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Abstract 

A generalized soft-output Viterbi algorithm (SOVA) that is applicable to any (n, k, m) 

convolutional code is proposed. The algorithm is compatible with the post-detector ar

chitecture proposed by Berrou et al. thereby achieving low computational complexity. 

By starting with Battail's generalized revision algorithm and re-referencing the relative 

values to the surviving path to each state, significant simplifications are made possible. 

By comparing the resultant simplified revision equation for (n, l,m) convolutional codes 

with Berrou's proposed post-detector compatible algorithm it is possible to deduce the 

additional modifications necessary to arrive at a (n,k,m) post detector compatible al

gorithm. Simulations show that with a revision depth greater than five times a code's 

constraint length, the proposed algorithm is capable of producing relatively high quality 

a posteriori input symbol estimates. 
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Chapter 1 

Introduction 

1.1 Motivation and Scope of the Thesis 

There arises many situations in communications where the serial concatenation of several 

codes may transpire. For such systems, optimum performance is achieved when the 

decoding is performed on the resulting effective global code. However, if the global 

code is too complex, decoding in this manner may not be viable. An alternative is 

to decode each individual code separately using the results from each decoding stage 

as input for the subsequent decoding stage. For this arrangement to achieve its full 

performance potential it is necessary that all of the decoding stages perform soft-decision 

maximum a posteriori (MAP) decoding. Unfortunately, many of the popular decoding 

algorithms such as the Viterbi algorithm output hard-decisions. Therefore, if any of these 

algorithms are used for decoding one of the inner codes, this will constrain the subsequent 

decoding stage to hard-decision decoding resulting in a degradation of performance. As 

shall be shown later, it is possible for a subsequent decoding stage to perform soft-

decision decoding if the preceding decoding stage can provide a posteriori input symbol 

probabilities instead of hard decisions. Decoders that are capable of providing such 

information are usually referred to as "soft-output" decoders. Applications that can 

benefit from the use of "soft-output" decoders include the serial concatenation of codes 

to produce a more powerful, yet still easily decoded, global code. Other examples would 

be the use of Viterbi equalization for previously encoded data, or the transmission of 

1 



Chapter 1. Introduction 2 

previously encoded data using TCM. A more recent example would be the iterative 

"Turbo" decoding algorithm for use with parallel concatenated codes [4]. Motivated by 

the potential gains that soft-output decoding can bring to these applications (for Turbo 

decoding, it is in-fact an essential element) much research has been done in the area of 

finding fast, efficient, and accurate soft-output decoding algorithms. The work described 

in this thesis is part of that effort. 

One of the algorithms that can be employed for soft-output decoding is the symbol-by-

symbol MAP algorithm. Proposed in [1] as an optimal method of decoding convolutional 

codes, its use for soft-output decoding was probably never intended. However, it does 

produce as a natural by-product of the decoding process the necessary a posteriori input 

symbol probabilities required for soft-output decoding. Its main advantage is that it 

deduces the exact value for the a posteriori input probabilities. Its disadvantage is 

that it requires a relatively large amount of computation. Indeed, this is one of the 

reasons it is not commonly used for decoding convolutional codes - most designers opt 

in favour of the Viterbi algorithm. In addition to the relatively high computational 

requirements, the decoding delay and the amount of storage necessary to implement 

the algorithm are dependent upon the length of the transmitted code sequence. Several 

sub-optimal variants of this algorithm have been proposed to address some of these 

problems. For example, to reduce the amount of computation necessary there is the 

"Best-Path" algorithm described in [7]. To eliminate the dependence of the decoding 

delay and required storage on the length of the transmitted code sequence, there is the 

algorithm proposed in [14]. 

An alternative approach that may be used for soft output decoding is based upon 

a heuristic modification to the standard Viterbi algorithm. The resulting soft-output 

Viterbi algorithms (SOVA) [2] [3] [6] are able to deduce estimates of the a posteriori input 
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probabilities.1 One of the main attractions of this approach is that because the resulting 

algorithms are based on the Viterbi algorithm, they have the desirable quality that the 

decoding delay and required storage are independent of the length of the transmitted 

code sequence. They are also computationally efficient in that the majority of the op

erations needed to implement these algorithms involve relatively simple operations such 

as comparisons and additions. Finally, as shown in [3], if one can derive a SOVA that 

is compatible with the "Post-detector" architecture, then it is possible to significantly 

reduce the amount of required computation and storage needed to estimate the a posteri

ori input probabilities. In the "Post-detection" scheme, the soft-output decoder is given 

knowledge a priori of what its eventual surviving path shall be. If the algorithm satisfies 

certain conditions (described in Chapter-2), it may use this information to its advantage 

thereby eliminating many of the required operations. 

The work described in this thesis focuses on the heuristic approach to deducing a 

posteriori input probabilities. At the onset of this project, one major short coming to 

the SOVA approach to generating soft output information was that there did not seem 

to exist an efficient algorithm that was applicable to any (n, fc, m)2 code. All of the al

gorithms proposed in [2][3][6] are only applicable to binary input (n, l,m) type codes. If 

it was desired to use any of these algorithms for a rate-fc/n code then such a code would 

have to be synthesized by puncturing a rate-l/n code. Therefore, the main objective of 

the research documented by this thesis was to find a heuristic based soft-output decoding 

algorithm that is applicable to any (n, k, m) type code. For the sake of computational 

efficiency it was also desirable that this algorithm be compatible with the post-detector 
1 T h e term S O V A is often used in reference to the specific algorithm proposed by Hagenauer and 

Hoeher in [6]. However, due to the similar foundations, for this thesis the term S O V A is used in 
reference to any algorithm that is based upon a heuristic modification of the standard Viterbi algorithm. 

2Following the notation as presented in [11], a (n,k,m) code represents a convolutional code with 
n-output bits, fc-input bits, and a memory of m-bits. 
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architecture proposed in [3]. Having found such an algorithm, its performance was eval

uated through the use of computer simulations of various concatenated systems. Its 

computational complexity was also compared with the MAP and Best-Path algorithms. 

1.2 Outline of the Thesis 

This thesis is organized as follows. In chapter-2, the use of a posteriori input probabilities 

for soft decision decoding is described. This is followed by a brief description of the 

algorithms proposed in [2] [3] [6] - on which the derivation described in Chapter-3 depends. 

In Chapter-3 the newly proposed "generalized post-detector algorithm" is derived. The 

computational complexity is compared with MAP and Best-Path algorithms. A brief 

discussion of some of the potential ramifications of the approximations made during the 

algorithm's derivation is presented. Computer simulation results are shown in Chapter-4. 

In Chapter-5 a summary is presented and suggestions for possible further investigation 

are made. 



Chapter 2 

Background and Underlying Principles 

2.1 Using Soft-Outputs in Serially Concatenated Systems 

Consider the serially concatenated system shown in Figure 2.1. In this system a 

message sequence m is multiplexed into several sub-messages m;. These sub-messages 

are encoded using the outer code. The resulting code sequences pi are then interleaved 

resulting in the sequences q~j. The sequences q~j are encoded using the inner code and 

transmitted over an AWGN channel. The received sequences Rj are decoded resulting 

in the sequences Uj. These sequences are then de-interleaved into the sequences The 

purpose of the interleaver/de-interleaver operation is two-fold. First, it eliminates any 

correlation in the symbols of each sequences q~j. Second, it eliminates any correlation 

in the "noise" samples in each received sequences Yj. Finally, the sequences F; are then 

decoded into the sub-messages fh^. 

For such a system to achieve optimum performance, both the inner and outer decoders 

should perform soft-decision MAP decoding. Clearly soft-decision decoding for the inner 

decoder does not pose any problems since the received sequences Rj represent sampled 

continuous random processes. In addition, since the symbols from the inner decoder 

are transmitted over an AWGN channel, the conditional density function of the received 

symbols is well known: 

where Sj is the transmitted signal sequence and a2 is the noise variance of the AWGN 

5 
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Chapter 2. Background and Underlying Principles 7 

channel. This conditional density function may be used to perform MAP decoding utiliz

ing the unquantized input symbols. Soft-decision decoding for the outer code, however, 

is not as straight forward since any conventional decoder structure used for the inner 

decoder will deliver hard quantized decisions. 

To determine how one can perform soft-decision MAP decoding for the outer code 

assume, for the time being, the existence of a soft-output inner decoder that will output 

an unquantized sequence Uj whose samples Uji (and hence Yij) are suitable for any outer 

decoder to perform soft-decision decoding. To satisfy the condition that the outer decoder 

perform MAP sequence decoding it must utilize the following selection criteria: 

Find m'i such that P{m!AYA > P(mi\Yi) V m^m; (2) 

Substituting 

P W ? ) = A W ) (3, 

and asserting the condition that all sequences m are equally likely, then (2) may be 

rewritten as: 

Find m'i such that / ( F ; K ) > / ( F ; K ) V rfk ̂  mj (4) 

Because of the one-to-one relationship between the message sequences m and the code

words p this is equivalent to: 

Find m'i such that /(̂ |pi(m-)) > f (Yi\pi(mi)) V ^ m{ (5) 

where pi{fhi) represents the specific code sequence pi associated with the message se

quence rhi. Defining the "error" sequence fji = Yi — pi(rhi), each side of (5) may be 

expressed as, 
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fWMmi)) = f(fJl = Yi-pi(mi)) (6) 
L 

= J]. fiVij = Yij - Pij(mi)) due to interleaving 
j=i 

L 

= Hf(Yii\Pij(^ii)) 
3=1 

Because q and U are merely p and Y interleaved respectively, 

/ ( £ | # ( m 0 ) = UHUMrrii)) (7) 
3=1 

Therefore (5) maybe rewritten as: 

Find m'i such that, 

* P ( ^ K ) | ^ ) P ( / J J t ) ^ P( (b<(m i)|t/J- i)P(t/J-0 m / 

P(Uji) does not depend on and therefore can be cancelled from both sides. If the 

inner code has the property that P(qji(mi)) is equal for all choices of qji then it too 

can be eliminated. Thus the only term that the outer decoder needs to perform MAP 

soft-decision decoding are the probabilities P(qji\Uji). 

Because of interleaving each of the q^ of the sequence q~j are independent. Therefore 

knowledge of UjX (Va; ^ i) will have no affect on P(qji\Uji). Consequently, it is possible 

to substitute P(qji\Uji) for P(qji\Uj). The resulting MAP decision criteria becomes: 
L _ _ L 

Find m'i such that J J P(qji(m'i)\Uj) > J ] P(qji(mi)\Uj) V mii-w!i (9) 
3=1 3=1 

The necessity of this substitution shall be shown in the following paragraph. 

Previously, the assumption of the existence of a soft-output inner decoder that delivers 

unquantized decoded information sequences U was made. Assume that each of these 

decoded sequences corresponds to a unique received sample sequence R resulting in a one-

to-one relationship between U and R. Under these circumstances, P(qji\Uj) will be equal 
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to P(qji\Rj) since knowing Uj is equivalent to knowing Rj (and vice versa). Note however 

that the procedure for calculating P(qji\Rj) is already well known since these are the exact 

quantities that must be computed if the inner decoder were a symbol-by-symbol MAP 

decoder. Therefore, if the outer decoder were to set P(qji\Uj) to P(qji\Rj) as calculated 

by an inner MAP decoder, this would be equivalent to using the aforementioned fictitious 

soft-output inner decoder. Since the outputs from this fictitious decoder are unquantized 

and there is no information reduction going from R to U, the outer decoder will be 

performing soft-decision decoding. 

As a result of the discussions presented in the previous paragraphs it can be concluded 

that the decision rule: 

L _ _ L 

Find m'i such that H P(<lji(m'i)\Rj) > II v
 ™* m'i (10) 

3=1 J'=I 

is sufficient for the outer decoder to perform soft-decision MAP decoding under the 

condition that all message sequences m, are equally likely and all encoded sequence 

symbols qji (and hence pij) are also equally likely. For convolutional codes and TCM 

codes, the condition that all of the possible output symbols from the outer decoder are 

equally probable is satisfied. 

2.2 The Symbol-by-symbol M A P and "Best-Path" Algorithms 

As mentioned previously, there already exists a known algorithm for calculating the a 

posteriori input probabilities P(qi\R). This algorithm is, not surprisingly, known as the 

symbol-by-symbol MAP algorithm (also known as the "Bahl" [1] or "forward-backward" 

[7] algorithm). This algorithm in optimum in the sense that it determines the exact 

values for the a posteriori input probabilities P(qi\R). The cost of this precision however 

is that it requires a relatively large number of multiplications per decoded symbol. This 
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may pose a problem if the hardware available is not capable of performing the neces

sary calculations in real-time at the desired speeds1. A sub-optimal derivative of this 

algorithm that reduces the amount of computation required by replacing multiplications 

with additions and additions with compares is the "Best-Path" algorithm [7]. This al

gorithm is computationally efficient and capable of delivering high quality probability 

estimates. However, because of its similarity to the MAP algorithm it also shares some 

of its disadvantages. Because both of these algorithms involve a forward computational 

pass starting from the first received symbol and a reverse computational pass starting 

from the last received symbol, one must wait for the entire transmitted sequence to be 

received prior to the completion of the calculation of any of the a posteriori input proba

bilities. This may lead to unacceptable decoding delays at the receiver if the transmitted 

sequence is relatively long. Furthermore, one must at the very least store the entire 

received sequence so that it may be referenced for the second pass. Hence, the amount 

of storage required for this algorithm for long transmitted sequences may be quite large. 

