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Abstract 

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated 

along its way to be collected at a single source prior to transmitting to any distant user, there 

is a need to establish a tree structure inside any given event region. Such a tree provides event 

sources with a mechanism to combine their readings, so that only a minimum amount of 

energy is required to deliver the same amount of information to the user when data 

aggregation is not used. 

In this thesis, we propose a novel technique to create one such tree, which preserves the 

lifetime of event sources while they are constantly transmitting, for data aggregation in future 

WSNs. We use the term Lifetime-Preserving Tree (LPT) to denote this tree. LPT features in 

nodes with higher energy tend to be chosen as data aggregating parents so that the time to 

detect the first broken tree link can be extended. In addition, by constructing the tree in such a 

way, the protocol is also able to reduce the frequency of tree reconstruction, which incurs an 

additional energy cost to all the sources. Furthermore, the protocol minimizes the amount of 

data lost after the network is impaired by the broken tree link. By choosing Directed Diffusion 

as our underlying routing platform, our simulation results have shown that the functional 

lifetime of event sources can be prolonged by a maximum of 139% when data are aggregated 

via a modified spanning tree prior to transmission to distant sinks. Our proposed LPT scheme 

can further extend this lifetime by a maximum of additional 13% without impairing the 

average latency and packet delivery ratio. When tree depth is also considered in the tree 

construction, our results have indicated that LPT is more likely to be centered at the event 

region, thereby reducing its delay when comparing to the modified spanning tree model. We 

expect all these differences to grow with an increasing number of event sources. 
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Chapter 1 Introduction 

The rapid advances in wireless communication and Micro Electro Mechanical System 

(MEMS) have made Wireless Sensor Networks (WSNs) possible. Such environments are 

typically comprised of a large number of sensors being randomly and densely deployed for 

detecting and monitoring tasks. These sensors, developed at a low cost and in small size (mm-

scale for smart dust motes [1]), are responsible for object sensing, data processing, storing, 

and routing activities. Applications of such networks range from battlefield communication 

systems (e.g. intrusion detections and target surveillance) to environmental monitoring 

networks such as habitat monitoring, chemical sensing, infrastructure security, inventory and 

traffic control etc. For example, sensors are distributed across a forest in order to report the 

origin of a fire event when there is a significant increase in the average monitoring 

temperature. Reference [2] provides a more thorough discussion on some potential WSN 

applications. Unlike the conventional ad hoc communication networks, energy resources in 

WSNs are usually scarce due to the cost and size constraints of sensor nodes. In addition, it is 

impractical to replenish energy by replacing batteries on these nodes. Conserving energy is 

thus the key to the design of an efficient WSN. 

WSNs may deploy several hundreds to thousands of sensor nodes. Protocols in such 

networks must therefore be scalable. Furthermore, since nodes are untethered and their 

geographic positions are not pre-determined, these nodes may also need to possess some self-

organizing capabilities. Network dynamics that result from both node movement and 

unpredictable energy depletion also bring new challenges to the design of an efficient WSN. 

Since nodes can only carry limited battery resources, they usually get disconnected from the 

network easily. Such frequent node disconnections suggest that the design must accommodate 

1 



Chapter 1 Introduction 2 

topology changes. In summary, the fulfillment of all the above conditions requires a unique 

rather than conventional ad hoc networking techniques. 

Perhaps the most significant difference between Internet-based distributed systems and 

WSNs is the collaborative efforts provided by sensors. Each node in an Internet-based system 

competes with all other nodes for a fair share of network resources in order to run tasks and 

applications of its own. Per-hop fairness is thus the primary concern. WSNs, on the other 

hand, are not general-purpose communication networks. They rely on the collective 

information provided by sensors but not on any individual sensing report. Most sensor nodes 

are task-specific in that they are all programmed for one common application. A node at one 

specific time may be granted more access to the network than all other nodes if the program 

objective is still satisfied. For this reason, network resources are shared but it is not necessary 

that they be equally distributed as long as the application performance is not degraded. 

Since sensors are being densely-deployed in WSNs, the detection of a particular 

stimulus can trigger the response from many nearby nodes. Thus, data in such networks are 

usually not directly transmitted to interested users upon event detection. Instead, they are 

aggregated with neighboring sources locally to remove any redundancy and produce a more 

concrete reading [3-6]. Throughout the rest of this paper, we use the term sinks to denote 

these interested user nodes that inject queries to the network. Intermediate nodes do not 

simply forward data to next hops, but can also interpret any data using their local processing 

abilities if required.. Reference [7] suggests that transmitting a data packet of size 1 Kb to a 

distance 100 m away is equivalent to executing 3 million instructions on a general-purposed 

computer. Therefore, it is preferable to perform any local computation or in-network 

processing in order to minimize communication cost and optimize energy efficiency. 

In this thesis, we focus on constructing a data aggregation tree among any given set of 

source nodes. The tree has a dedicated root for which the data from various sources are 

gathered. Moreover, the tree is structured in a way that can preserve the functional node 
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lifetime of the event sources subject to the condition that they are constantly transmitting. The 

functional node lifetime is defined as the time till a node runs out of its energy. 

Reference [8] suggests that extending the node lifetime is equivalent to increasing the 

amount of information gathered by the tree root when the data rate is not time-varying. We 

consider a network of randomly-deployed sensor nodes in which each node has an identical 

transmission range. An event that triggers the sensors around it occurs at random in the 

network. Data reports from these sensors are clock-driven upon event detection. Furthermore, 

they are aggregated along their ways to be collected at the tree root and periodically sent to 

the sinks. To prevent data lost, the tree is periodically scanned and any broken link should be 

repaired whenever necessary. We therefore wish to evaluate the additional amount of time that 

the event sources can survive, provided that the tree is employed for data gathering. 

1.1 Motivations and Objectives 

To enable data aggregation among event sources and to reduce the communication cost, there 

is a need to establish a converged tree structure inside any given event region. Such tree 

allows all raw data reports to be aggregated along the way to a single processing point. Only 

relevant information is extracted before transmitting it to any distant sink. Therefore, the 

converged tree construction becomes one of the fundamental issues for aggregation in WSNs. 

In fact, not all the trees are ideal for aggregation inside the event region. Since energy is 

usually scarce in WSNs, it is most power-efficient if these sources can provide data to the 

sinks for the longest possible time. A tree that can survive for longer duration thus naturally 

becomes the best choice. 

To better illustrate this idea, consider a simple multicast tree that is used to collect data 

from 5 different sources (depicted in Figure 1.1a). Since all nodes have the shortest distance 

to the root (i.e. node A), such a tree allows data to be gathered with minimum latency. Despite 
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• tree link energy 81 

energy 9 J 
energy 3 J 

a) Source-based multicast tree b) Lifetime-preserving tree 

Figure 1.1: An example to show that if the residual energy is not considered in the tree construction, it 

can reduce the node lifetime and the amount of information gathered by the root: a) The fact that node 

B has a dependent child quickly depletes its energy and thus data from node C will no longer be 

received, b) The time to reconstruct a tree is extended if node C is attached to D instead. 

this, the fact that the lowest-energy node B has a dependent child of node C can indeed 

deplete its valuable energy resources quicker than i f node C was attached to node D (Figure 

1.1b) . O f course, node D wi l l have a higher energy dissipation rate than what it had before. 

However, by balancing the lifetime of each individual node, the frequency of tree 

reconstruction (which repairs any broken tree link and incurs an additional energy cost from 

each source) can be reduced. Also observe that any information generated by node C wil l 

never arrive at node A prior to restoring the disconnected tree. Attaching nodes C to D would 

have prevented it from happening. We thus conclude that residual energy during tree 

construction plays an important role in determining the functional lifetime of event sources 

and the amount of information gathered by the root. 

To address these problems, we construct a tree in which each parent node has the 

maximal-available energy resource to receive data from its children so that the time to refresh 

this tree is extended. We accomplish this by assigning nodes with higher energy to be the data 

aggregating parents for lower-energy nodes. In case this is not possible, see for example node 

D in Figure 1 .1b , we wil l arrange the best neighbor to be its parent. We name this tree the 

Lifetime-Preserving Tree or simply LPT. For the purpose of tree construction, we also define 

the tree energy to be the minimum residual energy of all the parents in a given tree. Such term 
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shall directly reflect the time until the first broken tree connection is detected. For example, 

the two different trees in Figure 1.1a and Figure 1.1b have the tree energy of 3 and 8 Joules, 

respectively. 

Over the past few years, there has been a number of data routing protocols proposed for 

WSNs [9 - 20]. Directed Diffusion [19, 20] is among the first to provide a complete and 

simple routing infrastructure for large-scale WSNs. We therefore choose it as our routing 

platform and use it to evaluate the energy savings as well as the additional amount of time 

that the sources can survive by launching our proposed tree construction algorithm. Although 

there exists some data forwarding tree structures from sources to each sink when user queries 

are first flooded to the Diffusion network, such arrangements do not fulfill the purposes of 

data aggregation for the following reasons: 

• Depending on how the sinks choose the transmit paths, different sources can 

forward their data to the sinks via entirely different paths even if they are next to 

each other (see Figure 1.2a). It is thus most efficient if a single piece of aggregated 

data can be transmitted to each sink through only a single path (see Figure 1.2b). 

• Packet drop rates depend on the amount of network traffic. As the number of 

a) Transmission via different paths b) Transmission with aggregation 

Figure 1.2: An example to show how the number of transmission paths can affect energy efficiency: a) 

A large number of intermediate sensor nodes are involved in transmitting raw data reports to the sinks, 

b) Only a portion of these nodes are now transmitting data reports provided that aggregation is carried 

out on a pre-established tree a priori. 
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transmit paths increases, areas near the sinks and the sources may become congested. 

Nodes thus need to spend more time and energy for retransmission. 

• Transmit paths in Directed Diffusion usually span wide, and therefore sources could 

redundantly send their data for a number of hops away before these data can actually 

get aggregated at intermediate nodes (see the bolded arrows in Figure 1.2a). The 

number of data transmissions involved can be brought to a minimum of 1 (see the 

bolded arrow in Figure 1.2b) for each source if a tree is properly structured inside 

the event area, provided that these sources are inter-connected to each other. 

• Diffusion nodes possess only local information, i.e. they know their data-forwarding 

and requesting neighbors but not any information on how the tree is being structured. 

It is thus unknown as to how long they should hold the sensed data for aggregating 

with those from other sources before passing it on to the next hop. 

To enable data aggregation among the sources and transmit data to each sink via a single path, 

research must therefore be conducted in order to construct a lifetime-preserving data 

gathering tree inside any given event region. The main objectives of this thesis are as follows: 

• Design a distributed lifetime-preserving converge tree construction protocol for data 

aggregation in WSNs; 

• Validate that the constructed tree does have a tree energy greater than other tree 

structures, by using a centralized approach; 

• Evaluate the energy savings and the additional amount of time that the sources can 

survive, by implementing the proposed protocol on top of Directed Diffusion, under 

different traffic scenarios; 

• .Compare other relevant network parameters such as average delay and packet 

delivery ratio and determine the amount of control messages incurred during the tree 
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construction. 

1.2 Contributions of the Thesis 

The main contributions of this thesis are as follows: 

• Spanning Tree Construction Scheme: To examine how different tree arrangements 

can have an impact on the functional lifetime of various event sources, we propose 

the spanning tree construction scheme and an energy-aware variant of it. Both 

heuristics are simple to implement, but may not 'be optimal in preserving the 

functional node lifetime. 

• Lifetime-Preserving Tree Construction Scheme: The term "tree energy" is 

introduced to reflect the time till detecting the first broken tree link of any tree 

created by the set of connectivity in the event area. A distributed tree construction 

scheme is proposed to generate an LPT spanning all event sources for data 

aggregation in practical WSNs. A centralized variant of the LPT construction model 

is also proposed to validate the correctness of the tree created by the distributed 

approach. 

1.3 Structure of the Thesis 

The remainder of this thesis is organized as follows: In Chapter 2, we describe some previous 

work on routing, particularly Directed Diffusion [19, 20], for WSNs. Furthermore, techniques 

and related issues on data aggregation are introduced. A summary of some previous work on 

aggregation tree constructions are also presented. This chapter continues by exploring some 

node scheduling algorithms, which are an alternate way to conserve energy in sensor 
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networks. The proposed LPT construction models, both the centralized and distributed 

version, are presented in Chapter 3. Moreover, a modified spanning tree protocol which we 

use to compare with our scheme is also described. Descriptions on simulation methodology 

and performance metrics used for comparison of protocols are presented in Chapter 4. 

Numerical results and discussion are also presented. Finally, Chapter 5 concludes this thesis 

with suggestions on some improvement and future work. 



Chapter 2 Related Work 

This chapter begins by reviewing the Directed Diffusion [19, 20]. Several other data 

dissemination protocols that focus on the construction of a communication infrastructure for 

successful packet delivery will also be summarized. This chapter continues by discussing 

some in-network aggregation techniques which are now seen as fundamental to WSNs. The 

timing policies that address how long a sensor should wait to receive data from its 

data-forwarding neighbor before aggregation can also have a significant impact on the data 

accuracy, and freshness. A summary of some aggregation tree construction techniques is also 

presented. Besides aggregation, another way to conserve energy in WSNs is to simply put 

some nodes into the sleep state. The only question lies in how to coordinate these sensors in a 

way that can maximize the energy-savings yet still preserve the initial communication 

capacity and sensor coverage [21 - 24]. Some node scheduling algorithms proposed in the 

literature are reviewed at the end of this chapter. 

