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Abstract 

In recent years, more environmental restrictions have been imposed on pollutant discharge 

and fresh water consumption from paper mills. This gives increasing motivation to industry 

for closing paper machine white water system. With inter-related recycle loops, the white 

water system exhibits complicated dynamics. Identification and control of such a system in the 

presence of dynamics uncertainty is the primary goal of this research. Motivated by its simplicity 

and strong features in modelling unstructured processes, the Laguerre series representation is 

chosen for system modelling and on-line identification. A controller for the white water recycle 

system must be able to handle unmeasurable disturbances, process time delays, interactions 

inside and outside the plant etc. It has been proved that generalized predictive control (GPC) 

is a robust algorithm for adaptive applications. This research presents the first application 

of the Laguerre model based adaptive GPC for the control of the recycle system. Simulation 

results show that this control scheme provides excellent servo performance and load disturbance 

rejection. 
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Chapter 1 

Introduction 

This thesis is focused on paper machine white water recirculation dynamics. The subject is the 

on-line estimation and adaptive control of the white water recycle system based on Laguerre 

models. This chapter provides the background on paper machine white water systems and a 

description of the challenging problems of processes with recycle loops. It is concluded with an 

overview of the thesis. 

1.1 Background 

1.1.1 White Water System 

In the wet end of a paper machine, water from the wet web is drained through the wire during 

web formation. This water contains various proportions of fibres, fillers, fines and some other 

chemicals. These substances can be re-used by recirculating the water-called white water-

to previous stages of the process, so that water usage and product loss can be minimized. 

Therefore, the basic objectives in closing the paper mill white water system are to maximize 

white water reuse and minimize the discharge of pollutants in paper mill effluents. In other 

words, recycling white water can decrease fibre losses and fresh water demand in the system. 

In the white water system (See Figure 1.1), the thick stock is diluted with the white water. 

Then the diluted stock (thin stock), at the consistency required at the headbox, is cleaned, 

deaerated and screened before it reaches the headbox. The stock is jetted out from the open 

slice of the headbox and distributed across the wire. To achieve a homogeneous distribution, 

there is an overflow channel, through which the overflow is recirculated to the bottom of the 

wire pit and goes to the fan pump. In the wire section, the sheet is formed between two wires. 

1 
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Cleaners Pan pump 

Figure 1.1: White water system [14] 

Most of the water drains through the bottom wire, while a large percentage of fibre stays on 

and is carried by the wire to the press section. The white water, drained from the wire section, 

is collected in the wire pit. Again in the bottom of the wire pit, the white water is mixed with 

the thick stock to give the stock a suitable consistency. The white water is also used in the 

cleaners to dilute the rejects flow to a consistency suitable for subsequent cleaner inlets. The 

level in the wire pit is kept constant with an overflow channel. 

The total amount of solids (fines, fillers, fibres and others) in the white water depends on 

the quality of paper produced and the equipment used. In this system, the wet web consistency 

can be controlled by the thick stock flowrate to regulate paper properties, but the white water 

recycle also affects paper machine performance, product quality and uniformity. The stability 

of operation in the paper machine depends on the paper machine performance efficiencies and 

the method of white water closure. 
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1.1.2 Literature Review of Recycle Systems 

Systems that contain recycle streams are quite common in industry. Typically recycle dynamics 

are found in a process where an unreacted reactant or unused substance is separated from the 

product and fed back to the previous stage of the process for re-use. The dynamics and control 

of individual process units are well understood at present, but if recycle streams exist in the 

plant, the process can exhibit complicated dynamics. The procedure for control design becomes 

poorly understood. Only limited research has taken place in this area and only a few papers 

regarding recycle dynamics have been published in the past three decades. 

One of the earliest papers by Gilliland et al.(1964) [1] considered a simplified reactor /distil­

lation column process to study the characteristics of recycle systems. They were one of the first 

to point out that the recycle increases the overall time constant of a process, thus making con­

trol system performance more sluggish. Verykios and Luyben (1978) [2] explored some steady 

state and dynamic properties of a simple reactor /column system with recycle. The recycle 

flowrate varied considerably at a steady state for changes in feed conditions, and affected the 

dynamic characteristics of the plant. The higher recycle flowrate generally results in a more 

underdamped system. 

Luyben and Buckley (1977) [3] discussed the liquid level control of a liquid recycle system 

in a plantwide environment. There are two conflicting objectives for the controller design. 

The major purpose of the level control is to keep the level at its desired operating condition. 

On the other hand, the outflow changes should be as smooth as possible in order to avoid 

disturbing downstream units. They proposed a combined proportional-only feedback control 

and feedforward control to achieve smooth flowrate changes without offset in liquid level. 

Denn(1982) [4] showed some inherent properties of recycle systems. It was shown that a 

system with recycle has a larger time constant and a higher steady state gain than a process 

without recycle. This conclusion was later supported by the work of Kapoor and Marlin(1986) 

[5]. Denn also mentioned that the recycle makes a plant more sensitive to low frequency 

disturbances. This is a direct result of the time constant increase. 
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Luyben(1988) [6] developed a concept that he named "eigenstructure", which refers to the 

best control structure for rejecting load disturbances. He also found that every process has an 

intrinsically self-regulating control structure. So the first step for controller design is to find 

this structure for the particular control purpose. 

In a series of papers about the dynamics and control of recycle systems, Luyben(1993)[7, 8, 9] 

more recently derived some important results for recycle systems based on a reactor/distillation 

column configuration with recycle. It was demonstrated that the behavior of a recycle system 

depends strongly on the recycle loop gain, and that the dynamics of the individual units in the 

recycle loop also affect the system performance. He explored the tradeoffs between steady state 

design and controllability by comparing different process designs. In a reactor/two distillation 

column system with recycle, changes in fresh feed flow rate have the most dramatic effect on 

the system. A small change in fresh feed can lead to a great increase in the flow rate of the 

recycle stream. Based on this result, he concluded a generic rule for recycle systems: The point 

in the control of recycle systems is to fix the flowrate somewhere in the recycle loop so that a 

"snowball" effect cannot occur. 

A newly published paper[10] by Belanger and Luyben (1997) considered the effects of inven­

tory control tuning on plantwide regulatory performance based on frequency domain analysis. 

They found that the amplification of the effects of load disturbances on controlled variables 

caused by material recycle was affected by two factors: the recycle gain and the tuning of the 

inventory controllers within the recycle loop. Bode plots revealed that the recycle gain affects 

the amplification at low frequencies, while the gains of the inventory controllers in the recycle 

loop affect the breakpoint frequencies of the recycling function. 

Most of the above discussions are based on a reactor/distillation column configuration. But 

it is generally believed that these phenomena and dynamic properties are quite generic to almost 

any recycle system. So those generic guidelines and control design methodology can be used 

to guide the research concerning the processes with recycle streams. There are still a lot of 

unanswered questions associated with the dynamics and control of recycle systems. 
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1.2 Research Motivation 

In a paper machine, the water drained from the wire is collected and recirculated through a 

complex distribution network in order to minimize the loss of valuable fiber, the effluent volume 

and the fresh water usage [11]. The water and its reuse influence stock proportioning, stock 

blending and consistency control of stock fed to the machine. Even fairly small changes in 

machine inlet flow can disturb the process performance and affect the final product quality. 

For this reason, the mixing point of the thick stock from the basis weight valve and the white 

water should be carefully designed and controlled to prevent consistency variations. Consistency 

variations or flow variations at the headbox slice affect basis weight, which refers to the mass 

of fibers per unit area of the sheet, and other paper properties. Maintaining constant quality 

of the stock fed to the headbox is an important factor in white water system design. 

Most of the work over the past few decades concerning white water dynamics has focused on 

the development of heuristics from simulation results. In the system design, usually a number of 

storage tanks were incorporated in the white water system to dampen the effects of production 

disturbances such as paper machine breaks and production or grade changes. Even in well-

designed systems, due to the white water recycles from different stages, such disturbances can 

cause significant variations in the consistency of the stock fed to the machine. This in turn 

will afTect paper machine performance and the properties of the paper produced. Although 

individual units in paper machines can be well modelled, the overall system with white water 

recycle can exhibit much more complicated dynamics. On-line identification and adaptive 

control become an issue in the improvement of the design and control of this complex recycle 

system. 

1.3 Thesis Outline 

Chapter 2 models the white water recirculation system based on industrial specifications. Open 

loop dynamics is analysed. Some intrinsic phenomena that occur in this system are highlighted 
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and summarized. Chapter 3 discusses the on-line estimation of the white water recycle system 

dynamics based on Laguerre series representation. Laguerre functions and recursive least-

squares estimation algorithm are described with the discussion on the choice of the optimum 

Laguerre filter time scale, it is concluded with simulation results. In chapter 4, an adaptive 

generalized predictive controller is designed based on a state space form Laguerre model. The 

robustness of this control scheme is discussed along with a summary of the choice of the control 

system design parameters. Finally, the simulation results are discussed. Chapter 5 summarizes 

the results and contributions of this thesis with a discussion on future work that may lead to 

more improvement in this area. 



