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Abstract 

In tele-operation, visual communication plays an important role as a source of information for 

control of a remote machine. The main objective of this thesis is to investigate the image merging in 

a dynamic visual communication system (DVCS) that can provide better visual presentation of the 

remote machine's working environment to the operator. The conventional VCS such as television 

cannot provide wide field of view (WFOV) and high resolution at the same time without significantly 

increasing the number of pixels and the bandwidth which is difficult and expensive. One of the 

proposed alternatives is to have a high resolution insert at the area of interest (AOI), determined 

by the observer's current eye orientation, projected into a cutout in the low resolution wide field of 

view (WFOV) background. This system is called a dynamic VCS (DVCS) in this thesis because 

of its active feedback control over the viewing scene. A DVCS requires a multi-channel imaging 

system, dual-resolution presentation, an eye tracker controlling the location of the AOI insert within 

pixel level accuracy, and an image merging system that can register and fuse AOI and W F O V 

images, all in real time. 

This thesis discuss some of these issues, mainly focusing on the design and implementation of 

the image merging in such a system. Several possible approaches are analyzed with regard to the 

free parameters in the implementation, and experiments are carried out on seven sets of AOI and 

WFOV images. These images are taken by off-the-shelf cameras with different rotational angles, 

zooms (scale), and optical centres (translational change) (RST). The optical axis for AOI and W F O V 

imaging are kept parallel. Based on the analysis and experiments, a new multi-process approach 

was designed and implemented which can trade off performance characteristics for various imaging 

conditions. This approach requires only rough estimation of the RST values to start with and presents 

a registered and fused dual resolution image to the viewer. This processing is also calibration free 

and can relax the specification requirements of the position sensor and camera control devices. A 

new study of using comer attributes to recover RST values leads to a derivation of an analytical 

representation of the significance value for detecting scale-consistent corners. There are many other 

issues to be studied in the future for a better D V C system. 
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Glossary 

As defined in [Burt, 96], or used in this thesis (*): 

Blur — a loss of image sharpness, introduced by defocus, lowpass filtering, camera motion, etc. 

Border — the first and last row and column of a digital image. 

Corner — a two dimensional discontinuity point. * 

Digital Image — (1) an array of integers representing an image of a scene; (2) a sampled and 

quantized function of two or more dimensions, generated from and representing a continuous function 

of the same dimensionality; (3) an array generated by sampling a continuous function on a rectangular 

(or other) grid and quantizing its value at the sample points. 

Digital Image Processing — digital processing of images, the manipulation of pictorial information 

by computer. 

Edge — (1) a region of an image in which the gray level changes significantly over a short distance; 

(2) a set of pixels belonging to an arc and having the property that pixels on opposite sides of the 

arc have significantly different gray levels. 

Feature — a characteristic of an object, something that can be measured and that assists in 

classification of the object (e.g., size, texture, shape). 

Feature Extraction — a step in the image processing in which measurements of the features are 

computed. 

Foveal Vision: the viewing angle that has the highest resolution. * 

Hierarchical Approach: Multi-resolution approach using the low resolution result to limit the search 

space of the higher resolution search. 

Gray Level — (1) the value, associated with a pixel in a digital image, representing the brightness 

of the original scene at the point represented by that pixel; (2) a quantized measurement of the local 

property of the image at a pixel location. 

Low-pass Filtering — an image smoothing (usually convolution) operation in which the low 

frequency components are emphasized relative to the high frequency components. 

Image — any representation of a physical scene or of another image. 



Image Matching — any process involving quantitative comparison of two images in order to 

determine their degree of similarity. 

Image Processing Operation — a series of steps that transforms an input image into an output image. 

Image Registration — a geometric operation intended to position one image of a scene with respect 

to another image of the same scene so that the objects in the two images coincide. 

Interpolation — the process of determining the value of a sampled function between its sample 

points. 

Neighborhood — a set of pixels located near a given pixel. 

Non-maximum Suppression — a way to obtain the maxima by selecting the pixels that have higher 

value than all the eight immediate neighborhood pixels. * 

Peripheral Vision — the viewing angle with low resolution and wide field of view. * 

Pixel — the smallest element of a digital image. The basic unit of which a digital image is composed. 

Region — a connected subset of an image. 

Registered Images — two or more images of the same scene that have been positioned with respect 

to one another so that the objects in the same scene occupy the same positions. 

Resolution — (1) in optics, the minimum separation distance between distinguishable point objects; 

(2) in image processing, the degree to which closely spaced point objects in an image can be 

distinguished from one another. 

Sampling — the process of dividing an image into pixels (according to a sampling grid) and 

measuring the local property (e.g., brightness or color) at each pixel. 

Scale — the ratio of the zooms in camera used to take WFOV and AOI. 

Scene — a particular arrangement of physical objects. 

Sharp — pertaining to the detail in an image, well defined and readily desirable. 

Smoothing — any image-processing technique intended to reduce the amplitude the of small details 

in an image. Smoothing is often used for noise reduction. 

System — anything that accepts an input and produces an output in response. 
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Texture — in image processing, an attribute representing the amplitude and spatial arrangement of 
the local variation of gray level in an image. 

Asynchronous used in this thesis: 

AOI: Area Of Interest 

AVS: Advanced Visionics System 

BFS: Brute Force Search 

CAE: CAE Electronics LTD 

CFF: Critical Fusion Frequency 

CONDOR: The Covert Night/Day Operations for Rotorcraft Program 

DVC: Dynamic Visual Communication 

DVCS: DVC System 

FOHMD: Fiber Optics Helmet Mounted Display 

FOV: Field Of View 

HDD: Head Down Display 

HMD: Helmet Mounted Display 

IFOV: Instantaneous Field Of View 

VC: Visual Communication 

VCS: VC System 

WFOV: Wide Field Of View 
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Chapter 1 Introduction 

The real-time communication of visual information, known as television, has spread from 

the entertainment industry into many commercial and industrial applications, see Fig. 1.1(a) and 

(b). Improvements have been made to incorporate wider view and higher resolution into cameras, 

transmission, and display systems. There are also many patented systems for binocular stereo, 

although none are widely used. 

One application of television is as a part of a system for manipulation of a remote environment. 

Currently such "teleoperation" systems are in use in remote handling of nuclear and other hazardous 

materials, as well as other applications. In some proposed applications, visual acuity is especially 

important such as for remote display. Since image sensors and displays have fixed rasters (e.g., 

640x480, 800x600, etc.), improving the resolution is achieved only by reducing the angle of view 

of the whole scene. 

The human visual system has a structure that allows it to acquire wide angle low resolution 

information in the natural periphery and narrow angle high resolution information at the fovea in a 

"seamless" overall view. Details of the scene are acquired by moving the fovea (by eye rotation) 

to an area of interest. 

A high resolution television system must either: 

1. Create a wide angle display of high resolution using multiple screens or projectors (the 

approach taken in the "cave" simulation at the University of Illinois, www.beckman.uiuc.edu/themes) 

(see Fig. l.l.(b)). 

2. Using a head-mounted display to create a high (a foveal) resolution view of the world only 

where the viewer is currently looking and elsewhere create a low resolution view. This approach 

attempts to match the human visual system capabilities. To accomplish this, one requires a high 

resolution camera to follow the viewer's current line-of-sight (Fig. 1.1(c)) and a means of merging 

the high resolution and low resolution views in the display. 

1 
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Chapter 1. Introduction 

(c) Two-way Communication 

Figure 1.1 Real Scene and DVCS Presented Scene 

The objective of this thesis is to investigate the issues involved in fusing a high resolution 

insert into a low resolution background, to obtain high resolution in the area of interest (AOI), 

while keeping the wide field of view (WFOV) background. The AOI is designed to follow the 

2 



Chapter 1. Introduction 

eye-movement (in a Helmet Mounted Display, HMD) or head-movement (in a Head Down Display, 

HDD). This is the model to be investigated in this thesis and is defined as a dynamic VCS (DVCS) 

because of the active feedback control over the scene. 

1.1 Background 

This DVCS model originated from flight simulator display systems and has been adapted for 

tele-operation application. A wide field of view is necessary for the awareness of the changes over the 

background while high resolution is required in the area of operation. One major structural difference 

for tele-operation VCS is that the AOI and WFOV images are taken from remote cameras instead 

of computer generated as in a flight simulator. There are many detailed issues to be investigated 

in this adaption such as wide field of view imaging, software systems for real-time, calibration-free 

registration and fusion of the AOI and WFOV images. 

1.2 DVC System Structure 

vvwi j v w m m MWW ^ ^ m i 

< ^ 
WFOV 

WFOV 
Camera 

AOI 
Camera 

Image 
A c q u i s i t i o n 

Computer 
Processing 

Image 
Fusion 

T 
AOI 

Eye/Head Tracking 
Sensor Feedback 

Figure 1.2 The D V C S System Components 

Viewer 

A DVC system consists of four major components: imaging, transmission and processing, display 

and feedback control. The imaging system is normally one or multiple cameras, with optical lenses 

and 2-dimensional optical sensors (e.g., CCD array). The transmission system can be a cable or an 

RF link and the processing system is usually a computing system (or processor). The display system 



Chapter 1. Introduction 

can be a CRT or LCD screen, fibre optic bundle, or projector. In our study, we will concentrate 

on a DVCS model with two video cameras as the imaging system, one with wide field of view 

(WFOV) but low resolution, another with a narrow field of view but high resolution tracking the 

area of interest (AOI), a cable as the transmission line, a computer as the processing system, and a 

helmet-mounted-display as the display system. The feedback loop obtains position information from 

position sensors tracking the movement of the eye and head and goes to a camera control device. 

This is shown in Fig. 1.2. 

The slaved AOI insert is able to shift from one location to another. This is necessary in a 

practical VCS system since the resources (including sensors, actuators, and processing) are usually 

limited, and must be used selectively in order to enhance the focused information without losing the 

background. Since a display device like a LCD screen has only one fixed resolution, the images 

from separate LCD screens must be combined optically. 

* 

N*S 

N (WFOV) 

N ( A O I ) 

> 
O 

Figure 1.3 The Ratio of the Pixel Numbers Required for Different Structure 

To illustrate in detail, this dual resolution presentation has the advantage of being able to a 

present high resolution image with a wide field of view without having high resolution over the 

peripheral vision, which reduces the total number of pixels required for the same result by many 

times. This is shown in Fig. 1.3. If one wants to increase the low resolution scene by a resolution 

factor of S, then the whole scene has NS*NS pixels in the first approach as shown on the left, 
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and N2 + N2 pixels (assuming the low resolution pixels under the insert are generated and then 

discarded), as shown on the right. The ratio is then (N S)2 / (2N2) = S2/2. 

1.3 Software Design 

Input 

AOI 

W F O V 

Frame Image Image 
Acquisition Registration Fusion 

Output 

Figure 1.4 DVCS Software Diagram 

In the DVC system defined earlier, the AOI and WFOV are taken with different zoom, angle 

and optical centres, and need to be registered and fused before being displayed. That is, the 

software system needs to acquire the AOI and WFOV images from the cameras and recover the 

rotation/scale/translation (RST) changes between the two images, followed by a fusion process. This 

is shown in Fig. 1.4. 

The goal is to perform calibration-free registration and fusion of images with RST changes in 

real-time. The feasibility and performance of such a software system are studied in detail in this 

thesis. Experiments are carried out on seven sets of images with various content. As a result, an 

optimized approach is proposed and implemented. This multi-process approach is able to adapt to 

the different imaging conditions and minimize the computational cost accordingly. 

1.4 Thesis Outline 

The thesis work includes the investigation of the DVCS system specifications from the end 

user's point of view, examination of the technology involved in implementation, and a feasibility 

study of the software part of the DVCS model, so that the requirements for the hardware can be 

understood better. 

Chapter 2 will briefly review human visual perception, with an emphasis on human visual 

capacities in the areas that are related to the VCS system specifications. This information will help 

to define the DVCS system specifications. This chapter will also investigate the current technology 

under development or developed to achieve these goals and the limits of the current technology. The 
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two most advanced systems, CAE FOHMD (commercial) and CONDOR (military), are introduced 

as examples of the current stage of development, followed by some design ideas. 

Chapter 3 will discuss the software design for this system. This includes the requirements, 

review of the related literature and the basic steps and functions involved. Among the steps in the 

software implementation, the RST estimation is the most complex step and is discussed in more 

detail. A review of the RST estimation algorithms leads to three possible approaches which will be 

examined in the next three chapters. The evaluation methods are introduced. 

Chapter 4 will start to investigate the details of a correlation-based approach. The performance 

is analyzed with respect to the free parameters, and a hierarchical brute force search is proposed and 

tested. Experimental results are given as well as the computational cost. 

Chapter 5 will study a second approach which is feature-based. In this approach, corner points 

are used as control points for the image registration. Among all the features, corners are selected 

because they are 2D features and are invariant to RST changes, which is especially relevant in our 

case. Corners are used as control points and correlation is used in corner point matching in our 

analysis. The reliability, accuracy, and computational cost are analyzed and experiments are carried 

out. The results suggest that only small RST changes can be recovered reliably and efficiently 

with this approach. 

Chapter 6 will study scale-consistent corner detection, as the first step in using corner attributes 

for image registration of large RST changes. As analyzed in Chapter 5, corner matching using 

correlation without any knowledge of RST values requires a large range of search space which is not 

computationally efficient nor reliable. So, alternative ways of corner matching, such as geometric, 

rigidity, disparity, attributes and invariants have been studied over years. This chapter will study 

the corner behavior over scale so that scale consistent corners can be identified and used as control 

points. A significance value associated with scale-consistency is defined based on the study of the 

smoothing effects on the corners. 

Chapter 7 will study the fusion of the registered images. In hardware, they can be projected 

onto one screen. In this chapter, software fusion is discussed and implemented. This involves 

recovering possible relative distortion, resampling, normalization and transition band smoothing. 
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Also, a complete approach of software implementation is summarized in Chapter 7, based on the 

analysis and experiments for the previous chapters. This approach combines different process to 

obtain best results for various imaging conditions. 

1.5 Thesis Contributions 

This thesis has made contributions in the following subjects: 

* Study of a feasible DVCS model, the system specifications, implementation technology, and 

processing system; 

* Analysis of the performance of the image registration algorithms in recovering rota-

tion/scale/translational (RST) changes between insert AOI and background WFOV images; 

* Experiments on seven sets of images taken with various image contents and RST changes to 

study the effects of the free parameters in implementing the registration algorithms; 

* Implementation of a processing system that can trade off performance characteristics based on 

the imaging condition using an adaptive approach; 

* Study of the scale-space behavior of corners and derivation of the analytical presentation of 

the significance value for detecting the scale-consistent corners; 

* Three novel ideas for improving the DVCS implementation are proposed: a) an imaging 

system using an intensity array; b) an eye-tracking insert using a microlens; c) pixel effect removal 

for LCD screen display. 

7 



Chapter 2 DVCS Specifications and Implementation Technology 

The ultimate goal of a DVC system is to present as realistic a scene as is necessary to carry out a 

task. There are always some trade-offs in implementation, based on applications and affordability. To 

make the best trade-offs, there is a need to understand how the human eye perceives the scene, as well 

as how well current technology performs. This chapter will discuss the facts from both perspectives. 

First, a brief review of human visual perception is given, with an emphasis on human visual 

capacities in the areas that are related to the VCS system specifications. As these set the expectations 

of the system specifications, the following section will investigate the feasibility of and technology for 

implementation. Technical difficulties and limits are discussed, followed by some design ideas. The 

two most advanced systems, CAE FOHMD (commercial) and CONDOR (military), are introduced 

as examples of the current stage of development. 

2.1 Human Visual Perception 

The optical structure of the eye is shown in Fig. 2.2(a). The simplified "reduced eye" is shown 

in Fig. 2.2(b), from [Mountcastle, 74]. 

Figure 2.1 a. (left) Horizontal Section of Right Eyeball; 
b. (right) Schematic Diagram of Optic Media [Kelly, 56] 

8 



Chapter 2. DVCS Specifications and Implementation Technology 

As shown in Fig. 2.2, the optics of the eye (in good focus) is a space-invariant linear optical 

system which can be represented by a point-spread function. Unfortunately, the other parts like 

receptors (sensor) and visual pathways (processor) are neither space-invariant nor linear. So, it takes 

more than just a point-spread function to model the whole system, and a complete model is not 

possible. What is needed is to identify a set of significant visual phenomena that can be duplicated 

to some extent with current technology. State of the art DVCS systems can accommodate field of 

view (aperture), visual acuity (spatial resolution), critical fusion frequency (frame rate), color, stereo 

parallax (disparity), eye-movement and head-movement to some extent. So, in the following sections, 

we will discuss the visual capabilities in these functionality. 

Visual Acuity The ability to detect a border, or an abrupt change in the visual field is called the 

resolution of a stimulus in space. This is illustrated in Fig. 2.3(a). In practice, they are simplified 

into three regions as shown in Fig. 2.3(b) 

• The foveal region which is the hyperacuity area of 26 arc seconds or one arc minute 

approximately; 

• The transition band where the resolution drops rapidly from 1 arc minute to about 10 

to 30 arc minutes; 

• The peripheral region where the resolution stays reasonably stable at about 30 arc 

minutes. 

As discussed in [Mountcastle, 74] and [Kelly, 56], the central retina, particularly the fovea, 

contains a much greater information density and provides most fine details of the scene, while the 

peripheral region is mainly responsible for target detection, motion detection, pattern recognition in 

wider range, and so on. So it's equally important to present both the high resolution foveal vision 

and wide FOV peripheral vision. This is the major reason for adopting a two level resolution DVCS, 

with an eye-tracking high resolution insert covering the foveal region called the area of interest 

(AOI), while keeping the wide field of view (WFOV) background covering the peripheral region. 
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10 20 30 
Distance frorn fovea 

(degrees of visuaJ angle) 

Transition 

•; -Peripheral • 

0 5 10 . . . 
D i s t a n c e f r o m f o v e a 

( d e g r e e s o f v i s u a l a n g l e ) 

Figure 2.2 a. (left) Visual Acuity vs Distance From Fovea [Mountcastle, 74] b. Simplified Regions 

Critical Fusion Frequency The ability to discriminate the stimuli that are separated in time 

is called the temporal resolution of stimuli. The critical fusion frequency (CFF) is the minimum 

frequency at which repeated stimuli appear to fuse together into a continuous stimulus. The resolution 

of stimuli in time is limited because the response to a given stimulus does not cease exactly when 

the stimulus ceases but persists for a time thereafter. Fig.2.4(a), as in [Mountcastle, 74], shows CFF 

as a function of both retinal illumination (intensity of the flickering stimulus) and retinal location. 

