
A PARALLEL ALGORITHM FOR
ASN.1 ENCODING/DECODING

by

Carlton Charles Agnel Joseph

B.Eng. (EE), McGill, 1990.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF ELECTRICAL ENGINEERING

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

September 1992

© Carlton C.A. Joseph, 1991

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Electrical Engineering

The University of British Columbia
Vancouver, Canada

Date
^

DE-6 (2/88)

Abstract

Computers differ in many ways: the characters may be coded in ASCII, EBCDIC or

UNICODE; integers can vary in size; processors can operate in Big-Endian or Little-Endian

format; and programming languages can use different memory representations for data. The

International Standards Organization (ISO) provides an Open System Interconnection (OSI)

seven-layer reference model[20] to facilitate heterogeneous inter-computer communication.

Multimedia technology places new demands on inter-computer communication speeds

because of the higher bandwidth requirements of voice and image data. Various implementa-

tions of high speed networks meet this demand at the lower layers. The presentation layer of

the ISO reference model is the dominant component of the total protocol processing time[5].

Hence, the presentation layer represents a bottleneck in communication systems that use high

speeds networks. The presentation layer is traditionally implemented in software but now a

combined parallel hardware/software approach is taken.

Prior to this thesis, VASN.1[3][24][25] was the only parallel hardware/software com-

bination that achieved high throughput in the presentation layer. The parallel algorithm of

VASN.1 limits the scalablity of hardware and hence the achievable parallelism. VASN.1

users are expected to use the parallel data structure that it uses. This limitation reduces the

flexibility for VASN.1 users and incurs an additional overhead for handling the data structure.

The parallel system presented in this thesis avoids the serious problems found in VASN.1.

A new parallel algorithm has been developed which provides users with flexible serial data

structures 2. The encoding algorithm converts flexible serial data structures into parallel

information which allow simultaneous processing. The conversion from a serial to a parallel

information has not been previously explored in the literature. The decoding algorithm

also provides maximum parallelism while providing a flexible serial data structure for

applications to use. The algorithm has been designed in such a way that any changes in

A parallel data structure is a data structure that contains extra information required for a parallel algorithm.

2
^

A serial data structure is a data structure that holds no extra information required for a parallel algorithm.

ii

the ASN.1 specification can be easily incorporated into the system. The final advantage is

that the hardware scales gracefully and allows for more parallelism than VASN.1. The initial

simulations are promising and show that the throughput achievable by the parallel algorithm

is five times greater than that achievable by a serial implementation.

iii

Contents

Abstract ^ ii

List of Tables ^ vii

List of Figures ^ viii

Acknowledgments ^

1 Introduction ^ 1
1.1 Communication in Heterogenous Networks ^ 1

1.1.1 ISO Presentation Layer Conversion Standard ^ 2

1.2 Presentation Layer Cost ^ 4
1.3 Initial Parallel Analysis ^ 6

1.4 Previous Work with ASN.1 ^ 10

1.4.1 Single Processor ASN.1 Implementations ^ 10

1.4.2 Multi Processor ASN.1 Implementations ^ 11

1.5 Thesis Objectives and Outline ^ 14

2 Parallel Architecture ^ 15

2.1 Hardware Architecture ^ 15

2.1.1 Contiguous Memory Management ^ 17

2.2 Parallel Algorithm Outline ^ 18

2.3 Memory Mapping Scheme ^ 19

3 Encoding^ 20

3.1 Encoding Interface Data Structures ^ 20

3.2 Encoder Generation from ASN.1 Specification ^ 23

3.3 Encoders Functions and Data Structures ^ 24

3.3.1 EncodeStructBegin () ^ 25

3.3.2 EncodeStructEnd () ^ 28

3.3.3 QEncode () ^ 29

3.4 Encoding Flow Trace ^ 30

3.4.1 Host Responsibilities ^ 31

3.4.2 Queue-Processor ^ 33

3.4.3 Processors ^ 34

iv

4 Decoding^ 35

4.1 Decoding Interface Data Structures ^ 35

4.2 Decoder Generation from ASN.1 Specification ^ 35

4.3 Decoders Functions and Data Structures ^ 36

4.3.1 Node for Primitive Types^ 37

4.3.2 Node for SEQUENCE and SET Types ^ 37

4.3.3 Node for SEQUENCE OF and SET OF Types ^ 38

4.4 Decoding Flow Trace ^ 39

4.4.1 Host Responsibilities ^ 41

4.4.2 Queue-Processor ^ 41

4.4.3 Processors ^ 44

4.4.3.1 tsptr = tsend^ 45

4.4.3.2 UPDATE bit set ^ 46

4.4.3.3 find correct node ^ 46

4.4.3.4 CONSTRUCTOR bit set ^ 47

4.4.3.5 OF bit set ^ 48

4.4.3.6 primitive ^ 48

5 Hardware Models ^ 50

5.1 Bus Arbitration Method ^ 50

5.2 Processor^ 55

5.2.1 Integer Unit ^ 56

5.2.2 Data Unit ^ 57

5.2.3 Instruction Unit ^ 57

5.2.4 Register File ^ 57

5.2.4.1 Reg(0) = Zero Register ^ 57

5.2.4.2 Reg(26) = Frame Pointer ^ 57

5.2.4.3 Reg(27) = Stack Pointer ^ 57

5.2.4.4 Reg(28) = Return Address ^ 58

5.2.4.5 Reg(29) = Queue Address ^ 58

5.2.4.6 Reg(30) = Processor Address^ 58

5.2.4.7 Reg(31) = Wait Result ^ 58

5.3 Queue-Processor ^ 59

6 Simulations ^ 63
6.1 Simulation with System V IPC ^ 63
6.2 Memory Mapper ^ 64
6.3 Assembler ^ 65
6.4 VHDL Model ^ 66
6.5 Utilities ^ 66
6.6 Description of a Complete Simulation Cycle ^ 67

7 Results ^ 69
7.1 Need for Standard Test Vectors ^ 69
7.2 Simulation Statistics ^ 69

8 Future Work^ 73
8.1 Simulations^ 73
8.2 Processing Element ^ 73
8.3 Parallel use of PEs^ 74
8.4 Fabrication Constraints ^ 75

9 Conclusion ^ 76
Bibliography ^ 78
Appendix A Acronym Definitions ^ 81
Appendix B Cost per Instruction Mapping ^ 82
Appendix C Pros and Cons of Static Analysis ^ 85
Appendix D Processors Memory Read and Write Cycle^ 86
Appendix E ASN.1 PersonnelRecord Type ^ 87
Appendix F ASN.1 Types Instruction Counts^ 89

vi

List of Tables
Table 1^CASN.1 Primitive encoding/decoding Routines ^ 6
Table 2^Primitive Routines Instruction Count.^ 7
Table 3^Parallelism Speed Gain ^ 7
Table 4^Minimal Instructions for Encoding/Decoding ^ 8
Table 5^Queue-Processor Commands.^ 17
Table 6^Processing Elements Signals ^ 58
Table 7^Instructions Executable On a Processing Element^ 59
Table 8^Simulation Results in Mbit/s^ 70
Table 9^Worst Case Simulation Results for PersonnelRecord. ^ 76
Table 10^Simulations Instruction per Byte Values. ^ 89

VII

List of Figures

Figure 1^Abbreviated OSI Seven Layer Model ^ 2
Figure 2^Example of Local Representation to Transfer Syntax ^ 3
Figure 3^ASN.1 Description of Personnel Information ^ 4
Figure 4^ASN.1 Processing Cost. ^ 5
Figure 5^Serial vs Parallel Encode Time ^ 10
Figure 6^VASN.1 Overview^ 11
Figure 7^Parser/Assembler and Encoder/Decoder ^ 13
Figure 8^Parallel Hardware Setup ^ 16
Figure 9^Contiguous Memory: Initial ^ 17
Figure 10^Contiguous Memory: Allocated ^ 18
Figure 11^Memory Mapping Scheme ^ 19
Figure 12^Partial List of Mapping Rules ^ 21
Figure 13^ASN.1 Example ^ 22
Figure 14^C Type Equivalent of Figure 13 ^ 22
Figure 15^Transfer Syntax of Figure 13 in IDX Structures ^ 23
Figure 16^Generated Encoding Routines for Figure 13 ^ 24
Figure 17^Encode Queue Element. ^ 25
Figure 18^Encoding Cumulative Length Data Structures ^ 26
Figure 19^Data Dependency Graph of Figure 13 ^ 27
Figure 20^Postponed ASN.1 Type ^ 28
Figure 21^Queue with the Encode Example Calls ^ 31
Figure 22^Partial Flow Diagram for Small Encoding Example ^ 32
Figure 23^Decoding Queue-Element 36
Figure 24^Node Data Structure of Type Tree ^ 36
Figure 25 Two Decode Type Trees Comparing SET and SEQUENCE ^ 39
Figure 26^Transfer Syntax of Figure 13^ 40
Figure 27^Decode Type Tree of Figure 13 ^ 40
Figure 29^Partial Flow Diagram For Decoding Example ^ 42
Figure 28^Algorithm of Queue-Processor^ 43
Figure 30^Decoding Algorithm for Processors^ 45
Figure 31^Daisy Chain and Rotating Daisy Chain ^ 50
Figure 32^Partial Diagram of RDC Arbitration ^ 53
Figure 33^RDC Timing Diagram ^ 54
Figure 34^Processor Block Diagram ^ 56
Figure 35^queue-processor ^ 60
Figure 36^Queue Information ^ 61
Figure 37^Processor State Information ^ 62
Figure 38^Software used in Simulation ^ 63
Figure 39^Development of Algorithm using Unix and System V IPCs ^ 64

Figure 40^Example Assembler Code ^ 65
Figure 41^Local Cache Setup ^ 74
Figure 42^Multi-Bus Global Cache ^ 75
Figure 43^Memory Read/Write Timing Diagrams ^ 86
Figure 44^Ten Integers Type ^ 89

ix

Acknowledgments

I would like to express my gratitude to Dr. Mabo Ito for his suggestions and for

supporting me throughout my graduate studies. I also would like to thank Dr. Gerald

Neufeld for his insight on ASN.1 and his very valuable comments. A special thanks to

Mike Sample for providing me with statistics on ASN.1 processing and Donna Fuller for her

support during the preparation period of this thesis. Lastly, I would like to thank my parents

for their continuous support, encouragement and understanding.

x

1 Introduction

Section 1.1 of this chapter covers the need for communication in heterogeneous networks.

Section 1.2 presents information showing that the computation cost of the presentation layer

accounts for the majority of the total OSI protocol cost[5]. Section 1.3 suggest a parallel

approach to reduce this cost. Section 1.4 discusses the approaches of other researchers and

their relative advantages and disadvantages. Section 1.5, the final section of the introduction,

states the objectives and the outline of this thesis.

1.1 Communication in Heterogenous Networks

In industry, at home and in educational institutions, there are a large variety of computer

hardware configurations available from various manufacturers. There exists a need for

computers based on different hardware structures to communicate with one another. Several

vendors address this issue by implementing protocols so that networks with heterogenous

computers can communicate. Two of these vendor-specific protocols are Sun Microsystems'

XDR[6] and Apollo Computer's NDR[8].

To aid in the goal of truly inter-operable heterogenous systems, ISO has constructed the

OSI seven-layer protocol reference model[17][20]. Figure 1 shows the top three layers of

the OSI seven-layer model. Any layer n of Host A communicates with its peer on layer n

of Host B using a preset protocol. For instance, the presentation layer's peers in Host A

and B communicate using a presentation protocol. The protocol exchanges information by

exchanging data units known as protocol data units (PDU) 3 . The presentation layer in Host

A and Host B do not directly exchange PDUs. The PDU is propagated down through to the

lower layers where layer one is responsible for exchanging information between Host A and

Host B. Within the OSI model the presentation layer is responsible for the transformation

of information from a machine-dependent format to a machine-independent format and vice-

versa. Section 1.1.1 presents an outline of how this is achieved in a standard way.
3^A list of all the acronyms used in this thesis is presented in Appendix A

1

Application Protocol

Presentation Protocol

Session Protocol

-4 ^

..3$ ^

,4:1 ^

- a

-

-4.-

Application Application

Interface Interface

Presentation Presentation

Interface
V

h.
Interface

Session Session

Lower
Layers •

•
•

 Lower

• Layers

•
•

Host A Host B

Figure 1 Abbreviated OSI Seven Layer Model

1.1.1 ISO Presentation Layer Conversion Standard

This section presents a summary of the roles that Abstract Syntax Notation One

(ASN.1[26]) and the Basic Encoding Rules (BER[27]) play in the presentation layer. Ref-

erences [11][4] present additional detail on BER and ASN.1.

ASN.1 can specify the data structures of the presentation protocol data units (PPDU) when

two machines communicate (figure 1). The ASN.1 specification can then be compiled into

routines that encode/decode to/from machine-specificlmachine-independent formats. BER

are used when transforming data from a machine-specific format to a machine-independent

format and vice-versa. Figure 2 shows a possible communication scenario, where Host A

transmits information to Host B.

