
A G E N E R A L I Z E D P O S T - D E T E C T O R C O M P A T I B L E S O F T - O U T P U T V I T E R B I

A L G O R I T H M (SOVA)

By

David Kwan

B.A.Sc, The University of British Columbia, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E D E G R E E OF

M A S T E R OF APPLIED SCIENCE (M.A.Sc)

in

T H E FACULTY OF GRADUATE STUDIES

ELECTRICAL ENGINEERING

We. accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

April 1996

© David Kwan, 1996

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of b U c . L,r\p-£>c.

The University of British Columbia
Vancouver, Canada

Date Apr--,) IS , l°MC>

DE-6 (2/88)

Abstract

A generalized soft-output Viterbi algorithm (SOVA) that is applicable to any (n, k, m)

convolutional code is proposed. The algorithm is compatible with the post-detector ar­

chitecture proposed by Berrou et al. thereby achieving low computational complexity.

By starting with Battail's generalized revision algorithm and re-referencing the relative

values to the surviving path to each state, significant simplifications are made possible.

By comparing the resultant simplified revision equation for (n, l,m) convolutional codes

with Berrou's proposed post-detector compatible algorithm it is possible to deduce the

additional modifications necessary to arrive at a (n,k,m) post detector compatible al­

gorithm. Simulations show that with a revision depth greater than five times a code's

constraint length, the proposed algorithm is capable of producing relatively high quality

a posteriori input symbol estimates.

ii

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Dedication ix

Acknowledgements x

1 Introduction 1

1.1 Motivation and Scope of the Thesis 1

1.2 Outline of the Thesis 4

2 Background and Underlying Principles 5

2.1 Using Soft-Outputs in Serially Concatenated Systems 5

2.2 The Symbol-by-symbol MAP and "Best-Path" Algorithms 9

2.3 The Soft-Output Viterbi Algorithm (SOVA) 10

2.3.1 Deducing Viterbi Decision Probabilities 11

2.3.2 The Need For Revision 14

2.4 History of SOVA 15

2.4.1 Relative Values 15

2.4.2 A Simplified Revision Algorithm 17

2.4.3 The Post-Detector Architecture 18

iii

3 Derivation of the Generalized Post-Detector 22

3.1 Introduction 22

3.2 Terminology 22

3.2.1 Relative Values at the Decoder's 0— memory level 22

3.2.2 Conditional Relative Values at the Decoder's j— memory level . . 24

3.3 Re-deriving Battail's Revision Formula 25

3.4 Simplifying the General Revision Formula 27

3.5 Finding a Revision Algorithm That is Post-Detector Compatible 28

3.5.1 Post-Detection Compatible Revision Algorithm for (n,l,m) Codes 30

3.5.2 Post-Detection Compatible Revision Algorithm for (n,k,m) Codes 34

3.6 Application Considerations 37

3.6.1 Deducing Input Probabilities From Relative Values 37

3.6.2 Examining the Effects of the Approximations Made 42

3.6.3 Computational and Storage Requirements 44

4 Evaluating Performance of The Generalized Post-Detector 51

4.1 Introduction . . 51

4.2 Effects of Code Free Distance on the Estimates of the A Posteriori Prob­

abilities 52

4.3 Effects of Signaling Constellation on the Quality of the Estimates of the

A posteriori Probabilities 58

4.4 Determining Performance of the Generalized Post-Detector for use in Soft-

Output Viterbi Equalizers 61

4.5 Determination of the Minimum Required Revision History for the Gener-

. alized Post-Detector 70

5 Conclusion 72

iv

5.1 Summary 72

5.2 Proposed Future Work 74

Bibliography 75

A Predicting Concatenated Code Performance - Graphical Method 77

B Code Tables 80

B . l Convolutional Codes 81

B.2 T C M Codes 82

B. 3 ISI Channels 85

C The M A P and "Best-Path" Algorithms 86

C l The M A P (or Bahl, "forward-backward", "any path") Algorithm 86

C. 2 The "Best-Path" Algorithm . . . 90

C.3 Computational and Storage Requirements 91

v

List of Tables

3.1 Signal Mapping used by the 8-PSK Modulator 42

3.2 Computational/Storage Requirements For a Typical Viterbi Decoder. . . 45

3.3 Additional Computation/Storage Required to Implement and Add a Gen­

eralized Post-Detector 46

3.4 Comparison of the Computation Requirements of Various Soft-Output De­

coder Algorithms 47

C l Minimum Operations Required per Input Symbol for the MAP Algorithm. 93

C.2 Minimum Operations Required per Input Symbol for the Best-Path Algo­

rithm 93

vi

List of Figures

2.1 Concatenated System with Corresponding Data Flow Diagram 6

2.2 The "Classic" (2,1,2) Convolutional Encoder and its Corresponding Trellis

State Diagram 12

2.3 Trellis for (2,1,2) Convolutional Code 14

2.4 Hagenauer and Hoeher's Revision Algorithm 18

2.5 Revision Algorithm by Berrou et al 19

2.6 Post Detector Architecture 20

3.1 Depiction of a Viterbi Decoder's Decisions Made at the 0— and j— Memory

Levels 23

3.2 Revision Operation Using Equation (46) 29

3.3 Generalized Revision Algorithm for Post-Detector 38

3.4 Rate 3/4 SOVA system 39

3.5 Rate-3 Soft-Output Viterbi EQ system 41

3.6 Comparisons of Algorithm Storage Requirements 49

3.7 Comparisons of Algorithm Computational Requirements 50

4.1 Concatenated Coding System Using Convolutional Codes for Both the

Inner and Outer Codes 54

4.2 Performance of Various Concatenated Systems Utilizing an Inner Code

with dfree = 3 55

4.3 Performance of Various Concatenated Systems Utilizing an Inner Code

with dfree = 4 56

vii

4.4 Performance of Various Concatenated Systems Utilizing an Inner Code

with dfree = 7 57

4.5 Concatenated Coding System using Multi-Level Modulation for the Inner

Code 59

4.6 Effect of Different Signal Constellations on the Quality of Soft-Output

Information 60

4.7 Concatenated Coding System with uncoded 8-PSK Modulation Over a

Static ISI Channel 64

4.8 Soft-Output Equalizer Performance in a Concatenated System Using Un­

coded 8-PSK for the Outer Code 65

4.8 Continued 66

4.9 Concatenated System Using Coded 8-PSK Over a Static ISI Channel. . . 67

4.10 Soft-Output Equalizer Performance in a Concatenated System Utilizing

Coded 8-PSK for the Outer Code 68

4.10 Continued 69

4.11 Simulation Results of a Concatenated System Utilizing a Post-Detector

With Various Revision Depths 71

A.l System Model for Graphical Procedure 78

A. 2 Graphical Determination of Concatenated System Performance 79

B. l Two and Three Tap ISI Channels 85

viii

Dedication

In memory of my grandmother and father, and for my ever persevering mother.

ix

Acknowledgements

The author would like to thank his advisor Dr. Samir Kallel for proposing such an inter­

esting project. The many insightful discussions, his guidance, and encouragement have

been invaluable. The author would also like to thank Ian Marsland for proof reading

the thesis and for his help throughout the project. Finally, credit has to be given to

Abderrazek Zaafrani for his invaluable English translation of Battail's paper [2].

x

Chapter 1

Introduction

1.1 Motivation and Scope of the Thesis

There arises many situations in communications where the serial concatenation of several

codes may transpire. For such systems, optimum performance is achieved when the

decoding is performed on the resulting effective global code. However, if the global

code is too complex, decoding in this manner may not be viable. An alternative is

to decode each individual code separately using the results from each decoding stage

as input for the subsequent decoding stage. For this arrangement to achieve its full

performance potential it is necessary that all of the decoding stages perform soft-decision

maximum a posteriori (MAP) decoding. Unfortunately, many of the popular decoding

algorithms such as the Viterbi algorithm output hard-decisions. Therefore, if any of these

algorithms are used for decoding one of the inner codes, this will constrain the subsequent

decoding stage to hard-decision decoding resulting in a degradation of performance. As

shall be shown later, it is possible for a subsequent decoding stage to perform soft-

decision decoding if the preceding decoding stage can provide a posteriori input symbol

probabilities instead of hard decisions. Decoders that are capable of providing such

information are usually referred to as "soft-output" decoders. Applications that can

benefit from the use of "soft-output" decoders include the serial concatenation of codes

to produce a more powerful, yet still easily decoded, global code. Other examples would

be the use of Viterbi equalization for previously encoded data, or the transmission of

1

Chapter 1. Introduction 2

previously encoded data using TCM. A more recent example would be the iterative

"Turbo" decoding algorithm for use with parallel concatenated codes [4]. Motivated by

the potential gains that soft-output decoding can bring to these applications (for Turbo

decoding, it is in-fact an essential element) much research has been done in the area of

finding fast, efficient, and accurate soft-output decoding algorithms. The work described

in this thesis is part of that effort.

One of the algorithms that can be employed for soft-output decoding is the symbol-by-

symbol MAP algorithm. Proposed in [1] as an optimal method of decoding convolutional

codes, its use for soft-output decoding was probably never intended. However, it does

produce as a natural by-product of the decoding process the necessary a posteriori input

symbol probabilities required for soft-output decoding. Its main advantage is that it

deduces the exact value for the a posteriori input probabilities. Its disadvantage is

that it requires a relatively large amount of computation. Indeed, this is one of the

reasons it is not commonly used for decoding convolutional codes - most designers opt

in favour of the Viterbi algorithm. In addition to the relatively high computational

requirements, the decoding delay and the amount of storage necessary to implement

the algorithm are dependent upon the length of the transmitted code sequence. Several

sub-optimal variants of this algorithm have been proposed to address some of these

problems. For example, to reduce the amount of computation necessary there is the

"Best-Path" algorithm described in [7]. To eliminate the dependence of the decoding

delay and required storage on the length of the transmitted code sequence, there is the

algorithm proposed in [14].

An alternative approach that may be used for soft output decoding is based upon

a heuristic modification to the standard Viterbi algorithm. The resulting soft-output

Viterbi algorithms (SOVA) [2] [3] [6] are able to deduce estimates of the a posteriori input

Chapter 1. Introduction 3

probabilities.1 One of the main attractions of this approach is that because the resulting

algorithms are based on the Viterbi algorithm, they have the desirable quality that the

decoding delay and required storage are independent of the length of the transmitted

code sequence. They are also computationally efficient in that the majority of the op­

erations needed to implement these algorithms involve relatively simple operations such

as comparisons and additions. Finally, as shown in [3], if one can derive a SOVA that

is compatible with the "Post-detector" architecture, then it is possible to significantly

reduce the amount of required computation and storage needed to estimate the a posteri­

ori input probabilities. In the "Post-detection" scheme, the soft-output decoder is given

knowledge a priori of what its eventual surviving path shall be. If the algorithm satisfies

certain conditions (described in Chapter-2), it may use this information to its advantage

thereby eliminating many of the required operations.

The work described in this thesis focuses on the heuristic approach to deducing a

posteriori input probabilities. At the onset of this project, one major short coming to

the SOVA approach to generating soft output information was that there did not seem

to exist an efficient algorithm that was applicable to any (n, fc, m)2 code. All of the al­

gorithms proposed in [2][3][6] are only applicable to binary input (n, l,m) type codes. If

it was desired to use any of these algorithms for a rate-fc/n code then such a code would

have to be synthesized by puncturing a rate-l/n code. Therefore, the main objective of

the research documented by this thesis was to find a heuristic based soft-output decoding

algorithm that is applicable to any (n, k, m) type code. For the sake of computational

efficiency it was also desirable that this algorithm be compatible with the post-detector
1 T h e term S O V A is often used in reference to the specific algorithm proposed by Hagenauer and

Hoeher in [6]. However, due to the similar foundations, for this thesis the term S O V A is used in
reference to any algorithm that is based upon a heuristic modification of the standard Viterbi algorithm.

2Following the notation as presented in [11], a (n,k,m) code represents a convolutional code with
n-output bits, fc-input bits, and a memory of m-bits.

Chapter 1. Introduction 4

architecture proposed in [3]. Having found such an algorithm, its performance was eval­

uated through the use of computer simulations of various concatenated systems. Its

computational complexity was also compared with the MAP and Best-Path algorithms.

1.2 Outline of the Thesis

This thesis is organized as follows. In chapter-2, the use of a posteriori input probabilities

for soft decision decoding is described. This is followed by a brief description of the

algorithms proposed in [2] [3] [6] - on which the derivation described in Chapter-3 depends.

In Chapter-3 the newly proposed "generalized post-detector algorithm" is derived. The

computational complexity is compared with MAP and Best-Path algorithms. A brief

discussion of some of the potential ramifications of the approximations made during the

algorithm's derivation is presented. Computer simulation results are shown in Chapter-4.

In Chapter-5 a summary is presented and suggestions for possible further investigation

are made.

Chapter 2

Background and Underlying Principles

2.1 Using Soft-Outputs in Serially Concatenated Systems

Consider the serially concatenated system shown in Figure 2.1. In this system a

message sequence m is multiplexed into several sub-messages m;. These sub-messages

are encoded using the outer code. The resulting code sequences pi are then interleaved

resulting in the sequences q~j. The sequences q~j are encoded using the inner code and

transmitted over an AWGN channel. The received sequences Rj are decoded resulting

in the sequences Uj. These sequences are then de-interleaved into the sequences The

purpose of the interleaver/de-interleaver operation is two-fold. First, it eliminates any

correlation in the symbols of each sequences q~j. Second, it eliminates any correlation

in the "noise" samples in each received sequences Yj. Finally, the sequences F; are then

decoded into the sub-messages fh^.

For such a system to achieve optimum performance, both the inner and outer decoders

should perform soft-decision MAP decoding. Clearly soft-decision decoding for the inner

decoder does not pose any problems since the received sequences Rj represent sampled

continuous random processes. In addition, since the symbols from the inner decoder

are transmitted over an AWGN channel, the conditional density function of the received

symbols is well known:

where Sj is the transmitted signal sequence and a2 is the noise variance of the AWGN

5

(1)

Chapter 2. Background and Underlying Principles

m Outer P Inter- Inner Signal
5 1

Encoder leaver Encoder Mapper

A W G N

Outer De-inter- Inner
Decoder V leaver - Decoder

R

Interleaver De-interleaver

» i i —P- px-

ihj —• pi -

mK—• PK-

-+• q\ —• s\ —%*• R{—1+ U]

-*> q~j — • Sj — • Rj —• Uj

-> q~L — • ?i —+• RL—+ UL

J

Yi —

Yi —> m'

YK—¥-m'K

Figure 2.1: Concatenated System with Corresponding Data Flow Diagram.

Chapter 2. Background and Underlying Principles 7

channel. This conditional density function may be used to perform MAP decoding utiliz­

ing the unquantized input symbols. Soft-decision decoding for the outer code, however,

is not as straight forward since any conventional decoder structure used for the inner

decoder will deliver hard quantized decisions.

