wolfe grades” and closer observations in shorter time intervals are recommended for the high

risk group. These grades in order of increasing risk are:

• Ni: Breasts composed primarily of fat

• P1: Prominent ducts in the subareolar region involving approximately one third of the

breast

• P2: Prominent duct pattern involving the major portion of the breast

• DY: Considerable amount of collagen or dysplasia with or without identified ducts.

Although several researchers [134, 135, 136, 137] have reported results contradictory to

Wolfe’s findings, the Wolfe classification scheme is still used.

There is a good deal of variability in classifying mammograms. The variations are not only

inter-observer but also for the same observer at different time intervals [138]. Individual radiol

ogists in general rely on their experience and do not employ quantitative measurements in their

line of reasoning for classification. Several studies have attempted to quantify these mammo

graphic features and relate them either to risk of cancer or to pathologically proven cases. In

an early attempt a computer aided package called MAMMCAD [139] has been developed as an

expert system to aid the radiologist.
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The common signs of abnormality can be divided into three categories namely, calcifications,

masses and secondary signs of cancer.

Clusters of microcalcifications are present in over 50% of malignant diseases of the breast.

Because of their radio opacity, they constitute the best clue for early detection and over half of

clinically occult breast malignancies are discovered on the basis of microcalcifications alone [140].

Microcalcifications are typically smaller than 0.5 mm each and a group of at least 3 within 1 cm2

constitute a cluster [141]. 75%-80% of clustered calcifications prove to be within benign lesions,

but biopsy is performed in most cases in order to detect those 20%-25% that are cancerous.

Malignant clustered calcifications have thin linear, curvilinear and branching shapes and round

or oval shapes indicate benign lesions. Consistent use of shape for differential diagnosis is

difficult mainly due to the small size of microcalcifications. Malignant masses are invasive of

the surrounding tissue and consequently are often spiculated and ill defined. The absence of

a well-defined edge makes detection difficult especially in dense fibroglandular tissue. It also

makes differential diagnosis of benign and malignant masses difficult. Table A.1 gives common

features of images of benign and malignant lesions.

The most difficult of early cancers to find by mammography are those that contain no

calcification and are also surrounded by isodense tissue, impairing delineation of their tumor

masses. These can only be detected by secondary signs of cancer which include a single dilated

duct, architectural distortion, asymmetry between the right and left breasts, and a developing

density as compared to a previous mammogram.

A.5 Radiographically Occult Cancers

Perception of an object in a radiographic image depends on its size, the amount of illumination,

the sharpness of object boundaries, the degree of contrast and the presence of noise. The

mammalian visual system has evolved to be responsive to very dwindling fluxes of photons.

Since a nerve pulse involves the movement of millions of atoms or ions and since the energy of

a single photon is only able to disturb a single atom or molecule, the visual system is a highly
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Benign Malignant

Relative density Slight to marked increase Always definite increase
denser than benign

Character of Homogeneous Non-homogeneous, centre
density densest
Shape Round, oval, lobulated Tentacled, ragged, spicu

lated, variable; spicules
heavier toward nipple

Borders Well-circumscribed, Poorly circumscribed,
regular and smooth; irregular, fuzzy or halo
thin layer of surrounding fat

Surrounding Not invaded; displaced Infiltrated; trabeculae
tissues trabeculae pushed aside retracted irregularly and

smoothly; no increased thickened; increased vasdu
vascularity larity

Calcifications Coarse, isolated, few and Numerous, punctate, uncount
countable, not punctate, able, variable density, con-
more apt to have polarity, fined to a measurable area,
widely scattered, similar less polarity, diffuse in
in density may be in pen- lesion, more central
phery of lesion

Relative size Same size or larger than Smaller than clinical
clinical measurement measurement, often by

a factor of 2-4

Table A.1: Radiographic characteristics of breast masses
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efficient photomultiplier. The central region of the human retina, the fovea, which at the focal

plane of the lens subtends an angle of about 1.5° is lined almost entirely with closely packed

cones. Within the fovea, the spacing of cones is sufficiently close (about 10 sum) to enable

grating resolution of about 60 cycles per degree.

If a film is viewed at a distance of 30 cm, one degree of fovea images about 5 mm of

the film. This corresponds to a limiting spatial resolution of 12 cycles per mm. This limit is

attainable only for sufficiently high levels of illumination and low levels of image noise. Very low

spatial frequencies below 0.2 cycles per degree are also difficult to perceive as can be seen from

figure A.8 [126]. The spatial contrast sensitivity of the eye is tuned to sharp edges of about

1 to 3 cycles per degree and is also a function of luminance. In general, there is an inverse

relationship between the size of the object and the minimum contrast required for visibility.

