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Abstract

This thesis deals with the modeling of the human jaw system. The model is a

computer model in which the nine pairs of facial muscles and the jaw itself are

represented. The study leading up to the model includes expressive Object-Oriented

Programming (OOP) to encode the computer model. Different components in the jaw

system are defined as objects and used as building blocks of the system. Although the

studies in the thesis are confined to the human jaw system, various components of the

model are designed to permit continuous modification. Direct measurements of

muscles’ activities are always invasive, or even impossible to measure. A dynamic

simulation model offers research workers a frame to improve the concept of the

matters involved before measurements are made. Lastly, a jaw model can/may gives

insight into how patients will recover from facial and muscle injuries.

Studies of the behavior of other biological systems have been made to discover

methods in which an artificial neural network (ANN) may contribute solutions to the

dynamic control problem. Some useful results have been obtained which may indicate

how ANN could be incorporated in the dynamic jaw model of the future.

The work is interdisciplinary involving the following fields: dynamic behavior of

muscle; dynamic behavior of biological system; mechanical system simulation; and ANN.
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Chapter 1

Introduction

Muscles are biological machines that convert signals from the nervous system

into chemical energy, force and mechanical work; it is only by the use of muscles that

we are able to act on our environment -- to exert forces and to manipulate objects.

Although there are computer simulation models [A4, A61 which define the properties

of a single muscle and which use data collected from devices which record kinetics of

human motion, few of them [A3, B14, B16] are capable of describing the dynamics of

skeletal muscles that provide the internal force responsible for the movement of the

body. The thesis deals with the design of a dynamic computer simulation model of a

complex musculoskeletal system, the human jaw, for the use in the oral biology field.

Different units in the simulation model are modular enough to allow its modification

and reuse. Thus, it can be easily converted to model other musculoskeletal systems.

Studies of biological systems have shown new possible uses of artificial neural

networks. The central nervous system (CNS) of living animals is the most flexible

controller. The thesis will demonstrate how to provide control with neural networks

without using the conventional control theory. Neural Networks offer new

alternatives of approaching problems in dynamic control, but do not replace the

conventional methods. In addition, a new method, Error-Adjusting Networks, is found

to improve the performance of neural networks.

Components of the project involve the following fields: dynamic behavior of

muscle and the biological systems, mechanical system simulation, and artficial
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neural networks. The following sections in this chapter define the terms -- system and

model. Terms used in modeling are also stated. Existing simulation models and the

outline of the thesis are presented next. The last section of this chapter provides

information about computer hardware and software aspects of the project.

1.11 System and Model

In this section we will briefly discuss some essential concepts that are closely

connected to the modeling and simulation approach. Terms discussed here will be

used throughout the thesis.

A system is an arrangement of units that function together to achieve a certain

goal. A system may be composed of one or more subsystems which consist again of

some sub subsystems, and so on. Every system interacts with its environment through

inputs and outputs. Inputs have their origins outside the system and are not directly

dependent on what happens in the system. Outputs, on the other hand, are generated

by the system and interact with the environment. Elements which are necessary to

outline the states of the system are defined as attributes (parameters and variables).

Any process which changes the attributes of a system represents an action. All

existing systems change with time, but when the rates of change are significant,

systems are called dynamic systems. Their maifl feature is that their output at any

instant depends on their history and not just on the current input. An experiment is

the process of extracting data (outputs) from a system by testing the system with

various inputs.

A model contains only essential aspects of an existing system or a system

which we want to build, and the model can substitute the system to conduct an
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experiment (Figure 1.1). This definition does not imply that a model is a computer

program. A simulation is an experiment performed on a model.

Input Output

Figure 1.1
System and Model

The internal structure of the system and the initial state are usually known.

With a complete system or model, we can perform one or both of the following

operations:

1. When all inputs are known as functions over time, the task of the experiment is

to determine the response of the system from its outputs. This problem is called

the direct problem.

2. A second type of problem is where there is a set of desired outputs, and the goal

is to solve for the unknown inputs. This is referred to as the inverse problem.

The areas of inverse kinematics and automatic control in the robotics field are

good examples.

1.21 Existing Simulation Models

Although there are many muscle contraction models [A3, B14, B 161, they are

usually limited by one or both of the following factors. First, they are designed to

work as individual muscles instead of showing coordinate muscular actions that occur
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in everyday acts such as raising the arm or chewing. Indeed, very few models have

been developed to study integrated force from several different muscles. Second, they

generally represent isometric contraction, in which muscle contracts without a change

in length. However, despite these limitations, many existing models have produced

realistic simulation results.

1.3 Applications

Computer simulation models that describe the dynamic behavior of the

musculoskeletal system are very rare. For this reason, any new model offers several

possibilities:

1. Transplantation of muscle attachment sites is not an unusual procedure in clinical

settings. Changes in muscular function that are produced by skeletal abnormality

or surgical corrections of abnormalities also occur. Hence, a dynamic simulation

model which can be flexibly altered will give insight into how patients adapt to

disorders, and how they might respond to surgical intervention.

2. Muscles are the interface between the CNS and the skeletal system. An

understanding of the interface allows engineers to design prosthetic

neuromuscular stimulation systems to restore lost or impaired motor function.

3. Direct measurements of muscle activity in living human beings are always

invasive. Muscle activities that are located deep inside the human body may be

impossible to measure. Measurement results are sometimes based on subjective

estimates of muscle activities, and therefore, can be misleading. A dynamic

simulation model can be used as a control against which to compare physiological

recordings.
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4. Study of artificial neural networks and methods to increase their performance may

provide a possible general structure of automatic control, and can be compared

with existing conceptualizations of nervous control systems in the CNS.

1.4) Thesis Outline

In Chapter 2, the study starts by defining a simulation model for the muscle,

emphasizing how it contributes to the movement of the musculoskeletal system as it is

attached to bone. The model is a simplified version of the real muscle but retains the

essential factors to describe the biological behaviors of muscle. Hill is well known for

pioneering work in muscle modeling, and the model reviewed and developed here is

based on a Hill-type model. We will concentrate on the basic mechanical structure of

a muscle and how its characteristics contribute to a musculoskeletal system. The way

in which muscle utilizes energy sources, the way it produces heat, and the natures of

the proteins that generate the force are our concern here. The human jaw system,

the existing simulation models and the basic structure of our new model will also be

discussed in this chapter.

Chapter 3 introduces the concept of object-oriented programming (OOP).

OOP allows one to program in the same way that one understands our world. One

major focus of the project is to use of OOP’s “expressive” power to model a complex

mechanical system -- the human jaw. OOP is an abstract concept. In order to explain

the concept clearly, a casual but adequate definition of OOP will be used instead of

stating all the formal terminology of OOP. Efforts have been made to keep the

discussions short and precise. Accuracy of the numerical approximation technique use

in the project, and other run-time considerations are also discussed.
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In Chapter 4, parameters used in the muscle model and the nerve impulses that

feed into the muscle model are discussed. This chapter will utilize the conclusions of

Chapter 2 and 3 to design a possible simulation structure for the jaw system.

Chapter 5 reports the simulation results, and the results are compared with

known values of human mastication. As we will see, the simulation results imply some

new hypotheses of movement in the musculoskeletal system.

Chapter 6 addresses neural networks, and the possible structure of neural

network for dynamic control. A neural network is an engineered computational

system modeled after or inspired by the learning abilities and parallelism of biological

nervous systems. Neural networks are not programmed; they learn by example.

Typically, a neural network is presented with a training set consisting of a group of

examples (inputs and outputs) from which the network can learn. In response to this,

the neural network compares its outputs to the standard outputs and adjusts the value

of its internal weights. Usually the set of training examples is presented many times

during training to allow the network to adjust its internal parameters gradually. The

major use of a neural network is to classify different input patterns. However, by

neural network for control we mean neural network that goes beyond classifying their

input signals to influencing them.

Concluding remarks in Chapter 7 include current limitations of the model and

suggestions for possible future directions for the project. The possible future uses of

the model with abnormal muscles and jaw configurations are discussed.
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1.5) Considerations of Hardware and Software Platform

The computer simulation model is designed to be a stand-alone executable

program that can be run on IBM PCs or compatibles. The simulation model is also

designed for use as a teaching tool in the oral biology field, therefore, a portable

executable program that can run on PCs would be of great convenience.

As the simulation model is tested with object-oriented language syntax to ease

complex system modeling, an object-oriented language is chosen for our purpose.

C++ is found to be adequate because it is highly portable and powerful [D2, D3].

Borland C++ 3.1 is chosen from all the compilers available for its excellent integrated

development environment and debugging tools.
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Chapter 2

Muscle Mechanics and the Human Jaw System

Muscles and tendons are the interface between the CNS and the linked body

segments. An understanding of the properties of this interface is important to

scientists who interpret kinesiological events in the context of coordination of the

body. Study of the musculoskeletal system with computer simulation models was not

common until recently, and most studies have been based on biological measurements

made in the past few decades. We start with summarizing the consequences of

biological measurements as it is the basic of all the studies of biological movement.

2.1) Methods of Studying the Actions of Muscles

Human motions and muscle properties have been studied extensively in the

past few decades, and methods of studying them are briefly summarized below:

1. Anatomical -- Dissection is used to study the location and attachments of a

muscle and its relation to the joint it spans. This method provides a basis for

visualizing the muscle’s potential movements. Histological examination provides

details of muscle fiber and tendon composition, often assisted by differential

staining or labeling to reveal different fiber properties.

2. Physiological

• Direct measurement of muscle length and tension changes are possible in

animal preparations or in excised muscle tissue.
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• Electrical activity can be recorded directly from muscles, and part of muscles,

in experimental animals and living human subjects. Electromyography (EMG) is

based upon the fact that a muscle generates electrical impulses when it contracts,

and EMG is a technique of recording such impulses or action potentials. Surface

or needle electrodes are placed close to the target muscle to do the

measurement. EMG measures muscle activities during reflex and voluntary

functions.

• The properties of groups of muscles can often be inferred indirectly by

recording the displacement of bone, (e.g. limbs or jaw movement) or the forces

generated at some target site.

3. Physical Model -- Elastic elements such as springs are fixed to the bones of a

skeleton in such a way as to represent muscles. Tensions that develop in the

springs and changes in their lengths can be demonstrated by moving the skeleton

system manually, or by adjusting individual spring lengths.