Chapter 2 

Process Analysis 

This chapter describes the process modelling, and explores the dynamic characteristics which 

exist in the white water recycle system. Firstly, a wet-end revolution - consistency measurement 

under the wire is introduced. Then the model for each individual unit involved in the white 

water system is derived, based on mass balance equations. After that, the complete system 

model is set up to illustrate some interesting phenomena caused by the white water recircula­

tion. Finally, a linearized system model is used to demonstrate the effects of various system 

parameters of the individual units to the overall recycling system performance. 

2.1 Consistency Measurement under the Wire 

In recent years, some paper mills in Europe have learned the benefits of measuring and control­

ling stock consistency on the forming wire by scanning the consistency gauge under the wire. 

But this is still a new concept in North America . To pave the way in putting this technology 

into practical use in North America, this thesis analyzes the wet web consistency control with 

the presence of white water recycle. 

In order to get the consistency measurement on the wet web, some European mills mounted 

a gamma gauge in a fixed position under the wire. They measure stock mass and calculate 

consistency based on known dry weight of the sheet [23, 24, 25]. The scanner provides excellent 

weight profile information. It can be directed to scan just the edges, the full web width or any 

part of the sheet at designated intervals. The scanning gauge can show potential runability 

problems coming from the wire, provide immediate knowledge of forming section operation and 

expose wet-end problems early. By using this technology, the paper machine runability, sheet 

7 
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formation and product quality can be improved. 

Forming section scanning offers new opportunities for analyzing paper machine variation. 

Since even small machine and web changes can cause web breaks and product quality problems, 

the consistency measurements are important in troubleshooting breaks. Apparently, the wire 

section is more critical then the press section in improving runability and throughput. In the 

following sections, the wet web consistency is considered as measured output in the system 

analysis. 

2.2 Process Model 

In this section, the modeling of the white water system, depicted on figure 2.2, is considered. 

Here, the system is technically defined as five major dynamic units: fan pump, a combination 

of cleaners, deaerator and screens, headbox, wire section and wire pit. The model for each 

individual part can be derived based on the principle of mass balance. The variables connecting 

the units represent mass transfers from one unit to another. The thick stock flowrate Qs is the 

input variable. The stock with consistency Cs is added to the system. Then it is diluted with 

the white water (Qw, Cw), and also mixed with the circulation flows from the headbox (Qh, Cj) 

and the combination of cleaners, deaerator and screens (Qr,Ci). White water also flows into 

the cleaners at the flowrate (Qdw) to dilute the rejects. After those processing procedures, the 

stock is transported to the headbox at flowrate Qt and consistency C;. Out of the open slice of 

the headbox is the stock at the flowrate Qj with consistency Cj. Most of the fibre in the stock 

is carried by the wires to the press section, while the liquid drained from the bottom wire is 

collected to the wire pit at flowrate Q with fibre consistency C. There is an overflow (Q0,CW) 

from the wire pit for maintaining the water level of the wire pit to avoid disturbances caused 

by head fluctuations. At the end of the wire section, the stock goes to the next stage, i.e. the 

press section, at flowrate Qp. System output is the wet web stock consistency Cp. Without loss 

of generality, the system is modelled based on the following assumptions and simplifications. 
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Qh Cj overflow 

stock Headbox 

• OJCj Wire Qp Cp to presses m 

D 

I 
QdwCw 

Qw Cw while water 

Wire Pit 

Qo Cw overflow 

Figure 2.2: The Schematic diagram of white water system 

• The white water from the wire section enters the wire pit and moves down with mixing 

and plug flow. The other recirculation flows that come into the bottom of the wire pit 

are assumed not to be mixed with the white water in the volume above. Instead these 

flows are inputs to the fan pump, where mixing takes place. 

• Cleaners, deaerator and screens are considered as ideal mixing transportation pipe causing 

time delay only. 

• The flow rate from deaerator to screens is constant (there is a fixed pump between them). 

As a result, the flow rate from screens to the headbox (Qi) is constant. 

• The output stock flowrate of the headbox (Qj) is constant. Ideal mixing exists in the 

whole volume of the headbox. 

• The output flowrate of the fan pump (Qm) is kept constant. 

2.2.1 Fan Pump 

The fan pump can be modelled as a unit, with negligible volume, where instantaneous mixing 

of different flows occurs. It is assumed that the flows entering the bottom of the wire pit are 
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mixed in the fan pump. The mass balance equation for the fan pump can be written as: 

2.2.2 Cleaners, Deaerator and Screens 

The cleaners are hydrocyclones where heavy dirt particles in the stock are seperated from the 

lighter fibers with the help of centrifugal forces. Then the stock goes to deaerator where air 

bubbles in the stock are removed. When the stock passes through the screens, flocculated fibres 

and other unexpected particles which could cause problems in the machine are filtered out and 

removed. Except the mainstream of the stock, there is another outlet in the deaerator for 

recirculating the overflow to the wire pit. The rejects from cleaners and screens are discharged 

to a sewage system. Comparing with the mainstream, the rejects only contain few fibres, there­

fore their effects to the mainstream stock consistency can be ignored in the system modeling. 

Neglecting consistency changes in the cleaners and screens and assuming that the white water 

used in the cleaners is ideally mixed with the stock at the inlet point, the dynamics for the 

cleaners, deaerator and screens can be simplified as a pure transport delay as follows: 

where Cout and C ; n are outlet and inlet consistencies respectively. Tf is the transport delay. 

The outlet consistency Cout is thin stock consistency C/, and the inlet consistency C ; n can be 

derived from both input flows. 

2.2.3 Headbox 

A hydraulic design of headbox is considered in this system. The main task for the headbox is 

to distribute the stock across the wire of paper machine. The discharge velocity from the open 

slice depends directly on the pressure at the slice. There is an overflow channel located in the 

opposite side of the inlet. It is assumed that ideal mixing is achieved in the whole volume of 

Qm{t)Cm(t) = Qs(t)Cs(t) + Qw{t)Cw{t) + Qr(t)Ci(t) + Qh(t)Cj(t) (2.1) 

C0ut(t) — Cin(t — Tj) (2-2) 
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the headbox. The model then becomes an ideal mixing tank with the equation: 

Vh^dir = - w*w + (2.3) 
where the headbox volume Vh is constant. 

2.2.4 Wire Section 

As the sheet forms, some fibres go through the wire with the white water, while most of them 

stay on and are carried by the wire to the press section. The amount of the fibres that stay on 

the wire at the presses is characterized by a factor called first pass retention or just retention. 

Neglecting the transportation time from the slice to press section(generally a couple of seconds), 

the retention R is a function of the basis weight and is defined as: 

2.2.5 Wire Pit 

Into the wire pit comes the white water drained from the wire section and also some other 

recirculation flows from other units in the white water system. It is assumed that those recir­

culation flows run into the fan pump directly without mixing with the white water in the wire 

pit, therefore those flows are not taken into account here but in the fan pump. The wire pit 

can be modelled as a tank with mixing and plug flow. The mass balance equation for the wire 

pit is: 

Vw^aH^ = Q ( ~ t ) C { t - T r ) ~ { Q d w { t ) + Q w { t )
 + Go(<))C"W (2-5) 

where the wire pit volume Vw is constant. Tr is the transportation delay caused by the plug 

flow in the wire pit. 

2.2.6 The Complete System 

The complete system model, shown in figure 2.3, is formed by combining all of above individual 

models together. The input to the model is the control signal to the thick stock valve. The 
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summation here stands for the fan pump where the thick stock is mixed with the recycled white 

water and some other flows. The forward path consists of cleaners, deaerator, screens, headbox 

and wire section. The wire pit is in the recycle path. The transportation delay caused by 

cleaners, deaerator and screens exists in the forward path, so called forward path time delay 

Tf. A typical value is around 30 seconds. The time delay caused by the plug flow in the wire 

pit appears in the recycle route. The recycle path time delay Tr can be calculated from the 

wire pit physical size. 

overflow Qo Cw 

Qw Cw 

Qs Cs 

thick stock 

white water 

Qm Cm 

Q d w C w 

Wire Pit 
Q C 

QrCl 

QhCj 

Cleaners Ql CI QJCj 
W i r e Deaerator 

Ql CI 
Headbox W i r e Deaerator Headbox W i r e 

Screens thin stock 

QpCp 

Figure 2.3: White water system block diagram 

2.3 System Dynamics 

2.3.1 System Simulator 

M A T L A B SIMULINK is chosen for the system modelling and simulation. The complete white 

water recycle system simulation model is illustrated in figure 2.4 in which the output of the 

model is the wet web consistency before the press section and the input is the thick stock 

flowrate. The design parameters in the model equations in Section 2.2 are obtained from an 

existing fine paper machine as listed below: 

System Design Parameters: 
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RIe Edit Options Simulation Style 

-

HUf—a 

In" i 

Figure 2.4: White water system simulation diagram 

• Wire pit 

Diameter: D = 3m 

Height: H = 10.65m 

Liquid level: L = 90% 

Plug flow height: Hi = 7.65m 

• Headbox 

Volume: V = 2(m 3) 
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System Parameters: 

Retention : R = 0.75 

Recycle ratio : 0.3549 : 0.6451 

Flow ratio : 0.979 : 0.021 

Thick stock.: Qs = 0.2368 m3/s Cs = 3. 14% 

White water : 

Drainage water : 

Stock out of the headbox : 

Thin stock : Qi = 2.08 m3/s 

Qw = 0.756 m3/s 

Q = 1.697 m3/s 

Qj = 1.842 m3/s 

Forward path time delay : Tf = 30secs 

Recycle path time delay : Tr = 72secs 

The major objective in this study of the white water recycle system is to explore the effect 

of the white water recirculation stream on the overall system performance. Therefore accurate 

cleaners, deaerator, screens and drainage models are not necessary. The recycle ratio, flow ratio 

and retention are used to describe the dynamics of those units without loss of generality. The 

recycle ratio is defined as the mass recycle ratio from the cleaners, deaerator and screens to 

the wire pit (QrCi/QiCi), and the flow ratio is the flow recycle ratio from the open slice of the 

headbox to the wire pit (Q/Qp)-

Step responses 

The step response of a system is commonly used to illustrate process dynamics. Figure 2.5 

shows the step responses of wet web consistency and white water consistency with and without 

recycle from the wire pit. The bump test here was performed by making a step change in the 

control signal to the thick stock valve. The thick stock at a consistency of 3.14 % is inputed to 

the system, and a step change of the thick stock flowrate is made from value 0.2368 m3/s to 

0.2568 m3/s at time t = 0. 