These limitations of the human visual system contribute to misclassification of mammograms.

If it is assumed that a “true” answer exists to the question whether an abnormality is present,

for example from subsequent pathological examination of excised tissue, then the radiological

decision can be classified into four categories of true positive (TP), false positive (FP), true

negative (TN) and false negative (FN).

Proven malignancy

Radiologic decision yes no

yes TP FP

no FN TN

The following three standard definitions are used in the literature:

number of correct positive assessments TP
Sensitivity = .

number of truly positive cases TP + FN

number of correct negative assessments TN
Specificity =

number of truly negative cases TN + FP
number of correct assessments TP + TN

Accuracy
= total number of cases TP + TN + FN + FP

The sensitivity measures the ability of a radiologist to catch the cancers (positives) and

specificity measures his/her ability to reject the negative cases.



Appendix A. Mammography 185

CONTRAST SENSITIVITY
OF THE EYE

1000 1 i

s0o
SOOcd m2

-
.—

• —
C,,

Q cf_I
JU

C’,

C
0

1OO.0Scdm
rJ)

1 I_I 1_i

01 OS I S 10 50100

Spatial frequency (cycles/degree)

Figure A.8: Contrast sensitivity of the eye [126]
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The Canadian National Breast Screening Study reported an overall sensitivity across 15

screening centers of 75% [142], or 25% false negative mammography. With symptomatic women,

false negative rates of as high as 44% among women aged less than 51 years had been re

ported [143].

False negative mammography, by providing false reassurance, may cause further delay in

diagnoses and treatment. Burns et at. [144] found that 42% of 50 patients with delayed diagnosis

due to negative mammograms had metastatic tumor involvement in their axillary lymph nodes

at diagnosis. Mann et at. [1451 also observed that 58% of their patients with false negative

mammograms have positive axillary nodes at delayed diagnosis. Walker et at. [146] attributed

more advanced stage at presentation in women with initially negative mammograms to the

delay in their definitive treatment from the first falsely negative mammographic report.

Approximately 5% of the false negative mammograms are attributable to poor mammo

graphic technique, and an additional 30% are thought to result from observer oversight due

to rushed interpretation, heavy caseload, and eye fatigue [147]. Both of these factors are po

tentially correctable. However, an unavoidable cause of false negative mammograms is the

radiographic density of the breast [148, 149, 150]. A significant correlation between decreas

ing diagnostic certainty and increasing complexity of the mammographic breast parenchyma

pattern has been shown in two independent studies [151, 152].

Tumor-related phenomena, such as tumor growth pattern and lack of tumor calcifications,

may also hamper the visualization of a clinically evident lesion on the mammogram. Roland et

at. [153] observed that 5 of the 15 mammographically occult cases were invasive lobular carci

nomas, and four of these were situated in dense to very dense breasts. Intraductal carcinomas

are also easy to miss especially when they are noncalcified and have only subtle radiological

signs [154]. In a Nijmegen breast screening program, twenty-four radiologically occult cancers

were located in dense breast parenchyma and approximately half of these were either lobular

invasive or ductal non-invasive cancers [155].

Studies on the subject of false negative mammography have generally not contrasted false
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negative mammograms with those that were truly positive. In addition mammograms have

generally been read for the purposes of review with knowledge that they contained breast

cancer.

There are biological explanations for the non-visualization of certain breast cancers. Biolog

ical characteristics such as extensive radiological density (the predominant component of sheet

like, nodular or linear densities), histologic types such as infiltrative lobular or noninfiltrative

cancers, as well as gross tumor size less than 2 cm., have been found to associate significantly

and independently with false negative mammograms.