Besides their contributions to the biological field, conventional measurement

methods often fail to reveal correlated events in human living tissues, and limited

numbers of subjects are available for experimental purposes. The requirement of

expensive equipment is another factor that forbids direct measurement. In comparison,

computer models can be an alternative to measurement methods using today’s

inexpensive computing power from PCs. Applications of the new models discussed in

Chapter 1 are also new possibilities that are not possible with current measurement

methods.
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2.21 The Hill-Type Muscle Model

Different models of muscle have been defined mathematically, and used to

estimate muscle forces during different motor tasks. Most of the latest models of

muscle are based on the microscopic properties of the muscle tissue. However, the

“black-box” approach (a model which only needs to be based on an input-output [I/O]

description of the tissue) is more appropriate for our purpose. The selection is

justified because our goal is to study the integrated force from a few different muscles

instead of determining how different microscopic tissues make up the muscle force.

The Hill model [A4, A6] (Figure 2. la) has withstood the test of time and is

chosen as our base model.

Origin

Muscle
Fibre

Dashport Parallel
Element Elastic

Element

Tend on

Insertion

Figure 2.la Figure 2.lb
The Hill-Type Muscle Model The Fusiform Muscle

The model comprises of a contractile element as a pure force generator (the

active state) in parallel with a dashpot element. The contractile proteins in muscle cell

that convert chemical energy into force and mechanical work make up the active

state. Since muscle contains a considerable amount of water, viscosity of water

Series
Elastic
Element
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accounts for the viscous property of the dashpot element. While the muscle tendon

makes up the series elastic component, the parallel elastic component resides in the

muscle cell membrane, the connective tissue surrounding the muscle fibers, and the

protein filaments that produce the contractile force. Together the parallel and series

elastic components account for the passive tension properties of muscle [A4].

Historically, anatomy texts designated attachments of the two ends of a muscle

as “origin” and “insertion.” The origin is usually characterized by stability and

closeness of the muscle fibers to the bone. The insertion, on the other hand,

frequently involves a relatively long tendon, and the bone into which the muscle’s

tendon inserts is usually the one that moves. A long tendon help prevents injury to the

muscle during movement.

Figure 2. lb illustrates a fusiform-shaped muscle. This shape is characterized by

its rounded muscle and gradual lessening width at either end. This is what people

commonly perceive as the general shape of muscle. However, different structural

forms of muscle exist, and we will study them when we reveal the musculoskeletal

structure of the human jaw.

Before we look into the mathematical model of the muscle, the next section

explains different types of contraction. This helps to explain the functional properties

of muscle.

2.3) Type of Contraction

Although to contract literally means to “draw together” or to shorten, muscle

contraction may exist when the muscle is shortening, remaining the same length, or

11



lengthening. A muscle contraction occurs whenever the muscle fibers generate tension

in themselves. The followings reveal the three most common types of contraction.

Concentric Contraction - Concentric (toward the middle) contraction occurs

when the tension generated by the muscle is sufficient to overcome a resistance

and to move the body segment of one attachment toward the segment of its

counterpart. The muscle shortens and, when one end is stabilized, the other pulls

the bone to which it is attached and turns it about the joint axis. Usually, the

muscle that undergoes a concentric contraction is directly responsible for

effecting a movement and is classified as the agonist muscle, and muscles that

cause the opposite movement from that of agonist are defined as the antagonist.

2. Isometric Contraction - Isometric means “equal length.” In isometric

contraction, external resistance is equal to the internal force developed by the

muscle, and there is no external movement. There are two different conditions

under which isometric contraction is likely to occur. First, muscles that are

antagonistic to each other contract with equal strength, thus balancing or

counteracting each other. The part affected is held tensely in place without

moving. Tensing the biceps to show off its bulge is an example of this.

Furthermore, a muscle is held in either partial or maximal contraction against

another force, such as the pull of gravity or an external mechanical or muscular

force. Holding a book with outstretched arm and attempting to move an object

that is too heavy to move are good examples. Muscle undergoes isometric

contraction can be afixator, stabilizer or supporting muscle.

3. Eccentric Contraction - When a muscle slowly lengthens as it gives in to an

external force that is greater than the contractile force it is exerting, it is in

12



eccentric (away from the middle) contraction. In most instances in which

muscles contract eccentricity, the muscles are acting as “brake” or resistive force

against the moving force of gravity or other external forces.

2.4 The Mathematical Model

In order to work interactively with other components of a musculoskeletal

system, several things have been disregarded in our base muscle model. The muscle

model needs an interface to the outer environment. In a real muscle, the active state is

activated by nerve impulses from the CNS. While specialized sensor receptors known

as muscle spindles within many muscles detect change of length and rate of change of

length of the muscle, other receptors known as Goigi Tendon Organs in tendon detect

the tension in the muscle [A2]. Figure 2.2 shows the model with the interfaces

together with the variables needed to define the mathematical model.

All, Ii’
a
T

nerve ending

Ii

12
k2

Figure 2.2
The Simulation Model of Hill-Type Muscle
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2.4.11 The Simulation Model

In order to model the muscle system for simulation, we start by identifying

subsystems that can be moved independently. We now cut the system open at the

interfaces between the subsystems. The openings at both ends are replaced by two

forces equivalent to the force act between the subsystems. These two “internal forces”

are always of the same size but of opposite in directions [Cl]. In our case, the muscle

system can be cut between the tendon (series elastic element) and muscle fibers

(active state, dash pot and parallel elastic element). The muscle system can be

described with the following equations:

The reaction force on tendon:
6

14

Figure 2.3
Series Elastic Element

k2Al2=T (2.1)

The reaction force on active state, dash pot and parallel elastic element:

Figure 2.4
Force Generator, Dash Pot and Parallel Elastic Element
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B4’+k1Al1+F(a)=T . (2.2)

,,
T—F(a)—k1Ai1

B
(2.3)

(Note: if M <0, then kM = 0.)

Equations (2.1) and (2.3) define the internal behaviors of a muscle and will be used as

the basis to define our simulation model of muscle in Chapter 3.

2.4.2) The Musculoskeletal System

Up to this point, we have discussed the internal behavior of the muscle. In this

section, we will go through the mechanical behavior of a single muscle in a

musculoskeletal system. The basic idea is illustrated by Figure 2.3.

(x,

Figure 2.5
A Simple Musculoskeletal System

Resultant muscle force in the x and y-direction:

T = T
(x0

—

x1)
(2.4)

(x0 —x1)2+(y0—y)2

T=T. oyj) (2.5)
(x0—x1)2+(y —y)2

15



Torque (r) due to the muscle force:

r=T(x1—x)—T(y1—y) (2.6)

T, T and r can be solved with simple trigonometric arithmetic, however, the

above equations can generate faster code. Although the above illustrates a

configuration of two dimensions, it is implemented with a three-dimensional design in

the simulation model.

2.5) The Human Jaw System

The jaw is one of the most complicated single moving parts in the human

musculoskeletal system. The jaw consists of the jaw bone with at least nine symmetric

pairs of muscles pulling at different angles, and with different strengths on each side

of the jaw [B 12, B 131. Figure 2.6a and 2.6b show simplified lateral and frontal views

of the musculoskeletal structure of the jaw. Small circles in Figure 2.6a and Figure

2.6b indicate the mandibular insertions of the muscles.

The system was modeled within a triaxial coordinate system centered on the

right mandibular condyle. Figure 2.7 shows the reference system used by the model.

The z-axis lays on the intercondylar axis, the x-axis runs parallel to the dental occlusal

plane, and the y-axis is orthogonal to both. Coordinates describing the relative

positions of vectors representing 18 principal jaw muscles, mandibular condyles and

bite points are obtained from previously published data [B7, B14]. The nine muscles

(or parts of muscles) on each side include the anterior, middle and posterior

temporalis, the supeificial and deep masseter, the medial pterygoid, the superior and

inferior lateral pterygoid, and the digastric muscle. The attachment of the digastric

muscle to the hyoid bone is fixed in space in our model.
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Lateral View of The Human Jaw

Figure 2.6a
Sm superficial masseter, dm = deep masseter, mp = medial pterygoid,
at = ant. temporalis, mt = medial temporalis, pt = posterior temporalis,

ip = inf. head lateral pterygoid, sp = sup. head lateral pterygoid, dg digastric.

Figure 2.6b

Small circles show the insertion ends of the muscles in the jaw system.

ml

Front View of The Human Jaw
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Reference System used by The Model

V

Figure 2.7
The figure illustrates the reference system
and arrows indicate the positive quadrant.

Table 2. la and 2. lb show the physiological and anatomical parameters for

each muscle group. (x0, Yo’ z0) is the coordinate of the maxillary origin and (xj, Yi’

z) is the coordinate of the mandibular insertion. The first column contains

abbreviations of muscles’ names. Each muscle is assigned a specific cross-sectional

area, and a constant of 40 N/cm2 is then used to determine its maximum possible

tension [B7, B 14]. MAXF is the maximum possible contractile force of the muscle

and is summarized in Table 2.la and 2.lb.

Table 2.2 shows the coordinates of a complete set of lower teeth. The

mandible’s mass was assumed to be bOg, and the center of gravity is located at

(0.04981, -0.048673, 0.045425). The moment of interia of the jaw is 6.O84e4kgm2

when it rotates along the intercondylar axis. These parameters were estimated from a

dry human specimen. All the coordinates refer to a normal closed jaw and the

measurements are in standard SI units (meters and Newtons).

z

x
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Muscle Attachment Coordinates