A detailed description of the MAP and Best-Path algorithms is given in Appendix-C. 

2.3 The Soft-Output Viterbi Algorithm (SOVA) 

The soft-output Viterbi algorithm is a name used to describe a family of sub-optimal 

algorithms that are used for calculating estimates of the a posteriori input probabilities 

P(qi\R). They are all based upon a heuristic modification of the conventional Viterbi 

algorithm (for an explanation of the Viterbi algorithm see [9] [10]). Because of this re

lationship, the decoding delay and the amount of required storage for these algorithms 

are independent of the length of the transmitted sequence. In addition, the majority 
xIt should be pointed out that many modern microprocessors and digital signal processors are capable 

of performing floating point operations at speeds comparable to integer arithmetic. Furthermore the 
cost of this type of hardware appears to be continually decreasing. Therefore, concerns over whether a 
system has sufficient computing power may no longer be a major issue. 
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of the computations involved in the calculation of the a posteriori probability estimates 

involves additions, subtractions, and comparisons - operations that can be performed 

quite rapidly on simple, inexpensive hardware. 

2.3.1 Deducing Viterbi Decision Probabilities 

The basic supposition is that it is possible to deduce the reliability of the decisions made 

by a Viterbi decoder by comparing the path metrics of all paths merging into each state 

of the trellis. Whenever a Viterbi decoder chooses a survivor merging into a state, the 

confidence in the input bits or symbols associated with that decision is proportional to 

the magnitude of the difference between the path metrics of the survivor and concurrent 

paths. For example, in Figure 2.2 consider the two paths merging into state-1 at decoder 

memory level j = 0. Ms and Mc are respectively the accumulated Viterbi path metrics 

of the survivor and concurrent paths. If the encoded symbols were transmitted over an 

AGWN channel, the metrics would be given by: 

Ml = -lnP(^th-i\rk

1) = ^J2\rt-^t{xf)}\2 , i = s,c (11) 
^° t=l 

where r\ is the sequence of received symbols from time-1 up to time-A; (this notation 

provides a convenient means of referencing sub-sequences of the entire received sequence 

R), rt is the received sample at time t, and st{x[^} is the transmitted signal at time t 

corresponding to the output symbol associated with the i-th path. For this channel, 

the confidence in the Viterbi decoder's decision in choosing the surviving path over the 

concurrent path may be found by: 

^(attLbkdS0-l K) = (̂surviving path|r*) 
e~M< 

g-Ms _|_ g—Mc 

1 



Figure 2.2: "Classic" (2,1,2) Convolutional Encoder and its 
Corresponding Trellis State Diagram. 
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Equation (12) provides an expression for determining the probability of the decision 

made by the Viterbi decoder at time-A; and state-1. However, the desired quantity is the 

probability of the input bits or symbol associated with this selection. The relationship 

between the decisions and input bits or symbols depends on the structure of the encoder. 

Consider the encoder shown in Figure 2.2. For this example, the encoder's state was 

denned to be the contents of its shift register. By noting the states at time k — 1 of the 

survivor and concurrent paths, it becomes apparent that the contents of the encoder's 

shift register must differ in only the last bit prior to the merger at time-k. Hence the 

decision probability calculated previously refers the encoder's shift register "roll-off" bit. 

Equivalently, for this example, the probability calculated corresponds to an input bit 

decision at time k — 3. 

For feed-forward encoder's in general, each decision associated with the selection of a 

survivor to each state corresponds to the selection of a corresponding shift-register roll-

off symbol. The bits corresponding to this symbol are, of course, bits that would have 

been inputted previously. Note that if the encoder consists of shift-registers of differing 

lengths it is not possible to calculate the input symbol probabilities directly. 

For a systematic feed-back encoder the relationship is different. In this case, each path 

merging into a particular state will be associated with unique input symbol. Therefore, 

the survivor selections also correspond to the selection of a specific input symbol. There 

is no time delay for this situation. 

Taking the previous comments into consideration, for the encoder shown in Figure 

2.2, equation (12) states: 

1 (13) I -|_ e-(Mc-M3) 



Chapter 2. Background and Underlying Principles 14 

State 

0(00) 

1(01) 

2(10) 

3(11) 

5 4 3 2 1 0 Mem Lev: j 

k-4 k-3 k-2 k-1 k k+1 Time 

Figure 2.3: Trellis for (2,1,2) Convolutional Code 

4 _ 3 = 1 on 
surviving path 

to state-1 

= 1 

Concurrent decision 
at t — k, state-1 

h-3 — 0 on 
surviving path 

to state-1 
(14) 

2.3.2 The Need For Revision 

There now exist an expression for the reliability of a Viterbi decision given received 

symbols r\ = {ri,..., r/t}. However, because the encoder's output symbols are correlated, 

as subsequent symbols are received, they will have an impact on the probabilities of 

previous decisions. The values calculated by equation (12) will have to be updated. Hence 

one requires a revision algorithm that will update the previously calculated probabilities 

as new symbols are received. This process of calculating new probabilities and revising 

the previously calculated probabilities must be repeated until the final symbol r^ arrives. 

The concept is illustrated in Figure 2.3. Assume that the surviving path from Figure 2.2 

is now part of the surviving path to state-0 at time k + 1. Then if follows that: 
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p 
I k - 3 = 0 on 

surviving path r i 
to state-0 k+1 = P 

P 

Ik-3 =0 o n Surviving path 
surviving path at t = k + 1, 

Ik—3 =0 on Concurrent path 
surviving path at t = k + 1, 

to state-1 I state-0 

to state-0 | state-0 

Once this revision formula has been applied there will exist up-to-date reliability infor

mation for the surviving path for decisions at time t = k and time t = k + 1. When 

the next symbol is received at time k + 2, the revision formula is applied once more to 

the probabilities computed at times k and k + 1. The process is repeated until the final 

symbol is received. 

Finding an efficient revision formula or algorithm is the key to SOVA. Where previous 

works [2] [3] [6] differ is in the approach and details of this operation. Because of the heavy 

dependence that the newly proposed revision algorithm has on the previous works, a brief 

overview of those works shall be presented. 

2.4 History of SOVA 

2.4.1 Relative Values 

In 1987 G. Battail published a paper [2](Fr) describing a general SOVA revision algorithm. 

Rather than revising the actual Viterbi decision probabilities, as was done in the previous 

section, he revises a quantity known as "valeur relative" (or "relative values"). For a 

(n, k, m) code the relative values associated with the decoder's most recent decision are 

defined as: 

where XQ represents the encoder's roll-off symbol (for a feed-forward encoder) or input 

symbol (for a systematic feedback encoder) at the time corresponding to decoder memory 

depth-0. Equivalently the relative value is representative of the confidence in the Viterbi 

a0p = log 
Pjxp = 0) 
P(x0 = p) 

= MP-M0 p = 0,---,2 f c-l (16) 
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decoder's decision concerning the 0th and pth paths, as identified by the roll-off or input 

symbol, to a given state. (This quantity is in-fact the same "relative" metric that was used 

previously in section 2.3.1.) Using this definition, the confidence in a Viterbi decoder's 

decision for a non-binary input (n , k, m) convolutional or trellis code is represented by a 

vector of relative values. Battail also defined the conditional relative value to take into 

consideration past decisions conditioned on the current choice of survivors to each state. 

For the decision made j symbols in the past conditioned on the current pth path: 

„P _ l Q C

 P(xi = °\xo = P) A _ 0 . . . o f c - 1 (17) 

With these definitions, Battail derived a general revision formula that was applicable 

to any (n,k,m) code. However, due to its complexity, he concentrated on the binary 

input (n, l,m) case. By focusing on this this sub-class he was able to limit the number 

of terms that had to be taken into consideration. Simplifying the resulting (n,l,m) 

expression he arrived at a revision formula that has a low computational complexity 

and is relatively simple to implement. His revision formula is reproduced here for the 

convenience of the reader: 

ay+i) = max(a], a° + a*, a° + a0, a° + a] + a0) — max(0, a°, a0, a* + a0) (18) 

The reason there is only one equation and not two (one for each a(-,+i)i , i = 0,1) is 

that, because of how the relative values are defined, aj0 = 0. Therefore there is no need 

to calculate it. Similarly, since a0o = 0 and a*0 = 0 always, there is no need for those 

relative values (where they occur in the revision formula, they have been replaced by 0). 

Therefore, each term in (18) refers to either â +iji, c^i, or a*-x. 

To illustrate how this revision formula is used, refer back to Figures 2.2 and 2.3. In 

Figure 2.2, Ms is the metric for the 0th path (as identified by the shift-register roll-off 

bit) while Mc is the metric for the 1th path. Therefore, for the decision made at state-1 
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at time-fc: 

a00 = Ms - Ms = 0 (19) 

a 0i = Mc- Ms (20) 

Similarly, there would also be a set of relative values generated for the decisions made to 
each other state. Referring to Figure 2.3 for state-0, time k + 1, Mc now refers to the 0th 

path while Ms refers to the Ith path. A new relative value vector [a0o,a0i] is calculated 
using these metrics while (19) and (20) become [a^a ]̂ since they are now part of the 
current 1th path. The relative value vector that was calculated for state-0 at time-fc now 
becomes [a50,a?i] as it is part of the current 0th path. Revision formula (18) states that 
the updated relative value vector for the decision at memory depth-1 (time-A;) on the 
surviving path (the 1th path) to state-0 may be found by: 

a i o = 0 (21) 

a n = m a x ( a j 1 , a § 1 + a J ^ a Q ! + o o i . a Q ! + a j x + a 0 i ) - max (0 ,ao 1 ,a 0 i ,aj 1 + a 0 i ) (22) 

2.4.2 A Simplified Revision Algori thm 

Presented at Globecom'89, Hagenauer and Hoeher [6] described an alternate revision 

algorithm. Reproduced in Figure 2.4, the algorithm compares only two quantities per re

vision and only performs the revision if the concurrent and surviving paths yield different 

decisions. This algorithm revises the log-likelihood ratio: 

where pj is the a posteriori probability estimate for the decision made at memory level 

Lj = log 1 -Pj (23) 
Pi 

j . The revision function /(Lj, A) is defined as: 

(24) 
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Recursion: 

a) Classical Viterbi step: 
For each state sk 

Compute 

IXst-i ,sk) = TXsk) + % 2 £ i (y tn - * to) 2 

for both transitions (sk-\, sk) • 
Find r(sk) = min r(sk-i, sk). 
Store F(sk) and the corresponding survivor iik(sk) • 

b) Soft-deciding update: 
For each state sk 

Store A = maxT(sk~\, sk) - min r ( i n , sk). 
Initialize Lk(sk) = +°°. 
For j = k-v to j = lc-&m 

Compare the two paths merging in sk 

if uf\sj) * uf\sj) then update 
Lj:=f(Lj,A) 

Figure 2.4: Hagenauer and Hoeher's Revision Algorithm 

where A = Mc — Ms and a is a constant scaling factor. Like Battail's simplified revision 

formula, this algorithm is only applicable to (n, l,m) type codes. However, since this 

revision formula only compares two quantities per revision, the amount of computation 

required for this revision algorithm is less. 

2.4.3 The Post-Detector Architecture 

In a paper presented at ICC'93 by Berrou et al. [3] the results of the previous two 

works are combined. The authors started from Battail's original non-simplified revision 

formula for (n, l,m) codes and were able to derive a simple revision algorithm that 

parallels the one published by Hagenauer and Hoeher in that the revision operation 

involves essentially the comparison of only two quantities. Like Battail's algorithm their 
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case 1: Sj(k, m) • s'(k, m)<0 
dj(k, m) = Sj(k, m) • min [\aj(k, m) |, a(k,m)\] 

case 2: Sj(k, m) • s'j(k, m) > 0 
cij(k, m) = SjQc, m) • min [ | a,(&, m) \, \a(k,m)\ + \a'j(k,m)\] 

Figure 2.5: Revision Algorithm by Berrou et al. 

algorithm revises "relative values". Their algorithm is reproduced in Figure 2.5. The 

a[j\k,m) and a(k,m) terms are the same as the a*- and a0 terms in Battail's revision 

formula (equation (12)) with the exception that the time-A; and state-m are explicitly 

shown. The term Sj(k,m) is the sign of the relative value a,j(k,m). One of the author's 

findings was that the quality of the a posteriori probability estimates was not seriously 

affected by the neglecting case-2. This was fortuitous since the author's realized that 

significant computational savings could be realized by this action. The authors noted 

that case-1 depends solely on the "relative values" (referred to as "weights" in [3]) of 

the path currently being revised. Therefore, by choosing to revise only the globally best 

path (the overall survivor), the "relative value" information of the concurrent paths need 

neither be computed nor stored. To take advantage of these potential savings, all that 

is required is that the module performing the SOVA operation know a priori what the 

surviving path is. This resulted in the post-detector architecture outlined in Figure 2.6. 