2.1 Directed Diffusion 

Over the past few years, there has been a number of data routing protocols proposed for 

WSNs. Directed Diffusion [19, 20] is among the first to provide sensors with a scalable and 

robust routing mechanism. Under large-scale and dynamic WSNs, the easiest way to achieve 

robustness is to flood queries and allow data to be returned to all requesting nodes. However, 

broadcast storms created by flooding can rapidly drain sensors' energy resources and bring 

down the entire network. Directed Diffusion differs in that all interests (defined as the queries 

injected by the sinks) and data are described using low-level abstractions rather than unique 

node identifiers [25]. Such data-centric naming scheme allows nodes to easily process any 

9 
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data in the network. For instance: data messages with matching descriptions but different 

destinations are combined at intermediate nodes before they are being transmitted to upstream 

neighbors. In addition to such feature, aggregation and caching are also incorporated into the 

design. Aggregation requires only one copy of the matching interests to be forwarded to 

down-stream sensors, effectively scaling down the query traffic periodically injected by the 

sinks to the network. To increase robustness, caching is used to set up the gradients to each 

requesting node, allowing periodic exploratory data from each source that matches with the 

interests to be drawn towards the sinks through a multiplicity of different paths. To further 

minimize energy, path reinforcement follows to reduce these paths to a smaller number. 

Figure 2.1 illustrates these operations. As previously mentioned, the fact that it does not use 

any global information results in sub-optimal transmit paths. In the worst case, different 

sources can send their data to sinks via entirely different paths even if they are next to each 

other (Figure 1.1a). This routing scheme can be power-inefficient and is the motivation of our 

research. 

a) Interest propagation b) Exploratory data c) Reinforcement and data 

Figure 2.1: A simplified schematic for Directed Diffusion: a) User interests, represented by the low-

level attribute-value pairs, are broadcasted and processed at intermediate nodes, b) The exploratory 

data set up the gradients towards the sink with the aid of data caches, c) Reinforcement reduces the 

multiplicity of transmit paths to a small number, allowing only high-quality data to be drawn towards 

the sink. 

2.2 Data Dissemination 

Conventional ad hoc routing protocols can be divided into two main categories: proactive and 
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reactive. Proactive routing maintains the shortest path but requires periodic update of the 

routing entries for all destination nodes. A change in link cost will trigger excessive updates 

of routing tables and thus waste valuable energy resources. For this reason, proactive routing 

cannot be directly applied to energy-constrained and dynamic WSNs. Reactive routing on the 

other hand creates routes on-demand. It trades off the delay of route discovery for less 

message exchanges and thus is suitable for WSNs. A special routing technique that has 

recently drawn attention is geographic routing [9, 26]. It greedily forwards data to all 

destinations without sacrificing much energy resources or delay. However, it does require all 

sensors to be location-aware. The following sections will introduce several existing data 

dissemination techniques that provide a similar type of routing support as Directed Diffusion 

for different kinds of network activities, and they are briefly compared in Table 2.1 and [27].. 

2.2.1 Low-Energy Adaptive Clustering Hierarchy (LEACH) 

Data transmissions are not always event-triggered, and sometimes need to be performed at 

regular intervals and destined to a fixed location. Using conventional multihop routing would 

require packets to be excessively processed at nodes close to base station, which refers to a 

fixed location where data are destined. Using direct transmissions on the other hand would 

dissipate a large amount of transmit power for far-away nodes. When the transmit distance is 

short, direct transmission can actually achieve greater energy savings than multihop routing. 

LEACH [10], motivated by this result, leverages the advantage of small transmit distances to 

local cluster heads for most sensor nodes and requires only the cluster heads to transmit long 

distances to the base station (depicted in Figure 2.2). One way to reduce the amount of 

communication is to incorporate data aggregation on the cluster heads before sending out 

packets to the base station. The roles of the cluster heads are rotated randomly so that the 

energy loads can be shared among the sensors. Time Division Multiple Access (TDMA) 

schedules are also created for each cluster node in order to avoid excessive contentions of the 
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Table 2.1: A comparison of data dissemination protocols 

Protocol 

name 
Algorithm descriptions Special remarks 

Network 

structure 

Location 

aid 

Directed 

Diffusion 

[19,20] 

On-demand flooding with interest/data 

aggregation, gradient caching, and path 

reinforcement 

No global information 

resulting in suboptimal 

paths 

Flat No 

LEACH 

[10] 

Dynamic clustering with periodic direct 

transmissions to base station, TDMA 

scheduling and data fusion inside clusters 

Require variable 

transmission power on 

sensor nodes 

Clusters No 

GRAB 

[11] 

Credit-based adjustable mesh forwarding 

to deal with failures and channel errors, 

power management using density control 

Per-sink cost field 

setup using delayed 

broadcast 

Flat No 

GEAR 

[9] 

Geographic and energy-aware query 

dissemination to target region, recursive 

geographic routing or restricted flooding 

inside target region 

Require knowledge of 

energy level to all 

nodes 

Flat Yes 

TTDD 

[12] 

Per-source grid construction to limit 

query flooding, trajectory forwarding to 

deal with sink mobility 

Redundant grid 

construction and 

maintenance 

Grids Yes 

Figure 2.2: A simplified schematic for L E A C H : Randomized rotation of local cluster heads allows 

load-balancing, data aggregation on all cluster heads reduces the communication costs to the base 

station, but all cluster heads need to directly transmit data reports to a fixed base station. 
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channel and to allow sensors to effectively turn their radios off when not actively 

transmitting. 

One extension of LEACH is to use multihop routing to replace direct communication for 

cluster heads. Such a method removes the requirement of high-power nodes since they now 

only need to forward data to nearby intermediate cluster heads. Instead of choosing cluster 

heads randomly, one can take the residual energy into considerations. This change allows 

sensors with a higher energy to be selected as cluster heads. 

2.2.2 GRAdient Broadcast (GRAB) 

GRAB [11] is a data forwarding protocol that focuses on resolving network dynamic in 

WSNs. The idea behind GRAB is to employ credit-based adjustable mesh forwarding (see 

Figure 2.3a) through the sensor nodes initially configured by a sink-initiated cost field setup. 

Each packet is assigned with credits in addition to the optimal shortest-path cost for 

transmission. Such a scheme allows data to be delivered through different overlapping paths 

rather than a single optimal shortest path. The packet will eventually arrive at the sink through 

at least one of the working paths even if some intermediate nodes malfunction or if the 

channel gets corrupted. In comparison with the explicit multiple path approach (depicted in 

Figure 2.3b), a mesh forwarding structure provides richer connectivity and increases the 

a) Credit-adjustable mesh forwarding b) Multipath forwarding 

Figure 2.3: A simplified schematic for the credit-adjustable mesh forwarding: a) Al l packets are 

assigned with credits for transmission through the nodes initially configured by a sink-initiated cost 

setup using deferred broadcast, b) Simple multipath forwarding structure does not provide the rich 

connectivity as credit-adjustable mesh forwarding. 
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robustness of the design. 

GRAB assumes a static network since node movement will require excessive updates of 

the cost field. As with Directed Diffusion, GRAB fails to consider aggregation among a group 

of sources at the early stage. When the number of sources increases, the fact that each source 

will be equipped with its own mesh data forwarding structure can quickly drain nodes' energy. 

2.2.3 Geographical and Energy Aware Routing (GEAR) 

A special routing technique that has recently drawn attention is geographical routing. GEAR 

[9] is a protocol that further takes residual energy into consideration and is designed to 

efficiently disseminate queries to a destination. Motivated by the fact that queries are often 

geographical (i.e. they have a target area), packets are directly forwarded to the destination 

rather than flooded everywhere. GEAR assumes that nodes are aware of their own geographic 

positions, and uses energy-aware neighbor selection to aggressively route the queries toward 

the target region. In addition to the distance to destination, neighbor's residual energy is also 

considered in the cost function so that energy load among any neighborhood can be balanced. 

The tradeoff, however, is the increased path length used to transmit the queries since energy-

efficient paths are not necessarily the shortest. Restricted flooding or recursive geographical 

forwarding immediately follows to disseminate packets inside the area once the queries have 

arrived at the border of the region. The difference of the two lies in the type of transmissions, 

namely broadcast and unicast. The choice of which one to use depends on the relative energy 

cost determined by the node density of the destination area. 

The conventional minimum-energy path approach differs from the GEAR energy-aware 

neighbor selection algorithm in that a path in the former approach is selected for transmission 

whenever the total energy cost along this path is the lowest among all choices. Unfortunately, 

doing this will only cause nodes on this path to be extensively used and nodes' energy to be 

depleted quickly [13]. 
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2.2.4 Two-Tier Data Dissemination (TTDD) 

TTDD [12] is a data dissemination protocol designed to deal with the issue of sink mobility in 

WSNs. Mobile sink often requires frequent location updates by flooding location information 

throughout the entire network, so that future data can be correctly forwarded to the mobile 

destination. Such a repetitive broadcasting operation not only increases collisions in the 

transmissions, but more importantly also drains the battery of sensors resulting in a reduction 

of network lifetime. TTDD employs a mobile Internet Protocol (IP) -like trajectory 

forwarding strategy in which location information is only updated between the immediate 

agent (IA) and primary agent (PA) of the mobile sink. To enhance scalability, robustness, and 

load-balancing, a per-source grid structure is created so that only a portion of nodes, namely 

the dissemination nodes, is involved in delivering data reports to the mobile sink. Such an 

approach ensures that queries are only flooded in local cells, thereby effectively reducing the 

amount of traffic to be spread over the entire network. Figure 2.4 illustrates these operations. 

As with GEAR, location discovery is required for grid constructions. Data aggregation 

among the sources is also required so that multiple different grid structures will not be created 

for nodes that detect the same event. 

Q J O - Higher/lower-tier data grid/trajectory forwarding 
) —g i nk O ^Higher/lower-tier query grid forwarding 

O 0 \ 

Mobile sink, 

o 

Figure 2.4: A simplified schematic of the two-tier data dissemination: A higher-tier data grid structure 

is created for each source allowing queries to be flooded in lower-tier grid only, and trajectory 

forwarding is employed so that the most recent location of the mobile sink is only updated with the 

primary agent. 
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2.3 Data-Centric Storage and Data Funneling 

One way of achieving in-network aggregation is to deploy a data-centric WSN where all data 

are named with communication abstractions rather than unique node identifiers [25]. Unlike 

other conventional IP-based networks which are usually associated with a directory service, 

nodes in data-centric network describe their data by using attribute-value pairs. For instance: 

a message describing a fire event may only contain a TYPE attribute with a value set to FIRE. 

Such a technique not only enables efficient reduction of redundant messages that arrive with 

the same content description, but also avoids identifying nodes. This data-centric approach is 

now seen as fundamental to WSNs. The Data-Centric Storage (DSC) [28] stores data by 

names at some nodes. These nodes are not necessarily the ones that generate the data. In 

comparison with the data-centric routing where query has to be first flooded to the network 

before any data can be returned to the sinks, all messages with the same descriptions will be 

directed and stored at a designated sensor upon detection. The DCS approach avoids 

extensive query flooding and subsequent updates of the querying messages. However, it 

requires extensive routing support in order to correctly direct the sinks to the storage nodes 

for the desired data. 

Reference [4] explores the problem of minimizing the communication costs required to 

send the readings from a set of sensors, bounded by some geographic coordinates, to a single 

destination node. Data funneling which integrates both data aggregation and compression is 

proposed to meet the objective. This work is motivated by the fact that packet overhead often 

makes up a large component of sensing data. Since all sensors within the source region have a 

common sink, substantial savings can be achieved if different readings can be combined into 

a single super-packet containing only one packet overhead. All sensors within this region will 

select a common dynamic cluster head and have their readings aggregated along the way to 

the node using proper scheduling. The choice of order in which readings are arranged in the 
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super-packet can also be used to convey additional information to the sink. The cluster head 

can thus choose to suppress some readings and arrange others in such a way that can indicate 

the value contained in the suppressed readings. However, the tradeoff is the additional 

hardware complexity required for encoding and decoding. 

2.4 The Impact of Timing in Data Aggregation 

The timing policies that decide how long a node should wait to periodically receive data from 

its source neighbors can have a significant impact on data accuracy and freshness. Authors in 

[29] compare three different timeout models: periodic simple, per-hop, and per-hop adjusted. 

Periodic simple works by having each node wait a pre-defined period of time before sending 

out its aggregated data whereas periodic per-hop transmits the result as soon as it hears from 

all its data-forwarding neighbors. In their proposed periodic per-hop adjusted timing model, 

each node schedules their timeout right before its parent does. Such cascading timeout results 

in creating a data wave reaching the sink in one data collection period. Extensive simulations 

have shown that, among the three models, only the periodic per-hop adjusted approach can 

preserve the initial power-savings and maintain the highest percentage of data freshness at the 

same time. Their work builds on top of a simple tree establishment protocol that sets up 

reverse path from all nodes back to the sink after an initial querying. 

2.5 Data Aggregation Trees and Clusters 

Our work bears some resemblance to other research efforts in the literature. In fact, a number 

of recent work has begun to consider collaborating nearby sensor nodes by the use of a data 

aggregation tree/cluster. Such tree/cluster provides event sources with a mechanism to refine 

their readings, so that only a minimum amount of energy is required to deliver the information 
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to the user. In this section, we provide a summary of these construction techniques. 

2.5.1 Energy-Aware Data Aggregation Tree ( E A D A T ) 

The work in [30] attempts to construct a tree rooted at a base station and spanned all network 

nodes by extensive use of timers. Motivated by the fact that only non-leaf nodes in the tree 

are aggregating and relaying traffic, radios of all leaf nodes are turned off for immediate 

energy savings. The nodes with higher residual energy have a higher chance to become non-

leaf tree nodes, thereby enhancing the likelihood of turning off lower-energy leafs. However, 

when all the tree nodes are also the event sources (i.e. the tree is inside the event area), each 

of them possess some sensor readings and therefore all leafs cannot be put to sleep. The 

algorithm requires a given tree root (base station) to initially broadcast a control message and 

start the tree construction. Each node upon receiving this message for the first time starts a 

timer that expires in a time duration inversely proportional to its residual energy. A timer is 

refreshed if a node receives a message during the count down. After the timer expires, the 

node broadcasts a similar control message indicating its willingness to be a parent in the tree. 