From Fig.2.4(a), we can see the critical fusion rate distribution function can be simplified into a 

piecewise function, 30Hz for the peripheral region and 50 Hz for the foveal region. This is the reason 

behind the 30 frame/second TV screen and 50~60 frame/second refresh rate for high performance 

monitors. This also suggest that AOI frame rate should be 50*60, while WFOV can just have 25-30 

frame/second in DVCS system as shown in Fig.2.4(b). 
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Critical Fusion Frequency 

4 

Retinal illumination (log trolands) 
Figure 2.3 a. (left) Effects of Retina Illumination on Critical Fusion 
[Mountcastle, 74]; b. (right) Simplified for AOI and W F O V Region 

The Field Of View (FOV) The field of view (FOV) is the area seen by an eye at a given instant, 

also called the instantaneous FOV (IFOV). The perimetry chart is a chart that shows the FOV, the 

area not covered in the dark in Fig. 2.5(a). In all perimetry charts, a blind spot caused by lack 

of rods and cones in the retina over the optic disc is found approximately 15 degrees lateral to the 

central point of vision, as illustrated in Fig.2.5(a), [Kelly, 56]. 

Simplified as Rectangular 
in Practical System 

Horizontal FOV (deg) 

Figure 2.4 a. (left) A Perimetry Chart Showing the Field of Vision 
From Left Eye [Kelly, 56]. b. (right) FOV in Practical System 
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Visual phenomena are closely related to the FOV, in the sense they are functions of FOV. As 

discussed earlier, CFF and visual acuity are subjective to the region of the field, for example. 

Research by [Mitsuo Ikeda and Tetsuji Takeichi, 75] show that the functional visual field size 

shrinks with foveal loads of greater recognition difficulty. They also noticed that this effect is 

less obvious with trained subjects, indicating that they learned to shift their attention towards the 

periphery without sacrificing detectability at the fovea. Since this is more subjective, we wouldn't 

consider this effect in our module. 

To be able to provide a display that covers the IFOV, or the greater part of it, is very essential 

in creating a tele-presence. But most systems can only provide a WFOV (defined as minimum 90 

degree), and a larger FOV presentation is still under investigation. 

Depth Perception and Stereopsis Stereoscopic acuity, is a measure of the ability to discriminate 

differences in the distance of stimuli from the eyes. The visual apparatus normally perceives distance 

by three major means [Mountcastle, 74]. These means are (1) determination of distance by sizes 

of retinal images of known objects (2) determination of distance by moving parallax, and (3) 

determination of distance by stereopsis-binocular vision. Fig. 2.6, as in [Mountcastle, 74], shows the 

stereo vision FOV. Stereo is an important aspect of vision, and usually implemented in a HMD by 

presenting two eyes with a pair of images taken with disparity. Details are not discussed in this thesis. 
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Figure 2.5 The Stereo Vision and Field of View Distribution [Mountcastle, 74] 

Eye Movements and Head Movements Eye movements help the visual system by orienting 

the fovea to the center of the visual task [Young&Sheena75]. Besides that, eye-movement and head 

movement also enhance the dynamics of the visual field, accommodation, and hyperacuity recognition 

tasks. Fig. 2.7, from [Young&Sheena75], shows typical single-eyed horizontal eye movements 

recorded by the photoelectric technique. The figure gives all the basic types of eye-movements and 

their speed and range. 

Eye movements that are in the range of 0.5 to 1 degree like fixation movements are not tracked 

in a VCS system. The reason is the AOI display is designed to be slightly larger than the foveal 

region, so even with the presence of the fixation movement or other small range eye-movements, 

the foveal vision will still be in the same AOI region. This makes the eye-tracking task easier to 

implement. Time delay becomes a significant problem in eye-tracking systems since the overall 

system time lag should be less than one frame time, and the sampling rate needs to be at least higher 

than the fusion rate in the foveal region which is 50Hz. 

The range of eye movements are usually within +-30 deg., though different types of eye 

movements have different ranges of movement. Head motion is often involved when the target 
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motion exceeds 30 degrees. 

In a helmet-mounted DVC system, the AOI follows eye-tracking while the WFOV follows 

head-tracking. The hard edges (abrupt resolution changes ) between the AOI and the WFOV should 

be smoothed with a transition region. An AOI width of 25 degrees within which is a 5 degree wide 

smoothly varying transition region and IFOV of 130 degree are recommended by Eric. M. Howlett, 

see [Howlett, 92] & [ Kelly, 92]. 

YOUNG AND SHEEN A 

j 1
 SCALES! *0 wm/*»e 

J . i.«Vdi» 

Figure 2.6 Typical Horizontal Eye Movements Recorded with a Photoelectric Monitor Showing (a) 
Saccadic Jumps, (b) Fixation Movement, (c) Smooth Pursuit [Young and Sheena] 

Expectations The above review on human vision capabilities provides information on the 

expectations and evaluation measures of a DVCS system. That is, the system is perfect when 

the performance matches the direct human visual capabilities. Since a practical system can't afford 

to meet all these expectations, some kind of trade-offs have to be made. In our study, we adopt 

the same system structure used for flight simulator display, except the source of images are from 

remote cameras instead of being computer generated. Some adjustments are made to reduce the 

cost of the system for feasible industrial applications. These can be justified by lowering some of 

the performance criteria that are less critical in industrial applications, such as system time-delay, 

resolution and field of view. 
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2.2 Implementation Technology and Design 

The limits of some technical difficulties and affordability concerns determine that some kind of 

trade-offs have to be made for a practical system. 

An extensive review of the literature in this area was carried out. No papers are found describing 

the same research in this area. However, there are several commercial products that use a AOI over 

a WFOV for only flight simulators and cockpit target display. This section will discuss the related 

implementation issues, starting with reviews of the current technology and state of the art designs, 

followed by some improvement ideas. 

Current Technology Review 

1 Wide Field Approach One of the technical difficulties is in imaging/displaying a WFOV image. 

The traditional method is a mosaic of several LCD screens. Given a large enough number of LCD 

or CRT screens, a very wide field of view can be obtained at high cost. 

(a) 0» 

Linear Projection of the Real World r=f9 (0 in rads) Fish-eye View, for 
Angles onto an Sensing Plane Acquiring Wide Views 

Figure 2.7 Comparison of Linear Projection and Fisheye View 

A fisheye lens can also provide WFOV. This is achieved by compressing the wide angle image 

in a way that looks like a fisheye. When the 3-D real world is projected to a 2-D plane sensor, 
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usually they are linear projections as shown in Fig. 2.8(a), as in a pinhole camera, or an ordinary 

camera with a distortion-free lens. The problem is a wide bandwidth is required for transmission and 

storage, and a high resolution and wide angle lens is hard to make. 

Fig. 2.7(b) shows the fisheye view projection, which is used for acquiring very wide FOV. 

Recently, this kind of fisheye system has become more popular because its resolution pattern can 

be made to match the human visual system, i.e., higher priority is given to the foveal field to make 

the best possible use of the total pixels, and the peripheral field is compressed into the edges of the 

image. The image is distorted radically and has to be restored before being presented, as discussed in 

[Eric M. Howlett, 89]. The problem with this system is that the focus is always centered and fixed. 

2 Eye-tracking and Head-tracking Eye-tracking is used to record the eye movement and control 

the positioning of the high resolution insert so that the insert always follows the foveal vision of 

the eye, or AOI. Many techniques for monitoring eye movements have been developed, and a good 

review can be found in [Geoffrey R. Loftus, 74]. 

Head-tracking is used to record the head movement so that the background or WFOV always 

follows the head movement. See [Howlett, 89] for details. 

CAE FOHMD 

There are currently two types of dual-resolution image presentations. One uses an eye-tracked 

insert fused with a head-tracked background all in one helmet-mounted-display (HMD). A recent 

CAE product called a fibre optic helmet mounted display (FOHMD) is an example. Another way is 

to have a head-down WFOV (background is displayed on the surrounding screen) and head-mounted 

AOI, as in the CONDOR system, which will be introduced in next section. 

The CAE FOHMD is the most advanced commercial product designed for a flight simulator 

display system. The performance specifications for the FOHMD are shown in Fig. 2.8, from a CAE 

product flyer. The detailed implementation is not known to us. This system is introduced briefly 

as a reference of HMD model and the performance achieved. The system helmet components is 

shown in Fig. 2.9, [CAE product brochure]. In this picture, the pilot's head motion are sensed 
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with a diode array and accelerometer. Fiber-optic cables carry the image which are displayed via 

an optical assembly to the eyes. 
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The performance specifications for the Fiber-Optic Helmet 
Mounted Display are as follows: 
(Subject to change without notice) 
(a) Instantaneous FOV: 135° horizontally by 64° vertically, 

consisting of: a 135° by 64° low-resolution field, and 
55° by 30° or 25° by 19° high-resolution field. 

(b) Total FOV: unlimited 
(c) Brightness: minimum 30 footlamberts 
(d) Contrast: greater than 30:1 
(e) System Resolution: Background: 135° x 64° -

4.6 arcmin/TV line (horizontal) 
Inset: 25° x 19° -
1.4 arcmin/TV line (horizontal) 

(f) Geometric Distortion: less than 1.5% 
(g) Registration: inherently registered at all times 
(h) Colon full color system 
(i) Optical Helmet Tracker 

(1) Range: Pitch ± 90° (2) Resolution: Pitch 0.05° 
Yaw ± 180° Yaw 0.05° 
Roll ± 9 0 ° Roll 0.05° 
X 24 inches X 0.01 inche: 
Y 24 inches Y 0.01 inche 
Z 12 inches Z 0.01 inche: 

Figure 2.8 The C A E Fiber-Optic Helmet Mounted Display 
System Performance Specifications, [CAE product brochure] 
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Figure 2.9 The Helmet Components, [CAE product brochure] 
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CONDOR Advanced Visionics System 

Another way of presenting the insert and background is to have a head-down display (HDD) as 

background and a helmet-mounted insert projection slaved to the head motion. This is proposed for 

the most advanced military system in CONDOR program. The project is discussed in [Kanahele, 96]. 

As explained in [Kanahele, 96], "The Covert Night/Day Operations for Rotorcraft (CONDOR). 
/ 

program is to develop and demonstrate an advanced visionics concept coupled with an advanced flight 

control system to improve rotorcraft mission effectiveness during day, night, and adverse weather 

conditions in a Nap-of-the Earth (NOE) environment. The Advanced Visionics System (AVS) for 

CONDOR is the flight-ruggedized head mounted display and computer graphics generator with 

the intended use of exploring, developing, and evaluating proposed visionic concepts for rotorcraft 

including the application of color displays, wide field-of-view, enhanced imagery, virtual displays, 

mission symbology, stereo imagery, and other graphical interfaces." 

"AVS was designed for use as a research tool to be integrated into both in-flight helicopter and 

ground-based simulator environments. The AVS HMD will enable researchers to test the impact 

and interaction of various display parameters such as color, FOV and overlap and as such, requires 

enhanced performance capabilities for image resolution, color and accuracy. To accomplish this, 

state of art technology has been incorporated into AVS design." 

The system specifications are given in Fig. 2.12. Again, no details are known to us, it is 

introduced as a reference for an HMD model. 

"The AVS design includes a Programmable Display Generator (PDG), Head Down Display 

(HDD), and Helmet Mounted Display (HMD) system. Both the PDG and the HDDs are commercial 

off-the-shelf systems modified to meet AVS requirements. The HMD system, however, uses new 

technology and subsystems developed specifically for the AVS program." The system block diagram 

is shown in Fig. 2.11, and the HMD components is shown in Fig. 2.12. 

20 



Chapter 2. DVCS Specifications and Implementation Technology 

Luminance- 120 fL 
Contrast: 12:1 
Field-of-View 50 deg. V x 60 deg. H per eye 
Overlap 20 deg., 30 deg., 40 deg. selectable 
Resolution 1280 H x 1024 V pixels (0.5 lp/mrad) 

Figure 2.10 AVS System Specifications Expected 

4-Channel 
Video 
Recorder 

Control 
Interfaces 
and Facilities 

Sensors & 
Aircraft 
Systems 

Programmable 
Display 
Generator 

Low Resolution 
Videos 

High Resolution 
Videos 

Head-Down CRT 
Display System 

Helmet Mounted Display 

Figure 2.11 AVS Block Diagram 
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MOOTING BLOCKS 

VISOR MOUNTING 

Figure 2.12 CONDOR HMD Components, [Kanahele, 96] 



Chapter 2. DVCS Specifications and Implementation Technology 

Hardware System Design 

As discussed earlier, even the most advanced DVC system can't meet all the expectations of a 

perfect presentation. On the one hand, this means trade-offs, on the other hand, this has also been 

a driving force for new technology and design ideas. Also, note that the display systems discussed 

above are for ground flight simulator, the images are computer generated and do not require the 

merging of AOI and WFOV video images. 

But for tele-operation, the images are taken from remote scene in real time, and accordingly, the 

hardware for imaging WFOV and AOI as well as a processing system that merge the two images are 

required. There is today no system that provides these functions. Although not directly the topic of 

this thesis, some of the issues involved in the hardware implementation of WFOV and AOI imaging, 

merging and display have been studied, and a few design ideas are proposed. They are discussed in 

the appendices, and here is a brief introduction of the topics addressed. 

1 WFOV Imaging and Acquisition Using Intensity Array As discussed earlier, one implementation 

difficulty is to provide wide field of view imaging. A pinhole camera is able to provide a wide field 

of view, but is limited by its aperture. One solution is to have a pinhole array and recover the image 

by deconvolution. If the array is properly arranged, there exists a deconvolution function to allow the 

recovery of the original scene from the overlapping multiple images obtained. In general, the array 

provides a y/~N times effective aperture compared to one pinhole where N is the number of pinholes. 

An imaging system based on a similar design principle is proposed, see Appendix A for details. 

2 Image Fusion Using a Microlens This system is designed to project the insert image to the 

registered position over the background with optical and electronics devices instead of mechanical 

devices. The advantage is that it is less expensive and easier for real-time implementation. The 

idea is discussed in Appendix B. 

3 Pixel Effect Removal For LCD Screen In an HMD system, the viewing distance is close enough 

that the pixel details on an LCD screen become obvious and can affect the perception of the image 

features. That is, the gaps between the pixels can be seen and cause discontinuously in the image. 
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To solve this, a vibration based smoothing mechanism is proposed. This is based on the knowledge 

that if the vibration rate is higher than the critical fusion rate, the viewer will not be able to notice 

the motion, instead, the perceived image is the fusion of the consecutive frames. This will give 

the same visual effect as smoothing along the gap if the motion is crossing the pixel gaps. Further 

discussion of this is given in Appendix C. 
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Chapter 3 Processing System Design 

We have discussed the DVC system specifications and implementation technology, next we will 

study the implementation of the processing system. As shown in Fig. 1.5, the computer acquires 

two video channel inputs AOI and WFOV, which have real-time rotation/scale/translational (RST) 

changes. Registration and fusion of AOI and WFOV are required before outputting to a display. 

The requirements of the processing system are: given an initial RST estimation and their change 

range, a registered and fused dual resolution image should be generated in real-time. During this 

process, the RST estimation is the important step and also the most complex. Details are examined 

in this Chapter. This chapter will review the literature on this subject, the functions involved, and 

the problems to be solved. A brief introduction of fusion methods is also given. Fig. 3.1 illustrates 

why the processing system is necessary, since without RST estimation, the superimposed image is 

misaligned and not readable, as shown. 
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Figure 3.1 The Illustration of Image Fusion without RST Registration 
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3.1 Imaging Condition and the Transform Matrix 

As discussed earlier, the AOI and WFOV images are obtained with relative RST changes. Their 

relation can be expressed with a transform matrix in Cartesian coordinates. That is, X' = T*X, where 

X = (3.1) 

and 

X' (3.2) 

are the corresponding points in original image and transformed image, T is the transform matrix. 

Translation: the matrix for translational change is: 

1 0 x0 

0 1 y0 

0 0 1 

where x0 and y0 are the amount of shifts in X and Y directions. 

Scale: scaling by factor of Sx and Sy along X and Y is given by the transform matrix 

(3.3) 

TS 

Sx 0 0 
0 Sy 0 
0 0 1 

Rotation: rotation transformation around the origin of the coordinates is given by: 

TR = 

' cos 6 s'mO 0 
— sin 6 cos 6 0 

0 0 1 

(3.4) 

(3.5) 

Finally, for RST, the transformation matrix, it is simply the multiplication of the above three 

matrixes 

TRST = TK*TS *TT (3.6) 
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3.2 Image Registration 

Image registration is the process of recovering the unknown parameters in the transform matrix, 

i.e., the RST values. The purpose is to present two images at the same RST scale so that further 

similarity measure and the fusion process can be performed. A good review of image registration 

methods can be found in [Fua, 93]. There are two main categories of registration methods, one is 

correlation-based, the other feature-based. Correlation is generally regarded as a reliable and precise 

method in recovering translational (T) change [Guelch88], but the computational cost can be high 

depending on the correlation window size and search region. It is not very well known as to the 

performance of this method in recovering the RS values. In [Schmid & Mohr, 95], it is pointed 

out that correlation is invariant to small RS change, for up to 20% scale change, and a 15 degree 

rotational change. But, no details and rationale were given. This is enough if only translational 

change needs to be recovered. But when RS changes need to be recovered, it become necessary 

to understand in detail how well the algorithms will perform under these circumstances. This will 

be the topic of the next chapter. 

Another category of image registration algorithms employs features. These algorithms extract 

features of interest from images, such as edge segments, closed-boundaries, contours or corner points 

and match them with some similarity measurements. The reliability and precision of these approaches 

depend on the feature contents of the two images to be matched, and therefore lack consistency over 

different pictures. Nonetheless, its robustness to changes, such as RST, motion and view changes, 

make it a popular tool in areas where the correlation fails, or the computational cost is too high. 

Among the features, corner points have been widely used as control points in practice, because 

they are 2D features and are invariant to RST changes, which is especially relevant in our case. 

This is why corners are chosen in our study of the feature-based approach in recovering RST values. 

This is studied in Chapter 5, using correlation window in matching, and in chapter6, using attributes 

in matching. 

3.3 Performance Evaluation 

There are many factors that affect the performance, but free parameters are what we can adjust 
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to obtain the best results. So, understanding how to select these parameters become very important 

part of implementation. 

Theoretically, free parameters should be selected based on their contributions to the performance 

index such as estimation accuracy, the reliability of the estimation results, and the computational 

cost. Chapters 4 to 6 study the relation between the performance index and the free parameters. In 

some cases, analytical equations are derived. These will provide the guidelines in selecting the free 

parameters in applications involving RST changes. 

3.4 Sampling and Interpolation 

Given two images and the transform matrix, one of the images needs to be transformed to match 

another one. This process involves sampling and interpolation which is introduced in this section. 

The re-sampling with RST changes are as follows: 

V 

y 

or 
V 

y . 

This equation shows that the new pixel values are not necessarily integer numbers, which means 

some kind of interpolation is required to obtain the new pixel values. The transformed pixels generally 

fall into the space between four neighboring pixels. The interpolation process is to determine the 

gray level value using these four pixels. Many possible interpolation schemes can be used. 