To illustrate why a post-detector architecture is beneficial for Berrou's algorithm 

and not Battail's, consider the example shown in Figures 2.2 and 2.3. Consider the 

hypothetical situation in which both state-1, time-k and state-0, time k + 1 lie on the 

global surviving path. Using Battail's notation, according to Berrou et al, the relative 

value an can be sufficiently approximated by: 

a n = sign(ajx) • minflajj, |a0i|] ' (25) 
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Encoder Mod Channel Encoder Mod Channel 

Xj :i=\-N 

Delay Line 

Viterbi 
Decoder 

S O V A 
Post-Detector 

a posteriori 
i/p symbol 
probabilities 

P(x,\Y) 

Figure 2.6: Post Detector Architecture 

Note that is the relative value for state-1, time-A; conditioned on the surviving path. 

Compare this with equation (22) where it was necessary to also know - a relative value 

associated with a decision at a state and time (state-0, time-A;) not lying on the globally 

best path. Therefore, for Battail's algorithm, regardless of having a priori knowledge of 

what is the globally best path, one still needs have the updated relative values conditioned 

on the concurrent paths. Since the concurrent paths may have in the past traversed 

through any trellis state, at each time step one must still revise the relative values of 

every surviving path to each and every state. As a result, there are no computational or 

storage savings if a post-detector architecture is used with Battail's algorithm. 

At this point, it is convenient to state the conditions under which an algorithm will 

benefit from a post-detector architecture: The revision algorithm must only depend upon 

relative values of decisions made on the globally best path. It may depend on the aoi 

terms if these relative values are for a state lying on the globally best path. It may depend 

on the ciji terms if these relative values are conditioned on being part of the globally best 

path. 

It should be pointed out that the decrease in computational complexity that results 

from using a post-detector architecture does not come without a price. In this case 

additional decoding delay has been introduced. Not surprisingly, there appears to be a 
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trade-off being made between precision, complexity, and decoding delay. 



Chapter 3 

Derivation of the Generalized Post-Detector 

3.1 Introduction 

In this chapter the generalized post-detector algorithm is derived. As was done in [3], the 

derivation presented here begins with Battail's unsimplified revision equation for relative 

values. However, unlike [3], this treatment begins with the more general equation that is 

applicable to any (n, k, m) code. For the sake of some of the simplifications that will be 

made later, and the convenience of the reader, Battail's general revision equation will be 

re-derived. The derivation parallels the steps as presented in [2], however, the relative 

values have been referenced against the metric of the surviving path to each state. (As 

shown in equations (16) and (17), Battail referenced his relative values to the metric 

of the 0th path to each state.) As shall be shown later, this step makes possible some 

crucial simplifications that lead to an intermediate revision formula that is essential to 

the derivation of the final proposed post-detection compatible algorithm. 

3.2 Terminology 

3.2.1 Relative Values at the Decoder's 0— memory level 

Referring to Figure 3.1 in which two Viterbi decoder m-ary decisions are depicted 

(one at the 0th memory level and the other at the j t h memory level conditioned upon the 

0th) the "relative values" of the decoder's most recent decision (at an arbitrary state) are 

22 
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Most Recent Viterbi Decision 
(Memory Level-O) 

Vi te rb i D e c o d e r P a t h M e m o r y 

to P r e v i o u s S t a t e s a t t ime : t=k » 
Tre l l i s T r a n s i t i o n X n 

Viterbi Decision Made j Symbols Previously 
Along the Path Associated with the i-th Transition -

Vi te rb i D e c o d e r P a t h M e m o r y 

to P r e v i o u s S t a t e s a t t ime : t=k-j « I « 
. T re l l i s T r a n s i t i o n XJ\XQ = i 

Figure 3.1: Depiction of a Viterbi Decoder's Decisions Made at the 0— 
and j— Memory Levels 
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defined as: 

A Pr(xo = Tna) 
a0m = log p _ ̂  , m = 0,... ,q - 1, m, € {0,... ,q - 1} (26) 

£o is a discrete random variable representing the roll-off symbol for a feed-forward encoder 

or the input symbol for a systematic feedback encoder. Equivalently, it may represent 

the corresponding path merging into the given state, m represents the possible values for 

the roll-off or input symbols ranging from 0 to q — 1. For an (n, k, m) code, q is equal to 

2k. ms is the specific roll-off or input symbol associated with the surviving path merging 

into the given state. 

For an AWGN channel, if Mm and Mms are the trellis path metrics of a concurrent 

path and the survivor path merging into a given state, then the relative values respectively 

become: 

a0m = log = log = Mm- Mms 27 

Hence, for each decision made at the decoder's 0— memory level (one for each possible 

trellis state), a vector a0 = [a0o, Qoi, • • • ,ao(g-i)] of relative values representing the re

liability of that decision is generated. The relative value vector may be viewed as an 

alternative representation of the p.d.f. of the random variable x0. 

Rearranging (26) yields an expression for the probability of a specific path in terms 

of its relative value and the probability of the surviving path being traversed: 

Pr(x0 =m) = e~a0mPr{xQ = ms) (28) 

3.2.2 Conditional Relative Values at the Decoder's j— memory level 

Following a similar procedure as was done for the 0— memory level, the relative values 

for decisions made in the past are now defined. Consider a decision made j symbols 

previously from the current decision conditioned on it being part of the i— path to a 
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specified current state. Define: 

,• A, Pr{Xj = ms\xn = i) .. ,„ . . 

As before the vector = [0^0,^1,... , a^^] is representative of the reliability of the 

decision made by the decoder. 

Rearranging (29) gives an expression for the probability of a specific path traversed 

j symbols in the past conditioned upon it being part of the current i— path: 

Pr(xj = m\x0 = i) = e~a^mPr(xj - ms\x0 = i) (30) 

For the derivation that follows, it is helpful to fully express Pr(xj = m\x0 = i) in 

terms of relative values. This is readily accomplished by noting that (due to a corollary 

from the theorem of total probability): 

9-1 

Pr(xj = k\x0 = i) = 1 (31) 

k=0 

By using equation (30): 

9-1 

Pr{Xj = ms\x0 = i)J2 e~a)k = 1 (32) 

Pr(xj = ms\x0 = i)= 1 _ai (33) 

Now substituting this result back into equation (30) yields: 
—a1-

6 J m 

Pr{xj = m\xQ = i)= _ai (34) 
E L o e j k 

3.3 Re-deriving Battail 's Revision Formula 

From the theorem of total probability: 

9-1 

Pr(xj — i) = ^2 Pr(xj — i\xo = m)Pr(x0 — m) (35) 
m=0 
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At this point a slight change in notation is made to reflect the fact that as new deci

sions are made, they are stored in the decoder's path history and all prior decisions are 

"shifted-up" in memory level by 1. Therefore (35) is rewritten as: 

9-1 
Pr(xj+i = i) = ^2 Pr(xj = i\x0 = m)Pr(x0 = m) 

m = Q 

Substitute (28), (34) into equation (36): 

<?-i r 
Pr(xj+1 = i) = Y, 

m=0 

e J* 

L E L o ^ J 
9-1 p-a]l~ao" 

=0 Ẑ fc=0 e 3 

{e-aomPr{x0 = ms)] 

Pr(xQ = ms) 

With i = ms (37) yields: 

Pr{xj+i =ms) = 

Substitute (37) and (38) into: 

0-1 — -<»0rj 

= 0 E L o e 3 k 

Pr(xQ = ms) 

«(i+i)i = log 

yields: 

9 _ 1 -a?i- a0m 

£ e 

a0'+i)« = lo§ 

Recall that by construction oJ^ms = 0,. m = 0,..., q — 1. 

P r ( X j + i = z) 

' f . 1

 e-aTms-"0m 
= 0 £ £ « ' 

a(i+i)i = log 
'9-1 

V-> e~a0m - log a(i+i)i = log la ^ , - 1 - a ™ 
- log 

.™=°£Lo e J*J 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

Equation (41) describes how to "heuristically" revise the relative values of the sur

viving paths given a Viterbi decoder's most recent decisions. This formula is applicable 

to any (n,k,m) code however, due to its complexity it is not very practical. 
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3.4 Simplifying the General Revision Formula 

The problems with using equation (41) directly are two fold. First, the outright number 

of operations required is rather large. Secondly is the fact that many of those operation 

involve exponentials. To circumvent these problems, it is hoped that many of the terms in 

equation (41) can be approximated by simpler expressions without drastically affecting 

the quality of a posteriori input probability estimates. Indeed, this was the primary 

motivation for re-referencing the relative values to the surviving path since, by doing so, 

many of the operations can be eliminated. 

By using the following approximation to the sum of a set of exponentials: 

9-1 
e ik ~ e 1 ik' 

k=0 
(42) 

Due to the re-referencing of the relative values to the surviving path, it follows that for 

k 7̂  ras, djl > 0, while a™ms — 0. This implies that: 

9-1 
£ e-a7« « 1 
fc=0 

(43) 

Substitution into equation (41) yields: 

a(j+l)i log 

log 

9-1 
^2 g — a 0 m . 

m=0 
9-1 
£ g j . 

Lm=0 
g-mm{oom} 

e-min{aJl+aom} 

Similarly since for m / ms, a0m > 0, while arjm s = 0: 

1 

(44) 

Oy+i)i W log 
-min{aYi+aom} 

(45) 

a(j+i)i « min {a^ + a 0 m } 
m=0...q—1 J 

(46) 
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3 . 5 Finding a Revision Algorithm That is Post-Detector Compatible 

Equation (46) provides a relatively simple revision formula for any (n,k,m) code. As 

a soft-output Viterbi decoder selects a survivor merging into a particular state, it can 

use this formula to revise the stored relative values associated with the surviving path. 

However, since this operation is done for each surviving path entering into each possible 

trellis state, the number of revisions required will be quite large. Furthermore, this entails 

the storage of the relative value vectors associated with each of these surviving paths. 

Depending upon the hardware available this may not be very practical. 

One way to overcome these problems is to try to implement (46) as a "post-detector". 

The rational behind such a scheme is that if the decoder knows a priori what the globally 

best path is, it needs only to revise the relative values associated with that path. Why 

spend precious computational cycles on revising relative values of paths that shall never 

be emitted by the decoder? Furthermore, if one can eliminate from the revision operation 

any dependence upon the relative values of the concurrent paths then one only needs to 

allocate storage for the relative values of a single path. This unfortunately leads to a 

problem in using equation (46) as it stands for a post-detector. Referring to Figure 3.2, 

in which a revision operation using equation (46) is depicted, it becomes apparent that 

as one uses (46) to revise the relative values of a surviving path (at time t = k + 1) to a 

state that is part of the globally best path, one requires knowledge of the relative values 

of not only the survivor path (to state-6, at time t = k) but also of the concurrent paths 

(to states-a, c, d, at time t — k). This implies that at each time step, the decoder must 

still store and revise the relative values of each survivor to each possible trellis state. 

This forfeits any potential savings that might have been realized by using a post-detector 

architecture. If equation (46) can somehow be modified in such a manner so that the 

revision of the surviving path (at time t = k + 1) does not depend on the knowledge of 
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Survivor Path 

Concurrent Paths 

State 

-> a 

- > b 

Allowed trellis transitions 
into state-a 

t=k t=k+l 

«00 
tfoi 

«03 

Relative values of surviving 
paths merging into each state 
attimet=k. 

Relative values of surviving 
path merging into state-a 
attimet=k+l. 

State 
"i a,-+i 

a(,-+i),;= min {a%+aom} 
m=0-3 

Figure 3.2: Revision Operation Using Equation (46) 
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concurrent paths (at time t = k) then the computational/storage savings hoped to be 

gained by using a post-detector architecture can be realized. 

Insight into finding the appropriate modifications can be gained by considering (46) 

for the (n, l,m) case and determining what necessary changes must be made in order 

that it meet the "post-detector" requirements outlined previously. It is hoped that these 

modifications will provide sufficient clues on how to adapt (46) into a "post-detector" 

compatible algorithm that may be applied to any (n,k,m) code. 

3.5.1 Post-Detection Compatible Revision Algorithm for (n, l ,m) Codes 

From equation (46): 

ay+i)0 = minfojo + ooo, ajo + floi} ( 4 7 ) 

a ( j + 1 ) 1 = minfa^ + a0o , a]i + ^oi} (48) 

There are eight possible cases to consider: x0 = 0 or 1, Xj = 0 or l\x0 = 0, and Xj = 

0 or 1\XQ = 1, where x denotes the decision made by a Viterbi decoder. The effect of 

these Viterbi decisions on the revision equations is shown in the following tables. 