MAXF x0 y0 z0 x1 y z1

rsm 190.4 0.041501 -0.005996 -0.00885 0.015616 -0.048498 0.001675

rdm 81.6 0.017225 0.003167 -0.01245 0.024356 -0.01724 0.001625

rmp 174.8 0.025997 -0.015502 0.025275 0.007963 -0.045255 0.00595

rat 158.0 0.043005 0.041557 -0.0031 0.029027 -0.031155 0.00805

rmt 95.6 0.006519 0.057006 -0.01435 0.033807 -0.001944 0.000425

rpt 75.6 -0.02942 0.042005 -0.0161 0.03354 -0.002092 0.000275

rip 66.9 0.026238 -0.011053 0.0230 0.002947 -0.00305 0.003025

rsp 28.7 0.022312 0.001099 0.022775 0.003818 0.000931 0.0011

rdg 40.0 0.037259 -0.076011 0.0337 0.069928 -0.071325 0.0420

Table 2.la

MAXF x0 y0 z0 x1 Yj

ism 190.4 0.041501 -0.005996 0.0997 0,015616 -0.048498 0.089175

1dm 81.6 0.017225 0.003167 0.1033 0,024356 -0.01724 0.089225

imp 174.8 0.025997 -0.015502 0.065575 0.007963 -0.045255 0.0849

lat 158.0 0.043005 0.041557 0.09395 0.029027 -0,031155 0.0828

lmt 95.6 0.006519 0.057006 0.1052 0.033807 -0.001944 0.090425

ipt 75.6 -0,02942 0.042005 0,10695 0.03354 -0.002092 0,090575

lip 66.9 0.026238 -0.011053 0.06785 0.002947 -0.00305 0.087825

isp 28.7 0.022312 0.001099 0.068075 0.003818 0.000931 0.08975

ldg 40.0 0.037259 -0.076011 0.05715 0.069928 -0.071325 0.049

Table 2.lb

Tooth and Joint Coordinates

Left Right

Xm Ym Xm Z

condyle 0 0 0 0 0 0.09085

incisor 0.084058 -0.042117 0.045425 0.084058 -0.042117 0.045425

incisor 0.08302 -0.041706 0.0417 0.08302 -0.041706 0.04915

canine 0.079744 -0.040834 0.036425 0.079744 -0.040834 0.054425

premolar 0,073044 -0.040482 0.030975 0,073044 -0.040482 0.059875

premolar 0.06763 -0.040089 0.028025 0.06763 -0.040089 0.062825

molar 0.061696 -0.039867 0.02585 0.061696 -0.039867 0.065

molar 0,050855 -0.038728 0.023325 0,050855 -0.038728 0.067525

molar 0.041741 -0,037669 0.0199 0.041741 -0,037669 0.07095

Table 2.2
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Jaw muscles are usually flat and located close to each other. Some are located

deep to the mandible. The temporalis, masseter and medial pterygoid muscles are

multipennate. That is they contain multiple, interleaved flat intramuscular tendon

sheets to which muscle fibers insert obliquely. This close fiber packing is believed to

impart greater fiber density in a minimum space. Figure 2.8 shows that pt, mt, and at

actually belong to one single muscle whose fibers radiate from a narrow attachment at

one end to a broad attachment at the other. Studies have shown that the line of

actions of this muscle can be separated into three different parts as defined. (Muscles

of this form are generally described as fan-shaped.) Partitioning also occurs in the

masseter and lateral pterygoid muscles. The lines in the Figure 2.6a and 2.6b indicate

the lines of action rather than the anatomical shapes of various muscles.

Figure 2.8
Although the temporalis is a single muscle,

the lines of actions show that the muscle can be
considered as three separated parts as defined.

The anatomical and functional complexities of the human masticatory system

make it difficult to explain how muscles move the lower jaw and develop forces

between the teeth, how the jaw’s articulation works, and how growth, deviations in

The Temporalis
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form, and surgical or prosthetic treatment alter this process. While it is possible to

measure many aspects of structure and function in living subjects, for example by

imaging, electromyographic samplings, bite force recording and jaw tracking, and to

shape behavior by defining voluntary tasks [B13j, many important aspects of

musculoskeletal function cannot be assessed because the methods used to study them

are either impractical or invasive. Extrapolation of information drawn from non

human sources, an alternative approach, is unfortunately of limited value due to major

inter-species differences in the face and jaws. The problem is compounded by

variation in most human populations, which often makes it difficult to develop simple,

working hypotheses to explain experimental observations. Increasingly, emphasis has

been placed on computer models for this purpose.

2.6 Static Equilibrium Jaw Models

Static jaw models assume that the jaw is closed. Here the goal is to develop a

bite force at a given bite point, and It follows from the linear algebra that six

equations for static equilibrium of a rigid body have to be solved. However, there is

no unique solution because the six equations contain more than six unknowns. The

jaw system is a fail-safe system and this is responsible for the extra unknowns.

The idea of ‘cost’ is then introduced. Different costs are assigned to different

muscles and joint forces, and the total cost of using the muscles and joint forces is

defined as follow:

Total cost = (muscle force * cost of muscle force)
+ >(joint force * cost ofjoint force)
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The objective is to find the pattern of muscle tensions that minimizes the total cost.

The ‘cost’ technique is widely used in other static models of different musculoskeletal

systems. Details of a typical static jaw model can be found in [B141.

These simulations of jaw mechanics with static equilibrium theory are useful.

The jaw muscles are often active in the isometric state during symmetric and

asymmetric biting and clenching, and models can provide insights that are otherwise

unavailable. The expression of interactions between structure and function, including

variables such as muscle activation, muscle tension, tooth and joint forces, can be

developed with formal physical principles, and the models then become working

hypotheses. They can predict results which are often testable. However, as mentioned

earlier, a muscle driven dynamic model can offer a whole new dimension as compared

to the ‘cost’ model.

2.7) Structure of The Dynamic Jaw Model

Few, if any, models have been developed to simulate the biology of jaw

dynamics, The most sophisticated was the jaw model of a rat [B 17], but the model

was not based on formal physical principles.

As jaw is very complex, a few assumptions are necessary to make the jaw

system feasible enough to model dynamically. The jaw model is a reduced version of

the real thing, but still adequate to provide useful information.

The temporalis muscles are the largest jaw muscles in carnivores, and provide

a large cutting force at the molars. The cutting action is mainly an up-down

movement of the jaw. On the other hand, temporalis muscles are of relatively little use

to herbivores. Temporalis in herbivores is small. They use their premolar and molar
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teeth for grinding their food. The strong pterygoideus muscles in herbivores provide

this side-to-side movement. Humans are omnivorous; we need both the cutting forces

from the temporalis and grinding force from the pterygoideus. However, as stated in

Table 2.1, temporalis are stronger than the pterygoideus in human. Figure 2.9 is an

example of the frontal view of the jaw movement in a normal chewing cycle measured

from the first incisor [B12]. The figure shows that magnitude of the up-down

movement in the human jaw is about 3.25 times greater than that of the lateral

movements. Therefore, the model will be concentrated on the up-down motion of the

jaw as it is the major movement of a chewing cycle. A model that can describe both

the vertical and lateral movement at the same time would be excellent, but the motion

according to the two joints of the jaw makes it extremely difficult to model. In fact,

the vertical motion can reveal some of the most important information in the human

jaw system.

Figure 2.9
Measured at the lower central incisor teeth.

Unit is in (mm).

The up-down motion is not a pure rotation motion; the condylar heads of the

lower jaw slide outward as it opens. Condylar guidance was simulated by providing a

Frontal View of The Movement of The Mandible
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— v+ Torque_due_to_CG

I

The position of the first incisor is regarded as the first output of the computer

model; it has often been used as the reference point to measure the motion of the jaw.

In addition, changes of muscle length and tension are also valuable outputs. Most

useful of all is the joint force as output. This is not measurable in living humans.

frictionless constraint along a line angled at 30 degrees to the horizontal reference

plane. Linear motion of the condylar center point was confined to this line. An

unlimited sliding surface to the joint was provided in order to determine the extent to

which condylar positioning could be controlled by muscle action alone. This is

indicated in Figure 2.10. All muscular arrangements are expressed in three-

dimensions.

Figure 2.10
The Jaw Model

Assume that the mass of the jaw is m, and the moment of interia is I. The

translational and angular acceleration (a and 0”) of the jaw are simply defined as

follows:

dl’ ET cos30° —(YT +rng)cos6o°
(2.7)

di m

(2.8)
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Midline chewing on a fixed food bolus in the first molar region is simulated.

During simulated chewing, the “food bolus” is introduced by placing a constant force

of 75N on the first molar bite point. The reaction force is effected on the first molar

as it is the most common bite point, and 75N is well within the range expected during

mastication. When the jaw makes contact with the bolus, the direction of the reaction

force from the bolus is defined perpendicular to the line formed by the first and

second molars. This reaction force remained at the same angle to the bite point

irrespective of jaw position, and had to be overcome by muscle action for the jaw to

return to its initial starting position, defined as dental intercuspation, The “bolus” is

injected when the first molar bite point is 3mm from its initial, starting position during

closing, and is removed when the opening cycle started. Figure 2.11 illustrates the

arrangement of the bolus.

Figure 2.9
The Artificial Bolus

molar first

molar
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Chapter 3

Object Oriented Programming (OOP)

There is an extensive use of the object-oriented technology in the computer

industry recently. Although the new technology can be implemented in many different

areas (operating system and environment, computer hardware, etc.), the discussion

here will be concentrated on object-oriented programming (OOP). Because object-

oriented design is a relatively young practice, it may mean different things to different

people. Therefore, the materials that follow will be based on a few different references

[Dl, D2, D3] and my personal experience of using object-oriented programming.

Although researchers claim that one of the main advantages of using OOP is to

allow people to program the same way we understand our world, newcomers to OOP

usually find the new concept difficult to learn (especially those who are already

familiar with structured programming). Discussions are kept to be short and precise;

main ideas will be illustrated with diagrams.

3.fl The Evolution of Prorammin2 Style

The programming community has seen different programming techniques come

and go in its 40-year life span. The discussion will start with the review of the earlier

programming styles then to our main subject -- OOP. A review of earlier styles is

necessary to show how different styles decompose problems.
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3.1.fl Chaos and Functional Prorammin2

The earliest of programming styles is best described as chaos programming

that has little organization either physically or logically, with jump and go-to

commands sprinkled liberally throughout.

Functional Programming is the first major improvement over the chaos style,

originally introduced as a way to reuse repetitive code. The most popular functional

programming languages are FORTRAN and COBOL, In Figure 3.1, we see the

topology of functional programming languages.

Data

Subprograms

Figure 3.1
Functional Programming

Applications written in these languages exhibit a relatively flat physical structure,

consisting only of global data and subprograms. The arrows in this figure indicate

dependencies of the subprograms on various data. During design, one can logically

separate different kinds of data from one another, but there is little in these languages

that can enforce these design decisions. An error in one part of a program can have a

destructive effect across the rest of the system, because the global data structures are

exposed for all subprograms to see.

3.1.21 Structured Proprammin and Data Abstraction

In structured programming, the program is broken up into individual

procedures that perform discrete tasks in a larger, more complex process. These
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procedures are kept independent of each other, and each with its own logic.

Information is passed between procedures using parameters, and procedures can have

local data that cannot be accessed outside the procedure’s scope. Procedures can be

thought of as miniature programs that are put together to build an application.

A powerful concept was introduced with structured programming: abstraction.

Abstraction could be defined as the ability to look at something without being

concerned with its internal details. In a structured program, it is sufficient to know

that a given procedure performs a specific task. As long as the procedure is reliable, it

can be used without having to know how it completes its function. This is known as

functional abstraction.