To determine how one can perform soft-decision MAP decoding for the outer code

assume, for the time being, the existence of a soft-output inner decoder that will output

an unquantized sequence Uj whose samples Uji (and hence Yij) are suitable for any outer

decoder to perform soft-decision decoding. To satisfy the condition that the outer decoder

perform MAP sequence decoding it must utilize the following selection criteria:

Find m'i such that P{m!AYA > P(mi\Yi) V m^m; (2)

Substituting

P W ?) = A W) (3,

and asserting the condition that all sequences m are equally likely, then (2) may be

rewritten as:

Find m'i such that / (F ; K) > / (F ; K) V rfk ̂ mj (4)

Because of the one-to-one relationship between the message sequences m and the code­

words p this is equivalent to:

Find m'i such that /(̂ |pi(m-)) > f (Yi\pi(mi)) V ^ m{ (5)

where pi{fhi) represents the specific code sequence pi associated with the message se­

quence rhi. Defining the "error" sequence fji = Yi — pi(rhi), each side of (5) may be

expressed as,

Chapter 2. Background and Underlying Principles 8

fWMmi)) = f(fJl = Yi-pi(mi)) (6)
L

= J]. fiVij = Yij - Pij(mi)) due to interleaving
j=i

L

= Hf(Yii\Pij(^ii))
3=1

Because q and U are merely p and Y interleaved respectively,

/ (£ | # (m 0) = UHUMrrii)) (7)
3=1

Therefore (5) maybe rewritten as:

Find m'i such that,

* P (^ K) | ^) P (/ J J t) ^ P((b<(m i)|t/J- i)P(t/J-0 m /

P(Uji) does not depend on and therefore can be cancelled from both sides. If the

inner code has the property that P(qji(mi)) is equal for all choices of qji then it too

can be eliminated. Thus the only term that the outer decoder needs to perform MAP

soft-decision decoding are the probabilities P(qji\Uji).

Because of interleaving each of the q^ of the sequence q~j are independent. Therefore

knowledge of UjX (Va; ^ i) will have no affect on P(qji\Uji). Consequently, it is possible

to substitute P(qji\Uji) for P(qji\Uj). The resulting MAP decision criteria becomes:
L _ _ L

Find m'i such that J J P(qji(m'i)\Uj) > J] P(qji(mi)\Uj) V mii-w!i (9)
3=1 3=1

The necessity of this substitution shall be shown in the following paragraph.

Previously, the assumption of the existence of a soft-output inner decoder that delivers

unquantized decoded information sequences U was made. Assume that each of these

decoded sequences corresponds to a unique received sample sequence R resulting in a one-

to-one relationship between U and R. Under these circumstances, P(qji\Uj) will be equal

Chapter 2. Background and Underlying Principles 9

to P(qji\Rj) since knowing Uj is equivalent to knowing Rj (and vice versa). Note however

that the procedure for calculating P(qji\Rj) is already well known since these are the exact

quantities that must be computed if the inner decoder were a symbol-by-symbol MAP

decoder. Therefore, if the outer decoder were to set P(qji\Uj) to P(qji\Rj) as calculated

by an inner MAP decoder, this would be equivalent to using the aforementioned fictitious

soft-output inner decoder. Since the outputs from this fictitious decoder are unquantized

and there is no information reduction going from R to U, the outer decoder will be

performing soft-decision decoding.

As a result of the discussions presented in the previous paragraphs it can be concluded

that the decision rule:

L _ _ L

Find m'i such that H P(<lji(m'i)\Rj) > II v
 ™* m'i (10)

3=1 J'=I

is sufficient for the outer decoder to perform soft-decision MAP decoding under the

condition that all message sequences m, are equally likely and all encoded sequence

symbols qji (and hence pij) are also equally likely. For convolutional codes and TCM

codes, the condition that all of the possible output symbols from the outer decoder are

equally probable is satisfied.

2.2 The Symbol-by-symbol M A P and "Best-Path" Algorithms

As mentioned previously, there already exists a known algorithm for calculating the a

posteriori input probabilities P(qi\R). This algorithm is, not surprisingly, known as the

symbol-by-symbol MAP algorithm (also known as the "Bahl" [1] or "forward-backward"

[7] algorithm). This algorithm in optimum in the sense that it determines the exact

values for the a posteriori input probabilities P(qi\R). The cost of this precision however

is that it requires a relatively large number of multiplications per decoded symbol. This

Chapter 2. Background and Underlying Principles 10

may pose a problem if the hardware available is not capable of performing the neces­

sary calculations in real-time at the desired speeds1. A sub-optimal derivative of this

algorithm that reduces the amount of computation required by replacing multiplications

with additions and additions with compares is the "Best-Path" algorithm [7]. This al­

gorithm is computationally efficient and capable of delivering high quality probability

estimates. However, because of its similarity to the MAP algorithm it also shares some

of its disadvantages. Because both of these algorithms involve a forward computational

pass starting from the first received symbol and a reverse computational pass starting

from the last received symbol, one must wait for the entire transmitted sequence to be

received prior to the completion of the calculation of any of the a posteriori input proba­

bilities. This may lead to unacceptable decoding delays at the receiver if the transmitted

sequence is relatively long. Furthermore, one must at the very least store the entire

received sequence so that it may be referenced for the second pass. Hence, the amount

of storage required for this algorithm for long transmitted sequences may be quite large.

A detailed description of the MAP and Best-Path algorithms is given in Appendix-C.

2.3 The Soft-Output Viterbi Algorithm (SOVA)

The soft-output Viterbi algorithm is a name used to describe a family of sub-optimal

algorithms that are used for calculating estimates of the a posteriori input probabilities

P(qi\R). They are all based upon a heuristic modification of the conventional Viterbi

algorithm (for an explanation of the Viterbi algorithm see [9] [10]). Because of this re­

lationship, the decoding delay and the amount of required storage for these algorithms

are independent of the length of the transmitted sequence. In addition, the majority
xIt should be pointed out that many modern microprocessors and digital signal processors are capable

of performing floating point operations at speeds comparable to integer arithmetic. Furthermore the
cost of this type of hardware appears to be continually decreasing. Therefore, concerns over whether a
system has sufficient computing power may no longer be a major issue.

Chapter 2. Background and Underlying Principles 11

of the computations involved in the calculation of the a posteriori probability estimates

involves additions, subtractions, and comparisons - operations that can be performed

quite rapidly on simple, inexpensive hardware.

2.3.1 Deducing Viterbi Decision Probabilities

The basic supposition is that it is possible to deduce the reliability of the decisions made

by a Viterbi decoder by comparing the path metrics of all paths merging into each state

of the trellis. Whenever a Viterbi decoder chooses a survivor merging into a state, the

confidence in the input bits or symbols associated with that decision is proportional to

the magnitude of the difference between the path metrics of the survivor and concurrent

paths. For example, in Figure 2.2 consider the two paths merging into state-1 at decoder

memory level j = 0. Ms and Mc are respectively the accumulated Viterbi path metrics

of the survivor and concurrent paths. If the encoded symbols were transmitted over an

AGWN channel, the metrics would be given by:

Ml = -lnP(^th-i\rk

1) = ^J2\rt-^t{xf)}\2 , i = s,c (11)
^° t=l

where r\ is the sequence of received symbols from time-1 up to time-A; (this notation

provides a convenient means of referencing sub-sequences of the entire received sequence

R), rt is the received sample at time t, and st{x[^} is the transmitted signal at time t

corresponding to the output symbol associated with the i-th path. For this channel,

the confidence in the Viterbi decoder's decision in choosing the surviving path over the

concurrent path may be found by:

^(attLbkdS0-l K) = (̂surviving path|r*)
e~M<

g-Ms _|_ g—Mc

1

Figure 2.2: "Classic" (2,1,2) Convolutional Encoder and its
Corresponding Trellis State Diagram.

Chapter 2. Background and Underlying Principles 13

Equation (12) provides an expression for determining the probability of the decision

made by the Viterbi decoder at time-A; and state-1. However, the desired quantity is the

probability of the input bits or symbol associated with this selection. The relationship

between the decisions and input bits or symbols depends on the structure of the encoder.

Consider the encoder shown in Figure 2.2. For this example, the encoder's state was

denned to be the contents of its shift register. By noting the states at time k — 1 of the

survivor and concurrent paths, it becomes apparent that the contents of the encoder's

shift register must differ in only the last bit prior to the merger at time-k. Hence the

decision probability calculated previously refers the encoder's shift register "roll-off" bit.

Equivalently, for this example, the probability calculated corresponds to an input bit

decision at time k — 3.

For feed-forward encoder's in general, each decision associated with the selection of a

survivor to each state corresponds to the selection of a corresponding shift-register roll-

off symbol. The bits corresponding to this symbol are, of course, bits that would have

been inputted previously. Note that if the encoder consists of shift-registers of differing

lengths it is not possible to calculate the input symbol probabilities directly.

For a systematic feed-back encoder the relationship is different. In this case, each path

merging into a particular state will be associated with unique input symbol. Therefore,

the survivor selections also correspond to the selection of a specific input symbol. There

is no time delay for this situation.

Taking the previous comments into consideration, for the encoder shown in Figure

2.2, equation (12) states:

1 (13) I -|_ e-(Mc-M3)

Chapter 2. Background and Underlying Principles 14

State

0(00)

1(01)

2(10)

3(11)

5 4 3 2 1 0 Mem Lev: j

k-4 k-3 k-2 k-1 k k+1 Time

Figure 2.3: Trellis for (2,1,2) Convolutional Code

4 _ 3 = 1 on
surviving path

to state-1

= 1

Concurrent decision
at t — k, state-1

h-3 — 0 on
surviving path

to state-1
(14)

2.3.2 The Need For Revision

There now exist an expression for the reliability of a Viterbi decision given received

symbols r\ = {ri,..., r/t}. However, because the encoder's output symbols are correlated,

as subsequent symbols are received, they will have an impact on the probabilities of

previous decisions. The values calculated by equation (12) will have to be updated. Hence

one requires a revision algorithm that will update the previously calculated probabilities

as new symbols are received. This process of calculating new probabilities and revising

the previously calculated probabilities must be repeated until the final symbol r^ arrives.

The concept is illustrated in Figure 2.3. Assume that the surviving path from Figure 2.2

is now part of the surviving path to state-0 at time k + 1. Then if follows that:

Chapter 2. Background and Underlying Principles 15

p
I k - 3 = 0 on

surviving path r i
to state-0 k+1 = P

P

Ik-3 =0 o n Surviving path
surviving path at t = k + 1,

Ik—3 =0 on Concurrent path
surviving path at t = k + 1,

to state-1 I state-0

to state-0 | state-0

Once this revision formula has been applied there will exist up-to-date reliability infor­

mation for the surviving path for decisions at time t = k and time t = k + 1. When

the next symbol is received at time k + 2, the revision formula is applied once more to

the probabilities computed at times k and k + 1. The process is repeated until the final

symbol is received.

Finding an efficient revision formula or algorithm is the key to SOVA. Where previous

works [2] [3] [6] differ is in the approach and details of this operation. Because of the heavy

dependence that the newly proposed revision algorithm has on the previous works, a brief

overview of those works shall be presented.

2.4 History of SOVA

2.4.1 Relative Values

In 1987 G. Battail published a paper [2](Fr) describing a general SOVA revision algorithm.

Rather than revising the actual Viterbi decision probabilities, as was done in the previous

section, he revises a quantity known as "valeur relative" (or "relative values"). For a

(n, k, m) code the relative values associated with the decoder's most recent decision are

defined as:

where XQ represents the encoder's roll-off symbol (for a feed-forward encoder) or input

symbol (for a systematic feedback encoder) at the time corresponding to decoder memory

depth-0. Equivalently the relative value is representative of the confidence in the Viterbi

a0p = log
Pjxp = 0)
P(x0 = p)

= MP-M0 p = 0,---,2 f c-l (16)

Chapter 2. Background and Underlying Principles 16

decoder's decision concerning the 0th and pth paths, as identified by the roll-off or input

symbol, to a given state. (This quantity is in-fact the same "relative" metric that was used

previously in section 2.3.1.) Using this definition, the confidence in a Viterbi decoder's

decision for a non-binary input (n , k, m) convolutional or trellis code is represented by a

vector of relative values. Battail also defined the conditional relative value to take into

consideration past decisions conditioned on the current choice of survivors to each state.

For the decision made j symbols in the past conditioned on the current pth path:

„P _ l Q C

 P(xi = °\xo = P) A _ 0 . . . o f c - 1 (17)

With these definitions, Battail derived a general revision formula that was applicable

to any (n,k,m) code. However, due to its complexity, he concentrated on the binary

input (n, l,m) case. By focusing on this this sub-class he was able to limit the number

of terms that had to be taken into consideration. Simplifying the resulting (n,l,m)

expression he arrived at a revision formula that has a low computational complexity

and is relatively simple to implement. His revision formula is reproduced here for the

convenience of the reader:

ay+i) = max(a], a° + a*, a° + a0, a° + a] + a0) — max(0, a°, a0, a* + a0) (18)

The reason there is only one equation and not two (one for each a(-,+i)i , i = 0,1) is

that, because of how the relative values are defined, aj0 = 0. Therefore there is no need

to calculate it. Similarly, since a0o = 0 and a*0 = 0 always, there is no need for those

relative values (where they occur in the revision formula, they have been replaced by 0).

Therefore, each term in (18) refers to either â +iji, c^i, or a*-x.

To illustrate how this revision formula is used, refer back to Figures 2.2 and 2.3. In

Figure 2.2, Ms is the metric for the 0th path (as identified by the shift-register roll-off

bit) while Mc is the metric for the 1th path. Therefore, for the decision made at state-1

Chapter 2. Background and Underlying Principles 17

at time-fc:

a00 = Ms - Ms = 0 (19)

a 0i = Mc- Ms (20)

Similarly, there would also be a set of relative values generated for the decisions made to
each other state. Referring to Figure 2.3 for state-0, time k + 1, Mc now refers to the 0th

path while Ms refers to the Ith path. A new relative value vector [a0o,a0i] is calculated
using these metrics while (19) and (20) become [a^a]̂ since they are now part of the
current 1th path. The relative value vector that was calculated for state-0 at time-fc now
becomes [a50,a?i] as it is part of the current 0th path. Revision formula (18) states that
the updated relative value vector for the decision at memory depth-1 (time-A;) on the
surviving path (the 1th path) to state-0 may be found by:

a i o = 0 (21)

a n = m a x (a j 1 , a § 1 + a J ^ a Q ! + o o i . a Q ! + a j x + a 0 i) - max (0 ,ao 1 ,a 0 i ,aj 1 + a 0 i) (22)

2.4.2 A Simplified Revision Algori thm

Presented at Globecom'89, Hagenauer and Hoeher [6] described an alternate revision

algorithm. Reproduced in Figure 2.4, the algorithm compares only two quantities per re­

vision and only performs the revision if the concurrent and surviving paths yield different

decisions. This algorithm revises the log-likelihood ratio:

where pj is the a posteriori probability estimate for the decision made at memory level

Lj = log 1 -Pj (23)
Pi

j . The revision function /(Lj, A) is defined as:

(24)

Chapter 2. Background and Underlying Principles 18

Recursion:

a) Classical Viterbi step:
For each state sk

Compute

IXst-i ,sk) = TXsk) + % 2 £ i (y tn - * to) 2

for both transitions (sk-\, sk) •
Find r(sk) = min r(sk-i, sk).
Store F(sk) and the corresponding survivor iik(sk) •

b) Soft-deciding update:
For each state sk

Store A = maxT(sk~\, sk) - min r (i n , sk).
Initialize Lk(sk) = +°°.
For j = k-v to j = lc-&m

Compare the two paths merging in sk

if uf\sj) * uf\sj) then update
Lj:=f(Lj,A)

Figure 2.4: Hagenauer and Hoeher's Revision Algorithm

where A = Mc — Ms and a is a constant scaling factor. Like Battail's simplified revision

formula, this algorithm is only applicable to (n, l,m) type codes. However, since this

revision formula only compares two quantities per revision, the amount of computation

required for this revision algorithm is less.