False positive diagnosis is also undesirable, although it is less damaging. In one study [156]

of 69 surgically occult but mammographically apparent cases, 75% of breast biopsies performed

proved to be benign. The problem in this case is not detection but recognition (of features)

and classification. A high rate of false positive is obviously wasteful of resources, in addition to

its undesirable effects on patients.
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Questionnaire For Clinical Evaluation of Images

Observer
Number

_______________

Case Number

_______________

Parameters (Mark with “X”)

1. Number of Microcalcifications

(a) < 10/Cm2

(b) 10 or > 10/Cm2

2. Shape of Microcalcifications

(a) semi-lunar (tea-cup)

(b) linear

_______________

(c) round

(d) Oval / rod shaped

(e) curvilinear

(f) branching

3. Density of Microcalcifications

(a) uniformly dense

(b) eggshell

(c) poorly defined (smudgy)

188
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4. Margination of Microcalcifications

(a) smooth borders

(b) less sharp to irregular

5. Spatial Arrangement

(a) scattered (may have polarity)

(b) clustered or confined to one area

6. Relation to Mass

(a) no associated mass

(b) concentrated in core of mass

(c) concentrated in periphery of mass

(d) scattered evenly throughout mass

7. Overall Clinical Assessment of Microcalcifications

(a) benign_

(b) malignant
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Features

C. 1 Features from Individual Microcalcifications:

• Geometrical: Microcalcification identification (id); coordinates of the enclosing box (xl,

yl, x2, y2); coordinates of the center of mass (xm, ym); intensity of the background.

• Photometric: Gray level intensity of microcalcifications (mean-intensity, var-intensity);

contrast (depth).

• Statistics from the Optical Density histogram: mean (odmean); minimum (odmin); max

imum (odmax); range (odrange); variance (odvar); skewness (odskew); kurtosis (odkurt).

• Morphological: area; perimeter; mean-radius; var-radius; compactness; inertia; elonga

tion; coarse and fine measures of boundary roughness (bdycrc, bdycrc2); distance-to-

cluster-center; aspect ratio; angle-of-major-axis; alignmentl; alignmentll; alignment-with-

cluster-axis;

C.2 Features from Microcalcification Clusters:

Photometric Features

mm-contrast, max-contrast, range-contrast, mean-contrast, var-contrast

Morphological Features:

• total area of microcalcifications (total-area); area of the smallest microcalcification (mm

area); area of the largest microcalcification (max-area); range, average, variance and

190
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normalized standard deviation of area (range-area, mean-area, var-area, nrstdv-area);

• Simple statistics from the perimeter (mm- perimeter, max-perimeter, range-perimeter,

mean-perimeter, var-perimeter, nrstdv-perimeter) and the average radii (mm-mean-radius,

max-mean-radius, range-mean-radius, mean-mean-radius, varmean-radius) of each calci

ficat ion.

• Descriptions of variance of radii of each microcalcification (mm-var-radius, max-var-

radius, range-var-radius, mean-var-radius, var-var-radius).

• Statistics of compactness (mm-compact, max-compact, range-compact, mean-compact,

var-compact); and inertia (mm-inertia, max-inertia, range-inertia, mean-inertia, var-inertia).

• Coordinates of the cluster center (cluster-center-x, cluster-center-y).

• Distance of each microcalcification from the cluster center: mm-distance-to-center, max-

distance-to-center, range-distance-to-center, mean-distance-to-center, var-distance-to-center

• Distance of each microcalcification from the cluster center weighted by the area of the mi

crocalcification: mm- area-x- distance, max-area-x-dist ance, range-area-x-distance, mean

area-x-distance, var-area-x-distance.

• Distance of each micro calcification from the cluster center weighted by the circumference

of the microcalcification: min-perimeter-x- distance, max-perimeter-x-dist ance, range-perimeter

x- distance, mean-perimeter-x-dist ance, var-perimeter-x- distance

• Distance between each pair of microcalcifications: mm-pair-distance, max-pair-distance,

range-pair-distance, mean-pair- distan Ce, var-pair-distance.

• Descriptions of the convex polygon enclosing the cluster: polygon-area, polygon-perimeter,

polygon-compactness, polygon-aspect-ratio, mm-polygon-radii, max- polygon - radii, range-

polygon-radii, mean-polygon-radii, var-polygon-radii
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• Ratio of the area of the convex polygon filled by microcalcifications: polygon-caic-area

ratio.

• Alignment measures: alignment-field-intensity, magnetic-potential mm- alignmentl, max

alignmentl, range- alignmentl, mean- alignmentl, var- alignmentl mm- alignmentll, max

alignmentll, range- alignmentll, mean-alignmentll, var-alignmentll, mean-alignment-with-

cluster-axis.

• Moments: moment2O, momentO2, momentli, moment3O, momentO3, moment2l, mo

mentl2.

• Normalized shape invariant moments: invariant- shape 1, invariant-shape2, invariant-shape3,

invariant-shape4, invariant-shape5, invariant-shape6.