Although structured programmers were supposed to pass all data into and out

through arguments, without powerful data structures this was often not possible. With

data abstraction, data elements could be bundled together into more easily identified

structures (Pascal calls these RECORDs; C calls them structs). Data abstraction

does for data what functional abstraction does for operations.

For larger programs, logically related subprograms are grouped together to

form modules. The overall goal of the decomposition into modules is the reduction of

software cost by allowing modules to be designed and revised independently. It

should be possible to change the implementation of one module without knowledge of

the implementation of other modules and without affecting the behavior of other

modules.

Although modules are used to group logically related operations, the same

data structures may be used in a few different modules as the arrows indicate. Figure

3.2 illustrates the topology of this style. As program grows in size, data types are
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processed in many procedures within different modules. When changes occur in those

data types, modifications must be made to every location that acts on those data types

within the program. This can be a frustrating and time-consuming task in programs

that contain thousands of lines of code and hundreds of functions.

Defined Data
Structures

Modules
(make up of logically
related subprograms)

Figure 3.2
Structured Programming and Data Abstraction

What will happen if only one module will act on a single data structure? The

following sections will answer this question.

3.1.3) Object Oriented Programming

While structured programming decomposes the problem into a set of

operations, and modules are used to group logically related operations, OOP requires

a different way of thinking about decomposition. The fundamental change is that an

object-oriented program is designed around the data being operated upon, rather than

upon the operations themselves. The next few sections will explain the above

statement in more details. A definition of ‘object’ will also be given, followed by the

terminology.

3.1.3.1) The World According to Objects

We experience our world largely as a vast collection of discrete objects, acting

and reacting in a shared environment. An object in the real world can be simply
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defined as something that can be identified and felt. Identity is the property of an

object which distinguishes it from all other objects. The object should have a way of

interacting with others in order to be felt, and behaviors are how an object acts and

reacts to the outer environment. In addition, the states of an object record all the

static and dynamic properties of the object, and states of an object can only be altered

by its behaviors [Dl]. Message passing to other objects is common behaviors of an

object. Figure 3.3 illustrates the above ideas of an object:

r Iden.Ifly

BehcMors

Figure 3.3
An Object

Consider a pop machine that dispenses soft drinks (i.e., the object’s identity is

a pop machine). The interface of this object consist of a slot for feed in of coins, a few

buttons for user to make selection, and an opening for the emerges of drinks. The pop

machine is usually in a state of “not ready for selection.” However, the state changes

to “ready for selection” after the right amount of coins are fed in. The total quantity of

coins and number of pops the machine holds also make up the states of the machine.

An object may contain other objects as the pop machine contains pops; it can also

interact with other objects as the pop machine can interact with users.

Figure 3.4 shows a graph (not tree) structure with a few different objects

interact with each other in the world they exist:
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Figure 3.4
Relationships Between Objects

There are three different using relationships possible between objects. ‘A’ is a

server object as it is only operated upon by others. ‘B’ and ‘D’ only operate upon other

objects and are defined as the actor objects. Agent objects can both operate upon

other objects and be operated upon by other objects, and ‘C’ is an agent object.

An object should represent an individual, identifiable item, unit, or entity,

either real or abstract, with well-defined role in the problem domain. As you can see,

almost everything in the world can be described as an object.

3.1.3.2 Class and Object

In OOP, a class is a template that describes both the data structures (states)

and the valid actions (behaviors) for data items. When a data item is declared to be a

member of a class, it is called an object. Assume we have the following C statement;

mt i, j, k;

mt is the class while i, j and k are objects of the mt class. Those functions that

are defined as valid for a class are known as methods (such as +, —, * and / in

integer), and they denote the way in which an object may act and react, and thus

constitute the entire static and dynamics outside view (behaviors) of the object.
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3.1.3.3) Encapsulation Inheritance and Polymorphism

There are three main properties that characterize an OOP language:

encapsulation, inheritance and polymorphism.

Encapsulation is the process of hiding all the details of an object that do not

contribute to its essential characteristics. It focuses on the outside view of an object,

and separates an object’s essential behavior from its implementation. Actually,

encapsulation and abstraction are complementary concepts.

With struct in C, we can define the structure and build specific operations

and these specific operations only to manipulate the defined structure as in what we

do with C++. In another words, it is possible to create objects with C. However, there

is no compulsion in C to enforce this design. In addition, two more properties,

inheritance and polymorphism are required to construct a complete OOP language.

Inheritance is the property that allows you to build new class from one or more

previously defined base classes while possibly redefining or adding new data and

actions. This creates a hierarchy of classes instead of building separated classes with

similar properties. Besides encouraging reuse of existing codes and data structures,

the main idea of inheritance is to capture the way that people classify things. We

constantly relate new concepts to existing ones. We like to conceptualize the world as

a tree-like structure, with successive levels of detail building on earlier

generalizations. This is an efficient method of organizing the world around us.

Traditionally, operations are forced to use different names even they logically

perform similar operations. In order to construct programs in a more natural way,

objects are allowed to respond to the same operation (the “same” here means different
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operations with the same name) with their own unique behavior. This characteristic is

known as polymorphism in OOP.

Although OOP offers many new useful properties, you can use the structured

programming style or even the chaos programming style to program whatever you can

achieve from OOP. In fact, more computer programs have been developed with

structured programming as compared to OOP. However, the advantages of using

OOP are usually smaller codes. Well-defined classes are also much easier to be

understood, maintained, and reused.

The followings show how a complex mechanical system can be decomposed

into simpler objects. Behaviors will be assigned to the objects which make it possible

for different objects function together as a complete system.

3.2) Design and Classification

A structured approach to programming is essential in OOP. In a structured

program, up-front analysis is important to organize the application’s functions

effectively. You can use the same technique to do an object-oriented analysis of a

project. You can’t design classes unless you know the details about how the program’s

data is organized and processed.

In addition, it can require a substantial amount of preliminary work to create

effective class libraries for a particular application. Defining the right set of classes for

an application is critical to the effectiveness of the program. Unfortunately, there is no

exact path to classification, nor the perfect class structure. Booch is well known in the

OOP field and has written an excellent book on object-oriented design and analysis

[Dl].
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To identify classes in the jaw model, however, is quite straight forward. The

system basically consists of the mandible and muscles. The repetitiveness of muscles

in a musculoskeletal system makes them difficult to model with conventional

programming techniques as there are too many variables to be considered at the same

time. This is responsible for the absence of a musculoskeletal system model that is

directly driven by muscles. On the other hand, the ‘repetitiveness’ and ‘similarity’

properties of muscle make them easy to define as a class. As long as the muscle class

is reliable, muscle objects define with this class can be used as building blocks of the

jaw model.

There is only one moving part in the system -- the mandible. It is not a

common practice to construct a class with only one object defining with it. In our

case, however, by defining moving parts as a class makes the programming style more

consistent and easier to cope in the complete model.

One more class is needed to handle continuous system simulation. Instead of

physical existence, a process can also be an object. The following sections will explain

the above designs in more details.

3.3 The Jaw System As An Object

The interface of the jaw system to the outer environment is simple. As an

object, the input to the jaw consists of a bundle of nerves that activate different

muscles in the system, and the useful outputs are the current status of the mandible

and the muscles of the jaw system. This includes the angular and displacement

information of the mandible, and muscles’ tensions. Mathematical details of these

displacements and tensions have already been defined in Section 2.5 and Section 2.8.
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Activation Current

Levels Status of the
Jaw System

Figure 3.5
The Jaw System as An Object

The jaw in turn contains eighteen muscle objects and a mandible object. Each

muscle is defined with the muscle origin, muscle insertion and maximum possible

contractile force in the beginning. The first dynamic input to a muscle should be the

activation level, and outputs are tension and torque on the mandible. In return, the

mandible moves together with the insertion ends of the muscles. Therefore, the

messages pass from the mandible to the muscles are change of insertion end locations.

Figure 3.6 illustrates these relationships. The dynamic behaviors of the muscles and

mandible have been defined in (2.1), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.8). (2.1)

and (2.3) are embedded as the internal behaviors of the muscle object. The results of

using objects are that we can manipulate with the clearly defined interfaces of objects

instead of a whole collection of mathematical equations. Objects can simply be used as

building blocks to construct a complex system.

Li Muscles Tensions,

cha

Torques

insertion End
Locations

Figure 3.6
Relationships Between Muscle Objects and The Jaw Object
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C++ is not a simulation language. Therefore, we have to include our own

dynamic system module. The next section will discuss the concept of digital

continuous simulation systems.

3.4 Digital Continuous Simulation Systems

We usually model dynamic system with a set of ordinary differential equations

(ODEs), in general:

x’(t) = f(t,x(t))

In turn:

x(t)= fx’(t)dt

Whenever we use a digital computer to simulate a continuous-time model (a

set of ODEs), we must discretize the time axis in some way [Cl, C2j. For instance, if

simulation operates with constant independent-variable increments At (calculation

interval), we can discretize the time axis so that differential equations become

difference equations:

x(t + At) — x(t)
= f(t x(t))

At
or

x(t + At) = x(t) + f(t,x(t))At

The discrete event simulation is given by a two-step interation: the first step

consists of the evaluation of all derivatives and the second includes the integration

procedure, which evaluates the state variables for the next calculation interval. This

two-step iteration is usually implemented in simulation systems with two subprograms

(or behaviors in object) -- DERIV and INTEG [C2]. The basic concept of digital

simulation systems is shown in Figure 3.7.
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t DERIV
x(O) derivatives evaluation

x’(t) x(t+At)

INTEG
integration

OUTPUT
results

Figure 3.7
Structure of A Digital Continuous Simulation Systems

During simulation the integration procedure requires many evaluations of state

derivatives (depending on the integration algorithm). In the prescribed time instants

the control is given to the OUTPUT subprogram which supplies the user with

simulation results.

Besides the basic mechanisms of digital continuous simulation system, our jaw

model should not be contained much more than specifying the relationships between

different muscle objects and the mandible object by calling the according DERIV,

1NTEG and OUTPUT behaviors of the objects.

3.5) Numerical Integration Technique

The integration algorithm chosen here is the simple Euler method [C2]:

+ hy,

where n = 0, 1, 2

There are more efficient integration algorithms available. However, the works

here are concentrated on how different features of a complex system can be
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distributed into different objects, and the Euler method is easier to implement for our

purpose.

