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Abstract

A theoretical toolbox for the simulation of Heterojunction Bipolar Transistors (HBTs), in

cluding the effects of tunneling, recombination, and the optimum non-linear base proffle (for the

minimisation of the base transit time), is developed. The models developed are applicable to a

general material system, and are analytic. Extensions specifically required by the complex

Sii..Ge material system are also developed. The optimum (to minimise base transit time) base

doping is found to be non-exponential, and the optimum base bandgap grading is not linear. A

general transport model for HBTs, including recombination processes, is developed that accounts

for the complex nature of charge transport throughout the entire device. Unique methods for opti

mising HBT metrics, which cannot be employed for Bipolar Junction Transistors (BJTs), are also

presented. A description of charge transport within the emitter-base Space-Charge Region (SCR),

which accounts for tunneling and is not beholden to the usual drift-diffusion analysis, is devel

oped. The implications of having different electron effective masses in the two sides of the hetero

junction, leading to what is termed a mass boundary, is fully explored. It is found that the

tunneling of electrons within the emitter-base SCR leads to a non-Maxwellian minority-particle

ensemble distribution entering the neutral base. Finally, transport within SiGe HBTs is consid

ered, with all of the relevant material models presented and multi-band transport models devel

oped. This treatment leads to a variety of interesting conclusions regarding the operation of

present-day SiGe HBTs and possible future designs.
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CHAPTER 1

Introduction
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The main objective of the Ph.D. research being presented in this thesis is the creation of

models that will foster a deeper understanding regarding the physics surrounding a Heterojunc

tion Bipolar Transistor (HBT). To this end, physically based models for the transport of charge

within an HBT will be developed. These physics-based models will allow for the simulation of

present-day HBT structures and novel structures for the future. By clearly identifying the relevant

mechanisms by which charge transport takes place within the HBT, an optimum design for the de

vice that incorporates the various compromises between competing device metrics (such as f3,f
and RB) can be obtained. A further goal is to reduce all of the models developed within this thesis

to tractable, analytic forms. By obtaining analytic models for charge transport within the HBT,

circuit level models that predict device performance can be developed in step with the emergence

of HBT-based Integrated Circuit (IC) processes. Finally, the models that are developed within this

thesis are in general free of any details specific to a single material system. However, given the

importance of the AlGai..As and Sii..Ge material systems, these two systems will be exten

sively studied and will serve as the chosen material systems for all examples presented.

The concept behind the HBT has been around since the time of Shockley [1]. Further, over

30 years ago, Kroemer developed much of the fundamental physics regarding the operation of the

HBT [2]. However, it has not been until the last five years that industry has had the capability to

manufacture HBTs with suitable yields to be commercially viable [3-5]. Also, the material re

search is still continuing and has a long way to go before HBT processes achieve the maturity of

technologies such as CMOS. Furthermore, with experimental results becoming more prolific, and

with rapidly diminishing device dimensions, we are finding that much of the physics laid down

for modelling the HBT is inadequate for describing present-day devices [6-9].

With the increasing maturity of processes for the production of HBTs, comes an increase in

the need for models that predict device operation. It is now possible to manufacture HBTs with

active basewidths approaching 100 A [10-121 and with features that change over distances of less

than 10 A [13-14]. As device dimensions approach the atomic lattice spacing of the crystal, the

applicability of models based upon classical continuous fields becomes questionable [15]. There

is already general agreement that one must consider higher order moments beyond the drift and

diffusion terms in the Boltzmann Transport Equation (BTE) in order to model deep submicron de

vices [16-17]. The BTE is based upon classical physical models that in general do not incorporate
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quantum mechanical (QM) phenomena. It has been recognised that the correct modelling of tun

neling, a QM effect, is of paramount importance to the correct prediction of HBT operation [18-

21]. Thus, models of HBTs that incorporate QM phenomena are becoming increasingly important

in order to maintain accurate simulation of the HBT.

The general relationship between the terminal currents and voltages of an HBT can still be

predicted today by models designed for Bipolar Junction Transistors (BJTs) [22]. However, it is

not always clear why we can continue to apply BJT models to HBT operation when these BJT

models were developed without consideration of the physical processes that govern transport

within an HBT. Presumably, the BJT model has enough degrees of freedom so that it can be ma

nipulated to cover HBT operation. For example, one of the most common discrepancies found

when using BiT models for HBT simulation is that the injection indices (ideality factors) for the

collector and base terminal currents do not correspond to what is theoretically predicted for BJT

operation [23]. Thus, in order to accurately predict HBT operation, and to further develop HBT

processes so as to advance device operation, one needs to understand such things as why the col

lector and base injection indices differ between an HBT and a BJT [24,25].

The Sii..Ge material system has many unique physical considerations that other systems,

such as the AlGai..As material system, do not have to contend with. The unique attributes of the

Sii..Ge material system are mostly due the effects of strain. Due to the large lattice mismatch be

tween Si and Ge, Sii..Ge films grown on top of Sii..Ge substrates (where x y) have a large de

gree of strain present within them if non-relaxed crystals with low defect density are to be

manufactured. The presence of strain breaks the cubic symmetry of the crystal and changes the

bulk electrical properties [26-28] of the film. By varying the Ge alloy content and the strain im

parted to the SiGe film, it is possible to tailor both the bandgap and the offsets in the conduction

and valence bands. Therefore, models specific to the Sii..Ge material system must be developed

in order to understand charge transport within the complex band structure that develops.

Finally, the reason for focussing on the Sii..Ge and A1Gai.As material systems stems

from the maturity of AlGaAs devices, and the massive installed base of Si-based IC technologies

that would easily admit SiGe devices. From a manufacturing standpoint the AlGai..As material

system offers no redeeming features when compared to Si, save one - the lack of strain. Obvious

ly, the key to the operation of an HBT is the formation of heterojunctions between two materials
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characterised by different bandgaps. The AlGai.As material system has essentially a fixed lat

flee constant over the entire range of Al mole fraction x. For this reason, the MGai.As material

system is lattice matched and will admit an arbitrary heterojunction between AlGai..As and

AlGaiAs without developing a strain within one of the films. This lack of strain within the

MGai.As material system helps to ensure a defect-free heterointerface that greatly facilitates

the manufacture of HBTs. For this reason, most commercially available HBTs are based in the

AlGai ..As material system [29]. However, most solid-state devices are Si based [30]. With the

advancement of low-temperature Chemical Vapour Deposition (CVD) processing [31], the forma

tion of high-quality commensurately strained Sii..Ge films is becoming commercially viable.

Therefore, given the manufacturing advantages of Si, it is expected that SiGe HBTs will shortly

surpass A1GaAs HBTs as the most prolific commercially available HBT [32-37].

1.1 Modelling Details

Research has been conducted into the injection of electrons from the emitter into the base of

AlGai..As npn HBTs [18,24,25]. The research has centred around abrupt HBTs where the het

erojunction between the wide-energy-gap emitter and the narrow-energy-gap base is abrupt. In an

abrupt AlGai.As HBT one finds the formation of a Conduction-Band Spike (CBS) between the

emitter and the base (see Fig. 3.1). This spike, due ostensibly to differences in the electron affinity

of the materials used for the formation of the emitter and the base, results in a large impediment to

the flow of electrons from the emitter into the base. In fact, if the CBS were not taken into account

when modelling the HBT, the collector current would be overestimated by over three orders of

magnitude at room temperature (see Fig. 1.1). However, the modelling of charge transport

through the CBS cannot be based upon simple thermionic injection alone. Since the width of the

CBS is typically less than boA near the top of the spike, the occurrence of a tunneling current

cannot be neglected. Finally, it will be shown that transport through the CBS can often be the lim

iting factor for the overall transport of charge within the HBT (i.e., the determination of the col

lector current Ic). This occurrence of current-limited flow outside of the neutral base region will

be studied and exploited for device optimisation. Therefore, the modelling of the relevant physical

phenomena surrounding charge transport through the CBS, including tunneling and conservation

of transverse momentum across the heterojunction in a diagonal mass tensor, will be investigated.
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Fig. 1.1. Collector current for an abrupt AIGaAs HBT with 30% Al content in the emitter. The
emitter doping is 5x1017cm3,and the base doping is 1x1019cm3(see Section 4.5 for the com
plete device details). The top curve, where CBS limitations have been neglected, is arrived at by
assuming Shockley boundary conditions and considering only neutral base transport.

The possibility of regions other than the neutral base controlling I is intriguing. However,

from a modelling perspective, the immediate consequence of a multi-regional system controlling

Ic is the question of how to join these various regions together to form one cohesive transport mod

el. Furthermore, the possibility exists that under multi-regional control ofI, older models, such as

those for the neutral base [38], which assume that only the specific region being studied controls

Ic may not longer be valid. It will be shown in Chapter 2 that there is a very simple prescription

for joining up all of the multi-regional transport models into a complete transport model for the de

termination of I. It will be further demonstrated in Chapter 6 that it is possible for two spatially

separate regions to control I simultaneously by having essentially identical net-charge-transport

capacity through both regions; the ramification of this is the inseparability of the two regions.

With the general model of Chapter 2 providing the overall method to link the various physi

cal regions of the HBT together, then the problem of modelling charge transport within the entire

HBT is effectively decoupled into a set of models; one model for each relevant region. To this end,

Chapter 3 investigates and develops models for the various regions of the HBT, including the si
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multaneous optimisation of the base bandgap and doping profile (provisions are also made for the

inclusion of bandgap narrowing due to heavy doping effects) for the minimisation of the base-

transit time ‘CD. Finally, the modelling of recombination events, which lead to the formation of the

base current ‘B’ is developed in Chapter 5 with the specific attributes of a heterojunction included.

These various regional models essentially form a toolbox for the study of charge transport within

the HBT, with the general transport model of Chapter 2 forming the blueprint for the ultimate op

eration of the device.

The modelling efforts presented in this thesis regarding charge transport through the EB

SCR are rigorous in that no appeal has been made to drift-diffusion analysis based upon phenom

enological mobility models (i.e., mobility models with an electric field dependency). Instead,

models that include the quantum mechanics of charge transport, which have no appeal to said

phenomenological mobility models, are analytically solved for. However, the neutral base charge

transport models are based upon drift-diffusion analysis. The reason for resorting to simpler drift-

diffusion analysis for the neutral base is its been found that the neutral base often does not repre

sent the bottleneck to charge transport and thus does not dictate control over I ([25] and Fig.

1.1). Nevertheless, as the neutral base thickness approaches and becomes smaller than the mean

free path, then a majority of the electrons will traverse the base without thermalising [39,40].

These un-thermalised, or hot, or ballistic electrons do not follow exactly the simple models of

drift-diffusion contained within the BTE [16,41]. Instead, a general solution to the BTE is neces

sitated.

In present-day HBTs, and even in some of the emerging high performance BJTs, the under

standing of hot electrons can be essential to the accurate modelling of the device’s terminal char

acteristics [9,14]. The problem with general BTE solvers, such as Monte Carlo simulation, is that

some important QM effects cannot be modelled. The BTE is based upon local potentials and

therefore cannot include some QM effects, such as tunneling, which are inherently non-local. As

was discussed and shown in Fig. 1.1, the failure to include tunneling results in a gross error re

garding the transport of charge through the HBT. Section 4.6 will address the issue of merging

classical BTE solvers with the models developed in Chapter 4 for charge transport through the

CBS. Specifically, Section 4.6 will show that tunneling produces a considerable distortion to the

minority-particle ensemble distribution entering the neutral base (deviations that are far from
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Maxwellian or even hemi-Maxwellian). Finally, it should be noted that the use of drift-diffusion

models in the neutral base will not produce gross errors like the failure to include tunneling

through the CBS. Instead, drift-diffusion models can be employed in the neutral base, but with

corrections that essentially amount to a 20 to 40% change to the diffusion coefficient D [42,431.

Even more importantly, if the neutral base does not control I, then in terms of D.C. calculations,

no error will occur if these ballistic corrections to D are neglected; however, it terms of A.C. cal

culations, such as for tB, there would be an error.

The final modelling effort of this thesis pertains directly to the design and simulation of

SiGe HBTs. As has been alluded to, the effect of strain on the electrical characteristics of Sii..Ge

films is dramatic. Chapter 6 reviews the various material models necessary for the description and

study of the electrical characteristics of strained Sii.Ge. Specifically, once a review of the litera

ture regarding the Sii..Ge material models is presented, a comparison to experimental results is

performed, and the most consistent set of material constants selected. The final result is a com

plete set of models for the calculation of the bandgap including conduction and valence band off

sets. Furthermore, strained Sii.Ge results in a two-band system both for the conduction and the

valence band. Chapter 6 uses the Sii..Ge material models and derives the necessary multi-band

charge-transport models that are required to simulate SiGe HBTs. In fact, it is found that there is a

substantial error incurred by replacing the two-band system with a single effective band. Finally,

the charge-transport models are applied to the study of present-day as well as future SiGe HBT

designs with some surprising results regarding operating voltages and critical layer thicknesses.

1.2 Thesis Organisation

This thesis is organised into five main chapters. Chapter 2 presents a general model for the

HBT that is highly abstract in nature. The main tenet of the general model in Chapter 2 is that it

can contain any number of physical regions to model the HBT, including sources and sinks within

each region. Chapter 2 also introduces a method of optimisation through what is termed current-

limited flow. Chapter 3 builds upon the ideas of Chapter 2 by considering specific examples of de

vice optimisation that can be performed within an HBT but not a BiT. The main development in

Chapter 3 is the solution for the optimum base bandgap and doping profile. Surprisingly, the opti

mum doping profile is not exponential, and the optimum base bandgap is not linear. Chapter 4
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moves on to develop the necessary models for charge transport within the emitter-base SCR. Spe

cifically, models for the tunneling of electrons through the CBS, including the effect of a spatially

non-uniform effective mass, are developed. Finally, Chapter 4 goes on to show the effect of tun

neling on the emerging minority-carrier ensemble distribution entering the neutral base. Chapter 5

rounds out the ideas presented in Chapter 2 by developing the necessary models for the recombi

nation of minority carriers within the emitter-base SCR and the neutral base. Chapter 5 concludes

by using the model of Chapter 2 to bring together the various regional models of Chapters 3

through 5 for the simulation of an A1GaAs HBT. Chapter 6 builds upon the models of Chapters 4

and 5 for the simulation of SiGe HBTs. Models that include the effects of strain on the conduction

and valence bands in the Sii..Ge material system are presented. Multi-band charge transport

models, which include the material models of the Sii..Ge material system, are then developed.

Finally, Chapter 6 brings all of the models developed within the chapter together for the study of

numerous present-day and future SiGe HBT designs.
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CHAPTER 2

A Multi-Regional Model for HBTs Leading to
Optimisation by Current-Limited Flow
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Since the invention of the Bipolar Junction Transistor (BiT) in 1948 by Brattain, Bardeen

and Shockley [44], continuous improvements have been made to its operation and reliability.

Nowadays, BJTs are part of nearly every manufactured product sold within the world. This con

tinuous development of the design and manufacture of the BJT shows no sign of ending nor any

abating in the pace at which improvements are made. The question then, is what direction or di

rections will the course of BiT development take in the future?

The latest innovation in the evolution of the BIT has been termed Bandgap Engineering by

Capasso [45]. By altering the actual semiconductor within the active portion of the BIT, generally

by forming some sort of alloy, the shape of the bandgap can be altered to provide another force to

govern the motion of electrons with the device. This idea, however, is not a new one. Shockley al

luded to the use of Bandgap Engineering in his BJT patent of 1948 [1], and Kroemer first pro

posed the idea of using a wide-bandgap semiconductor for the emitter and a narrow-bandgap

semiconductor for the base in 1957 [2]. This junction between two semiconductors with dissimi

lar bandgaps is a heterojunction, and leads to the creation of a Hetero-junction Bipolar Transistor

(HBT). What makes the HBT of specific interest today, is that in 1957 it was not possible to man

ufacture HBTs due to the infancy of the art of semiconductor manufacture. It has only been in the

late 1980’s and the 1990’s that commercially available HBTs have become feasible. Therefore,

now is the time to fully explore the possibilities afforded by Bandgap Engineering to the contin

ued development of the BIT.

2.1 Bandgap Engineering

The force acting upon an electron/hole within a semiconductor is the sum of the electric

field due to any spatially varying charge, and the field of a spatially varying conduction/valence

band (EJE) [71. The electric field due to the spatially non-uniform charge is the standard force

responsible for drift and it changes with applied bias. However, the effect of the field due to the

variation of EJE is present from the construction of the device and is therefore ostensibly inde

pendent of the bias conditions (much the same as the electric field that is generated in the neutral

base due to a spatially varying doping is independent of bias). It is this manufactured driving

force, due to the spatial change in the bandgap and the band alignments, that gives rise to Bandgap

Engineering. It is possible to effect such a rapid change in EdE that the affects of the standard
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electric field are negligible and unimportant. One can therefore expect to create HBTs with mark

edly different tenninal characteristics than those possible with BITs. Finally, and most important

ly, the terminal characteristics of HBTs can have a completely different dependence upon the

physical construction of the device when compared to BITs.

The final objective of Bandgap Engineering can be broken down into two distinct groups:

techniques that provide for a slow change in E/E such that the overall electric field is modified

(such as adding a gradient to EdE that aids in the transport of charge through the base) but is not

overwhelmed by the engineered field; or techniques that afford extremely rapid or abrupt changes

in EIE, so much so that electron/hole transport no longer depends upon the electric field due to

the space-charge but is governed completely by the engineered bandgap.

The first group of Bandgap Engineering techniques was applied to the newly emerging HBT

in the form of an additional adding field in the base and the collector, in order to afford a more

rapid transit of the electron/hole through the device [2,46,47]. Shortly thereafter, the second group

of Bandgap Engineering techniques resulted in the idea of placing an abrupt downwards change in

E to provide a sudden increase in the kinetic energy to the electron as it entered the base (ballistic

injection; see Fig. 2.1) [12,14,48]. The aiding field in the base produced results that were expect

ed; the ballistic launcher however, did not. In the end, it was the abrupt Bandgap Engineering

technique that provided the most unique results in HBTs when compared to BiTs. Thus, abrupt

Bandgap Engineering may be the more promising road to follow in seeking to continue the evolu

tion of BITs.

Ballistic “launcher”

didingField

(N) (P) (N)
Emitter Base Collector

E Hole blocker

Fig. 2.1. The abrupt change of E in the emitter-base junction “launches” electrons into the base
with a large kinetic energy. The gradual negative slope of E in the base and the collector helps to
speed the electron through these regions. Finally, the abrupt change in E at the emitter-base junc
tion suppresses hole back-injection into the emitter.
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2.2 Regional Decoupling and Current-Limited Flow

Within any region of a solid-state device, charge flow or transport results in a spatial variation

to the quasi-Fermi energy Ef When the variation in the conduction and valence band is small (small,

as defined by Berz [49], is a change of less than kT over one mean-free path ?), then one can speak of

a continuous spatial change in Efi and arrive at the standard drift-diffusion transport equations. How

ever, when the change in the conduction or valence bands is not small, as occurs in abrupt Bandgap

Engineering, then Ef does not vary in a continuous fashion but instead changes abruptly as well

[50,7]. This abrupt change in Efis due to a departure from conditions of quasi-equilibrium, where the

transported current through the region is large in comparison to the equilibrium charge flows that re

sult from the drift and diffusion of carriers [50,18].

To see the effect of a departure from quasi-equilibrium upon Efi examine the effects due to

an abrupt change in E, as shown in Fig. 2.1. Fig. 2.2 shows what the abrupt emitter-base hetero

junction would look like, including the effect of the potential energy variation due to the Space-

Charge-Region (SCR). The transport flux F is then given by the forward directed flux Ff minus

the backward directed flux Fr The forward and reverse directed fluxes are [18,20,211:

= qvn° and Fr = qvn° = qnOekT (2.1)

which produces
AEf

F=FfF=qn°l_e kT)=Fj(1_e kT), (2.2)

where n0 is the electron concentration immediately to the left of the heterojunction, O is the

electron concentration immediately to the right of the heterojunction that is capable of surmount

ing the barrier ii is the ensemble average velocity of the flux (which can include tunneling),

and AE is the abrupt change in the electron quasi-Fermi-energy E. The reason for the appear

ance of the term /XEp in eqns (2.1) and (2.2) is due to the need for n° to surmount the barrier

AE. Therefore, the abrupt change in E generates the abrupt change in

Eqn (2.2) clearly shows that as F goes towards zero, then so does In fact, if the condi

tions F << Fjand F << Fr are satisfied, then AEp 0. This is exactly what is meant by quasi-equilib

rium; as long as the total transport current merely perturbs the equilibrium fluxes, the result will

be a vanishingly small Conversely, if the transport current is not small compared to Ff and
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F,, then iXE will become substantial. Finally, in the limit of a large AE (more than a few kT), F,.

becomes very small compared to Fj, and F Ff. Thus, it is not possible for the demanded trans

port current to exceed the available forward directed flux.

Fig. 2.2. Band diagram of the emitter-base junction showing the effect of the abrupt heterojunc
tion on E7c,, under an applied forward bias. ji is the solution to the Poisson equation and is there
fore continuous; however, the midgap energy E1 need not be.

The condition of F Ff is termed current-limited flow, and is a manifestation whereby

quasi-equilibrium is grossly violated. The region in which current limiting has occurred responds

by generating as large a as necessary such as to reduce the demanded F to be no more than

Fp Obviously, the transport current through the entire device will be governed by the region in

which current limiting has occurred. Furthermore, the physical construction of the region limiting

the transport current will dictate the dependence of F, and thus F, on the applied bias. Therefore,

abrupt Bandgap Engineering techniques can in principle generate regions which will govern the

total transport current irrespective of any other physical portion of the device.

To examine the effects of current limiting by a region, consider the hypothetical structure

shown in Fig. 2.3. Fig. 2.3 shows three different but adjoining regions with a total applied bias of

V across them all. Charge is transported from Region 1 to Region 2 and finally through Region 3.

Let the transport current be composed of electrons, although the same argument and solution re

suits if holes are considered instead. To further generalise this picture consider a sink, or recom

bination process, existing in both Regions 2 and 3. Then, by the need to conserve particle flow,

the electron flow must be continuous across the two boundaries separating the three regions. This
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Electron
Flow

Hole
Flow

Fig. 2.3. Hypothetical HBT structure showing three physical regions that govern current transport.
The applied bias is with a drop of AE and at the region boundaries. There are recombi
nation processes in Regions 2 and 3 that generate currents J,2 and J,3 respectively. Conservation
of current forces J,,1 = J,,2 + J,2, and J,,2 = J,,3 + J,,,3. Note: Ep, is assumed to be a constant.

procedure has been referred to as current balancing [51,52], but is generalised here to also allow

for sinks (and with a simple extension, sources as well). Thus, the sink causes the electron and

hole currents emanating from the region to couple together as the total electron flux entering the

region must be conserved [24]. Now, the driving force in Region 1 is the full applied bias of V

However, at the boundaries, one needs to consider a drop of AEp,x (where x = 1 or 2) through the

region. Thus, the driving force in Region 2 is not Vbut V— AEfi. Likewise, at the second bound

ary, another drop in the electron quasi-Fermi energy of AEfr2 occurs, resulting in a driving force

of V—
—

in Region 3. Using the form given in eqn (2.2) for the transport current:

O 11f1 kT
n,l

—

—e

J2 =2(V—E1)(1_e kT ),
Jfl,3 = 3 (V—AEffl 1 —iXEf 2)’ (2.3)

fn, 2

J2 =2(V—AE1)(1_e

J,3 =43(V—AEffll_AEffl2.

p
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It is important to realise that the hole currents represent electrons that have recombined; hence

their direction of flow as presented in Fig. 2.3 and their connection with

If theJ0(V— AEp) functions can be expressed as i°(V)exp(—AEp1/k7), then, equating J,,2

with J,,3 + J,,,3 gives:

LEf2 AEf,,2

kT )= [3(+43(]e,

which produces, after dropping the explicit dependence upon V,

f2 jO
e

= n,2
(2.4)

2+ J 3+4 3

Then, equating J,,1 with J,,2 +J1,,2 gives:

LEffl1 IEf1 fn,2

Ji(V)(1-e)=[J,2(v)+4,2(V)1e(1_e kT).

Using eqn (2.4) in the above, and once again dropping the explicit dependence upon V, produces:

iiE1 ,o
— kT — n,lkn,2+ n3+Jp3

25e
— (J2+42)(3+43) +l(2+3÷43)

The final transport current Jexiting the device is simply equal to J,3. Substituting eqn (2.4) and

(2.5) into J,,3 given in eqn (2.3) produces:

JT(V) = Jfl 3 (V)
= 1

, (2.6)

+ +
1

J1(V) J22(V) J3(V)

where

—

‘2,2+4,2
and —

3+43

— -‘2,2 —

Eqn (2.6) provides a very simple form for the ultimate transport current T emanating from

the device, and extends eqn (34) in [52]. It includes all of the recombination effects of Regions 2

and 3, while allowing for a completely general relationship between the applied bias and the for

ward directed flux Ff (where the fi(V) functions are F. The only stipulation placed upon the use of

eqn (2.6) is that fi(V— AEp) =J0(V)exp(—AEp/k7) (as will be seen in later chapters, where eqn

(2.6) is applied, this is exactly the functional fonn that results). Therefore, to determine the trans
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port current that results from coupling three regions together, it is sufficient to calculate the forward

directed fluxes through each region in isolation, and then use these results directly in eqn (2.6).

It is a very simple mathematical problem to generalise eqn (2.6) to a system of N regions.

To do this, simply treat Regions 1, 2 and 3 as a single super-region, with the transport current giv

en by eqn (2.6) used to define J1;Regions 4 and 5 then become Regions 2 and 3 in the analysis

leading up to eqn (2.6). Finally, a recursive application of the above procedure gives:

N+i

= JJ ‘v.,(V)J (2.7)

i=i j=i+i

Jj+Jj
wherey4 1, and = ‘

J
n, j

Eqn (2.7) is the general formula for the calculation of transport current through any multi-

regional HBT (of which a BJT is a subset). The ramifications of eqn (2.7) are striking and gener

ally lead to current-limited flow within a single region. An examination of eqn (2.7) begins with

the y4 functions, which are termed the recombination loss; y4, therefore, represents the additional

current that must exist in order to satisfy the recombination events within Region j. Then, the

transported current through each successive region is not J but Now, the form of eqn

(2.7) is exactly the same as that used for the calculation of a connected series of conductors. This

immediately leads to the picture of a series of pipes through which a current JTmust pass (see Fig.

2.4).

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 IT

Fig. 2.4. The flow T that results from a series connection of six pipes (the flow entering only equals
the flow leaving (= J) when there is no recombination in any of the regions). Obviously, the pipe in
Region 4 is the most restrictive and T will accordingly be governed mostly by this region alone.
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Looking at eqn (2.7) and letting J <<j k wherej k and k can range over all N, then Re

gionj will be responsible for the current-limited flow of T and produce:

JT(V)Ji(V) Ii k(’ (2.8)

k=j+1

where (= l/) is the transport efficiency of Regionj and expresses the fraction of the transport

current that is lost to recombination within the region. Eqn (2.8) is exactly the form expected from

the arguments presented in Fig. 2.4. For if Region j is responsible for the current-limited flow, T

would equal J3 in the absence of recombination. However, each subsequent region downstream

will lose 0k electrons to recombination. Therefore, the current will be diminished by c’k in

each region encountered, leaving a final current of T exiting the device. This immediately leads

to eqn (2.8). Thus, in a device with say six regions, if Region 3 produces the limiting flow, then T

=

Finally, looking once again at eqn (2.8), recombination events upstream of Regionj play no

part in the ultimate current T This is no surprise since all of the regions upstream of Regionj can

supply the demanded current within Region j. However, every region from 1 to N contributes to

the recombination current, and must be included in the calculation of the total hole current 4
Adding all of the recombination events together gives:

N N N+1 F N N+1 N N+1

J(V) = = fl Y = JT[Yi IT [I
i=1 i=1 j=i+1 i=1 j=i+1 i=lj=i+1

Then, after bringing yj into the multiplication and letting i = i’ — 1 in the second term:

r N N+1 N+1N+1 1 1N+1 N N+1 N N+1

J(V)
= JTLH- HYij = JTLH,+H- flN+1

i=lj=i i’=2j=i’ j=1 i=2j=i i’=2j=i

Finally, since YN÷1 1 from eqn (2.7), and i’ is a dummy variable, the above reduces to:

J(
=JT(V)[fl(V)_11.

(2.9)

Eqn (2.9) provides for the total hole current generated within the device. Combining both

eqns (2.7) and (2.9), the total electron and hole current entering and leaving the device is known.

As will almost always be the case, one region alone will dictate the transport current and lead to

current-limited flow. Then, eqn (2.7) can be replaced by its approximate form, eqn (2.8), to yield

after substitution into eqn (2.9):
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J(V) =JJ(V)[fl(k(v)- fl x(V)]. (2.10)

k=1 k=j+1

The results of this section are models for the total electron and hole currents entering and

leaving an HBT. These models are free of essentially any restrictions upon their functional form,

and can therefore be applied to a wide variety of physical processes. Furthermore, the form of the

models presented is based upon a simple, modular approach, that is easy to apply to any device.

The important ramification is that one region alone will tend to determine the overall transport

through the entire device; creating a situation of current-limited flow. The key to achieving a situ

ation of current-limited flow is the existence of a substantial AEp in one region. Finally, abrupt

Bandgap Engineering techniques provide the capacity to create a situation of current-limited flow

in any region of the device. In the next section and chapters to come, the concept of current-limit

ed flow will be exploited in the optimisation and modelling of HBTs. In the end, eqns (2.7) and

(2.9) (or their approximate forms, eqns (2.8) and (2.10) respectively), will be used to bring togeth

er all of the models for each of the relevant regions of an HBT.

2.3 Optimisation Through Current-Limited Flow

The main conceptual result of the last section was that one region, or physical process, will

tend to dictate the transport current through the entire device. This section examines how to inten

tionally design a specific region, through Bandgap Engineering techniques, to result in current-

limited flow; thereby allowing for a decoupling of T from the physical transport processes in all

other regions of the device. Finally, once J’ is decoupled from a specific region, by ensuring that

transport through the region is much larger than the demanded jr then one is free to optimise that

specific region without affecting J

Fig. 2.5 shows the transport current that would result from a hypothetical three region de

vice. For case (a), Region 3 controls J under low bias and Region 2 controls under high bias;

while Region 1 plays no part at all. In case (b), the transport current in Region 1 has been lowered

so that Region 1, and neither Regions 2 or 3, controls T under all bias conditions. This demon

strates, in principle, the feasibility of engineering a specific region to be the source of current-lim

ited flow, and thereby link JTto the physical process in that region alone.
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In order to see how optimisation can occur by engineering a specific region to be the source

of current-limited flow, one begins by identifying the need for decoupling. Imagine there are two

specific metrics, say Early voltage (VA) and collector resistance (Rc), that are to be optimised. If

these two metrics are connected to one parameter, in this case collector doping, and the two met

rics do not both move towards their optimum value with either an increase or decrease in the one

parameter, then only a compromise and not a true optimum can be reached. In the example given,

VA is to be maximised and Rc minimised. However, increased collector doping decreases both VA

and Rc, forcing a compromise between the two metrics to be made. If it were possible to decouple

either of these metrics from the one parameter, then it would be possible (in terms of this one pa

rameter only) to optimise both metrics. Therefore, decoupling the metrics from their common

competing parameter is the key to removing the compromise and achieving a true optimum.

1

i03

1O-

1
0.8

case(b) i2 1

1.0 1.2 1.4
Base-Emitter Voltage VBE (V)

Fig. 2.5. T for a three-region HBT in the absence of recombination. The solid lines represent the
maximum regional currents .1°, while the dashed lines are J For case (a), Region 1 is never the lim
iting region; while for case (b), Region 1 is the source of current-limited flow.

1.6

At the heart of decoupling is the separation of the transport current from the physical pro

cess that is to be optimised. For if the transport current is not affected, or at least not in a detri

mental fashion, then one is free to optimise the desired metric. Current-limited flow provides the

necessary tool to decouple T from all regions, and therefore all physical transport processes, save
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one. Continuing on with the example of simultaneously optimising VA and Rc, if T were decou

pled from the construction of the base and collector, say by making the emitter-base SCR the

source of current-limited flow, then VA would no longer depend upon the collector doping; en

abling the optimisation of Rc without affecting VA. With base-width modulation no longer an is

sue, in terms of the collector current and therefore VA, it would be possible to increase the intrinsic

collector doping adjacent to the base and thereby reduce Rc. A further optimisation, in terms of

the base-collector capacitance CBC, could also be had by placing a low-doped collector region

within the CB SCR (say at 1016cm3for 2000A) in order to set CBC, followed immediately by a

highly doped extrinsic collector to reduce Rc. Optimisation of competing metrics is thus achieved

by first identifying the coupling parameter; then, one other region that does not contain the cou

pling parameter is constructed (generally through abrupt Bandgap Engineering techniques) to be

the source of current-limited flow in order to provide for the control of J- (i.e., the collector cur

rent).

This chapter has provided a logical course to decouple otherwise competing metrics so they

may be simultaneously optimised. The tool for decoupling the competing metrics being the cre

ation of current-limited flow outside of the region or regions to be optimised. It is possible to

achieve current-limited flow in any given region by resorting to abrupt Bandgap Engineering tech

niques. Thus, abrupt Bandgap Engineering provides the necessary tool to further optimise BJTs.

Finally, all the models for the various regions of the HBT are neatly brought together through

eqns (2.7) and (2.9) (or their approximate forms eqns (2.8) and (2.10)) for the calculation of the

total electron and hole currents entering and leaving the device.
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CHAPTER 3

Base Layer Decoupling and Optimisation
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Traditionally, the base region, or more specifically the neutral base region, has determined the

overall performance of the BJT. As such, the physical construction of the base is of paramount im

portance to the function of the BJT At issue with the base is the fact that there are basically two de

grees of freedom within the base; namely the base doping profile N(x) and the neutral base width

WB (in an HBT a third parameter, namely the bandgap in the base Eg(x), is also available). Against

these two (or three) independent parameters lie numerous device metrics that are to be optimised.

Obviously, with more metrics than independently controllable parameters, it is impossible to simul

taneously optimise all of the metrics. Thus, an inherent compromise is forced to exist between

many of the metrics, which leads to an unnecessary limit to the peak performance of the BJT.

Chapter 2 dealt with the effects of abrupt Bandgap Engineering techniques upon the trans

port current within an HBT. It was found that through abrupt Baudgap Engineering, it was possi

ble to construct a specific region in such a fashion that the transport current T depended on this

region alone; thereby decoupling T from all other regions of the device. Once T has been decou

pled from all other regions of the device, save one, the task of independently optimising each re

gion becomes trivial.

The possibility of decoupling J- from the physical construction of the base promises to

eliminate the interdependence that the base-controlled metrics have upon each other. Once the

base metrics are free of each other then one can finally consider a truly optimised BJT and thus,

achieve a significant improvement to the peak performance of the BJT. Parameters such as the in

trinsic base sheet-resistance RBJ, base-emitter capacitance CBE, injection index y (not to be con

fused with the y in Section 2.2 which is the recombination loss), Early voltage VA, base transit

time ‘CB, and the base-collector capacitance CBC could then be simultaneously optimised. The key

to the optimisation of these base metrics rests simply on the decoupling of T from the base by

constructing one other region of the device in such a manner that it results in current-limited flow.

This chapter takes the abstract concept of optimisation through current-limited flow and ap

plies it to the base region. The methods used to achieve the simultaneous optimisation of the base

region metrics follow directly from the prescriptions of Chapter 2. Specifically, the base metrics

RBD, CBE, ‘ VA, and ‘C13 are considered for optimisation. Finally, once the optimum models for

each of these metrics within the base region have been derived, they are linked together for the

calculation of the total electron and hole currents by the methods derived in Chapter 2.
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3.1 Independent Optimisation Of RB, CBE, And

In the design of any transistor, the sufficient design criteria is to provide for a gain that is

greater than one. However, it is generally desirable to design a gain that is much larger than one.

In the case of a BJT, this translates into maximising the current gain 3 (= collector current I di

vided by the base currentlB). In current-day BITs, the manufactured materials are so pure, that for

the most part, the recombination of minority carriers being transported through the neutral base

represents only a small fraction of the total ‘B [53]. Therefore, [3 will depend on the injection effi

ciency y of the Emitter-Base (EB) junction. For an npn BJT the EB y is given by:

“fl, B
(3.1)

where n,B is the electron transport current through the base, and is the hole current injected

into the emitter (also known as hole back-injection). Using eqn (3.1), in the absence of neutral-

base recombination, the gain is:

I
=!._• (3.2)

‘‘ “p,E

Thus, [3 is maximised as y is driven towards 1; meaning that is driven towards zero and/or n,B

is made as large as possible.

In an npn BiT, n,B is inversely proportional to the base Gummel number G#B [54-56] given by:

G#B
=

dx, (3.3)

where D is the electron minority carrier diffusion coefficient, WB is the neutral base width, andp

is the base majority hole concentration (= base doping N except under high-level injection

[56]). Furthermore, for a transparent emitter (an emitter where there is little hole recombination),

p,E is inversely proportional to the emitter Gummel number G#E [54-56] given by:

G#E = i) dx, (3.4)

where D is the hole minority carrier diffusion coefficient, WE is the neutral emitter width, and n

is the emitter majority electron concentration (= emitter doping NDE except under high-level in

jection). Thus, f3 is proportional to G#E/G#B. Now, the intrinsic base sheet-resistance RBU is also

inversely proportional to G#B [54]. However, unlike the case for [3, where it is desirable to reach a

maximum, RBU is to be minimised in order to improve the high-frequency operation of the BJT.
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Since RBL] and 13 are both tied to the parameter G#B, and increasing G#B optimises RBU while de

optimising 13, we realise these two metrics are competing and therefore cannot be simultaneously

optimised (at least in terms of the parameter G#B).

As was discussed in Section 2.3, the key to optimising two otherwise competing metrics is

to identify their common parameter (in this case G#B) and remove its dependency from one of the

two metrics. Continuing on with the case of optimising RBJ and 13, it would appear possible to in

crease G#B and thereby minimise RBU, while also increasing G#E and thereby maximise 13. How

ever, G#E in a BJT cannot be increased because NDE is either at or very near its maximum

physical limit ( 1021 cm3). Thus, without resorting to Bandgap Engineering techniques, the only

available parameter is G#B, meaning that a compromise has to be made between RBU and 13. This

was the motivation for the first HBT; to decouple 13 from its sole dependence upon G#B.

Looking at Fig. 3.1(a), the band-diagram for a BJT shows that it is just as easy for an elec

tron to enter the base as it is for a hole to enter the emitter (the two carriers see exactly the same

potential barrier of Vbj — VBE). Therefore, the ratio of n,B to p,E (= 13) will be proportional to the

ratio of the available number of electrons in the emitter to the available number of holes in the

base (= NDE/N — G#E/G#B). Now, if it were possible to alter the bandgap of the EB junction so

that the holes had to surmount a larger barrier than the electrons, then pE would be significantly

reduced and 13 increased (see Fig. 3.1(b)). Finally, if Bandgap Engineering were employed to

achieve an initial 1000-fold increase in 13 (by reducing p,E through a Bandgap Engineered

then G#B could be increased 32-fold, thereby reducing RBD 32-fold, while still leaving a net 32-

fold increase in 13. Thus, by creating a heterojunction at the EB metallurgical junction, it is possi

ble to reduce p,E without increasing G#E. Then, the gains provided by a reduced pE are shared

between an increase in 13 and a decrease in RBIJ.

The methods just described for the simultaneous optimisation of RB and 13 demonstrate the

potential gains of abrupt Bandgap Engineering. However, the techniques described above did not

follow the exact prescription given in Section 2.3, and thus maintain a coupling between RBU and

13. Instead of decoupling 13 from G#B, another degree of freedom was added to G#E; namely the

abrupt change of t1E in the valence band at the EB junction. The dependence of 13 upon G#B still

exists, but p,E and thus (3, by the addition of a heterojunction within the EB SCR, now has anoth

er dependence of exp(-AEJk1) [2,46,47] through the intrinsic carrier concentration in the emitter
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i,E• However, since f3 still depends upon G#B, any change in G#B due to bias (such as the Early

effect [57], Kirk effect [58] or high level injection [56,59]), will still affect and generally degrade

I. The reduction of p,E through simple abrupt Bandgap Engineering is thus seen as a good first

step, but falls short of the optimum case where f3 is decoupled from G#B altogether.

To fully decouple 3 from G#B one looks at the spike in E at the EB junction shown in Fig.

3.1(b). This Conduction-Band Spike (CBS) occurs in HBTs where the base is made of GaAs and

the emitter is made of AlGai.As [25]. The barrier to electrons entering the base lies somewhere

between q(V1
— VBE) and q(V1

— VBE) —
tSE depending on the amount of tunneling through the

CBS. In general, it is found that the drop AE is sufficient to cause the CBS to be the region of

current-limited flow (this will be fully discussed in Chapter 4). Thus, T (= n,B in the absence of

significant neutral-base recombination) will be governed by the physical process of transport

through the CBS, and not by the transport through the neutral base. Furthermore, transport

through the CBS has little dependence upon G4B (as long as the base doping is much larger than

the emitter doping). Therefore, T and thus are decoupled from G#B through the condition of

current-limited flow at the CBS.

The condition of current-limited flow in the region of the CBS follows exactly the prescrip

tions of Section 2.3. n,B has now been decoupled from G#B, meaning that processes connected to

(a) BJT (b) HBT

E (eV) E (eV)

+

Fig. 3.1. (a): Band diagram of a homojunction BJT. Clearly, the potential barrier seen by a hole
trying to go from the base to the emitter is the same barrier seen by an electron trying to go from
the emitter to the base. (b): Band diagram of an HBT. Through abrupt Bandgap Engineering, the
barrier seen by a hole trying to enter the emitter is a least AE larger than the barrier seen by an
electron trying to enter the base. Also note the formation of the Conduction-Band Spike (CBS).
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G#B such as the Early effect, Kirk effect, and high-level injection, which degraded the collector

current of BJTs, are no longer an issue for the abrupt HBT (the term abrupt refers to the abrupt

change of IXE and AK1, at the EB junction). With the collector current decoupled from G#B, RBL]

can be minimised by increasing G#B through an increase in N, while leaving and therefore ‘y

unaffected.

Before leaving this section to discuss the further optimisation of the base and collector, it

should be noted that the EB junction capacitance CBE can also be minimised due to the condition

of current-limited flow at the CBS. The high-frequency performance of a BiT improves as CBE

decreases. Most notablyfT (the frequency at which f, under the conditions of an A.C. short circuit

between emitter and collector, has dropped to unity) increases as CBE is reduced. Since CBE is

given by:

qNN NAB
CBE = I,, where Nrat

= N + N
‘ . )

I4kVbjVBE) AB DE

then NDE and Nrat need to be minimised in order to reduce CBE. In a BJT, the need to maximise f
forces NDE >> N, meaning thatN is reduced in order to reduce CBE. Thus, CBE is connected to

RBD as well, and leads to another condition where only a compromise and not a true optimum can

be reached. CBS-limited flow in an abrupt HBT decouples 3 from N, so that RBU can be opti

mised by increasing N. Finally, CBE is reduced in an abrupt HBT through the reduction of NDE

(for HBTs, N >> NDE so that Nrat 1). The only limit to the reduction in NDE being the point at

which a significant intrinsic emitter resistance RE begins to occur (see Fig. 3.2).

