
THE CONSTRUCTION OF A LIFETIME-PRESERVING TREE

FOR DATA AGGREGATION

IN WIRELESS SENSOR NETWORKS
by

Wei Nan Marc Lee

B.A.Sc. The University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

. DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

November 2004

© Wei Nan Marc Lee, 2004

Abstract

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated

along its way to be collected at a single source prior to transmitting to any distant user, there

is a need to establish a tree structure inside any given event region. Such a tree provides event

sources with a mechanism to combine their readings, so that only a minimum amount of

energy is required to deliver the same amount of information to the user when data

aggregation is not used.

In this thesis, we propose a novel technique to create one such tree, which preserves the

lifetime of event sources while they are constantly transmitting, for data aggregation in future

WSNs. We use the term Lifetime-Preserving Tree (LPT) to denote this tree. LPT features in

nodes with higher energy tend to be chosen as data aggregating parents so that the time to

detect the first broken tree link can be extended. In addition, by constructing the tree in such a

way, the protocol is also able to reduce the frequency of tree reconstruction, which incurs an

additional energy cost to all the sources. Furthermore, the protocol minimizes the amount of

data lost after the network is impaired by the broken tree link. By choosing Directed Diffusion

as our underlying routing platform, our simulation results have shown that the functional

lifetime of event sources can be prolonged by a maximum of 139% when data are aggregated

via a modified spanning tree prior to transmission to distant sinks. Our proposed LPT scheme

can further extend this lifetime by a maximum of additional 13% without impairing the

average latency and packet delivery ratio. When tree depth is also considered in the tree

construction, our results have indicated that LPT is more likely to be centered at the event

region, thereby reducing its delay when comparing to the modified spanning tree model. We

expect all these differences to grow with an increasing number of event sources.

ii

Table of Contents

Abstract "

Table of Contents »>

List of Figures v

List of Tables viii

List of Acronyms * x

Acknowledgements xi

Chapter 1 Introduction 1

1.1 Motivations and Objectives 3

1.2 Contributions of the Thesis 7

1.3 Structure of the Thesis 7

Chapter 2 Related Work 9

2.1 Directed Diffusion 9

2.2 Data Dissemination .'. 10

2.2.1 Low-Energy Adaptive Clustering Hierarchy (LEACH) 11

2.2.2 GRAdient Broadcast (GRAB) 13

2.2.3 Geographical and Energy Aware Routing (GEAR) 14

2.2.4 Two-Tier Data Dissemination (TTDD) 15

2.3 Data-Centric Storage and Data Funneling 16

2.4 The Impact of Timing in Data Aggregation 17

2.5 Data Aggregation Trees and Clusters 17

2.5.1 Energy-Aware Data Aggregation Tree (EADAT) 18

2.5.2 Maximum Lifetime Data Aggregation 18

2.5.3 Minimum-Cost Convoy Tree 19

2.5.4 Spanning Tree over Area-Dominating Set 20

2.5.5 Balanced Convergecast Tree 20

2.5.6 Data Aggregation Clusters .20

2.6 Node Scheduling 21

2.6.1 Adaptive Self-Configuring sEnsor Networks Topologies (ASCENT).. 22

2.6.2 Connected Sensor Cover 23

2.6.3 Sparse Topology and Energy Management (STEM) 24

2.7 Discussions and Summary 25

Chapter 3 The LPT Construction 27

3.1 Network Model, Assumptions, and Definitions 27

iii

3.2 Problem Formulation 29

3.3 The Energy-Aware Spanning Tree (E-Span) 30

3.3.1 The Spanning Tree Protocol 30

3.3.2 The Energy-Aware Spanning Tree Protocol 33

3.4 The LPT: Centralized Approach 35

3.5 The LPT: Distributed Approach 40

3.5.1 Exploring the Highest-Energy Branch from every Source to any Root 40

3.5.2 Constructing a Tree Spanning all Event Nodes for every Source 43

3.5.3 Searching a Lifetime-Preserving Tree for every Source 47

3.5.4 Implementing the LPT Algorithm in Practical WSNs 49

3.6 Discussions 53

3.7 Summary 54

Chapter 4 Simulation Results 56

4.1 Performance Metrics and Methodology 57

4.2 Tree Energy: Distributed vs. Centralized 60

4.3 Controls and Tree Depths: LPT vs. E-Span 61

4.4 Performance: LPT, E-Span, and Diff 62

4.5 Summary 71

Chapter 5 Conclusions and Future Work 72

5.1 Summary of the Thesis 72

5.2 Topics for Future Investigations 74

Bibliography 76

iv

List of Figures

Figure 1.1: An example to show that if the residual energy is not considered in the tree

construction, it can reduce the node lifetime and the amount of information

gathered by the root 4

Figure 1.2: An example to show how the number of transmission paths can affect energy

efficiency 5

Figure 2.1: A simplified schematic for Directed Diffusion 10

Figure 2.2: A simplified schematic for LEACH 12

Figure 2.3: A simplified schematic for the credit-adjustable mesh forwarding 13

Figure 2.4: A simplified schematic of the two-tier data dissemination 15

Figure 3.1: An example to describe branch and tree energies 28

Figure 3.2: Problem formulation. Explore the highest-energy branch from each source to the

root by first assuming that every source is a root. Then, select the one with the

highest tree energy for data collection 30

Figure 3.3: The distributed spanning tree protocol, which creates a graph covering all source

nodes as vertices and contains no cycles 31

Figure 3.4: An example of the spanning tree protocol 32

Figure 3.5: An example of the E-Span protocol 33

Figure 3.6: The distributed E-Span protocol, which creates a graph covering all source nodes
as vertices and contains no cycles 34

Figure 3.7: An example of the bottleneck node 36

Figure 3.8: An example to search the lifetime-preserving tree in a centralized manner 38

Figure 3.9: An example to search the lifetime-preserving tree in a centralized manner........ 38

Figure 3.10: The centralized LPT algorithm, which creates a lifetime-preserving tree

spanning all source nodes as vertices and contains no loops 39

Figure 3.11: The ExploreBranch function, which explores the highest-energy branch from
every source to any tree root using a method similar to RPF 42

Figure 3.12: An example to search the highest-energy branch between nodes 5 and 8 42

Figure 3.13: An example to construct a tree for node 8 44

Figure 3.14: An example of how a loop could have been created if the root does not compare

the existing routes with the newly-arrived one 45

Figure 3.15: The NoLoop function, which takes the received branch brList^k as an input and

test if attaching it to the tree in tree„ will not create a loop 46

Figure 3.16: The set of trees created by the sources in the event region. Only the one with the

highest tree energy is employed for data aggregation among these nodes 48

Figure 3.17: The SearchLPT function, which searches the lifetime-preserving tree for each

source 49

Figure 3.18: The distributed LPT algorithm, which creates a lifetime-preserving tree

spanning all source nodes as vertices and contains no loops 52

Figure 4.1: Percentage error on tree energy generated by distributed LPT to that of the

centralized one 61

Figure 4.2: Average per source controls involved in constructing the data aggregation trees.

62

Figure 4.3: Maximum and average tree depths from each participating source node to the tree

root 62

vi

Figure 4.4: Average dissipation energy as a function of network size 63

Figure 4.5:-Average node lifetime for each participating source with N = 50 nodes 65

Figure 4.6: Average node lifetime for each participating source with N = 100 nodes 65

Figure 4.7: Average node lifetime for each participating source with N = 150 nodes 66

Figure 4.8: Average node lifetime for each participating source with N = 200 nodes 66

Figure 4.9: Average node lifetime for each participating source with N = 250 nodes 67

Figure 4.10: Average RtoS delay between transmitting a data at the root and receiving at each

sink 68

Figure 4.11: Average StoP delay between transmitting a data at a source and receiving at its

parent 69

Figure 4.12: Average delay between transmitting a data at each source and receiving it at

each sink 70

Figure 4.13: Average packet delivery ratio between transmitting a data and receiving it at

each sink 70

vii

List of Tables

Table 2.1: A comparison of data dissemination protocols 12

Table 2.2: A comparison of node scheduling protocols 22

Table 3.1: The format of a tree for node n 46

Table 3.2: The packet structure of the LPT control message 51

Table 4.1: A summary of Diffusion-related parameters 58

Table 4.2: A summary of other parameters used in the simulation models 59

viii

List of Acronyms

ASCENT Adaptive Self-Configuring sEnsor Networks Topologies

CDMA Code Division Multiple Access

DCS Data-Centric Storage

DCTC Dynamic Convoy Tree-Based Collaboration

Diff Directed Diffusion

E-Span Energy-Aware Spanning Tree

EADAT Energy-Aware Data Aggregation Tree

GEAR Geographical and Energy Aware Routing

GPS Global Positioning System

GRAB GRAdient Broadcast

IA Immediate Agent

ID Identifier

IP Internet Protocol

LEACH Low-Energy Adaptive Clustering Hierarchy

LPT Lifetime-Preserving Tree

MAC Medium Access Control

MEMS Micro Electro Mechanical System

MLDA Maximum Lifetime Data Aggregation

PA Primary Agent

RPF Reverse-Path Forwarding

STEM Sparse Topology and Energy Management

TDMA Time Division Multiple Access

TTDD Two-Tier Data Dissemination

WSN Wireless Sensor Network

x

Acknowledgements

I would like to express.my sincere thanks to my supervisor, Professor Vincent W. S. Wong,

for his guidance, advice, and support throughout the course of this thesis. I also wish to

express my gratitude to my colleagues, particularly Joo-Han Song and Yeming Lu, for their

help and comments on my simulation work.

Many thanks go to my family and friends, especially C. H. Lee and Alice H. H. Lui, for

their encouragement, understanding, and support throughout this difficult and yet rewarding

process.

xi

Chapter 1 Introduction

The rapid advances in wireless communication and Micro Electro Mechanical System

(MEMS) have made Wireless Sensor Networks (WSNs) possible. Such environments are

typically comprised of a large number of sensors being randomly and densely deployed for

detecting and monitoring tasks. These sensors, developed at a low cost and in small size (mm-

scale for smart dust motes [1]), are responsible for object sensing, data processing, storing,

and routing activities. Applications of such networks range from battlefield communication

systems (e.g. intrusion detections and target surveillance) to environmental monitoring

networks such as habitat monitoring, chemical sensing, infrastructure security, inventory and

traffic control etc. For example, sensors are distributed across a forest in order to report the

origin of a fire event when there is a significant increase in the average monitoring

temperature. Reference [2] provides a more thorough discussion on some potential WSN

applications. Unlike the conventional ad hoc communication networks, energy resources in

WSNs are usually scarce due to the cost and size constraints of sensor nodes. In addition, it is

impractical to replenish energy by replacing batteries on these nodes. Conserving energy is

thus the key to the design of an efficient WSN.

WSNs may deploy several hundreds to thousands of sensor nodes. Protocols in such

networks must therefore be scalable. Furthermore, since nodes are untethered and their

geographic positions are not pre-determined, these nodes may also need to possess some self-

organizing capabilities. Network dynamics that result from both node movement and

unpredictable energy depletion also bring new challenges to the design of an efficient WSN.

Since nodes can only carry limited battery resources, they usually get disconnected from the

network easily. Such frequent node disconnections suggest that the design must accommodate

1

Chapter 1 Introduction 2

topology changes. In summary, the fulfillment of all the above conditions requires a unique

rather than conventional ad hoc networking techniques.

Perhaps the most significant difference between Internet-based distributed systems and

WSNs is the collaborative efforts provided by sensors. Each node in an Internet-based system

competes with all other nodes for a fair share of network resources in order to run tasks and

applications of its own. Per-hop fairness is thus the primary concern. WSNs, on the other

hand, are not general-purpose communication networks. They rely on the collective

information provided by sensors but not on any individual sensing report. Most sensor nodes

are task-specific in that they are all programmed for one common application. A node at one

specific time may be granted more access to the network than all other nodes if the program

objective is still satisfied. For this reason, network resources are shared but it is not necessary

that they be equally distributed as long as the application performance is not degraded.

Since sensors are being densely-deployed in WSNs, the detection of a particular

stimulus can trigger the response from many nearby nodes. Thus, data in such networks are

usually not directly transmitted to interested users upon event detection. Instead, they are

aggregated with neighboring sources locally to remove any redundancy and produce a more

concrete reading [3-6]. Throughout the rest of this paper, we use the term sinks to denote

these interested user nodes that inject queries to the network. Intermediate nodes do not

simply forward data to next hops, but can also interpret any data using their local processing

abilities if required.. Reference [7] suggests that transmitting a data packet of size 1 Kb to a

distance 100 m away is equivalent to executing 3 million instructions on a general-purposed

computer. Therefore, it is preferable to perform any local computation or in-network

processing in order to minimize communication cost and optimize energy efficiency.

In this thesis, we focus on constructing a data aggregation tree among any given set of

source nodes. The tree has a dedicated root for which the data from various sources are

gathered. Moreover, the tree is structured in a way that can preserve the functional node

Chapter 1 Introduction 3

lifetime of the event sources subject to the condition that they are constantly transmitting. The

functional node lifetime is defined as the time till a node runs out of its energy.

Reference [8] suggests that extending the node lifetime is equivalent to increasing the

amount of information gathered by the tree root when the data rate is not time-varying. We

consider a network of randomly-deployed sensor nodes in which each node has an identical

transmission range. An event that triggers the sensors around it occurs at random in the

network. Data reports from these sensors are clock-driven upon event detection. Furthermore,

they are aggregated along their ways to be collected at the tree root and periodically sent to

the sinks. To prevent data lost, the tree is periodically scanned and any broken link should be

repaired whenever necessary. We therefore wish to evaluate the additional amount of time that

the event sources can survive, provided that the tree is employed for data gathering.

1.1 Motivations and Objectives

To enable data aggregation among event sources and to reduce the communication cost, there

is a need to establish a converged tree structure inside any given event region. Such tree

allows all raw data reports to be aggregated along the way to a single processing point. Only

relevant information is extracted before transmitting it to any distant sink. Therefore, the

converged tree construction becomes one of the fundamental issues for aggregation in WSNs.

In fact, not all the trees are ideal for aggregation inside the event region. Since energy is

usually scarce in WSNs, it is most power-efficient if these sources can provide data to the

sinks for the longest possible time. A tree that can survive for longer duration thus naturally

becomes the best choice.

To better illustrate this idea, consider a simple multicast tree that is used to collect data

from 5 different sources (depicted in Figure 1.1a). Since all nodes have the shortest distance

to the root (i.e. node A), such a tree allows data to be gathered with minimum latency. Despite

Chapter 1 Introduction 4

energy 10 J energy 10 J

energy 8
•+ *• comm. link

• tree link energy 81

energy 9 J
energy 3 J

a) Source-based multicast tree b) Lifetime-preserving tree

Figure 1.1: An example to show that if the residual energy is not considered in the tree construction, it

can reduce the node lifetime and the amount of information gathered by the root: a) The fact that node

B has a dependent child quickly depletes its energy and thus data from node C will no longer be

received, b) The time to reconstruct a tree is extended if node C is attached to D instead.

this, the fact that the lowest-energy node B has a dependent child of node C can indeed

deplete its valuable energy resources quicker than i f node C was attached to node D (Figure

1.1b) . O f course, node D wi l l have a higher energy dissipation rate than what it had before.

However, by balancing the lifetime of each individual node, the frequency of tree

reconstruction (which repairs any broken tree link and incurs an additional energy cost from

each source) can be reduced. Also observe that any information generated by node C wil l

never arrive at node A prior to restoring the disconnected tree. Attaching nodes C to D would

have prevented it from happening. We thus conclude that residual energy during tree

construction plays an important role in determining the functional lifetime of event sources

and the amount of information gathered by the root.

To address these problems, we construct a tree in which each parent node has the

maximal-available energy resource to receive data from its children so that the time to refresh

this tree is extended. We accomplish this by assigning nodes with higher energy to be the data

aggregating parents for lower-energy nodes. In case this is not possible, see for example node

D in Figure 1 .1b , we wil l arrange the best neighbor to be its parent. We name this tree the

Lifetime-Preserving Tree or simply LPT. For the purpose of tree construction, we also define

the tree energy to be the minimum residual energy of all the parents in a given tree. Such term

Chapter 1 Introduction 5

shall directly reflect the time until the first broken tree connection is detected. For example,

the two different trees in Figure 1.1a and Figure 1.1b have the tree energy of 3 and 8 Joules,

respectively.