2.4.3 The Post-Detector Architecture

In a paper presented at ICC'93 by Berrou et al. [3] the results of the previous two

works are combined. The authors started from Battail's original non-simplified revision

formula for (n, l,m) codes and were able to derive a simple revision algorithm that

parallels the one published by Hagenauer and Hoeher in that the revision operation

involves essentially the comparison of only two quantities. Like Battail's algorithm their

Chapter 2. Background and Underlying Principles 19

case 1: Sj(k, m) • s'(k, m)<0
dj(k, m) = Sj(k, m) • min [\aj(k, m) |, a(k,m)\]

case 2: Sj(k, m) • s'j(k, m) > 0
cij(k, m) = SjQc, m) • min [| a,(&, m) \, \a(k,m)\ + \a'j(k,m)\]

Figure 2.5: Revision Algorithm by Berrou et al.

algorithm revises "relative values". Their algorithm is reproduced in Figure 2.5. The

a[j\k,m) and a(k,m) terms are the same as the a*- and a0 terms in Battail's revision

formula (equation (12)) with the exception that the time-A; and state-m are explicitly

shown. The term Sj(k,m) is the sign of the relative value a,j(k,m). One of the author's

findings was that the quality of the a posteriori probability estimates was not seriously

affected by the neglecting case-2. This was fortuitous since the author's realized that

significant computational savings could be realized by this action. The authors noted

that case-1 depends solely on the "relative values" (referred to as "weights" in [3]) of

the path currently being revised. Therefore, by choosing to revise only the globally best

path (the overall survivor), the "relative value" information of the concurrent paths need

neither be computed nor stored. To take advantage of these potential savings, all that

is required is that the module performing the SOVA operation know a priori what the

surviving path is. This resulted in the post-detector architecture outlined in Figure 2.6.

To illustrate why a post-detector architecture is beneficial for Berrou's algorithm

and not Battail's, consider the example shown in Figures 2.2 and 2.3. Consider the

hypothetical situation in which both state-1, time-k and state-0, time k + 1 lie on the

global surviving path. Using Battail's notation, according to Berrou et al, the relative

value an can be sufficiently approximated by:

a n = sign(ajx) • minflajj, |a0i|] ' (25)

Chapter 2. Background and Underlying Principles 20

Encoder Mod Channel Encoder Mod Channel

Xj :i=\-N

Delay Line

Viterbi
Decoder

S O V A
Post-Detector

a posteriori
i/p symbol
probabilities

P(x,\Y)

Figure 2.6: Post Detector Architecture

Note that is the relative value for state-1, time-A; conditioned on the surviving path.

Compare this with equation (22) where it was necessary to also know - a relative value

associated with a decision at a state and time (state-0, time-A;) not lying on the globally

best path. Therefore, for Battail's algorithm, regardless of having a priori knowledge of

what is the globally best path, one still needs have the updated relative values conditioned

on the concurrent paths. Since the concurrent paths may have in the past traversed

through any trellis state, at each time step one must still revise the relative values of

every surviving path to each and every state. As a result, there are no computational or

storage savings if a post-detector architecture is used with Battail's algorithm.

At this point, it is convenient to state the conditions under which an algorithm will

benefit from a post-detector architecture: The revision algorithm must only depend upon

relative values of decisions made on the globally best path. It may depend on the aoi

terms if these relative values are for a state lying on the globally best path. It may depend

on the ciji terms if these relative values are conditioned on being part of the globally best

path.

It should be pointed out that the decrease in computational complexity that results

from using a post-detector architecture does not come without a price. In this case

additional decoding delay has been introduced. Not surprisingly, there appears to be a

Chapter 2. Background and Underlying Principles 21

trade-off being made between precision, complexity, and decoding delay.

Chapter 3

Derivation of the Generalized Post-Detector

3.1 Introduction

In this chapter the generalized post-detector algorithm is derived. As was done in [3], the

derivation presented here begins with Battail's unsimplified revision equation for relative

values. However, unlike [3], this treatment begins with the more general equation that is

applicable to any (n, k, m) code. For the sake of some of the simplifications that will be

made later, and the convenience of the reader, Battail's general revision equation will be

re-derived. The derivation parallels the steps as presented in [2], however, the relative

values have been referenced against the metric of the surviving path to each state. (As

shown in equations (16) and (17), Battail referenced his relative values to the metric

of the 0th path to each state.) As shall be shown later, this step makes possible some

crucial simplifications that lead to an intermediate revision formula that is essential to

the derivation of the final proposed post-detection compatible algorithm.

3.2 Terminology

3.2.1 Relative Values at the Decoder's 0— memory level

Referring to Figure 3.1 in which two Viterbi decoder m-ary decisions are depicted

(one at the 0th memory level and the other at the j t h memory level conditioned upon the

0th) the "relative values" of the decoder's most recent decision (at an arbitrary state) are

22

Chapter 3. Derivation of the Generalized Post-Detector 23

Most Recent Viterbi Decision
(Memory Level-O)

Vi te rb i D e c o d e r P a t h M e m o r y

to P r e v i o u s S t a t e s a t t ime : t=k »
Tre l l i s T r a n s i t i o n X n

Viterbi Decision Made j Symbols Previously
Along the Path Associated with the i-th Transition -

Vi te rb i D e c o d e r P a t h M e m o r y

to P r e v i o u s S t a t e s a t t ime : t=k-j « I «
. T re l l i s T r a n s i t i o n XJ\XQ = i

Figure 3.1: Depiction of a Viterbi Decoder's Decisions Made at the 0—
and j— Memory Levels

Chapter 3. Derivation of the Generalized Post-Detector 24

defined as:

A Pr(xo = Tna)
a0m = log p _ ̂ , m = 0,... ,q - 1, m, € {0,... ,q - 1} (26)

£o is a discrete random variable representing the roll-off symbol for a feed-forward encoder

or the input symbol for a systematic feedback encoder. Equivalently, it may represent

the corresponding path merging into the given state, m represents the possible values for

the roll-off or input symbols ranging from 0 to q — 1. For an (n, k, m) code, q is equal to

2k. ms is the specific roll-off or input symbol associated with the surviving path merging

into the given state.

For an AWGN channel, if Mm and Mms are the trellis path metrics of a concurrent

path and the survivor path merging into a given state, then the relative values respectively

become:

a0m = log = log = Mm- Mms 27

Hence, for each decision made at the decoder's 0— memory level (one for each possible

trellis state), a vector a0 = [a0o, Qoi, • • • ,ao(g-i)] of relative values representing the re­

liability of that decision is generated. The relative value vector may be viewed as an

alternative representation of the p.d.f. of the random variable x0.

Rearranging (26) yields an expression for the probability of a specific path in terms

of its relative value and the probability of the surviving path being traversed:

Pr(x0 =m) = e~a0mPr{xQ = ms) (28)

3.2.2 Conditional Relative Values at the Decoder's j— memory level

Following a similar procedure as was done for the 0— memory level, the relative values

for decisions made in the past are now defined. Consider a decision made j symbols

previously from the current decision conditioned on it being part of the i— path to a

Chapter 3. Derivation of the Generalized Post-Detector 25

specified current state. Define:

,• A, Pr{Xj = ms\xn = i) .. ,„ . .

As before the vector = [0^0,^1,... , a^^] is representative of the reliability of the

decision made by the decoder.

Rearranging (29) gives an expression for the probability of a specific path traversed

j symbols in the past conditioned upon it being part of the current i— path:

Pr(xj = m\x0 = i) = e~a^mPr(xj - ms\x0 = i) (30)

For the derivation that follows, it is helpful to fully express Pr(xj = m\x0 = i) in

terms of relative values. This is readily accomplished by noting that (due to a corollary

from the theorem of total probability):

9-1

Pr(xj = k\x0 = i) = 1 (31)

k=0

By using equation (30):

9-1

Pr{Xj = ms\x0 = i)J2 e~a)k = 1 (32)

Pr(xj = ms\x0 = i)= 1 _ai (33)

Now substituting this result back into equation (30) yields:
—a1-

6 J m

Pr{xj = m\xQ = i)= _ai (34)
E L o e j k

3.3 Re-deriving Battail 's Revision Formula

From the theorem of total probability:

9-1

Pr(xj — i) = ^2 Pr(xj — i\xo = m)Pr(x0 — m) (35)
m=0

Chapter 3. Derivation of the Generalized Post-Detector 26

At this point a slight change in notation is made to reflect the fact that as new deci­

sions are made, they are stored in the decoder's path history and all prior decisions are

"shifted-up" in memory level by 1. Therefore (35) is rewritten as:

9-1
Pr(xj+i = i) = ^2 Pr(xj = i\x0 = m)Pr(x0 = m)

m = Q

Substitute (28), (34) into equation (36):

<?-i r
Pr(xj+1 = i) = Y,

m=0

e J*

L E L o ^ J
9-1 p-a]l~ao"

=0 Ẑ fc=0 e 3

{e-aomPr{x0 = ms)]

Pr(xQ = ms)

With i = ms (37) yields:

Pr{xj+i =ms) =

Substitute (37) and (38) into:

0-1 — -<»0rj

= 0 E L o e 3 k

Pr(xQ = ms)

«(i+i)i = log

yields:

9 _ 1 -a?i- a0m

£ e

a0'+i)« = lo§

Recall that by construction oJ^ms = 0,. m = 0,..., q — 1.

P r (X j + i = z)

' f . 1

 e-aTms-"0m
= 0 £ £ « '

a(i+i)i = log
'9-1

V-> e~a0m - log a(i+i)i = log la ^ , - 1 - a ™
- log

.™=°£Lo e J*J

(36)

(37)

(38)

(39)

(40)

(41)

Equation (41) describes how to "heuristically" revise the relative values of the sur­

viving paths given a Viterbi decoder's most recent decisions. This formula is applicable

to any (n,k,m) code however, due to its complexity it is not very practical.

Chapter 3. Derivation of the Generalized Post-Detector 27

3.4 Simplifying the General Revision Formula

The problems with using equation (41) directly are two fold. First, the outright number

of operations required is rather large. Secondly is the fact that many of those operation

involve exponentials. To circumvent these problems, it is hoped that many of the terms in

equation (41) can be approximated by simpler expressions without drastically affecting

the quality of a posteriori input probability estimates. Indeed, this was the primary

motivation for re-referencing the relative values to the surviving path since, by doing so,

many of the operations can be eliminated.

By using the following approximation to the sum of a set of exponentials:

9-1
e ik ~ e 1 ik'

k=0
(42)

Due to the re-referencing of the relative values to the surviving path, it follows that for

k 7̂ ras, djl > 0, while a™ms — 0. This implies that:

9-1
£ e-a7« « 1
fc=0

(43)

Substitution into equation (41) yields:

a(j+l)i log

log

9-1
^2 g — a 0 m .

m=0
9-1
£ g j .

Lm=0
g-mm{oom}

e-min{aJl+aom}

Similarly since for m / ms, a0m > 0, while arjm s = 0:

1

(44)

Oy+i)i W log
-min{aYi+aom}

(45)

a(j+i)i « min {a^ + a 0 m }
m=0...q—1 J

(46)

Chapter 3. Derivation of the Generalized Post-Detector 28

3 . 5 Finding a Revision Algorithm That is Post-Detector Compatible

Equation (46) provides a relatively simple revision formula for any (n,k,m) code. As

a soft-output Viterbi decoder selects a survivor merging into a particular state, it can

use this formula to revise the stored relative values associated with the surviving path.

However, since this operation is done for each surviving path entering into each possible

trellis state, the number of revisions required will be quite large. Furthermore, this entails

the storage of the relative value vectors associated with each of these surviving paths.

Depending upon the hardware available this may not be very practical.

One way to overcome these problems is to try to implement (46) as a "post-detector".

The rational behind such a scheme is that if the decoder knows a priori what the globally

best path is, it needs only to revise the relative values associated with that path. Why

spend precious computational cycles on revising relative values of paths that shall never

be emitted by the decoder? Furthermore, if one can eliminate from the revision operation

any dependence upon the relative values of the concurrent paths then one only needs to

allocate storage for the relative values of a single path. This unfortunately leads to a

problem in using equation (46) as it stands for a post-detector. Referring to Figure 3.2,

in which a revision operation using equation (46) is depicted, it becomes apparent that

as one uses (46) to revise the relative values of a surviving path (at time t = k + 1) to a

state that is part of the globally best path, one requires knowledge of the relative values

of not only the survivor path (to state-6, at time t = k) but also of the concurrent paths

(to states-a, c, d, at time t — k). This implies that at each time step, the decoder must

still store and revise the relative values of each survivor to each possible trellis state.

This forfeits any potential savings that might have been realized by using a post-detector

architecture. If equation (46) can somehow be modified in such a manner so that the

revision of the surviving path (at time t = k + 1) does not depend on the knowledge of

Chapter 3. Derivation of the Generalized Post-Detector 29

Survivor Path

Concurrent Paths

State

-> a

- > b

Allowed trellis transitions
into state-a

t=k t=k+l

«00
tfoi

«03

Relative values of surviving
paths merging into each state
attimet=k.

Relative values of surviving
path merging into state-a
attimet=k+l.

State
"i a,-+i

a(,-+i),;= min {a%+aom}
m=0-3

Figure 3.2: Revision Operation Using Equation (46)

Chapter 3. Derivation of the Generalized Post-Detector 30

concurrent paths (at time t = k) then the computational/storage savings hoped to be

gained by using a post-detector architecture can be realized.

Insight into finding the appropriate modifications can be gained by considering (46)

for the (n, l,m) case and determining what necessary changes must be made in order

that it meet the "post-detector" requirements outlined previously. It is hoped that these

modifications will provide sufficient clues on how to adapt (46) into a "post-detector"

compatible algorithm that may be applied to any (n,k,m) code.

3.5.1 Post-Detection Compatible Revision Algorithm for (n, l ,m) Codes

From equation (46):

ay+i)0 = minfojo + ooo, ajo + floi} (4 7)

a (j + 1) 1 = minfa^ + a0o , a]i + ^oi} (48)

There are eight possible cases to consider: x0 = 0 or 1, Xj = 0 or l\x0 = 0, and Xj =

0 or 1\XQ = 1, where x denotes the decision made by a Viterbi decoder. The effect of

these Viterbi decisions on the revision equations is shown in the following tables.