No matter how good an integration algorithm is, it only gives approximation

values to the true solution. Numerical approximation errors are limitations from the

integration algorithm [C2]. However, a smaller calculation interval can reduce this

error. On the other hand, smaller calculation interval will introduce another error --

the roundoff error. In practice, integration algorithms are implemented by computer

arithmetic with finite precision (number of bits). This leads to the roundoff errors.

Roundoff errors accumulate and become increasingly serious with decreasing

calculation interval, since a smaller interval means more calculation intervals for given

tmax - to. Figure 3.8 shows the relations between the numerical approximation error,

the roundoff error and the total error.

Numerical Integration Error

Error

“
Total Numerical

roximation

Roundoff
—‘ —- Error

Calculation
Interval

Figure 3.8
Total Error = Numerical Approximation Error + Roundoff Error

In Borland C++, there are three type of floating point numbers with different

accuracy. They are float (32 bits, 7-digit precision), double (64 bits, 15-digit

precision) and long double (80 bits, 19-digit precision). The type long
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double is chosen in our simulation to minimize the roundoff error. Difference

calculation intervals have been tested, and a O.Olms calculation interval produces

stable solutions for the simulation model. A smaller interval may produce a better

approximation, but O.Olms is a good compromise for efficiency and accuracy. With

the calculation interval unchanged, the system has been tested by replacing long

double with double and float. There is a big difference between the outcomes

of using long double and float. However, the difference between the results

of using long double and double are insignificant. We can assume that the

roundoff error has been taken care of by the extra precision with double. All

floating point numbers in the model are implemented with long double for better

consistency of solutions.

The model has been tested with different input values, and is believed to

generate reasonable outputs with the above setup. Details of the results can be found

in Chapter 5. Long running time are penalties of using the Euler method; a small

calculation interval and a long floating number are needed for better accuracy. The

program is complied C++ code, and a total simulation time interval of O.5s takes a

486 33MHz PC approximately two minutes to yield the simulation results.
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Chapter 4

Considerations of the Muscular Tendon Parameters

In the last few chapters, we have discussed the mathematical and programming

concerns of the jaw model. The mathematical model is defined and different parts of

the model are clearly organized with objects. However, before we can perform

simulation, the simulation model needs a few more pieces of information. First, as

defined in Section 2.5, constants k1, k2, 1, ij, 12 and B are needed to define a muscle.

Second, we need an input signal, activation level, to activate the muscle. Before we

look into the constants use in the muscle model, a few terms that are used to describe

elasticity are defined in the next section. Different constants that define a muscle and

the activation level will be presented next.

4.1’) Elasticity

When a force acts on a body or material, resisting forces within the body react.

These resisting forces are called stresses. Stress is measured by the force applied per

unit area which produces deformation in a body. The unit of stress is expressed as

N/rn2. Thus:

F
Stress = -

The ratio of length after stress is applied, to original length, is defined as a strain.

Because it is a ratio of length, strain has no dimensions or units.

Al
Strain =
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The numerical relationship between stress and strain was first discovered by

Robert Hooke. Hooke’s Law states that there is a constant or proportional

arithmetical relationship between force and elongation. The modulus of elasticity is

defined as the stress required to produce one unit strain.

F/A Ft
Modulus of elasticity

= / =

The above relationship holds until the elongation reaches a point known as the elastic

limit. The elastic limit is the smallest value of stress required to produce permanent

strain in the body. Below the elastic limit, materials return to their original length

when the deforming force is removed. However, the result of applying a force beyond

the elastic limit is that the stressed material will not return to its original length when

the force is removed. In addition, materials elongate much further for each unit of

force above the elastic limit. Elastic materials in biological systems such as muscles

and tendons are arranged to work in conditions that the tissues always operate below

their elastic limits. Beyond the elastic limit will cause injuries to the tissues [Al].

4.21 Constants that Define a Muscle

Constants k1, k1, 1, l, ‘2 and B are needed to define a muscle. The next section

will define 1, i and 12 which describe the dimension of the muscle, k1, k1 and B that

describe the dynamic behaviors of the muscle will be followed next.

4.2.1) 1 i, and ‘2

Muscles are believed to be under small amount of passive tensions when they

are attached to the skeleton system. If they are removed from the skeleton system, the

muscle length will usually be shortened by almost ten percent as compared to the
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original length. The original length of an uncontracted muscle is defined as the resting

length, and the length of an isolated muscle is defined as the equilibrium length.

To simplify implementation, the muscles in the jaw system are assumed to be

under no tension in a completely closed jaw. The muscle insertion and origin of a

closed jaw define the total length, 1, of the muscle. In fact, the absolute resting lengths

of different muscle are difficult to predict mathematically.

A complete muscle is made up of muscle fibers and muscle tendons. As

defined in Section 2.4, ij is the length of the muscle fibers and 12 is length of the

muscle tendons. Informal measurement indicates that the ratio of the fibers to tendons

is about 5:1, and this ratio is used in every muscle of our model. There is no exact

value for this ratio as there is a fuzzy edge between the muscle fibers and the tendons,

and an exact value is not necessary either. Our concern here is to simulate the general

moving pattern of a jaw pull by a set of muscles, but not the detailed internal

behaviors of specific muscles.

4.2.21k1d2 and B

k1, k2 and B are directly proportional to the thickness or size of the muscle. In

turn, the size determines the maximum contraction force possible of the muscle.

Therefore, the following assumptions can be made:

k1 = maximum contractionforce * constant1,

k2 = maximum contractionforce * constant2,

B = maximum contractionforce * constant3.

The approximation values of these constants can be obtained from the behaviors of

the biological tissues.
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Muscles for mastication always operate within the elongation range of 45%,

and muscles are stretched by about 20% in a normal chewing cycle. Figure 4.1 shows

an estimated stress-strain curve of the masseter muscle [A5].

Stress-strain Curve of Skeletal Muscle

12

10

8

2

0

Elongation %

Figure 4.1
(y-axis in glmm2)

Base on the stress-strain curve, we have Table 4.1.

Stress-tension Relationships

Elongation Stress Length Area Tension
0% 0 1 1 0
10% 0.2 1.1 0.909 0.1818
20% 0.4 1.2 0.863 0.4165
30% 1.1 1.3 0.769 0.8459
40% 2.2 1.4 0.714 1.8708
50% 5.2 1.5 0.67 3.484
60% 11.25 1.6 0,625 7.03125

Table 4.1
Column 2 and 5 indicate the relationships between stress and tension.

Columns 3, 4 and 5 are the length, cross sectional area and the passive tension of a

muscle. As these three columns represent ratios and they do not refer to any particular

muscle, units are not necessary. Assuming that the muscle will reach the elastic limit

when it is stretched by 50% of the original length and it can withstand its own

0 10 20 30 40 50 60
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maximum contractile force at that point, the magnitude of the passive tension on the

same muscle that is stretched by 20% is:

= 0.4165/3.484 * maximum contractile force,

= 0.1195 * maximum contractile force.

The force required to stretch a normal spring obeys the following equation:

F=kzix

In this expression Ax denotes the amount by which the spring is stretched from its

unstrained length. The term k is a proportionality constant called the spring constant

and has dimensions of force per unit length (N/m). If the muscle operates within the

elongation range of 20% and assumes that the passive tension and strain have a linear

relationship in this range, this equation can be implemented as following:

F 0.1195 * maximum contractile force * (A11/l) / 0.2
or

k1 = 0.5977 * maximum contractile force / i

Tendinous tissues are much stiffer than muscle fibers, and Figure 4.2 shows

the stress-strain curve of the tendinous tissues [A5].

Stress-strain Curve of Tendinous Tissue
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Figure 4.2
(y-axis in kg/mm2)
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Assume that a tendon is under the maximum contractile force when it is

stretched by 4%, the passive force from the tendon can be described as follow:

F = maximum contractile force * (l2/ 12) / 0.04
or

= 25 * maximum contractile force / 12

However, the ratio of the cross section area of tendinous tissue/muscle fiber in the

mastication muscle is roughly four times higher than most other skeletal muscles, k2

implemented in the model is:

— 100 * maximum contractile force / 12

The last constant, B, defines the response time of the muscle, and Figure 4.3

shows the response of a mammal muscle when it is fully activated.

Response of Mammalian Muscle Under Maximum Stimulation

.zz

I:: /

Time (s)

Figure 4.3
(y-axis is tension in %)

The graph shows that the muscle will reach its maximum strength at around O.14s

after it is fully activated. Simulation of the isometric contraction of a single muscle

shows the magnitude of B is approximately (5 * maximum contractile force) in order

to satisfy the above criteria.

45



This section reveals a possible way of defining the approximate values for k1,

k2 and B, but this is by no means that there is only one way to define these values.

Data gathered for biological tissues vary a lot, and sometimes contradict each other.

The method discussed above is believed to be direct and easy to implement. There are

limitations with the constants defined here; they are all non-linear functions in real

biological system instead. However, k1, k2 and B define here are more adequate for

the first test run of the model.

4.3 Activation Level

The jaw movements of the model are considered the result of voluntary drive

by the CNS, and studies have shown that control signals from the CNS for voluntary

movement can be change as fast as fifty to sixty times per second, therefore, the

frequency of the activation levels is chosen to be 50Hz in our model.

In addition, the activation levels from the CNS are usually quite continuous.

Figure 4.1 shows a possible measured raw EMG graph and the shape of the activation

levels after it is rectified and filtered. The rectified and filtered signal is believed to be

the original activation levels from the CNS.

_______________________________________________

Figure 4.1
Activation Level

In order to define the activation levels freely for the model, the activation

levels are designed to be defined with a B-spline curve. In drafting terminology, a
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spline is a flexible strip used to produce a smooth curve through a set of plotted

control points. The term spline curves, or spline functions, refer to the resulting

curves drawn in this manner.

Given an input set of n+1 control points Pk with k varying form 0 to n, we

define points on the approximating B-spline curve as:

P(u) = pkNk.t(u)

where the B-spline blending functions Nkt can be defined as polynomials of degree t

1. The blending function is recursively defined as:

N zi—f1
if(uku<uk+I)

k,1’ “ 0 otherwise

Nkl (ii)
= u — Uk

Nkt_l (u) + Uk+t — ‘
Nk÷l...l (u)

Uk+t_1 — Uk Uk+t — Uk+l

Any terms with value of 0 as the denominators are assigned the value 0 during the

recursive calculations.

The defining positions U for the subintervals of u are referred to as

breakpoints. Breakpoints can be defined in various ways. A uniform spacing of the

breakpoints is implemented here and is defined as:

=0 ifj<t,

Uj j-t+] iftjn,

=n-t+2 ifj>n.

for values ofj ranging from 0 to n+t.