Case 1 - ( n , l , m ) codes Case 2 - ( n , l , m ) codes 

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's 

0 xo = 0 aoo = 0 0 x 0 = 0 a0o = 0 

3 £j = 0\xo = 0 

Xj — 0\xo = 1 

«°o = 0 

a)0 = 0 

j Xj = 0\XQ = 0 

Xj = 1\£Q = 1 «}i = 0 

Revision Equations for Surviving Path Revision Equations for Surviving Path 

a(j+i)o = 0 

a(j+i)i = minfa^, a} + a 0 i j = min{a^, a01} 
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Case 3 - (n , l ,m) codes Case 4 - ( n , l , m ) codes 

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's 

0 x0 = 0 a0o = 0 0 x o = 0 aoo = 0 

3 Xj = l \ x r , = 0 

Xj = 0\XQ = 1 

4 = ° 
ojo = 0 

3 f j = l\xo = 0 

= l | £ o = 1 

a ^ O 

a), = 0 

Revision Equations for Surviving Path Revision Equations for Surviving Path 

a ( j- + 1)o = minja^o, a 0i} a(j+i)0 = mm{a°j0, a j 0 + a 0i} 

° ( j+ i ) i = 0 

Case 5 - (n , l ,m) codes Case 6 - ( n , l , m ) codes 

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's 

0 x0 = 1 a 0 i = 0 0 £ 0 = 1 OQI = 0 

3 = 0|̂ o = 0 

£j = 0\XQ — 1 

4 = 0 

«jo = 0 

3 = 0\xo = 0 

= l\£o = 1 

4 = o 
a), = 0 

Revision Equations for Surviving Path Revision Equations for Surviving Path 

aO+i)o = 0 

a ( j + i ) i = min{a^ + a 0 0 ) a j j 

O ( j + i ) 0 = min{a 0 0 , a}0} 

%'+!)! = 0 

Case 7 - (n , l ,m) codes Case 8 - ( n , l , m ) codes 

Mem Lev Decision Implied Rel Val's Mem Lev Decision Implied Rel Val's 

0 x0 = 1 a 0 i = 0 0 £o = 1 a 0 i = 0 

3 = l\xo — 0 

i j - 0\XQ = 1 

4 = 0 

4 = ° 

3 i j = l\xo = 0 

f j = l |fo = 1 4 = 0 

Revision Equations for Surviving Path Revision Equations for Surviving Path 

aO+i)o = 0 

%•+!)! = min{a0o, a}x} 

°>(j+i)o = m i n { a ° 0 + a 0 0 , a)0} 

° ( i + i ) i = 0 
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To find an algorithm that is compatible with the post-detection scheme presented in 

[3] it is necessary that revision depend only on the relative values of the surviving path 

and the most recent decision. This is true for cases: 2, 3, 6, 7 - when the decisions made 

at memory level-j were different. 

To uncover what additional approximations have to be made to make the other cases 

(when the decisions made at memory level-j were identical) post-detector compatible, 

consider case-1. According to the algorithms by Berrou et al. and Hagenaurer/Hoeher, 

revision is not necessary if both the concurrent and survivor paths yield the same decision. 

Therefore, in compliance with their findings, revision should not be necessary for case-1. 

Expressed in the notation used for this chapter this would imply: 

%+i)o = a% ( 4 9 ) 

flfj+i)i = aji 

In case-1, the revision equation for a(j+i)o satisfies (49) already since a°0 = 0. The revision 

equation for <2(j+i)i can be made to satisfy (49) if the a]x + a0i term is neglected. This is 

not entirely unreasonable since by construction all of the terms are positive. In essence, 

by neglecting this term, the assumption made is that the sum of two terms will always be 

greater than a single term. Examination of cases 4, 5, and 8 show that they too can be 

made post-detector compatible by making this same assumption. The resulting revision 

equations follow: 
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Case 1 Case 2 

"0+i)o = "°o 

00+1)1 = "°i 

aO'+i)o = a % 

" 0 + 1 ) 1 = m i n { " ° i > a ° i } 

Case 3 Case 4 

" 0 + 1 ) 0 = minja^o, a 0 i j 

"0+i)i = "°i 

"0+i)o =  a°jo 
" 0 + 1 ) 1 = a° i 

Case 5 Case 6 

"0+i)o ~  ajo 

" 0 + 1 ) 1 = "]l 

a(j+i)0 = min{a 0o, a)0} 

"0+i)i = a)i 

Case 7 Case 8 

aO+i)o — "}o 

" 0 + 1 ) 1 = min{a0o, a^} 

"0+i)o = "}o 

"0+i)i = a]i 

This can be shown to be the exact same algorithm, given notational differences, as the 

one proposed by Berrou et al. in [3] for their post-detector. 

To summarize, it was discovered that by using the revision equation (46) for binary 

(n, l,m) codes, and by applying the assumption that the sum of two terms is always 

greater than a single term, it was possible to derive a revision algorithm (or set of 

equations in this case) that was post-detector compatible. It now remains to be shown 

that by using the same equation for the more general case of (n,k,m) codes and by 

applying the same assumption, this will also result in a post-detector compatible revision 

algorithm. 
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3.5.2 Post-Detection Compatible Revision Algorithm for (n, k, ra) Codes 

To derive a revision algorithm for the non-binary (n, k, m) case a procedure similar to 

that for the binary (n, l,m) case is followed. The case where k = 2 is used to illustrate 

the effects of the assumptions made. This will keep the number of terms that must be 

considered in the case studies reasonable. Since none of the assumptions made will be 

specific to the case where k = 2 the resulting algorithm should be applicable to the more 

general case. 

For an (n,2,m) code, equation (46) yields: 

a ( j + i ) 0 = min{â 0 + a0u , a}0 + a 0i, a2

j0 + a02 , a3

0 + a03} 

ay+iji . = minfa^ + a00 , a)x + a 0i, a]x + a02 , a)x + a03} 
(50) 

ay+1)2 = min{a°2 + a00 , a)2 + a 0i , aj2 + a02 , a3

2 + a03} 

a y +i) 3 = min{â 3 + a00 , aj3 + a 0i , aj3 + a02 , a% + a03} 

Is Revision Necessary if A l l Antecedents Yield The Same Decision? 

Although, with increasing k, this scenario becomes less likely early on in the Viterbi 

decision process, it is still applicable once all of the surviving paths have merged at 

some arbitrary memory depth ([12] implies that this usually occurs within 5 constraint 

lengths). This prevents the decoder from performing revision over the entire decoder 

memory. It will only be done where it is "necessary" to achieve satisfactory a posteriori 

information. 

Consider the following case studies: 
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Case 1 - (n,2,m) codes 

Mem Lev Decision Resulting Known Rel Val 

0 x0 = 0 aoo = 0 

3 cbj = 0\xo = 0 

Xj ' 0\XQ = 1 

Xj = 0\xo = 2 

Xj = 0\XQ = 3 

a% = 0 

a] 0 = 0 

a% = 0 

a% = 0 

Resulting Revision Equations for 
Surviving Path 

Observations 

o(j+l)0 = 0 = 4 
aC?+i)i = min {a0^ + aoi , 4 + ao2 , a|i + a 0 3} * 4 
a0+l)2 = m i n { a ° 2 . 4 + a 0 i , a?j2 + a02 , a3

j2 
+ a 0 3} « 4 

a 0+l)3 = m i n { a ° 3 > 4 + OQI , a?j3 + a02 , a3

j3 + a 0 3} « o ? 3 

Case 2 - (n,2,m ) codes 

Mem Lev Decision Resulting Known Rel Val 

0 x0 = 0 a0o = 0 

3 i j = l|xo = 0 

Xj = l|xrj = 1 

Xj = l|£o = 2 

i^' = 1|XQ = 3 

4 = ° 
a), = 0 

4 = o 

Resulting Revision Equations for 
Surviving Path 

Observations 

°0'+i)o = mhi{a5o . 4 + a 0 i , fljo + a02 , a3

jQ 
+ a 0 3} « a ° 0 

a o + i ) i = 0 

a ( j + l)2 = min{a?2 > 4 + aoi, o?j2 + ao2 , o?j2 
+ a 0 3} 

a(j+l)3 = m i n { a ° 3 , a}3 + a 0 i , a2

j3 + a02 , a?j3 
+ a 0 3} « 4 
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From the previous two examples it can be seen that if the assumption that the sum of 

two relative value terms is always greater than a single relative value term then revision 

is not necessary when all of the "antecedents" (surviving paths to each allowed state at 

the previous time step) yield the same decision. Stated in another way, once all of the 

surviving paths to each state in the trellis have merged, say at memory level-/, then no 

revision is necessary beyond this point. 

Revision Algorithm for Case When Al l Paths Do Not Yield The Same Deci

sion 

To determine the revision algorithm when the antecedents do not all yield the same 

decision, it is convenient to place all of the terms of equation (50) in a revision matrix: 

-So + aoo + am a% + a02 + a03 

+ a00 + aoi + a02 + a03 

aj2 + aoo + a0i ah + a02 ah + a03 

aj3 + a00 ah + aoi a% + a02 
a% + a03 

(51) 

Suppose the most recent decision to a given state is XQ — i, then ao, = 0. This leaves 

only the a^k terms in column i+l of matrix (51). Since, in the resulting revision algorithm, 

the assumption is made that the sum of two relative values will always be greater than 

any single relative value, this implies the dependency of the resulting algorithm on the 

relative value terms of the surviving path (at time step t = k). 

Now consider the case where the n— path yields the following decision: £j = l\x0 = n. 

This leads to a"; = 0 which eliminates a term in the I + 1th row and n + 1th column leaving 

only the a0n term. Therefore, the decisions made on the preceding paths at the j— level 

indicate which relative value terms a0n are relevant in making the current revision. The 

following example illustrates this finding: 
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E x a m p l e - (n,2,m) codes 

Mem Lev Decision Known Rel Val 

0 x0 = 1 001 = 0 

3 Xj = 3\$o = 0 a ° 3 = 0 

Xj = Q\xo = 1 0J0 = 0 

£j = 2\xo = 2 a% = 0 

£ j = 2\XQ = 3 af 2 = 0 

Resulting Revision Equations for 
Surviving Path 

Post-Detector 
Revision Equations 

O(j+l)0 = min{a?0 + aoo , 0 + 0, aj0 + a 0 2 , a3

j0 + a 0 3} = min{a} 0, a 0 i } 

= minfa^ + a 0 0 , a)x + 0, a?x + a 0 2 , + 0-03} ~ a } i 

°U+1)2 = m i n { a ° 2 + a 0 0 , a)2 + 0, 0 + a 0 2 , 0 + a 0 3} « min{a) 2 , a 0 2 , a 0 3} 

a 0 ' + l ) 3 = min{0 + a 0 0 , a}3 + 0, a? 3 + a 0 2 , a? 3 + a 0 3} « min{a}3 , a 0 0} 

Note that the approximate revision algorithm only requires knowledge of the surviving 

path's relative values {â 0, ajx, a 2̂, aj3} and the relative values corresponding to the 

most recent decision {aoo > &01 > a02 , 003}- Hence this algorithm appears to be the M-ary 

equivalent of the algorithm presented by Berrou et al. in [3]. 

By comparing the decisions made by the decoder with the resulting revision equations 

a pattern becomes apparent. This pattern leads to the revision algorithm outlined in 

Figure 3.3. 

3.6 Application Considerations 

3.6.1 Deducing Input Probabilities From Relative Values 

To this point consideration has only been given to the problem of finding an efficient 

method of revising the relative values derived from a Viterbi decoder's decisions. As 

mentioned previously, to deduce the a posteriori probabilities of the encoder's input bits 
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Possible trellis transitions 
into given state. 

Surviving state at time 
t=k as determined 
byapre-detector. 

t=k t=k+l 

Relative values of path 
merging into state-y at 
time t=k. 

Relative values of path 
merging into state-z at 
time t-k+1 

HU 

Generalized post-detection 
compatible algorithm 

—* 

To update a 0 + 1 ) , given that x0 = s (ie no, = 0), 

If all paths merging into the current state yield the same decision 
at memory depth j then: 

No revision is necessary. 
Seta(y+i), = < .̂ 

else 
Are any of the decisions made, at memory depth j, on the 
possible merging paths equal to index i ? 

No -» No revision is necessary. 
Set fl(y+i)j =aj. 

Yes -» Say on paths mx and m2. Revision is required. 
Set = min{ajj,aomi,aom2}• 

(end). 

Figure 3.3: Generalized Revision Algorithm for Post-Detector 
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rate 3/4 encoder 

modulo-2 
summing 
network 

Signal 
Mapper 

o-

SOVA 

Gaussian 
Channel 

o- post-delector 

Vilerbi 
Decoder 

delay line 

Figure 3.4: Rate 3/4 SOVA system 

or symbols from the relative values, one must consider the structure of the encoder. To 

illustrate how this is accomplished consider the following two examples. 

Example 1: Feed-Forward Encoder 

Consider finding the a posteriori input bit probabilities for the rate-| system depicted in 

Figure 3.4. Suppose the SOVA outputs the following relative value vector at time t = k: 

Ofc = [OfcO)  a k l i <2*:2, Ofc3)  ak4, &fc5>  ak6, Ukl] 

If the paths merging into each state were identified using the shift-register "roll-off" 

symbol then: 

. P(xk = 0) P{bk0 - 0, 6 ( f c_ 2 ) 1 = 0, 6 ( f c - i ) 2 = 0) 
Qfco = log 777- - r = log 

P{xk = ms) P(bk0 = ms0, 6( f e_2)i = msi, b(k-i)2 = ms2) 
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Therefore 

P(xk=l) 

P{bk0 = 0) 
l\bko=0 
7 

£ e~afc< 
i|fcfco=0 
7 

P(&fc0 = 1) 1 - P(bk0 0) 

Similarly it is possible to deduce P(/3(fc_2)i = 0) and P(b^-i)2 = 0). To determine 

P(bki = 0) and P(bk2 = 0) one must use the relative value vectors a f c + 2 and a f c + 1 re

spectively. This implies that one must buffer several relative values vectors after the 

completion of revision or use relative value vectors that may not have been fully revised. 