Case 1 - (n , l , m) codes Case 2 - (n , l , m) codes

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's

0 xo = 0 aoo = 0 0 x 0 = 0 a0o = 0

3 £j = 0\xo = 0

Xj — 0\xo = 1

«°o = 0

a)0 = 0

j Xj = 0\XQ = 0

Xj = 1\£Q = 1 «}i = 0

Revision Equations for Surviving Path Revision Equations for Surviving Path

a(j+i)o = 0

a(j+i)i = minfa^, a} + a 0 i j = min{a^, a01}

Chapter 3. Derivation of the Generalized Post-Detector 31

Case 3 - (n , l ,m) codes Case 4 - (n , l , m) codes

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's

0 x0 = 0 a0o = 0 0 x o = 0 aoo = 0

3 Xj = l \ x r , = 0

Xj = 0\XQ = 1

4 = °
ojo = 0

3 f j = l\xo = 0

= l | £ o = 1

a ^ O

a), = 0

Revision Equations for Surviving Path Revision Equations for Surviving Path

a (j- + 1)o = minja^o, a 0i} a(j+i)0 = mm{a°j0, a j 0 + a 0i}

° (j+ i) i = 0

Case 5 - (n , l ,m) codes Case 6 - (n , l , m) codes

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's

0 x0 = 1 a 0 i = 0 0 £ 0 = 1 OQI = 0

3 = 0|̂ o = 0

£j = 0\XQ — 1

4 = 0

«jo = 0

3 = 0\xo = 0

= l\£o = 1

4 = o
a), = 0

Revision Equations for Surviving Path Revision Equations for Surviving Path

aO+i)o = 0

a (j + i) i = min{a^ + a 0 0) a j j

O (j + i) 0 = min{a 0 0 , a}0}

%'+!)! = 0

Case 7 - (n , l ,m) codes Case 8 - (n , l , m) codes

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's

0 x0 = 1 a 0 i = 0 0 £o = 1 a 0 i = 0

3 = l\xo — 0

i j - 0\XQ = 1

4 = 0

4 = °

3 i j = l\xo = 0

f j = l |fo = 1 4 = 0

Revision Equations for Surviving Path Revision Equations for Surviving Path

aO+i)o = 0

%•+!)! = min{a0o, a}x}

°>(j+i)o = m i n { a ° 0 + a 0 0 , a)0}

° (i + i) i = 0

Chapter 3. Derivation of the Generalized Post-Detector 32

To find an algorithm that is compatible with the post-detection scheme presented in

[3] it is necessary that revision depend only on the relative values of the surviving path

and the most recent decision. This is true for cases: 2, 3, 6, 7 - when the decisions made

at memory level-j were different.

To uncover what additional approximations have to be made to make the other cases

(when the decisions made at memory level-j were identical) post-detector compatible,

consider case-1. According to the algorithms by Berrou et al. and Hagenaurer/Hoeher,

revision is not necessary if both the concurrent and survivor paths yield the same decision.

Therefore, in compliance with their findings, revision should not be necessary for case-1.

Expressed in the notation used for this chapter this would imply:

%+i)o = a% (4 9)

flfj+i)i = aji

In case-1, the revision equation for a(j+i)o satisfies (49) already since a°0 = 0. The revision

equation for <2(j+i)i can be made to satisfy (49) if the a]x + a0i term is neglected. This is

not entirely unreasonable since by construction all of the terms are positive. In essence,

by neglecting this term, the assumption made is that the sum of two terms will always be

greater than a single term. Examination of cases 4, 5, and 8 show that they too can be

made post-detector compatible by making this same assumption. The resulting revision

equations follow:

Chapter 3. Derivation of the Generalized Post-Detector 33

Case 1 Case 2

"0+i)o = "°o

00+1)1 = "°i

aO'+i)o = a %

" 0 + 1) 1 = m i n { " ° i > a ° i }

Case 3 Case 4

" 0 + 1) 0 = minja^o, a 0 i j

"0+i)i = "°i

"0+i)o = a°jo
" 0 + 1) 1 = a° i

Case 5 Case 6

"0+i)o ~ ajo

" 0 + 1) 1 = "]l

a(j+i)0 = min{a 0o, a)0}

"0+i)i = a)i

Case 7 Case 8

aO+i)o — "}o

" 0 + 1) 1 = min{a0o, a^}

"0+i)o = "}o

"0+i)i = a]i

This can be shown to be the exact same algorithm, given notational differences, as the

one proposed by Berrou et al. in [3] for their post-detector.

To summarize, it was discovered that by using the revision equation (46) for binary

(n, l,m) codes, and by applying the assumption that the sum of two terms is always

greater than a single term, it was possible to derive a revision algorithm (or set of

equations in this case) that was post-detector compatible. It now remains to be shown

that by using the same equation for the more general case of (n,k,m) codes and by

applying the same assumption, this will also result in a post-detector compatible revision

algorithm.

Chapter 3. Derivation of the Generalized Post-Detector 34

3.5.2 Post-Detection Compatible Revision Algorithm for (n, k, ra) Codes

To derive a revision algorithm for the non-binary (n, k, m) case a procedure similar to

that for the binary (n, l,m) case is followed. The case where k = 2 is used to illustrate

the effects of the assumptions made. This will keep the number of terms that must be

considered in the case studies reasonable. Since none of the assumptions made will be

specific to the case where k = 2 the resulting algorithm should be applicable to the more

general case.

For an (n,2,m) code, equation (46) yields:

a (j + i) 0 = min{â 0 + a0u , a}0 + a 0i, a2

j0 + a02 , a3

0 + a03}

ay+iji . = minfa^ + a00 , a)x + a 0i, a]x + a02 , a)x + a03}
(50)

ay+1)2 = min{a°2 + a00 , a)2 + a 0i , aj2 + a02 , a3

2 + a03}

a y +i) 3 = min{â 3 + a00 , aj3 + a 0i , aj3 + a02 , a% + a03}

Is Revision Necessary if A l l Antecedents Yield The Same Decision?

Although, with increasing k, this scenario becomes less likely early on in the Viterbi

decision process, it is still applicable once all of the surviving paths have merged at

some arbitrary memory depth ([12] implies that this usually occurs within 5 constraint

lengths). This prevents the decoder from performing revision over the entire decoder

memory. It will only be done where it is "necessary" to achieve satisfactory a posteriori

information.

Consider the following case studies:

Chapter 3. Derivation of the Generalized Post-Detector

Case 1 - (n,2,m) codes

Mem Lev Decision Resulting Known Rel Val

0 x0 = 0 aoo = 0

3 cbj = 0\xo = 0

Xj ' 0\XQ = 1

Xj = 0\xo = 2

Xj = 0\XQ = 3

a% = 0

a] 0 = 0

a% = 0

a% = 0

Resulting Revision Equations for
Surviving Path

Observations

o(j+l)0 = 0 = 4
aC?+i)i = min {a0^ + aoi , 4 + ao2 , a|i + a 0 3} * 4
a0+l)2 = m i n { a ° 2 . 4 + a 0 i , a?j2 + a02 , a3

j2
+ a 0 3} « 4

a 0+l)3 = m i n { a ° 3 > 4 + OQI , a?j3 + a02 , a3

j3 + a 0 3} « o ? 3

Case 2 - (n,2,m) codes

Mem Lev Decision Resulting Known Rel Val

0 x0 = 0 a0o = 0

3 i j = l|xo = 0

Xj = l|xrj = 1

Xj = l|£o = 2

i^' = 1|XQ = 3

4 = °
a), = 0

4 = o

Resulting Revision Equations for
Surviving Path

Observations

°0'+i)o = mhi{a5o . 4 + a 0 i , fljo + a02 , a3

jQ
+ a 0 3} « a ° 0

a o + i) i = 0

a (j + l)2 = min{a?2 > 4 + aoi, o?j2 + ao2 , o?j2
+ a 0 3}

a(j+l)3 = m i n { a ° 3 , a}3 + a 0 i , a2

j3 + a02 , a?j3
+ a 0 3} « 4

Chapter 3. Derivation of the Generalized Post-Detector 36

From the previous two examples it can be seen that if the assumption that the sum of

two relative value terms is always greater than a single relative value term then revision

is not necessary when all of the "antecedents" (surviving paths to each allowed state at

the previous time step) yield the same decision. Stated in another way, once all of the

surviving paths to each state in the trellis have merged, say at memory level-/, then no

revision is necessary beyond this point.

Revision Algorithm for Case When Al l Paths Do Not Yield The Same Deci­

sion

To determine the revision algorithm when the antecedents do not all yield the same

decision, it is convenient to place all of the terms of equation (50) in a revision matrix:

-So + aoo + am a% + a02 + a03

+ a00 + aoi + a02 + a03

aj2 + aoo + a0i ah + a02 ah + a03

aj3 + a00 ah + aoi a% + a02
a% + a03

(51)

Suppose the most recent decision to a given state is XQ — i, then ao, = 0. This leaves

only the a^k terms in column i+l of matrix (51). Since, in the resulting revision algorithm,

the assumption is made that the sum of two relative values will always be greater than

any single relative value, this implies the dependency of the resulting algorithm on the

relative value terms of the surviving path (at time step t = k).

Now consider the case where the n— path yields the following decision: £j = l\x0 = n.

This leads to a"; = 0 which eliminates a term in the I + 1th row and n + 1th column leaving

only the a0n term. Therefore, the decisions made on the preceding paths at the j— level

indicate which relative value terms a0n are relevant in making the current revision. The

following example illustrates this finding:

Chapter 3. Derivation of the Generalized Post-Detector 37

E x a m p l e - (n,2,m) codes

Mem Lev Decision Known Rel Val

0 x0 = 1 001 = 0

3 Xj = 3\$o = 0 a ° 3 = 0

Xj = Q\xo = 1 0J0 = 0

£j = 2\xo = 2 a% = 0

£ j = 2\XQ = 3 af 2 = 0

Resulting Revision Equations for
Surviving Path

Post-Detector
Revision Equations

O(j+l)0 = min{a?0 + aoo , 0 + 0, aj0 + a 0 2 , a3

j0 + a 0 3} = min{a} 0, a 0 i }

= minfa^ + a 0 0 , a)x + 0, a?x + a 0 2 , + 0-03} ~ a } i

°U+1)2 = m i n { a ° 2 + a 0 0 , a)2 + 0, 0 + a 0 2 , 0 + a 0 3} « min{a) 2 , a 0 2 , a 0 3}

a 0 ' + l) 3 = min{0 + a 0 0 , a}3 + 0, a? 3 + a 0 2 , a? 3 + a 0 3} « min{a}3 , a 0 0}

Note that the approximate revision algorithm only requires knowledge of the surviving

path's relative values {â 0, ajx, a 2̂, aj3} and the relative values corresponding to the

most recent decision {aoo > &01 > a02 , 003}- Hence this algorithm appears to be the M-ary

equivalent of the algorithm presented by Berrou et al. in [3].

By comparing the decisions made by the decoder with the resulting revision equations

a pattern becomes apparent. This pattern leads to the revision algorithm outlined in

Figure 3.3.

3.6 Application Considerations

3.6.1 Deducing Input Probabilities From Relative Values

To this point consideration has only been given to the problem of finding an efficient

method of revising the relative values derived from a Viterbi decoder's decisions. As

mentioned previously, to deduce the a posteriori probabilities of the encoder's input bits

Chapter 3. Derivation of the Generalized Post-Detector 38

Possible trellis transitions
into given state.

Surviving state at time
t=k as determined
byapre-detector.

t=k t=k+l

Relative values of path
merging into state-y at
time t=k.

Relative values of path
merging into state-z at
time t-k+1

HU

Generalized post-detection
compatible algorithm

—*

To update a 0 + 1) , given that x0 = s (ie no, = 0),

If all paths merging into the current state yield the same decision
at memory depth j then:

No revision is necessary.
Seta(y+i), = < .̂

else
Are any of the decisions made, at memory depth j, on the
possible merging paths equal to index i ?

No -» No revision is necessary.
Set fl(y+i)j =aj.

Yes -» Say on paths mx and m2. Revision is required.
Set = min{ajj,aomi,aom2}•

(end).

Figure 3.3: Generalized Revision Algorithm for Post-Detector

Chapter 3. Derivation of the Generalized Post-Detector 39

rate 3/4 encoder

modulo-2
summing
network

Signal
Mapper

o-

SOVA

Gaussian
Channel

o- post-delector

Vilerbi
Decoder

delay line

Figure 3.4: Rate 3/4 SOVA system

or symbols from the relative values, one must consider the structure of the encoder. To

illustrate how this is accomplished consider the following two examples.

Example 1: Feed-Forward Encoder

Consider finding the a posteriori input bit probabilities for the rate-| system depicted in

Figure 3.4. Suppose the SOVA outputs the following relative value vector at time t = k:

Ofc = [OfcO) a k l i <2*:2, Ofc3) ak4, &fc5> ak6, Ukl]

If the paths merging into each state were identified using the shift-register "roll-off"

symbol then:

. P(xk = 0) P{bk0 - 0, 6 (f c_ 2) 1 = 0, 6 (f c - i) 2 = 0)
Qfco = log 777- - r = log

P{xk = ms) P(bk0 = ms0, 6(f e_2)i = msi, b(k-i)2 = ms2)

Chapter 3. Derivation of the Generalized Post-Detector 40

Therefore

P(xk=l)

P{bk0 = 0)
l\bko=0
7

£ e~afc<
i|fcfco=0
7

P(&fc0 = 1) 1 - P(bk0 0)

Similarly it is possible to deduce P(/3(fc_2)i = 0) and P(b^-i)2 = 0). To determine

P(bki = 0) and P(bk2 = 0) one must use the relative value vectors a f c + 2 and a f c + 1 re­

spectively. This implies that one must buffer several relative values vectors after the

completion of revision or use relative value vectors that may not have been fully revised.

The latter situation should be acceptable so long as the revision memory is sufficiently

long such that all concurrent paths have merged for D symbols prior to symbol output -

where D is the maximum length shift register. Note that it is not possible to determine

the a posteriori input symbol probabilities for this encoder since the shift-registers are of

differing lengths.

Example 2: ISI Channel

Consider finding the a posteriori input symbol and bit probabilities for the ISI channel

shown in Figure 3.5. Because the signaling constellation is 8-PSK, the relative value

vector will have 8 components:

&k — [flfcOj a fc l) Qfc2) ak3, <2fc4> <2fc5, Ofc6, ak7.

Chapter 3. Derivation of the Generalized Post-Detector 41

buf>~

bkp-

bkP 1

8 P S K

Signal
Mapper

at*

Sk

CO

Soft-Output
Viterbi EQ

(SOVE)

R

—0 c\—0 c 2 — ®

Gaussian
Channel

Figure 3.5: Rate-3 Soft-Output Viterbi EQ system

For this case the shift-register "roll-off" symbol is just the ISI channel input symbol offset

by two time periods. Therefore given that:

. P(xk = 0) P(sfc_2 = 0)
GfcO = log r = log

P(xk = ms)
the 0-symbol probability may be found by:

P(Sk-2 = 0)

P{bk-2 = ma)

P(sk-2 = 0)
P(sk-2=0)

P{sk-2=™-s) _ e

E P(sk-2 = 1) E E e -
0 p (* * - a = m ') / = 0

The probabilities for the other symbols can be calculated similarly.

Determining the a posteriori input bit probabilities probabilities is a fairly straight

forward procedure given knowledge of the mapping used by the modulator. They can

either be calculated directly as was done in Example-1 or calculated from the a posteriori

input symbol probabilities. For these simulations the mapping used is shown in Table 3.1.

Chapter 3. Derivation of the Generalized Post-Detector 42

& 0 M 2 ->• sn:an + j(3n

000 -> 0 : +cos(22.5°) -;sin(22.5°)
001 -> 1 : -sin(22.5°) + jcos(22.5°)
010 -> 2 : + cos(22.5°) + ;sin(22.5°)
on -)• 3 : +sin(22.5°) + jcos(22.5°)
100 -> 4 : -cos(22.5°) + j sin(22.5°)
101 ->• 5 : +sin(22.5°) - jcos(22.5°)
110 ->• 6 : -cos(22.5°) - jsin(22.5°)
111 -»• 7 : -sin(22.5°) -;'cos(22.5°)

Table 3.1: Signal Mapping used by the 8-PSK Modulator.