During the process of timer update, each node selects an appropriate parent for 

communication with the root. Observe that a timer can be extensively updated when the 

network is large, especially for leaf nodes. The result can be a long waiting time for the tree 

construction. 

2.5.2 Maximum Lifetime Data Aggregation 

Reference [31] attempts to find a schedule of various directed trees, subject to the requirement 

that the number of rounds during which a base station can aggregate information from all the 

nodes via these trees is maximized. The protocol assumes that nodes are aware of every 

others' positions and have the abilities to directly reach any other sensor (including the base 

station) in the network. Such a Maximum Lifetime Data Aggregation (MLDA) problem is 
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approached by coordinating the radio ranges and data aggregating agents of various nodes in 

a way that the resultant flow of traffic towards the base station maximizes the system lifetime. 

In practice, the knowledge of exact sensor positions is usually not known a prior; due to 

the ad hoc manner in which nodes are deployed. By including Global Positioning System 

(GPS) to all the nodes can be expensive. By running an efficient location discovery scheme 

(e.g. [32 - 35]) on the other hand will also incur an additional control cost to all nodes. 

Moreover, the abilities to adjust node's radio range will not always be feasible to WSNs. A 

closer analysis is hence required to justify the impact of their assumptions on the system 

lifetime. 

2.5.3 Minimum-Cost Convoy Tree 

More recent work has begun to consider collaborating nearby sensor nodes to generate a more 

concrete report of the object being traced. Such issue has been recognized by [36] which 

further provides a dynamic convoy tree-based collaboration (DCTC) framework for tracking a 

mobile target. Using some heuristics in predicting the object moving direction, they proposed 

a tree construction algorithm that can dynamically configure itself by adding or pruning some 

sensors as the target moves. The root can dynamically collect and refine the readings gathered 

from various tree nodes. The challenge of their work lies on finding a sequence of minimum-

cost trees, so called minimum-cost convoy tree sequence, whose coverage on the moving 

object is above a certain threshold. The tree they have considered is the one that has the root 

being closest to the target. Furthermore, all other nodes are arranged in a way that the cost of 

sending a packet via some nodes to this root is minimized. However, the authors did not 

consider the ability of sensors to perform in-network aggregation of data enroute to the tree 

root. The cost of sending a packet to the root needs to be re-evaluated so as to account for the 

effort of any parent being able to combine the data gathered from all of its children. 
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2.5.4 Spanning Tree over Area-Dominating Set 

Since the coverage area of individual sensor nodes usually overlaps, the work in [37] attempts 

to periodically find the smallest subset of nodes that covers the monitoring area. This group of 

nodes is referred to as the area-dominating set. The authors in this paper suggest the use of a 

spanning tree, induced by the initial interest flooding over the area-dominating set, for 

aggregating reply messages from various event sources. Specifically, a node belonging to this 

set considers the neighbor for which the first interest message comes from as its parent in the 

distributed spanning tree. A parent waits to receive multiple replies from all its children in the 

tree before sending its own aggregated reply message. The sink where the interest is 

originated from is the root of the spanning tree. As with DCTC, the authors did not consider 

nodes' residual energy in the tree construction. The result can be a reduction in the node's 

lifetime and the amount of information collected by the tree root (Section 1.1). 

2.5.5 Balanced Convergecast Tree 

The work in [38] addresses the problem of convergecast (many-to-one) for data aggregation. 

A tree that is rooted at the base station is constructed so that the link cost from each node to 

the base station is minimized. The authors further improve the design by balancing the tree 

during the construction, thereby enhancing the likelihood of simultaneous aggregation and 

reducing the latency for convergecast. Furthermore, two Code Division Multiple Access 

(CDMA) codes are allocated to nodes for collision-free transmissions towards the base station. 

Unfortunately, the algorithm is centralized and the knowledge of global connectivity is 

required. As with [37], the base station (sink) is also the root of the tree. 

2.5.6 Data Aggregation Clusters 

A number of recent work has begun to consider dividing the network area into small adjacent 

grids or clusters on which aggregation is performed. Specifically, a cluster head is usually 
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associated with each cluster so that all nodes belonging to the same cluster can aggregate their 

readings through this node. In fact, a number of parameters can be considered in the cluster 

head selection. The work in [39] periodically selects cluster heads according to a hybrid of 

their residual energy and node degree, resulting in a set of energy-rich cluster heads being 

uniformly distributed across the network. However, their work assumes that nodes have 

variable transmission power to ensure that a certain degree of connectivity exists between the 

clusters. In comparison with the explicit tree approach (e.g. [31, 36 - 38]), only one layer of 

aggregation points exists, thereby increasing the load of each cluster head. 

Reference [40] presents an algorithm to find the minimum number of aggregating points 

connecting these cluster heads such that the energy cost of sending a packet from each cluster 

head via these points to a fixed base station is minimized. The benefit is the additional level of 

aggregation, resulting in a multi-level data aggregation hierarchy. However, extensive routing 

support such as the shortest-path and location information is required beforehand. 

2.6 Node Scheduling 

After a thorough discussion on some of the existing routing and aggregation-related protocols, 

we now introduce an alternate way to minimize data traffic and conserve energy in WSNs. 

WSNs are often densely deployed in an ad hoc manner. Having a substantial amount of 

sensors is necessary to minimize the number of blind spots created by random deployment. In 

addition, since sensor may move and deplete the energy rapidly, there must be enough 

reserved nodes to preserve the initial sensing coverage and communication capacity. However, 

using all sensors at once is unnecessary and will only lead to network congestion and 

unwanted energy expenditure. From an application perspective, a node is redundant and can 

be turned off for immediate energy-savings if its sensing area is completely covered by its 

neighboring sensors. Reference [21] provides an analysis for the probabilistic bound of this 
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redundancy and suggests that there are always a number of redundant nodes for a" particular 

network setting. From a network perspective, when the average node degree is high, channel 

contention increases and network congestion starts to occur. Nodes waste their valuable 

energy via transmission as packets are being dropped. Due to these reasons, a large number of 

sensors need to be initially deployed, yet they need to coordinate and work alternatively in 

order to save energy and prolong the network lifetime. The question lies in how to assign 

these sensors so that they can maximize the energy savings and yet still preserve the initial 

capacity and sensor coverage. The following subsections will introduce some node scheduling 

algorithms proposed in the literature, and they are compared in Table 2.2. 

Table 2.2: A comparison of node scheduling protocols 

Protocol 

name 
Algorithm descriptions Power conservation 

ASCENT 

[41] 

Partially or completely turn off nodes based on 

measured connectivity and data loss rate 

Duty cycle reduction of active nodes 

and periodic sleep of passive nodes 

Connected 

sensor 

cover [22] 

Put nodes to sleep if they are not required in 

preserving the initial capacity and sensing 

coverage 

Complete turn off of redundant nodes 

STEM [42] 
Coordinate periodic sleep transitions and wake 

up nodes when it is time to forward data 
Periodic sleep of all nodes 

2.6.1 Adaptive Self-Configuring sEnsor Networks Topologies (ASCENT) 

ASCENT [41] is a self-organizing node scheduling algorithm in which redundancy 

introduced by dense deployment is exploited to achieve energy-savings and extend the 

network lifetime. Unlike other node scheduling algorithms where topology or routing 

information is used (e.g. [22, 24]), ASCENT requires each node to determine its participation 

in the network based solely on the measured connectivity and data loss rate. Active nodes 

either invite passive neighbors to join the network due to poor connectivity or reduce their 

duty cycles by passively turning" off the transmitters due to massive collisions. Passive nodes 
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probe the channel and join the network only when it is helpful to do so. Radios for passive 

nodes are also completely turned off at a regular interval in order to conserve listening power. 

ASCENT differs from other approaches in that receivers are not being turned off before 

going to sleep, so that they can rapidly react to any network change. In addition, this protocol 

results in active nodes being distributed non-uniformly depending on different network states. 

Such a self-configuring behavior is encouraging since different traffic patterns will require 

different sensor population in order to make the delivery more reliable. ASCENT defines a 

neighbor as a node that is within the transmit range and yet has a data delivery ratio above 

some threshold. This definition is important since connection to a congested node can hardly 

be established, even if it is within the transmit range. Unfortunately, load-balancing is not 

being incorporated into the design. Failing to do so may result in either network partitioning 

or creation of blind spots. 

2.6.2 Connected Sensor Cover 

Reference [22] introduces a technique to minimize the amount of communication incurred by 

query executions. Neighboring sensors often monitor close geographic areas and generate the 

same readings in response to a query. It may be sufficient to use only a portion of these nodes 

for data gathering and transmissions to the sink. This protocol exploits such redundancy and 

self-organizes the network into a topology that involves only a small number of sensor nodes 

sufficient to process the query. To minimize energy usage, the algorithm turns off unselected 

nodes but ensures that the initial sensor coverage and network capacity are preserved at the 

same time. The idea is to choose a path of sensors that connects to the already-selected sensor 

set with the largest coverage in the querying area. The selected path of sensors is then added 

to the already-selected sensor set. These steps are repeated until the set of sensors covers the 

entire querying region. 

The design can further be improved by considering residual energy in the path selection 
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so that nodes with a lower energy have less chance of being selected in the query executions. 

Doing so can evenly distribute energy loads across the querying region and effectively extend 

system lifetime. This algorithm differs from ASCENT on that density dimension is exploited 

to minimize the energy usage. In other words, only spatial density and sensing radius of nodes 

can affect the performance. As we shall see later, STEM [42] schedules nodes by exploiting 

time dimension instead. The choice of which one to deploy depends on the network 

configurations and task of the network. 

2.6.3 Sparse Topology and Energy Management (STEM) 

A typical WSN spends most of its time monitoring the environment and waiting for an event 

to occur. Network capacity is not required until data readings need to be forwarded to a sink. 

Turning off radios in the monitoring state can thus completely eliminate unnecessary energy 

wastage. STEM tackles this issue by coordinating sleep transitions of all nodes in order to 

utilize full energy savings. Unlike the connected sensor cover protocol which preserves the 

network capacity at all times, STEM aggressively puts nodes to sleep and wakes them up only 

when they need to forward data. The idea here is to periodically turn on a separate paging 

radio to listen if anyone is talking to this node. The data radio of this node comes back alive 

only if it is initiated by the wakeup procedure. Unfortunately, the tradeoff is the latency of 

switching back to the data transferring state incurred by both polling and initialization 

processes. STEM differs with other scheduling algorithms [22, 24, 43] in that setup latency, 

rather than the node density, is leveraged to minimize energy usage. Major'energy saving will 

not require a dense network. However, since algorithms under the two categories have 

orthogonal functionalities, running them together can combine the benefits of both and 

maximize the system lifetime thoroughly. 
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2.7 Discussions and Summary 

Our work is motivated by some of issues in the existing research work. In Directed Diffusion 

[19, 20], nearby nodes can send their data to the sinks via entirely different paths. In GRAB 

[11] and TTDD [12], each source can initiate its own mesh and grid structure for data 

transmission. These redundancies are the major source of energy wastage, thereby motivating 

us to create a tree for collaborating nearby event sources. 

Our work differs from [4] by that we focus on tree establishment rather than aggregation 

technique. Such tree allows nodes to know where they should send the extracted data readings 

for further processing. Note that the root in our proposed scheme has the same functionality 

as the cluster head in [4]. However, in terms of root selection, we consider residual energy of 

nodes inside the local event area whereas the work in [4] compares the global distance to a 

common sink outside the region. 

Since our goal is to show how much time our proposed tree can survive rather than how 

fresh the data can be gathered, we consider using the periodic simple timing model in [29] to 

collect data readings from the sources. Another reason is to avoid the additional control 

overheads that would be incurred in maintaining the cascading timeout scheme [29]. 

A number of work has begun to consider collaborating nearby sensor nodes by the use 

of an aggregation tree. Among these, EADAT [30] is similar to our proposed scheme. 

However, EADAT requires the extensive use of timers. In addition, EADAT, MLDA[31], and 

the work in [37, 38] require the prior knowledge or support from a base station (or a given 

root) for tree construction. In an event area where a root is initially unknown, these techniques 

can be difficult to apply. Residual energy has not always been a concern during tree 

constructions or cluster formations (e.g., LEACH, DCTC, and [37, 38]). In Section 1.1, we 

have shown that node lifetime can be reduced if the residual energy is not being taken into the 

consideration. All of the above issues motivate us to construct an energy-aware aggregation 
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tree with the appropriate selection of a root for collaboration. 

It is worth to mention that node scheduling algorithms are of the same importance as 

data aggregation in minimizing traffic and energy usage in WSNs. They simply put nodes to 

sleep and thus make no differences in the process of creating our lifetime-preserving tree. We 

only summarize them for the completeness of this thesis and interested readers should refer to 

the references for more details. 

In this chapter, we have described some previous work on routing, particularly Directed 

Diffusion, for WSNs. Some network aggregation techniques, such as DSC [28] and Data 

Funneling [4], and aggregated-related timing policies [29] were introduced. A summary of 

previous aggregation tree constructions (e.g., EADAT and DCTC) or cluster formations was 

also presented. This chapter ended by exploring some previous node scheduling algorithms 

(e.g., ASCENT and STEM) proposed in the literature. 



Chapter 3 The LPT Construction 

In this chapter, we begin our discussion on the construction of the Lifetime-Preserving Tree 

(LPT). We first present our network model under the considerations, the related definitions, 

and assumptions in Section 3.1. The details of the LPT construction problem are described in 

Section 3.2. We continue by investigating the use of spanning tree and an energy-aware 

variant of it, namely E-Span, on data aggregation in Section 3.3. Such trees are easy to 

construct and shall provide some insights on how different event sources should be arranged 

so as to collect and aggregate data reports in an optimal way. Next, we proceed to present our 

solution to the LPT construction problem by using a centralized approach in Section 3.4. 