The B-spline curve implements in the model has five control points. Figure 4.5

shows an example of activation level curve generated with five control points. More

complex form of activation levels can be generated by joining a few different B-spline

curves.
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Figure 4.5
B-spline Curve as The Activation Level

With the final information described here, we are ready to test run our

simulation model of the jaw. The next chapter consists of procedures of test running

the model and details of the simulation result, Although the model is designed to

handle abnormal settings of the jaw and activation levels, the first run is concentrated

on working with a normal setting of the jaw. The model is convincing if it responds

favorably, under normal circumstances, in a way compatible with the literature [B 1,

B12, B13].
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Chapter 5

Simulation Procedures and The Results

Because of the complexity of the model, it is separated into three computer

programs. ACTGEN takes the control points as inputs and generates the activation

levels for different muscles. The activation levels are then fed into SIM, and SIM

simulates the jaw system according to the input activation levels. The final result can

be visualized with the graphics interface -- SHOW, or imported to a spreadsheet

program. The ACTGEN and SIM can be put into a batch program to simulate a few

different patterns. The structure of the programs is shown in Figure 5.1.

Figure 5.1
Structure of The Simulation Program

SHOW is a graphics interface that shows informations about the jaw and

different muscles, and most of the effort has been spent on SIM that performs the

simulation. However, the graphics interface helps people to understand the simulation

results much better. Figure 5.2 shows the output of the graphics interface.
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The first incisor
location.

Figure 5.2
Graphics Interface of The Simulation Program

5.1) Procedures of Test Running The Simulation Model

The computer simulation model of the jaw was fully tested in the Faculty of

Dentistry’s Craniofacial Laboratory at UBC, and provided satisfactory results. The

patterns of muscle activations for simulated chewing by the model are shown as heavy

lines in Figure 5.3. Where possible, comparisons have been made with muscle

activation patterns derived from Moller [B 13] as indicated with the light lines in the

figures. Moller’s measurements of the muscle activations in the chewing cycle are

believed to be the most accurate and complete in the oral biology field.

The duration of the chewing cycle was fixed at 700ms in our simulation model,

representing a value within ranges reported in the literature [B 1 (600-1 000ms), B 13

(435-865ms)]. Chewing cycle durations depend upon the nature of the food, tougher

and stickier foods requiring longer times [B 1]. The duration selected for this study is

typical for apple and gum chewing, and very close to the duration cycle of the mean

electrical activity for several jaw muscles published by Moller, (1966).
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Initially, each activation level was generated by assigning the onset, 50% peak,

peak amplitude, 50% peak, and cessation of activity from published, mean

electromyographic data [B 13, p.103, Fig. 143]. Straight-line curve fits between these

points were smoothed with a simple three-point averaging filter. Moller’s data did not

include values for the middle temporal muscle or deep masseter, nor did they

distinguish between activity in the upper and lower heads of the lateral pterygoid

muscle. Therefore values were assigned to the middle temporal muscle which were

between those for the anterior and posterior parts. Since activity in the deep masseter

is similar to that in the anterior temporal muscle during gum chewing [B2] values for

the deep masseter were matched accordingly. Although Moller’s data describe

biphasic activity in a single lateral pterygoid muscle, newer data suggest that the

inferior part of the muscle is inactive in jaw closing during mastication [B5, B12,

B22]. The upper and lower parts thus activate reciprocally, i.e., the superior lateral

pterygoid is activated synchronously with the anterior temporal muscle during the

closing phase of the chewing cycle [B5]. In the present study, Moller’s data for the

opening phase was assigned to the inferior lateral pterygoid, and his data for the

closing phase to the superior part of the muscle. Since mid-line chewing was

simulated, all muscle groups were considered to act symmetrically, i.e., they were

activated in matching pairs on the right and left sides.

The model was driven from a position of assumed rest where there was no

activity in any muscle. Motion of the jaw was analyzed from the lateral aspect, with

emphasis on the incisor point and the center of the mandibular condyle. Minor

corrective changes were then made to overall muscle amplitudes (but not timing) to

create an incisor point trajectory which fell within the mean range of data published

for human chewing [BI]. Minor scaling was considered acceptable, because

electromyographic data itself is a relative measure of muscle activation. Since
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condylar motion was unconstrained except for angle, muscle “balance” became critical

during the last part of the closing sequence. Many muscles were active, each with a

different line of action, and the goal was to bring the mandible to its start point

without sliding past it. Accordingly, small adjustments, especially to the temporalis

muscle group, were important in this phase. Figures 5.3 illustrates the similarity

between the simulated patterns of contraction, and those believed to occur in the

biological jaw. Notable features include slight differences in symmetry between the

digastric and inferior head of the lateral pterygoid muscles during jaw opening, and

early activation of the medial pterygoid, coupled with relatively late peaking of

activity in the temporalis muscles during jaw closing. The small, early burst of activity

in the middle and posterior temporal muscles was needed in the model to maintain a

good trajectory of jaw movement when the bolus was hit, and may or may not be

present in human electromyographic responses when a similar bolus is used. Once the

first open and close sequence of chewing was achieved, the model was allowed to

cycle by driving it repetitively with the same muscle activation patterns. This was

done to observe any effect of phasic changes in muscle properties on subsequent

cycles.

5.21 Simulation Results

The shape and temporal characteristics of the chewing stroke produced by this

muscle drive are shown in Figure 5.4. The opening and closing strokes nearly

superimposed, and were angled towards posteriorly at approximately 70 degrees to

the dental occlusal plane. The gape at maximum jaw opening was 20.9mm. The

movement trajectory, which completed one cycle every 700ms, reached maximum

gape at 360ms. The opening phase was slower than the closing phase, which showed

characteristics of natural chewing such as a pause in closing when the bolus was hit,
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slowed movement through the bolus, and the dwell phase in the “intercuspal” or start

position before opening began for the next cycle.

Figure 5.4
The Simulated Incisor Movement

Figure 5.5 illustrates changes in position and linear velocity of both the incisor

and condylar points during the same cycle. At the incisor point, the linear velocity was

91mm/sec when the jaw was approximately halfway open, and reached 192mm/sec

when it was between a third and halfway closed. At the condyle, the peak opening

linear velocity was 26mm/sec about halfway through forward condylar translation,

which reached 5.2mm at maximum gape. During closing, condylar velocity reached

56mmlsec at the same time as the incisor point reached its peak velocity. Both the
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incisor and condylar closing velocity curves showed second, smaller peaks coincident

with the molar’s passage through the “bolus.”

velocity
position

50

—50
1 start of opentng

-150
2 maximal open

3 bolus hit

4 start of occiusal phase

Figure 5.5
Incisor and Condyle Movement

Changes in force on the condyle are shown in Figure 5.6. Condylar force was

essentially biphasic, reaching a peak of 43N towards the end of condylar translation,

and a slightly greater peak of 55N when the jaw reached its initial starting position,

i.e., at the end of “bolus” compression. A third, transient peak of the same magnitude

occurred when the “bolus” was struck.
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Figure 5.6
Reaction Force at Condyle

Recently, researchers have had success in gaining access to animal

musculotendious units to measure their tensions, but these techniques are available in

humans in isolated instances only. The simulation model, however, provides estimated

values for the jaw muscle. In Figure 5.7, changes in muscle tension (continuous lines)

have been superimposed on the muscles’ corresponding activation curves (bar lines).

In addition, displacement curves for the incisor point are provided for comparison.

The elevator muscles all showed marked increases in tension during the opening

phase, and again during the closing and compressive phase of the cycle. The

amplitudes and timing of these changes were unique to each muscle. The

closing/opening tension ratios were noticeably greater in the superficial masseter,

medial pterygoid and anterior temporal muscles, but approached unity in the

remainder, i.e., the opening and closing tensions were roughly equal. With the

exception of the medial pterygoid, all the elevators showed least tension (approaching

or reaching zero) before, and at the time the “bolus” was struck, i.e., just after jaw

closing velocity reached its maximum. This effect was particularly evident in the three

temporal muscles, especially in the anterior temporalis. Another decrease in tension

was observed at the end of the “dwell” phase, just before jaw opening.
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Figure 5.7
Activation Levels and Muscles’ Tensions
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5.3 Discussion

Despite simplification of the biomechanics, the model produced a very realistic

chewing cycle when known patterns of muscle activation were chosen to drive the

mandible through a simple resistance. Many features of the simulated cycle compared

favorably with known values for human mastication.

In the model, the movement trajectory, jaw gape, and condylar motion were all

determined by the timing and amount of activity in the inferior lateral pterygoid and

digastric muscles, both working with the assistance of gravity against the combined

passive tensions of the jaw-closing muscles. These passive tensions differed according

to each muscle’s cross-sectional size, location and length, although they shared

common length-tension curves and visco-elastic characteristics. The pattern of

activation in the inferior lateral pterygoid and digastric muscles during jaw opening

creates unique movement trajectories at each closing muscle’s insertion, and the

various differences between the muscles’ sizes and insertion sites then cause their

lengths and shortening speeds to vary. The passive tensions are therefore specific and

task-dependent.

The model’s prediction of low to zero tensions in several closing muscles

(particularly the temporalis group) at maximum closing velocity, just before the

“bolus” is hit, may indicate a tendency rather than an actual event in the biological

system. The behavior of the model is explained as follows. The induction of fast

closing by the medial pterygoid (which did not show any decreased tension) created

phase lag in muscles not yet activated to the same extent. Their insertions were

rapidly displaced so as to slacken muscles which at best were marginally active. This

effect was most obvious in the anterior temporalis, which was the most susceptible
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due to its location and length. Although possible, the phenomenon of “slackness” is

unlikely to occur in the biological jaw. Differences in muscle properties compared

with the model, or low levels of activity in the muscles concerned (possibly reflex-

driven), could maintain low muscle tensions irrespective of any actions of the jaw

system. The maintenance of residual tensions would have considerable advantage, for

example more efficient force coupling and faster response times when the bolus is

struck. In the model, these zero tensions could be avoided by earlier activation of the

muscles concerned, but the trajectory of the closing cycle changed when this was

done.

The model shows how interrelated muscle activation patterns and

musculoskeletal mechanics must be. Any patterned drive to the inferior lateral

pterygoid and digastric muscles that is intended to produce a particular jaw movement

has to do so under the influence of passive tensions in the closing muscles. This

tensioning system responds differently according to the direction and the speed the

jaw is driven. Thus, both rate and position-dependent factors of the mandible must be

taken into account when the goal is to move the jaw into a particular position within a

set time. Although at best an approximation, our model provides at least some idea of

the way these tensions alter during function, and it invites speculation regarding the

way the central nervous system learns to select the appropriate pattern of activation in

advance.