The initial bumps in wet web consistency responses are caused by the short recirculations 
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Wet vwb consistency step responses White water consistency step responses 

Time (seconds) Time (seconds) 

Figure 2.5: Open-loop step test results 

from headbox, deaerator and screens. The time delay in the forward path makes the output 

value periodically increase at the interval of Tf(30ssecs) with decreasing amplitudes. The 

white water consistency response exhibits a delay of 102 seconds (T/ -f Tr) and somewhat first 

order dynamic behaviour. Since the white water returns to the original stage of the process, 

its dynamics starts affecting the wet web consistency after another 30 seconds (T/-forward 

path time delay). The effect of the recycle stream increases the steady state value of wet web 

consistency. If there is no white water recycling from wire pit, and instead an equivalent amount 

of fresh water is supplied to dilute the stock, the wet end consistency reaches a smaller steady 

state value in a shorter time (see the dashed line). Obviously, the recycle increases the steady 

state gain and the time constant of the process. 

Impulse responses 

Some interesting features that are peculiar to recycle systems can be better revealed by ob­

serving the impulse responses. There are two ways to get the impulse response for the white 

water recycle system. One is by differentiating the step response, and the other is to simulate 

the response by using an impulse input to the system. Figure 2.6 is the wet web consistency 

impulse response obtained by differentiating the step response in the previous part. The figure 
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Wet web consistency fonputee responses 

solid line: Tf=30 seconds 
dashed line: Tf=0 seconds 

Wet web consistency impulse responses 

sold line: Tl=30 seconds 

dashed line: Tt=o seconds 

0 100 200 300 400 500 600 700 600 900 1000 
Time (seconds) 

50 100 150 200 250 300 350 400 450 
Time (seconds) 

Figure 2.6: Wet web consistency impulse response 

on the right hand side is the same impulse responses as the left one with an enlarged scale, so 

as to achieve a clear image of the white water recycle stream. In the response of, the system 

with forward path time delay (see the solid line), the first pulse is caused by the impulse input 

signal, while the subsequent pulses appeared at the interval of the forward path time delay 

(Tj) are contributed by the circulations from the headbox, deaerator and screens. They are 

dampened with time because those circulation variables gradually approach their steady state 

values. At the same time, the effect of the white water recycle starts to appear in the wet web 

consistency after 132 seconds, i.e. twice of the forward path delay plus recycle delay. It can be 

clearly seen from the block diagram that the stock goes through the forward path, then part of 

it recirculates to the original stage of the process through the recycle route, and goes through 

the forward path once again before it reaches the end of the wire section. The impulse response 

of the white water recycle system exhibits unique dynamics. Except for the first pulse, the 

inner recirculation loops produce a series of subsequent pulses with decreasing amplitudes. The 

white water recycle triggers another transient with longer time delay and larger time constant. 

The latter can be clearly seen in the response without transportation delay from the fan pump 

to the headbox (see the dashed line in the right-hand side of figure 2.6). 

The white water consistency impulse responses exhibit similar phenomena as shown in 

Figure 2.7. Some pulses with the same period (Ty) exist in the response, which are induced by 
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the short circulations. If there is no time delay in the forward path, the response is free of those 

pulses, and it reacts faster and stronger to the impulse input (see the dashed line in figure 2.7). 

From the above discussion, it is clear that the white water recycle changes not only the steady 

state characteristics, but also transient dynamics. 

White water consistency impulse responses 

solid line: Tf=30 seconds 

dashed line: T(=0 seconds 

0 100 200 300 400 500 600 700 800 900 1000 
Time (seconds) 

Figure 2.7: White water consistency impulse response 

2.3.2 System Characteristics 

Every individual unit contributes differently to the overall process dynamics. The headbox and 

wire pit play more important roles in the recycle system. This section attempts to study the 

contributions of individual units to the overall system performance. Thus simplified transfer 

function models (figure 2.8) are used to simulate the white water recycle system responses for 

various parameters of individual units. To linearize the system, the overflows from the headbox 

and deaerator are neglected. All the flow rates are kept constant except the thick stock flow 

rate. The transfer function of each unit is derived from mass balance equations in Section 2.2. 

The mass balance equation for the headbox is 

Vh^P- = QiQ(t) - QjCM (2.6) 
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Figure 2.8: Linearized system simulation diagram 

Multiplying Qj on both sides of equation 2.6, it becomes 

Vh- dt 
= Qj(QiCl(t)-QjCj(t)) (2.7) 

Here, the mass out of the headbox (QjCj(t)) is considered as the output variable and the mass 

into the headbox (QiCi(t)) is the input variable. The values of Vh and Qj are given in section 

2.3.1, therefore the headbox transfer function Gh(s) is obtained as follows: 

1 
G h ^ ~ 1.0865+1 

The wire pit mass balance equation is given in the form of 

Vw~oH~^ = Q C { t ~ T r ) ~ (Qdw + Q w + Q o ) C w ^ 

Multiplying by Qw, and consider 

Q = Qdw + Qw + Qo 

then 

vJQwCw(t) = Q w Q C { t _ T r ) _ Q Q w C w { t ) 

at 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

with input QC(t) and output QWCW and other variable data in section 2.3.1, the wire pit 

transfer function Gw(s) is given as 

0.43e- 7 2 s 

Gw(s) = 
40.81s + 1 

(2.12) 
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The forward path time delay here stands for the transportation delay in the cleaners, deaerator 

and screens. The headbox is modelled as a ideal mixing tank with first order dynamics with 

time constant = 1.086(secs). While the wire pit is a mixing tank with plug flow, its model 

consists of a steady state gain/i'r = 0.43, a first order lag with time constant TW = 40.81(secs) 

and time delay Tr = 72(secs). The stock separates into two streams at the wire. It can be 

simply described by the retention vector. Again, a step change of the thick stock flowrate is 

made from value 0.2368 to 0.2568 at time t — 0 for the following simulations. 

Wire pit time constant 

The wire pit is located in the recycle path. Theoretically, the wire pit time constant would 

affect recycle dynamics. The simulation results are shown in figure 2.9 for three different wire 

pit time constant values (TW =20.81, 40.81 and 80.81). The retention is set to be 0.75 in these 

simulations. 

The wet web consistency responses illustrate that the wire pit time constant only affects the 

transient response of the recycle stream. That merely causes slight effect on the overall system 

performance. A small recycle time constant, equivalent to a smaller volume of the wire pit , 

is expected to achieve faster recycle response. However the system would be sensitive to load 

disturbance if the volume of the wire pit is too small. Therefore the trade-off between recycle 

response speed and system disturbance rejection should be considered for the system design. 

Retention 

Retention determines the amount of fibres that stay on the wire at the point of the end of the 

wire section. It is clear that the higher the retention, the higher the wet web consistency, and 

the lower the white water consistency, see figure 2.10. A high retention is a goal to endeavor to 

achieve in industry in order to make efficient use of fibres. 
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Various time delays of individual units 

The time delay in the forward path is the transportation delay from the fan pump to the 

headbox. Figure 2.11 confirms the results obtained in the system step and impulse responses 

in Section 2.3.1. The forward path time delay affects the recycle stream twice as much as the 

forward stream. 

Actually, the time delay in the wire pit is related to its volume. When the volume decreases, 

both the time constant and time delay would decrease, and vice versa. The wet web consistency 

responses in Figure 2.12 show that this time delay has effect only on the recycle stream. 

2.3.3 Conclusions 

When recycling exists in a process, the dynamics become much more complicated. In the white 

water recycle system, various recycle flows recirculate to the fan pump from different stages of 

the process. These recycle streams make a noticeable impact on system performance. Typically, 

recycling increases system time constant and steady state gain. 