2

Tag Len. Encoded Bool Tag Len. Encoded Integer Tag Len.^Encoded String

Integer

Host A Internal Representation

Boolean

Host B Internal Representation

Boolean

•̂

32

•

String

40

String

40

Application Layer (Machine Dependent)

Encode Using BER Decode Using BER

Presentation Layer (Conversion)

Integer

•̂

32

•

Transmitted Transfer Syntax

Session Layer (Machine Independent)

Figure 2 Example of Local Representation to Transfer Syntax

In figure 2 one can see that the internal representation of the data on the two machines is

different and hence BER are used to convert the data into a generic transfer syntax (TS) and

then back to an internal representation. This diagram shows that the TS consists of a tag, a

length and the encoded value (TLV4). In the triples, the tag represents the information that is

stored in the encoded part, the length specifies the encoded part's length and the encoded part

holds the actual encoded information. BER specify how information is encoded/decoded.

Figure 3 shows an ASN.1 representation of a data structure that holds personnel information.

Notice that the data representation is similar to those used in most high level programming

languages.

4
^

TLV = Tag Length Value.

3

Personnellnformation ::= SET {
Name IA5String,
Age INTEGER,
Sex BOOLEAN }

Figure 3 ASN.1 Description of Personnel Information

The ASN.1 description given in figure 3 is machine-independent and the internal repre-

sentations shown in figure 2 are the machine-specific information for one person. Host A

and Host B in figure 2 are exchanging personnel information for one person. When both

the machines receive an ASN.1 description of PersonnelInformation they are responsible for

maintaining value instances of this data in their machine-specific format and converting it

to/from a machine generic format when transmitting/receiving.

1.2 Presentation Layer Cost

When using the OSI protocol stack, transferring from a machine-dependent to a machine-

independent format can consume 97%[5] of the total processing time. Unpublished simula-

tions carried out at the University of British Columbia (UBC) show that the cost is closer to

70% when the more efficient CASN.1[12] 5 implementation is used in the presentation layer.

The data gathered by Takeuchi[19] can also provide the processing cost associated with the

presentation layer. Takeuchi assumes the processing costs per packet of the OSI lower lay-

ers are constant6 . In the presentation layer the cost per byte is calculated for the ASN.1

PersonnelRecord shown in Appendix E. For the ASN.1 PersonnelRecord specification, the

encoding/decoding instruction count for the presentation layer is Encode = 350 + 27 * bytes

and Decode = 400 + 60 * bytes? . The spread sheet extract in figure 4 shows the cost of

the presentation layer with reference to the total protocol processing cost. Data Set One

shows the cost for sending/receiving PDUs at the lower layers. Data Set Two shows that the

5^Details of CASN.1 will be given later.
6^The assumption is correct if the CRC checking in the transport layer is omitted or computed by a hardware assist at no cost.
7^Page 55 Sc Appendix C page 106-108 of Ref.D9].

4

presentation layer can consume a significant portion of the processing power as the packet

size increases.

Data Set One

Layer Send Receive
2 40 45
3 160 160
4 400 375
5 400 450

Total 1000 1030

Bytes/Pkt Layers 2-5
Encode Decode

Data Set Two

Layer 6
Encode^Decode

% Layer
Encode

6
Decode

100 1000 1030 3050 6400 75.31 86.14
200 1000 1030 5750 12400 85.19 92.33
400 1000 1030 11150 24400 91.77 95.95
800 1000 1030 21950 48400 95.64 97.92

1600 1000 1030 43550 96400 97.76 98.94
3200 1000 1030 86750 192400 98.86 99.47
6400 1000 1030 173150 384400 99.43 99.73

12800 1000 1030 345950 768400 99.71 99.87

Figure 4 ASN.1 Processing Cost.

The ASN.1 PersonnelRecord type in Appendix E consists of IA5String string types and

one integer type. This leads to two important conclusions:

Since the cost for encoding/decoding a strings is low, the costs attributed to the presenta-

tion layer in figure 4 are mostly due to the encoding/decoding of the tag and the length.

5

Figure 4 already shows that the presentation layer occupies a significant portion of the

protocol stack even with a simple encoding/decoding to perform. The percentage of the

processing time that the presentation layer uses is significantly higher for complex types

such as integers and reals.

1.3 Initial Parallel Analysis

The initial parallel analysis is carried out by gathering statistics for the CASN.1[12] tool.

CASN.1 takes an ASN.1 specification as input and generates C code that is capable of encod-

ing/decoding PPDUs. In CASN.1, procedure calls are made to primitive encoding/decoding

routines that are shown in table 1. These calls take primitive types and transfer them back

and forth from machine-specific format to machine-independent transfer syntax TLV triples.

ASN.1 Type Encode Routine Decode Routine
Boolean Encode_bool() Decode_bool()
Integer Encode_intQ Decode_int()
Bit String Encode_bits() Decode_bits()
Octet String Encode_octs() Decode_octs()
Null Encode_null() Decode_null()
Object Identifier Encode_oid() Decode_oid()
Universal Time Encode_UTCTime() Decode_UTCTime()
Generalized Time Encode_GNLTime() Dec ode_GNLTime()
External Encode_ext() Decode_ext()

Table 1 CASN.1 Primitive encoding/decoding Routines

By using primitive encoding/decoding routines with constructor types such as sets and

sequences, complex data types can be described. A set of primitive data types is shown in

figure 3. The only difference between sets and sequences is that in a sequence the order

of the primitive data types is maintained and in sets it is not. The use of set and sequence

data types can be nested.

6

The primitive encoding/decoding calls constitute most of the time in CASN.1. An

estimate of the number of instructions used by these primitive calls was constructed by

compiling CASN.1's implementation of the primitives to assembler 8 . Table 2 presents the

total number of assembler instructions counted 9. The static analysis in table 2 shows that

significant gains are achieved if the primitives are executed in parallel. Significant speedup

is gained even if the cost incurred by the parallel algorithm is high. Table 3 shows how the

cost of a parallel algorithm is amortized over the number of processors. The table ignores

the requests placed on scarce resources such as a shared bus. It also assumes that the parallel

algorithm does not incur any communication overhead. These effects are apparent in the

final evaluation of the system and thus the linear speedup shown in table 3 is not achieved.

Primitives Encoding Instruction Count Decoding Instruction Count

Integer 583 479

Boolean 529 457

Bits 668 523

OCTET String 672 477
Null 515 432

Table 2 Primitive Routines Instruction Count.

Processors—* 1 1 2 3 m

Primitives1 Serial Parallel Parallel Parallel Parallel

1 100 200 200/2 200/3 200/m
2 200 400 400/2 400/3 400/m

n 100n 200n 200n/2 200n/3 200n/m

Table 3 Parallelism Speed Gain

The final analysis of the primitive encoding/decoding routines proves that even when

encoding/decoding is optimized for the simplest cases parallelism is applicable due to

8^The cc —S option is used on a SPARC 2.
Appendix C provides the pro and cons of using a static analysis.

9^The count includes the cost of encoding/decoding the tag and the length.

7

the number of instructions that need to be performed. Table 4 presents the number of

instructions 10 executed for encoding/decoding some of the primitive types assuming the

following simplifications:

• All the tags and lengths are in short form.

• The instruction counts for NULL, BOOLEAN, INTEGER and OCTET String, include

the instructions required to encode/decode the tag and length.

• The INTEGER instruction counts were generated for a one byte positive integer.

• The OCTET String instruction counts were generated for octets that start and end on a

word boundary. The total length of the octet must be less than 127 bytes.

Routine TS size in bytes Encode Instruction
Count

Decode Instruction
Count

NULL 2 12 13
BOOLEAN 3 18 19
INTEGER 3 20 16

OCTET String 2+n 27+1.5n 21+1.5n
TAG & LEN. 2 17 14

Table 4 Minimal Instructions for Encoding/Decoding

The instruction count presented in table 4 does not consider:

• The cost incurred by procedure calls.

• The cost incurred when allocating memory.

• The variable cost of handling non word-aligned OCTET Strings.

• The cost of handling complex primitive encodings/decodings.

• The cost of maintaining data dependencies within complex structure types.

to^The Motorola 88100110] RISC processor instruction set was used.

8

The above analysis shows that if the primitive encoding/decoding calls are executed fast

then a significant speedup can be achieved. In the best case, the calls return as soon as they

are made. This thesis takes the approach that when a primitive call occurs it is pushed onto

a FIFO queue for servicing, therefore the calls take little time. The problem of servicing

these calls quickly is solved using the architecture proposed in chapter 2.

Multiple processors, reading from the FIFO, are implemented to service the calls quickly.

This essentially increases the number of instructions executed in a cycle. If there are n

processors, then in one cycle, n instructions are executed while in a single processor system

only one instruction is executed. Figure 5 shows how time is saved by encoding in parallel

with n processors. The encoded values could be an individual's personnel information as

discussed in section 1.1.1. Note that there exists a time skew in the parallel encoding shown

in figure 5. A similar skew also exists in the decoding algorithm. The following is the

description of the skew.

When encoding, the skew times are associated with the following actions.

• T1 is the time delay between assigning each primitive call to the FIFO. The instructions

executed between the assignments account for the delay and are explained in chapter 3.

• T2 is the time delay from Ti to the time the primitive call receives service.

When decoding, the skew times are associated with the following actions.

• T1 is the time required to read the length of the present encode value so that the next

value's starting address is known.

• T2 is the delay between the end of T1 and when computation starts on the next value. The

delay is due to the communication required by the parallel algorithm. The communication

required by the decoding parallel algorithm is explained in chapter 4.

9

Encoded BooleanLenTag

Len Encoded IntegerTag

IP, • ►̂ Tag Encoded String
T2T1

1 Processor Encoding

r Tag Len Encoded Boolean Tag Len Encoded Integer Tag Len^Encoded String

n Processors Parallel Encoding

Time

Figure 5 Serial vs Parallel Encode Time

1.4 Previous Work with ASN.1

Some of the previous work carried out in relation to the presentation layer in the ISO

model includes the ISODE[23] project, the CASN.1[28] project, the a2c project[15] and

the VASN.1[3][24][25] project. Section 1.4.1 briefly discusses the ISODE, CASN.1 and

a2c single-processor software used for ASN.1 encoding/decoding. Section 1.4.2 describes

VASN.1, a multiprocessor ASN.1 encoder/decoder.

1.4.1 Single Processor ASN.1 Implementations

The ISODE, CASN.1 and a2c projects are single processor programs 11 that take an ASN.1

specification and create encoding/decoding routines to transfer to/from machine -independent

transfer syntax/machine -dependent format. The problem with using single-processor software

to perform this function is that the achievable transfer rates are unacceptably low for high

speed networks. A 8 Mbits/s transfer rate was achieved by running a2c on a MIPS R3260

(approximately 18 specmarks) with 48 megabytes of RAM.

11^The programs are Unix-based C programs.

1 0

Parser
Assembler

A

Inter-
mediate
Memory

Encoder
Decoder Host Main

Memory

System Bus Interface

1.4.2 Multi Processor ASN.1 Implementations

Figure 6 shows the parallel hardware that VASN.1 uses to achieve a higher throughput

compared to a single processor implementation.

Figure 6 VASN.1 Overview

The following factors limit the hardware used in the design and simulations:

• The design is based on a 16—bit microprocessor; hence, a complicated memory mapping

scheme is required to map to today's typical 32—bit architecture. This mapping could

be expensive.

• The hardware setup is non-expandable because a ROM holds the encoding/decoding

routines.

The above problems could be solved by adapting the algorithm to a 32—bit machine and

converting the ROM that holds the encoding/decoding routine to a downloadable RAM.

However, VASN.1 fails to eliminate some of the other problems as easily. Figure 7 is the

block diagram of the hardware that is used for the Parser/Assembler and the Encoder/Decoder

of figure 6. The following factors limit the hardware shown in figures 6 and 7:

• The Intermediate Memory block of figure 6 is an associative memory scheme that

depends on the algorithm VASN.1 uses. The scaling of the hardware is difficult due

11

to the associative memory and the Intermediate Memory block will not operate when

ASN.1 types have long tags.

• Figure 7 shows that two queues are used for servicing the interrupts generated by

slave processors. This method for handling interrupts produces unfair arbitration if the

sampling rate of the two queues is low[2].

• In figure 7, information exchanged between the slave processors is transmitted on Bus A

via the Processor Master. Information that the slave processor needs from the system

or local bus is retrieved on Bus B via the Interface Processor. The setup is restrictive

because it partitions the utilization of the two busses and leads to a high utilization of

one bus and a low utilization of the other. The total throughput of the multiple bus

system is not exploited.

In figure 7 the arbiter services the requests for the system bus and for the local bus made

by the four slave processors, hence the arbiter can become a bottleneck in the system.

This thesis proposes an implementation that avoids the problems of VASN.1 by choosing a

more flexible hardware/software configuration.

12

Local Bus

110- Queue Processor
Master

411— Queue

Bus A V

Bus B
V^•

Processor
Slave 2

41111—► Arbiter Interface
Processor

• v
Processor

Slave 1

V^•
Processor

Slave 4

• V
Processor
Slave 3

System Bus

Interrupt Lines

Figure 7 Parser/Assembler and Encoder/Decoder

The encoding/decoding algorithms represent the last hidden cost for VASN.1. The local

representation that VASN.1 uses for its encoding input and decoding output is a parallel data

structure that holds all the hierarchical information of the equivalent ASN.1 description. The

data structure has the following implications:

• An application would either use the parallel data structure if they want to encode/decode

data via VASN.1.