Over the past few years, there has been a number of data routing protocols proposed for

WSNs [9 - 20]. Directed Diffusion [19, 20] is among the first to provide a complete and

simple routing infrastructure for large-scale WSNs. We therefore choose it as our routing

platform and use it to evaluate the energy savings as well as the additional amount of time

that the sources can survive by launching our proposed tree construction algorithm. Although

there exists some data forwarding tree structures from sources to each sink when user queries

are first flooded to the Diffusion network, such arrangements do not fulfill the purposes of

data aggregation for the following reasons:

• Depending on how the sinks choose the transmit paths, different sources can

forward their data to the sinks via entirely different paths even if they are next to

each other (see Figure 1.2a). It is thus most efficient if a single piece of aggregated

data can be transmitted to each sink through only a single path (see Figure 1.2b).

• Packet drop rates depend on the amount of network traffic. As the number of

a) Transmission via different paths b) Transmission with aggregation

Figure 1.2: An example to show how the number of transmission paths can affect energy efficiency: a)

A large number of intermediate sensor nodes are involved in transmitting raw data reports to the sinks,

b) Only a portion of these nodes are now transmitting data reports provided that aggregation is carried

out on a pre-established tree a priori.

Chapter 1 Introduction 6

transmit paths increases, areas near the sinks and the sources may become congested.

Nodes thus need to spend more time and energy for retransmission.

• Transmit paths in Directed Diffusion usually span wide, and therefore sources could

redundantly send their data for a number of hops away before these data can actually

get aggregated at intermediate nodes (see the bolded arrows in Figure 1.2a). The

number of data transmissions involved can be brought to a minimum of 1 (see the

bolded arrow in Figure 1.2b) for each source if a tree is properly structured inside

the event area, provided that these sources are inter-connected to each other.

• Diffusion nodes possess only local information, i.e. they know their data-forwarding

and requesting neighbors but not any information on how the tree is being structured.

It is thus unknown as to how long they should hold the sensed data for aggregating

with those from other sources before passing it on to the next hop.

To enable data aggregation among the sources and transmit data to each sink via a single path,

research must therefore be conducted in order to construct a lifetime-preserving data

gathering tree inside any given event region. The main objectives of this thesis are as follows:

• Design a distributed lifetime-preserving converge tree construction protocol for data

aggregation in WSNs;

• Validate that the constructed tree does have a tree energy greater than other tree

structures, by using a centralized approach;

• Evaluate the energy savings and the additional amount of time that the sources can

survive, by implementing the proposed protocol on top of Directed Diffusion, under

different traffic scenarios;

• .Compare other relevant network parameters such as average delay and packet

delivery ratio and determine the amount of control messages incurred during the tree

Chapter 1 Introduction 7
construction.

1.2 Contributions of the Thesis

The main contributions of this thesis are as follows:

• Spanning Tree Construction Scheme: To examine how different tree arrangements

can have an impact on the functional lifetime of various event sources, we propose

the spanning tree construction scheme and an energy-aware variant of it. Both

heuristics are simple to implement, but may not 'be optimal in preserving the

functional node lifetime.

• Lifetime-Preserving Tree Construction Scheme: The term "tree energy" is

introduced to reflect the time till detecting the first broken tree link of any tree

created by the set of connectivity in the event area. A distributed tree construction

scheme is proposed to generate an LPT spanning all event sources for data

aggregation in practical WSNs. A centralized variant of the LPT construction model

is also proposed to validate the correctness of the tree created by the distributed

approach.

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows: In Chapter 2, we describe some previous

work on routing, particularly Directed Diffusion [19, 20], for WSNs. Furthermore, techniques

and related issues on data aggregation are introduced. A summary of some previous work on

aggregation tree constructions are also presented. This chapter continues by exploring some

node scheduling algorithms, which are an alternate way to conserve energy in sensor

Chapter 1 Introduction 8

networks. The proposed LPT construction models, both the centralized and distributed

version, are presented in Chapter 3. Moreover, a modified spanning tree protocol which we

use to compare with our scheme is also described. Descriptions on simulation methodology

and performance metrics used for comparison of protocols are presented in Chapter 4.

Numerical results and discussion are also presented. Finally, Chapter 5 concludes this thesis

with suggestions on some improvement and future work.

Chapter 2 Related Work

This chapter begins by reviewing the Directed Diffusion [19, 20]. Several other data

dissemination protocols that focus on the construction of a communication infrastructure for

successful packet delivery will also be summarized. This chapter continues by discussing

some in-network aggregation techniques which are now seen as fundamental to WSNs. The

timing policies that address how long a sensor should wait to receive data from its

data-forwarding neighbor before aggregation can also have a significant impact on the data

accuracy, and freshness. A summary of some aggregation tree construction techniques is also

presented. Besides aggregation, another way to conserve energy in WSNs is to simply put

some nodes into the sleep state. The only question lies in how to coordinate these sensors in a

way that can maximize the energy-savings yet still preserve the initial communication

capacity and sensor coverage [21 - 24]. Some node scheduling algorithms proposed in the

literature are reviewed at the end of this chapter.

2.1 Directed Diffusion

Over the past few years, there has been a number of data routing protocols proposed for

WSNs. Directed Diffusion [19, 20] is among the first to provide sensors with a scalable and

robust routing mechanism. Under large-scale and dynamic WSNs, the easiest way to achieve

robustness is to flood queries and allow data to be returned to all requesting nodes. However,

broadcast storms created by flooding can rapidly drain sensors' energy resources and bring

down the entire network. Directed Diffusion differs in that all interests (defined as the queries

injected by the sinks) and data are described using low-level abstractions rather than unique

node identifiers [25]. Such data-centric naming scheme allows nodes to easily process any

9

Chapter 2 Related Work 10

data in the network. For instance: data messages with matching descriptions but different

destinations are combined at intermediate nodes before they are being transmitted to upstream

neighbors. In addition to such feature, aggregation and caching are also incorporated into the

design. Aggregation requires only one copy of the matching interests to be forwarded to

down-stream sensors, effectively scaling down the query traffic periodically injected by the

sinks to the network. To increase robustness, caching is used to set up the gradients to each

requesting node, allowing periodic exploratory data from each source that matches with the

interests to be drawn towards the sinks through a multiplicity of different paths. To further

minimize energy, path reinforcement follows to reduce these paths to a smaller number.

Figure 2.1 illustrates these operations. As previously mentioned, the fact that it does not use

any global information results in sub-optimal transmit paths. In the worst case, different

sources can send their data to sinks via entirely different paths even if they are next to each

other (Figure 1.1a). This routing scheme can be power-inefficient and is the motivation of our

research.

a) Interest propagation b) Exploratory data c) Reinforcement and data

Figure 2.1: A simplified schematic for Directed Diffusion: a) User interests, represented by the low-

level attribute-value pairs, are broadcasted and processed at intermediate nodes, b) The exploratory

data set up the gradients towards the sink with the aid of data caches, c) Reinforcement reduces the

multiplicity of transmit paths to a small number, allowing only high-quality data to be drawn towards

the sink.

2.2 Data Dissemination

Conventional ad hoc routing protocols can be divided into two main categories: proactive and

Chapter 2 Related Work 11

reactive. Proactive routing maintains the shortest path but requires periodic update of the

routing entries for all destination nodes. A change in link cost will trigger excessive updates

of routing tables and thus waste valuable energy resources. For this reason, proactive routing

cannot be directly applied to energy-constrained and dynamic WSNs. Reactive routing on the

other hand creates routes on-demand. It trades off the delay of route discovery for less

message exchanges and thus is suitable for WSNs. A special routing technique that has

recently drawn attention is geographic routing [9, 26]. It greedily forwards data to all

destinations without sacrificing much energy resources or delay. However, it does require all

sensors to be location-aware. The following sections will introduce several existing data

dissemination techniques that provide a similar type of routing support as Directed Diffusion

for different kinds of network activities, and they are briefly compared in Table 2.1 and [27]..

2.2.1 Low-Energy Adaptive Clustering Hierarchy (LEACH)

Data transmissions are not always event-triggered, and sometimes need to be performed at

regular intervals and destined to a fixed location. Using conventional multihop routing would

require packets to be excessively processed at nodes close to base station, which refers to a

fixed location where data are destined. Using direct transmissions on the other hand would

dissipate a large amount of transmit power for far-away nodes. When the transmit distance is

short, direct transmission can actually achieve greater energy savings than multihop routing.

LEACH [10], motivated by this result, leverages the advantage of small transmit distances to

local cluster heads for most sensor nodes and requires only the cluster heads to transmit long

distances to the base station (depicted in Figure 2.2). One way to reduce the amount of

communication is to incorporate data aggregation on the cluster heads before sending out

packets to the base station. The roles of the cluster heads are rotated randomly so that the

energy loads can be shared among the sensors. Time Division Multiple Access (TDMA)

schedules are also created for each cluster node in order to avoid excessive contentions of the

Chapter 2 Related Work 12

Table 2.1: A comparison of data dissemination protocols

Protocol

name
Algorithm descriptions Special remarks

Network

structure

Location

aid

Directed

Diffusion

[19,20]

On-demand flooding with interest/data

aggregation, gradient caching, and path

reinforcement

No global information

resulting in suboptimal

paths

Flat No

LEACH

[10]

Dynamic clustering with periodic direct

transmissions to base station, TDMA

scheduling and data fusion inside clusters

Require variable

transmission power on

sensor nodes

Clusters No

GRAB

[11]

Credit-based adjustable mesh forwarding

to deal with failures and channel errors,

power management using density control

Per-sink cost field

setup using delayed

broadcast

Flat No

GEAR

[9]

Geographic and energy-aware query

dissemination to target region, recursive

geographic routing or restricted flooding

inside target region

Require knowledge of

energy level to all

nodes

Flat Yes

TTDD

[12]

Per-source grid construction to limit

query flooding, trajectory forwarding to

deal with sink mobility

Redundant grid

construction and

maintenance

Grids Yes

Figure 2.2: A simplified schematic for L E A C H : Randomized rotation of local cluster heads allows

load-balancing, data aggregation on all cluster heads reduces the communication costs to the base

station, but all cluster heads need to directly transmit data reports to a fixed base station.

Chapter 2 Related Work 13

channel and to allow sensors to effectively turn their radios off when not actively

transmitting.

One extension of LEACH is to use multihop routing to replace direct communication for

cluster heads. Such a method removes the requirement of high-power nodes since they now

only need to forward data to nearby intermediate cluster heads. Instead of choosing cluster

heads randomly, one can take the residual energy into considerations. This change allows

sensors with a higher energy to be selected as cluster heads.

2.2.2 GRAdient Broadcast (GRAB)

GRAB [11] is a data forwarding protocol that focuses on resolving network dynamic in

WSNs. The idea behind GRAB is to employ credit-based adjustable mesh forwarding (see

Figure 2.3a) through the sensor nodes initially configured by a sink-initiated cost field setup.

Each packet is assigned with credits in addition to the optimal shortest-path cost for

transmission. Such a scheme allows data to be delivered through different overlapping paths

rather than a single optimal shortest path. The packet will eventually arrive at the sink through

at least one of the working paths even if some intermediate nodes malfunction or if the

channel gets corrupted. In comparison with the explicit multiple path approach (depicted in

Figure 2.3b), a mesh forwarding structure provides richer connectivity and increases the

a) Credit-adjustable mesh forwarding b) Multipath forwarding

Figure 2.3: A simplified schematic for the credit-adjustable mesh forwarding: a) Al l packets are

assigned with credits for transmission through the nodes initially configured by a sink-initiated cost

setup using deferred broadcast, b) Simple multipath forwarding structure does not provide the rich

connectivity as credit-adjustable mesh forwarding.

Chapter 2 Related Work i 14

robustness of the design.

GRAB assumes a static network since node movement will require excessive updates of

the cost field. As with Directed Diffusion, GRAB fails to consider aggregation among a group

of sources at the early stage. When the number of sources increases, the fact that each source

will be equipped with its own mesh data forwarding structure can quickly drain nodes' energy.

2.2.3 Geographical and Energy Aware Routing (GEAR)

A special routing technique that has recently drawn attention is geographical routing. GEAR

[9] is a protocol that further takes residual energy into consideration and is designed to

efficiently disseminate queries to a destination. Motivated by the fact that queries are often

geographical (i.e. they have a target area), packets are directly forwarded to the destination

rather than flooded everywhere. GEAR assumes that nodes are aware of their own geographic

positions, and uses energy-aware neighbor selection to aggressively route the queries toward

the target region. In addition to the distance to destination, neighbor's residual energy is also

considered in the cost function so that energy load among any neighborhood can be balanced.

The tradeoff, however, is the increased path length used to transmit the queries since energy-

efficient paths are not necessarily the shortest. Restricted flooding or recursive geographical

forwarding immediately follows to disseminate packets inside the area once the queries have

arrived at the border of the region. The difference of the two lies in the type of transmissions,

namely broadcast and unicast. The choice of which one to use depends on the relative energy

cost determined by the node density of the destination area.

The conventional minimum-energy path approach differs from the GEAR energy-aware

neighbor selection algorithm in that a path in the former approach is selected for transmission

whenever the total energy cost along this path is the lowest among all choices. Unfortunately,

doing this will only cause nodes on this path to be extensively used and nodes' energy to be

depleted quickly [13].

Chapter 2 Related Work 15

2.2.4 Two-Tier Data Dissemination (TTDD)

TTDD [12] is a data dissemination protocol designed to deal with the issue of sink mobility in

WSNs. Mobile sink often requires frequent location updates by flooding location information

throughout the entire network, so that future data can be correctly forwarded to the mobile

destination. Such a repetitive broadcasting operation not only increases collisions in the

transmissions, but more importantly also drains the battery of sensors resulting in a reduction

of network lifetime. TTDD employs a mobile Internet Protocol (IP) -like trajectory

forwarding strategy in which location information is only updated between the immediate

agent (IA) and primary agent (PA) of the mobile sink. To enhance scalability, robustness, and

load-balancing, a per-source grid structure is created so that only a portion of nodes, namely

the dissemination nodes, is involved in delivering data reports to the mobile sink. Such an

approach ensures that queries are only flooded in local cells, thereby effectively reducing the

amount of traffic to be spread over the entire network. Figure 2.4 illustrates these operations.

As with GEAR, location discovery is required for grid constructions. Data aggregation

among the sources is also required so that multiple different grid structures will not be created

for nodes that detect the same event.

Q J O - Higher/lower-tier data grid/trajectory forwarding
) —g i nk O ^Higher/lower-tier query grid forwarding

O 0 \

Mobile sink,

o

Figure 2.4: A simplified schematic of the two-tier data dissemination: A higher-tier data grid structure

is created for each source allowing queries to be flooded in lower-tier grid only, and trajectory

forwarding is employed so that the most recent location of the mobile sink is only updated with the

primary agent.

Chapter 2 Related Work 16

2.3 Data-Centric Storage and Data Funneling

One way of achieving in-network aggregation is to deploy a data-centric WSN where all data

are named with communication abstractions rather than unique node identifiers [25]. Unlike

other conventional IP-based networks which are usually associated with a directory service,

nodes in data-centric network describe their data by using attribute-value pairs. For instance:

a message describing a fire event may only contain a TYPE attribute with a value set to FIRE.

Such a technique not only enables efficient reduction of redundant messages that arrive with

the same content description, but also avoids identifying nodes. This data-centric approach is

now seen as fundamental to WSNs. The Data-Centric Storage (DSC) [28] stores data by

names at some nodes. These nodes are not necessarily the ones that generate the data. In

comparison with the data-centric routing where query has to be first flooded to the network

before any data can be returned to the sinks, all messages with the same descriptions will be

directed and stored at a designated sensor upon detection. The DCS approach avoids

extensive query flooding and subsequent updates of the querying messages. However, it

requires extensive routing support in order to correctly direct the sinks to the storage nodes

for the desired data.