Every individual unit in the recycle system would affect the overall process dynamics. The 

simplified transfer function models have been used to reveal the effects of various parameters of 

the individual units in the white water recycle system. The time constant and the time delay 

in the recycle path only affect the dynamics of the recycle stream. However, the time delay 

in the forward path has strong impact on both forward flow and recycle flow behaviors. The 

forward path is the only route to reach the system output point. Especially, the flow recycled 

from the wire section must pass through the forward path one more time before it reaches to 

the end of the wire section. Therefore this parameter affects the recycle flow twice as much as 

they do to the forward flow. 

Retention is an important parameter governing the amount of the fibres that stay on the 

wire. The higher the retention, the higher the wet web consistency, and the lower the white 

water consistency. 
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Bump test response 

solid line: Tw=20.81 

dotted line: Tw=40.81 

dashed line: Tw=80.81 
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Figure 2.9: Bump tests for different wire pit time constants 

Bump test response 

Figure 2.10: Bump tests for different retentions 
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Figure 2.11: Bump tests for different forward path time delays 
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Figure 2.12: Bump tests for different recycle path time delays 



Chapter 3 

System Identification 

This chapter discusses the use of Laguerre filter based models to represent the dynamics of 

the white water recycle system for on-line identification. First, some background on the use 

of orthonormal functions as a modelling tool for process dynamic representations is given. 

Then the Laguerre series representation and recursive least-squares estimation algorithm are 

described. The chapter ends with the discussion on the choice of the Laguerre filter time scale 

and system simulation results. 

3.1 Background 

A n analysis of the system response can generate much of the information required for system 

identification. A good model of the white water system is required for improving the control of 

paper machine. Over the past few decades, most of the work concerning white water dynamics 

has focused on the development of heuristics from simulation results. While these simulations 

were based on simplified simulation models under certain assumptions at the expense of some 

inaccuracy, there is no easy way to obtain a transfer function form model of the white wa­

ter recycle system to describe the process operation. Thus on-line determination of process 

dynamics becomes an issue. One of the key elements of system identification is the selection 

of a mathematical model representation. During the last two decades, research on the use 

of orthonormal functions to represent the dynamics of processes for system identification has 

achieved great successes. An orthonormal series representation is a good choice as a modeling 

tool for stable plants without structural knowledge. In the white water recycle system, different 

time delays exist in the forward path, recycle path and other units. In this thesis, the Laguerre 

23 
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series representation is chosen for system modeling because of its simplicity and strong features 

in identifying models with uncertain or long time delays. 

The major advantage in using Laguerre function based models is that any stable plant 

can be modelled without accurate knowledge of the true plant model structure, such as the 

plant order and time delay. Because the set of Laguerre functions is similar to Pade ap-

proximants, it is extremely effective in representing system time delays. The resulting model 

is robust to time delay variations and valuable for processes with long time delays. In the 

early 1980's, the use of Laguerre functions to represent process dynamics was proposed for 

system identification and adaptive control. This work led to the successful development of 

several types of adaptive control schemes and their applications in industry. Dumont and Zer-

vos (1986) proposed an unstructured adaptive predictive controller using a Laguerre function 

based model[16]. Simulation results showed that this control scheme is a robust and simple-

to-use algorithm that requires minimal a priori information. In 1988, they presented a new 

stochastic self-tuning controller with both the physical plant and stochastic noise modelled by 

Laguerre series representations[18]. It was proved to be robust, not sensitive to the initial pa­

rameter settings and capable of producing good control. They also extended the single-input 

single-output Laguerre function based adaptive control algorithms to the multivariable case to 

overcome the difficulty in the representation of time delays of MIMO systems by a delay matrix 

(1988) [19]. Furthermore Dumont et al. (1990) [20] applied the self-tuning scheme based on 

the orthonormal Laguerre functions on a real industrial plant. The new self-tuner provided 

better control of a pH loop exhibiting a large and variable dead-time. One way of choosing 

the Laguerre time scale that provides rapid convergence of the Laguerre spectrum has been 

discussed by Dumont et al.(1991) [21]. In that paper, several Laguerre function based adaptive 

control algorithms were developed. Elshafei et al. (1994) studied the robustness and stability 

of adaptive generalized predictive controller (GPC) based on Laguerre-filters to handle severe 

unstructured uncertainties[22]. It was proved that the Laguerre-filter-based model is superior 

for high-order, overdamped and time-delay systems. This is a direct consequence of its simple 
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filter ladder network form as described in the following section. 

3.2 Laguerre Functions 

The use of orthogonal functions for obtaining approximations can be traced back to the devel­

opment of Fourier series. Although the Fourier series is the most commonly used orthogonal 

series representation, there are many other orthogonal functions, which may be more suitable 

for a particular situation. The Laguerre functions have a special significance in the transient 

problem, because they can be constructed in a relatively simple linear filter form with finite 

order. In continuous time, the Laguerre functions are described by 

ji — 1 

k{t) » - l e - 2 p t n (3.13) 
(* - 1)! dP 

where i is the order of the function(i = 1, ...,N) and p is the time scale. These functions form 

an orthogonal set in the time-domain [0, oo). In Laplace transform domain, the Laguerre filters 

are written in the form 

(s - py-1 

Li(s) = V2p~ (3-14) 
(s + Py 

Laguerre niters are readily implemented by a simple and convenient ladder network (see figure 

3.13). The network consists of a chain of identical pure phase-shift niters and a first order 

low pass filter. The Laguerre-filters-based model can also be expressed in a stable, observable 

u(t) 
s+p 

ll(t) s-p 
s+p 

1,(0 

y(t) 

s-p 
s+p 

?(t) 

c2 

s-p 
s+p 

lN(t) 

Ci 

Summing Circuit 

Figure 3.13: Laguerre ladder network 
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and controllable discrete-time state-space form [22]. Based on the state-space form, predictive 

expressions of system outputs can be derived in a straightforward manner. The outputs from 

each block are taken as the states of the Laguerre ladder network: 

lT(t) = [k(t)l2(t)...lN(t)] (3.15) 

By discretizing each block, the Laguerre-filter-based model in the discrete state space form can 

be written 

l(t + 1) = Al(t)+ bu(t) (3.16) 

y(t) = cTl{t) (3.17) 

The output of the Laguerre model is obtained by the weighted summation of the outputs of the 

Laguerre filters. Where, u{t) is the system input and y(t) is the system output. A is a lower 

triangular N X N matrix where the same elements are found respectively across the diagonal 

and every sub-diagonal. 

- T l T 2 - T a 

0 

- T 1 T 2 - T 3 

(3.18) 

N - l 

[CI c 2 . . . Cjy] 

(3.19) 

(3.20) 

The constants r i , T2, r 3 and r 4 are given in terms of the sampling period Ts and the Laguerre 

time scale p as 

n = e-pT° (3.21) 

r 2 = Ts + ~(e-pT°-l) 
P 

T3 = -Tse-?T° - -{e-vT° - 1) 
P 

( i - n ) 

p 

(3.22) 

(3.23) 

(3.24) 
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The constants in the vector c are called Laguerre spectrum gains. Least squares parameter 

estimation can be effectively used for on-line identification. 

3.3 Recursive Least-Squares Estimation 

The least-squares method is widely used for parameter estimation. The least-squares estimate 

can be calculated analytically if the model is linear in the parameters. As described above, any 

stable system can be exactly expressed by an infinite Laguerre series representation. In practice, 

only a truncated form is used to obtain an approximate process model. A more accurate model 

could be achieved by increasing the order of Laguerre functions. The coefficients of lower order 

terms can be precisely estimated by using least-squares parameter estimation, while the higher 

order coefficients tend to zero. In its discrete-time state space form, the output is a linear 

function of the state vector as follows: 

The least-squares method is particularly simple for a mathematical model in the above form, 

where c is the Laguerre coefficient vector which needs to be determined, and Z(t) is the state 

vector of the Laguerre filters. The problem is to determine the parameters so that the difference 

between the model outputs and the plant outputs is minimized in the least squares sense. 

Introducing the following notations: 

y(t) = cTl(t) ( 3 . 2 5 ) 

<t?{k) = [h(k)l2(k)...lN(k)} ( 3 . 2 6 ) 

Y(t) 

* ( t ) 

0 ( 3 . 2 7 ) 

( 3 . 2 8 ) 

( 3 . 2 9 ) 

where k often denotes sampling time, one can write 

Y ( 3 . 3 0 ) 
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The parameter vector should be chosen to minimize the least-squares loss function 

V(0,t) = lJ2(y(i) - <P\i)0)2 (3.31) 
z i=i 

The least-squares estimate of Laguerre coefficients [27] is then given by 

9 = ( $ T $ ) - 1 $ r F (3.32) 

Define the inverse of the covariance matrix: 

P(t) = ( ^ ( t ) * ^ ) ) - 1 (3.33) 

The recursive least-squares estimate 9{i) can be obtained by using the following equations 

0(t) = 0(t - 1) + K(t)(y(t) - 4>T(t)0(t - 1)) (3.34) 

K(t) = P(t - l)<j>(t)( I + <f>T(t) P(t - lM*))"1
 (3-35) 

P(i) = ( / - K(t)<f>T(t)) P{t - 1) (3.36) 

Equation (3.34) intuitively shows that the estimate 6{t) is calculated by making a correction to 

the previous estimate 9{t — 1). K(t) is the weighting vector, thus the correction is proportional 

to the difference between the measured output and the output predicted based on the previous 

parameter estimate. 