• Or an application can convert the parallel data structure into one that is more convenient.

Either case incurs an expensive programming cost because of the lack of flexibility and

extraneous information in the data structure. This processing cost is the cost of parallelizing

a serial data structure. VASN.1 attributes a zero cost for the processing. The algorithm

presented in this thesis provides the application with flexible data structure and does the

serial to parallel conversion at a low cost.

13

1.5 Thesis Objectives and Outline

This section presents a list of thesis objectives that were achieved and the organization of

the thesis. Prior to this thesis, VASN.1 was the only parallel system for encoding/decoding

ASN.1 types. Therefore many of the objectives listed below are solutions to problems that

VASN.1 exhibits.

1. Devise a parallel ASN.1 encoding/decoding algorithm that is capable of higher throughput

than present serial implementations.

2. Devise an algorithm that can take serial data and transform it into parallel data for

optimal encoding/decoding.

3. Devise an ASN.1 encoding/decoding algorithm that can be incorporated with applications

at a minimal cost.

4. Design a scalable parallel architecture that is capable of running the algorithm at high

speeds.

The following is the outline of this thesis. Chapter 2 presents the parallel architecture.

Chapters 3 and 4 describe the encoding and decoding algorithms in detail. Chapter 5 provides

the functional specification of the hardware. Chapter 6 presents the details of how the

simulations of the parallel architecture were carried out and chapter 7 presents the simulation

results. Chapters 8 and 9 provide the conclusions and suggest directions that future work

may follow.

14

2 Parallel Architecture

Figure 5 shows that in a single processor implementation the time required to encode the

data is the sum of the time required to encode each primitive type. In the parallel version the

primitive types encode nearly simultaneously thus saving time. The same principle applies to

the decoding routines. Section 2.1 provides a high level description of the parallel hardware

needed for the efficient execution of the parallel algorithm. Section 2.2 presents an outline

of the parallel encoding/decoding algorithm. Section 2.3 explains how the host system and

the parallel ASN.1 system share the same address space.

2.1 Hardware Architecture

Figure 8 depicts the parallel setup that allows primitive encoding/decoding routines to run

simultaneously. This section presents a high level description of the hardware and chapter 5

presents details of the bus arbitration scheme, the processors and the queue-processor. The

host or a processor can write primitive calls into the FIFO queue. The information in the

FIFO queue is stored in the Queue Memory.

15

Queue

Memory4111-1110.

Queue

Memory

Manager

• •

buffptr

Processor Processor Processor Processor
1 2 3 n

• •

To
External

Bus

Queue Processor

Figure 8 Parallel Hardware Setup

The Queue Memory Manager is responsible for accesses made to the Queue Memory

and for distributing primitive encoding/decoding calls to the processors for servicing. The

encoding/decoding algorithms in chapters 3 and 4 need multiple words of information to be

passed to the processors. If a processor requires n words of information, then n words can

be written into the Queue Memory and the Queue Memory Manager can distribute these

words to the processor. Another option is to write the address of the n words into the Queue

Memory and then the Queue Memory Manager can redistribute the address. A Queue-

Processor can be designed with either method but in our implementation the address method

is chosen. The Queue Memory Manager is also responsible for recognizing certain values

as commands. Constants that represent these commands can not be used as memory location

pointers. Table 5 lists these commands with a brief explanation of each. The complete

explanation of these commands occurs in chapters 3 and 4.

16

Command Explanation
wait for free Wait for all the processors to be free before assigning out the queue

element.
add control Increments the control counter.
end signal Decrements the control counter. If the control counter is zero execute a

wait for free then interrupt the host.

Table 5 Queue-Processor Commands.

The processing elements in our system each have a local instruction memory that stores

the primitive encoding/decoding routines that are to be executed. When a primitive type

is encoded, the resulting TS must be stored in memory, hence the processor needs some

mechanism to allocate memory. Memory is also needed when decoding a TS to a machine

representation. The buffptr in figure 8 is a register that holds a pointer to the starting memory

location of a free memory pool. The host is responsible for setting up the buffptr pointer

to point to the available memory. When the free memory pool is set up, it could consist

of contiguous or noncontiguous memory blocks. For the initial simulations, the contiguous

memory approach explained in section 2.1.1 is taken.

2.1.1 Contiguous Memory Management

Figure 9 shows what the memory space looks like at initialization. The buffptr holds

the starting address of the free memory space.

buffptr

Free Memory
Free Memory
Free Memory

Figure 9 Contiguous Memory: Initial

When a process needs x bytes of memory it preforms the following operations without

releasing the shared bus:

17

Reads buffptr.

Increments the read value by x.

Writes the new value to buffptr.

The memory, after a memory allocation, looks like figure 10.

buffptr

^x
Allocated Memory^Free Memory

Free Memory
Free Memory

Figure 10 Contiguous Memory: Allocated

2.2 Parallel Algorithm Outline

The following section provides a brief outline of the encoding/decoding algorithms.

Chapters 3 and 4 present the full details of the algorithms.

When encoding, the host processor parses its data structure and writes the primitives into

the FIFO queue. The queue-processor then distributes the primitives to the free processors.

Since the host processor knows the exact data that it wants to encode, it is responsible for

assigning all the primitive calls to the queue-processor. Simulations verify that the primitive

calls take most of the processing time therefore the time spent by the host on parsing the

data structure is minimal.

When decoding, the host processor writes the starting address of the TS to the FIFO

queue. The queue-processor then assigns the address to a free processor P1. P1 then reads

the tag and length of the first element in the TS and calculates the starting location of the

second element in the TS. P1 then writes the starting address of the second element in the

TS to the FIFO queue. The queue-processor then assigns the address to the free processor

P2. P2 performs the same process that P1 has performed. The process is repeated by other

processors until the complete TS is decoded.

18

•••
Queue Processor

Processor 1
Processor 2

•••
ProCessor n

•••

•
••

I/O
Address
Space

Total
Address
Space

Memory
Address
Space

2.3 Memory Mapping Scheme

The memory scheme that the host system and the ASN.1 parallel hardware use is depicted

in figure 11. The host system segments the memory space into I/O address space and memory

address space, which allows I/O registers to be mapped to I/O address spaces.

Figure 11 Memory Mapping Scheme

Figure 11 shows that the queue-processor and the processors of the parallel hardware are

mapped to some of the I/O addresses. Thus, when the host system wants to assign work to

the queue-processor it writes to the I/O mapped location of the queue-processor.

19

3 Encoding

In the encoding process, information is taken from the application layer, encoded and

passed to the session layer. The data structures received from the application layer and

provided to the session layer are presented in section 3.1. Once these data structures are

defined then the explanation of how an ASN.1 protocol specification is used to generate

encoding routines for an application is discussed in section 3.2. Section 3.3 then explains

the functionality of the encoding procedures that the applications use. Finally, section 3.4

provides the control flow of the parallel architecture and also concludes the running example

of the chapter.

3.1 Encoding Interface Data Structures

The application layer provides a C data structure of the value instance that it needs to

encode. The data structure is generated according to the ASN.1 specification and the mapping

rules provided in figure 12. A complete list of these mapping rules is found in Ref. [28].

When a value instance is encoded it is presented to the session layer in IDX structures. An

IDX structure is defined in figure 12. Figure 13 shows an ASN.1 specification and figure 14

shows an application's equivalent C type. When the value instance shown in figure 13 is

encoded, the resulting output is presented in figure 15. A hardware component can convert

the IDX structure shown in figure 15 into a contiguous TS. The hardware component can be

pipelined with the parallel encoder and will not effect the total throughput of the system.

20

ASN.1 Type C Type
INTEGER int
Character String OCTS
SEQUENCE {} struct {
SET 0 struct 0
SEQUENCE OF { } LIST
SET OF { } LIST

typedef struct OCTS {
struct OCTS^*next; /* pointer to next OCTS node
int^len;^/* # of bytes in OCTS string */
char^*data;^/* pointer to the OCTS string

) OCTS;

typedef struct LIST_ITEM {
struct LIST_ITEM^*next;^/* next list item */
char^*item;^/* list item */
} LIST_ITEM;

typedef struct LIST {
LIST_ITEM^*top; /* first item in the list */
LIST_ITEM^*last;^/* last item in the list */

}^LIST;^.

/* encoded output goes into IDX structures */
typedef struct IDX {
struct IDX^*next;^/* next idx */
int^*len;^/* # of bytes in IDX data */
char^*data;^/* information of the IDX */

)^IDX;

*/

*/

Figure 12 Partial List of Mapping Rules

21

recordType^[APPLICATION 1] IMPLICIT SEQUENCE {
scores SEQUENCE OF REAL,
name^[1] IA5String,
age^[2] INTEGER

}

value instance = {{70.12,80.34,90.56},"John",50}

Figure 13 ASN.1 Example

^#define APPTAG^0x61
#define NAMETAG Oxal
#define AGETAG Oxa2
typedef struct recordType {
LIST^scores;
OCTS^name;
int^age;
}recordType;

Figure 14 C Type Equivalent of Figure 13

22

len^tag len
data
next Al

tag len
►

seq of

tag len

tag len

re

tag len
ail

len
data
next

len
data
next

len
data
next

len
data
next

len
data
next

len
data
next

len
data
next

80.34

tag len
I Tohn

tag len

tag len
I I^90.56

real

tag len
• ;-,E1===I

len
data ^
next

NULL

Figure 15 Transfer Syntax of Figure 13 in IDX Structures

3.2 Encoder Generation from ASN.1 Specification

To generate encoded values, like those shown in figure 15, all the values that need to be

encoded are written to the parallel ASN.1 encoder/decoder hardware. A program that reads

in the ASN.1 specification and generates the encoding routines that the application uses

is necessary. CASN.1 can be modified to generate these encoding routines. The encoding

routines for the parallel algorithm can be identical to the code generated by the present version

of CASN.1. An example of the encoding routines required for the specification of figure 13

is shown in figure 16. The actual function of the QEncode () is to write the encode routine

23

to the queue-processor. The EncodeStructBegin 0 and EncodeStructEnd () routines function

are optimized for parallelism and the detailed explanation of them is provided in section 3.3.

EncodeData (pcode)
pcodeType *pcode;

{

EncodeStructBegin (APPLICATION1TAG);

EncodeSeq0f1 (&pcode->scores, SEQOFTAG)

EncodeStructBegin (NAMETAG);
QEncode (OCT, &pcode->name, tag);
EncodeStructEnd ();

EncodeStructBegin (AGETAG);
QEncode (INT, &pcode->age, tag);
EncodeStructEnd ();

EncodeStructEnd ();
}

EncodeSeq0f1 (list, tag)
LIST *list; tagType tag;

{

LIST_ITEM *item;
EncodeStructBegin (tag);
for (item = list->top; item; item^item->next)
QEncode (REAL, item->item, REALTAG);

EncodeStructEnd ();

Figure 16 Generated Encoding Routines for Figure 13

3.3 Encoders Functions and Data Structures

The EncodeStructBegin (), EncodeStructEnd () and the QEncode () procedures are

explained in sections 3.3.1-3.3.3. The cost for each of the calls is estimated and compared

24

to the equivalent call in CASN.1. The determination of the cost of the calls is shown in

Appendix B.

The information shown in figure 17 is assigned to the processing element when a primitive

call is made. Within the data structure in figure 17 the following are defined:

• rtag holds the tag of the value to be encoded and a value that specifies the encoding

routine to be used.

• data holds a pointer to the data to be encoded.

• idxptr holds a pointer to the idx structure that is updated with the encoded value.

• updateptr holds a pointer to an integer that is incremented by the total number of TS

bytes generated by the primitive encoding routine. The integer is used for calculating

the cumulative length in structures.

typedef struct egelemType {
int^rtag; /* tag & encode routine */
char^*data; /* data to be encoded */
idxType *idxptr;./* encoded data location */
int^*updateptr; /* cumulative length */
} egelemType;

Figure 17 Encode Queue Element.

3.3.1 EncodeStructBegin 0
When an EncodeStructBegin call is made the length of the structure cannot be encoded

because the lengths of the elements in the structure are unknown. There exists a data

dependency between the elements of the structure and the length of the structure; hence

the length of the structure can only be calculated after all the elements in the structure

are encoded. This data dependency must be maintained somehow and must be generally

expandable for SEQUENCES, SET, SET OF and SEQUENCE OF. A tree that maintains the

data dependency is constructed by using the data structures presented in figure 18.

25

typedef struct nodeType {/* called structure node */
struct nodeType *parent;
struct nodeType *next;
int^lent;
idxType^*idx; /* idxType same as IDX */
tagType^*tag;
} nodeType;

typedef struct levelType {/* called level node */
struct levelType *plus;
struct levelType *minus;
nodeType^*head;
nodeType^*tail;

}

Figure 18 Encoding Cumulative Length Data Structures

In the remainder of this thesis a node of type nodeType is called a structure node and

node of levelType is called a level node. Figure 19 shows the data dependency structure

constructed for the value instance given in figure 13. This data dependency structure is

generated according to the following rules.