Nearest Neighbor Interpolation: The simplest interpolation scheme is the so-called zero-order, 

or nearest neighbor, interpolation. In this case, the gray level of the output pixel is taken to be 

the value of the input nearest pixel. This is computationally simple and produces acceptable results 

for many applications. 

Bilinear Interpolation: First order, or bilinear, interpolation produces more desirable results than 

zero-order interpolation, with only a slight increase in programming complexity and computation 

time. The bilinear function is given as: 

30 

= S 
cos R s'mR 'x' 'XQ' 

+ J .y. .yo. 
(3.7) 

S * cos R* x — S * sin R*y + XQ' 

,S * sin R * x + S * cos R * y + y0. 
(3.8) 
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f(x, y) = [/(l, 0) - /(0,0)]z+[/(0,1) - /(O,0)]y+[/(l, 1) + /(0,0) - /(0,1) - / ( l , 0)]zy+/(0,0) 

(3.9) 

Higher Order Interpolation: A function with more than four coefficients is made to fit through 

a neighborhood of more than four points. The obtained subpixel value usually gives higher accuracy 

result at the cost of extra computation. 

3.5 Fusion 

Smoothing is needed in the transition band to bridge the gap between high resolution and low 

resolution images. There are several ways of doing the smoothing transition: 

(i) An average of the intensity values of the overlapped pixels. 

(ii) A median filtering of the intensity values of the overlapped pixels. 

(iii) A weighted median or a weighted average where the weights can correspond to one of the 

several choices, yielding very different types of fusion. For example, the weights can be chosen to 

decrease with the distance of a pixel from its frame centre. 
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As discussed earlier, the first category of registration algorithms is correlation-based, and the 

free parameters consist of correlation window size, RST step sizes, the RST change ranges, and filter 

size. In the following sections, we will analysis how these free parameters affect the performance 

and experiments are carried out accordingly. 

4.1 Estimation Accuracy 

The first performance index is the estimation accuracy. It depends on how sensitive the correlation 

function is to the changes of variables to be estimated, since the correlation value is used to recover 

these variables. The higher the sensitivity, the higher the estimation accuracy. In applications where 

images have relative RST changes (i.e., RST values are the variables of correlation function), we 

look at the sensitivity of the correlation value to RST changes and establish the relation between 

the sensitivity and the free parameters. 

Sensitivity to S (scale) change: Given two images I and I' with a scale difference of S, F needs to 

be down-sampled by S to be correlated with I. If the scale difference between I and F is S + AS 

instead of S, then F needs to be down-sampling by S + A S to be correlated to I. If A 5 is small 

enough, then down-sampling by S or by S + AS should give the same sampling point locations. To 

illustrate how the sampling point locations are distributed as scale changes, a map is drawn as shown 

in Fig. 4.1. The figure illustrates the concept that down-sampling the same image by a different 

scale usually generates different sample points, if the scale difference is large enough. For example, 

as shown in Fig. 4.1, for scale=3 and scale=4, most of the sample locations are different. On the 

other hand, if the scale difference is small enough, all the sample points will be at the same location. 

In between, there will be partial overlap of the sample points between two down-sampling scales, 

which is the case for scale=3 and scale=2.67. Scale=2.67 has the same sample points as scale=3 up 

to the fourth sample point. So, if a correlation window of less than 8x8 is used, the correlation by 

these two down-sampling scales will give the same value, that is why correlation is invariant to small 

scale change, especially with a small correlation window. As AS increases, the correlation value 
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difference between the two down-sampled images will increase accordingly, due to an increasing 

number of different sample points. 

K X X X X 

* * * 

@ @ @ @ 

V e r t i c a l l i n e r e p r e s e n t s the c e n t r e o f the image 

a r e the o r i g i n a l image p o i n t s 
x a r e t h e s a m p l i n g p o i n t s f o r sca le=3 
* a r e t h e s a m p l i n g p o i n t s f o r sca le=4 
@ a r e t h e s a m p l i n g p o i n t s f o r s c a l e = 3 * 8 / 9 ~ 2 . 6 7 

Figure 4.1 ID Illustration of Sample Points Distribution at Different Scales 

In general, the correlation value change is proportional to the percentage of sample point changes, 

given a uniformly random distribution of the pixel intensity level. This is illustrated as follows: 

Given images I and I' to be correlated, the correlation value fcorr oc 2~22~2[Iij* \ given 
i j 

images I and I" to be correlated, f'C0Tr oc E E l ^ i * ^ ) ' t n e difference of fcorr and f'corr will 

be A fcorr oc 2^2~2 (jij * (jlj — I'i'^j) • Note, Afcorr = max if I' and I" have all different sample 

points, and A / c o r r = min or 0 if I' and I" have all the same sample points. This explains the 

assumption we made earlier that the correlation value change is, in general, proportional to the 

percentage of sample changes. 
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Figure 4.2 2D Illustration of the Range of Sample Point Difference (Outside 
Dotted Line: scale=3 and 4; Outside Dashed Line: scale=3 and 2.67) 

From Fig. 4.2, we can derive the mathematical relation of the changes. Given an original image 

with pixel numbers of LxL or (2N+l)x(2N+l), and the sampling scale of S, total sample points of 

the resampled image is: ((2N/S) + l ) 2 . 

Given another sampling scale at S + AS, the first different sample point will start at K - S/AS 

(note the unit of K is in pixels as in the original image L). So, the total number of the same 

sample points are: 

Ss = ((2K/S) + l ) 2 - 4((2#/S) + 1) 
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The total number of different sample points is: 

SD = ST - Ss = ((2N/S) + l ) 2 - ((2K/S) + l ) 2 + 4((2A'/S) + 1) (4.2) 

The percentage of the different sample points Prj is equal to So divided by ST, i.e., 

PD = 1- ((2K/S) + 1)2/((2JV/S) + l ) 2 + 4((2A'/S) + 1)/((2JV/S) + l ) 2 (4.3) 

or 

PD = 1 - ((2/AS) + 1)2/((27V/S) + l ) 2 + 4((2/AS) + 1)/((2N/S) + l ) 2 (4.4) 

From the equations, we can see given AS = 1/N, Pp « 0, and given AS = 1, then PD = 1 

or 100%. To understand these relations better, some real values are given in Fig. 4.3 & 4.4. 

Window Size\P_P AS=0.2 AS=0.1 AS=0.05 
L=32, N=16 « 1 0.85 0.05 
L=64, N=32 0.96 0.73 
L=128, N=64 0.99 0.93 

Figure 4.3 The PD V S Window Size & Scale Change with S=4 

Window Size\Ps AS=0.2 AS=0.1 AS=0.05 
L=32, N=16 0.99 0.79 "0 
L=64, N=32 a 1 0.94 0.70 
L=128, N=64 a 1 0.99 0.92 

Figure 4.4 The PD vs Window Size & Scale Change with S=3 

Note, PD ~ 1 or 100% is approximately equivalent to X/Y shift of one pixel in contribution 

to correlation change, so PD < 0.8 is regarded as not acceptable, unless with very high feature 

contents within the window. Note as S changes, not all the mislocated sample points are mislocated 

at the same distance. The larger the displacement, the larger the contribution to the correlation 

value change, but this is not counted here due to the calculation complexity. In general, we can 

assume that PD=90~100% is approximately equivalent to one pixel shift in space in the amount of 

correlation change introduced. 
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In this and following analysis, the sensitivity values are derived with the nearest neighbor as 

the interpolation scheme, if linear or higher order interpolation is used, the sensitivity will increase 

accordingly. 

Sensitivity to R (rotational) change: Similarly, the relation between the rotation change and the 

PD values can be derived as: given a rotational change of AR, the nearest distance of the different 

sample location will be 

K = 1/ tan (AR) (4.5) 

ND = ((2N/S) + l ) 2 - TT(K/S)2 + 2n(K/S) (4.6) 

where S is the base scale change and LxL=2Nx2N is the original image size. The percentage 

of the sample point location change Prj is equal to NS divided by the total pixel number in the 

correlation window, i.e., 

PD = 1 - TT(K/S)2/((2N/S) + l ) 2 + 2n(K/S)/((2N/S) + l ) 2 (4.7) 

or 
PD = l-ir(l/t<in(AR)/S)2/((2N/S)+l)2 

(4.8) 

+2TT(1/ tan (AR)/S)/((2N/S) + l ) 2 

Sensitivity to T (translational) change: Correlation can recover space shift T up to one pixel 

precision, with PD=1 or 100%, or sub-pixel precision can be obtained if a certain interpolation 

scheme is applied. 

As analyzed above, we established the relation among the window sizes, the RS step size and 

the correlation change which provides the criteria in selecting the proper window size, step size for 

the precision required, and avoid unnecessary detailed calculation. 

4.2 Reliability of the Estimation Results 

The reliability of the correlation-based methods in relation to the window size is well studied, 

as in [Fua, 93]. The larger the window size, the higher the reliability, since larger window size 

covers more feature contents in general. 
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The reliability of the correlation results is also related to feature content, the higher the feature 

bandwidth, especially the higher feature components, the higher the reliability. So, some kind of 

high pass filtering, like Laplacian, can be introduced to enhance the high frequency feature contents. 

This process can be regarded as feature extraction. Among the features, the corner map is another 

choice because corners are 2D features and sensitive to changes in all directions (in RS space). 

Our experiments shows that if correlation is done on the corner map, the reliability will increase 

accordingly. The disadvantage of this process is that a high pass filter tends to increase the noise 

level, so some kind of smoothing should be applied before feature extraction, and all these make 

it computationally expensive. 

Another way to increase the reliability of the correlation is to have the feature density 

measurement beforehand. For example, variance can be calculated first to avoid unnecessary 

correlation in the featureless windows. 

4.3 Computational Cost 

The computational cost depends on correlation window size, search range, and what kind of 

preprocess is applied. The computation cost is proportional to the correlation window size, filter 

size and search range, and inverse proportional to the RST step sizes. These are summarized in Fig. 

4.5. The numbers given are based on the space domain calculation, without considering possible 

computing skills that can reduce the computation cost. Our main purpose here is to present the 

general relation between the free parameters and the computational cost. 
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Methods (Image LxL, Window Multiplications Required Typical Number 

WxW {={K 1 S)X{K 1S) in Fig. with W=8; F=3; 

4.2), No. of Scale Steps SN, L=480; SN = 10; 

No. of Rotation Steps RN, RN = 10; 

Translational Change Tx & Ty, TX = 10; TY = 10 

Filter Size FxF) 
Direct Correlation (2W2 + 3) *TX*TY* SN * RN 

1300k 
Smoothing (2F2 + 3) * L2 4838k 
Variance Normalization (3W2 + 3) * TX * TY * SN * RN 1950k 
Laplacian Filtering (2 * F2 + 3) * (W2 *SN*RN + L2) 69350k 
Plessey Corner Map 5L2 + 3 + (5W2 + 3)*SN*RN 5792k 

Figure 4.5 Computational Cost vs Factors (k=1000) 

In Fig. 4.5, SN stands for the number of scale steps, RN stands for the number of rotation steps, 

and TX & TY stand for the translational changes in X and Y dimensions. 

4.4 Brute Force Search and Hierarchical Approach 

Given an RST change, the natural approach to estimation is by searching through RST space, 

which is a brute force search. In a brute force search, for each set of RST values, warping/resampling 

is needed for correlation based matching to give meaningful results. That is, a counter rotation, 

counter scale is done to recover the similarity of the gray level images. The brute force search can 

be computationally expensive, requiring warping, resampling and correlation for each set of RST 

values. A hierarchical approach can be introduced to address these concerns and to give significant 

functional and computational advantages. A coarse-to-fine approach reduces the search space at finer 

levels by using the results of matching at coarser resolutions. This approach has been used in many 

applications involving searching over large space to reduce the computational cost, [Burt, 93]. 

Fig. 4.6 show the buildup of the multi-resolution hierarchy. The lower resolution is simply 

obtained by replacing four neighboring pixels by one averaged pixel. The picture size is truncated 

to square and power of two before building the hierarchy. 
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N X N N/2 X N/2 N/4 x N / 4 

Figure 4.6 Building Multi-resolution Hierarchy 

Sampled by ( S i . R j ) 
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Figure 4.7 Sample Points by Different RS Sampling 
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• 1 1 1 1 M 

i r l • MS Ml • 1 1 i 

• • • 1 1 Ml 

M 1 i 1 i i • 

M i i i n 
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m l i II 

WFOV & AOI with (0,0) S h i f t WFOV & AOI with (N,N) S h i f t 

Figure 4.8 Mapping Down-sampled AOI to W F O V 

As shown in Fig. 4.7, the AOI is down-sampled by different RS values, these are selected based 

on the initial estimation of RS value, and the change range of RS. The step size for R at lowest 

resolution level is chosen to be 2/N (in radians) where N is the correlation window size. Step size 

of S is chosen to be 2/N. Step size for T is chosen to be equivalent to the number of the hierarchy 

at the bottom level search and decreased to one at top resolution level search. The RS step size 

at higher levels will always be half the step size of the previous level. This is shown in Fig. 4.8. 

Note, T is chosen to be as the maximum point in T search space, i.e., the amount of shift that gives 

highest correlation value will be chosen as the T value. The search over RS will generate an RS 

surface map, which will be shown in experiments, and the maxima over the RS surface will give 

the new initial RS values for the next level search. 

This approach also make it possible to use a different step size and window size for the different 

resolution levels, using the analytical results derived in the previous sections. Proper window size, 

step size, and resolution is the key to the success of this process. As analyzed earlier, a window that 

is too small is not sensitive to RS change, and has low reliability. A window size that is too large 

can be computationally expensive and unnecessary, as analyzed previously. Similarly, too small a 

step size for RST change can be redundant since the change is too small to make a difference in 

correlation, and too large of a change of RST can result in missing the global maximum and end up 

with a local maximum. The flowchart of this process is shown in Fig. 4.9. 
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Input Images I_H & I_L 

Low Precision 

Initialization: rotational/scale (RS) 
translational (T) 

I 
Build Multilevel Hierarchy from 
I_H & I_L 

Setting Free Parameters 

T 
Warping with Brute Force Search on 
the lowest level to obtain Top 
Candidates for RST Values 

T 
Resetting Free Parameters 

• 
W a r p i n g w i t h B r u t e F o r c e S e a r c h o n 
t h e s e c o n d l o w e s t t l e v e l t o f i n e r 
e s t i m a t i o n o f R S T V a l u e s 

| High Precision 

Resetting Free Parameters 

± 
Warping with Brute Force Search on 
the top level to obtain fine 
Estimation of RST Values 

I 
RST Value ) 

Figure 4.9 The Flowchart of the Hierarchical Brute Force Search Approach 

4.5 Other Options 

An alternative to the above approach is an optimization approach. The basic idea behind the 

optimization approach is to fit the known points to a certain line/surface, and locate the next point 

according to this approximated line/surface. A global optimization approach can be used to locate 

a maximum point without any knowledge of the location. Unfortunately, all the global optimization 

approaches need intensive computations, since usually multi-starting points are used to locate global 

maxima. 
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If global optimization approach is not a good alternative to a brute force search at the coarsest 

level, there is still a possibility to use optimization after a first level brute force search when a global 

maximum point region is narrowed down. There are many local optimization approaches. We tried 

F_R approach in our experiment. This approach is developed directly from the conjugate gradient 

method for solving linear systems, and it is regarded as a good approach for a non_quadratic function. 

The minimum steps of an F_R search is four RS space points to provide initial gradient values. 

And it takes more to converge to the true values. The converging speed depends on the image 

features and the step size of the line search. To adjust for all the images, a relatively smaller step 

size has to be chosen in a line search to guarantee the convergence. This means slower convergence 

speed in general, and no significant benefit in using this approach. In the case of restricted types of 

images, proper step size can be chosen to speed up the convergence. 

An alternative is to use quadratic surface fit (QSF) or quadratic line fit (QLF) instead of going 

through the optimization loop. As we mentioned earlier, most optimization approaches use some 

kind of surface/line fit to determine the direction of the next step. Instead of using this surface/line 

fit to chose next direction, we use it to obtain finer RST estimation, or one step optimization. QLF is 

proved to be more efficient than QSF in our experiments. The steps applied to obatin finer maximum 

points are as follows: calculate the correlation surface through BFS, locate a maximum point over 

the surface using non-maximum suppressionas discussed earlier, calculate ID quadratic line along 

the maximum R and S point, locate a maximum point along the line, and the substep estimation 

of RS values are obtain. 

4.6 Experiments 

In the experiments, 7 set of images are taken with different zoom, different rotation, and different 

space shift, in the LCI lab of computer science department, in University of British Columbia. The 

optical axes of the two pictures are parallel, and the steps shown in Fig. 4.9 are applied to theses 

images. The seven WFOV images are shown in Fig. 4.10, and the seven AOI images are shown in 

Fig. 4.11. & 4.12 shows the correlation surface over the RS steps chosen, and it shows that the step 

size can't be reduced further without missing the global maximum; at the same time, they are also 

sufficient to provide enough details for reliable estimation without introducing significant noise, i.e., 
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sufficient to provide enough details for reliable estimation without introducing significant noise, i.e., 

the surface is smooth enough. Note, this selection must suit all the picture, without any knowledge of 

the feature contents, which is the case for general tele-operation systems. So the RS step size might 

not be optimal for each individual image, but it is optimal for general images. A non-maximum 

suppression process is used to obtain the global maxima. First, over the correlation surface obtained 

after a brute force search over RS space, points that have values higher than all their eight immediate 

neighbors are assigned as local maxima, others are set to zeros. Then, the maximum among the local 

maxima is chosen as the global maximum by simply sorting the values. This global maximum point 

is used as a new set of initial RST values to set the next level RST search. Substep accuracy can be 

obtained by some kind of interpolation, here a quadratic line fit is used as discussed earlier. 
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44 





Chapter 4. Analysis of Correlation-based Image Registration Methods 



Chapter 4. Analysis of Correlation-based Image Registration Methods 

Figure 4.13 Correlation Surface at Second Level with the RS Step Size Chosen for 

Fig. 4.13 shows the correlation surface at the second coarsest level. These surface give us ideas 

about the variety of the characteristics of the images processed and how the surface shape changes 
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over the resolution level, allowing finer level of estimation. 

These surfaces contain a lot of information about the sensitivity, and the noise level, etc., and 

can be used as a reference as to whether certain approach or step size is proper or not. Since all the 

calculations have to be done to obtain this surface, they can only be used as a way to evaluate how 

reliable the results are, not as a way to guide the selection. For example, we can tell, surfaces like 

CS-lab and Tool are well shaped to give good estimation, while surfaces like Map and Toys can be 

vulnerable to noise. These are reflected in the results. 