Reference [4] explores the problem of minimizing the communication costs required to

send the readings from a set of sensors, bounded by some geographic coordinates, to a single

destination node. Data funneling which integrates both data aggregation and compression is

proposed to meet the objective. This work is motivated by the fact that packet overhead often

makes up a large component of sensing data. Since all sensors within the source region have a

common sink, substantial savings can be achieved if different readings can be combined into

a single super-packet containing only one packet overhead. All sensors within this region will

select a common dynamic cluster head and have their readings aggregated along the way to

the node using proper scheduling. The choice of order in which readings are arranged in the

Chapter 2 Related Work 17

super-packet can also be used to convey additional information to the sink. The cluster head

can thus choose to suppress some readings and arrange others in such a way that can indicate

the value contained in the suppressed readings. However, the tradeoff is the additional

hardware complexity required for encoding and decoding.

2.4 The Impact of Timing in Data Aggregation

The timing policies that decide how long a node should wait to periodically receive data from

its source neighbors can have a significant impact on data accuracy and freshness. Authors in

[29] compare three different timeout models: periodic simple, per-hop, and per-hop adjusted.

Periodic simple works by having each node wait a pre-defined period of time before sending

out its aggregated data whereas periodic per-hop transmits the result as soon as it hears from

all its data-forwarding neighbors. In their proposed periodic per-hop adjusted timing model,

each node schedules their timeout right before its parent does. Such cascading timeout results

in creating a data wave reaching the sink in one data collection period. Extensive simulations

have shown that, among the three models, only the periodic per-hop adjusted approach can

preserve the initial power-savings and maintain the highest percentage of data freshness at the

same time. Their work builds on top of a simple tree establishment protocol that sets up

reverse path from all nodes back to the sink after an initial querying.

2.5 Data Aggregation Trees and Clusters

Our work bears some resemblance to other research efforts in the literature. In fact, a number

of recent work has begun to consider collaborating nearby sensor nodes by the use of a data

aggregation tree/cluster. Such tree/cluster provides event sources with a mechanism to refine

their readings, so that only a minimum amount of energy is required to deliver the information

Chapter 2 Related Work 18

to the user. In this section, we provide a summary of these construction techniques.

2.5.1 Energy-Aware Data Aggregation Tree (E A D A T)

The work in [30] attempts to construct a tree rooted at a base station and spanned all network

nodes by extensive use of timers. Motivated by the fact that only non-leaf nodes in the tree

are aggregating and relaying traffic, radios of all leaf nodes are turned off for immediate

energy savings. The nodes with higher residual energy have a higher chance to become non-

leaf tree nodes, thereby enhancing the likelihood of turning off lower-energy leafs. However,

when all the tree nodes are also the event sources (i.e. the tree is inside the event area), each

of them possess some sensor readings and therefore all leafs cannot be put to sleep. The

algorithm requires a given tree root (base station) to initially broadcast a control message and

start the tree construction. Each node upon receiving this message for the first time starts a

timer that expires in a time duration inversely proportional to its residual energy. A timer is

refreshed if a node receives a message during the count down. After the timer expires, the

node broadcasts a similar control message indicating its willingness to be a parent in the tree.

During the process of timer update, each node selects an appropriate parent for

communication with the root. Observe that a timer can be extensively updated when the

network is large, especially for leaf nodes. The result can be a long waiting time for the tree

construction.

2.5.2 Maximum Lifetime Data Aggregation

Reference [31] attempts to find a schedule of various directed trees, subject to the requirement

that the number of rounds during which a base station can aggregate information from all the

nodes via these trees is maximized. The protocol assumes that nodes are aware of every

others' positions and have the abilities to directly reach any other sensor (including the base

station) in the network. Such a Maximum Lifetime Data Aggregation (MLDA) problem is

Chapter 2 Related Work 19

approached by coordinating the radio ranges and data aggregating agents of various nodes in

a way that the resultant flow of traffic towards the base station maximizes the system lifetime.

In practice, the knowledge of exact sensor positions is usually not known a prior; due to

the ad hoc manner in which nodes are deployed. By including Global Positioning System

(GPS) to all the nodes can be expensive. By running an efficient location discovery scheme

(e.g. [32 - 35]) on the other hand will also incur an additional control cost to all nodes.

Moreover, the abilities to adjust node's radio range will not always be feasible to WSNs. A

closer analysis is hence required to justify the impact of their assumptions on the system

lifetime.

2.5.3 Minimum-Cost Convoy Tree

More recent work has begun to consider collaborating nearby sensor nodes to generate a more

concrete report of the object being traced. Such issue has been recognized by [36] which

further provides a dynamic convoy tree-based collaboration (DCTC) framework for tracking a

mobile target. Using some heuristics in predicting the object moving direction, they proposed

a tree construction algorithm that can dynamically configure itself by adding or pruning some

sensors as the target moves. The root can dynamically collect and refine the readings gathered

from various tree nodes. The challenge of their work lies on finding a sequence of minimum-

cost trees, so called minimum-cost convoy tree sequence, whose coverage on the moving

object is above a certain threshold. The tree they have considered is the one that has the root

being closest to the target. Furthermore, all other nodes are arranged in a way that the cost of

sending a packet via some nodes to this root is minimized. However, the authors did not

consider the ability of sensors to perform in-network aggregation of data enroute to the tree

root. The cost of sending a packet to the root needs to be re-evaluated so as to account for the

effort of any parent being able to combine the data gathered from all of its children.

Chapter 2 Related Work 20

2.5.4 Spanning Tree over Area-Dominating Set

Since the coverage area of individual sensor nodes usually overlaps, the work in [37] attempts

to periodically find the smallest subset of nodes that covers the monitoring area. This group of

nodes is referred to as the area-dominating set. The authors in this paper suggest the use of a

spanning tree, induced by the initial interest flooding over the area-dominating set, for

aggregating reply messages from various event sources. Specifically, a node belonging to this

set considers the neighbor for which the first interest message comes from as its parent in the

distributed spanning tree. A parent waits to receive multiple replies from all its children in the

tree before sending its own aggregated reply message. The sink where the interest is

originated from is the root of the spanning tree. As with DCTC, the authors did not consider

nodes' residual energy in the tree construction. The result can be a reduction in the node's

lifetime and the amount of information collected by the tree root (Section 1.1).

2.5.5 Balanced Convergecast Tree

The work in [38] addresses the problem of convergecast (many-to-one) for data aggregation.

A tree that is rooted at the base station is constructed so that the link cost from each node to

the base station is minimized. The authors further improve the design by balancing the tree

during the construction, thereby enhancing the likelihood of simultaneous aggregation and

reducing the latency for convergecast. Furthermore, two Code Division Multiple Access

(CDMA) codes are allocated to nodes for collision-free transmissions towards the base station.

Unfortunately, the algorithm is centralized and the knowledge of global connectivity is

required. As with [37], the base station (sink) is also the root of the tree.

2.5.6 Data Aggregation Clusters

A number of recent work has begun to consider dividing the network area into small adjacent

grids or clusters on which aggregation is performed. Specifically, a cluster head is usually

Chapter 2 Related Work 21

associated with each cluster so that all nodes belonging to the same cluster can aggregate their

readings through this node. In fact, a number of parameters can be considered in the cluster

head selection. The work in [39] periodically selects cluster heads according to a hybrid of

their residual energy and node degree, resulting in a set of energy-rich cluster heads being

uniformly distributed across the network. However, their work assumes that nodes have

variable transmission power to ensure that a certain degree of connectivity exists between the

clusters. In comparison with the explicit tree approach (e.g. [31, 36 - 38]), only one layer of

aggregation points exists, thereby increasing the load of each cluster head.

Reference [40] presents an algorithm to find the minimum number of aggregating points

connecting these cluster heads such that the energy cost of sending a packet from each cluster

head via these points to a fixed base station is minimized. The benefit is the additional level of

aggregation, resulting in a multi-level data aggregation hierarchy. However, extensive routing

support such as the shortest-path and location information is required beforehand.

2.6 Node Scheduling

After a thorough discussion on some of the existing routing and aggregation-related protocols,

we now introduce an alternate way to minimize data traffic and conserve energy in WSNs.

WSNs are often densely deployed in an ad hoc manner. Having a substantial amount of

sensors is necessary to minimize the number of blind spots created by random deployment. In

addition, since sensor may move and deplete the energy rapidly, there must be enough

reserved nodes to preserve the initial sensing coverage and communication capacity. However,

using all sensors at once is unnecessary and will only lead to network congestion and

unwanted energy expenditure. From an application perspective, a node is redundant and can

be turned off for immediate energy-savings if its sensing area is completely covered by its

neighboring sensors. Reference [21] provides an analysis for the probabilistic bound of this

Chapter 2 Related Work 22

redundancy and suggests that there are always a number of redundant nodes for a" particular

network setting. From a network perspective, when the average node degree is high, channel

contention increases and network congestion starts to occur. Nodes waste their valuable

energy via transmission as packets are being dropped. Due to these reasons, a large number of

sensors need to be initially deployed, yet they need to coordinate and work alternatively in

order to save energy and prolong the network lifetime. The question lies in how to assign

these sensors so that they can maximize the energy savings and yet still preserve the initial

capacity and sensor coverage. The following subsections will introduce some node scheduling

algorithms proposed in the literature, and they are compared in Table 2.2.

Table 2.2: A comparison of node scheduling protocols

Protocol

name
Algorithm descriptions Power conservation

ASCENT

[41]

Partially or completely turn off nodes based on

measured connectivity and data loss rate

Duty cycle reduction of active nodes

and periodic sleep of passive nodes

Connected

sensor

cover [22]

Put nodes to sleep if they are not required in

preserving the initial capacity and sensing

coverage

Complete turn off of redundant nodes

STEM [42]
Coordinate periodic sleep transitions and wake

up nodes when it is time to forward data
Periodic sleep of all nodes

2.6.1 Adaptive Self-Configuring sEnsor Networks Topologies (ASCENT)

ASCENT [41] is a self-organizing node scheduling algorithm in which redundancy

introduced by dense deployment is exploited to achieve energy-savings and extend the

network lifetime. Unlike other node scheduling algorithms where topology or routing

information is used (e.g. [22, 24]), ASCENT requires each node to determine its participation

in the network based solely on the measured connectivity and data loss rate. Active nodes

either invite passive neighbors to join the network due to poor connectivity or reduce their

duty cycles by passively turning" off the transmitters due to massive collisions. Passive nodes

Chapter 2 Related Work 23

probe the channel and join the network only when it is helpful to do so. Radios for passive

nodes are also completely turned off at a regular interval in order to conserve listening power.

ASCENT differs from other approaches in that receivers are not being turned off before

going to sleep, so that they can rapidly react to any network change. In addition, this protocol

results in active nodes being distributed non-uniformly depending on different network states.

Such a self-configuring behavior is encouraging since different traffic patterns will require

different sensor population in order to make the delivery more reliable. ASCENT defines a

neighbor as a node that is within the transmit range and yet has a data delivery ratio above

some threshold. This definition is important since connection to a congested node can hardly

be established, even if it is within the transmit range. Unfortunately, load-balancing is not

being incorporated into the design. Failing to do so may result in either network partitioning

or creation of blind spots.

2.6.2 Connected Sensor Cover

Reference [22] introduces a technique to minimize the amount of communication incurred by

query executions. Neighboring sensors often monitor close geographic areas and generate the

same readings in response to a query. It may be sufficient to use only a portion of these nodes

for data gathering and transmissions to the sink. This protocol exploits such redundancy and

self-organizes the network into a topology that involves only a small number of sensor nodes

sufficient to process the query. To minimize energy usage, the algorithm turns off unselected

nodes but ensures that the initial sensor coverage and network capacity are preserved at the

same time. The idea is to choose a path of sensors that connects to the already-selected sensor

set with the largest coverage in the querying area. The selected path of sensors is then added

to the already-selected sensor set. These steps are repeated until the set of sensors covers the

entire querying region.

The design can further be improved by considering residual energy in the path selection

Chapter 2 Related Work 24

so that nodes with a lower energy have less chance of being selected in the query executions.

Doing so can evenly distribute energy loads across the querying region and effectively extend

system lifetime. This algorithm differs from ASCENT on that density dimension is exploited

to minimize the energy usage. In other words, only spatial density and sensing radius of nodes

can affect the performance. As we shall see later, STEM [42] schedules nodes by exploiting

time dimension instead. The choice of which one to deploy depends on the network

configurations and task of the network.

2.6.3 Sparse Topology and Energy Management (STEM)

A typical WSN spends most of its time monitoring the environment and waiting for an event

to occur. Network capacity is not required until data readings need to be forwarded to a sink.

Turning off radios in the monitoring state can thus completely eliminate unnecessary energy

wastage. STEM tackles this issue by coordinating sleep transitions of all nodes in order to

utilize full energy savings. Unlike the connected sensor cover protocol which preserves the

network capacity at all times, STEM aggressively puts nodes to sleep and wakes them up only

when they need to forward data. The idea here is to periodically turn on a separate paging

radio to listen if anyone is talking to this node. The data radio of this node comes back alive

only if it is initiated by the wakeup procedure. Unfortunately, the tradeoff is the latency of

switching back to the data transferring state incurred by both polling and initialization

processes. STEM differs with other scheduling algorithms [22, 24, 43] in that setup latency,

rather than the node density, is leveraged to minimize energy usage. Major'energy saving will

not require a dense network. However, since algorithms under the two categories have

orthogonal functionalities, running them together can combine the benefits of both and

maximize the system lifetime thoroughly.

Chapter 2 Related Work 25

2.7 Discussions and Summary

Our work is motivated by some of issues in the existing research work. In Directed Diffusion

[19, 20], nearby nodes can send their data to the sinks via entirely different paths. In GRAB

[11] and TTDD [12], each source can initiate its own mesh and grid structure for data

transmission. These redundancies are the major source of energy wastage, thereby motivating

us to create a tree for collaborating nearby event sources.

Our work differs from [4] by that we focus on tree establishment rather than aggregation

technique. Such tree allows nodes to know where they should send the extracted data readings

for further processing. Note that the root in our proposed scheme has the same functionality

as the cluster head in [4]. However, in terms of root selection, we consider residual energy of

nodes inside the local event area whereas the work in [4] compares the global distance to a

common sink outside the region.

Since our goal is to show how much time our proposed tree can survive rather than how

fresh the data can be gathered, we consider using the periodic simple timing model in [29] to

collect data readings from the sources. Another reason is to avoid the additional control

overheads that would be incurred in maintaining the cascading timeout scheme [29].

A number of work has begun to consider collaborating nearby sensor nodes by the use

of an aggregation tree. Among these, EADAT [30] is similar to our proposed scheme.

However, EADAT requires the extensive use of timers. In addition, EADAT, MLDA[31], and

the work in [37, 38] require the prior knowledge or support from a base station (or a given

root) for tree construction. In an event area where a root is initially unknown, these techniques

can be difficult to apply. Residual energy has not always been a concern during tree

constructions or cluster formations (e.g., LEACH, DCTC, and [37, 38]). In Section 1.1, we

have shown that node lifetime can be reduced if the residual energy is not being taken into the

consideration. All of the above issues motivate us to construct an energy-aware aggregation

Chapter 2 Related Work 26

tree with the appropriate selection of a root for collaboration.

It is worth to mention that node scheduling algorithms are of the same importance as

data aggregation in minimizing traffic and energy usage in WSNs. They simply put nodes to

sleep and thus make no differences in the process of creating our lifetime-preserving tree. We

only summarize them for the completeness of this thesis and interested readers should refer to

the references for more details.

In this chapter, we have described some previous work on routing, particularly Directed

Diffusion, for WSNs. Some network aggregation techniques, such as DSC [28] and Data

Funneling [4], and aggregated-related timing policies [29] were introduced. A summary of

previous aggregation tree constructions (e.g., EADAT and DCTC) or cluster formations was

also presented. This chapter ended by exploring some previous node scheduling algorithms

(e.g., ASCENT and STEM) proposed in the literature.

Chapter 3 The LPT Construction

In this chapter, we begin our discussion on the construction of the Lifetime-Preserving Tree

(LPT). We first present our network model under the considerations, the related definitions,

and assumptions in Section 3.1. The details of the LPT construction problem are described in

Section 3.2. We continue by investigating the use of spanning tree and an energy-aware

variant of it, namely E-Span, on data aggregation in Section 3.3. Such trees are easy to

construct and shall provide some insights on how different event sources should be arranged

so as to collect and aggregate data reports in an optimal way. Next, we proceed to present our

solution to the LPT construction problem by using a centralized approach in Section 3.4.