The latter situation should be acceptable so long as the revision memory is sufficiently 

long such that all concurrent paths have merged for D symbols prior to symbol output -

where D is the maximum length shift register. Note that it is not possible to determine 

the a posteriori input symbol probabilities for this encoder since the shift-registers are of 

differing lengths. 

Example 2: ISI Channel 

Consider finding the a posteriori input symbol and bit probabilities for the ISI channel 

shown in Figure 3.5. Because the signaling constellation is 8-PSK, the relative value 

vector will have 8 components: 

&k — [flfcOj a fc l ) Qfc2) ak3, <2fc4> <2fc5, Ofc6, ak7. 
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buf>~ 

bkp-

bkP 1 

8 P S K 

Signal 
Mapper 
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CO 

Soft-Output 
Viterbi EQ 
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R 

—0 c\—0 c 2 — ® 

Gaussian 
Channel 

Figure 3.5: Rate-3 Soft-Output Viterbi EQ system 

For this case the shift-register "roll-off" symbol is just the ISI channel input symbol offset 

by two time periods. Therefore given that: 

. P(xk = 0) P(sfc_2 = 0) 
GfcO = log r = log 

P(xk = ms) 
the 0-symbol probability may be found by: 

P(Sk-2 = 0) 

P{bk-2 = ma) 

P(sk-2 = 0) 
P(sk-2=0) 

P{sk-2=™-s) _ e 

E P(sk-2 = 1) E E e -
0 p ( * * - a = m ' ) / = 0 

The probabilities for the other symbols can be calculated similarly. 

Determining the a posteriori input bit probabilities probabilities is a fairly straight 

forward procedure given knowledge of the mapping used by the modulator. They can 

either be calculated directly as was done in Example-1 or calculated from the a posteriori 

input symbol probabilities. For these simulations the mapping used is shown in Table 3.1. 
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& 0 M 2 ->• sn:an + j(3n 

000 -> 0 : +cos(22.5°) -;sin(22.5°) 
001 -> 1 : -sin(22.5°) + jcos(22.5°) 
010 -> 2 : + cos(22.5°) + ;sin(22.5°) 
on -)• 3 : +sin(22.5°) + jcos(22.5°) 
100 -> 4 : -cos(22.5°) + j sin(22.5°) 
101 ->• 5 : +sin(22.5°) - jcos(22.5°) 
110 ->• 6 : -cos(22.5°) - jsin(22.5°) 
111 -»• 7 : -sin(22.5°) -;'cos(22.5°) 

Table 3.1: Signal Mapping used by the 8-PSK Modulator. 

Using the a posteriori input symbol probabilities, P(b<k-2)o) may be found by: 

P(6(fc-2)0 = 0) = P(5fc_2 = 0) + P(sfc_2 = 1) + P(sk-2 = 2) + P(sfc_2 = 3) 

P(6(fc-2)0 = 1) = l-P(6 f c-2=0) 

The probabilities for P(/3(fc_2)i) and P(b^-2)2) can be found in a similar manner. 

3.6.2 Examining the Effects of the Approximations Made 

During the derivation of the generalized post-detection algorithm several approximations 

were made to arrive at a simple expression. It may be interesting to determine how these 

approximations affected the "physical" meaning of the equations. 

The unsimplified revision equation (equation (40)) can be rearranged as follows: 

e ° o + i ) i = 
Pr(xj+i - mt) 
P r(z j +i = i) 

Pr(x0 = ms) 

Pr(x0 = ms) 
(52) 

For the time being consider only the denominator terms. 

Pr(xj+i — i) 
i 

e-aomPr{x0 - ms)] (53) 
ljk 

m=0 
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-̂1 Pr(xj = i\x0 = ra) 
rr^o lpr(xj = ms\x0 = m)\ 

[Pr(xj = ms\x0 = ra)] [Pr(x0 = ra)] 

The first approximation made during the derivations was as follows: 

1 \ 1 1 
X L o e l k . le j f c J 

, where a £ , <aJkVk,k^k' (54) 

Since by construction the survivor's relative value a™k, — 0: 

Pr(xj = ms\x0 — ra) « 1 (55) 

This implies that given knowledge of the encoder's most recent decision, the decoder is 

certain of the encoder's decision j symbols previously. Stated another way, the decoder 

assumes it made the correct decision j symbols in the past. 

Applying this same assumption to the numerator as well the denominator leads to 

the following equation: 

e
a o+i)i 

Pr(xj+i = ms) 
E [ e - a O m P r ( i 0 = ms)] 

m=0 

Pr(xj+l - l) ^ [e-«£][e-aompr(£0 = ms)] 
(56) 

m=0 

The next approximation made involved the numerator of this equation. 

9-1 

53 e _ a ° m « e~a°m', where a0m' < a0m Vm, ra ̂  m' 
m=0 

Once again, by construction, a0m> = 0. Therefore, 

g P r (£ 0 = ra) _ 1 

(57) 

m=0 P r(^0 = m s) 

9-1 
53 - P r ( £ ( ) = " l ) ~ Pr(xo = ms) 

m=0 

This implies that: 

Pr(x0 = ms) » Pr(xo = ra) , Vra, ^ m. 

(58) 

(59) 

(60) 
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Determining the physical meaning of the approximations made beyond this point be

comes quite difficult. However, the two assumptions that have been uncovered (equations 

(55) and (60)) do provide some indication of what conditions are required for the derived 

algorithm to work well. The two assumptions are generally true for codes with good dis

tance qualities and high SNR. Since most system designers generally choose such codes 

and operate at moderate signal strengths these conditions should not pose any problems 

for systems such as concatenated coding where the inner code is a convolutional code or a 

TCM code. However, these conditions also suggest that the new revision algorithm may 

not be suited for applications such as Viterbi equalization where the channel may not 

necessarily conform to a "good code". To determine if this is true, computer simulations 

would have to be performed. 

3.6.3 Computational and Storage Requirements 

Because of the generalized post-detector's dependency upon the Viterbi algorithm, the 

computational and storage requirements of the standard Viterbi decoder shall be re

viewed. The additional resources required to implement the generalized post-detector 

shall then be discussed. The results will be compared with the resource requirements of 

the MAP algorithm and the Best-Path algorithm. 

Consider a typical (n, k, m) convolutional code. The trellis diagram of this code will 

have 2m states. If 8vtb represents the length of the past history memory of the corre

sponding Viterbi decoder then Svtb • 2m storage elements (most likely integer quantities) 

for the path history arrays will need to be allocated. In addition, 2m additional storage 

elements (typically floating point quantities) are required to hold the metrics of each of 

the surviving paths. 

The Viterbi decoding process involves for each received symbol: 2" branch metric 

calculations followed by 2m • 2fc additions for path metric calculations. In addition, 2m 
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comparisons of 2k path metrics are required for the selection of the surviving paths to 

each state. If it is assumed that a comparison of 2fc items can be accomplished by 2fc — 1 
binary comparisons then that leads to a requirement of 2m(2k — 1) binary comparisons 

per received symbol. These results are summarized in Table 3.2. The exact number of 

additions/multiplications for the branch metric calculation will not be considered as it 

depends on the specific application - most notably, the type of modulation used. However, 

since all of the decoding methods to be considered here require the computation of a 

similar quantity, it can be considered as a constant computational overhead that is not 

a factor when selecting between the various algorithms. 

.The addition of the generalized post-detector derived in Chapter-3 will entail a second 

Viterbi decoder to calculate the path metrics for the relative value calculations. If the 

post-detector has a path memory of length 8pd the this will require an additional 5pd • 2m 

storage elements for path histories to each state. As in the standard Viterbi decoder each 

storage element must store the input symbol decision. However, if a feed-forward code 

is used, the roll-off symbol will also have to be stored. Hence the required storage for 

the path history arrays is 25pd • 2m (probably integer quantities). As before, 2m elements 

for path metric storage (floating point quantities) are required. The relative value arrays 

require Spd • 2k elements (floating point). 

Viterbi Storage Requirements 
Integer Floating-Point 

2m 

Viterbi Computational Requirements 
Binary 

Compares 
Binary 

Add./Sub. 
Branch Metric 
Calculations 

2m(2fc - 1) 2m2fc 2" 

Table 3.2: Computational/Storage Requirements For a Typical Viterbi Decoder. 
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Additional Storage Required for Implementing a Post-Detector 
Integer Floating-Point 
26pd2m 2m + 8pd2k 

Additional Computation Required for Implementing a Post-Detector 
Operation Binary 

Compares 
Binary 

Add./Sub. 
Brnch Met 

Calc's 
Exp. Mult./Div. 

Viterbipd 2m(2fc - 1) 2m2fc 2™ 
r.v. calc. 2fc 

Rev. Nec. ? Spd(2k - 1) 
Comp. Past Dec. (Spd • 2k)2k 

Select Min. (Spd • 2fe)2fc 

Calc Pr(sym) 2fc - 1 2h 
2fe 

Table 3.3: Additional Computation/Storage Required to Imple
ment and Add a Generalized Post-Detector. 

Computation requirements for the second Viterbi consist of performing the following 

for each received symbol: 2n branch metric calculations, 2m • 2fc binary additions for 

path metric calculations, and 2m(2fc — 1) binary comparisons. The calculation of the 

relative value vectors consist of 2h subtractions per received symbol. To determine where 

revision is necessary, 5pd(2h — 1) comparisons are required. Assuming it is necessary 

for the entire path history length, this should impose at most 5pd • 2k revisions each 

consisting of 2k comparisons to examine the branch decisions made in the past, followed 

by at most 2k binary comparisons for the "select min" operation. To obtain a normalized 

"roll-off" symbol probability that may later be used to deduce the input bit a posteriori 

probabilities will require 2k exponentials, 2k — 1 additions, followed by 2k divisions. These 

incremental computational costs are summarized in Table 3.3. 

The overall computational requirements of implementing a SOVA utilizing the gener

alized post-detector algorithm can be determined by adding the various quantities pre

sented in Table 3.2 and Table 3.3. For example, the number of binary additions required 
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Generalized Post-Det. MAP Algorithm Best-Path Alg. 
Storage: 
Integer (<W + 25pd)2m 

Float-Point 2(2m) + 6pd2k Lmsg{2m + 1) Lmsg{2m + 1) 
Computation: 

Binary Compares 2m+1(2k - 1) + Spd(2'2h+1 + 2k) 2m+1(2fe - 1) 
Binary Add./Sub. 2 m + l 2 f c _|_ 2k+l - l 2m+1(2fc - 1) 2(2m+12fc) 
Brnch Met Calc's 2 n + l 2n 

2 n 

Exponentials 2k 2n 2 m 2 f c 

Mult./Div. 2fe 2(2m+12fc) 

Table 3.4: Comparison of the Computation Requirements of Vari
ous Soft-Output Decoder Algorithms. 

is: 

2 m 2 f c + 2m2k + 2

k + 2k -1 = 2m+12k + 2k+l - 1 (61) 

whereas the number of comparisons necessary has been approximated by: 

2m(2fc - 1) + 2m(2fc - 1) + Spd{2k - 1) + (Spd • 2k)2k + (6pd • 2k)2k 

« 2m(2fc - 1) + 2m(2fc - 1) + 6pd • 2k + (5pd • 2k)2k + (5pd • 2k)2k 

« 2

m + 1 (2 f c -l) + r5pd(22'c+1 + 2fc) (62) 

The number of branch calculations is 2n+1. The number of exponentials and multiplica

tion/division operations necessary each remain at 2fc. These results along with the compu

tation and storage requirements of the MAP and Best-Path algorithms (see Appendix-C) 

are shown in Table 3.4. 

By substituting the appropriate hardware and system parameters into Table 3.4, a 

system designer can determine which soft-output algorithm is most suited for his par

ticular application. For example, suppose the available hardware can perform a binary 

comparison in one time unit, a binary addition in one time unit, and a binary multiplica

tion in four time units. A time unit being defined as the duration of the fastest of those 
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three operations. Also, if a generalized post-detector is used, the decoders are to have 

a path memory of 5vtb — Spd = 5m. (This should be sufficient since a code's constraint 

length is equal to at most m.) Finally, the transmitted sequence length in symbols is 

LmSg = 256. Then the computational and storage costs of the various algorithms can be 

compared by examining Figure 3.6 and Figure 3.7. In Figure 3.6, the amount of memory 

required to store the integer variables and the floating-point variables is assumed to be 

the same. Figure 3.6 depicts the amount of these "generic" storage elements required to 

implement the decoder versus code memory m and number of input bits k. Figure 3.7 

depicts the amount of computation time required per decoded symbol vs. code memory 

m and number of input bits k. In Figure 3.7 the calculations of the branch metrics 

and exponentials were assumed to be performed by table lookup resulting in negligible 

computational costs. 

A word of caution must be noted when interpreting the various tables and graphs. 

The actual amount of computation required depends not only on the number of additions, 

compares, multiplications, etc, but also on many other factors which are implementation 

specific. Just to name one, the tables and graphs did not take into account whether 

various operations were performed on integer or floating point quantities. The ratio 

of integers to floating-point variables required can be heavily influenced by the specific 

implementation and by constraints imposed upon the designer by the available hardware. 