0.25 

0 . 2 | 

+ represents 1BFS 
* represents 2BFS 
o represents 4BFS 
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Figure 4.14 Comparison of the RS Estimation Error After Different Levels of Brute Force Search (BFS) 
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3 4 5 

X-Estimation Error 

Figure 4.15 Comparison of the X / Y Estimation Error After Different Levels of Brute Force Search (BFS) 

Estimation errors after one, two and four levels of brute force search are given in Fig. 4.14-4.16 

to give an idea how the estimation errors decreases as the resolution level increases. The outliers 

that are located further away from the origin are not desirable and should be reduced as much as 

possible. There are some overlapping points, nonetheless, we can see the outliers decrease for higher 

level BFS. For details, see the tables in the Appendix D. This picture mainly shows the range of 

the estimation errors. From the figure, we can see that a first level brute force search estimation is 

not accurate enough to give acceptable registration result for image fusion, while two levels brute 

force search is close to the acceptable range. Fourth level is used for high performance system, at 

the cost of computation time. The final fused image is shown in Fig. 4.17. Note that only part of 

the fused image are given to show more clearly the transition band between the high resolution and 

low resolution transition. The central part marked by cross is the high resolution part. 
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0.1 h 
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Rotation Error 

0.07 0.08 0.09 0.1 

0.1 h 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Rotation Error 

Figure 4.16 Comparison of Estimation Errors for CS-Lab (top) and Map (bottom) Pictures. 
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Corners are defined as two dimensional discontinuity points, as measured using gradients, higher 

order derivatives or their combinations. Control points are the sets of corresponding points in two 

images to be registered. They are used to solve the transform matrix to obtain RST values. This 

chapter will discuss the approach of using corners as control points. 

In general, it is difficult to predict the exact performance of an approach using corners as control 

points, especially in applications where feature contents are unknown and unpredictable, such as in 

tele-operation, since this approach is highly feature dependant. Regardless of that, still there are 

other factors affecting the performance that can be analyzed, evaluated and selected to obtain the 

best performance in practice and will be studied in detail in this chapter. 

5.1 Introduction 

The basic steps in using corners to recover changes are as follows: (1) corner detection; (2) 

corresponding corner matching; (3) change estimation. The change can be rotation/scale/translation 

(RST), motion, or distortion, etc. The success of the approach highly depends on the feature contents, 

and the free parameters chosen. In many applications, such as tele-operation, feature contents are 

unknown or unpredictable. This means only the free parameters can be adjusted in the implementation 

to obtain a better performance. Little literature is available to understand how these parameters are 

related to the performance, and they are usually chosen based on trial and error. This is the issue 

to be discussed in the following sections. 

From the performance point of view, we have accuracy, reliability and computational cost to 

be concerned with, while the free parameters in the approach consist of the detector, the number of 

points, the location and distribution, the search range and the matching scheme. These parameters 

have different impacts on the performance. Some only affect one or two performance index, others 

affect all. This is illustrated in Fig. 5.1, where the related factors are connected with solid lines. 

The disconnected factors do not affect each other. 
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Location of Corner Points 
Precision 

Number of Corner Points 

Reliability 
Search Range 

Detector 

Computation 
Matching Scheme 

Figure 5.1 The Relation Between Performance Index and other Factors 

Essentially, all corner detectors are ways of measuring the cornerness, defined as the product of 

gradient magnitude (a measure of 'edgeness') and the rate change of gradient direction with gradient 

magnitude, i.e., C = (lxxIy + Iyyll - 2IxyIxIy)/(lx + ly)3^2- Threshold is used to select corner 

points from the cornerness map, see [Noble, 88]. In our analysis and experiments, Plessey corner 

detector is used for its simplicity, (only first order of derivatives are used), and it is assumed that 

corners are properly detected. Cornerness measurement is In the following section, we will try to 

establish analytical relations between connections in Fig. 5.1. 

5.2 Estimation Accuracy 

Accuracy is dependant on the sensitivity of the function to the variables to be estimated. That 

is, if the function values change significantly while its variables changes, that gives high sensitivity. 

Then, the function can detect smaller variable changes and gives higher estimation precision. In this 

case, the function is the similarity measure which is correlation, and the variables are RST. Next, 

we will analyze how the sensitivity varies with the free parameters. 

Corner Location: Given two images I and I' with scale difference of S, a point A in I matches 

to point A'=D*S in F , where D is the distance of A from the image centre. Given the scale change 

S' instead of S, the mapping will lead to a different point A"=D*S' in F . The change between 

A ' and A" is A A = D * (S - S') = D * AS. This is shown in Fig. 5.2., we can see the larger 

the distance D, the larger the location change A A. This change is the base that scale change can 
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be detected. The reason is larger location changes usually leads to larger correlation changes, and 

correlation value is used to detect the scale change. This leads to the fact that the distant corners 

give higher scale estimation accuracy. The same is true for rotation estimation, though translational 

estimation accuracy is not affected. This is shown in Fig. 5.3, where point A->(A) is less sensitive 

to R change than point B->(B). 

A 
D 

D' 

D*S 
D*S' A" 

D*AS 
(A) 

(A' ) ^ 
D' *S 

D' *S ' 
! • (A 

D' *S ' fc>-

0 ( image c e n t e r ) "D*AS' 
d i s t a n c e f rom c e n t e r 

Figure 5.2 The Sensitivity to Scale vs the Corner Distance 
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Figure 5.3 The Sensitivity to Rotation vs. Corner Distance 

Since points have to be one pixel apart to be distinguished, i.e., AS * D > l(pixel), so the point 

distance should be D > 1/AS pixels to be used as a control point. This means no corner detection 

within the window of Wo = 1/A5. On the other hand, corners are bounded by the similarity measure 

window in matching. This window should be large enough to give reliable similarity measure (details 

in next section). The relation is shown in Fig. 5.4. 
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WO: The Region without Location Change W l : The Image Size; 
W2: Comer Detection Region; W3: Comer Matching Window 

Figure 5.4 The Location of Corners Bounded by the Windows 

Number of Points: The minimum number of points needed to recover RST values are two 

corresponding points. This is shown in Fig. 5.5. Using Two corresponding points A->(A), and 

B->(B"), we can obtain T by shifting the line AB to A'B' to align the center of A'B' to the center 

of line (A)(B). The shift is the T value. R can be obtained by rotating A'B' about the center to 

A"B" to be parallel with (A)(B). The rotation angle is R. Finally, S can be obtained by scaling A"B" 

to the same length of (A)(B). The scaling amount is equivalent to S. The order can be different 

without affecting the results. 
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MSE Estimation: Given n matching points between two images, (x'^yl) and (xi,y,-), i={l,2,...n), 

and their relations: 

• 

% = s 
'XQ' 

+ 
J .Vi. .yo. 

(5.1) 
'cos R - sin R' 

.sini2 cos i2 

To reduce the effect of inaccurate corresponding points on the estimation of parameter values, 

an averaging scheme like the least squares error criterion is appropriate. If n corresponding points 

from the two images are available, then R,S,T(x0,y0) can be estimated by minimizing the sum 

of squared errors (MSE): 

n 
E = ^ ^x'i — s(x{ cos 6 — yi sin 0) — x0 

i=l 
n 

t=i 

or equivalently, we have: 

ix'i Vi ] = [S cosR SsinR x0 y0] 

%i y% 
yi %i 

l o 

o 1 

To make this problem easier, we replace S cos J? by a and S sin R by b, we have: 

"E Xi E yi 

[E x'i E y'i} = [a b x0 y0 ] E 2/i - E Xi 

n 

0 

0 

n 

again, assume: 

i i 

P = [a b XQ y0] 

Y,xi Y,yi 

n 0 

0 n j 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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then, we have, 

X' = P * X (5.8) 

P = X'XT(XXT)~1 (5.9) 

by which we can find the transformation parameters as: 

S = y/(P2(l) + P 2(2)) (5.10) 

R = arctan(P(2)/P(l)) (5.11) 

T = [x0,y0] = [P(Z),P(4)] (5.12) 

The estimation precision is higher when more matching points are given and M S E is used to 

reduce the noise level by averaging. In this case, the variance will decrease by yfa where n is the 

number of corners, and the estimation precision will increase by y/n, given that all the matching 

points are at the same level of S/N ratio. 

Matching Scheme: As mentioned earlier, there are basically two matching schemes, one is the 

correlation-based, another is the attributes and rigidity based. The performance of the first is studied 

in Chapter 4, the latter is more complicated and will be discussed in Chapter 6. In this chapter, we 

use the correlation window. Hence, the estimation accuracy is the same as shown in Section 4.2. 

5.3 Reliability of the Estimation Results 

Number of Corners: Though a larger number of points increases the estimation precision, it 

increases the chance of false or weak matching as well, which means lower reliability. Absolute 

thresholding can be used to avoid this. Experiments show the number of points should not go more 

than a few higher than necessary, which is two in RST estimation as shown in Fig. 5.5. 

Search range: The search range of the corner are related to the range of RST changes, as 

shown in Fig. 5.6. As we have: 

V 

y 
= s 

cos R — sm R' 

.sin R cos R + 
ly. 

x0 

.Vn. 
(5.13) 
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or 
V 

y . 

S * cosR* x — S * sinR* y + XQ 

S * sin R * x + S * cos R * y + y0 

(5.14) 

r l : b y R change ; r2 b y S change ; 
+ P i c t u r e C e n t r a l * C o r n e r P o i n t 

Figure 5.6 The Search Range of Corner Matching vs RST Change 

Step by step, the search range by T is: 

'Ax' 'x0' 

Ay. .yo. 
(5.15) 

'Ax' 

-Ay. 
x * cos R - y * sin R 

as shown in Fig. 5.6. 

The search range by R is: 

(5.16) 

shown W l in Fig. 5.6, note the search range is not necessarily rectangular, but in our experiment, 

the range is rounded to a rectangular window for simplicity. 

The search range by AS is: 

(5.17) 
'Ax' 'x' 

= AS 
-Ay. -V. 

Shown in Fig. 5.6. as region W2, again, rounded to a rectangular window. 
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We can see, the larger the change in RST, the larger the search window. And the larger the 

search range, the higher the chance of false matching, which leads to lower reliability. This has 

proven to be a very significant factor in our experiments. 

Matching Scheme: Since correlation window is used for matching, the estimation reliable is 

the same as shown in section 4.3. 

5.4 Computational Cost 

The cost of computation varies with the feature detector, number of points chosen, the search 

range and matching scheme. They are summarized in Fig. 5.7. 

Methods (Image L x L, 

Correlation Window Size WxW, 

Search Range Tx & Ty, Filter 

Size Fx F 

Mults Needed (includes divs and 

squars) 

Typical Numbers for 

L=480; W=8; Tx=10; 

Ty=10; F=3; Corner-No=6 

Plessey Corner Map 7W2 *Tx*Ty 
44.8k 

Corner Matching with 

Correlation 

(SW2 + 3) * Tx * T„*Corner-No. 117k 

Figure 5.7 Computational Cost vs Factors 

5.5 Other Factors 

As mentioned earlier, feature contents play the most significant role in the performance. Though 

it is very hard to represent feature contents, variance is usually used as a measure of feature density 

to avoid featureless regions. Another way of enhancing the feature contents is to apply some kind 

of preprocessing. Laplacian filtering is introduced to enhance the high frequency features. Similarly, 

a corner map can be used to enhance 2D features. The difference lies in the different frequency 

components being enhanced, as shown in Fig. 5.8. Laplacian filtering simply enhance all the high 

frequency features, including ID features, as shown by the enclosed area of the solid lines, the inner 

line is the cut off frequency of the low frequency features (featureless region), while the outer line 
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is the cut-off of the high frequency features (smoothing out the noise). While, the corner map is 

to preserve only 2D features, i.e., both directional derivatives have to be above the threshold to 

be in the corner map, shown as enclosed area by dotted lines in Fig. 5.8. Note the graphic is 

an approximate representation to show the principal difference. Since we are trying to recover RS 

values, enhancing the 2D feature (so that sensitive to both RS equally) makes more sense. The 

disadvantage of this process is that the high pass filter tends to increase the noise level, and decrease 

the reliability of the correlation values. 

Area enclosed by solid line represents the Area enclosed by dotted line represent the 
area enhanced by Laplacian Filtering area enhanced by corner map 

Figure 5.8 Comparison of the Frequency Domain Area Enhanced by Laplacian & Corner Map 

5.6 Experiments 

To test the algorithms proposed, 7 set of images are taken with different zoom, different rotation, 

different space shift, and the following steps are applied to these images: 

1) Plessey corner detection over AOI to obtain N corners; 

2) Search over WFOV within (Sx, Sy) region as given in Fig. 5.4 to obtain the matching point 

for each corner, the corresponding correlation values arefcorr(i), where i=l,...,N. 
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3) Select top Mfcorr(i) values as the control points to recover R S T values using the transformation 

matrix and M S E as discussed in Section 3.1 and 5.2. 
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0.14 0.16 0.18 0.2 
Rotation Error 

0.04 0.06 0.08 0.1 0.12 
Rotation Error 

0.14 0.16 0.18 0.2 

Figure 5.9 The Effects of Corner Numbers on the Estimation Error 
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Figure 5.10 Comparison of the Estimation Error of Different Methods 

Fig. 5.9 shows the effect of corner number on the estimation error. Again, the outliers are those 

located further away from the origin and represents points with higher estimation errors and are not 

desirable. The number given in Fig. 5.9 represent M/N as discussed earlier. The larger number is 

the number of original corners detected from the image N, the smaller one is the number of matching 

pairs selected from the original corners based on the top correlation value, M. The figure shows that 

corner numbers between 3 and 6 give good estimation. A higher number doesn't improve and might 

even degrade the results. For example, 12/20 estimation does not give better accuracy than 3/20 

overall. The reason for this is some images have with very limited number of significant corners, 

and if large number of corners is required, the threshold has to be lowered to the level where weak 

corners or noise are detected and matched as control points. 

Fig. 5.10 shows the estimation error after one level brute force search, two level brute force 

search and one level brute force search followed by corner-based search. Note, the second level 

brute force search gives the same level of estimation error as corner-based matching, but corner 
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Chapter 5. Using Corners as Control Points to Recover RST Changes 

matching is computationally more efficient. But there are cases where corner-based estimation will 

fail completely, this is unavoidable due to a lack of feature variety in some images. Multi-level brute 

force search seems more reliable in this case. 

The final fused image is shown in Fig. 5.11. Note that only part of the fused image are given 

to show more clearly the transition band between the high resolution and low resolution transition. 

The central part marked by cross is the high resolution part. 
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Chapter 6 RST Invariant Corner Detection 

In the previous chapter, we determined that corners are used in fine RST estimation. The 

question is why not use corners to recover any RST values? 

Corner matching using correlation without any knowledge of RST values requires a large range of 

search space, i.e., must correlate over large RST space for each corner. This is more computationally 

expensive than a brute force search, and can have few benefits. 

There are other ways of corner matching, such as using corner attribute and geometric 

information. But not all of them are valid depending on the changes involved, like geometric 

information is hard to apply in matching where both R and S changes are involved. Only those 

attributes that are invariant to the changes at hand can be used as consistent features to be matched 

over pictures. 

No matter what kind of matching scheme is used, the success of matching results highly depends 

on the corner set in two pictures. This is even more important when scale change is involved, since 

scale difference can significantly change the corner set detected, and making it even more difficult to 

have a reliable matching results. This chapter will study this phenomena, starting from the study of 

corner behavior over scale and then detection of the scale consistent corners. This is one step further 

towards the approach of using corners to recover total RST changes, which proved to be very difficult. 

6.1 Introduction 

As mentioned earlier, significant scale changes will result in significant differences in the corner 

map, which means the corner sets in two pictures with significant scale change is very different, 

making the corner matching very difficult. So, first, we need to study how the corners behave over 

scale change so that only scale consistent corners are selected to give more corresponding points 

between two pictures with a scale difference. 

Ideally, a corner detector should be designed to produce a corner map proportional to their 

consistency. Unfortunately, almost all corner detectors fail to give consistent results over changes 

in smoothing scale, which makes the use of corners as control points unreliable for multi-resolution 

applications. To solve this, either adaptive smoothing or corner detection at multiple scales are 
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applied. As will be discussed in this chapter, we have reasons to believe that scale-invariant corners 

can be identified based on one fine scale corner map. A new concept of significant values associated 

with a corner's detectability and displacement over scale is introduced. Analytical results are obtained 

on smoothing effects derived from a cylindrical tube approximation. These results are shown to be 

representative for general smoothing functions as well. Experiments are carried out to prove that the 

significance value can be used to predict the corner behavior over space scale, and to identify the 

scale-invariant corners based only on one fine scale corner map. The advantage of this approach is 

better localization, reliability, and computational efficiency. 

• Ml Mm ML 

Figure 6.1 Comparison of The Corner Sets for Different Resolution Images 

As shown in Fig. 6.1, the two images are taken with different zooms, f=12.5 and f=50, so 

the resolution ratio is 4:1. The points in the picture are the corners detected using Plessey corner 

detector [Harris88], threshold for strongest 20 corner responses. We can see from the picture that the 

corner maps are very different with only 7 matching pairs out of 20 which makes 35% corresponding 

points. If we apply any matching algorithm on this pair of corner maps, the chance of mismatch 

is high. The reason for this inconsistent result in most corner detectors is that their design is only 

based on two corner attributes, the amplitude of the corner edge, and the curvature of the corner 

edge. But, a corner has more than just two attributes and these attributes are strongly correlated. 

Neglecting this fact may contribute strongly to the inconsistency of the results. A solution to this 
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problem without going through multi-resolution or adaptive filtering is examined in this chapter. A 

significance value based corner selection procedure is introduced. Experiments are carried out to 

show the improvement over traditional methods. 

6.2 Modeling a Corner 

There are mainly two ways to approach multi-scale corner detection: 1. Apply multi-scale 

edge/comer detectors and interpret the results [Lu&Jain, 89], etc.; 2. Apply adaptive scale smoothing 

to obtain a multi-scale effect on the edge/corner detection [Saint-Marc&Chen, 91], etc. The problem 

with the first is that the matching procedure among the different scale edge/corner map is non-trivial 

and might introduce some errors along the way. The second approach needs a reliable way to 

determine the right scale for smoothing which is a difficult issue in itself. Nonetheless, the above 

research ha/led to some interesting findings on the scale-space behavior of the edge/corners, and 

these are part of the basis of our new approach. So, we will briefly summarize these results before 

we present the approach. Many of these studies are based on 1-D features such as edges, so there 

will be a bias in using these results to study the corner behavior, we will introduce only those that 

are relevant to corner behavior. 

A I(x,y) Kx,y) 

L2 

w 

o (a) 

0 
(b) 

Figure 6.2 Corner Model 
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In [Antonio Guiducci, 88], a corner is represented with the amplitude A of the edge, its aperture 

angle 6 and a parameter a which is a measure of the smoothness of the corner (A non-ideal corner 

with radius a can be approximately represented by an ideal corner, i.e., an infinitely sharp corner, 

smoothed by a Gaussian with variance a), as shown in Fig. 6.2. The definition of the attributes 

are as follows: 

Corner Arm Orientation: the direction of the lines forming the corner; 

Corner Angle: the angle between the two corner arms, with the high intensity level part 

designated as the corner area; 

Corner Depth: the gray level difference between the corner area and the rest area; 

Corner Surface Smoothness: The Variance in the corner area; 

Corner Arm Length: the length of the corner arms within a small direction change. 