Finally, a distributed implementation of the LPT construction algorithm for data aggregation

in practical WSNs is presented in Section 3.5.

3.1 Network Model, Assumptions, and Definitions

We consider a field of M randomly-deployed and identical sensor nodes. A number of K (K <

M) sinks, randomly chosen among these M nodes, are requesting for data reports. A stimulus,

triggering N (N < M) event sources around it, occurs at a random place in this field. We

assume that these sources are interconnected to each other. In practice, an event may not

trigger a set of connected source nodes. However, under such scenario, multiple independent

trees will be constructed with each serving a disjoint set of event sources. Hence, for

simplicity, we restrict ourselves to a set of N connected source nodes. We assume that data

reports from each source are clock-driven upon event detection. Furthermore, these data are

assumed to be collected at a dedicated tree root and sent to the distant sinks in a periodic

manner. During data collection, nodes have the abilities to perform in-network aggregation of

27

Chapter 3 The LPT Construction 28

packets enroute to the tree root. We further assume that each node m (m e{l,2 ... MJ) awares

of its energy, em. Node batteries are neither replaceable nor rechargeable. We finally assume

that all nodes have an identical and fixed transmission range. We define a branch to be the

route from a root node to a leaf node in a given tree. The following two terms are introduced:

Branch energy - the minimum energy of all the non-leaf nodes in a given tree branch.

Tree energy - the minimum branch energy of all the branches in a given tree.

Let By denote the set of nodes along a given tree branch with y as the leaf node, and Ix be the

set of nodes in a given tree rooted at node x. Mathematically, the branch and tree energies are

calculated as:

Branch energy for branch By = min {ei} (3.1)
ieBy, i±y

Tree energy for tree Ix= min {e:} (3.2)
jefx,j*leafnode

For example, the branch from nodes A to D (drawn dark) in Figure 3.1a and the tree (with the

minimum-energy branch drawn dark) in Figure 3.1b shall both have energy of 3 Joules.

a) B r a n c h e n e r g y b) T r e e e n e r g y

Figure 3.1: A n e x a m p l e t o d e s c r i b e b r a n c h a n d t r ee e n e r g i e s : a) E n e r g y o f t h e b r a n c h f r o m n o d e s A t o

D i s set t o 3 J, t h e e n e r g y o f n o d e B . b) T r e e e n e r g y i s se t t o 3 J, t h e e n e r g y o f t h e b r a n c h f r o m e i t h e r

n o d e s A t o D o r n o d e s A t o F.

Chapter 3 The LPT Construction 29

3.2 Problem Formulation

Given a number of Af connected source nodes with each source labeling n (n e {I, 2 . . . N})

and the knowledge of their own residual energy, en, our goal is to find a tree spanning all these

sources and an appropriate tree root for data collection so that the functional lifetime of each

source is preserved as much as possible. Recall from Section 1.1 that the time till the first link

breaks in a given tree structure determines the lifetime of each source, and the term tree

energy directly reflects this time. We hence tackle this problem by searching a tree that

comprises the highest tree energy.

In the literature, network lifetime has often been defined as either the time till the first or

a set of nodes runs out of its energy [8, 31, 44, 45], or till the first loss of connectivity or

coverage [46,47], or a combination of these [48]. A formal definition of network lifetime is in

fact not very straight-forward and may depend on the application scenario in which the

network is targeted at. However, none of these definitions deviate from interpreting network

lifetime as the time before the network ceases to provide the type of service it is designed for.

We therefore follow this convention, and define the branch energy as the minimum energy of

all the non-leaf nodes in a given branch and define tree energy as the minimum branch energy

of all the branches in a given tree. To better understand why we define them in this way, we

point out that the time for an upstream link along a given branch to break directly depends on

the energy of the parent on such a link. In other words, the time during which data from each

source along this branch can arrive at the root will depend on the minimum energy of any

parent along this branch. By using the same analogy, the time during which data from all

sources can arrive at the root without having to concern about broken link repairs and tree

reconstructions will depend on the minimum energy of any branch, or equivalently that of any

parent, in a given tree. The only question we are left with lies on how to select an appropriate

tree root and the branch leading to each other source, such that the energy of this tree is

Chapter 3 The LPT Construction 30

maximized.

To resolve this problem, we explore the highest-energy branch from each source to a

root by first assuming that every source node is a root. This generates a total of N unique trees

with each being rooted at a distinct source node. We continue by comparing the energy of

these trees and only employ the one with the highest tree energy for data collection. Our LPT

construction problem is thus formulated as follows:

Given: N connected source nodes and the knowledge of their own residual energy, e„.

Define: Pxy to be the set of possible routes, with each labelingp, from nodes x to y.

brEijk to be the energy of a branch k leafed at node i and rooted at j, k e Ptj.

treeEn to be the energy of a tree rooted at node n.

Goals: construct a tree rooted at node r such that
1. treeEr ~£treeEn V n <=N,n &

subject to the condition that
2. brE^ ^brEiiriP V i eN, V p e Pi<n p &k

Figure 3.2: Problem formulation. Explore the highest-energy branch from each source to the root by

first assuming that every source is a root. Then, select the one with the highest tree energy for data

collection.

3.3 The Energy-Aware Spanning Tree (E-Span)

Before starting to describe our LPT algorithm, we outline the basic spanning tree protocol [49]

followed by presenting an energy-aware variant of it, namely E-Span. We believe that E-Span

shall provide some insights on how different event sources should be arranged in the lifetime-

preserving tree and is likely to satisfy our objectives for only a few participating source nodes.

It is comparatively easy to implement and will later be compared with our LPT algorithm.

3.3.1 The Spanning Tree Protocol

A spanning tree is a graph that spans all the nodes as vertices and contains no cycles. The tree

Chapter 3 The LPT Construction 31

is structured in the way that the node with the smallest identifier is chosen as the root. At the

same time, all other nodes are connecting to this selected root via the shortest-path route. The

protocol requires each node to exchange configuration messages in a format that contains the

identifier of itself, that of its selected root, and the distance (in hops) to this selected root.

Each node updates its configuration message upon identifying a root with a smaller identifier

or the shortest-path neighbor. Furthermore, the neighbor for which the shortest-path

configuration message comes from is chosen as the parent of a node whenever it is detected.

Node identifier is used to break ties if necessary. The above descriptions are being translated

Define: r„ to be the ID of the wot selected by node n
dn to be the shortest-path distance from r„ to node n
gn

 = (n, rm dj to be the message sent by node n
p„ to be the ID of the parent selected by node n
trecv.nP be the time node n received the message from its parent

Initialize: g„ to (n,n,0) Vn eN
pnton V n e Af
tremn tO 0 V « e N

GetSpan (node ID n, time t, timeframe T)
1 ifn is not an event source,
2 return
3 else {single-hop broadcast g„ and start a timer P that expires every Tsec
4 while true,
5 if timer P expires and (r„=nort> tmc^+T),
6 set g„ to (n, n, 0)
7 set p„ton
8 set tKmn to t

9. single-hop broadcast g„
10 if receiving a message gifrom node i,
11 ifri< rn, or fr, = rn and < d„), or (ri = r„, dt+l = dn, and i <Pn),
12 setg„ to (n, rt, di+1)
13 setpn to i
14 Set trecvn to t
15 single-hop broadcast g„ and restart timer PJ

Figure 3.3: The distributed spanning tree protocol, which creates a graph covering all source nodes as

vertices and contains no cycles. The node with a smallest ID is selected as root. Each other node picks

the neighbor for which the shortest-path configuration message comes from as its parent, n is the node

that runs the GetSpan algorithm and n e N.

Chapter 3 The LPT Construction 32

into the GetSpan algorithm depicted in Figure 3.3 below. Note that single-hop broadcast

refers to the operation of sending a packet to all single-hop neighbors. Lines 1 and 2 restrict

the message exchanges to be within the event region. Line 3 starts the exchange and an

additional timer for tree maintenance. Line 4 triggers an infinite loop. Lines 5 to 9 allow a

root to periodically generate a message every T seconds and reset a node when it starts to lose

its shortest-path neighbor. Lines 10 to 15, on the other hand, update the node itself and

forward the message whenever a node identifies a root with a smaller identifier or a better

shortest-path neighbor.

For example, the set of source nodes depicted in Figure 3.4a will create a tree of the

form shown in Figure 3.4b. Unfortunately, failure to consider the node's residual energy

results in this tree having the lowest energy of 3 Joules. Furthermore, the node that is

equipped with the minimum energy, i.e. node 1, is chosen as the root and is attached to three

other child nodes. When the tree is deployed for data collection among these sources, the rate

at which node 1 dissipates its energy is quite high and thus the time to the first node death is

minimized. We hence make some changes and present an energy-aware variant of this

protocol, namely E-Span.

a) Connectivity diagram b) Spanning tree configurations

Figure 3.4: An example of the spanning tree protocol: a) Connectivity diagram for a set of given

sources, b) The spanning tree configurations will have node 1 with energy 3 J chosen as the root,

resulting in the lowest tree energy of 3 J.

Chapter 3 The LPT Construction 33

a) Connectivity diagram b) E-Span configurations

Figure 3.5: An example of the E-Span protocol: a) Connectivity diagram for a set of given source

nodes, b) The E-Span configurations will have node 8 with energy 10, J chosen as the tree root, still

resulting in the lowest tree energy of 3 J.

3.3.2 The Energy-Aware Spanning Tree Protocol

As with the conventional spanning tree, E-Span is a graph that covers all the nodes as vertices

and contains no cycles. All other nodes are still connected to the selected root via the shortest-

path route. Since the root, besides collecting data, is also responsible to coordinate the routes

with distant sinks, the node with the highest energy level is now chosen as the root. Moreover,

each other node is given with the choice to select its parent as the highest-energy neighbor for

which the shortest-path message comes from. By using the same set of nodes as an example,

the tree will now have node 8 chosen as the root and all other nodes are still talking to node 8

via the shortest-path route (depicted in Figure 3.5). Specifically, node 6 which finds itself

having two shortest-path neighbors of nodes 2 and 4 will in fact attach itself to the higher-

energy one (i.e. node 2). The reason is to allow a node that has more available resources to be

selected as a parent node for data collection.

Details of the implementation are summarized in Figure 3.6. The configuration message

now involves 3 additional parameters: the residual energy of the node that sends the message,

that of the node's chosen root, and the node's chosen parent. As with the GetSpan algorithm,

lines 1 to 3 start the message exchanges and restrict these exchanges to be within the event

area. Lines 4 to 7 allow a root to periodically generate a message every T seconds and reset a

node that loses connection with its parent. Lines 8 to 11 update the list of child nodes for the

receiving node. Lines 12 to 16 update the message when a node receives an energy update

Chapter 3 The LPT Construction 34

Define: en to be the residual energy of node n
r„ to be the ID of the root selected by node n
e(rj to be the last-updated energy of the root selected by node n
d„ to be the shortest-path distance from rn to node n
pn to be the parent selected by node n
s„ = (n, en, r„, e(rj, pn, d„) to be the message sent by node n
e(pn) to be the last-updated energy of the parent selected by node n
tremn to be the time node n received the message from its parent
childListn to be the list of child nodes for node n

Initialize: Change (n, en, n, en, 0,0) V n eN
GetESpan (node ID n, node energy en, time t, timeframe T)
1 ifn is not an event source,
2 return
3 else {single-hop broadcast s„ and start a timer P that expires every Tsec
4 while true,
5 if timer P expires and (r„=nort> tKCVf„+T),
6 Change (n, e„, n, e„, 0, t)
7 single-hop broadcast sn

8 if receiving a message Sjfrom node i,
9 ifPi = n,
10 add i to childListn
11 else remove ifrom childListn

12 ifn = r„,
13 if ft = Pn)> o r (di+1 < dj, or (dj+1 = d„ and e, > efpj),

or (dj+1 = dn, e,- = e(pn), and i < pj,
14 Change (i, e„ rt, e(rj), dt+l, t)
15 else if (e(rj > e(r„)) or (e(rj = e(r„) and rt < r„),
16 Change (i, e„ r„ efr̂), dt+l, t)
17 if(en > e(rj) or (e„ = e(r„) and n < r„),
18 Change (n, em n, en, 0, t)
19 single-hop broadcast s„ if a change applied)
Change (node x, energy e„ nodey, energy ep distance d, time t)
1 set s„ to (n, e„, y, ey, d)
2 set p„ to x
3' set e(p,J to ex

4 Set trecvn to t

Figure 3.6: The distributed E-Span protocol, which creates a graph covering all source nodes as

vertices and contains no cycles. The node with a highest energy is selected as the root. Each other node

picks the highest-energy neighbor for which the shortest-path configuration message comes from as its

parent, n is the node running the GetESpan algorithm and n eN.

Chapter 3 The LPT Construction 35

from its parent, or when it detects a better shortest-path neighbor or a higher-energy root.

Lines 14 and 15 compare the receiving node with the root, and line 16 broadcasts the message

if there is a change. Again, single-hop broadcast is referred to the operation of sending a

packet to all single-hop neighbors.

Unfortunately, without knowing the complete set of connectivity provided by all sources,

some nodes in E-Span still traverse to the root through routes with a lower branch energy. As

a result, each source can more often be involved in tree reconstruction, implying that a greater

portion of its available energy are consumed in repairing broken tree links over the course of

its lifetime. As an example (see Figure 3.5), nodes 3 and 5 could have been attached to nodes

6 and 3, respectively, resulting in tree energy of 7 rather than 3 Joules. In addition, the energy

dissipation rates for nodes 1 and 7 would have been lower if these changes are made. In other

words, without making these changes, the functional lifetime of the two are shorter due to the

additional energy cost involved in the tree reconstruction. This is clearly one issue we try to

resolve, if possible, when we construct the LPT. We however believe that the chance for it to

happen is rather rare for a small number of participating sources. When this number starts to

increase, a technique that is different from E-Span is required. We shall now present our LPT

construction algorithm.

3.4 The LPT: Centralized Approach

In this section, we proceed to the discussion of the lifetime-preserving tree construction using

a centralized approach. We assume that the complete knowledge of the event region is given,

including the connectivity and residual energy of all the source nodes, prior to the start of the

algorithm. The tree generated can later be used to validate the correctness of the

corresponding tree constructed by the distributed approach.

One way to obtain a lifetime-preserving tree is to directly run an extensive search at

Chapter 3 The LPT Construction 36

every node and then compare various tree energy. However, this approach has the scalability

problem when the network starts to grow or becomes dense. We hence tackle the issue in a

completely different way.

Recall that the lifetime-preserving tree requires a root (initially unknown) to collect data

from each other node via routes with the highest branch energy, subject to the condition that

these routes do not create loops. Moreover, the tree has an energy that directly depends on the

minimum residual energy of all the non-leaf nodes. If there exists a way to identify this

minimum-energy node, which represents the bottleneck to the network, it will then be easy to.

determine what the highest tree energy will be. To illustrate the above descriptions, consider

the set of nodes in Figure 3.7a. Any source node can either be a root, parent, or leaf. By

assuming that node 5 is a root, the protocol must have each other node enroute to this root

through either nodes 7 or 3. However, the tree must have node 6 as a parent for some nodes in

c) Node 5 being a parent d) Node 5 being a leaf

Figure 3.7: An example of the bottleneck node. No matter what the role of node 5 is, node 6 has to be

a parent for some nodes in the network if the tree energy has to be the highest: a) Connectivity diagram

for this particular event area, b) If node 5 is a root, node 6 has to collect data from nodes 2 and 4. c) If

node 5 is a parent, node 6 again has to forward data for both nodes 2 and 4. d) If node 5 is now a leaf,

node 6 has to collect data from node 3. Therefore, the tree energy cannot be greater than the energy of

this bottleneck node.