Also note that the time required to move data from one storage location to another was 

completely neglected. The tables and graphs shown should only be used to provide a 

rough estimate of the amount of computation/storage required. If a designer can meet 

his computational/storage "budget" using worst case values for each operation (most 

likely floating point operations) then he can be fairly confident that the algorithm being 

considered can be implemented with the hardware at hand. 
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M A P or B e s t - P a t h D e c o d e r vs V i te rb i D e c o d e r G e n e r a l i z e d P o s t - D e t e c t o r v s V i te rb i D e c o d e r 

M A P o r B e s t - P a t h D e c o d e r v s G e n e r a l i z e d P o s t - D e t e c t o r 

N u m . input b i ts - k 

Figure 3.6: Comparisons of Algorithm Storage Requirements 
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MAP Algorithm vs Best-Path Algorithm vs Standard Viterbi Algorithm Generalized Post-Detector vs Standard Viterbi Algorithm 

Generalized Post-Detector vs Best-Path Algorithm Generalized Post-Detector vs MAP Algorithm 

Figure 3.7: Comparisons of Algorithm Computational Requirements 
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Evaluating Performance of The Generalized Post-Detector 

4.1 Introduction 

To determine how well the proposed post-detection algorithm would perform in actual 

practice, a computer model of a post-detector decoder was created. Simulations of various 

concatenated systems were performed covering a range of codes, signaling constellations, 

and channels. The simulations were arranged in sets such that each suite would vary a 

single system parameter such as the choice of inner code or choice of signaling constella

tion. In this way it would be possible to isolate the effects of each of these parameters 

on the post-detector's performance. The results of these simulations are described in the 

following sections. 

In those sections, the results of the simulations are presented in the form of a graph 

depicting the resultant bit error rate (BER) vs SNR per input bit of the post-detection 

system. For comparison, the performance curve of the optimum serially concatenated 

system, as predicted by the graphical procedure described in [3] and Appendix-B, is also 

provided. In addition, the performance curve of a corresponding system not utilizing a 

soft-output inner decoder is also shown. 

The codes and channels used for each of the simulations are referred to by a code or 

channel label such as cc2_3.df4 or isi2.70.30. cc2_3.df4 represents a a rate-| convolutional 

code with a free distance dfree = 4 bits. Whereas isi2.70.30 represents an ISI channel 

with two taps: 70% of the received signal energy is transmitted via the first path while 

51 
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30% of the energy is transmitted via a second delayed path. The delay is set to the 

symbol transmission interval. Unless otherwise stated, the channel tap weights are real 

(as opposed to complex value quantities). The generator matrices of each code and the 

tap weights of each ISI channel used for the simulations described in this thesis can be 

found in Appendix-C. 

All of the computer models were created in C using the GNU C compiler. The 

code was compiled and run on either a Sun Sparcstation running SunOS 4.1.3, an AMD 

486DX2-80 running FreeBSD 2.0.5, or a Cyrix 5x86-120 also running FreeBSD 2.0.5. In 

many cases, the same simulations were run on more that one computer system to verify 

the results. For all of the graphs shown, each point represents the transmission of at 

minimum 100000 bits and the counting of at least 400 bit errors in the received data 

stream. In order for a simulation to stop it had to meet both of these conditions. This 

should provide a sufficient number of error events to ensure statistical significance. 

4.2 Effects of Code Free Distance on the Estimates of the A Posteriori Prob

abilities 

To determine what effect code free distance has on the quality of the a posteriori proba

bilities generated by the post-detector, the simple concatenated coding scheme depicted 

in Figure 4.1 was implemented through software. Three convolutional codes with differ

ent free distances were selected for the inner code. To reduce the likelihood of selecting 

an outer code that was relatively insensitive to poor a posteriori probability estimates, 

three different convolutional codes were selected for the outer code. Every combination 

was implemented resulting in the nine graphs shown in Figures 4.2 - 4.4. Figure 4.2 

shows the three cases where the inner code was set to cc2_3.df3. Figure 4.3 and 4.4 show 

the results of the simulations for the cases when the inner codes were fixed at cc2_3.df4 
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and cc2_3.df7 respectively. 

For each simulation, a block type interleaver was used. The interleaver depth and 

width were each set to a value much greater than either of the codes constraint lengths 

and free distances. The modulation used for every case was BPSK. Transmission was 

through an AWGN channel. The revision history of the post-detectors and the path 

history memory of the Viterbi decoders were set to a value much greater than five times 

either of the code's constraint lengths (> 20x). 

Observe that all of the curves seem to show a similar result. As expected for a sub-

optimal algorithm, the performance curve of the concatenated system using the proposed 

post-detector derived in Chapter-2 deviates from the ideal graphical prediction. This 

deviation can be characterized by a gradual "pulling away" from the ideal case as SNR 

increases. However, this deviation is quite small: less than 0.2 dB from the ideal case at 

bit error rates of 10-4. This is quite acceptable when compared to the gain made over 

the system using a hard-output inner decoder. 

The graphs indicate that there does not seem to be a simple relationship between 

the code free distance and the quality of the a posteriori information produced. The 

simulations do imply however that it should be possible to use the proposed post-detection 

algorithm on a variety of different convolutional codes regardless of the inner code's free 

distance. 
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Figure 4.4: Performance of Various Concatenated Systems Utilizing an Inner 
Code with dfree = 7 (channel: AWGN). 
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4.3 Effects of Signaling Constellation on the Quality of the Estimates of the 

A posteriori Probabilities 

To determine whether increasing the size of the signaling constellation would have any 

effect on the quality of the reliability information, software simulations of the concate

nated CC/TCM system shown in Figure 4.5 were performed. Three simulations were 

performed. The first used coded 8-PSK modulation for the inner code, the second coded 

16-QASK, while the third used coded 32-CROSS. Transmission was over an AWGN 

channel. 

The results, shown in Figure 4.6 are quite similar to the results obtained in the 

previous section: a gradual increasing deviation with increasing SNR from the ideal 

graphically derived curve. As before, the deviation is small when compared to the gain 

made over the system utilizing the conventional Viterbi decoder for the inner code. 

The graphs suggest that the proposed generalized post-detection algorithm should 

work reasonably well for a variety of different coded signaling constellations. 
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4.4 Determining Performance of the Generalized Post-Detector for use in 

Soft-Output Viterbi Equalizers 

To determine if the proposed post-detection algorithm can be used for implementing a 

soft-output Viterbi equalizer, the concatenated systems shown in Figure 4.7 and Figure 

4.9 were tested via computer simulations. For these simulations, the soft-output Viterbi 

equalizers (SOVE) were given full knowledge of the channel tap weights. The channel 

tap weights were invariant with time. The interleaver depth and width were set to values 

much greater than the constraint length of either the "outer" code or the ISI channel. 

The post detector revision length and Viterbi decoder path memories were all much 

greater than five times the constraint length of either the code or the channel. 

The first suite of simulations was used to determine the effects of the different ISI 

channel tap weights on the quality of the a posteriori information produced by the soft-

output Viterbi equalizer. For these simulations, binary data was encoded using the 

convolutional code cc2_3.df4 and transmitted over the various ISI channels using 8-PSK 

modulation. The deduced a posteriori 8-PSK symbol probabilities were used to calculate 

a posteriori input bit probabilities of the modulator. These bit probabilities were in 

turn used for the decoding of the convolutional code. Hence, the convolutional code 

was decoded as if binary modulation had been used - even though, the probabilities 

themselves were originally deduced using the received 8-PSK symbols. The ISI channel 

was comprised of two taps only. The delay between the taps was one 8-PSK symbol 

interval. 

The results of these simulations are depicted in Figure 4.8. Observe that the quality 

of the soft-output information appears to degrade with increasing ISI. However, even for 

the worst case scenario (two taps of equal weight), the degradation is not too severe. 

Therefore the simulations indicate that for moderate levels of ISI the quality of the a 
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posteriori probability estimates is quite good. 

For the second suite of simulations a three tap ISI channel is used for the inner code. 

In addition, the outer encoder is replaced by a TCM modulator (coded 8-PSK). As a 

result, the outer decoder would need to have knowledge of the a posteriori input symbol 

probabilities (as opposed to the bit probabilities used for the first suite of simulations). 

Results from the second suite of simulations are shown in Figure 4.10. For compar

ison, the results of equivalent systems utilizing the MAP and Best-Path algorithms are 

also provided in addition to the graphically predicted curve. The most notable charac

teristic of these simulations is that for the system with a higher level of ISI (inner code: 

isi3.60.20.20), the resultant curve of the MAP based system does not coincide with the 

curve generated by the graphical procedure described in [3]. Yet for the system with 

less ISI (inner code: isi3.80.10.10) the MAP based system does appear to agree with 

the graphically predicted curve. One possible explanation is as follows. The graphical 

procedure described in [3] assumes that the inner code can be modeled by an equivalent 

Gaussian channel. Referring to equation (6) and (10) in section 2.1, the model assumes 

that: 

n % w i ^ ) = cn/(**iipyto)) (63) 

j=l j=l 

where C is some constant and v is an equivalent noise variance. The fact that for the 

high ISI case, the MAP based curve does not coincide with the graphically deduced curve 

would suggest that it is not possible to find an equivalent sequence Y\ that can satisfy 

equation (64). When the outer code utilizes non-binary signaling it would seem that there 

are not enough degrees of freedom to find a suitable fit. Why then, does the MAP based 

curve match the graphically deduced curve for the low ISI case? This may be explained 
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by the following reasoning. The one situation where equation (64) should hold is for a 

channel with no ISI. In that particular case, the equalizer should not do anything and 

should not affect the channel statistics. Therefore, a MAP based simulation with such a 

channel (inner code: isi3.100.0.0) should match perfectly with the graphically produced 

curve. However, as ISI increases, the statistics produced by the soft-output decoder 

seem to become less Gaussian and result in a deviation of the MAP based simulation 

curve from the graphically produced curve. This deviation would increase as the level of 

ISI over the inner channel increases. This explanation seems to be consistent with the 

observed results from the simulations. 

Overlooked in the previous discussion is the fact that the generalized post-detection 

algorithm seems to also work reasonably well for SOVE in systems that utilize non-

binary modulation. The deviation from the optimum curve (determined by the MAP 

based system for this case) is not too unreasonable. It displays the same characteristic 

behaviour as was seen in the first suite of simulations. The deviation from the ideal case 

increases with increasing ISI. 

The results of the previous two suites of simulations suggest that for moderate lev

els of ISI, the quality of a posteriori probabilities produced by the proposed generalized 

post-detection algorithm is quite good. This is a somewhat surprising result considering 

the concerns that were raised in Section 3.6.2 . One can only conclude that the approxi

mations made during the derivation of the generalized post-detection algorithm are quite 

reasonable when the transmitted sequence from the "inner" code (in this case, it is an 

ISI channel) is transmitted over an AWGN channel. 
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Figure 4.8: Soft-Output Equalizer Performance in a Concatenated System Us
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Figure 4.8: Continued. 
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Figure 4.10: Soft-Output Equalizer Performance in a Concatenated System 
Using Coded 8-PSK for the Outer Code. 
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Figure 4.10: Continued. 
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4.5 Determination of the Minimum Required Revision History for the Gen

eralized Post-Detector 

To determine what is the minimum revision depth for the generalized post-detector in 

order for it to provide reasonably good estimates of the a posteriori input probabilities, 

the concatenated system shown in Figure 4.1 was once again simulated via computer 

software. However, this time the revision depth of the post-detector was varied between 

lx and 10 x the inner code's constraint length. The length of the Viterbi path history 

arrays were kept at a value much greater than 5x the appropriate code's constraint 

length. 

The results of these simulations are shown in Figure 4.11. The curves show the effect 

of changing the revision depth (and hence required memory) of the generalized post-

detector. The curves indicate that a generalized post-detector should generate reasonable 

good quality a posteriori input probability estimates if its revision depth is set to a value 

of Spd > 5 x (constraint length). 

This result is not unexpected since the proposed algorithm does not revise the relative 

value vector for a given memory depth index if all of the possible paths yielded the same 

decision at that index. Since all of the surviving paths of a Viterbi decoder tend to merge 

by 5x the code's constraint length, clearly revision beyond this point is generally not 

done. 
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Figure 4.11: Simulation Results of a Concatenated System Utilizing a Post-
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Conclusion 

5.1 Summary 

This thesis tackles the problem of finding an efficient heuristic algorithm for deducing 

estimates of the a posteriori input probabilities of a Markovian based encoder. When 

this project was begun, the better known variants of this approach were applicable to 

(n,l,m) codes only. Therefore there existed a need to find an efficient heuristic based 

algorithm that would be applicable to the more general case of (n,k,m) codes. 

Of the known (n, l,m) heuristically based soft-output decoders, the most efficient 

of these in regards to computational and memory storage requirements is the decoder 

proposed by Berrou et al. [3]. The key to this decoder's efficiency was that it utilized 

a post-detector architecture. Berrou et al. were able to find a simple (n, l,m) revision 

algorithm that was compatible with this type of decoder architecture. The question 

naturally arose of whether it would be possible to find a (n,k,m) revision formula that 

was also compatible with this particular architecture. Fortunately, it was indeed possible. 

Finding such an algorithm involved several steps. The first was to use several ap

proximations to simplify Battail's general heuristic revision formula [2] such that its 

complexity would be reduced to a reasonable level. The next step involved a compari

son of the revision operations dictated by this simplified formula (for the (n, 1, m) case) 

with the revision operations dictated by the (n, l,m) post-detector algorithm published 

by Berrou et al. These comparisons resulted in the determination of what additional 

72 
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modifications had to be made to the simplified Battail revision formula in order for it 

to be able to take advantage of the post-detector decoder architecture. The resulting 

algorithm is the "generalized post-detector algorithm" described in Chapter-3. 