For more complicated corners, their representations need more parameters and will not be 

covered in this paper. All the following studies are based on the above simple corner model. 

6.3 Smoothing Effects and Definition of Significance Value 

Review of Multi-scale Corner Detection and Corner Behavior 

As studied in [Anothai Rattarangsi and Roland T. Chin, 92], a) depending on the location and 

sharpness of the corners, and their interaction with adjacent corners, the line patterns of the scale 

space map may merge, disappear, repel, or attract each other as a increases; b) new additional 

line patterns will not be introduced by smoothing; c) different corner models have different scale 

space characteristics, basically, some persist, some merge and some will disappear over scales, also 

some will be dislocated over the scale; d) isolated corners are persistent, and non-isolated corners 

are mainly affected by the immediate neighboring features. D-isolated corners will be detected by 

Gaussian smoothing function with a variance of <r<D. 

In [Fredrik Bergholm, 87], the study shows (a) a corner with a step edge forming an angle (5 is 

rounded off with a displacement vector v along the bisector satisfying:v = C{(5) * a * e; C((3) < 2 

if (3 > x/8, C(/3) is a constant depending on /?, and e is the unit vector along the bisector, (b) a 

double edge profile has two edge points that start to glide apart when the scale parameter a is greater 
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than half the width (h/2) of the double edge. When blurring is further increased, i.e., oh/2, the 

speed with which they move apart approaches ACT. 

[Yi Lu, Ramesh C. Jain, 89], a) false edges disappear as scale parameter changes from large to 

fine scale, b) only false edges can disappear from large to fine scales, c) edges missing at larger 

scales can always be recovered at smaller scales. 

The study in [Valdis Berzins, 84] shows that: 1) Marr and Hildreth edge detection locates infinite 

straight edges with linear illuminations exactly; 2) the contour found by the edge detector goes 

through the corner point exactly for corners with infinite arm length, the effect of the edge detector is 

to round out the corner without displacing it at the corner point; 3) the displacement of the contours 

is due entirely to errors introduced by approximating the directional derivatives by the Laplacian, 

and not to the Gaussian filtering for corners with infinite arm length; 4) the displacements along the 

corner edge are largest for small angles (acute corners), and that the smaller the angle, the further the 

displacement extends from the corner; 5) for finite arm length edges, the zero-crossing contour no 

longer passes through the true corners. The displacements near corners are dominated by errors in 

the Laplacian approximation to the directional derivative, while displacements around small objects 

are dominated by the effects of the Gaussian filter. 

Other studies more or less fit into these results. In summary, we can conclude: 

• Corners may merge, disappear, repel, or attract each other as a increases; 

• New additional line patterns will not be introduced by smoothing; 

• D-isolated corners will be detected by Gaussian smoothing function with a variance 

of <7<D; 

• Isolated corners are persistent, and non-isolated corners are mainly affected by the 

immediate neighboring features; 

• Marr and Hildreth edge detection locates infinite straight edges or corner points with 

infinite arm length exactly; 

• The displacements along the corner edge and the range of displacement along the 

corner edge are largest for small angles (acute corners); 
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• For finite corner edges, the zero-crossing contour no longer passes through the true 

corners; 

• False edges disappear as scale parameter changes from large to fine scale. 

From these studies, we can conclude that the fine scale features includes all the features that 

can be found at coarser scale (given the same cornerness threshold), and gives better location. How 

these features change over the scale are related to the corner attributes and the corner adjacency. 

The Smoothing Effects on an Isolated Corners 

The Smoothing Function 

An ideal corner with one edge along the x axis and an angle 0 can be modeled by the following 

2-D step function 

I(x,y) = AU(y)U(xtzn9-y) (6.1) 

where 
f l i > 0 

U(x) = ^ f (6.2) 
I 0 otherwise 

and A is the amplitude of the corner edge depth. 

A 2-D Gaussian filter G(x, y) can be represented as follows, 

G(x, y) = - J = exp (- (x2 + y2) /2o2) (6.3) 

where o is referred to as the scale. 

If we convolve this 2-D Gaussian function with the ideal corner model, we get the following 

smoothed image S(x,y): 

oo oo 

S(x,y)= J j g(p,q)*I(x - p,y - q)dpdq (6.4) 
—oo —oo 

Only numerical solutions can be obtained, and it is hard to derive the relation as to how the 

corner attributes changes over the smoothing scale, especially how these attributes affect each other 
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in this change. To simplify the analysis, we use a pillbox to approximate the Gaussian function, 

Gc, as follows, 

Gc = 
1 x2 + y2 < a 

0 otherwise 
(6.5) 

o o 

Figure 6.3 Gaussian and Cylindrical tube as Smoothing Function 

The advantage is with this simplification, we are able to derive the analytical results as follow: 

S(x,y) = { 

A 

ifu(x--^m)*U(y-tr)* 

0 
(6.6) 

ifU(r -a)* U{<t> - 90 - 69) * 17(270 - <f>) 

0 < S < A otherwise ) 

It is hard to say how good this approximation is, except that this approximation can be 

representative for all the smoothing effect in general. 

The Smoothing Effects: 
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The key to understand the scale-space behavior of the corners is in the smoothing function. To 

understand what a smoothing process does to a corner, we use the simplest version —a cylindrical 

tube — to derive the analytical results. A popular smoothing function is the Gaussian function. The 

problem with using a Gaussian function is that numerical results can be obtained for the displacement 

value only over the smoothing scale, but it is hard to obtain the relation to the corner attributes. 

Note that the energy of Gaussian function lies heavily in the range of [-a,a], where a is referred 

to as the scale. To simplify the analysis, we use a cylindrical tube with radius a as our smoothing 

function. Fig. 6.3 gives the comparison of the cylindrical tube and the Gaussian smoothing function. 

It is a reasonable approximation and it can be shown the results obtained are good representation 

for other general smoothing function as well. 

Figure 6.4 The Approximation of The Gaussian Smoothing Function 

Smoothing can be regarded as low pass filtering in the Fourier domain, while in the space 

domain, it can be taken as a weighted sum of neighboring pixel intensities. It is hard to represent 

corner attributes in the Fourier domain since after being transformed to Fourier domain, all the 

spatial features are mixed up, and it is not easy to relate the Fourier representation to the corner 

characteristics. In the space domain, it is relatively easy to relate the weighted sum function with 

the corner attributes. The effect of the smoothing function on each corner attribute is analyzed. 
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Take an ideal comer (i.e., an indefinitely sharp wedge as defined earlier), and see what happens 

when we apply the smoothing function with scale a, Fig. 6.5 gives two smoothing scale effect, and 

we can see the corner sharpness changes to different extent accordingly. 

Figure 6.6 The Top View of the Smoothing Effects on the Corner 

Corner Sharpness: An ideal corner has infinite curvature or zero radius. After applying a 

smoothing function with scale a, the radius is approximately equal to the smoothing scale a, or 

say the curvature is equal to 1/cr, shown in Fig. 6.6. If the original corner is not ideal, i.e., with 

non-zero radius of a0, then after smoothing, the overall radius will be a0 + a, since the smoothing 
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is a linear process. Note, that for Gaussian smoothing, this will be a\ + cr2. The difference shows 

that there will be some bias in the representation. 

Corner Point Displacement: displacement is defined as the distance between true corner point 

C and the detected corner point C , as shown in Fig. 6.6. The maximum displacement can be derived 

as D anas = a I sin (0/2). This is consistent with the round off effect analyzed in [Fredrik Bergholm, 

87] using a Gaussian smoothing function, where the numerical result shows that the displacement 

reaches the minimum at 180 degrees and maximum at 0 degrees. 

Step Edge Amplitude: Edge depth is usually measured by the gradient, and smoothing gives 

decreased gradient value. As shown in Fig. 6.7 & 6.8, the gradient is infinite for the step edge, 

and A/2a for the smoothed one. Fortunately, all the edges are smoothed by the same scale, the 

gradient still represents the relative amplitude, though the threshold chosen should be smaller for 

a smoothed picture accordingly. 

T 

i 
0 o d (distance 

from corner) 

Figure 6.7 The Step Edge Before (Solid Line) /After (Dotted Line) Smoothing 
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A5(d) 

t 

A/20-

4 
0 a d (distance 

from corner) 

Figure 6.8 The Gradient of Step Edge Before (solid line) /After (dotted line) Smoothing 

Arm length LI & L2: As shown in Fig. 6.7, for the corner to be detected after smoothing, the 

arm length has to be longer than L = aj tan (65/2), i.e., the arm length has to extend beyond the 

blurred region. On the other hand, the arm length also needs to be longer than the smoothing scale 

to be detected. As a result, when min(Ll,L2) > max{o~/sin (0 /2) , cr/tan(9/2)}, there exists a 

corner; otherwise no corner. 

In the following section, we will combine all the factors together, with the correlation among 

them being considered as well. 

The Detectability and The Displacement of an Isolated Corner Over Smoothing Scale 

In the literatures reviewed in section 6.2, the studies are carried out from one perspective or the 

other, such as angle, corner edge, or isolation. In this paper, we will introduce a measure to consider 

all the factors and their correlation, define a significance value associated with the persistency of the 

corner over smoothing scale. This value will represent the level or extent to which scale the corners 

will exist. Also, knowing that a definite corner or ideal corner does not exist in a real image, it is the 

cornerness or the likelihood that marks a point with its probability as a corner candidate. When a 

point is detected as a corner point, it makes more sense to say that this point has a certain likelihood 

or certain significance level as a corner candidate. 

From the study of the smoothing effect, we are able to relate the detectability of the corners with 

their attribute in the following relation (the function is normalized to equal to zero at the turning 

point of detection). In the equation, we choose to use the exponential to represent the significant 
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contribution of the length of the corner arm. As a result, the significance value associated with the 

detectability is formed as: 

where G stands for the gradient value at the corner, L is the minimum length requirement as shown 

in Fig. 6.7. Here, the significance of detectability SD is normalized so that SD positive represents 

the detectable corners at scale a with the value proportional to the confidence level; SD negative 

represents the blurred or undetectable corners at smoothing scale a; S=0 represent the turning point. 

Detecting the existence of corners and determining their exact location are two different but 

related goals. So, we need to distinguish the factors that affect the detectability and the factors 

that affect the localization. As discussed in section 3, the maximum displacement of an isolated 

corner point is 

Dalias = <r/sin (0/2). 

The Detectability and The Displacement of a DS-Isolated Corner Over Smoothing 

Scale 

Before we can complete our significance function, one more thing to consider is the adjacency 

which is another factor that has been found to affect the behavior of the corners over scale. As 

pointed in [Lu & Jain, 89], we can assume that the scale space behavior of a corner is mainly 

influenced by its immediate neighbors and that the effects from other features further away are 

negligible. To address this issue more properly, we have redefined the concept of D-isolation. In 

[Lu & Jain, 89], an edge curve is called D-isolated, if for any point on the curve, we can draw a 

disk centered at that edge point with radius D, and that disk will intersect no edges except those on 

this edge curve, D-isolated corners are usually regarded as the distance to the nearest edge/corner. In 

contrast to this, we use a term "DS-isolation" defined as the distance to the nearest edge or corner of 

(6.7) 

or, 

SD — (Gedge — Gthreshold) 

(6.8) 
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the same or higher level of significance value. This definition is chosen based on the fact that both 

the distance of the neighboring feature and the strength of the feature compared to the corner under 

concern contributes to the difference in the corner behavior over scale. For example, if a corner is 

adjacent to another one which is significantly weaker than the corner of interest, then the corner of 

interest will remain virtually unaffected by this neighboring corner. So when defining the isolation, 

one must take the strength of the neighboring features into account to make the concept more useful. 

Also, in contrast to the traditional definition of the strength of the corner which is usually defined as 

the edge amplitude or cornerness, we use the significance of detectability value SD as the measure of 

the corner strength. The edge amplitude multiplied by the edge length is used as the edge strength. 

Knowing that the scale behavior of corners is strongly affected by neighboring features, we choose 

the exponential to represent the contribution of the DS-isolation value, with the smoothing factor as a 

reference which matches the study in [Lu&Jain, 89], where it is proved that D-isolated points (defined 

in a slightly different way) can be detected by an operator with a smoothing scale less than D. 

The combined significance value associated with the detectability of a DS-isolated corner can 

be represented by: 
i 

SD = (exp( - l ) * (Gedge - Gthreshold) 

( ( -'»<"•"> )_! \ <6-9) 
* I exp v ">««{».(»/«" / _ 11 

where SD positive represents the detectable corners at scale a with the value proportional to the 

confidence level; SD negative represents the blurred or undetectable corners at smoothing scale a; 

D=0 represents the turning point. 

Correspondingly, the combined displacement can be represented as 

D S i s o \ J _ DSZ\ ( 6 - 1 0 ) 

* l a 1 * M l a — 
2 J V 2 

where SDQ and SDN represent for the detectability value of the corner of interest and the nearest 

neighbor corner/edge (assuming they are isolated). The first term originates from the decrease 

of the corner sharpness. To represent the worst case, the maximum displacement is used as the 

corner displacement value. The second term originates from the merging or repelling trend of two 
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neighboring corners, as pointed out in [Fredrik Bergholm, 87], though the term is generalized by 

taking the strength of the corner into consideration. Theoretically, the sum should be a sum of 

vectors, since two displacements might be in different directions, here we simplify the problem by 

the worst case where both are in the same direction. So the worst case result becomes the scale sum. 

In the following section, we will carry out some experiments to see how well our equations 

represent reality. 

Experiments 

In Predicting the Corner Scale Behavior 

In this section, we will give some tests to prove that the significance value can be used to predict 

the scale behavior of the corners. To compare with the results obtained by traditional methods, 

such as multi-scale corner detection, we choose the test images used in [Anothai Rattarangsi & 

Roland T. Chin, 92], where corners detected in different scales are represented in a sparse tree. 

In our experiments, the corners are marked as a, b, c,..., shown in Fig. 6.9, ranked in order of 

their detectability value, and compared to the corresponding sparse tree in [Anothai Rattarangsi & 

Roland T. Chin, 92]. 

Figure 6.9 Test Image 

In ranking the corners, both the detectability value and the displacement value, as well as the 

cornerness are considered. Cornerness is defined as the curvature, which can be obtained by 

Ixxly ~\~ lyy^x 2IXyIxIy 
c = = l / | V I | ( A N X ) (6.11) 

(Px+I]f2 

Note that there might be a confusion as whether the corners are displaced or disappeared when 

two neighboring corners are in the same level of detectability, such as m and n. In this situation, the 
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stronger corner is recognized as the persistent one, in our case, corner n is said to be persistent rather 

than corner m. The corners are ranked, in the order of significance value, as b, a, f, c, d, e, h, i, j , 

k, 1, p, g, n, m. We can tell this order is almost consistent with the corresponding scale space tree 

given in [Anothai Rattarangsi & Roland T. Chin, 92], with the exception of corner a, which is failed 

to be detected at coarse scale in the tree representation. But intuitively, we see no reason that corner 

a is not detected while corners i, j , k, ... are detected. This is due to the weakness of the corner 

detector applied in [Anothai Rattarangsi & Roland T. Chin, 92], and suggests that a new corner 

detector is required for multi-scale applications which can provide more consistent results. This issue 

is addressed in details in the following sections where multi-resolution image registration is studied. 

Selecting Scale Invariant Corners 

For the multi-resolution image registration, ideally, the corner detector should be designed 

to be proportional to the significance value associated with the detectability, i.e., SD = 

(exp^ - V -1J * ( G e d g e - Gthreshoid) * ( expv•»«<».("/t"(«/2»>v - 1 1 , and inversely propor

tional to the displacement value, which is Saua3 = aj sin (0/2) + * (a - *u(a - ^tSL), 

where L's are the corner edge length, 0 is the corner aperture, G is the corner amplitude, a is 

the smoothing scale, DS is the D-significantly-isolated as defined in section 4 & 5. In addition, 

cornerness is also considered as a proportional factor, which is defined as the rate of change of 

gradient direction along an edge, multiplied by the gradient magnitude, 

Ixxly + Iyyll ~ 2IxyIxIy n T l r w u x 
~ (J2 + / 2 ) 3 / 2 " ( 6 " 1 2 ) 

To be proportional to cornerness and detectability and inverse proportional to the displacement, 

in corner attributes, implies being proportional to corner amplitude (or depth), corner arm length LI & 

L2, and inversely proportional to the smoothing scale a. As to the aperture, it should be proportional 

to cos (0/2) due to cornerness, sin (0/2) due to detectability, and tan (0/2) due to displacement. 

This results in a conflict situation. Since from the cornerness point of view, which has been used 

as a criterion so far, cos0/2 should be used (the smaller the corner, the higher the curvature), while 

from the persistent/displacement point of view, the sin0/2 should be used in the criterion (the smaller 

the angle, the larger the displacement, and less detectable as well). This conflict in detecting corners 

is one main reason behind the inconsistent result of the traditional corner detection where only 
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Chapter 6. RST Invariant Corner Detection 

cornerness is used as the criterion. To compromise among these factors, we propose to use sin# as 

the criterion in designing a corner detector. 

From the above analysis, we can see that the key to consistent corner detection is to form a 

measure that considers all these factors and is less expensive computationally. This can be used to 

evaluate the corner detectors or as a guideline in designing new corner detector. 

An alternative will be to apply one corner detector to obtain corner points, estimate the corner 

attributes and evaluate the corners' significance value. To calculate the significance values, we 

start with corner arms orientations. They are obtained using the gradient orientation histogram as 

introduced in [Rosin, 96]. Then the angle is obtained as the difference between the two corner arms' 

orientations with high gray level area designated as corner area, and the depth is obtained as the 

mean difference between corner area and non-corner area in the window centered at the corner. The 

surface smoothness is added to the significance value to represent the noise level of the corner, so 

that corners in the noisy area is discarded as well. The surface smoothness is defined as the variance 

of the corner area. On the other hand, the corner arm lengths are not used since it is complicated to 

calculated, the same with the D-isolation value. In computer graphics where the geometry of objects 

are known, and view point is changing with zooming, these attributes and significance values can 

be obtained and used as scale consistency measure. 

We first applied the selection process on Fig. 6.1. There is a general improvement in the 

percentage of matching points, as shown in Fig. 6.10. As we can see, more improvement are 

obtained in applying the selection process to image after smoothing. The result can be close by 

applying the right amount of smoothing scale which is not always known. 
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Chapter 6. RST Invariant Corner Detection 

The Comparison of Matching Point No. 

No. of Total C o r n e r Points 

Figure 6.10 Solid: partial smoothing+selection; Dashdot: full smoothing; Dashed: Selection; Dot: no selection. 