Chapter 3 The LPT Construction 37

the network if the tree energy has to be the highest (depicted in Figure 3.7b). If node 5 is now

a parent, node 6 again has to forward data for some nodes, for example nodes 2 and 4, in the

network (Figure 3.7c). Finally, if node 5 is a leaf, the protocol must have node 3 to forward its

data to some root via either nodes 1 or 6. By using the same argument, node 6 again has to be

a parent for data collection from node 3 (shown in Figure 3.7d). We therefore call node 6 as a

bottleneck node for this particular network topology, since there are no better ways to route

around this node, and the tree must have energy less than that of this node.

Having understood the concept of a bottleneck, the question lies on how to identify this

node and coordinate the given set of network connection such that a tree is obtained with this

node being configured as the minimum-energy non-leaf node. To address this issue, we begin

by arranging nodes in ascending energy levels. Starting from the least-energy node, we test if-

the removal of all network links to this node except that from its highest-energy neighbor will

disconnect the existing graph. If so, the bottleneck node is found and there are no better ways

than to collect data via this node. The removed links are thus restored, and any tree rooted at

one of the nodes in the remaining set shall have the energy as that of this chosen node. If not,

the removed links do not contribute to the construction of the lifetime-preserving tree and we

shall move on to the next node. Note that the energy of the highest-energy neighbor has to be

greater than that of the node under the test. When such neighbor does not exist, the node has

to be a parent for at least one of its neighbors, and thus all the links are preserved. In the case

when there are more than one neighbors that have equal highest energy, either one can serve

as the parent for collecting data from the node under the test without affecting the tree energy.

Node ID is thus used to break this tie. Finally, when we come to the last node, i.e. the highest-

energy one, we conclude that there is no bottleneck node for this particular topology and any

tree rooted at this last node, on the existing graph, can have the highest tree energy.

To illustrate the descriptions, consider two examples. Figure 3.8 depicts the centralized

LPT search during which a bottleneck is found when the link from nodes 6 to 2 is removed. In

Chapter 3 The LPT Construction 38

other words, node 6 has to be a parent for some nodes in the network. Any tree rooted at one

of the nodes in the remaining set, i.e. nodes 2, 3, 5, 6, or 8, will therefore have the highest tree

energy as that of this bottleneck node. Figure 3.9 depicts another example of the search where

no bottleneck node is found. The reason is that those links that are removed do not contribute

to -the formation of any lifetime-preserving tree and therefore any tree rooted at the highest-

:) Node 4 under test d) Bottleneck found

Figure 3.8: An example to search the lifetime-preserving tree in a centralized manner. Starting from

the least-energy node, we test if the removal of all the links to this node except that from its

highest-energy neighbor will disconnect the existing graph. For this topology, node 6 is hence found as

the bottleneck. Any tree rooted at nodes 2, 3, 5, 6, or 8, on the existing graph will have the highest tree

energy of 7 J.

a) 4-node topology b) Node 1 under test c) Node 4 under test d) Bottleneck not found

Figure 3.9: An example to search the lifetime-preserving tree in a centralized manner. Since removals

of the links, except that from the highest-energy neighbor, to the source under any test does not

disconnect the existing graph, there is no bottleneck for this particular network topology. Hence, any

tree rooted at node 2 will be the lifetime-preserving tree.

Chapter 3 The LPT Construction 39

energy node, i.e. node 2, will have the highest tree energy.

The algorithm is summarized in Figure 3.10. Line 1 sorts all nodes in ascending energy

levels. Lines 2 and 3 compute the highest-energy neighbor for the node under the test. Recall

that the energy of this neighbor has to be greater than that of the node. When such a neighbor

exists, lines 4 and 5 remove and temporarily store all links to the node except that from the

highest-energy neighbor. Lines 6 to 10 restore the removed links, clear the storage, and

compute a tree by running Dijkstra's algorithm [50] at one of the nodes in the remaining set

when a bottleneck is found. Tree energy is set to the energy of the bottleneck node at this time.

In fact, the reason to run the Dijkstra's algorithm is to ensure that the remaining set of

network connections does create a tree and contain no loops. Lines 11 to 12 compute a tree

Define: node„ to be the node with n least energy
e(node„) to be the energy of node„ (
nodenmax to be the highest-energy neighbor of node„, subject to the
condition that e(nodenmax) > efnodej
linkxy to be the bi-directional link, if it exists, between nodes x and y
treeEn to be the energy of a tree rooted at node n
I to be a set, initially empty

CentralhedLPT (connectivity and energy matrices)
1 sort nodes in ascending energy level
2 forn = 1 to N, n++
3 getnoden,max

4 ifnode„max exists,
5 remove linkni and store i in I V i e N, i ^nodenmax, i &i
6 if the graph is not connected,
7 restore linknJ V / e / and clear I
8 set nodet to be the root and run Dijkstra s algorithm on

nodek where k is any one number from ntoN
9 set treeEk to be e(node„)
10 return
11 set nodeN to be the root and run Dijkstra's algorithm on node^
12 compute treeEN using Equation (3.2) for the tree rooted at node^

Figure 3.10: The centralized LPT algorithm, which creates a lifetime-preserving tree spanning all

source nodes as vertices and contains no loops. The Dijkstra's algorithm is used to create a tree and

ensure that the remaining set of network links does not contain loops.

Chapter 3 The LPT Construction 40

again by running Dijkstra's algorithm at the highest-energy node, and search the tree energy

by using Equation 3.2 when no bottleneck node exists in the network.

3.5 The LPT: Distributed Approach

Given a number of N source nodes with each node labeling n (n e{\, 2 ... Nj) and the

knowledge of their own residual energy, e„, our goal is to construct a tree spanning all these

sources and select an appropriate root for data collection, in a distributed way, such that the

energy of the tree is maximized. We take the approach of exploring the highest-energy branch

from each source to a root, by first assuming that every source node is a root, using a method

similar to Reverse-Path Forwarding (RPF) [51]. This generates a total of ./V unique trees with

each being rooted at a distinct source node. We continue by comparing the energy of these

trees and only employ the one with the highest tree energy for data collection.

In the following sub-sections, Section 3.5.1 describes the procedure to explore the

highest-energy branch among all the sources in a given tree root. In Section 3.5.2, we

construct N trees with each tree rooted at a distant source by incrementally attaching any tree

branch explored from the previous section. Section 3.5.3 compares these trees and employs

the one with the highest tree energy for data aggregation. Section 3.5.4 synthesizes the design

and presents a concrete algorithm for practical implementation.

3.5.1 Exploring the Highest-Energy Branch from every Source to any Root

As previously mentioned, the time during which data from each source along a given branch

can actively be received by the root depends on the minimum energy of any parent along this

branch. In order to maximize this time for any pair of root and source, the connectivity

between them will first have to be explored prior to getting the highest-energy branch

connecting these two nodes. Let Pxy denote the set of possible routes, with each labeling p,

J

Chapter 3 The LPT Construction 41

from nodes x to y and brEjJik be the energy of a branch A: leafed at node i and rooted at node j.

Note that k sP (i /. We therefore wish to get a branch b for every pair of source s and root r

such that:

brE^ZbrE^ \/p ePs,„p *b (3.3)

To do this, we employ RPF which requires each source s to initiate a configuration message in

a format that contains its energy information. When a source receives this message, it appends

its energy information and broadcasts the message only if it has not seen this message or if it

has previously forwarded the message containing lower branch energy. Otherwise, it simply

discards the received packet. Eventually, various copies of the initiated message will traverse

through various different routes p and only the better ones will arrive at the root r.

Define eidn to be the pair of energy level and ID of a node labeling n and brListiJk be a

list containing the eid for the message initiating node i up to the last receiving node j via a

route k with branch energy brEiJk, Note that brEijik can be calculated using Equation (3.1).

Therefore, brList^k shall have the format of a list as follows:

brListjj>k: eidt eidx eidy eidj (3.4)

where nodes x and y are the intermediate receiving nodes for the message initiated by node j.

Note that when node j receives the list brList^p from node y via some route p, it is as if node j

is a root and node i is a leaf for the branch between nodes j and i. Our descriptions can thus be

translated into the ExploreBranch function shown in Figure 3.11. Again, single-hop broadcast

refers to the operation of sending a packet to all single-hop neighbors. Line 1 allows each

source to initiate its control message. Lines 2 to 5 update, store, and broadcast the message

when the receiving node does not recognize the initiating source. Lines 6 to 9 reset its stored

list in addition to the above three actions whenever the receiving node detects a higher-energy

branch.

Chapter 3 The LPT Construction 42

ExploreBranch (node ID n, node energy e j
/ create brListnn. by appending eid„ and single-hop broadcast brListnn

2 while receiving brListijkfrom node j (k s Ptj, i e N, i
3 ifn has not seen the message initiating node i,
4 append eidn to the head ofbrListijj,, and update brEinp (p zPJ
5 store and single-hop broadcast brList^p
6 else if min {en brEyjJ > the stored brEi„q (q e Pin),
7 remove the stored brListintq and brE^nq

8 append eid„ to the head of brListjjj and update brEinp (p
9 store and single-hop broadcast brListi>np

Figure 3.11: The ExploreBranch function, which explores the highest-energy branch from every source

to any tree root using a method similar to RPF. n is the node running this function and n e N.

e) Route dropped at node 7 f) Route dropped at node 1

Figure 3.12: An example to search the highest-energy branch between nodes 5 and 8. There are 6

possible choices in which only the route in Figure 3.12d will have the highest branch energy of 7 J. The

messages traveling on the last two routes are dropped since they do not carry higher branch energy,

subject to the condition that nodes 1 and 7 have previously forwarded a similar message.

Chapter 3 The LPT Construction 43

To illustrate the ExploreBranch function, consider the set of sources shown in Figure

3.12. For simplicity, we will concentrate on the control message exchanges between a source

of node 5 and a root of node 8. First, the function requires node 5 to initiate a control message

containing its eid. There are six possible routes the message could have been possibly traveled

(depicted in Figure 3.12a to Figure 3.12f). Among these routes, only nodes 7 and 1 will drop

the messages with the routes through nodes 1 and 3, and node 7 respectively, subject to the

condition that they have previously forwarded the messages, containing lower branch energy,

initiated by node 5. The reason to drop these messages is to limit the number of control

message exchanges and ensure that only the better routes will traverse through the nodes.

Node 8, upon receiving the other 4 routes, will be able to identify that the route from node 5

through nodes 2, 6, and 3 indeed has the highest branch energy of 7 Joules.

3.5.2 Constructing a Tree Spanning all Event Nodes for every Source

We now proceed to construct N trees with each tree rooted at a distant source by

incrementally attaching any branch explored in the last section. Each source has an initial tree

structure that only comprises the node itself. In order to construct a tree for each source that

spans all event nodes, each source has to incrementally update its existing tree structure upon

receiving any branch with an unknown initiating node. Note that the energy of the received

branch directly determines the energy of the updated tree. To ensure that each tree carries the

highest energy, the tree is also updated whenever the receiving node identifies a message with

a higher branch energy.

To illustrate the descriptions, consider Figure 3.13. For simplicity, we only concentrate

on the tree construction for node 8. Initially, node 8 has a tree structure that only comprises

itself. Upon receiving the messages initiated by nodes 7, 1,4, 2, and 6 (shown in Figures

3.13a to 3.13e respectively), node 8 updates its tree to a structure depicted in Figure 3.13f.

Now, when node 8 receives the message initiated by node 6 through node 2 (Figure 3.13g), it

Chapter 3 The LPT Construction 44

a) Highest-energy branch from node 7

c) Highest-energy branch from node 4

10 J

e) Lower-energy branch from node 6

7] -v>9 j

g) Highest-energy branch from node 6

i) Highest-energy branch from node 5

b) Highest-energy branch from node 1

101
5 > \ „ „ . 4J

n ^ y > J

f3J f
.

7J - @ 9 j
d) Highest-energy branch from node 2

10 J

f) Tree constructed by node 8

h) Highest-energy branch from node 3

j) Tree constructed by node 8

Figure 3.13: An example to construct a tree for node 8. Each node initiates its control message and

node 8 incrementally updates its tree upon receiving any higher-energy branch initiated from them,

resulting in a tree spanning all sources yet with the energy of 7 Joules.

Chapter 3 The LPT Construction 45

a) Branch from node 5 b) Branch from node 6 c) Loop detected

Figure 3.14: An example of how a loop could have been created if the root does not compare the

existing routes with the newly-arrived one. In the above figures, the arrival of the route initiated by

node 5 does not necessarily imply that the route to node 6 for what node 8 has seen so far is also from

node 2. Loop is hence created as a result.

identifies that the message carries a branch energy of 8 Joules. This is 2 Joules greater than

what it has for node 6. By replacing the old branch with the newly-received one, node 8 will

be able to increase its tree energy from 6 to 8 Joules. Finally, by receiving the messages from

nodes 3 and 5 (Figures 3.13h and 3.13i), node 8 will create a tree spanning all sources yet

with the energy of 7 Joules.

Besides attaching new branches, each source is also responsible for preserving the loop-

free property of its tree during the update. In fact, some cares need to be taken in order to

reject a branch that actually violates this property. Consider the same set of nodes with the

energy of node 4 being changed to 8 Joules. The arrival of the branch shown in Figure 3.14a

does not necessarily imply that those initiated by any parent on this branch are also received

via node 2. By taking node 6 as an example, its initiated message could have first been

received via node 4 by node 8 (Figure 3.14b). If the branch in Figure 3.14a is attached to the

tree of node 8, a loop around nodes 8, 4, 6, and 2 (shown in Figure 3.14c) will be created. In

other words, node 6 will spend twice its energy to transmit any data it generated or received.

Therefore, to avoid creating loops and to reduce energy usage, each node always has to reject

a branch when the already-attached ones for each parent on this branch do not match with it.

We define the term initiator to be the source which initiates the message and treen be the

tree created by node n. treen should have the format of a table as depicted in Table 3.1. In

Chapter 3 The LPT Construction 46

other words, tree„ is where the branches are stored by the receiving node n. Also let Jj denote

the set of initiators in treej and treeEk be the energy of treek. treeEk can be calculated by using

the following equation:

treeEk = min (brE- k } where psPk (3.5)
JeJk

Our description can be translated into the NoLoop function shown in Figure 3.15. This

function takes the received branch as an input and tests if attaching it to the tree will not

create a loop. Line 1 removes the message initiator i so that the branch only contains a list of

parents. Line 2 ensures the already-attached branch for node k stored in treen matches with the

route through which the received branch travels. Note that the function always accepts a

branch of size less than 3 since a loop can only be created by adding a branch of size greater

than 2 to its existing tree.

NoLoop (node ID n, branch brList^iJ
1 remove eidjfrom brListjjj, to get a new brListiJiP

where I is the node at the tail ofbrListiJp andp e PQ
2 if number of eids in brList\jP < 2 or (brListijj, \\ eid^ = brListinp (stored at tree,),
3 return true

Figure 3.15: The NoLoop function, which takes the received branch brListiJk as an input and test if

attaching it to the tree in tree„ will not create a loop, n is the source running this function, i is the

message initiator, and j is the node sending this branch, n, i,j s A'and k e Pjj.

Table 3.1: The format of a tree for node n (pa e Pa„, pb s Pb„, and pc s Pcn)

Initiators Branches Branch energy

node a brLista,„iPa brEan pa
node b brListbi„pb brEb,„iPb

node c brListc^pc hrF

Chapter 3 The LPT Construction 47

3.5.3 Searching a Lifetime-Preserving Tree for every Source

Since each source n carries its unique tree structure stored in treen, the protocol requires every

source to broadcast its tree and select the one with the highest tree energy for data aggregation

among these nodes. Our objective is to create a tree rooted at node r such that:

treeEr ^treeEn V / i eN,n& (3.6)

Note that treeEr and treeE„ can both be calculated using Equation 3.5. In fact, there can have

multiple different trees that yield the same tree energy. To break such ties, a number of other

properties can be compared. For examples: tree depth, root energy, root ID, and node degree.

Tree depth can be used to minimize the data latency. Root energy can be used to maximize the

available resource of the root for possible tasks such as route coordination to distant sinks.

Node degree can be used to minimize the power dissipation rate. In this work, we limit

ourselves to use tree depth, root energy, and then root ID to break ties whenever necessary.

Further work is required to evaluate the performance of the best tree selection by using other

parameters.