The matrix P(t) is defined only when the matrix $T(t)$(t) is nonsingular. It is assumed 

that the matrix $ ( £ ) has full rank, i.e. $ T (t)$(i) is nonsingular for t > to. To obtain an initial 

condition for P, it is necessary to choose t = i 0 , then 

P(t0) = (* r (t 0 )*(<o)) _ 1 (3.37) 

0(t0) = P(t0)$T(t0) Y(t0) (3.38) 

Usually, it is convenient to use the recursive equations in all steps. If the recursive estimation 

is started with the initial condition 

P (0 ) = Po (3.39) 
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where PQ is positive definite, then 

P(t) = ( P o 1 + * r(<)*(*)) - l (3.40) 

Now, P(t) can be made close to (<& (i)$(Z)) 1 by choosing a sufficient large Po. A common 

choice of initial values for recursive parameter estimation is 

where R is a large scalar. 

In the next section, the recursive least-squares method is used to estimate Laguerre coeffi­

cients in the white water recycle system models. The initial condition R — 1000 is used in the 

following simulations. 

3.4 Identification Results 

3.4.1 Choice of Time Scale 

Theoretically speaking, an infinite Laguerre series can be used to exactly represent a stable 

system. In practice, a truncated one is used instead. For a given system, the truncation error 

is function of the number of Laguerre filters and their time scale. For a fixed number of filters, 

there exists an optimal time scale that minimizes the error and lets the coefficients of higher 

order Laguerre functions tend to zero quickly. Then the problem of how to find the optimal time 

scale comes up. An optimum choice of the time scale for discrete Laguerre network was discussed 

by Fu and Dumont, 1993 [28]. This optimization algorithm is based on the minimization of the 

performance index: 

oo 

J = J2ig? (3.43) 
t=i 

for the discrete Laguerre functions denned in z-domain as: 

P(0) = R I (3.41) 

0(0) = 0 (3.42) 

Hz) = 
\ / l - o2 I - az 

(3.44) 
z — a z — a 



Chapter 3. System Identification 30 

where a is the time scale of this Laguerre function and gi (i = 1, 2, 3,...) are called Laguerre 

coefficients. The performance index linearly increases the weighting of each additional Laguerre 

coefficient. As a result, a fast convergence rate can be obtained when the minimum is achieved. 

This is important for improving the match between a real plant and its model when a truncated 

Laguerre representation is used to model the plant dynamics. The optimal time scale is derived 

by minimizing the performance index in equation (3.43) 

2Mx - 1 - M 2 

a0 = (3.45) 
2Afi - 1 + y 4 M a M 2 - M\ - 2 M 2 

where M\ and M 2 are defined as: 

1 oo 

M, = pjpZ>'<»> <»•«> 
-i oo 

and n is the sampling time, h(n) is the impulse response of a discrete system which is given by 

oo **(«) = 5>/;(n) (3.48) 
t'=i 

and 

oo oo 

u*u2 = X>2(») = 5>? <3-49) 

n=0 i=l 

M i and M 2 characterize the rate of decay and the smoothness of the impulse response of the 

process, and they are also affected by the time delay. From the above result, it can be seen 

that the optimal time scale depends on the characteristics of the system impulse response. 

So far, there is no effective method to choose the order of the Laguerre function. Practically, 

the higher the order, the more accurate the model. But a balance between estimation error and 

calculation time needs to be reached. For a known optimal time scale, a reasonable number N 

can be chosen when the coefficient of the highest order is as close to zero as expected, and the 

estimation error remains under an acceptable value. 
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3.4.2 Simulations and Discussions 

Models of the white water recycle system can be constructed based on the Laguerre represen­

tation described in the previous sections with the state-space form: 

l(t + 1) = Al(t)+ bu(t) (3.50) 

y(t) = cTl(t) (3.51) 

where the matrix A and the vector b are given in terms of the sampling time and the Laguerre 

time scale as defined in equations (3.18) and (3.19). The sampling time of 1 second is chosen 

for the following simulations. The vector c is the Laguerre coefficient vector which has to 

be estimated on-line. The Laguerre time scale has a strong impact on the quality of the 

approximation and the convergence rate of the Laguerre coefficients, therefore searching for 

the optimum time scale is important for system modeling. By using the Laguerre toolbox, the 

optimum time scale can be found according to the discussion in section 3.4.1. The knowledge 

of the impulse response is required to get the searching solution. Figure 3.14 is the discrete 

impulse response of the white water recycle system. For a tolerable pole error of 0.0001, the 

Wet web consistency impulse response(discrete time) Wet web consistency impulse response(Oiscrete time) 

foe 
c 
8 
•80.6 * 

* 0 . 4 
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Figure 3.14: Discrete impulse response 

searching results for different Laguerre filter number are shown in table 3.1. 

With given order and the pole, the Laguerre model can be obtained by on-line estimation of 

the Laguerre filter coefficient vector via least-squares estimation algorithm. The properties of 
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order pole order pole 
5 0.9664 9 0.9627 
6 0.9564 10 0.9559 
7 0.9467 11 0.9607 
8 0.9694 12 0.9420 

Table 3.1: Optimum Laguerre Filter Poles 

the input signal used in parameter estimation are crucial for the quality of the estimates. The 

parameters of the model cannot be identified unless some conditions are imposed on the input 

signal. In this section, the simulation is implemented in two steps. The first step is to make 

a step change on the input signal from 0 to 0.2368 at time t = 0 to see the transient response 

with the effect of the estimated coefficient convergence. After the system gets to the steady 

state, at time t = 2000 seconds another small step change on the input signal from 0.2368 

to 0.2568 is used to see the identification result without the strong impact of the coefficient 

convergence. The simulation block diagram is shown in figure 3.15. In order to demonstrate the 

characteristics of Laguerre series representations and the influence of the Laguerre filter order 

on approximation accuracy, as an example, two typical orders (N = 6 and 12) are considered 

in following simulations. 
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Figure 3.15: RLS parameter estimation simulation diagram 
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The input is imposed on the plant and the output is measured. Pairs of observation and 

input data are obtained from simulation and fed to the Laguerre model for the parameter 

estimation. A S-function is programmed to realize on-line estimation based on least-squares 

algorithm with the help of the Laguerre toolbox (see Appendix program 1). Figure 3.16 and 3.17 

show the identification results for Laguerre filter order N = 6 and 12 respectively. These results 

illustrate that the Laguerre model is extremely effective in identifying a plant with significant 

time delay. Especially, for the white water recycle system, forward path and recycle path time 

delays occur in the different stage. All these delays clearly exhibit in the Laguerre model 

responses. By comparing these results, obviously, the higher order Laguerre model provides 

quicker convergence and better match with the real plant. This result can also be concluded 

from the integrated square errors calculated from t = 2000 seconds to 4000 seconds as shown in 

figure 3.18. To obtain a general knowledge of convergence speed of estimated coefficients, the 

estimated coefficients for a sixth order Laguerre model is shown in figure 3.19. 

3.5 Conclusions 

In this chapter the Laguerre function was used in the white water recycle system modelling. 

With on-line estimation of Laguerre coefficients by using recursive least-squares method, the 

resulting model with optimal Laguerre pole has achieved very good match with the plant. The 

simulation results have shown that the Laguerre model is extremely effective in identifying the 

time delays in the different stages of the white water recycle system. As expected, a higher 

order Laguerre model provides quicker convergence and better match with the real plant. It 

can be concluded that the Laguerre series representation is superior for the white water recycle 

system modelling. 
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Figure 3.16: Identification result (N=6) 
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Figure 3.17: Identification result (N=12) 
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Figure 3.18: Comparison of the integrated square errors 



Chapter 3. System Identification 36 

0 500 1000 1500 2000 
Time (seconds) 

0 500 1000 1500 2000 
Time (seconds) 

500 1000 1500 2000 
Time (seconds) 

0 500 .1000 1500 2000 
Time (seconds) 

0 500 1000 1500 2000 
Time (seconds) 

0 500 1000 1500 2000 
Time (seconds) 

Figure 3.19: Estimated Laguerre filter coefficients (N=6) 



Chapter 4 

Control Design 

In this chapter, a Laguerre model in the state space form is used to design an adaptive gener­

alized predictive controller (GPC) for the white water recycle system. The robustness of this 

control scheme is discussed along with a summary of the choice of the control system design 

parameters. Finally, it is concluded with simulation results. 

4.1 Background 

With inter-related recycle loops, varying time delays and a wide range of uncertainties in the 

process, the white water system exhibits complicated dynamics. A controller for the white 

water recycle system must be able to handle unmeasurable disturbance, measurement noise, 

process time delays, as well as interactions from inside and outside the process etc. 

It is well known that adaptive controllers can effectively adjust their control parameters 

to adapt changes in process dynamics and disturbance chracteristics. Adaptive control has 

evolved to a mature level. Considerable success has been achieved in this field in the past 

decades. Adaptive techniques are being used more and more in industrial control systems. 