Finally, a distributed implementation of the LPT construction algorithm for data aggregation 

in practical WSNs is presented in Section 3.5. 

3.1 Network Model, Assumptions, and Definitions 

We consider a field of M randomly-deployed and identical sensor nodes. A number of K (K < 

M) sinks, randomly chosen among these M nodes, are requesting for data reports. A stimulus, 

triggering N (N < M) event sources around it, occurs at a random place in this field. We 

assume that these sources are interconnected to each other. In practice, an event may not 

trigger a set of connected source nodes. However, under such scenario, multiple independent 

trees will be constructed with each serving a disjoint set of event sources. Hence, for 

simplicity, we restrict ourselves to a set of N connected source nodes. We assume that data 

reports from each source are clock-driven upon event detection. Furthermore, these data are 

assumed to be collected at a dedicated tree root and sent to the distant sinks in a periodic 

manner. During data collection, nodes have the abilities to perform in-network aggregation of 

27 
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packets enroute to the tree root. We further assume that each node m (m e{l,2 ... MJ) awares 

of its energy, em. Node batteries are neither replaceable nor rechargeable. We finally assume 

that all nodes have an identical and fixed transmission range. We define a branch to be the 

route from a root node to a leaf node in a given tree. The following two terms are introduced: 

Branch energy - the minimum energy of all the non-leaf nodes in a given tree branch. 

Tree energy - the minimum branch energy of all the branches in a given tree. 

Let By denote the set of nodes along a given tree branch with y as the leaf node, and Ix be the 

set of nodes in a given tree rooted at node x. Mathematically, the branch and tree energies are 

calculated as: 

Branch energy for branch By = min {ei} (3.1) 
ieBy, i±y 

Tree energy for tree Ix= min {e:} (3.2) 
jefx,j*leafnode 

For example, the branch from nodes A to D (drawn dark) in Figure 3.1a and the tree (with the 

minimum-energy branch drawn dark) in Figure 3.1b shall both have energy of 3 Joules. 

a) B r a n c h e n e r g y b ) T r e e e n e r g y 

Figure 3.1: A n e x a m p l e t o d e s c r i b e b r a n c h a n d t r ee e n e r g i e s : a ) E n e r g y o f t h e b r a n c h f r o m n o d e s A t o 

D i s set t o 3 J, t h e e n e r g y o f n o d e B . b ) T r e e e n e r g y i s se t t o 3 J, t h e e n e r g y o f t h e b r a n c h f r o m e i t h e r 

n o d e s A t o D o r n o d e s A t o F. 
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3.2 Problem Formulation 

Given a number of Af connected source nodes with each source labeling n (n e {I, 2 . . . N}) 

and the knowledge of their own residual energy, en, our goal is to find a tree spanning all these 

sources and an appropriate tree root for data collection so that the functional lifetime of each 

source is preserved as much as possible. Recall from Section 1.1 that the time till the first link 

breaks in a given tree structure determines the lifetime of each source, and the term tree 

energy directly reflects this time. We hence tackle this problem by searching a tree that 

comprises the highest tree energy. 

In the literature, network lifetime has often been defined as either the time till the first or 

a set of nodes runs out of its energy [8, 31, 44, 45], or till the first loss of connectivity or 

coverage [46,47], or a combination of these [48]. A formal definition of network lifetime is in 

fact not very straight-forward and may depend on the application scenario in which the 

network is targeted at. However, none of these definitions deviate from interpreting network 

lifetime as the time before the network ceases to provide the type of service it is designed for. 

We therefore follow this convention, and define the branch energy as the minimum energy of 

all the non-leaf nodes in a given branch and define tree energy as the minimum branch energy 

of all the branches in a given tree. To better understand why we define them in this way, we 

point out that the time for an upstream link along a given branch to break directly depends on 

the energy of the parent on such a link. In other words, the time during which data from each 

source along this branch can arrive at the root will depend on the minimum energy of any 

parent along this branch. By using the same analogy, the time during which data from all 

sources can arrive at the root without having to concern about broken link repairs and tree 

reconstructions will depend on the minimum energy of any branch, or equivalently that of any 

parent, in a given tree. The only question we are left with lies on how to select an appropriate 

tree root and the branch leading to each other source, such that the energy of this tree is 
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maximized. 

To resolve this problem, we explore the highest-energy branch from each source to a 

root by first assuming that every source node is a root. This generates a total of N unique trees 

with each being rooted at a distinct source node. We continue by comparing the energy of 

these trees and only employ the one with the highest tree energy for data collection. Our LPT 

construction problem is thus formulated as follows: 

Given: N connected source nodes and the knowledge of their own residual energy, e„. 

Define: Pxy to be the set of possible routes, with each labelingp, from nodes x to y. 

brEijk to be the energy of a branch k leafed at node i and rooted at j, k e Ptj. 

treeEn to be the energy of a tree rooted at node n. 

Goals: construct a tree rooted at node r such that 
1. treeEr ~£treeEn V n <=N,n & 

subject to the condition that 
2. brE^ ^brEiiriP V i eN, V p e Pi<n p &k 

Figure 3.2: Problem formulation. Explore the highest-energy branch from each source to the root by 

first assuming that every source is a root. Then, select the one with the highest tree energy for data 

collection. 

3.3 The Energy-Aware Spanning Tree (E-Span) 

Before starting to describe our LPT algorithm, we outline the basic spanning tree protocol [49] 

followed by presenting an energy-aware variant of it, namely E-Span. We believe that E-Span 

shall provide some insights on how different event sources should be arranged in the lifetime-

preserving tree and is likely to satisfy our objectives for only a few participating source nodes. 

It is comparatively easy to implement and will later be compared with our LPT algorithm. 

3.3.1 The Spanning Tree Protocol 

A spanning tree is a graph that spans all the nodes as vertices and contains no cycles. The tree 
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is structured in the way that the node with the smallest identifier is chosen as the root. At the 

same time, all other nodes are connecting to this selected root via the shortest-path route. The 

protocol requires each node to exchange configuration messages in a format that contains the 

identifier of itself, that of its selected root, and the distance (in hops) to this selected root. 

Each node updates its configuration message upon identifying a root with a smaller identifier 

or the shortest-path neighbor. Furthermore, the neighbor for which the shortest-path 

configuration message comes from is chosen as the parent of a node whenever it is detected. 

Node identifier is used to break ties if necessary. The above descriptions are being translated 

Define: r„ to be the ID of the wot selected by node n 
dn to be the shortest-path distance from r„ to node n 
gn

 = (n, rm dj to be the message sent by node n 
p„ to be the ID of the parent selected by node n 
trecv.nP be the time node n received the message from its parent 

Initialize: g„ to (n,n,0) Vn eN 
pnton V n e Af 
tremn tO 0 V « e N 

GetSpan (node ID n, time t, timeframe T) 
1 ifn is not an event source, 
2 return 
3 else {single-hop broadcast g„ and start a timer P that expires every Tsec 
4 while true, 
5 if timer P expires and (r„=nort> tmc^+T), 
6 set g„ to (n, n, 0) 
7 set p„ton 
8 set tKmn to t 

9. single-hop broadcast g„ 
10 if receiving a message gifrom node i, 
11 ifri< rn, or fr, = rn and < d„), or (ri = r„, dt+l = dn, and i <Pn), 
12 setg„ to (n, rt, di+1) 
13 setpn to i 
14 Set trecvn to t 
15 single-hop broadcast g„ and restart timer PJ 

Figure 3.3: The distributed spanning tree protocol, which creates a graph covering all source nodes as 

vertices and contains no cycles. The node with a smallest ID is selected as root. Each other node picks 

the neighbor for which the shortest-path configuration message comes from as its parent, n is the node 

that runs the GetSpan algorithm and n e N. 
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into the GetSpan algorithm depicted in Figure 3.3 below. Note that single-hop broadcast 

refers to the operation of sending a packet to all single-hop neighbors. Lines 1 and 2 restrict 

the message exchanges to be within the event region. Line 3 starts the exchange and an 

additional timer for tree maintenance. Line 4 triggers an infinite loop. Lines 5 to 9 allow a 

root to periodically generate a message every T seconds and reset a node when it starts to lose 

its shortest-path neighbor. Lines 10 to 15, on the other hand, update the node itself and 

forward the message whenever a node identifies a root with a smaller identifier or a better 

shortest-path neighbor. 

For example, the set of source nodes depicted in Figure 3.4a will create a tree of the 

form shown in Figure 3.4b. Unfortunately, failure to consider the node's residual energy 

results in this tree having the lowest energy of 3 Joules. Furthermore, the node that is 

equipped with the minimum energy, i.e. node 1, is chosen as the root and is attached to three 

other child nodes. When the tree is deployed for data collection among these sources, the rate 

at which node 1 dissipates its energy is quite high and thus the time to the first node death is 

minimized. We hence make some changes and present an energy-aware variant of this 

protocol, namely E-Span. 

a) Connectivity diagram b) Spanning tree configurations 

Figure 3.4: An example of the spanning tree protocol: a) Connectivity diagram for a set of given 

sources, b) The spanning tree configurations will have node 1 with energy 3 J chosen as the root, 

resulting in the lowest tree energy of 3 J. 
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a) Connectivity diagram b) E-Span configurations 

Figure 3.5: An example of the E-Span protocol: a) Connectivity diagram for a set of given source 

nodes, b) The E-Span configurations will have node 8 with energy 10, J chosen as the tree root, still 

resulting in the lowest tree energy of 3 J. 

3.3.2 The Energy-Aware Spanning Tree Protocol 

As with the conventional spanning tree, E-Span is a graph that covers all the nodes as vertices 

and contains no cycles. All other nodes are still connected to the selected root via the shortest-

path route. Since the root, besides collecting data, is also responsible to coordinate the routes 

with distant sinks, the node with the highest energy level is now chosen as the root. Moreover, 

each other node is given with the choice to select its parent as the highest-energy neighbor for 

which the shortest-path message comes from. By using the same set of nodes as an example, 

the tree will now have node 8 chosen as the root and all other nodes are still talking to node 8 

via the shortest-path route (depicted in Figure 3.5). Specifically, node 6 which finds itself 

having two shortest-path neighbors of nodes 2 and 4 will in fact attach itself to the higher-

energy one (i.e. node 2). The reason is to allow a node that has more available resources to be 

selected as a parent node for data collection. 

Details of the implementation are summarized in Figure 3.6. The configuration message 

now involves 3 additional parameters: the residual energy of the node that sends the message, 

that of the node's chosen root, and the node's chosen parent. As with the GetSpan algorithm, 

lines 1 to 3 start the message exchanges and restrict these exchanges to be within the event 

area. Lines 4 to 7 allow a root to periodically generate a message every T seconds and reset a 

node that loses connection with its parent. Lines 8 to 11 update the list of child nodes for the 

receiving node. Lines 12 to 16 update the message when a node receives an energy update 
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Define: en to be the residual energy of node n 
r„ to be the ID of the root selected by node n 
e(rj to be the last-updated energy of the root selected by node n 
d„ to be the shortest-path distance from rn to node n 
pn to be the parent selected by node n 
s„ = (n, en, r„, e(rj, pn, d„) to be the message sent by node n 
e(pn) to be the last-updated energy of the parent selected by node n 
tremn to be the time node n received the message from its parent 
childListn to be the list of child nodes for node n 

Initialize: Change (n, en, n, en, 0,0) V n eN 
GetESpan (node ID n, node energy en, time t, timeframe T) 
1 ifn is not an event source, 
2 return 
3 else {single-hop broadcast s„ and start a timer P that expires every Tsec 
4 while true, 
5 if timer P expires and (r„=nort> tKCVf„+T), 
6 Change (n, e„, n, e„, 0, t) 
7 single-hop broadcast sn 

8 if receiving a message Sjfrom node i, 
9 ifPi = n, 
10 add i to childListn 
11 else remove ifrom childListn 

12 ifn = r„, 
13 if ft = Pn)> o r (di+1 < dj, or (dj+1 = d„ and e, > efpj), 

or (dj+1 = dn, e,- = e(pn), and i < pj, 
14 Change (i, e„ rt, e(rj), dt+l, t) 
15 else if (e(rj > e(r„)) or (e(rj = e(r„) and rt < r„), 
16 Change (i, e„ r„ efr̂ ), dt+l, t) 
17 if(en > e(rj) or (e„ = e(r„) and n < r„), 
18 Change (n, em n, en, 0, t) 
19 single-hop broadcast s„ if a change applied) 
Change (node x, energy e„ nodey, energy ep distance d, time t) 
1 set s„ to (n, e„, y, ey, d) 
2 set p„ to x 
3' set e(p,J to ex 

4 Set trecvn to t 

Figure 3.6: The distributed E-Span protocol, which creates a graph covering all source nodes as 

vertices and contains no cycles. The node with a highest energy is selected as the root. Each other node 

picks the highest-energy neighbor for which the shortest-path configuration message comes from as its 

parent, n is the node running the GetESpan algorithm and n eN. 
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from its parent, or when it detects a better shortest-path neighbor or a higher-energy root. 

Lines 14 and 15 compare the receiving node with the root, and line 16 broadcasts the message 

if there is a change. Again, single-hop broadcast is referred to the operation of sending a 

packet to all single-hop neighbors. 