To illustrate the descriptions, consider Figure 3.16. By having each participating node to

broadcast its selection, there will be 8 trees under the comparison. Among them, only the ones

constructed by nodes 2, 3, 5, 6, and 8 comprise the highest tree energy of 7 Joules. We hence

wish to select the tree created by node 3 as our lifetime-preserving tree and node 3 as our root

since this tree has a lower tree depth than that by nodes 5 and 8, and a higher root energy than

that by nodes 2 and 6.

We define lptt to be the lifetime-preserving tree that a node i currently selects and IptE/

be the energy of lptt. Note that lpt„ initially equals to treen for all sources n. The SearchLPT

function shown in Figure 3.17 describes the procedures to search a lifetime-preserving tree

for each source. Line 1 allows the source to broadcast its initial selection. While a message is

received from its neighboring node with tree information (line 2), lines 3 to 5 update the

Chapter 3 The LPT Construction 48

selection of the receiving node if the received tree is better. Line 6 rebroadcasts the selection

after the update. Note that we have explicitly assumed that each node has already created a

tree spanning all event sources (i.e. each tree has N rows) before the function starts. Hence,

the first two lines of the BetterTree function are always skipped. In practice, the number of

event sources is not known a priori and each node will simply run a new SearchLPT function

g) Tree constructed by node 7 h) Tree constructed by node 8

Figure 3.16: The set of trees created by the sources in the event region. Only the one with the highest

tree energy is employed for data aggregation among these nodes. By using the SearchLPT function

shown in Figure 3.17, all the sources will select the tree created and rooted at node 3 for aggregation.

Chapter 3 The LPT Construction 49

whenever it detects a new initiator. To ensure that only the selections with N number of rows

in them are compared, we include the first two lines of the BetterTree function in order to

filter out all outdated trees. In the following section, we will proceed to describe the

implementation in practical WSNs.

SearchLPT (node ID n)

1 single-hop broadcast lpt„

2 while receiving Iptifrom node i (i ^n),

3 if BetterTree (Ipt),

4 , delete lpt„ and copy lptt to lptn

5 calculate lptE„ by using Equation (3.5)

6 single-hop broadcast lpt„

BetterTree (Ipt Ipt*)
1 if § rows in lptx > # rows in lpt„.
2 return true
3 if (# rows in lptx = # rows in IpQ and (lptEx > IptEJ,
4 return true
5 if (# rows in lptx = # rows in IpQ, and (lptEx = lptE„),

and (tree depth oflptx < tree depth oflpt„),
6 return true
8 if (# rows in lptx = # rows in IptJ, and (lptEx = IptE^),

and (tree depth of Iptx = tree depth oflptj, and (ex> e„),
9 return true
10 if (# rows in lptx = # rows in IptJ, and (lptEx = lptE„),

and (tree depth oflptx = tree depth oflpt„), and (ex - e„), and x < n,
11 return true
12 return false

Figure 3.17: The SearchLPT function, which searches the lifetime-preserving tree for each source, n is

the node running this function, n eN. The BetterTree function takes the received tree as an input and

returns true if it has more entries or its tree energy is greater than that of what node n currently has.

Tree depth, root energy, and then root ID are used to break ties whenever necessary. lptEx is the energy

of the tree lptx which can be calculated using Equation (3.5). Tree depth of a tree lptx is the maximum

number of eids of all the branches stored in lptx.

3.5.4 Implementing the LPT Algorithm in Practical WSNs

Having explained the overall design of the LPT construction, we now proceed to the

Chapter 3 The LPT Construction 50

discussion of the control packet structure and any other implementation-related issue.

According to what we have described earlier, a control packet should only comprise a brList

and an Ipt for the ExploreBranch and SearchLPT function respectively. However, from our

experiences, failure to receive a brList can lead to a tree that does not comprise the highest

tree energy. We therefore choose to include the entire tree, i.e. a table containing all

discovered initiators, brLists, and brEs, so as to maximize the chance of a neighbor

successfully receiving each brList stored in this table. An additional restart flag for which we

will describe its usage in the following paragraph is also included in the message. We define

restartt to be a Boolean variable stored on node i and mn to be the control message sent by

node n. The control message nij should have the format (restartj, treej, Iptj). Note that treej are

Iptj can represent two different trees, treej is the tree created by node j (Section 3.5.2) whereas

Iptj is the lifetime-preserving tree selected by node j (Section 3.5.3). When the algorithm

converges, each source « should have an identical lifetime-preserving tree stored in lptn.

Table 3.2 describes the packet structure of the LPT control message. Recall that Directed

Diffusion [19, 20] is chosen as our routing platform. All control messages are hence wrapped

with Diffusion packet structure. The 24-byte header contains information such as destination

ID, source ID, packet number, and packet length etc. The 12-byte scope and type attributes

control how Diffusion packets are being processed by the Diffusion core programmed inside

each node. The 12-byte control type attribute describes the type of control messages that are

being exchanged in the network. Finally, 12 bytes plus a space of variable size are allocated to

encode all the LPT control information (i.e. restart,,, treen, and lpt„) for any particular network

node n. Specifically, the first 12 bytes are required for the LPT control message attribute since

4 bytes are reserved for the restart whereas 8 bytes are used to specify that the LPT control

message is of type BLOB. An additional space of variable size is also required since the sizes

of each tree and Ipt are initially unknown. However, 4 bytes are allocated for each initiator or

brE (see Table 3.1) and 8 bytes are reserved for each eid in each brList (see Equation (3.4)).

Chapter 3 The LPT Construction 51

Table 3.2: The packet structure of the LPT control message

24-byte Diffusion header

12-byte Diffusion scope attribute 12-byte Diffusion type attribute

12-byte

control type

attribute

12-byte plus a space of variable size

binary interpretation

of LPT control message attribute

To ensure that data from each source can constantly arrive at the root via its parent, some

maintenance is required to reconstruct another tree whenever a parent runs out of its energy.

The protocol requires the root to periodically broadcast a hello message. All other nodes upon

receiving this message from its parent shall simply broadcast its hello message to the network.

Note that only the upstream connection towards a parent is scanned since it is the direction

where data are sent. A timer that expires every T seconds and runs on every source is used to

periodically scan the connectivity to its parent. Whenever a node loses connection with its

parent, the restart flag in its control message is set on. Any other nodes that receive this flag

with its flag set off will have to restart the entire process. In this way, a new tree with the

broken link being taken into considerations will then be reconstructed. A typical value of T is

25 seconds.

We define h„ to be the hello message sent by node n and tKCVj be the time node i last

received the hello message from its parent. Also, let Jj denote the set of initiators in treej.

Figure 3.18 summarizes our algorithm. Again, single-hop broadcast refers to the operation of

sending a control packet to all single-hop neighbors. Lines 1 and 2 restrict the messages to be

exchanged within the event area. Line 3 broadcasts the initial control message and starts the

maintenance timer. Line 4 creates an infinite loop. Lines 5 and 6, on the other hand, update

the maintenance timer whenever a message is received. Since a node does not know where its

parent is during the initial tree constructions, the node simply refreshes this timer upon

receiving this message. Line 7 resets a node and restarts another round of tree constructions

Chapter 3 The LPT Construction 52

Initialize: resettree„andlpt„ V n eJV
create and append brList„t„,. to treen and lptn V n e N
set restartn to be true V n e N

DistributedLPT (node ID n, node energy e„, time t, timeframe T)
1 ifn is not an event source,
2 return
3 else {single-hop broadcast m„ and start a timer F that expires in Tsec
4 while true,
5 if receiving a control message mj from node j,
6 restart timer F
7
8

re-initialize if restartj is true and restartn is false
for each brListij^ in treej with i e Jj and k e Ptj,

9 if NoLoop (brListjjik),
10 if initiator i ofbrListij* not found in treen,
11 append eid„ to brListijj, and update brEinp (p
12 add brListi„iP and brEinp to tree„
13 calculate treeEn using Equation (3.5)
14 else if min {en, brEiJik} > brEUn,q (q e PtJ,
15 remove brListit„iq andbrEinqfrom tree„
16 append eid„ to brListjjj, and update brEiinp (p
17 addbrListinp andbrEinp to tree„
18 calculate treeE„ using Equation (3.5)
19 if a change applied to treen and BetterTree (treen)
20 delete lpt„ and copy treen to lpt„
21 calculate lptEn using Equation (3.5)
22 if BetterTree (Ipt),
23 delete lpt„ and copy Iptj to lpt„
24 calculate treeEn using Equation (3.5)
25 if a change applied to either tree„ or lpt„
26 settKCVf„ to bet
27 update arid single-hop broadcast m„
28 if timer F expires,
29 set restartn to be false
30 ifn is the root of the tree in lpt„,
31 single-hop broadcast h„
32 else ift > tKCV,„+T,
33 re-initialize and single-hop broadcast m„
34 if receiving a hello message hj from node j,
35 ifj is the parent of n in lptn,
36 set tnmn to be t and single-hop broadcast h„)

Figure 3.18: The distributed LPT algorithm, which creates a lifetime-preserving tree spanning all

source nodes as vertices and contains no loops, n is the node running this algorithm and n e N.

Chapter 3 The LPT Construction 53

upon receiving a restart flag. Note that this line is only processed when a broken upstream

link is detected by the transmitting node. Lines 8 to 18 correspond to the ExploreBranch

function we have described in Section 3.5.1. Each node scans the brLists discovered by the

transmitting node and updates its corresponding table entry if a scanned brList is new or

carries higher branch energy. Note that the NoLoop function described in Section 3.5.2 is used

in line 9 to ensure that the attachment of any scanned brList to the existing tree structure of

the receiving node does not create a loop. The tree energy is also updated in both lines 13 and

18 by using Equation (3.5).

Lines 19 to 27 correspond to the SearchLPT function described in Section 3.5.3. One

major difference is the additional comparison between the Ipt and the tree that the receiving

node has just updated (lines 19 to 21). The reason is to ensure the LPT that a node selects is

always better than the tree it has created even after an update. Lines 22 to 24 replace the LPT

with that from the transmitting node if the latter is better. Lines 25 to 27 update and broadcast

the control message if a change is applied. Lines 28 to 36 correspond to the tree maintenance.

Particularly, lines 30 and 31 broadcast the hello message if the node is a root when the

maintenance timer expires. Lines 32 and 33 reset a node and inform all neighbors when the

node loses connection with its parent. Finally, lines 34 to 36 allow a non-root node to transmit

its hello message upon receiving that from its parent. Our algorithm has a complexity of 0(N2)

since a node needs to scan at most N brLists upon receiving any control message (line 8) and

to search at most Actable entries in either updating treeE or IptE (lines 13, 18, 19, 21, 22, and

24). All other lines can be executed in a constant number of iterations.

3.6 Discussions

Our work has the same objective with EADAT [30], MLDA [31], DCTC [36], and the work in

[37, 38]. Specifically, an aggregation tree that spans all event sources is constructed in order

Chapter 3 The LPT Construction 54

to combine the reports sensed by them. Furthermore, the tree has a dedicated root for which

data from various event sources are gathered. EADAT is similar to our scheme in that nodes

with higher energy have a higher chance of becoming aggregating parent nodes. Both HEED

[39] and EADAT are also similar to our approach in that residual energy are being considered

in the cluster formation/tree construction, thereby enhancing the likelihood of distributing the

loads of aggregation on higher-energy nodes.

In contrast, EADAT differs from our approach in that timers are being extensively used.

The result can be a long waiting time for the tree construction (Section 2.5.1). Furthermore, as

with MLDA and the work in [37, 38], EADAT requires the prior knowledge or support from a

given root (or base station) for the tree construction. Our scheme, on the other hand, does not

require the root to be any particular event node. In terms of functionality, our root is the same

as the base station/cluster head in [4, 37, 38] and DCTC. However, in terms of root selection,

we consider residual energy of nodes inside the event region whereas they compare the link

cost that associates with each of them. When a low-energy node is on the minimum-cost path,

the aggregation tree will quickly get disconnected. Finally, HEED differs from the explicit

tree construction approach (e.g., EADAT, MLDA, and our LPT scheme) in that only one layer

of aggregation points exists, thereby increasing the loads of each cluster head.

3.7 Summary

In this chapter, we have described the construction of a lifetime-preserving tree (LPT). We

first introduced the spanning tree and an energy-aware variant of it, namely E-Span. While

residual energy has not been fully taken into the design considerations, these trees can have

lower tree energy, implying that they are more often being refreshed and more maintenance is

required. Previous work using the idea of a spanning tree (e.g. DCTC and [37]) falls under

this category. This chapter continued by presenting both the centralized and distributed

Chapter 3 The LPT Construction 55

implementation of the LPT construction algorithms. The centralized approach works by

identifying the bottleneck node whereas the distributed one identifies the highest-energy tree

by performing a search of the optimal route between any pair of event sources. In the next

chapter, we describe the simulation methodology, metrics, and a set of experimental results

comparing LPT with other schemes.

Chapter 4 Simulation Results

In this chapter, we describe the results from extensive simulations of an event-driven data

sensor network. A packet-level simulator is used to explore the performance of the proposed

schemes under various traffic conditions. The main purpose of our experiments is to examine

whether the proposed distributed LPT module can provide accurate results as the centralized

one, and whether such model can provide the additional lifetime-savings over other schemes.

We also compare a range of other network parameters such as data delay and packet delivery

ratio; in order to determine how much the network can be affected by the amount of control

messages incurred during the tree constructions. The following systems are examined

throughout most of our simulations:

• Directed Diffusion [19, 20], or simply Diff;

• Directed Diffusion with E-Span, or simply E-Span (Section 3.3);

• Centralized LPT (Section 3.4);

• Directed Diffusion with distributed LPT, or simply LPT (Section 3.5).

We start by first describing the performance metrics under consideration as well as a detailed

explanation of the simulation methodology in Section 4.1. Next, we validate the tree energy

of the distributed LPT to that of the centralized model in Section 4.2. We then compare

controls and tree depths of E-Span to that of the LPT in Section 4.3. Finally, performance

results on the average energy dissipation, node lifetime, data delay, and packet delivery ratio

by using Diff, E-Span, and LPT are reported in Section 4.4.

56

Chapter 4 Simulation Results

4.1 Performance Metrics and Methodology

57

We implemented our tree construction modules on top of Directed Diffusion in the ns-2 [52]

network simulator (the ns-2.26 release comes with diffusion support). In all of our

experiments, a square sensor field with each side measuring L meters is being considered. A

number of M identical nodes, ranging from 50 to 250 in the increment of 50, are randomly

deployed in this sensor field such that the average node density is kept at X= 50/1602 nodes

per meter square, a parameter which we borrowed from Directed Diffusion [19, 20].

Furthermore, there are five sinks randomly deployed in the field and sources are randomly

chosen among the nodes, subject to the conditions that N = 0.1 M and the sources have to be

interconnected to each other (to model a single stimulus). Each node is assumed to have a

radio range of 40 meters.

We considered an event-driven data sensor network throughout all our experiments. To

model the periodic transmissions, each source generates random data reports of size fixed at

136 bytes in constant intervals of R = 1 packet per second. To introduce some randomness,

data start to be generated only after a time randomly chosen between t = 0 to 5 seconds. The

data are collected at the root, if it exists, and sent to the sinks. An application that computes

the average of reports generated by various event sources is employed to model the

aggregation behaviors. During data collection, sensors have the abilities to perform in-

network aggregation of packets enroute to the root. Specifically, we meant that each sensor

can combine the reports received with that from itself into a single packet containing the

average of all the gathered reports.

We altered the ns-2 radio energy model such that the sources carry different initial

energy when the simulation starts. More specifically, for the node lifetimes to be presented in

Section 4.4, we assign each source with an initial energy that is randomly chosen between 10

to 15 J in order to keep the total simulation time at a reasonable limit. In all of our

Chapter 4 Simulation Results 58

experiments, all other nodes are given with an initial energy that is greater than that of any

event source such that their absence in the network, due to energy depletion, do not affect the

functionalities of any participating sources during data collection. Lastly, the idle time,

receive, and transmit power dissipation are set at 35, 395, and 660 mW respectively. We

assume a negligible energy cost to process and aggregate incoming data reports. To trace the

energy, an application that logs the residual energy of each node in constant intervals of 500

ms is employed.