This section has presented the methods to simultaneously optimise RB(J, CBE, and ‘y Opti

misation of these metrics begins by decoupling from y and CBE the dependence upon N. This

decoupling is afforded by the creation of current-limited flow at the CBS. With y and CBE decou

pled from N, RB is optimised by increasing N. Then, CBE is optimised by reducing NDE. Fi

nally, the optimisation of y depends first of all upon p,E (which depends heavily on SCR

recombination [24]) and secondly upon n,B (which is governed by the flow of T through the

CBS); EB SCR recombination, which accounts for most of p,E’ is covered in Chapter 5, while

the current within the CBS is covered in Chapter 4. The optimisation afforded by the abrupt HBT

in comparison to the BJT is stunning, as none of the methods discussed in this section would have

been applicable to a BJT because the gain of the transistor would have been reduced below unity.
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Fig. 3.2. The resistance of the intrinsic emitter will become considerable if NDE,1 is reduced
without bound. To minimise this parasitic resistance, the width of the intrinsic emitter is only
made large enough to contain the emitter extent of the EB SCR. Then, a highly doped NDE2 ex
trinsic emitter is placed as a cap layer on top of the device, where the eventual contact layer is
formed.

3.2 Reducing tB by Decoupling the Base from I’

Chapter 2 discussed the merits of Bandgap Engineering, where the natural evolutionary path

of the BiT produces the HBT. Two Bandgap Engineering techniques were considered: techniques

that created abrupt changes in E.JE leading to the creation of current-limited flow; and tech

niques that created gradual changes in EdE that produced additional aiding fields for the trans

port of charge. Then, Section 3.1 focussed upon the benefits of current-limited flow produced by

an abrupt change of iXE within the EB SCR. This section carries on with the benefits to be de

rived from current-limited flow, but delves into the second group of Bandgap Engineering tech

niques - namely the creation of fields in the base to aid in the transport of charge through the

region.

A major component of the total transit time for a BIT or HBT is still the neutral-base transit

time tB. In the absence of any spatial variation to the bandgap or N, then under low level injec

tion conditions, with the neutral base width WB larger than a few mean-free paths , the base tran

sit time is given by the standard equation:

w
(3.6)B 2D

tB can be reduced from the value given in eqn (3.6), without reducing WB, by introducing an aid

ing field in the base (as is shown in Fig. 2.1). BJTs where an aiding field has been placed in the

base are termed drift-base transistors [60]. This aiding field implies, for an npn BJT, a downwards
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slope to E in the neutral base. Before the creation of HBTs, a negative slope in E could only be

achieved by varying N from a high value near the emitter-side of the neutral base, to a low value

near the collector-side of the neutral base [60]. This non-uniform N(x) would indeed reduce tB

but at the expense of having a low base doping nearest the collector; leading to a reduced magni

tude of the Early voltage. Therefore, the drift-base transistor had a rather limited range of optimi

sation as the aiding field was coupled in a compromising fashion to the Early voltage. Add to this

the fact that the optimum N(x) was an un-manufacturable exponential, then the optimum drift-

base transistor was a good idea that was generally beyond the manufacturing capabilities of the

day.

Enter Bandgap Engineering once again. The issue with the drift-base transistor was the low

base doping near the collector. By using a graded bandgap in the base (where the bandgap is large

near the emitter-side of the neutral base and small near the collector-side of the neutral base), an

aiding field can be created without the need to vary N [38]. Thus, by using Bandgap Engineer

ing techniques to create a gradual down-slope to E in the base, tB can be reduced without lower

ing N and compromising the Early voltage. Kroemer calculated tB for a non-uniform bandgap

Eg across the neutral base, and found [38]:

w w
In.(x) p(z)

=
1

__________

dzdx, (3.7)B p (x) D, (z) n (z)

where n1 is the intrinsic carrier concentration. The derivation in [38] which leads to eqn (3.7) is

based upon Shockley boundary conditions. However, it is a simple extension to show that eqn

(3.7) is actually quite general, and is applicable to cases where a zS.Ep is present. Finally, if a lin

ear grading of the bandgap in the base is used, such that n (x) = n (x= 0) exp (qFx/kT , eqn

(3.7) gives:

w2 - AE kT2
(3.8)

where F = AEgI(qWB), and AEg represents the difference between the bandgap at the emitter-side

of the neutral base and the bandgap at the collector-side of the neutral base. As an example, if D

= 30cm2s1,WB = ioooA, and AEg = 3k7 then using eqn (3.6) tB = i.67ps, while using eqn (3.8)

= 0.76ps, a 2.2-fold reduction in tB through the addition of a graded bandgap in the base.
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The reduction of tB through a graded-base transistor is very attractive. When coupled to the

fact that the Early voltage is not compromised, Bandgap Engineering in the base appears to hold

nothing but gains. The only requirement of a graded-base transistor is the need to create a graded

alloy in the base in order to provide for the downwards slope in E. In the case of AlGai.As/

GaAs HBTs, the bandgap is increased with an increase in the Al mole fraction x; while in

Sii..Ge HBTs, the bandgap is decreased with an increase in the Ge mole fraction x. Now, in

A1GaAs HBTs the Al mole fraction must remain below a maximum of x = 0.45, for this is the

point at which the material changes from a direct to an indirect bandgap [61]. In a similar fashion,

Sii..GeJSi HBTs have an upper limit of Ax < 0.2 due to the effects of strain (this is discussed

fully in Chapter 6). Thus, an “alloy budget” exists in the HBT, meaning that a decision must be

made in the allocation of alloy mole fraction among the various regions of the HBT. Therefore, a

compromise must be made in the amount of Bandgap Engineering allocated to the formation of

the graded-base versus all the other bandgap-engineered regions of the device.

Since the heterojunction in the EB SCR provides the most important gains in terms of opti

mising the metrics of the device (namely decoupling y from G#B), part of the total alloy budget

must be allocated to its formation. In the case of AIGaAs HBTs, fully 66% of the maximum total

alloy budget (Ax = 0.3 of a maximum 0.45) is spent in the formation of the EB heterojunction (In

reality, Ax < 0.45 is a maximum upper limit that is generally reduced to 0.30 for practical applica

tions. With this reduced alloy budget, the EB heterojunction would consume the entire budget). In

SiGe HBTs, virtually the entire alloy budget of Ax < 0.2 is spent in the formation of the EB het

erojunction. Therefore, irrespective of the material system used to form the HBT, little if any of

the alloy budget remains for the Engineered Bandgap in the base once the EB heterojunction has

been formed. This means there is little room to reduce ‘CB through a manipulation of the bandgap

within the base.

The reduction of ‘tB is a desirable goal, even in the face of very real practical limitations.

Bandgap Engineering in the base may not play a significant role due to the restricted alloy budget;

but drift-base transistors, based upon a non-uniform N(x), might become plausible by the cre

ation of an abrupt EB heterojunction. The reasons for abandoning drift-base transistors were: it

was not possible to manufacture the steep doping profile in the base required to generate the aid

ing field; and the low base doping near the collector-side of the neutral base resulted in an intoler
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ably low Early voltage. The first problem, namely the manufacture of the highly non-uniform

N(x), is no longer an issue with advanced MBE and MOCVD growth techniques. The second

problem, a decrease to the Early voltage, is solved by decoupling the collector current I from the

base, so that modulations to G#B from changes to VCB no longer matter, provided punch-through

is avoided, of course. Following, once again, the prescriptions of Section 2.3, I is decoupled

from G#B by creating a situation of current-limited flow at the CBS formed by the EB heterojunc

tion; thereby linking I to the physical transport mechanisms associated with the CBS instead of

the neutral base region. With the two old problems associated with using a non-uniform N(x)

for the reduction of tB solved, the optimum Nj(x) for the reduction of tB is investigated.

3.3 Optimum Base Doping Profile to Minimise tB

Bandgap Engineering in the base is not really being considered in this section; however, it

can be included in the optimisation without any changes in the arguments to follow (this includes

effects due to a manufactured change in the bandgap and changes to the bandgap due to heavy

doping effects). Starting with eqn (3.7), then after substituting p = N, tB becomes:

w_2 WR
n1 (x) NAB (z)

= dzdx. (3.9)B NAB (x) D, (z) n (z)

If D, is taken as some average constant, then eqn (3.9) is simplified even further to become:

w w
j ?n(x) ?NAB(z)

= =J J dzdx. (3.10)B D,7ONAB(X) x nl(z)

Eqn (3.10) provides the functional form of tB to be minimised. Using the calculus of variations,

and searching for the weak variations in N(x)In (x), then the Euler-Lagrange characteristic

equation that minimises eqn (3.10) is:

= C, (3.11)
y dx

where

w
rNAB (z)

y(x) = t n(z)
dz, (3.12)

and C is an arbitrary constant. The solution of eqn (3.11) is straightforward and yields:
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y(x) =_A1eA2X (3.13)

where A1 and A2 are arbitrary constants. The beauty about eqn (3.13) is it solves for both N(x)

and n (x) simultaneously. The next section will deal with non-uniform bandgap effects, so taking

for now that n(x) is constant, then differentiating eqn (3.12) and substituting in eqn (3.13) gives:

N(x) = AiA2eA2) = ae (3.14)

Eqn (3.14) gives the standard exponential solution [601 for the doping profile in the base that

leads to a minimum in tB.

Within the confines of weak variations, a possible minimum could occur by admitting a

piece-wise solution for N(x) composed of N sections whose form within each section is given

by eqn (3.14). The conditions of continuity at any break-point joining two regions being [62]:

and F—y’ () be continuous, (3.15)

where F is the integrand that is to be made stationary, and primes denote differentiation with respect

to the dependent variable x. In the case being considered, F = yly’. Then, using the exponential so

lution for y(x) in eqn (3.13), and applying the second continuity condition of eqn (3.15) produces:

F— —
— 2

which must be continuous at the break-point x0 joining the two regions. If we let Region 1 join

with Region 2, where the solution in Region 1 is A1 1e4Z 1X
and the solution in Region 2 is

A1,2eA2,2X, then the above equation requires that A2,1 = A2,2 = A2. Applying the first continuity

condition of eqn (3.15) at the point x = x0 produces:

— =
= 1 1

=A1 = A1 2 = A1.
ay Y’2 A1 1Ae4° A1 2A eA2X0

Thus, a piece-wise connection of exponentials is not admitted as a stationary solution for N(x).

However, if the last equation is rewritten as A1 1A eA2X0 A1 2A eA2XO, then as A2 —* 0 no re

striction is placed on the values admitted forA1,1 and A1,2.This admitted solution for y(x) is also

a piece-wise and discontinuous set of constant solutions. As such, this solution for y(x) tends to

wards a strong variation and care must be exercised in the absolute applicability of the weak vari

ational principles used to obtain this result. With that cautionary note in mind, if the form ofA1,1

and A1,2 are carefully chosen to bea1/A2anda2IA2respectively, then as A2 —* 0, N(x) also be

comes a piece-wise and discontinuous set of constant solutions.
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The weak variational principles used to find the N(x) that renders tB stationary are con

structed in a such a manner that only y(x) be defined at the end points of the integration. Since

N(x) is given by y’, there is no simple way to specify the doping values at the end points of the

integration (namely the emitter and collector edges to the neutral base). Further examination of

eqn (3.14) shows that there are no bounds to the value of the constant b in the exponent of the ex

ponential defining N(x). In fact, by letting b —> —00, an infinitely large aiding field can be cre

ated in the base and tB will be reduced to zero. To see this, eqn (3.14) is used in (3.10) to give:

2(eb_b_ 1)
tB = tBO

b2
(3.16)

where tBo is the tB given by eqn (3.6). Clearly, as b —> —00, tB —*0. As a check, as b —>0, tB giv

en by eqn (3.16) goes to ‘rho. Thus, no matter what N is forced to be at the emitter-side of the

neutral base, N(x) can be made to decrease at a rate such that tB is ostensibly reduced to zero.

Therefore, the variational principles used to deduce that the optimum N(x) is a pure exponential

are based upon an unrestricted doping at the collector-side of the neutral base

It is not reasonable to allow the doping at the collector-side of the neutral base to become ar

bitrarily small, even in the presence of current-limited flow at the CBS. For even though I is de

coupled from G#B, RBD still depends on G#B and would become unreasonably large as b —* —00

Eqn (3.10) is revisited, but this time ‘CB is made stationary subject to boundary conditions upon

N(x) at the emitter- and collector-sides of the neutral base. Since there appears to be no simple

way of including these boundary conditions into the variational principles, a numerical minimisa

tion was constructed [63]. The results of numerical attempts to render tB stationary, subject to the

boundary conditions placed upon N(x), produced a form that suggests N(x) be exponential in

the middle of the base but have two constant regions attached on the ends (see Fig. 3.3). This re

sult seems plausible in light of the variational analysis performed so far, where a constant was ad

mitted as a solution to N(x). Even more convincing, the form being suggested from the

numerical analysis is not a piece-wise connected set of exponentials (which was rejected as a pos

sible stationary solution from the variational analysis), but is a piece-wise connection involving

constant regions of doping, as is admissible from the variational analysis. In any event, it is clear

that the boundary conditions placed upon N(x) cause the exponential solution from simple vari

ational analysis to become non-stationary.
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Normalised Position in the Base x (WB)

Fig. 3.3. Optimum doping profile N(x) obtaining by numerically minimisin eqn (3.10) with
the boundary conditions N(x=0) 5x1018cm3and N(xtWB) = 2x1016cm

Using the form for N(x) suggested from the numerical work, namely exponentials sepa

rated by regions of constant doping, analytic methods were employed to find the break points be

tween the exponentials and the constant regions that minimised tB. Using the form of N(x)

given in Fig. 3.4, then finding the break-point h that minimises ‘CB given by eqn (3.10) produces,

after considerable algebraic manipulation with the symbolic mathematics tool MACSYMA (see

Appendix A):

(U1nU+1—U)lnU U[U(2lnU—3)+4]—1
(U1nU+2)lnU+2(l—U) tB_tBou[(Ulu+2)lu+2(1u)](3.17)

where ‘CBO is still the tB given by eqn (3.6), h is normalised to the neutral base width WB (and

therefore ranges from 0 at the emitter-side to 1 at the collector-side of the neutral base), and U is

the doping ratio given by N(x=0)IN(x=WB). The interesting thing to note about eqn (3.17) is

that it depends only on the relative doping ratio U. Further, the exact same solution results (save h

—> 1 — h) if N(x) is changed, in a symmetrical fashion to that shown in Fig. 3.4, SO that the con

stant region occurs first followed by the exponential region. Eqn (3.17) represents the solution of

the simplest form of N(x) suggested from the numerical analysis.

The process described above is repeated again, but this time with the optimum form (shown

in Fig. 3.3) obtained from numerical analysis. Again, substituting this form of N(x) into eqn

(3.10) and minimising ‘CB produces, after considerable algebraic manipulation with the symbolic

mathematics tool MACSYMA (see Appendix B):
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1 2
h1l—h2

= lnU+2
and tB = tBolnU+2 = tBo2hl, (3.18)

where, h1 and h2 are nonnalised to the neutral base width WB. Eqn (3.18) shows the beauty of the

symmetric form used for N(x); namely that the length of each of the constant regions is the

same, and the exponential region is perfectly centred within the base. It is very simple to prove

that tB given by eqn (3.18) is always smaller then that given by eqn (3.17). Therefore, the form of

N(x) given in Fig. 3.3 produces a smaller ‘CB then the form given in Fig. 3.4.

C

C

0.0 0.25 0.50 0.75 1.0
Normalised Position in the Base x (WB)

Fig. 3.4. The first trial function for N(x) inspired by the form suggested by Fig. 3.3.

The process is continued by constructing more complex forms based upon an extension to

N(x) given in Fig. 3.3. When eqn (3.10) is minimised using the N(x) given by the form shown

in Fig. 3.5(a), it is possible to find a stationary result where h1 0 (h1 = 0 would give N(x) as

shown in Fig. 3.3). Even though N(x) given by Fig. 3.5(a) renders tB stationary, when compared

to the result obtained from eqn (3.18), it does not produce the absolute minimum value for tB. In

fact, taking one final progression to using the N(x) as shown in Fig. 3.5(b), a stationary result is

again obtained, but it is larger still than the case shown in Fig. 3.5(a) and therefore does not pro

duce the absolute minimum value for tB. Therefore, eqn (3.18), with N(x) as shown in Fig. 3.3,

produces the absolute minimum in tB subject to the boundary conditions for the doping at the

emitter- and collector-sides of the neutral base. The most notable thing about the optimum form of

N(x), as shown in Fig. 3.3, is that it is not the pure exponential the device community has been

lead to believe is the optimum. This result answers the problem posed in [64,65], where the au

thors used third order perturbation theory to show that an exponential was indeed stationary but it

did not produce the absolute minimum for tB.
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0.0 0.25 0.50 0.75 1.0 0.0 0.25 0.50 0.75 1.0
Normalised Position in the Base x (WB) Normalised Position in the Base x (WB)

Fig. 3.5. (a): the second trial function for N(x), which is an extension of the form shown by
Fig. 3.3; (b): the final trial function for N(x).

As a final consideration, it is instructive to use the N(x) suggested by the analysis sur

rounding eqn (3.15). Tn the proof that showed N(x) could not be constructed of piece-wise con

tinuous exponentials, it was found that N(x) could be constructed of piece-wise discontinuous

constants. In the simplest case, if N(x) is constructed as shown in Fig. 3.6, then it is straight for

ward to show that tB is minimised when:

1 U+1
h = and tB = tBO 2U

(3.19)

Eqn (3.19) shows that a very simple jump discontinuity, or step, in the base doping proffle at exact

ly the half-way point in the neutral base, can reduce the base transit time by a factor of two when

compared to the uniform base case (tBO). In fact, for any U 10, the full two-fold reduction in tB

is achieved. Still, for all relevant U, tB given by the step-doping case of eqn (3.19) is larger than

that achieved by the optimum-doping case of eqn (3.18). However, the step-doping case shows that

even a very simple change to the base doping profile can produce a significant reduction in the

transit time through the neutral base. As for the technological objection that a perfect step-doping

profile is impossible to create, any deviations from a step, say due to diffusion of dopant during the

thermal-cycle of the manufacturing process, will only tend to drive N(x) towards the optimum

profile and reduce tB even further: this result is obvious as a spreading of the step-discontinuity in-

creases the spatial extent of the aiding field and thereby decreases the transit time. Therefore, the

step-doping profile, although not as beneficial as the optimum doping profile, still provides for a

significant reduction of tB, but with very little complexity in terms of manufacturing.
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Fig. 3.6. Step-doping profile for N(x).

Comparing ‘CB given by the optimum N(x) (eqn (3.18)), to the ramped N(x) (eqn (3.17)),

then to the step-doping case (eqn (3.19)), and finally to the pure exponential case (eqn (3.16), with

b = -mU), shows some interesting results (see Fig. 3.7). In all four cases as U —* 1, t(3
— tBO: this

is required and acts as a check to the validity of the four models. As was stated before, for the en

tire useful range of U (i.e., > 1), ‘CB is minimised by the optimum doping proffle leading to eqn

(3.18). However, for the range 1 U 7.389=e2,tB from the step-doping proffle is smaller than

that from the pure exponential profile. Thus, not only have we found out that the pure exponential

is not the optimum, we have also found that for small doping ratios the step-doping profile is better

than the exponential. An examination of Table 3.1 shows that as U becomes large, the pure expo

nential case and the ramped case both approach the optimum case for the minimisation of tB. This

result shows that the optimum-doping case initially starts out looking much like the step-doping

case, then as U increases, slowly transforms itself into the pure exponential case. Finally, for U =

300, the optimum-doing case hash1 1 — h2 = 0.13 and tB is only 10% less when compared to the

pure-exponential case; however, the optimum-doping case has a 49% larger Gummel number and

thus a 49% smaller RBU when compared to the pure-exponential case. Clearly, the pure exponen

tial case is not the optimum doping profile to use, either in terms of minimising tB or RBU. There

fore, the optimum-doping case shown in Fig. 3.3 and governed by eqn (3.18) is the best base-

doping profile to use in order to minimise tB with the smallest impact on RB.
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Table 3.1: tB for the four doping cases: Optimum, Ramp, Step, and Exponential as given by eqns
(3.18), (3.17), (3.19), and (3.16) respectively. NOTE: all values are given in units of tBO.

U Optimum Ramp Step Exponential

3 0.65 0.69 0.67 0.72

7.389=e2 0.50 0.54 0.57 0.57

10 0.46 0.50 0.55 0.53

30 0.37 0.40 0.52 0.42

100 0.30 0.32 0.51 0.34

300 0.26 0.27 0.50 0.29

-.

Cz

1murn’i

0.75
j

—

0.50—

Exponential

0.25—

“a

100 ‘2,
101 ‘7,

102

Doping Ratio U i03

io4 1.00

_;-- -,-‘
\ 0.70 0.60
0.80

0.50

Break Point h2

Fig. 3.7. tB using NAB(x) from Fig. 3.3, where h1 1 — h2 but h2 is varied as a parameter instead
of being given by eqn (3.18). h2 = 0.5 corresponds to the step-doping case, while h2 = 1 corre
sponds to the pure exponential case. Finally, the line drawn on the surface is the tB that results
from the optimum-doping case given by eqn (3.18).
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There are two major restrictions placed on the use of the optimum-doping case for the mm

imisation of tB. These two restrictions are: that the aiding field produced by the non-uniform

N(x) be small enough to neglect high field effects; and the variation in D(x) be small enough to

ignore. The first requirement is not terribly restrictive, for even with a base width of ioooA, and U

= 100, the aiding field is l.7xlO4VIcm which is acceptable for heavy-doped Si and would be at

the edge where high field effects begin to occur in heavy-doped GaAs. However, the second re

quirement that Da(x) be ostensibly constant over the entire base width is much harder to accept;

for even though the base region of an HBT is very heavily doped, D(x) would still have a signif

icant variation with U in the range of 7 to 30. The issue of a non-uniform D(x), as well as varia

tions in n(x) due to Bandgap Engineering and heavy doping, are considered in the next section. In

any event, ‘CB will always be reduced by using a monotonically decreasing (from emitter towards

the collector) non-uniform N(x). Therefore, if exact values and not general trends are required,

then the optimum-doping case presented in this section must be applied with caution if there is

considerable variation in either D(x) or n(x) across the base.

This section has provided for the optimum N(x), given a set of boundary condition to the

neutral base, in order to minimise tB. It was found that the optimum N(x) only depends on the

relative doping ratio U, and not on the absolute doping given by the boundary conditions. Further

more, the optimum N(x) is not the pure exponential that the device community has thought was

the case, but is an augmented exponential as shown in Fig. 3.3. They key to applying the results of

this section hinge on the decoupling of I from G#B afforded by the creation of current-limited

flow at the CBS. Therefore, only by creating an abrupt HBT1 can the drift-base BJT be manufac

tured without a significant reduction to the Early voltage.

3.4 The Effect of a Non-Uniform n1 and D on the Optimum tB

Section 3.3 derived the optimum base doping profile for the minimisation of ‘CB. It was

found that if the base doping was fixed at the emitter- and collector-sides of the neutral base, then

the optimum N(x) was an augmented exponential shown in Fig. 3.3 and governed by eqn (3.18).

1. It is possible to decouple I from G#B by using a varying bandgap in the base [66]. However, as was discussed in
Section 3.2, the alloy budget generally prohibits any significant Bandgap Engineering in the base if an EB hetero
junction is to be formed in order to control f3. Therefore, the technique of current-limited flow is the only practical
method to decouple I from G#B.
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Due the arguments presented in Section 3.2, Section 3.3 found the optimum N(x) without re

gard to the optimumn1(x). However, due to the heavy base doping that is characteristic of HBTs,

bandgap narrowing will certainly cause variations to n1(x) when a non-uniform N(x) is present.

This section will consider the joint optimisation of N(x) and n1(x) in terms of minimising tB.

Also, the effects of a non-uniform D(x) will be discussed.

tB is given in full by eqn (3.9). If the variation of D(x) with respect to N(x) is for the mo

ment ignored, then eqn (3.10) results. Section 3.3 finds the functions y(x) that render eqn (3.10)

stationary and then finds the one y(x) that minimises tB. y(x) is given by eqn (3.12), which produc

es after differentiation with respect to x:

NAB(x)
y(x)=—

2n (x)

Using eqn (3.11), which is the O.D.E. that renders y(x) stationary, in the above equation yields:

NAB (x)
2

= —Cy (x). (3.20)
n (x)

At this point Section 3.3 lets n1(x) be a constant, which can then be absorbed into the arbitrary

constant C, to yield eqn (3.14). However, one could just as easily let N(x) be a constant and

solve for n (x). If this is done, then all of the results of Section 3.3 are still applicable to the opti

misation of n (x); for the stationary function y(x) has no dependence on either N(x) or n1 (x).

This immediately results in the optimum n (x) being given by the reciprocal to N(x) shown in

Fig. 3.3, with eqn (3.18) governing the placement of h1 and h2 and solving for tB. The only

change is that U is now given by the ratio n (x = WB) /n (x =0) (the endpoints have been inter

changed to keep U> 1). If the variation in the effective density of states for E and E is ignored,

then n (x) = n (x =0) exp (—AE8(x)/kT), where AEg(x) is now defined as the difference in

Eg at x relative to Eg at the emitter-side of the neutral base. Since the optimum n (x) is given by

the reciprocal to N(x) shown in Fig. 3.3, and given that Fig. 3.3 is a log plot, then LS.Eg(x) looks

exactly like Fig. 3.3 but it would be linear and not log (see Fig. 3.8). Therefore, just like in the op

timum doping case, the optimum bandgap-graded-base HBT is not purely linear, but is the aug

mented ramp shown in Fig. 3.8.

There is no reason to consider a pure optimisation of either n (x) or N(x). Eqn (3.20)

solves for the simultaneous optimisation of both n (x) and N(x). Thus, part of the aiding field

can be created by a non-uniform N(x), and the rest of the aiding field can be created by a Band

Julyl2,1995 39



gap Engineered n (x). This realisation allows the burden of generating an aiding field to be

shared between two physically different parameters. By using both n (x) and N(x), far less of

the alloy budget needs to be used in order to generate n (x), and a smaller decrease in N(x) will

necessarily have a smaller impact on G#B and RBD. As an example, let ‘CB = O.StBo. This requires

that U = 7.389=e2,where

NAB(x) n2(x)
U

= n(x) NAB(X)
X=WB

(3.21)

Letting both N(x) and n (x) share equally in generating the aiding field gives UNAB (which is

the U for eqn (3.18)) equal to U,z (which is the U for n (x) shown in Fig. 3.8) which is equal to

J7.389 =e. Thus, the doping in the base as well as n (x) change by only 2.7-fold, meaning that

AEg is only lkT

-kTlnU

0.0 0.25 0.50 0.75 1.0
Normalised Position in the Base x (WB)

Fig. 3.8. Optimum bandgap in the base to minimise tB. The bandgap at the emitter-side of the
neutral base (x= 0) is the reference point. U = n (x WB) /n (x :=0), where h1, h2 and tB are
given by eqn (3.18).

So far this section has only presented the case where N(x) and n (x) are treated indepen

dently of each other. This will not be the case whenN is large enough to cause bandgap narrow

ing that couples n (x) to N(x). Since HBTs are characterised by their very high base doping,

bandgap narrowing effects need to be considered. Fortunately, the optimisation process that ren

ders y(x) stationary in eqn (3.20) does not depend upon the relationship between N(x) and

n (x). Indeed, using eqns (3.21) and (3.18), the optimum y(x) has exactly the same form as the

optimum N(x) shown in Fig. 3.3 (see Fig. 3.9). Therefore, with the optimum y(x) shown in Fig.

3.9, eqn (3.20) is used to solve for N(x) where n (x) = n (AE8 (x) , NAB (x)).
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In general, the dependence that n has with respect to N will be too complex to allow for

a closed-form analytic solution. In this case a possible solution process is to use an iterative ap

proach where y(x) is first solved for using eqns (3.21) and (3.18). A trial function NB (x) for the

actual N(x) is constructed by using h1 and h2 from y(x), and forcing NB (x) to take the form of

Fig. 3.3 (while obeying the original doping boundary conditions). Finally, using eqn (3.20), a new

N(x) is solved for using n (iE (x) , NB (x)) and y(x). This process can be repeated until lit

tle change is observed in N(x). In the event that the convergence of this iterative method is too

slow, then higher-order numerical methods such as Newton-Raphson iteration could be used in

stead. Thus, it is a simple matter to include banclgap narrowing into the optimum base profile for

the minimisation of tB, for the stationary function y(x) that defines both N(x) and n (x) is in

dependent of both these functions.

NAB (x)

n(x) x=W1,

0.0 0.25 0.50 0.75 1.0

Normalised Position in the Base x (WB)
Fig. 3.9. The optimum stationary function y(x) that minimises tB. The break points h1 and h2, as
well as the transit time tB are given by eqn (3.18) with U defined in eqn (3.21). N(x) and n (x)
are solved for using y(x) in eqn (3.20) along with C = -1. y(x), as shown here, does not depend on
the functional form of either n or N, but only on the boundary condition U.

The last issue to tackle is the effect of a non-constant D(x) on the optimum profile found

thus far. Strictly, to accomplish this minimisation, one must apply the methods of variational cal

culus to eqn (3.9) directly; which leads to an O.D.E. that is not soluble in terms of any know tran

scendental functions. The effect of a non-uniform D(x) is investigated numerically in [63] for

large U, and the result is a solution that has elements of the stationary functions presented in this

chapter, but as a whole cannot be construed as the same. However, current day BITs (and HBTs)

are such that tB is an important but not dominant part of the total transit time (in the area of 30%).
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Therefore, more than a 2-fold reduction in tB is really not warranted as the point of diminishing

returns would be surpassed. From the results presented earlier in this section, ‘tB can be reduced 2-

fold with only a 2.7-fold reduction in N(x) across the base when coupled with a AEg of lkT

With N(x) changing by only 2.7-fold, it is reasonable to assert that D(x) is ostensibly constant.

However, if larger changes to N(x) are pursued, then the results of this chapter will certainly re

duce tB, but only a full numerical optimisation will provide the true minimum [63].

This section has found the optimum base profile for the minimisation of tB when both the

doping and the bandgap have been constrained at the emitter- and collector-sides of the neutral

base. The optimum base profile has the form of an augmented exponential shown in Fig. 3.9, not

the long-established pure exponential [60] that has been mistakenly assumed. Further, the solution

presented allows for the simultaneous optimisation of N(x) and n (x), and can also include the

effects of bandgap narrowing due to heavy doping. Perhaps the most interesting and startling re

sult occurs by using both N(x) and n (x) to generate the aiding field in the base, thereby reduc

ing the overall variation in each parameter across the neutral base. Finally, all of the models and

methods presented and discussed in this chapter have no particular material system in mind.

Therefore, this chapter can be applied to an HBT build in any material system (such as A1GaAs or

SiGe).
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CHAPTER 4

Transport Through the EB SCR
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In BJTs it is customary to apply the Shockley boundary condition at both edges to the EB

SCR in order to determine the quasi-Fermi levels [67]. The Shockley boundary conditions are

based upon the assumption that no matter what physical process is responsible for the movement

of charge through the EB SCR, the total transport current T will be very small compared to the

forward and reverse directed fluxes at any point within the region. This argument follows exactly

the development of Section 2.1. Applying eqn (2.2) under the conditions described in this para

graph leads to AEp 0. In fact, the Shocidey boundary conditions simply state that Ep1 and

are constant across the EB SCR. These boundary conditions allow for an enormous simplification

because the exact details of the transport through the EB SCR no longer need to be understood or

included in the final model for the device.

By their very nature, HBTs can generate spikes (such as the CBS in Fig. 3.1) in the conduc

tion and valence bands that reduce the forward directed flux. If one of these spikes is large

enough, then T could be constrained by the flux through this one feature alone. Fig. 3.1(b) shows

the general band diagram for HBTs built in the AlGai..As material system, where there is an

abrupt heterojunction between the emitter and the base. The very nature of the sign of AE, when

coupled to the fact that the emitter doping is much smaller that the base doping, produces a fea

ture in E called the CB S [25]. The CBS can easily force the electrons to take a path that requires

an increase in energy of nearly 240meV. To increase the electron energy by 240meV, with respect

to a homojunction, would reduce the available number of electrons, and therefore the forward di

rected flux, by four orders of magnitude at room temperature. A reduction by i04 in the forward

directed flux will most certainly result in current-limited flow in the region containing the CBS.

This will invalidate the quasi-equilibrium assumption of the Shockley boundary conditions. Thus,

one must consider the limits imposed by the movement of charge through the CBS upon the trans

port current within the EB SCR.

The thermionic injection of electrons over the top of the CBS is not the only method of

transport through the region. Due to the quantum mechanical nature of the electron, and the fact

that the width of the CBS is typically of the same order as the de Broglie wavelength, the electron

could tunnel through the CBS instead of trying to increase its energy in order to surmount the bar

rier. Since a reduction in the required energy to surmount the CBS leads to an exponential in

crease in the forward directed flux, tunneling and therefore the quantum mechanical nature of the
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electron also needs to be considered when deriving the physical models for transport through the

CBS. Failure to include this tunneling current will underestimate Tby up to two orders of magni

tude [25] (see also Fig. 4.8). Therefore, no matter how powerful a model is used (such as Monte

Carlo modelling), if tunneling is not accounted for through the CBS, the terminal characteristics

of the device will be greatly underestimated.

All of the previous chapters have relied on the existence of current-limited flow in one re

gion of the device that is separated from both the base and the collector. Specifically, the region

providing current-limited flow occurred at the EB heterojunction where the CBS is formed. Since

the transport current through the device leads to I, and because current-limited flow at the CBS

controls the transport current, then I is governed completely by the transport mechanisms of the

CBS. Under the condition of CBS control, I has no dependence on the physical construction of

either the base or the collector. By constructing the HBT in a fashion where the CBS controls I,

a detailed understanding of the physics surrounding the CBS must be undertaken if one hopes to

accurately predict the terminal characteristics of the device. This chapter investigates and derives

models for the transport of charge through the region containing the CBS, including effects due to

tunneling and a varying effective mass.

4.1 Formulation of Charge Transport at the CBS

The transport of charge through the region where the CBS is formed can be found by view

ing the system as a set of forward and reverse directed fluxes (Ff and F,. respectively) entering the

region from opposite sides (see Fig. 4.1). If there is no source or sink of carriers within the region

considered, then just like eqn (2.2) F =J7c(-x)
— Fr(Xp), where F is the transport flux, x, is the

thickness of the SCR extending from the heterojunction into the emitter, and x is the thickness of

the SCR extending from the heterojunction into the base. If at the points -x,, and x it is acceptable

to state that the system is fully thermalised, based upon a local Fermi energy Ef, then the carrier

distribution with respect to total energy U is:

f(U)
= U—,.L’

(4.1)

l+e k1

where f is the Fermi-Dirac distribution function and p. is the electrochemical potential (which is

usually termed the Fermi energy Ef). Using eqn (4.1) and the quantum mechanics of crystalline
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solids, the transport flux through the region containing the CBS in the x-direction can be written

in the standard form [68-70]:

F = Ff— Fr
=

3j•dkf1( U) (1 — f2(U) ) WU)
-- —

2q
3$d3kf2(U) (1—f1(U) ) WU)-j- (4.2)

(2i) Rr

where W £I) and W1 U) are the forward and reverse directed transmission probabilities respec

tively, f1 is the Fermi-Dirac distribution at -x,, f2 is the Fermi-Dirac distribution at x, Rf is the

valid energy range considering forward flux, Rr is the valid energy range considering reverse flux,

U is total energy, U is the x-directed energy, and k is three dimensional k-space.

I I
-xn 0 xp

Fig. 4.1. Abstract model of current flux within the region containing the CBS. The EB hetero
junction is centred at x = 0, with x being the excursion into the emitter (Region 1), and x, being
the excursion into the base (Region 2). There is a flux Ff entering the region at x = -x, and another
flux F,. entering from x = xi,. The net transport flux F is equal to Fj— F,. in the absence of any sinks
or sources within the region.

The interpretation of eqn (4.2) is straight forward in that: there are 2(2tY3 electron states

per unit volume in k-space (including spin degeneracy);f1(1-f2)(in the case of the forward direct

ed flux) is the probability of an electron existing in Region 1 and being able to move to an empty

state in Region 2; W U) is the probability of the electron moving from -x, to with a forward

directed energy of 1J; and (1/h)(JUThk) is the group velocity of the electron [15]. As eqn (4.2)

stands, the forward and reverse directed transmission probabilities are treated separately using

W L1) and W U) respectively. This allows for a non-reversible system to be studied, where

electron collisions with the lattice (but not with other electrons) can be included. Strictly, if coffi

sions are considered that change the total energy U of the electron, and not simply its direction in

k-space, then the vacancy probability 1 —f2(U) (in the case of the forward directed flux) will not

depend on U, but will depend on the exit energy in Region 2. However, if any type of collision is

I I
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considered, then W( U) and W U) will be of an extremely complex nature and would require a

numerical calculation of eqn (4.2) (this could be accomplished by a Monte-Carlo simulator using

non-local mathematics; however, no such simulator exists at this time). As a result, eqn (4.2) is

simplified by considering collision-less or ballistic transport throughout the entire region, leading

to W U) = W U) = W(U). With the assumption of ballistic transport throughout the region

from -x, to x, and converting from k to momentum p (= tik), eqn (4.2) yields:

F = FfFr = jd3pfi(U) (1—f2(U) )W(U)- —

h Rf px

?Jd3pf2(U) (1—f1(U) )W(U)-1-. (4.3)
h Rr 1)X

Examining eqn (4.3) shows that if the regions of integration Rf and R were equal, then the

two integrals could be reduced to one integral with an integrand of (f1
—f2)W(aUIa). One could

then identify an Ff and F,. from this integrand (which strictly speaking is not the same as that de

fined in eqns (4.2) and (4.3), but for all practical situations is identical), giving:

Ff $dpf1(U)W(U)L (4.4)
h Rf

and

Frij’d3Pf2(U)W(Ux)aP_ (4.5)
h Rr

The key to the definitions of eqns (4.4) and (4.5) is the equivalence of Rf and Rr The fact that this

is indeed true is proven later on in Section 4.3 once the effects of a non-uniform effective mass

have been brought into the picture.

The solution of Ffand F defined in eqns (4.4) and (4.5) begins by determining the transmis

sion probability W(U). Strictly, W(U) must be calculated by solving the Schrodinger equation,

based upon the potential profile encountered within the EB SCR. The solution of the Schrodinger

equation, even for a potential obtained from the depletion approximation, is complex enough to

require a numerical solution. Failure to obtain an analytic form for W(U) would hide the rich in

terplay that exists between the final transport model for the CBS and the physical attributes such

as doping concentration, temperature, effective mass, electron affinity, and bias conditions. An ap

proximate but analytic form is thus sought for the solution of W(U). To this end, one could ap
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peal to the asymptotic formalisms in the complex plane used by Landau and Lifshitz [71], or to

the JWKB method [72], to obtain:

W(U) = exp [e {Pdx}] = exp [e {_2 f.Jv(x)
— Udx}] (4.6)

where V(x) is the potential profile of the CBS, and only the real part of the exponent in eqn (4.6)

is retained (i.e., U, <V(x)), such that particles with energies larger than the potential energy move

without any quantum mechanical reflection. Eqn (4.6) presents a simple analytic solution for

W(U), where the particle mass m is in general not equal to the electron mass me, but to the more

general effective mass m* that is characteristic of semiconductors.

W(U) is solved for using eqn (4.6) and a V(x) obtained from the depletion approximation.

Fig. 4.2 shows the CBS, which is an enlargement of Fig. 3.1(b). Since the depletion approxima

tion results in a parabolic form for V(x), then one can write:

V(x) VPk(1+) for-xxO, (4.7)

where Vpk is the peak energy of the CBS, and the reference energy is at the bottom of the conduc

tion band where x = -x,. Eqn (4.7) is appropriate to the case where the heterojunction and the met

allurgical junction are coincident. The domain 0 x x, will be considered separately so that

W(U) may be separated into two functions; one for Region 1 (WCBS(Ux)) and another for Region

2 (WN(Ux), where N stands for Notch), leading to:

W(U) = WCBS(UX)WN(UX). (4.8)

Using eqns (4.6)-(4.8) with WN(Ux) = 1 produces:

xJ2mVk Jl—U’+l
WCBS(UX) = WcBs(U Vk) = ex[ P (in ( A[

— AJi — u J], (4.9)

where U is normalised energy in terms of Vpk (i.e., U = Ux/Vk). Eqn (4.9) forms the basic ker

nel for the transmission probability, and it is written in a most general form where Vpk and x have

not yet been defined in terms of the material parameters and applied bias for the EB SCR.

With W(U) solved for using eqn (4.8) and (4.9) (WN(Ux) will be solved for when the re

gions of integration Rj and R,. are determined), Ff and F,. can be obtained once the energy disper

sion relationship U(p) has been set out. The following section will determine U(p) and include

the effects of a non-uniform effective mass m* that generally occurs at an abrupt heterojunction.
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Once U(p) has been determined, the regions of integration Rf and Rr are set out so that Ff and Fr

can be solved for using eqns (4.4) and (4.5) in the next section.

E(eV)t

2

-xn xp

Fig. 4.2. Blow-up of the CBS from Fig. 3.1(b), showing the various energies and their reference.

4.2 Incorporation of Effective Mass Changes

In general, the two materials that form the abrupt heterojunction shown in Fig. 4.2 are char

acterised by a different effective mass m*. This change in m* can either enhance or diminish the

flux F in transit through the CBS when compared to the case where m* is uniform throughout the

region. Failure to account for the change in m* can result in a significant error. Worse yet, this er

ror is not simply a multiplicative constant as is stated by Grinberg [51], but has a dependence on

the applied bias. Therefore, in solving for Ff and F using eqns (4.4) and (4.5), the dispersion rela

tionship U(p) needs to be determined in concert with the effects of a non-uniform m*.