Initially the tree consists of:

a. one level node known as the root level

b. one structure node at the root level

c. a present level pointer pointing to the root level

d. a deepest level pointer pointing to the root level

When an EncodeStructBegin call is made and the next level exists:

a. a new structure node is added to the tail of the next level

b. the parent field of the new structure node points to the present levels last node

c. the present level pointer now points to the next level

d. the tag of the EncodeStructBegin call is saved in the new structure node

26

level+^level+^level+
level
^

level-^level-
head ^head

^
head

tail^tail^tail

tag
idx
len

parent
next

tag
idx
len

parent
next

tag
idx
len

parent
next

V
tag
idx
len

parent
next
V
tag
idx
len

parent
next

When an EncodeStructBegin call is made and the next level is null:

a. a level node along with an accompanying structure node is added after the present level

b. the parent field of the new structure node points to the present levels last node

c. the present level pointer now points to the next level

d. the deepest level pointer now points to the next level

e. the tag of the EncodeStructBegin call is saved in the new structure node

The maximum cost for calling EncodeStructBegin is 35 while the equivalent routine

in CASN.1 costs a minimum of 22. The CASN.1 cost is lenient because it assigns the

EncodeTag routine within the EncodeStructBegin routine a zero cost.

Figure 19 Data Dependency Graph of Figure 13

27

3.3.2 EncodeStructEnd 0

When an EncodeStructEnd call occurs the elements within a structure have been assigned

to the queue-processor. The length of the structure becomes known when all the elements

within the structure are encoded. The tag and length of a structure can be encoded at the

end of the EncodeStructEnd call or postponed until a later time. The postponed option is

used here. The reason for this choice is explained by using the ASN.1 specification shown

in figure 20.

postponedType ::= SEQUENCE {
SEQUENCE {

reall^REAL,
real2^REAL

} ,
SEQUENCE {

rea13^REAL,
real4 REAL

}

}

Figure 20 Postponed ASN.1 Type

If there are four processors available to encode a value instance of the ASN.1 specification

in figure 20 and the structure lengths are calculated immediately after the EnodeStructEnd

call, then only two of the four processors are utilized. Once the values of reall and real2 are

assigned to the processors the EncodeStructEnd routine is executed. For the correct length

of the sequence to be known one must wait until reall and real2 are encoded and the length

of the structure is updated by them. The same thing happens for real3 and real4. Thus

at any time only two of the four processors are utilized. If the length calculations of the

structures are postponed until the end of all the primitive encodings, then reall—real4 can

be encoded simultaneously on four processors. Once all the reals are encoded then the two

28

sequences that make up the postponedType can encode their tag and length. Finally the tag

and length of the postponed-Type is encoded.

EncodeStructEnd moves the level pointer to the previous level. If the previous level

is the root level then all the structures, represented by the structure nodes, in the data

dependency graph can be assigned to the queue-processor. The structures below the deepest

level pointer are assigned to the queue-processor first, next the structures of the previous level

are assigned to the queue-processor and this continues until the root level is reached. After

all the structures of a level are assigned to the queue-processor, the wait for free command

is queued. The command tells the queue-processor to wait for all the processors to become

free before assigning the next element in the queue. This is necessary because the data in

the previous level is dependent on the lengths calculated by the present level.

The cost for calling EncodeStructEnd is 6 for the non-root level and is variable for the root

level according to cost = 25* nodes +7 * levels. In the worst case every EncodeStructBegin

call creates a structure node and a level node. The cost for assigning this data dependency

graph to the queue-processor is cost = 32* EncodeStructEnd. Hence the maximum cost for

the EncodeStructEnd is proportional to the number of times the EncodeStructEnd is called

and is cost = 38 * EncodeStructEnd. The simplest case of CASN. 1 's equivalent call costs

is cost = 40 * EncodeStructEnd.

3.3.3 QEncode ()

The QEncode call is equivalent in function to the primitive encoding routines in CASN.1.

This is where the parallel algorithm does significantly better than CASN.1. The total cost

of writing this information into the queue is 16 whereas in CASN.1 the cost for a primitive

encoding depends on the primitive.

There are three parameters passed to the QEncode (), namely, a value specifying the

encoding routine that should be used, the tag for the transfer syntax and the pointer to the

data structure to be encoded. This information is written to the queue—processor along with

an allocated idx pointer and a cumulative length pointer. The cumulative length is extracted

29

from the data dependency structure and is the length field of the node that is at the tail of

the present level node.

3.4 Encoding Flow Trace

The queue information for the value instance of the ASN.1 specification given in figure

13 is shown in figure 21. A partial parallel trace of the program is shown in figure 22. In

figure 21 the first element of the queue is at the bottom of the figure. The first five elements

in the queue are for encoding the 3 REALS, the IA5String and the INTEGER. All the non-

bold boxed values in the diagram point to queue element structures, one of which is shown

to the right in figure 21. The sixth element, wait for free, is a signal to the queue-processor

not to assign another element until all the processors are free (i.e. until all the previously

assigned elements have been encoded). The next elements in the queue are the sequence of

element, the nametag element, the agetag element and then the wait for free signal. The last

encodable element in the queue is the APPLICATION 1 element which is followed by the

end signal that instructs the queue-processor to interrupt the host when all the processors are

free. Sections 3.4.1-3.4.3 explain the actions that the short statements in figure 22 perform.

30

end signal
^

I
pointer to APP 1

wait for free ^I
pointer to agetag

pointer to nametag

pointer to seq of

wait for tree

pointer to INT

pointer to IA5

pointer to real 3

pointer to real 2

pointer to real 1

queue element contents

cumulative length
tag and routine
data pointer
idx pointer

Figure 21 Queue with the Encode Example Calls

3.4.1 Host Responsibilities

When the host wants to encode a TS it has the option of either creating the complete

queue information and then assigning the work to the queue-processor or assigning the work

to the queue-processor as it parses its data structure. In either case, the host puts all the

primitive encoding routines into the FIFO. The host then assigns, to the queue-processor, all

the structures from the deepest level of the data dependency graph followed by the wait for

free signal. It then assigns all the structures from the previous level followed by the wait

for free signal. This process continues until the root level is reached. At the root level the

host writes an end signal into the FIFO to signify that the encoding list is complete. When

31

O

■-■

al)
C
"0
0
C

C
-0
0
C

44

O

.

• • • •

► • • •

.o 1:7:

1 9
a.)-o

- 8 -=
4.) t4.-1,

- a c a o,
C

=^0,)
Fti•^.8 •
3 ¢ 3 ¢ 3

r.n
Ca)
CY

N

9 9 9 -Q^0^0 "71-
4.) II...'0 0 b M "0 M

8^8 - 8 1==•• 8(-1^C t".4Q

•^

a.) O U G. t.>
•••••

•

f4i P.' ,^• • •
fa.

• C 4 C N C
tv) .̂ 44^01)^0.0 7.1

•R '7, - 8 - 7,

v•-•^s
"S^

•

2
a) a) 4.>^0 C'0 '0 '0 0 "0 ,■-■

• 8 8 8 8 8 .•A' 8=000
O 0 a.) a) o

• 4.) (1) 4.)

-c • -c -c
3 3 3 3 3 3 3

•• •

°^_sea.) A L ■-■
2 o ."S °

0

•• •

72)
2

rA

04
cn 2
"0 a.)
r.4

^•-• • • •

c

▪

.

32

the queue-processor encounters this end signal and all the processors are free it sends an

interrupt to the host to signal the completion of the encoding.

The following describes the actions performed in the flow diagram of figure 22.

• Write (buffptr) write the starting address of the memory pool that is available for the

encoding routines into buffptr. This is the first action that the host performs and is not

shown on the diagram.

• Write (encode call i) write into the queue-processor any of the possible primitive encode

calls.

• Write (wait for free) write to the queue-processor a synchronization symbol that signals

that all the processors must have a free status before the other elements in the queue

are assigned to the processors.

• Write (End_Signal) write to the queue-processor a symbol that signals the end of a

encoding session.

• Accept Finished accept that the encoding is finished. One possible action is the release

of the unused buffer space that is pointed to by buffptr.

3.4.2 Queue-Processor

During encoding, the queue-processor reads elements inserted into the queue by the host

and assigns the work to one of the n processors. Whenever the queue-processor encounters

the wait for free signal it waits for all the processors to become free. When the queue-

processor encounters an end signal it stops assigning work. After the processors have

finished their encoding the queue-processor signals to the host that the encoding is complete.

The following describes the algorithm that the queue-processor performs.

1. Read an element from the queue. If the queue is empty, then block.

2. If the element is a wait for free then:

Waitlist (pl,p2,...,pn) block until all the encoding processors have finished before

assigning the next work.

33

else if the element is a End_Signal then.

Waitlist (pl,p2,...,pn) block until all the encoding processors have finished before

interrupting the host.

Interrupt Host signal the host of the encoding completion and wait for the ac-

knowledge.

else the element is a encode call i

Assign (px, encode call i) assign a processor x to encode a specific call. If all the

processors are busy, block and wait for one to become free.

3 Start over at step 1.

3.4.3 Processors

A processor blocks until it is assigned a primitive encode call by the queue-subsystem.

The processor then encodes the primitive call and upon completion informs the queue-

subsystem that it is free. The following explains the actions that the processor executes:

1. Start Encoding receives work from the queue processor and starts encoding the primitive.

2. End Encoding finishes the encoding and signals the queue-processor of its free avail-

ability status.

3. WaitAssign (encode call i) waits for the queue-processor to assign a primitive call.

WaitAssign is not drawn on the diagram for clarity but would occur in the space before

the Start Encoding and after the End Encoding.

34

4 Decoding

The decoding chapter follows the same format as the encoding chapter. Section 4.1

discusses the data structure requirements of the application layer and session layer. Section

4.2 explains how the decoding is achieved for ASN.1 specifications. Section 4.3 presents

the requirements of the software that is needed to generate the decoder. Finally section 4.4

presents a flow trace of the parallel algorithm.

4.1 Decoding Interface Data Structures

Prior to decoding, the session layer provides a continuous memory block which holds

the TS to be decoded. When the decoding is complete the result is made available to the

application layer in a data structure created by using the mapping rules given in table 12.

4.2 Decoder Generation from ASN.1 Specification

For an optimal parallel decoding strategy a type tree needs to be generated for the ASN.1

specification. Generation of such a type tree is outlined in [13][1611231 The type tree is

generated off-line and loaded when an instance of a transfer syntax needs to be decoded.

To decode a received TS the application needs to write to the parallel ASN.1 decoder the

starting address of the TS, the finishing address of the TS, the address of the type tree to be

used for decoding this TS instance and the memory location to store the decoded result or

a pointer to the decoded result. The data structure used for communicating this information

from the host to the parallel decoder is shown in figure 23. The contents and usage of the

type tree are discussed in section 4.3.

35

typedef struct qdType {
nodeType *tt; /* pointer to a node of the type tree */
char^*tsptr; /* pointer to the start of the TS */
char^*update; /* mem. location to be updated or used * /

char^*tsend; /* pointer to the end of the TS */

Figure 23 Decoding Queue-Element.

4.3 Decoders Functions and Data Structures

For a functional decoder to operate it is necessary to construct a type tree and the

traversing routine for this type tree. The rules for generating the type tree are presented

in this section and the traversing routines are explained in section 4.4. The type tree is

constructed of nodes that have the data structure as shown in figure 24.

typedef struct nodeType {
int^tag;
int^meminst;
struct nodeType *option;
struct nodeType *listptr;
struct nodeType *next;
} nodeType;

Figure 24 Node Data Structure of Type Tree

The tag field holds the tag that is to be found in the transfer syntax and a value which

indicates the decoding routine to be used. The meminst field is discussed in the next

paragraph. The option field is used for elements in a SET. The listptr field is used for

SEQUENCE/SET and OF types. The next field is used for pointing to the next element

expected.

The memisnt field is made up of three sub-fields; the allocation field, offset field and a

bit marker field. The allocation field specifies the amount of memory to allocate at this node.

The offset field specifies at which offset within a memory location the result of the decode

is stored. The bit marker field contains an UPDATE bit, an OF bit and a CONSTRUCTOR

36

bit. The UPDATE bit specifies whether the present node needs to allocate memory for the

decoded output or update a memory pointer passed to it. The OF bit is set whenever the

present node corresponds to a SEQUENCE OF or SET OF. The CONSTRUCTOR bit should

be set whenever the present node corresponds to a SEQUENCE or SET tag.

The rules stated in sections 4.3.1 to 4.3.3 are used when generating nodes of the type

tree. Two example type trees are shown in figure 25. Notice that the set type tree in this

figure occupies more memory than the sequence type tree. The memory requirements of

the set type tree can be reduced by adding a level of indirection; but by doing so, the total

number of memory references increase which slows down the overall speed of the system.

This essentially becomes a speed/memory trade off.