6.4 Summary 

In this chapter, we addressed the inconsistency problem in the corner detection, and studied the 

possibility of solving this problem. The concept of significance value of corners is introduced, as 

well as the DS-isolation and detectability. Analytical formulas to calculate these values are obtained 

using a simplified smoothing function, which proved to be representative for general smoothing 

function as well. An implementation measure is proposed and experimental results are given to 

show that some improvements are obtained in increasing the percentage of matching points for 

multi-resolution registration. 

The advantages of this approach: 1) only one scale of corner detection is required; 2) corners are 

extracted on the finest scale, which gives least localization error; 3) the spurious corners and false 

corners detected on the fine scale can be filtered out by thresholding the significance value, since 

very small significance values are assigned to these corners by our definition. 

By no means have we covered all the factors and aspects in detecting the scale consistent corners, 

and the reliability and feasibility of our approach still needs to be studied. Problems remaining: (1) the 

significance values are derived based on the linear approximations; (2) significance value equations 

are only proportional representation. An elaborate form can be obtained by more experiments; (3) 
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Chapter 6. RST Invariant Corner Detection 

the adjacency problem is far more complicated than a simple equation can represent. And in our 

experiments, this is not addressed due the complexity of the computation. 

There are many issues that need further study in this area, this chapter studied the feasibility of 

RST estimation using corner matching directly without any brute force search, and found there are 

two issues need to be studied beforehand. One is to increase the percentage of corresponding corners 

across two resolution images, another one is the reliability of matching schemes. We analyzed the 

source of the first problem, and proposed a measure to improve the results. The latter issue is still 

an open issue and needs further study. Consequently, this approach was not adopted in our final 

approach to recover RST values. 
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Chapter 7 Image Fusion and Proposed Approach 

Once the images are registered, the next step is to fuse them into one image. In hardware, they 

can be projected onto one screen. In this chapter, a software fusion is discussed and implemented. 

This involves recovering possible relative distortion, re-sampling, normalization and transition band 

smoothing. Details are given in the following sections. 

Also in this chapter is a complete software implementation flowchart as a summary of the 

previous analysis and experiments. It adopts a multi-process approach where the optimal process is 

used based on the given initial values of the RST change range. 

7.1 Radial Distortion Recovery 

Pictures taken with cameras of different RST are subject to lens distortion to different extents, 

which means there is relative distortion between two pictures. 

A simple radial distortion is the first order model represented as follow: 

where X' = (V, y') represents the distorted location of the point X = (x, y), k\ is the coefficient 

of the radical distortion and (xc, yc) is the true optical centre. 

In our experiment, first order radial distortion is recovered, following the corner match. The 

results show no significant visual differences. Therefore, this step is not included in our final 

implementation. Other image enhancement schemes, such as deconvolution using point-spread 

function, are tested, but showed no consistent improvement of the presentation, and are not adopted 

in our final approach. 

x' = xk\r2 

y' - ykxr2 

(x - xc)2 + (y 
(7.1) 

x' = xk\T2 

y' = ykxr2 

(x - xc)2 + (y 

(7.2) 
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Chapter 7. Image Fusion and Proposed Approach 

7.2 Up-sampling & Down-sampling 

Re-sampling is needed to present two pictures on one screen, where the resolution is uniform. To 

have better overall resolution, up-sampling the low resolution background is needed, the disadvantage 

is that a much higher pixel numbers are required for the display which is not always available. Another 

way to fuse two pictures is to down-sample the high resolution image to match the low resolution 

picture. The disadvantage is the loss of the details in the insert. The result of both approaches are 

shown in Fig. 7.1. There is in-between sampling as well, where both up-sampling and down-sampling 

are done to meet in some level of middle resolution. The disadvantage is twice the computation. 

The resampling are done the same way as in section 4.5, with linear interpolation. 
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Figure 7.1 Comparison of Up-sampling and Down-Sampling Results 
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Chapter 7. Image Fusion and Proposed Approach 

7.3 Normalization and Smoothing in Transition Band 

Following the re-sampling will be the intensity level normalization of the transition band between 

AOI and WFOV. Both mean and variance normalization is applied to obtain better results. This is 

done by normalizing the WFOV image with the insert mean and variance, as 

IwFOv{i,j) = (IwFOv(i,j) - MWFOV)/VWFOV * VAOi + MAOi (7.3) 

where MWFOV and MAOI are the means of the insert area of the WFOV and AOI, while VWFOV 

and VAOI are the variance of these two areas. 

In smoothing the transition band, the principle is to keep the high resolution insert area as much 

as possible, while trying to smooth the sharp intensity changes around the boundary. As discussed 

in Chapter 3, there are several ways of doing this, and method (iii) is chosen with linear weighting 

proportional to the distance. That is, 

Ifusl0n(i,j) = iAOl(iJ) * (1 - r/R3) + IlFov(iJ) * r/R3 (7.4) 

where r is the pixel distance to the image centre, R3 is the width of the transition band chosen as 

10% of the AOI or Rl , and R2 is the WFOV. 

The transition band was chosen to be rectangular as shown in Fig. 7.2, since this gives larger high 

resolution region, and experiments show better visual effect as well. Mean and variance normalization 

are used to maintain intensity match between insert and background. 

Rectangular Fusion Circular Fusion 

Rl: High Resolution Zone R2: Insert Zone R3: Transition Zone 

Figure 7.2 Comparison Between Rectangular transition & Circular Transition 
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F i g u r e 7 . 3 Comparison of D i f f e r e n t Smoothing Methods 
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Chapter 7. Image Fusion and Proposed Approach 

7A Proposed Approach 

From the analysis and experiments obtained in the previous chapters, we can see that a different 

process should be applied for different imaging conditions. For a small range of RST changes, a 

corner-based process worked well and efficiently, while a hierarchical BFS approach provides better 

performance for a larger range of RST changes, and should be used to obtain a finer estimation 

of RST before applying corner-based process. As a result, a multi-process approach is proposed 

for final implementation, as shown in Fig. 7.4. The idea is to use the optimal process for various 

initial values, i.e., the process that is most suitable for recovering the given range of changes. The 

flowchart simply combines the hierarchical BFS and corner-based approach discussed in Chapters 4 

& 5. The details can be found in these two chapters. 
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Figure 7.4 Flowchart of Multi-process Approach for RST Estimation 

The processed images after each step of this approach are shown in Fig. 7.5-7.11. The 

results show consistent improvements of image merging after each additional step, and verified 

the effectiveness of the proposed approach. The images taken consist of variety features, and can 

represent typical outdoor images as well, such as the map and the plant image sets. 
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Figure 7 . 5 The Processed Images After Each Step in Proposed Approach 



Figure 7.6 The Processed Images After Each Step in Proposed Approach 



Figure 7.7 The Processed Images After Each Step in Proposed Approach 





Figure 7.9 The Processed Images After Each Step in Proposed Approach 



Figure 7.10 The Processed Images After Each Step in Proposed Approach 
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Figure 7.11 The Processed Images After Each Step in Proposed Approach 



Chapter 8 Conclusions and Future Work 

8.1 Conclusions 

This thesis has addressed some of the issues in developing a DVC system for tele-operation 

applications. These include the system specifications, implementation technology, and the processing 

system. Examination of the current technology shows that there are many technical difficulties in 

matching the capabilities of the human eye. Two of the most advanced DVC systems are introduced 

as the state of the art system models with up-to-date performance. For industrial applications, there 

are demands for more economic implementations, especially WFOV imaging and display, high 

resolution insert tracking and projection device, better display resolution, etc. A few design ideas 

are proposed for improving current DVC systems. 

The processing system for DVCS is a new issue since the images are taken from remote cameras 

instead of computer-generated as in other DVCS such as flight simulator displays. This thesis 

performed analysis and experiments on this topic. A final approach for image merging is proposed 

and implemented that gives best trade-off of the performance characteristics for various imaging 

conditions. In summary, the conclusions are: 

• A correlation-based brute force search is reliable and accurate, but can be computa

tionally expensive; 

• A corner-based approach using correlation window in matching is efficient in 

recovering small range of RST changes, but may fail in featureless image pairs, 

and can be unreliable and computationally expensive when the RST change ranges 

are large; 

• A corner-based approach using attributes in matching proved to be very difficult 

in recovering large RST changes. There are many issues to be resolved before its 

practical implementation; 

• A hierarchical approach can reduce the computation cost of the correlation-based brute 

force search, by adapting a different step size and window size at different levels of 
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resolution, and by using low resolution estimation to reduce the search range at higher 

resolution levels; 

• A approach which combines the hierarchical BFS and corner matching can provide 

the performance for various imaging conditions and is implemented and recommended 

as the final approach; 

• The proposed calibration-free image registration of AOI and WFOV approach is 

designed to minimize operations for real-time implementation purposes; 

• This software implementation can relax the requirements for position sensing and 

camera control devices. 

8.2 Future Work 

A DVCS is a complex system and is still in the developmental stage. Since none of the 

current DVCS can present ideal scene, there are many works to be done for improvements. As new 

technology and processing develops, better system will evolve. Increasing computing power will 

have great impact as hardware specs can be relaxed by computer processing capabilities. Some of 

the future work includes: 

• Design of an application specific computing process, including using parallel computing 

for real-time implementation; 

• Design of a programmable image computing board, which can replace individual 

processing boards such as correlation board and warping board. This will significantly 

improve the overall software system by reducing the volume and cost; 

• Better interfaces for the ease of use; 

• Hardware designs for components such as wide angle imaging, position control devices 

to achieve cost efficiency required for industrial applications. 

• Additional features such as stereo, color and augmented information in the presentation. 
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Appendix A 

Imaging System Using Intensity Array 

Abstract This paper introduce a new concept of intensity array and the digital 
imaging system using this array. This system has the potential of wide angle of 
view, high resolution and variable resolution pattern, etc. We will present the 
concept first, give a simple design as an example and then analyze the possible 
problems that might occur in implementation. 

Section 1 Introduction 

In medical imaging system, such as x-ray, r-ray, there is a high demand for 
an imaging system that can provide both aperture and resolution since no lens 
is available. Pinhole array(or called coded aperture imaging) is introduced as a 
mean to improve the SNR (aperture) while keeping the resolution of small size 
of holes. The recorded picture will consist of many overlapping images of the 
emitting object and, in general, bears no resemblance to the object. Computer or 
optical processing of the picture is required to produce the reconstructed object 
which should resemble the original object. In this implementation, the detector 
should be large enough to observe the entire shadow produced by any source 
within the field of view. This restricts the angle of view, the size of the source 
image, and the detector size, etc. 

3) in visual spectrum region, light diffraction by the pinhole cause the poor 
resolution. 

Section 2 Concept of Intensity Array & the Principles 

After studying the advantages and disadvantages of pinholes and pinhole 
masks, we propose a new concept of intensity element and intensity array which 
can be used in digital imaging system at very low cost of computation time. 

We define an intensity element as a pinhole with a detector(sensing material) 
and an intensity array as an array of such intensity elements, see Fig.l. It is easy 
to obtain the relation between the field of view(FoV) and the size of the intensity 
element from the figure. Assume the FoV is 29, pinhole length is P, detector 
length is D, the distance between the pinhole and the detector is d, then, we have: 

tan 6? = £$,0 = a r c t a n ( ^ ) 
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Fig.1 The Intensity Element and the Relations Between its Parameters 

As we can see from the equations, we can get intensity elements with different 
FoV simply by changing the structure of the pinhole. This give us the chance 
to set up a array consist of intensity elements with different FoV. The idea is to 
have each intensity element cover different spatial resolution points of the real 
world(FoV), and build up the relations between the intensity array and the spatial 
resolution point of the real world. By solving these equations, we can obtain the 
image of the real world from the intensity array. A distortion-free, wide FoV 
imaging system can be obtained if we set up the intensity array properly. By 
properly, we mean several principles to follow in setting the intensity array. We 
summarize as follows: 

The principle of singularity: Any two intensity array elements should have 
different FoV or cover at least one different spatial resolution point in 2-D, and 
vice versa, any two spatial resolution points in real world should corresponds to 
at least one different intensity array element. 

The principle of resolution distribution: The spatial resolution pattern of 
the real world is mainly determined by the overall FoV, the dimension of the 
intensity array and the distribution pattern of the intensity array. 

1 0 2 



The principle of no-disparity: The overall size of intensity a r r a y should be 
s m a l l enough that assumption of no disparity can be made. This restricts the 
number of intensity elements we can have, which means the spatial resolution 
points in real world is also restricted since the dimension of the intensity array 
decides the number resolution points of the real world. 

Once the array is set, the transform function between spatial resolution points 
in real world and the intensity array is fixed and can be determined in advance. 
So, only matrix multiplications are needed to obtain the real world image from 
the intensity array, we will give an example in the following section, in case 
of non-uniform-resolution or non-traditional resolution pattern, interpolation and 
resampling will be needed as well. Since this is a variable imaging system, the 
optimum angular resolution pattern can be arranged according to human visual 
perception pattern. 

Section 3 Simple Design & its Equations 
Assuming that the intensity array has a) no diffraction, b) no-interference 

between intensity elements, and c) each intensity element covers integer number 
of spatial resolution points in 2-D, in addition to the principles stated in the 
previous section, we can set up simple relation between real world and the intensity 
array with singular solution. We call this ideal case, and non-ideal case will be 
discussed in the next section. 

Fig. 2 One Design of Intensity Array 

Fig. 2 gives one example of such an intensity array. 
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Suppose the coverage of each pinhole is M in angular direction, M=l rep
resents one spatial resolution coverage in angular direction. In radical direction, 
assume the coverage is from the current point to the centre point. For M=l, we 
have the following relation: 

R = ML * I * MR, where 
Rn 0 0 "1 0 ... 0 " 

R - #21 Rn 0 
, ML = 

1 1 .. 0 

_RNI RN2 ... RNN . .1 1 .. 1 _ 

'hi 0 ... 0 "1 0 ... 0 

I = hi I22 0 , and MR = 
0 1 ... 0 

JNI IN2 ••• INN . 0 0 ... 1 
where R is the detected detected intensity array image, Mi is the left mod

ification matrix, I is the real world image, Mi is the right modification matrix, 
and finally, / = M71 * R * MJj1. 

There are many possible designs, as to which one is more practical highly 
depends on the manufacturing side. 

Section 4 Reality & the Possibilities 
In the visual spectral region the ordinary pinhole camera is of limited useful

ness, because of its poor resolution due to light diffraction by the pinhole. 
In non-ideal case, first, there is a restriction introduced by the diffraction, 

which means the size of the pinhole has a limit, this is the main reason we 
emphasize our design in X-ray and V—ray camera, since with X-ray and T—rays, 
diffraction is usually of no consequence. Although application in visual light is 
possible, but the benefit wouldn't be the same. Second, to meet the assumption 
of non-disparity between pinholes, the array size has to be small, which means 
limited dimension of the intensity array which also means limited resolution. 
Third, some noise will be introduced by non-integer number of coverage of the 
resolution points of each pinhole, interference from neighboring intensity element 
due to non-complete absorption of the energy of the isolating material, etc. 
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Appendix B 
Moving Insert Using a Microlens Array 

The idea is to use an array of lenses to shift the image to the location where the insert is expected 

by eye-tracking signal. With the object located at a significant distance from the array (within the 

aperture of all the lenses), each lens forms a miniature image of the object being photographed. 

In our application, we go further than forming multiple images, we use an LCD panel to control 

which lens to use each time instant, i.e., one lens is valid each time while all the others are closed 

(no passage of light through these lenses). In this way, we are able to move the insert around the 

background. See Fig. B- l . 

Video from Computers 

Move to Adjust AOI 

I 
...AOI LCD Screen 

..LCD Shutter 

...Ground Glass 

Viewer 

IFOV Screen Half Silvered Mirror 

Figure B . l The Setup of the Optical System with Moving Insert 

When designing this lens array, the dimension of the array and the size of the lens should be 

considered according to the screen size of both insert and background, insert size on the display, 

distortion tolerance and the frame size of the system, etc. On one hand, the insert is expected to 

perform the eye-tracking function, i.e., to move around the background. For the insert to move 

around the background smoothly, the larger the number of lenses the smoother the movement, i.e., 
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the finer the spatial resolution of eye-tracking . On the other hand, smaller lenses means lower overall 

luminance and higher distortion due to diffraction. If the lens size is too small, the luminance of the 

insert can be too weak compared to the background, though we can increase the overall luminance 

of the insert, there is a limit as to how much we can adjust the luminance. Suppose we de-magnified 

the insert by N times, theoretically, the lens size (considering the luminance) should be the LCD 

panel size divided by N, if the lens size is smaller than this, we need to enhance the luminance of 

the insert panel by LCD size/N/Lens size. To make the full use of the lens size within limited space, 

the best design should be a square lens as shown. We choose the size of each lens to be between 

LCD size/N to LCD size/4N which make a compromise between the luminance and smoothness of 

the insert movement. The lens size is also restricted by light diffraction, in theory, the lens diameter 

should be larger than 1mm to avoid significant diffraction effect. See [Davies&Lau, 91] 

Since the dimension of the lens array is very restricted, the system's ability in eye-tracking 

performance is also very restricted, since it gives a big step between each insert movement, as if 

the insert is jumping from one place to another. So in addition, we introduce an electronic way 

to move the insert between these gaps. Instead of using the whole screen to present the insert, 

we use a part of the screen to present one frame of insert picture each time, and move the insert 

around to the full use of the screen. Combining the lens array and electronic movement, we are 

able to move the insert around the whole display smoothly. From Fig. B-2, we can calculate the 

parameters of the display system. 
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Figure B.2 The Microlens Projection 

The gap is 

N*DLE do 

D'„ gap 

D„ 

d\ + d2 

N * D i e n a 

R 

(B.l) 
•gap R 

Dgap — D i e n s / R 

where Diens is the size of lens, D g a p is the distance of neighboring lens' projection centres, d\ is 

the distance between display and lens array, d2 is the distance between lens array and insert screen, 

R is the ratio of these distance, D m o v e is the moving range of the insert screen, DLCDI is the L C D 

length and DLCDI is the L C D width. 

To cover the gap, the centre of the image should be able to move, to get D m o v e as follow: 

N * D i e n s / R + Diens/2R - N * £W = <*1 1 - R 

~ rl~ ~ R 

(B.2) 
Dr + N * Diens d2 

Dlens / 2 Dr, 
1 - R 

While trying to move the insert smoothly, we also want to keep as many pixels as possible. The 

following table shows their relations. The percentage of pixels being used is as follow: 
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D _ (DLCDI - D 
move )(DLCD2 - Dmove) 

DLCDI * DLCD2 ^ ^ 
Dmove * (DLCDI + DLCDI) _^ Dmove 

DLCDI * DLCDI DLCDI * DLCDI 

d2 
R focal length of lens I-^move Pixel Usage Percentage 

di 1/2 di/2 Dlens 72.25% 

di/2 1/3 3/4£>,e„s 76.2% 

di/3 1/4 2/ZDiens 81.1% 

Figure B.3 Relation of The System Parameters 
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Appendix C 

Pixel Effect Removal for L C D Screen 

In a high quality display system like a helmet-mounted display (HMD), the gap between each 

pixel can be very annoying since the human eye has an acuity of vision which gives very high 

resolution perception. A person can distinguish two separate points 6 microns apart on the display 

if the display is 50mm away from the eye, i.e., the gap size between neighboring pixels on the 

display should be less than 6 microns in order for the eye to ignore the gap, otherwise, the eye will 

recognize the gap and the whole image will looks like an array of separated dots. Now, it's not 

difficult to get a display component like an LCD panel or fibre optic bundle with pixel gaps less than 

6 microns, the problem is when displayed to the eye in some display system like HMD, there will 

be a magnifying lens which focuses the image to infinity and at the same time enlarges the image. 