The jaw-closing speed in our simulation was faster than that reported by

Ahlgren [Bi] for unrestrained human mastication (about 75 mm/sec for carrot

chewing) but is consistent with that reported previously for forced rapid chewing,

which can be as high as 274 mm/sec [B6]. Jaw-closing speeds vary considerably

according to food type. The kind of “chopping strokes” simulated in this study are
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more like shorter duration chewing cycles than the wider, more ruminant strokes used

in the mastication of hard foods [B 121.

When the “bolus” was struck, 50-6Oms passed before combined muscle tension

reached a sufficient magnitude to overcome the resistance and move the jaw upwards.

In practice, most foods do not present such an abrupt transition, and a softened

“leading edge” to the onset of force would alter this movement-time relationship. The

thickness and resistance profile of the bolus has a critical relationship to the timing of

muscle activation and most important, the generation of muscle tension. The

activation pattern has to be generated with an expectation of probable jaw velocity,

muscle tension on impact, and tension required to compress a given bolus in a pre

selected direction ofjaw movement. Failure to tune the model in this way produced an

unwanted trajectory of jaw movement. Nevertheless, surprisingly small modifications

to the average muscle pattern provided by Moller, (1966) were needed to “chew” the

bolus in a typical manner.

When the initial starting position of the jaw was reached at the end of closing,

the drive to most elevator muscles had begun to decrease, although their tensions

remained. This was required to complete “bolus” penetration, and the tensions had to

dissipate before the next opening stroke. Dissipation occurred when the jaw became

stationary in a spontaneous “dwell” phase, which is also a characteristic of mammalian

and human mastication [Bi, B6, B9]. It is significant that force dissipation in this

“dwell” phase was so balanced between the different muscles that the jaw remained

stationary despite the location of its “condyle” on an inclined plane with no posterior

limit. Mutual balance between elevator muscle groups obviates the need for a

posterior limit. The condylar head can move and resist forces during opening, closing

and bolus compression into an assumed “intercuspal” position without any passive
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articular restraints, other than rear slope of the articular eminence itself. Here, the

superior lateral pterygoid muscle had a critical role. Unless this muscle contracted

synchronously with the closing muscles, the condyle continued to slide posteriorly and

upwards beyond its starting position as closing muscle tensions decreased. The

superior lateral pterygoid is generally considered to tension the articular disk,

stabilizing it during bolus and tooth compression [B5, B 10, B 15]. Although many

fibers of the superior lateral pterygoid attach to the condyle itself [B 12] there are few

opinions about the role of this attachment, The model suggests that the muscle

provides an anterior tension vector to the condyle at a critical time in the late closing

phase. Without this, a posterior limit to condyle movement e.g. by a ligamentous

restraint would be essential. The alternative possibility would be for the inferior lateral

pterygoid to contract biphasically (i.e., be active in both the opening and closing

phases) as originally proposed by Moller, (1966), but this notion is not supported by

the current literature.

A tedious aspect of working with models is developing muscle contraction

strategies. However, the process is educational in that it provides one with insight into

the problems facing a central nervous system, and a major advantage of the model is

that the generation of muscle activation patterns is a contained operation. The

availability of many descriptors such as changes in muscle tension and length, joint

translation and rotation, movement velocities and articular forces, makes it readily

possible to derive variables used as feedback by the central nervous system. It would

be comparatively simple to use these data to simulate neural sensory information, and

build this into a separate, linked model of the nervous control mechanisms responsible

for jaw movement. Thus any future models of the nervous system, perhaps including

aspects such as artificial intelligence, can readily be added to the system.
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The next chapter will discuss an existing artificial neural network architecture,

a method of improving it, and a feasible dynamic controller with neural network that

could be used to control the jaw model in the future.
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Chapter 6

Neural Network and Dynamic Control

Neural networks provide a unique computing architecture that can be used to

address problems that are unmanageable with traditional methods. These new

computing architectures, inspired by the structure of the brain, are radically different

from the computers that are widely used today. Neural network architectures are

motivated by models of our own brains and nerve cells. Although our current

knowledge of the brain is limited, the basic anatomy of an individual nerve cell or

neuron is known. A typical nerve cell in the human brain is shown in Figure 6.1.

Oedllonof
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.. impulse
:. . Cell .

Body (Ofl

Figure 6.1
Typical Nerve Cell

The output area of the neuron is a long, branching fiber called the axon. An impulse

can be triggered by the cell, and sent along the axon branches to the ends of the fibers.

The input area of the nerve cell is a set of branching fibers called dendrites. The

connecting point between an axon and a dendrite is the synapse. When a series of

impulses is received at the dendritic areas of a neuron, the result is usually an

increased probability that the target neuron will fire an impulse down its axon.
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6.1) Artificial Neural Network

A great deal of biological detail is eliminated in the computing models.

However, the artificial neural networks retain enough of the structure observed in the

brain to provide insight into how biological neural processing may work. Figure 6.2

illustrates an example of a typical processing unit for an artificial neural network.

Figure 6.2
Artificial Neural Node

On the left are the multiple inputs which are connected to the processing unit; each

arriving from another unit. Each interconnection has an associated connection

strength. The processing unit summing up all the inputs and uses a nonlinear threshold

function to compute its output. The calculated result is sent along the output

connections to the target cells. The nonlinear threshold is usually implemented with

the sigmoid function. The equation for the sigmoid function is:
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Figure 6.3
The Sigmoid Function
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Figure 6.4 shows an example of neural network with two layers of processing

units, a typical organization of the neural network known as feedforward network.

IN1

OUT
1N2

Figure 6.4
General Structure of An Artificial Neural Network

First is a layer of input units. The input patterns are represented as vectors to the

network. The middle, “hidden,” layer of this network consists of “feature detectors” --

units that respond to particular features that may appear in the input pattern.

Sometimes there is more than one hidden layer. The activities of the last layer are read

as the output of the network. In the example, there are two inputs, four hidden nodes

and one output, however, configurations may be different for different applications.

Despite the complex form of the network, it can be easily implemented as

follows:

4.177 -85336

OUT = sigmoid (sigmoid ( 3.9223 -1.7201
[10.8646 -5.8806 .20.7456 6.1682]

LNJ -6.3929 -6.2253

\, \ 799 3.6412

Assume that IN1 and 1N2 are ([0, 0], [0, 1], [1, 0], [1, l]}, OUT will be (0.017719,

0.980323, 0.980321, 0.025326} accordingly, indicating that the neural network is

performing the XOR function. The problems remaining are to find the right

4.1
10.8646

3.641:
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connection weights for the desired function in the neural network. The next section

will briefly discuss a training algorithm which is commonly used in artificial neural

network.

6.2) Backpropaation Neural Network

Backpropagation neural networks are the most widely used of the neural

network models and have been applied successfully in a broad range of areas.

Backpropagation neural networks can handle any problem that requires pattern

mapping. Given an input pattern, the network produces an associated output pattern.

A backpropagation neural network is also one of the easiest networks to understand

because its learning and update procedure is a relatively simple concept. If the

network gives the wrong answer, then the errors back-propagate along the

connections. The weights of the connections are corrected so that the error is

lessened. Figure 6.5 illustrates these updating procedures.

WI
a

AWI=iOÔI 0
Figure 6.5

Updating Procedures in Artificial Neural Node

where

= activation level

= error value

wji = connection weight

= learning rate

In the context of such training, the feedforward network is often referred to a

“backpropagation neural network.”
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Although biological systems have neurons that perform a type of summation of

inputs, and have varying interconnection strengths, direct back-error propagation

along the same nerve has not yet been identified (actually not possible) in biological

systems. However, the uses of a trained net are completely forward in order, as in

biological systems.

Backpropagation neural networks have a few disadvantages. First, the largest

drawback with backpropagation appears to be its long training time. Second, because

of the long training time, on-line retraining of the net is not easy. Finally,

backpropagation is susceptible to training failures in which the network never

converges to a point where it has learned the training set.

6.3 Method for Improving The Performance of Backpropaation Networks

Backpropagation networks are layered, and usually with each layer fully

connected to the layers below and above. Backpropagation networks do not have to

be fully interconnected, but, most applications that work have used fully

interconnected layers. The more complex the training patterns, the bigger the net we

have to use. This is true to a certain extent, but simulations show that there will be no

improvement after the network reaches a certain size. Instead of holding everything in

one fully interconnected network, the biological neural networks tend to store

information in a more distributed manner. Therefore, I suggest a way of combining

artificial neural networks. Figure 6.6 illustrates the structure.

Two neural networks in parallel make up this new configuration. One of the

two networks is to train on the original training pattern, while the second network is

to train on the error of the first network. The second network is named the Error
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Adjusting Network (EAN) because its function is to minimize the error of the first

network

Figure 6.6
A Combined Artificial Neural Network

Neural networks tend to learn patterns that are more continuous in the initial

training state that is fast, and slow down as only less continuous patterns are left

behind, The less continuous patterns are responsible for the inconsistent performance

of a neural network. EAN can deal with these situations.

The results of using the parallel structure are shorter training time and smaller

network. The new structure is even able to handle more complex patterns that don’t

converge with a single network. The major drawback of a neural network is that it

only gives approximate solutions, and is not good for precise controlling. The new

configuration also shows a possible way to adjust the precision of a neural network to

an acceptable level.

The uses of the above structures are illustrated with solving the inverse

kinematics of a two-jointed crab arm. Figure 6.7 shows the arrangements of the crab

arm. Although the structure of the crab arm here is not common in artificial robot

arm, the purpose of the crab arm model is to illustrate the performance of the new

configuration of the neural network.
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The trajectory of the open end of the arm is specified with the angle 0 and the

distance d. By specifying 0 and d, we want to know the values for 01 and 02

respectively. If the inverse kinematics of the crab arm is solved with conventional

techniques, there is no reason to replace it with a neural network. Therefore, the

training data for the neural network is generated with the direct kinematics that is

straight forward as compared to inverse kinematics. As long as we have the input and

output patterns, neural networks don’t care how the patterns are generated. The

training patterns should characterize the complete range of the input and output

patterns, and a powerful feature of neural networks -- generalization -- will fill in

appropriate values in the empty gaps that are not included in the training patterns.