Unfortunately, without knowing the complete set of connectivity provided by all sources, 

some nodes in E-Span still traverse to the root through routes with a lower branch energy. As 

a result, each source can more often be involved in tree reconstruction, implying that a greater 

portion of its available energy are consumed in repairing broken tree links over the course of 

its lifetime. As an example (see Figure 3.5), nodes 3 and 5 could have been attached to nodes 

6 and 3, respectively, resulting in tree energy of 7 rather than 3 Joules. In addition, the energy 

dissipation rates for nodes 1 and 7 would have been lower if these changes are made. In other 

words, without making these changes, the functional lifetime of the two are shorter due to the 

additional energy cost involved in the tree reconstruction. This is clearly one issue we try to 

resolve, if possible, when we construct the LPT. We however believe that the chance for it to 

happen is rather rare for a small number of participating sources. When this number starts to 

increase, a technique that is different from E-Span is required. We shall now present our LPT 

construction algorithm. 

3.4 The LPT: Centralized Approach 

In this section, we proceed to the discussion of the lifetime-preserving tree construction using 

a centralized approach. We assume that the complete knowledge of the event region is given, 

including the connectivity and residual energy of all the source nodes, prior to the start of the 

algorithm. The tree generated can later be used to validate the correctness of the 

corresponding tree constructed by the distributed approach. 

One way to obtain a lifetime-preserving tree is to directly run an extensive search at 
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every node and then compare various tree energy. However, this approach has the scalability 

problem when the network starts to grow or becomes dense. We hence tackle the issue in a 

completely different way. 

Recall that the lifetime-preserving tree requires a root (initially unknown) to collect data 

from each other node via routes with the highest branch energy, subject to the condition that 

these routes do not create loops. Moreover, the tree has an energy that directly depends on the 

minimum residual energy of all the non-leaf nodes. If there exists a way to identify this 

minimum-energy node, which represents the bottleneck to the network, it will then be easy to. 

determine what the highest tree energy will be. To illustrate the above descriptions, consider 

the set of nodes in Figure 3.7a. Any source node can either be a root, parent, or leaf. By 

assuming that node 5 is a root, the protocol must have each other node enroute to this root 

through either nodes 7 or 3. However, the tree must have node 6 as a parent for some nodes in 

c) Node 5 being a parent d) Node 5 being a leaf 

Figure 3.7: An example of the bottleneck node. No matter what the role of node 5 is, node 6 has to be 

a parent for some nodes in the network if the tree energy has to be the highest: a) Connectivity diagram 

for this particular event area, b) If node 5 is a root, node 6 has to collect data from nodes 2 and 4. c) If 

node 5 is a parent, node 6 again has to forward data for both nodes 2 and 4. d) If node 5 is now a leaf, 

node 6 has to collect data from node 3. Therefore, the tree energy cannot be greater than the energy of 

this bottleneck node. 
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the network if the tree energy has to be the highest (depicted in Figure 3.7b). If node 5 is now 

a parent, node 6 again has to forward data for some nodes, for example nodes 2 and 4, in the 

network (Figure 3.7c). Finally, if node 5 is a leaf, the protocol must have node 3 to forward its 

data to some root via either nodes 1 or 6. By using the same argument, node 6 again has to be 

a parent for data collection from node 3 (shown in Figure 3.7d). We therefore call node 6 as a 

bottleneck node for this particular network topology, since there are no better ways to route 

around this node, and the tree must have energy less than that of this node. 

Having understood the concept of a bottleneck, the question lies on how to identify this 

node and coordinate the given set of network connection such that a tree is obtained with this 

node being configured as the minimum-energy non-leaf node. To address this issue, we begin 

by arranging nodes in ascending energy levels. Starting from the least-energy node, we test if-

the removal of all network links to this node except that from its highest-energy neighbor will 

disconnect the existing graph. If so, the bottleneck node is found and there are no better ways 

than to collect data via this node. The removed links are thus restored, and any tree rooted at 

one of the nodes in the remaining set shall have the energy as that of this chosen node. If not, 

the removed links do not contribute to the construction of the lifetime-preserving tree and we 

shall move on to the next node. Note that the energy of the highest-energy neighbor has to be 

greater than that of the node under the test. When such neighbor does not exist, the node has 

to be a parent for at least one of its neighbors, and thus all the links are preserved. In the case 

when there are more than one neighbors that have equal highest energy, either one can serve 

as the parent for collecting data from the node under the test without affecting the tree energy. 

Node ID is thus used to break this tie. Finally, when we come to the last node, i.e. the highest-

energy one, we conclude that there is no bottleneck node for this particular topology and any 

tree rooted at this last node, on the existing graph, can have the highest tree energy. 

To illustrate the descriptions, consider two examples. Figure 3.8 depicts the centralized 

LPT search during which a bottleneck is found when the link from nodes 6 to 2 is removed. In 
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other words, node 6 has to be a parent for some nodes in the network. Any tree rooted at one 

of the nodes in the remaining set, i.e. nodes 2, 3, 5, 6, or 8, will therefore have the highest tree 

energy as that of this bottleneck node. Figure 3.9 depicts another example of the search where 

no bottleneck node is found. The reason is that those links that are removed do not contribute 

to -the formation of any lifetime-preserving tree and therefore any tree rooted at the highest-

:) Node 4 under test d) Bottleneck found 

Figure 3.8: An example to search the lifetime-preserving tree in a centralized manner. Starting from 

the least-energy node, we test if the removal of all the links to this node except that from its 

highest-energy neighbor will disconnect the existing graph. For this topology, node 6 is hence found as 

the bottleneck. Any tree rooted at nodes 2, 3, 5, 6, or 8, on the existing graph will have the highest tree 

energy of 7 J. 

a) 4-node topology b) Node 1 under test c) Node 4 under test d) Bottleneck not found 

Figure 3.9: An example to search the lifetime-preserving tree in a centralized manner. Since removals 

of the links, except that from the highest-energy neighbor, to the source under any test does not 

disconnect the existing graph, there is no bottleneck for this particular network topology. Hence, any 

tree rooted at node 2 will be the lifetime-preserving tree. 
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energy node, i.e. node 2, will have the highest tree energy. 

The algorithm is summarized in Figure 3.10. Line 1 sorts all nodes in ascending energy 

levels. Lines 2 and 3 compute the highest-energy neighbor for the node under the test. Recall 

that the energy of this neighbor has to be greater than that of the node. When such a neighbor 

exists, lines 4 and 5 remove and temporarily store all links to the node except that from the 

highest-energy neighbor. Lines 6 to 10 restore the removed links, clear the storage, and 

compute a tree by running Dijkstra's algorithm [50] at one of the nodes in the remaining set 

when a bottleneck is found. Tree energy is set to the energy of the bottleneck node at this time. 

In fact, the reason to run the Dijkstra's algorithm is to ensure that the remaining set of 

network connections does create a tree and contain no loops. Lines 11 to 12 compute a tree 

Define: node„ to be the node with n least energy 
e(node„) to be the energy of node„ ( 
nodenmax to be the highest-energy neighbor of node„, subject to the 
condition that e(nodenmax) > efnodej 
linkxy to be the bi-directional link, if it exists, between nodes x and y 
treeEn to be the energy of a tree rooted at node n 
I to be a set, initially empty 

CentralhedLPT (connectivity and energy matrices) 
1 sort nodes in ascending energy level 
2 forn = 1 to N, n++ 
3 getnoden,max 

4 ifnode„max exists, 
5 remove linkni and store i in I V i e N, i ^nodenmax, i &i 
6 if the graph is not connected, 
7 restore linknJ V / e / and clear I 
8 set nodet to be the root and run Dijkstra s algorithm on 

nodek where k is any one number from ntoN 
9 set treeEk to be e(node„) 
10 return 
11 set nodeN to be the root and run Dijkstra's algorithm on node^ 
12 compute treeEN using Equation (3.2) for the tree rooted at node^ 

Figure 3.10: The centralized LPT algorithm, which creates a lifetime-preserving tree spanning all 

source nodes as vertices and contains no loops. The Dijkstra's algorithm is used to create a tree and 

ensure that the remaining set of network links does not contain loops. 
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again by running Dijkstra's algorithm at the highest-energy node, and search the tree energy 

by using Equation 3.2 when no bottleneck node exists in the network. 

3.5 The LPT: Distributed Approach 

Given a number of N source nodes with each node labeling n (n e{\, 2 ... Nj) and the 

knowledge of their own residual energy, e„, our goal is to construct a tree spanning all these 

sources and select an appropriate root for data collection, in a distributed way, such that the 

energy of the tree is maximized. We take the approach of exploring the highest-energy branch 

from each source to a root, by first assuming that every source node is a root, using a method 

similar to Reverse-Path Forwarding (RPF) [51]. This generates a total of ./V unique trees with 

each being rooted at a distinct source node. We continue by comparing the energy of these 

trees and only employ the one with the highest tree energy for data collection. 

In the following sub-sections, Section 3.5.1 describes the procedure to explore the 

highest-energy branch among all the sources in a given tree root. In Section 3.5.2, we 

construct N trees with each tree rooted at a distant source by incrementally attaching any tree 

branch explored from the previous section. Section 3.5.3 compares these trees and employs 

the one with the highest tree energy for data aggregation. Section 3.5.4 synthesizes the design 

and presents a concrete algorithm for practical implementation. 

3.5.1 Exploring the Highest-Energy Branch from every Source to any Root 

As previously mentioned, the time during which data from each source along a given branch 

can actively be received by the root depends on the minimum energy of any parent along this 

branch. In order to maximize this time for any pair of root and source, the connectivity 

between them will first have to be explored prior to getting the highest-energy branch 

connecting these two nodes. Let Pxy denote the set of possible routes, with each labeling p, 

J 
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from nodes x to y and brEjJik be the energy of a branch A: leafed at node i and rooted at node j. 

Note that k sP ( i /. We therefore wish to get a branch b for every pair of source s and root r 

such that: 

brE^ZbrE^ \/p ePs,„p *b (3.3) 

To do this, we employ RPF which requires each source s to initiate a configuration message in 

a format that contains its energy information. When a source receives this message, it appends 

its energy information and broadcasts the message only if it has not seen this message or if it 

has previously forwarded the message containing lower branch energy. Otherwise, it simply 

discards the received packet. Eventually, various copies of the initiated message will traverse 

through various different routes p and only the better ones will arrive at the root r. 

Define eidn to be the pair of energy level and ID of a node labeling n and brListiJk be a 

list containing the eid for the message initiating node i up to the last receiving node j via a 

route k with branch energy brEiJk, Note that brEijik can be calculated using Equation (3.1). 

Therefore, brList^k shall have the format of a list as follows: 

brListjj>k: eidt eidx eidy eidj (3.4) 

where nodes x and y are the intermediate receiving nodes for the message initiated by node j. 

Note that when node j receives the list brList^p from node y via some route p, it is as if node j 

is a root and node i is a leaf for the branch between nodes j and i. Our descriptions can thus be 

translated into the ExploreBranch function shown in Figure 3.11. Again, single-hop broadcast 

refers to the operation of sending a packet to all single-hop neighbors. Line 1 allows each 

source to initiate its control message. Lines 2 to 5 update, store, and broadcast the message 

when the receiving node does not recognize the initiating source. Lines 6 to 9 reset its stored 

list in addition to the above three actions whenever the receiving node detects a higher-energy 

branch. 
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ExploreBranch (node ID n, node energy e j 
/ create brListnn. by appending eid„ and single-hop broadcast brListnn 

2 while receiving brListijkfrom node j (k s Ptj, i e N, i 
3 ifn has not seen the message initiating node i, 
4 append eidn to the head ofbrListijj,, and update brEinp (p zPJ 
5 store and single-hop broadcast brList^p 
6 else if min {en brEyjJ > the stored brEi„q (q e Pin), 
7 remove the stored brListintq and brE^nq 

8 append eid„ to the head of brListjjj and update brEinp (p 
9 store and single-hop broadcast brListi>np 

Figure 3.11: The ExploreBranch function, which explores the highest-energy branch from every source 

to any tree root using a method similar to RPF. n is the node running this function and n e N. 

e) Route dropped at node 7 f) Route dropped at node 1 

Figure 3.12: An example to search the highest-energy branch between nodes 5 and 8. There are 6 

possible choices in which only the route in Figure 3.12d will have the highest branch energy of 7 J. The 

messages traveling on the last two routes are dropped since they do not carry higher branch energy, 

subject to the condition that nodes 1 and 7 have previously forwarded a similar message. 
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To illustrate the ExploreBranch function, consider the set of sources shown in Figure 

3.12. For simplicity, we will concentrate on the control message exchanges between a source 

of node 5 and a root of node 8. First, the function requires node 5 to initiate a control message 

containing its eid. There are six possible routes the message could have been possibly traveled 

(depicted in Figure 3.12a to Figure 3.12f). Among these routes, only nodes 7 and 1 will drop 

the messages with the routes through nodes 1 and 3, and node 7 respectively, subject to the 

condition that they have previously forwarded the messages, containing lower branch energy, 

initiated by node 5. The reason to drop these messages is to limit the number of control 

message exchanges and ensure that only the better routes will traverse through the nodes. 

Node 8, upon receiving the other 4 routes, will be able to identify that the route from node 5 

through nodes 2, 6, and 3 indeed has the highest branch energy of 7 Joules. 

3.5.2 Constructing a Tree Spanning all Event Nodes for every Source 

We now proceed to construct N trees with each tree rooted at a distant source by 

incrementally attaching any branch explored in the last section. Each source has an initial tree 

structure that only comprises the node itself. In order to construct a tree for each source that 

spans all event nodes, each source has to incrementally update its existing tree structure upon 

receiving any branch with an unknown initiating node. Note that the energy of the received 

branch directly determines the energy of the updated tree. To ensure that each tree carries the 

highest energy, the tree is also updated whenever the receiving node identifies a message with 

a higher branch energy. 

To illustrate the descriptions, consider Figure 3.13. For simplicity, we only concentrate 

on the tree construction for node 8. Initially, node 8 has a tree structure that only comprises 

itself. Upon receiving the messages initiated by nodes 7, 1,4, 2, and 6 (shown in Figures 

3.13a to 3.13e respectively), node 8 updates its tree to a structure depicted in Figure 3.13f. 