As a result, the gap is magnified at the same time. So, there is a need to remove these gaps even 

if they are less than 6 microns. As to what size of gap is tolerable will depends on the magnifying 

lens and the distance between the eye and the display. 

To remove the gap effect, we propose a smoothing method by interpolating the gap area with 

neigbouring pixel gray levels. The way to realize it is to use a vibration system to move the fibre 

optics bundle or the LCD panel in such a pattern that the neighboring pixels will move back and 

forth from the gap position and cover the gap in such a pattern that gives the overall effects of some 

sort of interpolation. This is justified by the fact that the human eye has limited resolution perception 

of stimuli in time which is called the fusion frequency. The minimum frequency of the subjective 

fusion is called the critical fusion frequency (CFF) as illustrated in Fig. 2.5. The maximum CFF is 

50 Hz under all luminance conditions. So, we need to vibrate the fibre bundle or LCD panel at the 

frequency twice of that which is 100 hz to eliminate the vibration effect itself. 

Here, we will discuss different vibration patterns for different display systems, and give the 

results of vibration effects that's equivalent to the interpolation. There are basically two types 

of vibration. First, a linear movement, move along the vector which is a combination of all the 

necessary movement vectors, this will give the result of filling the gap with near linear interpolation, 
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as shown in Fig. C-l . Second, we can move the display end along a circle so that the gap will 

be filled by neighboring pixels. 

The effect of these two different types of movements are different on different pixel shape. 

Basically, linear vibration will require a very accurate moving direction, otherwise it may end up 

with a different interpolation in one direction which may be worse than another direction. Circular 

vibration does not require direction correction, which means the interpolation effect is very stable, 

but might not be the optimum pattern and also gives a more complicated interpolation function. 

In addition to the smoothing the gap by vibration, it also reduce the jitter effect caused by the 

sudden change of gray level between the gap and the neighboring pixels. As shown in Fig. C l . 

Here we give an example of linear vibration effect on the hexagonal pixel arrays. We can see that 

after vibration, the gray level between neighboring pixels is smoothly transferred and filled in the 

gap. Although the interpolation is not exactly linear, it gives a much smoother transition between 

neighboring pixels, and more important is, no gap any more. 

25 
before vibration; : after vibration 

20 

c 
a> 
.£ 10 

5 

Or 

0 20 40 60 80 100 120 
neigboring pixel distance 

140 160 180 200 

Figure C l The Neighboring Pixel Intensity Before/After Vibration 
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Appendix D 

Additional Experimental Results 

To test the algorithms proposed, 7 set of images are taken with different zoom, different rotation, 

different space shift, and the algorithms are tested on all of them. The true values of RST are 

given by visual examination. 

Fig. D-l & D-2 show the comparison of the estimation error of different methods and the 

precision in graphic form. There is a general trend of decreased estimation error after each additional 

step, at the cost of the computational time. But, there are also steps where no significant improvement 

occurred, though computational cost is high. The optimization approach and corner map correlation 

do not give a stable improvement in general, i.e., the improvement is not consistent over different 

pictures. 

Fig. D-3 shows the number of corner points and its effects on the estimation error. After 

studying this relation, 5/10 is selected in the final version. That is, 10 corner points are selected 

by using a Plessey corner detector, and matched to locate to the background, and according to the 

correlation value, the top five corner pairs with highest correlation values are chosen to give the RST 

estimation with MSE methods. Intuitively, we would think that the larger the number of corners, the 

better the estimation results. The reality is there are images with a very limited number of significant 

corners, and if forced to choose a large number of corners, the threshold has to be lowered to the 

level where noise becomes significant. The minimum number needed to estimate RST are two corner 

points. So, any number between 3~5 seems to work fine and give similar results in our experiments. 

To choose the final approach, we need to know what precision level can be accepted. From our 

experiment in fusion, we found that after two level brute force searches, the change is not significant, 

so this level of estimation error is regarded as acceptable in our experiments. For other applications, 

there might be different requirement, and the process need to be adjusted accordingly. 

Fig. D-4 gives the estimation error of the proposed optimal approach. It shows that whether 

one level brute force search plus corner matching is used or two level brute force search is used 

seems to give similar results. The first approach is used because it can recover radial distortion if 

needed, and slightly less expensive computationally. 

I l l 



Fig. D-5 shows the correlation surface over RS at coarsest level, and Fig. D-6 shows the 

second coarsest level. These surfaces give us an idea about the variety of the characteristics of the 

images processed, and that's why caution must be taken in selection of step sizes and methods to 

suit general situations. These surfaces contain a lot of information about the sensitivity, and the 

noise level, etc., and can be used as guidance as to whether certain approaches or step sizes are 

proper or not. The problems is they are obtained after all the calculations are done, and can only be 

useful as a way to evaluate how reliable the results are. As one can see, surfaces like CS-lab and 

Tool are well shaped to give good estimation, while surfaces like Map and Toys can be vulnerable 

to noise. These are reflected in the results. 
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Error Comparison Among Methods-I 
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Figure D.l RS Estimation Error Comparison Among Methods 
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Figure D.2 X / Y Estimation Error Comparison Among Methods 
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Figure D.3 Comparison of the Estimation Error of the Steps in Proposed Approach 

Figure D7 and up show the errors after each step for each pair of pictures. The true values of 

RST are obtained by visual test, and non-maximum stands for the selection of the global maxima 

using non maximum suppression over the correlation surface. QLF stands for quadratic Line Fitting 

used for sub-step RST value estimation. The four estimation values stands for [R,S,X,Y]. As we 

can see, the accuracy is generally improving after each step, at extra computational cost, as given 

in Section 4.4.5. From these tables, we can also see each step has different effects on different 

pictures. As analyzed before, the success of the registration depend on the feature contents to some 

extend, and this is reflected in the results. Detailed examination of these results show that corner 

matching works better on pictures with sharp geometric features such as the Box and Toys pictures, 

while it fails in the Map picture where no significant features exist. The correlation based method 

works best in this case. 

Images/RST CS-Lab (R,S,X,Y) 

Figure D.4 Estimation Error of Methods on the Lab Picture Pairs (Continued) 
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True Values (obtained by visual test) (0.00, 4.00, 241, 237) 
Estimation Error after 1-BFS with non-max (0.03, 0.10, 7, 3) 
Estimation Error after 2-BFS with non-max (0.02, 0.07, 3, 1) 
Estimation Error after 2-BFS with QLF (0.01, 0.00, 3, 1) 
Estimation Error after 1-BFS & Corner Match (0.01, 0.08, 0, 0) 
Estimation Error after 4-BFS with non-max (0.00, 0.03, 1, 1) 
Estimation Error after 4-BFS & Corner Map (0.01, 0.00, 1, 1) 
Estimation Error after 4-BFS with non-max & Optimization (0.00, 0.13, 1, 1) 

Figure D.4 Estimation Error of Methods on the Lab Picture Pairs 

Images/RST Toys (R,S,X,Y) 
True Values (obtained by visual test) (0.01, 4.18, 243, 210) 
Estimation Error after 1-BFS with non-max (0.04, 0.28, 5, 2) 
Estimation Error after 2-BFS with non-max (0.01, 0.26, 1, 2) 
Estimation Error after 2-BFS with QLF (0.01, 0.20, 1, 2) 
Estimation Error after 1-BFS & Corner Match (0.01, 0.03, 0, 1) 
Estimation Error after 4-BFS with non-max (0.01, 0.14, 0, 1) 
Estimation Error after 4-BFS & Corner Map (0.01, 0.13, 0, 1) 
Estimation Error after 4-BFS with non-max & Optimization (0.01, 0.07, 2, 1) 

Figure D.5 Comparison of Estimation Error of Methods on the Toys Picture Pairs 

Images/RST Map (R,S,X,Y) 
True Values (obtained by visual test) (0.25, 4.21, 270, 202) 
Estimation Error after 1-BFS with non-max (0.01, 0.15, 2, 6) 
Estimation Error after 2-BFS with non-max (0.02, 0.14, 2, 2) 
Estimation Error after 2-BFS with QLF (0.02, 0.06, 2, 2) 
Estimation Error after 1-BFS & Corner Match (0.02, 0.25, 1, 2) 
Estimation Error after 4-BFS with non-max (0.01, 0.20, 0, 0) 
Estimation Error after 4-BFS & Corner Map (0.00, 0.20, 0, 0) 
Estimation Error after 4-BFS with non-max & Optimization (0.13, 0.20, 52, 38) 

Figure D.6 Comparison of Estimation Error of Methods on the Map Picture Pairs 
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Images/RST Tool (R,S,X,Y) 
True Values (obtained by visual test) (0.12, 3.55, 233, 240) 
Estimation Error after 1-BFS with non-max (0.01, 0.15, 7, 0) 
Estimation Error after 2-BFS with non-max (0.02, 0.15, 3, 0) 
Estimation Error after 2-BFS with QLF (0.00, 0.05, 0, 4) 
Estimation Error after 1-BFS & Corner Match (0.01, 0.01, 1, 2) 
Estimation Error after 4-BFS with non-max (0.01, 0.16, 2, 2) 
Estimation Error after 4-BFS & Corner Map (0.03, 0.19, 2, 2) 
Estimation Error after 4-BFS with non-max & Optimization (0.00, 0.15, 1, 3) 

Figure D.7 Comparison of Estimation Error of Methods on the Tool Picture Pairs 

Images/RST Plant (R,S,X,Y) 
True Values (obtained by visual test) (0.13, 3.65, 218, 245) 
Estimation Error after 1-BFS with non-max (0.03, 0.05, 6, 3) 
Estimation Error after 2-BFS with non-max (0.03, 0.13, 2, 3) 
Estimation Error after 2-BFS with QLF (0.01, 0.07, 2, 3) 
Estimation Error after 1-BFS & Corner Match (0.01, 0.14, 0, 0) 
Estimation Error after 4-BFS with non-max (0.02, 0.01, 0, 0) 
Estimation Error after 4-BFS & Corner Map (0.02, 0.00, 0,0) 
Estimation Error after 4-BFS with non-max & Optimization (0.01, 0.19, 0, 2) 

Figure D.8 Comparison of Estimation Error of Methods on the Plant Picture Pairs 

Images/RST Me (R,S,X,Y) 
True Values (obtained by visual test) (0.10, 4.02, 242, 230) 
Estimation Error after 1-BFS with non-max (0.00, 0.12, 6, 6) 
Estimation Error after 2-BFS with non-max (0.00, 0.05, 2, 2) 
Estimation Error after 2-BFS with QLF (0.01, 0.02, 2, 2) 
Estimation Error after 1-BFS & Corner Match (0.09, 0.05, 1, 2) 
Estimation Error after 4-BFS with non-max (0.01, 0.03, 2, 0) 

Figure D.9 Comparison of Estimation Error of Methods on My Picture Pairs (Continued) . . . 
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Estimation Error after 4-BFS & Corner Map (0.01, 0.06, 2, 0) 
Estimation Error after 4-BFS with non-max & Optimization (0.02, 0.11, 2, 0) 

Figure D.9 Comparison of Estimation Error of Methods on My Picture Pairs 

Images/RST Box (R,S,X,Y) 
True Values (obtained by visual test) (0.00, 2.80, 242, 236) 
Estimation Error after 1-BFS with non-max (0.03, 0.10, 6, 4) 
Estimation Error after 2-BFS with non-max (0.01, 0.15, 2, 4) 
Estimation Error after 2-BFS with QLF (0.01, 0.15, 2, 0) 
Estimation Error after 1-BFS & Corner Match (0.01, 0.00, 1, 0) 
Estimation Error after 4-BFS with non-max (0.02, 0.01, 1, 1) 
Estimation Error after 4-BFS & Corner Map (0.00, 0.01, 1, 1) 
Estimation Error after 4-BFS with non-max & Optimization (0.01, 0.00, 2, 1) 

Figure D.10 Comparison of Estimation Error of Methods on the Box Picture Pairs 

Images\RST True Values Error after 1-BFS with Error after 2-BFS with 

non-max non-max 
CS-Lab (0.00, 4.00, 240, 237) (0.03, 0.10, 8, 0) (0.02, 0.07, 4, 4) 
Toys (0.01, 4.18, 243, 210) (0.04, 0.28, 5, 2) (0.01, 0.26, 1, 2) 
Map (0.25, 4.01, 270, 202) (0.01,0.11,2,6) (0.02, 0.09, 2, 2) 
Tool (0.11, 3.50, 233, 240) (0.01, 0.15, 7, 0) (0.02, 0.15, 3, 0) 
Plants (0.13, 3.55, 218, 245) (0.03, 0.15, 6, 3) (0.03, 0.05, 2, 3) 
Me (0.00, 4.02, 242, 230) (0.10, 0.12, 6, 6) (0.10, 0.05, 2, 2) 
Box (0.00, 2.80, 242, 236) (0.03, 0.10, 6, 4) (0.01, 0.15, 2, 4) 

Figure D.ll Comparison of Estimation Error Between 1-BFS & 2-BFS on All Pictures 
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ImagesYRST True Values Error after 1-BFS with 

non-max 

Error after 1-BFS & 

Corner Match 

CS-Lab (0.00, 4.00, 240, 240) (0.02, 0.07, 4, 4) (0.01, 0.08, 0, 0) 

Toys (0.01, 4.18, 243, 210) (0.01, 0.26, 1, 2) (0.01, 0.03, 0, 1) 

Map (0.25, 4.01, 270, 202) (0.02, 0.09, 2, 2) (0.02, 0.25, 1, 2) 

Tool (0.11, 3.50, 233, 240) (0.02, 0.15, 3, 0) (0.01, 0.01, 1, 2) 

Plants (0.13, 3.55, 218, 245) (0.03, 0.05, 2, 3) (0.01, 0.14, 0, 0) 

Me (0.00, 4.02, 242, 230) (0.10, 0.05, 2, 2) (0.09, 0.05, 1, 2) 

Box (0.00, 2.80, 242, 236) (0.01, 0.15, 2, 4) (0.01, 0.00, 1, 0) 

Figure D.12 Comparison of 1-BFS & 1-BFS+Corner Match on All Pictures 

ImagesVRST True Values Error after 2-BFS with 

non-max 

Error after 2-BFS & 

QLF 

CS-Lab (0.00, 4.00, 240, 240) (0.02, 0.07, 4, 4) (0.01, 0.00, 4, 4) 

Toys (0.01, 4.18, 243, 210) (0.01, 0.26, 1, 2) (0.01, 0.20, 1, 2) 

Map (0.25, 4.01, 270, 202) (0.02, 0.09, 2, 2) (0.02, 0.06, 2, 2) 

Tool (0.11, 3.50, 233, 240) (0.02, 0.15, 3, 0) (0.00, 0.05, 0, 4) 

Plants (0.13, 3.55, 218, 245) (0.03, 0.05, 2, 3) (0.01, 0.03, 2, 3) 

Me (0.00, 4.02, 242, 230) (0.10, 0.05, 2, 2) (0.11, 0.02, 2, 2) 

Box (0.00, 2.80, 242, 236) (0.01, 0.15, 2, 4) (0.01, 0.15, 2, 4) 

Figure D.13 Comparison of Estimation Error Between 2-BFS 
with nonmaximum & 2-BFS with QLF on All Pictures 

Images\RST True Values Error after 4-BFS & 

Nonmax 

Error after 4-BFS & 

Corner Map 

CS-Lab (0.00, 4.00, 240, 240) (0.00, 0.03, 1, 4) (0.01, 0.00, 1, 4) 
Toys (0.01, 4.18, 243, 210) (0.01, 0.14, 0, 1) (0.01, 0.13, 0, 1) 
Map (0.25, 4.01, 270, 202) (0.01, 0.00, 0, 0) (0.00, 0.00, 0, 0) 
Tool (0.11, 3.50, 233, 240) (0.01, 0.16, 2, 2) (0.03, 0.19, 2, 2) 

Figure D.14 Comparison Between 4-BFS & 4-BFS with Corner Map on All Pictures (Continued) . . . 

119 



Plants (0.13, 3.55, 218, 245) (0.02, 0.01, 0, 0) (0.02, 0.00, 0, 0) 

Me (0.00, 4.02, 242, 230) (0.09, 0.03, 2, 0) (0.09, 0.06, 2, 0) 

Box (0.00, 2.80, 242, 236) (0.02, 0.01, 1, 1) (0.00, 0.01, 1, 1) 

Figure D.14 Comparison Between 4-BFS & 4-BFS with Corner Map on A l l Pictures 

Images\RST True Values Error after 4-BFS & Error after 4-BFS & 

nonmax optimization 

CS-Lab (0.00, 4.00, 240, 240) (0.00, 0.03, 1, 4) (0.00, 0.13, 0, 4) 

Toys (0.01, 4.18, 243, 210) (0.01, 0.14, 0, 1) (0.01, 0.07, 2, 1) 

Map (0.25, 4.01, 270, 202) (0.01, 0.00, 0, 0) (0.13,0.40,52,38) 

Tool (0.11, 3.50, 233, 240) (0.01, 0.16, 2, 2) (0.00, 0.15, 1, 3) 

Plants (0.13, 3.55, 218, 245) (0.02, 0.01, 0, 0) (0.01, 0.19, 0, 2) 

Me (0.00, 4.02, 242, 230) (0.09, 0.03, 2, 0) (0.12, 0.11, 2, 0) 

Box (0.00, 2.80, 242, 236) (0.02, 0.01, 1, 1) (0.01, 0.00, 2, 1) 

Figure D.15 Comparison Between 4-BFS & 4-BFS+Optimization on A l l Pictures 

120 



Bibliography 

[I] Edward H. Adelson and John Y. A. Wang. Single lens stereo with a plenoptic camera. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, pp99-106, No. 2, Feb. 1992. 

[2] Dana H. Ballard and Lambert E. Wixson. Object recognition using steerable filters at multiple 

scales. Workshop on Qualitative Vision, 1993. 

[3] Daniel I. Barnea and Harvey F. Silverman. A class of algorithms for fast digital image registration. 

IEEE Trans, on Computers, vol., c-21, No.2, ppl79-186, Feb. 1972. 

[4] Fredrik Bergholm. Edge focusing. IEEE Trans, on PAMI, pp726-741, No.6, Nov., 1987. 