Using the a posteriori input symbol probabilities, P(b<k-2)o) may be found by:

P(6(fc-2)0 = 0) = P(5fc_2 = 0) + P(sfc_2 = 1) + P(sk-2 = 2) + P(sfc_2 = 3)

P(6(fc-2)0 = 1) = l-P(6 f c-2=0)

The probabilities for P(/3(fc_2)i) and P(b^-2)2) can be found in a similar manner.

3.6.2 Examining the Effects of the Approximations Made

During the derivation of the generalized post-detection algorithm several approximations

were made to arrive at a simple expression. It may be interesting to determine how these

approximations affected the "physical" meaning of the equations.

The unsimplified revision equation (equation (40)) can be rearranged as follows:

e ° o + i) i =
Pr(xj+i - mt)
P r(z j +i = i)

Pr(x0 = ms)

Pr(x0 = ms)
(52)

For the time being consider only the denominator terms.

Pr(xj+i — i)
i

e-aomPr{x0 - ms)] (53)
ljk

m=0

Chapter 3. Derivation of the Generalized Post-Detector 43

-̂1 Pr(xj = i\x0 = ra)
rr^o lpr(xj = ms\x0 = m)\

[Pr(xj = ms\x0 = ra)] [Pr(x0 = ra)]

The first approximation made during the derivations was as follows:

1 \ 1 1
X L o e l k . le j f c J

, where a £ , <aJkVk,k^k' (54)

Since by construction the survivor's relative value a™k, — 0:

Pr(xj = ms\x0 — ra) « 1 (55)

This implies that given knowledge of the encoder's most recent decision, the decoder is

certain of the encoder's decision j symbols previously. Stated another way, the decoder

assumes it made the correct decision j symbols in the past.

Applying this same assumption to the numerator as well the denominator leads to

the following equation:

e
a o+i)i

Pr(xj+i = ms)
E [e - a O m P r (i 0 = ms)]

m=0

Pr(xj+l - l) ^ [e-«£][e-aompr(£0 = ms)]
(56)

m=0

The next approximation made involved the numerator of this equation.

9-1

53 e _ a ° m « e~a°m', where a0m' < a0m Vm, ra ̂ m'
m=0

Once again, by construction, a0m> = 0. Therefore,

g P r (£ 0 = ra) _ 1

(57)

m=0 P r(^0 = m s)

9-1
53 - P r (£ () = " l) ~ Pr(xo = ms)

m=0

This implies that:

Pr(x0 = ms) » Pr(xo = ra) , Vra, ^ m.

(58)

(59)

(60)

Chapter 3. Derivation of the Generalized Post-Detector 44

Determining the physical meaning of the approximations made beyond this point be­

comes quite difficult. However, the two assumptions that have been uncovered (equations

(55) and (60)) do provide some indication of what conditions are required for the derived

algorithm to work well. The two assumptions are generally true for codes with good dis­

tance qualities and high SNR. Since most system designers generally choose such codes

and operate at moderate signal strengths these conditions should not pose any problems

for systems such as concatenated coding where the inner code is a convolutional code or a

TCM code. However, these conditions also suggest that the new revision algorithm may

not be suited for applications such as Viterbi equalization where the channel may not

necessarily conform to a "good code". To determine if this is true, computer simulations

would have to be performed.

3.6.3 Computational and Storage Requirements

Because of the generalized post-detector's dependency upon the Viterbi algorithm, the

computational and storage requirements of the standard Viterbi decoder shall be re­

viewed. The additional resources required to implement the generalized post-detector

shall then be discussed. The results will be compared with the resource requirements of

the MAP algorithm and the Best-Path algorithm.

Consider a typical (n, k, m) convolutional code. The trellis diagram of this code will

have 2m states. If 8vtb represents the length of the past history memory of the corre­

sponding Viterbi decoder then Svtb • 2m storage elements (most likely integer quantities)

for the path history arrays will need to be allocated. In addition, 2m additional storage

elements (typically floating point quantities) are required to hold the metrics of each of

the surviving paths.

The Viterbi decoding process involves for each received symbol: 2" branch metric

calculations followed by 2m • 2fc additions for path metric calculations. In addition, 2m

Chapter 3. Derivation of the Generalized Post-Detector 45

comparisons of 2k path metrics are required for the selection of the surviving paths to

each state. If it is assumed that a comparison of 2fc items can be accomplished by 2fc — 1
binary comparisons then that leads to a requirement of 2m(2k — 1) binary comparisons

per received symbol. These results are summarized in Table 3.2. The exact number of

additions/multiplications for the branch metric calculation will not be considered as it

depends on the specific application - most notably, the type of modulation used. However,

since all of the decoding methods to be considered here require the computation of a

similar quantity, it can be considered as a constant computational overhead that is not

a factor when selecting between the various algorithms.

.The addition of the generalized post-detector derived in Chapter-3 will entail a second

Viterbi decoder to calculate the path metrics for the relative value calculations. If the

post-detector has a path memory of length 8pd the this will require an additional 5pd • 2m

storage elements for path histories to each state. As in the standard Viterbi decoder each

storage element must store the input symbol decision. However, if a feed-forward code

is used, the roll-off symbol will also have to be stored. Hence the required storage for

the path history arrays is 25pd • 2m (probably integer quantities). As before, 2m elements

for path metric storage (floating point quantities) are required. The relative value arrays

require Spd • 2k elements (floating point).

Viterbi Storage Requirements
Integer Floating-Point

2m

Viterbi Computational Requirements
Binary

Compares
Binary

Add./Sub.
Branch Metric
Calculations

2m(2fc - 1) 2m2fc 2"

Table 3.2: Computational/Storage Requirements For a Typical Viterbi Decoder.

Chapter 3. Derivation of the Generalized Post-Detector 46

Additional Storage Required for Implementing a Post-Detector
Integer Floating-Point
26pd2m 2m + 8pd2k

Additional Computation Required for Implementing a Post-Detector
Operation Binary

Compares
Binary

Add./Sub.
Brnch Met

Calc's
Exp. Mult./Div.

Viterbipd 2m(2fc - 1) 2m2fc 2™
r.v. calc. 2fc

Rev. Nec. ? Spd(2k - 1)
Comp. Past Dec. (Spd • 2k)2k

Select Min. (Spd • 2fe)2fc

Calc Pr(sym) 2fc - 1 2h
2fe

Table 3.3: Additional Computation/Storage Required to Imple­
ment and Add a Generalized Post-Detector.

Computation requirements for the second Viterbi consist of performing the following

for each received symbol: 2n branch metric calculations, 2m • 2fc binary additions for

path metric calculations, and 2m(2fc — 1) binary comparisons. The calculation of the

relative value vectors consist of 2h subtractions per received symbol. To determine where

revision is necessary, 5pd(2h — 1) comparisons are required. Assuming it is necessary

for the entire path history length, this should impose at most 5pd • 2k revisions each

consisting of 2k comparisons to examine the branch decisions made in the past, followed

by at most 2k binary comparisons for the "select min" operation. To obtain a normalized

"roll-off" symbol probability that may later be used to deduce the input bit a posteriori

probabilities will require 2k exponentials, 2k — 1 additions, followed by 2k divisions. These

incremental computational costs are summarized in Table 3.3.

The overall computational requirements of implementing a SOVA utilizing the gener­

alized post-detector algorithm can be determined by adding the various quantities pre­

sented in Table 3.2 and Table 3.3. For example, the number of binary additions required

Chapter 3. Derivation of the Generalized Post-Detector 47

Generalized Post-Det. MAP Algorithm Best-Path Alg.
Storage:
Integer (<W + 25pd)2m

Float-Point 2(2m) + 6pd2k Lmsg{2m + 1) Lmsg{2m + 1)
Computation:

Binary Compares 2m+1(2k - 1) + Spd(2'2h+1 + 2k) 2m+1(2fe - 1)
Binary Add./Sub. 2 m + l 2 f c _|_ 2k+l - l 2m+1(2fc - 1) 2(2m+12fc)
Brnch Met Calc's 2 n + l 2n

2 n

Exponentials 2k 2n 2 m 2 f c

Mult./Div. 2fe 2(2m+12fc)

Table 3.4: Comparison of the Computation Requirements of Vari­
ous Soft-Output Decoder Algorithms.

is:

2 m 2 f c + 2m2k + 2

k + 2k -1 = 2m+12k + 2k+l - 1 (61)

whereas the number of comparisons necessary has been approximated by:

2m(2fc - 1) + 2m(2fc - 1) + Spd{2k - 1) + (Spd • 2k)2k + (6pd • 2k)2k

« 2m(2fc - 1) + 2m(2fc - 1) + 6pd • 2k + (5pd • 2k)2k + (5pd • 2k)2k

« 2

m + 1 (2 f c -l) + r5pd(22'c+1 + 2fc) (62)

The number of branch calculations is 2n+1. The number of exponentials and multiplica­

tion/division operations necessary each remain at 2fc. These results along with the compu­

tation and storage requirements of the MAP and Best-Path algorithms (see Appendix-C)

are shown in Table 3.4.

By substituting the appropriate hardware and system parameters into Table 3.4, a

system designer can determine which soft-output algorithm is most suited for his par­

ticular application. For example, suppose the available hardware can perform a binary

comparison in one time unit, a binary addition in one time unit, and a binary multiplica­

tion in four time units. A time unit being defined as the duration of the fastest of those

Chapter 3. Derivation of the Generalized Post-Detector 48

three operations. Also, if a generalized post-detector is used, the decoders are to have

a path memory of 5vtb — Spd = 5m. (This should be sufficient since a code's constraint

length is equal to at most m.) Finally, the transmitted sequence length in symbols is

LmSg = 256. Then the computational and storage costs of the various algorithms can be

compared by examining Figure 3.6 and Figure 3.7. In Figure 3.6, the amount of memory

required to store the integer variables and the floating-point variables is assumed to be

the same. Figure 3.6 depicts the amount of these "generic" storage elements required to

implement the decoder versus code memory m and number of input bits k. Figure 3.7

depicts the amount of computation time required per decoded symbol vs. code memory

m and number of input bits k. In Figure 3.7 the calculations of the branch metrics

and exponentials were assumed to be performed by table lookup resulting in negligible

computational costs.

A word of caution must be noted when interpreting the various tables and graphs.

The actual amount of computation required depends not only on the number of additions,

compares, multiplications, etc, but also on many other factors which are implementation

specific. Just to name one, the tables and graphs did not take into account whether

various operations were performed on integer or floating point quantities. The ratio

of integers to floating-point variables required can be heavily influenced by the specific

implementation and by constraints imposed upon the designer by the available hardware.

Also note that the time required to move data from one storage location to another was

completely neglected. The tables and graphs shown should only be used to provide a

rough estimate of the amount of computation/storage required. If a designer can meet

his computational/storage "budget" using worst case values for each operation (most

likely floating point operations) then he can be fairly confident that the algorithm being

considered can be implemented with the hardware at hand.

Chapter 3. Derivation of the Generalized Post-Detector

M A P or B e s t - P a t h D e c o d e r vs V i te rb i D e c o d e r G e n e r a l i z e d P o s t - D e t e c t o r v s V i te rb i D e c o d e r

M A P o r B e s t - P a t h D e c o d e r v s G e n e r a l i z e d P o s t - D e t e c t o r

N u m . input b i ts - k

Figure 3.6: Comparisons of Algorithm Storage Requirements

Chapter 3. Derivation of the Generalized Post-Detector

MAP Algorithm vs Best-Path Algorithm vs Standard Viterbi Algorithm Generalized Post-Detector vs Standard Viterbi Algorithm

Generalized Post-Detector vs Best-Path Algorithm Generalized Post-Detector vs MAP Algorithm

Figure 3.7: Comparisons of Algorithm Computational Requirements

Chapter 4

Evaluating Performance of The Generalized Post-Detector

4.1 Introduction

To determine how well the proposed post-detection algorithm would perform in actual

practice, a computer model of a post-detector decoder was created. Simulations of various

concatenated systems were performed covering a range of codes, signaling constellations,

and channels. The simulations were arranged in sets such that each suite would vary a

single system parameter such as the choice of inner code or choice of signaling constella­

tion. In this way it would be possible to isolate the effects of each of these parameters

on the post-detector's performance. The results of these simulations are described in the

following sections.

In those sections, the results of the simulations are presented in the form of a graph

depicting the resultant bit error rate (BER) vs SNR per input bit of the post-detection

system. For comparison, the performance curve of the optimum serially concatenated

system, as predicted by the graphical procedure described in [3] and Appendix-B, is also

provided. In addition, the performance curve of a corresponding system not utilizing a

soft-output inner decoder is also shown.

The codes and channels used for each of the simulations are referred to by a code or

channel label such as cc2_3.df4 or isi2.70.30. cc2_3.df4 represents a a rate-| convolutional

code with a free distance dfree = 4 bits. Whereas isi2.70.30 represents an ISI channel

with two taps: 70% of the received signal energy is transmitted via the first path while

51

Chapter 4. Evaluating Performance of The Generalized Post-Detector 52

30% of the energy is transmitted via a second delayed path. The delay is set to the

symbol transmission interval. Unless otherwise stated, the channel tap weights are real

(as opposed to complex value quantities). The generator matrices of each code and the

tap weights of each ISI channel used for the simulations described in this thesis can be

found in Appendix-C.

All of the computer models were created in C using the GNU C compiler. The

code was compiled and run on either a Sun Sparcstation running SunOS 4.1.3, an AMD

486DX2-80 running FreeBSD 2.0.5, or a Cyrix 5x86-120 also running FreeBSD 2.0.5. In

many cases, the same simulations were run on more that one computer system to verify

the results. For all of the graphs shown, each point represents the transmission of at

minimum 100000 bits and the counting of at least 400 bit errors in the received data

stream. In order for a simulation to stop it had to meet both of these conditions. This

should provide a sufficient number of error events to ensure statistical significance.

4.2 Effects of Code Free Distance on the Estimates of the A Posteriori Prob­

abilities

To determine what effect code free distance has on the quality of the a posteriori proba­

bilities generated by the post-detector, the simple concatenated coding scheme depicted

in Figure 4.1 was implemented through software. Three convolutional codes with differ­

ent free distances were selected for the inner code. To reduce the likelihood of selecting

an outer code that was relatively insensitive to poor a posteriori probability estimates,

three different convolutional codes were selected for the outer code. Every combination

was implemented resulting in the nine graphs shown in Figures 4.2 - 4.4. Figure 4.2

shows the three cases where the inner code was set to cc2_3.df3. Figure 4.3 and 4.4 show

the results of the simulations for the cases when the inner codes were fixed at cc2_3.df4

Chapter 4. Evaluating Performance of The Generalized Post-Detector 53

and cc2_3.df7 respectively.

For each simulation, a block type interleaver was used. The interleaver depth and

width were each set to a value much greater than either of the codes constraint lengths

and free distances. The modulation used for every case was BPSK. Transmission was

through an AWGN channel. The revision history of the post-detectors and the path

history memory of the Viterbi decoders were set to a value much greater than five times

either of the code's constraint lengths (> 20x).