Simulations show that the proposed algorithm is capable of providing reasonably high 

quality estimates of a posteriori input probabilities for a variety of different convolutional 

codes. Furthermore, despite some concerns raised in Section 3.6.2, the proposed algo

rithm also seems adequate for use with Viterbi equalizers. In addition, it was found that 

a revision depth of 5 x (constraint length) should be sufficient for many applications. 

For the serial concatenation of two codes, performance can be characterized as follows. 

Approximately 80% of the maximum possible SNR (dB) gain attainable through the use 

of soft-decision decoding for each stage is achieved (the best performance being arrived 

at through the use of a soft-output MAP inner decoder and the worst through the use 

of a standard hard-output inner decoder). This seems to be typical of heuristic based 

algorithms. 

Benefits of using the new algorithm include the fact that it can be applied to any 

(n , k, m) trellis based code. The decoding delay is independent of the length of the trans

mitted code sequence and can be as short as 10 x (constraint length). Disadvantages 

of this algorithm include the fact that the quality of a posteriori input probability esti

mates is not as good as those produced by the MAP or Best-Path algorithms. Since the 

algorithm is based on the Viterbi algorithm it shares the same limitations of the Viterbi 

algorithm: practical only for relatively short constraint length codes. Finally, knowledge 

of the channel variance is required by the receiver to calculate the branch metrics (a 

problem shared by the MAP and Best-Path algorithms as well). 
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5.2 Proposed Future Work 

One of the main incentives for the renewed interest in soft-output decoders is that they 

are an essential element of Turbo decoders[4]. It would be worthwhile to determine how 

well the new algorithm performs for this particular application. One question that arises 

is whether it is even worthwhile to consider a sub-optimal soft-output algorithm. It may 

be that for a given level or performance, the turbo decoder may have to perform more 

iterations with a SOVA type algorithm than it would with a MAP type algorithm. This 

might offset any computational advantages that the SOVA algorithm may have held. 

For this thesis, the main objective of the computer simulations was to determine how 

certain system parameters would affect the quality of the a posteriori input probabilities 

deduced by the generalized SOVA. Several concatenated systems were simulated in which 

individual system parameters such as dfree or the choice of signaling constellation could 

be isolated and changed. Consequently, many of the simulated systems seem artificial in 

that one would never choose those combinations of "codes" for actual applications. It 

would be desirable to perform some simulations that are more indicative of "real world" 

systems. The codes selected should be representative of codes used in actual practice. On 

a related note, it would be desirable to determine how real world channel impairments 

affect the quality of the soft-output information. For example, simulations should be 

performed over the Rayleigh and Rician fading channels. 

Finally, incidental to the main goal of the work described in this thesis, it was dis

covered that the graphical algorithm described by Berrou et al. [3] may not accurately 

predict the performance of a concatenated system that must directly use the a posteriori 

input symbol probabilities for calculating the metrics of the outer decoder. It is hy

pothesized that this is due to the deduced a posteriori input symbol probabilities having 

non-Gaussian statistics for these cases. This should be verified. 



References 

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal Decoding of Linear Codes 
for Minimizing Symbol Error Rate," IEEE Trans. Inform. Theory, Vol. IT-20, No. 
2, pp. 284-287, March 1974. 

[2] G. Battail, "Ponderation des symboles decodes par l'algorithme de Viterbi," (in 
French), Annales des Telecommunications, Fr., 42, N° 1-2, pp. 31-38, January 
1987. 

[3] C. Berrou, P. Adde, E. Angui, and S. Faudeil, "A Low Complexity Soft-Output 
Viterbi Decoder Architecture," 1993 IEEE Internat. Conf. on Comm., Vol. 2, pp. 
737-740. 

[4] C. Berrou, A. Glavieux, P. Thitimajshima, "Near Shannon Limit Error Correct
ing Coding and Decoding: Turbo-codes," IEEE Int. Conference on Comm, ICC'93 
Geneva, Switzerland, Vol 2/3, pp. 1064-1070, May 1993. 

[5] D. G. Daut, J. W. Modestino, L. D. Wismer, "New Short Constraint Length Con
volutional Code Constructions for Selected Rational Rates," IEEE Trans. Inform. 
Theory, Vol. IT-28, No. 5, pp. 794-800, September 1982. 

[6] J. Hagenauer, P. Hoeher, "A Viterbi Algorithm with Soft-Decision Outputs and 
its Applications," Proc. of IEEE Globecom'89, Dallas, Texas, pp. 47.1.1-47.1.7, 
November 1989. 

[7] P. A. Humblet, "Efficient Maximum-a-Posteriori Symbol Detection," submitted for 
publication, Institut Eurecom, Sophia-Antipolis, France, July 1994. 

[8] G. D. Forney, JR., "Maximum-Likelihood Sequence Estimation of Digital Sequences 
in the Presence of Intersymbol Interference," IEEE Trans, on Inform. Theory, Vol. 
IT-18, No. 3, pp. 363-378, May 1972. 

[9] G. D. Forney, JR., "The Viterbi Algorithm," Proc. of the IEEE , Vol. 61, No. 3, pp. 
268-278, March 1973. 

[10] Y. Jain, "Convolutional Codes Improve Bit-Error Rate in Digital Systems," EDN 
pp. 129-133, August 20, 1990. 

[11] S. Lin, D. J. Constello Jr., "Error Control Coding: Fundamentals and Applications," 
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1983. 

75 



Bibliography 76 

[12] J. G. Proakis, "Digital Communications, Second Edition," McGraw-Hill, Inc, New 
York, N.Y., 1989. 

[13] G. Ungerboeck, "Trellis-Coded Modulation with Redundant Signal Sets," IEEE 
Communications Magazine, Vol. 25, No. 2, pp. 5-21, February 1987. 

[14] X. Wang, S. B. Wicker, "A Soft-Output Decoding Algorithm for Concatenated Sys
tems," IEEE Trans, on Inform. Theory, Vol. IT-42, No. 2, pp. 543-553, March 
1996. 



Appendix A 

Predicting Concatenated Code Performance - Graphical Method 

Consider the concatenated system depicted in Figure A.l. The output of the inner soft-

output decoder is a discrete-time continuous random variable. If sufficient interleaving 

is used there should be little correlation amongst the errors entering the outer decoder. 

If the assumption is made that any decoding metric based upon these samples is Gaus

sian distributed then it is possible to treat the inner-code/interleaver combination as an 

equivalent discrete-time AWGN channel. This is the basis of the graphical procedure 

described in [3] used to predict the bit-error rate (BER) performance of a concatenated 

system. 

To use this procedure it is necessary to determine the relationship between the signal-

to-noise ratio (SNR) of the global concatenated system and the SNR of a system com

prised of the inner code only. If Efobal and El

b

nner represent the transmitted energy per 

bit of the global concatenated system and inner coding system respectively, while Es 

represents the energy per symbol transmitted over the channel then: 

global = & w h e r e R g = R o R i ( 6 5 ) 

Kg 

Ri 

Therefore, 

E 
E i n n e r _ (66) 

Thinner rpglobal r> 

^ = ^ El (67) 
N0 N0 Rl

 K ' 

77 
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Now letting SNR = 10 log ̂  it follows that: 

SNpinner = SNRglobal _ ^ A = 10 log ^ = 10 log (68) 
Rg R0 

To determine the BER of the concatenated system at a specified global SNR (point-a 

in figures A.l and A.2) perform the following procedure. Use equation (68) to determine 

the SNR of the inner code system (point-6). Look-up in a graph or table the resultant 

BER of the inner system (point-c). Determine what SNR would be required to achieve 

this BER on an equivalent uncoded AWGN channel (point-d). (In effect, the inner coding 

system is being emulated by an equivalent AWGN channel.) Once again, using equation 

(68), translate this SNR back to the equivalent system's overall SNR (point-e). Using a 

graph or table of the BER performance of the outer system operating over a standard 

AWGN channel use the equivalent system's overall SNR to look-up the resultant BER 

of the outer code (point-/). The abscissa (̂ -coordinate) of point-a and the ordinate (in

coordinate) of point-/ specify an operating point of the concatenated system (point-g). 

Outer 
Encoder 
rate: R„ 

' SNRs h b a l  

© 

^lleaterH Encoder H 
Inner 
Encoc 
rate: Ri 

Modu- _h/j!V-k 
lator Î Y* 
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® 
No 

var = -f 

SNR™" = SNRs'° b a' - A 

De-inter- Outer 
leaver Decoder 

© 
\ / 

Outer Modu Equivalent AWGN Channel 
Outer 

Encoder lator Equivalent AWGN Channel Decoder 
rate: R„ 

Figure A.l: System Model for Graphical Procedure 
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Appendix B 

Code Tables 

The following tables describe the codes associated with each "code label" referenced 

the simulations shown in Chapter-4. 

80 
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B . l Convolutional Codes 

Label Rate C L . Tot Mem Generator Sequences dfree Reference 

(symbols) (bits) (octal) 

6 2 6 
cc2_3.df3 2 

3 1 2 3 [11] 
2 4 4 

4 2 6 
cc2_3.df4 2 

3 2 3 4 [11] 
1 4 7 

[11] 

64 30 64 
cc2_3.df7 2 

3 3 6 7 [11] 
30 64 74 

4 4 4 4 

cc3_4.df4 3 
4 2 3 0 6 2 4 4 [11] 

0 2 5 5 

6 1 0 7 

cc3_4.df6 3 
4 2 6 3 4 1 6 6 [11] 

2 3 7 4 

2 0 2 0 2 0 6 6 

0 0 0 0 0 4 0 4 

0 0 0 0 4 0 0 4 

cc7_8.df2 7 
8 1 1 0 0 0 4 0 0 0 4 2 [Daut et al] 

0 0 4 0 0 0 0 4 

0 4 0 0 0 0 0 4 

4 0 0 0 0 0 0 4 
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B.2 T C M Codes 

Label CL. Tot Mem Generator Sequences 

(sym) (bits) (octal) 

4 0 0 
cc2_3.tcm 2 2 

0 7 5 
Mapping: 0 : +cos(22.5°) - jsin(22.5°) 

1 : -sin(22.5°) + j cos(22.5°) 

2 : +cos(22.5°) + j sin(22.5°) 

3 : +sin(22.5°) + jcos(22.5°) 

4 : -cos(22.5°) + jsin(22.5°) 

5 : + sin(22.5°) - j cos(22.5°) 

6 : -cos(22.5°) - jsin(22.5°) 

7 : -sin(22.5°) - jcos(22.5°) 

Notes: Feed-forward version of code presented in [13] 
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Label C L . 

(sym) 

Tot Mem 

(bits) 

Generator Sequences 

(octal) 

cc3_4.tcm 
4 0 0 0 

0 4 2 0 

0 3 5 2 

Mapping: 

Notes: 

0 : + 

1 

2 

3 

JVTo 
3 

Vw 
+ _L_ _ 9 ' _ 3 _ 

v/io J vTo 
+ + - ? v 7 T 0 

4 : + v ^ o + - ? v l o 

5 

6 

7 

3 
%/To J . /Tn 

+ 7To +:>7w 
+-2- - i ' - 3 -

L_ + ,-_3_ 
\/io ^ ^ \/io 

3_ _ 1 

11 
12 

1 A 3 
, /Tn J vTo 

1 
vTo 

v/10 

J7w 

1 4 • vTo •7v /lO 

15 : . _L_ + ,-_L_ 
VTo ^ J Vw 

From [13] 
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Label CL. 

(sym) 

Tot Mem 

(bits) 

Generator Sequences 

(octal) 

cc4_5.tcm 

4 0 0 0 0 

0 4 0 0 0 

0 0 4 2 0 

0 0 3 5 2 

Mapping: 0 : + _3_ _ ,-_L_ 
v/20 J v/20 

16 5 
v/20 v/20 

1 : 4 ^ 4 7-2-' v/20 ' J v/20 17 + v/20 _ ^720 

2 : ~*~72o ~ 18 4-5-+ v/20 + J71o 
3 : 4-2- 4- 7^-v/20 J v/20 19 1 

v/20 
+ ^ T ! O 

4 : 4—5- 4 7-3-v/20 J v̂ O 20 _ 5 
v/20 + ^TIO 

5 : 3_ , -_3_ 
v/20 1 J v/20 

21 3 
v/20 

- 7-5-
J v/20 

6 : 4 ^ - 4 7 - L 1 v/20 ' ^ v/20 22 4-5-+ v/20 
- 7-̂ -J v/20 

7 : + -2- - 7 — 
v/20 ^ v/20 

23 4-2-+ v/20 + ^720 

8 : L_ 4. W_3_ 
v/20 J v/20 

24 1 
v/20 

- 7-5-J v/20 

9 : 
_ 7 2 0 ~~ ^ 7 2 0 

25 4 ^ -+ v̂ o _ ^720 

10 v/20 ^ J v/20 26 + v/20 + ^TIO 

11 • L_ _ 7 - ^ _ 
v/20 J v/20 

27 5 
v/20 

+ ^720 

12 ' _ 7 2 0 _ ^720 28 4-2-+ v/20 ~~ '̂720 

13 • 4 ^ - - 7-5-
v/20 J v/20 

29 4 ^ -+ v/20 + -?7to 

14 
• ~ 7 2 0 — j 7 2 0 

30 3 
v/20 + J T I O 

15 • L_ 4. ,-_L_ 
V20 J v/20 

31 5_ 
v/20 

Notes: From [13] 
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B.3 ISI Channels 

Two Tap ISI Channels 

Label Chan. mem. C0 C l 

isi2.50.50 1 VolE Vol 
isi2.60.40 1 Vol6 Vol 
isi2.70.30 1 Vols 
isi2.80.20 1 VoU 
isi2.90.10 1 VOA 

Three Tap ISI Channels 

Label Chan. mem. Co C l C2 

isi3.60.20.20 2 VoU Voi V0~2 
isi3.80.10.10 2 Vox Vol Vol 
isi3.100.0.0 2 vTo Void Volo 



Appendix C 

The M A P and "Best-Path" Algorithms 

The following descriptions of the MAP and "best-path" algorithms are based on the 

derivations presented in the paper written by Humblet [7]. 