Concentrating on eqn (4.4) for Fj(the exact same results will apply to eqn (4.5) for Fr), it is

realised that the integration is being performed over p-space. As the entire integrand is dependent

upon total energy U and x-directed energy U,, it would be beneficial to cause a change of vari

ables in the domain of integration fromp to U. To this end, the dispersion relationship will be tak

en as parabolic, but left as a diagonal mass tensor to yield:

U (p) = U(p) + U1(p)
= +

+ £J’ (4.10)

where mx, and m are the effective masses for particles that have momenta ofPx py, and re
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spectively. As before, U is the x-directed energy, and now, U is the transverse directed energy. It

is also important to realise that eqn (4.10) implicitly places the energy reference at the band ex

trema. A further simplification can be achieved by a change from cartesian momentum coordi

nates to cylindrical momentum coordinates. Since we are considering devices that behave

essentially as one-dimensional, symmetry dictates that the azimuth direction in the cylindrical

system be chosen parallel to the x axis (see Fig. 4.3). This yields:

p, = pcosO and P = psin€), (4.11)

where eqn (4.10) has that:
2 2

py Pzand U.L=—+---—2m 2m (4.12)

Eqns (4.lO)-(4.12) together allow for the solution of Ff The only approximation being made is

that UQ,) can be adequately described within the parabolic approximation. However, the full mass

tensor has been retained (albeit in diagonal form) so that anisotropic materials such as Si, SiGe

and strained semiconductors can be modelled with the results to follow in this chapter.

2

U
2m

Pz

Px

py

Fig. 4.3. Diagram showing the definitions of the cylindrical momentum space coordinates.

At present, the non-uniformity of m* has not been included, but it has also not been preclud

ed. Setting aside the issues of a spatially varying m* for the moment, the integration over p is

transformed to U by the Jacobian:

J(Px’PY’Pz —

IUX,O,UL —

ap

Ux ae

au ao au
ap ‘‘2 ap

Ux ae

(4.13)
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The solution of the Jacobian in eqn (4.13) rests on the definitions in eqns (4.11) and (4.12). Look

ing at eqn (4.12) for the definition of U shows a dependence upon the canonical coordinate Px

alone. From this realisation it immediately follows that:

= 0 and = 0. (4.14)

Furthermore, eqn (4.12) also produces:

3p m
= —f. (4.15)au

So far, eqns (4.14) and (4.15) have quickly solved for the first row of the Jacobian in eqn (4.13).

Moving on to the second row and looking once again to eqn (4.12), but this time taking the

definition for U± and performing partial implicit differentiation with respect to Uj, gives:

— p, — m — mpap

m U± mz y mz Py U±

Then using eqn (4.11), which can be condensed and rewritten as = p tan2e, produces after

implicit differentiation with respect to U±:

— pyt (417)an

Finally, substituting eqn (4.17) into (4.16), yields:

1 mmcos2e37 )‘ Z (4.18)
aU Py mcos2E)+m37sin2€)

Pressing on and using p = p tan2e, but this time performing implicit differentiation with re

spect to (3, gives after some algebraic manipulation:

ap37 P cos9 ap P 1 1 I ap p
= Py sin2O

[cose
— sine] = sine

[cose
— sine (4.19)

Then, returning back to eqn (4.12) for Uj and performing implicit differentiation with respect to

Oyields:

0= - =
---- (420)

mEi9 mEi(3 ae m37pae

Finally, substituting eqn (4.20) into (4.19), and using eqn (4.11) where p, = pcosO/sin(3, pro

duces:

—

— m37
(421)

—

mcos2(3+ msin29
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The second row of the Jacobian is then finished off by realising that U, as given in eqn (4.12),

has no dependence upon U, which immediately produces:

= 0. (4.22)

Eqns (4.18), (4.21) and (4.22) provide the solution for the second row of the Jacobian in eqn

(4.13).

Moving on to the third row of the Jacobian, and substituting eqn (4.18) into (4.17) yields:

i mmsin2e
Z )‘ Z

• (4.23)
P mcos29+ msin2O

Then, substituting eqn (4.21) into (4.20) produces:

mz
—=p . (4.24)

‘ mcos2€ + msin2e

Finally, using exactly the same logic that lead to eqn (4.22), gives:

PZ
= 0. (4.25)

The Jacobian in eqn (4.13) is solved for by using eqns (4.14), (4.15), (4.18), (4.21)-(4.25) to yield:

m
0 0

px

(P, Py

Pz

= 0

_________________

mmcos29/p
(4 26)

! U, € U±) mzcos29+mysin29mcos29+msin2G

0
pm mmsin2e/p

mcos2€) + msin2€) mcos2€) + msin2€)

Given the sparse nature of the matrix in eqn (4.26), the solution of the determinant quickly yields:

(PX P = X mm
(4 27)

U, 9, U) Px mcos2€)+msin2E)

Eqn (4.27) is the Jacobian that allows the integral definitions in eqns (4.4) and (4.5) to be trans

formed from p to U. As will be seen shortly, this greatly facilitates the development of the models

for Fjand Fr

Maintaining the focus upon eqn (4.4), as set out at the start of this section, and using eqns

(4.27) and (4.10) to transform fromp to U, yields:
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F
— 2q

f u
hJR L,u,e,u±) ( ) (

2 i’m mm
= _j•dOdUdUji_

Z

2 Jfi(Ux+Ui..)W(Ux)_:i
h R1 Pmcos O+msm 9 m

2 mm

= —J d9dUdU
2 2 fl(Ux+U±)WcBs(UX)WN(UX) (4.28)

h R1 mcos O+msin 0

where R1 = Rj to reflect that F1 originates at -x, within Region 1. Eqn (4.28) is the full model for

transport through the CBS. However as was stated previously, the effect of a non-uniform m* has not

been included. It is instructive to pause at this point and determine, under simpler conditions, WN(Ux)

and thus the region of integration R1 before moving on to include the effect of a spatially varying m*.

With m, and m as constants throughout the system, there is no coupling between 0,

Uj, and U, so that all canonical coordinates can be considered independently of each other (this

is not the case when m* is non-constant). Re-examining Fig. 4.2 shows that in the region 0< x x,

the potential profile that generates WN(U) is of a strictly monotonically increasing nature (unlike

the CBS within the domain -x, x 0, which contains AE). Since we are considering a system in

which their are no collisions that could either raise or lower the particle’s total energy, the particle

must emerge from the EB SCR with sufficient energy to enter into the neutral base with an energy

that is above E; else one would be admitting particle transport within the forbidden bandgap. This

fact allows for a considerable simplification to the definition of WN(UX); namely:

(1 if U>V
WN(U) = I X — b (4.29)

k.0 if UX<Vb

Although strictly speaking eqn (4.29) is not the full form for WN(Ux), it captures the ultimate re

sult since any particle that enters the neutral base within the forbidden bandgap (i.e., U, < Vb) will

within short order be attenuated to the point where it no longer carries any current. Therefore,

since we are only interested in calculating the transport current, the exact form for WN(Ux) is ir

relevant, and eqn (4.29) suffices as it captures the essential feature of WN(Ux).

With WN( U) defined in eqn (4.29), that last task to accomplish before Ff can be solved for

by eqn (4.28) is to determineR1.Re-examining Fig. 4.1, it is obvious that for a particle to enter the
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2it

I dG
mm

m cos2O+msin2G
0 Z

=I
mm

m cos2O+msin2G
0 Z

UL

EB SCR at x = -x, and contribute to Ffi it must possess a positive x-directed momentum. With the

energy reference shown in Fig. 4.2, a positive x-directed momentum translates into Px 0. Fur

thennore, examination of eqn (4.12) shows thatp 0 translates into U 0 (This is for the case

where mx > 0 and therefore applies to electrons. To consider holes, it is best to use a negative hole

energy instead of a negative hole mass so that all of the results in this chapter may be applied di

rectly.). If the requirement that U U1 + U E be imposed (where E is the bandwidth for U(p)),

then together with U 0, and U Vb from eqn (4.29), then R1 will be as shown in Fig. 4.4.

(a) (b)

Ux

/Ux+ UE

Vb E 0
0

0

Fig. 4.4. Domain of integration R1 for a uniform m*. (a): case where the applied bias is such that
Vb 0; (b): case where the applied bias is such that Vj, 0. Note: Fig. 4.2 defines Vb.

Ux
E

Ffcan now be solved for by using eqns (4.28), (4.29), (4.9), (4.1), and the region of integra

tion R1 as shown in Fig. 4.4. Since R1 takes into account WN(Ux), then solving eqn (4.28) yields:

2it E E-U
2 mm

Ff =

— J 2 . 2 f dU WCBS (U) f dU1f1(U + U1). (4.30)
h mcose+msmO

0 Z
max(Vb,O) 0

Examination of eqn (4.30) reveals that the integral over E) has no dependence on the results of the

second and third integrals. This allows the 0 integral to be performed independently to yield:

it/2
It

= 4Jmmtan’
( Stan
qm
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The above equation is evaluated by letting e approach itI2 from the left, giving:

2it
mm

I d9 ‘ Z
= 2itjm m. (4.31)

m cos29+m sin2e y z

0 Z 3’

Eqn (4.31) solves for the anisotropic effective mass tensor and is evaluated in such a manner than

all branch points of the inverse tangent are respected. Therefore, as long as one can assert that the

second and third integrals of eqn (4.30) are indeed independent of (3, then one can substitute eqn

(4.31) into (4.30) to obtain:

E E-U
4tqJm m

Ff=
h3

ZJdUW(U)fdUf(U+U)
. (4.32)

max(V,0) 0

Eqn (4.32), with the region of integration R1 as shown in Fig. 4.4, gives us a flavour for the

transport current through the CBS. The interpretation of eqn (4.32) yields: a thermalised ensemble

of electrons at x = -x, (characterised by the distribution f1 with an electrochemical potential t of

E,1)is injected to the right, towards the CBS; each electron within the ensemble is characterised

by a forward-directed energy U and a transverse directed energy U± which is random but evenly

distributed in all directions; every electron then passes through the CBS with a probability of

transmission given by WCBS which is dependent upon U, alone; the transverse directed portion of

the electron’s energy leads to a contribution given by the geometric mean of the two transverse ef

fective masses; finally, only electrons that can enter the neutral base outside of the forbidden

bandgap (i.e., U Vb), and are within the bandwidth E of the conduction band, are allowed to

contribute to the transport current. Eqn (4.32) solves for Fjunder the condition that the effective

mass tensor is a constant throughout the CBS.

Returning back to eqn (4.28), the main thrust of this section is continued; namely the incor

poration of a spatially varying m* into the transport current. The inclusion of a non-constant m*

requires that the electron energy U ( U + L1) be generalised to:

U1 = U+U and U2 = (4.33)

where energies with a subscript of 1 refer to transit within Region 1 (i.e., -x, x 0), while ener

gies with a subscript of 2 refer to transit within Region 2 (i.e., 0 <x xv). The reason for the gen

eralisation that leads to eqn (4.33) is that the spatial change in the effective mass tensor results in

a mixing of the x-directed and transverse directed energies. Therefore, one cannot maintain a to-
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tally separate view of U, and U1. Now, the energy reference continues to be located at E(x=-x),

so that using eqn (4.12) produces:

1
= and U1 =

+ (4.34)
1 2m 1 2mz 1

while

2 2 2

u —

____

V and U
— ‘2 Pz,2

435X, 2
— 2m 2

b J 2
— 2m2 2mz 2

It is important to understand the exact meaning of eqns (4.33)-(4.35). To begin with, the en

ergies U, U, and U± represent total energies within their respective regions. Band diagrams such

as those shown in Fig. 4.2 do not show the total energy U, but instead show only U. In the event

that the system possesses transverse symmetry, then the potential energy is V(x,y,z) V(x). When

there is transverse symmetry, it is possible cast the full three dimensional problem into two decou

pled one dimensional problems whose solution only depends upon U or U1 respectively. For this

reason, U,2 is not simply given by the kinetic energy term containing Px,2’ it must also include

the offset potential energy of Vb. Thus, eqn (4.35) gives the total energy U2 located at x = xi,,

while eqn (4.34) gives the total energy U1 located at x = -x. The reason for defining the energies

at -x, and Xp being that Ff is based upon particles injected to the right from x = -x,j, while Fr is

based upon particles injected to the left from x = x. Furthermore, because the potential energy

V(x,y,z) V(x) does not vary in the transverse direction, Uj and U.,2 do not contain an offset

potential energy term.

The cumbersome nature of the energy relations given by eqns (4.34) and (4.35) arise from

the quantum mechanical nature of the problem. Looking back to eqn (4.3) shows the flux being

calculated by an integration over p-space. Strictly speaking, quantum mechanics does not allow

one to consider momentum and position simultaneously. Eqn (4.3) must be interpreted with care,

because FfiS based upon a distribution in p-space located at x = -x,, while F is based upon a dis

tribution in p-space located at x = xi,. Essentially, due to the slow variation of V(x) over the atomic

dimensions, it is possible to cast the problem into quasi-classical form [15] where one can speak

of distinct p-space distributions at largely separated positions in real space. Finally, because we

transform p into U, the same concerns for p-space apply to U-space as well.
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Due to the translational invariance of the potential V(x,y,z) along the transverse direction,

the transverse momentum pj commutes with the Hamiltonian of the system; leading to the con

servation ofp. Therefore, at the heterojunction separating Region 1 from Region 2 (i.e., at x 0),

P±, 1 P±,2 (where eqn (4.11) has p = +p1)so that:

py,1 = Py,2 p, and Pz,i = Pz,2 = Pz (4.36)

Since the potential energy V(x,y,z) ( V(x)) does not vary in the transverse direction, then P±,1

P±,2 cannot vary with x if collisions are prohibited. Using eqn (4.36) in eqns (4.34) and (4.35)

shows that Uj1 and U±,2 must remain constants of the motion. Therefore, eqn (4.36) must hold

equally well at any x within Regions 1 and 2, and more specifically at -x and x where eqns

(4.33)-(4.35) are defined.

Using eqn (4.36) in eqns (4.34) and (4.35) leads to:
2 2 2 2

UJ1
= 2my 1 + 2m 1

and UJ2
= 2my 2 + 2mz 2

Applying eqn (4.11) to the above yields, after a little algebraic manipulation:

U±,1 m 2mz2 m 1cos2G+m 1sin2e

_____

= “
‘ R(9) where R(G) = Z, (4.37)

U±, 2 my lmz 1 mz2cos29+ my,2sin29

Examination of eqn (4.37) shows the necessary condition that if m,1 = m,i = = mZ,2, then

Uj 1IU,2= 1. Eqn (4.37) represents the change in the transverse energy that must occur to con

serve pj in the face of a spatially varying effective mass tensor. It is instructive at this point to re

veal the full implications of eqn (4.37) upon the total energy within the system. Fig. 4.5 shows the

effect of eqn (4.37) when m1 = m,i = m1, and m,2 = mZ,2 = m2. When m1 <m2, then

As will be described in the next paragraph, total energy must be conserved throughout Re

gions 1 and 2. Thus, when m1 <m2, the positive difference Uj1 — Uj is transferred into U,2

which leads to an enhancement in the forward directed flux. Conversely, when m1 > m2, then Ujj

< Uj. Thus, when m1 > m2, the negative difference U±,i — U,2 is removed from U,2 which

leads to an diminution in the forward directed flux.

Since eqn (4.3) is based upon a collision-less system within Regions 1 and 2, then the total

energy must be conserved at the heterojunction separating Region 1 from Region 2 (i.e., x = 0).

Thus,
1 2

Furthermore, since there are no collisions within the two regions, the above conservation require-
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ment applies equally well at all x within Regions 1 and 2, and more specifically at -x and x,

where eqns (4.33)-(4.35) are defined. Using the above equation in eqn (4.33) produces:

(4.38)

Eqns (4.38) and (4.36) are the conservation requirements imposed at the abrupt heterojunction

separating Region 1 from Region 2. It is important to remember that most of the proceeding argu

ments are based upon the conservation ofp. This conservation can only be asserted if the Hamil

tonian of the entire system has translational symmetry along the transverse spatial dimension, if

the heterojunction contains a corrugation or surface roughness, then one could not assert thatp is

conserved. This would lead to a considerable increase in the complexity of the model that would

necessarily require a detailed view of the device at the atomic level.

(a) (b)

I I Ix
-xn 0 -x7 o

Fig. 4.5. The effect that conservation ofp has upon U,1 and U±,2 when a mass boundary is
placed at x = 0. Using m,1 = m,i = m1 and m,2 = m,2 = m2 in eqn (4.37), then U±,1IU±,2 m21
m1. (a): when m1 <m2, energy is removed from Uj1 and transferred to U,2 when moving from
the left to the right; (b): when m1 > m2, energy is removed from U,2 and transferred to Uj when
moving from the left to the right.

With eqns (4.38), (4.37), (4.35) and (4.34), the effect of a spatially varying effective mass

tensor can be completed. The abrupt change to the effective masstensor, as described in Fig. 4.5,

results in a mixing of U,1 and with U,2 and UJ,2 when passing through the mass barrier

(i.e., heterojunction) at x = 0. This mixing, along with the assumption that there are no collisions,

results in a one-to-one mapping between energy state (U,i, U±,i) in Region 1 and energy state

(U,2,U,2)in Region 2. This mapping is solved for by substituting eqn (4,37) into (4.38), giving:

I I I
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U2 =U1+(e)U1,1, (4.39)
and

Ux1 = U2+ y’(€)) U,2, (4.40)
and

U = U1 + U,1 = U2+ U1,2, (4.41)
where

m 1m1 m2m2
y(9) = 1 — “ ‘ R(9) and y’(9) = 1 — “ Z R(€)) = . (4.42)

my 2mz 2 my, 1mg, 1 —

Finally, using this simplified form based on the function y (the notation for y was initially set forth by

Christov [70,73], but has been extended here to include anisotropic effects), eqn (4.37) becomes:

ii 1
FT ‘ = 1 = (4.43)
J,2 ‘i’

where the explicit dependence upon 9 has been dropped for simplification. Eqn (4.41) simply as

serts the fact that a collision-less system is being considered, while eqns (4.39) and (4.40) repre

sent the energy mapping that occurs when crossing the heterojunction at x = 0 from the left or

from the right respectively.

Returning back to eqn (4.28) for the calculation of Ffi the integral is being performed over

U-space located at x = -x, with a domain of integration R1. Using the formalisms for passing

through the heterojunction that were developed in eqns (4.39)-(4.43), it is important to realise that

the transmission probability W(U), as defined in eqn (4.8), must be extended to:

W(U) = WcBs(UXl)WN(UX2), (4.44)

for WCBS is defined in Region 1 and thus depends upon U,1, while WN is defined in Region 2

and thus depends upon U,2. However, any function that depends upon total energy U (such as the

Fermi-Dirac distribution function f(U)) remains unaffected by the mass barrier due to the conser

vation of total energy set out in eqn (4.41). Therefore, eqn (4.29) for WN is rewritten as:

11 if U >V
WN(U 2)

x, 2 — b (445)X, ‘0 if U2<V,,

The domain of integration R1, which is used for p- or U-space integrations performed at x =

-x,, will be modified from what is shown in Fig. 4.4 by the non-uniform effective mass tensor.

One still requires that for a particle to enter the EB SCR at x = -x, and contribute to Ffi it must

possess Px,1 0; or in terms of energy, U,i 0. And, the requirement that U (= + U1,1) E

(where E is the bandwidth for U(p)) is still maintained. However, eqn (4.45) imposes the condi
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tion that U,2 Vb, which results in a coupling between U,1 and U±,i when eqn (4.39) is used to

map from Region 2 into Region 1. Therefore, using the three boundary conditions set out in this

paragraph, along with eqn (4.39), yields the following boundary for R1:

1 0,

U1+U1,1E, (4.46)

UX,l+YUI,l Vb.

It is also possible to transform R1 (which is applicable to an integration carried out at x = -x) into

R2 (which is applicable to an integration carried out at x = x) by substituting eqns (4.40) and

(4.41) into (4.46) to produce the following boundary for R2:

U2+ yU1,2 0,

U,2+ U1,2 B, (447)

UX2Vb.

When the effective mass tensor is uniform, then eqns (4.42) and (4.37) produce y = =0. Un

der these uniform conditions, then indeed eqn (4.46) produces the R1 as shown in Fig. 4.4. However,

when y’ 0, R1 becomes distorted from that shown in Fig. 44.1 and y’ can take on any value in

the range —0o (y, y’) 1. As was discussed in the examination of eqn (4.37) that lead to Fig. 4.5,

two distinctly different domains occur for firstly, when m1 <m2where 0 <‘y 1 (and —00 < ‘y’ <

0), and energy is transferred from U±,i into U2 which leads to an enhancement in the forward di

rected flux; secondly, when m1 > m2 where —oo <‘y <0 (and 0< y’ 1), and energy is removed from

Ux,2 and transferred into which leads to a reduction in the forward directed flux. Fig. 4.6 shows

R1 and R2 for the case where y> 0, while Fig. 4.7 shows R1 and R2 for the case where y <0. Exami

nation of Fig. 4.6 shows a focussing ofR2 towards the direction of charge flow. This is due to the en

ergy transfer into 11x,2 when passing through the heterojunction, leading to what is termed current

enhancement. Conversely, examination of Fig. 4.7 shows a reflection in R1 against the direction of

charge flow. This is due to the energy removal from U,,2 past the heterojunction, leading to what is

termed current reflection. The current reflection occurs because ultimately, no carrier may enter the

base within the forbidden bandgap (i.e., U,2 < Vb). As a result of Figs. 4.6 and 4.7, care must be ex

ercised in applying the integration boundary R1 (or R2) to the solution of Ff in eqn (4.28).
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E \,7Ux2+UJ.2=E

U±2=

R2

\uX2

o yE E

Fig. 4.6. Enhancement case where m1 <rn2 (i.e., y> 0 and y’ <0). Domains of integration R1
and R2 from eqns (4.46) and (4.47) for the calculation of Ff at x = -x, and x = Xp respectively: (a)
the applied bias is such that Vj, 0; (b) the applied bias is such that Vb 0. Each domain of inte
gration represents the ensemble of particles that contribute to Notice in R2 how the transfer of
energy from Uji into U,2, due to the increasing m* in the direction of charge flow, leads to a fo
cussing of the particles towards the direction of charge flow.

+ U,1 =E

Vb-UX I
(UL1

y

U 2

—yp

0
0

(a)

U,2

E

(b)

E
1 —y’

0

0 ‘Vb yE

,U,1 + Uj = E

U,;,2

—y,
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(a)

*
U,2

E-Vb

E

UJ_,2 =

_____

—Y

U,2+U±,2=E

R2

0 Ux2
I ...........................................................

Vb 0 E

Fig. 4.7. Reflection case where m1 > m2 (i.e., y < 0 and y’ > 0). Domains of integration R1 and
R2 from eqns (4.46) and (4.47) for the calculation of Ff at x = -x, and x = x,, respectively: (a) the
applied bias is such that V, 0; (b) the applied bias is such that Vb 0. Each domain of integration
represents the ensemble of particles that contribute to Fp Notice in R1 how the removal of energy
from U,,2 into U±,2, due to the decreasing m* in the direction of charge flow, leads to a reflection
of the particles against the direction of charge flow. The reflection occurs because of the necessity
for particles to enter the base outside of the forbidden bandgap (i.e., U,2 Vb, orpX2 0).

E

U,2

U,1 + U,1 =E

E

E
— Vb—UX1

Y

+ U = E
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Ux2

Vb EVb Vb-YE

1 —Y

0

(b)

UJ-,1

ZUx,1÷U±,1=E
E- Vb

1 —Y
Vb—UX1

Y

U 2

—Y’

Vb-YE

1—y
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E
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Before eqn (4.28) is recast to include changes to m* (by including R1 from Figs. 4.6 and 4.7)

it is instructive to calculate the Jacobian that transforms integrations performed within Region 1

into those performed within Region 2. In other words, we wish to determine:

au1 au1
1 , Uj

—

(U 1’ L, 1 — U2 U 2
U2 9,u2)

— 2) — u1, 1 1

au2 au±,2

Using eqns (4.40) and (4.43) produces:

m 2m 2u1 =
— m1m1

R(9)

‘\x2J2J m 2m 20 “ ‘ R(O)
my lmz, 1

where R(9) is defined in eqn (4.37). Using eqn (4.37) yields, after substitution into the above:

(Ui9 U1,1 = (Ui U±1N = my,2mz2 mzlcos29+mylsin2O
(448)

U 2’ , U±, 2) 2’ U 2) my 1m 1 m2cos2O+ my,2sin2O

Finally, by combining the above Jacobian for a change in variables from Region 1 to Region 2

with the Jacobian given by eqn (4.27) for a change in variables from p to U (which in this case is

subscripted to reflect calculations within Region 1), gives:

U,1”
—3(P,i’P,i’P,i”1— m1 my,2mz2

(449)1\U1,9,U±,1)u2,u±,2) u2,e,u±2) Px,lmz2cos2G+my2sin29

Examination of eqn (4.49) shows it to be almost identical to the Region 1 Jacobian in eqn

(4.27), but with subscripts denoting Region 2 instead of Region 1. This is to be expected because

the energy versus momentum relations in Regions 1 and 2 (eqns (4.34) and (4.35) respectively)

differ only by a constant of Vb, which will not result in a deformation of the differential volume

element. However, the term mi/p,i and not mx,2Ipx,2 remains in eqn (4.49). The reason for this

discrepancy from perfect symmetry lies in the fact that is an ensemble of particles originating

at x = -x,. As such, it is the particle velocity at the point of origin that will dictate the current flux.

Once the ensemble population is cast in phase space, then by Liouville ‘s theorem [74], the flux is

conserved at all other points in phase space and must equal the current at the point of origin.

Therefore, the tenn 3UIEp in eqn (4.4) for Fjremains U/ap,1 (Px,1’mx,1) and not

July 12, 1995 63



The final transport model for Fp including the effects of a non-uniform m*, is presented. For

the enhancement case (i.e., m1 <m2 andy> 0), then using eqn (4.28) with calculations based at x

= -x, and R1 defined in Fig. 4.6, produces that:

2it E E— u,,, (4.50)
2 m1m1

Ff= fde
1cos2O+m 1sin2e

$dUlWcBsx,l)J dU1,1f1(U1+U±1)

0 max(Vb,0) 0

max(Vb,O) E—U1

+ f dU 1 WCBS (U, 1) J d U1 1 f1(u + U1 1)

0 Vb—UX1

The term WN(Ux,2) is equal to 1 within the domain R1 and has been removed for clarity. Howev

er, if WN does not have this simple form, then the full WN(Ux,2) = WN(Ux,1 + yU11)must remain

in eqn (4.50), where the coupling of the canonical variables forces it to remain nested within the

third integral over U,1. If this is the case, it may be beneficial to calculate Ff at x = x. Using R2

as defined in Fig. 4.6, along with eqns (4.48) and (4.28), produces:

2it E E—U,2 (4.51)
2’ m2m2

Ff
— J d

2 . 2 J dU 2 WN (Ui, 2) J d U1,2f1(u 2 U1 2) WCBS (U, 1)
h m2cos€)+m2s1nE)

o ‘ ‘yE 0

Ux,2

+ f dU2WN (U 2) fdU1,2f1(U2+ U1, 2) WCBS (U, )
max(Vb,O) 0

In this case WN (= 1 within the domain R2) has been left in to show its general inclusion for the

calculation of Fp Eqn (4.51) is useful in applications where WN does not have a simple form.

However, WCBS remains nested within the third integral over U1,2 and cannot be easily removed

due to its dependence upon U1,which by way of eqn (4.40) is equal to U,2 + y’ U1,2.

It should be noted that all of the fluxes considered within this chapter are electron fluxes.

Thus, to calculate conventional current densities from these fluxes (such as F1, one must multiply

by “-1”.

Finally, for the reflection case (i.e., m1 > m and y < 0), then using eqn (4.28) with calcula

tions based at x = -x and R1 defined in Fig. 4.7, produces:
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2it r E E—U,1 (4.52)
2 m1m1 I

Ff
_ SdOm 1cos2 +1 1sin29

[m
f dU1 WCBS(UX ) j

dU1f1(U1+ U )
0 ax(Vb,O) 0

Vb - yE

1—y E—U1

— f dU WCBS (Ui, ) f dU1f1(U1 + U1)

max(Vb,O) Vb—UX,l

As was done with the enhancement case, the term WN(Ux,2) (= 1 within the domain R1) has been

removed for clarity. However, as is true for the enhancement case, if WN does not have this simple

form, then the full WN(Ux,2) = WN(Ux,1 + YU±,i) must remain in eqn (4.52), where the coupling

of the canonical variables forces it to stay nested within the third integral over Uj.i. If this is the

case, it may be beneficial to calculate Fj at x = x. Using R2 as defined in Fig. 4.7 along with eqns

(4.48) and (4.28), produces:

2t E E—U,2 (4.53)
2 m2m2

Ff = i!Id0m 2cos2G+rn 2sin2e
$dUx2WN(Ux2)jdU2fl(UX2+U±2)WcBs(UX1)

o Z
Jnax(Vb,0) 0

0 E-U,2

+ f dU2WN (U, 2) $ dU12f1(U,2+ U 2) WCBS (U )
min(Vb,O)

—r

Again, as with the enhancement case, eqn (4.53) simplifies the problem of calculations involving

a complex WN, but at the expense of making calculations of WCBS far more complex. Basically, if

WN has a simple form then use either eqn (4.50) or (4.52) for the calculation of Ffunder enhance

ment or reflection respectively. On the other hand, if WCBS has a simple form then use either eqn

(4.51) or (4.53) for the calculation of Ff under enhancement or reflection respectively. Finally, if

both WN and WCBS have a complex form then little can be done to reduce the complexity of the

problem.

Eqns (4.50)-(4.53) present a rigorous model, that includes the effect of quantum mechanical

tunneling, for the calculation of the forward flux entering a two region system with an abrupt

mass- and hetero-junction in-between. These equations solve, for the first time, the transport cur

rent within a complex region while allowing for an anisotropic media. As such, these equations
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represent a significant progression from the models derived by Stratton, Padovani, Christov,

Crowell and Rideout [69,70,73,75-78]. The models presented here allow for all of the features

found within HBT structures which were not accounted for by the aforementioned authors in their

study of Schottky diodes. Furthermore, the models presented here overcome the problem encoun

tered by Perlman and Feucht [79], who solved the same system but neglected tunneling. Due to

the neglect of tunneling, the models in [79] have an un-physical discontinuous change when the

mass boundary is placed coincidently with the potential boundary. It is important to be able to

model transport through complex regions like the CBS, for in modem abrupt HBT structures this

transport current is often what defines the ultimate terminal characteristics of the device. Finally,

the models presented in this section have no bias toward, or any specific requirement on, any one

material system. Therefore, the results of this section can be applied equally well to any material

system.

In concluding this section it is important to mention some cautionary comments and shed

some physical insight into eqns (4.50)-(4.53). First of all, examination of eqns (4.50) and (4.52)

shows the first double integral over U,1 and Uj,i to be identical in both equations and also equal

to eqn (4.30) which is for a constant m*. For this reason, this double integral is termed the

standard forward flux as this is the standard flux that would flow in the absence of the

mass barrier. The last double integral in eqn (4.50) represents an additional flux that would

normally have entered the base within the forbidden bandgap, but due to the mass boundary

transferring energy from Uji into U,2, it is raised up into E within the base to contribute to the

total Ff As such, this current is termed the enhancement forward flux1enhance Finally, the last

double integral in eqn (4.52) represents a flux that would normally have entered the base within

E, but due to the mass boundary removing energy from U2, it is lowered into the forbidden

bandgap within the base and is lost from the total Fp As such this current is termed the reflected

forward flux FfreflectS It is also important to remember that when solving eqns (4.50)-(4.53), y and

y’ have a dependence upon e in general. Therefore, unlike eqn (4.30) (and thus FfstjJ) where

the e integration can be treated as an independent multiplier to yield eqn (4.31), the calculation of

Fjepice and 1reflect will have y(9) and y’ () nested within the integrand, making for a

potentially stiff problem to solve due to the complex nature of the 0 integral.
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4.3 Calculation of Fr and a Unified Model for F

The total transport flux F is equal to Ff— F,, as is given by eqn (4.2). The models of the previ

ous section, given in eqns (4.50)-(4.53), concentrate on the calculation of Ff The reason for main

taining a focus upon Fj while neglecting F,, is that the two the fluxes are essentially identical, save

for a change in the electrochemical potential within the distribution functionsf1andf2used to deter

mine Ffand F respectively. Furthennore, under the condition of current-limited-flow due to a given

region, eqn (2.2) shows that it is Ff that defines the transport current through that region. However,

as was discussed in Section 4.1, before one can assert that Ff and F share a dependency that is in

dicative of eqn (2.2), it is necessary to prove that the regions of integration for and F provide for

the form given in eqn (2.2). The calculation of F,, and the ultimate proof that eqn (4.2) (and thus the

transport flux through the CBS) has the form of eqn (2.2), begins by returning back to eqn (4.3).

Eqn (4.3) sets out the general models for F, Ff and F,, but does not explicitly show the effect

of a mass boundary. Included within eqn (4.3) is the requirement that tunneling, or any other con

duction process for that matter, that moves electrons from one state to another depend upon the

probability that the final state be unoccupied (= (1 — f) h). Using eqn (4.3) for Ffr eqn (4.44) for

W, eqn (4.34) for U,1, and the Jacobian given by eqn (4.49) to move calculations to xi,,, yields:

21r (454)
2 m2m2

F= -_ifdU2fdUf,2fd9
2 • 2

ff(Uf)
h m 2cos G+m 2sm 0

00 0 0 Z 3’,

where the superscriptf refers to functions that have their energy reference located at the bottom of

the conduction band at x = -x. To arrive at the infinite extent for the region of integration it is only

necessary to extend the definitions of WCBS, WN, andf1 to implicitly account for the fact that the

flux density must be zero outside of the region R2 defined by eqn (4.47) (i.e., WCBS(Ux,1) 0

when U,1 0, WN(Ux,2) 0 when U,2 Vb, andf1(U) 0 when U E). No loss to the general

ity of these function occurs as a result of this extension. Likewise for F,, but using only the p to U

Jacobian of eqn (4.27) in order to maintain the calculations at Xp. yields:

00 2i (4.55)
2 mm

Fr = -_Jdu1fdUi,1$de 2
z,2

. 2 W’)
h m 2cos 0+m 2srn 0

—00 0 0 3”
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where the superscript r refers to functions that have their energy reference located at the bottom of

the conduction band at x = x. Note that in eqn (4.55) the subscripts referring to Regions 1 and 2

have been interchanged to reflect the reverse direction of flow for Fr in comparison to Ff There

fore, both eqns (4.54) and (4.55) have been constructed so that the integration over U-space oc

curs at the point x = x. This will facilitate direct comparison between Fr and

The task that remains is to recast the r-superscripted functions of eqn (4.55) into thef-super

scripted functions of eqn (4.54). The only difference that exists between the f- and r-functions is

their energy reference. Since E(x=x) — E(x=-x) = Vb, and there is transverse symmetry, then

using eqns (4.34) and (4.35):

U1 = U2—V and UI,i = U2 =.u’ = U1+U,1 = UVb.

Finally, recasting eqns (4.39) and (4.40) into r andfform, gives:

= U2+7’U,2 and U2 = U1+’y’U,1.

The reason y’ and not y is used in the definition for U2, is because Regions 1 and 2 are inter

changed for the calculation of Fr This regional interchange maintains consistency with Section

4.2 where the flux always originates in Region 1. With the interchange of Regions 1 and 2, all of

the effective masses are also interchanged. Finally, observation of eqns (4.42) and (4.37) shows

that interchanging the 1 and 2 subscripts maps y into y’. Since all of the functions used in eqns

(4.54) and (4.55) are thermodynamically reversible (due to the fact the system is collision-less),

then a general function gT(U) is the same as g(U + Vb) (where U can be either r- orf-superscript

ed). Using this functional translation, along with eqns (4.57) and (4.56) gives:

WBs(Ul +y’Ui,1+ Vb) = WBs(U2+y’U2)

wrf iii! ‘

“CBS x,1”

wifi’rir
— wrf’rif ‘

Vb) — VVNkLI2),

f( u’ + Vb) = f( (if),

f( U’) = f{( U’ + Vb) = f{( Ui).

The above equations recast the r-superscripted functions into the desiredf-superscripted functions.

Using the above equations, along with the fact that the probability of hole occupancy h is

equal to 1 — f, eqn (4.55) becomes:

(4.56)

(4.57)

WBs(U2)= WBs(U2+Vb) =

= W(U) =

=

f;(U’) =
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21t (4.58)

Fr = fdU1JdUI,1domz,2cos2:::,2sin2ef(U)

Then, the only thing left to do before a direct comparison between eqn (4.58) for Fr and eqn

(4.54) for Fe can be made, is to determine the Jacobian that transforms (U1,UI1) into

(U2,U2). Examination of eqn (4.56) shows that the only difference between points in

(U1,UI,1) space and points in (U2,U2)space is a constant Vb. Since the addition of a con

stant does not distort the differential volume element, the Jacobian is unity. This allows eqn

(4.58), along with UI,1 = U,2,to immediately transform into:

2it (459)
2 m2m2

Fr = _fdU2fdU.2fde
2., 2

f(U)
h m 2cos O+m 2sin ()

0 0 Z 3’,

Comparison of eqn (4.59) for Fr and eqn (4.54) for Ff shows almost exactly the same functions;

save the fact that F,. deals with transport from Region 2 to Region 1 (i.e., f( Ui’) h(( (If) ), while

Ff deals with transport from Region 1 to Region 2 (i.e., f(( U) h( U”) ). Therefore, the transport

flux is:

_

21t

F = F — F = I dUf2 IdUf 2 dO
m2mz2

f r
h3 J ‘ J m2cos2O+m 2sin2O

0 0 ‘

[f{( U1’) h( U) — f( U”) h{( U”) ] WBs(U1)W(U2)

2it

2’ mm
—i fi f i “ z’

h3 J ‘ .1 .1 m2cos2O+m 2sin2O
—e 0 0

[f{( U) — f( U”) I WBs(U1)W(U2) . (4.60)

Thefsuperscripts have been included as a reminder that the energy reference is located at the bot

tom of the conduction band at x = -x,.

Eqn (4.60) completes the proof that Fj and Fr share a dependency that is indicative of eqn

(2.2). It also validates the modified definitions for Ff and Fr given by eqns (4.4) and (4.5) respec

tively. Eqn (4.60) is brought into exact agreement with eqn (2.2) when the fi and f2 distribution

functions of eqn (4.1) are given by the Boltzmann approximation, leading to:
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U -

f1(U) =

_______

kT

1+e kT

(4.61)
U - j.t2

f2((1)
= —2

e kT

1+e kT

Eqn (4.61), under the Boltzmann approximation, produces:

U I’i

____

IS.Efl,

f{( U) — f( U) = e e’ — e kT f(( U) (i — e kT) (4.62)

where AE
- I2• Since AEp is a constant with respect to the canonical variables defining the

integration in eqn (4.60), then substituting eqns (4.62) and (4.54) into (4.60) gives:

i
F = Ff— Fr = F1 — e J. (4.63)

Thus, the transport flux through the CBS has exactly the same fonn as eqn (2.2). This will allow the

models of this chapter to be used with the results of Chapter 2. Eqn (4.63) also justifies the method

ology used within this chapter where Fj alone is calculated. Finally, examination of eqn (4.63)

shows that it possesses two simple but fundamental requirements: as the driving force AE increas

es, so does F increase; when the system is at equilibrium (AE 0), the transport flux vanishes.

4.4 Analytic CBS Transport Models

Section 4.2 presented the general models for the calculation of the transport flux Ff through

a complex two region system with an abrupt mass barrier in-between. The models also allow for

an anisotropic effective mass tensor m*. This section will take the models of Section 4.2 (eqns

(4.50)-(4.53)) and derive analytic solutions for the calculation of F through the CBS. By obtaining

analytic models, and not simply resorting to numerical calculation, the rich interplay that exists

between the physical attributes such as doping concentration, temperature, effective mass, elec

tron affinity, and bias conditions, will be brought out for study in the final transport model of the

CBS. The key component to all of the models presented in this chapter is the inclusion of the ef

fects due to tunneling. Any model or simulator (such as the highly acclaimed Monte Carlo simu
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lator) that fails to account for the vast increase in transport current through the CBS due to

tunneling, will be grossly inaccurate even if every conceivable scattering process and other driv

ing force outside of tunneling is accounted for (see Fig. 4.8).

106

i03 - tunneling and thermionic emission

100

io-3 -

10-6 -
...‘ no tunneling, only thermionic emission

io-9 I •

I • I •

0.8 1.0 1.2 1.4 1.6
Base-Emitter Voltage VBE (V)

Fig. 4.8. Collector current for an abrupt A1GaAs HBT with 30% Al content in the emitter. The
emitter doping is 5x1017cm3,and the base doping is 1x1019cm3.Notice the large error that re
suits if the tunneling current through the CBS is not accounted for. Also, the tunneling current has
a bias dependence that alters the current to voltage relationship from the form exp(qV/k7)
(which characterises the thermionic emission curve quite well) to exp(qVInkT), where n> 1.

4.4.1 Analytic Model for the Standard Flux

With the result of eqn (4.63), the development returns to the main goal of this section; deriv

ing analytic models for Ff from eqns (4.50)-(4.53). For the problems being considered, the form

of WN in eqn (4.45) suggests that eqn (4.50) be used for the enhancement case (i.e., m1 <m2 and

> 0), and eqn (4.52) be used for the reflection case (i.e., m1 > m2 and ‘y < 0). As was discussed

near the very end of Section 4.2, eqns (4.50) and (4.52) share a common term called1Jstandard (or

Fj8 for short), plus a unique term for the enhancement case of Fjepi (or F!e for short), and a

unique term for the reflection case of Fjreflect (or Fj for short). These terms, using eqns (4.50)

and (4.52) are:
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2it E E-U1

2 m1m1
Ff =

fd9
1cos29+m sin2eIdUx,1WCBSx,1) f dU1f1(U1+U±,1),(4.64)

o “ max(Vb,O) 0

2it max(Vb,O) E—U1
m 1m 1

Pe
=

dO
2 2 J dUX1WCBS(UXl) J dU±1f1(U1+U±,1),(4.65)

h mz 9+ m, 0
o 0 Vb—UX1

Vb - yE
2it E—U,1

2 m1m1
Ffr = 2 + .201 dU1 WCBS(UX ) J dU1f1(U1+ U ).(4.66)

o max (Vb, 0) V,,
—

U,1

y

The derivation of the analytic models begins with Fj. Fj is the most important term, and as it

wiil turn out, the essential equation for the solution of Ff,. as well.

The analytic solution of eqn (4.64) for Fj begins by noting that the integrals over U,1 and

Uj contain no term with a dependence upon 0. This allows the 9 integral to be performed inde

pendently, as in eqn (4.31), to yield the same result as eqn (4.32) but with m = and m =

m,i. Essentially repeating eqn (4.32), but with a change to the dummy variables in eqns (4.64),

yields after performing the integration over Uj using the full Fermi-Dirac distribution:

E
_Ux-,.L1

4itqjm 1m 1kT 1+e kT
Ff

=
Z f dU WCBS (Ui) ln

E —

max(Vb,O) 1+e kT

The integrand above becomes vanishingly small (at an exponential rate) for large U,, allowing for

a simplification by letting E — 00 to produce:

/4itqjm 1m 1kT ( -____

Ff
= $dUXWcBs(UX)ln,1+e

kT

max(Vb, 0)

In general, even if the emitter is degenerately doped, the energies U at which the above integrand

produces significant contributions to F15 occurs at energies where U is a few kT larger than t1.