Observe that all of the curves seem to show a similar result. As expected for a sub-

optimal algorithm, the performance curve of the concatenated system using the proposed

post-detector derived in Chapter-2 deviates from the ideal graphical prediction. This

deviation can be characterized by a gradual "pulling away" from the ideal case as SNR

increases. However, this deviation is quite small: less than 0.2 dB from the ideal case at

bit error rates of 10-4. This is quite acceptable when compared to the gain made over

the system using a hard-output inner decoder.

The graphs indicate that there does not seem to be a simple relationship between

the code free distance and the quality of the a posteriori information produced. The

simulations do imply however that it should be possible to use the proposed post-detection

algorithm on a variety of different convolutional codes regardless of the inner code's free

distance.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

M=[mo,mu--,mK-\]
« j , e {0,1}, i = 0,--,K-l

X=[Xo,X\,--;XN-\]

Xie {0,1}, i = 0 , . - - , JV - l

Outer
Convolutional
Encoder

Viterbi
Decoder

Block
Interleaver

Inner
Convolutional
Encoder

X=[x0,X\,--,XN-[]

ii 6 {0,1}, ;'= 0, • •-JV-1

Block
De-interleaver

M= [mo, mi, • ••,m K-\]

fhiG {0,1}, i = 0,---,K-\

Generalized
Post-Detector

BPSK
Modulator

Viterbi
Decoder

Delay Line

AWGN

[P] =
P(x0=0\R) P(Xx=0\R) ••• P(xN^=0\R)

P(x0 = l\R) P(x\ = l\R) ••• P(xN-i = l\R)

Figure 4.1: Concatenated Coding System Using Convolutional Codes for Both
the Inner and Outer Codes.

Chapter 4. Evaluating Performance of The Generalized Post-Detector 55

10 u

10°

10' 2

1 0 3

10-4

106

10'6

10"7

Inner code: cc2_3.df3
Outer code: cc3_4.df4
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

—— No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
E,/N0 (dB)

10

lO"'

10'2

10*

10"" h

10

10

10

Inner code: cc2_3.df3
Outer code: cc3_4.df6
Modulation: BPSK

— Perfect reliability estimation
o Generalized SOVA post-det

- * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

10

10"'

10"2

10'3

10'4

lO"5

106

10"7

Inner code: cc2_3.df3
Outer code: cc7_8.df2
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

* - — * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
E./N. (dB)

Figure 4.2: Performance of Various Concatenated Systems Utilizing an Inner
Code with dfree = 3 (channel: AWGN).

Chapter 4. Evaluating Performance of The Generalized Post-Detector 56

10"

iff1

10"2

10"3

lo­

in 6

10e

io-7

Inner code: cc2_3.df4
Outer code: cc3_4.df4
Modulation: BPSK

Perfect reliability estimation
° Generalized SOVA post-det

* — N o reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
E,/N0 (dB)

10

10°

102

IO"3

10"4

105

10*

107

Inner code: cc2_3.df4
Outer code: cc3_4.df6
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

•*——* No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
E,/N0 (dB)

10

IO"1

10*

10"3

10'4

IO*

10'6

10'7

Inner code: cc2_3.df4
Outer code: cc7_8.df2
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Figure 4.3: Performance of Various Concatenated Systems Utilizing an Inner
Code with dfree = 4 (channel: AWGN).

Chapter 4. Evaluating Performance of The Generalized Post-Detector 57

10

IO"'

10'2

10"3

IO'4

106

10e

10'7

;"::«"ll«:;iH"::::::H!!:::r--"::;:;l::;;::-

::4::!::J:::t::l::d:::

Inner code: cc2_3.df7
Outer code: cc3_4.df4
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

—j- No reliability into available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

10

10'

10'2

10"3

10"4

106

106

10'7

Inner code: cc2_3.df7
Outer code: cc3_4.df6
Modulation: BPSK

— Perfect reliability estimation
o Generalized SOVA post-det

- * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Et/N. (dB)

10"

IO"1

102

10'3

10'4

10"5

10"6

10'7

Inner code: cc2_3.df7
Outer code: cc7_8.df2
Modulation: BPSK

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Eb/NJdB)

Figure 4.4: Performance of Various Concatenated Systems Utilizing an Inner
Code with dfree = 7 (channel: AWGN).

Chapter 4. Evaluating Performance of The Generalized Post-Detector 58

4.3 Effects of Signaling Constellation on the Quality of the Estimates of the

A posteriori Probabilities

To determine whether increasing the size of the signaling constellation would have any

effect on the quality of the reliability information, software simulations of the concate­

nated CC/TCM system shown in Figure 4.5 were performed. Three simulations were

performed. The first used coded 8-PSK modulation for the inner code, the second coded

16-QASK, while the third used coded 32-CROSS. Transmission was over an AWGN

channel.

The results, shown in Figure 4.6 are quite similar to the results obtained in the

previous section: a gradual increasing deviation with increasing SNR from the ideal

graphically derived curve. As before, the deviation is small when compared to the gain

made over the system utilizing the conventional Viterbi decoder for the inner code.

The graphs suggest that the proposed generalized post-detection algorithm should

work reasonably well for a variety of different coded signaling constellations.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

M= [mo
/«, e {0

O,/MI, •••,mK-i] "\
,1}, i = 0,-,K-l)

Outer
Convolutional
Encoder

X=[Xo,Xi,- -,XN-\]

xte {0,1}, i = 0,

Block
Interleaver

Inner
TCM
Encoder

X=[x0,X\,---,XN-i]

xt e {0,1}, / = 0, • •-TV-1

Viterbi Block
De-interleaver

Generalized
Post-Detector Decoder

Block
De-interleaver

Generalized
Post-Detector

Signal
Mapper

Viterbi
Decoder!

Delay Line

AWGN

R = [ro,r\,---,ry-\]

M=[m0,rhlt--;mK-i]

rhi& {0,1}, i = Q,--,K-\
[P] =

P(x0=0\R) P(XI =0\R)

P(X0 = I\R) P(xi = l\R)

P(xN-i =0\R)

P(xN-i = l\R)

Figure 4.5: Concatenated Coding System using Multi-Level Modulation for the
Inner Code.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

10

10"

10'2

IO"3

10"4

10'6

10 E

IO"7

Inner code: cc2_3.tcm
Outer code: cc3_4.df4
Signal set: 8-PSK

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
E,/N 0 (dB)

10

10"

10*

10"3

10"4

IO'6

10°

10'7

Inner code: cc3_4.tcm
Outer code: cc3_4.df4
Signal set: 16-QASK

— Perfect reliability estimation
o Generalized SOVA post-det

- * No reliability info available

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

1 0 ni:M:!H:!:<:*:^±:V:*:b!t:l:!:!:i:J:J:

10

10'2

10 3

10"4

10'5

10'6

10"7

i l i l i l ; ! ; ! : ! ; ! : ! : ! : ^ ^ ^ * * ^ : ^ ! : ! : ! ; ! ; ! ! ! : ! : ! : ^ ! : ^ - . : * . - . : ! : ! ! ! :

Inner code: cc4_5.tcm
Outer code: cc3_4.df4
Signal set: 32-CROSS

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.011.0
E , / N . (d B)

Figure 4.6: Effect of Different Signal Constellations on the Quality of Soft-
Output Information (channel: AWGN).

Chapter 4. Evaluating Performance of The Generalized Post-Detector 61

4.4 Determining Performance of the Generalized Post-Detector for use in

Soft-Output Viterbi Equalizers

To determine if the proposed post-detection algorithm can be used for implementing a

soft-output Viterbi equalizer, the concatenated systems shown in Figure 4.7 and Figure

4.9 were tested via computer simulations. For these simulations, the soft-output Viterbi

equalizers (SOVE) were given full knowledge of the channel tap weights. The channel

tap weights were invariant with time. The interleaver depth and width were set to values

much greater than the constraint length of either the "outer" code or the ISI channel.

The post detector revision length and Viterbi decoder path memories were all much

greater than five times the constraint length of either the code or the channel.

The first suite of simulations was used to determine the effects of the different ISI

channel tap weights on the quality of the a posteriori information produced by the soft-

output Viterbi equalizer. For these simulations, binary data was encoded using the

convolutional code cc2_3.df4 and transmitted over the various ISI channels using 8-PSK

modulation. The deduced a posteriori 8-PSK symbol probabilities were used to calculate

a posteriori input bit probabilities of the modulator. These bit probabilities were in

turn used for the decoding of the convolutional code. Hence, the convolutional code

was decoded as if binary modulation had been used - even though, the probabilities

themselves were originally deduced using the received 8-PSK symbols. The ISI channel

was comprised of two taps only. The delay between the taps was one 8-PSK symbol

interval.

The results of these simulations are depicted in Figure 4.8. Observe that the quality

of the soft-output information appears to degrade with increasing ISI. However, even for

the worst case scenario (two taps of equal weight), the degradation is not too severe.

Therefore the simulations indicate that for moderate levels of ISI the quality of the a

Chapter 4. Evaluating Performance of The Generalized Post-Detector 62

posteriori probability estimates is quite good.

For the second suite of simulations a three tap ISI channel is used for the inner code.

In addition, the outer encoder is replaced by a TCM modulator (coded 8-PSK). As a

result, the outer decoder would need to have knowledge of the a posteriori input symbol

probabilities (as opposed to the bit probabilities used for the first suite of simulations).

Results from the second suite of simulations are shown in Figure 4.10. For compar­

ison, the results of equivalent systems utilizing the MAP and Best-Path algorithms are

also provided in addition to the graphically predicted curve. The most notable charac­

teristic of these simulations is that for the system with a higher level of ISI (inner code:

isi3.60.20.20), the resultant curve of the MAP based system does not coincide with the

curve generated by the graphical procedure described in [3]. Yet for the system with

less ISI (inner code: isi3.80.10.10) the MAP based system does appear to agree with

the graphically predicted curve. One possible explanation is as follows. The graphical

procedure described in [3] assumes that the inner code can be modeled by an equivalent

Gaussian channel. Referring to equation (6) and (10) in section 2.1, the model assumes

that:

n % w i ^) = cn/(**iipyto)) (63)

j=l j=l

where C is some constant and v is an equivalent noise variance. The fact that for the

high ISI case, the MAP based curve does not coincide with the graphically deduced curve

would suggest that it is not possible to find an equivalent sequence Y\ that can satisfy

equation (64). When the outer code utilizes non-binary signaling it would seem that there

are not enough degrees of freedom to find a suitable fit. Why then, does the MAP based

curve match the graphically deduced curve for the low ISI case? This may be explained

Chapter 4. Evaluating Performance of The Generalized Post-Detector 63

by the following reasoning. The one situation where equation (64) should hold is for a

channel with no ISI. In that particular case, the equalizer should not do anything and

should not affect the channel statistics. Therefore, a MAP based simulation with such a

channel (inner code: isi3.100.0.0) should match perfectly with the graphically produced

curve. However, as ISI increases, the statistics produced by the soft-output decoder

seem to become less Gaussian and result in a deviation of the MAP based simulation

curve from the graphically produced curve. This deviation would increase as the level of

ISI over the inner channel increases. This explanation seems to be consistent with the

observed results from the simulations.

Overlooked in the previous discussion is the fact that the generalized post-detection

algorithm seems to also work reasonably well for SOVE in systems that utilize non-

binary modulation. The deviation from the optimum curve (determined by the MAP

based system for this case) is not too unreasonable. It displays the same characteristic

behaviour as was seen in the first suite of simulations. The deviation from the ideal case

increases with increasing ISI.

The results of the previous two suites of simulations suggest that for moderate lev­

els of ISI, the quality of a posteriori probabilities produced by the proposed generalized

post-detection algorithm is quite good. This is a somewhat surprising result considering

the concerns that were raised in Section 3.6.2 . One can only conclude that the approxi­

mations made during the derivation of the generalized post-detection algorithm are quite

reasonable when the transmitted sequence from the "inner" code (in this case, it is an

ISI channel) is transmitted over an AWGN channel.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

M=[m0,mi,--,mK-i]
w , £ {0,1}, i = 0,--,K-l

U=[u0,UU-;U3N-l]
«,e {0,1}, 7 = 0 , - - , 3 J V - l

X=[x0,X\,- ;XN_i]

Xi 6 {So,--;S7}, i = 0,---,N-

Outer
Convolutional
Encoder

Block 8-PSK
Modulator

ISI
Interleaver

8-PSK
Modulator Channel

X- [XQ,X\, • • -,XN-\]
xte {so,- -,s7}, i = 0,-N-l

Viterbi
Decoder

Block
De-interleaver

Deduce
Bit Prob

Generalized
Post-Detector

Viterbi
Decoder

Block
De-interleaver

Deduce
Bit Prob

Generalized
Post-Detector

Viterbi
Equalizer

Delay Line

AWGN

M= [f f l o , m i , - ' , » ! H]

thi £ {0,1}, i = 0,--,K-l
P(X0=S0\R) P(Xi=s0\R) ••• P(XN-\=S0\R)

P(X0=S7\R) P(XI=S7\R) ••• P(xN-i=s7\R)

[P] =

P(u0 = 0\R) P(Ux=0\R)

P(U0 = 1\R) P(u\ = l\R)
• • • P (« 3 W - 1 =0\R)

••• P(uiN-i=l\R)

Notes: (1) ISI channel taps are static.
(2) ISI channel tap weights are known by the equalizers.

Figure 4.7: Concatenated Coding System with Uncoded 8-PSK Modulation
Over a Static ISI Channel.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

10

10'1

10"2

10'3

10"4

10"6

10'6

10 7

Inner code: Isi2.90.10
Outer code: cc2_3.df4
Signal set: 8-PSK

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.011.012.0
Ei/N„ (dB)

10

10"1

10' 2

10' 3

1 0 4

10*

10"6

10"7

!̂:!:!:!:!:hS::::*::i:':!:!:!:!:!:ĥ i?;::̂ :!:

Inner code: ISI2.80.20
Outer code: cc2_3.df4
Signal set: 8-PSK

Perfect reliability estimation
o Generalized SOVA post-det

* * No reliability info available

-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.011.012.0
E . / N . (dB)

10°

10"'

10*

10 3

IO"4

10-5

10"6

10"7

*J;J:):!;!;l;l;l:l:^H:J:f ;! ;| ;!:! ;!:l ;l:lAJ:«:J:

Inner code: isi2.70.30
Outer code: cc2_3.df4
Signal set: 8-PSK

Perfect reliability estimation
o Generalized SOVA post-det

* — * No reliability info available

-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.011.012.0
E t / N 0 (dB)

Figure 4.8: Soft-Output Equalizer Performance in a Concatenated System Us­
ing Uncoded 8-PSK for the Outer Code.

Chapter 4. Evaluating Performance of The Generalized Post-Detector 66

i ; i ; . . . n , . . . , i , , , , i , . . . i , , , , i , , , , i i
-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.011.012.0

10

IO"'

1 0 2

10' 3

10' 4

10' 5

10"6

10"7

Inner code: isi2.50.50
Outer code: cc2_3.df4
Signal set: 8-PSK

Perfect reliability estimation
o Generalized SOVA post-det

* % No reliability info available

-2.0-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.010.011.012.0
E./N.tdB)

Figure 4.8: Continued.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

M=[mo,m\,-;mK-\]
nti e {0,1}, i = 0,--,K- 1

X=[X0,X\,--;XN_l]

Xj£ {s0,--,Sq-\}, i = 0,--;N-l

Outer
TCM

Encoder

Signal Block
Interleaver

ISI
Mapper

Block
Interleaver Channel

X=[x0,Xl,--;XN-i]

Xj e {s0, • • -,sq.i}, /' = 0, • • -N- 1

Viterbi
Decoder

Block Generalized
Post-Detector

Viterbi
Decoder De-interleaver

Generalized
Post-Detector

Viterbi
Equalizer

Delay Line

AWGN

R = [ro,r\,--;ry-\]

M=[m0,m\,--;mK-\]

OT, e {0,1}, ; = 0, P(x0 = s0 \R) =s0\R) ••• P(xN-i = s0 \R)

P(x0 = sq-x\R) P{X\ = sq-x\R) ••• P(xN-x = sq-i\R)
[P]

Notes: (1) ISI channel taps are static.
(2) ISI channel tap weights are known by the equalizers.