Now, when node 8 receives the message initiated by node 6 through node 2 (Figure 3.13g), it 
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a) Highest-energy branch from node 7 

c) Highest-energy branch from node 4 

10 J 

e) Lower-energy branch from node 6 

7] -v>9 j 

g) Highest-energy branch from node 6 

i) Highest-energy branch from node 5 

b) Highest-energy branch from node 1 

101 
5 > \ „ „ . 4J 

n ^ y > J 

f3J f 
. 

7J - @ 9 j 
d) Highest-energy branch from node 2 

10 J 

f) Tree constructed by node 8 

h) Highest-energy branch from node 3 

j) Tree constructed by node 8 

Figure 3.13: An example to construct a tree for node 8. Each node initiates its control message and 

node 8 incrementally updates its tree upon receiving any higher-energy branch initiated from them, 

resulting in a tree spanning all sources yet with the energy of 7 Joules. 
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a) Branch from node 5 b) Branch from node 6 c) Loop detected 

Figure 3.14: An example of how a loop could have been created if the root does not compare the 

existing routes with the newly-arrived one. In the above figures, the arrival of the route initiated by 

node 5 does not necessarily imply that the route to node 6 for what node 8 has seen so far is also from 

node 2. Loop is hence created as a result. 

identifies that the message carries a branch energy of 8 Joules. This is 2 Joules greater than 

what it has for node 6. By replacing the old branch with the newly-received one, node 8 will 

be able to increase its tree energy from 6 to 8 Joules. Finally, by receiving the messages from 

nodes 3 and 5 (Figures 3.13h and 3.13i), node 8 will create a tree spanning all sources yet 

with the energy of 7 Joules. 

Besides attaching new branches, each source is also responsible for preserving the loop-

free property of its tree during the update. In fact, some cares need to be taken in order to 

reject a branch that actually violates this property. Consider the same set of nodes with the 

energy of node 4 being changed to 8 Joules. The arrival of the branch shown in Figure 3.14a 

does not necessarily imply that those initiated by any parent on this branch are also received 

via node 2. By taking node 6 as an example, its initiated message could have first been 

received via node 4 by node 8 (Figure 3.14b). If the branch in Figure 3.14a is attached to the 

tree of node 8, a loop around nodes 8, 4, 6, and 2 (shown in Figure 3.14c) will be created. In 

other words, node 6 will spend twice its energy to transmit any data it generated or received. 

Therefore, to avoid creating loops and to reduce energy usage, each node always has to reject 

a branch when the already-attached ones for each parent on this branch do not match with it. 

We define the term initiator to be the source which initiates the message and treen be the 

tree created by node n. treen should have the format of a table as depicted in Table 3.1. In 
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other words, tree„ is where the branches are stored by the receiving node n. Also let Jj denote 

the set of initiators in treej and treeEk be the energy of treek. treeEk can be calculated by using 

the following equation: 

treeEk = min (brE- k } where psPk (3.5) 
JeJk 

Our description can be translated into the NoLoop function shown in Figure 3.15. This 

function takes the received branch as an input and tests if attaching it to the tree will not 

create a loop. Line 1 removes the message initiator i so that the branch only contains a list of 

parents. Line 2 ensures the already-attached branch for node k stored in treen matches with the 

route through which the received branch travels. Note that the function always accepts a 

branch of size less than 3 since a loop can only be created by adding a branch of size greater 

than 2 to its existing tree. 

NoLoop (node ID n, branch brList^iJ 
1 remove eidjfrom brListjjj, to get a new brListiJiP 

where I is the node at the tail ofbrListiJp andp e PQ 
2 if number of eids in brList\jP < 2 or (brListijj, \\ eid^ = brListinp (stored at tree,), 
3 return true 

Figure 3.15: The NoLoop function, which takes the received branch brListiJk as an input and test if 

attaching it to the tree in tree„ will not create a loop, n is the source running this function, i is the 

message initiator, and j is the node sending this branch, n, i,j s A'and k e Pjj. 

Table 3.1: The format of a tree for node n (pa e Pa„, pb s Pb„, and pc s Pcn) 

Initiators Branches Branch energy 

node a brLista,„iPa brEan pa 
node b brListbi„pb brEb,„iPb 

node c brListc^pc hrF 
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3.5.3 Searching a Lifetime-Preserving Tree for every Source 

Since each source n carries its unique tree structure stored in treen, the protocol requires every 

source to broadcast its tree and select the one with the highest tree energy for data aggregation 

among these nodes. Our objective is to create a tree rooted at node r such that: 

treeEr ^treeEn V / i eN,n& (3.6) 

Note that treeEr and treeE„ can both be calculated using Equation 3.5. In fact, there can have 

multiple different trees that yield the same tree energy. To break such ties, a number of other 

properties can be compared. For examples: tree depth, root energy, root ID, and node degree. 

Tree depth can be used to minimize the data latency. Root energy can be used to maximize the 

available resource of the root for possible tasks such as route coordination to distant sinks. 

Node degree can be used to minimize the power dissipation rate. In this work, we limit 

ourselves to use tree depth, root energy, and then root ID to break ties whenever necessary. 

Further work is required to evaluate the performance of the best tree selection by using other 

parameters. 

To illustrate the descriptions, consider Figure 3.16. By having each participating node to 

broadcast its selection, there will be 8 trees under the comparison. Among them, only the ones 

constructed by nodes 2, 3, 5, 6, and 8 comprise the highest tree energy of 7 Joules. We hence 

wish to select the tree created by node 3 as our lifetime-preserving tree and node 3 as our root 

since this tree has a lower tree depth than that by nodes 5 and 8, and a higher root energy than 

that by nodes 2 and 6. 

We define lptt to be the lifetime-preserving tree that a node i currently selects and IptE/ 

be the energy of lptt. Note that lpt„ initially equals to treen for all sources n. The SearchLPT 

function shown in Figure 3.17 describes the procedures to search a lifetime-preserving tree 

for each source. Line 1 allows the source to broadcast its initial selection. While a message is 

received from its neighboring node with tree information (line 2), lines 3 to 5 update the 
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selection of the receiving node if the received tree is better. Line 6 rebroadcasts the selection 

after the update. Note that we have explicitly assumed that each node has already created a 

tree spanning all event sources (i.e. each tree has N rows) before the function starts. Hence, 

the first two lines of the BetterTree function are always skipped. In practice, the number of 

event sources is not known a priori and each node will simply run a new SearchLPT function 

g) Tree constructed by node 7 h) Tree constructed by node 8 

Figure 3.16: The set of trees created by the sources in the event region. Only the one with the highest 

tree energy is employed for data aggregation among these nodes. By using the SearchLPT function 

shown in Figure 3.17, all the sources will select the tree created and rooted at node 3 for aggregation. 
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whenever it detects a new initiator. To ensure that only the selections with N number of rows 

in them are compared, we include the first two lines of the BetterTree function in order to 

filter out all outdated trees. In the following section, we will proceed to describe the 

implementation in practical WSNs. 

SearchLPT (node ID n) 

1 single-hop broadcast lpt„ 

2 while receiving Iptifrom node i (i ^n), 

3 if BetterTree (Ipt), 

4 , delete lpt„ and copy lptt to lptn 

5 calculate lptE„ by using Equation (3.5) 

6 single-hop broadcast lpt„ 

BetterTree (Ipt Ipt*) 
1 if § rows in lptx > # rows in lpt„. 
2 return true 
3 if (# rows in lptx = # rows in IpQ and (lptEx > IptEJ, 
4 return true 
5 if (# rows in lptx = # rows in IpQ, and (lptEx = lptE„), 

and (tree depth oflptx < tree depth oflpt„), 
6 return true 
8 if (# rows in lptx = # rows in IptJ, and (lptEx = IptE^), 

and (tree depth of Iptx = tree depth oflptj, and (ex> e„), 
9 return true 
10 if (# rows in lptx = # rows in IptJ, and (lptEx = lptE„), 

and (tree depth oflptx = tree depth oflpt„), and (ex - e„), and x < n, 
11 return true 
12 return false 

Figure 3.17: The SearchLPT function, which searches the lifetime-preserving tree for each source, n is 

the node running this function, n eN. The BetterTree function takes the received tree as an input and 

returns true if it has more entries or its tree energy is greater than that of what node n currently has. 

Tree depth, root energy, and then root ID are used to break ties whenever necessary. lptEx is the energy 

of the tree lptx which can be calculated using Equation (3.5). Tree depth of a tree lptx is the maximum 

number of eids of all the branches stored in lptx. 

3.5.4 Implementing the LPT Algorithm in Practical WSNs 

Having explained the overall design of the LPT construction, we now proceed to the 
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discussion of the control packet structure and any other implementation-related issue. 

According to what we have described earlier, a control packet should only comprise a brList 

and an Ipt for the ExploreBranch and SearchLPT function respectively. However, from our 

experiences, failure to receive a brList can lead to a tree that does not comprise the highest 

tree energy. We therefore choose to include the entire tree, i.e. a table containing all 

discovered initiators, brLists, and brEs, so as to maximize the chance of a neighbor 

successfully receiving each brList stored in this table. An additional restart flag for which we 

will describe its usage in the following paragraph is also included in the message. We define 

restartt to be a Boolean variable stored on node i and mn to be the control message sent by 

node n. The control message nij should have the format (restartj, treej, Iptj). Note that treej are 

Iptj can represent two different trees, treej is the tree created by node j (Section 3.5.2) whereas 

Iptj is the lifetime-preserving tree selected by node j (Section 3.5.3). When the algorithm 

converges, each source « should have an identical lifetime-preserving tree stored in lptn. 

Table 3.2 describes the packet structure of the LPT control message. Recall that Directed 

Diffusion [19, 20] is chosen as our routing platform. All control messages are hence wrapped 

with Diffusion packet structure. The 24-byte header contains information such as destination 

ID, source ID, packet number, and packet length etc. The 12-byte scope and type attributes 

control how Diffusion packets are being processed by the Diffusion core programmed inside 

each node. The 12-byte control type attribute describes the type of control messages that are 

being exchanged in the network. Finally, 12 bytes plus a space of variable size are allocated to 

encode all the LPT control information (i.e. restart,,, treen, and lpt„) for any particular network 

node n. Specifically, the first 12 bytes are required for the LPT control message attribute since 

4 bytes are reserved for the restart whereas 8 bytes are used to specify that the LPT control 

message is of type BLOB. An additional space of variable size is also required since the sizes 

of each tree and Ipt are initially unknown. However, 4 bytes are allocated for each initiator or 

brE (see Table 3.1) and 8 bytes are reserved for each eid in each brList (see Equation (3.4)). 
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Table 3.2: The packet structure of the LPT control message 

24-byte Diffusion header 

12-byte Diffusion scope attribute 12-byte Diffusion type attribute 

12-byte 

control type 

attribute 

12-byte plus a space of variable size 

binary interpretation 

of LPT control message attribute 

To ensure that data from each source can constantly arrive at the root via its parent, some 

maintenance is required to reconstruct another tree whenever a parent runs out of its energy. 

The protocol requires the root to periodically broadcast a hello message. All other nodes upon 

receiving this message from its parent shall simply broadcast its hello message to the network. 

Note that only the upstream connection towards a parent is scanned since it is the direction 

where data are sent. A timer that expires every T seconds and runs on every source is used to 

periodically scan the connectivity to its parent. Whenever a node loses connection with its 

parent, the restart flag in its control message is set on. Any other nodes that receive this flag 

with its flag set off will have to restart the entire process. In this way, a new tree with the 

broken link being taken into considerations will then be reconstructed. A typical value of T is 

25 seconds. 

We define h„ to be the hello message sent by node n and tKCVj be the time node i last 

received the hello message from its parent. Also, let Jj denote the set of initiators in treej. 

Figure 3.18 summarizes our algorithm. Again, single-hop broadcast refers to the operation of 

sending a control packet to all single-hop neighbors. Lines 1 and 2 restrict the messages to be 

exchanged within the event area. Line 3 broadcasts the initial control message and starts the 

maintenance timer. Line 4 creates an infinite loop. Lines 5 and 6, on the other hand, update 

the maintenance timer whenever a message is received. Since a node does not know where its 

parent is during the initial tree constructions, the node simply refreshes this timer upon 

receiving this message. Line 7 resets a node and restarts another round of tree constructions 
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Initialize: resettree„andlpt„ V n eJV 
create and append brList„t„,. to treen and lptn V n e N 
set restartn to be true V n e N 

DistributedLPT (node ID n, node energy e„, time t, timeframe T) 
1 ifn is not an event source, 
2 return 
3 else {single-hop broadcast m„ and start a timer F that expires in Tsec 
4 while true, 
5 if receiving a control message mj from node j, 
6 restart timer F 
7 
8 

re-initialize if restartj is true and restartn is false 
for each brListij^ in treej with i e Jj and k e Ptj, 

9 if NoLoop (brListjjik), 
10 if initiator i ofbrListij* not found in treen, 
11 append eid„ to brListijj, and update brEinp (p 
12 add brListi„iP and brEinp to tree„ 
13 calculate treeEn using Equation (3.5) 
14 else if min {en, brEiJik} > brEUn,q (q e PtJ, 
15 remove brListit„iq andbrEinqfrom tree„ 
16 append eid„ to brListjjj, and update brEiinp (p 
17 addbrListinp andbrEinp to tree„ 
18 calculate treeE„ using Equation (3.5) 
19 if a change applied to treen and BetterTree (treen) 
20 delete lpt„ and copy treen to lpt„ 
21 calculate lptEn using Equation (3.5) 
22 if BetterTree (Ipt), 
23 delete lpt„ and copy Iptj to lpt„ 
24 calculate treeEn using Equation (3.5) 
25 if a change applied to either tree„ or lpt„ 
26 settKCVf„ to bet 
27 update arid single-hop broadcast m„ 
28 if timer F expires, 
29 set restartn to be false 
30 ifn is the root of the tree in lpt„, 
31 single-hop broadcast h„ 
32 else ift > tKCV,„+T, 
33 re-initialize and single-hop broadcast m„ 
34 if receiving a hello message hj from node j, 
35 ifj is the parent of n in lptn, 
36 set tnmn to be t and single-hop broadcast h„) 

Figure 3.18: The distributed LPT algorithm, which creates a lifetime-preserving tree spanning all 

source nodes as vertices and contains no loops, n is the node running this algorithm and n e N. 
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upon receiving a restart flag. Note that this line is only processed when a broken upstream 

link is detected by the transmitting node. Lines 8 to 18 correspond to the ExploreBranch 

function we have described in Section 3.5.1. Each node scans the brLists discovered by the 

transmitting node and updates its corresponding table entry if a scanned brList is new or 

carries higher branch energy. Note that the NoLoop function described in Section 3.5.2 is used 

in line 9 to ensure that the attachment of any scanned brList to the existing tree structure of 

the receiving node does not create a loop. The tree energy is also updated in both lines 13 and 

18 by using Equation (3.5). 