Usually the design procedure involves three steps: model selection, parameter estimation and 

controller design. It has been proved that generalized predictive control (GPC) is a powerful 

control algorithm for adaptive control applications. G P C can be used to control a plant with 

little prior knowledge, variable dead-time and variable parameters provided that the input and 

output data are sufficiently rich for reasonable system identification. A standard version of 

the G P C using a recursive solution of the Diophantine equation for a linear C A R I M A model 

was best summarized by Clarke, et. al. (1987) [29]. Since then, generalized predictive control 

37 
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and its modified forms are widely used with different model structures [21, 22, 30, 31]. From a 

modeling point of view, generalized predictive control schemes could be based on a structured 

model, e.g. A R M A X or C A R I M A model, and an unstructured model, e.g. an impulse response 

model or an orthomormal series model. In the next section, a generalized predictive control 

algorithm based on a Laguerre model is derived for the control of paper machine white water 

recycle system. For adaptive control purpose, the Laguerre coefficients are estimated on-line 

using recursive least-squares(RLS) estimation method. 

4.2 Control Algorithm 

4.2.1 The Predictive Control Law 

A discrete-time state space representation of the Laguerre-filters-based model can be written 

in the form 

/(* + 1) = Al(t) + bu(t) (4.52) 

y{t) = cTl(t) (4.53) 

Consider a j-step ahead predictor-corrector model, the future output has the form 

y(t + j) = cTl(t + j) + (y(t) - cTl(t)) (4.54) 

The first part in the right hand side of equation (4.54) is the system ouput at time(t + j) deter­

mined by the model, while the second part is the correction for modelling errors or disturbances 

on the output of the process. Obviously, if there is no plant-model mismatch, the second part 

is equal to zero. Thus, this j-step predictor is in fact an observer. 

Suppose yr(t + J)(for j = 1,2,...) is a reference trajectory. In most cases, it is a constant 

with a value equal to the current setpoint ysp. In order to achieve a smooth transition from 

current output y{t) to a new setpoint, a reference trajectory with a simple first-order lag model 

is used as follows: 

yr(t) = y(t) (4.55) 
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Vr(t + j) = ayr(t + j - 1) + (1 - a)y: 'sp 
(4.56) 

where a(0 < a < 1) is a coefficient for tuning the output convergence speed. The greater the 

coefficient, the slower the transition. Then the objective of the predictive control law is to drive 

plant outputs y(t + j) to the reference trajectory yr{t + j) according to certain performance 

criteria. The choice of the criterion function is of paramount importance for the determination 

of the predictive control law. The standard generalized predictive control law is based on the 

following criterion function: 

Hp is the prediction horizon, 

Hm is the minimum-cost horizon, 

Hc is the control horizon, 

(3 is the control-weighting factor (/? > 0), 

A is the differencing operator (A = 1 — <?-1). 

Now two conflicting objectives come up: the minimization of the tracking error and the mini­

mization of the control increments. f3 is introduced to achieve a trade-off between these objec­

tives. It is assumed that after the control horizon, further control increments are zero. 

The resulting controller must be able to drive the plant outputs to a desired trajectory. 

Recalling the state space equations and recursively using equation 4.52 

J= E [̂  + j)-!/r(i+j)]2 + E / 3 N« + i-i)f (4.57) 

where 

/(* + 1) 

/(* + 2) 

Al(t)+ bu(t) 

Al(t + 1)+ bu(t + l) 
(4.58) 

l{t + j) Al(t + j - l ) + bu(t + j - l ) 

then l(t + j) can be obtained as 

l(t + j) = AHit) + A*'1 bu(t) + A>-2 bu(t +!) + •••+ bu(t + j - 1) (4.59) 
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(4.60) 

Therefore, the future output is 

y(t + j) = cT[AH(t) + A*-1 bu(t) + Ai~2 bu(t + 1) 

+ ... + bu(t + j - 1)] + (y(t) - cTl(t)) 

It contains three parts: one is related to the current states, one is the current measured output, 

and the rest depends on future control actions. The first two parts depend on past controls 

which are known at time t, and f(t + j) is used to represent them. 

f(t+j)= cT[A>-I]l(t) + y(t) (4.61) 

To simplify the derivation below without loss of generality, the minimum-cost horizon Hm is 

set to 1, and the prediction horizon Hp to a reasonable larger number n. Then the predicted 

output can be written in a matrix form: 

y=Gu+f 

where j / , / and u are all (n X 1) vectors. 

y = [y{t+ l),y(t + 2),...,y(t + n)]T; 

u = [u(t),u(t + 1 ) , u ( t + n - l ) ] x ; 

f = [f(t + l),f(t + 2),...,f(t+n)]T; 

The matrix G is lower-triangular of dimention (n x n): 

(4.62) 

G 

90 0 ••• 0 

91 9o ••• 0 
(4.63) 

9n-l 9n-2 - - - 90 

where the elements gj(j = 0,1, ...,n— 1) are the system impulse-response coefficients which are 

given by 

9j = cTA3b 
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In the criterion function in eqation (4.57), the controller increments are weighted instead of 

the controller outputs. Therefore to derive the control law by minimizing the criterion function, 

the predicted output representation should contain control signal increment term other than 

control signal itself. Define 

U l = [u(t - 1), u(t - 1 ) , u ( t - 1)]T 

then equation (4.62) can be rewritten in the form 

y = G(u-u1) + Gu1 + f (4.64) 

the j-th element of vector (u — u\) is 

u(t + j ) - u(t- 1) = u(t + j)-u(t + j - l ) + ... + u(t)-u(t- 1) 

= Au(t + j) + Au(t + j - l ) + ... + Au(t) 

therefore, the vector can be written in the form 

(4.65) 

{u — u\) — I\Au (4.66) 

where, Au is the control increment vector 

Au = [Au(t), Au(t + 1 ) , A u ( t + n- 1)]T 

and i i is a unit lower-angular matrix of dimension (n x n) 

h 

1 0 

1 1 

1 1 

0 

0 

Furthermore, the predicted output can be written in a control increment vector form 

y = H Au + Gu! + f (4.67) 

where 

H = Gh 
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Obviously, H is a n x n lower-triangular matrix 

H = 

h0 0 

hi h0 

hn-\ hN-2 • • • ho 

the elements hj(j = 0,1, ...,n — 1) are system step-response coefficients and 

{ 
hj = gj, j = 0 

hj=9j + hj-i, j = 1,2, ...,n- 1 

Then, the criterion function (4.57) can be written in a matrix form 

J = (y - yr)T(y - yr) + {3(Au)TAu 

Substituting equation 4.67 into above criterion function, it becomes 

J = (HAu + G U l + f- yr)T(HAu + Gux + / - yr) + (3(Au)TAu 

To derive the control law, 

dJ 
OA u 

= 2H1 (HAu + Gux + f - y r ) + 2/3 At* = 0 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

Finally, the control increment vector is obtained as follows (a similar result is shown in [33](1991)) 

A u ^ ^ I + HTH)-lHT(yr-Gu1~ f) (4.73) 

Note that only the first element of Au is used as the current control increment. Al l other 

elements are not used and need not calculated. Then the control law can be written in a simple 

form 

u{t) = u(t - 1) + hT(yr - g) (4.74) 

where hT is the first row of (J5I + HTH) 1 H T and g stands for Gu\ + / which is determined 

by past known control u(t — 1). 
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4.2.2 Robustness Analysis 

In practice, mismatch between a real process and its model is always present. As mentioned 

in chapter 3, an infinite Laguerre series can be used to exactly represent a stable system. But 

it is more realistic to use a truncated Laguerre series for process modeling. In this case, the 

plant/model mismatch is caused by the truncation error. Therefore it is important to investigate 

the influence of modeling errors on system performance. A closed-loop system is robust if the 

system response maintains certain properties even though the lure process is different from its 

model. 

Assume the plant is modelled by a n-th order trancated Laguerre function, 

l(t + 1) = Al(t) + bu(t) 

y(t) = cTl(t) 

(4.75) 

(4.76) 

the real system is represented by the following Laguerre function: 

l(t + l) 

l(t + 1) 

A 0 

Ai A2 

c1 c 

1(0 

'(*) 

f(0 

+ 
b 

b 
u(t) (4.77) 

(4.78) 

where, the order of state vector l(t) is large enough (tend to oo), it is assumed that this model 

can be used to accurately represent the real plant in some sense. 

Recall the control increment vector equation (4.73): 

Au = (pi + HTH)-lHT(yr - Gux - f) (4.79) 

For a reasonable small control horizon (Hc « Hp), the control increments are zero for t > Hc. 