C . l The M A P (or Bahl, "forward-backward", "any path") Algorithm 

Consider a discrete-time finite-state Markovian process. An input sequence X± = 

(Xi, X2,X^) will result in a state sequence Si+1 = (Si, S2,SV+i) along with an as

sociated output sequence. It is assumed that the starting state Si and final state SJV+I are 

known (The final input symbols are preset such that the process terminates in a known 

state.). Transmission of the output sequence over a discrete-time memoryless channel 

will result in the sequence = (Yi, Y2,YN) being observed by the receiver. Upon 

detection of the sequence YX

N, the MAP receiver calculates the a posteriori state prob

abilities P(Sn\Yf) or transitional probabilities P(S^+1\Yf). From these, it is possible 

to deduce the a posteriori input symbol probabilities P(Xn\Yl

N). Using the a posteriori 

input symbol probabilities the receiver may make a decoding decision or, in the case of 

a soft-output decoder, output the a posteriori probabilities themselves. 

An explanation of how the MAP algorithm calculates the state/transition probabili

ties begins by taking into consideration the following probability expansion: 

86 
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P<.S*,Y?) 

P(S^+\Yf) = P(S1)P(S2,Y1\S1)P(S3!Y2\SlY1)P(Si,Y3\SlYl)-P(Sn<Yn-1\S^-\Y1

n-2)x (69) 

p(s„+1,y„|sr,y1"-1)•••p(s^-1,^_2|5^-^^-3)F(s^,,yN_1|sf-^y1
N-2)P(5^+1,^|5ff,y1

JV-1) s * ' 
^ ( s^ + 1,y j J , _ 1 i s f- 1,y 1

w _ 2) 
N : v ' 

v v ' 

Each of the terms on the right hand side of equation (69) can be simplified by noting 

the following property of Markovian processes: given Sn and Sn+i, Yn is independent of 

all previous states and received samples. Similarly, given Sn, Sn+i is also independent of 

the same previous states and received samples. Therefore, 

= P(Sn+i\Sn)P(Yn\Sn-i.i, Sn) 

= P(Sn+l,Yn\Sn) (70) 

Similarly, 

P f f i 1 , Yf\S?, F r 1 ) = P(S%g, Yn

N\Sn) (71) 

It is convenient to define the following quantity: 

Q(Yn, Sn, S'n+l) — P(Sn+i, Yn\Sn) 

The first of two recursive relations is now noted: 

PiS^Y?-1) = £ PiS^Y?'1) <— "upper-half" ofeqn (69) 
s n - l e S n - l 

= £ p(sr\Yr2)p(sn,y„-iisr\Y?-2) 
s n - l £ < s „ _ i 
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= E 
S „ _ l G S 

53 Pisrwr2) 
s r > - 2 e 5 „ _ 2 

(72) 

Defining P(5n,y l

n _ 1) as the "forward" probability P /(5 n,y l

n _ 1) gives: 

*n - i e «5 

(73) 

Since it was assumed that the Markovian process starts in a known state, for instance 

sQ, the calculation of equation (73) begins with the initial condition: 

Pf(Si) 
1 , Si = sa 

0 , Si ^ sa 

The second recursive relation can be found by noting that: 

(74) 

P(Yn

N\Sn) = £ P(S™,Yn

N\Sn) 
5^+ 1

1 G5 J V -"+ 1 

"lower-half" of eqn (69) 
5^+ 1

1e5 J V-"+ 1 

E p f O V Qn Vn~l\P( QN+1 VN qn+l yn\ 

— 53 ^ ' ( ' S ' n + l , Yn\Sn) 53 P(Sn+2i Y^+1\Sn+i) 
Q N+ 1C SN—n. 
an+2  f c o  

— E P(Sn+i,Yn\Sn)P(Yn+i\Sn+i) 
Sn+i€S 

Defining P(Y?\Sn) as the "backward" probability Pb(Sn,Y^) yields: 

p*(5 B,y B
J V)= 53 Q(r n,5 n,5 n + 1)P h(5n + 1,yn + 1) 

If sw represents the assumed terminating state, then the initial condition is: 

P'(5„ + I ) = { 1 1 S " + 1 = «" 
0 , S/V+l 7^ S w 

(75) 

(76) 

(77) 
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Once the "forward" and "backward" probabilities have been calculated the state 

probabilities can be determined by: 

£ £ P{S™Y») 
5 n - l e 5 „ _ l 5 J V + l e 5 J V - „ + l 

£ £ Pi^YrWsZgtYfWsY?-1) 
S r , - l e 5 „ - l s A f + l e < 5 J V _ „ + l 

£ p(s?,Yrl) £ P ^ Y . ^ I S n ) 
S T , - l g 5 „ - l 

pfis^Yr^p'is^) 

The conditional state probability may be found by: 

P(Sn\Yx

N) N\ _ P(Sn, Y-f*) 

P(Y») 

(78) 

(79) 

The transitional probabilities are found from: 

P(S^+1,y1
JV) = £ £ P{S» + I,Y») 

£ £ p^r.yr-^pcs^Y.^isr.i-r 1) 
s n - l e < s „ _ ! s N + l e S N - n 

£ pfsr.y^-1) |p(sn+1,yn|sn) 
L s p ' e f i " - 1 J 

= Pf(Sn, y1
n-1)Q(Yn, 5„, 5 n + i ) P 6 ( 5 n + i , y n^i) 

The conditional transition probability may be found by: 
p(qn+l yN\ 

I M ; — pfy^) 

Finally, to find the a posteriori input symbol probabilities: 

£ P{Sn+2 ' Yn+11 Sn+1) 

(80) 

(81) 

p(xB>y1

JV) = £ P(^ +\>f) (82) 
•?n + 1 | ' V(5' n,5 „ + l ) = X n 

where A Ŝ̂ , Sn+i) is a mapping from the state transition to the associated input symbol. 
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C.2 The "Best-Path" Algorithm 

The "best-path" algorithm comes about by noting that the Viterbi algorithm uses the 

iteration: 

rn-l\ A pi{Sn,Yrl) = max P(S?, y^ 1) 

— max 
Sn-ieS 

nmax P(Sr\Yr2) P{Sn, Yn-l\Sn-l) 

= maxcP/(5n_i>y1

n-2)Q(yn_1,Sn_1,S'n) (83) 

where P^(5„_i, Y™~2) represent the survivor path metrics to each previous state and 

Q(yn_i, 5„_i, Sn) are the branch metrics associated with each possible transition. 

In a similar manner, maximizing in the reverse direction: 

P"(Sn,Yn

N) ±\ max P(S™,Yf\Sn) 
5 » + i e S + 

=

 WJ.,ma^ P(Sn+i,Yn\Si,Y™ 1)P(5^2 1, Y„+i\Si+l, y") 
5n+i e 5 

= max P(5 n + 1 ,y n |5„) max P(S»£,Yn

N

+1\Sn+1) 
Sn+ies s^esN~n 

= maxQ(Yn,Sn,Sn+1)Pb(Sn+l,Y1?+1) (84) 

This formula once again describes the Viterbi algorithm except it is now run in reverse. 

Pb(Sn+i,Y^f

+l) are the reverse path metrics and Q(Yn-i, Sn-i, Sn) are, as stated previ

ously, the branch metrics. 

Now that the best "forward" and "backward" probabilities to each state are known, 

the probability of the best path through a particular state can be determined by: 

PtSn.lf) = max max P{S»+1, Y») 

= P'(5„,l^- 1 )P t (5 n > y n ' v ) (85) 
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Likewise, the probability of the best path with a specific transition may be found by: 

P(5^+1,yi

JV) = max max P(Sf + 1 ,rf) 

= p'(5B,i7,-1)g(y„,5BJ5B +i)P6(5 fH.1,yB

J5.1) (se) 

By using the probabilities determined in equation (86) in equation (82) one is able to 

obtain an estimate of the a posteriori input symbol probabilities. 

C.3 Computational and Storage Requirements 

A decoder can be implemented to be efficient in either the amount of computation re

quired or the amount of storage space required. In the discussion that follows, for the 

determination of the minimum storage requirements, the "save storage" implementation 

shall be assumed, whereas, for the calculation of the minimum computational require

ments, the "save time" implementation shall be used. It should be pointed out that in 

the case of the MAP and Best-Path algorithms, these two cost factors are mutually ex

clusive. However, the resulting expressions for computational and storage requirements 

will be the best that can be achieved by the basic MAP and Best-Path algorithms. It is 

with these best case metrics that the comparisons with other competing algorithms shall 

be made. 

Consider decoding a sequence of N received symbols produced by the transmission 

of N output symbols from an (n,k,m) Markovian process. Assuming a minimum mem

ory configuration of either the MAP or Best-Path algorithms, the decoder will need to 

store the received sequence so that it may calculate Q(Yn, Sn, Sn+i) (a quantity that is 

similar to the Viterbi branch metric) as needed. This will require the allocation of N 

storage elements (double this if the received sequence is complex). If it is desired that 

the output information come out of the decoder in the correct order without having to 
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buffer decisions, it will be necessary to calculate and store Pb(Sn, Y^). This will require 

the allocation of N2m storage locations. The subsequent calculation of Pf (Sn, Y"'1) 

can then be made immediately followed by the calculation of the transition probabili

ties P(S^+1,Y1

N). If the received sequence is sufficiently long, the amount of temporary 

storage required to calculate these quantities will be small in comparison to the stor

age requirements of the received sequence and Pb(Sn, Y^). Hence a minimum memory 

configuration decoder will require at least N2m + N storage elements. 

To determine the computational requirements of a typical MAP decoder, the assump

tion of a "save time" implementation is made. (In this implementation the quantities 

Q(Yn, Sn, Sn+i) are calculated once only and stored for later retrieval as needed.) Cal

culation of probabilities Pf(S^Y^1) and Pb{Sn,Yn

N) will each require: 2m2fc binary 

multiplications and 2m(2k
 — 1) binary additions per symbol. Q(Yn, Sn, Sn+i) requires es

sentially the same computational effort as the Viterbi metric with the exception that an 

additional exponential must be calculated to return e

_ m e t r t c . Since this quantity depends 

on the specific application it is not possible to determine a general expression for the 

amount of elementary operations required for its computation. However since a metric 

is calculated for each possible output symbol at each time index it is safe to assume that 

the time required will be proportional to 2n per symbol. The transition probabilities 

will each require 2 binary multiplications for each of the 2m2fc state transitions per time 

index for a total of 2m2fc+1 binary multiplications per symbol. If the effort required to 

calculate the input symbol probability is neglected (which consists of several compares, 

additions, and normalization if required) then, excluding the computation required for 

Q(Yn: Sn, Sn+i), the total amount of elementary operations is as shown in table C l . 

When implementing the "best-path" algorithm, one usually uses the logarithm of the 

quantities Pf(Sn,l?-1), Pb(Sn,Yn

N), and Q{Yn, Sn, Sn+1). Therefore, for a "save time" 

implementation of the "best-path" algorithm, the following calculations will have to be 
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binary 
multiplications 

binary 
additions 

exp 

p>(sn,Yri) 
2m2k 2m(2fc - 1) 
2m2k 2m(2fc - 1) 

Q{Yn, Sn, Sn+i) (see text) 2" 
2̂ 2̂ +1 

Table C.l: Minimum Operations Required per Input Symbol for 
the MAP Algorithm. 

binary 
compares 

binary 
additions 

exp 

log p'tSn.yr 1) 2m(2fc - 1) 2m2fc 

iogp*(5n>yB

JV) 2m(2fc - 1) 2m2k 

\ogQ(Yn,Sn,Sn+1) (see text) 
P(SZ+\Y») 2m2fc 

Table C.2: Minimum Operations Required per Input Symbol for 
the Best-Path Algorithm. 

made. The determination of log(Pf (Sn, Y^'1)) and log(P6(5n, Yj?)) will each require 

2m2k binary additions and 2m(2k — 1) binary compares per symbol. Computation of 

\og(Q(Yn, Sn, Sn+i)) does not require any exponentials however exponentials are now 

required during the later step when the trellis transition probabilities are calculated. 

The transition probabilities will require 2 binary additions for each of the 2m2fc state 

transitions for a total of 2m2k+1 binary additions per symbol. The total number of 

operations are summarized in table C.2. 