The ns-2 simulator implements a 1.6 Mbps 802.11 MAC layer. Since Directed Diffusion

is chosen as our routing platform, we also adopt a range of Diffusion-related parameters

(listed in Table 4.1) in all of our experiments. Table 4.2 provides a summary of all other

parameters used in our simulation models.

Table 4.1: A summary of Diffusion-related parameters

Interest Packet Size = 84 bytes Interest Delay = 5 sec

Exploratory Data Packet Size = 132 bytes Exploratory Data Delay = 30 sec

A number of metrics are used to analyze the performance of the LPT and compare with other

schemes. The percentage error measures how often the distributed LPT can generate a tree

with the tree energy equal to that of the centralized approach. The average per source control

computes the amount of control cost, in bytes, for each source involved in constructing and

maintaining the data aggregation tree throughout a simulation run. The average tree depth

measures the average distance, in number of hops, between an event source and its tree root.

The maximum tree depth computes the maximum distance from a leaf to the root in a given

tree. The average dissipated energy, on the other hand, measures the average amount of

energy consumed throughout the entire simulation. This metric computes the average work

done in delivering periodic data to the sinks over a simulation run. The average node lifetime

Chapter 4 Simulation Results 59

Table 4.2: A summary of other parameters used in the simulation models

Item Symbol Value

average node density X 50/1602 nodes/m2

number of nodes Af 50, 100,150, 200,250

number of sinks - 5

number of sources N 10% of Af

network width L (MX) 0 5

node energy e„ variable

data rate R 1 pkt/s

protocol timeframe T 25 s

E-Span control size s„ 92 bytes

LPT control size m„ variable

LPT hello size hn
60 bytes

data packet size - 136 bytes

radio range - 40 m

idle time power - 35 mW

receive power - 395 mW

transmit power - 660 mW

MAC bandwidth - 1.6 Mbps

energy log period - 500 ms

measures the time at which a source runs out of its available energy resource. The intuition

behind this metric is to determine how much additional time that each source can suffice by

collecting data via the proposed tree structure. The average RtoS delay computes the average

one-way delay observed between transmitting data from the root to each of the sinks. The

average StoP delay determines the delay of transmitting packets from a source to its parent.

The average delay measures the delay between transmitting data from each source to each of

the sinks. Observe that both LPT and E-Span combines any data enroute to the tree root with

the report from the receiving node itself. Moreover, the compressed data report does not leave

the receiving node right after the averaging, but is postponed to the(next transmitting period.

In order to estimate this delay for both LPT and E-Span, we adopt the following equation:

Chapter 4 Simulation Results 60

average delay = M a y R 2 S x r e c v S N K + (delay S2P x hop AVE + delay R2S)xrecvSRC

recvSNK +recvSRC

where delayR2s is the average RtoS delay, delayS2p is the average StoP delay, recvsm is the

amount of data packets received by all sinks, recvSRc is the amount of data packets collected

by all sources, and hopAVE is the average tree depth. Note that both application processing and

queuing delays are included in all delay measurements. Finally, the average packet delivery

ratio measures the ratio of the number of distinct messages received by each sink to the

number originally sent (by the root if there is a tree). We study these metrics as a function of

different network sizes.

4.2 Tree Energy: Distributed vs. Centralized

Our first experiment compares the tree energy generated by the distributed LPT to that of the

centralized approach. The intuition is to understand how often the two different schemes can

i • •
generate trees with equal energy. Note that the results for each network size are averaged over

100 different experiments.

Our first set of results, depicted in Figure 4.1, have shown a near-100% match of the tree

energy generated by the two different construction schemes, with only a little deviation when

the number of participating sources is large. In fact, by logging all control message exchanges,

our trace files have shown an increasing trend of message drops when network size increases.

Since failure to receive a configuration message can possibly create a tree that does not have

the highest tree energy, we conclude that the deviation is caused by the packet drops.

However, we are able to limit this error to a small tolerable range by broadcasting the entire

tree table, instead of a list of eids, in each configuration message (Section 3.5.4) so as to

maximize the chance of any neighbor successfully receiving the lists stored in this table.

Chapter 4 Simulation Results 61

S? 95
o fc u
OJ

bo B c u

90

85

80
50

• Percentage error : Distributed vs. centralized LPT

100 150 ,200
number of nodes with 10% sources

250

Figure 4 . 1 : Percentage error on tree energy generated by distributed LPT to that of the centralized one.

4.3 Controls and Tree Depths: LPT vs. E-Span

Figure 4.2 shows the average per source controls involved in the constructions of LPT and

E-Span respectively. Our results, averaged over 20 experiments with a 95% confidence

interval, have shown that the LPT can take up to as many as 40 times the control cost of

E-Span, and this difference is expected to grow with increasing network size. The reason for

such trend is due to the flooding nature of LPT branch discovery. Since LPT requires the eid

from each source to traverse through most of other nodes whereas E-Span only forwards it

one hop away, we do expect more control exchanges in the LPT model.

Figure 4.3 shows the comparison of tree depth of LPT and E-Span as a function of

network size. In fact, both trees are expected to grow in tree depths since a greater network

size implies a greater region bounded by the sources. With radio range set at 40 meters, the

root will have to traverse more hops before it can reach all the sources when this region

expands. Also observe that both the maximum and average tree depths of LPT are lower than

that of E-Span. Since the selection of the E-Span root is solely based on the node's energy, it

is possible that this root is located at the corner of the region bounded by the sources. LPT, on

the other hand, considers tree depth in the BetterTree selection algorithm (Section 3.5.3) and

Chapter 4 Simulation Results 62

is more likely to have the tree centered at this region. Therefore, we have, on average, a lower

tree depth if LPT is deployed instead.

50 100 150 200 250

number of nodes with 10% sources

Figure 4.2: Average per source controls (in bytes) involved in constructing the data aggregation trees.

50 100 150 200

number of nodes with 10% sources

250

Figure 4.3: Maximum and average tree depths from each participating source node to the tree root.

4.4 Performance: LPT, E-Span, and Diff

To validate the impacts of data aggregation on energy savings by the use of LPT and E-Span,

Chapter 4 Simulation Results 63

we measure the average dissipation energy and have the results averaged across 20 different

experiments with a 95% confidence interval. Note that the simulation time is set at 200

seconds. Our results depicted in Figure 4.4 have shown a considerable amount of energy

savings, down to 27% the energy dissipation of Diff, when data are aggregated via either LPT

or E-Span prior to transmitting to each sink. Such a significant saving is expected since both

trees efficiently suppress the amount of traffic in the network by combining data from various

sources into a single packet containing the average of all the gathered reports. We expect that

this difference will continue to grow with larger network size. Also observe that LPT has

comparably equal dissipation energy as E-Span. This is encouraging, given that the amount of

controls involved in the construction of LPT is greater than that of E-Span (shown earlier in

Figure 4.2). We argue this by the fact that difference between the amount of controls for LPT
i

and E-Span is relatively much smaller than the total amount of data being injected. As a result,

the average dissipation energy between the two will have an unnoticeable difference.

In order to study the impact of LPT and E-Span on the lifetime-savings, we measure the

node lifetime of each source as a function of network size for LPT, E-Span, and Diff

respectively. Figure 4.5 to Figure 4.9 summarize our results. Note that each node is assigned

50 100 150 200 250

number of nodes with 10% sources

Figure 4.4: Average dissipation energy as a function of network size.

Chapter 4 Simulation Results 64

with an initial energy that is randomly chosen between 10 to 15 Joules so as to limit the total

simulation time at a controllable range. We therefore make the following observations:

1. Both LPT and E-Span considerably extend the lifetime of each source, especially in

a large network. In fact, the amount of lifetime:savings can go up to as high as

147%' and 139%2 when data are aggregated through LPT and E-Span respectively.

2. LPT has similar performance as E-Span in a smaller network. However, their

difference starts to become more noticeable with increasing network size. In fact,

our results have indicated a maximum of 13%3 additional lifetime-saving when

there are 25 sources in the network.

3. LPT and E-Span have a more pronounced difference between the tails of the curves.

In other words, most of the lifetime-savings are achieved by higher-energy nodes.

The impact of data aggregation is again validated in observation 1. By combining data reports

from various event sources, both LPT and E-Span are able to suppress a considerable amount

of data traffic in the network. Since less energy is now consumed in forwarding data traffic

(shown earlier in Figure 4.4), there should be a noticeable lifetime-saving when data are

collected via a tree. And this is indeed true as shown in the figures.

Next, for observation 2, we argue that the chance of obtaining an identical tree structure

by using LPT and E-Span, respectively, is relatively high when there are fewer sources. In

fact, when all the nodes are within the radio range of each other, both LPT and E-Span will

create an identical tree with the highest-energy node selected as the root and all other nodes as

leafs (only one-hop away from the root). When this happens, the amount of lifetime-saving

will be quite similar. As a matter of fact, LPT only has a more remarkable lifetime-saving

1 In Figure 4.8 when there are 12 sources remaining, (191.4 - 77.4) / 77.4 = 147% for LPT.
2 In Figure 4.8 when there are 13 sources remaining, (181.6 - 75.9) / 75.9 = 139% for E-Span.
3 In Figure 4.9 when there are 3 sources remaining, (215.4 -96.1)/ 96.1 - (203.2-96.1)7 96.1 = 13%

Chapter 4 Simulation Results 65

M
C

E
3
C

i :

i :
i

i

i
i

1

1

LPT
E-Span
Diff

1

1
i i i i i

40 80 120 160 200 240 280 320

simulation time (sec)

Figure 4.5: Average node lifetime for each participating source with N = 50 nodes.

0 50 100 150 200 250 300

simulation time (sec)

Figure 4.6: Average node lifetime for each participating source with N = 100 nodes.

Chapter 4 Simulation Results 66

0 30 60 90 120 150 180 210 240 270

simulation time (sec)

Figure 4.7: Average node lifetime for each participating source with N = 150 nodes.

0 50 100 150 200 250

simulation time (sec)

Figure 4.8: Average node lifetime for each participating source with N = 200 nodes.

Chapter 4 Simulation Results 67

240

simulation time (sec)

Figure 4.9: Average node lifetime for each participating source with N = 250 nodes.

when there are more sources in the network.

Our explanation for the last observation is two-fold: First, since lower-energy nodes are

usually being selected as leafs, they are unlikely to collect data from other sources. Given that

these leafs have the same initial energy in both schemes, the amount of lifetime-savings due

to them will therefore be similar. Second, the fact that E-Span selects the highest-energy node

as the root makes this node deplete sooner than all the others (due to its additional duties in

route coordination, exploratory data flood etc). Since the roles of the E-Span root are usually

rotated among higher-energy nodes, we expect this group of nodes to have an energy

dissipation rate greater than all the others. The result is therefore a pronounced difference

between the tails of the two curves.

Our next experiment compares the average RtoS delay observed between transmitting a

compressed report at the tree root and receiving it at each sink as a function of network size

for LPT and E-Span respectively. Our results, depicted in Figure 4.10, exhibit a trend that

increases with the network size for both schemes. As the network expands, the distance

between the root and the sink increases. Consequently, the average RtoS delay increases. Also

Chapter 4 Simulation Results 68

observe that LPT has a similar performance with E-Span for a network of any size. Since the

root selection does not depend on the positions of the 5 randomly-chosen sinks, the average

distance between the root to each sink is similar for both schemes. Therefore, the difference

of the delay between the two is insignificant.

50 100 150 200

number of nodes with 10% sources

250

Figure 4.10: Average RtoS delay between transmitting a data at the root and receiving at each sink.

To determine the delay between any pair of a source and its parent, we measure the average

StoP delay across 20 different experiments with a 95% confidence interval for LPT and

E-Span respectively. Figure 4.11 depicts our results. Since more participating sources

increases the MAC-layer queuing delay accordingly, the average StoP delay therefore

increases with network size for both schemes. Next, observe that LPT again has a similar

delay performance as E-Span. Since the rate at which the controls are generated is low (MT

second), by fixing the data rate at 1 packet per second in both schemes, the amount of packets

processed by the network will be quite similar. Hence, the difference of the average StoP

delay between the two different schemes is negligible.

Our next experiment compares the average delay, between transmitting a data packet at

each source and receiving it at each sink, for Diff, LPT, and E-Span as a function of network

Chapter 4 Simulation Results 69

Figure 4.11: Average StoP delay between transmitting a data at a source and receiving at its parent.

size. Recall that delay in this context is based on Equation 4.1 in Section 4.1 when a tree is

used. Our results, depicted in Figure 4.12, have reported that Diff has its delay built up

comparably faster than both LPT and E-Span. Since LPT and E-Span combine data from

various sources, it is as if only a single source is generating. This is also true in a network

with a large number of data sources. Given that the rate at which nodes can process the

received data is limited, data delay usually goes up when there is more traffic in the network.

As a matter of fact, both LPT and E-Span should have a comparably lower delay than Diff

under all our test cases.

Also observe from the figure that LPT has a slightly lower delay, although quite small,

than E-Span. Given that the average tree depth (shown earlier in Figure 4.3) for LPT is lower

than that of E-Span, data in the former are only required to be forwarded for a fewer number

of hops before it can arrive at the sinks. However, since this difference is at most one hop, we

can only see a little deviation here.

Our last experiment, with its result depicted in Figure 4.13, measures the average packet

delivery ratio for Diff, E-Span, and LPT, as a function network size, respectively. The figure

indicates that Diff experiences severe congestion when there are a lot of data sources whereas

Chapter 4 Simulation Results 70

- - o - - Diff

50 100 150 200 250

number of nodes with 10% sources

Figure 4.12: Average delay between transmitting a data at each source and receiving it at each sink.

1 f"

.2 0.9

s 0.8 u
T J

U

0.7

0.6

0.5
50 100 150 200 250

number of nodes with 10% sources

Figure 4.13: Average packet delivery ratio between transmitting a data and receiving it at each sink.

Chapter 4 Simulation Results 71

LPT and E-Span are able to maintain their packet delivery ratios even when network expands.

As we have explained in the last paragraph, Diff has its network overloaded with data traffic

when more sources are sending. A considerable amount of data packets are therefore dropped

as a result. LPT and E-Span, on the other hand, inject data to the sensor network as if there is

only a single source. Thus, they are able to steadily maintain its packet delivery ratio even

when the network is large.

4.5 Summary

In this chapter, we have simulated and compared LPT with other models such as Diff and

E-Span. We validated that the tree energy of distributed LPT matches closely with that of the

centralized scheme, especially when there is only a few sources. We continued by comparing

tree depths and have shown that LPT is more-likely to center the tree in the middle of the

region bounded by all sources. Our results on the average delay also indicated that such

feature efficiently reduces the delay incurred during data collection. Moreover, our next set of

results have shown that both LPT and E-Span exhibit a steady increase of the average energy

cost, delay, and packet drop rate when the network size increases. Finally, our main results on

the average node lifetime have reported a maximum of 139% lifetime extension on the

sources with E-Span, and a maximum of an additional 13% improvement when LPT is used

instead.

Chapter 5 Conclusions and Future Work

To meet the demands where raw data readings are usually aggregated along their ways to be

gathered at a single source prior to transmissions to any interested sink, we have proposed in

this thesis a novel Lifetime-Preserving Tree construction algorithm for future wireless sensor

networks. The tree provides a given set of sources with a mechanism to collect their data so

that only a minimum amount of energy is required to deliver the same amount of information

to the sinks when data aggregation is not used. The protocol features in that nodes with higher

energy are tend to be chosen as data aggregating parents, whenever possible, so that the time

to refresh this tree is extended and therefore less energy are involved in the tree maintenance.

In addition, by constructing the tree in such a way, the protocol is able to lower the amount of

data lost due to broken tree links before the tree reconstructions. Another attractive feature of

the protocol is that the tree is most-likely to be centered in the middle of the event area,

thereby reducing the delay during data collection. In the next few sections, we will conclude

this thesis with a summary of our contributions and directions for future work.

5.1 Summary of the Thesis

This research begins with an investigation to the conventional spanning tree and the energy-

aware variant of it for their uses in data aggregation. We have demonstrated that:

• The conventional spanning tree fails to consider residual energy of nodes in the tree

constructions. There is thus a good possibility that a low-energy node is arranged to

forward data for some other nodes, thereby reducing its node lifetime and fastening

the energy-depletion of any subsequent event source.