[5] Valids Berzins. Accuracy of laplacian edge detectors. /. of Computer Vision, Graphics, and 

Image Processing, Vol. 27, ppl95-210, 1984. 

[6] Gerard Blais and Martin D Levine. Registering multiview range data to create 3d computer 

objects. IEEE Trans, on PAMI, Vol. 17, No. 8, pp820-824, 1995. 

[7] Robert M. Boynton and John J. Wisowaty. Equations for chromatic discrimination models. J. 

Opt. Soc, Vol. 70, No. 12, ppl471-1476, Dec, 1980. 

[8] Denis R. Breglia. Helmet mounted laser projector. Technical Report, Naval Training Equipment 

Center, 1989. 

[9] R.F. Browne and R.M. Hodgson. Pyramid vision applied to automatic inspection. Third 

International Conference on Image Processing and its Applications, 1989. 

[10] Steve Bryson and Scott S. Fisher. Defining, modeling, and measuring system lag in virtual 

environments. SPIE Proceedings on Stereoscopic Displays and Applications, pp98-109, 1990. 

[II] Dick Burbidge and Paul M. Murray. Hardware improvements to the helmet mounted projector 

on the visual display research tool (vdrt), at the naval training system center, pp52-60. SPIE 

Proceedings on Helmet-mounted Displays, 1989. 

[12] II James R. Burley. A full color wide-field of view holographic helmet-mounted display 

for pilot/vehicle interface development and human factors studies. SPIE Proceedings on 

Helmet-mounted Displays II, pp9-15, 1990. 

121 



[13] Peter J. Burt and Raymond J. Kolczynski. Enhanced image capture through fusion. 4th Int'l. 

Conf. on Computer Vision, ppl73-182, 1993. 

[14] Colin Bussiere and Dimitrios Hatzinakos. Intensity scale invaraint motion estimation with rotation 

and spatial scaling information. Symposium on Geoscience and Remote Sensing, pp233-236,1994. 

[15] John Canny. A computational approach to edge detection. IEEE Trans, on PAMI, vol 8, No. 

6, pp679-698, Nov. 1986. 

[16] Kenneth R. Castleman. Digital Image Processing. Prentice Hall, Upper Saddle River, New 

Jersey, 1996. 

[17]E.D.E Castro and C. Morandi. Regsitration of translated and rotated images using finite fourier 

transforms. IEEE Trans, on PAMI, Vol. 9, No.5, pp700-703, Sept., 1987. 

[18] J. J. Clark. Authenticating edges produced by zero-crossing algorithms. IEEE Trans, on PAMI, 

vol. 11, No. 1, pp43-57, Jan. 1989. 

[19] Graeme R. Cole and Trevor Hine. Computation of cone contrasts for color vision research. 

Behavior Research Methods, Instruments, & Computers, 24(10), pp22-27, 1992,. 

[20] James Cooper, Svetha Venkatesh, and Leslie Kitchen. Early jump-out detectors. IEEE Trans. 
PAMI, vol. 15, No. 8, PP1377-1382, August 1993. 

[21] D. Crookes and T.J. Brown. Efficient implementation of an abstract programming model for 

image processing on transputers. Second Euromicro Workshop on Parallel and Distributed 

Processing, January, 1994. 

[22] Ying Cui and Peter D. Lawrence. Detecting scale-space consistent corners based on corner 

attributes. IEEE Intl. Conf. on System, Man & Cyberspace, pp3549-3555, 1995. 

[23] Ying Cui and Peter D. Lawrence. Analysis of registration of images with rota-

tion/scale/translational changes. Presented at IEEE ACAR Conf., 1997. 

[24] McCormick Davies and H W Lau. Microlens arrays in integral photography and optical 

metrology. SPIE Proceedings on Miniature and Micro-Optics: Fabrication and System 

Applications, Vol. 1544, ppl89-198, 1991. 

[25]Rachid Deriche and Thierry Blaszka. Recovering and characterizing image features using an 

efficient model based approach. Computer Vision and Pattern Recognition, pp530-535, 1993. 

122 



[26] Cornelia Fermuller and Walter Kropatsch. Multi-resolution shape description by corners. 

Computer Vision and Pattern Recognition, pp271-276, 1992. 

[27] J. Flussor. Invariant shape description and measure of object similarity. 4th Inter. Conf. on Image 

Processing and its Applications, ppl39-142, 1992. 

[28] Carl Frederick and Schwartz Eric L. Conformal image warping. IEEE Computer Graphics & 

Applications Magazine, pp54-61, March, 1990. 

[29] Pascal Fua. A parallel stereo algorithm that produces dense depth maps and preserves image 

features. INRIA Technical Report 1369, 1993. 

[30] A. Goshtasby and G.C. Stockman. A region-based approach to digital image registration with 

subpixel accuracy. IEEE Trans, on Geosience and Remote Sensing, vol. GE-24, No. 3, pp 

390-399, May 1986. 

[31] E. Guelch. Results of test on image matching of isprs. International Archives of Photogrammetry 

and Remote Sensing, 27(III):254-271, 1988. 

[32] Antonio Guiducci. Corner characterization by differential geometry techniques. Pattern 

Recognition Letters, pp311-318, 1988 (8). 

[33] S. Lee Guth. Model for color and light adaptation. /. Opt. Soc, pp976-993, Vol. 8, lune 1991. 

[34] M.J. Hannah. Digital stereo image matching techniques. International Archives of Photogram

metry and Remote Sensing, 27(111), pp280-293, 1988. 

[35] Chris Harris and Mike Stephens. A combined corner and edge detector. ppl47-151, 1988. 

[36] et al Hawryluk. Virtually distortion-free imaging system for large field , high resolution 

lithography. US Patent No. 5,176,970, Jan. 5, 1993. 

[37] E. Hayman, I. D Reid, and D. W. Murry. Zooming while tracking using affine transfer. British 

Machine Vision Conference, 1996. 

[38] Thomas Hebert and Richard Leahy. Map restoration of blurred, photon-limited images via an 

expectation maximization algorithm. ICASSP: Acoustics, Speech & Signal Processing Conference, 

pP2953-2956, 1991. 

123 



[39] Philippe de Heering and Ezackiel; Wasiljeff Alexander Simmer, Klaus Uwe; Ochieng-Ogolla. 

A deconvolution algorithm for broadband synthetic aperture data processing. IEEE Journal of 

Oceanic Engineering, Vol. 19, No.l, pp73-83, January, 1994. 

[40] Eric M. Howlett. Wide angle orthostereo. SPIE Proceedings on Helmet-mounted Displays, pp2-8, 

1989. 

[41] Eric M. Howlett. High resolution inserts in wide-angle head-mounted stereoscopic displays. SPIE 

Proceedings on Stereoscopic Displays and Applications, ppl93-203, 1992. 

[42] Eric M. Howlett. Wide angle orthostereo. SPIE Conference Proceedings, pp210-220, Feb., 1990. 

[43] Eric M. Howlett. Wide angle color photography method and system. U.S. Patent No. 4406532, 

Sept. 27, 1983. 

[44] Paul S. Idell. Resolution limits for coherent optical imaging: signal-to-noise analysis in the 

spatial-frequency domain. J. Opt. Soc, pp43-56, 1992. 

[45]Mitsuo Ikeda and Tetsuji Takeichi. Influence of foveal load on the functional visual field. 

Perception & Psychophysics, Vol. 18(4), pp255-260, 1975. 

[46] Hans Irtel. Computing data for color-vision modeling. Research Methods, Instruments, & 

Computers, No. 24(3), PP397~401, 1992. 

[47] Qi Jin and Pinfan Yan. A new method of extracting invariants under affine-transform. 11th Int'l. 

Conf. on Pattern Recognition, pp742-745, 1992. 

[48]Behrooz Kamgar-Parsi and Azriel Jones, L. Jeffrey; Rosenfeld. Registration of multiple 

overlapping range images: Scenes without distinctive features. IEEE Trans, on PAMI, Vol. 13, 

No. 9, pp857-870, September, 1991. 

[49] David L. Kanahele. Condor advanced visionics system. SPIE Proceeeings on Display Technology, 

pP192-202, 1996. 

[50] M. G. Kaye, Judith Ineson, D.N. Jarrett, and Wickham G. Evaluation of virtual cockpit concepts 

during simulated missions. SPIE Proceedings on Helmet-Mounted Displays, pp236-245, 1990. 

[51] George Kelly. Helmet-mounted area of interests. SPIE Proceedings on Helmet-mounted Displays 

III, pp58-63, 1992. 

[52] James P. Kelly. Textbook of medical physiology. 1956. 

124 



[53] Thomas F. Knoll. Adaptive gray scale mapping to reduce registration noise in difference images. 

Computer Vision, Graphics, and Image Processing, Vol 33, P129-137, 1986. 

[54] J. J. Koenderink and A. J. van Doom. Representation of local geometry in the visual system. 

Biological Cybernetics, pp367-375, 1987. 

[55] Th. M. Koller, G. Gerig, G. Szekely, and D. Dettwiler. Multiscale detection of curvilinear 
structures in 2-d and 3-d image data. Int'l. Conference on Machine Vision, pp864-869, 1995. 

[56]Wen-wha Lee, David Wilson, and Lawrence Singerman. Correction of spatial distortion 

and registration in ophthalmic fluorescein angiography. Engineering in Medicine & Biology, 

pp508-509, 1994. 

[57] Thomas M. Lippert. Fundamental monocular/binocular hmd human factors. SPIE Proceedings 

on Helmet-Mounted Displays II, pp185-191, 1990. 

[58] Geoffrey R. Loftus. On-line eye movement recording systems. Behavior Research Methods & 

Instrumentation, Vol. 7(2), 201-204. 

[59] D. G. Lowe. Organization of smooth image curves at multiple scales. Inter. J. of Computer 

Vision, pp 119-130, 1989. 

[60] Yi Lu and Ramesh C. Jain. Behavior of edges in scale space. IEEE Trans, on PAMI, vol. 11, 

No. 4, pp450-468, April, 1989. 

[61] Stephane Mallat and Sifen Zhong. Characterization of signals from multiscale edges. IEEE Trans, 

on PAMI, vol. 14, No. 7, pp710-726, July 1992. 

[62] R. Manmatha. Image matching under afrine deformations. 27th Asilomar Conference on Signals, 

Systems & Computers, ppl06-l 10, 1993. 

[63] G. K. Matsopoulos, S. Marshall, and J. N. H. Brunt. Multiresolution morphological fusion of mr 

and ct images of the human brain. IEE Proceedings on Vision, Image, and Signal Processing, 

ppl37-142, June, 1994. 

[64] G. F. Mclean. Image warping for calibration and removal of lens distortion. Communications, 

Computers and Signal Processing, ppl70-173, 1993. 

[65] James E. Melzer and W. Moffitt Kirk. Color helmet display for the tactical environment: the 

pilot's chromatic perspective. SPIE Proceedings on Helmet-mounted Displays III, pp47-51, 1992. 



[66] Charles Meyer, Gregg S. Leichtman, James A. Brunberg, Richard L. Wahl, and Leslie E. Quint. 

Simultaneous usage of homologous points, lines, and planes for optimal, 3-d, linear registration 

of multimodality imaging data. IEEE Trans, on Medical Imaging, Vol. 14, No.l, ppl-11, March 

1993. 

[67] Jacueline Le Moigne. Towards a parallel registration of multiple resolution remote sensing data. 

Symposium on Geoscience and Remote Sensing, pplOl 1-1013, 1995. 

[68] Vernon B. Mountcastle. Medical physiology. 1974. 

[69] Don Murray and Anup Basu. Motion tracking with active camera. IEEE Trans, on RAMI, Vol. 

16, No. 5, pp449^t59, May, 1994. 

[70] Shree K. Nayar. Catadioptric omnidirectional cameras. Technical Report, Dept. of Computer 

Science, Columbia University, October, 1996. 

[71] Scott A. Nelson and Cox J. Allen. Quantitative helmet mounted display system image quality 

model. Helmet-mounted Displays, ppl28-137, 1992. 

[72]Jacek Nieweglowski, T. George Campbell, and Petri Haavisto. A novel video coding scheme 

based on temporal prediction using digital image warping. IEEE Trans, on Computer Electronics, 

PP141-150, Aug., 1993. 

[73] J Alison Noble. Finding corners. Image & Vision Computing, Vol 6, ppl21-128, May, 1988. 

[74]Finbarr O'Sullivan and Maijian Qian. A regularized contrast statistic for object boundary 

estimation — implementation and statistical evaluation. IEEE Trans, on RAMI, Vol. 16, No. 

6, pp561-570, June, 1994. 

[75] A. Papoulis. Probability, random variables and stochastic processes. New York: McGraw-Hill, 

1965. 

[76] L. Peichl and H. Wassle. Size, scatter and coverage of ganglion cell receptive field centres in 

the cat retina. J. Physio., ppll7-141, 1979. 

[77]Rajesh P.N. Rao and Dana H. Ballard. An active vision architecture based on iconic 

representations. Technical Report, Department of Computer Science, University of Rochester, 

1996. 

126 



[78] Anothai Rattarangsi and Roland T. Chin. Scale-based detection of corners of planar curves. IEEE 

Trans, on PAMI, Vol. 14, No. 4, pp430-449, April, 1992. 

[79] Robert K. Rebo and Amburn Phil. A helmet-mounted virtual environment display system. SPIE 

Proceedings on Helmet-mounted Displays, pp80-84, 1989. 

[80] Nader Riahi and Lawrence Peter D. A retinal image processing system. SPIE Proceedings on 

Automated Inspection and High Speed Vision Architecture II, pp!7—24, Nov., 1988. 

[81] Paul L. Rosin. Augmenting corner descriptor. Graphical Models and Image Processing, vol 58, 

No.3, pp286-294, 1996. 

[82] W. L. Sachtler and Qasim Zaidi. Chromatic and luminance signals in visual memory. J. Opt. 

Soc, Vol. 9, pp877-894, June 1992. 

[83] Philippe Saint-Marc and Jer-Sen Chen. Adaptive smoothing: A general tool for early vision. 

IEEE Trans, on PAMI, vol. 13, No.6, pp514-529, June 1991. 

[84] J. Santamaria, P. Artal, and J. Bescos. Determination of the point-spread function of human eyes 

using a hybrid optical-digital method. /. Opt. Soc, Vol. 4, ppll09-1114, No. 6, June 1987. 

[85] CE. Savin, M.O. Ahmad, and M.N.S. Swamy. Design of weighted order statistic filters using 

linearly separable stack-like architecture. Midwest Symposium, Circuits and Systems, pp753-756, 

1994. 

[86] Cordelia Schmid and Roger Mohr. Matching by local invariants. INRIA Report, N2644, Aug. 

1995. 

[87] Thorsten Schormann, Andreas Dabringhaus, and Zilles Karl. Statistic of deformations in histology 

and application to improved alignment with mri. IEEE Trans, on Medical Imaging, Vol. 14, No. 

1, pp25-35, March, 1995. 

[88] A.M. Seibert, M; Waxman. Adaptive 3-d object recognition from multiple views. IEEE Trans, 

on PAMI, Vol. 14, Feb. 1992. 

[89] Terrence J. Sejnowski and Lehky Sidney R. Neural network models of visual processing. Society 

for Neuroscience Short Course on Computational Neuroscience, ppl-28, 1987. 

127 



[90] Eero P. Simoncelli and William T. Freeman. The steerable pyramid: A flexible architecture for 

multi-scale derivative computation. 2nd Annual IEEE Intl' Conf. on Image Processing, ppl-4, 

October, 1995. 

[91] Steven Skaggs, Jason Gerber, Griff Bilbro, and Michael B. Steer. Parameter extraction of 

microwave transistors using a hybrid gradient descent and tree annealing approach. IEEE Trans, 

on Microwave Theory and Techniques, pp726-729, 1993. 

[92] Anne H. Solberg, Anil K. Jain, and Torfinn Taxt. Multisource classification of remotely sensed 

data: Fusion of landsat tm and sar images. IEEE Trans, on Geoscience and Remote Sensing, Vol. 

32, No. 4, pp768-778, July, 1994. 

[93] L. J. Spreeuwers and F. van der Heijden. Evaluation of edge detectors using average risk. Pattern 

Recognition, 11th Int'l. conf., pp771-774, 1992. 

[94] Bjorn Stabell and Ulf Stabell. Spectral sensitivity in the far peripheral retina. J. Opt. Soc, Vol. 

70, No. 8, PP959-963, August 1980. 

[95] Roy H. Steinberg, Miriam Reid, and Paula L. Lacy. The distribution of rods and cones in the 

retina of the cat. J. Comp. Neur., 148: pp229-240, 1972. 

[96] George Stockman, Kopstein, and Sanford Benett. Matching images to models for regisatrtion 

and object vis clustering. IEEE Trans, on RAMI, Vol. 4, No. 3, pp229-241, May, 1982. 

[97] Cho-Huak Teh and Roland T Chin. On the detection of dominant points on digital curves. IEEE 

Trans, on RAMI, vol. 11, No. 8, Aug. 1989. 

[98] Jonathan Vaughan. On-line, real-time recording of eye orientation using the corneal reflection 

method. Behavior Research Methods & Instrumentation,, Vol. 7(2), pp211-214, 1974. 

[99] John A. Webster. Stereoscopic full field of vision display system to produce total visual 

telepresence. SPIE Proceedings on Display System Optics, pp63-70, 1989. 

[100]Christopher D. Wickens. Three-dimentional stereoscopic display implementation: Guidelines 
derived from human visual capabilities. SPIE Proceedings on Stereoscopic Displays and 

Applications, pp2-10, 1990. 

[101]C. M. Wu, R. M. Owens, and M. J. Irwin. Distortion processing in image matching problems. 

ICASSP: Acoustics, Speech & Signal Processing, pp2181-2184, 1990. 

128 



[102]Weishi Xia, Robert M. Lewitt, and Paul R. Edholm. Fourier correction for spatially variant 

collimator blurring in spect. IEEE Trans, on Medical Imaging, Vol. 14, No.l, March, 1995. 

[103]Yi-Sheng Yao and Rama Chellappa. Tracking a dynamic set of feature points. IEEE Trans, on 

Image Processing, Vol.4, No.10, ppl382-1396, 1995. 

[104]Laurence R. Young and Sheena. Methods & designs. Behavior Research Methods & 

Instrumentation, Vol. 7(5), pp397^129, 1975. 

[105]A. L. Yuille and T. A. Poggio. Scaling theorems for zero-crossing. IEEE Trans. RAMI, vol. 8, 

ppl5-25, June 1986. 

[106]Qinfen Zheng and Rama Chellappa. A computational vision approach to image registration. 

IEEE Trans, on Image Processing, Vol. 2, No.3, pp311-326, July 1993. 

[107]Y.T. Zhou. Multi-sensor image fusion. IEEE Intl. Conf. on Image Processing, ppl93-197, 1994. 

129 