Lines 19 to 27 correspond to the SearchLPT function described in Section 3.5.3. One 

major difference is the additional comparison between the Ipt and the tree that the receiving 

node has just updated (lines 19 to 21). The reason is to ensure the LPT that a node selects is 

always better than the tree it has created even after an update. Lines 22 to 24 replace the LPT 

with that from the transmitting node if the latter is better. Lines 25 to 27 update and broadcast 

the control message if a change is applied. Lines 28 to 36 correspond to the tree maintenance. 

Particularly, lines 30 and 31 broadcast the hello message if the node is a root when the 

maintenance timer expires. Lines 32 and 33 reset a node and inform all neighbors when the 

node loses connection with its parent. Finally, lines 34 to 36 allow a non-root node to transmit 

its hello message upon receiving that from its parent. Our algorithm has a complexity of 0(N2) 

since a node needs to scan at most N brLists upon receiving any control message (line 8) and 

to search at most Actable entries in either updating treeE or IptE (lines 13, 18, 19, 21, 22, and 

24). All other lines can be executed in a constant number of iterations. 

3.6 Discussions 

Our work has the same objective with EADAT [30], MLDA [31], DCTC [36], and the work in 

[37, 38]. Specifically, an aggregation tree that spans all event sources is constructed in order 
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to combine the reports sensed by them. Furthermore, the tree has a dedicated root for which 

data from various event sources are gathered. EADAT is similar to our scheme in that nodes 

with higher energy have a higher chance of becoming aggregating parent nodes. Both HEED 

[39] and EADAT are also similar to our approach in that residual energy are being considered 

in the cluster formation/tree construction, thereby enhancing the likelihood of distributing the 

loads of aggregation on higher-energy nodes. 

In contrast, EADAT differs from our approach in that timers are being extensively used. 

The result can be a long waiting time for the tree construction (Section 2.5.1). Furthermore, as 

with MLDA and the work in [37, 38], EADAT requires the prior knowledge or support from a 

given root (or base station) for the tree construction. Our scheme, on the other hand, does not 

require the root to be any particular event node. In terms of functionality, our root is the same 

as the base station/cluster head in [4, 37, 38] and DCTC. However, in terms of root selection, 

we consider residual energy of nodes inside the event region whereas they compare the link 

cost that associates with each of them. When a low-energy node is on the minimum-cost path, 

the aggregation tree will quickly get disconnected. Finally, HEED differs from the explicit 

tree construction approach (e.g., EADAT, MLDA, and our LPT scheme) in that only one layer 

of aggregation points exists, thereby increasing the loads of each cluster head. 

3.7 Summary 

In this chapter, we have described the construction of a lifetime-preserving tree (LPT). We 

first introduced the spanning tree and an energy-aware variant of it, namely E-Span. While 

residual energy has not been fully taken into the design considerations, these trees can have 

lower tree energy, implying that they are more often being refreshed and more maintenance is 

required. Previous work using the idea of a spanning tree (e.g. DCTC and [37]) falls under 

this category. This chapter continued by presenting both the centralized and distributed 
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implementation of the LPT construction algorithms. The centralized approach works by 

identifying the bottleneck node whereas the distributed one identifies the highest-energy tree 

by performing a search of the optimal route between any pair of event sources. In the next 

chapter, we describe the simulation methodology, metrics, and a set of experimental results 

comparing LPT with other schemes. 



Chapter 4 Simulation Results 

In this chapter, we describe the results from extensive simulations of an event-driven data 

sensor network. A packet-level simulator is used to explore the performance of the proposed 

schemes under various traffic conditions. The main purpose of our experiments is to examine 

whether the proposed distributed LPT module can provide accurate results as the centralized 

one, and whether such model can provide the additional lifetime-savings over other schemes. 

We also compare a range of other network parameters such as data delay and packet delivery 

ratio; in order to determine how much the network can be affected by the amount of control 

messages incurred during the tree constructions. The following systems are examined 

throughout most of our simulations: 

• Directed Diffusion [19, 20], or simply Diff; 

• Directed Diffusion with E-Span, or simply E-Span (Section 3.3); 

• Centralized LPT (Section 3.4); 

• Directed Diffusion with distributed LPT, or simply LPT (Section 3.5). 

We start by first describing the performance metrics under consideration as well as a detailed 

explanation of the simulation methodology in Section 4.1. Next, we validate the tree energy 

of the distributed LPT to that of the centralized model in Section 4.2. We then compare 

controls and tree depths of E-Span to that of the LPT in Section 4.3. Finally, performance 

results on the average energy dissipation, node lifetime, data delay, and packet delivery ratio 

by using Diff, E-Span, and LPT are reported in Section 4.4. 

56 
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4.1 Performance Metrics and Methodology 

57 

We implemented our tree construction modules on top of Directed Diffusion in the ns-2 [52] 

network simulator (the ns-2.26 release comes with diffusion support). In all of our 

experiments, a square sensor field with each side measuring L meters is being considered. A 

number of M identical nodes, ranging from 50 to 250 in the increment of 50, are randomly 

deployed in this sensor field such that the average node density is kept at X= 50/1602 nodes 

per meter square, a parameter which we borrowed from Directed Diffusion [19, 20]. 

Furthermore, there are five sinks randomly deployed in the field and sources are randomly 

chosen among the nodes, subject to the conditions that N = 0.1 M and the sources have to be 

interconnected to each other (to model a single stimulus). Each node is assumed to have a 

radio range of 40 meters. 

We considered an event-driven data sensor network throughout all our experiments. To 

model the periodic transmissions, each source generates random data reports of size fixed at 

136 bytes in constant intervals of R = 1 packet per second. To introduce some randomness, 

data start to be generated only after a time randomly chosen between t = 0 to 5 seconds. The 

data are collected at the root, if it exists, and sent to the sinks. An application that computes 

the average of reports generated by various event sources is employed to model the 

aggregation behaviors. During data collection, sensors have the abilities to perform in-

network aggregation of packets enroute to the root. Specifically, we meant that each sensor 

can combine the reports received with that from itself into a single packet containing the 

average of all the gathered reports. 

We altered the ns-2 radio energy model such that the sources carry different initial 

energy when the simulation starts. More specifically, for the node lifetimes to be presented in 

Section 4.4, we assign each source with an initial energy that is randomly chosen between 10 

to 15 J in order to keep the total simulation time at a reasonable limit. In all of our 
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experiments, all other nodes are given with an initial energy that is greater than that of any 

event source such that their absence in the network, due to energy depletion, do not affect the 

functionalities of any participating sources during data collection. Lastly, the idle time, 

receive, and transmit power dissipation are set at 35, 395, and 660 mW respectively. We 

assume a negligible energy cost to process and aggregate incoming data reports. To trace the 

energy, an application that logs the residual energy of each node in constant intervals of 500 

ms is employed. 

The ns-2 simulator implements a 1.6 Mbps 802.11 MAC layer. Since Directed Diffusion 

is chosen as our routing platform, we also adopt a range of Diffusion-related parameters 

(listed in Table 4.1) in all of our experiments. Table 4.2 provides a summary of all other 

parameters used in our simulation models. 

Table 4.1: A summary of Diffusion-related parameters 

Interest Packet Size = 84 bytes Interest Delay = 5 sec 

Exploratory Data Packet Size = 132 bytes Exploratory Data Delay = 30 sec 

A number of metrics are used to analyze the performance of the LPT and compare with other 

schemes. The percentage error measures how often the distributed LPT can generate a tree 

with the tree energy equal to that of the centralized approach. The average per source control 

computes the amount of control cost, in bytes, for each source involved in constructing and 

maintaining the data aggregation tree throughout a simulation run. The average tree depth 

measures the average distance, in number of hops, between an event source and its tree root. 

The maximum tree depth computes the maximum distance from a leaf to the root in a given 

tree. The average dissipated energy, on the other hand, measures the average amount of 

energy consumed throughout the entire simulation. This metric computes the average work 

done in delivering periodic data to the sinks over a simulation run. The average node lifetime 
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Table 4.2: A summary of other parameters used in the simulation models 

Item Symbol Value 

average node density X 50/1602 nodes/m2 

number of nodes Af 50, 100,150, 200,250 

number of sinks - 5 

number of sources N 10% of Af 

network width L (MX) 0 5 

node energy e„ variable 

data rate R 1 pkt/s 

protocol timeframe T 25 s 

E-Span control size s„ 92 bytes 

LPT control size m„ variable 

LPT hello size hn 
60 bytes 

data packet size - 136 bytes 

radio range - 40 m 

idle time power - 35 mW 

receive power - 395 mW 

transmit power - 660 mW 

MAC bandwidth - 1.6 Mbps 

energy log period - 500 ms 

measures the time at which a source runs out of its available energy resource. The intuition 

behind this metric is to determine how much additional time that each source can suffice by 

collecting data via the proposed tree structure. The average RtoS delay computes the average 

one-way delay observed between transmitting data from the root to each of the sinks. The 

average StoP delay determines the delay of transmitting packets from a source to its parent. 

The average delay measures the delay between transmitting data from each source to each of 

the sinks. Observe that both LPT and E-Span combines any data enroute to the tree root with 

the report from the receiving node itself. Moreover, the compressed data report does not leave 

the receiving node right after the averaging, but is postponed to the(next transmitting period. 

In order to estimate this delay for both LPT and E-Span, we adopt the following equation: 
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average delay = M a y R 2 S x r e c v S N K + (delay S2P x hop AVE + delay R2S)xrecvSRC 

recvSNK +recvSRC 

where delayR2s is the average RtoS delay, delayS2p is the average StoP delay, recvsm is the 

amount of data packets received by all sinks, recvSRc is the amount of data packets collected 

by all sources, and hopAVE is the average tree depth. Note that both application processing and 

queuing delays are included in all delay measurements. Finally, the average packet delivery 

ratio measures the ratio of the number of distinct messages received by each sink to the 

number originally sent (by the root if there is a tree). We study these metrics as a function of 

different network sizes. 

4.2 Tree Energy: Distributed vs. Centralized 

Our first experiment compares the tree energy generated by the distributed LPT to that of the 

centralized approach. The intuition is to understand how often the two different schemes can 

i • • 
generate trees with equal energy. Note that the results for each network size are averaged over 

100 different experiments. 

Our first set of results, depicted in Figure 4.1, have shown a near-100% match of the tree 

energy generated by the two different construction schemes, with only a little deviation when 

the number of participating sources is large. In fact, by logging all control message exchanges, 

our trace files have shown an increasing trend of message drops when network size increases. 

Since failure to receive a configuration message can possibly create a tree that does not have 

the highest tree energy, we conclude that the deviation is caused by the packet drops. 

However, we are able to limit this error to a small tolerable range by broadcasting the entire 

tree table, instead of a list of eids, in each configuration message (Section 3.5.4) so as to 

maximize the chance of any neighbor successfully receiving the lists stored in this table. 
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Figure 4 . 1 : Percentage error on tree energy generated by distributed LPT to that of the centralized one. 

4.3 Controls and Tree Depths: LPT vs. E-Span 

Figure 4.2 shows the average per source controls involved in the constructions of LPT and 

E-Span respectively. Our results, averaged over 20 experiments with a 95% confidence 

interval, have shown that the LPT can take up to as many as 40 times the control cost of 

E-Span, and this difference is expected to grow with increasing network size. The reason for 

such trend is due to the flooding nature of LPT branch discovery. Since LPT requires the eid 

from each source to traverse through most of other nodes whereas E-Span only forwards it 

one hop away, we do expect more control exchanges in the LPT model. 

Figure 4.3 shows the comparison of tree depth of LPT and E-Span as a function of 

network size. In fact, both trees are expected to grow in tree depths since a greater network 

size implies a greater region bounded by the sources. With radio range set at 40 meters, the 

root will have to traverse more hops before it can reach all the sources when this region 

expands. Also observe that both the maximum and average tree depths of LPT are lower than 

that of E-Span. Since the selection of the E-Span root is solely based on the node's energy, it 

is possible that this root is located at the corner of the region bounded by the sources. LPT, on 

the other hand, considers tree depth in the BetterTree selection algorithm (Section 3.5.3) and 
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is more likely to have the tree centered at this region. Therefore, we have, on average, a lower 

tree depth if LPT is deployed instead. 

50 100 150 200 250 

number of nodes with 10% sources 

Figure 4.2: Average per source controls (in bytes) involved in constructing the data aggregation trees. 
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250 

Figure 4.3: Maximum and average tree depths from each participating source node to the tree root. 