The calculation for the control Aw can be significantly decreased. Only the first Hc columns of 

H are required to calculate the corresponding control law. The matrix involved in the inversion 

is a reduced dimension (Hc x Hc). For simplification, a value of Hc of 1 is considered here. 
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Generally speaking, a one-step control horizon gives acceptable control for typical industrial 

plants. Then the control has the following scalar form: 

Au = (p + HTH1)~lHT(yr-Gu1- f) (4.80) 

where H\ is the first column of H, that is 

El = [no, /*„_!] (4.81) 

t'-l 

hi = J2cTAJb (4-82) 
3=0 

and 

Gu! = Hxu(t - 1) 

From equation (4.61), f(t + j) can be derived as: 
f(t + j) = cT AH(t) — cTl(t) + y(t) 

= cTAH(t)-(y(t)-y(t)) 

Furthermore, 

(4.83) 

n—1 n—1 

Hi f = J2 hi cTA»H(t) - M£W - V(t)) (4-84) 

3=0 3=0 

Suppose the output setpoint is considered as the reference trajectory, thus the control law 

derived from a truncated Laguerre model is 

u(t) = m{w(ysp + y(t) - y(t)) - sTl(t) + (3u{t - 1)} (4.85) 

where 

m = 
n - l 

{(3 +Hi H^-1 (4.86) 

E *i c T a 3 + 1 (4-87) 
3=0 

w = E ^ (4.88) 
3=0 
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then, with the control law designed based on a truncated Laguerre model, the closed-loop 

system of the real plant is given by 

l(t + l) A - m b sT 0 

l(t + 1) _ M -- m b sT A2 _l(0 J 
b 

+ mw(ysp + y(t) -- y(0) + 
b 

b 

b 

(4.89) 

mPu(t - 1) 

The system state response is affected by three parts: state variable values at time t ( l(t), l(t) ), 

modelling error at time t (difference between model output and system output y(i) — y(t)) and 

the input signal at previous step u(t — 1). To see the regulator behaviour and to simplify the 

derivation, assume that ysp — 0 and ft = 0, and define the state vector: 

(4.90) 

Then, the closed-loop system can be written in a matrix form: 

L(t + 1) = [ A + Bmw(C - C r ) ] L(t) (4.91) 

where 

B = 

- T-

c = 

A-mb sT 0 

A i - m b sT A 2 

6 6 

c T 0 T 

cT cT 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

cT contains the estimated coefficients of the truncated Laguerre model. For a stable system, 

the state variables must converge to certain values in some sense. Therefore 

A|| + | |2? | |mMI|C - CT\\<1 (4.96) 
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must be satisfied. In other words, the coefficient difference between the model and the real 

system should be kept as small as possible to achieve good robustness. That is 

\\CT - CT\\ < i^I^f (4.97) 

It shows that the G P C robustness can be improved by changing related design parameters. 

4.2.3 Choice of Design Parameters 

How to select design parameters, such as prediction horizon, minimum-cost horizon, control 

horizon and control weighting factor, always has a significant impact on closed-loop system 

performance. Certain general rules for the selection of these parameters were discussed by 

Clarke et al. (1987) [29]. These studies are widely accepted as rules of thumb for the G P C 

design. Here the methods are summarized as follows: 

• Minimum-cost horizon Hm: It is effective to set the minimum-cost horizon larger than 

the dead-time of the process, because there is some time delay for the outputs to respond 

to the corresponding control action. There is no need to calculate the outputs that cannot 

be affected by the first control signal u(t). In the cases when the dead-time is unknown or 

variable, the minimum-cost horizon can be set to 1 to maintain stability and encompass 

all possible values of dead-time. 

• Prediction horizon Hp: For an open-loop stable system, it is better to use a larger value 

for the prediction horizon, normally close to the rise time of the process. In this case, 

the major part of the transient response is involved. Increasing Hv results in a smoother 

controller output. 

• Control horizon Hc: The control horizon is an important design parameter. Generally, 

a value of 1 gives acceptable control for typical industrial plant models. But for a complex 

system, the control action might have significant change at the next sample, it is necessary 

to take more future control sequences into account for the calculation at each sample. A 
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short control horizon would not allow for enough degrees of freedom in the derivation of 

the current control action. In general, increasing the control horizon makes the control 

and the corresponding output response more active. 

• Control-weighting factor (5: The control-weighting factor is introduced to make a 

trade-off between two conflicting objectives: the minimization of the tracking error and the 

minimization of the controller output increment. A greater weighting factor means that 

the controller output is more important in the criterion function. The control law based 

on this criterion function is less active and the process output becomes less important 

resulting in a sluggish process response. Although the effect of the weighting factor on 

the closed-loop system is clearly expressed in the criterion function, it is hard to choose 

a value of /3 to achieve desired system behaviour. It is usually determined by simulations 

in combination with trial-and-error method. 

4.3 Simulations and Discussions 

4.3.1 Generalized Predictive Control Behaviour 

This section studies Laguerre model based G P C control performance through simulation results. 

The simulations are carried out for different prediction horizon(ifp) and minimum-cost horizon 

(Hm). The effect of control horizon (Hc) is also discussed in those simulations. 

The white water recycle system is modelled by a 12th order Laguerre function with filter 

pole a = 0.942 and Laguerre coefficients 

cT = [1.8951,6.3968,2.4267,-1.1200,1.0462,2.0494, 

-2.7392,4.9367, -4.2792,3.7254, -2.0496,1.2049] 

These coefficients are the estimated results in chapter 3. Based on this model, the G P C control 

law derived in the previous section is used to control the plant. Closed-loop simulations with 

the structure as shown in figure 4.20 are carried out for different design parameters referred to 

in the figures. The simulation program is attached in the appendix (program 2). 
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Figure 4.20: Laguerre model based G P C simulation diagram 

First, based on the methods described in the previous section and combining with trial 

and error, a set of typical design paramters are chosen to be Hp = 100, Hm = 60, Hc = 1 

and P = 0.1. The step response of the white water recycle system in chapter 2 shows that 

100 seconds covered most of the transient message of the process. The system dead-time is 

around 30 seconds. To reasonably decrease calculations and at the same time to take major 

transient response into account for the calculation of the corresponding control actions, the 

minimum-cost horizon is set to 60. For an open-loop stable plant, an one-step control horizon 

can be used to give reasonable performance. Increasing the control horizon makes the control 

and corresponding output response more active. Because the white water recycle system is a 

stable process, here a small control weighting factor (/? = 0.1) is used for the purpose of keeping 

the control action active. The simulation results with sampling interval 1 second are shown in 

figure 4.21. Effective servo performance is achieved. The predictive controller can take early 

action to overcome process dead-time when the set point changes is known a priori. 

For the prediction horizon, simulations for three different values (Hp = 70,80 and 90) are 
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carried out. While other parameters are seperately set to Hm = 50, Hc = 1 and /3 = 0.1. The 

prediction horizon and control horizon are closely related to the stability of the closed-loop 

system. The effect of Hp with Hc = 1 on the system performance are shown in figure 4.22. 

Obviously, when Hp increases, the closed-loop response is slower to set point changes and the 

resulting control action is more smooth and sluggish. The behaviour of the closed-loop system 

can also be influenced by Hc in a similar way to that when using Hp. In contrast, increasing 

Hc makes the control and the corresponding output response more active. 

For the minimum-cost horizon, similarly, simulations for three different values (Hm = 50, 70 

and 80) are carried out. Other parameters are respectively set to Hp = 100, Hc — 1 and 

(3 = 0.1. For this process, increasing the minimum-cost horizon makes the closed-loop system 

respond more slowly to set point changes, and an increase of robustness can also be expected. 

But the choice for Hm is not very critical. For the purpose of decreasing the calculations, Hm 

should be chosen greater than system dead-time. The effect of Hm on the system performance 

are shown in figure 4.23. 

4.3.2 Adaptive Generalized Predictive Control Behaviour 

The white water recycle system and its environment are changing all the time. When the 

white water system is closed up, great amount of information, such as water quality, materials 

management and deposition control, will affect paper machine performance. These disturbances 

appear randomly, but they have strong impact on product properties. To insure that the 

paper machine is running effectively, a controller that can modify its behaviour in response to 

changes in the dynamics of the process and the character of the disturbances is required for 

the control of the white water recycle system. This is exactly the basic concept of what an 

adaptive controller is. Based on the updated estimates of the process parameters, the controller 

parameters are modified from the solution of a design problem. As derived in the previous 

chapters, in this thesis a straightforward combination of recursive least-squares estimation and 

generalized predictive control algorithm gives an adaptive control scheme for the white water 
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recycle system. The generalized predictive control law in equation (4.74) is calculated based on 

estimated Laguerre coefficients. Figure 4.24 shows the behaviour of the Laguerre model based 

adaptive controller with design parameters: Hp = 100, Hm = 60, Hc — 1 and (3 = 0.1, and 

with load disturbance of amplitude 0.01 from time t = 1000. The other two figures show the 

behaviour of the same controller for the plant dynamics changes. In figure 4.25, the recycle 

path time delay changes from 72 seconds to 30 seconds at time t = 850. Figure 4.26 is the 

response with forward path time delay change from 30 seconds to 20 seconds at time t = 850. 

The simulation program is attached in Appendix (program 3). As shown in those figures, this 

control scheme can achieve excellent servo performance and load disturbance rejection without 

steady-state offset. These are the direct results of adaptive G P C algorithm. 