4.3.1 Node for Primitive Types

The tag field holds the. tag of the primitive and a value which indicates the decoding

routine to be used. The option pointer is set only if the primitive is an element of a SET.

The listptr is always NULL and the next node pointer points to the next node expected.

Within the meminst field the allocate sub-field is zero. The offset sub-field holds the

offset location used to store the result. The UPDATE, CONSTRUCTOR and OF bit fields

are not set.

4.3.2 Node for SEQUENCE and SET Types

The tag field holds the tag of the SEQUENCE/SET and a value which indicates the

decoding routine to be used. The option pointer is non NULL if the SEQUENCE/SET is

an element within a SET. The listptr pointer points to the first element expected within

the SEQUENCE/SET. The next pointer points to the first element expected after the SE-

QUENCE/SET.

Within the meminst field the allocate sub-field is zero. The offset sub-field is zero. The

CONSTRUCTOR bit is set. The OF bit is not set. The UPDATE bit is set only on the

root node of the tree.

37

4.3.3 Node for SEQUENCE OF and SET OF Types

The tag field holds the tag of the SEQUENCE OF/SET OF and a value which indicates

the decoding routine to be used. The option pointer is non NULL when the SEQUENCE

OF/SET OF is an element of a SET. The list pointer, points to the first element expected

within the SEQUENCE OF/SET OF. The next pointer points to the first element expected

after the SEQUENCE OF/SET OF.

Within the meminst field the allocate sub-field is set to the size of the SEQUENCE

OF/SET OF structure. The offset sub-field holds the offset location of a LIST structure. The

CONSTRUCTOR bit is not set. The OF bit is set. The UPDATE bit is set only on the

root node of the tree.

38

codel ::= SEQUENCE {
score REAL,
name IA5String,
age INTEGER

code I Type Tree

Seq Tag
meminst
option
listptr --sw Real Tag

meminstnext

code2 ::= SET {
score REAL,
name IA5String,
age INTEGER

code2 Type Tree

Seq Tag
meminst
option
listptr
next

option
listptr
next

IA5 Tag
meminst
option
listptr
next

TNT Tag
meminst
option
listptr
next

meminst
option
listptr

meminst
option
listptr

meminst
option
listptr

meminst
option
listptr

option
listptr

meminst
option

meminst
option
listptr

meminst meminstmeminstmeminst
option optionoption

listptr
option
listptr listptr

option
listptr

Figure 25 Two Decode Type Trees Comparing SET and SEQUENCE

4.4 Decoding Flow Trace

To describe flow control of the decoding algorithm we use the transfer syntax in figure

26. This transfer syntax is the value instance of the ASN.1 specification given in figure

39

Of Tag
meminst
option
listptr
next

Seq Tag
meminst
option
listptr
next

listptr
next

2

listptr
next

INT Tag
meminst
option
listptr
next

Real Tag
meminst
option
listptr
next

IA5 Tag
meminst
option
listptr
next

•

•

13 of chapter 3. The decoding type tree generated for this ASN.1 specification is shown

in figure 27.

tag len tag len tag len tag len tag len

tag len tag len tag len tag len

70.12 I-^I 80.34 90.56 John f 150
Al^seq of real^real^real

^
IA5
^

2
^

INT

Figure 26 Transfer Syntax of Figure 13

Figure 27 Decode Type Tree of Figure 13

For the decoding to start a decoding queue-element must be written into the queue by the

host. The queue—processor then assigns this element to a free processor and continues to

do so whenever an element is available in the queue. The queue—processor stops assigning

40

values to decode when it sees a special end marker, at which time it signals the host that

decoding has finished. Figure 29 shows the graphical representation of the control flow that

occurs when the TS of figure 26 is decoded. Sections 4.4.1 to 4.4.3 explain the actions of the

short statements in figure 29. For clarity purposes the control flow figure does not include

all the signals that are transmitted in the system.

4.4.1 Host Responsibilities

When a host wants to decode a TS it sets up the free buffer pointer and then writes a de-

coding queue-element into the queue-processor. The host then waits for the queue—processor

to generate an interrupt upon completion of the decoding.

The following describes the actions that are performed on the flow diagram of figure 29.

• Setup (buffptr) set up a pointer to the available free memory that the processor can use.

• Write (decode call 1) write the first decode queue element into the queue-processor.

• Acknowledge Interrupt acknowledge the interrupt of the queue-processor.

4.4.2 Queue-Processor

The algorithm that the queue-processor performs is shown in figure 28. The queue-

processor reads elements inserted into the queue and assigns the non-command element to

one of the free processors. The functions of the command elements such as the wait for

free, add control and end signal are discussed next. When the queue-processor sees a

wait for free signal it waits for all the processors to become free before it assigns any

other work. When the queue-processor sees an add control signal it increments the control

counter that is initially zero: When the queue-processor sees an end signal it decrements the

control counter. If the control counter is zero when the queue-processor sees an end signal

it interrupts the host and waits for an acknowledgment. Note that the functions that the

queue-processor performs for encoding are a subset of the functions described here; hence,

the same queue-processor is used for both encoding and decoding.

41

est

•

I.)
0

42

Figure 28 Algorithm of Queue-Processor

43

4.4.3 Processors

The decoding algorithm used by the processors is depicted in figure 30. A processor

signals the queue-processor that it is free and then it waits for an address of a decode queue

element to be written to its I/O mapped location. Henceforth whenever a processor assigns

work this means it constructs a queue element and then writes a pointer to this information

into the queue. Also the queue element pointer that the processor receives is referred to as

rec and the pointer that the processor assigns to the queue processor is referred to as q.

The rest of this section explains all the actions shown in figure 30.

44

-calc next addr
-queue add control
-queue next

-caic sub-struct addr
-queue sub-struct

-caic sub-structs addrs
-queue all sub-structs
with add controls

-find correct node
-calc next addr
-queue next addr

Figure 30 Decoding Algorithm for Processors

tsptr = tsend If tsptr = tsend then the processor is at the end of the decoding segment and

has to signal the queue-processor that one control trace of the algorithm has ended.

45

if (rec->tsptr .= rec->tsend)
write end signal to queue-processor;

UPDATE bit set The UPDATE bit is set only for the first node in the type tree. This signals

that the amount of memory specified in the allocation sub-field of meminst (figure 24) should

be allocated and that the queue element update pointer should be updated with the address of

the allocated memory. The following C like pseudo code segment summarizes these actions:
q->tt = rec->tt->next;
q->tsptr = rec->tsptr +

length in length field of (rec->tsptr);
q->update = allocate memory;
q->tsend = rec->tsend;
*q->update = allocate memory;

find correct node When the processor is not at the end of a control trace it checks to see it

is at the correct type tree node. If the nodes option pointer is not NULL, it then decodes the

TS tag and determines if the tag at the present node matches this TS tag. If the TS tag and

tag at the node are not the same it follows the option pointer to the optional node and then

compares the TS tag to the tag at that node. The processor continues following the option

pointer until it finds a matching tag. If the processor does not find a matching tag a signal

is generated signifying that there is an error in the incoming transfer syntax.

Note that the elements within a SEQUENCE always have a NULL option pointer but

for elements within a SET the option pointer can be non NULL. This means that the tag of

an element in a SEQUENCE need not be decoded before the next element is assigned to

the queue-processor; but for elements within a SET, the tag has to be decoded and matched

before the next element is assigned to the queue-processor. This will make SEQUENCE

decoding faster than SET decoding. The following C like pseudo code segment summarizes

these actions:

46

tt = rec->tt;
while (tt != NULL) {
if (tt->tag == tag of (rec->tsptr) break;
if (tt->option == NULL) error; else tt = tt - >option;

if (tt->option == NULL) error;

CONSTRUCTOR bit set If the CONSTRUCTOR bit at the present node of type tree

is set then the find correct node and UPDATE bit set operations are performed. The

CONSTRUCTOR bit set means that we are at the start of a SEQUENCE/SET. At this point

the processor calculates the end of the SEQUENCE/SET which is the starting location of the

next element expected. It then informs the queue that one more control thread is being added

and assigns, to the queue-processor, the element expected after this sequence. The processor

then calculates the starting location of the first element of this sequence and assigns this

element to the queue-processor. Finally if the option pointer is NULL the processor checks

to see if the TS tag matches the present nodes tag. The following C like pseudo code segment

summarizes these actions. Note that tt value used below is defined in find correct node.
ql->tt^tt->next;
ql->tsptr^rec->tsptr +

size of tag and len of (rec->tsptr) +
length in length field of (rec->tsptr);

ql->update^rec->update;
ql->tsend^rec->tsend;
write ql to queue-processor;
write add control to queue-processor;
q2->tt^tt->listptr;
q2->tsptr^rec->tsptr +

size of tag and len of (rec->tsptr);
q2->update = rec->update;
q2->tsend^rec->tsptr +

size of tag and len of (rec->tsptr) +
length in length field of (rec - >tsptr);

write q2 to queue-processor;
match tt->tag and tag of rec->tsptr;

47

OF bit set If the OF bit of the present node of the type tree is set then the find correct

node and UPDATE bit set operations are performed. The OF bit set means that we are

at the start of a SEQUENCE OF/SET OF. At this point the processor calculates the end

of the SEQUENCE OF/SET OF which is the starting location of the next element. I then

assigns this element to the queue-processor. Next the processor scans through the elements

of the SEQUENCE OF/SET OF performing only length calculations, to arrive at the next

SEQUENCE OF/SET OF element. At each SEQUENCE OF/SET OF element the processor

assigns the element to the queue-processor and informs the queue-processor to add one tread.

Finally, if the option pointer for this OF structure is NULL the processor checks to see if

the TS tag matches the tag of the present node. The following C like pseudo code segment

summarizes these actions. Note that tt value used below is defined in find correct node.
q->tt^tt->next;
q->tsptr = rec->tsptr +

size of tag and len of (rec->tsptr) +
length in length field of (rec->tsptr);

q->update = rec->update;
q->tsend = rec->tsptr +

size of tag and len of (rec->tsptr);
write q to queue-processor;
endptr = rec->tsptr +

size of tag and len of (rec->tsptr) +
length in length field of (rec->tsptr);

q->tt = tt->listptr;
q->tsptr = rec->tsptr +

size of tag and len of (rec->tsptr);
while (endptr != q->tsptr) {
q->tsend = q->tsptr + length in length field of (q->tsptr);
q->update = allocate memory give in sub-file of tt->meminst;
write q to queue-processor;
q->tsptr = q->tsend;

match tt->tag and tag of rec->tsptr;

primitive If neither the OF bit nor the CONSTRUCTOR bit is set then this is a primitive

decode element and the first action is to assign out the next element to be decoded. The

48

primitive element is then decoded and stored at the update pointer location adjusted with

the offset quantity in meminst. The following C like pseudo code segment summarizes these

actions. Note that tt value used below gets defined in find correct node.
q->tt = tt->next;
q->tsptr = rec->tsptr +

size of tag and len of (rec->tsptr) +
length in length field of (rec->tsptr);

q->update = rec->update;
q->tsend = rec->tsend;
write q to queue-processor;
decode the primitive;

49

Arbiter
A

Daisy Chain
^ g3ing2in g4inglin PE2 PE3PE1 • • •

V

gnin PEn

gnin PEn• • •glin g2in g3inPE 1 PE2 g4inPE3

5 Hardware Models

The algorithms suggested in the previous sections were simulated on the parallel hardware

presented in figure 8. The elements in this hardware are specified at the behavior level using

VHDL[1][9]. Sections 5.1-5.3 describe the operations of each of the components.

5.1 Bus Arbitration Method

A rotating daisy chain (RDC) is chosen for the bus arbitration method. A daisy chain

and a rotating daisy chain bus arbitration setup are shown in figure 31. A brief outline of

both the arbitration schemes is provided in the next paragraph. A RDC is chosen for the

bus arbitration method because this is a distributed method that is scales easily. The RDC

method also offers the best bus arbitration scheme for the amount of hardware needed for

implementation[2]. Ref.[21] presents various implementation methods for the RDC along

with their relative advantages.

bus request line

Rotating Daisy Chain

bus request line

Figure 31 Daisy Chain and Rotating Daisy Chain

In the daisy chain bus .arbitration scheme shown in figure 31 any of the n processing

elements (PE) can request the bus by raising the bus request line. The arbiter will then

50

raise the glin grant signal. The glin signal allows PE1 access to the bus; but if PE1 does

not require the bus, it will propagate the glin signal to g2in. The grant signal can propagate

through to any of the n PEs that request the bus. This bus arbitration scheme is unfair as

PEI has the highest priority because whenever it requests the bus it will always get the glin

grant signal. In this system, PEn has the lowest priority because when PEn requests the

bus it will get the grant if none of the previous (n-1) PEs require the bus. At a processor

PEi the processors to the right of PEi have lower priorities and processors to the left of PEi

have higher priorities.

The RDC initially starts with one PE responsible for generating a bus grant signal. This

PE has the lowest priority while the first PE to the right has highest priority. The PE that

generates the grant signal is the arbiter. When a PE requests the bus and receives the bus

grant signal this PE then assumes lowest priority and becomes responsible for generating the

bus grant signal for the next arbitration. This moving of the bus granting capabilities from

one PE to another maintains an even priority system[2]. Another advantage of using the

RDC method is the relative ease with which other systems can connect into the RDC. When

another system wants to share the bus with the elements on the bus, it simply includes itself

in the RDC. The overhead associated with including a arbiter in every PE is low. Figure 32

shows that the hardware requirements are minimal.