Figure 6.7
1 = length of the proximal arm

12 length of the distal arm
0, 02: 300 - 1200

(shaded lines indicate the possible area
of movement as constraint by 01 and 02)

The Crab Arm Example
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The training patterns are generated as follows:

for 0 30° to 120°, step 5°

for 02 = 30° to 120°, step 5°

1/ direct kinematics equation of
/1 the crab arm

x =l1cos(01) +l2cos(01+02) + 2

y =l1sin(02) +l2sin(01+02) + 1

0 = atan(y/x)

d = (x2+y2)°5

Angles 0 and 02 are separated into two neural networks. Neural networks

which are fully connected have the configurations of two inputs (0 and d), two hidden

layers and each with eight nodes, and one output. The neural networks that are built

from two networks in parallel have a different configurations. Each of them have two

hidden layers with four nodes. Although there are the same number of nodes in both

configurations, there are 88 connections in the first configuration as compare to 56 in

the second.

In the new configuration, the first network is trained until the root mean

square error reaches 0.08 and the second network will pick up the rest. With half the

training time, two networks in parallel still work considerably better than the standard

configuration. The root mean square errors of these two different networks are

compared in Table 6.1.
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Comparisons of The Root Mean Square Errors

RMSinO1 RMSinO2

Standard Configuration 0.002928 0.00 1809

Two Networks in Parallel 0.000242 0.00074

Table 6.1

As indicated in Table 6.1, error in the new configuration could be up to ten

times smaller than the standard configuration. The running time of the new

configuration is also faster as there are 32 fewer connections as compared to the first.

On-line retraining is also possible because we can always add a second network in

parallel with the first. In addition, there is a better chance for the neural networks to

converge because informations can be distributively stored in different networks.

These are all significant improvements to the standard backpropagation networks.

6.4) Neural Network as A DiitaI Controller

There is much research in the area of neural networks for control. However,

most of them depend on feedback controller, and the neural network learns from the

controller and finally replaces it. Again, there is no reason to replace a conventional

controller with a neural network controller. The best a neural network can do is to

copy the function of a conventional controller and the performance will never be

better but only worse than the original controller.

In feedback control, the parameter that is being controlled is continually

measured (feedback), and compared to a reference (error calculation), and the action

modified according to a control law to overcome the error. However, one has to think

in terms of pattern mapping when working with neural network. The objective is to
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map the current state and the desired “next” state to the according control signal. In other

words, we want to determine the correct control signal that will transform the system from

the current state to a desired new state. Figure 6.8 illustrates this relationship.

State Mapping

desired

-new

state

current
state

At

Figure 6.8
The objective is to determine

the correct control signal to transform the system
from the current state to the desired new state.

The input and output connections of the neural network that performs this function

is simple. Figure 6.9 shows this configuration.

current state
of the system control
desired new signal
state of lIne
system after At

Figure 6.9
Neural Network That Performs State Mapping

The training set is prepared with forward dynamics. With different possible

states of the system, different possible control signals are fed in to the system and the

outcome is a set of possible “next” state of the system. The neural network is trained
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with the current state and the “next” state as inputs, and the according control signal

as output as indicated in Figure 6.9.

Continuous controlling can be performed by dividing the time axis into

different time slices, and each time slice can be considered as separate pattern to the

neural network. The idea is illustrated in Figure 6.10.

Figure 6.10
State Mapping in Continuous Time Slices

As the neural network controller always tries to give a control signal that matches the

desired path in different time slices, the error is not cumulative.

The above idea is illustrated with the isometric contraction of a single muscle.

Figure 6.11 shows the complete arrangement of this example.

neural tension

neIwork

T
e
n
S

0
n

Figure 6.11
An Example of The Neural Network Controller

At•• AtM At MAT
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In the above example, the only variable that defines the state of a muscle is the tension

and the possible control signal is the magnitude of the neural drive. With the current

tension known, we want to find out the magnitude of the activation level to generate a

desired tension after At.

Recently, there are studies that the neural network controller learns from its

environment. These methods are based on a trial-and-error scheme and are passive

and slow. Instead of the passive trial-and-error scheme, the data is generated once and

for all. A complete set of training patterns can be generated by the cartesian product

of S and C in which S is made up of elements within the possible initial states of the

system and C is the set of possible control signals that can be fed into the system.

Figure 6.12 illustrates the cartesian product of S and C in the previous example.

Tension Activation
Level

max. 1

Figure 6.12
The Cartesian Product of S and C

Please note that the above figure shows the cartesian product of S and C instead of a

time slice, and the neural network is trained with patterns that are generated as

follows:

for current tension = 0 to max tension, step maxtension/5

for activation level = 0 to 1, step 1/5

new_tension = tension after At (current_tension,

activation_level);
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Change in tension as according with time is planned (Figure 6.11), and Figure

6.13 illustrates the simulation result.

1

0.9

0.8

0.7

0
0.5

I-.
0.3
0.2
0.1

0

Figure 6.13
Simulation Results of The Neural Network Controller

The white dots in Figure 6.13 indicate the desired tensions at the specified time, and

the curve indicates the tension developed within the muscle with the control of neural

network. The outcome at O.08s does not match the requirement as it is not possible to

develop maximum tension of the muscle within this short period of time (O.02s), however,

the neural network controller will always try to provide the best match to the requirement,

As indicated in Figure 6.13, the simulation results are quite good with this simple test.

6.5) Conclusions Reardin Neural Networks

This chapter has demonstrated how to perform inverse kinematics and dynamic

control with neural networks in a direct manner. Neural networks that handle inverse

kinematics and dynamic control are not designed to replace the conventional

algorithms. Indeed, no matter how accurate a neural network is, it only gives an

approximate solution to the problem. Therefore, an error will always be presented. On

o o 0 0 0 0 0 0 0 0

Time
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the other hand, conventional techniques are more accurate and predictable. A neural

network should be used when the solutions are impractical to solve with the

conventional algorithms, and when approximate solutions are acceptable.

In our example, there is only one variable that defines the state of the muscle.

However, no matter how many variables that define the state of a system, it makes no

difference to the way in which the neural network performs. One of the strongest

points of a neural network is that it can deal with multi-dimensional inputs as well as

two or three-dimensional inputs.

In addition, EAN is believed to improve the performance of neural networks to

a more acceptable level. Although the demonstrations here only show the combination

of two neural networks, there is no reason to limit the number of neural networks to

two. Instead, different neural networks should be thought of as the building blocks of

a more complex system.
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Chapter 7

Conclusions

The simulation results from the computer model in Chapter 5 are realistic in

the following way. The model produces trajectories of opening and closing

movements in the incisor region which resemble those reported in the literature for

human mastication, both in time and space. This kind of dynamic simulation, can help

explain the interplay between active and passive muscle tensions during jaw motion,

the physical consequences of muscle coactivation, and loads upon the mandibular

condylar during translational and rotational motion. The basic design can be modified

to explore the question of articular stability, the action of specific muscle groups on

articular function, and wider associations between patterns of muscle contraction and

craniofacial shape. Long-term goals might include the simulation of an active neural

control system, mandibular mechanics during whiplash injury, and prosthetic designs

for joint replacement.

Although studies in the project are confined to the human jaw, the completed

muscle model is flexible enough to model other mammalian musculoskeletal systems

as well. The jaw model that utilized the muscle model provided valuable information

which was not obtainable in any other way, and it could do the same for any other

musculoskeletal system developed with it.

Studies of the biological system seemed to indicate a way of increasing the

performance of an artificial neural network. Neural networks may provide a feasible

structure for automatic control, and could be incorporated into future musculoskeletal
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system model of the kind developed in this study. The examples in Chapter 6 are

simple, but the structures of the neural networks suggested are sufficient for general

use.

7.1) Limitations of the Current Jaw Model

There are several limitations in the present jaw model. They include

simplifications of the form and properties of the jaw muscles, the adoption of an

artificial food bolus, reduction of the condylar guidance to an unlimited and

frictionless sliding surface, assumptions regarding the center of gravity and moment of

interia, and the limitation of jaw movement within a two dimensional space.

Human jaw-closing muscles are all multipennate (containing radiating patterns

of individual muscle fibers), and they are notable for their relatively wide areas of

attachment. It is also possible that all the closing muscles are capable of at least some

degree of regional activation, depending upon the task being performed [B3, Bi 1,

B21, B22J. Given their complexity, various of attachment sites, and the possibly local,

graded patterns of intramuscular activation, it is presently difficult to predict the true

nature of active and passive length-tension curves for individual human jaw muscles.

The relatively simple assumptions for muscle-tendon actuator behavior in this study

were based on data available for whole skeletal muscles generally, and did not take

specific pennation patterns into account. Although the muscle model may not be the

ideal, approximating to the actual system, it provides reasonable estimate of the

general qualitative changes which occur in the biological system. However, the fact

that the jaw model with realistic patterns of muscle activation produced jaw

movement patterns which closely resembled those in the literature suggests that our

assumptions regarding muscle properties were quite reasonable first approximations.
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A similar argument can be proposed for regarding the mass, center of gravity

and moment of interia of the human lower jaw. The estimation of jaw weight is likely

to have been low, since it was based on a dry specimen, and the measurement of the

mandible’s true center of gravity and moment of interia is not simple. However, both

vary in life, and it would be simple to modify these constants when better data become

available. Again, the behavior of the model system indicated that the values used were

not unreasonable. Even in the absence of other variables, such as the passive visco

elastic properties of other soft tissues in the region and the weight of the tongue, the

model was still able to behave well. With the great strength of the jaw muscles, these

factors seem to have only minor effects on the jaw.

7.2) Future Directions of The Jaw Model

The model was designed to permit continuous modification and improvement.

The muscle attachments which were modeled three-dimensionally can be altered to

produce different musculoskeletal configurations. Similarly, muscle constants can be

altered as data change. The specification of “bolus” properties can be changed to

include different thicknesses, different bite point locations, and different compressive

properties. Elements of friction can be introduced at the dental occlusal level, and

within the temporomandibular articulation. The shape of the articular eminence can be

made curvilinear if desired, and various forms of posterior buttressing and elasticity

can be added. Conversion of the model to accommodate three-dimensional jaw motion

is not as simple a proposition as the above changes even though the construction of a

twin-joint system is a very desirable goal.

It would be a comparatively simple matter to use many of the behavioral

descriptors such as changes in muscle tension and length, joint translation and
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rotation, movement velocities and articular forces as variables describing feedback by

the central nervous system, and to build these into a separate, linked model of the

nervous control mechanisms responsible for jaw movement. Future models of the

nervous system, including control of muscle drive by artificial intelligence, can readily

be added to the system which invites further development.
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