4.4 Conclusions 

It has been proven in the G P C literature that G P C is a robust algorithm for adaptive control 

applications. In the criterion function of G P C , the control increments are weighted instead of 

the control outputs. Therefore, in the steady state the control weighting factor /? won't affect 

the criterion function and the controller output which is obtained by minimizing the criterion 

function. This results in a control scheme free of steady-state offset, robust to system parameter 

variation and dead-time variation. The use of the G P C algorithm in an adaptive fashion makes 

the resulting controller even more powerful for dealing with unstructured uncertainties. During 

the last two decades, many research works have been done in this area. Most of them are 

based on the usual parametric A R M A X transfer function model. Motivated by the idea for a 

robust adaptive control for the process with minimal a priori information, some researchers have 

studied the robustness and stability of adaptive G P C based on Laguerre series representation, as 

discussed in the previous sections. This research presented the first application of the Laguerre 

model based adaptive G P C for the control of the challenging recycle processes. 
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Figure 4.21: Laguerre model based G P C control response 
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Figure 4.22: The effect of the prediction horizon on the closed-loop system response for Hp=70, 
80 and 90. 
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Figure 4.23: The effect of the minimum-cost horizon on the closed-loop system response 
Hm=50, 70 and 80. 
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Figure 4.24: Adaptive G P C control responses with load disturbance at t=1000 



Chapter 4. Control Design 55 

Setpoint & plant responses (GPC nn=[60,100,1,0.1]) 

0.15 -

0.11 1 1 1 1 1 ' 1 1 1 

0 200 400 600 800 1000 1200 1400 1600 1800 
Time (seconds) 

Figure 4.25: Adaptive G P C control responses with recycle time delay change at t=850 
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Figure 4.26: Adaptive G P C control responses with forward path time delay change at t=850 
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Conclusions 

5.1 Summary and Contributions 

This thesis is focused on paper machine white water recycle dynamics and deals with the 

challenging problem of the processes with recycle loops. The open-loop system was analysed 

by exploring some intrinsic phenomena which are caused by the recycle streams. Motivated 

by its simplicity and strong features in modelling unstructured processes, the Laguerre series 

representation was used for on-line identification of the system dynamics. As a powerful control 

algorithm for adaptive control applications, a generalized predictive control based on a discrete-

time state-space representation of the Laguerre model was used. Computer simulations were 

developed to examine control system performance. The major results and contributions of this 

thesis can be concluded as follows: 

• With inter-related recycle flows from different stages of the paper machine, the paper 

machine white water system exhibits complex dynamics. Process analysis revealed some 

interesting and important phenomena that exist in the white water recycle system. Open-

loop analysis demonstrates that the recycle process exhibits typical dynamics with tran­

sients caused by main flow and recycle flows respectively. The recycling increases both 

system time constant and steady-state gain. The increase in the steady-state gain is a 

direct result of the fibre reuse in the white water system. This is one of the immediate 

objectives of closing paper mill white water system. Each individual unit in the system 

affects different properties of the overall process dynamics. The units in the forward path 

have dominant effects on the overall system performance. And they also have strong 

impacts on the recycle flows, because the recycle flows pass through the forward path 

57 
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twice before they leave the plant. Mainly, the units in the recycle path only affect the 

dynamics of the recycle flows. These phenomena are the general rules for the recycle 

systems without a single exception. These results are quite useful for the study of any 

other recycle systems. 

• In the white water system, different time delays exist in the forward path, recycle path 

and other units of the process. A n accurate model is essential for improving the control 

of paper machine. The Laguerre series representation is extremely useful for the white 

water system modelling because of its simple ladder network form and strong features in 

identifying system uncertainty and time delays. And the Laguerre function coefficients 

can be easily identified by using least-squares estimation based on its convenient state 

space functions. For a fixed number of the Laguerre niters, there is an optimal Laguerre 

pole that minimizes the modelling error. Therefore searching for this optimal pole is a 

crucial issue as discussed in chapter 3. The simulation results showed that the Laguerre 

model provided a good plant/model match for the white water recycle system. These 

results support the use of this model for on-line identification and adaptive control. 

• A controller for the white water recycle system must be able to handle unmeasurable dis­

turbances, process time delays, interactions from inside and outside the plant etc. Adap­

tive controllers can effectively adjust their control parameters to adapt changes in process 

dynamics and disturbances. It has been proven that generalized predictive control (GPC) 

is a powerful control algorithm for adaptive control applicaitons. The proposed adaptive 

G P C scheme achieved effective control performance for this complicated nonlinear recycle 

system. As discussed in chapter 4, this control strategy is robust to the variation of the 

time delays. It also provides excellent servo performance and load disturbance rejection. 
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5.2 Suggestions for Future Work 

This thesis studied process dynamics, modelling and control of the white water recycle system. 

The results of this work could set the stage for the future work in this area. The system 

considered in this thesis is a deterministic model without system noise. Therefore, further 

research focused on disturbance investigation and regulator behaviour should be carried out. 

And further analysis of robustness and stability is necessary to find out the relationship between 

the control design parameters and the system performance. Furthermore, a frequency domain 

analysis is suggested to reveal system frequency performance. 
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Appendix 

Program 1 

%%% RLS parameter estimation using Laguerre model % % % 

i j Q ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ * 

function [sys, xO]=slagu(t,x,u,flag,n, a, forget) 

% Parameters 
% n=8; % the order of Laguerre model (mask) 
% a=0.8; % Laguerre fdter pole (mask) 
% forget=l; % forgetting factor in the recursive least algorithm (mask) 

b=l+n+n+n*n; % the number of states 

if flag == 0 

% Initial conditions: 

% c=zeros(l,n); % Laguerre model coefficients 
% l=[zeros(l,n)]'; % Laguerre model states 

p=1000*eye(n); % error covariance matrix 

sys=[0,b,(n+l),2,0,2]; % size information 
xO=[zeros((n+n+l),l); p(:)]; 

elseif flag ==2 
% RLS Laguerre coefficient estimation 
z=u'; 
c=[x(2:(n+l))]'; l=x((n+2):(n+n+l)); p=reshape(x((n+n+2):b),n,n); 
[c, 1, p] = lagu_rls(z,c,l,p,a,forget); 
y=c*l; 
x=[y; c'; 1; p(:)]; 
sys=x; 

elseif flag ==3 
% Output and Laguerre coefficients 
sys=[x(l:(n+l))]; 

else 
% Otherwise, no need to return anything 
sys=[]; 

end 
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Program 2 

%%% GPC control using Laguerre model %%% 

<y0~ *~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~* ~% 

function [sys, xO]=slaguc(t,x,u,flag,n, a, forget) 
% Parameters 
% n=12; % the order of Laguerre model (mask) 
% a=0.942; % Laguerre filter pole (mask) 
% forget=l; % forgetting factor in the recursive least algorithm (mask) 

nl=80; n2=100; % Minimum and maximum output horizon 
% nu=l; % Control horizon 
% beta=0.1; % control increment weighting 

nn=[80,100,l,0.1]; % GPC tuning parameters 
pyr % Program for reference trajectory 

c=[1.8951 6.3968 2.4267 -1.1200 1.0462 2.0494 -2.7392 4.9367 -4.2792 3.7254 -2.0496 1.2049]; 
% Laguerre coefficients 

b=l+n+l; % the number of states 

if flag == 0 

% Initial conditions: 
sys=[0,b,2,2,0,2]; % size information 
x0=[zeros((n+2),l)]; % initial states 

elseif flag ==2 
z=u'; % S function inputs 

% GPC control signal 
[U,l]=lagu_gpc(a,c, yr((t+nl):(t+n2))',[z(l) z(2)],x(2:(n+l)),nn); % GPC control 
y=c*l; 

% Return states 
x=[y; 1; U]; 
sys=x; 

elseif flag ==3 
% Output and control signal 

sys=[x(l);x(b)]; 
else 

% Otherwise, no need to return anything 
sys=[]; 

end; 
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Program 3 

% % % Adaptive GPC control using Laguerre model % % % 

function [sys, xO]=slaguc(t,x,u,flag,n, a, forget) 

% Parameters 
% n=12; % the order of Laguerre model (mask) 
% a=0.942; % Laguerre filter pole (mask) 
% forget=l; % forgetting factor in the recursive least algorithm (mask) 

nl=60; n2=100; % Minimum and maximum output horizon 
% nu=l; % Control horizon 
% beta=0.1; % control increment weighting 

nn=[60,100,l,0.1]; % GPC tuning parameters 
pyr % Program for reference trajectory 
b=l+n+n+n+n*n+l; % the number of states 

if flag == 0 
% Initial conditions: 

p=1000*eye(n); % error covariance matrix 
sys=[0,b,2,2,0,2]; % size information 
xO=[zeros((n+n+n+l),l); p(:);0.2368]; % initial states 

elseif flag ==2 
% RLS Laguerre coefficient estimation 

z=u'; % S function inputs 
c=[x(2:(n+l))]'; l=x((n+2):(n+n+l)); p=reshape(x((n+n+n+2):(b-l)),n,n); 
[c, 1, p] = lagu_rls(z,c,l,p,a,forget); 
y=c*l; 

% GPC control signal 
[U,dl]=lagu_gpc(a,c,yr((t+nl):(t+n2))',[z(l) z(2)],x((2*n+2):(3*n+l)),nn); % GPC control 

% Return states 
x=[y; c'; 1; dl; p(:); U]; 
sys=x; 

elseif flag ==3 
% Output and control signal 

sys=[x(l);x(b)]; 

else 
% Otherwise, no need to return anything 

sys=[]; 
end; 
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