Figure 32 shows a three PE RDC implementation. Each processing element has a one

bit bus grant register and a one bit bus request register. The operation of this three PE RDC

is explained by using the timing diagram of figure 33 on page 54. The signals /B_RQ<1-3>

are bus request signals generated by the PEs. The /req<1-3> are the clocked /B_RQ<1-3>

signals and /t<1-3> are the grant signals that the PEs use. When the system initializes,

only one bus grant register is set and this is signal in the timing diagram. Now, itl is

responsible for generating the bus grant upon initialization. When one PE receives a bus

grant from another, this sets its bus grant register and now it is responsible for generating

the next bus grant signal. The next action in the timing diagram occurs when PE 3 requests

51

for the bus by raising the /B_RQ3 line which in turn gets clocked and raises /req3. Finally

/t3 rises signaling that PE 3 now owns the bus. PE 3 is now responsible for generating the

next bus grant and so PE 1 is released of this duty. The timing diagram of figure 33 contains

some interesting scenario such as two PEs requesting the bus at the same time. The reader

is free to explore the timing diagram and no further explanation is provided.

52

g
di

g -
&

ggggg
.;a1.1a

IM---> ME
Mil

1
ratLtai

.

.

...I

gi ,
i

NI^NI

gkflEg.nhd .,'^mm e.-->
NMI_t WM

.^.
Ili„

g t

. §1t1'41
•

F'

.._ —

ggkE,g

i._._> El
111,.._,..-1

k
•,^.

5 _._._c>
-^a 1^- III i

L
lb
I

Figure 32 Partial Diagram of RDC Arbitration

53

Figure 33 RDC Timing Diagram

54

5.2 Processor

The proposed RISC processor shown in figure 34 is used for the processing elements (PE)

in the parallel architecture. The architecture is similar to the Motorola MC88100[10] and

the Sun SPARC[18] architecture but the instruction set is optimized for encoding/decoding.

The processing element is a dual bus 32—bit processor with a 32—bit fixed length instruction

set. A 32—bit processor is chosen because memory management and mapping is compatible

with contemporary 32—bit address space systems. A 32—bit fixed length instruction format is

chosen to make the instruction decoder simpler and to allow an instruction to be fetched per

memory read. This processor can exploit super-scalar parallelism because the integer unit,

the data unit and the instruction unit are designed to operate simultaneously.

The core processor in figure 34 has a smaller instruction set than the Motorola MC88100

or the Sun SPARC and it has some special instructions that are not available on either. These

special instructions are used to implement atomic memory read/write cycles and to access

local memory. These special instructions make this processor more suited for running the

parallel algorithm described above than either the Motorola MC88100 or the Sun SPARC.

55

PROCESSING ELEMENT

CORE PROCESSOR

Integer Register
Unit File

t t
Internal Buses

t t
Data Instruction
Unit Unit

A •

• lo• 1! •Local
Memory

Instruction
Memory

RDC
Unit

7^i
Shared Bus

Figure 34 Processor Block Diagram

Sections 5.2.1 to 5.2.4 describe the main units in the block diagram and discuss the

instruction set of the PE which is presented in table 7. Table 6 shows all input/output signals

of the PE and provides a brief explanation of each.

5.2.1 Integer Unit

The integer unit executes the first 7 instructions in table 7. The unit executes all the

arithmetic and logical operations in one clock cycle. The integer unit works only in a register

to register mode. There are no complex instructions for modifying memory locations.

56

5.2.2 Data Unit

Loading from and storing to memory is performed by this unit. Depending on the

load/store operation that is being executed, the data unit sets an internal line that activates

the local memory or the RDC element of section 5.1. A typical memory read and write

timing diagram is given in Appendix D.

5.2.3 Instruction Unit

The instruction unit does memory reads which follow the read timing diagram depicted

in Appendix D. The instruction unit implements a two stage pipeline with delayed branching.

This allows an instruction to be executed in the slot immediately after a branch operation

so that the cost associated with branching can be reduced by compiler writers and assembly

language programmers.

5.2.4 Register File

The register file consists of a 32 32—bit registers. Not all of these registers are available

for general programming use. The following text explains the functions of the special

registers.

Reg(0) = Zero Register Use of register 0 as a zero register is a hardware convention.

Register zero is wired to zero by the hardware. Programs are allowed to write into register

zero, but this has no effect on its contents.

Reg(26) = Frame Pointer Use of register 26 for the frame pointer is a software convention.

The frame pointer points to the base address of the stack frame of each procedure.

Reg(27) = Stack Pointer Use of register 27 for the stack pointer is a software convention.

The stack pointer points to the present location in the stack.

57

Reg(28) = Return Address Use of register 28 for the return address is a hardware con-

vention. Whenever a branch to a subroutine call is made the return address is stored into

register 28.

Reg(29) = Queue Address Use of register 29 for the queue address is a software conven-

tion. The queue address is the I/O mapped address of the queue-processor.

Reg(30) = Processor Address Use of register 30 for the processor address is a software

convention. The I/O mapped address of the processor is stored in this location. When a

processor writes to its own I/O mapped location this means that it is free for work assignment.

Reg(31) = Wait Result Use of register 31 for the wait instruction's result is a hardware

convention. When the processor executes the wait instruction, the information that is written

to the processors I/O mapped location is stored in register 31.

Signal Functional Description
A<31..0> Address lines.
D<31..0> Data lines.
READ Signals memory read.
WRITE Signals memory write.
READY Signals a completion of a memory access.
LOCAL Signals a write to the local memory.
ATOMIC Signals that a atomic read, increment, write is taking place.
BUSRQ Bus request line.
BUSGTIN Bus grant in line.
BUSGTOUT Bus grant out line.
RESET The asynchronous reset line.

CLK1 Phase one of the clocking signal.
CLK2 Phase two of the clocking signal.

Table 6 Processing Elements Signals

58

Instruction Description Of Arithmethic And Logic Instructions
shift left Shifts a register left.
shift right Shifts a register right.
add Adds two registers or a register and an immediate.
subtract Subtracts between two registers or a register and an immediate.
XOR Bitwise XOR of two registers.
AND Bitwise AND of two registers.
OR Bitwise OR of two registers.

Instruction Descriptions Of Control Flow Instructions
brig Branch to an address specified by a register and an immediate.
brsr Same as brig but the return address is saved.
wait Blocks until a memory write is executed on the memory mapped

location of the processor.

Instruction Description Data Load / Store Instructions
local load Loads to a register from the local memory.
local store Stores to the local memory the contents of a register.
global load Loads to a register from a global memory.
global store Stores to the global memory the contents of a register.
atomic
increment

Loads a register from memory, increments it and stores the result back
into memory without releasing the shared bus.

load high Loads to a register's high bits the immediate constant.

Table 7 Instructions Executable On a Processing Element.

5.3 Queue-Processor

The queue-processor maintains the availability status of the processors in the parallel

system and distributes the work load accordingly. Figure 35 shows the block diagram of

the queue-processor. The Queue Memory Manager is the controller of the queue-processor

and implements the algorithm presented in figure 28. The block structure of the Queue

59

Information block is shown in figure 36 and the block structure of the Processor State

Information block is shown in figure 37.

Queue Processor

Queue
Information

A

Queue
Memory
Manager

A

Processor
State

Information

.41r--II■

.0111--

•

RDC
Unit

a

•
Shared Bus

Figure 35 queue-processor

Whenever a word of information is written to the I/O mapped address of the queue-

processor this information is actually written into the queue memory location pointed to by

the first queue element pointer (figure 36). The first queue element pointer is then incremented

so that it is ready for the next write to the I/O mapped location of the queue-processor. When

a word of information is assigned to the queue, the information is read from the location

that the last queue element pointer is pointing to. Again the last queue element pointer gets

incremented after this operation is performed. The first and last queue element pointers are

implemented using a counter that gets incremented whenever information is written to the

I/O mapped location of the queue.

60

2An

A First^Element..-^I^Queue

Last^ElementQueue

.4^►

Words o
t

n bits

Queue Address

Figure 36 Queue Information

When the queue-processor sees that there is an element in the queue and that any one

of the processing elements is free, it initiates a write to the I/O mapped location of the free

processor. This increments the last element pointer of the queue (figure 36) which signifies

that the job is assigned to a processor. After the processor finishes the job it signals the

queue-processor of its availability status. The processor signals that it is free by writing

any value into its I/O mapped address. Figure 37 shows a simplified diagram of how the

queue-processor and four PEs can maintain correct processor availability states. In figure

37, comp is a comparator and the other components are explained below. Correct processor

availability states are maintained by the queue-processor. It maintains a toggle bit (p<1-4>

state's in figure 37) for every processor that it assigns work to. This bit toggles on each write

to the I/O mapped location of a processor (p<l-4> addr in figure 37). Initially all bits are

set to 1 signifying that all processors are busy (p<1-4> = 1) and upon start-up each processor

writes to its I/O mapped location which signals that it is free. When there is work for a

processor to do, the queue-processor writes the information to any of the free processors.

Suppose p4 gets the work written to it (ie w = 1 and AddrBus = p4 addr). This changes

p4's state in the queue-processor to 1, which signifies that processor 4 is busy. Once the

processor finishes its work, it writes any information to its I/O mapped location (ie w = 1

61

^p I state<^p2 state<

Al7N- D
^

AN\D

^w 1
^

i w
comp^comp

3 stated^p4 stated

A AAND

Queue

Processor

w —1
I comp

p4̂ addril
comp

pl addr p2 addr p3̂ addrh

AddrBus

pl addr

comp
1

AND

p I state<

Procesor 1

p2 addr

p2 stat

Processor 2

p3 addr

p3 stat

Processor 3

p4 addr

I comp
w_ ___..1

AND

p4 stat

Processor 4

comp
1

AND

comp
___I

AND

and AddrBus = p4 addr) which resets p4's state in the queue-processor and signals that

this processor is free. The queue-subsystem can then assign this processor new work.

Figure 37 Processor State Information

62

6 Simulations

This section describes how the parallel encoding/decoding algorithms were developed

using Unix System V IPC calls and then simulated on the parallel VHDL model. Figure 38

shows the setup of all the software used to achieve the results presented in chapter 7. Sections

6.1-6.5 provides details on each of the modules in figure 38 and section 6.6 explains the

complete simulation cycle. Section 6.1 discusses the tools used to generate the algorithm.

Section 6.2 discusses the tool used to create the memory images that are used in the VHDL

simulation. Section 6.3 specifies the features of the assembler used to create the code for the

VHDL simulation. Section 6.4 explains how the VHDL model uses the information that is

generated for it. Section 6.5 explains the utilities used throughout the simulation process.

Figure 38 Software used in Simulation

6.1 Simulation with System V IPC

System V IPC calls are used because they allow shared memory and message queues

to be set up in a similar manner to the hardware configuration. During this project, four

different algorithms were simulated on a Unix based machine using System V IPC calls.

The final algorithm is the best of the four and it was presented in the previous sections of

this thesis. The setup of the IPC communication software had to resemble the final hardware

architecture so that porting of code to the VHDL model would not require redefining the

algorithm. With this restriction in mind, the software was setup as shown in figure 39.

63

•
•

Processor 3

System V IPC

Message Queues

Controller

Semaphores

 4 e'd*Queue

Shared Memory Processor 1

Figure 39 Development of Algorithm using Unix and System V IPCs

The functionality of the controller, the queue and processor is mapped to the hardware

equivalents of the host, the queue-processor and the processors. The System V IPC code

is designed so that the modules containing information to be reused in the memory mapper

are in separate files. Data Base 1 consists of the System V IPC code. For encoding,

the information that generates the encoding queue elements is kept in a separate file. The

encoding information is the same information shown in figure 16 of chapter 3. For decoding,

the information that generates the type tree is also kept in a separate file.

6.2 Memory Mapper

The memory mapper takes its input from Data Base 1 and generates the initial memory

images of the shared memory and the queue-processor. The encoding memory mapper

generates the shared memory image that holds the following: the data structure to be encoded,

the queue elements for this data structure and the pointer to the available free memory. It

also sets up the queue-processor with the appropriate pointers to the shared memory queue

64

elements. The decoding memory mapper generates the shared memory image that holds the

following: the transfer syntax, the decode type tree, the first queue element and the pointer

to the available free memory. It also sets up the queue-processor with the appropriate pointer

to the first queue element. The shared memory images generated are written to Data Base 2.

6.3 Assembler

The assembler reads in the text file to be assembled and generates an output file that is

a text file with binary numbers. This pseudo binary file is the input to the processors in the

VHDL model. Data Base 3 holds all the assembler code and the output of the assembled

code goes into Data Base 4. The assembler provides these three basic functions:

1. Converts text description to opcodes.

2. Allows labels and calculate the destination address of branch instructions.

3. Constructs multiple simple instructions from a single assembler instruction.

The assembler does not flag potential errors that occur from the delayed branch operation.