This allows what is essentially an assertion of the Boltzmann approximation that leads to eqn

(4.61), so that:
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I
00

4itqqm 1m 1kT — -—

Ff
=

ekTJdUXWCBS(Ux)e kT (467)

max(Vb, 0)

Eqn (4.67) provides for the model of the standard flux, where the integrand multiplied by the lead

ing constants is the standard flux density.

Eqn (4.67) is now solved for by substituting in WCBS from eqn (4.9) and making a change

of variables from absolute energy U to normalised energy U (where U = U/Vpk, and Vpk is the

height of the CBS as defined in Fig. 4.2). Before performing these changes to eqn (4.67), the solu

tion process is further facilitated by the following change of variables:

,J1—U +1 2x 2
, x2—i

X = = ( 2
and Ji

—

= 2l+x x+l
Letting

x=e3’= = and J1—U =th(y),
ch (y)

where ch(y) is the hyperbolic cosine of y, and th(y) is the hyperbolic tangent of y. Using the above

equations, along with the normalised energies from the start of the paragraph, yields for Vj, < VPk:

i xfl./2mXlVPk y VPk

Ff5
= 4itqJm lmz, 1 kT ‘k

e’ I dU e
— th(i))

— kT ch2(y)
(4.68)

‘nax(V,0)

pk

kT
+ ----e

Vpk

where all energies, including V, are in terms of normalised energy (i.e., Vb = V ‘k). The last

term inside of the square brackets is the thermionic injection term where WCBS = 1. In the event

that V> 1 (i.e., Vb> k) then the CBS is at an energy too low to effect the transport current and:

2i4tqm1m1(kT) -

F = e e

Up to this point, the parameters x (which is the n-side extent of the EB SCR) and Vpk

(which is the n-side portion of the potential drop across the EB SCR) have been left as is without

connection to the material parameters of the device (where the device is arbitrarily chosen as an

npn HBT). However, using the depletion approximation gives [24,80]:
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V 61ND
VPk = Vp=q(l_Nraj)(Vbj_VBE)

‘ = eNplc 2A

I2elVk I2e2V x ND
Vb = x =

q2N
XP=qq2;= = (4.69)

L2NA kT INANDN AE
where N = and V. = — In I I +rat L2NA+C1ND q I

2 ) q

Vbj is the built-in potential of the junction, n2 is the intrinsic carrier concentration in Region 2,

ND is the emitter doping, NA is the base doping, e is the permittivity of the respective region, and

VBE is the forward bias across the EB junction. The doping ratio Nrat differs slightly from that in

eqn (3.5) due to a nonuniform e. Concentrating on the case Vb < Vpk then using eqn (4.69) within

eqn (4.68), along with

I ND
= U + r where U

= 5.VJeim
gives: (4.70)

________

N (Vb.VBE) r

Fj
= 4qJm1rn1kTk;

f

dU e

rag

(ch2(Up+r)PJ
(4.71)

h max (V Nrat (Vb — VBE)

kT v
+-—e

Vpk

where V is the thermal voltage kTIq, and U = ch2(U + r). As will be shown shortly, eqn

(4.71) can be solved in a tractable and analytic fashion. However, the integrand within eqn (4.71)

is still the flux density, and is worthy of separate investigation. It is worthwhile to note that eqn

(4.71), and the transform used to obtain it, follows that of Crowell and Rideout [781 used in the

development of Schottky diodes. Furthermore, U, is the V1 normalised version of Efj4-J from [751.

The standard forward flux density for a given energy U is:

________

N (Vb.VBE) r

= 4qm 1in 1 kT Vpk;e
rat

(Ch2(U+ r)
-th(u÷ r))

(4.72)

where the energy U (= ch2(U + r)) is defined in terms of r. The energy at which the maximum

cI occurs can be found directly from eqn (4.72). In terms of the variable r, and given that expo

nentials are analytic functions, 4c will be at a maximum when the exponent containing r in eqn
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(4.72) is at a maximum. To this end it is found that:

I

-r . -

Thermionic
Injection
Regime

k I

1.0 1.2 1.4

I r 2rsh3(U +r)
2

— th(L1,+ r) =
—

P 0 r = 0, —UP, ±00. (4.73)
drch (U+r) ) ch (U+r)

sh(y) is the hyperbolic sine of y. Examination of the definition for U, in terms of r, shows that r has

a range of-Un r < oo• Furthermore, when r = -U then U = 1, which coffesponds to the top of the

CBS, and when r —>0o then U =0 (it should be noted that U < 1 deals with the tunneling of elec

trons through the CBS while U> 1 deals with thermionic injection over the CBS). The solutions

of r = -U,, and —oo occur due to the mapping used to define U, in terms of i and do not represent

the absolute maximum that is being sought. Thus, the maximum occurs when r =0 and gives:

th(U)
4itqjm 1m lkTVk —

- U
max

= y, z, P e’e ‘ at U = ch2(U). (4.74)
h p

VBE= 1.4V

VBE=O.9V

V, when VBE = O.9V-

V’, when

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8

Normalised Energy U (Vpk)

Fig. 4.9. Flux density fs’ normalised tO max’ for anAl1j3Ga07As/GaAs abrupt HBT at two
different forward biases. The material parameters, the same as in Fig. 4.8, are: emitter doping ND
5x1017cm3;base doping NA 1x1019cm3;emitter permittivity El ll.9cj; AE is 0.24eV; n2 is
2.25x106cm3;Vbì is 1.67 1 V; mx,l is 0.091m0;Tis 300K. Note that energies U <V would enter
the base within the forbidden bandgap, and although displayed here are reflected in reality.
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As was also found in [78], eqn (4.74) presents a surprising result that the energy U at

which the peak flux density Im occurs is independent of the applied bias. Therefore, relative to

the top of the CBS, 4?max occurs at the same place regardless of the applied bias (see Fig. 4.9).

Further consideration of U reveals the following general traits: as U (from eqn (4.70)) increas

es from 0 towards infinity, U moves from 1 towards zero, and tunneling becomes increasingly

dominant over thermionic emission; as ND increases, or e decreases, the width x of the CBS de

creases and U,’, becomes smaller, showing that tunneling is increasing; as m,i decreases the

probability of tunneling should increase, as is confirmed by the associated reduction in U; also,

as temperature decreases, U becomes smaller since it is easier for electrons to tunnel through

the barrier then it is to obtain enough thermal energy to pass overtop of the CBS; finally, in the

limit as 11 goes to zero, the system should evolve to a state that is purely describable by classical

mechanics, and it is found that U goes to 1, which indicates that there is indeed no tunneling.

Therefore, the general traits of the flux density, as presented, follow physical expectations.

Returning to the solution of eqn (4.71), the integration over U is converted into an integra

tion over . Using eqn (4.73), it is found that for:

C
= r

—th(U +r),
dr = (_2rsh(U+r)(_ch3(U+r))

=

ch2(U+r) p drdU ch3(U+r) ) 2sh(U+r)

and then eqn (4.71) becomes (under the condition that Vb < VPk):

N,.,1 (VbZ — VBE) Nrat (Vbx — VBE)

F
— 4itqJm lmzl kT VPk

1d
dC 1 + kT - V1

h3
e

,

r——e _V_e

Eqn (4.75) has had the limits of integration from eqn (4.71) temporarily removed for clarity. At

this point no approximations have been introduced into the solution. At issue with the solution of

eqn (4.75) is that r(C) cannot be determined in closed form. If C(r) were invertible then eqn (4.75)

could potentially be solved analytically. Observation of Fig. 4.9 shows that I, the integrand of

eqn (4.71), has the form of a Gaussian. Indeed, ‘j is extremely symmetric and suggests that a

Taylor series expansion about U (i.e., r = 0) for C(r) is a potentially good approximation. Per

forming a Taylor expansion of C(r) about r = 0 up to second order produces:

sh(U) dC sh(U)
C=—r2 —th(U)= ——2r

ch (Ui) dr ch (Ui)

Finally, substituting the above approximate equation for C (r) back into the integral within eqn
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(4.75) yields:

Nrat (T7bz — VBE) Nrat (Vbx — VBE) th (Un) Nrat (Vb — VBE) sh (Un)
r2

fdr-e = —2
sh(U)

e
u

fdre
UV ch3(U)

j drr ch3(U) J

The above equation is simply the integration of a Gaussian, and results in an error-function solu

tion. With the limits of integration from eqn (4.71) reintroduced, the solution of the above is:

Nrat (Vb — VBE) th (Un) (ach (

____________

— u
1sh(U)

eri + erf
Jmax (V,, .0)) P)

, (4.76)
ch (Un) a

where

— /ch3(UpUpkT
—

VP, sh(U)

Eqn (4.76) solves for the integral in eqn (4.75) and produces the analytic model for Ff
,.

that

is sought after. The complexity of eqn (4.76) stems mainly from the evaluation of the boundary

conditions. Fig. 4.9 shows and the boundaries of integration. As long as the majority of is

contained within the two boundaries, then the error functions will both approach 1, and eqn (4.76)

can be approximated by:

sh(U)
Nra: (Vb1-VBE) th(U)

2q ae . (4.77)
ch3(U)

Eqn (4.77) is the simplified model for the integral in eqn (4.75), but it still contains most of the im

portant features regarding CBS transport. Thus, the final and approximate models for Ff5 are

found by substituting either eqn (4.76) or eqn (4.77) respectively, into the integral of eqn (4.75) to

obtain (under the condition that Vb < Vpk) (see also eqn (4.92) for low temperature considerations):

Nrat(Vb VBE) th(U)

Ff5 = FjsoPPPte u
[erf()+ (4.78)

(ach
(Jmax (vi, 0)

— U Nra: (i VBE)

+erf +F Ve
a fsOt

r

or approximately as
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Nrat (Vb1 — VBE) th(U) Nrai (Vbx — V8)
btv sh(U )U V - 11 -________

z’ p p Pt t p j’ TI I
‘fs1fsO I mIfsOvt

qch(U,,)

where

214iq im m kT—
F

— ‘v y,i z,i kT

h3

Finally, under the condition where Vj, Vk:

VbI—V8—AE/q

Ff = FfSQVe
V,

(479)

4.4.2 Analytic Model for the Enhancement Flux Ffe

With the analytic model for Ff presented in eqns (4.78)-(4.79), attention is focussed upon

the solution of the enhancement term Fje. Examination of eqn (4.65) shows that the integration

over Ujj has a lower limit that includes y(G). Thus, unlike the solution for Fj5, the G integration

to calculate F!e cannot be performed independently. Further, eqns (4.42) and (4.37) show that y

has a complex dependence upon € that would most likely cause the final integration over 0, for

the calculation of Ffe, to become analytically intractable. To alleviate this complexity an approxi

mation is made. So far, all of the models presented use a general mass tensor that is diagonal with

respect to the direction of transport. This general mass tensor formulation is maintained, but the

mass barrier will be confined to the study of an isotropic change in the transverse direction of the

mass tensor. Thus, “,2 = ammy,1 and mZ,2 = ammz,1. With this approximation, then using eqns

(4.42) and (4.37) it is found that:

m 1m 1 (a m 1cos2O+a m 1sin20” i
y(0) = 1 — ‘ z m z m “ = 1 — . (4.80)

amy, lmz, 1 m,1cos20+ m 1sin20 ,) am

Eqn (4.80) reduces y (and also y’) to a constant. With this simplification, the 0 integral in eqn

(4.65) can be performed independently using eqn (4.31). Then, the development of Fje will follow

exactly the one for the calculation of Fj5 but with a slight modification to the limits of integration.

Therefore, using eqn (4.67), but with the limits of integration obtained from eqn (4.65), yields:

V max (Vb, 0) U y— i
4tqim m kT —

— ‘v y, i z, i kT 7K1
,

kT Y

— h3
U x VYCBSk xi

0

Examination of the above equation shows that T inside of the integral can be redefined with:
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m2 m2
Teff = T = Ty’ = T(1 —am) where am = = (4.81)

m1 mz,l

Teff is then the effective temperature of the flux density. Under the enhancement case y> 0 and

thus am> 1, leading to Tejf< 0. With eqn (4.81) substituted into the equation preceding it, then:

Vb max(Vb,O) U
4iq.jm 1m 1kT — --i- -

Ffe = 3
z,

e”e
Tf

dUXWCBS(UX)e
eff (4.82)

Eqn (4.82) is the same as eqn (4.67) except the limits of integration are slightly different.

However, the effective temperature of the flux density is now negative. The effect of the negative

temperature Teff is to cause an increase to the electron distribution as one proceeds to higher ener

gies. This leads to a condition of population inversion that is similar to what is found in lasers.

The solution of eqn (4.82) does indeed follow the one presented for Fj, but the fact that T?ff < 0

must be accounted for. Population inversion, when combined with the fact that WCBS also in

creases with increased energy, means that the peak flux density will no longer occur at an energy

of U,’ given in eqn (4.74), but will instead occur at the upper energy boundary allowed into the

problem.

The integral inside of eqn (4.71), although derived for the solution of Fj, will solve eqn

(4.82) for Fje when the limits of integration from eqn (4.82) are employed. However, it no longer

makes sense to use an expansion that is centred about U, as population inversion moves the

peak flux density to an energy of max(Vb, 0). Eqn (4.82) is solved by returning to eqn (4.71) and

introducing lffinto all relevant equations to yield (under the condition that Vb <

!‘ Vb max(V,,O) V/q r

Fje
= 4qJm1m1kTee_

Vpkf dU
-th(Up+r))

(4.83)

where

IN kT
p,eff

— 2V1jj4e1m1 t,eff q

The primes on the energies still denote normalisation with respect to Vpk. Unlike the development

that took eqn (4.71) into (4.75), eqn (4.83) is expanded about V. Furthermore, the condition of

population inversion causes the integrand in eqn (4.83) to become basically exponential in terms

of U. Remembering from eqn (4.71) that U = ch2(U eff + r), and dl — U = th(Upeff + r),
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then a Taylor expansion about max(Vb, 0) for the exponent inside of the integral of eqn (4.83), up

to and including linear terms, is:

V/q

________

V/q

U V 2 _th(Up,eff+T)U (rU —Jl—max(V,0)), (4.84)
p,eff t,effch (U+r) ) p,eff t,eff

where

rb = ach(maxVO)_UP,eff.

The final model for Ffe is arrived at by substituting eqn (4.84) into eqn (4.83) and solving.

The only concern when performing this integration is to ensure that Vb < If Vi,> k’ then the

integral in eqn (4.83) is broken down into two integrals: one integral from 0 up to 1 (remember,

normalised energies are being used so that U = 1 corresponds to U = k); and a second integral

from 1 up to V (over which WCBS = 1). Finally for Vb <

Vb — VPk,J1—max(VI,O) (‘ VPkrbmax(Vb,O)

F — F
Up,jcVt,eff qUV qUpffV8ff

— 1
fe e e 1e

b

while for Vb

5 -- __i_
F —F V ykT1 qV48

4fe fsO t,effe e

As a final check on the validity of the model for Fje (i.e., eqns (4.85)-(4.86)), observation of

eqn (4.65) and the region of integration in Fig. 4.6 shows that as ‘y — 0, Fj — 0. This occurs be

cause when y =0 there is no mass barrier and F = Ff. Obviously, when Vb 0, the upper limit of

integration in eqn (4.82) is zero and the integral itself vanishes. For the case where Vb > 0, exami

nation of eqn (4.82) shows that the terms containing y are:

U(1—y) —Vb
‘kT

e

The enhancement case is being considered, where 0 < y < 1. Furthermore, since the limits of inte

gration have it that 0< U < Vb, then U(1 — y) — Vb <—YUX <0. Therefore, the terms that makeup

the exponent of the above equation are always negative. Then, as 7 approaches 0 from the positive

side, the exponent goes to negative infinity and eqn (4.82) goes to zero. The exact same develop

ment occurs for eqns (4.85) and (4.86), so that the previous argument is applicable, and eqns

(4.85)-(4.86) do indeed vanish as y —> 0.
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4.4.3 Analytic Model for the Reflection Flux Ff,.

With the analytic model for Fje presented in eqns (4.85)-(4.86), attention is finally focussed

upon the solution of the reflection term 1’Jr Eqn (4.66) is the general model for Ff,., and it also

contains y within the Uj as well as the U,1 integrations. Therefore, as was the case with the so

lution of Fjce, the 9 integration to calculate Ffr cannot be performed independently. To simplify

this problem, as was done with Ffe, the mass barrier is assumed to consist of an isotropic change

in the transverse direction of the mass tensor. This allows eqn (4.80) to be used in the solution of

1jr In fact, using the same basic steps from eqns (4.80) to (4.82) will also solve for Fjr The only

change that occurs is to the upper limit of integration over U,1,which will approach infinity as E

—> 00 (this is because y < 0 for the reflection case). The final result is:

I Ill V 00

4irq im 1m 1kT — --- . ---— v ‘ , ‘ kT ‘1’-’ I 4T1 WI (TI ‘ ff
L fr 3 I ‘‘x “CBSk”x)”

h J
max (Vb, 0)

Eqn (4.87) is identical to eqn (4.82) save the limits of integration. This fact occurs because

of the symmetry of the problem being considered. As was stated before, Ff is the standard flux

that would flow if there was no mass barrier at all. Fje on the other hand, is the flux of carriers

that would normally enter the base within the forbidden bandgap (i.e., U2 < Vb), but due to the

mass barrier, is raised up into the conduction band to contribute to the total flux; thus the integra

tion is carried out from 0 < U,1 <Vb. Finally, Fj,. is the flux of carriers that would normally enter

the base within the conduction band (i.e., U,,2> Vb), but due to the mass barrier, is lowered down

into the forbidden bandgap to become reflected and take away from the total flux; thus the inte

gration is carried out from Vb < U,1 <00. The form of the integral for and Fr must be the

same since the Jacobian transforms and the boundary conditions given in eqns (4.46)-(4.47) do

not depend on the sign of

Even though the models for Ffe and Ff,. are ostensibly identical, their analytic solutions are

not. This occurs because in Ff,, Teffis positive (the same as for Ff5). In fact, eqn (4.87) is identical

to eqn (4.67) for Fj5, except the temperature of the flux density is no longer T but T (there is

also a constant multiplier of exp(-VbI’1c7) that occurs in eqn (4.87) that is not present in the model

for Ff5). Examination of eqn (4.81) shows that when y < 0 (as it is for the reflection case), then Teff

has a range of 0< Teff< 7’; where 7e—*0 as y —*0, and Teff —> T as y —
—oo. Therefore, the flux
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density in the reflection case is characterised by a temperature that is always less than the lattice

temperature 7; but unlike the enhancement case it remains positive under all conditions. Thus, the

reflection case is identical to, and can be calculated by, the standard case but with a flux density

characterised by 7ff instead of T (of course, the exp(-VbI’)&T) term must also be included).

With 7ff instead of T used for the flux density in eqn (4.67), along with the exp(-Vb/4c1)

term, the final model for the reflection case becomes (under the condition that 17b <

Nrat (Vbx — VBE) th(U8ff)

F = F
/pk5h(Up,eff)Up,effVt,eff Vteff Up,eff reff (UPeff

+ (4.88)
q qch3(Upff) L r,eff)

(ach
(Jmax(V’, 0)

— UffJ Nrat(VbiVBE)

Ll;’ J t,eff

a frO”t,eff’
r,eff

where

Vb I 3--j-. Ich (U ,)U
F — F “ d — I p,e, t,ejj

frO — fsO r,eff
— q (Vk/q) Sh(Upeff)

Finally, when Vb Vpk, then:

Vbx— V—AE/q

Ff r = FfrOVteffe
Vt,eff (4.89)

Eqns (4.88)-(4.89) present the analytic model for Fj,., which is basically the same as the

model for Ff ,
but with the flux density characterised by The only potential issue (as concerns

error due to approximation) with eqn (4.88) (and eqn (4.78) as well) occurs at very low

temperatures where tunneling is extremely large. Observation of Fig. 4.9 shows that for VBE =

0.9V, the lower limit of integration is approaching the point at which the peak flux density occurs.

However, when the temperature is reduced from 300K to 77K, then U,’, moves from 0.80 down

to 0.086 (relative to and the lower limit of integration ends up past the peak flux density.

When the peak flux density occurs outside of the region of integration, error will begin to occur

with the model because the model is based upon a Taylor expansion about U. This potential

error at low temperature is exacerbated in the calculation of Ff,. because Teff is even less than T

(for an Al03Ga07As to GaAs flux, m,i = O.O92me and mX,2 = O.O67me, so that T= 81K when T
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300K). The solution to this problem is to perform the Taylor expansion of the integrand in eqn

(4.87) for Ff,. and eqn (4.67) for Ff about the lower limit of integration; namely max(Vb, 0).

Fortunately, in the course of solving the enhancement case, the desired expansion about Vb

has already been performed. Eqn (4.84) is the expansion about Vb up to and including linear

terms. If the second order terms are included, then using the transform preceding eqn (4.75) gives:

2

r
—th(Upeff+r)rbU—Jl—V—(U;—V;)2

1
,, (4.90)

ch (U+r) 4Vb Jl—Vb

where the condition that V > 0 is assured as this expansion is being used to solve the case where

V> U. Substituting eqn (4.90) into eqn (4.83), but using the limits of integration set out in

eqn (4.87), produces, after performing the integral over the Gaussian [81,#3.322.2]:

V/q , ,

u v
“

-.J1-Vb) r rb 1
Ffr = Ff

p,eff t,ejj
e “° t,eff e r,eff

— erf(— ) (4.91)
r,eff L r,effj

where Ff,.0 is defined in eqn (4.88), and (Treff is altered from its definition in eqn (4.88) to:

I UpeffVteff
areff

— 4 (V/q) V Ji —

Eqn (4.91) solves for Ff,. when U0 <V < 1, and is used instead of eqn (4.88). Eqn (4.88) is

used only when V < U,’, (which is generally the case except under very low temperatures, or if

the heterojunction is such that AE is quite small).

In a similar fashion, eqn (4.78) for the calculation of Fj5 is further restricted to V < U.

Then, when U <V < 1 occurs, Fj is given by (after a simple extension from eqn (4.91)):

V/q , , r

U vTh J (rbVb -.J1-Vb) rb
Ff5 = Ffo e e r [i — erf(_)] (4.92)

where, in this case only:

I uv
a = I V t

______

and rb = ach 1 1 — Ur q(Vk/q)VJ1—V J) °

Eqn (4.92), in concert with eqns (4.78)-(4.79) form the model for Ff
. with an unrestricted place

ment of the base barrier potential Vb, and the ability to model very low temperatures. Likewise,

eqns (4.88)-(4.89) and (4.91) form the complete model for Fjr Finally, without any further exten

sions, eqns (4.85)-(4.86) form the model for Ffe
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Before leaving this section a cautionary note regarding the numerical calculation of eqns

(4.91) and (4.92) is in order. As V surpasses U by more that 3 areff (or ar), then the term 1 —

erf(x) (which is the complementary error function) rapidly approaches zero. One must ensure that

the numerical code that generates erf(x) has the proper asymptotic form or else the result will be

incorrectly forced to zero (i.e., 1 — erf(x) —> e_X/ (xJE) ). Analytically, as areff (or a) —> 0, then

by simply using the asymptotic form for 1 — erf(x), eqn (4.91) is seen to become eqn (4.85) for

Fje, where the “—1” term in eqn (4.85) is dropped; this result is expected because under these con

ditions the linear Taylor expansion is sufficient.

4.5 The Effect of Emitter-Base SCR Control on I

The previous section presented the analytic models for the calculation of the forward flux

Ffl and included the mass boundary effects. The only assumption made in the development of the

models of the previous section was that the mass boundary be isotropic in terms of the transverse

directed effective mass terms. In the event a material system is studied where this is not true,

where such a system must posses an indirect bandgap because an anisotropic effective mass ten

sor is required, then the models of the previous section can be used, but the final G integration

must be performed using the general models of eqns (4.50)-(4.53) given at the end of Section 4.2.

This section will connect the models of the previous section together to simulate an abrupt HBT

where the CBS is responsible for current-limited-flow. This will provide insight into the models

and allow for the effect of the mass boundary to be fully explored.

Returning back to eqn (2.6) for a three-section device, the collector current density will be

equal to J Let the simulated device be governed by the CBS in Section 1 (where j = FCBS),

the neutral base in Section 2 (‘2, 2 Fjbase)’ and the collector in Section 3 (J = Ffcoil). As

long as the demanded currents in the base and collector greatly exceed what the CBS can provide

(i.e., Ffbase and Ffcoil>> FfcBs) then if no significant recombination occurs throughout the base

and collector sections (i.e., Y2 = 1), eqn (2.6) produces:

Ff if y=0

cTjcBs = Ffs+Ffe if y > 0 . (4.93)

FfsFfrf ‘<O

where the multiplication of the electron flux by “-1” is not required due to the definition of
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It is very interesting to see that when the CBS is responsible for current-limited-flow, I will peer

directly into the quantum mechanical nature of the CBS. Thus, the quantum mechanical effect of

tunneling, including the effects of the mass barrier at the heterojunction itself, will be observable

by simply measuring I.

The simulated HBT will be based essentially on the following A1GaAs/GaAs HBT at 300K:

emitter is Al03Ga07As; base is GaAs; emitter doping ND 5x1017cm3;base doping NA

1x1019cm3;emitter permittivity C1 is 1 l.98o; base permittivity £2 isl2.9c-j; AE is 0.24eV; n,25

2.25x106cm3;m1 is 0.092m0;m2 is 0.067m0; -* Nrat is 0.956; Vbj is l.671V; x(VBE=O) is

649A; U is 0.488; U is 0.795; yis -0.373; lff is 81.5K; Up,effi5 1.80; U1is 0.104; Vb is

>0 when VBE < 1.43 1 V. Two other plausible devices are also considered for the reflection case; in

order to make the comparisons direct, all parameters are identically maintained except m2 is either

lowered to of m1 (= 0.046m0),or to of m1 (= 0.023m0).The enhancement case typically does

not occur for electrons, but most certainly occurs for holes. Using the reciprocal relations to the

reflection case gives m2: 0.126m0;0.184m0;0.368mj. Changes to the effective density of states

due to the changing m2 are not reflected into Vbj nor Therefore, the simulations that are

about to be presented are contrived in terms of a physical analogue but as such allow for the most

direct observation and comparison, regarding CBS transport, that is possible.

Beginning with the reflection case, Fig. 4.10 plots Fj as well as Fj,.. using the analytic mod

els of the previous section for the three m2 cases of: 0.067m0;0.046m0;0.023m0.At T equal to

300K as well as 200K, decreasing m2 (and thus making y a larger negative number) results in an in

crease to F!r Physically, as m2 decreases, the mass barrier will demand a larger transfer of energy

from U,2 into U in order to conserve transverse momentum (see Fig. 4.5); thus, a larger number

of particles will be reflected as they will not possess a sufficient amount of U,2 energy to satisfy the

momentum conservation requirements and enter the neutral base. Furthermore, as VBE is increased,

Ffr begins to decrease and then decrease quite rapidly. The physical cause for this is the interplay

between the base potential Vb and the mass barrier. As was just stated, the mass barrier moves ener

gy from U,,2 into Uj,2.The point at which reflection occurs is when U,2 < Vb. Obviously, as Vb is

made smaller, more energy can be removed from U,,2without encountering reflection. Since Vb de

creases as VBE increases then F! r must decrease, relative to Ff, as VBE increases. The sudden de

crease in Ff,. for VBE> 1 .4V corresponds to the point at which Vb goes below the reference poten
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io T=300K
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r; m2 = 0.023

Z 10

Fj;m2=0.046

-6Z 10 Fj;m2=0.067

108 . • • • • • • •

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

,_ 10 • • •

T=2OOK

r:046

Base-Emitter Voltage VBE (V)

Fig. 4.10. Standard Flux Fj. and Reflection Flux Fj,. for an HBT with the parameters given
near the start of this section. The only parameter being varied is the base side effective mass in2.
The lines are obtained from the analytic models of eqns (4.78) (4.79) (4.92) for Ff and eqns
(4.88) (4.89) (4.91) for Fj,.. while the solid dots are from the numerical calculation of eqn (4.67)
for Fj and eqn (4.87) for Fjr (a) results for T = 300K. (b) results for T = 200K.
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tial energy E in the neutral emitter (Vb is <0 when VBE is> 1.431 V). Since the neutral emitter

generates the flux that impinges upon the CBS, very few particles will have U,2 reduced below

zero by the mass barrier (unless the mass barrier is very strong due to a smallm21m1).Thus, once

Vb decreases below zero, reflection will taper off quickly as there are essentially no more particles

to reflect from the Vb barrier.

Looking now at Fig. 4.11(b), as Tis reduced from 300K to 200K, there is an increase in Fj,.

relative to Fj at low bias where Vb > 0. The physical explanation for this fact is more complex.

First of all, any particle where U±,i is zero will be unaffected by the mass barrier because momen

tum conservation is guaranteed when p is zero (see eqn (4.39)). This means that only particles

where -‘yUj is comparable to, or larger than, U1 will be affected by the mass barrier. Now, to

tunnel through the potential barrier requires that the particle obtain a sufficient U1 in order to

pass through the CBS (on average an energy of UVpk is required). Any energy gained by U,1

will do nothing to improve the particle’s chances of passing through the barrier; in fact it wiLl only

serve to lower the particle’s availability because the occupancy decreases exponentially with any

increase in total energy. Thus, the CBS preferentially picks out, from the random ensemble of par

ticles impinging upon the barrier, those particles that possess a sufficiently high U1 to pass

through the barrier, while being blind to the amount of U1 contained by each particle. Since

U,’, decreases rapidly along with a decrease in 7 -YU±,i will become larger relative to U,1 as T

decreases, and the mass barrier will cause a larger reflection flux.

Maintaining the focus upon Fig. 4.11, the effect of the mass boundary can be seen quite

readily. In Fig. 4.11(a) the temperature is held constant and all three mass cases are presented. This

clearly shows that as the mass barrier is strengthened by reducing m2, the relative importance of

Ffr rapidly increases. Perhaps even more importantly, the effect that has on the total flux F is

bias dependent. This shows that the mass barrier cannot be described by a simple multiplicative

constant as has been suggested in the literature [51,79,82]. Another important feature that is clear

ly brought out in both Figs. 4.11(a) and (b) is that for VBE> 1.43 (which corresponds to Vb <0),

the effect of Fjr is negligible. As was discussed earlier, once Vb <0 there will be few particles left

that can reflect from the potential barrier in the base. However, as the mass barrier is significantly

strengthened to the point where m1 is four times larger than m2, the mass barrier is able to reflect

particles from Vb even when Vj, <0. These results clearly indicate that the position of Vj, is very
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Fig. 4.11. Relative importance Of Ff r to the total flux F (= Ff ,
— Fj) for an HBT with the same

parameters as Fig. 4.10. The lines are obtained from the analytic models, while the solid dots are
from numerical calculation. (a) results for T= 300K. (b) results form2= 0.067. Note: usable cur
rents (i.e.,> l08Acm2)begin at VBE> 1.OV for T= 200K, and VBE> 1.2V for T= lOOK.
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Fig. 4.11. Continuation of Fig. 4.11 from the previous page. (c) results for m2 = 0.046.
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F; m2 = 0.023
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Ff; m2 = 0.046
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Fig. 4.12. Standard Flux Fj and Reflection Flux Ff,. for an HBT with the same parameters as
Fig. 4.10, but with AE reduced from 0.24eV down to 0.12eV. Note how reducing AE increases
the relative importance of the reflecting potential barrier Vb by lowering Vbj (see Fig. 4.10(a)).
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important to the transport flux through the CBS. The conclusion is that during the design of the

device it is beneficial to have a large AE so that Vj, is lowered, and the mass boundary will have a

reduced effect. Finally, examination of Fig. 4.11(b) and (c) clearly demonstrates that lowering the

temperature increases the relative importance of Ff,. in all cases. Obviously, the combination of

lower temperatures and a stronger mass barriers produces the largest reflections.

The case of an Al03Ga07As/GaAs HBT produces the rather fortuitous result that Vj, is be

low zero right around the bias at which the device would routinely be operated. There are other

material systems (like SiGe) and devices (HBTs with a smaller emitter Al content) where this is

not the case. In these systems iXE is smaller so that Vb stands as a larger reflector. Fig. 4.12 shows

what the effect of reducing AE from 0.24eV down to 0.12eV has on the transport flux. Under

these conditions V1, remains unchanged but Vbj is reduced by 0.12V to 1.551 V Therefore, rela

tively speaking, the mass barrier has a larger effect, and the effect occurs over a larger bias range.

Reexamination of Figs. 4.10 and 4.11 show an excellent agreement between the analytic

models of the previous section and the exact numerical calculation of eqns (4.67) and (4.87).

These results clearly show that the approximations used to obtain the analytic models do not com

promise the accuracy of the final results. This means that it is reasonable to look at the functional

dependencies within these analytic models in order to obtain a deeper insight into the mechanisms

by which transport occurs through the CBS. In the end, these analytic models will facilitate a full

model for the HBT when other regions of the device (such as the neutral base, or the collector),

are brought into the problem.

Attention is now moved from the reflection to the enhancement case. As was stated at the

start of this section, three cases will be considered for the enhancement case. In order to make

comparisons with the reflection case simple, only m2 is varied and it is chosen to be the reciprocal

to the three reflection cases; namely 0.126m0,0.184m0,and 0.368m0.Fig. 4.13 is basically the

same as Fig. 4.10 (except that 7 is now positive under the case of enhancement), and plots Ffs, as

well as Ffe. The same basic trends are observed for the enhancement case as were observed in the

reflection case. In Fig. 4.13 at T equal to 300K as well as 200K, increasing m2 (and thus increas

ing y) results in an increase to Ffe Physically, as m2 increases, the mass barrier will transfer more

energy from Uj.i into U,2 in order to conserve pj (see Fig. 4.5); thus, a larger number of parti

cles will be moved from out of the base bandgap and into E to contribute to Fj. Furthermore, as

July 12, 1995 90



II.)

T=300K

Ffs
1O

E 100.
(a) Ffe; m2 = 0.368

1O

io-

Ffe;m2=O.l84
10-6

Ffe;m2O.l26

10-8
a • a • a • a • a • •

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

10 • • • • •

T=200K
:, io4

10

E 1o
f1_\
U)

10-2 Fje; m2 = 0.368

____

io4

10

1e;m2=0.126

io- a • a • a • a • a

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

Fig. 4.13. Standard Flux Fj, and the Enhancement Flux Fice for an HBT with the parameters
given near the start of this section. The only parameter being varied is the base side effective mass
m2. The lines are obtained from the analytic models of eqns (4.78) (4.79) (4.92) for F1 and eqns
(4.85) (4.86) for Ffe, while the solid dots are from the numerical calculation of eqn (4.67) for Fj5
and eqn (4.82) for Fje. (a) results for T = 300K. (b) results for T = 200K.

July 12, 1995 91



VBE is increased, Fje begins to decrease and then decrease abruptly. The physical cause for this is

exactly the same as for the reflection case. As VBE increases Vb decreases so that fewer particles

need to be helped over the barrier and Ffe decreases. In the event that Vb <0, every particle that

makes it through the CBS must enter the base, since the enhancing mass barrier can only raise U,2

and the minimum U,2 is zero. Thus, once Vb decreases below zero, Ffe must abruptly vanish.

Moving on to Fig. 4.14(b), as T is reduced from 300K to 200K, there is an increase in Fje

relative to Ff.. The physical explanation for this fact is identical to the reflection case. Since U,’,

decreases rapidly along with a decrease in 7 the particles will emerge from the CBS with a small

er U,1.As such, an increased number of particles will be available below Vb. With more particles

existing below Vb, the mass barrier may effect a larger transfer of particles from below to above

the base barrier, and thus increase Fje as T is reduced.

The most important difference to note between the enhancement and the reflection case is

that a smaller increase occurs in Fje when compared to Fr,. for a similar increase in the strength of

the mass barrier (which is affected by increasing or decreasing m2 respectively). The reason for

this arises purely because of the nature of enhancement and reflection. For the reflection case, as

m2 becomes arbitrarily small ‘y — —oc• With y —* —cc, every particle that hits the mass barrier will

also have its U,2 —> —cc, leading to a total reflection of all carriers (examination of eqn (4.81)

shows that as 7—> —cc then Teff> Tso that Ffr —* F and F —* 0). Thus, it is possible for the re

flecting mass barrier to become so effective that the transport flux is reduced to zero. For the en

hancement case, there is a fixed ensemble of carriers launched from the neutral emitter towards

the CBS that attempts to enter into the base. Once the CBS has removed its portion of the ensem

ble, the enhancing mass barrier is left to increase U,2 by removing energy from U±i. At the lim

iting strength of the enhancing mass barrier (i.e., y = 1), the entire amount of Uj,i is transferred

into U,2 (see eqn (4.39)). Since the particles will have a one kT spread of energy in Uji, starting

from Uj = 0, the enhancing barrier will rapidly reach a limit by which it can no longer increase

Fje. Thus, the enhancing barrier will have a smaller effect on F than the reflecting barrier, and as

such will not experience the same increase in Ffe due to an increase in m2 that Ff,. would realise

for a similar decrease in m2.

The differences just described between the reflecting and the enhancing case in the previous

paragraph can also be understood from a graphical analysis of Figs. 4.6 and 4.7. For the enhance-
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ment case, there is a limit of y = 1. Looking at Fig. 4.6 for the integration in R1, then obviously in

the limit when y = 1, R will take on a fixed, non-vanishing shape with no possibility of an in

crease due to a change in the mass barrier. This leads to a maximum value for Ffe and thus F as

well. For the reflection case of Fig. 4.7, there is a limit of y —> —0o When y —* —00, the region of

integration R1 will be reduced to zero, and likewise, so will F This clearly shows that reflection

can produce a far larger effect upon F than enhancement can.

Fig. 4.14 clearly demonstrates the effect of m2, Vb and T upon Fje. Concentrating on Fig.

4.14(a), there is clearly an increase in Ffe as the strength of the mass barrier increases (i.e., as m2

increases). However, looking back to Fig. 4.11(a) confirms that the enhancing case does indeed

produce less of an effect than the reflecting case. Examination of Fig. 4.14(a) and (b) also shows

that once Vj, is reduced below zero for VBE> 1.43V (Vb1 changes with 7), Ffe = 0 as there is no

longer a base barrier to surmount. Finally, Fig. 4.14(b) shows that reducing T increases F1e in

much the same manner as for the reflecting case.

Reexamination of Figs. 4.13 and 4.14 show an excellent agreement between the analytic

models of the previous section and the exact numerical calculation of eqns (4.67) and (4.82).

These results clearly show that the approximations used to obtain the analytic models do not com

promise the accuracy of the final answer.

It is important to keep in mind that under the condition where the CBS is responsible for

current-limited-flow, then the results that have been displayed in this section are equal to J.

Since for most abrupt HBTs the CBS is indeed responsible for limiting the current, then the mod

elling of CBS transport becomes of paramount importance to the understanding of the device.

With the analytic models presented in Section 4.4, and the general models of Sections 4.2 and 4.3,

transport through complex structures like the CBS is now fully developed.

Finally, it should be realised that the models of Sections 4.2 to 4.4 detennine the transport of

charge through the entire EB SCR, and not just the CBS. Eqns (4.50)-(4.53) take into account any

quantum mechanical effects, including transport via standard Drift-Diffusion (DD), without the need

to appeal to high-energy phenomenological mobility models. By treating transport as a system of

collision-less particles that originate from a thermal distribution, the problem of carrier heating and

cooling, which needs to be included in DD models [83-85], is ameliorated. Thus, velocity overshoot,

including carrier cooling as the electron surmounts Vbj, is modelled throughout the entire EB SCR.
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Fig. 4.14. Relative importance of Fje to the total flux F ( Ff + Fje) for an HBT with the same
parameters as Fig. 4.13. The lines are obtained from the analytic models, while the solid dots are
from numerical calculation. (a) results for T = 300K. (b) results for m2 = 0.184. Note: usable cur
rents (i.e.,> 108Acm2)begin at VBE> 1.OV for T= 200K, and VBE> 1.2V for T= lOOK.
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4.6 Deviations from Maxwellian Forms and Non-Ballistic Effects

This section will use the models of the previous sections in order to gain an understanding of

the electron distribution that is injected into the neutral base from the emitter. With the neutral base

width WB being pressed below i000A, the truly ballistic device is being approached. In the regime

where the electron in transit through the neutral base suffers only a few collisions, then one cannot

appeal to classical solutions that depend upon a thermalised distribution (i.e., drift-diffusion analy

sis), nor can one avoid the effect of coffisions altogether and treat the ensemble ballistically

throughout. In this in-between region, where collisions are important but do not dominate the

transport characteristics, solution methods that solve the Boltzmann Transport Equation (BTE)

must be used [42,43]. The issue with solving the BTE often hinges upon the shape of the particle

ensemble distribution entering the neutral base. As there are less collisions within the base it be

comes important to obtain the correct initial ensemble distribution. This section will provide a

method to determine the correct ensemble distribution that enters the neutral base. Furthermore,

the effect of collisions, or non-ballistic effects within the CBS will also be examined.

It has long been recognized that the particle ensemble distribution entering the neutral base

of abrupt HBTs is not Maxwellian [14,39-41]. A Maxwellian distribution is characterised by a

Boltzmann distribution in energy, with a parabolic relationship between momentum (or k) and en

ergy. Therefore, the Maxwellian distribution appears as a Gaussian distribution in k-space centred

at k = 0 (see Fig. 4.15(a)). In the thennionic analysis of the EB heterojunction (i.e., no tunneling is

considered through the CBS), one would have a Maxwellian distribution near the top of the CBS

(see Fig. 4.2 at x = 0). Then, because of the abrupt potential drop beyond the CBS when going to

wards the base, the Maxwellian distribution is pulled apart so that only the right-going half of the

ensemble enters the base. This halved distribution is termed a hemi-Maxwellian (see Fig.

4.15(b)), and is identical to the full Maxwellian except that for k < 0 the distribution is zero (be

cause the particles are only moving in the positive x-direction). Once the hemi-Maxwellian en

semble has entered the neutral base, and if there have been no collisions from x = 0 to x = x, the

distribution will no longer peak at k = 0 with an energy of 0, but will be shifted towards larger k

with an increased energy of IXE — V, relative to E at x = x. This shifted hemi-Maxwellian is

termed “hot” because it appears to look like a distribution that is characterised by a temperature

which is higher that the lattice temperature T
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Fig. 4.15. Ensemble particle distributions assuming a purely thermaliseci thermionic injection
from the peak of the CBS in Fig. 4.2. (a) the initial Maxweffian distribution at x = 0. (b) the hemi
Maxwellian distribution that is injected towards the neutral base (positive x-direction). k is norm
alised to the length of the GaAs reciprocal lattice vector using an effective mass of 0.067.
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From the results of Fig. 4.15, and the arguments of the previous paragraph, the distribution

entering the neutral base at x = x, is clearly not Maxwellian. However, in terms of being able to

analyse the neutral base using drift-diffusion analysis, solutions based upon a hemi-Maxwellian

distribution will differ from a full Maxwellian distribution by only a multiplicative constant. The

issue of the hemi-Maxwellian being hot, however, will require that an energy-balancing scheme

also be included by using the second moments of the BTE to arrive at hydro-dynamic drift-diffu

sion analysis [16,17]. Many researchers who have studied transport within the EB SCR, or the

neutral base, have relied on the assumption that the worst-case deviation from a Maxwellian

would be a shifted or hot hemi-Maxwellian. This assumption is shown to be false when a structure

like the CBS of Fig. 4.2 is present within the EB SCR. In fact, the distribution function entering

the neutral base is appreciably distorted from either a Maxwellian, hemi-Maxwellian, or hot

hemi-Maxwellian. Furthermore, the distortion to the ensemble distribution has a considerable bias

dependence.