72

Chapter 5 Conclusions and Future Work 73

• E-Span improves the design of tree construction by assigning root to be the highest-

energy node. Such arrangement provides root with the maximum amount of energy

resources for its additional duty in coordinating the route to distant sinks. However,

there is still a high chance of assigning low-energy nodes to be the data aggregating

agents for the other sources.

To shorten the time and minimize the energy cost to tree reconstructions, and hence preserve

the functional lifetime of all sources, we have proposed a lifetime-preserving tree construction

algorithm which arranges all nodes in a way that each parent will have the maximal-available

energy resources to receive data from all of its children. Such arrangement extends the time to

refresh the tree and lowers the amount of data lost due to a broken tree link before the tree re

constructions. We have achieved the objectives by:

• Introducing a distributed tree construction model to create a tree that spans all event

sources and comprises the highest tree energy using a technique similar to Reverse-

Path Forwarding [51];

• Proposing a centralized variant of the LPT construction scheme which identifies the

node that is causing a bottleneck to the set of connectivity provided by various event

sources.

We have simulated and compared LPT with other modules such as Diff and E-Span. We first

validated that the tree energy of distributed LPT matches closely with that of the centralized

scheme, especially when there is only a few sources. We continued by comparing the amount

of controls and tree depths, and have shown that LPT is more-likely to center the tree in the

middle of the area bounded by all sources. Such feature efficiently reduces the delay incurred

during data collection. Moreover, our next set of results indicated a relatively steady increase

of the average energy cost, delay, and packet drop rate for both LPT and E-Span when

Chapter 5 Conclusions and Future Work 74

network size increases, due to the amount of traffic suppressed by these two aggregation trees.

Finally, results on average node lifetime have shown a maximum of 139% node-lifetime

extensions on the sources with the E-Span, and a maximum of an additional 13%

improvement when LPT is employed instead. In fact, LPT and E-Span have a more

pronounced difference near the tails of the two lifetime curves, implying that most of the

lifetime-savings are achieved by higher-energy nodes.

5.2 Topics for Future Investigations

In this thesis, we have described the construction of the proposed lifetime-preserving tree and

analyzed its performance when comparing with Directed Diffusion [19, 20] and E-Span.

Future research work remains to enhance the proposed protocol for future wireless sensor

networks. They include:

• Load-Balancing Tree [53, 54]: In addition to considering residual energy in the tree

constructions, the number of children that a source is being attached to can also have

a significant impact on its functional lifetime. Consider a simple 4-node LPT with

the root attached to 3 other inter-connected nodes. The rate at which the root

dissipates is nearly 3 times that of all the others. Depending on the initial energy

levels of all the nodes, the root can become energy-depleted sooner than all the other

3 nodes, even though we have already assigned the root to have the highest energy.

If one of these 3 sources could have attached itself to the other two, rather than the

root, the node lifetime of the root would have extended. Therefore, in order to

balance and further extend the node lifetime, the load at which a node is assigned to

should also depend on its residual energy level.

• Disjoint Sets of Data Sources: We have simulated the performance of our proposed

Chapter 5 Conclusions and Future Work 75

LPT model based on the assumption that the sources are interconnected to each

other. When there are multiple disjoint sets of data sources, for example in the

presence of obstacles, multiple independent data aggregation trees will be created.

An interesting question now is whether the traffic from various roots should be

merged together. If so, an additional amount of energy cost that depends on the

number of hops between these trees will be required to coordinate the routes

between various roots. If not, the amount of traffic injected by various tree roots will

just increase with the number of trees in the network.

• Moving Target: The issue of tree-based collaborations for mobile-target tracking

has been studied by the work in [36]. The authors have proposed a model to

dynamically reconfigure a tree so that the root can constantly aggregate reports from

nodes that detects the mobile target even when the target moves. Our scheme, in

general, does not support the tracking of a mobile target. To overcome this issue,

simple heuristics in predicting the target moving direction and additional

maintenance efforts to add and prune tree links will be required to reconfigure our

proposed lifetime-preserving tree structure.

Bibliography

[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, "Next century challenges: Mobile

networking for "smart dust"," in Proc. ofACMMobiCom '99, Seattle, WA, pp. 271-278,

Aug. 1999.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and' E. Cayirci, "Wireless sensor

networks: A survey," Computer Networks (Elsevier) Journal, vol. 38, pp. 393-422, Mar.

2002.

[3] I. Nikolaidis, J. J. Harms, and S. Zhou, "On sensor data aggregation with redundancy

removal," in Proc. of 22nd Biennial Symposium on Communications, Ontario, CA, May

2004.

[4] D. Petrovic, R. C. Shah, K. Ramchandran, and J. Rabaey, "Data funneling: Routing with

aggregation and compression for wireless sensor networks," in Proc. of IEEE

International Workshop on Sensor Network Protocols and Applications (SNPA'03),

Anchorage, AK, pp. 156-162, May 2003.

[5] Q. Fang, F. Zhao, and L. Guibas, "Lightweight sensing and communication protocols for

target enumeration and aggregation," in Proc. of ACM MobiHoc'03, Annapolis, MD, pp.

165-176, June 2003.

[6] A. Boulis, S. Ganeriwal, and M. B. Srivastava, "Aggregation in sensor networks: An

energy-accuracy trade-off," in Proc. of IEEE International Workshop on Sensor Network

Protocols and Applications (SNPA '03), Anchorage, AK, pp. 128-138, May 2003.

[7] G. J. Pottie and WJ. Kaiser, "Wireless integrated network sensors," Communications of

the ACM, vol. 43, no. 5, pp. 51-58, May 2000.

[8] E. J. Duarte-Melo, M. Liu, and A. Misra, "A modeling framework for computing

76

Bibliography 11

lifetime and information capacity in wireless sensor networks," in Proc. of 2nd WiOpt:

Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, Cambridge, UK,

Mar. 2004.

[9] Y. Yu, R. Govindan, and D. Estrin, "Geographical and energy aware routing: A recursive

data dissemination protocol for wireless sensor networks," U C L A Computer Science

Dept., Tech. Rep. UCLA/CSD-TR-01-0023, May 2001.

[10] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient communi

cation protocol for wireless microsensor networks," in Proc. of IEEE Hawaii

International Conference on System Sciences (HICSS'00), pp. 3005-3014, Jan. 2000.

[11] F. Ye, S. Lu, and L. Zhang, "Gradient broadcast: A robust, long-lived large sensor

network," 2001. [Online]. Available: http://irl.cs.ucla.edu/papers/grab-tech-report.ps

[12] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, "A two-tier data dissemination model for

large-scale wireless sensor networks," in Proc. of ACM MobiCom'02, Atlanta, GA, pp.

148-159, Sept. 2002.

[13] R. C. Shah and J. M. Rabaey, "Energy aware routing for low energy ad hoc sensor

networks," in Proc. of IEEE Wireless Communications and Networking Conference

(WCNC'02), Orlando, FL, pp. 350-355, Mar. 2002.

[14] C. L. Barrett, S. J. Eidenbenz, L. Kroc, M. Marathe, and J. P. Smith, "Parametric

probabilistic sensor network routing," in Proc. of ACM International Workshop on

Wireless Sensor Networks and Applications (WSNA'03), San Diego, CA, pp. 122-131,

Sept. 2003.

[15] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon, "Minimum-energy asynchronous

dissemination to mobile sinks in wireless sensor networks," in Proc. of ACM SenSys'03,

Los Angeles, CA, pp. 193-204, Nov. 2003.

[16] U. Cetintemel, A. Flinders, and Y. Sun, "Power-efficient data dissemination in wireless

sensor networks," in Proc. of ACMMobiDE'03, San Diego, CA, Sept. 2003.

http://irl.cs.ucla.edu/papers/grab-tech-report.ps

Bibliography 78

[17] D. Braginsky and D. Estrin, "Rumor routing algorithm for sensor networks," in Proc. of

ACM International Workshop on Wireless Sensor Networks and Applications (WSNA'02),

pp. 22-31, Sept. 2002.

[18] W. R! Heinzelman, J. Kulik, and H. Balakrishnan, "Adaptive protocols for information

dissemination in wireless sensor networks," in Proc. ofACMMobiCom '99, Seattle, WA,

pp. 174-185, Aug. 1999.

[19] C. Intanagonwiwat, R. Govindan, and D. Estrin, "Directed diffusion: A scalable and

robust communication paradigm for sensor networks," in Proc. of ACM MobiCom'00,

Boston, MA, pp. 56-67, Aug. 2000.

[20] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, "Directed

diffusion for wireless sensor networking," IEEE/ACM Trans. Networking, vol. 11, no. 1,

pp. 2-16, Feb. 2003.

[21] Y. Gao, K. Wu, and F. Li, "Analysis on the redundancy of wireless sensor networks, " in

Proc. of ACM International Workshop on Wireless Sensor Networks and Applications

(WSNA'03), San Diego, CA, pp. 108-114, Sept.2003.

[22] H. Gupta, S. R. Das, and Q.'Gu, "Connected sensor cover: Self-organization of sensor

networks for efficient query execution," in Proc. of ACM MobiHoc'03, Annapolis, MD,

pp. 189-200, June 2003.

[23] C. Huang and Y. Tseng, "The coverage problem in a wireless sensor network," in Proc.

of ACM International Workshop on Wireless Sensor Networks and Applications

(WSNA'03), San Diego, CA, pp. 115-121, Sept. 2003.

[24] D. Tian and N. D. Georganas, "A coverage-preserving node scheduling scheme for large

wireless sensor networks," in Proc. of ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA '02), pp. 32-42, Sept. 2002.

[25] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan,

"Building efficient wireless sensor networks with low-level naming," in Proc. of ACM

Bibliography 79

Symposium on Operating Systems Principles (SOSP), Banff, Canada, pp. 146-159, Oct.

2001.

[26] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica, "Geographic routing

without location information," in Proc. of ACM MobiCom '03, San Diego, CA, pp.

96-108, Sept. 2003.

[27] T. Bokareva, N. Bulusu, and S. Jha, "A performance comparison of data dissemination

protocols for wireless sensor networks," accepted for publication in Proc. of IEEE

Global Telecommunications Conference (GLOBECOM'04), Nov. 2004.

[28] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin, "Data-centric storage in

sensornets," in Proc. of ACM First Workshop on Hot Topics in Networks (HotNets-I),

Princeton, NJ, Oct. 2002.

[29] I. Solis and K. Obraczka, "The impact of timing in data aggregation for sensor

networks," in Proc. of IEEE International Conference on Communications (ICC'04), vol.

6, pp. 3640-3645, June 2004.

[30] M. Ding, X. Cheng, and G Xue, "Aggregation tree construction in sensor networks," in

Proc. of IEEE Vehicular Technology Conference (VTC'03), vol. 4, Orlando, FL, pp.

2168-2172, Oct. 2003.

[31] K. Dasgupta, K. Kalpakis, and P. Namjoshi, "An efficient clustering-based heuristic for

data gathering and aggregation in sensor networks," in Proc. of IEEE Wireless

Communications and Networking Conference (WCNC'03), New Orleans, LA, pp.

1948-1953, Mar. 2003.

[32] D. Niculescu and B. Nath, "Localized positioning in ad hoc networks," in Proc. of IEEE

International Workshop on Sensor Network Protocols and Applications (SNPA'03),

Anchorage, AK, pp. 42-50, May 2003.

[33] Y. Shang, W. Rumi, Y. Zhang, M. P. J. Fromherz, "Localization from mere

connectivity," inProc. of ACM MobiHoc'03, Annapolis, MD, pp. 201-212, June 2003.

Bibliography 80

[34] A. Nasipuri and K. Li, "A directionality based location discovery scheme for wireless

sensor networks," in Proc. of ACM International Workshop on Wireless Sensor Networks

and Applications (WSNA '02), Atlanta, GA, pp. 105-111, Sept. 2002.

[35] A. Sawides, C. C. Han, and M. B. Srivastava, "Dynamic fine-grained localization in ad-

hoc networks of sensors," in Proc. of ACM MobiCom '01, Rome, Italy, pp. 166-179, July

2001.

[36] W. Zhang and G Cao, "DCTC: Dynamic convoy tree-based collaboration for target

tracking in sensor networks," IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1689-

1701, Sept. 2004.

[37] J. Carle and D. Simplot-Ryl, "Energy-efficient area monitoring for sensor networks,"

IEEE Computer Magazine, vol. 37, no. 2, pp. 40-46, Feb. 2004.

[38] S. Upadhyayula, V. Annamalai, S. K. S. Gupta, "A low-latency and energy-efficient

algorithm for convergecast," in Proc. of IEEE Global Telecommunications Conference

(GLOBECOM'OS), vol. 6, pp. 3525-3530, Dec. 2003.

[39] O. Younis and S. Fahmy, "HEED: A hybrid, energy-efficient, distributed clustering

approach for ad hoc sensor networks," IEEE Trans. Mobile Computing, vol. 3, no. 4, pp.

366-379, Oct. 2004.

[40] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal, "Data aggregation in wireless sensor

networks - exact and approximate algorithms," in Proc. of IEEE Workshop on High

Performance Switching and Routing (HPSR '04), Phoenix, AZ, pp. 241-245, Apr. 2004.

[41] A. Cerpa and D. Estrin, "ASCENT: Adaptive self-configuring sensor networks

topologies," in Proc. of IEEE Infocom '02, vol. 3, New York, NY, pp. 1278-1287, June

2002.

[42] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. B. Srivastava, "Topology management

for sensor networks: Exploiting latency and density," in Proc. of ACM MobiHoc'02,

Lausanne, Switzerland, pp. 135-145, June 2002.

Bibliography 81

[43] Y. Xu, J. Heidemann, and D. Estrin, "Geography-informed energy conservation for ad

hoc routing," in Proc. ofACMMobiCom '01, Rome, Italy, pp. 70-84, July' 2001.

[44] A. Sankar and Z. Liu, "Maximum lifetime routing in wireless ad-hoc networks," in Proc.

oflEEEInfocom '04, Hong Kong, Mar. 2004.

[45] E. J. Duarte-Melo and M. Liu, "Analysis of energy consumption and lifetime of

heterogeneous wireless sensor networks," in Proc. of IEEE Global Telecommunications

Conference (GLOBECOM'02), vol. 1, pp. 21-25, Nov. 2002.

[46] V. Mhatre, C. Rosenberg, D. Kofman, R. Mazumdar, and N. Shroff, "A minimum cost

heterogeneous sensor network with a lifetime constraint," accepted for publication in

IEEE Trans. Mobile Computing, Jan. 2004.

[47] H. Zhang and J. Hou, "On deriving the upper bound of a-lifetime for large sensor

networks," in Proc. of ACM MobiHoc'04, Roppongi Hills, Tokyo, Japan, pp. 121-132,

May 2004.

[48] D. M. Blough and P. Santi, "Investigating upper bounds on network lifetime extension

for cell-based energy conservation techniques in stationary ad hoc networks," in Proc. of

ACMMobiCom '02, Atlanta, GA, pp. 183-192, Sept. 2002.

[49] R. Perlman, Interconnections: Bridges, routers, switches, and internetworking protocol,

2n d ed., Addison-Wesley Professional Computing Series, Reading, MA, 1999.

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

2n d ed., MIT Press, 2001.

[51] Y. K. Dalai and R. M. Metcalfe, "Reverse-path forwarding of broadcast packets,"

Communications of the ACM, vol. 21, no. 12, pp. 1040-1048, Dec. 1978.

[52] VINT, "The network simulator ns-2," http://www.isi.edu/nsnam/ns, November, 2001.

[53] R. Guerin, J. Rank, S. Sarkar, and E. Vergetis, "Forming connected topologies in

Bluetooth adhoc networks," in Proc. of International Teletraffic Congress (ITC18),

Berlin, Germany, pp. 1011-1020, Sept. 2003.

http://www.isi.edu/nsnam/ns

Bibliography 82

[54] H. Dai and R. Han, "A node-centric load balancing algorithm for wireless sensor

networks," in Proc. of IEEE Global Telecommunications Conference (GLOBECOM'03),

vol. l,pp. 548-552, Dec. 2003.