This is a programmer's responsibility. Figure 40 shows examples of an assembler text file.

{ Contents:^This file is a sample assembler code. }

begin
addq^rl , r0 , 5 ;^{ load 5 into register 1 }

loop :^subq^rl , rl, 1;^{ decrement register 1 }
briqz^stop;^{ branche on zero to stop label }
add^r0 , r0 , r0 ;^{ no op }
brig^loop;^{ branches to loop label }
add^rO,r0,r0;^{ no op }

stop:^halt;^{ stop processing }
end.

Figure 40 Example Assembler Code

65

Comments are allowed anywhere within the assembler code provided they are surrounded
by 44)1

. The above code sets register one equal to five, decrements it until it is zero, and

then halts the processor. Briqz is a branch on zero to the label. The add instruction after

the branch instructions is present for a delayed branch error not occur. The rest of this code

should be self explanatory.

6.4 VHDL Model

Upon starting up, the VHDL model loads the processors with their binary program from

Data Base 4. The VHDL model also loads the shared memory image and the queue memory

image from Data Base 3. The model then runs the simulation until completion, terminates,

and produces its output in Data Base 5.

6.5 Utilities

Some utilities were constructed to aid in the debugging process and to analyze the output

of the VHDL simulation. The following is a list of them:

• mm2hex The VHDL simulator deals with text files of binary numbers. This utility

converts these pseudo binary files to hexadecimal so that it is easier to read.

• mm2idx This program takes the memory dump of an encoding run and produces the

contents of the idx structure. The task of verifying the encoded result is easier with

this tool.

• bin2hex When the VHDL model is put into debug mode it produces information on

each instruction executed such as the contents of the instruction register, the PC and

various other registers. This program takes this pseudo binary file and converts it to a

neater hexadecimal format.

combine Interleaves binary and hex files so that either the binary or hex value can be

consulted depending on which makes interpretation easier.

66

6.6 Description of a Complete Simulation Cycle

The steps required to complete a simulation cycle and achieve the results presented in

chapter 7 are explained in this section.

The steps required to generate a simulation result for an encoding are:

1. Choose an ASN.1 specification and a value instance.

2. Construct the C data types, place the value instance in the C structures and generate the

CASN.1 like structured encoding routines.

3. Compile the data from list item 2 with the System V IPC code. Since the data types

and the structure encoding routines are hand generated they may have errors in them.

Finding these errors by running the System V simulation is easier than looking through

the pseudo binary files and hex files generated by the VHDL simulations.

4. Use the memory mapper software to create the memory images for the encode.

5. Construct the assembler code needed by the VHDL processors for encoding.

6. Run the simulation of the VHDL model using the data generated by 4 and 5.

7. Verify encoding results using the utilities discussed in 6.5 and gather simulation data.

The steps required to generate a simulation result for a decoding are:

1. Choose an ASN.1 specification and a value instance.

2. Construct a decode type tree in C.

3. Run the encoding simulation and use the mm2idx utility of section 6.5 to extract the

transfer syntax of the encoding routine.

4. Compile the data from list item 2 with the System V IPC code. Since the decode type

tree is hand generated there may be errors present in the type tree. Finding these errors

by running the System V simulation is easier than looking through the pseudo binary

files and hex files generated by the VHDL simulations.

5. Use the memory mapper software to create the memory images for the decode.

6. Construct the code needed by the VHDL processor for decoding.

67

7. Run the simulation of the VHDL model using the data generated by 5 and 6.

8. Verify decoding result using the utilities discussed in 6.5 and gather simulation data.

68

7 Results

The initial choice of the tests to simulate the parallel algorithm raised many questions,

some of which are discussed in the following sections. Section 7.1 discusses the need for

standard test vectors for ASN.1 encoders/decoders and section 7.2 presents the statistics of

the simulation.

7.1 Need for Standard Test Vectors

At present no standard tests are used when encoding/decoding speeds are quoted.

Comparing results is difficult because test vectors can be chosen to bring out the optimal

performance of specific encoders/decoders. Two possible pathological cases are:

• In VASN.1 strings are not copied from the incoming TS to the local data structure. Instead

a pointer in the local representation is set to the data. An ASN.1 complier like CASN.1

copies the strings. If we are dealing with 1 Kbyte per string then the performance of

VASN.1 is significantly faster.

• Suppose we assume an ASN.1 type is defined as one string and that the string octets

had to be copied from the incoming TS to the local data structure. If we compared

CASN.1 to the parallel algorithm presented in this thesis, the speeds of the two would

be approximately equal. When strings of information must be copied, with little or no

processing, the access to memory becomes the bottleneck.

7.2 Simulation Statistics

It is impossible to compare the parallel algorithm presented in this thesis and the algorithm

in VASN.1[3]. The result in [3] presents the total number of instructions executed for an

unknown abstract syntax and value instance. The reconstruction of the results of VASN.1

would require acquisition of the hardware models and re-simulation with a known abstract

syntax and value instance. Since the reconstruction is not possible, the parallel algorithm is

compared to the code generated by UBC's ASN.1 compiler.

69

The processors in the parallel algorithm were simulated at a speed of 25 MHz and used

the instructions per byte count shown in Appendix F. The results are summarized below.

ASN.1- Personnel Rec. Ten Reals Ten Integers

Units-4 Mbits/s Mbits/s Mbits/s

Proc. Oper.1 Encode Decode Encode Decode Encode Decode

1 noop 34.3 '^8.6 99.5 24.2 26.1 6.3

2 noop 59.6 15.5 167.5 29.1 43.9 7.6

10 noop 101.5 22.6 208.2 28.8 54.6 7.6

1 copy 13.7 7.2 40.8 21.0 11.9 5.8

2 copy 23.9 13.2 65.4 28.4 19.2 7.6

10 copy 40.0 20.3 80.2 28.1 24.0 7.5

1 50% 6.7 2.5 13.9 3.4 4.1 2.0

2 50% 12.1 4.94 25.5 6.6 7.4 3.7

10 50% 28.1 15.1 61.6 16.9 16.5 6.05

1 100% 4.5 1.6 8.3 1.8 2.5 1.2

2 100% 8.4 3.2 15.6 3.6 4.7 2.3

10 100% 21.4 10.9 45.9 12.0 12.5 5.0

1^_ CASN .253 .242 - - - -

Table 8 Simulation Results in Mbit/s.

The first row of table 8 shows the three different ASN.1 types simulated with the parallel

algorithm. Column one shows the number of processors the algorithm is simulated with.

Column two shows the actions that the processors execute. These actions and the analysis

of their results are as follows:

• noop When a primitive call is made no operations are executed. The simulation provides

the upper limit on the throughput of the algorithm and the overhead associated with the

70

algorithm.

• copy When a primitive call is made, the contents in the data structure of the application

are copied to the TS for encoding and vice-versa for decoding. The throughputs for

the noop simulations are higher than the throughputs for the copy simulations due to

the shared bus contention caused by the copying of the IA5String types. The IA5String

types require almost no processing and must be copied over the shared bus.

• 50% When a primitive call is made, the copy operation is executed and as well as 50%

of the instruction/byte count generated by the serial program. This simulation provides

a middle ground result in relation to the copy and the 100% option specified below.

• 100% When a primitive call is made, the copy operation is executed and as well as 100%

of the instruction/byte count generated by the serial program. This simulation provides

a lower limit on the achievable throughput.

• CASN This is the encoding/decoding rate for CASN.1[12]. This result was achieved

by running CASN.1 on a SUN 3/260 under UNIX 4.2 BSD. The SUN 3/260 machines

use a 25MHz 68020 Motorola processor. The single processor simulation of the parallel

algorithm produces higher throughput than the single processor implementation CASN.1

because CASN.1 was designed only for functionality and not optimized for speed. The

single processor simulation of the parallel algorithm uses the instruction/byte count

generated by an optimized version of CASN.1, named a2c, that is under development

at UBC.

The higher speeds achieved when encoding are attributed to the following:

• When encoding, the compiled encoding routine approach is followed while in decoding

the type tree approach is followed. Ref.[16] notes that the compiler approach is usually

faster than the type tree approach due to the extra processing required for traversing

the type tree.

• When decoding, the extra processing requirements of a type tree increases the amount of

communication overhead in the parallel system which slows down the decoding speeds.

71

• When encoding, pipelining and parallelism are achieved by having the host and the

parallel hardware operate simultaneously. When decoding, only parallelism is exploited

because the parallel hardware operates alone.

• When decoding, the input TS is compared to the expected value. When encoding, no

comparison operation is performed.

From the data presented in table 8 it is difficult to determine the optimal number of

processors to use in this parallel setup. Deciding the margin of diminishing returns is

a difficult problem because the maximum number of processors used depends on how

hierarchical the ASN.1 structure is and the data instance being encoded/decoded. For

example, if there is an ASN.1 definition of two octets then the maximum processor utilization

is two and the memory bandwidth is the bottleneck. In another case suppose that there is as

ASN.1 type defined as a SEQUENCE of 20 object identifiers. It is possible that 20 processors

could be kept busy decoding these object identifiers without running into a memory bandwidth

problem. Thus the parallel version of the software performs at a speed that is comparable

to the serial version in the worst case. The worst case occurs when there is one octet in

the ASN.1 type and the memory bandwidth is the bottleneck. In all other cases the parallel

version significantly outperforms the serial version.

72

8 Future Work

This section describes enhancements to the present algorithm, which were not tested for

this thesis project, but are suggested for future work.

8.1 Simulations

The following is a list of some of the improvements that can be made to the simulation

system:

• See the impact of programming primitive encoding/decoding in assembly language.

Make an ASN.1 compiler that reads in text files of ASN.1 and generates the equivalent

C type, the structures encoding routines and the decoding type tree.

Modify the back-end of a public domain C compiler so that it produces output that the

VHDL model can directly use.

Determine the effect of changing the single bus connection network. A good starting

point for this is a double bus with independent RDC arbitration.

8.2 Processing Element

The following improvements that can be made to the processing elements are listed in

order of importance. The constraining factor for the suggestions below is the total available

die space on an IC.

• Install a two window register file in each processor. The PE calls subroutines that cause

the environment of the PE to be saved to memory. On the return of the subroutine the

environment is restored from memory. This causes memory reads and writes thereby

that slows down the execution speed of the processor.

• On chip memory shown in Figure 41 is used as a data cache. The advantage of an on

chip cache is that the load on the shared bus decreases because the processing elements

can use burst reading/writing of memory reducing the contention for the shared bus.

73

This allows the processor to acquire control of the bus faster and reduce the total waiting

time for the bus.

PE PE PE PE

cache cache cache cache

Off Chip I On Chip

Figure 41 Local Cache Setup

8.3 Parallel use of PEs

The following provides the improvements that can be made to the parallel hardware.

Again the constraining factor is the total available die area on an IC.

• The single shared bus can be replaced by a multiple shared bus with data caching as

shown in figure 42. This decreases the time a processor spends waiting for a bus and

increases the work performed. The parallel hardware shown in 41 and 42 can be specified

and simulated to determine which is better.

• Multiple ED library calling queues in the parallel processor. This would allow more

than one encoding/decoding to take place and can also prioritize the system. This would

raise the system performance and PE utilization.

74

PE
^

PE
^

PE
^

PE

Cache

Off Chip On Chip

Figure 42 Multi-Bus Global Cache

8.4 Fabrication Constraints

• When more elements, such as large register files and data caches, are put onto a die the

total area occupied on the die increases and hence there is a need for fault tolerance and

testability. Hardware designs must keep this in mind.

• An initial hand layout instead of an automatically generated layout could save on chip

area and would improve the speed of the processor. Ref. [7][14][22] contain examples

of the hand layouts found in literature.

75

9 Conclusion

This thesis has shown that a parallel ASN.1 encoder/decoder allows higher throughput

than a serial implementation. Table 9 presents the worst case simulation results for the

ASN.1 PersonnelRecord type specified in Appendix E. The results in table 9 are normalized

with respect to the serial algorithm of CASN.1 and the parallel algorithm executed on one

processor. The results in table 9 normalized with respect to the parallel algorithm running on

one processor provide a better indication of the speedup achievable by the parallel algorithm.

Comparing CASN.1 to the parallel algorithm is unfair because the code generated by CASN.1

is not optimized for speed and the values used in the parallel algorithm simulations are derived

from an optimized version of CASN.1. The optimized version of CASN.1 is named a2c and

is in the final stages of development at UBC.

CASN.1 Normalized Par. 1 proc. Normalized
Algorithm Processors Encode Decode Encode Decode
CASN.1 1 1 1 0.056 0.15
Parallel 1 17.8 6.6 1 1
Parallel 10 84.6 45.0 4.8 6.8

Table 9 Worst Case Simulation Results for PersonnelRecord.

The simulation results derived in this thesis can not be compared to simulation results

of VASN.1 because the published throughputs of VASN.1 do not specify the ASN.1 type or

value instances that were used. The major features of the parallel system simulated in this

thesis and a structural comparison of it to VASN.1 are presented below.

• An optimal ASN.1 processing element can be designed based on the instruction usage

statistics gathered during the simulations.