Setting aside for the moment the issue of the mass barrier, which serves to distort the en

semble distribution even further, tunneling through the CBS results in a profound change in the

shape of the ensemble distribution. As was discussed in the explanation of Fig. 4.10, tunneling

through the CBS preferentially picks out from the random Maxwellian ensemble of particles im

pinging upon the barrier, those particles that possess a sufficiently high U1 to pass through the

barrier, while being blind to the amount of U±,i contained by each particle. Clearly, this will tend

to focus the ensemble at x = 0 towards higher U,1 and destroy the circular symmetry that exists

between k and k± shown in Fig. 4.15(b) for the hemi-Maxwellian distribution. Finally, in moving

from x = 0 to x = x, a number of particles will be reflected by the neutral base potential Vb which

will clip off the distribution (much like a hemi-Maxwellian is cut from a Maxwellian) and result

in a potentially hot ensemble entering the neutral base.

Fig. 4.9 shows the ensemble distribution after an integration has occurred along the trans

verse direction. The result, which was formally proven in Section 4.4, is essentially a Gaussian

distribution versus U,1. Since momentum p and wave vector k vary as the square root of U,1, the

ensemble distribution plotted in Fig. 4.9 wifi give a very distorted, non-Gaussian (i.e., non-Max

wellian) shape when plotted against ki. Furthermore, Vb cuts the distribution off for particles

where U,2 (= U,1
— Vb because there is no mass barrier) < Vb. This results in a form that is indic

ative of, but distinctly different from, a hot hemi-Maxwellian (see Fig. 4.16).
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Fig. 4.16. Ensemble distribution versus wave vector k2 entering the neutral base (i.e., at x = x)
(T= 300K). This is essentially a replot of Fig. 4.9 except when U,2 < Vb the distribution is cut-off
and not displayed in order to see the effect of the reflecting base potential. Also, Fig. 4.9 is a plot
of the ensemble approaching the CBS from x = -x. Finally, k,2 is normalised to the length of the
reciprocal lattice vector (i.e., 2ir/a where a is the lattice constant).

Fig. 4.16 shows the distortion to the ensemble distribution along k,2.At low bias, where Vb

is approaching Umax, the ensemble distribution is clipped very near the peak of the distribution,

but, unlike a hemi-Maxwellian, not right at the peak. Further, the Gaussian form with respect to

energy results in a very flat-topped and non-Gaussian form with respect to k. As the bias is in

creased, Vj, recedes when compared to Um so that the distribution no longer has a clipped form.

This results in a hot distribution that is asymmetric and which looks quite different from a shifted

Maxwellian. Fig. 4.16 clearly shows the non-Maxwellian nature of the ensemble distribution en

tering the neutral base. However, it does not show the distortion that occurs along k± (k± = k±,i =

k±,2 because of momentum conservation in eqn (4.36)). In order to see the full ensemble distribu

tion entering the neutral base (= WCBS(Ux,1)fl(Ux,1 + Uj,1)), a three dimensional plot versus k,2

and k,2, is displayed in Fig. 4.17. Observation of Fig. 4.17 clearly shows the non-Maxwellian or

non-hemi-Maxwellian shape of the electron ensemble distribution entering the neutral base at x =

x. Furthermore, Fig. 4.17 also demonstrates that it would be a gross approximation to assume
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Fig. 4.17. Ensemble electron distribution entering the neutral base versus k (T=300K). The par
ticle density is normalised to the peak of the distribution, and k is normalised to the length of the
GaAs reciprocal lattice vector (= 1.1 lxi 08 cm 1)• (a) VBE = 1 .4V. (b) VBE = 0.9 V. Comparing (a)
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that the shape of the ensemble distribution is invariant under a change in bias. These results clear

ly indicate that the assumption of a hot Maxwellian or hemi-Maxwellian entering the neutral base

in an abrupt HBT is erroneous.

Figs. 4.16 and 4.17 have used the full HBT parameters that Section 4.5 has been based

upon, except that the mass boundary has been neglected by setting m2 m1. As was alluded to

earlier in this section, the mass boundary will have the effect of further distorting the ensemble

distribution. Fig. 4.18 plots the electron ensemble distribution entering the base under the condi

tion where m2 = 0.023 (i.e., the reflecting case) to clearly observe the mass barrier effects. The ef

fect of the reflecting mass barrier is to simultaneously pull the distribution towards lower k,2 and

higher k±2. Looking at Fig. 4.18(a) and comparing to Fig. 4.17(a) clearly shows the extension in

k±,2;while careful observation of the constant k,2 line from the peak shows that the distribution is

indeed being pulled and distorted towards lower k,2. Comparison of Figs. 4.18(b) and 4.17(b)

clearly demonstrates the distortion due to the reflecting mass barrier upon the ensemble distribu

tion. It is important to realise that, although the volume of the distribution is larger in Fig. 4.18

then in Fig. 4.17, there is an overall multiplicative factor of 0.25 (for this reflecting mass barrier)

when computing the flux, leading to a net reduction in the total flux.

Fig. 4.19 plots the electron ensemble entering the neutral base with an enhancing mass bar

rier where m2 = 0.368. The enhancing mass barrier distorts the distribution in exactly the opposite

fashion when compared to the reflecting mass barrier. The effect of the enhancing mass barrier is

to simultaneously pull the distribution towards higher k,2 and lower k1,2. Comparison of Fig.

4.19(a) with Fig. 4.17(a) demonstrates that the distribution is certainly being pulled towards lower

k±,2; so much so that the distribution is starting to look Maxwellian. Closer examination of the

contour lines in Fig. 4.19(a) shows the distortion that results from the extension in k,2, which is a

clear deviation from a Maxwellian form. Further examination of Fig. 4.19(b) in comparison to

Fig. 4.17(b) exemplifies the distortion to the ensemble due to the enhancing mass barrier. As sim

ilarly occurred with the reflecting case, the volume in Fig. 4.19 appears smaller than the volume

in Fig. 4.17. However, there is now a multiplicative constant of 4 (for this enhancing mass barrier)

when computing the flux, leading to a net increase in the total flux.

Figs. 4.16 through 4.19 clearly chronicle the effects that tunneling and the mass barrier have

upon the electron ensemble distribution entering the neutral base. The one clear conclusion from
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Fig. 4.18. Replot of Fig. 4.17 but this time including a reflecting mass barrier where m2 = 0.023
and m1 = 0.092. (a) VBE = 1.4V. The plot has been rotated 450 relative to Fig. 4.17(a) to clearly
display the distortion in the kx2 direction. (b) VBE = 0.9V. Again notice the extreme distortion
compared to Fig. 4.17(b) for k2 less than the peak.
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the analysis of this section is that one cannot assume that the ensemble distribution entering the

base has any resemblance to a Maxwellian or hemi-Maxwellian in either a normal or hot condi

tion. Also, the change in the shape of the distribution over bias cannot be accounted for in a sim

ple fashion (such as a constant multiplier). Further, it is the effect of tunneling that contributes

most to the distortion of the ensemble distribution, with the mass barrier playing an important but

generally subservient role. This fact returns us back to the starting comments of this chapter, i.e.,

that a failure to account for tunneling through the CBS can lead to considerable error in the analy

sis of abrupt HBTs. In any event, the analytic models presented in this chapter can be used to con

struct the correct electron ensemble distribution entering the neutral base. This correct neutral

base ensemble distribution can then be used as a boundary condition in a subsequent BTE solu

tion of the transport through the neutral base.

The models presented in this chapter have assumed the condition of ballistic motion

throughout the EB SCR. This assumption is relatively solid given that the EB SCR is generally

quite narrow and as such is much smaller than the mean free path of the particle. Before going on

to talk about the effects of non-ballistic motion throughout the EB SCR, it is important to pause

for a moment to discuss the lower boundary of Vb used to calculate the flux through the CBS. Re

examination of Figs. 4.1 and 4.2 show that Ffand Fr are calculated by assuming that a hemi-Max

wellian distribution is launched into the EB SCR from both x = -x, and xi,, respectively. The final

flux exiting the EB SCR is then determined by considering how tunneling through the CBS, as

well as reflection by Vb and distortion due to the mass barrier, alters the course of the forward and

reverse directed hemi-Maxwellians. To assume that a hemi-Maxwellian form exists at both x =

and x, the distributions at these two points in space must be fully thermalised and characterised

by the lattice temperature T This is a reasonable assumption given that x = -x,j and are the de

pletion edges of the EB SCR, and as such are outside of where non-equilibrium effects would be

gin to occur. It is for this reason that the flux is considered to be injected from x = -x, and

leading to the potential boundary of 17b (which is equal to E at x = x) to enter the neutral base.

The above argument corrects what Grinberg et al. [51] have suggested. In [51], the injection

to the left is from x = 0, not from x = x. The point x = 0 is inside of the EB SCR and coincides

with the peak electric field. As such, the ensemble distribution at x =0 is expected to be at its larg

est departure from equilibrium when compared to any other point within the EB SCR. Further-

July 12, 1995 103



more, to consider the point x = 0 as the boundary condition, one would have to imagine that the

electron could ballistically tunnel a few hundred angstroms through the CBS and then suddenly

thermalise at x = 0, where it could then be carried into the neutral base by diffusion. Clearly, it is

not reasonable to assume that x = 0 is the source of a thermalised Maxwellian distribution.

By adopting Grinberg’s proposals within [51], the lower limit of integration for the calcula

tion of F would be reduced from Vb to Vb - VAt, (= Vpk — AE; see Fig. 4.2). The effect of this

change would be to increase F as the base potential has been lowered and will thus reflect fewer

particles. For HBTs where the base doping is more than 30-fold larger than the emitter doping,

then will be very small and the error of adopting the proposals within [51] will be accordingly

small. However, as the doping of the EB junction becomes even slightly more symmetric, the er

ror of using [511 will become increasingly large. Furthermore, as the temperature is reduced to the

point where U,, occurs below Vb, there will be an exponential change to F for a linear change to

Vt,. Thus, under low temperature conditions the methods contained within [51] for the inclusion of

tunneling will be in error even for a highly asymmetric doping junction (see Fig. 4.20).
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Fig. 4.20. Relative difference between the results obtained from the methods proposed in [51] to
the model for F from this chapter. The device is based upon the same Al03Ga07As HET used in
this section. Note how the reduction to Vb as proposed in [51] leads to an overestimation in the
transport through the CBS, and therefore, to an overestimation of I.
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Finally, is it reasonable to consider ballistic motion throughout the entire EB SCR? Certain

ly, to consider collisions to the particles while in the process of tunneling would be difficult. How

ever, models that are similar to, but simpler than, the models presented in this chapter are able to

explain the terminal characteristics of abrupt HBTs [22,25] because they include the effects of

tunneling. Other more complex models, such as Monte Carlo simulation, which do not include the

effect of tunneling, grossly underestimate I. Since ballistic motion is assumed in eqns (4.50)-

(4.53) when accommodating tunneling, and these models explain experimental findings, then ex

perimental evidence tends to corroborate the assumption of ballistic motion throughout the EB

SCR. For if there were even a moderate chance of only a single thermalising collision within the

EB SCR, then the tunneling current would be drastically altered (any reduction or increase to the

energy of the particle will cause a correspondingly rapid reduction or increase in the tunneling

probability). Since experimental evidence does not support this, at most, there is a small probabil

ity of a thermalising collision within the EB SCR. This justifies the assumption of ballistic motion

throughout the EB SCR.

4.7 Conclusion

To conclude this chapter, a summary of the past 40 years’ work in this area of electron trans

port through a SCR is in order. The reason for this summary is to give due credit to all of the indi

viduals who have made contributions, and to demonstrate how a large majority of this past work is

disjoint from both the study of HBTs and itself. To begin with, Miller and Good [86] set out the re

quirements for the WKB approximation to the Schrodinger equation in 1953, which formed the ba

sis for the study by Murphy and Good [681 in 1956 of electron emission from metals into vacuum

due to thermionic injection and tunneling (which they term field emission). [68] lead to the forma

tion of the general charge transport model of eqn (4.2). The seminal work of Stratton [69] extends

[68] by considering electron emission from semiconductors into vacuum, including the effect of a

mass barrier based upon a spherical effective mass. The main concern in [68,69] is the incorpora

tion of image force corrections which alter the tunneling potential and greatly increases the tunnel

ing current. In [69], tunneling is only considered within the vacuum and not within the

semiconductor, and does not consider the effect of a base barrier potential Vb (as Vb is far too nega

tive to enter into the problem). Stratton and Padovani [75] apply [69] to Schottky barriers, and in

clude tunneling within the semiconductor but still do not concern themselves with the effect of Vb.
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Also, [75] does not include the mass-barrier effect considered in [69]. In parallel to the work of

[69,75], Christov independently repeats the work [70,73]. The work done in [69,70,73,75] is meant

for the study of Schottky diodes, and is more concerned with surface effects (image force correc

tion) than anything else. Furthermore, the potential profile being considered is linear and not the

parabolic one found within the SCR; however, [69] does allude to the solution of an arbitrary po

tential energy profile through the use of a Taylor expansion. The work up to this point forms the

foundation for the study of Schottky diodes and band-offsets between metals and semiconductors.

Crowell [76] derives the Richardson constant for a completely general effective mass tensor,

but fails to rigorously derive the result by not presenting the relevant Jacobians. Instead, the work

in [76] relies on simple arguments to obtain results that, while applicable to the study of pure ther

mionic emission, are not clearly applicable when tunneling is considered. Crowell [77] continues

the work in [76] in an effort to determine the correct effective mass to apply to a Schottky diode

between two materials characterised by different effective masses. The work in [77], much Like

that done in [76], is not mathematically rigorous, and as a result fails to obtain a vanishing trans

port current under equilibrium conditions. Grinberg [82] solves this problem but only if thermionic

emission is considered and not tunneling. The work of this chapter extends [82] by including tun

neling and thermionic injection (eqn (4.60)) through a rigorous mathematical treatment.

Finally, Crowell and Rideout [78] solve for tunneling through the parabolic potential barrier

of the SCR, but do not include the effect of a mass barrier. They present the final transform (eqn

(4.70)) used to evaluate the tunneling integral of eqn (4.67), but do not present its development

(eqns (4.67)-(4.69)), nor do they provide for a spatially varying permittivity e or the effect of Vb.

Eqns (4.50)-(4.53) derive for the first time charge transport through the EB SCR, including ther

mionic emission and tunneling, between two semiconductors characterised by different effective

mass tensors and e. Furthermore, the effect of Vb is properly included. The most important aspect

of the work contained within this chapter is that for the first time all of the essential physical con

structs of the EB junction within an abrupt HBT have been considered. The results of these con

siderations are analytic models, based upon the solution of eqns (4.50)-(4.53), to simulate the

transport of flux through the EB SCR. Since there were no special features of a specific material

system employed within this chapter, the results of this chapter are applicable to any material sys

tem. Finally, the developments presented here have focussed upon electron transport, but apply

equally well to the transport of holes with basically little change to the models.
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CHAPTER 5
Recombination Currents
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As was discussed in Chapter 3, one of the most important parameters of an HBT is the cur

rent gain [3. Whether one is designing Digital or Analogue circuits within an IC, an accurate un

derstanding of 13 is essential to the successful operation of the circuit. Chapter 4 dealt with the

calculation of transport through the CBS (in an npn device), which is often the determining factor

for I in abrupt HBTs [18,25]. This chapter will finish off the model for I by using the general

models of Chapter 2 to include the effect of neutral base transport along with transport through

the CBS. More specifically to the calculation of [3, this chapter presents the physics underlying the

creation of base current. Included in the analysis to follow is the interaction of ‘B with Ic that was

alluded to in Chapter 2, and which occurs when transport through the CBS is responsible for cur

rent-limited-flow (i.e., control of Ic).

This chapter includes the modelling of four different components of the hole current that re

sult in the base tenninal current. These components are: 1) Shockley-Read-Hall (SRH) recombi

nation within the EB SCR; 2) Auger recombination within the EB SCR; 3) radiative

recombination within the EB SCR; 4) neutral base recombination through all of the processes just

detailed. The back injection of carriers (i.e., holes for the npn HBT being considered) from the

base into the emitter is not accounted for because this back injection is effectively suppressed by

the characteristics of the wide bandgap material that forms the emitter; however, inclusion of back

injection is a trivial extension to the results that follow.

Analytic models for the four previously mentioned recombination processes that are respon

sible for the creation of ‘B will be presented. It is shown that these analytic expressions for the

four base current components can be reduced to the familiar diode equations with two parameters

- namely the saturation current J and the injection index n. Even though the physical mechanisms

that control the base current in the presence of a heterojunction differ markedly from the homo

junction case, one can still recover a simple diode model for the final representation. It is within

this analysis that a surprising result regarding the injection index n is made. Standard theoretical

calculations give a value of n = 2 for the SRH current. However, it was found that n = 2 applies

only in the limit of a wide, or symmetrically doped, EB SCR. For HBTs of interest, where the

base doping is very high compared to the emitter doping (i.e., asymmetrically doped), a value of n

= 1 is applicable under certain operating conditions.
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Most of the work that is to be presented in this chapter has been previously published by this

author and Dr. D.L. Pulfrey [24]. Within the context of this published work, HBTs constructed

within the AlGai.As material system were studied. The results of this chapter are general, how

ever, and can be applied to other material systems as well. For the case of indirect material sys

tems such as SiGei.., the only major change is that the radiative recombination rate is small

enough to be ignored in comparison to SRH and Auger recombination.

5.1 Electron Quasi-Fermi Energy Splitting J\Ef

The presence of an abrupt EB heterojunction in an npn HBT can lead to the splitting of the elec

tron quasi-Fermi energy Epa. as first discussed by Penman and Feucht [50], and shown in Fig. 5.1.

This splitting of E (i.e., AE) has been alluded to in Chapter 2 and was found to be the driving

force for the transport current through the CBS (as was proven in Section 4.3, eqn (4.63)). Fig. 5.1

shows AE1 and its position within the EB SCR. results due to a departure from quasi-equi

librium, where the transport flux through the CBS is no longer a small perturbation to the forward

and reverse equilibrium fluxes that are everywhere present within a semiconductor [50,18].

E
E(eV)

AE t
---

‘—‘V

E1

E

qV +

_i

-x 0

Fig. 5.1. Band diagram of the EB SCR showing the effect of the abrupt heterojunction on
under an applied forward bias (reprint of Fig. 2.2). ji is the solution to the Poisson equation and is
therefore continuous. Both the reference energy position and the intrinsic or mid-bandgap energy
E1 are also shown.

Section 4.3 and eqn (4.63) clearly bring out AE, but do not locate the position of AE if it

is indeed abrupt. Perlman and Feucht [50] have addressed the spatial variation of and found

that in general AEj, occurs abruptly and coincidentally with the position of the EB Heterojunction

(as is shown in Fig. 5.1). Finally, the hole quasi-Fermi energy Ej, has no discontinuity and is os

-
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tensibly constant throughout the EB SCR. The reason for the lack of a within the EB SCR is

because transport through the neutral emitter and not the EB SCR dictates the back injection cur

rent (this is proven at the end of Section 5.3 once the neutral emitter transport current is derived).

Essentially, because the EB SCR is not responsible for the current-limited-flow of holes into the

emitter, there is no iXEj, present within this region of the device.

Traditionally, in the modelling of current transport in HBTs, zEp has been implicit in the

calculation of the collector current density J and the neutral-base recombination current density

NB [20,51,87-89]. The calculation has proceeded via a balancing of and NB against the com

bined thermionic/tunnel current ThT crossing through the CBS at the abrupt junction; i.e.,

ThT = NB + J( AEfl. (5.1)

Further, it has been the usual practice when considering additional base current due to recombina

tion in the EB SCR, to subsequently add this extra current SCR to the prior-calculated NB; i.e.,

=1’NB(fn) SCR (5.2)

Recently, Parikh and Lindholm [90] have emphasized that this calculation of B via direct super

position is not strictly correct because the base-side component SCR,B of SCR should figure in

the original current-balancing equation which is used to compute AEp, and, subsequently, c, NB

and scR,B; i.e., eqns (5.1) and (5.2) should be replaced by

ThT = JscR,B+JNB+Jc —*AEffl (5.3)

B,B = SCR,B (AEffl) +JNB(IXEJfl) (5.4)

where B,B is that portion of the base current arising from recombination in the metallurgical base

(see Fig. 5.2).

It can be appreciated that this more correct, self-consistent computation of SCR,B will only

effect the base current if SCR,B is comparable to NB and, furthermore, will only effect the com

putation of from the balancing equation (i.e., eqn (5.3)) in cases where f3 is low. To examine

these effects is one of the objectives of this chapter and, to ensure that their importance is not un

derestimated, Auger and radiative recombination in the SCR have been considered, as well as the

usual SRH recombination.

The computation of via eqn (5.3) can be done numerically, but an analytical solution

would be more insightful, and also very useful in HBT device modeffing because AE, and thus
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Jc N.B and SCR,.B could then all be computed directly from the physical properties of the device

and the applied bias. Chapter 2 presented the analytic methods to determine both and the ul

timate transport currents that produce J and Therefore, the second objective of this chapter is

to develop such an analytical expression for AE. A final aim is to show that the components of

SCR,B’ even though they have an extra bias dependence through z\Ep, can be expressed as diode-

like equations. This fact should greatly facilitate the incorporation of these currents into a com

plete, large-signal representation of the HBT, which may then be implemented in Circuit simula

tors such as SPICE.

Fig. 5.2. Components of the collector (ic) and the base (SB) currents emphasising that ThT must
equal the total of, J( + NB + SRflB + Aug,B + Rad,B when recombination due to Shockley
Read-Hall (SRH), Auger (Aug) and radiative (Rad) processes is considered.

5.2 Modelling the Recombination Processes of HETs

The “unique relationship” [90] between the collector current, the neutral-base current and

the base-side SCR recombination current comes about because all these currents depend upon the

electron quasi-Fermi energy splitting at the heterojunction. As this splitting is greatest in the case

of an abrupt heterojunction, we consider only this type of junction in this analysis. The junction is

taken to be formed by an n-type Al030a07As emitter and a p-type GaAs base (the same as the de

vice in Section 4.5). To reduce the complexity of the algebra, without sacrificing much in the way
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of accuracy [90], the perinittivities and the effective densities of states have been taken as a con

stant throughout the entire device.

5.2.1 SRH Recombination

The recombination rate due to SRH recombination can be written as [90,911

n. E -E
R

—

______________

inh fP) (55)SRH
— t [cosh (Uf— E/kT) + b] “ 2kT

where:

n(x) is the intrinsic carrier concentration,

E(x) is the electron quasi-Fermi energy (see Fig. 5.1),

is the hole quasi-Fermi energy (assumed constant),

= Jt,0t0,where and t, are the hole and electron minority carrier lifetimes, respectively,

within the SCR,

Uf= (Ep + Efr)I2kT + ln(tdt,),

b = exp[(Ejj,
— Ep)/2kJ]•cosh[(Et —E1)fkT+ ln(tolto)J,

where E is the energy level of the single recombination centre assumed in this work, and E(x) is

the intrinsic Fermi energy. The latter has a discontinuity of AE1 at the abrupt heterojunction (see

Fig. 5.3), because the bandgap difference between the wide-bandgap emitter and the narrow

bandgap base is generally not distributed evenly between the conduction and valence bands; i.e.,

AEG fl
AE1 =

+ AE = kT in + AE (5.6)

where the subscripts p,n refer to the p-type base and the n-type emitter regions respectively. E1 is

related, therefore, to the electrostatic potential energy ji(x) via

E (x) = I N’ (x) x 0
(5.7)

N(x)—AE x>0

Here we use the depletion approximation for if(x), namely:

x0

iJ(x) =

2
(5.8)

x>0
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where, using eqn (4.69)

= Vp=q(lNrat)(Vbj_VBE),=’
VP — £ND

VPk — eDNA

_______

kT (NAND AE kT (NAND AE1
Vb. = —liii 1+— = —mi 1+—

q i ) q q q

with VBE being the applied base-emitter voltage, Vb1 the built-in potential, ND the emitter doping

and NA the base doping. Eqn (5.9) has included the effects of a non-uniform permittivity for the

time being.

Fig. 5.3. Energy Band diagram for the EB SCR of an HBT under equilibrium conditions. Notice
the discontinuity of AE in the intrinsic energy E.

I2eVPk
fl

= Al q2N

— CPNA
where Nrat

— eDNA + END

I2eV
x=I =

xP
— ND

xfl
— NA (5.9)

-xn 0
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The SCR currents on each side of the heterojunction follow from

SRH = q$RSRHdx + qfRSRHdx

=SRH,B SRH,E (5.10)

This equation can be solved using eqns (5.5)-(5.9), but the solution cannot be made analytic with

simple transcendental functions. A closed-form solution demands that some approximation be

made for W(x). Here we follow the linearisation procedure of Choo [92]; i.e.,

q(V—V)
qi(x) Viinear(X) =

(x+x),—xxx (5.11)
BE

where x, = WBENrat,d, Xp WBE(l — Nrat,d), WBE = x, + x, and Nrat,d = NA! (NA + ND).

The linearisation of ji(x) in eqn (5.11) differs from that proposed by Parikh and Lindholm

[90]. In [90], the linearisation is based upon a first order expansion of eqn (5.8) about the point

where RSRH is a maximum. The problem with this type of expansion is the RSRH maximum must

be well localised within the region of integration. If the Rpjj maximum is not within the region of

integration (as it can be for reasonable operating biases), then the first order expansion proposed in

[90] can lead to significant error. Eqn (5.11) alleviates this problem by appealing to the mean-val

ue theorem to define the linearisation. In fact, as VBE approaches Vbj, eqn (5.11) becomes exact.

Eqn (5.10) can now be evaluated using eqn (5.11) and

Ef—Ef
=

qV x0

qBE— fX>

(ND N
2kTlnL—J x0

Ef+Ef = —

2kT1n(.) qV AE x>0

to yield

— 2qnWB .r VBE_AEJn1 (zo—z
SRBB

— te
51 [q 2kT

atan
+

(5.12)
2qn1W (Z,—Z0,

SRFLE
=

sinh [ 2kT j
atan

+ 1
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with

= q (VbI — VBE)/kT = Jtpoxtnox

z
— ND 1tpQ,fl [ qV
— —4--——exP[-- 2kT

ND 1tpQ r 2Nrat (“bi — VBE) + VBE1
Z0 = —q—--—exp[—q

2kT J (5.13)

z
— ItpOpex qvBE_IXEffl

P
—

P[ 2kT

ND ItpO,p r 2qN (VbI — VBE) + qV + AEffl — 2AE1
Z0

2kT

where it is assumed that E and E1 are coincident throughout the device [90], and, therefore, b

from eqn (5.5) can be neglected for any reasonable operating conditions. Eqn (5.12) can be ob

tained from eqn (5.10) by using integral 2.423 #9 in [81]. In all cases, the final subscript ofp and

n refers to the p-type (base) and n-type (emitter) material regions respectively.

Eqn (5.12) is equivalent to eqns (20) and (21) in Reference [90]. It is, perhaps, in a more ap

pealing form as it can be readily seen to be an extension of the usual equation for SCR recombina

tion in homojunctions. Also, the unique feature to HBTs, quasi-Fermi-energy splitting, is

explicitly brought out by the presence of AEJk in the expression for SCR,B•

Finally, the linearisation used to obtain eqn (5.11) results in the use of the doping ratio

Nrat,d, and not the voltage ratio Nrat, within eqn (5.13). As was stated at the start of Section 5.2,

the effect of a non-uniform permittivity is quite small and can be neglected within the larger ap

proximation of a linear NJ(x). For this reason, it is assumed that for all practical devices encoun

tered that Nrat Nrat,d; in fact, for the parameters used in Section 5.4, this is only a 0.4% error.

5.2.2 Auger Recombination

As the doping concentrations increase, Auger recombination becomes an important consid

eration. There are two Auger processes of interest [93]: 1) a conduction band electron recombines

with a heavy-hole, transferring it to the light-hole band; 2) a hole recombines with a conduction

band electron, and the energy is transferred to another conduction band electron. In the first case,

the recombination rate is proportional top2n, while in the second it is proportional to pn2.When
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the equilibrium recombination rates are included, the total Auger recombination rate is:

UAUg = (An+Ap) (pn—n) (5.14)

where the constants A and 4 are the electron and hole Auger coefficients respectively.

Using the same techniques employed in arriving at eqn (5.5), the above equation can be re

written as:

UAU8 = nexp(k?)AJAflAP. [ZAUS+_] [exp( f119) _i] (5.15)

where

E +E -2E.
ZAug = AJA 2kT

1)

The Auger recombination current is then given by

Aug = qfUAugdx+qJuAugdx

Aug,B + Aug,E (5.16)

which can be solved using eqns (5.15), (5.13), (5.11), (5.9), (5.7) and (5.6) to give:

2qnW [qV—AEffl . [qVBE—AEffl
Aug,B

=
exp [ kT j sinh [ 2kT

(Z0 — Z) (A PnO pzz0+ A,t0)

(5.17)
2qn WBE qV qV

Aug,E
=

exp [ kT
sinh [ 2kT] (4 — Z) (A ntnnZnZn +A

Eqn (5.17) gives the Auger recombination currents that are generated from the base and the emit

ter sides of the SCR.

5.2.3 Radiative Recombination

For materials where there is a direct bandgap, it is important to consider direct band-to-band

radiative recombination. The rate at which radiative recombination occurs will be proportional to

the pn product [94]. When the equilibrium recombination rates are included, the total radiative re

combination rate is:
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URad = B(pn—n) (5.18)

where the constant B is the radiative recombination coefficient.

The radiative recombination current is then given by

Rad = qfURaddX+qfURaddX

Rad,B + Rad,E (5.19)

which can be solved using eqns (5.18), (5.9), (5.7) and (5.6) to give:

qV-AE
Rad,B = qnpBpWBE(l_Nraj)[exp(

kT

v (5.20)
2 r qBE

Rad,E hui,nBnwNrat[exP(
kT

—1

5.3 Current Balancing with the Neutral Region Transport Currents

It is clear from Fig. 5.2 that the electron currents to the right (i.e., the base-side) of the het

erojunction must equal the electron current due to the charge transport across the hetero-interface;

i.e.,

ThT JscR,B+JNB+Jc (5.21)

where

SCR,B = SRH,B + AugB + RadB• (5.22)

The formulation given in eqns (5.21)-(5.22) was already treated in Section 2.2. Comparison of

Fig. 5.2 with Fig. 2.3 shows an exact agreement. Therefore, the current balancing portrayed by

eqns (5.21)-(5.22) can be solved using the models given in Section 2.2 if the various transport and

recombination currents follow the general functional forms assumed in Chapter 2.

ThT is the transport current through the CBS that was solved for in Chapter 4. Eqn (4.63)

shows that the flux F through the CBS (E mr) has the functional form assumed in Chapter 2 (see

eqn (2.3) for J, i). This immediately allows the models of Chapter 4 to be used in concert with the

models of Chapter 2 to solve for the collector and base terminal current densities J and B re

spectively. Looking again at eqns (2.3) and (4.63) shows that i2 1 = Ff. and = AE. F3cin-

cludes both the thermionic emission and tunneling components involved in the transport over and

through the CBS. Employing the formalisms of [51], Ff can be written as:
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2 J1 (Vbx — VBE) (VbZ — VBE)
4iqJm 1m 1(kT) — -_______ -_______

Ff = y(VBE)
“ Z ekT e kT qyuNe kT (5.23)

h

where 1) is the electron thermal velocity given by

= / kT
(5.24)eq 2itm,

and y(VBE) is the tunneling factor (this is not to be confused with the yin Chapter 4 used to char

acterise the mass barrier). With y = 1, eqn (5.23) reduces to the thermionic injection current given

by the last term in eqn (4.78). Essentially, yis given by FfIJth where th is the thermionic injection

current and Fj= FjCBS given in eqn (4.93). Failure to include yin eqn (5.23) will result in a severe

overestimation of AEp1 [18] (and an underestimation of the collector current). Finally, JI is the

electrochemical potential relative to E formed by the doping ND within the neutral emitter. The

approximate solution given in eqn (5.23) is strictly valid only if the emitter is non-degenerately

doped.

The neutral-base recombination current NB and the transport current through the neutral

base Jc which must be used in eqn (5.21) follow from the standard, low-level injection solution to

the continuity equation. Using the boundary condition that the driving potential at x = x, (i.e., the

start of the neutral base) is VBE — AE (see Fig. 5.1), and for the case of a single heterojunction

structure operating in the forward active mode, the excess electron concentration near the collec

tor is 11 (Wflb) = 0, where Wb is the neutral base thickness relative to x = x, then the expres

sions for these currents are

IWflbN
2 coshl— I—i qV8—zEf 1 2 coshl— —i qV 1

— Lflb kT 1
qDn1

NB
— NALflb . (W

e
—

— NALflb .
(W

e — ije
sinh -L——j sinh

ç- J (5.25)

and

qDn,
csch (—)

[ qVEAEf

—

qDn,
csch (—-)[e —

1]e (5.26)
Anb nb Anb nb

where D is the effective electron diffusivity in the base, and Lflb (= JDfltflb) is the electron minor

ity carrier diffusion length in the base. Observation of eqns (5.25) and (5.26) show they possess

the functional forms of 4 and J respectively found in eqn (2.4) (i.e., 4, = JNB(AEp=0)
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and J = Jc(AEfij=0)). The approximate forms of eqns (5.25) and (5.26) introduce a negligible

error over almost all bias conditions given the magnitude of exp(qV/kT) compared to unity.

The last remaining task before the models of Section 2.2 can be employed to solve eqns

(5.21)-(5.22) is to ensure that Rad,B’ Aug,B’ and SRH,B have the same functional form as NB with

respect to Clearly, Rad,B in eqn (5.20) can be written in the same approximate form as NB

with respect to AEp. However, it is not clear that the same is true for Aug,B and SRRB in eqns

(5.17) and (5.12) respectively. In order to see Aug,B’ SRH,B’ and Ro4,B can be rewritten as:

) (Ti Ar’ \ r cu ( kT
Aug,B” ‘ BE’ ‘-fn) — Aug,Bk V BE’ e

-- (5.27)
SRILB( BE’ fn) sB( BE’ ) e

Rad,B0”BE’ AE)
— JRB(VBE, 0) e kT

a plot of the error between the full and the approximate forms in eqn (5.27) is constructed. Fig. 5.4

plots the relative error between the right and left sides of eqn (5.27) for Aug,B’ SRI-1B’ and Rad,B

with VBE fixed at 1 .OV. Fig. 5.4 shows that the error in using the approximate relations in eqn (5.27)

is less than 10 parts per billion. With such a small error in using eqn (5.27), it is justified to state:

J 3(VBE) = JNB(VBE, AE=0) +‘1SRHBWBE’ AE—0) + JAug,B(VBE, AEffl=0)
+ (5.28)

JRB(VBE, LEO).

Eqns (5.21)-(5.22) can now be solved using the models in Section 2.2. The transport current

T through the device (which is equal to the collector current) is given by eqn (2.7), with = Fj’

from eqn (5.23), J = from eqn (5.26), 4 is given by eqn (5.28), 4 2 = 0 (i.e., Y2

= 1), and J 2 >> (J
,
J 3). Using the above produces:

= r-+--—i
= [ Ff(VBE)/y3 J,i1”y3<<J,3

(5.29)
[J2,1 .i2,3J Jc(VBE,1Effl=O)if 1’r3>>’2,3

where y is given in eqn (2.7) as

— 3+43
— Jc+JNB+JsRH,B+JAug,B+JRacB

13
jJ3 C zEf=O

and the VBE dependence has been omitted for clarity. Eqn (5.29) embodies the two different
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modes of operation that the HBT can function under; the first condition is where the CBS is re

sponsible for current-limited-flow; while the second condition is the classic BJT regime of opera

tion where the neutral base is responsible for current-limited-flow.

Finally, the base terminal current can be solved directly by using eqn (2.9) to yield:

B (VBE) = JT(Y3
F+ SRIE Aug,E + RadE

— i). (5.30)

Or, AE can be calculated by eqn (2.5) and substituted back into SCR,B of eqn (5.22) and NB• B

is then given by the sum of all the hole currents (i.e., B SCR,B + NB + Aug,E + SRE +

Rad,E) The beauty of eqn (5.30) is it solves for the base terminal current without the need to

detennine the inner driving potential of iSE. However, if a detailed understanding of each

component of the base terminal current is desired, then iXE must be solved for explicitly.

oz::::

Aa ug,

SRHB
4

—6 .

0 50 100 150 200 250 300

Quasi-Fermi Energy Splitting AEf (mV)

Fig. 5.4. Relative error between the approximate and exact forms given in eqn (5.27). The mate
rial parameters are given in Section 5.4, and VBE is fixed at 1.OV

Before leaving this section, it is important to verify that E, is indeed constant throughout

the EB SCR. If there were a AEp,, present, it would have to be included in the emitter side hole

current SCR,E just like has been included in SCR,B• Essentially, the same current balancing

procedure given by eqns (5.21)-(5.22) needs to be performed regarding the transport of holes from
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the neutral base, through the EB SCR, and finally through the neutral emitter. The same models

for the electron case can be applied to the hole case, but using the appropriate material parameters

for a hole. Using the HBT parameters of Section 5.4, then the hole transport current through the

EB SCR is 3.9x1Oexp(qV/k7)Acm2,and the hole transport current through the neutral

emitter assuming a 3000A emitter cap at a doping of 1020cm3is l.2x1W27exp(qV/kI)Acm2.

Clearly, the neutral emitter is the bottleneck to hole transport which validates the claim that

is indeed zero through the EB SCR. This does not have to be the case, and a device can be imag

ined where this is not true, leading to the requirement that hole transport be self-consistently

solved with electron transport. It is quite interesting to realise that the valence band discontinuity

AE does not limit the back injection of holes as the literature has lead the device community to

believe. The back injection of holes is ostensibly eliminated by the reduced number of minority

holes due to a small n1 that is characteristic of a wide bandgap material.

5.4 Full Model Results

The values used for material parameters, unless otherwise stated, are:

ND: 5x1017cm3;NA: 1x1019cm3;Cbe: l2.9e; Ejr: ll.9Erj; to,p: Sns;

to: 2Ons; AE: 0.24eV; 4.21x103cm3; 2.25x106cm3;—* AE1: 77.3 meV, Vb: 1.67 1V,

Nrat,d: 0.952, Nrat: 0.956, x(VBE=l.4V): 271A, xp(VB=l.4V): 13.6A;A,,: 7.99x1032cm6s1;

5.75x1t131cm6s; 1.93x1031 cm6s1; 1.12x1030cm6s1;B: 1.29x1010cm3s1;

B: 7.82x1O’1cm3s1;D:30cm2s1,Wb: ioooA.

Results for the SCR currents are shown in Fig. 5.5. The slopes of the curves are not con

stant, owing to the voltage dependence of WBE, but it is clear that all the base-side SCR recombi

nation components have about the same ideality factor (n), and that this is considerably less than

that of the emitter-side SCR recombination current (which is dominated by sRH,E)• Specifically,

at VBE = 1.2 V, SCR,E = 1.90 and, adding all the base-side currents together, SCR,B = 1.19. Fur

thermore, = 1.14 at VBE = 1.2 V due to the effects of These values are similar to

those reported elsewhere [90], and deserve further comment because SCR,B is so far removed

from the “classical” value of n = 2.

With reference to eqn (5.12) for the SRH current, because is so low and Nrat is 1, Z,

and are both>> 1, leaving the atan term in eqn (5.12) to saturate at t/2. The voltage depen

July 12, 1995 121



1010

1012
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

Fig. 5.5. Bias dependence of the SCR current from the emitter side, and the three components of
the SCR current from the base side. Material parameters are taken from the start of Section 5.4.

The width of the SCR on the base side of the heterojunction is much less than that on the

emitter side, and this fact alone, via Nrat in the Z and Z0, terms in eqn (5.12), would make

SCR,B <<SCR,E• However, the much larger n1 on the base side counterbalances this effect and al

lows the steeper-rising SCR,B current to exceed SCR,E beyond some forward bias. In the example

shown in Fig. 5.5, this occurs around VBE = 1.45 V. This transfer from an n 2 slope to an n 1

slope in the SCR current does not occur in a homojunction device as there is no spatial change in

n1 to inflate the current in the more highly-doped side of the junction.

In practical HBTs it is possible to imagine that the minority carrier lifetime in the highly-

doped base will be less than that in the emitter. Indeed, photoluminescence measurements on ma-

dence of SCR,E is thus determined by the sinh qVI2kT term and n approaches 2. Contrarily, for

SCR,B’ both Zk, and Z are generally << 1, so the atan term modulates the sinh term and reduces

the ideality factor from 2 towards 1.

100

10-2

io-4

‘
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terial doped to 4x1019cm3suggest that ‘c,1 5Ops [951, and a value of 3Ops has been used to mod

el some experimental devices [90]. Fig. 5.6 shows that reducing the base-side t, to 5Ops causes

SCR,.B to exceed at a bias of about 1.15 V. However, lest undue emphasis be placed upon

the significance of this change-over, note from Fig. 5.6 that SCR,B is always less than the quasi-

neutral base recombination current NB• This indicates that, in practical devices, an observed

change in base-current ideality factor from n 2 to n 1, will likely be due to a change from

Jc,gd0m1nated current to a JNB-dominated current. Only in circumstances where it is correct to

attribute a much lower minority carrier lifetime to the base-side depletion region only, perhaps

due to defects at the interface, can a situation be envisaged where SCR,B could dominate over

NB’ and thus be responsible for the slope change to n 1, which is often seen experimentally. The

above point about the relative magnitudes of SCR,B and NB is an important one as it puts into

practical perspective the theoretically-interesting fact that SCR,B has a different voltage depen

dence to that of SCR,E

1

10-8

10-11
0.8 1.1 1.2 1.3 1.4 1.5

Base-Emitter Voltage VBE (V)
Fig. 5.6. Gummel plot showing the importance of including the emitter- and base-SCR current
components in the computation of the total base recombination current. Material parameters are
from the start of Section 5.4 for two values of t,.
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While it is clear from the results of earlier work that AEp must be included in calculating

SCR,B [901, it is, perhaps, not evident how important it is to include SCR,B in the balancing equa

tion (5.21) to compute iXEp. Fig. 5.7 provides an answer for the material properties considered

here. By not including SCR,B in eqn (5.21), yet using the subsequently-calculated tXE to eventu

ally compute SCR,B’ leads to a result which is indistinguishable from that of the “full model”,

where SCR,B is included in the balancing equation. This is a consequence of SCRB being much

less than NB and J. However, also from Fig. 5.7, note that it is grossly incorrect to not include

AEp in the calculation of SCR,B Because the electron quasi-Fermi energy splitting is so large for

an abrupt junction [18], its omission leads to a large overestimation of SCR,B’ and, consequently,

to a severe underestimation of the current gain. It is difficult to imagine a practical situation where

it might be necessary to include SCR,B in the actual calculation of AE1. A possible scenario is

one in which t, in the SCR is less than t, in the neutral base, perhaps due to interface defects, and

that W is much larger than the usual i000A. The latter situation would reduce J, and the

former would increase SCR,B with respect to NB’ thus making SCRB become more prominent in

eqn (5.21). The effect of these changes is shown in Fig. 5.8. Even though the gain has been re

duced to a very low value, it appears that there is still no need to include SCR,B in the balancing

equation.