Figure 4.9: Concatenated System Using Coded 8-PSK Over a Static ISI Chan­
nel.

Chapter 4. Evaluating Performance of The Generalized Post-Detector

Figure 4.10: Soft-Output Equalizer Performance in a Concatenated System
Using Coded 8-PSK for the Outer Code.

Chapter 4. Evaluating Performance of The Generalized Post-Detector 69

E b /N 0 (dB)

Figure 4.10: Continued.

Chapter 4. Evaluating Performance of The Generalized Post-Detector 70

4.5 Determination of the Minimum Required Revision History for the Gen­

eralized Post-Detector

To determine what is the minimum revision depth for the generalized post-detector in

order for it to provide reasonably good estimates of the a posteriori input probabilities,

the concatenated system shown in Figure 4.1 was once again simulated via computer

software. However, this time the revision depth of the post-detector was varied between

lx and 10 x the inner code's constraint length. The length of the Viterbi path history

arrays were kept at a value much greater than 5x the appropriate code's constraint

length.

The results of these simulations are shown in Figure 4.11. The curves show the effect

of changing the revision depth (and hence required memory) of the generalized post-

detector. The curves indicate that a generalized post-detector should generate reasonable

good quality a posteriori input probability estimates if its revision depth is set to a value

of Spd > 5 x (constraint length).

This result is not unexpected since the proposed algorithm does not revise the relative

value vector for a given memory depth index if all of the possible paths yielded the same

decision at that index. Since all of the surviving paths of a Viterbi decoder tend to merge

by 5x the code's constraint length, clearly revision beyond this point is generally not

done.

Chapter 4. Evaluating Performance of The Generalized Post-Detector 71

-22-

10"

10"

10"'

10"'

10"

Inner code: cc3_4.df6
Outer code: cc2_3.df4
Modulation: B P S K

10x Constraint Length
5x Constraint Length
3x Constraint Length
1x Constraint Length
Graphical Prediction
Soft-Output Not Used

_] i i i i i _

0.0 1.0 2.0 3.0 4.0
E b / N 0 (dB)

5.0 6.0

0),
CL

10u

10"

10"

10"'

10"

Inner code: cc2_3.df4
Outer code: cc7_8.df2
Modulation: B P S K

10x Constraint Length
5x Constraint Length
3x Constraint Length
1x Constraint Length
Graphical Prediction

« » Soft-Output Not Used

-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
E b / N 0 (dB)

Figure 4.11: Simulation Results of a Concatenated System Utilizing a Post-
Detector With Various Revision Depths (channel: AWGN).

Chapter 5

Conclusion

5.1 Summary

This thesis tackles the problem of finding an efficient heuristic algorithm for deducing

estimates of the a posteriori input probabilities of a Markovian based encoder. When

this project was begun, the better known variants of this approach were applicable to

(n,l,m) codes only. Therefore there existed a need to find an efficient heuristic based

algorithm that would be applicable to the more general case of (n,k,m) codes.

Of the known (n, l,m) heuristically based soft-output decoders, the most efficient

of these in regards to computational and memory storage requirements is the decoder

proposed by Berrou et al. [3]. The key to this decoder's efficiency was that it utilized

a post-detector architecture. Berrou et al. were able to find a simple (n, l,m) revision

algorithm that was compatible with this type of decoder architecture. The question

naturally arose of whether it would be possible to find a (n,k,m) revision formula that

was also compatible with this particular architecture. Fortunately, it was indeed possible.

Finding such an algorithm involved several steps. The first was to use several ap­

proximations to simplify Battail's general heuristic revision formula [2] such that its

complexity would be reduced to a reasonable level. The next step involved a compari­

son of the revision operations dictated by this simplified formula (for the (n, 1, m) case)

with the revision operations dictated by the (n, l,m) post-detector algorithm published

by Berrou et al. These comparisons resulted in the determination of what additional

72

Chapter 5. Conclusion 73

modifications had to be made to the simplified Battail revision formula in order for it

to be able to take advantage of the post-detector decoder architecture. The resulting

algorithm is the "generalized post-detector algorithm" described in Chapter-3.

Simulations show that the proposed algorithm is capable of providing reasonably high

quality estimates of a posteriori input probabilities for a variety of different convolutional

codes. Furthermore, despite some concerns raised in Section 3.6.2, the proposed algo­

rithm also seems adequate for use with Viterbi equalizers. In addition, it was found that

a revision depth of 5 x (constraint length) should be sufficient for many applications.

For the serial concatenation of two codes, performance can be characterized as follows.

Approximately 80% of the maximum possible SNR (dB) gain attainable through the use

of soft-decision decoding for each stage is achieved (the best performance being arrived

at through the use of a soft-output MAP inner decoder and the worst through the use

of a standard hard-output inner decoder). This seems to be typical of heuristic based

algorithms.

Benefits of using the new algorithm include the fact that it can be applied to any

(n , k, m) trellis based code. The decoding delay is independent of the length of the trans­

mitted code sequence and can be as short as 10 x (constraint length). Disadvantages

of this algorithm include the fact that the quality of a posteriori input probability esti­

mates is not as good as those produced by the MAP or Best-Path algorithms. Since the

algorithm is based on the Viterbi algorithm it shares the same limitations of the Viterbi

algorithm: practical only for relatively short constraint length codes. Finally, knowledge

of the channel variance is required by the receiver to calculate the branch metrics (a

problem shared by the MAP and Best-Path algorithms as well).

Chapter 5. Conclusion 74

5.2 Proposed Future Work

One of the main incentives for the renewed interest in soft-output decoders is that they

are an essential element of Turbo decoders[4]. It would be worthwhile to determine how

well the new algorithm performs for this particular application. One question that arises

is whether it is even worthwhile to consider a sub-optimal soft-output algorithm. It may

be that for a given level or performance, the turbo decoder may have to perform more

iterations with a SOVA type algorithm than it would with a MAP type algorithm. This

might offset any computational advantages that the SOVA algorithm may have held.

For this thesis, the main objective of the computer simulations was to determine how

certain system parameters would affect the quality of the a posteriori input probabilities

deduced by the generalized SOVA. Several concatenated systems were simulated in which

individual system parameters such as dfree or the choice of signaling constellation could

be isolated and changed. Consequently, many of the simulated systems seem artificial in

that one would never choose those combinations of "codes" for actual applications. It

would be desirable to perform some simulations that are more indicative of "real world"

systems. The codes selected should be representative of codes used in actual practice. On

a related note, it would be desirable to determine how real world channel impairments

affect the quality of the soft-output information. For example, simulations should be

performed over the Rayleigh and Rician fading channels.

Finally, incidental to the main goal of the work described in this thesis, it was dis­

covered that the graphical algorithm described by Berrou et al. [3] may not accurately

predict the performance of a concatenated system that must directly use the a posteriori

input symbol probabilities for calculating the metrics of the outer decoder. It is hy­

pothesized that this is due to the deduced a posteriori input symbol probabilities having

non-Gaussian statistics for these cases. This should be verified.

References

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear Codes
for Minimizing Symbol Error Rate," IEEE Trans. Inform. Theory, Vol. IT-20, No.
2, pp. 284-287, March 1974.

[2] G. Battail, "Ponderation des symboles decodes par l'algorithme de Viterbi," (in
French), Annales des Telecommunications, Fr., 42, N° 1-2, pp. 31-38, January
1987.

[3] C. Berrou, P. Adde, E. Angui, and S. Faudeil, "A Low Complexity Soft-Output
Viterbi Decoder Architecture," 1993 IEEE Internat. Conf. on Comm., Vol. 2, pp.
737-740.

[4] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon Limit Error Correct­
ing Coding and Decoding: Turbo-codes," IEEE Int. Conference on Comm, ICC'93
Geneva, Switzerland, Vol 2/3, pp. 1064-1070, May 1993.

[5] D. G. Daut, J. W. Modestino, L. D. Wismer, "New Short Constraint Length Con­
volutional Code Constructions for Selected Rational Rates," IEEE Trans. Inform.
Theory, Vol. IT-28, No. 5, pp. 794-800, September 1982.

[6] J. Hagenauer, P. Hoeher, "A Viterbi Algorithm with Soft-Decision Outputs and
its Applications," Proc. of IEEE Globecom'89, Dallas, Texas, pp. 47.1.1-47.1.7,
November 1989.

[7] P. A. Humblet, "Efficient Maximum-a-Posteriori Symbol Detection," submitted for
publication, Institut Eurecom, Sophia-Antipolis, France, July 1994.

[8] G. D. Forney, JR., "Maximum-Likelihood Sequence Estimation of Digital Sequences
in the Presence of Intersymbol Interference," IEEE Trans, on Inform. Theory, Vol.
IT-18, No. 3, pp. 363-378, May 1972.

[9] G. D. Forney, JR., "The Viterbi Algorithm," Proc. of the IEEE , Vol. 61, No. 3, pp.
268-278, March 1973.

[10] Y. Jain, "Convolutional Codes Improve Bit-Error Rate in Digital Systems," EDN
pp. 129-133, August 20, 1990.

[11] S. Lin, D. J. Constello Jr., "Error Control Coding: Fundamentals and Applications,"
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1983.

75

Bibliography 76

[12] J. G. Proakis, "Digital Communications, Second Edition," McGraw-Hill, Inc, New
York, N.Y., 1989.

[13] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets," IEEE
Communications Magazine, Vol. 25, No. 2, pp. 5-21, February 1987.

[14] X. Wang, S. B. Wicker, "A Soft-Output Decoding Algorithm for Concatenated Sys­
tems," IEEE Trans, on Inform. Theory, Vol. IT-42, No. 2, pp. 543-553, March
1996.

Appendix A

Predicting Concatenated Code Performance - Graphical Method

Consider the concatenated system depicted in Figure A.l. The output of the inner soft-

output decoder is a discrete-time continuous random variable. If sufficient interleaving

is used there should be little correlation amongst the errors entering the outer decoder.

If the assumption is made that any decoding metric based upon these samples is Gaus­

sian distributed then it is possible to treat the inner-code/interleaver combination as an

equivalent discrete-time AWGN channel. This is the basis of the graphical procedure

described in [3] used to predict the bit-error rate (BER) performance of a concatenated

system.

To use this procedure it is necessary to determine the relationship between the signal-

to-noise ratio (SNR) of the global concatenated system and the SNR of a system com­

prised of the inner code only. If Efobal and El

b

nner represent the transmitted energy per

bit of the global concatenated system and inner coding system respectively, while Es

represents the energy per symbol transmitted over the channel then:

global = & w h e r e R g = R o R i (6 5)

Kg

Ri

Therefore,

E
E i n n e r _ (66)

Thinner rpglobal r>

^ = ^ El (67)
N0 N0 Rl

 K '

77

Appendix A. Predicting Concatenated Code Performance - Graphical Method 78

Now letting SNR = 10 log ̂ it follows that:

SNpinner = SNRglobal _ ^ A = 10 log ^ = 10 log (68)
Rg R0

To determine the BER of the concatenated system at a specified global SNR (point-a

in figures A.l and A.2) perform the following procedure. Use equation (68) to determine

the SNR of the inner code system (point-6). Look-up in a graph or table the resultant

BER of the inner system (point-c). Determine what SNR would be required to achieve

this BER on an equivalent uncoded AWGN channel (point-d). (In effect, the inner coding

system is being emulated by an equivalent AWGN channel.) Once again, using equation

(68), translate this SNR back to the equivalent system's overall SNR (point-e). Using a

graph or table of the BER performance of the outer system operating over a standard

AWGN channel use the equivalent system's overall SNR to look-up the resultant BER

of the outer code (point-/). The abscissa (̂ -coordinate) of point-a and the ordinate (in­

coordinate) of point-/ specify an operating point of the concatenated system (point-g).

Outer
Encoder
rate: R„

' SNRs h b a l

©

^lleaterH Encoder H
Inner
Encoc
rate: Ri

Modu- _h/j!V-k
lator Î Y*

Soft-Output
Decoder

®
No

var = -f

SNR™" = SNRs'° b a' - A

De-inter- Outer
leaver Decoder

©
\ /

Outer Modu­ Equivalent AWGN Channel
Outer

Encoder lator Equivalent AWGN Channel Decoder
rate: R„

Figure A.l: System Model for Graphical Procedure

Appendix A. Predicting Concatenated Code Performance - Graphical Method

10 L

10"

10"

GC .3
tu 10 m

10"

10

10"

-5

Inner Code: CC, Rate 2/3
Outer Code: CC, Rate 3/4
AWGN Binary Channel

Figure A.2: Graphical Determination of Concatenated System Performance

Appendix B

Code Tables

The following tables describe the codes associated with each "code label" referenced

the simulations shown in Chapter-4.

80

Appendix B. Code Tables 81

B . l Convolutional Codes

Label Rate C L . Tot Mem Generator Sequences dfree Reference

(symbols) (bits) (octal)

6 2 6
cc2_3.df3 2

3 1 2 3 [11]
2 4 4

4 2 6
cc2_3.df4 2

3 2 3 4 [11]
1 4 7

[11]

64 30 64
cc2_3.df7 2

3 3 6 7 [11]
30 64 74

4 4 4 4

cc3_4.df4 3
4 2 3 0 6 2 4 4 [11]

0 2 5 5

6 1 0 7

cc3_4.df6 3
4 2 6 3 4 1 6 6 [11]

2 3 7 4

2 0 2 0 2 0 6 6

0 0 0 0 0 4 0 4

0 0 0 0 4 0 0 4

cc7_8.df2 7
8 1 1 0 0 0 4 0 0 0 4 2 [Daut et al]

0 0 4 0 0 0 0 4

0 4 0 0 0 0 0 4

4 0 0 0 0 0 0 4

Appendix B. Code Tables

B.2 T C M Codes

Label CL. Tot Mem Generator Sequences

(sym) (bits) (octal)

4 0 0
cc2_3.tcm 2 2

0 7 5
Mapping: 0 : +cos(22.5°) - jsin(22.5°)

1 : -sin(22.5°) + j cos(22.5°)

2 : +cos(22.5°) + j sin(22.5°)

3 : +sin(22.5°) + jcos(22.5°)

4 : -cos(22.5°) + jsin(22.5°)

5 : + sin(22.5°) - j cos(22.5°)

6 : -cos(22.5°) - jsin(22.5°)

7 : -sin(22.5°) - jcos(22.5°)

Notes: Feed-forward version of code presented in [13]

Appendix B. Code Tables

Label C L .