• A distinct interface to the parallel system has been provided for users. This will allow

for easy integration with other systems.

76

• The rotating daisy chain bus arbitration scheme that is used in the parallel system of this

thesis provides the best bus arbitration scheme for the required amount of hardware[2].

In the VASN.1 system the bus arbitration is preformed by four processing elements which

is an inefficient use of the processing power.

• The hardware of VASN.1 uses an associative memory while the hardware presented in

this thesis does not. Due to the complexity of implementing an associative memory, the

system implementation time and the system area requirements will be high in VASN.1.

• VASN.1 has a limited number of processors due to its hardware configuration. The

hardware designed in this thesis is structured and scales gracefully. This allows more

processing elements to be included in the parallel encoding/decoding which increases

the achievable parallelism.

• VASN.1 does not do a parallel to serial conversion of the data structures it provides for

the users but assumes all users accept parallel data structures. The users of VASN.1 must

pay the high cost of programming their applications to handle parallel data structures.

The algorithm of this thesis provides a serial to parallel data structure conversion at a

low cost hence user's programs are not required to work with parallel data structures.

An algorithm for converting a serial data structure to a parallel data structure in the

presentation layer has never been proposed in the literature.

Based on the above data one can conclude that the basis for a significantly better parallel

algorithm than VASN.1 has been provided and the initial simulation results are promising.

77

Bibliography

[1] Peter J. Ashenden. The VHDL Cookbook. This is postscript document available by FTP
from chook.adelaide.edu.au , July 1990. University of Adelaide.

[2] W. L. Bain, J.R. Ahuja, and S.R. Ahuja. PERFORMANCE ANALYSIS OF HIGH-
SPEED DIGITAL BUSES FOR MULTIPROCESSING SYSTEMS. In Proceedings of the
8th Annual Symposium on Computer Architecture, volume 8, pages 107-133, Minneapolis,
Minnesota, May 12-14, 1981.

[3] M. Bilgic and B. Sarikaya. AN ASN.1 ENCODER/DECODER AND ITS PERFOR-
MANCE. In IFIP PSTV X, pages 133-150, Ottawa, Canada, June 12-15, 1990.

[4] D. Chapman. A Tutorial on Abstract Syntax Notation One (ASN.1). Transmission #25 by
Open System Data Transfer, December 1986. Omnicom information service, Omnicom
Inc.• ISSN 0741286X.

[5] David D. Clark and David L. Tennenhouse. Architectural considerations for a new
generation of protocols. SIGCOMM '90, 24(4):200-208, September 1990.

[6] Sun Microsystems Inc. XDR: External Data Representation Standard, (RFC 1014) in
Internet Working Group Requested for Comments. Network Information Center, SRI
International, Menlo Park, Calf., June 1987. No. 1014.

[7] Robert W. Sherburne Jr., Manolis G.H. Katevenis, David A. Patterson, and Carlo H. Se-
quin. DATAPATH DESIGN FOR RISC. In CONFERENCE ON ADVANCED RESEARCH
IN VLSI, MIT, pages 53-62, Cambridge, Massachusetts, January 1982.

[8] Mike Kong. Network Computing System Reference Manual. Prentice-Hall, Inc., 1987.
ISBN 0136170854.

[9] Roger Lipsett, Carl F. Schaefer, and Cary Ussery. VHDL: hardware description and
design. Kluwer Academic Publishers, 1989. ISBN 0-7923-9030–X.

[10] Motorola. MC88100 RISC MICROPROCESSOR USER'S MANUAL, 1989. Order
Number: MC88100UMAD/AD, page 1-1 — 1-13.

[11] Gerald W. Neufeld and Son Vuong. An Overview of ASN.1. Computer Networks and
ISDN Systems, 23:393-415, 1992.

[12] Gerald W. Neufeld and Yueli Yang. The Design and Implementation of an ASN.1–
C Compiler. IEEE Transactions on Software Engineering, 16(10):1209-1220, October
1990.

78

[13] U.S. Department of Commerce. NBS, "User Guide for the NBS Prototype Compiler
for Estelle, final report". Technical report, National . Bureau of Standards, October 1987.
Report No. ICST/SNA-87/3.

[14] D. Pucknell and K. Eshraghian. Basic VLSI Design Principles and Applications.
Prentice-Hall, 1985. ISBN 0-13-067851-1.

[15] Mike Sample and Gerald W. Neufeld. A High Performance ASN.1 Compiler. in
preparation at UBC Computer Science, 1992.

[16] Mike Sample and Gerald W. Neufeld. Support for ASN.1 within a Protocol Testing
Environment. In Proceedings of the IFIP TCIWG 6.1 Third International Conference of
Formal Description Techniques for Distributed Systems and Communications Protocols,
pages 295-302, Madrid, Spain, November 5-8 1990.

[17] W. Stallings. Data and Computer Communication. New York: Macmillan, 1988.

[18] Sun Microsystems Inc. A RISC Tutorial, 1988. Part Number: 800-1795-10, pages 1-
15, Revision A of 9 May.

[19] Len Takeuchi. STUDY OF OSI PROTOCOL PROCESSING ENGINES. Master's
thesis, Department of Electrical Engineering, University of British Columbia, 1991.

[20] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, 1988. ISBN 0-13-162959—
X.

[21] Kenneth J. Thurber, E. Douglas Jensen, Larry A. Jack, Larry L. Kinney, Peter C. Patton,
and Lynn C. Anderson. A systematic approach to the design of digital bussing structures.
In AFIPS Conference Proceedings, Fall Joint Computer Conference, volume 41 part 2,
pages 719-740, 1972.

[22] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design: A Systems Perspective.
Addison-Wesley, 1985.

[23] The Wollongong Group, 1129 San Antonio Rd. Palo Alto, CA, USA. ISODE, The ISO
Development Environment: User Manual, February 1990. Version 6.102 Volume 1 and 4.

[24] W. Wu, M. Bilgic, and B. Sarikaya. VHDL MODELING AND SYNTHESIS OF
AN ASN.1 ENCODER/DECODER. In Canadian Conference on Very Large Scale
Integration, CCVLSI '90, pages 1.5.1-1.5.8, Westin Hotel, Ottawa, Ontario, October
21-23, 1990.

[25] Wayne Wu. VASN1: A HIGH-SPEED MULTI-RISC EMBEDDED SYSTEM FOR

79

ASN.1 ENCODING AND DECODING. Master's thesis, Department of Electrical
Engineering, Concordia University, September 1991.

[26] Recommendation X.208. Specification of Abstract Syntax Notation One (ASN.1), pages
57-130. CCITT Blue Book, Volume V.III, Fascicle VIII.4, International Telecommuni-
cations Union, Geneva, Switzerland, 1989.

[27] Recommendation X.209. Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1), pages 131-151. CCITT Blue Book Volume V.III, Fascicle VIII.4,
International Telecommunications Union, Geneva, Switzerland, 1989.

[28] Yueli Yang. ASN.1—C COMPILER FOR AUTOMATIC PROTOCOL IMPLEMENTA-
TION. Master's thesis, Department of Computer Science, University of British Colum-
bia, 1988.

80

Appendix A Acronym Definitions

ASN.1 Abstract syntax notation one
BER^Basic encoding rules
FIFO^First in first out
IC^Integrated circuit
IPC^Inter-process communication
ISO^International Standards Organization
PDU^Protocol data unit
PE^Processing element
PPDU^Presentation protocol data unit
RDC^Rotating daisy chain
TLV^Tag, length and value
TS^Transfer syntax
VHSIC Very high speed integrated circuits
VHDL^VHSIC hardware description language
UBC^University of British Columbia

Appendix B Cost per Instruction Mapping

Action Cost

allocate memory 5
assignment 2
complex assign 3
write to q 2
logic operation 1
add or sub 1
stack push 3
stack pop 2

Note that CASN.1 does not do any bounds checking on the
stacks. The cost increases if CASN.1 does.

Thesis parallel algorithm.

EncodePrimitive Tag
Cost^Operation
5^1 allocate memory
10^5 assignments
1^1 write to queue

EncodePrimitive Non Tags
Cost^Operation
5^1 allocate memory
18^9 assignments
1^1 write to queue

EncodeStructBegin New Level and Node
Cost^Operation
2^1 if statement
5^1 allocate memory
28^14 assignments

EncodeStructBegin New Node
Cost^Operation
2^1 if statement
5^•^1 allocate memory
22^11 assignments

82

EncodeStructEnd (non root level)
Cost^Operation
4^2 assignments
2^1 if statement

EncodeStructEnd (root level)
Cost/node^Operation
5^1 allocation
16^8 assignments
1^1 logic OR
1^1 write to queue
2^1 loop statement
Cost/level^Operation
4^2 assignments
1^1 write to queue
2^1 branch

CASN.1

EncodePrimitive
20 for boolean (this is a guess)
60 for int (this is a guess)
300 for real (this is a guess)

EncodeStructBegin
Cost^Operation
3^1 complex assignment
9^3 stack push
10^encode tag

EncodeStructEnd (for short form definite length)
Cost^Operation
4^2 pops
8^4 assignment
3^1 complex assignment
5^1 allocate memory
2^1 assignment (IO_OUT)
2^1 branch
7 or 10^link (explained below)
9^3 complex assignment

link with empty stack (used in EncodeStructEnd)
2^1 pop
2^1 if not chosen
3^1 push

83

link with non empty stack (used in EncodeStructEnd)
2 1 pop
2 1 if chosen
3 1 assignment
3 1 push

Appendix C Pros and Cons of Static Analysis

Compilation of CASN.1 primitive routines into assembler to generate approximate

instruction count has two problems.

The first problem is that the analysis of the C code is a static one. The primitive

encode/decode instruction count generated is static so one should take into account the

difference between a static analysis and a dynamic analysis. Generally not all the assembler

instructions are executed, hence a static analysis count results in a greater overall instruction

count. Also within the fragments of code there are loops that execute a number of times and

these extra instructions are unaccounted for in the static analysis. Finally, within the code

some routines get called more than once but the assembled code includes all subroutines

once. This reduces the total instruction count in the static analysis.

The second problem is that of application-dependent extra code included in the static

assembler count. The error checking code for CASN.1 should not be considered instructions

for encoding/decoding primitive types. This extra code for the encoding/decoding process

is specific to the implementation. To get an accurate count of the instructions that need to

be executed for a primitive encode/decode one should construct the primitive routines in

assembler and then analyze the resulting code by hand. By using varied data sets to test

the primitive routine, instruction counts can be calculated by using loop unrolling and other

such methods. Note that even though the implementation-dependent code does not constitute

the minimum instructions for encoding/decoding it does represent the overhead incurred in

implementing a functional algorithm.

Although the instruction counting method is limited, it is presented to show that a

significant number of instructions must be executed to encode/decode a primitive type and

hence parallelism is applicable.

85

Memory R ad

Clockl

Clock

Addr.

Read

Data

Ready

Write

Clockl

Clock

Addr.

Write

Data

Ready

Read

Address

Memory Write

X Valid

Valid Data

X Valid Address

Valid Data

Appendix D Processors Memory
Read and Write Cycle

Figure 43 Memory Read/Write Timing Diagrams

86

Appendix E ASN.1 PersonnelRecord Type

PersonnelRecord ::= [APPLICATION 0]^IMPLICIT SET {

title

dateOfHire
nameOfSpouse
children

[0]

[1]
[2]
[3]

Name,
IA5String,
EmployeeNumber,
Date,
Name,
IMPLICIT SEQUENCE OF
Childlnformation DEFAULT 0

}

Childlnformation ::= SET {

dateOfBirth [0]
Name,
Date

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
givenName^IA5String,
initial^ IA5String,
familyName^IA5String

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date^[APPLICATION 3] IMPLICIT IA5String^YYYYMMDD

value instance
{ {givenName "John", initial "E", familyName "Smith"},
title
"The Big Cheese",
99999,

dateOfHire
"19820104",

nameOfSpouse
{givenName "Mary", initial "L", familyName "Smith"},

children {
{{givenName "James", initial "R", familyName "Smith"},

87

dateOfBirth "19570210"),
{{givenName "Lisa", initial "M", familyName "Smith"},
dateOfBirth "19590621"})

}

88

Appendix F ASN.1 Types Instruction Counts

The instructions per byte values that are used in the simulation are generated by profiling

a2c. Table 10 presents the average instructions executed per byte for three different data

structures. The first is the PersonnelRecord ASN.1 type specified in Appendix E. The second

data structure is specified in 44 and consists of ten integers. The final data structure is ten

reals. The ten real type is the same as the ten integer type, with the integers replaced by reals.

teninstType^SEQUENCE f
Intl INTEGER,
int2 INTEGER,
int3 INTEGER,
int4 INTEGER,
int5 INTEGER,
int6 INTEGER,
int7 INTEGER,
int8 INTEGER,
int9 INTEGER,
into INTEGER

}

value instance = (5,5,5,5,5,5,5,5,5,5)

Figure 44 Ten Integers Type

PersonnelRecord Ten Integers Ten Reals
Encode 14 21 13
Decode 35 46 66

Table 10 Simulations Instruction per Byte Values.

89

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100