To summarise the results from the analysis of this section: it is necessary to include in

the computation of SCR,B; but SCR,B need not be included in the balancing equation to estimate

AEp; and SCR,B is not very important for devices based upon materials with the properties con

sidered here, because SCR,B is usually less than either NB or Of course, if parameters affect

ing Auger or radiative recombination in the SCR turn out to be greatly different than the values

used here, then SCR,.B could become important

One instance where SCR,B will definitely be larger than calculated here is in the case of

HBTs which are compositionally graded at the base-emitter junction. The grading gives the junc

tion a more homojunction-like character, so AE will be reduced, and SCR,B increased corre

spondingly. However, because of the lower bandgap of the graded material in the emitter-side of

the junction, is increased and, therefore, SCR,E also. Thus it is not obvious whether SCR,B is

any more important in graded-junction HBTs than it is in abrupt-junction HBTs. The results of

Parilch and Lindholm [90] suggest that SCR,E remains the dominant current. One situation in
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Fig. 5.7. Bias dependence of the current gain 13, showing the relative importance of including
SCR,B in the calculation of AE. Also shown is the dramatic error resulting from not including
AE, in the calculation of SC.R,B
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8 JSCR,BflOt in balancing eqn
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Fig. 5.8. Bias dependence of the current gain 13 for the case of Wflb increased to 5000A and t, in
the SCR reduced to 5 ps. Even in this extreme case there is little error in not including SCR,B in
the balancing equation.
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which SCR,B could be increased without an associated increase in SCR,E is when recombination

at the exposed base surface is important. Providing a reasonable expression for this surface re

combination current were available, it could be added to the right-hand side of eqn (5.22) and

used in the current balancing to compute AEj. However as can be deduced from Figs. 5.7 and

5.8, the inclusion of another component of SCR,B will only effect the estimate of AE if this new

component is comparable in magnitude to

106 • • • •

Wb = lOOnm

io3 - Wflb = lOnm -

c-’ 100
.

..: -

SRH,E

io3 -

....•-‘ Rec,B

Wflb=lOnm

io- ......

,..7 io ... -

7.....
io 10 ////

w,=1oomn -

j
lOl

Wb=1OnmRec,B

Wab = lOOnm 108 1.0 1.2 1.4 1.6
1012

• • • • • • •

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

Fig. 59. Effect of changing the neutral base thickness Wflb when the CBS is responsible for cur
rent-limited-flow. Lowering W,th leaves and sRgE unchanged, but results in the reduction to
the base side recombination current Rec,B (= SC.R,B + J). Under high bias, where Rec,B domi
nates, 13 increases with reductions in W,,,. While under low bias, where SRflE dominates, 13 is un
altered by changes in W,,j,.

Before leaving this section, it is interesting to see how current-limited-flow within the CBS

leads to a mixing of the base and collector currents. For the HBT considered, the CBS is indeed

responsible for current-limited-flow, so that Jc 1jCBS Thus, if the neutral base transport cur-
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rent were increased by reducing Wflb, Jc would remain unchanged because the CBS already rep

resent the bottleneck to charge transport through the device. However, the reduction to Wflb does

have an effect on the device. Fig. 5.9 shows that the base-side components of the base terminal

current are decreased by a reduction to Wflb. This decrease occurs due to a reduction of ‘y in eqn

(5.29) because relatively speaking, a shorter neutral base will provide fewer occasions for recom

bination. Therefore, opposite to what occurs in BJTs, the mixing of the collector and base currents

due to current-balancing has coupled Wflb to the base instead of the collector current.

Finally, for the sake of completeness, Fig. 5.10 replots the currents displayed thus far using

the linearised W(x) from eqn (5.11) against the currents obtained with the full potential from the

depletion approximation of eqn (5.8). As can be seen in Fig. 5.10, the error is indeed slight, and

will be smaller than the uncertainty in the recombination parameters themselves. The linear NJ(x)

is not required to solve the radiative recombination current, so there is no approximation used.

1012

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Base-Emitter Voltage VBE (V)

Fig. 5.10. Comparison of the recombination currents when ji is given by the depletion approxi
mation in eqn (5.8), and when it is given by the linearisation of eqn (5.11) (IEf is included).
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5.5 Simple Analytic Diode Equations

For the purpose of including the various SCR recombination current components in HBT

device simulators, it would be convenient if a simple closed-form solution for iXEp existed. Fur

ther, if the various current components could be expressed as diode-like equations, then their rep

resentation in circuit simulators such as SPICE would be greatly facilitated. In this section, the

approximations that need to be realised to effect these simplifications are discussed.

The starting point for the reduction of eqns (5.12), (5.17) and (5.20) to diode-like expres

sions is to examine the relative importance of the Z-terms which appear in the expressions for the

SRH and Auger recombination currents. Fig. 5.11 shows the results from the full model calcula

tions. From this figure, it appears reasonable to state that Z <<Z0, << 1, 4>> 1 >> Z, and generally

ZZ0>> 1. The Z-terms Z,, Z0,Z0,, Z, are representative of the amount of recombination at x,,

0, 0 and xi,, (see Fig. 5.1), respectively. For the condition Zk <<Z, to remain valid, the depletion

region on the base-side must not be vanishingly small. This can be ensured by having the doping

density ratio NA/ND 30. Contrarily, there is a lower limit to the allowable value of NA/ND, below

which the recombination on the base-side of the depletion region becomes large and the inequali

ty Z(), << 1 is violated. This limit is NA/ND 3. Therefore, keeping within the range 3 NA/ND

30, and following the usual practice of expressing WBE and €) by their equilibrium forms, eqns

(5.12) and (5.17) reduce to

NDnP riXE — qNVji — zXEf
JsRH,BCs exp[

kT JexpL kTno,pni, ii

1Ifl jqV
SRH,E Cs 2t 2kT

(5.31)

2 [qV—1XEffl
Aug,B CSnI,PAP,PNAexp L kT

q VBE
1Aug,Esn4n,nNDP[

kT I
where

C =

Writing the radiative recombination currents in eqn (5.20) in similar form, gives

July 12, 1995 128



q CsVb 2 q VBE — IXEffl

Rad,B kT nipBp(l—Nrat)exp[ kT

qC5V1
2

____

Rad,E kT ,vBnNratP L kT

Using these diode-like equations, along with the expressions for NB in eqn (5.25), in eqn

(5.26) and ThT = Ff in eqn (5.23) in the balancing equation of eqn (5.21), yields a convenient ex

pression for t.Ep; i.e.,

(VbZ — VBE) qV8

kT — Recom (VBE) + q’y’uNe kT
+ e

(533)e
—

S,Recom + qyuNe kT
+qDn0/W e

where

qV8 qV qV

I (TI ‘ — i nSRH,BkT Aug,BkT .i. I
Recom” “BE) — JS,SRBBe +.ISAU8Be -I-.IsRaBe

Recom = “S,SRH,B + SAugB + SRa,B

— qN1Vj
NDn. qCV.

=
C ‘‘ e kT

+CsnPAPPNA+ kT1flpBp(1Nrat)
nO,p 1, n

b
Wflb, e = Lflbtanh I

\. nb

BO =

The values for the saturation currents and ideality factors in eqn (5.33) can be found either

through a statistical fitting method, or from the analytic diode equations in eqns (5.31)-(5.32).

Note that the n factors appearing in eqn (5.33) are independent of AEp. Their values, based upon

the diode forms in eqns (5.31)-(5.32) are: SRH,B = liNrat; Aug,B = 1; RadB = 1.

A comparison of the predictions of the diode forms in eqns (5.3 l)-(5.32) with results from the

full expressions in eqns (5.l2),(5.17), and (5.20) is shown in Fig. 5.12. The agreement is very good,

with the only discrepancies occurring at very high forward bias. As VBE approaches Vbj, the diminish

ing depletion-region thickness becomes a factor in that the depletion approximation no longer holds.

Thus, for values of VBE near Vbj, the voltage dependence of WBE needs to be included, and the as

sumptions regarding the relative magnitudes of the Z functions re-addressed.
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Fig. 5.11. Z-functions as computed from eqn (5.13) when using the material parameters from
Section 5.4.
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Fig. 5.12. Comparison of the full model and “diode-like” expressions for the SCR currents. The
high-bias region of the figure is enlarged in the inset with SRH,B and Aug,B omitted for clarity.
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If, as found to be the case for the material parameters used here, it is not necessary to in

clude SCR,B in the balancing equation, then the Recom and S,Recom terms can be omitted from

eqn (5.33). Finally, for most abrupt HBTs, the CBS represents the bottleneck to charge transport.

In addition, for cases where f3>> 1, then T = Jm and eqns (5.29) and (5.33) can be further simpli

fied to give

(VbZ — VBE)

kT

qI1Ef NratVbi+ (lNrat)VBE
= DflnBo q

kT

Wflb e’’D

Substituting this expression for into the diode forms in eqns (5.31 )-(5.32), gives overall ide

ality factors for the base-side SRH, Auger and radiative currents of: lI(2Nrat — 1), liNrat and 1/

Nrat respectively (where the bias dependence of the tunneling factor y is not included).

From this study of space-charge region recombination currents in a typical A1GaAs/GaAs

HBT, it can be concluded that:

1. recombination currents in the base-side SCR are generally less than the neutral-base current

and, therefore, need not be included in the current-balancing equation used to compute the qua

si-Fermi energy splitting AEp, at the base-emitter junction;

2. however, when subsequently computing the base-side SCR currents, AE must be taken into

account if the gain is not to be grossly underestimated;

3. the ideality factor for the base-side SCR currents is closer to 1, than to the normally-used value

of 2;

4. a simple, yet acceptably-accurate analytical expression for AE can be derived;

5. the base-side SCR currents can be accurately represented by diode-like expressions, so facili

tating their implementation in SPICE-style circuit simulators.
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CHAPTER 6

The SiiGe HBT
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The previous chapters have presented a collection of models for the calculation of the trans

port and recombination currents in HBTs. Chapter 2 presented the generic models for current

transport in an arbitrarily shaped device where there can be any number of sub regions within the

defined regions of the emitter, base and collector. Chapter 4 presented the transport models for the

movement of carriers through a forward biased pn-junction under the influence of a heterojunc

tion. Chapter 5 presented the models for the recombination currents that occur both in the neutral

regions of the device (specifically the base and the emitter), and the forward-biased EB SCR. Also

included in Chapter 5 were models for the transport of charge through the neutral regions of the

device. Finally, Chapter 3 presented the models for the calculation of the base transit time based

upon an optimisation of either the base doping, or the base bandgap, or both. In all of the work

presented thus far, no assumptions have been made that depended upon a specific attribute of a

given material system. Thus, the models contained within this thesis are general, and may be ap

plied to the study of an arbitrary HBT created within an arbitrary material system.

Even though the models presented within this thesis are indeed applicable to any material

system, whenever an analysis of a specific model was performed, the material system of

AlGai..As was invariably chosen for the study. The reason for choosing the MGai..As material

system is that current-day technologies for HBTs prefer this material system. The dominance of

the MGai..As material system stems mainly from the fact that the lattice mismatch over the us

able range of Al content (i.e., 0 x 0.45) is under 0.07% [61]. This nearly ideal lattice match al

lows for an arbitrary film thickness because there will be virtually no strain placed upon the lattice

at the heterojunction. Coupled with the lattice-matched characteristic, the AlGai..As material

system can also provide for large changes to the bandgap (AEg) [61]. However, compound semi

conductors like GaAs and AlAs have numerous undesirable features when it comes to manufac

turing. The A1Gai..As material system lacks a usable native oxide, is a poor thermal conductor,

cannot be pulled into wide ingots which results in small wafer diameters, is brittle, suffers from a

high defect density, cannot employ ion implantation for bipolar devices, exposed surface layers

have high recombination velocities, cannot be used in low-power applications because of the large

Vbj inherent with large bandgaps, does not etch easily and generally lacks an abrupt end-point de

tection for etching, and finally is expensive to manufacture. Given all of these manufacturing and

electrical drawbacks, however, the lattice-matched attribute is important enough to make

AlGai.As the preferred material system for the construction of HBTs.
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Essentially all of the manufacturing issues with regard to the AlGai..As material system

are solved by using the Sii.Ge material system: save one issue. At issue with the Sii..Ge mate

rial system is its large lattice mismatch. The Ge lattice is 4.2% larger than the Si lattice [96]. Even

if the Ge content is constrained to be under 20% (i.e., 0 x 0.20) there would still be a 0.84%

lattice mismatch between a Si08Ge02 film and a Si substrate. The issue with a lattice mismatch of

around 1% is that to commensurately place an epitaxial film upon a given substrate would result

in a strain within the film that would be large enough to tear the film apart [97-99]. If strain were

allowed to tear the film and form dislocations, then deep states would form along the heterojunc

tion interface which would greatly enhance recombination. Since the heterojunction will be

formed in the middle of the EB SCR of the HBT, a plane of recombination centres at the hetero

junction would result in an intolerably high base current; large enough to reduce below 1.

There is no physical way to alter the bulk lattice constant of a material or alloy. However, if

the epitaxial film is grown thin enough and at a low enough temperature, it will conform to the

substrate [99]. Under such conditions, the epitaxial layer is said to be commensurately strained to

fit the substrate, and the layer itself will be pseudomorphic [99]. Pseudomorphic films are thus

strained in order to maintain the in-the-growth-plane crystalline structure of the substrate. The key

to obtaining a pseudomorphic film is to ensure that the layer thickness is below the critical thick

ness h [99]. However, in order to maintain a pseudomorphic film, and ensure that it does not re

lax back to its bulk lattice constant, subsequent exposure of the layer to high temperature

environments must be severely limited. In the past 5 years, great progress has been made at IBM

in the quality of Sii.Gepseudomorphic films [31]. These developments have shown great poten

tial regarding operating speeds [100-102], so much so that many other companies including the

Japanese at NEC [1031 are developing SiGe IC processes. Through the recent successes regarding

the high quality growth of pseudomorphic SiiGe films, the Sii..Ge material system is fast be

coming a practical alternative for the manufacture of HBT-based ICs. In fact, with the massive in

stalled base of Si-based IC manufacturing, coupled with the ability to integrate Sii..Ge films into

the process, it is expected that Sii..Ge will rapidly displace MGai..As as the preferred material

system for the manufacture of HBT-based ICs.

This chapter will apply the general models obtained from the previous chapters to the study

of HBTs based within the Sii..Ge material system. Due to the complex nature of Sii..Ge under
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the influence of strain, a number of extensions to the work of previous chapters is necessary. Most

importantly, due to the indirect nature of the Sii..Ge energy bands, there are six separate conduc

tion band valleys [104] (compared to only one valley in a direct semiconductor such as GaAs).

Each of these conduction band valleys will transport electrons. Since strain breaks the degeneracy

of the six conduction band valleys, it will become important to consider electron transport within

each valley separately. Once the needed extensions to the models of the previous chapters have

been determined, a study of current-day SiGe HBTs can be performed. Furthermore, it will be

shown that the use of strain can be turned into a tool for the HBT developer, instead of being seen

only as a liability in terms of critical layer thickness.

6.1 The Effect of Strain on Sii..Ge

The use of pure unstrained crystals of Ge in the formation of SiGe HBTs is possible, but due

to the large lattice mismatch (—4%), would result in a high defect density at the heterointerface,

severely degrading device performance. Furthermore, if only pure Si or Ge crystals were used in

the formation of HBTs, there would be a considerable limitation imposed upon the ability to engi

neer the bandgap within the HBT Instead, pseudomorphic Sii.Ge films, that are commensurate

ly strained to become lattice matched to the substrate (which is pure Si in present day devices), are

used. These pseudomorphic Sii..Ge layers will remain strained without relaxing as long as the

layer thickness remains below the critical thickness h [97-99,105]. (ForSi070Ge030 grown on

{ lO0} Si substrates the critical layer thickness is 600A, while forSi045Ge055 it is only bOA).

Thus, unlike MGai..As, which is essentially lattice matched to GaAs and thus has no critical

layer thickness, SiGe HBTs can have considerably less freedom in the choices for layer thickness

es.

The key to manufacturing SiGe HBTs is the commensurate growth of strained Sii..Ge lay

ers to the underlying substrate. However, the strain in the plane of growth results in a distortion of

the crystal structure that breaks the cubic symmetry and causes the crystal unit cell to become tet

ragonal. With the breaking of the cubic symmetry comes a change to the dispersion relations for

the energy of the Bloch electrons versus wave vector k. The most important effect of this symme

try breaking is the relative change to the energy of the conduction band minima and the valence

band maxima in k-space.
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Constant energy surfaces near to the conduction band minima for pure unstrained Si and Ge

are shown in Fig. 6.1. Looking at the case of Si, there are six separate but degenerate conduction

band minima located along the (100) directions at the A point (which is 80% from the zone centre

at F to the Brillouin zone edge at X). For alloys of Sii..Ge, these six minima are dependent both

on the alloy content x and on the state of strain. Take, for an example, Sii..Ge grown on a Si sub

strate with the direction of growth parallel to [001]. As x moves from 0 to 1, the Sii..Ge layer

moves from an unstrained cubic structure to a compressively strained tetragonal structure

[99,105]. As the strain decreases from zero (compression being negative strain), we find that the

degeneracy of the six minima is lifted [105-108]. The two minima aligned to the normal of the in

terface plane (i.e., parallel to the direction of growth) remain degenerate and are raised in energy,

while the other four minima parallel to the interface plane also remain degenerate but are lowered

in energy. For the case of Sii.Ge grown on a Ge substrate with the direction of growth still par

allel to [001], the situation is reversed. As x moves from 1 to 0, the Sii..Ge layer moves from an

unstrained cubic structure to an expanded, tensile-strained tetragonal structure. For this case of

tensile strain, as the strain increases from zero, the two minima normal to the interface plane are

lowered in energy, while the other four minima parallel to the interface plane are raised in energy.

Thus, we find that there are now two types of A conduction band minima in a strained Sii..Ge

film; those parallel (which will be termed E) and those perpendicular (which will be termed E)

to the interface plane. Therefore, depending on the sign of the strain tensor (i.e., either compres

sive or tensile), either the E or the E bands will form the ultimate conduction band.

The valence band also suffers considerable change due to the symmetry breaking caused by

strain. The valence band of pure, unstrained Si and Ge (or for that matter, all semiconductors), is

composed of what should be three degenerate bands. These three bands are the light-hole (lh),

heavy-hole (hh) and split-off bands (so). When the interaction of the electron’s internal angular

momentum (spin), is coupled with its orbital angular momentum (termed spin-orbit coupling), the

degeneracy of the so band is lifted [109,110]. The resultant interaction leaves the lh and hh bands

degenerate with the so band maxima moved to a lower energy (see Fig. 6.2). The symmetry break

ing caused by strain goes on to lift the degeneracy of the lh and hh bands. As in the conduction

band, the valence band maxima is dependent both on the alloy content x and on the state of strain

[105-108]. Returning to the case of Sii.Ge grown on a Si substrate, with the direction of growth

parallel to [001], as x moves from 0 to 1 the Sii..Ge layer experiences an increasing compressive
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Fig. 6.1. First Brillouin zone showing (in k-space) the constant energy surfaces near the bottom
of the conduction band for Si and Ge. Also shown are the designations for the symmetry points
and the degenerate bands E and E in strained Sii..Ge with the growth direction along [001].
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strain. The result of compressive strain is an increase in the maxima of the hh band relative to the

lh band, accompanied by a decrease in the maxima of the so band relative to the th band. Under

tensile strain, however, the effect is reversed for the lh and hh bands (but not the so band). Return

ing to the case of Sii..Ge grown on a Ge substrate, with the direction of growth still parallel to

[001], as x moves from 1 to 0 the Sii.Ge layer experiences an increasing tensile strain. The re

sult of tensile strain is an increase in the maxima of the th band relative to the hh band. However,

there is still a decrease in the maxima of the so band relative to the hh band. Therefore, strain

eliminates the degeneracies of all the valence bands, with the so band always moved to lower en

ergies. However, depending on the sign of the strain tensor (i.e., either compressive or tensile), ei

ther the lh or the hh band will form the ultimate valence band.

k

Fig. 6.2. Valence bands in unstrained Sii.Ge. The light hole (lh) and heavy hole (hh) bands re
main degenerate for all values of Ge alloy composition x (only in the bulk state where there is no
strain present). However, the split off (so) band maxima changes in energy with alloy content,
where A(x) 0.044 + 0.246xeV.

The previous paragraphs have outlined that the energy of the conduction band minima and

the valence band maxima change under the effect of strain, while their position in k-space remains

unaltered. However, it is also important to ascertain the effect of strain on the shape of the band in

k-space, as this will set the effective mass which determines the velocity of the carrier and its

probability for tunneling. Considering the valence band first, the effective mass for the lh and hh

E

hh band

so band
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bands in pure unstrained Si and Ge are quite different. Therefore, as the Ge alloy content in the

Sii.Ge layer changes, there must be a change to the shape of the band in k-space regardless of

the strain state. To account for this varying shape of the lh and hh bands, a linear interpolation be

tween the experimental values for the lh and hh masses in Si and Ge is used to arrive at the appro

priate masses for the SiiGe layer [111]. It is further assumed that the effect of strain is

negligible with regard to the shape of the band in k-space. This leads to:

mhh = 0.49 — 0.21x
(6 1)

mffi=O.l6—O.ll6x

where x is the Ge alloy content, and the masses are a fraction of the electron rest mass me (the Si

and Ge hole masses are based upon [96]). The lh and hh effective masses are maintained separate

ly instead of combining them into an effective density of states mass because under the influence

of strain, the degeneracy breaking will result in a change to the effective density of states mass

(see Section 6.3).

For the conduction band, it is assumed that the conduction sub-bands E and E do not

change shape with either a change in the Ge alloy content or the state of strain [107,112]. To first

order in the strain tensor there must be a change to the effective mass for the electrons because the

reciprocal lattice vector is being changed. However, this change will be relatively small as the

maximum change to the reciprocal lattice vector is 4.2% over the entire range of Ge alloy content.

As for the effect of the Ge alloy content, it is important to realise that Si and Ge (and therefore

Sii..Ge) have conduction band minima at A and at L. The difference between Si and Ge is that

the A minima form the ultimate conduction band in Si while the L minima form the ultimate con

duction band in Ge. For Sii.Ge the A minima typically form the ultimate conduction band.

However, if the Ge alloy content is high enough, then the ever-present L minima within the

Sii.Ge alloy will form the ultimate conduction band [113]. It is therefore postulated [107,112]

that the electron effective mass for the E and E bands are the same as that for the A minima in

Si, while the effective masses for the L minima are the same as the Ge effective mass; i.e., [96];

m(A) = 0.19

m1(A) = 0.98
(6.2)

m(L) = 0.082

m1(L) = 1.64

Therefore, there is no change to the effective electron mass, for a given band, with either a change
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to the Ge alloy content or the state of strain. However, in similar fashion to the valence band, the

effective density of states mass will change with strain depending on which band forms the ulti

mate conduction band.

The qualitative features that strain and Ge alloy content impart to the Sii..Ge layer have

been presented. Using empirical deformation-potential theory [114-116], the quantitative features

are now presented. The reason for using empirical deformation-potential theory, where the defor

mation potentials are measured and not derived from first principles, is that current-day solid-state

quantum mechanics is not sophisticated enough to predict the desired results with any reasonable

tolerance (errors on the order of 1 eV are standard). To this end, the problem of including the

strain state and the Ge alloy content is broken down into two independent problems. First of all,

experimental measurements of the Sii.Ge bulk bandgap (i.e., unstrained) are performed over the

entire range of 0 x 1 to produce the function Eg (x). Thus, Eg (x) contains all of the Ge alloy ef

fects. Then, empirical deformation-potential theory is used to determine the amount of degenera

cy splitting that occurs within the sub-bands of the conduction and valence bands due to the

addition of strain. Adding together Eg(x) with the results from deformation-potential theory pro

duces the total change to the various bands within the Sii..Ge layer.

Beginning with the calculation of Eg(x), in the seminal works of [113,117] the necessary exper

imental measurements on the bandgap of bulk and strained Sii.,Ge have been performed. It has been

found that for x < 0.85, the A minima form the ultimate conduction band minima in Sii..Ge. Howev

er in the range 0.85 x 1, the L minima form the ultimate conduction band minima in bulk Sii..Ge.

Concentrating on the A minima alone, then using a quadratic fit to the data in [113] produces:

( E 0.51446x+0.3h164x2 x0.732
Eg(X) =

g, 1

(6.3)
t EgsiO.l5Ol 0.0813x x>.0.732

where xis the Ge alloy content, ES1 is the bulk Si bandgap, and all values are in eV.

Eqn (6.3) gives the Sii..Ge bulk bandgap from the top of the valence band to the bottom of

the A minima in the conduction band. Caution must be exercised when using eqn (6.3) for x > 0.85

as the L minima will form the ultimate conduction band in bulk Sii..Ge material. However, the

strain imparted to the Sii..Ge layers used in HBTs is generally sufficient to reduce some of the A

minima below the L minima even as x approaches 1 (i.e., pure Ge) [106]. For this reason it will be

assumed that the L minima can be ignored. However, the energy of the L minima change much
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more rapidly for a given change to x than the A minima do. Thus, it would be possible to achieve

larger band offsets using the L minima versus the A minima, or to achieve the same band offsets

but with a smaller change in x (which would help address the critical layer thickness problem).

The drawback to using the L minima is the substrate would have to be essentially Ge, and not Si,

grown along (111). But, given the much higher mobilities in Ge versus Si, then SiGe HBTs based

upon the L minima should outperform current SiGe HBTs based upon the A minima.

Eg(X) in eqn (6.3) solves the first problem of including the alloy effects into the conduction

and valence bands of Sii.Ge. The second problem of including the effect of strain is now ad

dressed. Fig. 6.3 shows the effect of in-plane biaxial tension and compression. Fig. 6.3(a) shows

the case where the substrate lattice constant as is larger than the alloy lattice constant aa. The

commensurate growth of the alloy layer to the substrate forces the in-plane alloy lattice constant

to match a5. In so doing, a biaxial in-plane tension results in the pseudomorphic alloy film. In an

attempt to lower the energy contained within the film, the out-of-plane alloy lattice constant com

presses below aa. The pseudomorphic alloy layer will then have a larger in-plane lattice constant

when compared to the out-of-plane alloy lattice constant, leading to a tetragonal crystal instead of

a cubic one. Contrarily, Fig. 6.3(b) shows the case where the substrate lattice constant a is small

er than the alloy lattice constant aa. The commensurate growth of the alloy layer to the substrate

forces the in-plane alloy lattice constant to match as. In so doing, a biaxial in-plane compression

results in the pseudomorphic alloy film. In an attempt to lower the energy contained within the

film, the out-of-plane alloy lattice constant expands past aa. The pseudomorphic alloy layer will

now have a smaller in-plane lattice constant when compared to the out-of-plane alloy lattice con

stant, which again leads to a tetragonal crystal instead of a cubic one. It is the fact that the pseudo

morphic alloy layer has broken the cubic symmetry of the original lattice that leads to the changes

in the conduction and the valence bands.

The initial applied stress tensor to the alloy layer can be viewed as a uniaxial stress accompanied

by a uniform hydrostatic pressure applied over the entire cell. If the in-plane interface is parallel to the

x-y plane, with the direction of growth parallel to the z-direction, then the initial applied stress is [1081:

t 0
Applied stress = = ti + 0 (6.4)

0 —t
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where the growth is in the [001] direction, and a blank location in the tensor is zero. The first term

on the right of eqn (6.4) is the hydrostatic pressure applied to the overall cell, while the second

term is the uniaxial stress, of opposite direction to the biaxial stress, applied to the out-of-plane

lattice constant. Therefore, the symmetry breaking of the alloy’s unit cell occurs along the direc

tion of growth (i.e., the z-direction). Thus, any changes to the energies of the A conduction band

minima will leave the A minima along [001] and the [OOT] directions degenerate (i.e., E), as well

as the A minima along [010], [OTO], [100] and the [TOO] directions degenerate (i.e., E).

‘Alloy’
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-111.1 -a

+

WWJEE mm
Substrate
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I I I
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— Substrate — — — — —

————— III
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Fig. 6.3. Commensurate growth of the SiiGe alloy layer to the Sii.Ge substrate, leading
to a pseudomorphic alloy film. (a) the substrate lattice constant a5 is larger than the alloy lattice
constant aa. The resultant biaxial tension, which results from aa expanding to fit a5, distorts the
out of plane alloy lattice constant by compressing it. (b) the substrate lattice constant as is smaller
than the alloy lattice constant aa. The resultant biaxial compression, which results from aa com
pressing to fit as, distorts the out of plane alloy lattice constant by expanding it.

H Haa (a)

Alloy

(b)

-4-a
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The final diagonal components e, e and e of the strain tensor, after the layer becomes

pseudomorphic, are given by the relative difference between the final pseudomorphic lattice con

stants and the initial bulk values [106,107,112,114]. Given that we are dealing with systems that are

lattice matched to { 100 } substrates, and that the direction of growth is [001], then the strain tensor is:

a3
— aa

= [exx ]
= aa

asaa
(6.5)

ezz
1+v aa-as

exx+(i) a3

where v is the Poisson ratio (which is equal to 0.273 for Ge and 0.280 for Si [107], so on average

is 0.277 for Sii..Ge). The lattice constants aa and as are obtained by a linear interpolation be

tween the bulk lattice constants for Si and Ge giving:

aa = 5.43 + 0.23xaA
a3 = 5.43 + 0.23x3A

(6.6)

where xa is the Ge content in the alloy layer, and x is the Ge content in the substrate layer.

In order to determine how E and E respond to strain it is instructive to define an average

conduction band energy
.

The reason for defining is that depending on the direction of strain,

either E or E will form the ultimate conduction band E; so using E as the reference would be

come mathematically cumbersome. is given by the weighted average of E and E; i.e.,

— 4E4+2E2 2E4+E2
= C6

C = C3 C
(6.7)

Using deformation-potential theory, the change to (i.e., A) due to strain is [106,107,112,114]:

= (d + ) 1: ë
= (d + E) (e + + (6.8)

where d and are the dilation and uniaxial deformation potentials respectively. Further the

change in energy for a specific A conduction band minima is given by:

= [d1+EUtàI}]:ë (6.9)

where à is the unit vector parallel to the i ‘th A conduction band minima, and { } denotes dyadic

product. For example, the change in the energy of the A conduction band minima along [100] is

given by:
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100
=

+ :ë = d(eYY+eZZ) + (d+U)eXX.

0

Finally, using eqns (6.9), (6.8) and (6.5) where e = e, then the energy difference between E

and as well as E and are given by:

= E’°°1 = E°’°1 = AE’°°1 —AE = ({aa} —

1 1/3 2 1
= 0 — 1/3 (6.10)

0 1/3)
1,_

= —e±

and

E = E°°1 = — AE = ( {aà1} — 1) :ë

0 1/3 2
= 0 — 1/3 : ë

= (— (e + e) + (6.11)

1 1/3)
2_

=

where e± — e, and u(xa) = 9.16 +O.26xaeV [106]. Eqns (6.10) and (6.11) give the change

due to strain in the energy of the band minima for E and E respectively, relative to
.

Thus, E

and E are used both as a label and as a material parameter.

Observation of eqns (6.10) and (6.11) confirm the general statements given earlier in the

section regarding the changes to the conduction band due to strain. For compressive strain in the

alloy layer; xa > x5 so that aa > a and eqn (6.5) has it that e± e — e > 0. Since > 0, then

eqns (6.10) and (6.11) have it that E <0 and E > 0, which confirms that under compression E

forms the ultimate conduction band. Contrarily, for tensile strain in the alloy layer, Xa <x so that

aa < as and eqn (6.5) has it that e± < 0. Then eqns (6.10) and (6.11) have it that E > 0 and E <

0, which confirms that under tension E forms the ultimate conduction band.

With the changes to the conduction band due to strain determined, the valence band is now

solved for. The designations for the hh, lh and so valence bands are based upon the valence band
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strain Hamiltonian [118]. To this end, it has been determined that the quantum numbers for total

angular momentum J as well as magnetic moment (spin) m remain unchanged with the applica

tion of strain. This leads to the hh band designation of IJ= ; m1= or I ; ±) for short; the lh

band designation of I ; ±); and the so band designation of I ; ±). The solution of the valence

band strain Hamiltonian [118,107] produces:

I;±) hh_2 2
— E — Du(xa)e± — u(Xa) (e — e)

2
E2

— 2
= E = — (E + A(Xa)) + J9 (Er) + A2(Xa) — 2E!hA(Xa) (6.12)

2
E2

— 2
= = — (E + A(Xa)) — J9 (Er) + A2(Xa) — 2E!bA(Xa)

where Du(Xa) is the valence band deformation potential equal to 3.15 + l.l4xaeV [106], and

A(Xa) is the split off energy, defined in Fig. 6.2, which is equal to 0.044 + 0.246xaeV [107].

Using a similar technique to the one used for the solution of the conduction band, an aver

age valence band energy is defined and subsequently used as the reference point for all valence

band energies; i.e.,

— Elth+ETh+E80
i= V V V

= A(Xa). (6.13)

It is interesting to note that, defined in eqn (6.13) is independent of the applied strain. Also, be

cause is not zero, the valence band energies in eqn (6.12) are not using
, as their energy refer

ence (substituting eqns (6.11) and (6.10) into (6.7) gives = 0, which shows that is indeed the

energy reference for the conduction band). Observation of eqn (6.12) shows that under the condi

tion of zero strain (i.e., e± 0), then E1 = = 0, and E° = A(xa). Therefore, the energy ref

erence for eqn (6.12) is not but the valence band edge of bulk Sii..Ge. The reason for using ,

will become obvious when the band offsets at a heterojunction are determined in Section 6.2.

Eqns (6. 10)-(6. 12) determine the effect of uniaxial strain, due to the second term on the

right-hand-side of eqn (6.4), on the conduction and valence bands of Sii.Ge. Eqn (6.3) deter

mines the effect of the Ge alloy content. Finally, the effect of the hydrostatic force, due to the first

term on the right-hand-side of eqn (6.4), is determined. The hydrostatic force results in either a

net decrease or increase in the total volume of the crystal’s unit cell. A volume change in the unit

cell will be accompanied by a change in the absolute energy of the conduction and valence bands.
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This net change in absolute energy is best determined by calculating the differential change to

and (i.e., andi1,). Eqn (6.8) solves for and in a similar fashion A, = al: ë, where a

is another deformation potential that is characteristic of the material [105,107]. Put together, the

hydrostatic change to the bulk Sii..Ge bandgap is:

/XEg = AE — AE = (3d-’- — a) 1: ë
= (d + — a) (e + + e) (6.14)

where —a = 1.5— 0.l9xaeV [106].

Eqns (6.1)-(6.3), and (6.10)-(6.14) together determine the effect of Ge alloy content and

strain on the conduction and valence bands. Specifically, the bandgap of a Sii.Ge alloy layer

commensurately strained to a Sii.Ge substrate is:

Eg(Xa, x) = Eg(xa) + L\Eg + min(E, E) — max(E, E). (6.15)

It must be remembered that for xa > 0.85 it is possible for the L conduction band minima to be

come the ultimate conduction band. Therefore, the use of eqn (6.15) is valid for xa > 0.85 only if

there is sufficient strain to ensure that the ii minima, and not the L minima, still form the ultimate

conduction band.

Fig. 6.4 plots the Sii.Ge bandgap for a variety of substrate cases. The most striking fea

ture of Fig. 6.4 is the effect of strain on the bandgap. Comparing the bulk material bandgap to any

of the other strained cases shows that the Ge alloy content of the Si ixpexa layer plays a far small

er role than strain does in determining the bandgap. In fact, observation of the line for a pure Si

substrate shows thatSi045Ge055 lattice matched to { 100} Si has a bandgap of 0.66eV, which is

that of bulk Ge. The strange shape concerning the lines for material strained to substrates of

Si075Ge025,i050Ge050,and Si-j25Ge075 is due to the fact the material is shifting from a case

of in-plane tension to compression. Take the example of a Si05OGeO5O substrate. When the

pseudomorphic layer has a Ge mole fraction in the range of 0 Xa 0.50, the layer is under in-

plane tension as the substrate has a larger lattice constant. Thus, as xa increases towards 0.50 the

tension is decreasing and the bandgap will increase, with E forming the ultimate conduction

band. When Xa = 0.50 there is no strain and the bandgap will be given by the bulk value. Finally,

as xa increases past 0.50, the strain switches from in-plane tension to compression. When this

change in the direction of the strain occurs, E forms the ultimate conduction band (this is why

there is a corner in the plot, however, the E and E bandgaps continue on in a smooth fashion but

do not form the ultimate bandgap). As xa increases past 0.50 the amount of in-plane compression
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continues to increase which reduces that bandgap once again. The essential feature of strain is that

it always reduces the bandgap from the bulk unstrained value.

I I I • I

1.1

1 0 Bulk Material -

0.9 on 25% Gb.., .

0.8 \•.. -

on 50% Ge .

0.7 ,.....,....•,,,,,,
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on GeX/2

0.5 on0%Ge

0.4 • • I • I

0.0 0.2 0.4 0.6 0.8 1.0
Germanium Mole Fraction Xa

Fig. 6.4. Sii.Ge bandgap when grown commensurately to a variety of substrates oriented
along (100). All values reflect the energy from the top of the valence band to the lowest A minima
in the conduction band. The bulk material bandgap is for reference and is valid only forxa < 0.85;
for Xa > 0.85 the bulk material line is not the ultimate bandgap but the bandgap to the A minima.

Eqns (6.10)-(6.1l) give the conduction band energies of E and E relative to . Examina

tion of eqns (6.10)-(6.11) shows that under zero strain, when e1 = 0, E = = 0. Thus, is the

position of the ultimate conduction band in the absence of strain. If the position of the unstrained

conduction band is known, eqns (6.lO)-(6.11) will yield the offset to the conduction band due to

any strain in the layer. Fig. 6.5 plots E and E relative to using similar substrates as found in

Fig. 6.4. Observation of Fig. 6.5 shows the changes in E and E to be quite linear in terms of

strain. Furthermore, whenever the pseudomorphic layer is under compression then E forms the

conduction band, but when the layer is in tension then E forms the conduction band. Finally, E

changes more rapidly than does E for a given increase in the amount of strain.
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Fig. 6.5. E and E conduction band energies relative to the unstrained conduction band edge
for SiiFe commensurately grown to a variety of substrates oriented along (100). The ulti

mate conduction band edge will be formed by the band with the lowest energy.

As was stated earlier, eqn (6.12) gives the energy offset of the hh, lh, and so bands relative

to the unstrained valence band edge. Fig. 6.6 plots the hh and lh bands relative to the unstrained

valence band using similar substrates as found in Figs. 6.4 and 6.5. The so band is not plotted be

cause strain simply continues to lower the band peak even further, meaning that the so band will

not be of any consequence regarding the transport of holes. Comparison of Fig. 6.6 with Fig. 6.5

shows that unlike the conduction bands, the valence bands respond in a non-linear fashion with re

spect to an applied strain. Furthermore, there is not as large a change in the energy of the valence

bands due to strain as there is in the conduction bands. Finally, whenever the Sii..Ge layer is

under compression, then the hh band will form the ultimate conduction band; while under tension,

the th band will form the ultimate conduction band.

Finally, it is instructive to present a surface plot of constant energy in k-space, depicting the

conduction bands in Sii..Ge under the influence of strain. Fig. 6.7 plots the surface of constant
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energy that envelopes the six A minima in Si083Ge017 commensurately strained to (001) Si.

Since the pseudomorphicSi083Ge017 layer is under an in-plane compressive strain, then Fig. 6.5

shows that E will form the ultimate conduction band. The constant energy surface used in Fig.

6.7 is set at 209meV above the minimum in the E band. The energy separation between E and

E for the case considered is 116 meV. As a result of the choice for the energy surface, the ellipses

that represent are reduced by 33% compared to the effipses that represent E. If a more realis

tic surface energy of 2kT (= 52meV at room temperature) were used instead of 200meV, then the

E band would not be seen at all. This demonstrates the profound effect that strain imparts to the

SiiGe layer.
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Fig. 6.6. E and E’ valence band energies relative to the unstrained valence band edge for
Sii..Fe commensurately grown to a variety of substrates oriented along (100). The ultimate va
lence band edge will be formed by the band with the highest energy.
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1.

Fig. 6.7. Constant energy surface plot depicting the E and E bands in Si083Ge0 17 commensu
rately strained to (001) Si. The k-wave vectors are normalised to one-half the length of the recipro
cal lattice vector. The constant energy surface is set at 209meV above the minimum in the E4
band. The E band lies 116meV above the E band. The E ellipses have a longitudina1 extent o’f
0.8, while the E ellipses have a longitudinal extent that is 33% less than the E band, or 0.53.

This section essentially presents a concise review of the relevant theories regarding the

movement of the conduction and valence bands in Sii..Ge under the influence of strain. Further

more, the most recent material parameters regarding deformation-potentials have been included.

However, there is still considerable change occurring to the relevant material parameters of

Sii..Ge at this time. As Sii..Ge becomes a more important material in mainstream commercial

ICs, the need to ultimately obtain the relevant material parameters will force the solid-state com

munity to finalise on the parameters. This process will most likely follow the course that

1.00 1.00 k
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MGaiAs took, in which a decade passed before the solid-state community settled on a firm set

of material parameters. In any event, this section has clearly shown the profound effect that strain

has on Sii..Ge; so much so that strain produces more of an effect on the bandgap than does the

Ge alloy content.

6.2 Band Offsets in Sii..Ge

Section 6.1 presented all of the relevant material parameters to describe the conduction and

valence bands of a Sii..Ge alloy layer commensurately strained on top of a { 100) SiiGe

substrate. This section will present the band offset models that predict the valence band and con

duction band discontinuity at an abrupt heterojunction. Therefore, when the results of this section

are combined with the results of Section 6.1, all of the relevant models for Sii.Ge regarding the

position of the conduction and valence bands within a device can be determined.