(sym)

Tot Mem

(bits)

Generator Sequences

(octal)

cc3_4.tcm
4 0 0 0

0 4 2 0

0 3 5 2

Mapping:

Notes:

0 : +

1

2

3

JVTo
3

Vw
+ _L_ _ 9 ' _ 3 _

v/io J vTo
+ + - ? v 7 T 0

4 : + v ^ o + - ? v l o

5

6

7

3
%/To J . /Tn

+ 7To +:>7w
+-2- - i ' - 3 -

L_ + ,-_3_
\/io ^ ^ \/io

3_ _ 1

11
12

1 A 3
, /Tn J vTo

1
vTo

v/10

J7w

1 4 • vTo •7v /lO

15 : . _L_ + ,-_L_
VTo ^ J Vw

From [13]

Appendix B. Code Tables

Label CL.

(sym)

Tot Mem

(bits)

Generator Sequences

(octal)

cc4_5.tcm

4 0 0 0 0

0 4 0 0 0

0 0 4 2 0

0 0 3 5 2

Mapping: 0 : + _3_ _ ,-_L_
v/20 J v/20

16 5
v/20 v/20

1 : 4 ^ 4 7-2-' v/20 ' J v/20 17 + v/20 _ ^720

2 : ~*~72o ~ 18 4-5-+ v/20 + J71o
3 : 4-2- 4- 7^-v/20 J v/20 19 1

v/20
+ ^ T ! O

4 : 4—5- 4 7-3-v/20 J v̂ O 20 _ 5
v/20 + ^TIO

5 : 3_ , -_3_
v/20 1 J v/20

21 3
v/20

- 7-5-
J v/20

6 : 4 ^ - 4 7 - L 1 v/20 ' ^ v/20 22 4-5-+ v/20
- 7-̂ -J v/20

7 : + -2- - 7 —
v/20 ^ v/20

23 4-2-+ v/20 + ^720

8 : L_ 4. W_3_
v/20 J v/20

24 1
v/20

- 7-5-J v/20

9 :
_ 7 2 0 ~~ ^ 7 2 0

25 4 ^ -+ v̂ o _ ^720

10 v/20 ^ J v/20 26 + v/20 + ^TIO

11 • L_ _ 7 - ^ _
v/20 J v/20

27 5
v/20

+ ^720

12 ' _ 7 2 0 _ ^720 28 4-2-+ v/20 ~~ '̂720

13 • 4 ^ - - 7-5-
v/20 J v/20

29 4 ^ -+ v/20 + -?7to

14
• ~ 7 2 0 — j 7 2 0

30 3
v/20 + J T I O

15 • L_ 4. ,-_L_
V20 J v/20

31 5_
v/20

Notes: From [13]

Appendix B. Code Tables

B.3 ISI Channels

Two Tap ISI Channels

Label Chan. mem. C0 C l

isi2.50.50 1 VolE Vol
isi2.60.40 1 Vol6 Vol
isi2.70.30 1 Vols
isi2.80.20 1 VoU
isi2.90.10 1 VOA

Three Tap ISI Channels

Label Chan. mem. Co C l C2

isi3.60.20.20 2 VoU Voi V0~2
isi3.80.10.10 2 Vox Vol Vol
isi3.100.0.0 2 vTo Void Volo

Appendix C

The M A P and "Best-Path" Algorithms

The following descriptions of the MAP and "best-path" algorithms are based on the

derivations presented in the paper written by Humblet [7].

C . l The M A P (or Bahl, "forward-backward", "any path") Algorithm

Consider a discrete-time finite-state Markovian process. An input sequence X± =

(Xi, X2,X^) will result in a state sequence Si+1 = (Si, S2,SV+i) along with an as­

sociated output sequence. It is assumed that the starting state Si and final state SJV+I are

known (The final input symbols are preset such that the process terminates in a known

state.). Transmission of the output sequence over a discrete-time memoryless channel

will result in the sequence = (Yi, Y2,YN) being observed by the receiver. Upon

detection of the sequence YX

N, the MAP receiver calculates the a posteriori state prob­

abilities P(Sn\Yf) or transitional probabilities P(S^+1\Yf). From these, it is possible

to deduce the a posteriori input symbol probabilities P(Xn\Yl

N). Using the a posteriori

input symbol probabilities the receiver may make a decoding decision or, in the case of

a soft-output decoder, output the a posteriori probabilities themselves.

An explanation of how the MAP algorithm calculates the state/transition probabili­

ties begins by taking into consideration the following probability expansion:

86

Appendix C. The MAP and "Best-Path" Algorithms 87

P<.S*,Y?)

P(S^+\Yf) = P(S1)P(S2,Y1\S1)P(S3!Y2\SlY1)P(Si,Y3\SlYl)-P(Sn<Yn-1\S^-\Y1

n-2)x (69)

p(s„+1,y„|sr,y1"-1)•••p(s^-1,^_2|5^-^^-3)F(s^,,yN_1|sf-^y1
N-2)P(5^+1,^|5ff,y1

JV-1) s * '
^ (s^ + 1,y j J , _ 1 i s f- 1,y 1

w _ 2)
N : v '

v v '

Each of the terms on the right hand side of equation (69) can be simplified by noting

the following property of Markovian processes: given Sn and Sn+i, Yn is independent of

all previous states and received samples. Similarly, given Sn, Sn+i is also independent of

the same previous states and received samples. Therefore,

= P(Sn+i\Sn)P(Yn\Sn-i.i, Sn)

= P(Sn+l,Yn\Sn) (70)

Similarly,

P f f i 1 , Yf\S?, F r 1) = P(S%g, Yn

N\Sn) (71)

It is convenient to define the following quantity:

Q(Yn, Sn, S'n+l) — P(Sn+i, Yn\Sn)

The first of two recursive relations is now noted:

PiS^Y?-1) = £ PiS^Y?'1) <— "upper-half" ofeqn (69)
s n - l e S n - l

= £ p(sr\Yr2)p(sn,y„-iisr\Y?-2)
s n - l £ < s „ _ i

Appendix C. The MAP and "Best-Path" Algorithms 88

= E
S „ _ l G S

53 Pisrwr2)
s r > - 2 e 5 „ _ 2

(72)

Defining P(5n,y l

n _ 1) as the "forward" probability P /(5 n,y l

n _ 1) gives:

*n - i e «5

(73)

Since it was assumed that the Markovian process starts in a known state, for instance

sQ, the calculation of equation (73) begins with the initial condition:

Pf(Si)
1 , Si = sa

0 , Si ^ sa

The second recursive relation can be found by noting that:

(74)

P(Yn

N\Sn) = £ P(S™,Yn

N\Sn)
5^+ 1

1 G5 J V -"+ 1

"lower-half" of eqn (69)
5^+ 1

1e5 J V-"+ 1

E p f O V Qn Vn~l\P(QN+1 VN qn+l yn\

— 53 ^ ' (' S ' n + l , Yn\Sn) 53 P(Sn+2i Y^+1\Sn+i)
Q N+ 1C SN—n.
an+2 f c o

— E P(Sn+i,Yn\Sn)P(Yn+i\Sn+i)
Sn+i€S

Defining P(Y?\Sn) as the "backward" probability Pb(Sn,Y^) yields:

p*(5 B,y B
J V)= 53 Q(r n,5 n,5 n + 1)P h(5n + 1,yn + 1)

If sw represents the assumed terminating state, then the initial condition is:

P'(5„ + I) = { 1 1 S " + 1 = «"
0 , S/V+l 7^ S w

(75)

(76)

(77)

Appendix C. The MAP and "Best-Path" Algorithms 89

Once the "forward" and "backward" probabilities have been calculated the state

probabilities can be determined by:

£ £ P{S™Y»)
5 n - l e 5 „ _ l 5 J V + l e 5 J V - „ + l

£ £ Pi^YrWsZgtYfWsY?-1)
S r , - l e 5 „ - l s A f + l e < 5 J V _ „ + l

£ p(s?,Yrl) £ P ^ Y . ^ I S n)
S T , - l g 5 „ - l

pfis^Yr^p'is^)

The conditional state probability may be found by:

P(Sn\Yx

N) N\ _ P(Sn, Y-f*)

P(Y»)

(78)

(79)

The transitional probabilities are found from:

P(S^+1,y1
JV) = £ £ P{S» + I,Y»)

£ £ p^r.yr-^pcs^Y.^isr.i-r 1)
s n - l e < s „ _ ! s N + l e S N - n

£ pfsr.y^-1) |p(sn+1,yn|sn)
L s p ' e f i " - 1 J

= Pf(Sn, y1
n-1)Q(Yn, 5„, 5 n + i) P 6 (5 n + i , y n^i)

The conditional transition probability may be found by:
p(qn+l yN\

I M ; — pfy^)

Finally, to find the a posteriori input symbol probabilities:

£ P{Sn+2 ' Yn+11 Sn+1)

(80)

(81)

p(xB>y1

JV) = £ P(^ +\>f) (82)
•?n + 1 | ' V(5' n,5 „ + l) = X n

where A Ŝ̂ , Sn+i) is a mapping from the state transition to the associated input symbol.

Appendix C. The MAP and "Best-Path" Algorithms 90

C.2 The "Best-Path" Algorithm

The "best-path" algorithm comes about by noting that the Viterbi algorithm uses the

iteration:

rn-l\ A pi{Sn,Yrl) = max P(S?, y^ 1)

— max
Sn-ieS

nmax P(Sr\Yr2) P{Sn, Yn-l\Sn-l)

= maxcP/(5n_i>y1

n-2)Q(yn_1,Sn_1,S'n) (83)

where P^(5„_i, Y™~2) represent the survivor path metrics to each previous state and

Q(yn_i, 5„_i, Sn) are the branch metrics associated with each possible transition.

In a similar manner, maximizing in the reverse direction:

P"(Sn,Yn

N) ±\ max P(S™,Yf\Sn)
5 » + i e S +

=

 WJ.,ma^ P(Sn+i,Yn\Si,Y™ 1)P(5^2 1, Y„+i\Si+l, y")
5n+i e 5

= max P(5 n + 1 ,y n |5„) max P(S»£,Yn

N

+1\Sn+1)
Sn+ies s^esN~n

= maxQ(Yn,Sn,Sn+1)Pb(Sn+l,Y1?+1) (84)

This formula once again describes the Viterbi algorithm except it is now run in reverse.

Pb(Sn+i,Y^f

+l) are the reverse path metrics and Q(Yn-i, Sn-i, Sn) are, as stated previ­

ously, the branch metrics.

Now that the best "forward" and "backward" probabilities to each state are known,

the probability of the best path through a particular state can be determined by:

PtSn.lf) = max max P{S»+1, Y»)

= P'(5„,l^- 1)P t (5 n > y n ' v) (85)

Appendix C. The MAP and "Best-Path" Algorithms 91

Likewise, the probability of the best path with a specific transition may be found by:

P(5^+1,yi

JV) = max max P(Sf + 1 ,rf)

= p'(5B,i7,-1)g(y„,5BJ5B +i)P6(5 fH.1,yB

J5.1) (se)

By using the probabilities determined in equation (86) in equation (82) one is able to

obtain an estimate of the a posteriori input symbol probabilities.

C.3 Computational and Storage Requirements

A decoder can be implemented to be efficient in either the amount of computation re­

quired or the amount of storage space required. In the discussion that follows, for the

determination of the minimum storage requirements, the "save storage" implementation

shall be assumed, whereas, for the calculation of the minimum computational require­

ments, the "save time" implementation shall be used. It should be pointed out that in

the case of the MAP and Best-Path algorithms, these two cost factors are mutually ex­

clusive. However, the resulting expressions for computational and storage requirements

will be the best that can be achieved by the basic MAP and Best-Path algorithms. It is

with these best case metrics that the comparisons with other competing algorithms shall

be made.

Consider decoding a sequence of N received symbols produced by the transmission

of N output symbols from an (n,k,m) Markovian process. Assuming a minimum mem­

ory configuration of either the MAP or Best-Path algorithms, the decoder will need to

store the received sequence so that it may calculate Q(Yn, Sn, Sn+i) (a quantity that is

similar to the Viterbi branch metric) as needed. This will require the allocation of N

storage elements (double this if the received sequence is complex). If it is desired that

the output information come out of the decoder in the correct order without having to

Appendix C. The MAP and "Best-Path" Algorithms 92

buffer decisions, it will be necessary to calculate and store Pb(Sn, Y^). This will require

the allocation of N2m storage locations. The subsequent calculation of Pf (Sn, Y"'1)

can then be made immediately followed by the calculation of the transition probabili­

ties P(S^+1,Y1

N). If the received sequence is sufficiently long, the amount of temporary

storage required to calculate these quantities will be small in comparison to the stor­

age requirements of the received sequence and Pb(Sn, Y^). Hence a minimum memory

configuration decoder will require at least N2m + N storage elements.

To determine the computational requirements of a typical MAP decoder, the assump­

tion of a "save time" implementation is made. (In this implementation the quantities

Q(Yn, Sn, Sn+i) are calculated once only and stored for later retrieval as needed.) Cal­

culation of probabilities Pf(S^Y^1) and Pb{Sn,Yn

N) will each require: 2m2fc binary

multiplications and 2m(2k
 — 1) binary additions per symbol. Q(Yn, Sn, Sn+i) requires es­

sentially the same computational effort as the Viterbi metric with the exception that an

additional exponential must be calculated to return e

_ m e t r t c . Since this quantity depends

on the specific application it is not possible to determine a general expression for the

amount of elementary operations required for its computation. However since a metric

is calculated for each possible output symbol at each time index it is safe to assume that

the time required will be proportional to 2n per symbol. The transition probabilities

will each require 2 binary multiplications for each of the 2m2fc state transitions per time

index for a total of 2m2fc+1 binary multiplications per symbol. If the effort required to

calculate the input symbol probability is neglected (which consists of several compares,

additions, and normalization if required) then, excluding the computation required for

Q(Yn: Sn, Sn+i), the total amount of elementary operations is as shown in table C l .

When implementing the "best-path" algorithm, one usually uses the logarithm of the

quantities Pf(Sn,l?-1), Pb(Sn,Yn

N), and Q{Yn, Sn, Sn+1). Therefore, for a "save time"

implementation of the "best-path" algorithm, the following calculations will have to be

Appendix C. The MAP and "Best-Path" Algorithms 93

binary
multiplications

binary
additions

exp

p>(sn,Yri)
2m2k 2m(2fc - 1)
2m2k 2m(2fc - 1)

Q{Yn, Sn, Sn+i) (see text) 2"
2̂ 2̂ +1

Table C.l: Minimum Operations Required per Input Symbol for
the MAP Algorithm.

binary
compares

binary
additions

exp

log p'tSn.yr 1) 2m(2fc - 1) 2m2fc

iogp*(5n>yB

JV) 2m(2fc - 1) 2m2k

\ogQ(Yn,Sn,Sn+1) (see text)
P(SZ+\Y») 2m2fc

Table C.2: Minimum Operations Required per Input Symbol for
the Best-Path Algorithm.

made. The determination of log(Pf (Sn, Y^'1)) and log(P6(5n, Yj?)) will each require

2m2k binary additions and 2m(2k — 1) binary compares per symbol. Computation of

\og(Q(Yn, Sn, Sn+i)) does not require any exponentials however exponentials are now

required during the later step when the trellis transition probabilities are calculated.

The transition probabilities will require 2 binary additions for each of the 2m2fc state

transitions for a total of 2m2k+1 binary additions per symbol. The total number of

operations are summarized in table C.2.