4.4 Performance: LPT, E-Span, and Diff 

To validate the impacts of data aggregation on energy savings by the use of LPT and E-Span, 
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we measure the average dissipation energy and have the results averaged across 20 different 

experiments with a 95% confidence interval. Note that the simulation time is set at 200 

seconds. Our results depicted in Figure 4.4 have shown a considerable amount of energy 

savings, down to 27% the energy dissipation of Diff, when data are aggregated via either LPT 

or E-Span prior to transmitting to each sink. Such a significant saving is expected since both 

trees efficiently suppress the amount of traffic in the network by combining data from various 

sources into a single packet containing the average of all the gathered reports. We expect that 

this difference will continue to grow with larger network size. Also observe that LPT has 

comparably equal dissipation energy as E-Span. This is encouraging, given that the amount of 

controls involved in the construction of LPT is greater than that of E-Span (shown earlier in 

Figure 4.2). We argue this by the fact that difference between the amount of controls for LPT 
i 

and E-Span is relatively much smaller than the total amount of data being injected. As a result, 

the average dissipation energy between the two will have an unnoticeable difference. 

In order to study the impact of LPT and E-Span on the lifetime-savings, we measure the 

node lifetime of each source as a function of network size for LPT, E-Span, and Diff 

respectively. Figure 4.5 to Figure 4.9 summarize our results. Note that each node is assigned 

50 100 150 200 250 

number of nodes with 10% sources 

Figure 4.4: Average dissipation energy as a function of network size. 
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with an initial energy that is randomly chosen between 10 to 15 Joules so as to limit the total 

simulation time at a controllable range. We therefore make the following observations: 

1. Both LPT and E-Span considerably extend the lifetime of each source, especially in 

a large network. In fact, the amount of lifetime:savings can go up to as high as 

147%' and 139%2 when data are aggregated through LPT and E-Span respectively. 

2. LPT has similar performance as E-Span in a smaller network. However, their 

difference starts to become more noticeable with increasing network size. In fact, 

our results have indicated a maximum of 13%3 additional lifetime-saving when 

there are 25 sources in the network. 

3. LPT and E-Span have a more pronounced difference between the tails of the curves. 

In other words, most of the lifetime-savings are achieved by higher-energy nodes. 

The impact of data aggregation is again validated in observation 1. By combining data reports 

from various event sources, both LPT and E-Span are able to suppress a considerable amount 

of data traffic in the network. Since less energy is now consumed in forwarding data traffic 

(shown earlier in Figure 4.4), there should be a noticeable lifetime-saving when data are 

collected via a tree. And this is indeed true as shown in the figures. 

Next, for observation 2, we argue that the chance of obtaining an identical tree structure 

by using LPT and E-Span, respectively, is relatively high when there are fewer sources. In 

fact, when all the nodes are within the radio range of each other, both LPT and E-Span will 

create an identical tree with the highest-energy node selected as the root and all other nodes as 

leafs (only one-hop away from the root). When this happens, the amount of lifetime-saving 

will be quite similar. As a matter of fact, LPT only has a more remarkable lifetime-saving 

1 In Figure 4.8 when there are 12 sources remaining, (191.4 - 77.4) / 77.4 = 147% for LPT. 
2 In Figure 4.8 when there are 13 sources remaining, (181.6 - 75.9) / 75.9 = 139% for E-Span. 
3 In Figure 4.9 when there are 3 sources remaining, (215.4 -96.1)/ 96.1 - (203.2-96.1)7 96.1 = 13% 
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Figure 4.5: Average node lifetime for each participating source with N = 50 nodes. 

0 50 100 150 200 250 300 

simulation time (sec) 

Figure 4.6: Average node lifetime for each participating source with N = 100 nodes. 



Chapter 4 Simulation Results 66 

0 30 60 90 120 150 180 210 240 270 

simulation time (sec) 

Figure 4.7: Average node lifetime for each participating source with N = 150 nodes. 
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Figure 4.8: Average node lifetime for each participating source with N = 200 nodes. 
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Figure 4.9: Average node lifetime for each participating source with N = 250 nodes. 

when there are more sources in the network. 

Our explanation for the last observation is two-fold: First, since lower-energy nodes are 

usually being selected as leafs, they are unlikely to collect data from other sources. Given that 

these leafs have the same initial energy in both schemes, the amount of lifetime-savings due 

to them will therefore be similar. Second, the fact that E-Span selects the highest-energy node 

as the root makes this node deplete sooner than all the others (due to its additional duties in 

route coordination, exploratory data flood etc). Since the roles of the E-Span root are usually 

rotated among higher-energy nodes, we expect this group of nodes to have an energy 

dissipation rate greater than all the others. The result is therefore a pronounced difference 

between the tails of the two curves. 

Our next experiment compares the average RtoS delay observed between transmitting a 

compressed report at the tree root and receiving it at each sink as a function of network size 

for LPT and E-Span respectively. Our results, depicted in Figure 4.10, exhibit a trend that 

increases with the network size for both schemes. As the network expands, the distance 

between the root and the sink increases. Consequently, the average RtoS delay increases. Also 
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observe that LPT has a similar performance with E-Span for a network of any size. Since the 

root selection does not depend on the positions of the 5 randomly-chosen sinks, the average 

distance between the root to each sink is similar for both schemes. Therefore, the difference 

of the delay between the two is insignificant. 

50 100 150 200 

number of nodes with 10% sources 

250 

Figure 4.10: Average RtoS delay between transmitting a data at the root and receiving at each sink. 

To determine the delay between any pair of a source and its parent, we measure the average 

StoP delay across 20 different experiments with a 95% confidence interval for LPT and 

E-Span respectively. Figure 4.11 depicts our results. Since more participating sources 

increases the MAC-layer queuing delay accordingly, the average StoP delay therefore 

increases with network size for both schemes. Next, observe that LPT again has a similar 

delay performance as E-Span. Since the rate at which the controls are generated is low (MT 

second), by fixing the data rate at 1 packet per second in both schemes, the amount of packets 

processed by the network will be quite similar. Hence, the difference of the average StoP 

delay between the two different schemes is negligible. 

Our next experiment compares the average delay, between transmitting a data packet at 

each source and receiving it at each sink, for Diff, LPT, and E-Span as a function of network 
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Figure 4.11: Average StoP delay between transmitting a data at a source and receiving at its parent. 

size. Recall that delay in this context is based on Equation 4.1 in Section 4.1 when a tree is 

used. Our results, depicted in Figure 4.12, have reported that Diff has its delay built up 

comparably faster than both LPT and E-Span. Since LPT and E-Span combine data from 

various sources, it is as if only a single source is generating. This is also true in a network 

with a large number of data sources. Given that the rate at which nodes can process the 

received data is limited, data delay usually goes up when there is more traffic in the network. 

As a matter of fact, both LPT and E-Span should have a comparably lower delay than Diff 

under all our test cases. 

Also observe from the figure that LPT has a slightly lower delay, although quite small, 

than E-Span. Given that the average tree depth (shown earlier in Figure 4.3) for LPT is lower 

than that of E-Span, data in the former are only required to be forwarded for a fewer number 

of hops before it can arrive at the sinks. However, since this difference is at most one hop, we 

can only see a little deviation here. 

Our last experiment, with its result depicted in Figure 4.13, measures the average packet 

delivery ratio for Diff, E-Span, and LPT, as a function network size, respectively. The figure 

indicates that Diff experiences severe congestion when there are a lot of data sources whereas 
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Figure 4.12: Average delay between transmitting a data at each source and receiving it at each sink. 
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Figure 4.13: Average packet delivery ratio between transmitting a data and receiving it at each sink. 
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LPT and E-Span are able to maintain their packet delivery ratios even when network expands. 

As we have explained in the last paragraph, Diff has its network overloaded with data traffic 

when more sources are sending. A considerable amount of data packets are therefore dropped 

as a result. LPT and E-Span, on the other hand, inject data to the sensor network as if there is 

only a single source. Thus, they are able to steadily maintain its packet delivery ratio even 

when the network is large. 

4.5 Summary 

In this chapter, we have simulated and compared LPT with other models such as Diff and 

E-Span. We validated that the tree energy of distributed LPT matches closely with that of the 

centralized scheme, especially when there is only a few sources. We continued by comparing 

tree depths and have shown that LPT is more-likely to center the tree in the middle of the 

region bounded by all sources. Our results on the average delay also indicated that such 

feature efficiently reduces the delay incurred during data collection. Moreover, our next set of 

results have shown that both LPT and E-Span exhibit a steady increase of the average energy 

cost, delay, and packet drop rate when the network size increases. Finally, our main results on 

the average node lifetime have reported a maximum of 139% lifetime extension on the 

sources with E-Span, and a maximum of an additional 13% improvement when LPT is used 

instead. 
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To meet the demands where raw data readings are usually aggregated along their ways to be 

gathered at a single source prior to transmissions to any interested sink, we have proposed in 

this thesis a novel Lifetime-Preserving Tree construction algorithm for future wireless sensor 

networks. The tree provides a given set of sources with a mechanism to collect their data so 

that only a minimum amount of energy is required to deliver the same amount of information 

to the sinks when data aggregation is not used. The protocol features in that nodes with higher 

energy are tend to be chosen as data aggregating parents, whenever possible, so that the time 

to refresh this tree is extended and therefore less energy are involved in the tree maintenance. 

In addition, by constructing the tree in such a way, the protocol is able to lower the amount of 

data lost due to broken tree links before the tree reconstructions. Another attractive feature of 

the protocol is that the tree is most-likely to be centered in the middle of the event area, 

thereby reducing the delay during data collection. In the next few sections, we will conclude 

this thesis with a summary of our contributions and directions for future work. 

5.1 Summary of the Thesis 

This research begins with an investigation to the conventional spanning tree and the energy-

aware variant of it for their uses in data aggregation. We have demonstrated that: 

• The conventional spanning tree fails to consider residual energy of nodes in the tree 

constructions. There is thus a good possibility that a low-energy node is arranged to 

forward data for some other nodes, thereby reducing its node lifetime and fastening 

the energy-depletion of any subsequent event source. 
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• E-Span improves the design of tree construction by assigning root to be the highest-

energy node. Such arrangement provides root with the maximum amount of energy 

resources for its additional duty in coordinating the route to distant sinks. However, 

there is still a high chance of assigning low-energy nodes to be the data aggregating 

agents for the other sources. 

To shorten the time and minimize the energy cost to tree reconstructions, and hence preserve 

the functional lifetime of all sources, we have proposed a lifetime-preserving tree construction 

algorithm which arranges all nodes in a way that each parent will have the maximal-available 

energy resources to receive data from all of its children. Such arrangement extends the time to 

refresh the tree and lowers the amount of data lost due to a broken tree link before the tree re

constructions. We have achieved the objectives by: 

• Introducing a distributed tree construction model to create a tree that spans all event 

sources and comprises the highest tree energy using a technique similar to Reverse-

Path Forwarding [51]; 

• Proposing a centralized variant of the LPT construction scheme which identifies the 

node that is causing a bottleneck to the set of connectivity provided by various event 

sources. 

We have simulated and compared LPT with other modules such as Diff and E-Span. We first 

validated that the tree energy of distributed LPT matches closely with that of the centralized 

scheme, especially when there is only a few sources. We continued by comparing the amount 

of controls and tree depths, and have shown that LPT is more-likely to center the tree in the 

middle of the area bounded by all sources. Such feature efficiently reduces the delay incurred 

during data collection. Moreover, our next set of results indicated a relatively steady increase 

of the average energy cost, delay, and packet drop rate for both LPT and E-Span when 
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network size increases, due to the amount of traffic suppressed by these two aggregation trees. 

Finally, results on average node lifetime have shown a maximum of 139% node-lifetime 

extensions on the sources with the E-Span, and a maximum of an additional 13% 

improvement when LPT is employed instead. In fact, LPT and E-Span have a more 

pronounced difference near the tails of the two lifetime curves, implying that most of the 

lifetime-savings are achieved by higher-energy nodes. 

5.2 Topics for Future Investigations 

In this thesis, we have described the construction of the proposed lifetime-preserving tree and 

analyzed its performance when comparing with Directed Diffusion [19, 20] and E-Span. 

Future research work remains to enhance the proposed protocol for future wireless sensor 

networks. They include: 

• Load-Balancing Tree [53, 54]: In addition to considering residual energy in the tree 

constructions, the number of children that a source is being attached to can also have 

a significant impact on its functional lifetime. Consider a simple 4-node LPT with 

the root attached to 3 other inter-connected nodes. The rate at which the root 

dissipates is nearly 3 times that of all the others. Depending on the initial energy 

levels of all the nodes, the root can become energy-depleted sooner than all the other 

3 nodes, even though we have already assigned the root to have the highest energy. 

If one of these 3 sources could have attached itself to the other two, rather than the 

root, the node lifetime of the root would have extended. Therefore, in order to 

balance and further extend the node lifetime, the load at which a node is assigned to 

should also depend on its residual energy level. 

• Disjoint Sets of Data Sources: We have simulated the performance of our proposed 
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LPT model based on the assumption that the sources are interconnected to each 

other. When there are multiple disjoint sets of data sources, for example in the 

presence of obstacles, multiple independent data aggregation trees will be created. 

An interesting question now is whether the traffic from various roots should be 

merged together. If so, an additional amount of energy cost that depends on the 

number of hops between these trees will be required to coordinate the routes 

between various roots. If not, the amount of traffic injected by various tree roots will 

just increase with the number of trees in the network. 

• Moving Target: The issue of tree-based collaborations for mobile-target tracking 

has been studied by the work in [36]. The authors have proposed a model to 

dynamically reconfigure a tree so that the root can constantly aggregate reports from 

nodes that detects the mobile target even when the target moves. Our scheme, in 

general, does not support the tracking of a mobile target. To overcome this issue, 

simple heuristics in predicting the target moving direction and additional 

maintenance efforts to add and prune tree links will be required to reconfigure our 

proposed lifetime-preserving tree structure. 
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