The seminal theoretical work on the band alignments between Sii..xex1 and SiixGex

(where the 1,r subscripts refer to the left and right films respectively), when commensurately strained

on top of a { 100) Sii.Ge substrate, was done by Van de Walle and Martin [106,119,120]. They

analysed a SiGe system in one dimension using a quantum mechanical model. To remove the issue

of boundary conditions that would destroy the crystalline periodicity required to establish Bloch

functions, they developed a supercell structure. The supercell structure had a unit lattice cell that was

constructed of n Si atoms followed by n Ge atoms. By extending this unit supercell to infinity, though

the Born-von Karman boundary conditions, Van de Walle and Martin were able to obtain the band

offsets. In order to establish that the size of the supercell was large enough to ensure bulk material

properties away from the heterojunction, the band offsets were determined for a variety of n. Van de

WaRe and Martin established that for n >5 the material was bulk-like away from the heterojunction.

In fact, the shape of the Bloch electron’s wave function became bulk-like after moving only one lat

tice constant away from the heterojunction. Therefore, Van de Walle and Martin concluded that the

perturbing effect of the abrupt heterojunction was indeed localised to the space immediately sur

rounding the interface.

The main conclusion from the work of Van de Walle and Martin is that the average valence

band offset A, between a pseudomorphic Si to Ge heterojunction, whether commensurately

strained to either a { 100) Si or Ge substrate, is a constant of 0.54±0.04eV (where the Si is low

er in energy that the Ge Numerous other individuals [12 1-124] have gone on to perform ex
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perimental measurements of zVP with variations that are always lower than 0.54eV, and which are

as low as 0.2eV. Recently, experimental measurements by Yu [125] have given E, =

0.49±0.13 eV. However, after performing an array of measurements on a variety of substrates

(thereby changing the strain), it was found that A varied slightly with strain. The final results

from Yu [125] were:

AEv(Xai Xar) = (0.55 — 0.12x) (Xai Xar), (6.16)

where Xa(, Xar and x refer to the Ge mole fraction in the left, right and substrate crystals respec

tively. Finally, Fig. 6.8 defines all of the energies and the offsets.

At issue with eqn (6.16) is the considerable appeal to linear interpolation between material

parameters for bulk Si and bulk Ge. To complicate things further, the material parameters that

govern the conduction band and valence band movements due to strain have considerable variabil

ity depending on which experimental method is used to obtain the results. At the moment there is

no clear set of material parameters to use in order to determine the band offsets and movements

within SiGe. The complexity of the SiGe system is quite high, however, it is essential that the ma

terial science community finalise on a set of material parameters and models so that SiGe HBTs

may be accurately simulated.

Use of eqn (6.16) produces conduction band offsets AE that are far too large. Experimental

measurements of AE [105,111,126,127] show that there should be no more than ±30meV of

offset between Si ixapexa, and SiiGe grown on a pure Si { 100) substrate, where Xal and Xar

can take on any value in the range of 0 to 1. Furthermore, recent measurements by Gan et. al.

[128] have shown that AE should equalO.64xaieV when xar = x =0. Use of eqn (6.16) produces

= 0.8OxaieV. By reducing LcP from 0.55eV back down to 0.49eV in eqn (6.16) produces:

v(Xaiar) = (0.49—0.12x) (XaiXar). (6.17)

Use of eqn (6.17) instead of eqn (6.16) reduces EiE to be no more than +48meV and -42meV (as

compared to +30meV and -100meV), while also giving AE = O.74xaieV. Finally, if Du(xa) in eqn

(6.12) is changed to 2.04 + 1.77xaeV [107] then IXE remains unchanged and AE = 0.68xaieV

The use of eqn (6.17) instead of eqn (6.16) is within the experimental error of the measurements

in [125]. Further, eqn (6.17) when combined with Du(xa) = 2.04 + 1.77xaeV produces conduction

and valence band offsets that match experimental observations closer than when the material val

ues proposed within [125] are employed. Thus, there is no clear set of parameters as of yet for the
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modelling of the SiGe material system. However, the differences between the various models pre

sented here is within 50meV. Therefore, in terms of the studies to be presented later on in this

chapter, a small discrepancy of 50meV will simply cause a slight variation in the Ge alloy content

of the various layers, but will not effect the ultimate function of the HBT.

Fig. 6.8. Conduction and valence band energies including all of the band offsets for a Sii3e1
to a SiiGe heterojunction commensurately strained to a { l0O} Sii..Ge substrate. The des
ignation of 1 and r refer to the left and right crystal respectively, where all A energies are referred
to the crystal on the right.

Eqn (6.17) provides the critical model that relates the band energies of two different SiGe

crystals across an abrupt heterojunction. Once zVL, is known, then by using Fig. 6.8, all of the oth

er relevant offsets can be determined by appealing to the models of Section 6.1. Using eqns (6.3),

(6.1O)-(6.15), and (6.17) along with the aid of Fig. 6.8 yields:

E
E

lh
V

,hh
i—V

E
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= + (A1 — A) + [max(E’ , E’ 1)
— max(E’ r E’ r)]

EE tAEv+(Al_A7) +

AE1 .• A’) + (El_E.r)

(6.18)
AEc=AEv+(Al_A1) + (E—E)

= AE + [min(E’ , E”) — min(E’ r E4’ r)]

= 1E + (El
— E’ )

AE=LE+ (E4lE4r)

where the average bandgap Eg is equal to the bulk alloy bandgap given in eqn (6.3), plus the hy

drostatic change to the bandgap AE8 given in eqn (6.14). Therefore, eqn (6.18) provides all of the

necessary information to calculate any of the band offsets within the SiGe material system.

Although no one equation that forms the model of the SiGe material system is of a complex

nature, the cumulative effect of each sub-model leads to a complex system as is evident from eqn

(6.18). However, it is possible to arrive at a set of Taylor expansions for the models that govern the

band movements within the conduction band. Unfortunately, the valence band models (i.e., eqn

(6.12)) contain a square root dependence that proves impossible to approximate. Given the non

linear nature of the strain tensor, is it is not possible to achieve a simple linear approximation for

the conduction bands. By performing a multivariate Taylor expansion of the conduction band

models in eqn (6.18), up to and including second order terms, yields:

AE 0.1429 (Xar — Xai) x — 032789Xr + 0.O2l55Xar + O.32985x1
— O•02252Xai

0.1751 (Xar — Xai) x — 0.34084x,.
—0•43481Xar+ 0.34281x1+O•43384Xai (6.19)

AE 0.1268 (Xar — Xai) X
— 0.3214lx +0.24973Xar + 0.32338x1

—0.25070Xai

— 0.02723x +0.04836XaXs — 0.01943x + 0.68368x — 0.68454Xa

where all results are in eV, and E’2 = — E. Eqn (6.19) is accurate to within 1% of the full

model given in eqn (6.18) over the entire allowed range for Xal, Xa,, and x. The multivariate Tay

lor expansions were centered around Xal = 0, Xar = 0.5, and x = 0.5. Thus, eqn (6.19) should strict

ly be used with Xal <Xar however, if this is not true, then simply interchange Xal and Xa,. and
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multiply the result by -1. If the interchange of variables is not performed for Xal > Xa,, then the er

ror in eqn (6.19) will rise to 1.5%.

Examination of eqn (6.19) provides insight into the conduction bands of SiGe. Considering
2 first, the two last linear terms in xa and x are the dominant terms. Therefore, to a crude ap

proximation, E’ 2
O.684(x— xa); which corrects the proposal of E’ 2

O.6Xa by People [1051

and Pejcinovic [28] who considers only a Si substrate. Examination of the other models in eqn

(6.19) shows a linear dependence upon the substrate Ge alloy content x. It is by no coincidence

that the coefficient that governs the x dependence in AE is 0.1268, as compared to the coeffi

cient of 0.12 in eqn (6.17). The largest portion of the substrate dependence in eqn (6.19) is due to

the model for A Therefore, the material science community must determine for certain the ef

fects of substrate strain, in order than SiGe devices can be developed where substrate strain is uti

lised. Finally, the non-linear terms in eqn (6.19) stem mainly from the non-linear dependence that

the bulk bandgap has on the Ge alloy content.

In terms of the conduction band, Fig. 6.9 plots E and E to the left and right of a hetero

junction under the proviso that the entire system is commensurately strained to a { 100) Sii..Ge

substrate. The first thing to note is that EE is generally smaller than z\E, and is of such a nature

that in going from the left to the right there is a downwards step. The reason for not classifying

this as either a type I or II heterojunction is that the bandgap is not a monotonic function of strain,

as is evidenced in Fig. 6.4. Thus, classification in terms of type I or II would require detailed

knowledge of the strain state, which would destroy the simplicity of the type I or II designation.

However, when going from a pure Si crystal to a Sii..Ge crystal there is always a small down

wards AE. Contrarily, AE is in general quite large, much larger than and is of an upwards

nature in going from a pure Si crystal to a Sii.Ge crystal. Most importantly, Fig. 6.9 clearly

demonstrates that the character of the conduction band can change between E and E when

crossing a heterojunction. Fig. 6.10 goes on to show that AE indeed has a complex nature when

strain is brought into the picture. There are three distinct regions in Fig. 6.10: 1) when x < (xai,

xar) then AE is governed by E1 to E’ r 2) when Xal <Xy <Xar then AE is governed by E’1 to
4. r 3) when x> (xai, xar) then AE is governed by E’1 to E’ r

To conclude this section AE is plotted in Fig. 6.11. The various parameters are identical to

the ones in Fig. 6.10. As with AE also displays the same type of complex features which are
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Fig. 6.9. E and E conduction band minima to the left and right of an abrupt heterojunction
when commensurately grown atop a { 100 } SiiGe substrate. All energies are relative to E on
the right hand side of the heterojunction. (a) Xal 0, Xar = 0.15; (b) Xal 0, Xar = 0.30.
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Substrate Germanium Mole Fraction x

Fig. 6.9. Continuation of Fig. 6.9 from the previous page. (c) Xal 0, Xar = 0.45; (d) Xal =0, Xar

= 0.60.
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Fig. 6.9. Continuation of Fig. 6.9 from the previous page. (e) Xal 0, Xar = 0.75.
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Fig. 6.10. tE when xa,. = Xal + 0.20, afld Xal and x are varied. The right side is the reference.
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hh lh
due to the ultimate valence band changing from to . Just like Fig. 6.10, there are three dis

tinct regions in Fig. 6.11: 1) when x < (xai, xar) then AE is governed by E’1 to E’
r; 2) when

Xal <Xç <Xar then AE is governed by E’1 to E1”r; 3) when x > (xai, xar) then AE is governed
lhl IhrbyE toE

6.3 Electron Transport in Strained Sii..Ge

Sections 6.1 and 6.2 present the necessary Sii..Ge material models to determine the overall

band diagram, including offsets at abrupt heterojunctions, within any SiGe solid-state device. This

section will focus on determining the transport models for electrons and holes within the Sii..Ge

material system. Essentially, the models presented in all of the previous chapters are applicable to

the study of SiGe-based devices. For example, Chapter 4 presented the EB SCR transport models

-0.05

“—;: -0.10

-0.15
0.00

l.oo 0.80

Fig. 6.11. zXE.1, when Xa,. = Xal + 0.20, and Xal and x are varied. The right side is the reference

July 12, 1995 159



which included the effects of tunneling and the mass barrier. Therefore, Chapter 4 can be applied

to a SiGe device to determine if the EB SCR will generate current-limited-flow. However, care

must be exercised in the application of Chapter 4, and indeed all of the other chapters, as there is a

multi-band model for the Sii..Ge material system. This section will discuss and present the

transport models for the multiband Sii.Ge material system.

From the work in the previous two sections, it is clear that the conduction and valence bands

are both broken down into two distinct sub-bands (the so valence band is ignored as it is always

lower in energy than the lh and hh bands, especially under strain, and is of such a low carrier mass

[96] that hole transport can be ignored). Unlike the AlGai..As material system, where the higher

energy satellite band never forms the ultimate conduction band, E and E in the Sii.Ge materi

al system can both form the ultimate conduction band. Thus, it is possible to have near equilibri

um transport occur within both E and E at spatially separate points with the device; this is in

contrast to the AlGai..As material system where transport in the satellite band need only be con

sidered under extreme non-equilibrium injection conditions. Further, this multiband transport can

also occur in the valence band of the Sii..Ge material system. Given the strange band offsets de

picted in Figs. 6.9 to 6.11, it will be shown that transport within the Sii.Ge material system can

offer a rich set of possibilities, both in terms of commercial HBT optimisation, and as a tool for

research into the mechanics of transport within solids.

Considering the valence band first of all, Fig. 6.2 shows that EL and E are degenerate un

der the condition of no strain. More importantly, the maxima in both E! and E occur at the

same point in k-space. Even under strain, the maxima in E and E’ remain coincident in their k

space location. Therefore, there is very little issue regarding the conservation of crystal momen

tum in moving between the lh and hh bands, if the mass barrier that would occur at the hetero

junction for holes is neglected, then to a good approximation one need only consider the ultimate

valence band in terms of hole transport. However, if the strain is small, so that the energy separa

tion between E and E is less than —2k1 then transport within both bands needs to be consid

ered. As is attested by eqn (6.1), the mass barrier for holes cannot be neglected as ‘y from eqn

(4.80) is typically -2 but can be as small as -10. With y = -2, fully two-thirds of the current cross

ing the mass barrier could be reflected, leading to a 3-fold reduction in the transport current. A 3-

fold reduction in the transport current would be equivalent to having an upwards step in energy of
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28.5meV at room temperature. Therefore, when 11Ev is less than —2kT one must consider parallel

transport within E and E!j. But, no matter how large or small AE is, the calculation of the va

lence band effective density of states N must include both E and E’ due to the large difference

in the lh and hh effective mass.

The complexity of the valence band stems from the coincident k-space location of the band

maxima for E and E. Examination of Fig. 6.7 shows that the Sii..Ge conduction band mini

ma are not coincident in k-space. Thus, in order to move between any of the six A minima in

Sii.Ge, crystal momentum must be conserved. There are two scattering processes that are re

sponsible for intervalley scattering between the six conduction band A minima in Sii.Ge [129]

(see Fig. 6.12); g scattering moves electrons between two bands that are along a common major k

axis, such as the [001] and [OOT] bands that form E; while f scattering moves electrons between

two bands that are not along a common major k-axis, such as the [100] and [010] bands within

E. Given the proximity of the A minima to the Brillouin zone edge, an Umklapp process can eas

ily take place, leading to g scattering, because of the relatively small k-space separation that must

be conserved. On the other hand, f scattering involves a k-space conservation that is over one-half

of the reciprocal lattice length. Therefore, it is found that f scattering rates are almost 10-fold low

er than g scattering rates [129]. Tn terms of the E and E band groupings, g scattering will not re

sult in movement between the E and E bands. Finally, for small distances, such as those that are

typical of the EB SCR and neutral base width, f scattering is small enough to be ignored

[108,130]. These two results regarding intervalley scattering allow the E and E bands to be

treated independently, allowing for a large simplification as compared to the valence sub-bands.

The arguments of the previous paragraph, justifying the independence of the E and E

bands, must be considered in the light of an abrupt heterojunction. At an abrupt heterojunction,

one would expect that a powerful Bragg plane could exist that would be perpendicular to the di

rection of charge transport across the heterojunction. Such a powerful Bragg plane could enhance

f scattering, leading to a coupling between the E and E bands. Consideration of the k-vector in

volved in f scattering relative to the Bragg plane, shows the two are separated by 45°. With a 45°

degree separation, it would not be expected that Bragg plane scattering at an abrupt heterojunction

would lead to a significant increase in the f scattering rate [1081. Therefore, the independence of

the E and E bands should be maintained even at an abrupt heterojunction. This leads to the for-
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mation of a selection rule regarding transport in Sii..Ge that prohibits a mixing between the elec

trons in E and E.

g scattering

4
-K’ E\,,

E

YE2 \I
f scattering

gscattering

Fig. 6.12. Diagram of the A conduction band minima involved in f and g intervalley scattering.
For clarity, only 1 of the 3 g scattering processes, and 1 of the 12 f scattering processes is shown.

With the E and E bands treated independently of each other, the task of modelling elec

tron transport within the Sii..Ge material system begins with calculation of the electron effective

densities of states, N and N respectively. The density of states for band n is given by [131]:

g(E) = n f — E(k)) (6.20)
B.Z.

where n = 2 or 4 in the case of Sii.Ge strained to a { 100) substrate, and B.Z. means Brillouin

zone. The pre-multiplying factor of n in eqn (6.20) results from the degeneracy of the E and E

bands and the fortuitous designation where n is equal to 2 or 4. Then the effective density of

states, assuming that the band-width is Eb and that Boltzmann statistics can be used, is equal to:

Eb E E,, E E(k)

N = JdE g(E)e’

= Bt.
6(E — E(k))e’

= Bt

.__ekT. (6.21)
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Eqn (6.21) can be easily integrated with little error by assuming that the limit of integration

can be extended past the Brillouin zone to infinity; i.e.,

00 1ik h2k 1i2k 3/2

N = _!_e fdkxe2mu1cTfdkye2mh1cTfdkze2mtkT = 2ne (6.22)

where
* 1/3

m = (m1mm)

The appearance of the term exp(-EIk7) in eqn (6.22) is due to the fact that the reference energy for

the conduction sub bands is not located at the band minima, but at
.

One could have maintained

the reference energy at the band minima, but then N and N would have different energy referenc

es and eqns (6.1O)-(6.11) could not be used directly within eqn (6.22). Furthermore, by employing

a common energy reference of
,

the total conduction band effective density of states is:

3/2( E

N = 1V+N
=4(m’

. (6.23)
2ich ) J

Finally, it is possible to reflect N from the energy reference of back to the ultimate conduction

band minima by multiplying eqn (6.23) with exp(min(E, E)Ik7).

The exact same methods used to determine P4 and N can be applied to the calculation of

the hole effective density of states within the valence sub-bands, leading to:

3/2 E 3/2

N = 2e
(mhhkT\1

and N = 2e’
(mlhkTN (6.24)

L21th ) L2ith )

Then, owing to the different effective masses for the lh and hh, the total valence band effective

density of states is given by:

3/2

N = N’ +N = 21 kT
(mhh)3”2e’+ (mlh)3”2e’ . (6.25)

2ith j )

In a similar fashion to the conduction band, the reference energy for the valence band is not locat

ed at the ultimate valence band maxima, but at the location of the valence band maxima under the

condition of no strain. To reflect N back to the energy of the ultimate valence band maxima, mul

tiply eqn (6.25) by exp(-max(E, E)Ik1).
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Eqns (6.22)-(6.25) present the conduction and valence band effective density of states for

the Sii.Ge material system. These equations represent an extension to the traditional definitions

for effective density of states, necessitated by the complex band structure of Sii..Ge under the in

fluence of symmetry-breaking strain. Finally, the electron and hole concentrations n and p respec

tively are defined using eqns (6.25) and (6.23) in the usual non-degenerate manner, to yield:

E E

n = NceU’ and p = Ne
‘ (6.26)

where Ef is the electron quasi-Fermi energy relative to
,

and is the hole quasi-Fermi ener

gy relative to the unstrained valence band maxima. After allowing for the fact that the conduction

and valence band energy references are separated by g’ as is shown in Fig. 6.8, then:

E8

n=pn=NNe kT

3 ( E E ( E,t’ g
(6.27)

= ( kT
‘ (m*

3/2
eICT + 2e’ (mhh) 3/2ei; + (mlh) 3/2e eu’,

\1tli )

where the average bandgap g is equal to the bulk alloy bandgap given in eqn (6.3), plus the hy

drostatic change to the bandgap Ag given in eqn (6.14). Unlike eqns (6.22)-(6.26), n given in

eqn (6.27) does not reference itself to an abstract energy reference, but is the standard definition

for the intrinsic carrier concentration.

With the effective density of states defined for the conduction and valence sub-bands in

eqns (6.22)-(6.25), along with the carrier concentrations and n given in eqns (6.26)-(6.27), it is

possible to define the built-in potential Vb1 of apn-junction. Looking at Fig. 6.13, then clearly:

Vbi = (Eje,j — (E — Eg,p)) + (x — x) = ln(”)+ (, — x). (6.28)
ni,p c,n

Comparison of eqn (6.28) with eqn (4.69) shows, apart from the effect of a spatially varying

effective density of states (which is neglected in eqn (4.69)), exact agreement if
— = Vbj

is the variation in the vacuum potential across the SCR extrapolated back to equilibrium condi

tions. Thus, the electron affinities Xp and xn on the p- and n-sides of the junction are evaluated at

x = and x = -x, respectively. If and are spatially varying, then as a changing applied bias

moves and x,, Vb1 will also vary with applied bias. It is well known that Anderson’s electron af

finity rule for the calculation of AE is not correct. However, at some distance far from the hetero
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junction, and must become bulk-like. The question becomes how rapidly do Xp ifld Xn
return to their bulk values? The deviation of AE from

—

has been attributed to such things

as a complex rearrangement of charge surrounding the heterojunction. Thus, if this rearrangement

of charge is abrupt, as is potentially suggested by Van de Walle and Martin [106, 119,120], then

and would definitely change over the width of the SCR; leading to an extra driving force for

the transport of charge than is not taken into account by any known theories. If this rapid variation

in and x turns out to be true, then Vbj will not be a constant as is given in eqn (4.69), but is in

stead given by eqn (6.28) with Xp and being a function of position. Finally, Vbj contains all of

the desired information regarding
, Xn’ and thus zSE. Therefore, if the pn-junction could be

driven up to and past Vbj, without resistive effects dominating the transport current, then informa

tion regarding
,

X and thus AE could be extracted. This possibility of operation near and past

Vbj will be considered in Section 6.4.

E (eV)

I

Fig. 6.13. Equilibrium band diagram of a np-junction, showing the relevant energies and poten
tials. Ef is referenced to E while is referenced to E. Note that the Vacuum potential is con
tinuous while E and E are not.

Unstrained E

Unstrained E
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Concentrating once again on the conduction band, the final models for electron transport

can be determined. By the previous arguments, electron transport in the EB SCR and the neutral

base can be modelled as two parallel conduction paths via E and E. It is further assumed, at

least with the current-day knowledge of the Sii..Ge material system, that eqn (6.2) is correct,

which precludes the formation of a mass barrier. Therefore, transport through the EB SCR would

be given by the sum of E and E conduction solved by the standard transport model given by

eqns (4.78)-(4.79) and (4.92).

To this end, the correct parameters to use in the standard EB SCR transport model regarding

E conduction are:

m 1 = mQX) my, 1 m1(A) m 1 = m(Z) .L1 = relative to

= 4q2Jm imikT = 4tq2Jm1m1kT
= q2

h3 h3 J2tm(A)kT N

(6.29)

While the correct parameters to use in the standard EB SCR transport model regarding E con

duction are:

m, = m1(A) m, 1 = m(z) m = m(A) = relative to

F2
— 4irq2Jm lmzl kT — 4itq2Jm1m1kTI2ND ‘1 — q2

‘N
N

fs0
— h3

e
— h3 N

— J2itm1(A)kT

\ (6.30)

q2N ek band degeneracy

— J2tm1(I)kT E

e kT+2e kT

Examination of Fjo in eqns (6.29) and (6.30) reveals the exact context of parallel transport within

E and E. There are ND majority electrons that are distributed between the E and E bands, de

pending upon the energy separation between the two. Since there are twice as many A minima in

E as compared to E, there will be preferential transport within E, all other things being equal.
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Finally, the electrons within E and E move with a velocity that is proportional to the square-

root of l/mj and 1/rn1 respectively. Therefore, neglecting the energy separation between E and

E, the E band will carry 2Jmi/m = 4.54 times the current compared to E. Furthermore, be

cause E has the light transverse mass parallel to the direction of transport, as compared to the

heavy longitudinal mass for E, not only is the mobility higher [132] but the probability of tun

neling through a given barrier will be much higher for E compared to E.

Regarding transport within the neutral base, the independence between E and E can only

be maintained if the neutral base width is small enough to preclude coupling via the f scattering

process. For current-day SiGe HBTs the neutral base width Wfl, is under ioooA and is rapidly ap

proaching 300A [10,26,28,100-103,133]. With such a small neutral basewidth it is reasonable to

maintain the separation between E and E used for the modelling of EB SCR transport. With E

and E treated independently, the neutral base transport current within either one of the E sub-

bands is given by Kroemer [38] as:
—

—. qBE fn

NB

=

N(x)
dx

[e kT

-

(6.31)

Wnb
n(x)

wherej = 2 or 4. It should be noted that eqn (6.31) is an extension of Kroemer’s work which was

based upon Shockley boundary conditions. The reason for generalising the diffusion coefficient

D, as was discussed in the previous paragraph, stems from the fact that the mobilities within the

E and E bands will be different due to their highly anisotropic nature [132]. This leads to the

conclusion that D > D because rn < rn1. Further, each sub-band will have its own intrinsic carri

er concentration nb., which is determined in the same way as 1V, N and the total n to yield:

flj NNe
kT

= =‘ n = n4 +
(6.32)

Finally, due to the independence of the E and E bands, a separate quasi-fermi energy must be

present in order to account for the driving force within each sub-band. For this reason, there is

to characterise transport within the E band, and AE to characterise transport within the

E band.

The final model for electron transport within the SiGe HBT is achieved using exactly the

same methods employed in Section 5.3 for the derivation of eqn (5.29). Eqn (5.29) is based upon
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the general models of Section 2.2. Applying the models of Section 2.2 to the solution of transport

within the conduction sub-bands yields for the E band:

= [4L401’ (6.33)

where, based upon the findings of Chapter 5, the failure to include recombination effects specifi

cally in the calculation of the total transport current 4 will produce an error that is of order 1/13.

To reiterate, 4 is the EB SCR transport current solved by the standard transport model given by

eqns (4.78)-(4.79) and (4.92) with the pertinent parameters obtained from eqn (6.29). In a similar

fashion, transport within the E band is:

4= +

-1,

(6.34)
fs 1NB

where F8 is once again the EB SCR transport current solved by the standard transport model giv

en by eqns (4.78)-(4.79) and (4.92), but with the pertinent parameters obtained from eqn (6.30).

Then, the total electron transport T through the HBT is given by the sum of 4 and 4.
To conclude this section, transport within the valence sub-bands is addressed. As was dis

cussed earlier in this section, the coincident nature of E’ and E in terms of k-space location

prohibits an independent treatment, such as was done for the conduction sub-bands, of the two va

lence sub-bands. Fig. 6.2 clearly shows that the valence band of unstrained SiGe, and for that mat

ter all semiconductors, is a multi-band system. To this end, transport within the unstrained valence

band is determined by appealing to a single total effective mass that correctly produces the total

valence band effective density of states. Then, by way of experimental measurement, a single mo

bility is extracted to characterise the valence band as a whole. This method breaks down for the

case of strained SiGe, as the degeneracy of E and E is lifted and the energy separation is de

pendent upon the amount of strain present. This prohibits the use of a single effective mass and

fixed mobility to characterise the valence band of strained SiGe. Yet, the valence sub-bands can

not be treated independently for the purpose of determining charge transport, as was done for the

conduction sub-bands.

Essentially, the only way to solve transport within the strained SiGe valence band is to re

sort to Monte Carlo simulation. However, as was pointed out at the start of Chapter 4, Monte Car-
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lo simulators cannot presently model the non-local effects of tunneling. To this end, the following

two assumptions are made: 1) hole transport within the EB SCR is considered ballistically due to

the small width of the SCR, but the holes will always attempt to minimise their energy by moving

to the highest sub-band; 2) due to the strong intervalley scattering that occurs between E and

E, because of their coincidence in k-space, transport within the wider neutral regions of the

HBT is treated using a single equivalent valence band.

The implication of the second assumption is straightforward; transport is treated in the stan

dard single equivalent valence band approach. The only consideration that must be made in treat

ing the valence band as a single valley is the mobility will change with strain. In a region where

the Ge alloy content is not uniform the strain will change with position, which will move and

E either closer or further apart in terms of energy. Since the lh mass is much smaller than the hh

mass, considerable change to the mobility of the material will occur as E and E move closer

and further apart. This leads to a complex and spatially non-uniform mobility that is only due to

the energy separation of the valence sub-bands. Other effects such as impurity and alloy scattering

would also have to be considered.

The implications of the first assumption are even more interesting than those of the second.

For the purpose of tunneling, the lightest mass will produce the largest tunneling flux. But, con

servation of transverse momentum must be ensured for a hole to change bands, which leads to the

mass barrier results of Chapter 4. However, the hole will attempt to take the path of least resis

tance by minimising its energy; it may either continue on in the sub-band it currently occupies, or

change bands in an attempt to minimise its energy while taking into account the possible loss or

gain due to the mass boundary effect. The complexity of transport within the SiGe valence band

stems purely from the large difference in the lh and hh masses. If the lii and hh masses were the

same, then transport would occur along the highest energy sub-band (in terms of electron ener

gies), with a spatially varying N to consider.

The model for the EB SCR in Chapter 4 is simple in that the heterojunction is abrupt; there

by producing two regions, separated by a single mass barrier where the material parameters with

in each region are a constant (see Fig. 4.2). As a result of this, the relative separation between E’

and E will not change, except at the mass boundary. Therefore, for the calculation of the EB

SCR transport current for holes in the Sii..Ge material system:
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• initially consider the and E bands independently, injecting a hemi-Maxwellian of holes

into the EB SCR, characterised by the individual mass of the band.

• Using the standard flux model, given by eqns (4.78), (4.79) and (4.92), calculate the standard

flux Ff (Fj does not include the mass barrier) using the appropriate mass from eqn (6.1), and

- q2

(N
— J21tmkT A)’

where j is either hh or th. Within the standard flux model, the base barrier potential Vb

longer the one from the originating band, but is given by the maximum of E and E in the

neutral region (this is where the minimisation of hole energy enters the calculation).

• If the mass barrier effects are not considered, then the problem ends here. But, the mass barrier

can be quite large in the valence band, producing a potentially non-negligible effect. However,

the mass barrier effects are only important if the aforementioned calculation of the standard

flux has the holes changing between Et1 and E. If the holes do change bands then eqns

(4.85)-(4.86) are used in the case of an enhancing mass barrier; where as eqn (4.87) is used for

the reflecting mass barrier, but with the infinite upper limit of integration replaced with the Vb

that is appropriate to the sub-band that injected the holes.

The physical explanation of the valence band transport model is: holes ballistically travel

through the EB SCR, perhaps tunneling through a Valence Band Spike (VBS), by way of indepen

dent E’ and E bands. Upon reaching the mass barrier the holes attempt to occupy the lowest

energy band, and do so by exchanging sub-bands, if necessary, while taking into account any loss

es or gains due to the mass barrier. Depending upon the construction of the HBT, the emerging

fluxes from the EB SCR, contained within E and E, will generally be characterised by differ

ent driving forces of AE and AE respectively. However, due to the strong intervalley scatter

ing that occurs between the valence sub-bands upon reaching the neutral region, a common quasi

equilibrium condition of will result for both E and E. Therefore, the final transport mod

el for holes is:

1 1
T,holes = [Fh+F+JT,TOl (6.35)

where F and F.h are the full EB SCR transport models, and T,utral is the neutral region

transport current calculated by eqn (6.31) using n from eqn (6.27).
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6.4 The Accumulation Regime Beyond the Built-In Potential

Chapter 4, and therefore Section 6.3, have both dealt with transport for an applied bias VBE

that is less than the built-in potential Vb1. For the case of a band diagram where there is a negative

step, as shown in Figs. 6.13 and 4.2, as VBE approaches Vbj, a current density of —106A/cm2will

flow (this is based upon an emitter doping that is ‘-.1018cm3).At a current density of lO6AIcm2,

resistive effects will dominate the device and limit the internal forward bias to be much less than

the external applied bias. For example, with an emitter area of 1 urn2, there would be a current of

lOmA at a current density of 106A/cm2.Even with an unrealistically low emitter contact resis

tance of 502pm2,there would be a 500mV drop to the external applied bias before it even

reached the junction. It is for this simple reason that observation of the device with a forward bias

near, and certainly beyond, Vbj is not really experimentally possible.

As is evidenced by the plot of tsE in Fig. 6.10, along with zE and AE shown in Fig. 6.9,

there exists the possibility of constructing a positive-going potential step (see Fig. 6.14a) in the

path of the electrons trying to surmount the potential barrier of the EB SCR. A positive potential

step would force the electrons to surmount the entire barrier, because unlike the CBS there is no

way to tunnel though the step. Therefore, if the step potential were as large as 240meV (i.e., AE

= -240meV), then by eqn (4.79) the charge flowing through the EB SCR at room temperature

would be reduced by a factor of exp(-240125.9) 10. Therefore, when VBE approaches Vbj, the

current density will have dropped to only lO2AIcm2.A current density of lO2Afcm2will certainly

be observable, and would even allow for VBEtO exceed Vbj.

Before going on to present a physical demonstration of operation beyond Vbj, the transport

theory for this domain of operation is first developed. When VBE is exactly equal to Vbj, and if the

resistive effects are negligible, then the band diagram will be flat except at abrupt heterojunctions

or regions of spatially non-uniform Ge alloy content (see Fig. 6.l4b). For this reason, the point at

which VBE is exactly equal to Vbj is termed flat-band (in much the same manner as the flat-band

condition in MOSFETs). At flat-band there will be no space charge present. As VBE is increased

past Vbj (see Fig. 6. 14c), an accumulation region of mobile electrons on the n-side, as well as mo

bile holes on the p-side, of the heterojunction will begin to form (as has been the case throughout,

a coincident hetero- and metallurgical-junction is assumed). This is contrast to the standard case

where VBE < Vbj, and a depletion region forms where the space charge is composed of immobile
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ion cores from the dopant atoms. For this reason, operation past Vb1 is termed the accumulation

regime. Finally, as VBE is increased further, the accumulation of charge will proceed exponential

ly, with a net reduction to the potential step, and therefore, a continued exponential increase in the

EB SCR transport current.

(a)

_

EE

n-side

E

(b) VBE=Vbj
Ej_1\..

E,

mobile electrons

_________

- - -

-

(c) \• {,—Efh

mobile holes —i V

Fig. 6.14. Band diagram for a np-junction with a positive step potential (i.e., AE <0). (a) equi
librium; (b) flat-band where VBE = Vb; (c) accumulation region where VBE> Vbj.
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A reasonable first approximation to the complex accumulation regime begins by assuming

that for operation just beyond Vb1 the accumulation layer is non-degenerate. Based upon this as

sumption, and neglecting the effects of a non-uniform e, the Poisson equation in one dimension

becomes

2
9_ (ND — N e kT on the n-side

d2qi D
= (6.36)

dx2
q2

(N — NAekT) on the p-side

where and are in terms of electron energy (i.e., the negative of potential energy). Eqn (6.36)

is solved on the n-side (the p-side solution can be obtained directly from the n-side solution by

symmetry arguments) to yield the following implicit transcendental function:

=
e

d+A2, (6.37)

ND[(fl+Al)ekT+kT]

where A1 and A2 are arbitrary constants. There is no way to reduce eqn (6.37) down to a function

of simple transcendental functions, nor will it be possible to invert the result. However, it is rea

sonable to assume that the charge in the accumulation layer will overwhelm the background

dopant ion potential. With this assumption eqn (6.36) is recast to:

2

2,, —9—NDe
kT on the n-side

8
(6.38)

dx 2
kT on the p-side

whose n-side solution is

?2

IJi e’
x = ±4_$ 1dW+A2. (6.39)

ND AiecT+kT

It is interesting to note that the only difference between the approximate solution of eqn (6.39)

and the full solution of eqn (6.37) is the extra term containing ‘qi, in the denominator of the radi
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cal. This linear term in ‘qi,.1 produces the asymptotic solution to the underlying depletion space

charge. Since eqn (6.39) assumes that the depletion space charge is negligible in comparison to

the accumulation charge, the linear term in qI,j is lost.

The solution of eqn (6.39) begins with the determination of A1. If the neutral assumption is

employed at -x, (the boundary to the accumulation region), then because the doping ND is a con

stant the electric field will vanish. Since the electric field is given by (lIq)diIdx, then talcing the

derivative of eqn (6.39) with respect to N’,. inverting it, and setting it equal to zero with = 0 at

x -x, yields A1 = -kT With A1 = -k7 eqn (6.39) is solved using the change of variables

‘tin

y = 2e’—l
to produce:

= ± asin(2ekT
— 1 + A2 e = sin A2]+ . (6.40)

q42N

Finally, applying the energy reference of Nn = 0 at x -x, to eqn (6.40), and choosing the positive

x-direction produces:

(x+x’
e = cos2l I (6.41)

ha1 ,)
where

1 IekT
a1

=

By appealing to the symmetry of the problem, the p-side solution of eqn (6.38) is:

‘lip (x—x
e = cos2 I I (6.42)

2a1)

where

a1
=

It is important to realise that ‘qi, is set equal to 0 at x = -x,, and is set equal to 0 at x = x. How

ever, the form of the Poisson equation requires that when qI,j joins up with at the heterojunc

tion (i.e., at x = 0), the joint be analytic up to first derivatives. Given that we are solving for

accumulation and not depletion, then continuity of and Nip requires that:
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VBE— VbI

N’(O) — v(O) = q (VBE— Vbx)
2kT

= cos
(2ai

)COS
(2a1 pJ (6.43)

Further, continuity of the electric field requires that:

—
= —----tan ( X, “1 = —--tan I “1. (6.44)

dx dx a1 k2a1J ap 2a1)

It is a straightforward task involving considerable bookkeeping to solve simultaneously eqns

(6.43) and (6.44) for x, and x. Eqns (6.43) and (6.44) form a quadratic equation involving the

squared cosines of and xJ2ai,. Choosing the positive roots of the solution for eqns

(6.43) and (6.44) yields:

II4NANDeAVT+ (NA—ND)2+NA—ND
x, = 2a1 acos I Al

____________________________________

(6.45)

(IJ4NANDeET+ (ND—NA)2+ND—NA
x =2a1 acosi I vp

2NDe
BE T

where .AVBE VBE — Vbj, and VT = kTIq.

The accumulation regime solution of eqn (6.45) is certainly much more complex than eqn

(5.9) for the depletion regime. However, the accumulation regime shares many similarities with the

depletion regime. In fact, when VBE is within the immediate neighbourhood of Vbj (i.e., small

IWBE), then a Taylor expansion of eqn (6.45) about the point AVBE = 0 yields exactly the same

equations for x and x, that is obtained from the depletion regime. Further examination of eqn

(6.45), however, shows that as AVBE increases, x and x, quickly saturate at a constant value of

ltal,n and ltal,p respectively. This saturation of the SCR width is a feature of the rapid accumulation

of mobile charge that screens out the applied bias with essentially no further increase to the extent

of the SCR. This result is also the point at which the assumption of a non-degenerate accumulation

layer will fail; so care must be exercised in the absolute application of eqn (6.45) for large IWBE.

A useful metric from the depletion regime was the ratio of x,. to the total SCR width x, +

Due to the complex nature of x and in the accumulation regime, this same metric will not be a

simple constant. However, by appealing to a Taylor expansion about AVBE =0, and the asymptotic

limit for large AVBE, it is found that:
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N NN(N-N)

N
=

_____

NA + ND
+

(ND +
BE — BE — hzee,D

rat

VBE>VkfleeD

where

— 3VT(ND+NA)2
knee,D

— (JNAND + NA) (JNAND + ND)

In a similar fashion, the metric for the splitting of AVBE between the n- and p-sides of the junction

yields:

N NN(N-N)

Vrat =
IN’fl(°)I NA + ND + (ND + NA)3

VBE — VBE Vee
(6.47)q BE 1 A

where

VT (ND + NA)2
Ve,V_ NNAD

Nrat in eqn (6.46), as was stated a few paragraphs earlier, shares many of the same features

as Nrat in eqn (5.9) under the depletion regime. Now, V.at in the depletion regime is exactly the

same as Nrat, owing to the spatial uniformity of the space charge due to the immobile dopant ions.

However, under the accumulation regime, 1liat in eqn (6.47) starts out the same as Nrat, but due to

the mobile nature of the accumulation space charge, quickly results in an equal portioning of the

excess applied potential AVBE between the n- and p-sides of the junction. Therefore, the potential

distribution in the accumulation regime differs markedly from what is found in the depletion re

gime. Finally, Fig. 6.15 plots Njj and 11at in both exact and approximate form, as well as x, and

x, in order to gain a familiarity with the accumulation regime.

Eqns (6.46) and (6.47) provide very useful tools for the solution of charge transport within

the accumulation regime. Fig. 6. 14c shows that within the accumulation regime, the positive step

potential has produced a CBS; but unlike the negative step potential within the depletion regime

(see Fig. 4.2), the CBS now appears on the other side of the heterojunction. Taking the standard

HBT case where NA >> ND, then x <<x, and for small AVBE one also finds ‘qi(O) <<ji,(O). These
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two findings mean that the CBS within the accumulation regime will be very narrow, and very

weak in terms of a potential to be tunneled through. Strictly speaking, the transport current

through the CBS in the accumulation regime requires that the general transport model of eqns

(4.51) and (4.53) be solved using WCBS = 1, and WN obtained from eqn (4.6) with the accumula

tion potential of eqn (6.42). However with the parameters used in Fig. 6.15, when AVBE =

l2OmV, then the CBS stands only 28meV tall, and 17A wide at the base. Clearly, this small CBS

will allow a significant current to pass though it. In any event, the largest that the CBS barrier

could be, by assuming WN =0, would be an energy of IAEI — and the smallest that the

CBS barrier could be, assuming that WN = 1, would be an energy of IAEI — qzV (see Fig.

6.16). Therefore, with Vat 1 for small IVBE (given the typical HBT doping), then the upper and

lower bounds for the effect of the CBS will be fairly close together.

1.00

0.90
rii

0.80

0.70

0.60

ZS.VBE (V)
0.50 I

0.00 0.10 0.20 0.30 0.40

Excess Applied Potential AVBE (V)

Fig. 6.15. The exact and approximate forms for Nrat and Vrat from eqns (6.46)-(6.47). The ma
terial parameters are: ND: 5x1017cm3;NA: 1x1019cm3;e: 12.0.

One of the essential results of Chapter 4 was that the peak emission flux density occurred at

a fixed energy relative to the height of the CBS. This result occurred only because of the parabolic

nature of the potential profile within the depletion regime. Given the fairly simple model present-
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ed for the accumulation regime, where degenerate effects have not been accounted for, there is lit

tle point in solving the general transport models of Chapter 4. Instead, based on the arguments of

the previous paragraph, it seems reasonable to characterise the accumulation CBS by an effective

energy height. Finally, only thermionic emission over this effective CBS will be considered. Giv

en the result from Chapter 4 that was mentioned at the start of this paragraph, the effective height

of the CBS is given by:

ECBS = — qzV + q (1
— UmaxIVBE

= AEI —qAV(l
— Umax+ UmaxVraj)

(6.48)

where 0 Um 1, and Um will be taken as a phenomenological constant. Strictly, based upon

the analysis of Chapter 4, Umar will have a temperature dependence. However, as a first approxi

mation, U can be taken as a constant independent of temperature. Then, the transport current

under the accumulation regime is simpiy given by the thermionic term from eqn (4.79) as:

ECBS

FfS = FfSO V1e (6.49)

where both sub-bands within the valence and conduction bands need to be considered in the case

of the Sii..Ge material system.

E

Fig. 6.16. Diagram of the CBS that forms under the accumulation regime. Only the conduction
band is shown, but a similar structure can occur in the valence band. Note: this is for one sub-band.

-\
‘qc,1 reference

Iv(0)I = qzVV,-1
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6.5 Conventional and Novel Sii..Ge IIBT Structures

The Sii..Ge material system represents a further step on the road to bandgap engineering.

Unlike the AlGai..As material system, the Sii.Ge material system allows one to essentially

manipulate IXEg and iXE (and thereby AE) independently. This independence between AEg and

AE is achieved through two independent parameters: 1) the Ge mole fraction xa in the pseudo

morphic strained alloy layer; 2) the amount of compressive or tensile strain applied to the pseudo

morphic alloy layer by the substrate (i.e., the substrate Ge mole fraction x5). The addition of strain

is the key to the rich possibilities regarding baudgap Engineering offered by the SiiGe material

system. Sections 6.1 through 6.4 have set out the various material models and transport models to

study the flow of charge within a SiGe HBT. This section will apply the results of these previous

sections to the study of current-day SiGe HBTs structures, as well as some other novel structures.

The study of highly strained pseudomorphic layers cannot be properly performed without

consideration of the critical layer thickness h. As was stated early on in this chapter, the potential

strain in the Sii.Ge material system can be quite large, owing to the 4.2% lattice mismatch be

tween Si and Ge. As the in-plane strain is increased (see Fig. 6.3), the maximum thickness of the

alloy layer decreases in an essentially exponential fashion. The determination of h has been the

focus of numerous studies and controversies [97,99,105]. At present, there is still debate as to the

exact model for h versus in-plane alloy strain, but the work of People [105] is at least a reason

able reference point. In [105], the critical layer thickness is given as:

1—v 1 b2 1 h
h

= i+v 20ic& (_)(_n(T)J (6.50)

where h is in A, b = 4A (the magnitude of the Burger’s vector), v is the Poisson ratio from eqn

(6.5), aa is the unstrained (bulk) alloy lattice constant from eqn (6.6), andfis the alloy strain given

by (aa — a)Ia (where a is the substrate lattice constant). Substituting all of these parameters into

eqn (6.50) gives:

1.928 (5.43 + 0.23a”2 h
h

= (5.43 +0.23aa) ,j ln(-4-). (6.51)

Eqn (6.51) is an implicit phenomenological equation that People has fit to the best available data

for h (see Fig. 6.17). Detailed information, such as what temperature and duration can a pseudo

morphic layer tolerate before relaxing is still not conclusively known.
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0.0 0.2 0.4 0.6 0.8 1.0

Germanium Mole Fraction xa
Fig. 6.17. Critical layer thickness for a Si

.xpexa layer on a { 100) Si substrate. If the substrate
is SiiGe instead, then a good approximation is to find Ixa - xj and use this on the above plot.

Current-day SiGe HBTs, of which [100-1031 are examples, have all been based on a sub

strate that is { 100) Si. The emitter and collector regions are pure Si, and the base is the only re

gion made up of Sii..Ge . The essential premise for this type of SiGe HBT stems directly from

the early work of Kroemer [2,46,47] and Shockley [1] who called for a wide-bandgap emitter in

jecting into a narrow-bandgap base. Within this physical construct, the Ge alloy content xa in the

base is either fixed at some constant value, or a drift field is created in the base by increasing Xa as

one proceeds from the emitter towards the base.

Starting with a constant xa in the base of 0.2, then eqn (6.51) gives h 1550A. Because the

HBT is lattice matched to a pure Si substrate, all regions of the device except the base have E and

E degenerate, as well as E and E’ degenerate. However, compressive strain in the base pro

duces E’ 2 -138meV, meaning that the ultimate conduction band in the base is E-like. Further,

compressive strain in the base makes the ultimate valence band E-1ike, with E’ lh 34meV

Fig. 6.18 presents the band diagram for the above device, with the relevant material parameters

noted. Observation of Fig. 6.18 clearly shows that electron transport will occur via E. Since
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= -100meV, while AE is 37meV, ostensibly all of the electrons contained by the E band in the

emitter (which is 33% of the total number of majority electrons) will be reflected by AE and not

contribute to electron transport. Thus, if the EB SCR determines the transport current, then after

including the different effective masses, I would be 18% less than expected from a simple exam

ination of the device that does not account for the independence of E and E. However, if the

neutral base region determines the transport current, then I would be larger than expected given

that D is higher than the bulk value. In order to determine if it is the LB SCR or the neutral base

that is responsible for current-limited-flow, the detailed construction of the device must be consid

ered. For the devices in [100-102], where ND >> NA, then the neutral base is narrowly responsible

for current-limited-flow; although, inclusion of bandgap narrowing effects could lead to the EB

SCR being responsible for current-limited-flow. However, for the devices in [10,1341, where ND

NA, then depending on how bandgap narrowing in the base splits between E and E the EB SCR

will be responsible for current-limited-flow; resulting in a much smaller increase to I than would

be expected from neutral base transport considerations alone. This analysis of current-day SiGe

HBTs shows that a failure to correctly model both E and E, including EB SCR limitations,

could lead to an incorrect understanding of transport within the device.

AE = 37meV AE = —138meV

iXE = —100meV AE = —104meV

IXE = 37meV AE = —138meV

Si Si08Ge0•2 Si e = 1120meV fl e = 6.94x109cm3

Ehl_ Eg,b = 945meV = 1.47x1011cm3

Without LB SCR limitations, E will

E’ E transport 0.25% of the current in the neu
tral base, leaving E to transport the re

Emitter . Base Collector maining 99.75% of the current.

Fig. 6.18. Band diagram for an HBT with 20% Ge in the base, lattice matched to Si. The base is
the reference. The effect of the LB and CB SCR potential is not shown for clarity.
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For SiGe HBTs, where the emitter and base are E-1ike, AE is too small to produce a CBS

(see Fig. 6.10). Therefore, unlike AIGaAs HBTs, when the EB SCR limits the transport current in

SiGe HBTs, then logI versus VBE will look identical to the case where the neutral base limits the

transport current (i.e., the injection index will be unity). Thus, there will be no overt tell-tale sign

in SiGe HBTs that the transport current is not being controlled by the neutral base. However, Ic
will indeed be smaller than expected due to the EB SCR limitation, plus, the Early voltage should

become theoretically infinite as basewidth modulation should no longer effectI [135].

The SiGe HBT where xa is varied across the base represents the device that has piqued the

interests of the semiconductor community. By generating an aiding field in the base through a

monotonically increasing Xa from the emitter to the base (and hence a decreasing Eg), an fT as

high as 113GHz has been obtained [1021. In order to achieve this remarkable metric the device

was fabricated with as large a Axa in the base as possible; minimising the base transit time. To this

end, Xa was 0 at the emitter and was linearly ramped up to 0.25 at the collector. The result is a

band diagram as depicted in Fig. 6. 19a. Since the neutral base closest to the emitter is pure Si,

then one has essentially a homojunction for the EB SCR, and it is expected that the neutral base

will limit the transport current (see Fig. 6. 19b). The base region, given the shape of the E and E

bands, produces a demanded current that differs between the sub-bands by a factor of 8.3; i.e., the

current in E will be 8.3-fold larger than E. This is not an overwhelming amount, which shows

that 11% of the collector current is carried by the slower E band. In fact, using eqn (3.8) shows

that tB for E is reduced 4.6-fold compared to tBo, while tB for E is reduced only 1.5-fold com

pared to ‘rho (where tBo is the ‘CB given in eqn (3.6)). Assuming that the final base transit time is

given by the average of the results from each band weighted with the relative current carried by

the band, then the effective reduction to tB compared to tBO is (0.89/4.6 + 0.11/1.5)-i = 3.8-fold.

If the two sub-bands were considered as one single band then tB would have been wrongly re

duced 4.4-fold relative to tBo, and I overestimated by 13%. In the above calculations the effect

of bandgap narrowing has not been accounted for. Inclusion of base bandgap narrowing could

cause the EB SCR to limit the transport current (again, depending on how the bandgap narrowing

splits between E and Er), which would greatly effect the current partitioning between the con

duction sub-bands. Furthermore, the anisotropic nature of E and E has also not been accounted

for, which would increase ‘CB even further given that would be greatly reduced.
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(a)

E, E = 216meV AE = 0meV

= 44meV AE = 42meV

AE = 216meV AE = 0meV
Si

Si075Ge025 . Eg e = 1120meV ‘e = 6.94x109cm3
Emitter Si

Base
hh Collector E8b 904meV 3.17x10’1cm3

Ehh, E11’ — E
lh I Without EB SCR limitations, E will

E ‘i transport 11% of the current in the neutral
base, leaving E to transport the remaining
89% of the current.

(b)
108 • •

1 E current within-
/

the EB SCR >,2’> “..
6.

io5 E current within
the neutral base

4. 2/$ ‘C

,... ,-....-.
in2

1 . /• <V E2 current within10 /.. /..•.
the EB SCR

100 .
10-1 :, E current within

/ ‘./ the neutral base
10-2 • • • •

0.6 0.7 0.8 0.9 1.0 1.1

Base-Emitter Voltage VBE (V)
Fig. 6.19. (a) Band diagram for an HBT with 25% linear grading of Ge in the base, lattice
matched to Si. zS.E is from the 25% Ge point in the base to the emitter. Note: the base bandgap has
a slightly parabolic nature due to the Ge alloy effects. (b) Transport currents through the various
regions of the HBT, including the collector current. NA=5x1018cm3,ND= 1x1020cm3,and
WB=700A. Given that E transport within the EB SCR is not substantially larger than transport
through the neutral base, I is subsequently 31% lower than expected from neutral base transport
considerations alone. Thus, the neutral base is controlling I but the EB SCR does have an effect.
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The previous analysis of conventional SiGe HBT structures is not intended to be exhaustive,

but it clearly demonstrates that the Sii..Ge material system cannot be characterised by an effec

tive conduction band. In order to properly model a SiGe HBT, the rich nature of the E and E

bands must be included via the models developed in Sections 6.1 to 6.4. Further, the assumption

of Shockley boundary conditions (i.e., that the EB SCR is not responsible for current-limited-

flow) can come under question in the design of SiGe HBTs. Finally, the importance of consider

ing transport through the entire device becomes even more important when optimisation, or the

extraction of material parameters, is sought after: for if the transport is being dictated by a region

other than the one being considered, the result will be a an erroneous conclusion regarding either

the correct path for optimisation or the material parameter being extracted.

The main problem with the Sii..Ge material system is that the band offsets tend to be quite

small because of the limits imposed on the Ge content by the critical layer thickness. For this rea

son, it is still common to see ND >> NA in order to maintain a usable f3. As the neutral base width is

reduced, then NA must increase in order to offset a rapid decrease However, increasing NA

must be accompanied by an increase in ND or the gain will drop. With ND near the solid-solubility

limit this is not really possible. Further, with NA and ND increasing, the EB capacitance will in

crease, and a tunnel diode could form. The device in [134] attempted to solve this with a constant

22% Ge base content. By having a narrow bandgap in the base, the subsequent increase to Ib can

be traded off for a higher base Gummel number. However, this precludes a graded base, as the EB

heterojunction is required to maintain the gain, and the critical layer thickness will not allow for a

higher Ge content (this is the alloy budget of Section 3.2). Therefore, in order to continue decreas

ing the neutral basewidth without compromisingfmax orf a way must be found to include higher

Ge contents in the base.

The answer to the problem of the previous paragraph is to lattice match the HBT to a

Sii.Ge substrate, where x,> 0. Consider a 500A SigjgGe02emitter with a poly-Si cap, a base

graded from Si075Ge025 at the emitter to Si06Ge04 at the collector, all lattice matched to a

Si08Ge02 collector and substrate (see Fig. 6.20). The base grading is started at 25% Ge instead of

20% in order to increase the transport current in E relative to E, thereby reducing the parasitic

effect on tB found from the HBT in Fig. 6.19. Then, the 15% Ge base grading provides the aiding

field to keep the base transit time small. However, unlike the HBT in Fig. 6.19, the optimum aug
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mented-linear doping of Fig. 3.8 is used instead of the sub-optimum linear grading. The optimum

base profile, due to the constant Ge regions near the emitter and the base, also increases the Early

voltage and decreases the anomalous change to I due to the reverse Early voltage effect [11]. The

500A Si08Ge02 emitter next to the base ensures that the EB SCR will be free of dislocations that

will occur at the boundary to the poly-Si cap; plus it serves as an efficient source of E electrons.

Finally, the poly-Si emitter cap provides stress relief to the system and a wide bandgap to kill the

back injection of holes. With the wide bandgap of the poly-Si cap controlling the gain, NA can be

significantly increased in order to increasef,, while ND can be decreased in order to decrease

the EB SCR capacitance. The result is a 264-fold increase in I compared to a similar bulk Si de

vice, with tB reduced 2.9-fold compared to tBO. These results are based upon the neutral base con

trolling I. As NA is increased to the point where bandgap narrowing becomes quite large, it is

expected that the EB SCR will dictate I and limit the expected increase to 13.

.,-l

C

C

Without EB SCR limi
tations, E will trans

= 120meV AEhhh1 = —34meV
port 4.5% of the current

c v in the neutral base,
AE2 —18meV zE 9meV E e = 990meV leaving E to transport

V
‘ the remaining 95.5% of

= 120meV tE = —34meV E b = 876meV the current.

Fig. 6.20. Novel SiGe HBT based on a 20% Ge substrate. The incorporation of the optimum
base grading provides the maximum reduction to ‘CB possible. The poly-Si emitter cap provides
the wide bandgap necessary to control hole back injection, while lattice matching to a 20% Ge
substrate allows a 40% Ge content in the base without being restricted by h. iXE is from the 40%
Ge point in the base to the emitter.

Sio.8oGeo.2o

Emitter

bO.l6WBj

Si075Ge025

Si060Ge0401
Si080Ge020

Collector

O.16WB Base

= 3.68x1010cm3

i,b = 5.05x1011cm3
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The operation of the novel transistor being proposed rests on two requirements: 1) that high

quality SiiGe substrates can be formed; 2) that the poly-Si cap will indeed control the back

injection of holes. The ability to grow high quality SiiGe substrates is currently an issue. At

present, bulk epitaxial SiiGe layers on top of Si substrates have defect densities ranging from

104cm2to 106cm2[311. This is too high to produce commercially yielding LSI ICs. However,

given the infancy of epitaxially growing bulk SiiGe layers on Si, in time it is expected that the

process will mature and the defect density will fall. The other option is to pull raw SiiGe in

gots so that the starting wafer contains the desired substrate. In either case, for the study being

presented here, it is sufficient to demonstrate the usefulness of using non-Si substrates in order to

provide the impetus to grow low defect bulk Sii..Ge substrates on Si. The second question, re

garding the efficacy of the poly-Si cap to control hole back injection, can only be answered by ex

perimentation. However, recent work by Kondo et. al. [136,1371 for poly-Si to Si shows that the

interface is not characterised by a high recombination velocity, and that the bandgap is, if any

thing, larger than in bulk Si. Thus, n1 in the poly-Si layer will be small compared to the n1 in the

base, controlling the back injection of holes and 3. Finally, the band alignment of the poly-Si layer

to the Si08Ge02 emitter will only be an issue if the resulting AE is large enough to limit the elec

tron transport current through the entire device. Based upon Si lattice matched to Siij8Ge02,AE

should not exceed -90meV, which would not reduce the transport current given the high doping

that would exist in the poly-Si layer. Therefore, it is expected that the poly-Si cap will control the

hole back injection of the proposed SiGe HBT.

This section concludes by examining an intriguing HBT structure that invokes all of the

models of this chapter. Beginning with Fig. 6.9c for Xal = 0 and Xar = 0.45, examination of sub

strates where 0 x3 0.35 is very interesting. Let the left side be the emitter and the right side the

base. The emitter is under tensile strain so that the ultimate conduction band is E-Iike. Contrari

ly, with the substrate range being considered, the base is under compressive strain and the ultimate

conduction band is E-like. Just because the emitter conduction band is E does not preclude

electrons from existing in E. In fact, given the band alignments for 0 x 0.35, more electrons

from E, rather than E, will be able to go from the emitter into the base. Essentially, the band

with the lowest energy in both the emitter and the base will be the one that transports the current.

With x 0.35, E will be responsible for current transport as E in the base is larger than E in

the emitter.
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Fig. 6.21. Band diagram showing the conduction and valence sub-bands for an HBT where Xal =

0, Xar = 0.45, x = 0.35, NA=1x1019cm3,ND=5x1017cm3,and Wb=700A.

Fig. 6.21 plots the band diagram, including SCR effects, for an HBT where Xal 0, Xar =

0.45, x = 0.35, NA=lxlO’9cm3,ND=5x10’7cm3,and wb=700A. As is the case for the HBT in

Fig. 6.20, there is a high doped poly-Si cap on top of the emitter to provide stress relief and con

trol the back injection of holes. What is interesting to note for the device in Fig. 6.21 is the emitter

and base have essentially the same bandgap. Thus, there is no wide-gap emitter injecting into a

narrow-gap base that is common to traditional HBT designs. Instead, the HBT is controlled by the

band offsets and n1 for the given sub-band within the neutral regions. Fig. 6.22 plots the EB SCR

currents, the neutral base transport currents, and the final collector current that will occur within

the device of Fig. 6.21. It is important to realise that Vbj = 0.673 V due to the positive AE of this

device. For VBE < V,j transport occurs via E through a small CBS, but with neutral base trans

port essentially controlling I. Thus, electron transport within the emitter is occurring in a band
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that does not form the ultimate conduction band. Now, when I/BE> Vbj, the HBT is operating

within the accumulation regime. Due to iXE = -169meV, EB SCR transport within E is reduced

to only lO2AIcm2when VBE = Vbj. Furthermore, because AE = 67meV, any increase in VBE past

Vbj will do nothing to increase the EB SCR current as there is no barrier to surmount, leaving only

the thermal movement of majority carriers to dictate the current. Thus, E transport is now con

trolled by the EB SCR and not the neutral base. However, with the accumulation model of Section

6.4, E transport becomes the dominant path that controls I when VBE increases past V; lead

ing to transport in the base that occurs within a band that does not form the ultimate conduction

band. The final result is a very interesting log I versus VBE relationship that is due to the interac

tion between the two conduction sub-bands.

current within
the neutral base

0.4 0.5 0.6 0.7 0.8

Base-Emitter Voltage VBE (V)

Fig. 6.22. Transport currents within the various regions of the HBT given in Fig. 6.21.

The HBT of Fig. 6.21 may have some practical uses as a current source due to its flatI ver

sus VBE relationship near V,j; however, it is probably more useful as a tool to investigate transport
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properties and band offsets within the Sii..Ge material system. Careful consideration of h for

this HBT reveals some interesting results. Because the Ge content in the base is only 10% higher

than in the substrate, then h = 8054A. With such a large h it is conceivable that the base and in

trinsic collector regions could be formed without a heterojunction, thereby achieving an SHBT in

stead of the DHBT common to SiGe devices. Furthermore, it is not unreasonable to imagine that

the base and intrinsic collector could be formed in only 3000 to 5000A, leaving considerable

room to the maximum h, which should help to increase the thermal budget for the base layer. The

issue of DHBT devices is not a real concern in npn HBTs, due to the small AE, but would be of

considerable appeal in making a pnp device. Finally, the result of a large h for the base and col

lector regions is a significant lowering of the emitter h to 407 A. However, an = 407A would

be wide enough to contain the emitter extent of the EB SCR. Therefore, the critical layer thick

ness has been moved from out of the EB-SCR and into the neutral emitter, which will have less of

an effect on device performance if dislocations due to strain relaxation occur.

In conclusion to this chapter the following results regarding the Sii..Ge material system

have been achieved:

• A review of the literature, including the best material models, for the effect of strain on the

conduction and valence sub-bands has been performed.

• The band offset theory of Van de Walle and Martin, including the material models of Yu and

Gan et. al., have been reviewed with the most consistent set of material parameters chosen to fit

the experimental data available to date. To this end, a simple set of equations has been found to

accurately describe the conduction band.

• A theory regarding transport within the conduction E and E bands, and the valence E and

E bands has been developed. The theory presented does not resort to an effective conduction

and valence band, but considers carrier transport within both sub-bands. Included in this

development is the full effective density of states and the intrinsic carrier concentration for all

of the sub-bands.

• A theory for the operation of an HBT past the built-in potential has been developed.

• Finally, the models of this chapter, which are based upon the models of all the previous

chapters, have been used to study current-day SiGe HBTs and a few other novel structures. The
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most important result of this study is that the neutral base will no longer be the sole region

controlling I as the neutral base width continues to shrink and the Ge grading in the base

increases: the limitations of EB SCR transport must be considered. Furthennore, there is a

significant error in both the calculation of charge flow and transit time by considering the sub-

bands as a single effective conduction or valence band.
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CHAPTER 7

Summary and Future Work
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To begin with, Chapter 2 has presented a unique and general model (eqns (2.7) and (2.9))

for the simulation of HBTs. This model forms the framework for simulating charge transport

within the entire HBT by providing a means to break the modelling effort into separate physical

regions; each region characterised by its own unique physical transport process. Furthermore, the

model presented in Chapter 2 allows for the existence of recombination sinks within each region;

furthering the general nature of the model. Due to the abstract nature of eqns (2.7) and (2.9), it is

possible to apply the model of Chapter 2 both to the microscopic transport of charge (i.e., to trans

port over atomic distances), and to the macroscopic transport of charge (i.e., to transport over dis

tances large enough to treat the electrons as a continuous flux, such as is done in drift-diffusion

analysis). In so doing it may be possible to determine the point at which rapid spatial changes in

the conduction or valence bands produce transport conditions that deviate from the models of drift

and diffusion (such as can occur within an SCR, and certainly at the heterojunction where AE

fonns). This may allow for a solution to a question posed by Dr. Mike Jackson of UBC as to the

condition for which thermionic injection begins and drift-diffusion ends. However, the most logi

cal extension to the work of Chapter 2 is to remove the restriction that Ep, (for an npn HBT) be a

constant throughout the EB SCR.

Chapter 3 presents some interesting ideas for optimising the metrics of an HBT by exploit

ing the concept of current-limited flow outside of the neutral base. It would be a reasonable exten

sion to the ideas of Chapter 3 to simulate and measure a number of HBT designs that exploit the

optimisations that have been alluded to. Chapter 3 has also gone on to determine the simultaneous

optimisation of the base bandgap and the base doping profiles for the minimisation of tB. This

work has, however, neglected the effect of a non-constant mobility with respect to doping varia

tions. Numerical work [63] has shown that the optimum profiles which include the full pfl(NA) do

not appear to be too complex, and certainly have a shape that is expected from consideration of

the functional form of .I(N) itself. Therefore, it is expected that the analytic optimum profile,

shown in Fig. 3.9, for the minimisation of tB could be extended to include either the full J.Ifl(NA) or

a judicious approximation to it.

Chapter 4 derives the model of charge transport with the EB SCR, including the effects of

tunneling and momentum conservation across a mass boundary. To this end, the general models of

eqns (4.50)-(4.53) were presented. Chapter 4 goes on to derive analytic approximation to eqns
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(4.50)-(4.53). However, for the purpose of deriving analytic results, the mass boundary is consid

ered in an isotropic fashion, but with the effective mass maintained as a diagonal tensor and not a

simple scalar. Thus, a logical extension to the analytic work of Chapter 4 is to remove the assump

tion of an isotropic mass boundary and resolve eqns (4.50)-(4.53) in an analytic form.

Other extensions to the work of Chapter 4 are certainly alluded to in Section 4.6. By plotting

the ensemble electron density entering the neutral base of the HBT, it was clear that the distribu

tion could not be considered as a Maxwellian or even a hemi-Maxwellian. These distortions from

a hemi-Maxwellian form are due to the effect of tunneling though the CBS. Since accurate simu

lation of transport through a narrow base (in terms of mean free path [43]) demands a full solution

to the BTE, then a way must be found to incorporate the non-local effect of tunneling into the

BTE. A possible extension to the work of Chapter 4 is to connect the EB SCR transport models of

the chapter to a BTE solver for the neutral base; thereby allowing for the inclusion of tunneling

within the BTE via a hybrid model.

The modelling of charge transport in Chapter 4, due to tunneling through the CBS contained

within the EB SCR, is formulated upon ballistic considerations. It is common to consider tunnel

ing electrons in a ballistic fashion, if for no other reason than to simplify the calculation of the

tunneling probabilities. This position of neglecting thermalising collisions of the electron while

undergoing tunneling is often substantiated on the grounds that tunneling distances are generally

less than 100 or 200A, and are therefore significantly less than the mean free path. However, if

any collisions did occur while the electron is in the midst of tunneling, then the tunneling proba

bility would be essentially reduced to zero. Thus, a potential extension to the work of Chapter 4 is

to consider non-ballistic tunneling. The ultimate outcome of such non-ballistic tunneling consid

erations would be the development of a Monte Carlo simulator that can incorporate non-local ef

fects (i.e., tunneling).

A final extension to the work of Chapter 4 can be found by careful observation of Fig. 4.9

and eqn (4.74). Im occurs at which for a fixed temperature is a constant. Furthermore, the

flux density cLy. is fairly well centred about U, and will become even more localised as the

temperature is reduced. Therefore, the tunneling current through the CBS can be thought of as oc

curring at an energy of qU(V
— VBE)Nrat relative to the conduction band minimum in the

emitter. Now, the tunneling current is very sensitive to the forward-directed effective mass, which
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is dependent upon the full nature of the dispersion relation E(k). Then, with the CBS responsible

for controlling I, by measuring I the tunneling current through the CBS can be determined. Fi

nally, by extracting the effective mass through a matching of the measured I to the tunneling

models of Chapter 4, it should be possible to infer E(k). Therefore, it should be possible to ex

tend the work of Chapter 4 by developing an electrical spectroscopy method for the determination

of E(k).

Chapter 5 presents the models for the recombination currents that occur within both the EB

SCR and the neutral base. Specifically, the need to balance the total current entering a region with

the net current leaving plus any charge that has recombined within the region, is considered. This

leads to a mixing of the base and collector currents of an HBT. The result of this mixing is a new

connection between the physical construction of the HBT and it’s terminal characteristics. Regard

ing future work, the basis for all of the recombination models (SRH, Auger, and radiative) used

within Chapter 5 is essentially drift-diffusion. By the arguments of Chapter 4, drift-diffusion anal

ysis is not applicable within the EB SCR. Therefore, combined with the extension being proposed

for Chapter 4 (regarding integration with the BTE), the recombination currents should be recom

puted from a particle scattering cross-section point of view. This would place the calculation of the

recombination currents on par with the quantum mechanical view of a tunneling electron.

Chapter 6 reviews the various material models that are required to understand the composi

tion of the conduction and valence bands within pseudomorphically strained Sii.Ge. Further, the

band offset models for the determination of IXE and AE at an abrupt heterojunction are also pre

sented. Using these material models, transport models which include the two conduction sub-

bands E, E and the two valence sub-bands E, E, are developed. It is shown that the multi-

band nature of strained Sii..Ge must be considered, even in present-day HBTs, lest considerable

error regarding both the quantitative and qualitative aspects of charge transport be made. Regard

ing future work, it is imperative that a final and consistent set of material parameters for Sii..Ge

be obtained. Without a firm understanding of the material parameters, it is impossible to accurate

ly determine the transport current. With this in mind, Chapter 6 presents a number of novel HBT

structures, including a study of some present-day HBTs. In order to ascertain the validity of the

models developed within Chapter 6, these SiGe HBTs should be fabricated and tested against

these theories
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Finally, Chapter 6 only considers substrates aligned to (100). However, there could be con

siderable performance gains for growth along (111). Traditionally, BJTs have used (111) aligned

substrates because epitaxial growth is the fastest for this orientation. (100) aligned substrates have

come about because of the need to minimise surface states at the SiJSiO2 interface in MOSFETs.

One of the most interesting features of strained Sii..Ge is the possibility of only having charge

transport occur parallel to the small transverse mass for electrons. The anisotropic nature of Si

produces a 5-fold difference between the transverse and longitudinal mass for electrons. Thus, a

significant improvement to tunneling and mobility can be had if the electrons predominantly

move with the transverse mass. This would be further increased by using the (111) conduction

bands instead of the (100) bands. In fact, the (111) bands have a 20-fold difference between the

transverse and longitudinal mass for electrons, with the transverse mass near that of GaAs. There

fore, a logical extension to the work of Chapter 6 would be the development of (111) aligned

transport models. Finally, with the ability to set a large effective mass band at an arbitrary energy

above a light effective mass band, it should in theory be possible to produce negative differential

mobility, in terms of t versus electric field, within strained Sii.Ge; leading to the possibility of

devices, such as Gunn diodes, which can only be presently made in materials such as GaAs.

Therefore, a further extension to the work of Chapter 6 is to investigate the feasibility of generat

ing and utilising strained Sii..Ge films that produce negative differential mobility versus electric

field.

As a final parting comment regarding future work, it is clear that with the rapid progress

continuing in the development of ICs, device dimensions will continue to shrink at an exponential

rate. Obviously, this will take devices down into the atomic realm where distances cover only 10

Angstroms and not a thousand. Even with present-day devices, where relevant dimensions are 500

to ioooA, quantum mechanical effects are important (as can be seen from the consideration of

tunneling in Chapter 4). As dimensions reduce to ioA, clearly, classical mechanics will have no

part. For this reason, work on hydrodynamic models, which are really only a second order pertur

bative solution of the BTE (drift-diffusion being the zero-th and first), will have very limited use

fulness. Instead, a “full” quantum mechanical model will be required. But then what is meant by a

“full” model? With relevant dimensions of 1 oA, it will not even be possible to utilise Bloch’s the

orem because there will truly be no dimension over which the crystal can be considered as bulk.

Furthermore, considering only the conduction electrons in a quantum mechanical fashion, and not
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the core electrons, will not be acceptable at ioA. Thus, by “full” model, it is meant that all elec

tron, protons, and neutrons be considered in a quantum mechanical fashion, without even the sim

ple luxury of assuming Bloch solutions. Obviously, such a “full” model is not even remotely

possible today. However, with computing power increasing exponentially, and the number of at

oms in the device decreasing exponentially, it will be interesting to see how long it will be before

such “full” models come into existence.

In any event, the pursuit of better models which incorporate evermore quantum mechanics

must continue in lock-step with the advancement in processing technology. This will enable the

high technology sector to understand current day devices and visualise future ones.
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Appendix A

Ramped NAB(x) to Minimise tB

The proof of eqn (3.17) begins by solving eqn (3.10) for ‘tB using the doping profile depicted

in Fig. 3.4. To this end, it is seen that the doping profile of Fig. 3.4 is actually a subset of the

profile depicted in Fig. 3.3 with h1 =0 and h2 = h. Using the symbolic math tool MACSYMA©,

eqn (3.10) yields the following result for tB based upon the distribution presented in Fig. 3.3:

d5
1og(x—h11og(I

() hl-h2
Ne e

(c6) integrate(\neAu,x,h2, 1);

(d6)
(1_h2)Ne

U

(c7) integrate(d5,x,hl,h2);

Is U - 1 zero or nonzero?
nonzero;

M1og(1 - h2log(U)

(d7) (h2—hl)e
2-1 h2—hl

Ne
log(U) log(U)

(cS) integrateneAu,x1);

(d8)
Ne (1_x)

U

(c9) integrate(d5,xch2);

Is U - 1 zero or nonzero?

nonzero;

( hllog(U) — 1og(t x h11og(t — h2 log(U)

(d9) I (h2_ hi) e
h2—hl h2—hl

(h2_ hi) e
h2-hl h2—hl

Nel
log(U) log(U)

(dO) integrate(\ne ,x,x,hl);

(dlO) Ne (hl_x)

Eqn (d5) is the exponential doping profile for h1 x h2, and it ensures that there are no jump

discontinuities at the break points h1 and h2 between the exponential doping profile and the re

gions of constant doping. Then, eqns (d6)-(dlO) collect together the various sub-integrals required

to solve eqn (3.10). It should be noted that the doping at x = 0 is Ne, at x = 1 is N, and that U =

Ne/Nc. Using eqns (d5)-(dlO), eqn (3.10) produces:

h2 — hi
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(cli) tau = ratsimp(radcan(integrate(1Ane*flO,d7+d6),x,O,h1)+integrate(radcan(l/d5*(d9+d6)),x,h1,h2)+
integrate(\uAne*(d8),x,h2, 1));

Is U - 1 zero or nonzero?

nonzero;

( [(h22_2h2+ l)U_hl +Uh1 (h12u_2h1h2+2h1)1og2(

(dli) f ÷((2h2_2h1)U_h1+(2h22+(_4h1_2)h2+2h12+2h1)U_h1

*log(U)+(_2h22+4h1h2_2h12)U_M+(2h22_4h1h2+2hl2)U_M

2U_M log2(U)

Eqn (dli) is the general model for tB from the optimum doping profile of Fig. 3.3.

Using the optimum equation for ‘CR given in eqn (dli), then the ‘CB needed for the proof of

eqn (3.17) is obtained by setting h1 = 0 and h2 h; i.e.,

(c12) ev(dl 1,hl=O,h2=h);

‘dl2
(h2_2h+1)ulog2(u)+(2hu+2h2_2h)log(u)_2h2u+2h2

‘
2

2 U log (U)

Eqn (d12) can then be solved for the h that minimises ‘CB Differentiating eqn (d12) with respect to

h, setting equal to zero, and solving for h produces:

(c13) ratsimp(diff(rhs(d12),h));

(d13)
(h_1)Ulog2(U)+ (U+2h_ 1)log(U)_2hU+2h

U log2(U)

(c14) solve(d13=O,h);

Eh.

[ Ulog2(U)+2log(U)_2U+2

(c16) ratsimp(radcan(ev(d12,d14)));

2 U2 log(U) —3 U2 + 4 U— 1
(d16)

2 2 2
2U log (IJ)+4Ulog(U)_4U +4U

where (dl4) is the same as h in eqn (3.17), and eqn (d16) is the same as ‘CR in eqn (3.17) once the
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factor of 1/2 is included within tBO. This completes the proof of eqn (3.17) for the ramped NAB(x)

to minimise tB. It should be noted that the output displayed within this Appendix comes directly

from MACSYMA©. As such, there is occasion to perform some intermediates steps that are not

instructive to the proof but are more of a bookkeeping function for MACSYMA© itself. This is

why some of the d-equations are missing.

Finally, it can be shown that an intriguing symmetry exists in the ramped doping profile. If

the profile is changed from that shown in Fig. 3.4 so that the exponential region follows the con

stant doping region, then it is found that tB remains unchanged from what is given in eqn (3.17),

and h —* 1 — h. Returning back to eqn (dli), the necessary change to the doping profile is accom

plished by setting h1 = h and h2 = 1 in the optimum equation for tB given in eqn (dli); i.e.,

(c17) expand(ev(dl 1 ,hl=h,h2=1));

h 1 h 1 h 1

h2U
1—h — 1—h

hU
1—h — 1—h

h 1 h2U
1—h — 1—h

log(U) log(U) — log(U) + log(U) + log2(U)

(d17) 2hU l—h 1—h el_h 1—h
h2 2h 1

— 2 +
2 — 2 +

2 — 2
log (U) log (U) log (U) log (U) log (U)

h2U’’

+ 2

(clS) substpart(xthru(map(radcan,piece)),d17,2);

(d18)
— U(hlog(U)+2(_h+2h_l)]+2(l_h)Ulog(U)÷2(h_h)log(U)+2(h_2h+ i)

2Ulog2(U)

Eqn (d18) is the tB for the symmetric doping profile used to develop eqn (d12). As was done with

eqn (d12), the optimum value for h is found by differentiation eqn (d18) with respect to h, setting

equal to zero and solving; i.e.,

(c19) diff(rhs(dl 8),h)=O;

(d19)
U (2 h log2(U) + 2 (2_ 2 h))_ 2U log(U) ÷ 2 (2 h — 1) log(U) + 2 (2 h— 2)

—0
2Ulog2(U) —

(c20) solve(d19,h);

r (U+1)log(U)_2U+2
(d20) Ih= 2

[ Ulog (U)+2log(U)_2U+2
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Eqn (d20) is that h which renders eqn (d18) a minimum. Substituting (d20) back into (d18) yields

the minimum tB; i.e.,

(c21) ratsimp(radcan(ev(d18,d20)));

2U2log(U)_3U2÷4U_1
(d21)

2 U2 log2(U) +4 U log(U) —4 U2 +4 U

Eqn (d21) is exactly the same as eqn (d16), showing that a symmetric change to the doping

profile produces no change to the transit time. It can finally be shown that the symmetric change

to the doping profile results in h —> 1 — h by adding together the h from eqn (d14) and (d20); i.e.,

(c26) rhs(first(d20))-i-d14;

(d26)
U log2(U) + (1_ U) log(U) + (U + 1) log(U)_ 2 U + 2

Ulog2(U) +2log(U’)_2U+2 Ulog2(U)+2log(U)_2U÷2

(c27) ratsimp(combine(d26));

(d27) 1

Eqn (d27) proves that the symmetric change to the doping profile of Fig. 3.4 does indeed result in

h—> 1—h.
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Appendix B

Optimum NAB(x) to Minimise tB

The proof of eqn (3.18) begins by solving eqn (3.10) for tB using the doping profile depict

ed in Fig. 3.3. However, this task has already been accomplished in Appendix A as eqn (dli). Us

ing eqn (dli) for the optimum tB, the pair h1 and h2 which minimise eqn (dli) is found. Using

the symbolic math tool MACSYMA©, the partial derivatives of eqn (dli) with respect to h1 and

are taken; i.e.,

(c29) ratsimp(diff(rhs(dl 1),hl));

(h1U_h2+1)1og2(

(d29)
+ 2h1 +

u-hi _u _h11og(u)

I4 +(2h2_2h1)UM +(2h1_2h2)U_hl

1og2(

(c30) ratsinip(diff(rhs(dl l),h2));

( [(h2_l)u1_hlUMJlog2(u)

I +[UM+(2h2_2h1—1)UM1og(U)+(2h1_2h2)

(d30) h2 hi

*_M +(2h2_2hl)Ul_M

_hi log2(u)

Eqns (d29) and (d30) present the simultaneous set of equations, once both are set equal to zero,

that must be solved to determine the pair h1 and h2 which minimise eqn (dii). Given the highly

non-linear form of these two equations it is not clear that an analytic solution is possible. There

fore, before attempting to solve eqns (d29) and (d30), a numerical solution will be found so that a

“feel” may be developed that will hopefully guide the steps to follow.

Using MACSYMA©, a numerical Newton-Raphson solution to eqns (d29) and (d30) is

found for three different cases of U; i.e.,
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(c40) newton(ev([d29,c130],\u=3.9d0),[hl,h2],[O.25d0,O.75d0fl;

C:\MACSYMA2\share\newton.fas being loaded.
C:\MACSYMA2\matrix\bla_lu.fas being loaded.
C:\MACSYMA2\matrix\blinalgLfas being loaded.

(d40) [hi = 0.2975325725O992dQ h2 = o.70246742749006dq

(c41) d40[1]-i-d40[2];

(d41) h2+hl=l.OdO

(c42) newton(ev([d29,d3O],\u5O.4dO),[hi,h2],[O.25dO,O.75dO]);

(d42) [hi = O.i689i9l7072612dQ h2= o.83io8o82927388dq

(c43) d42[l]+d42[2];

(d43) h2+hi=1.OdO

(c44) newton(ev([d29,d30],\u=2000.4d0),[hl,h2],[O.25d0,O.75d0J);

(d44) [hi = O.i04i5470580558dQh2= O.895845294i9442dq

(c45) d44[1]+d44[2];

(d45) h2+hi=l.OdO

The numerical results of eqns (d40)-(d45) indicate that h1 + = 1. In order to prove that h1 + h2

= 1 is indeed a solution of eqns (d29) and (d30), the following is performed: substitute h2 = 1 —

into both eqns (d29) and (d30); then, if the resulting eqns differ at most by a multiplicative con-

stunt, then it is proven that h1 + h2 = 1 is indeed a solution of eqns (d29) and (d30).

Using MACSYMA© to perform the above test yields:

(c31) ev(d29,h2=l-hl);

( 1_2h1 (hlU+hi)log2(U)

(d31)
+ [(2 hi_2 (1_hi) +1) u 1-2h1

—U
12M]log(U)

+(2hi_2(i_hl))U
1-2h1

+(2(i_hi)_2hi)U
1—2h1

U 1og2(
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(c32) ev(d30,h2=i-hl);

hi u i-2M
— hi U log2(U)

I +[(_2h1+2(l_hl)_i)U1_2M+U1_2hljlog(U)

(d32) I hi 1—hi

(2(1_hl)_2h1)U
i—2h1

+ (2h1_2(1_hl)) U
1—2h1

U‘ log2(U)

(c33) ratsinip(combine(d31+d32));

2h1 1
+1

t.lTT2hl I.lTT2hu

(d33)
UI I—’ UI ‘.1

2hi

u 2hi—1

(c34) radcan(expand(d33));

(d34) 0

Eqns (d31) and (d32), after substituting h2 = 1 — h1, are equal and opposite. Thus, these two equa

tions would differ by a multiplicative constant of “-1”. Eqns (d33) and (d34) prove that h2 = 1 —

by showing the sum of eqns (d3 1) and (d32) vanishes. This result immediately asserts that there is

only one independent equation to solve for. The solution for h1 being:

(c35) distrib(expand(d3 1));

2hi 1 2hi 1 2h1

4 hi U
i—2h1 — 1—2hi u 1—2h1 — i—2hi

1 4 hi U
i2hl — 1—2h1

log(U)

1

— log(U) — log(U) + log2(U)

(d35) i—2h1 — l—2hi 2h1 — 1
2U 4h1 2 1—2hi i—2h1

— 2 — 2 + 2
+hiU -i-hi

log (U) log (U) log (U)
2hi 1

*U2hhl 1—2hi

(c36) map(radcan,d35);

4hi 1 1 4hi 2 4h1 2 hi
(d36) — — + 2 — 2 — 2 + 2U log(U) U log(U) log(U) U log (U) U log (U) log (U) log (U) U

(c37) solve(d36=0,h 1);

r 1
(d37) Ihl=

L log(U)-i-2
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Eqn (d37) proves eqn (3.18) for the optimum h1, along with the result from eqn (d34) which

proves eqn (3.18) for the optimum h2. Finally, using the optimum h1 and h2, the optimum tB is

found by substituting back into eqn (dli) found in Appendix A; i.e.,

(c38) radcan(ev(dl 1,h2=1-hl));

2h1-*-1

u 2h1—1
(bl2u+h12)log2(U)

( 411 2h1-i-1

+L(h1_2h12)u211 ÷u21”’
((2h12_3h1+1)u÷4h12_2h1]Jlog(u)

(d38) 2h1÷1

+u2h1 ((_4h12+4h1_1)u+4h12_4h1+ iJ
4h1

2h1—1 2
U log(U)

(c39) radcan(ev(d38,d37));

1
(d39)

log(U) +2

Eqn (d39) is the same as tB in eqn (3.18) once the factor of 1/2 is included within ‘CBO. This com

pletes the proof of eqn (3.18) for the optimum NAB(x) to minimise tB.
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